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Diffusing-wave spectroscopy 

David A. Weitz and David J. Pine 

'There's light enough for what I've got to do' 
Charles Dickens (Bill Sikes) 1812-1870 

In this chapter we describe a recent development in dynamic light scattering 
(DLS), which may ultimately have a significant impact on the range of problems 
that can be addressed and on the types of system that can be studied. We 
discuss diffusing-wave spectroscopy (DWS), which extends DLS to very highly 
multiple scattering media. This technique extends the analytic power of DLS 
to opaque samples such as concentrated suspensions, obviating the need to 
dilute or index-match. In addition, DWS opens new and exciting possibilities 
for studying particle dynamics on length scales that are unattainable using 
conventional methods. We present a summary of the theoretical principles 
underlying DWS, and discuss its applications, both in extending traditional 
DLS techniques and in studying new physical phenomena. The development 
of DWS is still in its relatively early stages, and considerably more work is 
needed to exploit this technique fully. Our goal here is to provide a compre
hcm.ive introduction to the underlying principles, and to provide some examples 
illustrating the great promise of DWS, in the hope of making further work 
mon: productive. 

Diffusing-wave spectroscopy is very similar to conventional dynamic light 
scattering. Both entail the detection of the intensity of a single speckle spot of 
the scattered light and a measurement of its temporal fluctuations. In both cases 
these fluctuations are characterized by their temporal autocorrelation function, 
and in both cases these intensity fluctuations reflect the dynamics of the 
scattering medium. 

In traditional DLS, the characteristic decay time of the correlation function 
is related to the dynamics of the medium through the length scale set by the 
inverse of the scattering wave vector, q- 1

• Motion of the scatterers on this 
length scale leads to a change in the path length of the scattered light by one 
wavelength, resulting in a change in the phase of the detected light by 2n, and 
hence to a change in the intensity of the scattered light. Analysis of the 
experimentally measured autocorrelation fun'ction provides a characteristic 
t11nt· ·scale for the intensity fluctuations . To obtain nwnningful 111formatio11 
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about the dynamics of the medium from this characteristic time-scale requires 
knowledge of the length scale set by the scattering wave vector. It is this 
requirement that has limited the application of traditional DLS to the strictly 
single scattering limit. If light is scattered even a second time, the intermediate 
scattering wavevector is unknown, precluding simple, meaningful interpretation 
of the measured decay time of the autocorrelation function of the scattered 
light. Diffusing-wave spectroscopy approaches the problem of multiple scatter
ing from an entirely different limit, that of very high multiple scattering. In this 
limit, the light does not undergo only one or even a small number of scattering 
events, but instead is scattered a very large number of times. In this limit, the 
direction of the light is totally randomized. Then the propagation of the light 
and the effects of the dynamics of the scattering medium can both be treated 
with statistical approximations. This approach obviates the complexity inherent 
in exact treatments of DLS with double or triple scattering events, and allows 
useful information to be obtained relatively simply from the intensity fluctua
tions of the scattered light in the high multiple-scattering limit. 

The decay of the temporal autocorrelation function of the multiply-scattering 
light measured with DWS results from a change in phase of the scattered light 
by :::::n, just as for conventional DLS. In DWS the total path length ·of the light 
through the sample must change by one wavelength to cause the change in 
phase and thus the fluctuation in the intensity. The calculation of this phase 
change, and hence the temporal autocorrelation function in DWS, entails two 
fundamental approximations. The first approximation is in the description of 
the light propagation through the scattering medium. In the limit of very high 
multiple scattering, each photon is scattered a very large number of times, and 
its path can be described as a random walk. The simplest description of the 
light propagation is with the diffusion approximation.Ill This approximation 
neglects any interference effects of the light as it propagates through the 
scattering medium, and assumes that the light intensity diffuses. The neglect of 
interference effects within the medium is predicated on the assumption that the 
light scattering is not so strong as to approach the localization of light due to 
random scattering. It is an excellent approximation in virtually every instance 
of practical importance. The use of the diffusion approximation makes it 
possible to calculate the distribution of paths taken by the photons propagating 
through the medium. 

The second fundamental approximation inherent in DWS is in the treatment 
of the effect of the dynamics of the scatterers on the phase of the light. Since 
each photon is scattered a large number of times as it is transported through 
the medium, the details of individual scattering events play a less critical role. 
In particular, the conservation of scattering momentum at every point along 
the full path can be neglected. Instead, the individual scattering events are 
approximated by the contribution of an average scattering event. Then the 
knowledge of the path length obtained through the use of the diffusion 
approximation determines the number of these average scatlering events that 
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contribute to each path. Jt is these two approximations that make the DWS 
approach tractable, and allow calculation of the autocorrelation function. 

The diffusion approximation has been quite widely used to describe the 
propagation of light through very highly scattering media. It was used as early 
as 1905 to describe the propagation of light through clouds. Radiation transfer 
theory is "I well-developed description of the propagation of light through highly 
scattering media that reduces to the diffusion approximation under appropriate 
conditions. More recently, the diffusion approximation has formed the basis 
for the description of the transport of light through highly scattering media as 
the localizaton of classical waves is approached. Most treatments of the 
enhancement of backscattered light, or weak localization, rely on the diffusion 
approximation. In fact it is the experimental observation that the strong 
locali1ation of light is so difficult to achieve that gives the diffusion approxima
tion its wide applicability. Strong location oflight has not been observed to date, 
reflecting the fact that most materials simply do not scatter strongly enough. 
As a consequence, the diffusion approximation provides an excellent, and very 
widely applicable, description of light propagation. Diffusing-wave spectros
copy is an extension of the diffusion approximation to dynamic light scattering. 

Within the diffusion approximation, light propagation is parametrized by the 
diffusion coefficient for light, D1 = vl*/3, where v is the speed of light in the 
medium and /* is the transport mean free path in the medium. The effective 
speed of light in the medium can be substantially smaller than that in a 
homogeneous medium.121 A highly scattering medium often comprises nearly 
resonant scatterers, described by the proximity of Mie resonances. The excita-
1ion of each resonance acts effectively as an inductance, which delays the 
prnpagat1on of the light. The large number of these resonant scatterers 
encountered by the light as it propagates through the medium causes a 
-.ignifkant reduction in the effective speed of the light. The transport mean free 
path,/*. characterizes the scattering medium itself. It is the length that a photon 
must travel before its direction is completely randomized. This length is typically 
substantially larger than the scattering mean free path, /, the length that a 
photon must travel before it is scattered a single time. Since strong scatterers 
typically scatter preferentially in the forward direction, many scattering events 
are required before the direction is randomized, making l* > /. 

The use of the diffusion approximation to describe the propagation of the 
light determines which media can and cannot be studied using DWS. Samples 
that scatter light very highly, and thus have a white or milk-like appearance, arc 
suitable. For example, concentrated samples of latex spheres can be studied 
with no dilution. However, the requirement that light should diffuse through 
the sample also leads to some restrictions in the choice of samples. Absorption 
becomes much more important in highly scattering samples, since the path 
length followed by the light is greatly increased. While the efTccts of absorptton 
can easily be included in the theoretical treatment of DWS. Thus the applic
ablity of DWS to samples that arc coloured is much more limited th.in lo 
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samples than are white. Furthermore, the requirement that the light should 
diffuse through the sample also restricts the application of DWS to those 
samples that scatter highly enough. The sample must be sufficiently opaque 
that a negligible amount of unscattcred light is transmitted through the sample. 
Even with these limitations, DWS greatly broadens the range of samples that 
can be studied using dynamic light scattering techniques. In particular, DWS 
can be used to study samples that it had not previously been possible to study 
with DLS, including a wide range of concentrated suspensions of technological 
importance. 

The use of the diffusion approximation to describe the propagation of light 
ensures that the scattering wavevector, which relates the incident and detected 
light, has little relevance to the resultant correlation function, because the light 
has undergone such a large number of intermediate scattering events. Thus, 
unlike DLS, the angle between the incident and detected light is not important 
in DWS. As a consequence there are two basic experimental geometries that 
have proved useful. The first is backscattering, where the light is incident on 
one side of the sample and the scattered light is detected from the same side. 
The other geometry is transmission, where the light is incident on one side of 
the sample and the scattered light transmitted through the sample is detected. 
In either case, the exact angle of the detected light is not critical. However, the 
exact experimental geometry is critical, as it determines the length of the paths 
that the scattered photons follow. Thus, for example, the thickness of the sample 
or the diameter of the incident beam strongly affects the decay time of the 
autocorrelation functions. 

One of the most important driving forces behind the development of 
traditional DLS has been its technological application in particle sizing 
measurements. Traditional DLS is a well-developed method for particle sizing, 
provided that the suspension is sufficiently dilute, or the particles are sufficiently 
small, for the light to be scattered only once. However, since q is known, DLS 
can also provide information about the distribution of particle sizes, particularly 
when data can be obtained at several different scattering angles. The technologi
cal application to particle sizing may also be one of the most important driving 
forces in the further development of DWS. Since most suspensions of techno
logical importance are sufficiently concentrated for them to scatter very highly, 
DWS may provide a means of using light scattering for particle sizing in these 
materials without requiring dilution. However, DWS is less well developed 
for particle sizing. The backscattering geometry is the most convenient one for 
particle sizing, and it is certainly possible to obtain a measure of the average 
particle size that is accurate to within about 10 to 20 per cent. With further 
refinements, it should ultimately be possible to obtain considerably better 
accuracy. The transmission geometry can also be used for particle sizing but 
requires additional knowledge of the scattering medium, in that the transport 
mean free path, /*,must be determined independently. Unlike DLS, however, 
the correlation functions measured wilh DWS cannot be inverted to determine 
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information directly about particle size distributions, although their effect on 
the correlation functions can be calculated, allowing different models to be 
tested. In addition, since DWS measures the dynamics of concentrated suspen
sions directly, interpretation of the data in terms of an average particle size is 
considerably more difficult, since it must also account for the effects of particle 
interactions, which become much more important with increasing concentra
tion. Thus the initial application of DWS to particle sizing will be likely to 
have a different emphasis from traditional DLS. It will probably be more useful 
m monitoring such effects as the changes in some average size of particles as a 
process proceeds than in measuring the size distribution of a totally unknown 
sample. However, DWS is the only technique that can be used to study highly 
scattering, concentrated solutions without dilution, and thus will certainly find 
a variety of important applications. 

Jn addition to its potential for technological applications, DWS possesses 
several unique features, making it possible to study phenomena and samples 
that simply cannot be studied any other way. One example is the study of 
particle motion on very short length scales. The intensity fluctuations measured 
with DWS arise when the pathlength of the scattered light changes by one 
wavelength, just as they do in the traditional DLS. Tn the case of DWS, 
however, a change in the total path length by one wavelength is caused by the 
cumu lative motion of a very large number of scatterers. Thus each scatterer 
need move only a small fraction of a wavelength. Therefore, using DWS it is 
possible to measure the motion of micrometre-sized particles on length scales 
as small as a few angstroms. Particle motion on these length scales can exhibit 
very d11Terent physics from motion on the much larger length scales typically 
measured with DLS. Another unique application of DWS exploits the diffusive 
nature of the propagation of the light through the medium. Diffusion light 
samples a much larger volume of the sample than does singly scattered light. 
Thus 11 is possible to study dynamic events that are spatially or temporally 
rare. As an example, DWS has been used to study the dynamics associated with 
the ageing of foams. These dynamics involve rearrangement of the foam bubbles, 
which occurs randomly and intermittently in localized regions of the foam. 
1 lowever, since DWS can average over a large volume of the sample, it can 
conveniently be used to monitor the rate of this motion. Thus new physics of 
the foam can be studied with DWS. These arc but two examples of the 
applications of DWS to the study of new physical phenomena. 

Finally, we note that in our discussion of DWS, we must distinguish between 
two different types of diffusion: the diffusion of the photons and the diffusion 
of the scatterers. The diffusion coefficients of each are vastly dilTcrcnl. For light, 
the diffusion coefficient is given by Di . cl*/3, and for a typical transport mean 
free path of/* :::::: 100 µm, we have Di:::::: J08 cm 2 s- 1

. For the scatterers, a typical 
diffusion coefficient is D0 ~ JO 8 cm2 s- 1• Thus the photons diffuse much more 
rapidly than the particles. As a consequence. the light traverses the sample 
hcfore the particles have moved any significant distance at all, nnd therefore 
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before the paths have changed their length. Thus DWS still is an intensity 
fluctuation spectroscopy, a measure of the correlations of the scattered intensity 
at different times as the scattering particles move. 

In the remainder of this chapter, we present a description of the principles 
underlying DWS and a description of its potential applications. The theoretical 
principles of DWS are discussed in Section 16.2. We begin by considering the 
case where the concentration of particles ·is large enough to produce high 
multiple scattering, but small enough that neither potential nor hydrodynamic 
interactions need be considered. This simplifies the discussion of the effects of 
the particle dynamics and allows us to consider the consequences of the diffusive 
propagation of the light. We then discuss the limitations of the diffusion 
approximation and consider some possible directions for improvement. This is 
followed by a more detailed discussion of the consequences of particle 
interactions, both potential and hydrodynamic, for the theoretical treatment. 
Section 16.3 reviews the details of some of the applications of DWS. We begin 
with a discussion of the experimental requirements that are particular to DWS. 
We then present a description of the use of DWS for particle sizing in 
concentrated suspensions. Next we discuss the new unique applications ofDWS 
to the study of phenomena and systems that cannot otherwise be studied with 
dynamic light scattering techniques. This includes the measurement of particle 
motion on very short length scales and the extension of DWS to study the 
dynamics of foams. 

16.2 Principles of DWS 

16.2.1 Overview of theory 

In order to interpret any results obtained with a DWS experiment quantitat
ively, we must calculate the temporal autocorrelation function of the intensity 
fluctuations of the scattered light. The basic prescription that we follow is, in 
principle, quite straightforward: We approximate the light propagation through 
the very highly scattering medium as a diffusive process, which allows us to 
determine all the different paths that a photon can take as it traverses the 
medium, as well as the probabiHty that a photon will follow any given path. 
We then exploit the fact that a long path involves many scattering events, and 
approximate each individual scattering event by an average scattering event. 
We next replace the sum over the individual scattering events by a sum over 
the same number of average scattering events. This allows us to calculate the 
contribution of the individual paths to the correlation function. Finally, the total 
correlation function 1s determined by summing the contributions of the 
individual paths, weighted by the probability that a diffusing photon folJows 
that path. This procedure makes it possible to calculate the temporal auto
wnclation function in a straightforward and physically tran'iparent manner.I' ~I 
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F1v. 16. l. Typical optict1I arrangement for OWS in the transmission geometry. showing 
the large number of possible diffusion paths that the photons can follow. Light is incident 
at a point r .. on the left face of the sample and is collected from a point r0 u 1 on the right 
face. The apertures defining the point r0 u1 ensure that approximately one speckle of 
~cattered ltght 1s collected. Only those paths collected by the light detector (PMT) arc 
~hown; nevertheless, there are a large number of light paths through the sample. 

The approach we describe is not unique; there are other approaches that 
have also been used to determine the autocorrelation function, and that predate 
1hc me1hod described here. These are based on a diagrammatic description of 
lhe light transport.16• 71 These approaches have the advantage that they can in 
principle describe the behaviour when the scattering is so strong that localita
tion of the light is approached. However, for the weaker scattering that 1s 

encountered experimentally, they reduce to the diffusion approximation used 
here. 

To illustrate in more detail the approach that we use, it is useful to consider 
a specific example. We show a typical arrangement for a DWS experiment in 
Fig. 16.1. This is the transmission geometry, with the laser incident as a focused 
beam on one side of the sample, and the detected signal collected from the 
other side. The geometry of the sample is a slab, with a thickness Land a lateral 
extent much greater than the thickness. The signal detection is similar to that 
in a standard DLS experiment in that a single speckle spot is imaged on lo a 
pinhole, and its fluctuating signal is analysed with a digital correlator Again 
for the sake of s11nplic1ty. we begin by considering a concentrated colloidal 
suspension as the sample. Its concentration and scattering power must be large 
enough to ensure that it is milky-white in appearance, with vinually no 
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unscattcred light transmitted through the sample. However, we initially consider 
a suspension whose concentration is sufficiently low that the effects of interac
tions, both potential and hydrodynamic, arc negligible. Thus, for example, an 
aqueous suspension of polystyrene spheres with a volume fraction</>:::::: 0.01 and 
diameter d :::::: 0.5 µm would be suitable. 

As shown schematically in Fig. 16.l, any photon incident on one side of the 
sample can follow a large number of possible paths, each involving many 
scattering events, before it leaves the other side of the sample. The collection 
optics detect only a small portion of the outgoing light. Because each individual 
path consists of a large number of scattering events, it can be described as 
random walk. ln the continuum limit, the diffusion equation for light can be 
used to describe the propagation of the light. In particular, it can be used to 
determined the distribution of paths of dilTcrent lengths. I t is this ability to 
calculate the distribution of path lengths using the diffusing approximation for 
the transport of light that is the key to DWS. 

The contribution of each path to the total correlation function can also be 
calculated. It depends on the total number of scattering events that constitute 
the path, which is in turn determined by the path length and the scattering 
mean free path of the photons, or the average distance that a photon travels 
until it is scattered. The calculation of the contribution of each path is simplified 
by assuming that each scattering event is independent and that there are a 
sufficient number of scattering events m the path for the conservation of 
momentum for each scattering to be ummportant. Then each scattering can be 
represented by an average scattering event, and the contribution of the total 
path can be simpl) de~ermined. Physically, the decay rate of the contribution 
of each path will be determined by how long it takes for the total path length 
to change by one wavelength. This in turn depends on the number of scattering 
events that constitute the path. The contribution of paths of different lengths 
will decay with different rates. However, in all cases, any individual particle 
will move over a length much smaller than one wavelength. 

