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PREFACE

X-ray diffraction is a tool for the investigation of the fine structure of

matter. This technique had its beginnings in von Laue's discovery in 1912

that crystals diffract x-rays, the manner of the diffraction revealing the

structure of the crystal. At first, x-ray diffraction was used only for the

determination of crystal structure. Later on, however, other uses were

developed, and today the method is applied, not only to structure deter-

mination, but to such diverse problems as chemical analysis and stress

measurement, to the study of phase equilibria and the measurement of

particle size, to the determination of the orientation of one crystal or the

ensemble of orientations in a polycrystalline aggregate.

The purpose of this book is to acquaint the reader who has no previous

knowledge of the subject with the theory of x-ray diffraction, the experi-

mental methods involved, and the main applications. Because the author

is a metallurgist, the majority of these applications are described in terms

of metals and alloys. However, little or no modification of experimental

method is required for the examinatiorrof nonmetallic materials, inasmuch

as the physical principles involved do not depend on the material investi-

gated. This book should therefore be useful to metallurgists, chemists,

physicists, ceramists, mineralogists, etc., namely, to all who use x-ray diffrac-

tion purely as a laboratory tool for the sort of problems already mentioned.

Members of this group, unlike x-ray crystallographers, are not normally
concerned with the determination of complex crystal structures. For this

reason the rotating-crystal method and space-group theory, the two chief

tools in the solution of such structures, are described only briefly.

This is a book of principles and methods intended for the student, and

not a reference book for the advanced research worker. Thus no metal-

lurgical data are given beyond those necessary to illustrate the diffraction

methods involved. For example, the theory and practice of determining

preferred orientation are treated in detail, but the reasons for preferred

orientation, the conditions affecting its development, and actual orien-

tations found in specific metals and alloys are not described, because these

topics are adequately covered in existing books. In short, x-ray diffrac-

tion is stressed rather than metallurgy.

The book is divided into three main parts: fundamentals, experimental

methods, and applications. The subject of crystal structure is approached

through, and based on, the concept of the point lattice (Bravais lattice),

because the point lattice of a substance is so closely related to its diffrac-
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tion pattern. The entire book is written in terms of the Bragg law and

can be read without any knowledge of the reciprocal lattice. (However, a

brief treatment of reciprocal-lattice theory is given in an appendix for those

who wish to pursue the subject further.) The methods of calculating the

intensities of diffracted beams are introduced early in the book and used

throughout. Since a rigorous derivation of many of the equations for dif-

fracted intensity is too lengthy and complex a matter for a book of this

kind, I have preferred a semiquantitative approach which, although it does

not furnish a rigorous proof of the final result, at least makes it physically

reasonable. This preference is based on my conviction that it is better

for a student to grasp the physical reality behind a mathematical equation

than to be able to glibly reproduce an involved mathematical derivation

of whose physical meaning he is only dimly aware.

Chapters on chemical analysis by diffraction and fluorescence have been

included because of the present industrial importance of these analytical

methods. In Chapter 7 the diffractometer, the newest instrument for dif-

fraction experiments, is described in some detail
;
here the material on the

various kinds of counters and their associated circuits should be useful,

not only to those engaged in diffraction work, but also to those working

with radioactive tracers or similar substances who wish to know how their

measuring instruments operate.

Each chapter includes a set of problems. Many of these have been

chosen to amplify and extend particular topics discussed in the text, and

as such they form an integral part of the book.

Chapter 18 contains an annotated list of books suitable for further study.

The reader should become familiar with at least a few of these, as he pro-

gresses through this book, in order that he may know where to turn for

additional information.

Like any author of a technical book, I am greatly indebted to previous

writers on this and allied subjects. I must also acknowledge my gratitude

to two of my former teachers at the Massachusetts Institute of Technology,

Professor B. E. Warren and Professor John T. Norton: they will find many
an echo of their own lectures in these pages. Professor Warren has kindly

allowed me to use many problems of his devising, and the advice and

encouragement of Professor Norton has been invaluable. My colleague at

Notre Dame, Professor G. C. Kuczynski, has read the entire book as it was

written, and his constructive criticisms have been most helpful. I would

also like to thank the following, each of whom has read one or more chap-

ters and offered valuable suggestions: Paul A. Beck, Herbert Friedman,

S. S. Hsu, Lawrence Lee, Walter C. Miller, William Parrish, Howard

Pickett, and Bernard Waldman. I am also indebted to C. G. Dunn for

the loan of illustrative material and to many graduate students, August
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Freda in particular, who have helped with the preparation of diffraction

patterns. Finally but not perfunctorily, I wish to thank Miss Rose Kunkle

for her patience and diligence in preparing the typed manuscript.

B. D. CULLITY

Notre Dame, Indiana

March, 1956





CONTENTS

FUNDAMENTALS

CHAPTER 1 PROPERTIES OF X-RAYS 1

1-1 Introduction 1

1-2 Electromagnetic radiation 1

1-3 The continuous spectrum . 4

1-4 The characteristic spectrum 6

1-5 Absorption . 10

1-6 Filters 16

1-7 Production of x-rays 17

1 -8 Detection of x-rays 23

1 9 Safety precautions . 25

CHAPTER 2 THE GEOMETRY OF CRYSTALS 29

^2-1 Introduction . 29

J2-2 Lattices . 29

2-3 Crystal systems 30

^2-4 Symmetry 34

2-5 Primitive and nonprimitive cells 36

2-6 Lattice directions and planes
*

. 37

2-7 Crystal structure
J 42

2-8 Atom sizes and coordination 52

2-9 Crystal shape 54

2-10 Twinned crystals . 55

2-11 The stereographic projection . . 60

CHAPTER 3 DIFFRACTION I: THE DIRECTIONS OF DIFFRACTED BEAMS 78

3-1 Introduction . .78
3-2 Diffraction f . 79

^3-3 The Bragg law *
'

. 84

3-4 X-ray spectroscopy 85

3-5 Diffraction directions - 88

3-6 Diffraction methods . 89

3-7 Diffraction under nonideal conditions . 96

CHAPTER 4 DIFFRACTION II: THE INTENSITIES OF DIFFRACTED BEAMS . 104

4-1 Introduction 104

4-2 Scattering by an electrons . . 105

4-3 Scattering by an atom >, . / 108

4-4 Scattering by a unit cell */ . Ill



CONTENTS

4-5 Some useful relations . 118

4-6 Structure-factor calculations ^ 118

4-7 Application to powder method ' 123

4-8 Multiplicity factor 124

4-9 Lorentz factor 124

1-10 Absorption factor 129

4-11 Temperature factor 130

4-12 Intensities of powder pattern lines 132

4-13 Examples of intensity calculations 132

4-14 Measurement of x-ray intensity 136

EXPERIMENTAL METHODS

LPTER 5 LAUE PHOTOGRAPHS 138

5-1 Introduction 138

5-2 Cameras .
138

5-3 Specimen holders 143

5-4 Collimators . .144
5-5 The shapes of Laue spots .

146

kPTER 6 POWDER PHOTOGRAPHS . .149

6-1 Introduction .
149

6-2 Debye-Scherrer method . 149

6-3 Specimen preparation .... 153

6-4 Film loading . . 154

6-5 Cameras for high and low temperatures . 156

6-6 Focusing cameras ... . 156

6-7 Seemann-Bohlin camera . 157

6-8 Back-reflection focusing cameras . . .160
6-9 Pinhole photographs . 163

6-10 Choice of radiation . .165
6-11 Background radiation . 166

6-12 Crystal monochromators .
168

6-13 Measurement of line position 173

6-14 Measurement of line intensity .
173

VPTER 7 DlFFRACTOMETER MEASUREMENTS 177

7-1 Introduction . .
.

177

7-2 General features .... 177

7-3 X-ray optics . . . - 184

7-4 Intensity calculations . ... 188

7-5 Proportional counters . . . . 190

7-6 Geiger counters . . ... .193
7-7 Scintillation counters .

- 201

7-8 Sealers . ... .... .202
7-9 Ratemeters . - 206

7-10 Use of monochromators 211



CONTENTS XI

APPLICATIONS

CHAPTER 8 ORIENTATION OF SINGLE CRYSTALS . . . 215

8-1 Introduction . . .... 215

8-2 Back-reflection Laue method . . .215
8-3 Transmission Laue method .... . 229

8-4 Diffractometer method
'

. ... 237

8-5 Setting a crystal in a required orientation . 240

8-6 Effect of plastic deformation . 242

8-7 Relative orientation of twinned crystals 250

8-8 Relative orientation of precipitate and matrix . . . 256

CHAPTER 9 THE STRUCTURE OF POLYCRYSTALLINE AGGREGATES . 259

9-1 Introduction . 259

CRYSTAL SIZE

9-2 Grain size 259

9-3 Particle size . 261

CRYSTAL PERFECTION

9-4 Crystal perfection . .... 263

9-5 Depth of x-ray penetration . . 269

CRYSTAL ORIENTATION

9-6 General . .272
9-7 Texture of wire and rod (photographic method) . . . 276

9-8 Texture of sheet (photographic method) 280

9-9 Texture of sheet (diffractometer method) . . 285

9-10 Summary . . 295

CHAPTER 10 THE DETERMINATION OF CRYSTAL STRUCTURE . . . 297

10-1 Introduction . . 297

10-2 Preliminary treatment of data . . . 299

10-3 Indexing patterns of cubic crystals 301

10-4 Indexing patterns of noncubic crystals (graphical methods) 304

10-5 Indexing patterns of noncubic crystals (analytical methods) . .311
10-6 The effect of cell distortion on the powder pattern . . . 314

10-7 Determination of the number of atoms in a unit cell . .316
10-8 Determination of atom positions . 317

10-9 Example of structure determination .... . 320

CHAPTER 11 PRECISE PARAMETER MEASUREMENTS . ... 324

11-1 Introduction .... 324

11-2 Debye-Scherrer cameras .... .... 326

1 1-3 Back-reflection focusing cameras 333

11-4 Pinhole cameras 333

11-5 Diffractometers 334

11-6 Method of least squares .335



Xll CONTENTS

11-7 Cohen's method .... 338

11-8 Calibration method . . 342

CHAPTER 12 PHASE-DIAGRAM DETERMINATION . . . 345

12-1 Introduction . 345

12-2 General principles . . 346

12-3 Solid solutions . 351

12-4 Determination of solvus curves (disappearing-phase method) 354

12-5 Determination of solvus curves (parametric method) 356

12-6 Ternary systems 359

CHAPTER 13 ORDER-DISORDER TRANSFORMATIONS 363

13-1 Introduction . 363

13-2 Long-range order in AuCus 363

13-3 Other examples of long-range order 369

13-4 Detection of superlattice lines 372

13-5 Short-range order and clustering 375

CHAPTER 14 CHEMICAL ANALYSIS BY DIFFRACTION 378

14-1 Introduction 378

QUALITATIVE ANALYSIS

14-2 Basic principles 379

14-3 Hanawait method 379

14-4 Examples of qualitative analysis 383

14-5 Practical difficulties 386

14-6 Identification of surface deposits 387

QUANTITATIVE ANALYSIS (SINGLE PHASE)

14-7 Chemical analysis by parameter measurement 388

QUANTITATIVE ANALYSIS (MULTIPHASE)

14-8 Basic principles . . . 388

14-9 Direct comparison method . . . 391

14-10 Internal standard method . . . 396

14-11 Practical difficulties . . . 398

CHAPTER 15 CHEMICAL ANALYSIS BY FLUORESCENCE 402

15-1 Introduction . ... 402

15-2 General principles . . 404

15-3 Spectrometers ... . 407

15-4 Intensity and resolution . . . 410

15-5 Counters .... . 414

15-6 Qualitative analysis .... ... 414

15-7 Quantitative analysis ... . . 415

15-8 Automatic spectrometers . . 417

15-9 Nondispersive analysis ..... . 419

15-10 Measurement of coating thickness 421



CONTENTS xiil

CHAPTER 16 CHEMICAL ANALYSIS BY ABSORPTION . . . 423

16-1 Introduction . . . ... 423

16-2 Absorption-edge method . . ... 424

16-3 Direct-absorption method (monochromatic beam) . 427

16-4 Direct-absorption method (polychromatic beam) 429

16-5 Applications . . 429

CHAPTER 17 STRESS MEASUREMENT . ... 431

17-1 Introduction . 431

17-2 Applied stress and residual stress . . 431

17-3 Uniaxial stress . . 434

17-4 Biaxial stress . 436

17-5 Experimental technique (pinhole camera) 441

17-6 Experimental technique (diffractometer) 444

17-7 Superimposed macrostress and microstress 447

17-8 Calibration 449

1 7-9 Applications 451

CHAPTER 18 SUGGESTIONS FOR FURTHER STUDY . 454

18-1 Introduction 454

18-2 Textbooks . 454

18-3 Reference books . 457

18-4 Periodicals 458

APPENDIXES

APPENDIX 1 LATTICE GEOMETRY . 459

Al-1 Plane spacings 459

Al-2 Cell volumes . . 460

Al-3 Interplanar angles . . . 460

APPENDIX 2 THE RHOMBOHEDRAL-HEXAGONAL TRANSFORMATION 462

APPENDIX 3 WAVELENGTHS (IN ANGSTROMS) OF SOME CHARACTERISTIC

EMISSION LINES AND ABSORPTION EDGES . . . 464

APPENDIX 4 MASS ABSORPTION COEFFICIENTS AND DENSITIES . 466

APPENDIX 5 VALUES OF siN2 8 . 469

APPENDIX 6 QUADRATIC FORMS OF MILLER INDICES . . . 471

APPENDIX 7 VALUES OF (SIN 0)/X . . . 472

APPENDIX 8 ATOMIC SCATTERING FACTORS . 474

APPENDIX 9 MULTIPLICITY FACTORS FOR POWDER PHOTOGRAPHS .

*
. 477

APPENDIX 10 LORENTZ-POLARIZATION FACTOR 478

APPENDIX 11 PHYSICAL CONSTANTS . 480



XIV CONTENTS

APPENDIX 12 INTERNATIONAL ATOMIC WEIGHTS, 1953 481

APPENDIX 13 CRYSTAL STRUCTURE DATA 482

APPENDIX 14 ELECTRON AND NEUTRON DIFFRACTION 486

A14-1 Introduction . ... . . 486

A14r-2 Electron diffraction ... . 486

A14-3 Neutron diffraction .... . 487

APPENDIX 15 THE RECIPROCAL LATTICE . . 490

A15-1 Introduction . .... .490
A15-2 Vector multiplication . ... 490

A15-3 The reciprocal lattice . . ... 491

A15-4 Diffraction and the reciprocal lattice . 496

A15-5 The rotating-crystal method . 499

A15-6 The powder method . 500

A15-7 The Laue method . . 502

ANSWERS TO SELECTED PROBLEMS . 506

INDEX... 509



CHAPTER 1

PROPERTIES OF X-RAYS

1-1 Introduction. X-rays were discovered in 1895 by the German

physicist Roentgen and were so named because their nature was unknown

at the time. Unlike ordinary light, these rays were invisible, but they

traveled in straight lines and affected photographic film in the same way
as light. On the other hand, they were much more penetrating than light

and could easily pass through the human body, wood, quite thick pieces of

metal, and other "opaque" objects.

