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ABSTRACT
Unlike one-dimensional polymers, the theoretical framework on the behaviors of two-dimensional (2D) polymers is far from completeness.
In this study, we model single-layer flexible 2D polymers of different sizes and examine their scaling behaviors in solution, represented by
Rg ∼ Lν, where Rg is the radius of gyration and L is the side length of a 2D polymer. We find that the scaling exponent ν is 0.96 for a good
solvent and 0.64 for under poor solvent condition. Interestingly, we observe a previously unnoticed phenomenon: under intermediate solvent
conditions, the 2D polymer folds to maintain a flat structure, and as L becomes larger, multiple folded structures emerge. We introduce a
shape parameter Q to diagram the relationship of folded structures with the polymer size and solvent condition. Theoretically, we explain the
folding transitions by the competition between bending and solvophobic free energies.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0233042

Theoretical studies1,2 and experimental observations3,4 sug-
gested that the behaviors and structures of sheet-like macro-
molecules, also known as two-dimensional (2D) polymers, differ
significantly from linear polymers. However, the scaling behaviors
along with configurational variation of 2D polymers under differ-
ent solvent conditions are still ambiguous. As early as in the 1980s,
lots of research5–10 was conducted on the configuration of tethered
membranes, i.e., the natural model of 2D polymers, sparking inten-
sive debates regarding the existence of a crumpled structure. With
no consideration on chain self-avoidance, Kantor et al. observed
the elastic interactions at large distances driven by entropy, which
subsequently result in an increase in the radius of gyration (Rg) fol-
lowing a scaling law of (ln L)1/2, where L denotes the side length
of the 2D polymers. When considering self-avoidance, the 2D poly-
mers show a crumpled structure with Rg ∼ Lν, where ν = 0.8 ± 0.05,
in agreement with the finding derived from Flory theory.11,12 In
addition, the effect of finite bending stiffness κ′ on self-avoiding
flexible 2D polymers was examined, unveiling a crumpled transi-
tion at low κ′. While for high κ′, the 2D polymer always maintains
a flat structure.13,14 On the contrary, Boal and co-workers claimed
no crumpled structure was found in the simulations of 2D polymers
with the model of hexagonally coordinated structures at both finite
and infinite temperatures. The smallest eigenvalue of the radius of

the gyration tensor is described by λ3 ∼ Lν3 with ν3 ≈ 0.65, while
the other two larger eigenvalues exhibit a linear relationship with
L as λ ∼ L. Thus, in the thermodynamic limit L→∞, the 2D poly-
mer would be roughly flat.15,16 Abraham et al. explored a model
that incorporated repulsive interactions between non-adjacent par-
ticles. They found that the 2D polymers are flat, even without the
presence of bending stiffness.17 In addition to flat and crumpled
structures, the folded structures of 2D polymers are discovered to
indicate a diversity of configurations.18 Upon recent advancements
in nanotechnology, the 2D polymers are becoming a central topic in
materials science.19–25 The experimentally observed folded structure
was realized by monolayer graphene oxide (GO). It was discovered
that GO sheets form a simple folded structure to minimize solvation
energy.26 By varying the concentration of GO in solution and adjust-
ing the solution properties, the conformational transition of the
monolayer GO was manipulated.27,28 This was further confirmed by
molecular dynamics simulations, which provided insights into the
scaling relationship. Factors such as the size and bending stiffness of
the 2D polymer, along with the solvent effect on surface interactions,
contribute to the transition from a flat to a folded structure.29 Xu
et al. applied machine learning techniques to analyze the roles of fac-
tors such as metric changes, curvature, conformational anisotropy
and surface contact in the morphology formation of flat, folded,
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and crumpled structures. It was also theoretically demonstrated that
the occurrence of folding and the number of folds is related to the
Föppl–von Kármán number and the shrinkage ratio.30,31

Previous simulation studies employed the models with implicit
solvents, where the solvent conditions were incorporated in the
interactions between the units of 2D polymers. Here, we report sim-
ulation results using the dissipative particle dynamics method with
the explicit solvent.32 In particular, we construct a flexible 2D poly-
mer model with coarse-grained P (colored in cyan) beads in a square
network with L beads along each edge, for a total of N = L2 beads,
as shown in Fig. 1. The simulation box is filled with solvent beads
S (colored in tangerine) and the number density ρ is 3. The repul-
sive interactions between the same beads are set as αPP = αSS = 25.
We vary αPS from 25 to larger values representing different solvent
conditions.