The total correlation function can be calculated by summing over the 
contributions of all paths, weighted by the appropriate distribution of paths 
determined by the diffusion equation for the light. The distribution of path 
lengths will be strongly dependent on geometry. Thus, for example, in transmis
sion, the distribution of path length will depend on the thickness L of the sample 
and will change if the focused incident laser beam is expanded to illuminate the 
whole side of the sample face. Similarly, very different results will be obtained 
if the light is detected in the backscattering geometry, and is collected from the 
same face of the sample as is illuminated. By contrast, unlike traditional DLS, 
the measured correlation function will not depend strongly on the exact angle 
of detection, as in both transmission and backscattering geometries the diffusing 
lighl leaves essentially uniformly in all directions from any point on the surface 
of the sample. 

In the remainder of this i;cction, we dcsn1bc lhc theory of DWS 1n more 
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detail. We concentrate initially on the physical concepts entailed in the diffusion 
approximation for the light transport and the statistical approach to the 
calculation of the contribution of each path to the total correlation function. 
Thus we restrict our attention to suspensions of uniform spheres with concentra
tions sufficiently low that interaction effects can be neglected. Jn this limit, we 
derive the functional forms for the correlation functions measured in DWS 
experiments for the different useful geometrics. We also discuss the limitations 
to the diffusion approximation and describe possible methods for overcoming 
these limitations. We then generalize our treatment of the contribution of each 
path to include the effects of interactions, both in the form of potential 
interactions, which are characterized in terms of the structure factor of the 
suspension, and in terms of the hydrodynamic interactions. Both effects become 
important as the concentration of the suspension is increased, and thus play a 
critical role in the use of DWS. Finally we also generalize the assumption of 
scattering from a suspension of uniform spheres, and discuss the effects of 
polydispersity in the size of the scatterers. 

16.2.2 Simple case of single scattering 

Before developing the theory of diffusing-wave spectroscopy, we review a simple 
conventional dynamic light scattering experiment: Brownian diffusion in a 
monodisperse suspension of non-interacting colloidal spheres. Laser light with 
an incident wavevector k~ illuminates the sample and, if the concentration of 
colloidal particles is dilute enough, is scattered no more than once before 
passing through the sample. Light that is scattered through an angle 8 with a 
wavevector k. is then detected in the far field. If the scattered field at the detector 
from a single particle is £ 0, then the total field E is the superposition of 
scattered fields from all N particles in the scattering volume: 

N 

E(t) = L E0 exp[iq·r;(t)] (16. l) 
i- 1 

where q is the scattering wavevector defined by q = k. - k0 and ri(t) is the 
position of the ith particle. The argument of the exponential represents the 
phase shift introduced by scattering and depends on the position of each particle 
m the scattering volume. As the particles in the scattering volume move, the 
phase of the scattered field from each particle changes, causing the scattered 
intensity to fluctuate in time. Thus the rate at which the intensity fluctuates is 
directly determined by the motion of the particles. These fluctuations can be 
characterized by their temporal autocorrelation function, 

, 
1 

= I ( ( J(t)J(O)) _ i) -((E(O)E*(t)))
2 

.1121< ) - p (J >2 (1£12> ( 16 2) 

where fl is a constant determined primarily by the collcct1on optics of the 
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experiment. The second equality in eqn (16.2) holds in many cases of experimen
tal interest and is known as the Siegert relation. In general, the field autocorrela
tion function is given byl81 

() ~JM 1 Lf=1 (exp{iq·[ri(O) - ri(t)]}) 
g<• > l = L~ • Lf = i (exp{iq. [ri(O) - rj(O)]}) . 

(16.3) 

For the case of non-interacting uncorrelated particles, the cross-terms i # j 
vanish to give 

g(l>(l) = (exp[ -iq·6r(t)]), (16.4) 

where fu-(t) = r(t) - r(O). Thus g0 >(t) decays appreciably when q ·6r(t) ~ n, or, 
equivalently, when 6r ::::: i .. If 6r(t) is a Gaussian random variable, then 

g(l 1(t) =exp[ -q2(M2(t))/6]. (16.5) 

For simple diffusion, (6r2(t)) = 6Dt, where Dis the particle diffusion coefficient, 
and we obtain 

(16.6) 

In this case the autocorrelation function decays exponentially with a time 
constant • = l/ Dq2

• 

16.2.3 Multiple scattering and the diffusion approximation 

In the multiple scattering limit, there are two length scales which characterize 
light scattering and transport: the mean free path I between scattering events, 
and the transport mean free path I*. The mean free path is the average distance 
between scattering events and, in dilute suspensions, is given by111 

l= ' (16.7) 
pa 

where p is the number density of particles and a is the total scattering 
cross-section for a single particle in suspension. The transport mean free path 
I* is the length scale over which the direction of light propagation is 
randomized; it is related to the mean free path by[ll 

I*= l ' 
(1 - cos 9) 

(16.8) 

where O is the scattering angle and < ) indicates an ensemble average over 
many scattering events. The transport mean free path takes on different values 
relative to the mean free path, depending upon the value of k0 a, where a is the 
1 ;ulius of the particles and k0 z:: 2n,' ) .. In the limit of small particles, when 
k011 « l, the single-partide scattering 1s isotropic and the direction of light 1s 
tamlomi1ed after a .,mglc -;caltering event, in llrn, <,;,1-.e, /* I For larger 
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particles, the scattering is typically peaked in the forward direction so that 
several scattering events are required, on average, to randomize the direction 
of propagation; in this case, /* > l. The mean free path and transport mean 
free path can be determined experimentally by measuring the transmission 
coefficient T of a plane wave of light through a suspension of thickness L. If 
L :S /, then T ~ exp( - L/l) and most of the transmitted light is unscattered light. 
If L » I*, then T ~ l*/ L and essentially none of the transmitted light is 
unscattered. In this limit, light propagation is diffusive so that photons execute 
a random walk of step length l*, the length scale over which the direction of 
propagation is randomized. In general, several scattering events are required 
to randomize the direction of propagation, implying that I ~ l*. Thus transmit
ted light will have undergone ~(L//*)2 random walk steps with(/*/ /) scattering 
events per step. Jn a typical transmission experiment, therefore, light will have 
been scattered on average n ~ (L/l*) 2(l*/ l) times before leaving the sample, 
When L » /*, the system is considered to be in the highly multiple scattering 
limit. It is important to note, however, that in nearly all cases of experimental 
interest the scattering from each particle is sufficiently weak so that k0l » 1. 
This means that the Born approximation can be used to describe the scattering 
from each particle even for systems in the highly multiple scattering limit. In 
Fig. 16.2, I and l* are plotted as a function of particle size for a I vol.% suspension 
of polystyrene spheres in water. The plot shows that the scattering is strongest 
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Fro. 16.2. Mean free path I and transport mean free path /"' vs. dimensionless particle 
si1c, k0a, for a I vol.0 ,0 aqueous suspension of polystyrene spheres. The mean free paths 
arc calculated from the formulae I (pa) 1 and I"' I/( I cos 0), where p is the 
number density of particles, <1 is the total scattering cross seclion calcubted from Mic 
scattering theory, and 0 is the scallenng angle. For /,. 1111 <. I, I I"; for /,. 0 11 .... I, I I" 
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F1a. 16.3. A single path through a sample of multiply-scattered light. The wavevectors k; 
have the same magnitude k0 and the point in the direction of propagation. The position 
vectors r; give the instantaneous position of the scattering particles. 

when the particle size is comparable with the wavelength of light. When the 
particle size is much smaller than the wavelength, I and I* become very large 
and the multiple scattering is relatively low. 

16.2.3.1 Autocorrelationfunction for multiply-scattered light. We wish to obtain 
an expression for the field autocorrelation function in the highly multiple 
scattering limit. First we consider a DWS measurement in a transmission 
experiment. Light from a laser is incident on one side of a planar sample of 
thickness L » l* and scattered light is collected from a small area on the 
opposite side as shown in Fig. 16.1. A single photon passing through the sample 
undergoes n scattering events and emerges with a phase that depends on its 
total path length s. The geometry for a single path is illustrated in Fig. 16.3. 
The total path length for a photon scattering N times is 

N N ( k.) s = L lr; + 1 - r;I = L • ·(r;+1 - r;), 
i=O i=O lk;I 

(16.9) 

where k 1 is the wavevector of the light after i scattering events, r1 is the position 
of particle i for i ~ l ~ n, r 0 is the position of the source (laser), and rN + 1 is 
the position of the detector (PMT), Because the scattering is quasi-elastic, all 
wavevectors have the same magnitude, that is, k; = k0 for all i. Thus the total 
phase shift </J(t) of the photon after passing from the laser to the detector is 

N 

</J(t) k0s(t) L k1(t) · [ri-t 1 (t) r1(t)]. (16.10) 
I 0 

The total fidd at the detector is the s111wrpos1tion of tlw fields from all li~ht 
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paths through the sample to the detector: 

E(t) = L EP ei4>p<•>, 
p 

(16.11) 

where LP represents the sum over paths and EP is the amplitude of the field 
from path p at the detector. This equation has the same form as its single
scattering counterpart, eqn (16.1). In the single-scattering case, however, there 
is only one scatterer for each light path and the sum over paths amounts to a 
sum over scatterers. By contrast, in the multiple-scattering case, there are many 
scatterers for each light path, so that eqn (16.11) involves two sums, one over 
light paths and another over the particles in each path. In addition, the field 
amplitude EP is not determined simply by the laser beam intensity, as it is in 
the single-scattering case. Instead, EP depends on the number of scattering 
events in a given path as well as the laser beam intensity. The determination 
of EP adds some complexity to the multiple-scattering theory. The field 
autocorrelated function is obtained from eqn ( 16.11 ): 

g. (t) = (<£(0)£•(t))) = _ l /(, E ei4>p<O>)(' £*, c- iot>p<•>)) (16.12) 
<•> <1£12 ) <I)\ 7 P 1 P ' 

where O) is the total average scattered intensity at the detector. For 
independent particles, the fields from different paths are to a very good 
approximation uncorrelated. Thus terms with p =F p' in eqn (16.12) do not 
contribute, and we obtain 

g (t) = /, IEPl
2 

eilof>p(OJ - •p<rn) 
. o> \7 O> 

= , <IP> <e'lof>p(OJ-of>p(r))) 
7 (/) ' (16.13) 

where OP> = (IEPl 2
) is the average intensity from path p and we have assumed 

the independence of the phase and field amplitude EP at the detector. 
To make further progress, we must obtain an expression for the change in 

the phase of the scattered light resulting from particle motion. From eqn ( 16.10), 
we have 

t:.</>p(t) = </>,,(t) - </>p(O) 
N N 

- L ki(t)·[r;+ 1(l) - ri(t)] - L k;(O)·[r; + 1 - r;(0)]. (16.14) 
i 0 i 0 

Defining q1 

N N 

/\</> ,.(1) L q, t\r1(t) + L M. 1(t) · [r1 , 1(t) - r 1(t)], ( 16. 15) 
I I I () 
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where t:.r; = r;(t) - r;(O) and we have used the fact that the source and detector 
do not move. To leading order, t:.k;(t) .L [r; + 1 (t) - r;(t)] and the second sum in 
eqn ( 16.15) can be neglected compared with the first. Thus we obtain 

N 

t:.<t>p<c) = 2: qi· t:.r1(c). (16.16) 
1-1 

where the magnitude q is related to the scattering angle lJ by 

k 
. () 

q = 2 o SIO 
2 

(16.17) 

We can evaluate the average over the phase factors in eqn (I 6. I 3) by noting 
that for large N, t:.<f>,.(t) is a random Gaussian variable. This follows from the 
central limit theorem. Thus we have 

< e- iAof>p(I)> = e- (A4>~(t))/2. (16.18) 

Using the expression for t:.</>,.(t) in eqn (16.16), we obtain 
N N 

<t:.<t>;<t» = L: 2: <[q, · t:.r,(t)J[qj' t:.rj<t>J> 
1~ l J - 1 

l<I 

= I ([q,. t:.r;(c)J2>. (16.19) 
i a- 1 

where we have assumed the independence of successive phase factors qi· llr1(t). 
We further assume that the scattering vector qi and displacement vector !:.r;(L) 
are independent, so that 

<t:.cf>~(t)) = N <[q; · t:.r1(t)]2) 

(16.20) 

The average over q2 is weighted by the single-particle form factor (or differential 
cross-section) and can be expressed in terms of the mean free paths: 

l <q2 ) = ([2k0 sin(lJ/2)]2 ) = 2k~< I - cos()) = 2k6 /*. (16.21) 

For long light paths where N » 1, the total path length through the sample is 
given bys= NI. Therefore, setting N = s/I and using eqn (16.21) for <q2

), we 
find 

<t:.</>2p(t)) I s 2k2 I <t:.r2(t)) 
3 I 0 t• 

2 s 
k2(t\r2(t)) · . .I 0 ,. 

( 16.22) 

'I he scallcring mean free path I drnp'> out of the linal expression for A</i!(I)) 
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and lhe only remaining length scale that characterizes the scattering is the 
lransport mean free path, l*. This implies that for length scales much greater 
than I*, lhe fluctuation spectrum of scattered light can accurately be described 
within the photon diffusion approximation. For diffusing colloiding particles, 
<M2(t)) = 6Dt and we have 

<A¢;(t)) = 4k~Dt .!..._. 
I* 

(16.23) 

For large N, eqns (16.22) and (16.23) show that <A<f>;(t)) depends on the 
path lengths of the light and not on any other path-dependent property. Using 
this result, we can recast eqn (16.13) as a sum over path lengths rather than a 
sum over individual paths, provided that we replace the fraction of scattered 
intensity in path p, <Ip)f<J), with the fraction of scattered intensity in paths 
of lengths, P(s). Thus, from eqns (16.13), (16.18), and (16.22) we obtain 

Yo>(t) = ~ P(s) exp ( - ~k~<M2(t)) ,: ), ( 16.24) 

or, using eqn (16.23) for diffusive motion, 

gu>(t) = ~ P(s) exp( - 2k~Dt l:). (16.25) 

Thus lhe calculation of the autocorrelation function is reduced to determining 
lhe path-length distribution funclion P(s) through a sample. This calculation 
is greally facilitated by passing to the continuum limit; in lhis limit, eqn (16.25) 
becomes131 

Bcl)(t) = L'° P(s) e - <2rit>s!I* ds, (16.26) 

where t = (k~D)- 1
• Here we have explicitly assumed diffusive particle motion; 

ror non-diffusive random motion, the quantity k~<Ar2(r))/6 may be substituted 
for t/ t. Note that eqn (16.26) represents an incoherent sum over light paths; 
lhat is, the contribution to the decay of g0 >(t) from each path is independent 
of all other paths. The validity of this assumption has been considered in a 
difTerenl context by several groups.19 • io1 They find that the coherent effects 
neglected here contribute terms that are smaller than the contribution from the 
coherent terms by a factor g- 1

, where g::::: (k0 /*)(k0 L). Since k0 1* » 1 and 
k0 L » I for nearly all cases of practical interest, contributions from coherent 
terms are negligible. 

Equation (16.26) is lhe basis for the calculation of autocorrelation functions 
in diffusing-wave spectroscopy. It states that a light path of lengths corresponds 
to a random walk of s/I* steps and that such a path contributes, on average, 
exp( 2k~Dt) per step to the decay of the autocorrelation funclion. Further
more, the characlcristic decay time for a light path of lengths is rl*/(2s), the 
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time it takes the total path length to change by :::::i... Thus the decay time of 
long light paths will be relatively short and the decay time of short paths will 
be relatively long. Long paths decay relatively quickly, because each particle in 
the path must move only a small distance in order for the entire path length 
to change by one wavelength. Thus these long paths probe particle motion of 
length scales much less than one wavelength. This is one of the most unique 
and powerful features of DWS. Although eqn (16.26) has been derived from 
the simple case of uncorrelated colloidal particles, it can be generalized to highly 
correlated systems, provided that the correlation length and transport mean 
free path remain small compared with the size of the system. This generalization 
is discussed in Section 16.2.5. 

16.2.3.2 Calculation of P(s) and g0 >(t). The path length distribution P(s) 
depends on the size and shape of the sample, the place where light enters the 
sample, and the point from which the outgoing light is collected. For example, 
consider the case of light incident at a point r;n on the face of a slab of thickness 
L and collected from a point r001 on the opposite face, as shown in Fig. 16.1. 
The detected light must 'diffuse' an end-to-end distance L before leaving at the 
point rout· Thus nearly all the photons leaving the sample will have scattered 
:::::(L//*)2(1*//) times, corresponding to n0 ~ (L/1*)2 random walk steps, and 
will have travelled a total distance of s0 ~ ncl*. Since all photons scatter 
approximately the same number of times, Yc1/t) will decay nearly exponentially 
(assuming diffusive particle motion). In contrast, consider the case of light 
incident over a broad area on the face of a very thick slab and collected from 
6)a point near the centre of the illuminated area on the same face, as shown in 
Fig. 16.4. Some photons will enter the sample and scatter only a few times 
before leaving and being collected; other photons will scatter many times before 
being collected. Thus there will be a very broad distribution of photon path 
lengths through the sample and a correspondingly broad distribution of decay 
times. For this geometry, we expect that g01(t) will be highly non-exponential. 
Thus it is clear that P(s) must be determined for each experimental configura
tion. 