It is not always necessary to understand a thing in order to use it, and

x-rays were almost immediately put to use by physicians and, somewhat

later, by engineers, who wished to study the internal structure of opaque

objects. By placing a source of x-rays on one side of the object and photo-

graphic film on the other, a shadow picture, or radiograph, could be made,

the less dense portions of the object allowing a greater proportion of the

x-radiation to pass through than the more dense. In this way the point

of fracture in a broken bone or the position of a crack in a metal casting

could be located.

Radiography was thus initiated without any precise understanding of

the radiation used, because it was not until 1912 that the exact nature of

x-rays was established. In that year the phenomenon of x-ray diffraction

by crystals was discovered, and this discovery simultaneously proved the

wave nature of x-rays and provided a new method for investigating the

fine structure of matter. Although radiography is a very important tool

in itself and has a wide field of applicability, it is ordinarily limited in the

internal detail it can resolve, or disclose, to sizes of the order of 10""
1 cm.

Diffraction, on the other hand, can indirectly reveal details of internal

structure of the order of 10~~
8 cm in size, and it is with this phenomenon,

and its applications to metallurgical problems, that this book is concerned.

The properties of x-rays and the internal structure of crystals are here

described in the first two chapters as necessary preliminaries to the dis-

cussion of the diffraction of x-rays by crystals which follows.

1-2 Electromagnetic radiation. We know today that x-rays are elec-

tromagnetic radiation of exactly the same nature as light but of very much

shorter wavelength. The unit of measurement in the x-ray region is the

angstrom (A), equal to 10~8 cm, and x-rays used in diffraction have wave-

lengths lying approximately in the range 0.5-2.5A, whereas the wavelength

of visible light is of the order of 6000A. X-rays therefore occupy the

1
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1 megacycle 10_

1 kilocycle IQl

FIG. i-i. The electromagnetic spectrum. The boundaries between regions are

arbitrary, since no sharp upper or lower limits can be assigned. (F. W. Sears, Optics,

3rd ed., Addison-Wesley Publishing Company, Inc., Cambridge, Mass., 1949 )

region between gamma and ultraviolet rays in the complete electromag-

netic spectrum (Fig. 1-1). Other units sometimes used to measure x-ray

wavelength are the X unit (XU) and the kilo X unit (kX = 1000 XU).*

The X unit is only slightly larger than the angstrom, the exact relation

bemg lkX= 1.00202A.

It is worth while to review briefly some properties of electromagnetic

waves. Suppose a monochromatic beam of x-rays, i.e., x-rays of a single

wavelength, is traveling in the x direction (Fig. 1-2). Then it has asso-

ciated with it an electric field E in, say, the y direction and, at right angles

to this, a magnetic field H in the z direction. If the electric field is con-

fined to the xy-plane as the wave travels along, the wave is said to be plane-

polarized. (In a completely unpolarized wave, the electric field vector E
and hence the magnetic field vector H can assume all directions in the

* For the origin of these units, see Sec. 3-4.
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FIG. 1-2. Electric and magnetic
fields associated with a wave moving
in the j-direction.

t/2-plane.) The magnetic field is of

no concern to us here and we need

not consider it further.

In the plane-polarized wave con-

sidered, E is not constant with time

but varies from a maximum in the

+y direction through zero to a maxi-

mum in the y direction and back

again, at any particular point in

space, say x = 0. At any instant of

time, say t = 0, E varies in the same

fashion with distance along thex-axis.

If both variations are assumed to be sinusoidal, they may be expressed in

the one equation

E =
Asin27r(-

- lA (1-1)

where A = amplitude of the wave, X = wavelength, and v = frequency.

The variation of E is not necessarily sinusoidal, but the exact form of the

wave matters little; the important feature is its periodicity. Figure 1-3

shows the variation of E graphically. The wavelength and frequency are

connected by the relation c

X - -. (1-2)
V

where c = velocity of light
= 3.00 X 10

10
cm/sec.

Electromagnetic radiation, such as a beam of x-rays, carries energy, and

the rate of flow of this energy through unit area perpendicular to the direc-

tion of motion of the wave is called the intensity I. The average value of

the intensity is proportional to the square of the amplitude of the wave,

i.e., proportional to A 2
. In absolute units, intensity is measured in

ergs/cm
2
/sec, but this measurement is a difficult one and is seldom carried

out; most x-ray intensity measurements are made on a relative basis in

+E

-E

+E

i

(a) (b)

FIG. 1-3. The variation of E, (a) with t at a fixed value of x and (b) with x at

a fixed value of t.
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arbitrary units, such as the degree of blackening of a photographic film

exposed to the x-ray beam.

An accelerated electric charge radiates energy. The acceleration may,

of course, be either positive or negative, and thus a charge continuously

oscillating about some mean position acts as an excellent source of electro-

magnetic radiation. Radio waves, for example, are produced by the oscil-

lation of charge back and forth in the broadcasting antenna, and visible

light by oscillating electrons in the atoms of the substance emitting the

light. In each case, the frequency of the radiation is the same as the fre-

quency of the oscillator which produces it.

Up to now we have been considering electromagnetic radiation as wave

motion in accordance with classical theory. According to the quantum

theory, however, electromagnetic radiation can also be considered as a

stream of particles called quanta or photons. Each photon has associated

with it an amount of energy hv, where h is Planck's constant (6.62 X 10~27

erg -sec). A link is thus provided between the two viewpoints, because

we can use the frequency of the wave motion to calculate the energy of

the photon. Radiation thus has a dual wave-particle character, and we

will use sometimes one concept, sometimes the other, to explain various

phenomena, giving preference in general to the classical wave theory when-

ever it is applicable.

1-3 The continuous spectrum. X-rays are produced when any electri-

cally charged particle of sufficient kinetic energy is rapidly decelerated.

Electrons are usually used for this purpose, the radiation being produced

in an x-ray tube which contains a source of electrons and two metal elec-

trodes. The high voltage maintained across these electrodes, some tens

of thousands of volts, rapidly draws the electrons to the anode, or target,

which they strike with very high velocity. X-rays are produced at the

point of impact and radiate in all directions. If e is the charge on the elec-

tron (4.80 X 10~10
esu) and 1) the voltage (in esu)* across the electrodes,

then the kinetic energy (in ergs) of*the electrons on impact is given by the

equation
KE - eV =

\mv*, (1-3)

where m is the mass of the electron (9.11 X 10~28 gm) and v its velocity

just before impact. At a tube voltage of 30,000 volts (practical units),

this velocity is about one-third that of light. Most of the kinetic energy

of the electrons striking the target is converted into heat, less than 1 percent

being transformed into x-rays.

When the rays coming from the target are analyzed, they are found to

consist of a mixture of different wavelengths, and the variation of intensity

*
1 volt (practical units) = ^fo volt (esu).
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1.0 2.0

WAVELENGTH (angstroms)

FIG. 1-4. X-ray spectrum of molybdenum as a function of applied voltage (sche-

matic). Line widths not to scale.

with wavelength is found to depend on the tube voltage. Figure 1-4

shows the kind of curves obtained. The intensity is zero up to a certain

wavelength, called the short-wavelengthjimit (XSWL), increases rapidly to a

maximum and then decreases, with no sharp limit on the long wavelength

side. * When the tube voltage is raised, the intensity of all wavelengths

increases, and both the short-wavelength limit and the position of the max-

imum shift to shorter wavelengths. We are concerned now with the

smooth curves in Fig. 1-4, those corresponding to applied voltages of

20 kv or less in the case of a molybdenum target. The radiation repre-

sented by such curves is called heterochromatic, continuous, or white radia-

tion, since it is made up, like white light, of rays of many wavelengths.

The continuous spectrum is due to the rapid deceleration of the electrons

hitting the target since, as mentioned above, any decelerated charge emits

energy. Not every electron is decelerated in the same way, however; some

are stopped in one impact and give up all their energy at once, while others

are deviated this way and that by the atoms of the target, successively

losing fractions of their total kinetic energy until it is all spent. Those

electrons which are stopped in one impact will give rise to photons of

maximum energy, i.e., to x-rays of minimum wavelength. Such electrons

transfer all their energy eV into photon energy and we may write
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c he

12,400
(1-4)

This equation gives the short-wavelength limit (in angstroms) as a func-

tion of the applied voltage V (in practical units). If an electron is not

completely stopped in one encounter but undergoes a glancing impact
which only partially decreases its velocity, then only a fraction of its energy
eV is emitted as radiation and the photon produced has energy less than

hpmax- In terms of wave motion, the corresponding x-ray has a frequency
lower than vmax and a wavelength longer than XSWL- The totality of these

wavelengths, ranging upward from ASWL, constitutes the continuous spec-

trum.

We now see why the curves of Fig. 1-4 become higher and shift to the

left as the applied voltage is increased, since the number of photons pro-

duced per second and the average energy per photon are both increasing.

The total x-ray energy emitted per second, which is proportional to the

area under one of the curves of Fig. 1-4, also depends on the atomic num-
ber Z of the target and on the tube current i, the latter being a measure of

the number of electrons per second striking the target. This total x-ray

intensity is given by
/cent spectrum

= AlZV, (1-5)

where A is a proportionality constant and m is a constant with a value of

about 2. Where large amounts of white radiation are desired, it is there-

fore necessary to use a heavy metal like tungsten (Z = 74) as a target and

as high a voltage as possible. Note that the material of
t
the target affects

the intensity but not thg. wftVdfin fi^h distribution Of t.hp..p.ont.iniiniia spec-

trum,

1-4 The characteristic spectrum. When the voltage on an x-ray tube

is raised above a certain critical value, characteristic of the target metal,

sharp intensity maxima appear at certain wavelengths, superimposed on

the continuous spectrum. Since they are so narrow and since their wave-

lengths are characteristic of the target metal used, they are called charac-

teristic lines. These lines fall into several sets, referred to as K, L, M,
etc., in the order of increasing wavelength, all the lines together forming
the characteristic spectrum of the metal used as the target. For a molyb-
denum target the K lines have wavelengths of about 0.7A, the L lines

about 5A, and the M lines still higher wavelengths. Ordinarily only the

K lines are useful in x-ray diffraction, the longer-wavelength lines being
too easily absorbed. There are several lines in the K set, but only the
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three strongest are observed in normal diffraction work. These are the

ctz, and Kfa, and for molybdenum their wavelengths are:

0.70926A,
Ka2 : 0.71354A,

0.63225A.

The i and 2 components have wavelengths so close together that they
are not always resolved as separate lines; if resolved, they are called the

Ka doublet and, if not resolved, simply the Ka line* Similarly, K&\ is

usually referred to as the K@ line, with the subscript dropped. Ka\ is

always about twice as strong as Ka%, while the intensity ratio of Ka\ to

Kfli depends on atomic number but averages about 5/1.

These characteristic lines may be seen in the uppermost curve of Fig.

1-4. Since the critical K excitation voltage, i.e., the voltage necessary to

excite K characteristic radiation, is 20.01 kv for molybdenum, the K lines

do not appear in the lower curves of Fig. 1-4. An increase in voltage

above the critical voltage increases the intensities of the characteristic

lines relative to the continuous spectrum but does not change their wave-

lengths. Figure 1-5 shows the spectrum of molybdenum at 35 kv on a

compressed vertical scale relative to that of Fig. 1-4
;
the increased voltage

has shifted the continuous spectrum to still shorter wavelengths and in-

creased the intensities of the K lines relative to the continuous spectrum
but has not changed their wavelengths.

The intensity of any characteristic line, measured above the continuous

spectrum, depends both on the tube current i and the amount by which

the applied voltage V exceeds the critical excitation voltage for that line.

For a K line, the intensity is given by

IK line
= Bi(V - VK)

n
, (1-6)

where B is a proportionality constant, VK the K excitation voltage, and

n a constant with a value of about 1.5. The intensity of a characteristic

line can be quite large: for example, in the radiation from a copper target

operated at 30 kv, the Ka line has an intensity about 90 times that of the

wavelengths immediately adjacent to it in the continuous spectrum. Be-

sides being very intense, characteristic lines are also very narrow, most of

them less than 0.001A wide measured at half their maximum intensity,

as shown in Fig. 1-5. The existence of this strong sharp Ka. line is what

makes a great deal of x-ray diffraction possible, since many diffraction

experiments require the use of monochromatic or approximately mono-

chromatic radiation.

* The wavelength of an unresolved Ka doublet is usually taken as the weighted

average of the wavelengths of its components, Kai being given twice the weight
of Ka%, since it is twice as strong. Thus the wavelength of the unresolved Mo Ka
line is J(2 X 0.70926 + 0.71354) = 0.71069A.
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FIG. 1-5. Spectrum of Mo at 35 kv (schematic). Line widths not to scale.

The characteristic x-ray lines were discovered by W. H. Bragg and

systematized by H. G. Moseley. The latter found that the wavelength of

any particular line decreased as the atomic number of the emitter increased.

In particular, he found a linear relation (Moseley's law) between the

square root of the line frequency v and the atomic number Z :

= C(Z -
er), (1-7)

where C and <r are constants. This relation is plotted in Fig. 1-6 for the

Kai and Lai lines, the latter being the strongest line in the L series. These

curves show, incidentally, that L lines are not always of long wavelength :

the Lai line of a heavy metal like tungsten, for example, has about the

same wavelength as the Ka\ line of copper, namely about 1.5A. The
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FIG. 1-6. Moseley's relation between \/v and Z for two characteristic lines.

wavelengths of the characteristic x-ray lines of almost all the known ele-

ments have been precisely measured, mainly by M. Siegbahn and his

associates, and a tabulation of these wavelengths for the strongest lines

of the K and L series will be found

in Appendix 3.

While the cQntinuoi^s_srjex;truri^js

caused byjthe T^^^^dej^tignj)^
electrons by the target

;
the origin of

^

M shell

atoms j3i_tl^_taj^J)_jrnaterial itself.

To understand this phenomenon, it

is enough to consider an atom as con-

sisting of a central nucleus surrounded

by electrons lying in various shells

(Fig. 1-7). If one of the electrons

bombarding the target has sufficient

kinetic energy, it can knock an elec-

tron out of the K shell, leaving the

atom in an excited, high-energy state,

FlG ^ Electronic transitions in

an at0m (schematic). Emission proc-

esses indicated by arrows.
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One of the outer electrons immediately falls into the vacancy in the K shell,

emitting energy in the process, and the atom is once again in its normal

energy state. The energy emitted is in the form of radiation of a definite

wavelength and is, in fact, characteristic K radiation.

The Jff-shell vacancy may be filled by an electron from any one of the

outer shells, thus giving rise to a series of K lines; Ka and K& lines, for

example, result from the filling of a K-shell vacancy by an electron from

the LOTM shells, respectively. It is possible to fill a 7-shell vacancy either

from the L or M shell, so that one atom of the target may be emitting Ka
radiation while its neighbor is emitting Kfi\ however, it is more probable

that a jf-shell vacancy will be filled by an L electron than by an M elec-

tron, and the result is that the Ka line is stronger than the K$ line. It

also follows that it is impossible to excite one K line without exciting all

the others. L characteristic lines originate in a similar way: an electron

is knocked out of the L shell and the vacancy is filled by an electron from

some outer shell.