The radius of gyration is used to describe the size of 2D
polymers,33,34

R2
g =

1
N2 ⟨

N

∑
i,j=1
(ri − rj)2⟩. (1)

The angular brackets denote an average of many independent
configurations.

The αPS = 25 yields an asymptotically flat network structure,
while a collapsed spherical structure is observed when αPS is 35. At
intermediate parameters, such as αPS = 29, the folded structure is
dominant in the system. In previous studies, collapsed structures
were observed in the absence of angle bending potential.25 Our find-
ings suggest that the flexible model of 2D polymer without bending
potential still exhibits a flat structure in good solvents, highlighting
the crucial role of the solvent environment on shaping the behaviors
of 2D polymers.

Figure 2 shows Rg as a function of L in cases of different αPS.
With the same L, Rg decreases as αPS increases. This behavior can be
attributed to the increased solvophobic interaction that is equivalent
to the increased intramembrane affinity between the polymer beads,
causing the membrane to collapse into a compact structure. When
αPS = 25, 26, and 27 (i.e., good solvent condition), the scaling expo-
nent ν in Rg ∼ Lν is 0.96 ± 0.01 [Fig. S1(a)]. The scaling exponent
is slightly smaller than the theoretically predicted value of 1.0. The

FIG. 1. Initial structure of L = 12 2D polymer; L is defined as the number of P
beads on one side.

FIG. 2. Log–log plot of the relationship between the radius of gyration Rg and the
size of the 2D polymer L under different solvent conditions.

equilibrium structure is flat, as shown in Fig. 3(b). When αPS = 31,
32, 33, 34, and 35 (i.e., poor solvent condition), the scaling exponent
is 0.64 ± 0.01 [Fig. S1(b)] close to the theoretically predicted value of
2/3, and the equilibrium structure is a collapsed sphere, as shown in
Fig. 3(g).

When αPS takes the value of 28, 29, and 30 for the intermediate
solvent condition, structural transitions occur as L increases, result-
ing in the shifts of scaling exponent. As shown in Fig. 2, there are
two distinct transitions of scaling behavior with αPS = 29, occurring
at L = 36 and 72, respectively. Each transition of the scaling expo-
nent corresponds to a transformation of the 2D polymer structure.
For instance, the equilibrium structure preceding the first transition
point corresponds to that shown in Fig. 3(c) with ν = 0.73, the equi-
librium structure between the first and the second transition points
corresponds to that shown in Fig. 3(d) with ν = 0.85, and the struc-
ture following the second transition point corresponds to that shown
in Fig. 3(e) with ν = 0.86. Different from the previous work, where
only one shift of the scaling exponent was observed upon increasing
angle force constants,25 we observe two clear transitions that can be
attributed to the much larger size of 2D polymers modeled in our
simulations. To profile the structural changes, we analyze the distri-
bution of the radius of gyration. Notably, two distinct peaks appear
on the distribution of radius of gyration when L = 36 and 78, as
shown in Figs. S2(a) and S2(b). This means that as the size of the 2D
polymer approaches the transition point, we can observe the coexis-
tence of two different structures. Moreover, the position of the first
transition point tends to occur at smaller L as αPS increases, while
the position of the second transition point also shifts to smaller L.
We speculate that as L continues to increase, the 2D polymers will
continue to fold. As shown in Fig. 2, the important stage of scal-
ing transition is between αPS = 27 and αPS = 28. When αPS ranges
from 27.1 to 27.5, we calculate the relationship between the radius
of gyration of 2D polymers and their size, as well as the relationship
between the eigenvalues of the radius of the gyration tensor and the
size of 2D polymers, as shown in Fig. S3. The results indicate that the
dominant structure of the 2D polymer within this range of solvent
conditions remains a folded structure.
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FIG. 3. (a) Relationship between the shape parameter Q and the solvent condition αPS when the size of the 2D polymer is different. (b) αPS = 25, snapshot and schematic
structure of a 2D polymer with size L = 96. (c)–(e) αPS = 29, snapshots and schematic structures showcasing 2D polymers with sizes L = 24, 72, and 96 in equilibrium states,
respectively. (f) and (g) αPS = 35, snapshots and schematic structures for 2D polymers with L = 60 and 96, respectively.