We illustrate our method of calculating P(s) by considering a simple thought 
experiment. An instantaneous pulse of light is incident over some area of the 
sample. Light entering the sample is multiply scattered and executes a random 
walk until it escapes. There will be some delay after the initial pulse before any 
light is detected, because of the finite transit time between the entrance point 
r ;,. and exit point rout· The light intensity will rise to some maximum and then 
fall back to zero at long times, when all the photons have left the sample. 
Photons arriving at time 1 after the incident pulse will have travelled a distance 
s vi through the sample, where v is the average speed of light within the 
mediurn.121 1 he flux J., .. h·ouc• 1) of photons arriving at the point rouc will be 
directly proportional to the fraction of photons that travel a distance s ,.... Pl, 

that 1s, lo />(s) For kngth 'icalcs p.n:att·r than the lrnnsport mean free path, the 
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Lens 

' ' ' 
l 

' ' 
F1a. ~6.4. Typical optical arrangement for DWS in the backscattering geometry, 
showing the large number of possible diffusion paths that the photons can follow. The 
laser beam is spread by a lens so that light in incident over a wide area on the left face 
of the sample; light is collected from a point near the centre of the illuminated area on 
the same face. The apertures define the point from which approximately one speckle of 
the scattered light is collected. Only those paths collected by the light detector (PMT) 
.ire shown. Both long and short paths will be collected in this geometry. 

lransport of light is accurately described by the diffusion equation 

"U :_ = nv2u ct ~ ' (16.27) 

where U 1s the energy density of light (or number of photons per unit volume) 
in the sample, and D1 = vl*/3 is the diffusion coefficient of light. Thus we can 
exploit the diffusive nature of light transport in highly scattering media to 
calculate J0u1(r0 u1, t) by solving the diffusion equation for light and thereby 
obtain P(s). 

To calculate P(s), we consider an instantaneous light pulse propagating along 
the :-direction which is incident at z = 0 on a planar sample of thickness L. 
Since the light is randomized within the sample over a distance comparable 
with l*, we describe the incident pulse as an instantaneous source of d(/f11si11y 
light a distance z0 ~ I* inside the sample. Thus the initial condition is 

U(z. I ""' 0) U0 /)(z · z0 • l). ( 16.28) 

In add1t10n to this initial condition, we must also specify the boundary 
cond1t1ons for the diffusing light l hc-.c .ire obtained by req111nng that fort > O 
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the net Aux of diffusing light into the sample is zero.It. s1 The result is the 
boundary condition 

(16.29) 

where fi is the unit normal vector directed out of the sample. An alternative 
boundary condition is sometimes used in which U is forced to be zero some 
extrapolation length outside the sample, usually taken to be ~t• or 0.71041*. 
This boundary condition gives results that are numerically very similar to 
results given by eqn (16.29). Another boundary condition that is sometimes 
used is a totally absorbing condition in which U is set equal to zero at the 
sample boundaries. The totally absorbing boundary condition is useful because 
it results in somewhat simpler calculations than the mixed boundary conditions 
of eqn (16.29). However, this boundary condition gives results which system
atically differ by approximately I 0 lo 20 per cent from the results given by the 
mixed boundary conditions. Furthermore, the predictions resulting from the 
mixed boundary conditions are in much better agreement with measurements 
than arc those given by the absorbing boundary conditions.151 Thus, using the 
initial condition given in eqn (16.28) and the boundary conditions given in eqn 
(16.29), we can solve the diffusion equation, eqn (16.27), for any particular 
experimental geometry and obtain a solution for U(r) valid for all points within 
the sample. From this solution, we can calculate the time-dependent flux of 
light emerging from the sample at the exit point, r out• using Fick's law.u 11 Since 
all light emerging from the sample at time t has travelled a distances= vt, the 
fraction of light, P(s), that travels a distance s through the same is simply 
proportional to the flux emerging at time t = s/v. Thus P(s) is given by 

vu' P(s) oc IJ0 u1(r, t)I,,,., = Diln · VVI,.,., = 2 , ... ." (16.30) 

Once an expression for P(s) has been obtained for a given experimental 
geometry, eqn (16.27) can be used to determine g( 11(t). 

The scheme described above for calculating g<IJ(t) can be greatly simplified 
by exploiting the fact that eqn (16.26) is, with suitable definition of variables, 
the Laplace transform of P(s). Thus, instead of solving the diffusion equation 
for light to obtain P(s), we can solve the Laplace transform of the diffusion 
cquution and obtain g(11(t) directly without explicitly calculating P(s). To 
facilitate this transformation, we introduce a change of variables into the 
d11Tusion equation and let t = s/v. Thus cqn (16.27) becomes 

viu - 3 au o. 
1 • r),, 

(16.31) 

Multiplying both ... ides by cxp( - (1.\) and integrating over all s, we obtain the 
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Laplace transform of the diffusion equatio~: 
. 2 - 3p- 3 

V U - U = - V00(r), 
I* l* 

(16.32) 

where iJ = U(r, p) is the Laplace transform of U(r, s), 

U(r, p) = {"" e- psU(r, s) ds, (16.23) 

and V00(r) = lim,_ 0 V0 i>(z - z0 , t). [n solving this equation, we must also use 
the Laplace transform of the boundary conditions, cqn (16.29): 

0 + tl*n·VO = 0. (16.34) 

'!:_hese equations can then be solved using Green's function techniques to obtain 
U(r, p), as discussed by Carslaw and JaegerY 1l Carslaw and Jaeger also give 
explicit expressions for U(r, p) for many geometries of experimental interest. 
Taking the Laplace transform of eqn ( 16.30), we can relate this solution, U(r, p), 
to the Laplace transform of P(s): 

P(p)= J~ P(s)e-P5 dsoc~U(r,p)I . 
0 rout 

( 16.35) 

We note that the Laplace transform of P(s) in eqn (16.35) has exactly the same 
form as the general expression for g01(t) given in eqn (16.26). Thus we obtain 

g (t) = iJ(r, p)I, .... , 
(l) 0(1· 0)1 ' 

' 1'01.11 

(16.36) 

where we have made the identification p = 2t/('d*) and U(p) has been 
normalized so that g(1 1(0) = I. 

16.2.3.3 Transmission. A geometry commonly used in DWS experiments is the 
transmission geometry.14• 51 The transmission geometry is simpler to interpret 
than the backscattering geometry because all paths through the sample are long 
compared with l* and arc therefore ac.curatcly described within the photon 
dilTusion approximation. Furthermore, the transmission geometry allows one 
to probe motion over length scales much shorter than the wavelength of light 
and thereby takes advantage of one of the most appealing and useful features 
of DWS. In a transmission experiment, light is incident on one side of a sample 
of thickness Land is detected on the opposite side. The incident light can either 
be focused to a point or expanded to cover some or all of the incident face. ln 
either case we take the source of diffusing intensity to be a distance z0 inside 
the sample where we expect that z0 :=::::/*,the distance over which the incident 
light is randomi,-ed. The simplest case to consider is that of uniform illurnmation 
oft he incident face, which we take to he at ~ 0. l111h1s case the initial condition 
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is given by an instantaneous planar source at z = z0 , so that U(x, y, z, t) = 
V0'5(z - z0 , 1). , 

The solution to the diffusion equation for this geometry and these initial 
conditions is given in §14.3 of Carslaw and JaegerY 1J Using Laplace transform 
techniques, they obtain 

iJ = 2~rx e-qlz-zol +A sinh(rxz) + B cosh(az), ( 16.37) 

where a 2 = 3p/l* = 6t/('Ll* 2
) and D1 = vl*/3. The constants A and B arc chosen 

to satisfy the boundary conditions obtained from eqn (16.29), 

0-5l*dD =0 alz=O, 
dz 

iJ +tr* dU = o at z = L. 
dz 

Solving for U(p, z) and applying eqn (16.36) at zout = L, we obtain 

L/l* + 4/3 {sinh [zo J6t] + ~ J6t cosh [zo J6t]} 
() z0/l* + 2/3 l* t 3 'C I* 'C 

9<11 t = (1 + ~) sinh[L J6t + ~ J6t cosh[L J6t] 
3t [* "! 3 "! [* 'C 

(~ +i)A 
::::: (l + 8t) sinh[L J6t] + 4 J6t cosh[L J6t]' 

3'C [* 'C 3 "! l* 'C 

(16.38a) 

(16.38b) 

(l6.39a) 

(16.39b) 

where the second expression holds for t « t. While the analytic form of these 
expressions appears to be complicated, the correlation functions are very nearly 
exponential in time, with a slight upward curvature when plotted on a 
log- linear graph. The characteristic decay time for eqn (16.39) is -r(/*/L)2

• 

Since DWS experiments are usually performed with (l*/L) « 1, eqn (16.39b) is 
generally a good approximation for g(l)(t). 

Another transmission geometry of interest is that of a point source. The 
advantages of using a point source configuration instead of an extended plane 
wave source arc that the intensity of the light collected in transmission is greater 
for a given total power of the incident light, and that less light will leak out of 
the sides of a sample of finite lateral extent. The disadvantage is that the local 
energy density al the point where the light is incident may be so high as to 
cause significant local heating of a sample exhibiting even only a modest degree 
of absorption. Thus in some cases it may be desirable to use a source that has 
a finite diameter not much greater than the sample thickness. I lence we consider 



672 Dynamic light scattering 

below both cases of a point source and a source with a Gaussian profile of 
arbitrary finite width. First we consider the point source. 

For the point source, we take the instantaneous source of diffusing intensity 
to be at (x0 , y0 , z0), so that U(x, y, z, t) = U0'5(R, z - z0 , t), where R 2 = 
(x - x 0)

2 + (y - y0)
2

• The detected light is co!Jected from the multiply-scattered 
light emerging from the sample at (x, y, z) = (0, 0, L). The Laplace transform 
solution for this geometry is given in §14.10 of Carslaw and Jaeger:l111 

U = - _i;_ [e-~tz-zol +A sinh(1'/z) + B cosh(1'/(L - z))] de, (16.40) - I f "" O("R) 
4nD1 0 '1 

where '1 = J ei + a2
, and a2 = 3p/l* = 6t/('cl*2

). Once again the coefficients A 
and B arc obtained by applying the boundary conditions given in eqn (16.38). 
Thus we solve for D and use eqn (16.36) to obtain 

g(lit)=C t'0 

10(~ Je2 -Q2)D((,e,oec-<1 - mde, (16.41) 

where Q = (L/l*)j6t/r:, e = 2l*/(3L), ( = z0/L, and C is a normalization 
constant chosen so that Ycl)(O) = 1. The function D(e, t:, O is given by 

D(
, Y) = 2e((l + ee) - (1 - t:() e- 2

({) 
i;, e, .,, 2 2• · 

(I + ee)2 
- (1 - ee) e - ~ 

(16.42) 

Equation (16.41) can be used to obtain g<IJ(t) for an incident beam with a 
Gaussian cross-section of arbitrary width which is on axis with the detector. 
1 n this case the instantaneous point source is taken to be 

(16.43) 

where d is the Gaussian beam diameter. The detected light is collected from 
the multiply-scattered light emerging from the sample at (x, y, z) = (0, 0, L). The 
solution to this problem is obtained simply by integrating R in eqn (16.41) over 
the source distribution in eqn (16.43). By this procedure we obtain 

g0 >(t) = C' t"° e-t{>-Q2J(h!4>
2D(e, e, Oe e-o-~J{ de, (16.44) 

where '5 = d/ Land C' is a normalization constant. If the beam diameter is much 
less than the thickness of the sample, i.e., '5 = d/ L « I, then eqn (16.44) reduces 
to that for a point source on axis with the detector, i.e., eqn ( 16.41) with R = 0. 

All of the autocorrelation functions for the transmission geometry decay with 
a characteristic time of approximately (l*/L)2r, reflecting the fact that there is 
a characteristic number of random-walk steps, n0 ~ (L//*)2, and that the. 
autocorrelation function decays, on average, exp( 21/r) per step. This time
scale is set by the time it takes for the total length of a path to change by one 
wavelength or, equivalently, by the time it takes for the total phase of a 

Diffusing-wave spectroscopy 673 

characteristic path to change by ~ n. We can estimate the distance an individual 
particles moves in a decay time from the total phase shift, 6</> ~ nc<q2 )<r2

) ~ n, 
which gives tlr,ms ~ 2l*/L. Since l*/L « 1, 6r,ms «A., in DWS the motion of 
particles is probed over length scales that are much less than the wavelength of 
light. This is in contrast to conventional single-scattering DLS measurements 
in which particle motion is probed over length scales comparable with or longer 
than the wavelength of light. Moreover, in conventional DLS measurements 
the length scale over which motion is probed is adjusted by varying the 
scattering angle e and thus changing the scattering vector q. Jn contrast, in 
DWS the length scale over which particle motion is proved is adjusted by 
changing the sample thickness L. However, the nature of the probe over 
different length scales is very different in DWS from that in DLS. In DLS, a 
single Fourier component of the particle motion is probed; this is set by the 
value of q. In DWS, the scattering reflects an average over all q, weighted by 
the scattering form factor (see the discussion following eqn (16.20)). Further
more, since the number of scattering events is large, there is no appreciable 
angular dependence of the fluctuations in the transmitted light. 

A schematic diagram of the experimental apparatus. for a transmission 
measurement with uniform illumination is shown in Fig. 16.5. Autocorrelation 
functions measured in transmission are shown in Fig. 16.6. The data shown are 
for an aqueous suspension of 0.605 µm diameter polystyrene spheres at a 
volume fraction of spheres <P = 0.012, with L = 0.10 cm. The two data sets 
correspond to essentially uniform illumination (lower curve) of the incident face 
and what amounts to a point source (upper curve). Uniform illumination is 
attained by expanding the incident laser beam so that it uniformly illuminates 
an area much wider than the sample thickness; for the lower curve in Fig. 16.6, 
the width of the illuminated area is approximately I cm. Point source illumina
tion is attained for focusing the laser to a point much narrower than the sample 

Laser 

s 
FtG. 16.5. Experimental set-up for transmission measurements. The laser beam is 
expanded by lens Li. passes through aperture A 1 which serves as a spatial filter, and is 
collimated by lens L2• The aperture A2 selects the central constant-intensity part of the 
1.:xpandcd beam which impinges on the sample S. Apertures A3 and A4 define roughly 
one speckle for detection by photomultiplier tube PMT. The output of the photomulti
plier tube is passed to a digital corrclutor. The aperture /1. 1 and lens L2 can be omitted 
without adversely tlflcctinp the ~ipnal 1n mo~t c;1scs 



674 Dynamic li(/ht scauering 

~ l0 1 

.; 

0.1 0.2 0.3 0.4 0.5 

Fie,. 16.6. Transmission measurements. The smooth lines through the data are fits to 
the data using eqns (16.39a) and (16.41) with t• = 167 µm for the expanded source and 
t• 166 ~tm for the point source (R = 0). 

thickness; for the upper curve in Fig. 16.6, the width of the laser beam is less 
than 50 µm. While both data sets exhibit nearly exponential behaviour, the data 
from the expanded source deca)' more rapidly than the data from the point 
source. This difference results from the fact that the extended source geometry 
has a relatively larger contribution from Jong paths than the point source 
geometry and therefore decays more rapidly. The smooth curves through the 
data arc fits using Eqns (16.39a) and ( 16.41) with z0 = t•.151 We note that the 
numerical values of these expressions are insensitive to the exact choice of the 
value of z0 , since L » z0; a dilTerent choice of z0 would affect only the first few 
steps in a random walk that consbts of a large number of steps. The fits were 
obt<uncd by allowing/* to vary and by setting r = (Dk~)- 1 = 4.52 ms, with D 
obtained from conventional DLS measurements at a much smaller volume 
fract ion,</>= 10 5

, where multiple scattering is negligible. For both geometries, 
excellent agreement is found between experiment and theory with/* ~ 167 µm 
for the expanded source and /* = 166 µm for the point source (R = 0). The 
excellent agreement of the two values of/* demonstrates that the difference in 
the decay rates for the two sets of data in Fig. 16.6 is due solely to geometric 
effects that arc accounted for by the theory. The values of/* are in reasonably 
good agreement with the value calculated from Mic theory using eqn (16.8): 
/+ 180 µm. 

16.2.J.4 Backscattering. Another geometry commonly used in DWS experi
ments is the backscattering geometryP ~1 This geometry is very convenient 
because it re4uircs access to a sumplc from only one side. This can be 
particularly u-.1.fol in industrial prrn.:css·monitoring applil'ations where production 
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constraints limit access to the sample. Another advantage of the backscattering 
geometry is that it does not require independent knowledge of the transport 
mean free path in order to interpret the autocorrelation function. From a more 
fundamental viewpoint, the backscattering geometry is both useful and often 
difficult to interpret because it probes many length scales at once. This ability 
to probe many length scales at once can in principle reveal a wealth of 
information about particle motion. However, because backscattering involves 
a significant number of light paths whose length is comparable with /*, the 
diffusion approximation must be used with caution in describing light transport 
for this geometry. 

ln a backscattering experiment, the laser beam is usually expanded so that 
it uniformly illuminates an area of the incident face that is much wider than /* 
(see Fig. 16.4). Light is collected from a very small area near the centre of the 
illuminated area. This ensures that the shape of the measured autocorrelation 
function is insensitive to the size of the illuminated area and to the precise 
position of the detected light within that area. The thickness of the sample is 
L. As in the case of the transmission geometry, we again take the incident face to 
be at z = 0 and the source of diffusing intensity to be a distance z0 which we 
expect to be of order /* inside the sample. In contrast to transmission, in 
backscattering the distribution of path lengths, and in particular the relative 
weighting of short path lengths, will depend critically on the exact choice of the 
value of z0 . The consequences of choosing different values for z0 are discussed 
in Section 16.2.4. 