We now see why there should be a critical excitation voltage for charac-

teristic radiation. K radiation, for example, cannot be excited unless the

tube voltage is such that the bombarding electrons have enough energy

to knock an electron out of the K shell of a target atom. If WK is the

work required to remove a K electron, then the necessary kinetic energy

of the electrons is given by
ynxr = WK- (1~8)

It requires less energy to remove an L electron than a K electron, since

the former is farther from the nucleus; it therefore follows that the L excita-

tion voltage is less than the K and that K characteristic radiation cannot

be produced without L, M, etc., radiation accompanying it.

1-6 Absorption. Further understanding of the electronic transitions

which can occur in atoms can be gained by considering not only the inter-

action of electrons and atoms, but also the interaction of x-rays and atoms.

When x-rays encounter any form of matter, they are partly transmitted

and partly absorbed. Experiment shows that the fractional decrease in

the intensity 7 of an x-ray beam as it passes through any homogeneous
substance is proportional to the distance traversed, x. In differential form,

-J-/.AC,
(1-9)

where the proportionality constant /u is called the linear absorption coeffi-

cient and is dependent on the substance considered, its density, and the

wavelength of the x-rays. Integration of Eq. (1-9) gives

4-
- /or**, (1-10)

where /o = intensity of incident x-ray beam and Ix = intensity of trans-

mitted beam after passing through a thickness x.



1-5] ABSORPTION 11

The linear absorption coefficient /z is proportional to the density p, which

means that the quantity M/P is a constant of the material and independent
of its physical state (solid, liquid, or gas). This latter quantity, called the

mass absorption coefficient, is the one usually tabulated. Equation (1-10)

may then be rewritten in a more usable form :

(1-11)

Values of the mass absorption coefficient /i/p are given in Appendix 4 for

various characteristic wavelengths used in diffraction.

It is occasionally necessary to know the mass absorption coefficient of a

substance containing more than one element. Whether the substance is a

mechanical mixture, a solution, or a chemical compound, and whether it

is in the solid, liquid, or gaseous state, its mass absorption coefficient is

simply the weighted average of the mass absorption coefficients of its

constituent elements. If Wi, w2 , etc., are the weight fractions of elements

1, 2, etc., in the substance and (M/P)I, (M/p)2j etc., their mass absorption

coefficients, then the mass absorption coefficient of the substance is given

by
- = Wl (

-J
+ W2 (

-J
+ . . .. (1-12)

The way in which the absorption

coefficient varies with wavelength

gives the clue to the interaction of

x-rays and atoms. The lower curve

of Fig. 1-8 shows this variation for a

nickel absorber; it is typical of all

materials. The curve consists of two

similar branches separated by a sharp

discontinuity called an absorption

edge. Along each branch the absorp-

tion coefficient varies with wave-

length approximately according to a

relation of the form

M

P

where k = a constant, with a different

value for each branch of the curve,

and Z = atomic number of absorber.

Short-wavelength x-rays are there-

fore highly penetrating and are

0.5 1.0 1.5 2.0 2.

X (angstroms)

FIG. 1-8. Variation with wave-

length of the energy per x-ray quantum
and of the mass absorption coefficient

of nickel.
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termed hard, while long-wavelength x-rays are easily absorbed and are said

to be soft.

Matter absorbs x-rays in two distinct ways, by scattering and by true

absorption, and these two processes together make up the total absorption

measured by the quantity M/P- The scattering of x-rays by atoms is similar

in many ways to the scattering of visible light by dust particles in the air.

It takes place in all directions, and since the energy in the scattered beams

does not appear in the transmitted beam, it is, so far as the transmitted

beam is concerned, said to be absorbed. The phenomenon of scattering

will be discussed in greater detail in Chap. 4; it is enough to note here

that, except for the very light elements, it is responsible for only a small

fraction of the total absorption. True absorption is caused by electronic

transitions within the atom and is best considered from the viewpoint of

the quantum theory of radiation. Just as an electron of sufficient energy

can knock a K electron, for example, out of an atom and thus cause the

emission of K characteristic radiation, so also can an incident quantum of

x-rays, provided it has the same minimum amount of energy WK- In the

latter case, the ejected electron is called a photoelectron and the emitted

characteristic radiation is called fluorescent radiation. It radiates in all

directions and has exactly the same wavelength as the characteristic radia-

tion caused by electron bombardment of a metal target. (In effect, an

atom with a #-shell vacancy always emits K radiation no matter how the

vacancy was originally created.) This phenomenon is the x-ray counter-

part of the photoelectric effect in the ultraviolet region of the spectrum;

there, photoelectrons can be ejected from the outer shells of a metal atom

by the action of ultraviolet radiation, provided the latter has a wavelength

less than a certain critical value.

To say that the energy of the incoming quanta must exceed a certain

value WK is equivalent to saying that the wavelength must be less than a

certain value X#, since the energy per quantum is hv and wavelength is

inversely proportional to frequency. These relations may be written

he

where VK and \K are the frequency and wavelength, respectively, of the

K absorption edge. Now consider the absorption curve of Fig. 1-8 in light

of the above. Suppose that x-rays of wavelength 2.5A are incident on a

sheet of nickel and that this wavelength is continuously decreased. At

first the absorption coefficient is about 180 cm2
/gm, but as the wavelength

decreases, the frequency increases and so does the energy per quantum,

as shown by the upper curve, thus causing the absorption coefficient to

decrease, since the greater the energy of a quantum the more easily it

passes through an absorber. When the wavelength is reduced just below
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the critical value A#, which is 1.488A for nickel, the absorption coefficient

suddenly increases about eightfold in value. True absorption is now oc-

curring and a large fraction of the incident quanta simply disappear, their

energy being converted into fluorescent radiation and the kinetic energy
of ejected photoelectrons. Since energy must be conserved in the process,

it follows that the energy per quantum of the fluorescent radiation must

be less than that of the incident radiation, or that the wavelength \K of

the K absorption edge must be shorter than that of any K characteristic

line.

As the wavelength of the incident beam is decreased below Xx, the ab-

sorption coefficient begins to decrease again, even though the production

of K fluorescent radiation and photoelectrons is still occurring. At a wave-

length of l.OA, for example, the incident quanta have more than enough

energy to remove an electron from the K shell of nickel. But the more

energetic the quanta become, the greater is their probability of passing

right through the absorber, with the result that less and less of them take

part in the ejection of photoelectrons.

If the absorption curve of nickel is plotted for longer wavelengths than

2.5A, i.e., beyond the limit of Fig. 1-8, other sharp discontinuities will be

found. These are the L, M, N, etc., absorption edges; in fact, there are

three closely spaced L edges (Lj, Ln, and I/m), five M edges, etc. Each

of these discontinuities marks the wavelength of the incident beam whose

quanta have just sufficient energy to eject an L, M, N, etc., electron from

the atom. The right-hand branch of the curve of Fig. 1-8, for example,

lies between the K and L absorption edges; in this wavelength region inci-

dent x-rays have enough energy to remove L, M, etc., electrons from nickel

but not enough to remove K electrons. Absorption-edge wavelengths

vary with the atomic number of the absorber in the same way, but not

quite as exactly, as characteristic emission wavelengths, that is, according

to Moseley's law. Values of the K and L absorption-edge wavelengths

are given in Appendix 3.

The measured values of the absorption edges can be used to construct

an energy-level diagram for the atom, which in turn can be used in the

calculation of characteristic-line wavelengths. For example, if we take

the energy of the neutral atom as zero, then the energy of an ionized atom

(an atom in an excited state) will be some positive quantity, since work

must be done to pull an electron away from the positively charged nucleus.

If a K electron is removed, work equal to WK must be done and the atom

is said to be in the K energy state. The energy WK may be calculated

from the wavelength of the K absorption edge by the use of Eq. (1-14).

Similarly, the energies of the L, M, etc., states can be calculated from the

wavelengths of the L, M, etc., absorption edges and the results plotted in

the form of an energy-level diagram for the atom (Fig. 1-9).
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K state (A' electron removed)

L state (L electron removed)

M state (M electron removed)

N state (N electron removed)

valence electron removed

neutral atom

FIG. 1-9. Atomic energy levels (schematic). Excitation and emission processes

indicated by arrows. (From Structure of Metals, by C. S. Barrett, McGraw-Hill

Book Company, Inc., 1952.)

Although this diagram is simplified, in that the substructure of the L,

M, etc., levels is not shown, it illustrates the main principles. The arrows

show the transitions of the atom, and their directions are therefore just

the opposite of the arrows in Fig. 1-7, which shows the transitions of the

electron. Thus, if a K electron is removed from an atom (whether by an

incident electron or x-ray), the atom is raised to the K state. If an elec-

tron then moves from the L to the K level to fill the vacancy, the atom

undergoes a transition from the K to the L state. This transition is accom-

panied by the emission of Ka characteristic radiation and the arrow indi-

cating Kot emission is accordingly drawn from the K state to the L state.

Figure 1-9 shows clearly how the wavelengths of characteristic emission

lines can be calculated, since the difference in energy between two states

will equal hv, where v is the frequency of the radiation emitted when the
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atom goes from one state to the other. Consider the Kai characteristic

line, for example. The "L level" of an atom is actually a group of three

closely spaced levels (Li, Ln, and LIU), and the emission of the Kai line

is due to a K > Lm transition. The frequency VKai of this line is there-

fore given by the equations

hi>K<*I

(1-15)

1

X/,111

where the subscripts K and Lm refer to absorption edges and the subscript

Kai to the emission line.

Excitation voltages can be calculated by a relation similar to Eq. (1-4).

To excite K radiation, for example, in the target of an x-ray tube, the bom-

barding electrons must have energy equal to WK> Therefore

= WK =

i.he
'

e\K

12,400

he
.

*

(1-16)

where VK is the K excitation voltage (in practical units) and \K is the K
absorption edge wavelength (in angstroms).

Figure 1-10 summarizes some of the relations developed above. This

curve gives the short-wavelength limit of the continuous spectrum as a

function of applied voltage.

Because of the similarity be-

tween Eqs. (1-4) and (1-16),

the same curve also enables us

to determine the critical exci-

tation voltage from the wave-

length of an absorption edge.

FIG. 1-10. Relation between
the voltage applied to an x-ray
tube and the short-wavelength
limit of the continuous spectrum,
and between the critical excita-

tion voltage of any metal and the

wavelength of its absorption edge.
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(b) Nickel filter

1.8

(a) No filter

FIG. 1-11. Comparison of the spectra of copper radiation (a) before and (b)

after passage through a nickel filter (schematic). The dashed line is the mass ab-

sorption coefficient of nickel.

1-6 Filters. Many x-ray diffraction experiments require radiation

which is as closely monochromatic as possible. However, the beam from

an x-ray tube operated at a voltage above VK contains not only the strong

Ka line but also the weaker Kft line and the continuous spectrum. The

intensity of these undesirable components can be decreased relative to the

intensity of the Ka line by passing the beam through a filter made of a

material whose K absorption edge lies between the Ka and Kfl wave-

lengths of the target metal. Such a material will have an atomic number 1

or 2 less than that of the target metal.

A filter so chosen will absorb the Kfi component much more strongly

than the Ka component, because of the abrupt change in its absorption

coefficient between these two wavelengths. The effect of filtration is shown

in Fig. 1-11, in which the partial spectra of the unfiltered and filtered

beams from a copper target (Z = 29) are shown superimposed on a plot

of the mass absorption coefficient of the nickel filter (Z = 28).

The thicker the filter the lower the ratio of intensity of Kft to Ka in the

transmitted beam. But filtration is never perfect, of course, no matter

how thick the filter, and one must compromise between reasonable sup-

pression of the Kfi component and the inevitable weakening of the Ka

component which accompanies it. In practice it is found that a reduction
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TABLE 1-1

FILTERS FOR SUPPRESSION OF K/3 RADIATION

in the intensity of the Ka line to about half its original value will decrease

the ratio of intensity of K& to Ka from about ^ in the incident beam to

about -gfa in the transmitted beam
;
this level is sufficiently low for most

purposes. Table 1-1 shows the filters used in conjunction with the com-

mon target metals, the thicknesses required, and the transmission factors

for the Ka line. Filter materials are usually used in the form of thin foils.

If it is not possible to obtain a given metal in the form of a stable foil, the

oxide of the metal may be used. The powdered oxide is mixed with a

suitable binder and spread on a paper backing, the required mass of metal

per unit area being given in Table 1-1.

1-7 Production of x-rays. We have seen that x-rays are produced

whenever high-speed electrons collide with a metal target. Any x-ray

tube must therefore contain (a) a source of electrons, (6) a high acceler-

ating voltage, and (c) a metal target. Furthermore, since most of the

kinetic energy of the electrons is converted into heat in the target, the

latter must be water-cooled to prevent its melting.

All x-ray tubes contain two electrodes, an anode (the metal target)

maintained, with few exceptions, at ground potential, and a cathode,

maintained at a high negative potential, normally of the order of 30,000

to 50,000 volts for diffraction work. X-ray tubes may be divided into two

basic types, according to the way in which electrons are provided: filament

tubes, in which the source of electrons is a hot filament, and gas tubes, in

which electrons are produced by the ionization of a small quantity of gas

in the tube.

Filament tubes, invented by Coolidge in 1913, are by far the more

widely used\ They consist of an evacuated glass envelope which insulates

the anode at one end from the cathode at the other, the cathode being a

tungsten filament and the anode a water-cooled block of copper con-

taining the desired target metal as a small insert at one end. Figure 1-12



18 PROPERTIES OF X-RAYS [CHAP. 1



1-7] PRODUCTION OF X-EAY8 19

is a photograph of such a tube, and Fig. 1-13 shows its internal construc-

tion. One lead of the high-voltage transformer is connected to the fila-

ment and the other to ground, the target being grounded by its own cooling-

water connection. The filament is heated by a filament current of about

3 amp and emits electrons which are rapidly drawn to the target by the

high voltage across the tube. Surrounding the filament is a small metal

cup maintained at the same high (negative) voltage as the filament: it

therefore repels the electrons and tends to focus them into a narrow region

of the target, called the focal spot. X-rays are emitted from the focal

spot in all directions and escape from the tube through two or more win-

dows in the tube housing. Since these windows must be vacuum tight

and yet highly transparent to x-rays, they are usually made of beryllium,

aluminum, or mica.

Although one might think that an x-ray tube would operate only from

a DC source, since the electron flow must occur only in one direction, it is

actually possible to operate a tube from an AC source such as a transformer

because of the rectifying properties of the tube itself. Current exists

during the half-cycle in which the filament is negative with respect to the

target; during the reverse half-cycle the filament is positive, but no elec-

trons can flow since only the filament is hot enough to emit electrons.

Thus a simple circuit such as shown in Fig. 1-14 suffices for many installa-

tions, although more elaborate circuits, containing rectifying tubes, smooth-

ing capacitors, and voltage stabilizers, are often used, particularly when
the x-ray intensity must be kept constant within narrow limits. In Fig.

1-14, the voltage applied to the tube is controlled by the autotransformer

which controls the voltage applied to the primary of the high-voltage

transformer. The voltmeter shown measures the input voltage but may
be calibrated, if desired, to read the output voltage applied to the tube.