To characterize the structure, we calculate the eigenvalues of
the radius of gyration tensor,35,36

T =

⎡⎢⎢⎢⎢⎢⎢⎣

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

⎤⎥⎥⎥⎥⎥⎥⎦

, (2)

with Sab = 1
N∑

N
i=1 (ai − acm)(bi − bcm) with a, b = x, y, z. Here, N is

the total number of P beads in the 2D polymer model, ai is the posi-
tion of the ith bead, and acm is the coordinate of the centroid of
the 2D polymer in the a direction. By diagonalizing the matrix T,
three eigenvalues, λ1, λ2, and λ3, can be obtained with λ1 > λ2 > λ3.
Prior to the first transition point, λ1 is approximately twice λ2, indi-
cating a primary folded configuration, as shown in Fig. 3(c). After
the first transition point but before the second, λ1 ≈ λ2, indicating a
structural change to a secondary folded configuration, as shown in
Fig. 3(d). Subsequent to the second transition point, 2λ1 ≈ 3λ2, sig-
nifying another structural change to a tertiary folded configuration,
as shown in Fig. 3(e). As the number of folded layers increases, the
stiffness of the structure becomes larger, which may eventually pre-
vent further folding beyond a certain number of layers, analogous
to the concept of origami, where a thin piece of paper with limited
thickness can only be folded a certain number of times.

To categorize various folding structures of 2D polymers,
we introduce a customized shape parameter Q, defined as
Q = (λ1 + λ2)/L. We perform systematic simulations to summarize
how solvent conditions αPS affect the 2D polymer shape and build up
a phase diagram based on Q. As shown in Fig. 3(a), the 2D polymer
structures can be classified into six classes. When Q ≤ 0.1 (class VI),
the 2D polymer adopts a collapsed structure, as shown in Fig. 3(g).
When 0.1 < Q ≤ 0.12 and for αPS ≤ 30 (class IV), the 2D polymer is
a tertiary folded structure, as shown in Fig. 3(e), and for αPS > 30
(class V), the 2D polymer possesses a cylinder structure, as shown
in Fig. 3(f). When 0.12 < Q ≤ 0.18 (class III), the 2D polymer has

a secondary folded structure, as shown in Fig. 3(d). This structure
aligns with the folded structure reported in previous studies.29 When
0.18 < Q ≤ 0.23 (class II), the 2D polymer has a primary folded struc-
ture, as shown in Fig. 3(c). Finally, for Q > 0.23 (class I), the 2D
polymer is an asymptotically flat structure, as shown in Fig. 3(b).
It should be noted that the categorization of these classes is devised
to clarify visual observations.

To explain the folding transition of 2D polymers under vari-
ous solvent conditions, we use a theoretical model describing the
competition between the 2D polymer bending energy and solvent
repulsion energy, which potentially drives it to form a folding struc-
ture. This is consistent with recent research on scaling relations for
2D polymers. Our findings further reinforce the idea that solvent
conditions play a crucial role in determining the conformational
behavior of 2D polymers. As demonstrated in both simulations and
experiments, 2D polymers transition from a flat structure to a fold-
ing structure depending on the solvent condition.27,29 The surface
energy, represented as

Fsurf = −γA, (3)

incorporates γ as the surface tension and A as the total surface area
of the folding 2D polymer. In the context of the folded states, such as
the tertiary folded structure shown in Fig. 3(e), the polymer’s dimen-
sions can be envisioned as a cuboid with three orthogonal axes (l̂ 1,
l̂ 2, and l̂ 3), i.e., the three eigenvectors of the gyration tensor. We
calculate the bending energy as

Fbend = κ∫
A

n̂ ⋅ l̂ 3dx, (4)

where κ denotes the bending energy constant, and n̂ and l̂ symbolize
the normal of a patch on the 2D polymer and normal of the polymer
as a whole, essentially, the axis of least gyration, respectively. The
bending constant κ is inherently correlated to the thickness of the
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folded structure. Assuming an n-folded structure and the thickness
to be l3, with a slight bend angle θ in relation to l̂ 3, an estimation of
the bending energy is