The initial condition is once again given by an instantaneous planar source 
at z = z0 , so that U(x, y, :, t) = U0 i5(z - z0 , t). The solution for U(p, z) is again 
given by eqn (16.37) and the constants are given by eqn (16.38b). Thus we use 
the same solution for U(p, z) obtained for the transmission geometry with an 
extended source but now apply cqn (16.36) at the incident face, z001 = 0. This 
gives 

. [J6t ( L z0
)] 2 J6t h [/t (L Zo)J smh - + cos - - -

g(l,(t) = r /* I* 3 r r /* I* , (l 6.45) 

( 8t) [L ~tl 4 t:t [L J6t] 1 + sinh - - + - cosh 
Jr /* r 3 r /* r 

For a sample of infinite thickness, this expression simplifies to give 

[ 
Zo J6t] exp -
I* r 

l/11 ,(I) = (16.46) 

2 J6t I+ 
J T 

The strclclwd C\ponl'nttal llnm of cqn ( 16.46) rclkcts the wide 1.fo.trihution of 
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decay times, which in turn results from the wide distribution of path lengths 
inherent in the backscattering geometry. Long paths, which decay quickly and 
probe relatively short length-scale motion, contribute to the initial delay of the 
autocorrelation function. In fact, the initial slope of g01(t) in eqn (16.46) is 
infinite, reflecting the contribution of infinitely long paths. At longer times, after 
the contributions from long paths have decayed away, the decay of the 
autocorrelation function comes from short paths and probes relatively long 
length-scale motion. Although it is tempting to replace 6t/r in eqn ( 16.46) with 
k5(M2(t)) and use backscattering measurements to probe (ar2(t)) over the 
full range of decay times, such an analysis of the data cannot be correct, except 
for the initial decay. This is because the diffusion approximation and central 
limit theorem used in arriving at this result are valid only for long paths, and 
break down for short paths. 

A schematic diagram of the experimental set-up for a backscattering measure
ment is shown in Fig. 16.7. The sample was illuminated by a I cm diameter 
beam and collected at an angle of ~ L 75° with respect to the incident direction. 
The apertures ensure that a single speckle of light is collected from a spot 
approximately 50 /tm in diameter from the centre of the illuminated area. An 
autocorrelation function measured in backscattering is shown in Fig. 16.8. Data 
arc shown for an aqueous suspension of0.412 µm diameter spheres at a volume 

fraction </> = 0.05. T he data are plotted logarithmically as a function of .Jc as 
suggested by the theoretical form given in eqn (16.46). While the data are fitted 
very well by eqn (16.46), they are equally well fitted by the simpler form 

g(l)(t) = c 'i~ (16.47) 
' 

A2 
A, 

Laser 

L2 

? s 
A3 

PMT \ 
A4 

Fie; 16.7 Experimental set-up for backscattering measurements. The laser beam is 
expanded b) lens L1, passes through aperture A1 which serves as a spatial filter, and is 
collimated by lens L2 • The aperture A 2 selects the central constant-intensity part of the 
C\pandcd beam which impinges on the same S. Apertures A3 and A4 select a -;pot from 
the centre of the illuminated area and define roughly one speckle for detection by a 
photomultiplier tube PMT. The output of the photomultiplier tuhc is passed to a digital 
coriclutor. 
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FIG. 16.8. Backscattering measurements from an aqueous suspension of polystyrene 
spheres at a volume fraction </> = 0.05. The data are plotted logarithmically as a function 
of the square root of the reduced time. The smooth line through the data represents fits 
to the data using eqns (16.46) and (16.47), which, within the resolution of the figure, arc 
indistinguishable. 

where y = (z0 ) + ~ is chosen to be consistent with the initial decay given by 
eqn (16.46). Although the qualitative behaviour exhibited by the data in Fig. 
16.8 is generally observed in backscattering measurements, there are systematic 
variations in the data which depend on the particle size and the polarization 
states of the incident and collected light. For example, the value of y is observed 
experimentally to vary between 1.5 and 2.7 as particle size and polarization 

states are varied.11 21 Furthermore, when plotted logarithmically vs . .jt, the 
data can exhibit either slight downward or upward curvature or no curvature 
at all, depending on system parameters.l12

• 131 These variations in the value of 
;·and the shape of g01(l) have their origin in the different contributions of short 
non-diffusive light paths which occur under different experimental conditions 
and arc an important limitation of the photon diffusion approximation. These 
limitations are more fully explored in Section 16.2.4. 

16.2.3.5 Absorption. In any DWS experiment there will always be some 
absorption. The qualitative effects of absorption on an experiment are twofold. 
First, if the absorption is very strong and the incident laser intensity is high, 
absorption of the incident radiation may locally heat the sample. This effect 
can usually be avoided by spreading out the incident beam over a sufficiently 
large area for local heating to be insignificant. If necessary, the sample may 
also be put in contact with a heat sink, such as a water bath, in order to minimit:e 
heating 

' lhe second elTecl of ah,mption j, that it alters the distribution of light path 
lcng1h .... P(s). and in par1icula1 attenuates long paths llHHl~ strongly than 'hor t 
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paths. One way to treat this problem theoretically is to include an absorption 
term in the diffusion equation for light and to recalculate P(s). This approach 
is commonly used.(11 An alternative approach is to note that absorption 
exponentially attenuates paths according to their path Jength.15· 141 Thus if the 
path length distribution in the absence of absorption is P(s), then the path 
length distribution in the presence of absorption will be P(s) cxp(-s/ I.), where 
/a is the absorption length of the sample. Therefore, to account for absorption, 
we simply replace P(s) with P(s) exp(-s/ l.) in the basic equation for g(l

1
(t), 

eqn ( 16.26): 

Yu1U) =Io,. P(s) e-s11, e-<211<1s1t ds 

=Io""' P(s) e - (211r+t11.Js11' ds. 

(16.48a) 

(16.48b) 

Since both exponential terms in eqn (16.48a) are linear in s, the effect of 
absorption on g( 1 l(t) is mathcmatica!Jy the same as a shift in the lime axis. Thus 
all the results that we derived previously for g0 i(t) can be adapted to account 
for absorption simply by making the substitution 

I* 
--+ - + 

r r 2/3 

(16.49) 

For example. the autocorrelation function given in eqn (16.47) for backscatter
ing becomes 

( 16.50) 

The effect of absorption on correlation functions obtained in the backscatter
ing geometry is illustrated in Fig. 16.9. Absorption in the samples was adjusted 
by adding known amounts of methyl red, an absorbing dye. The absorption 
lengths. 1 •• were independently measured to be 4.87 mm for the upper curve 
and 2.53 mm for the lower curve. Physically, the elTect of absorption is to cul 
off the longest paths. This effect is evident in the data in Fig. 16.9 in the rounding 
of the correlation functions at early times, showing that the longest, fastest 
decaying paths arc the most affected by absorption. Furthermore, the effect 
becomes more pronounced as the absorption becomes stronger. The value of 
y was taken from measurements without dye, so that there are no adjustable 
parameters in the fits to the data in Fig. 16.9. The excellent agreement between 
the theory and the data confirms the validity of the general expression given 
in eqn (16.48b). 

Absorption can also have significant effects in the transmission geometry. By 
cutting olT the longest paths, absorption will tend to <>low the decay of the 
autocorrelation function Smee the decay of the autocorrelation fun1,;t1011 in the 
transmission gl'lHnctr) 1s dominated hy path.., of a 'ingk characteristic kngth. 

~ 

;:, 0.1 
.;;; 
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Fie;. 16.9. intensity autocorrelation functions for samples with known amounts of 
absorbing dye in aqueous solution. The rounding at early times illustrates the effect of 
absorption, which is to attenuate the contribution of the longest, fastest-decaying light 
paths. The rounding at early times is most pronounced for the sample with the most 
absorption. 

sc ~ L 2/l*, the absorption length must be comparable with sc in order to slow 
the decay dramatically. In this case, however. the most significant effect of 
absorption will be a strong attcntuation of the transmitted light, which may be 
large enough to reduce the signal to an unusable level. 

16.2.3.6 Pulsed diffusing-wave spectroscopy. In the preceding sections we have 
emphasized the need to calculate the distribution of path lengths, P(s), through 
a sample in order to obtain an expression for g<l)(c). However, alternative 
approaches are available. For example, there are several schemes for directly 

d . .b . . r . 1 l t h . i•s-111 measuring the path length 1stn utton, using 1ast opt1ca pu se ec niqucs. 
In principle, g(l)(t) could be calculated from such measurements of P(s) using 
cqn (16.26), although such a scheme has not been pursued experimentally. 
llowever, another scheme for directly measuring the temporal autocorrelation 
function from paths of a single length has been developed using non-linear 
optical gating techniques.1181 With this technique, it is not necessary to know 
P(.s). Instead, one measures the path-dependent autocorrelation function, 
y(11(1), for paths of a known specified lengths. Thus g(lJ(t) is a single-path-length 
exponential decay function which appears in cqn ( 16.26): 

y~ 11(1) = exp[ (2t/rh//*]. (16.51) 

The measurement of !1:1J<1) employs very '>hort la ... cr pul.,cs and is called pulsed 
diffusing-wave sp1;ct rosc.:opy ( PDWS).111" 
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F1G. 16.10. Schematic of pulsed diffusing-wave spectroscopy apparatus: A, aperture; BC, 
beam combiner; BO, beam dump; BS, beam splitter; L, lens; M, mirror; NC, non-linear 
crystal; PMT, photomultiplier tube; S, sample; sF, second-harmonic spectral filter. 

The experimental set-up and basic ideas of PDWS are illustrated in Fig. 
16. I0.1181 Thc laser used in a PDWS experiment emits a pulse train ( ~ 100 MHz) 
of identical, short light pulses (20-90 ps) which are divided with a beamsplittcr 
between the sample and a reference beam. The temporal width of a light pulse 
emerging from the sample is considerably longer than the incident pulse because 
of the distribution of path lengths, and also transit times, through the sample. 
In fact the temporal shape of the average intensity profile, f(t), is the same as 
P(s). A portion of the multiply-scattered output light is recombined in a 
frequency-doubl ing crystal with a time-delayed reference pulse from the same 
laser; a second harmonic pulse train is produced when the two input fields 
non-linearly mix. Since the sample pulse is broadened by the multiple scattering, 
the short reference beam gates a small portion of the broad output pulse from 
the sample. Ifs' is the difference in the path length between the reference and 
sample arms with the sample removed, then each pulse within the combined 
second-harmonic pulse train will have a field E(2w, t) proportional to the 
reference field, ER(t), and the path-dependent scattered field E0 (t, s'). Since 
fluctuations in the reference field arc negligible, ER(t) =ER, and 

£(2w, t) = ERE0(t, s'). (16.52) 

The second harmonic electric field experiences the same fluctuations due to 
particle motion in the sample as docs the scattered electric field for a single 
path length. For almost all cases of experimental significance, the time-scale of 
the fluctuations in the phase of the scattered light is much longer than the last 
pulse-train repetition rate. In this case, the graininess of the sample process is 
unimportant, and the autocorrelation function of the second-harmonic photons is 

(16.53) 

l 
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FIG. 16.11. Temporal decay rate, r., vs. path lengths for the single-path-length intensity 
autocorrelation functions obtained in pulsed diffusing-wave spectroscopy measurements; 
r 1 is linear ins and passes through the origin, confirming the basic equations of DWS. 
Inset. Single-path-length intensity autocorrelation functions, [g(q(t, s)]2

, at delays, s, of 
(A) 7 cm, (B) 13 cm. 

wheres = s'. By varying the path length difference, s', between the sample and 
reference arms, the single-path correlation function can be measured for 
arbitrary s. Since only one path length is sampled at a time, we expect an 
exponential decay of the autocorrelation function. According to eqn (16.51), the 
rate of decay is given by r 1 = 2s/(/*t) and therefore should be proportional to s. 

An important additional feature of this photon gating scheme is that the 
average second harmonic intensity, J(t), is proportional to P(s). Thus P(s) can 
be directly measured using the same PDWS apparatus. Since P(s) is a sensitive 
function of l* and l., a PDWS experiment can measure both /* and t. by fitting 
the measured P(s) to predictions of photon dilTusion theory, as outlined in 
Section 16.2.3.2. 

Results from a series of PDWS measurements are shown in Fig. 16.11,1181 

the inset which shows measurements of path-dependent autocorrelation func
tions obtained in a transmission geometry. A sample consisting of 0.46 µm 
diameter polystyrene spheres in water was used. The volume fraction of spheres 
was </> 0.3 and the sample thickness was L 0.2 cm. The inset shows data 
taken at two different <leh1ys • . 'i • 7 <.:m and s • I~ cm As expected, the curves 
decay exponentially. in contl'a'>l tu l>WS The lkcay 1.1te, I 1, 1\ plotted as a 



682 Dynamic light scattering 

fu nction of delay lengths and shows the expected linear dependence. Moreover, 
I he decay rate extrapolates to 0 for s = 0. These results represent strong 
confirmation of the basic ideas of both DWS and PDWS; in particular these 
results support the validity of the fundamental equation of DWS, eqn 
(.J 6.26). 

Although PDWS is much more difficult to instrument than continuous-wave 
DWS, PDWS provides an alternative means of measuring autocorrelation 
functions which does not require precise control of the experimental geometry 
or any knowledge of the absorption length of the sample. Moreover, since 
rows gives correlation functions that decay exponentially, the data are 
simpler to interpret than for DWS. 

16.2.4 Limitations <?f the diffusion approximation 

The key assumption made in our approach is that the transport of the light 
through the medium can be described within the diffusion approximation. This 
assumption greatly simplifies our derivation of the autocorrelation functions. 
However, this is clearly only an approximation for describing the light 
transport, and in some instances it breaks down. The most important situation 
in which it fails is in the treatment of backscattered light. Light that is 
backscattered from a highly multiple-scattering sample contains a significant 
fraction that has been scattered only a few times. In fact, most of the light that 
is incident on the face of the sample never penetrates more than a distance L* 
into the sample before it is scattered back. However, the diffusion approxima
tion does not properly account for the behaviour at distances less than/*. Thus, 
since so much of the backscattered light contributing to the decay of the 
autocorrelation function in backscattering results from photon paths of lengths 
less than I*, the use of the diffusion approximation in deriving gc 1>(t) does not 
properly account for the physics. 

The problems with the use of the diffusion approximation arc most apparent 
in the fact that we must include an additional factor, y, in the expressions for 
the autocorrelation functions for backscattering. Within our derivation, this 
factor reflects the distance into the sample that light penetrates before it begins 
lo diffuse. However, this is only an attempt to modify the description of the 
light scattering to force the diffusion approximation to describe the physics. 
This is not an accurate description, since the diffusion approximation cannot 
be used to account for paths less than /*. The fact that it works at all is 
somewhat fortuitous. In our approach, we use the Laplace transform of the 
diffusion equation for light to obtain the autocorrelation functions. Taking the 
Laplace transform requires integration over all path lengths starting from s = 0. 
Clearly, the paths withs= 0 cannot be treated within the diffusion approxima
lion. In addition, settings= 0 in eqn (16.33) will result in paths that decay 
more slowly than even those wilh a si ngle scattering event Thus, to ensure a 
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physically meaningful minimum decay rate, we must introduce some cutoff in 
the decay rates. This is effectively the result of assuming that the light does not 
begin diffusing until it has traversed a distance z0 into the sample. Thus 
although the physics underlying the assumptiom that the light must enter some 
distance into the sample before it begins to diffuse is suspect, the results arc in 
better agreement with the data than one might otherwise expect. 

The expression for gm(t) for backscattering derived within the diffusion 
approximation gives only limited agreement with the data. Most data are 
reasonably well described by an exponential decay in the square root of time, 
eqn (16.47). However, in many instances, closer examination of the data reveals 
some significant deviations from this simple form. These become particularly 
evident when a polarizer is used to detect different polarization channels of the 
scattered light. Then the autocorrelation functions often exhibit significant 
amounts of curvature when plotted logarithmically as a function of the square 
root of time. This is particularly noticeable when the parallel polarization 
channel is considered. In this channel there is a much larger contribution from 
paths that consists of only one or a very small number of scattering events. It 
is these paths that result in the curvature observed. 

Improvement of the theoretical treatment for backscattering can come only 
from using a better approximation than the diffusion approximation. There 
have been several attempts to do this. To account directly for the discrete, as 
opposed to the continuum, nature of the very short scattering paths, computer 
simulations have been used.1191 These give good agreement with the functional 
form predicted in eqn ( 16.4 7). 

A more analytical approach has been taken by Ackerson and co-workers.1201 

They have generalized radiation theory to include the effects of correlations. 
Radiation transfer theory is a more exact treatment for the propagation of light 
through highly scattering media. ll reduces to the diffusion approximation in 
suitable limits, but also is more accurate in describing the behaviour in regimes 
where a continuum approach is not adequate, such as for short paths. Radiation 
transfer theory simply follows the light through all its scatterimg events, in a 
statistical approximation. It neglects any interference effects within the medium, 
and thus treats only the propagating intensity, rather than the fields. It is for 
this reason that it must reduce to the diffusion approximation. However, since 
it follows the light through each scattering event, it is a better approach to use 
when discrete scattering events are important. Ackerson et al. have generalized 
radiation transfer theory by considering the transfer of correlations, as is 
important in calculating gc2i(t). They show that this approach is equivalent to 
the DWS approach for situations where long paths dominate, such as for 
transmission. For backscattering, where the discrete nature of the scattering 
events, the correlation transfer method seems to provide better agreement with 
the data without any ad hoc assumptions. This approach is still being developed 
but holds grcal promise for providing an improved theoretical treatment for 
DWS. 
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16.2.5 Interactions and structure 

In th_e prece~ing sections we assumed that the particles that scatter light were 
non~mteractmg an~ completely uncorrelated. However, this is a good approxi
mation only for dilute suspensions with relatively short-range interactions. 
~fore generally, particle positions and velocities will be correlated, especially 
1? the dense suspensions for which DWS finds the widest application. Correla
tions between particles affect DWS in two ways. First, correlations between 
particle positions change the angular distribution of scattered light and 
therefore change the value of/*. Since the length of a multiple-scattering path 
through a sample scales as (/*) - 2 and the decay rate of such a path scales as 
(~*)- 1 , a change in the value of/* can modify g< 1>(t). However, since/* appears 
simply as a multiplicative constant in the theory of DWS, a change in the value 
?f l* will s~mply multiply the time-scale of the decay of g(ll(t). Of greater 
importance is the fact that correlations between particle positions and velocities 
change the particle dynamics; these changes will be reflected in the time
dcpcndcnce of g(ll(t}. This is the second way in which correlations can 
affect DWS measurements. 