\-ray tube

ri'ISZil~

high-voltage transformer

MAK Q-0-0-0 Q.ooo Q Q Q Q Q,Q Q.*

ground

autotransformer f 0000001)1)0
"

filament

rheostat

000000000

filament

transformer

110 volts AC

110 volts AC

FIG. 1-14. Wiring diagram for self-rectifying filament tube.
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electrons

x-rays

target

metal

anode

FIG. 1-16. Reduction in apparent
size of focal spot.

FIG. 1-17. Schematic drawings of two

types of rotating anode for high-power
x-rav tubes.

Since an x-ray tube is less than 1 percent efficient in producing x-rays

and since the diffraction of x-rays by crystals is far less efficient than this,

it follows that the intensities of diffracted x-ray beams are extremely low.

In fact, it may require as much as several hours exposure to a photographic
film in order to detect them at all. Constant efforts are therefore being

made to increase the intensity of the x-ray source. One solution to this

problem is the rotating-anodc tube, in which rotation of the anode con-

tinuously brings fresh target metal into the focal-spot area and so allows

a greater power input without excessive heating of the anode. Figure 1-17

shows two designs that have been used successfully; the shafts rotate

through vacuum-tight seals in the tube housing. Such tubes can operate

at a power level 5 to 10 times higher than that of a fixed-focus tube, with

corresponding reductions in exposure time.

1-8 Detection of x-rays. The principal means used to detect x-ray

beams are fluorescent screens, photographic film, and ionization devices.

Fluorescent screens are made of a thin layer of zinc sulfide, containing

a trace of nickel, mounted on a cardboard backing. Under the action of

x-rays, this compound fluoresces in the visible region, i.e., emits visible

light, in this case yellow light. Although most diffracted beams are too

weak to be detected by this method, fluorescent screens are widely used

in diffraction work to locate the position of the primary beam when adjust-

ing apparatus. A fluorescing crystal may also be used in conjunction with

a phototube; the combination, called a scintillation counter, is a very

sensitive detector of x-rays.
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(a)

(h)

K edge of

silver

(0.48A).

A' edge of

bromine

(0.92A)

V

1 1 5

X (angstroms)

FIG. 1-18. Relation between film

sensitivity and effective shape of con-

tinuous spectrum (schematic): (a) con-

tinuous spectrum from a tungsten target

at 40 kv; (b) film sensitivity; (c) black-

ening curve for spectrum shown in (a).

Photographic film is affected by

x-rays in much the same way as by
visible light, and film is the most

widely used means of recording dif-

fracted x-ray beams. However, the

emulsion on ordinary film is too

thin to absorb much of the incident

x-radiation, and only absorbed x-

rays can be effective in blackening

the film. For this reason, x-ray films

are made with rather thick layers of

emulsion on both sides in order to

increase the total absorption. The

grain size is also made large for the

same purpose: this has the unfor-

tunate consequence that x-ray films

are grainy, do not resolve fine de-

tail, and cannot stand much enlarge-

ment.

Because the mass absorption co-

efficient of any substance varies with

wavelength, it follows that film sen-

sitivity, i.e., the amount of blacken-

ing caused by x-ray beams of the

same intensity, depends on their

wavelength. This should be borne

lh mind whenever white radiation is

recorded photographically; for one

thing, this sensitivity variation al-

ters the effective shape of the con-

tinuous spectrum. Figure l-18(a)

shows the intensity of the continu-

ous spectrum as a function of wave-

length and (b) the variation of film

sensitivity. This latter curve is

merely a plot of the mass absorp-

tion coefficient of silver bromide,

the active ingredient of the emul-

sion, and is marked by discontinui-

ties at the K absorption edges of

silver and bromine. (Note, inciden-

tally, how much more sensitive the

film is to the A' radiation from cop-
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per than to the K radiation from molybdenum, other things being equal.)

Curve (c) of Fig. 1-18 shows the net result, namely the amount of film

blackening caused by the various wavelength components of the continu-

ous spectrum, or what might be called the "effective photographic in-

tensity" of the continuous spectrum. These curves are only approximate,

however, and in practice it is almost impossible to measure photographi-

cally the relative intensities of two beams of different wavelength. On the

other hand, the relative intensities of beams of the same wavelength can

be accurately measured by photographic means, and such measurements

are described in Chap. 6.

lonization devices measure the intensity of x-ray beams by the amount

of ionization they produce in a gas. X-ray quanta can cause ionization

just as high-speed electrons can, namely, by knocking an electron out of a

gas molecule and leaving behind a positive ion. This phenomenon can be

made the basis of intensity measurements by passing the x-ray beam

through a chamber containing a suitable gas and two electrodes having a

constant potential difference between them. The electrons are attracted

to the anode and the positive ions to the cathode and a current is thus

produced in an external circuit. In the ionization chamber, this current is

constant for a constant x-ray intensity, and the magnitude of the current

is a measure of the x-ray intensity. In the Geiger counter and proportional

counter, this current pulsates, and the number of pulses per unit of time is

proportional to the x-ray intensity. These devices are discussed more

fully in Chap. 7.

In general, fluorescent screens are used today only for the detection of

x-ray beams, while photographic film and the various forms of counters

permit both detection and measurement of intensity. Photographic film

is the most widely used method of observing diffraction effects, because it

can record a number of diffracted beams at one time and their relative

positions in space and the film can be used as a basis for intensity measure-

ments if desired. Intensities can be measured much more rapidly with

counters, and these instruments are becoming more and more popular for

quantitative work. However, they record only one diffracted beam at a

time.

1-9 Safety precautions. The operator of x-ray apparatus is exposed

to two obvious dangers, electric shock and radiation injury, but both of

these hazards can be reduced to negligible proportions by proper design of

equipment and reasonable care on the part of the user. Nevertheless, it is

only prudent for the x-ray worker to be continually aware of these hazards.

The danger of electric shock is always present around high-voltage appa-

ratus. The anode end of most x-ray tubes is usually grounded and there-

fore safe, but the cathode end is a source of danger. Gas tubes and filament
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tubes of the nonshockproof variety (such as the one shown in Fig. 1-12)

must be so mounted that their cathode end is absolutely inaccessible to

the user during operation; this may be accomplished by placing the cathode

end below a table top, in a box, behind a screen, etc. The installation

should be so contrived that it is impossible for the operator to touch the

high-voltage parts without automatically disconnecting the high voltage.

Shockproof sealed-off tubes are also available: these are encased in a

grounded metal covering, and an insulated, shockproof cable connects the

cathode end to the transformer. Being shockproof, such a tube has the

advantage that it need not be permanently fixed in position but may be

set up in various positions as required for particular experiments.

The radiation hazard is due to the fact that x-rays can kill human tis-

sue; in fact, it is precisely this property which is utilized in x-ray therapy
for the killing of cancer cells. The biological effects of x-rays include burns

(due to localized high-intensity beams), radiation sickness (due to radia-

tion received generally by the whole body), and, at a lower level of radia-

tion intensity, genetic mutations. The burns are painful and may be

difficult, if not impossible, to heal. Slight exposures to x-rays are not

cumulative, but above a certain level called the "tolerance dose," they
do have a cumulative effect and can produce permanent injury. The

x-rays used in diffraction are particularly harmful because they have rela-

tively long wavelengths and are therefore easily absorbed by the body.

There is no excuse today for receiving serious injuries as early x-ray

workers did through ignorance. There would probably be no accidents if

x-rays were visible and produced an immediate burning sensation, but

they are invisible and burns may not be immediately felt. If the body
has received general radiation above the tolerance dose, the first noticeable

effect will be a lowering of the white-blood-cell count, so periodic blood

counts are advisable if there is any doubt about the general level of in-

tensity in the laboratory.

The safest procedure for the experimenter to follow is: first, to locate

the primary beam from the tube with a small fluorescent screen fixed to

the end of a rod and thereafter avoid it; and second, to make sure that he

is well shielded by lead or lead-glass screens from the radiation scattered

by the camera or other apparatus which may be in the path of the primary

beam. Strict and constant attention to these precautions will ensure

safety.

PROBLEMS

1-1. What is the frequency (per second) and energy per quantum (in ergs) of

x-ray beams of wavelength 0.71A (Mo Ka) and 1.54A (Cu Ka)l
1-2. Calculate the velocity and kinetic energy with which the electrons strike

the target of an x-ray tube operated at 50,000 volts. What is the short-wavelength
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limit of the continuous spectrum emitted and the maximum energy per quantum
of radiation?

1-3. Graphically verify Moseley's law for the K($\ lines of Cu, Mo, and W.

1-4. Plot the ratio of transmitted to incident intensity vs. thickness of lead

sheet for Mo Kot radiation and a thickness range of 0.00 to 0.02 mm.
1-5. Graphically verify Eq. (1-13) for a lead absorber and Mo Kot, Rh Ka, and

Ag Ka radiation. (The mass absorption coefficients of lead for these radiations

are 141, 95.8, and 74.4, respectively.) From the curve, determine the mass ab-

sorption coefficient of lead for the shortest wavelength radiation from a tube op-

erated at 60,000 volts.

1-6. Lead screens for the protection of personnel in x-ray diffraction laboratories

are usually at least 1 mm thick. Calculate the "transmission factor" (/trans.//incident)

of such a screen for Cu Kot, Mo Kot, and the shortest wavelength radiation from a

tube operated at 60,000 volts.

1-7. (a) Calculate the mass and linear absorption coefficients of air for Cr Ka
radiation. Assume that air contains 80 percent nitrogen and 20 percent oxygen

by weight, (b) Plot the transmission factor of air for Cr Ka radiation and a path

length of to 20 cm.

1-8. A sheet of aluminum 1 mm thick reduces the intensity of a monochromatic

x-ray beam to 23.9 percent of its original value. What is the wavelength of the

x-rays?

1-9. Calculate the K excitation voltage of copper.

1-10. Calculate the wavelength of the Lm absorption edge of molybdenum.

1-11. Calculate the wavelength of the Cu Ka\ line.

1-12. Plot the curve shown in Fig. 1-10 and save it for future reference.

1-13. What voltage must be applied to a molybdenum-target tube in order

that the emitted x-rays excite A' fluorescent radiation from a piece of copper placed

in the x-ray beam? What is the wavelength of the fluorescent radiation?

In Problems 14 and 15 take the intensity ratios of Ka to K@ in unfiltered radia-

tion from Table 1-1.

1-14. Suppose that a nickel filter is required to produce an intensity ratio of

Cu Ka to Cu K/3 of 100/1 in the filtered beam. Calculate the thickness of the fil-

ter and the transmission factor for the Cu Ka line. (JJL/P of nickel for Cu Kft ra-

diation = 286 cmYgin.)

1-16. Filters for Co K radiation are usually made of iron oxide (Fe203) powder

rather than iron foil. If a filter contains 5 mg Fe2 3/cm
2

,
what is the transmission

factor for the Co Ka line? What is the intensity ratio of Co Ka to Co KQ in the

filtered beam? (Density of Fe2 3
= 5.24 gm/cm

3
, /i/P of iron for Co Ka radiation

= 59.5 cm2
/gm, M/P of oxygen for Co Ka radiation = 20.2, pt/P of iron for Co Kfi

radiation = 371, JJL/P of oxygen for Co K0 radiation = 15.0.)

1-16. What is the power input to an x-ray tube operating at 40,000 volts and

a tube current of 25 ma? If the power cannot exceed this level, what is the maxi-

mum allowable tube current at 50,000 volts?

1-17, A copper-target x-ray tube is operated at 40,000 volts and 25 ma. The

efficiency of an x-ray tube is so low that, for all practical purposes, one may as-

sume that all the input energy goes into heating the target. If there were no dissi-
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pation of heat by water-cooling, conduction, radiation, etc., how long would it

take a 100-gm copper target to melt? (Melting point of copper = 1083C, mean

specific heat = 6.65 cal/mole/C, latent heat of fusion = 3,220 cal/mole.)

1-18. Assume that the sensitivity of x-ray film is proportional to the mass ab-

sorption coefficient of the silver bromide in the emulsion for the particular wave-

length involved. What, then, is the ratio of film sensitivities to Cu Ka and Mo Ka
radiation?



CHAPTER 2

THE GEOMETRY OF CRYSTALS

2-1 Introduction. Turning from the properties of x-rays, we must now

consider the geometry and structure of crystals in order to discover what

there is about crystals in general that enables them to diffract x-rays. We
must also consider particular crystals of various kinds and how the very

large number of crystals found in nature are classified into a relatively

small number of groups. Finally, we will examine the ways in which the

orientation of lines and planes in crystals can be represented in terms of

symbols or in graphical form.

A crystal may be defined as a solid composed of atoms arranged in a pat-

tern periodic in three dimensions. As such, crystals differ in a fundamental

way from gases and liquids because the atomic arrangements in the latter

do not possess the essential requirement of periodicity. Not all solids are

crystalline, however; some are amorphous, like glass, and do not have any

regular interior arrangement of atoms. There is, in fact, no essential

difference between an amorphous solid and a liquid, and the former is

often referred to as an "undercooled liquid."

2-2 Lattices. In thinking about crystals, it is often convenient to ig-

nore the, actual atoms composing the crystal and their periodic arrange-

ment in Space, and to think instead of a set of imaginary points which has

a fixed relation in space to the atoms of the crystal and may be regarded

as a sort of framework or skeleton on which the actual crystal is built up.

This set of points can be formed as follows. Imagine space to be divided

by three sets of planes, the planes in each set being parallel and equally

spaced. This division of space will produce a set of cells each identical in

size, shape, and orientation to its neighbors. Each cell is a parallelepiped,

since its opposite faces are parallel and each face is a parallelogram.^ The

space-dividing planes will intersect each other in a set of lines (Fig. 2-1),

and these lines in turn intersect in the set of points referred to above. A
set of points so formed has an important property: it constitutes a point

lattice, which is defined as an array of points in space so arranged that each

point has identical surroundings. By "identical surroundings*' we mean

that the lattice of points, when viewed in a particular direction from one

lattice point, would have exactly the same appearance when viewed in the

same direction from any other lattice point.

Since all the cells of the lattice shown in Fig. 2-1 are identical, we may
choose any one, for example the heavily outlined one, as a unit cell. The

29
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FIG. 2-1. A point lattice.

size and shape of the unit cell can in turn be described by the three vec-

tors* a, b, and c drawn from one corner of the cell taken as origin (Fig.

2-2). These vectors define the cell and are called the crystallographic axes

of the cell. They may also be described in terms of their lengths (a, 6, c)

and the angles between them (a, ft 7). These lengths and angles are the

lattice constants or lattice parameters of the unit cell.

Note that the vectors a, b, c define, not only the unit cell, but also the

whole point lattice through the translations provided by these vectors.

In other words, the whole set of points in the lattice can be produced by

repeated action of the vectors a, b, c on one lattice point located at the

origin, or, stated alternatively, the

vector coordinates of any point in the

lattice are Pa, Qb, and /fc, where

P, Q, and R are whole numbers. It

follows that the arrangement of

points in a point lattice is absolutely

periodic in three dimensions, points

being repeated at regular intervals

along any line one chooses to draw

through the lattice. FIG. 2-2. A unit cell.