Fbend = κθ2 = ∫
(R+l3)θ

Rθ
k(l − Rθ)2dl = 1

3
kl3

3θ3. (5)

In Eq. (5), we assume that the bending surface is cylindrical with a
radius R, and k represents the stretching constant of the 2D poly-
mer. Consequently, Rθ and (R + l3)θ denote the perimeters of the
inner and outer bending surfaces, respectively. We further assume
that the inner surface is ‘relaxed’, implying that the bending energy
Fbend arises primarily from the stretching of the layers. Given the
folded structures, the flat surface bend angle is minimal across
all states, θ can be omitted, and therefore, κ ∼ l3

3 can be derived.
Here, l1l2l3 = A0b, with b being the monomer size. We simply set
b = 1 as the length unit in our work, hence Fbend ∼ kA0l2

3. The total
surface area A of a cuboid with orthogonal axes l1, l2, and l3 is
estimated as

A = 2l1l2 + 4
√

l1l2l3. (6)

In the simulations, as αPS increases, the surface tension increases
rapidly, prompting the 2D polymer to fold. Therefore, for a
polymer folded n times, the (n + 1)th fold only materializes
when the surface hydrophobicity strength surpasses the current
nth folding state’s bending energy gain. This assumption can be
represented as

k
γ
(A0l2

3 × (β3 − 1)) = 2l1l2 + 4
√

l1l2l3 −
2l1l2

β
− 4βl3

√
l1l2
β

. (7)

In Eq. (7), we introduce the folding parameter β, with β = A0/A. For
folding in half, also known as V-fold, i.e., the primary folded and sec-
ondary folded structures shown in Figs. 3(c) and 3(d), respectively,
the folding parameter is βV = 2. Our simulations also reveal an alter-
native folding class, i.e., the NV-fold [tertiary folded in Fig. 3(e)],
corresponding to the folding parameter βNV = 1.83. The simulation
results are incorporated into the theoretical model derived above,
we can plot the phase diagram shown in Fig. 4. The phase dia-
gram illustrates the classification of folding types and shows how
the system evolves as αPS increases and the ratio k/γ decreases.
This results in thicker folded structures and a rightward shift in
the phase boundaries. In Fig. 4, solid lines, fitted using Eq. (7),
delineate the boundaries between different folding classes. The
square and triangle symbols indicate conditions at αPS = 27.5 and
αPS = 28, respectively, and V-folds are the dominant structures. Cir-
cle and diamond symbols represent V-fold and NV-fold classes,
respectively, both at αPS = 29. This is because as hydrophobicity
increases and induces compressive forces, the 2D polymer adapts
by selecting pathways that minimize hydrophobic changes during
successive foldings, effectively reducing β. This adaptation leads
to the emergence of an NV-fold structure at αPS = 29. Based on
the phase diagram, the folded structure of the 2D polymer can be
predicted.

In conclusion, we employ the model of flexible 2D polymers
with an explicit solvent and depict a class of structures, including flat,
cylindrical, and folded structures under different solvent conditions.

FIG. 4. Fitting relationship between the V-folded structure and the NV-folded
structure when αPS = 27.5, 28, and 29.

For a good solvent, the scaling exponent ν = 0.96 ± 0.01 with flat
morphologies is slightly smaller than theoretically expected value.
For a poor solvent, the ν = 0.64 ± 0.01 with collapsed morpholo-
gies is very close to the theoretical prediction. Under intermediate
solvent conditions, there are obvious turning points in the scal-
ing exponent, along with the transformation of folded structures,
instead of crumpled structures. We define the shape parameter Q
and classify the equilibrium structures of 2D polymers into different
categories. By establishing a correlation between the bending energy
and the solvent repulsive energy, our theoretical analysis rationalizes
the presence of folded structures.

The supplementary material encompasses the details of simula-
tion methods, the scaling index of 2D polymers under different sol-
vent conditions, the frequency distribution of the radius of gyration
under different sizes, and the relationship between the eigenvalues
of the radius of gyration and the size of 2D polymers under different
solvent conditions.
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