To understand how correlations change/*, we recall from eqn (16.21) that 
I* / I can be written quite generally in terms of the mean square scattering vector: 

1* 2k2. 
0 = (q2)' 

(16.54) 

where < ) _denotes the_ ~ngular av~rage over all scattering angles, weighted by 
the scattenn~ prob~b1hty. For dilute systems, the scattering probability is 
simply the d1ffcrcnt1al cross-section, or single-particle intensity form factor 
which we write as F(q). For correlated systems, we replace F(q) by the full 
scatt~ring function, F(q)S(q), where S(q) is the static stucture factor, Thus we 
ob tam 

or 

(q2) = J4,, q
2
F(q)S(q) d!l, 

f 4,. F(q)S(q) d!l 

I* 2k~ f 4,. F(q)S(q) d!l 
- = 
l f4 ,, q2F(q)S(q) d!l ' 

( 16.55) 

(16.56) 

where d!l is the solid angle element. Similarly, the mean free path is still given 
by cqn (16.7), but with the total cross-section given by 

u = {,. F(~)S(q) d!l. ( 16.57) 

In the limit of non interacting particles, S(q) I and this expression reduces 
Lo the usual result Us111g eqns ( 16 7), ( 16 56), and ( 16 57), we can obt,11n a 

Diffusing-wave spectroscopy 

general expression for l * in interacting systems:l2 1 I 

( f 2koa )-1 
I* = k8a4 np 

0 

J(x)x 3 dx , 

685 

(16.58) 

where pis the number density of particles, a is the particle diameter, x = qa is 
the dimensionless momentum transfer for a single scattering event, and J(q) is 
the product of the form and structure factors F(q)S(q). 

The dynamic problem of DWS in interacting correlated systems has been 
treated carefully by MacKintish and John.Pl Herc we follows a simple intuitive 
scheme suggested earlier by Maret and Wol~ 3 1 and later extended.113

•
221 Jn this 

approach we recall that for non-interacting, uncorrelated particles, the DWS 
autocorrelation is built up from the single-scattering result; we then follow the 
same procedure for interacting systems. In the single-scattering limit, light is 
scattered by concentration fluctuations, so that DLS measures the co-operative 
diffusion coefficient, D0 (q), which is given byl8l 

D ( ) - D H(q) 
c q - o S(q), (16.59) 

where D0 is the base Stokes-Einstein diffusion coefficient, S(q) is the static 
structure factor of the colloidal suspension, and H(q) is a q-dependent function 
describing the effect of hydrodynamic interactions between colloidal particles. 
In DLS, the initial decay of the autocorrelation function is given by 

(E(O)E*(t)) = S(q) c 92
D,l9ll 

= S(q) e-q2Dolll(q):S(qlJt. 

(16.60a) 

(16.60b) 

We need to consider only the initial decay of the correlation function, as given 
by eqn (16.60b), because the large number of scattering events ensure that longer 
times, which lead to non-exponential decay in DLS, are never reached. Then 
we can view DWS in an interacting correlated system as a succession of isolated 
scattering events from volumes of spatial extent ~ q- 1 and separated by a mean 
free path /. Thus, for a large number of scattering events, n, the contribution 
to the decay of the autocorrelation function from paths of lengths = nl is given 
by the product of the single-scattering autocorrelation functions, averaged over 
all angles, 

• { \ 2 //(q)) } Y(.,(t) - exp - c1 D0 r n • 
S(c1) 

( 16.61) 

The angular average is weighted hy the product of the particle form factni and 
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the structure factor, F(q)S(q), i.e., 

f 2 H(q) I H( )) q s F(q)S(q) dQ 
n\ q2Dor: q = nDo-r 4" (q) 

S(q) {,. F(q)S(q) dQ 
(16.62a) 

f H(q)F(q)q 2 dQ 

=nD0r:~ ---

{,. S(q)F(q) dQ ' 

(16.62b) 

To make use of the photon diffusion approximation, we must eliminate all 
explicit reference to n and I in our equations for the autocorrelation function. 
To this end, we express the total number of scattering events as n = s/l = 
(s/l*) x (/*//). Using the expression for/*// in cqn (16.56), we obtain 

nj q 2D r: H. (q)) = 2k2D t [H(q)] !._ (16.63) 
\ o S(q) o o [S(q)] l*' 

where [ ... ] denotes 

[X(q)] = f 4,. X(q)F(q)q
2
dQ. 

J4" F(q)q 2 dQ 
(16.64) 

The full autocorrelation function is then obtained by integrating over all path 
lengths, 

JC(: . ( 2 [H(q)] s) g(1/t) = P(s) exp -2k0 D0 t -- ds. 
o [S(q)] I* 

( 16.65) 

The only length scale appearing in eqn (16.65) for the transport of photons is 
/*. Moreover, cqn (16.65) has exactly the same form as eqn (16.26) if we identify 
r: with a q-averaged diffusion coefficient so that-.= (D.,k6)- 1 and 

D = D [H(q)] 
av 0 [S(q)J · (16.66) 

With this definition, we can now adapt the results for the g(l)(t) derived 
previously for uncorrelated particles and apply them to correlated interacting 
systems for the various scattering geometries. 

Equation ( 16.65) has been tested experimentally for the backscattering 
geometryr131 and for the transmission geometry.r22 1 In both sets of experiments, 
monodisperse suspensions of polystyrene spheres were used, with volume 
fractions ranging from 0.01 to 0.5. Although the polystyrene spheres used were 
charged, the charges were highly screened so that the intcrparticlc potential 
was well approximated by a hard-sphere interaet10n Thus theoretical expressions 
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for the hydrodynamic interaction function, H(q), and the Percus Yevick 
expression for the static structure factor, S(q), could be used lo test the validity 
of eqn (16.65). Good agreement between experiment and theory was obtained 
in both instances. 

In the limit of particles somewhat larger than the wavelength of light, the 
diffusion coefficient measured with DWS, eqn (16.66), takes on a particular 
simple and useful form. In this context, it is convenient to rewrite eqn (16.66) as 

D = D [h(q)] 
av > S(q)J ' 

(16.67) 

where D, = D0 H( xi) is the short-time self-diffusion coefficient and h(q) = 
H(q)/H(xi). For large particles, [S(q)]/[h(q)] ~ I. This occurs because the 
angular average in eqn (16.64) corresponds to a q3 F(q) weighted over the 
interval from 0 to 2k0 R and strongly weights the high-q limit where both S(q) 
and h(q) approach I. Using the Percus-Yevick form of S(q) for hard spheres 
and the Beenakker Mazur form for H(q)/H(xi), Xue et alP2

•
23l found that 

when the volume fraction </> is varied from 0 to 0.45, [S(q)]/[h(q)] changes from 
I to 0.788 for 0.412 µm diameter spheres, from 1 to 0.921 for 0.913 µm diameter 
spheres. This indicates that, if the diameter of the suspending spheres is equal 
to or greater than ~2 µm, the value of [H(q)] is within 2 per cent of H(oo) for 
all </>. Thus, for 2R > 2 µm, the measured values of Dav is essentially equal to 
the early-time self-diffusion coefficient, D .. In the limit of large q where D., ~ Ds> 
the off-diagonal terms in eqn (16.3) must average to zero, so that the 
single-scattering autocorrelation function is well approximated by eqn (16.5). 
Thus, for large particles, we can replace D.,t in eqn ( 16.65), with (r2(t)) and 
directly measure the mean-square displacement of particles over length scales 
much less than the wavelength of light. 

16.2.6 Mixtures 

In the preceding discussion we considered scattering only from monodisperse 
suspensions of colloidal particles. However, most colloids consist of a distribu
tion of particle sizes. As a first step towards understanding DWS in polydisperse 
systems, we consider binary mixtures of two different particle sizes. Once this 
is done, the extension from binary mixtures to multicomponent systems is 
straightforward. In the single-scattering limit, scattering from particles of 
different sizes leads to multiple relaxation times and a non-exponential decay 
of y10(1). Analysis of this non-exponential decay can lead to at least partial 
information about the distribution of particle sizes, By contrast, in multiple 
scattering, particle polydispersity docs not change the shape of the autocorrela
tion funet10n and only average inform.ition about particle dynamics is obtained. 

lhe basit: effects of polydispcrsity arc most readily understood by consider
ing DWS in a binary mixt111c of IHHl ·inlerncllng. uncorn:latcd spheres i11 
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suspension.1141 The total volume fraction of the suspension is simply the sum 
of the volume fractions occupied by the individual species, </> = <l>a + <f>h· We 
calculate the autocorrelation function by considering the phase shift for a light 
path of N = n. + 11b scattering events, with na and nb scattering events from 
species a and b respectively: 

N na lib 

6.cf>p(z) = L qi · 6.r;(t) = L qa« 6.r3 ,(t) + L qb .. 6.rb,(t). ( 16.68) 
; .. l i= 1 i= 1 

As in the case of a monodisperse suspension, we evaluate the average over 
phase factor by noting that 6.c/>p(t) is a random Gaussian variable. Once again, 
the central limit theorem ensures Gaussian statistics for large N, even if the 
scattering properties of the two species are very different. Following the same 
reasoning as for the monodispcrsc case (see Section 16.2.3.1), we obtain an 
expression for the mean-square phase shift: 

(16.69) 

where we have assumed diffusive particle motion with <rf(t)) = 6D1t and 
i = a, b. Because all particle positions are uncorrelated, we can evaluate the 
averages over scattering vectors separately and obtain 

< ~) = 2k2 I; q, o I~, 
I 

(16.70) 

where I; = l/p;q; and If = lif( I - cos 8) are the mean free paths and transport 
mean free paths corresponding to monodisperse suspensions with volume 
fractions </>; of the individual species in the mixture. The average number of 
scattering events from each species in a given path of length N is proportional 
to the density and total scattering cross-section of each species. Thus the relative 
probabilities of scattering from species a and bis inversely proportional to their 
mean free paths, 

( 16.71) 

or 118 ( 1 = 11b/b. Substituting this result and eqn (16.70) into eqn (16.69) gives 

(16.72) 

The total path length is given bys = NI', where/' is the mean free path of the 
mixture and includes scattering from both species. The inverse mean free path 
is simply the sum of the contributions from each species, 

( 16.?J) 
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s =NI'= n.l •. 

Thus eqn (16.72) becomes 

( 6.c/>;(t)) = 2k~s ( 0
• + ~) t 1: 1: 

= 2k2 (o 1:rr + n 1:rr) s t 
o • I* Vb /* I* , 

• h eff 
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(16.74) 

(16.75) 

where 1:rc is the total transport mean free path and, for uncorrelated particles, 
is given by 

I 
= - + 1:,c 1: 1: (16.76) 

This result can easily be generalized to non-interacting multicomponent systems 
and is precisely the same result as we obtained for a non-interacting mono
disperse system, but with an effective transport mean free path and an effective 
diffusion coefficient given by 

(16.77) 

(16.78) 

Therefore we obtain autocorrelation functions ha ving precisely the same form 
as those for monodispcrsc systems, but with a time constant given by 
r = (k~D.,r)- 1 . The effective diffusion coefficient given in cqn (16.78) is simply 
the sum of the diffusion coefficients of the individual species weighted by their 
scattering power as measured by the inverse transport mean free path of each 
species. 

The theory for non-interacting mixtures has been verified experimentally in 
dilute aqueous suspensions of 0.198 µm and 0.605 µm diameter spheres.1141 

I lowever, this theory cannot hold in concentrated or strongly interacting 
suspensions where correlations between particles arc known to be important.'2 11 

As for the case of monodispcrse systems, interactions in polydisperse systems 
modify both the static and dynamic scattering properties of the suspension. The 
change 1n the static scattering is demonstrated by measurements, shown in Fig. 
16.12, of the concenlration-clcpcndcncc of I/ I* for several different binary 
\Uspcns1ons In this experiment. three h111ary mixtures of polystyrene spheres 
were used. each with the ... ame ratio of particle diameters hut with cltlkrent 
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Fie;. 16. I 2. Measurements of the reciprocal photon transport mean free path I 1/• show 
the effects of interparticle structure in binary colloidal mixtures of polystyrene spheres 
of (a) small, (b) medium, and (c) large overall size. Calculations using the full PY binary 
hard-sphere structure factors ( ) agree with the data and differ most from a 
non-interacting theory ( . .... ) and the theory without interspecies structure ( ) when 
the particles are smaller than the wavelength of the probe. 

a bsolute sizes. In each system, the volume fraction of the large spheres, </>1.., is 
held constant while the volume fraction of small spheres is varied from </>s = 0 
to 4>s:::::: 0.3. For low </>5 , 1/1* increases linearly with </>s as expected from eqns 
( 16.70) and ( 16.76) for uncorrelated systems. At higher </>8 , clear deviations from 
linear behaviour arc observed. 

To understand these measurements, we must account for the effect of 
correlations between particle positions on light transport. This can be done for 
binary mixtures by adapting the theory already developed for interacting 
monod1spcrse colloids. The starting point is eqn ( 16.58) for /* In a binary 
-;y-;tcm, we can -;till use this c4uation hut we mu-;t replace /(\) S( \ )f{\) with 
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the scattering function appropriate for binary mixtures, 

J(x)p = SLL(x)Fi..(x)pi.. + Ss.s(x)F5(x)p5 + 2Sts(x) Re(f ... (x) · ft(x))J/hPs, 

(16.79) 

where F.,.(x) = lf.(x)1 2 are the dimensionless, far field, single-scattering ampli
tudes for the small (a = S) and large (a = L) spheres. In this equation, the 
dimensionless scattering vector is chosen to be x = qa1.. and p = Pt + Ps· The 
partial structure factors are defined as sums over all particle positions rf and '1: 

S,p(q) = J 1 
/ ~ exp(iq· (rj' - '1>>) , 

NaNfJ \ ,J 
(16.80) 

The result for l* in uncorrelated binary mixture given by eqn ( 16.76) is recovered 
from eqns (16.79) and (16.80) if the partial structure factors are set lo 
Sap(q) = o,p· 

For a system of hard spheres, the partial structure factors Sap(q) have been 
calculated within the Percus- Yevick approximation,1241 while the far field 
scattering amplitudes can be calculated from Mic theory. Calculations of l* 
using the Percus Ycvick structure factors and the Mie form factors are shown 
in Fig. 16.12 with the data for binary mixtures. The experiment and theory are 
in excellent agreement, The plots also show the results of calculations which 
ignore all interparticle structure (SafJ(q) = 0

111
p) and results which ignore only 

the correlations between different particle species (Sts(q) = 0). It is particularly 
interesting to note that for the mixture with the smallest spheres, addition of 
the small colloidal particles actually causes I/ /* to decrease with increasing </>5 . 

Physically, this is because the small spheres decrease the osmotic compressibility 
of the suspension and restrict the space available to the larger spheres, forcing 
the larger spheres into a somewhat more ordered liquid structure. At the same 
time, the small spheres are so much smaller than the wavelength of light, that 
they scatter very little light compared with the larger spheres in the mixture. 
The net effect of the increased order in the larger spheres and small additional 
scattering by the small spheres is to decrease the overall scattering of light and 
thus decrease 1/ /*. These plots clearly illustrate the importance of using the full 
structure factor to model photon transport quantitatively. 

The dynamical problem for interacting mixtures is not as well understood 
as the static problem. Part of the difficulty is because there are currently no 
calculations available for the full q-depcndcnt collective diffusion coefficients 
for colloidal mixtures that interact strongly via the hydrodynamic interaction. 
Kaplan et a/P 11 have proposed an effective q-averaged diffusion coefficient 
which includes hydrodynamic interactions but should be valid only in the 
large-particle (R >> ).. ) limit. They ohtarn 

/) D1 11 [ l·,,(c/) l/11. + l>sol 1-~(q)lp, 
ft - ' • [ /(1/) 111 

( 16.8 1) 
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where[ ... ] denotes the angular average prescribed by eqn (16.64) and Di,o and 
ll.;n arc the single-particle asymptotic short-time self-diffusion coefficients. These 
d1ffus1on coefficients can be estimated from calculations by Batchelor.1251 Good 
agreement is achieved for the mixture with the largest particles. However, the 
theory fails to describe the data for the mixtures with the smaller particles, and 
this illustrates the need for a more comprehensive theory for the q-dependcnt 
diffusion coefficients which includes the hydrodynamic interactions between 
particles. 

16.3 Applications 

In this section we discuss some applications of diffusing-wave spectroscopy, 
both those with potential technological importance and those for the study of 
physical phenomena that cannot be addressed with conventional DLS. We 
begin with a discussion of the unique experimental considerations encountered 
with DWS that are not typical of other types of DLS experiment. Next we 
discuss the application of DWS to particle sizing of concentrated suspensions, 
and attempt to offer a critical assessment of the prospects and potential range 
of si1ing applications that can be addressed. We then discuss a study of new 
phenomena for which we exploit the novel features of DWS and which could 
not have been investigated with conventional DLS scattering techniques. The 
first of these is the study of particle motion on very short length scales in 
concentrated colloidal suspensions. These measurements provide the first 
observations of the time evolution of hydrodynamic interactions between 
colloidal particles. They exploit the ability of DWS in the transmission geometry 
lo measure motion of individual particles on very short length scales. The 
second example is the study of the dynamics of foams and the motion of the 
bubbles that occurs as the foam coarsens. This application exploits the very 
large volume of sample that is probed in a DWS experiment, as the bubble 
mot10n is spatially isolated, and in any given location, is temporally rare. 

16.3.1 E"l:perimencal considerations 

DilTusing-wavc spectroscopy is dynamic light scattering from very highly 
scattering media. As such, it shares many of the experimental methods used for 
conventional DLS, particularly in the collection of the scattered light and the 
processing of the collected data. Just as in conventional DLS, the angular 
resolution of the detector must be limited to a single coherence area, or speckle 
spot. The intensity of this speckle is detected with a photomultiplier tube and 
standard photon counting electronics, and the resulting signal is analysed with 
a digital correlator. However, the fact that the light diffuses through the sample 
introduces new requirements that arc unique to DWS It i-; these new 
i.:niNdcrations that we discuss m this sccl ion . 