2-3 Crystal systems, (jn dividing space by three sets of planes, we can

of course produce unit cells of various shapes, depending on how we ar-

range the planesT) For example, if the planes in the three sets are all equally

* Vectors are here represented by boldface symbols. The same symbol in italics

stands for the absolute value of the vector.
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TABLE 2-1

CRYSTAL SYSTEMS AND BRAVAIS LATTICES

(The symbol ^ implies nonequality by reason of symmetry. Accidental equality

may occur, as shown by an example in Sec. 2-4.)

* Also called trigonal.

spaced and mutually perpendicular, the unit cell is cubic. In this case the

vectors a, b, c are all equal and at right angles to one another, or a = b = c

and a = = 7 = 90. By thus giving special values to the axial lengths

and angles, we can produce unit cells of various shapes and therefore

various kinds of point lattices, since the points of the lattice are located at

the cell corners. It turns out that only seven different kinds of cells are

necessary to include all the possible point lattices. These correspond to

the seven crystal systems into which all crystals can be classified. These

systems are listed in Table 2-1.

Seven different point lattices can be obtained simply by putting points

at the corners of the unit cells of the seven crystal systems. However,

there are other arrangements of points which fulfill the requirements of a

point lattice, namely, that each point have identical surroundings. The

French crystallographer Bravais worked on this problem and in 1848

demonstrated that there are fourteen possible point lattices and no more;

this important result is commemorated by our use of the terms Bravais
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SIMPLE
CUBIC (P)

BODY-CENTERED FACE-C'ENTERED
CUBIC (/) CUBIC 1

(F)

SIMPLE BODY-(CENTERED SIMPLE BODY-CENTERED
TETRAGONAL TETRAGONAL ORTHORHOMBIC ORTHORHOMBIC

(P) (/) (P) (/)

BASE-CENTERED FACE-CENTERED RHOMBOHEDRAL
ORTHORHOMBIC 1 ORTHORHOMBIC (/?)

(O (F)

SIMPLE
MONOCLINIC

BASE-CENTERED TRICLINIC (P)

(P) MONOCLINIC 1

(C)

FIG. 2-3. The fourteen Bravais lattices.

lattice and point lattice as synonymous. For example, if a point is placed

at the center of each cell of a cubic point lattice, the new array of points

also forms a point lattice. Similarly, another point lattice can be based
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on a cubic unit cell having lattice points at each corner and in the center

of each face.

The fourteen Bravais lattices are described in Table 2-1 and illustrated

in Fig. 2-3, where the symbols P, F, /, etc., have the following meanings.
We must first distinguish between simple, or primitive, cells (symbol P
or R) and nonprimitive cells (any other symbol): primitive cells have only

one lattice point per cell while nonprimitive have more than one. A lattice

point in the interior of a cell "belongs" to that cell, while one in a cell face

is shared by two cells and one at a corner is shared by eight. The number

of lattice points per cell is therefore given by

N =
Nf--
2

Nc
,

8
(2-1 ;

where N t
= number of interior points, N/ = number of points on faces,

and Nc
= number of points on corners. Any cell containing lattice points

on the corners only is therefore primitive, while one containing additional

points in the interior or on faces is nonprimitive. The symbols F and /

refer to face-centered and body-centered cells, respectively, while A, B,

and C refer tqjmse-centered cells, centered on one pair of opposite faces

A, B, or C. (The A face is the face defined by the b and c axes, etc.) The

symbol R is used especially for the rhombohedral system. In Fig. 2-3,

axes of equal length in a particular system are given the same symbol to

indicate their equality, e.g., the cubic axes are all marked a, the two equal

tetragonal axes are marked a and the third one c, etc.

At first glance, the list of Bravais lattices in Table 2-1 appears incom-

plete. Why not, for example, a base-centered tetragonal lattice? The
full lines in Fig. 2-4 delineate such a cell, centered on the C face, but we
see that the same array of lattice points can be referred to the simple

tetragonal cell shown by dashed lines, so that the base-centered arrange-

ment of points is not a new lattice.

/

FIG. 2-4. Relation of tetragonal C FIG. 2-5. Extension of lattice points
lattice (full lines) to tetragonal P iat- through space by the unit cell vectors

tice (dashed lines). a, b, c.
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The lattice points in a nonprimitive unit cell can be extended through

space by repeated applications of the unit-cell vectors a, b, c just like those

of a primitive cell. We may regard the lattice points associated with a

unit cell as being translated one by one or as a group. In either case, equiv-

alent lattice points in adjacent unit cells are separated by one of the vectors

a, b, c, wherever these points happen to be located in the cell (Fig. 2-5).

2-4 Symmetry, i Both Bravais lattices and the real crystals which are

built up on them exhibit various kinds of symmetry. A body or structure

is said to be symmetrical when its component parts are arranged in such

balance, so to speak, that certain operations can be performed on the body
which will bring it into coincidence with itself. These are termed symmetry

operations. /For example, if a body is symmetrical with respect to a plane

passing through it, then reflection of either half of the body in the plane

as in a mirror will produce a body coinciding with the other half. Thus a

cub has seir-ral planes of symmetry, one of which is shown in Fig. 2-6(a).

There are in all four macroscopic* symmetry operations or elements:

reflection, rotation, inversion, and rotation-inversion. A body has n-fold

rotational symmetry about an axis if a rotation of 360 /n brings it into

self-coincidence. Thus a cube has a 4-fold rotation axis normal to each

face, a 3-fold axis along each body diagonal, and 2-fold axes joining the

centers of opposite edgesf Some of these are shown in Fig. 2-6 (b) where

the small plane figures (square, triangle, and ellipse) designate the various

(b) (ci)

FIG, 2-6. Some symmetry elements of a cube, (a) Reflection plane. AI be-

comes A%. (b) Rotation axes. 4-fold axis: A\ becomes A^ 3-fold axis: A\ becomes

AZ\ 2-fold axis: AI becomes A*, (c) Inversion center. AI becomes A%. (d) Rota-
tion-inversion axis. 4-fold axis: AI becomes A\\ inversion center: A\ becomes A*.

* So called to distinguish them from certain microscopic symmetry operations
with which we are not concerned here. The macrosopic elements can be deduced

from the angles between the faces of a well-developed crystal, without any knowl-

edge of the atom arrangement inside the crystal. The microscopic symmetry ele-

ments, on the other hand, depend entirely on atom arrangement, and their pres-
ence cannot be inferred from the external development of the crystal.
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kinds of axes. In general, rotation axes may be 1-, 2-, 3-, 4-, or 6-fold. A
1-fold axis indicates no symmetry at all, while a 5-fold axis or one of higher

degree than 6 is impossible, in the sense that unit cells having such sym-

metry cannot be made to fill up space without leaving gaps.

A body has an inversion center if corresponding points of the body are

located at equal distances from the center on a line drawn through the

center. A body having an inversion center will come into coincidence

with itself if every point in the body is inverted, or "reflected," in the

inversion center. A cube has such a center at the intersection of its body

diagonals [Fig. 2-6(c)]. Finally, a body may have a rotation-inversion

axis, either 1-, 2-, 3-, 4-, or 6-fold. If it has an n-fold rotation-inversion

axis, it can be brought into coincidence with itself by a rotation of 360/n

about the axis followed by inversion in a center lying on the axis. ; Figure

2-6(d) illustrates the operation of a 4-fold rotation-inversion axis on a cube.

^Now, the possession of a certain minimum set of symmetry elements

is a fundamental property of each crystal system, and one system is dis-

tinguished from another just as much by its symmetry elements as by the

values of its axial lengths and angles'* In fact, these are interdependent

The minimum number of symmetry elements possessed by each crystal

system is listed in Table 2-2.
{
Some crystals may possess more than the

minimum symmetry elements required by the system to which they belong,

but none may have less.)

Symmetry operations apply not only to the unit cells]shown in Fig. 2-3J

considered merely as geometric shapes, but also to the point lattices asso-

ciated with them. The latter condition rules out the possibility that the

cubic system, for example, could include a base-centered point lattice,

since such an array of points would not have the minimum set of sym-

metry elements required by the cubic system, namely four 3-fold rotation

axes. Such a lattice would be classified in the tetragonal system, which

has no 3-fold axes and in which accidental equality of the a and c axes is

TABLE 2-2

SYMMETRY ELEMENTS

System Minimum symmetry elements

Cubic

Tetragonal

Orthorhombic

Rhombohedral

Hexagonal

Monoclinic

Triclinic

Four 3 - fold rotation axes

One 4 -fold rotation (or rotation - inversion) axis

Three perpendicular 2 -fold rotation (or rotation - inversion) axes

One 3 -fold rotation (or rotation - inversion) axis

One 6 -fold rotation (or rotation - inversion) axis

One 2 -fold rotation (or rotation - Inversion) axis

None
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allowed; as mentioned before, however, this lattice is simple, not base-

centered, tetragonal.

Crystals in the rhombohedral (trigonal) system can be referred to either

a rhombohedral or a hexagonal lattice.^ Appendix 2 gives the relation

between these two lattices and the transformation equations which allow

the Miller indices of a. plane (see Sec. 2-6) to be expressed in terms of

either set of axes.

2-5 Primitive and nonprimitive cells. In any point lattice a unit cell

may be chosen in an infinite number of ways and may contain one or more

lattice points per cell. It is important to note that unit cells do not "exist"

as such in a lattice: they are a mental construct and can accordingly be

chosen at our convenience. The conventional cells shown in Fig. 2-3 are

chosen simply for convenience and to

conform to the symmetry elements

of the lattice.

Any of the fourteen Bravais lattices

may be referred to a primitive unit

cell. For example, the face-centered

cubic lattice shown in Fig. 2-7 may
be referred to the primitive cell indi-

cated by dashed lines. The latter cell

is rhombohedral, its axial angle a is

60, and each of its axes is l/\/2
times the length of the axes of the

cubic cell. Each cubic cell has four

lattice points associated with it, each

rhombohedral cell has one, and the

former has, correspondingly, four times the volume of the latter. Never-

theless, it is usually more convenient to use the cubic cell rather than the

rhombohedral one because the former immediately suggests the cubic

symmetry which the lattice actually possesses. Similarly, the other cen-

tered nonprimitive cells listed in Table 2-1 are preferred to the primitive

cells possible in their respective lattices.

If nonprimitive lattice cells are used, the vector from the origin to any

point in the lattice will now have components which are nonintegral mul-

tiples of the unit-cell vectors a, b, c. The position of any lattice point in a

cell may be given in terms of its coordinates] if the vector from the origin

of the unit cell to the given point has components xa, yb, zc, where x, y,

and z are fractions, then the coordinates of the point are x y z. Thus,

point A in Fig. 2-7, taken as the origin, has coordinates 000 while points

Bj C, and D, when referred to cubic axes, have coordinates Off, f f ,

and f f 0, respectively. Point E has coordinates f \ 1 and is equivalent

FIG. 2-7. Face-centered cubic point

lattice referred to cubic and rhombo-

hedral cells.
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to point Z), being separated from it by the vector c. The coordinates of

equivalent points in different unit cells can always be made identical by
the addition or subtraction of a set of integral coordinates; in this case,

subtraction of 1 from f ^ 1 (the coordinates of E) gives ^ f (the

coordinates of D).

Note that the coordinates of a body-centered point, for example, are

always | ^ ^ no matter whether the unit cell is cubic, tetragonal, or ortho-

rhombic, and whatever its size. The coordinates of a point position, such

as ^ ^ \, may also be regarded as an operator which, when "applied" to a

point at the origin, will move or translate it to the position \ \ \, the

final position being obtained by simple addition of the operator \ \ \
and the original position 000. In this sense, the positions 000, \ \ \
are called the "body-centering translations," since they will produce the

two point positions characteristic of a body-centered cell when applied to

a point at the origin. Similarly, the four point positions characteristic of a

face-centered cell, namely 0, \ ^, \ ^, and \ \ 0, are called the

face-centering translations. The base-centering translations depend on

which pair of opposite faces are centered; if centered on the C face, for

example, they are 0, \ \ 0.

2-6 Lattice directions and planes. The direction of any line in a lat-

tice may be described by first drawing a line through the origin parallel

to the given line and then giving the coordinates of any point on the line

through the origin. Let the line pass through the origin of the unit cell

and any point having coordinates u v w, where these numbers are not neces-

sarily integral. (This line will also pass through the points 2u 2v 2w,

3u 3v 3w, etc.) Then [uvw], written in square brackets, are the indices

of the direction of the line. They are also the indices of any line parallel

to the given line, since the lattice is infinite and the origin may be taken

at any point. Whatever the values of i/, v, w, they are always converted

to a set of smallest integers by multi-

plication or division throughout: thus,

[||l], [112], and [224] all represent

the same direction, but [112] is the

preferred form. Negative indices are

written with a bar over the number,

e.g., [uvw]. Direction indices are illus-

trated in Fig. 2-8.

Direction^
related by symmetry are

called directions of a form, and a set

of these are|Pepresented by the indices

of one of them enclosed in angular

bracHts; for example, the four body Fib/^-8.

[100]

[233]

[001]

[111]

[210]

HO
[100]

'[120]

Indices of directions.
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diagonals of a cube, [111], [ill], [TTl], and [Til], may all be represented

by the symbol (111).

The orientation of planes in a lattice may also be represented sym-

bolically, according to a system popularized by the English crystallographer

Miller. In the general case, the given plane will be tilted with respect to

the crystallographic axes, and, since these axes form a convenient frame

of reference, we might describe the orientation of the plane by giving the

actual distances, measured from the origin, at which it intercepts the

three axes. Better still, by expressing these distances as fractions of the

axial lengths, we can obtain numbers which are independent of the par-

ticular axial lengths involved in the given lattice. But a difficulty then

arises when the given plane is parallel to a certain crystallographic axis,

because such a plane does not intercept that axis, i.e., its "intercept" can

only be described as "infinity." To avoid the introduction of infinity into

the description of plane orientation, we can use the reciprocal of the frac-

tional intercept, this reciprocal being zero when the plane and axis are

parallel. We thus arrive at a workable symbolism for the orientation of a

plane in a lattice, the Miller indices, which are defined as the reciprocals of

the fractional intercepts which the plane makes with the crystallographic axes.

For example, if the Miller indices of a plane are (AW), written in paren-

theses, then the plane makes fractional intercepts of I/A, I/A*, \/l with the

axes, and, if the axial lengths are a, 6, c, the plane makes actual intercepts

of a/A, b/k, c/l, as shown in Fig. 2-9(a). Parallel to any plane in any lat-

tice, there is a whole set of parallel equidistant planes, one of which passes

through the origin; the Miller indices (hkl) usually refer to that plane in

the set which is nearest the origin, although they may be taken as referring

to any other plane in the set or to the whole set taken together.