, . 
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The first major experimental difference between DWS and conventional DLS 
is in the basic geometries that can be effectively used, as has been discussed in 
Section 16.2. In conventional DLS, where the scattering vector is well defined, 
the angle of the detector can be adjusted to vary the scattering vector, q. Jn 
contrast, diffusing light leaves the sample with nearly uniform intensity in all 
directions, and thus the angle of the detector is not critical. Instead, the only 
important element of the geometry is whether the scattering is backscattering 
or transmission. Each geometry has its own features, and the choice between 
them will depend on the goals of a particular experiment. 

One experimental requirement that is much more stringent for DWS than 
for normal DLS is the power of the laser source. It might seem that the very 
highly scattering samples studied with DWS will produce an abundance of 
scattered light intensity. While this is true, the fact that the light diffuses within 
the sample means that the light spreads throughout a large volume of the sample 
and leaves in all directions. Since only a small portion of the outgoing light is 
collected, considerably more laser power is required. The transmission geometry 
places the more stringent requirements on the incident power. A typical sample 
geometry for a transmission experiment is a slab of thickness Land of lateral 
extent much greater than L. The incident beam is typically focused to a spot 
much smaller than I. on one side of the sample. DilTusive propagation of the 
light through the sample causes it to spread to illuminate an area of radius ~ L 
on the other side of the sample. This will have a very deleterious effect on the 
useful signal for a dynamic light scattering measurement. Since the light leaves 
the sample uniformly in all directions, the intensity at a detector of area A a 
distance R from the sample will be roughly (A/R2). For a dynamic light 
scattering experiment, the detector area should be roughly a single coherence 
area, and since the siLe of the scattering source on the sample is >:::: L, the 
coherence criterion requires that A= (RA/L) 2

• In addition, the transmission of 
light diffusing through a slab decreases as l* /L. Thus the useful intensity for a 
dynamic light scattering experiment, which is the intensity per speckle spot, 
falls as /*;i..2/L 3

. Since I*« Land)..« I*, this puts large demands on the input 
laser power. These demands arc actually more severe for more weakly scattering 
samples, where I* is larger, as these samples must be thicker. Thus HeNe lasers 
often do not provide sufficient power for DWS experiments, and more powerful 
Ar+ or Kr + lasers arc usually required. 

The sample thickness requirements for DWS also ensures that virtually no 
unscattered light is transmitted through the sample. For the diffusion approxi
mation to be valid, the sample thickness must be at least several times greater 
than /*. Jn fact, the expressions for the DWS correlation functions arc most 
appropriate for L/I* ~ 5, so that the effects of internal reflections do not modify 
the boundary cond1t1ons and hence increase the apparent thickness. In this case, 
the .1ttcnuat1011 of umcattercd light transm11tcd though the sample will fall .1s 
c~p( I I) Smee t• is typically several times greater than /, Vlrtually no 
unsc,11lcrcd light will he 1ra1l\111ittcd through the sample. Thus sample:-. lhal 
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can be studied with DWS cannot typically by stud ied with other DLS 
techmques that reduce the effects of multiple scattering by cross-correlation 
techniques of the signals detected at two angles or with two different colours. 
Both of these cross-correlation techniques are designed to eliminate the effects 
of multiple scattering by measuring the cross-correlation of two different speckle 
spots that reflect the same motion of the particles. O nly singly-scattered light 
contributes to the cross-correlated signal from the two speckles, so these 
techniques effectively eliminate the effects of multiple scattering. However, both 
techniques rely on there being sufficient unscattered light reaching each of the 
detectors. This will not occur for samples used in most D WS experiments. 

An additional constraint on the incident power is imposed by the fact that 
multiply-scattered light is depolarized. Thus if the incident light is linearly 
polariled, multiply-scattered light will have essentially equal intensities both 
parallel and perpendicular to the incident beam. Each polarization channel is 
independent, reducing the intercept, and hence the signal-to-noise ratio, of the 
correlation function by a factor of two if no polarization analyser is used in 
front of the detector. Although the use of a polarization analyser will res tore 
the intercept, the total scattered intensity will be reduced. T his places further 
demands on the incident power required to obtain a good signal. In fact, if the 
light is not completely depolarized, the use of an analyser to measure only 
depolarized scattered light will ensure that only multiply-scattered light is 
detected. This can be particularly useful in the backscattering geometry, where 
small particles. which scatter light more isotropically, yield a significant amount 
of singly-scattered light, which is not depolarized and cannot be properly treated 
within the diffusion approximation. 

A final constraint on the incident power is imposed by absorption in the 
sample. As discussed above, the consequences of absorption are much more 
severe for multiply-scattered light than for singly-scattered light, since the path 
lengths are so much longer. Even weak absorption in a sample will result in a 
modification of the shape of the autocorrelation function, and this must be 
included in the analysis. Ideally it is preferable to measure the absorption length 
independently, in the absence of large scattering, and include this in the analysis. 
However, this is often not possible, and an absorption length must be 
determined in the data analysis from the shape of the autocorrelation function. 

The description of the transport of light using the diffusion approximation 
also imposes unique requirements on the sample geometry. To use effectively 
the functional forms derived in Section 16.2, the sam ple must be large enough, 
and have a suitable geometry, to ensure that the light paths are not cut off by 
the shape or the finite size of the sample. The constraints placed on the sample 
geometry can be easily understood on physical grounds. In the transmission 
geometry, the characteristic path length is L 2 /l *. If the incident beam is focused 
on one face of the sample, the difTusion of the light causes it to expand to an 
area of roughly I. in radius at the other side of the sample. Thus the lateral 
extent of the sample must be several times its thickness to en~ure that light 

\ 

Diffusing-wave spectroscopy 695 

paths arc not cut off. This same requirement also determines the minimum 
size of the incident beam when it is expanded to illuminate the full face of the 
sample. 

The sample thickness is one parameter that is experimentally controllable. 
as it can be used to adjust the amount of motion per particle required to cause 
the decay. As such, thicker samples are sometimes desirable, putting larger 
demands on laser power. The incident laser intensity is most efficiently used 
when the incident beam is focused on the sample, but this can cause potential 
problems with power density at the sample face. Thus it may be desirable to 
defocus the incident beam slightly. The requirements of a point focus assumed 
in the derivation of the correlation function imply only that the incident laser 
be focused to a spot that is substantially smaller than the thickness of the cell. 
Thus as L increases, the constraints of a very tight focus are relaxed. The results 
for the autocorrelation function for a larger-sized beam can be calculated using 
eqn ( I 6.42). 

Similar requirements also pertain to the backscattering geometry. Tn this case 
however, paths of a ll lengths contribute, depending on how early in time the 
correlation function is to be measured. Earlier times have contributions from 
longer paths and thus require a sample oflarger extent. The extent can be easily 
estimated by considering the simple case of non-interacting Brownian spheres, 
where To is known. For this system, a path of lengths decays in a timer = r0/*/s. 
However, since s ~ L; //*, where L, is the spatial extent of a diffusive path of 
length s, the sample thickness must be at least L, = I* Jr;fr. Similarly, since 
these paths arise from laser light incident a distance L, from the spot where 
the light is detected, the sample must also be larger than L, and the incident 
beam must illuminate a spot that is larger than Ls-

The large path lengths characteristic of DWS also place much more severe 
requirements on the coherence of the laser. These requirements need not be 
considered at all in conventional DLS. The physics of these coherence 
requirements is again straightforward: DWS measures the Joss in phase 
coherence of a path due to the motion of the scatterers. If the laser coherence 
length is shorter than the path length, an additional dephasing mechanism is 
mtroduced. This essentially cuts off paths longer than the coherence length, and 
can change both the intercept of the intensity correlation function and its shape. 
Lasers typically used for DLS, such as Ar+ and Kr+ lasers, operate in many 
longitudinal modes, giving them a coherence length of only a few centimetres. 
However, the coherence length or the laser is increased to several metres by 
forcing it to operate in a single longitudinal mode, using an intercavity etalon. 
This ensures that the coherence length is much larger than the characteristic 
path length, so that all the dephasing of the light results solely from the particle 
motion. This is often essential for DWS, quite unlike conventional DLS. to 
avoid the deleterious effects of such a short coherence length, and to study 
thu.:ker samples. 

The corrclat1011tunction"111ca,11n:d with DW~ decay much faster than those 
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measured with conventional DLS, placing more demands on the time resolution 
of the correlator. This has actually inspired the development of new real-time 
correlators that are faster than those designed for conventional DLS. Real-time 
digital correlators with minimum sample times as short as 12.5 ns are now 
commercially available, and meaningful data can be obtained using these 
correlators and DWS in the transmission geometry. However, the use of these 
high-speed correlators introduces additional requirements on the experiment. 
The use of an intercavity etalon in the laser is essential, since the beat frequency 
between adjacent longitudinal modes can be resolved by the high speed of the 
correlator. In addition, problems of dead time in the photon counting equipment · 
become much more severe, as do problems with correlated after pulsing of the 
photomultiplier used as the detector. Both effects can be greatly reduced by 
placing a beam splitter after the final pinhole and using two separate photo
multiplier tubes in a cross-correlation mode. Finally, if the sample is sufficiently 
thick, the decay becomes so rapid that temporal correlation techniques are no 
longer practical. Then the autocorrelation function must be measured in the 
frequency domain using interferometric techniques with a Fabry-Perot or 
Michelson interferometer. In fact, Y odh et af.1261 have been able to measure the 
decay of the electric field autocorrelation function of thick, multiple-scattering 
samples using a Michelson interferometer. With this technique they have been 
able to resolve motion on a 0.0 I nm length scale. Thus the very earliest stages 
of Brownian motion can be probed. 

16.3.2 Particle sizing 

The measurement of the size and polydispersity of colloidal particles is one of 
the most important applications of conventional DLS, and has stimulated much 
of its development. However, many suspensions of technological importance 
are quite concentrated, exhibiting high multiple scattering, and thereby severely 
limiting the applicability of conventional DLS. For this reason, particle sizing 
of concentrated suspensions holds the promise of ultimately becoming one of 
the most important applications of DWS. Unfortunately, however, this applica
tion has to date found somewhat limited use, and requires considerably more 
development before it can match the widespread utility of conventional DLS. 
Here we discuss possible schemes for employing DWS for particle sizing, and 
indicate the areas where further theoretical and experimental development 
would be most beneficial. We also review some successful applications of DWS 
to particle sizing that have already been reported. 

Perhaps the conceptually simplest technique for measuring particle size uses 
the backscattering geometry. This geometry has the advantage that only a single 
optical access is required. This could for example be a window in a processing 
container. Furthermore, no additional knowledge of the scattering properties 
of the suspension is required, since the autocorrelation function does not depend 
on the value of/*. Unfortunately, despite its inherent simplicity, backscattering 
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is also the least well understood geometry, where the diffusion approximation 
is most suspect. As discussed above, this is a result of the relatively large 
contribution of short paths, of length less than /*, to which the diffusion 
approximation does not apply. 

Despite the limitations, useful particle size information can still be obtained 
using DWS in backscattering. This is predicat~d on the form of the autocorrela
tion for backscattering, which is typically quite well approximated by eqn 

(16.46), g(2)(t)::::; exp(-7~). Thus a determination of dg(2J(t)/dj't provides 

a measure of y/._/r0. To a reasonable approximation, accurate to about 20 per 
cent, y can be chosen to be 2.1.0 21 This then provides a measure of •0, and 
hence of the particle size. This measurement can be refined by exploiting the 
fact that the value of 7 reflects the contribution of short paths, and hence varies 
with the polarization of the scattered light detected, compared with the incident 
light. Thus, for example, for parallel polarization there is an additional 
contribution of short paths that decay more slowly, thus decreasing the value 
of y for the parallel polarization channel of the scattered light as compared with 
the perpendicular polarization channel of the scattered light. This effect is more 
pronounced for smaller particles, which tend to scatter light more anisotropic
ally, and hence have a relatively larger amount of scattered intensity in the 
parallel polarization channel. In fact, the ratio of the values of y measured in 
each of the linear polarization channels can be used to refine the measurement 
of •o· This can be seen in the results shown in Fig. 16.13, which is a plot of the 
value of y obtained using suspensions at </> ::::; 0.01 with different sphere sizes. 
As can be seen, as the particle size increases, and hence the scattered intensity 
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t<ro. 16.13. Values of y for both the parallel (• )and the perpendicular ( A) polarization 
channels, as a function of pa1 ticle size. Measurements of both polarinllion channels can 
reveal information about pa1 ticlc size 
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in each of the polarization channels becomes more nearly identical, the values 
of y for both channels approach 2.1. Jn contrast, as the particle size decreases, 
so that the contribution of singly-scattered paths increases, the values of y 
diverge, with y1 decreasing compared with y .L since there is a large contribution 
from single-scaltered paths that decay more slowly. If a plot of the sort shown 
in Fig. 16.13 is available for the samples of interest, then measurement of the 
autocorrelation function for each polarization can be used to refine the size 
determination of the particles. We note however that studies of the dependence 
ofy on particle size have been limited. While the behaviour shown in Fig. 16.13 
is certainly observed for monodisperse, spherical particles at concentrations of 
a few per cent, the behaviour of suspensions with higher concentrations, more 
polydispersity, or more irregular-shaped particles has not been extensively 
investigated. This must be done to ensure the more general applicability of 
DWS for measuring particle size in concentrated suspensions. More importantly, 
the theory for DWS in backscattering must be refined, and a more fundamental 
understanding of the parameter y must be developed to exploit fully the 
potential of DWS for particle size measurements. 

Unlike backscattering, transmission measurements do not suffer from the 
same uncertainties in the theoretical interpretation of the data. However, 
transmission measurements are somewhat more complex, since they require 
two optical accesses to the sample. Moreover, interpretation of the data also 
requires independent knowledge of the value of l*, since the autocorrelation 
function always depends on the product of l* and •o· This can in principle be 
obtained by measuring the total light transmission through the sample in a 
static measurement. Provided that an identical optical arrangement is used, the 
transmission can be compared with that measured through a sample of known 
/*, and thus the unknown value of I* can be determined. If this is done, 
transmission measurements can provide an excellent measure of the particle 
size, without the inherent uncertainties in the interpretation that plague 
backscattering measurements. 

The use ofDWS for particle sizing suffers from some unavoidable drawbacks. 
Additional information is always required to use DWS, as either y must be 
determined for the backscattering geometry, or l* must be determined for the 
transmission geometry. Furthermore, unlike conventional DLS, with poly
disperse samples no independent information about particle size distributions 
can be obtained using DWS. Physically, every path scatters from all sizes of 
the particles in a polydisperse sample, and thus reflects an average over particle 
size, even before the contributions of individual paths arc averaged. Thus no 
information about polydispersity can be extracted from the data. However, it 
is possible to calculate the expected behaviour of a mixture of particle sizes, as 
was discussed above. Thus in principle it is possible to compare the data with . 
the predicted behaviour assuming some model distribution, and thereby check 
the validity of the model. Finally, an additional problem can arise in the 
interpretation of the results because of particle interactions. These can be very 
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large at the high volume fractions of the suspensions which can be studied with 
DWS. Both potential interactions, as characterized by S(q), and hydrodynamic 
interactions, as characterized by H(q), will modify the effective diffusion 
coefficient measured in a DWS experiment. As discussed above in Section 16.2.5, 
DWS measures a weighted average of these functions over the full range of q 
accessible with the wavelength used. The effects of S(q) tend to be compensated 
by those of H(q), and the net effects are reduced. If these functions are known, 
it is possible to interpret the data correctly, accounting properly for the effects 
of the interactions. This is certainly the case for particles interacting by a 
hard-sphere potential, where both S(q) and H(q) are known. Actually, even for 
other interaction potentials, the effects of the interactions may often not be 
substantially different from the hard-sphere case. At high volume fractions, 
packing constraints dominate the potential interactions, and S(q) determined 
for the hard-sphere interaction is likely to be a reasonable approximation for 
many other types of interactions. At low concentrations, the effects of H(q) are 
greatly diminished, while the effects of S(q) will primarily differ at relatively 
small values of q, which make a less important contribution to the average 
because of the q3 weighting. This will be particularly true for larger particles. 
Thus the effects of interactions will typically be included in a reasonably 
straightforward fashion. 

There have not been extensive reports to date of attempts to use DWS for 
particle sizing. Nevertheless, DWS has been successfully applied to study 
aggregation processes in milk during the formation of cheese. Horne1271 has 
used an elegant experimental arrangement employing a bifurcated optical fibre 
bundle. Light is injected through one half of the bundle, and is emitted from 
fibres randomly situated at the face of the other end of the bundle, which is 
immersed in the milk sample. The scattered light is detected through only a 
single fibre in the second half of the bundle. This fibre is chosen to be situated 
near the centre of the face. This provides a simple scheme for performing DWS 
backscattering measurements, and the data so obtained are well described by 
the formalism discussed above, enabling the average particle size to be 
measured. With this scheme, HorneL27J was able to study both the early 
aggregation process in the initial stages of cheese-making, as well as the later 
formation of a gel network as the cheese aged. This is a good example of the 
potential of DWS to provide useful particle size measurements in highly 
scattering samples without the requirement for dilution. 

Despite its drawbacks, DWS remains the only method for measuring particle 
sizes in concentrated suspensions that exhibit high multiple scattering. As such, 
it should find considerable use. At its present level of development, DWS is 
probably most suitable as an analytical technique that can be used for 
monitoring the progress of some process that is reasonably well understood, 
rather than as an independent technique that can by itself give detailed and 
exact information about partidc size. fnst cad, DWS is more su itable for 
following changes in the average particle site, with other more precise techniques 
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being used to initially determine the particle size and its distribution. For 
example, dilution and then conventional DLS could be used initially to measure 
the particle size at different stages of processing, and then the DWS results 
could be correlated with the more conventional results. Then DWS could be 
used as an in situ monitor of the process. More development of both the 
experimental technique and the theory of DWS is clearly highly desirable. This 
would help to identify the optimum geometry and techniques for different 
applications. With this further development, DWS might achieve its promise 
of providing a light scattering method for measuring particle size in concen
trated suspensions. 

16.3.3 Particle motion on short length scales 

Diffusing-wave spectroscopy provides a unique method for probing physical 
phenomena that cannot otherwise be studied. The motion of a particle one 
micrometre in diameter can be resolved on length scales as short as several 
angstroms. Physically this can be achieved because DWS measures the time 
taken for the total length of a diffusive light path to change by one wavelength. 
This path can consist of a very large number of scattering events. Thus the 
motion of each scatterer need be only a very small fraction of a wavelength. In 
addition, the time-scales for these very small motions will be correspondingly 
shorter. The physics of motion at these very short length and time scales can 
be significantly different from that of motions typically probed by conventional 
DLS, which are on length scales comparable with one wavelength and on 
time-scales that are correspondingly longer. 

To illustrate the power and utility of DWS in studying new physical 
phenomena at these short length and time scales, we concentrate on one 
example. At sufficiently short time and length scales, the motion of Brownian 
particles is no longer simply diffusive in nature. Instead, it directly reflects the 
consequences of hydrodynamic interactions, both between the particle and the 
surrounding fluid, and between the particle and other neighbouring particles, 
mediated by the viscous fluid. Herc we discuss the use of DWS to measure 
motion of colloidal particles at very short length and time scales and to study 
hydrodynamic interactions in concentrated suspensions. 

Hydrodynamic interactions play a critical role in determining the dynamic 
properties offtuid suspensions of all sorts. However, hydrodynamic interactions 
are extremely difficult to treat theoretically because they are intrinsically 
many-body in nature. Furthermore, although their consequences have been 
widely studied experimentally, the actual time evolution of hydrodynamic 
interactions has not been investigated. Hydrodynamic interactions are not a 
static or potential form of interaction, and thus do not affect the average 
structure of a suspension, as characterized for example by the structure factor, 
S(t/) Instead, hydrodynamic interactions result from the motion of the particles 
in the thud and the viscous coupling of this motion to the fluid and to other 
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particles. The time-scale of this coupling is set by the kinematic viscosity of the 
suspension, 17/p, where '7 is the shear viscosity and p is the density of the fluid. 
The kinematic viscosity is the diffusion coefficient that determines the rate of 
diffusion of momentum in a viscous fluid. It determines the time-scale over 
which the fluid flow can change. Typically the time-scale for the propagation 
of hydrodynamic interactions is so rapid that they arc viewed as instantaneous. 
However, hydrodynamic interactions are in fact retarded interactions, as there 
is a finite time for their propagation. The use of DWS in the transmission 
geometry makes it possible to probe the motion of colloidal particles on 
sufficiently short time and length scales to monitor experimentally the time 
evolution of hydrodynamic interactions. Furthermore, since concentrated sus
pensions are essential for the use of DWS, hydrodynamic interactions can be 
studied as the particle concentration is increased. 

To consider the transient nature of hydrodynamic interactions, we begin with 
the description of a single Brownian particle in a viscous fluid, as some of the 
assumptions typically made in conventional DLS arc no longer adequate when 
considering the time and length scales probed with DWS. Thus we describe the 
particle's instantaneous position by r(t) and its instantaneous velocity by v(t), 
so that 

r = t v(t') dt' 

The particle motion is described by the Langevin equation, 

mv = -(ov + f(t) , 

(16.82) 

(16.83) 

where m is the mass of the particle, ( 0 is the friction coefficient, and f( t) is a 
random thermal force exerted on the particle by the collisions of the fluid 
molecules. For a spherical particle of radius a, the zero-frequency friction 
coefficient is given by ( 0 = 6m7a. The use of the Langevin equation implicitly 
assumes that the time-scale of the collisions of the individual molecules with 
the particle is much more rapid than the motion of the particle, so the effect 
of these collisions can be replaced by a random fluctuating force. The time-scale 
of the individual collisions of the fluid molecules is of the order of 10- 13 s, 
while the time-scale of the transient hydrodynamic interactions is greater than 
IO 8 s. Thus the Langevin equation is a suitable description for the time-scales 
of concern here. Furthermore, the random force can be assumed to be a 
stationary Gaussian random process. 

The Langevin equation is normally solved by assuming that the friction 
coefficient is a constant. Then the particle's velocity is 

1•(t) = 1•(0)e - '''" + t dre - Ct - rltaf(t), (16.84) 

\~here the Brownian tinw, r11 • m/C11• is the viscou.., damping tune, in which the 
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particle's velocity is damped out owing to the viscosity of the fluid. Because of 
the random nature of the forces, it is more meaningful to consider the particle's 
velocity autocorrelation function, 

R(t) = <v(O) · v(t)). (16.85) 

Using eqn (16.84), we have 

R(t) = R(O) e-'1' 0 + - dr e-<r-<l/<n<v(O)-/(t)). 1 f I 
3 0 

(16.86) 

Because of causality, the particle's velocity at t = O cannot depend on the 
random force some time later, so that <v(O)- /(t)) = 0, and the second term 
does not contribute. In addition, from equipartition, the initial value of the 
velocity autocorrelation function is given by R(O) = kuT/m, giving 

(16.87) 

The mean-square displacement of the particle, <M2(t)), is given in terms of the 
velocity autocorrelation function, 

<M2(t)) = 6 t dt'(t - t')R(t'). (16.88) 

At sufficiently Jong times, the velocity autocorrelation function must decay to 
zero, and using eqn ( 16.87), we can define the self-diffusion coefficient, D0 , by 

(16.89) 

This is the asymptotic value of the diffusion coefficient, reached after the velocity 
autocorrelation function has decayed but before the particle has moved far 
enough to interact with the potential of its neighbours. Thus by D0 we refer to 
what is often called the short-time self-diffusion coefficient. For dilute suspen
sions, D0 is given by the Stokes- Einstein formula, D0 = kllT/(0 . However, since 
we wish to consider the particle motion at time-scales comparable with the 
decay of R(t), the diffusion coefficient is no longer a constant, and we define 
the time-dependent diffusion coefficient, 

D(t) = t dt'R(t'). (16.90) 

Using eqn (16.87), we have 

(16.91) 

The mean-square displacement can also be expressed in terms of the time
dcpendent diffusion coefficient, 

( 16.92) 
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A basic assumption made in obtaining all of these results is that the particle 
velocity is viscously damped by the Ouid in the Brownian decay time, -r8 . This 
leads to an exponential decay of the velocity autocorrelation function, and a 
corresponding exponential rise of the time-dependent diffusion coefficient Lo its 
asymptotic value. ln addition, <M2(t)) exponentially approaches the linear 
dependence on time expected for diffusive motion of the colloidal particle. This 
approach is adequate for the description of particle motion studies using 
conventional DLS, since the motion of the colloidal particles during the decay 
of the velocity autocorrelation function cannot be observed. Consider, for 
example, a I µm diameter polystyrene sphere in water at room temperature. Its 
Brownian decay time is Tn = 33 ns, while the initial value of its velocity 
autocorrelation function is R(O) = 13.7 cm2 s- 2. Thus in a Brownian decay 
time, the particle would move only :=::: 1.2 nm, and motion of this scale would 
not be detected by conventional DLS. In contrast, with DWS we can measure 
motion on length scales of this magnitude. Thus the approximation discussed 
above, which is typically made, must be reconsidered. 

The problem with this approximation lies in the use of a constant value for 
the friction coefficient. This ignores the effects of the particle motion on the 
flow of the surrounding fluid. These can be described by including inertial and 
memory terms in the Langevin equation: 

f 1 v(t') 
mv(t) = ( 0v(t) - ~npa3v(t) - 6a2(n17p) 112 

.
2 

dt' + F(t). (16.93) 
- er) (t - t') 1

' 

This equation can be solved by Laplace transform techniques, leading to a more 
complex expression for the velocity autocorrelation functionP 8 l We express the 
result in terms of the dimensionless time, r = t/t~, where -r~ = a2 p/ 'flo and 170 
and p are the viscosity and density of the fluid: 

k 8 T 2I: 2 ;: 2 ;: 
R(r) = - / [a + c"+' erfc(ix+v -r) - cc c" 'crfc(a_y -r)]. (16.94) 

m 3y5- 8I: 

The ratio of particle to fluid densities is given by I: = p'/ p, erfc(x) is the complex 
complement of the error function, and 

3 3 ± Js - 81: 
Qr; = 

+ 2 I + 2I: . 
(16.95) 

The corrcspond tng expressions fo1 lhe ti me dependent di ffusion cocnicicnt and 



704 Dynamic light scattering 

the mean-square displacement are 

D(t) = 0 0{1 + 3 [e:' erfc(cx+fi) - ~'--' erfc(cx_fi)]} (16.96) Js - 81: ~ + .... 

and 

When the full time-dependent viscosity is used, the velocity autocorrelation 
function no longer decays cxponenlially, but instead decays algebraically. Al 
long times, its limiting behaviour is 

Jim R(t) = 0 t 
D 

( )

-3/2 

1-«J 2t~Jt t~ 
(I 6.98) 

This is the 'long-time tail' in the velocity autocorrelation function, which has 
a t - 312 power-law decay. The corresponding behaviour for the time-dcpcndenl 
diffusion coefficient results in a t - 112 approach to its asymptotic value. 

These transient hydrodynamic effects can be directly observed by using DWS. 
To facilitate their observation, the viscous time-scale should be made as large 
as possible by using larger-diameter spheres. This also considerably simplifies 
the interpretation of the data, since it ensures that the sell-diffusion coefficient 
is measured, as discussed in Section 16.2.5. 

To investigate these effects, we use 1.53 µm diameter polystyrene latex spheres 
in water. The counterion concentration is sufficiently high to ensure a short 
Debye-Hiickel screening length, resulting in a hard-sphere interaction between 
the particles. A volume fraction of </> = 0.021 ensures sufficicnl multiple 
scattering lo enable lhe DWS formalism to be used, but is low enough for the 
interactions between the particles to be minimized, with both S(q) and H(q) 
approximately unity over the full range of q accessed by the scattering. To 
measure motion on the very short length scales required, DWS in the 
transmission geometry is used. Furthermore, to obtain adequate signal-to-noise 
ratio at the very short time-scales required, the data are collected for approxim
ately J 2 hours. However, lhc sample is rotated every I 0 min to ensure that the 
concentration docs not change owing to gravitational sedimentation over lhe 
course of data collection. A high-speed, real-time digital correlation is used to 
mea'>ure the temporal autocorrelation function of the scattered light to delay 
times as short as 12. 'ins. fhc measurement of autocor rcl.1tion function-. at these 
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short delay times requires careful attenlion to the experimental arrangcmcnl. 
To reduce the effects of spurious correlations due to afterpulsing in the 
photomultipliers, and also to reduce the effects of dead time in the electronics, 
a beamsplitter is placed after the final pinhole of the detection optics to direct 
the signal to two photomultiplicrs, whose output is cross-correlated. In addition, 
an intercavity etalon must be used to force the laser to oscillate in a single 
longitudinal mode to avoid detection of mode beating in the correlation 
function. With these precautions, good-quality correlation functions can be 
obtained at these short time-scales using DWS. 

The data are analysed using the DWS formalism to determine (~r2(t)) 
directly. A zero-crossing routine is used to invert eqn (16.41) and obtain 
k~(~r2(t))(L//*)2 • Then, using the value of/* calculated from Mic theory, the 
mean-square displacement of the particles is determined. These results are 
shown in a double logarithmic plot in Fig. 16.14. Motion on length scales as 
short as a few angstroms can be clearly resolved, demonstrating the sensitivity 
of DWS. To illustrate more clearly the effects of the long-time tail of the velocity 
autocorrelation function, we numerically differentiate the data to obtain the 
time-dependent diffusion coefficient. The differentiation is done by fitting the 
data to a third-order polynomial. The range of the fitted data is always chosen 
to be about one decade in time, improving the signal-to-noise ratio of the 
derivative without causing significant loss in the time resolution of the results. 
The time-dependent diffusion coefficient is shown in Fig. 16.15. The solid line 
through the data is the result predicted theoretically using the time-dependent 
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FIG. 16.15. Plot of the time evolution of the self-<li!Tusion coefficient for 1.53 µm particles 
for 4> = 0.021. The solid line is the theoretical prediction, eqn (16.96), using the 
time-dependent friction factor. The dashed line is the theoretical prediction, eqn (16.91), 
using the time-independent friction factor. 

diffusion coefficient predicted by eqn (16.91). The data clearly approach their 
asymptotic value much more slowly than the exponential behaviour predicted 
with a constant friction coefficient, and are in excellent agreement with the 
bch~n iour predicted theoreticaHy using the correct time-dependent form for the 
friction. 

To observe the long-time tail in the velocity autocorrelation function directly, 
the second derivative can also be numerically calculated to determine R(t). 
These results arc shown in Fig. 16.16, and are again in excellent agreement with 
the theoretical prediction, shown by the solid line through the data. The data 
clearly exhibit the predicted t - 312 decay, as shown by the dashed line. These 
results are a clear illustration of the power-law behaviour of the velocity 
autocorrelation function, and would simply not be obtainable without the use 
of DWS. 

In addition to measuring the long-time tail in the velocity autocorrelation 
function, DWS can also be used to study the effects of hydrodynamic 
interactions on the time evolution of the self-diffusion coefficient. This can be 
done by mcreasmg the volume fraction of the suspensions. Physically. the 
increasing volume fraction w11l lcad to hydrodynamic interactions between the 
neighbouring particles, -.ince the fluid flow will be disrupted by the presence of 
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l•rc;. 16.16. Logarithmic plot of the velocity autocorrelation function for 1.53 µm 
diameter particles for <P = 0.021. The solid line is the theoretical prediction, eqn (16.94). 
fhe t - 3' 2 'long-time tail' is apparent. 

the nearby particles as the vorticity diffuses out from the tracer. Hydrodynamic 
interactions between neighbouring particles are traditionally viewed as instan
taneous, since it has previously not been possible to measure experimentally 
their time-scale. However, hydrodynamic interactions are in fact retarded, 
taking a finite amount of time to propagate between particles. This can be 
directly observed with DWS. 

To investigate these effects, we again use 1.53 µm diameter polystyrene latex 
spheres, and make DWS measurements in transmission for different volume 
fractions. The volume fractions are measured by drying and weighing a small 
portion of the suspension. Data arc again collected with the very high-speed 
correlator, and the autocorrelation functions arc a vcragcd for about 12 hours 
to obtain sufficiently good statistics at the shortest delay times. In addition, the 
measured baseline due to laser fluctuations is subtracted from the data, enabling 
us to measure the decay in the intensity autocorrelation function, g<2i(t), over 
almost four orders of magnitude. The field autocorrelation functions are 
determined from the data, and arc inverted using eqn (16.41). We use the value 
of I• calculated usrng Mic theory. To reduce the statistical uncertainty inherent 
in numerically <l1ffcrcntiat1n£ the data, we use an alternative definition for the 
time·dcpendcnt sclf-d1ffu .. ion cocflicicnt. I>.(r) ;: ( M 2(t))/6t. The results for 
sample ... with ... cvcral dtflcrcnt \ahll'' of 1/1 arc 'ho'Wn 111 I 1£ 16 17 The highest 
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F1a. 16.17. Plot of the time evolution of D,(t) = (r2(t))/61 for 1.53 µm particles for 
different volume fractions </J. The short straight line to the right of each number indicates 
the asymptotic short-time self-diffusion coefficient predicted by Batchelor12$1 for each 
volume fraction. The dashed line through the 2.1 per cent data is the theoretical 
prediction for (r2(1))/6t of Hinch.1isi The dash-dot line is the theoretical prediction for 
(r2(1))/ 6c using eqn (16.92) with a time-independent friction factor. 

curve repeats the data for </> = 0.021 shown previously. Tt is again compared 
with the theoretical prediction, shown by the dashed line; the data and the 
theory arc nearly indistinguishable. The data for the higher volume fractions 
arc markedly different. As the volume fraction increases, the asymptotic value 
that the data approach decreases markedly, as expected for the self-diffusion 
coefficient. At the very shortest times, however, the data for all volume fractions 
cannot be distinguished, within experimental uncertainty. As the time increases, 
the data begin to deviate from the limiting case of low volume fraction, with 
the data for the higher values of</> deviating at successively shorter time-scales. 
The data for the sample with the highest volume fraction, </> = 0.256, appear 
to deviate at times considerably shorter than t~. For all </>, the approach to the 
asymptotic value of D. is very slow. 

To elucidate the behaviour further, we again numerically calculate the second 
derivative to obtain the velocity autocorrelation function for each value of</>, 
and plot these results logarithmically in Fig. 16.18. In each case, the velocity 
autocorrelation functions exhibit a power-law behaviour with the same exponent, 
R(r) ~ r 312. This suggests that the functional form of each set of data is the 
same. To ascertain this, we use the functional form predicted for /ero volume 
fraction, eqn (16.97), and use a non-linear least-squares fillmg routine to 
compare this prediction with the data, allowmg both the asymptotic value, D., 
and the time-scale, to vary during the ht Very good agreement is obtained for 
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Fie,. 16.18. Logarithmic plots of the velocity autocorrelation functions for 1.53 µm 
particles for volume fractions of(& ) 0.021, (• ) 0.104, C• ) 0.256. The t-3'2 ' long-time 
tail' is apparent for each data set. The solid line is the calculation by Hinch1281 for the 
dilute-suspension limit. 

each data set. Thus all the data can be scaled on to a single master curve, as 
shown in Fig. J 6.19. 