We may determine the Miller indices of the plane shown in Fig. 2-9 (b)

as follows :

1A 2A 3A 4A

(a) (b)

FIG. 2-9. Plane designation by Miller indices.
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Axial lengths

Intercept lengths

Fractional intercepts

Miller indices

4A
2A

I

I

2

16

8A
6A
3

1
4

3A
3A
1

1

3

Miller indices are always cleared of fractions, as shown above. As stated

earlier, if a plane is parallel to a given axis, its fractional intercept on that

axis is taken as infinity and the corresponding Miller index is zero. If a

plane cuts a negative axis, the corresponding index is negative and is writ-

ten with a bar over it. Planes whose indices are the negatives of one

another are parallel and lie on opposite sides of the origin, e.g., (210) and

(2lO). The planes (nh nk nl) are parallel to the planes (hkl) and have 1/n

the spacing. The same plane may belong to two different sets, the Miller

indices of one set being multiples of those of the other; thus the same plane

belongs to the (210) set and the (420) set, and, in fact, the planes of the

(210) set form every second plane in the (420) set.
jjn

the cubic system,

it is convenient to remember that a direction [hkl] is always perpendicular

to a plane (hkl) of the same indices, but this is not generally true in other

systems. Further familiarity with Miller indices can be gained from a

study of Fig. 2-10.

A slightly different system of plane indexing is used in the hexagonal

system. The unit cell of a hexagonal lattice is defined by two equal and

coplanar vectors ai and a2 ,
at 120 to one another, and a third axis c at

right angles [Fig. 2-11 (a)]. The complete lattice is built up, as usual, by

HfeocH

(110)

(110) (111)

FIG. 2-10. Miller indices of lattice planes.

(102)
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[001]

(0001)

(1100)-

[100]
'

[Oil]

(1210)

[010]

(1011)
'[210]

(a) (b)

FIG. 2-11. (a) The hexagonal unit cell and (b) indices of planes and directions.

repeated translations of the points at the unit cell corners by the vectors

EI, a2 ,
c. Some of the points so generated are shown in the figure, at the

ends of dashed lines, in order to exhibit the hexagonal symmetry of the

lattice, which has a 6-fold rotation axis parallel to c. The third axis a3 ,

lying in the basal plane of the hexagonal prism, is so symmetrically related

to EI and a2 that it is often used in conjunction with the other two. Thus

the indices of a plane in the hexagonal system, called Miller-Bravais

indices, refer to four axes and are written (hkil). The index i is the recipro-

cal of the fractional iiltercept on the a3 axis. Since the intercepts of a

plane on ai and a2 determine its intercept on a3 ,
the value of i depends on

the values of h and k. The relation is

h + k = -i. (2-2)

Since i is determined by h and A;, it is sometimes replaced by a dot and

the plane symbol written (hk-l). However, this usage defeats the pur-

pose for which Miller-Bravais indices were devised, namely, to give similar

indices to similar planes. For example, the side planes of the hexagonal

prism in Fig. 2-1 l(b) are all similar and symmetrically located, and their

relationship is clearly shown in their full Miller-Bravais symbols: (10K)),

(OlTO), (TlOO), (T010), (OTlO), (iTOO). On the other hand, the_abbreviated
symbols of these planes, (10-0), (01-0), (11-0), (10-0), (01-0), (11-0)

do not immediately suggest this relationship.

Directions in a hexagonal lattice are best expressed in terms of the three

basic vectors ai, a2 ,
and c. Figure 2-1 l(b) shows several examples of

both plane and direction indices. (Another system, involving four indices,

is sometimes used to designate directions. The required direction is broken

up into four component vectors, parallel to ai, a2 , aa, and c and so chosen

that the third index is the negative of the sum of the first two. Thus
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[100], for example, becomes [2110], [210] becomes [1010], [010] becomes

[T210], etc.)

In any crystal system there are sets of equivalent lattice planes related

by symmetry. These are called planes of a form, and the indices of any
one plane, enclosed in braces )M/}, stand for the whole set. In general,

planes of a form have the same spacing but different Miller indices. For

example, the faces of a cube, (100), (010), (TOO), (OTO), (001), and (001),

are planes of the form {100}, since all of them may be generated from

any one by operation of the 4-fold rotation axes perpendicular to the cube

faces. In the tetragonal system, however, only the planes (100), (010),

(TOO), and (OTO) belong to the form |100); the other two planes, (001)

and (OOT), belong to the different form {001) ;
the first four planes men-

tioned are related by a 4-fold axis and the last two by a 2-fold axis.*

Planes of a zone are planes which are all parallel to one line, called the

zone axis, and the zone, i.e., the set of planes, is specified by giving the

indices of the zone axis. Such planes

may have quite different indices and

spacings, the only requirement being

their parallelism to a line. Figure

2-12 shows some examples. If the

axis of a zone has indices [uvw], then

any plane belongs to that zone whose

indices (hkl) satisfy the relation

hu + kv + Iw = 0. (2-3)

(A proof of this relation is given in

Section 4 of Appendix 15.) Any two

nonparallel planes are planes of a zone

since they are both parallel to their

line of intersection. If their indices

are (/hfci/i) and (h^kj^j then the in-

dices of their zone axis [uvw] are given

by the relations

[001]

(210)

UOO)\

(11) (210)

,(100)

FIG, 2-12, All shaded planes in the

cubic lattice shown are planes of the

zone [001].

(2-4)

W =
/&1/T2 h?jk\.

* Certain important crystal planes are often referred to by name without any
mention of their Miller indices. Thus, planes of the form

(
111

|
in the cubic sys-

tem are often called octahedral planes, since these are the bounding planes of an

octahedron. In the hexagonal system, the (0001) plane is called the basal plane,

planes of the form
{ 1010) are called prismatic planes, and planes of the form {

1011 )

are called pyramidal planes.
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(13)

FIG. 2-13. Two-dimensional lattice, showing that lines of lowest indices have

the greatest spacing and the greatest density of lattice points.

The various sets of planes in a lattice have various values of interplanar

spacing. The planes of large spacing have low indices and pass through a

high density of lattice points, whereas the reverse is true of planes of small

spacing. Figure 2-13 illustrates this for a two-dimensional lattice, and

it is equally true in three dimensions. The interplanar spacing rf^./, meas-

ured at right angles to the planes, is a function both of the plane indices

(hkl) and the lattice constants (a, />, r, a, 0, 7). The exact relation de-

pends on the crystal system involved and for the cubic system takes on

the relatively simple form

(Cubic) dhk i
=
-^-JL===.

(2-5)

In the tetragonal system the spacing equation naturally involves both

a and c since these are not generally equal :

(Tetragonal) dh ki
= (2-0)

Interplanar spacing equations for all systems are given in Appendix 1 .

2-7 Crystal structure. So far we have discussed topics from the field

of mathematical (geometrical) crystallography and have said practically

nothing about actual crystals and the atoms of which they are composed.

In fact, all of the above was well known long before the discovery of x-ray

diffraction, i.e., long before there was any certain knowledge of the interior

arrangements of atoms in crystals.

It is now time to describe the structure of some actual crystals and to

relate this structure to the point lattices, crystal systems, and symmetry
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BCC FCC

FIG. 2-14. Structures of some com-

mon metals. Body-centered cubic: a-

Fe, Cr, Mo, V, etc.; face-centered

cubic: 7-Fe, Cu, Pb, Ni, etc.

elements discussed above. The cardi-

nal principle of crystal structure is

that the atoms of a crystal are set in

space either on the points of a Bravais

lattice or in some fixed relation to those

points. It follows from this th the

atoms of a crystal will be arranged

periodically in three dimensions and

that this arrangement of atoms will

exhibit many of the properties of a

Bravais lattice, in particular many of

its symmetry elements.

The simplest crystals one can imagine are those formed by placing atoms

of the same kind on the points of a Bravais lattice. Not all such crystals

exist but, fortunately for metallurgists, many metals crystallize in this

simple fashion, and Fig. 2-14 shows two common structures based on the

body-centered cubic (BCC) and face-centered cubic (FCC) lattices. The

former has two atoms per unit cell and the latter four, as we can find by

rewriting Eq. (2-1) in terms of the number of atoms, rather than lattice

points, per cell and applying it to the unit cells shown.

The next degree of complexity is encountered when two or more atoms

of the same kind are "associated with" each point of a Bravais lattice, as

exemplified by the hexagonal close-packed (HCP) structure common to

many metals. This structure is simple hexagonal and is illustrated in

Fig. 2-15. There are two atoms per unit cell, as shown in (a), one at

and the other at \ | (or at \ f f ,
which is an equivalent position).

Figure 2-15(b) shows the same structure with the origin of the unit cell

shifted so that the point 1 in the new cell is midway between the atoms

at 1 and \ | in (a), the nine atoms shown in (a) corresponding to the

nine atoms marked with an X in (b). The '

'association" of pairs of atoms

with the points of a simple hexagonal Bravais lattice is suggested by the

dashed lines in (b). Note, however, that the atoms of a close-packed

hexagonal structure do not themselves form a point lattice, the surround-

ings of an atom at being different from those of an atom at 3 ^.

Figure 2-15(c) shows still another representation of the HCP structure:

the three atoms in the interior of the hexagonal prism are directly above

the centers of alternate triangles in the base and, if repeated through space

by the vectors ai and a2 ,
would alsd form a hexagonal array just like

the atoms in the layers above and below.

The HCP structure is so called because it is one of the two ways in

which spheres can be packed together in space with the greatest possible

density and still have a periodic arrangement. Such an arrangement of

spheres in contact is shown in Fig. 2-15(d). If these spheres are regarded
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(a)

(c)

FIG. 2-15. The hexagonal close-packed structure, shared by Zn, Mg, He, a-Ti, etc.

as atoms, then the resulting picture of an HCP metal is much closer to
physical reality than is the relatively open structure suggested by the
drawing of Fig. 2-15(c), and this is true, generally, of all crystals. On the
other hand, it may be shown that the ratio of c to a in an HCP structure
formed of spheres in contact is 1 .633 whereas the c/a ratio of metals having
this structure varies from about 1.58 (Be) to 1.89 (Cd). As there is no
reason to suppose that the atoms in these crystals are not in contact, it
'follows that they must be ellipsoidal in shape rather than spherical.
The FCC structure is an equally close-packed arrangement. Its rela-

tion to the HCP structure is not immediately obvious, but Fig. 2-16 shows
that the atoms on the (111) planes of the FCC structure are arranged in a
hexagonal pattern just like the atoms on the (0002) planes of the HCP
structure. The only difference between the two structures is the way in
which these hexagonal sheets of atoms are arranged above one another.
In an HCP metal, the atoms in the second layer are above the hollows in
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i
HID

45

[001]

HEXAGONAL CLOSE-PACKED

FIG. 2-16. Comparison of FCC and HCP structures.
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j;

HH

FIG. 2-17. The structure of a-uranium.

59, 2588, 1937.')

(C. W. Jacob and B. E. Warren, J.A.C.S

the first layer and the atoms in the third layer are above the atoms in the

first layer, so that the layer stacking sequence can be summarized as

A B A B A B . . . . The first two atom layers of an FCC metal are put down
in the same way, but the atoms of the third layer are placed in the hollows

of the second layer and not until the fourth layer does a position repeat.

FCC stacking therefore has the sequence A B CABC ... . These stack-

ing schemes are indicated in the plan views shown in Fig. 2-1 (>.

Another example of the "association" of more than one atom with each

point of a Bravais lattice is given by uranium. The structure of the form

stable at room temperature, a-uranium, is illustrated in Fig. 2-17 by plan
and elevation drawings. In such drawings, the height of an atom (ex-

pressed as a fraction of the axial length) above the plane of the drawing

(which includes the origin of the unit cell and two of the cell axes) is given

by the numbers marked on each atom. The Bravais lattice is base-centered

orthorhombic, centered on the C face, and Fig. 2-17 shows how the atoms

occur in pairs through the structure, each pair associated with a lattice

point. There are four atoms per unit cell, located at Or/-}, y f ,

\ (\ + y} T> and i (2
"~

y) T Here we have an example of a variable

parameter y in the atomic coordinates. Crystals often contain such vari-

able parameters, which may have any fractional value without destroying

any of the symmetry elements of the structure. A quite different sub-

stance might have exactly the same structure as uranium except for slightly

different values of a, 6, c, and y. For uranium y is 0.105 0.005.

Turning to the crystal structure of compounds of unlike atoms, we find

that the structure is built up on the skeleton of a Bravais lattice but that

certain other rules must be obeyed, precisely because there are unlike

atoms present. Consider, for example, a crystal of AxEy which might be

an ordinary chemical compound, an intermediate phase of relatively fixed

composition in some alloy system, or an ordered solid solution. Then the

arrangement of atoms in AxEy must satisfy the following conditions:
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O CB+

[010]

(a) CsCl (b) NaCl

FIG. 2-18. The structures of (a) CsCl (common to CsBr, NiAl, ordered /3-brass,

ordered CuPd, etc.) and (b) NaCl (common to KC1, CaSe, Pbfe, etc.).

(1) Body-, face-, or base-centering translations, if present, must begin

and end on atoms of the same kind. For example, if the structure is based

on a body-centered Bravais lattice, then it must be possible to go from an

A atom, say, to another A atom by the translation ^ ^ f .

(2) The set of A atoms in the crystal and the set of B atoms must sep-

arately possess the same symmetry elements as the crystal as a whole,

since in fact they make up the crystal. In particular, the operation of

any symmetry element present must bring a given atom, A for example,

into coincidence with another atom of the same kind, namely A.

Suppose we consider the structures of a few common crystals in light

of the above requirements. Figure 2-18 illustrates the unit cells of two

ionic compounds, CsCl and NaCl. These structures, both cubic, are com-

mon to many other crystals and, wherever they occur, are referred to as

the "CsCl structure" and the "NaCl structure.
" In considering a crystal

structure, one of the most important things to determine is its Bravais

lattice, since that is the basic framework on which the crystal is built and

because, as we shall see later, it has a profound effect on the x-ray diffrac-

tion pattern of that crystal.

What is the Bravais lattice of CsCl? Figure 2-18 (a) shows that the

unit cell contains two atoms, ions really, since this compound is com-

pletely ionized even in the solid state: a caesium ion at and a chlo-

rine ion at ^ \ \ . The Bravais lattice is obviously not face-centered, but

we note that the body-centering translation \ \ \ connects two atoms.

However, these are unlike atoms and the lattice is therefore not body-



48 THE GEOMETRY OF CRYSTALS [CHAP. 2

centered. It is, by elimination, simple cubic. If one wishes, one may
think of both ions, the caesium at and the chlorine at \ \ ^, as be-

ing associated with the lattice point at 0. It is not possible, however,

to associate any one caesium ion with any particular chlorine ion and re-

fer to them as a CsCl molecule; the term "molecule" therefore has no real

physical significance in such a crystal, and the same is true of most inor-

ganic compounds and alloys.

Close inspection of Fig. 2-18(b) will show that the unit cell of NaCl

contains 8 ions, located as follows:

4 Na+ at 0, \ \ 0, \ |, and \ \

4 Cl~ at \\\, \, \ 0, and ^00.

The sodium ions are clearly face-centered, and we note that the face-center-

ing translations (0 0, \ \ 0, \ \, \ ^), when applied to the chlorine

ion at \\\, will reproduce all the chlorine-ion positions. The Bravais

lattice of NaCl is therefore face-centered cubic. The ion positions, inci-

dentally, may be written in summary form as:

4 Na4"

at + face-centering translations

4 Cl~ at \ \ \ + face-centering translations.

Note also that in these, as in all other structures, the operation of any

symmetry element possessed by the lattice must bring similar atoms or

ions into coincidence. For example, in Fig. 2-18(b), 90 rotation about

the 4-fold [010] rotation axis shown brings the chlorine ion at 1 \ into

coincidence with the chlorine ion at ^11, the sodium ion at 1 1 with

the sodium ion at 1 1 1, etc.

Elements and compounds often have closely similar structures. Figure

2-19 shows the unit cells of diamond and the zinc-blende form of ZnS.

Both are face-centered cubic. Diamond has 8 atoms per unit cell, lo-

cated at

000 + face-centering translations

1 i I + face-centering translations.

The atom positions in zinc blende are identical with these, but the first

set of positions is now occupied by one kind of atom (S) and the other by

a different kind (Zn).

Note that diamond and a metal like copper have quite dissimilar struc-

tures, although both are based on a face-centered cubic Bravais lattice.

To distinguish between these two, the terms "diamond cubic" and "face-

centered cubic'' are usually used.
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O Fe

C position

<

(a) (b)

FIG. 2-21. Structure of solid solutions: (a) Mo in Cr (substitutional) ; (b) C in

a-Fe (interstitial).

on the lattice of the solvent, while in the latter, solute atoms fit into the

interstices of the solvent lattice. The interesting feature of these struc-

tures is that the solute atoms are distributed more or less at random. For

example, consider a 10 atomic percent solution of molybdenum in chro-

mium, which has a BCC structure. The molybdenum atoms can occupy
either the corner or body-centered positions of the cube in a random, ir-

regular manner, and a small portion of the crystal might have the appear-
ance of Fig. 2-21 (a). Five adjoining unit cells are shown there, contain-

ing a total of 29 atoms, 3 of which are molybdenum. This section of the

crystal therefore contains somewhat more than 10 atomic percent molyb-

denum, but the next five cells would probably contain somewhat less.

Such a structure does not obey the ordinary rules of crystallography:
for example, the right-hand cell of the group shown does not have cubic

symmetry, and one finds throughout the structure that the translation

given by one of the unit cell vectors may begin on an atom of one kind

and end on an atom of another kind. All that can be said of this structure

is that it is BCC on the average, and experimentally we find that it displays

the x-ray diffraction effects proper to a BCC lattice. This is not surpris-

ing since the x-ray beam used to examine the crystal is so large compared
to the size of a unit cell that it observes, so to speak, millions of unit cells

at the same time and so obtains only an average "picture" of the structure.

The above remarks apply equally well to interstitial solid solutions.

These form whenever the solute atom is small enough to fit into the sol-

vent lattice without causing too much distortion. Ferrite, the solid solu-

tion of carbon in a-iron, is a good example. In the unit cell shown in

Fig. 2-21 (b), there are two kinds of "holes" in the lattice: one at |
(marked ) and equivalent positions in the centers of the cube faces and

edges, and one at J ^ (marked x) and equivalent positions. All the

evidence at hand points to the fact that the carbon atoms in ferrite are

located in the holes at f f and equivalent positions. On the average,

however, no more than about 1 of these positions in 500 unit cells is occu-
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the distance of closest approach in the three common metal structures:

BCC =
2

'

V2
2

a
>

(2-7)

HCP a (l)etwcen atoms in basal plane),

a2 c
2

(between atom in basal plane

\ 3 4 and neighbors above or below).

Values of the distance of closest approach, together with the crystal struc-

tures and lattice parameters of the elements, are tabulated in Appendix 13.

To a first approximation, the size of an atom is a constant. In other

words, an iron atom has the same size whether it occurs in pure iron, an

intermediate phase, or a solid solution This is a very useful fact to re-

member when investigating unknown crystal structures, for it enables us

to predict roughly how large a hole is necessary in a proposed structure to

accommodate a given atom. More precisely, it, is known that the size of

an atom has a slight dependence on its coordination number, which is the

number of nearest neighbors of the given atom arid which depends on

crystal structure. The coordination number of an atom in the FCC or

HCP structures is 12, in BCC 8, and in diamond cubic 4. The smaller

the coordination number, the smaller the volume occupied by a given

atom, and the amount of contraction to be expected with decrease in co-

ordination number is found to be:

Change in coordination Size contraction, percent

12 - 8 3

12 -> 6 4

12 -> 4 12

This means, for example, that the diameter of an iron atom is greater if

the iron is dissolved in FCC copper than if it exists in a crystal of BCC
a-iron. If it were dissolved in copper, its diameter would be approximately

2.48/0.97, or 2.56A.

The size of an atom in a crystal also depends on whether its binding is

ionic, covalent, metallic, or van der Waals, and on its state of ionization.

The more electrons are removed from a neutral atom the smaller it be-

comes, as shown strikingly for iron, whose atoms and ions Fe,

Fe"1
"

1
"4"

have diameters of 2.48, 1.66, and L34A, respectively.



54 THE GEOMETRY OF CRYSTALS [CHAP. 2

2-9 Crystal shape. We have said nothing so far about the shape of

crystals, preferring to concentrate instead on their interior structure.

However, the shape of crystals is, to the layman, perhaps their most char-

acteristic property, and nearly everyone is familiar with the beautifully

developed flat faces exhibited by natural minerals or crystals artificially

grown from a supersaturated salt solution. In fact, it was with a study

of these faces and the angles between them that the science of crystallog-

raphy began.

Nevertheless, the shape of crystals is really a secondary characteristic,

since it depends on, and is a consequence of, the interior arrangement of

atoms. Sometimes the external shape of a crystal is rather obviously re-

lated to its smallest building block, the unit cell, as in the little cubical

grains of ordinary table salt (NaCl has a cubic lattice) or the six-sided

prisms of natural quartz crystals (hexagonal lattice). In many other

cases, however, the crystal and its unit cell have quite different shapes;

gold, for example, has a cubic lattice, but natural gold crystals are octa-

hedral in form, i.e., bounded by eight planes of the form {111}.

An important fact about crystal faces was known long before there was

any knowledge of crystal interiors. It is expressed as the law of rational

indices, which states that the indices of naturally developed crystal faces

are always composed of small whole numbers, rarely exceeding 3 or 4.

Thus, faces of the form {
100

} , {
1 1 1

} , {
iTOO

) , {
210

) , etc., are observed but

not such faces as (510}, {719}, etc. We know today that planes of low

indices have the largest density of lattice points, and it is a law of crystal

growth that such planes develop at the expense of planes with high indices

and few lattice points.

To a metallurgist, however, crystals with well-developed faces are in

the category of things heard of but rarely seen. They occur occasionally

on the free surface of castings, in some electrodeposits, or under other

conditions of no external constraint. To a metallurgist, a crystal is most

usually a "grain," seen through a microscope in the company of many
other grains on a polished section. If he has an isolated single crystal, it

will have been artificially grown either from the melt, and thus have the

shape of the crucible in which it solidified, or by recrystallization, and

thus have the shape of the starting material, whether sheet, rod, or wire.

The shapes of the grains in a polycrystalline mass of metal are the re-

sult of several kinds of forces, all of which are strong enough to counter-

act the natural tendency of each grain to grow with well-developed flat

faces. The result is a grain roughly polygonal in shape with no obvious

aspect of crystallinity. Nevertheless, that grain is a crystal and just as

"crystalline" as, for example, a well-developed prism of natural quartz,

since the essence of crystallinity is a periodicity of inner atomic arrange-

ment and not any regularity of outward form.
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2-10 Twinned crystals. Some crystals have two parts symmetrically

related to one another. These, called twinned crystals, are fairly common
both in minerals and in metals and alloys.

The relationship between the two parts of a twinned crystal is described

by the symmetry operation which will bring one part into coincidence

with the other or with an extension of the other. Two main kinds of

twinning are distinguished, depending on whether the symmetry opera-

tion is (a) 180 rotation about an axis, called the twin axis, or (6) reflec-

tion across a plane, called the twin plane. The plane on which the two

parts of a twinned crystal are united is called the composition plane. In

the case of a reflection twin, the composition plane may or may not coin-

cide with the twin plane.

Of most interest to metallurgists, who deal mainly with FCC, BCC,
and HCP structures, are the following kinds of twins:

(1) Annealing twins, such as occur in FCC metals and alloys (Cu, Ni,

a-brass, Al, etc.), which have been cold-worked and then annealed to

cause recrystallization.

(2) Deformation twins, such as occur in deformed HCP metals (Zn,

Mg, Be, etc.) and BCC metals (a-Fe, W, etc.).

Annealing twins in FCC metals are rotation twins, in which the two

parts are related by a 180 rotation about a twin axis of the form (111).

Because of the high symmetry of the cubic lattice, this orientation rela-

tionship is also given by a 60 rotation about the twin axis or by reflec-

tion across the
{
111

j plane normal to the twin axis. In other words, FCC
annealing twins may also be classified as reflection twins. The twin plane

is also the composition plane.

Occasionally, annealing twins appear under the microscope as in Fig.

2-22 (a), with one part of a grain (E) twinned with respect to the other

part (A). The two parts are in contact on the composition plane (111)

which makes a straight-line trace on the plane of polish. More common,

however, is the kind shown in Fig. 2-22 (b). The grain shown consists of

three parts: two parts (Ai and A 2) of identical orientation separated by a

third part (B) which is twinned with respect to A\ and A 2 . B is known as

a twin band.

(a)

FIG. 2-22. Twinned grains: (a) and (b) FCC annealing twins; (c) HCP defor-

mation twin.
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C A B C

PLAN OF CRYSTAL PLAN OF TWIN

FIG. 2-23. Twin band in FCC lattice. Plane of main drawing is (110).
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twinning
shear

[211]

(1012)

twin plane

PLAN OF CRYSTAL PLAN OF TWIN

FIG. 2-24. Twin band in HCP lattice. Plane of main drawing is (1210).
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are said to be first-order, second-order, etc., twins of the parent crystal A.

Not all these orientations are new. In Fig. 2-22(b), for example, B may
be regarded as the first-order twin of AI, and A 2 as the first order twin

of B. -4-2 is therefore the second-order twin of AI but has the same orien-

tation as A i.

2-11 The stereographic projection. Crystal drawings made in perspec-

tive or in the form of plan and elevation, while they have their uses, are

not suitable for displaying the angular relationship between lattice planes

and directions. But frequently we are more interested in these angular

relationships than in any other aspect of the crystal, and we then need a

kind of drawing on which the angles between planes can be accurately

measured and which will permit graphical solution of problems involving

such angles. The stereographic projection fills this need.

The orientation of any plane in a crystal can be just as well represented

by the inclination of the normal to that plane relative to some reference

plane as by the inclination of the plane itself. All the planes in a crystal

can thus be represented by a set of plane normals radiating from some one

point within the crystal. If a reference sphere is now described about

this point, the plane normals will intersect the surface of the sphere in a

set of points called poles. This procedure is illustrated in Fig. 2-25, which

is restricted to the {100} planes of a cubic crystal. The pole of a plane

represents, by its position on the sphere, the orientation of that plane.

A plane may also be represented by the trace the extended plane makes

in the surface of the sphere, as illustrated in Fig. 2-26, where the trace

ABCDA represents the plane whose pole is PI. This trace is a great circle,

i.e., a circle of maximum diameter, if the plane passes through the center

of the sphere. A plane not passing through the center will intersect the

sphere in a small circle. On a ruled globe, for example, the longitude lines

100

010

FIG. 2-25.

crystal.

100

{1001 poles of a cubic

M
FIG. 2-26. Angle between two planes.
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(meridians) are great circles, while the latitude lines, except the equator,

are small circles.

The angle a between two planes is evidently equal to the angle between

their great circles or to the angle between their normals (Fig. 2-26). But
this angle, in degrees, can also be measured on the surface of the sphere

along the great circle KLMNK connecting the poles PI and P2 of the two

planes, if this circle has been divided into 360 equal parts. The measure-

ment of an angle has thus been transferred from the planes themselves

to the surface of the reference sphere.

Preferring, however, to measure angles on a flat sheet of paper rather

than on the surface of a sphere, we find ourselves in the position of the

, projection plane

- basic circle

reference

sphere

\
point of

projection

4
observer

SECTION THROUGH
AB AND PC

FIG. 2-27. The stereographic projection.
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geographer who wants to transfer a map of the world from a globe to a

page of an atlas. Of the many known kinds of projections, he usually

chooses a more or less equal-area projection so that countries of equal area

will be represented by equal areas on the map. In crystallography, how-

ever, we prefer the equiangular stereographic projection since it preserves

angular relationships faithfully although distorting areas. It is made by

placing a plane of projection normal to the end of any chosen diameter

of the sphere and using the other end of that diameter as the point of

projection. In Fig. 2-27 the projection plane is normal to the diameter

AB, and the projection is made from the point B. If a plane has its pole

at P, then the stereographic projection of P is at P', obtained by draw-

ing the line BP and producing it until it meets the projection plane. Al-

ternately stated, the stereographic projection of the pole P is the shadow

cast by P on the projection plane when a light source is placed at B. The

observer, incidentally, views the projection from the side opposite the

light source.

The plane NESW is normal to AB and passes through the center C.

It therefore cuts the sphere in half and its trace in the sphere is a great

circle. This great circle projects to form the basic circk N'E'S'W on the

projection, and all poles on the left-hand hemisphere will project within

this basic circle. Poles on the right-hand hemisphere will project outside

this basic circle, and those near B will have projections lying at very large

distances from the center. If we wish to plot such poles, we move the

point of projection to A and the projection plane to B and distinguish

the new set of points so formed by minus signs, the previous set (projected

from B) being marked with plus signs. Note that movement of the pro-

jection plane along AB or its extension merely alters the magnification;

we usually make it tangent to the sphere, as illustrated, but we can also

make it pass through the center of the sphere, for example, in which case

the basic circle becomes identical with the great circle NESW.
A lattice plane in a crystal is several steps removed from its stereo-

graphic projection, and it may be worth-while at this stage to summarize

these steps:

(1) The plane C is represented by its normal CP.

(2) The normal CP is represented by its pole P, which is its intersec-

tion with the reference sphere.

(3) The pole P is represented by its stereographic projection P'.

After gaining some familiarity with the stereographic projection, the

student will be able mentally to omit these intermediate steps and he will

then refer to the projected point P' as the pole of the plane C or, even

more directly, as the plane C itself.

Great circles on the reference sphere project as circular arcs on the pro-

jection or, if they pass through the points A and B (Fig. 2-28), as straight
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lines through the center of the projection. Projected great circles always
cut the basic circle in diametrically opposite points, since the locus of a

great circle on the sphere is a set of diametrically opposite points. Thus
the great circle ANBS in Fig. 2-28 projects as the straight line N'S' and
AWBE as WE'\ the great circle NGSH, which is inclined to the plane of

projection, projects as the circle arc N'G'S'. If the half great circle WAE
is divided into 18 equal parts and these points of division projected on
WAE'

,
we obtain a graduated scale, at 10 intervals, on the equator of

the basic circle.

FIG. 2-28. Stereographic projection of great and small circles.
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FIG. 2-29. Wulff net drawn to 2 intervals.

Small circles on the sphere also project as circles, but their projected

center does not coincide with their center on the projection. For example,

the circle AJEK whose center P lies on AWBE projects as AJ'E'K'. Its

center on the projection is at C, located at equal distances from A and ',

but its projected center is at P', located an equal number of degrees (45

in this case) from A and E'.