The parameters used to scale the data on to the master curve are obtained 
from the fit to the zero-volume-fraction form. The first parameter scales the 
data in the vertical direction, and provides a measure of the asymptotic value 
of the self-diffusion coefficient. The </>-dependence of this scaling parameter, 
normalized by D0 = k8T,6m10a, is shown in Fig. 16.20. For comparison, we also 
plot the theoretically expected behaviour of the short-time self-diffusion coefficient 
as a function of <f>. This theoretical prediction is in good agreement with tracer 
difTusion measurements of the short-time self-diffusion coefficient. As can be 
seen in Fig. 16.20, the value of D. obtained from the scaling is in excellent accord 
with the expected behaviour. 

The second parameter scales the horizontal axis, and provides a new 
t1 me-scale. The </>-dependence of this new time-scale, normalized by re, is shown 
111 Fig. 16.21. The time--scale also decreases with increasing</>. but does so more 
rnp1dly than D. In F-1g 16.21 we also plot r10'11(</>) as the solid line, where 11(</>) 
1., the theorcl1cal prediction for the </>-dependence of the inverse of the 
high-frequency visen-.ity of the su-.pcnsion, normali1ed by 11 0 • the t.ero-4> value. 
l<emarkable agreement is found between this theoretical prcd1ct1on and the 
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F10. 16.19. Scaling of the self-diffusion coefficients, D.(t) = (r2(t))/6t, for data from 
1.53 µm spheres at different volume fractions. 
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1'10. 16.21. Normalized scaling parameter <,/<~ for the time as a function of volume 
fraction, compared with the theoretical prediction for the normalized suspension 
viscosity rio/rt(</>) for 1.53 ( • )and 3.09 (e ) µm diameter spheres. 

measured time-scale. This suggests that the viscosity that determines the 
time-scale for the vorticity to diffuse away from a particle is the viscosity of 
the suspension itself. This behaviour is reasonable at later time-scales, after the 
vorticity has diffused over a large-enough length scale, so that the individual 
spheres cannot affect the viscosity. What is more surprising is the fact that the 
scaling behaviour holds to times as short as t~, where the vorticity has diffused a 
distance of the order of the sphere radius. Even at these time-scales, it seems that 
the effective viscosity is that of the suspension, rather than that of the pure fluid. 

These measurements clearly demonstrate the power of DWS to study the 
behaviour of concentrated suspensions. Hydrodynamic interactions fundament
ally affect all the dynamical properties of dispersions. They are also one of the 
most difficult and intractable problems in classical statistical mechanics. The 
ability of DWS to probe motion on such short length scales makes it possible 
to obtain a great deal of new information about hydrodynamic interactions. 
T'he results presented here demonstrate that it is now possible to observe 
experimentally the retarded nature of hydrodynamic interactions. In the future, 
DWS should allow a wide variety of new types of measurements to be 
performed, to probe motion on short length scales in many different systems. 
This will provide new challenges, both to experimentalists and to theorists . 

16J.4 foams 

In this section we discuss another application of DWS that takes advantage of 
the d11lusive nature of the light path~. althou~h in a completely d1fTcrcnt fashion. 
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We study motion that occurs intermittently in random locations in the sample. 
This motion would be impractical to study with conventional DLS, but can 
easily be studied with DWS. This requires a new theory for the dynamic light 
scattering process itself. We discuss the application of DWS to study the 
dynamics of foams.1291 A foam is a concentrated dispersion of air bubbles in a 
fluid, with the interfaces stabilized by surfactant. The air bubbles are typically 
much larger than the wavelength of light. Furthermore, since there are so many 
interfaces, light is scattered very many times, resulting in the white appearance 
typical of foams. This very high multiple scattering has precluded the use of 
DLS in the study of foams, but makes DWS an ideal technique. 

The samples that we study consist of a commercial shaving cream, which 
provides a reproducible and fairly stable foam. The foam comprises a gas, which 
is a mixture of hydrocarbons, dissolved in water with added surfactant. While 
stored in the can, the shaving cream mixture is under high pressure, increasing 
the solubility of the gas in the fluid. The foam forms when the mixture is sprayed 
out of the can. The reduction in the ambient pressure reduces the solubility of 
the gas in the water, and small bubbles form. Initially they have a mean diameter 
of :::::20 µm, and a volume fraction </>::::: 0.92. The bubbles all appear quite 
spherical under an optical microscope. Thus, in order to fill such a high volume 
fraction of space, the bubble size is necessarily not monodispcrse. Instead there 
is clear distribution of sizes when the foam is first formed. As a result, the foam 
ages, or coarsens. The reduced radius of curvature of the smaller bubbles results 
in a higher pressure of gas inside them, compared with the larger bubbles, 
which have a larger radius of curvature and a correspondingly lower pressure. 
Thus gas can diffuse out of the smaller bubbles, causing them to shrink, and 
into the larger bubbles, causing them to grow. This coarsening process can be 
followed quite easily by multiple light scattering techniques. 

The process of coarsening of the foam is relatively slow, and it can most 
readily be following by a static measurement, through monitoring the total 
amount of light transmitted through the foam. When the absorption of the 
sample is negligible, the total amount of light transmitted through a multiply
scattering sample is given by 

T = 5l*/3L 
I + 4l*/3L 

(16.99) 

In the limit of a thick sample, L/l* » 1, eqn (16.99) reduces to T::::: 5l"'/3L. 
Thus, knowing the sample thickness, the transmission provides a simple 
measure of the transport mean free path. This is a single length scale that 
parametrizes the transport of light through the medium. If the randomization 
of light in a foam is characterized by a single length scale, the only relevant 
length is the average bubble size. Thus the total transmitted light should provide 
a measure of the average bubble size in a foam through the measurement of the 
transport mean free path. To test this, we measure /* in a sample of the foam 
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F1G. 16.22. Correlation between the measured value oft• and the average bubble size 
as measured on the surface of a foam with a microscope: ( • ) static transmission 
measurements; (A ) dynamic DWS measurements. 

by measuring the total transmitted light. Rather than attempt to collect all the 
transmitted light, we collect a small portion of the light transmitted in the 
forward direction, and compare this with the light transmitted through a sample 
of the same thickness, with a known I*, measured with an identical optical 
arrangement. Then, by normalizing the two measured intensities, we are able 
to determine /* directly. In Fig. 16.22, we compare the measured value of I"' 
with the average bubble size d as measured at the surface of the foam using a 
microscope. Nearly linear behaviour is observed, as shown by the solid line, 
confirming that I* docs provide a measure of the average bubble size. For this 
foam, the ratio gives I"' = (3.5 ± 0.5)d, allowing I* to be used to determine the 
average bubble size directly. 

The ability to measure the average bubble size by measuring the transmitted 
light provides a simple method of following the coarsening of the foam. The 
time-dependence of the average bubble size is shown in a logarithmic plot in 
Fig. 16.23. After about 20 min, the growth of the average bubble size follows a 
power law in time, doc. t•, with z ~ 0.45. A power-law behaviour for the growth 
in the average bubble size for foams of this type is expected on the basis of a 
scaling picture which describes the effects of coarsening on the full distribution 
of bubble sizes. The distribution of bubbles is assumed to be statistically 
,elf similar, so that the overall shape of the distribution, normalized by the 
average bubble si,.c, remains the same as the foam coarsens. Then, if the bubbles 
arc densely packed, the growth of the average hubhlc sil'c is predicted to be a 
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FIG. 16.23. Logarithmic plot of average bubble diameter d as a function of age of foam: 
( ) static measurements; (0) dynamic measurements;(---) line of slope 0.5, showing 
that the growth of d is nearly consistent with the scaling prediction for densely packed 
bubbles. 

power law in time, with a dynamic exponent of z = 0.5. There is a close analogy 
between this type of foam coarsening and the late stages of phase separation 
or of Ostwald ripening. 

In addition to the static light transmission, there are also strong temporal 
fluctuations in the intensity of each speckle spot. Thus we can also perform 
DWS measurements, and measure the temporal autocorrelation function of 
both the transmitted and the backscattered light. Typical normalized field 
autocorrelation functions are shown in Fig. 16.24. Both sets of data were 
collected for 10 min after the foam had aged for about 100 min. In Fig. 16.24(a) 
we show a semilogarithmic plot of data obtained for light transmitted through 
a 0.3 cm thick cell, while in Fig. 16.24(b) we show the data collected in 
backscattering from a 1 cm thick cell, plotted as a function of the square root 
of time. The shapes of the autocorrelation functions in both cases are identical 
to those obtained from Brownian particles, as demonstrated by the fits to the 
data shown by the solid lines. The transmission data are fitted to eqn (16.41), 
while the backscattering data are fitted to eqn (16.46). The backscattering data 
yield a characteristic decay time, -r0. This value can be used with the results of 
the fit to the transmission data to obtain a value for I*. The value so obtained 
is found to be in excellent accord with that determined by the static transmission 
measurements. This is illustrated in Fig. 16.22 where the values of/* obtained 
with the DWS measurements, represented by triangles, arc compared with 
the values determined by the static transmission measurements, shown by the 
circles. The two sets of data arc in good agreement, demonstrating the 
consistency of our interpretation. 

Diffusing-wave spectroscopy 715 

- 1 

0.5 1.0 0.0 0.5 1.0 1.5 

r (s) Jr(~ 1/2) 

F1G. 16.24. Autocorrelation functions for foam for: (a) transmission through a 3 mm 
thick cell; (b) backscattering from a l cm thick cell. Both sets of data were collected for 
10 min after the foam had aged for 100 min. 

What is more surprising is the fact that the correlation functions have 
the same functional form as those obtained for Brownian particles. The foam 
bubbles do not undergo Brownian motion on a time-scale consistent with the 
measured correlation functions. In addition, other types of motion, such as the 
coarsening process itself, or fluctuations of the bubble interfaces due to capillary 
waves, would lead to very different shapes for the correlation functions, since 
these motions are not diffusive. Furthermore, the time-scales of these types of 
motions would be very different from that obtained from the data. Insight into 
the origin of the temporal fluctuations comes from observation of the surface 
of the foam with a microscope. Over longer periods of time, the coarsening of 
the foam is observed, with the average bubble size increasing, and with the 
smaller bubbles shrinking while the larger bubbles grow. On shorter time-scales, 
the bubbles arc stationary, as the coarsening is too slow to observe directly. 
However, some motion of the bubbles is observed: there are discrete, random 
rearrangement events, in which several bubbles suddenly shift their positions. 
The rearrangement events extend over about 10 bubbles and last for about 
0.5 s. Presumably these rearrangement events occur because of stresses built up 
as a result of the coarsening process. The volume fraction of bubbles, <P = 0.92, 
is so large that the distribution of bubble sizes is essential to achieve such high 
packing volume fraction' while maintaining spherical bubbles. If the local 
packing geometry is optimal at one tune. 1t will not remain so as the foam 
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coarsens and the small bubbles disappear while the larger ones grow. Ultimately 
stress will build up, causing the bubble shapes to become distorted, and a 
rearrangement event will finally occur. 

These rearrangement events can result in the temporal fluctuations in the 
scattered intensity. However, to quantify this, a new model for dynamic light 
scattering is required. We consider a single diffusive light path. When a 
rearrangement event occurs within the path, the bubbles move over length scales 
much larger than a wavelength. Therefore the length of the diffusive light path 
is changed substantially, and hence the phase of the path is completely 
randomized. The intensity of a speckle will change when the phase of all the 
diffusive light paths has been totally randomized. To use the DWS formalism, 
we must calculate the decay in the phase of an ensemble of paths of length s. 
The likelihood of a rearrangement event occurring in a path of length s will be 
proportional to the number of remaining paths that have not yet been affected. 
Thus the decay of the ensemble of paths will be exponential, g(l)(•) = e 'l•'. If 
R is the rate of occurrence of rearrangement events per unit volume, then Ys 
must be proportional to R. In addition, since larger paths intersect more of the 
foam, Y. must also be proportional to the volume of the light path. Since the 
smallest meaningful length for diffusing light is l*, the volume of the path is 
approximately ~:::::: s/•2 • Finally, since larger regarrangement events will affect 
more paths, we must include a factor which accounts for the efficiency for the 
events. We assume that each event involves bubble motion over a spatial extent 
r. Since the bubble rearrangement must occur over a volume of /*3 in order to 
totally randomize the phase of a path, we include a factor of (r//*)3 to account 
for the efficiency of each event in dephasing the path. Thus we have y,:::::: 
R(s/• 2)(r//*)3

• The exponent of the decay of paths of length s is then linear in 
both s and <. This is exactly the requirement for the DWS autocorrelation 
functions to have the shape predicted for Brownian particles. In addition, all 
the formalism developed for DWS for Brownian particles can be directly 
applied to foams. Thus, by comparison with eqn (16.46), we can identify 
To 1 :::::: Rr3

• Physically, To is the time between rearrangement events at any given 
point in the foam. 

To test this picture for the origin of the fluctuations and for the DWS 
measurements, we again compare the light scattering results with optical 
measurements of the film surface made with a microscope. The rate of 
rearrangement events on the surface is determined with a microscope, assuming 
that we are able to observe events in the region of three bubble diameters into 
the foam. We then determine <o from backscattering measurements and I* 
from transmission measurements. If our model is correct, we expect l /T01*3 oc R. 
This is observed, as shown in Fig. 16.25 where we plot values of l/T0/•3 

measured by light scattering as a function of R measured at the surface of the 
foam. Excellent consistency is observed, as indicated by the straight line through 
the data, confirmi ng our model for DWS from foams Thus DWS can be used 
to probe the r<1te of bubble rearrangement event'> in the foam 
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FIG. 16.25. Plot of 1/ r0 /*3 measured by DWS, as a function of the rate of rearrangement 
R measured at the surface of the foam with a microscope. The solid line is a best fit to 
the data. 

The rate of rearrangement events in the foam is not constant in time, but 
instead decreases as the age of the foam increases. In Fig. 16.26 we show a 
logarithmic plot of R as a function of the foam age. A power-law behaviour is 
again observed at longer times, R oc ,-,., with y :::::: 2.0 ± 0.2. The value of the 
exponent y is somewhat surprising. We expect that the rate of rearrangement 
events should decrease as the number of bubbles decreases. The number of 
bubbles scales inversely as the cube of the average bubble size. Since doc to.45 

this would contribute a t 1.:is time-dependence. We also might expect that ~ 
bubble rearrangement event would occur after the bubble size has increased by 
some fraction of its original size, consistent with a scaling picture of the foam 

behaviour. This implies that ~t/-r0 = ~d/d, so that To 1 = (I /d) d d. Since 
dt 

R oc 1/<o, this gives R oc t, regardless of the exponent for the time-dependence 
of d. Thus the exponent y should have a value of 2.35, somewhat greater than 
that observed. The only additional assumption that we make in obtaining this 
value is that the foam coarsening and dynamics can be described with a scaling 
picture, as suggested by the coarsening behaviour observed with the static 
transmission measurements. 

With this new model for dynamic light scattering, DWS can be fruitfully 
applied to the study of foam dynamics. Other forms of foams will in all 
hkchhood exhibit significantly different behaviour. For example, the coarsening 
process in other fo.1ms may be quite different: in this foam, we never observe 
the coalc-;ce111.:c of hubbies d1111nl' the coar..,cning. By contrast, many foams age 
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Fro. 16.26. Logarithmic plot of the rate of rearrangement events Ras a function of foam 
age. The dashed line has a slope of -2 and shows that R exhibits scaling behaviour. 

as the bubble walls break, leading to coalescence and coarsening. A good 
illustration of this type of coarsening is the foam on the top of a glass of beer. 
This process should also be directly observable using DWS. Furthermore, the 
rate of bubble rearrangement events must directly reflect the relaxation of 
stresses in the foam as the coarsening process proceeds. The stress will be relaxed 
as the bubbles move with respect to their neighbours. A similar type of motion 
will also occur when the bubbles move to relax a stress that is externally applied. 
Thus DWS may provide an ideal probe of bubble dynamics of the scale that 
1s most important for the rheology of the foam. This holds great promise for 
applying DWS to a wide range of important problems in the study of foams. 

16.1 Conclusions 

In this chapter we have summarized recent developments in diffusing-wave 
spectroscopy, a new kind of dynamic light scattering which is suitable for 
studying opaque systems that exhibit a very high degree of multiple scattering. 
In reality, DWS is simply the extension of traditional dynamic light scattering 
to the multiple-scattering regime. However, the application of DWS requires a 
re-evaluation of how dynamic light scattering is used. The experimental set-up 
for DWS is substantially simpler than for traditional DLS. For example, no 
elaborate mechanism is required for precisely measuring and varying the 
scattering angle. Instead, the dynamical length and time scales arc varied by 
working in either backscattering or transmission geometrics and by varying the 
sample thickness DWS opens up for study a whole new class of systems, and 
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m particular greatly improves the prospect for progress in understanding the 
dynamics of dense systems which previously were not amenable to light 
scattering experiments. A very important development in this respect has been 
the progress made in understanding how to interpret DWS data for strongly 
interacting and highly correlated systems. In this chapter we have used several 
examples to highlight the special features of DWS, specifically its utility in 
probing particle motion over length scales much smaller than the wavelength of 
light and its utility for studying systems whose dynamics, like those of foam, 
are spatially or temporally rare. The ability to probe motion at very short times 
has required and will continue to require the development of very fast 
correlators and associated electronics. In addition, novel new techniques, such 
as the application of the Michelson interferometer, offer alternative means of 
extending the temporal and spatial resolution of DWS. Besides the many 
scientific applications, we believe that in the f uturc DWS will be very useful in 
process monitoring in a wide variety of industrial environments. In these 
applications, DWS will probably be most useful in monitoring challges in the 
system dynamics as a process proceeds. Thus one could monitor changes in 
particle size, aggregation, or gelation processes. These potential applications 
remain largely unexplored and may represent some of the most important future 
uses of DWS. 
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