The device most useful in solving problems involving the stereographic

projection is the Wulff net shown in Fig. 2-29. It is the projection of a

sphere ruled with parallels of latitude and longitude on a plane parallel

to the north-south axis of the sphere. The latitude lines on a Wulff net

are small circles extending from side to side and the longitude lines (merid-

ians) are great circles connecting the north and south poles of the net.
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PROJECTION

Wulff net

FIG. 2-30. Stereographie projection superimposed on Wulff net for measurement
of angle between poles.

These nets are available in various sizes, one of 18-cm diameter giving an

accuracy of about one degree, which is satisfactory for most problems;
to obtain greater precision, either a larger net or mathematical calculation

must be used. Wulff nets are used by making the stereographic projec-

tion on tracing paper and with the basic circle of the same diameter as

that of the Wulff net; the projection is then superimposed on the Wulff

net and pinned at the center so that it is free to rotate with respect to the

net.

To return to our problem of the measurement of the angle between

two crystal planes, we saw in Fig. 2-26 that this angle could be measured

on the surface of the sphere along the great circle connecting the poles of

the two planes. This measurement can also be carried out on the stereo-

graphic projection if, and only if, the projected poles lie on a great circle.

In Fig. 2-30, for example, the angle between the planes* A and B or C
and D can be measured directly, simply by counting the number of de-

grees separating them along the great circle on which they lie. Note that

the angle C-D equals the angle E-F, there being the same difference in

latitude between C and D as between E and F.

If the two poles do not lie on a great circle, then the projection is rotated

relative to the Wulff net until they do lie on a great circle, where the de-

* We are here using the abbreviated terminology referred to above.
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(a)

FIG. 2-31. (a) Stereo-

graphic projection of poles

Pi and P2 of Fig. 2-26. (b)

Rotation of projection to put

poles on same great circle of Wulff

net. Angle between poles
= 30.

(b)
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sired angle measurement can then be made. Figure 2-31 (a) is a projec-

tion of the two poles PI and P2 shown in perspective in Fig. 2-26, and the

angle between them is found by the rotation illustrated in Fig. 2-3 l(b).

This rotation of the projection is equivalent to rotation of the poles on

latitude circles of a sphere whose north-south axis is perpendicular to the

projection plane.

As shown in Fig. 2-26, a plane may be represented by its trace in the

reference sphere. This trace becomes a great circle in the stereographic

projection. Since every point on this great circle is 90 from the pole of

the plane, the great circle may be found by rotating the projection until

the pole falls on the equator 'of the underlying Wulff net and tracing that

meridian which cuts the equator 90 from the pole, as illustrated in Fig.

2-32. If this is done for two poles, as in Fig. 2-33, the angle between the

corresponding planes may also be found from the angle of intersection of

the two great circles corresponding to these poles; it is in this sense that

the stereographic projection is said to be angle-true. This method of an-

gle measurement is not as accurate, however, as that shpwn in Fig. 2-3 l(b).

FIG. 2-32. Method of finding the trace of a pole (the pole P2
'

in Fig. 2-31).
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PROJECTION

FIG. 2-33. Measurement of an angle between two poles (Pi and P2 of Fig. 2-26)

by measurement of the angle of intersection of the corresponding traces.

PROJECTION

FIG. 2-34. Rotation of poles about NS axis of projection.
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We often wish to rotate poles around various axes. We have already

seen that rotation about an axis normal to the projection is accomplished

simply by rotation of the projection around the center of the Wulff net.

Rotation about an axis lying in the plane of the projection is performed

by, first, rotating the axis about the center of the Wulff net until it coin-

cides with the north-south axis if it does not already do so, and, second,

moving the poles involved along their respective latitude circles the re-

quired number of degrees. Suppose it is required to rotate the poles A\

and BI shown in Fig. 2-34 by 60 about the NS axis, the direction of mo-

tion being from W to E on the projection. Then AI moves to A 2 along

its latitude circle as shown. #1, however, can rotate only 40 before

finding itself at the edge of the projection; we must then imagine it to move

20 in from the edge to the point B[ on the other side of the projection,

staying always on its own latitude circle. The final position of this pole

on the positive side of the projection is at B2 diametrically opposite B\.

Rotation about an axis inclined to the plane of projection is accomplished

by compounding rotations about axes lying in and perpendicular to the

projection plane. In this case, the given axis must first be rotated into

coincidence with one or the other of the two latter axes, the given rota-

tion performed, and the axis then rotated back to its original position.

Any movement of the given axis must be accompanied by a similar move-

ment of all the poles on the projection.

For example, we may be required to rotate AI about BI by 40 in a

clockwise direction (Fig. 2-35). In (a) the pole to be rotated A } and the

rotation axis BI are shown in their initial position. In (b) the projection

has been rotated to bring BI to the equator of a Wulff net. A rotation of

48 about the NS axis of the net brings BI to the point B2 at the center

of the net; at the same time AI must go to A 2 along a parallel of latitude.

The rotation axis is now perpendicular to the projection plane, and the

required rotation of 40 brings A 2 to A 3 along a circular path centered

on B2 . The operations which brought BI to B2 must now be reversed in

order to return B2 to its original position. Accordingly, B2 is brought to

JBs and A% to A*, by a 48 reverse rotation about the NS axis of the net.

In (c) the projection has been rotated back to its initial position, construc-

tion lines have been omitted, and only the initial and final positions of the

rotated pole are shown. During its rotation about B^ AI moves along

the small circle shown. This circle is centered at C on the projection and

not at its projected center BI. To find C we use the fact that all points

on the circle must lie at equal angular distances from BI] in this case,

measurement on a Wulff net shows that both AI and A are 76 from B\.

Accordingly, we locate any other point, such as D, which is 76 from B\,

and knowing three points on the required circle, we can locate its center C.
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48

40

(b)

(a) (c)

FIG. 2-35. Rotation of a pole about an inclined axis.



2-11] THE 8TEREOGRAPHIC PROJECTION 71

In dealing with problems of crystal orientation a standard projection is

of very great value, since it shows at a glance the relative orientation of

all the important planes in the crystal. Such a projection is made by se-

lecting some important crystal plane of low indices as the plane of pro-

jection [e.g., (100), (110), (111), or (0001)] and projecting the poles of

various crystal planes onto the selected plane. The construction of a

standard projection of a crystal requires a knowledge of the interplanar

angles for all the principal planes of the crystal. A set of values applicable

to all crystals in the cubic system is given in Table 2-3, but those for

crystals of other systems depend on the particular axial ratios involved

and must be calculated for each case by the equations given in Appendix 1.

Much time can be saved in making standard projections by making use

of the zonal relation: the normals to all planes belonging to one zone are

coplanar and at right angles to the zone axis. Consequently, the poles

of planes of a zone will all lie on the same great circle on the projection,

and the axis of the zone will be at 90 from this great circle. Furthermore,

important planes usually belong to more than one zone and their poles

are therefore located at the intersection of zone circles. It is also helpful

to remember that important directions, which in the cubic system are

normal to planes of the same indices, are usually the axes of important

zones.

Figure 2-36 (a) shows the principal poles of a cubic crystal projected on

the (001) plane of the crystal or, in other words, a standard (001) projec-

tion. The location of the {100} cube poles follows immediately from Fig.

2-25. To locate the {110} poles we first note from Table 2-3 that they

must lie at 45 from {100} poles, which are themselves 90 apart. In

100 100

no

no

110

1)10 Oil

no

111

FIG. 2-36. Standard projections of cubic crystals, (a) on (001) and (b) on (Oil).
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TABLE 2-3

INTERPLANAR ANGLES (IN DEGREES) IN CUBIC CRYSTALS BETWEEN

PLANES OF THE FORM \hik\li\ AND

Largely from R. M. Bozorth, Phys. Rev. 26, 390 (1925); rounded
off to the nearest 0.1.
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[112]
zone

mi]

1110]

[001]

zone

[100] //
zone

FIG. 2-37. Standard (001) projection of a cubic crystal. (From Structure of

Metals, by C. S. Barrett, McGraw-Hill Book Company, Inc., 1952.)

this way we locate (Oil), for example, on the great circle joining (001)

and (010) and at 45 from each. After all the {110} poles are plotted,

we can find the
{
111

} poles at the intersection of zone circles. Inspection

of a crystal model or drawing or use of the zone relation given by JEq.

(2-3) will show that (111), for example, belongs to both the zone [101]

and the zone [Oil]. The pole of (111) is thus located at the intersection

of the zone circle through (OlO), (101), and (010) and the zone circle

through (TOO), (Oil), and (100). This location may be checked by meas-

urement of its angular distance from (010) or (100), which should be

54.7. The (Oil) standard projection shown in Fig. 2-36(b) is plotted in

the same manner. Alternately, it may be constructed by rotating all the

poles in the (001) projection 45 to the left about the NS axis of the pro-

jection, since this operation will bring the (Oil) pole to the center. In

both of these projections symmetry symbols have been given each pole

in conformity with Fig. 2-6(b), and it will be noted that the projection

itself has the symmetry of the axis perpendicular to its plane, Figs. 2-36(a)

and (b) having 4-fold and 2-fold symmetry, respectively.
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Jl20

T530,

1321
0113.

foil

no. ioTs .

53TO

320

FIG. 2-38. Standard (0001) projection for zinc (hexagonal, c/a = 1.86). (From
Structure of Metals, by C. S. Barrett, McGraw-Hill Book Company, Inc., 1952.)

Figure 2-37 is a standard (001) projection of a cubic crystal with con-

siderably more detail and a few important zones indicated. A standard

(0001) projection of a hexagonal crystal (zinc) is given in Fig. 2-38.

It is sometimes necessary to determine the Miller indices of a given

pole on a crystal projection, for example the pole A in Fig. 2-39(a), which

applies to a cubic crystal. If a detailed standard projection is available,

the projection with the unknown pole can be superimposed on it and its

indices will be disclosed by its coincidence with one of the known poles

on the standard. Alternatively, the method illustrated in Fig. 2-39 may
be used. The pole A defines a direction in space, normal to the plane

(hkl) whose indices are required, and this direction makes angles p, <r, r

with the coordinate axes a, b, c. These angles are measured on the pro-

jection as shown in (a). Let the perpendicular distance between the ori-

gin and the (hkl) plane nearest the origin be d [Fig. 2-39(b)], and let the

direction cosines of the line A be p, g, r. Therefore

cosp
d

o/fc'

cos a
d

bjk

d
cos r
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100

(a) (b)

FIG. 2-39. Determination of the Miller indices of a pole.

h:k:l = pa:qb:rc. (2-8)

For the cubic system we have the simple result that the Miller indices

required are in the same ratio as the direction cosines.

The lattice reorientation caused by twinning can be clearly shown on

the stereographic projection. In Fig. 2-40 the open symbols are the { 100}

poles of a cubic crystal projected on the (OOl)jplane.
If this crystal is

FCC, then one of its possible twin planes is (111), represented on the

projection both by its pole and its trace. The cube poles of the twin

formed by reflection in this plane are shown as solid symbols; these poles

are located by rotating the projection on a Wulff net until the pole of the

twin plane lies on the equator, after which the cube poles of the crystal

can be moved along latitude circles of the net to their final position.

The main principles of the stereographic projection have now been pre-

sented, and we will have occasion to use them later in dealing with various

practical problems in x-ray metal-

lography. The student is reminded,

however, that a mere reading of this

section is not sufficient preparation

for such problems. In order to gain

real familiarity with the stereographic

projection, he must practice, with

Wulff net and tracing paper, the

operations described above and solve

problems of the kind given below.

Only in this way will he be able to

read and manipulate the stereo-

graphic projection with facility and

think in three dimensions of what is

represented in two.

100

010 010

(111)

twin plane 100

FIG. 2-40. Stereographic projection

of an FCC crystal and its twin.
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PROBLEMS

2-1. Draw the following planes and directions in a tetragonal unit cell: (001),

(Oil), (113), [110], [201], [I01]._

2-2. Show by means of a (110) sectional drawing that [111] is perpendicular to

(111) in the cubic system, but not, in general, in the tetragonal system.

2-3. In a drawing of a hexagonal prism, indicate the following planes and di-

rections: (1210), (1012), (T011), [110], [111), [021].

2-4. Derive Eq. (2-2) of the text.

2-5. Show that the planes (110), (121), and (312) belong to the zone [111]^
2-6. Do the following planes all belong to the same zone: (110), (311), (132)?

If so, what is the zone axis? Give the indices of any other plane belonging to this

zone.

2-7. Prepare a cross-sectional drawing of an HCP structure which will show that

all atoms do not have identical surroundings and therefore do not lie on a point

lattice.

2-8. Show that c/a for hexagonal close packing of spheres is 1.633.

2-9. Show that the HCP structure (with c/a = 1.633) and the FCC structure

are equally close-packed, and that the BCC structure is less closely packed

than either of the former.

2-10. The unit cells of several orthorhombic crystals are described below.

What is the Bravais lattice of each and how do you know?

(a) Two atoms of the same kind per unit cell located at J 0, \.

(6) Four atoms of the same kind per unit cell located at z, J z, f (^ + z),

00(| + 2).

(c) Four atoms of the same kind per unit cell located at x y z, x y z, (J + x)

(I
-

y) *, (I -*)(* + y) *

(d) Two atoms of one kind A located at J 0, J J; and two atoms of another

kind B located at \, \\ 0.

2-11. Make a drawing, similar to Fig. 2-23, of a (112) twin in a BCC lattice

and show the shear responsible for its formation. Obtain the magnitude of the

shear strain graphically.

2-12. Construct a Wulff net, 18 cm in diameter and graduated at 30 intervals,

by the use of compass, dividers, and straightedge only. Show all construction lines.

In some of the following problems, the coordinates of a point on a stereographic pro-

jection are given in terms of its latitude and longitude, measured from the center of the

projection. Thus, the N pole is 90N, 0E, the E pole is 0N, 90E, etc.

2-13. Plane A is represented on a stereographic projection by a great circle

passing through the N and S poles and the point 0N, 70W. The pole of plane B
is located at 30N, 50W.

(a) Find the angle between the two planes.

(b) Draw the great circle of plane B and demonstrate that the stereographic

projection is angle-true by measuring With a protractor the angle between

the great circles of A and B.
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2-14. Pole A, whose coordinates are 20N, 50E, is to be rotated about the

axes described below. In each case, find the coordinates of the final position of

pole A and show the path traced out during its rotation.

(a) 100 rotation about the NS axis, counterclockwise looking from N to 8.

(b) 60 rotation about an axis normal to the plane of projection, clockwise to

the observer.

(c) 60 rotation about an inclined axis B, whose coordinates are 10S, 30W,
clockwise to the observer.

2-16. Draw a standard (111) projection of a cubic crystal, showing all poles of

the form { 100} , {
1 10

1 , (111) and the important zone circles between them. Com-

pare with Figs. 2-36(a) and (b).

2-16. Draw a standard (001) projection of white tin (tetragonal, c/a =
0.545),

showing all poles of the form
1
001

1 , {
100 ) , {

1 10
) , (

01 1
1 , {

1 1 1
)
and the important

zone circles between them. Compare with Fig. 2-36(a).

2-17. Draw a standard (0001) projection of beryllium (hexagonal, c/a = 1.57),

showing all poles of the form {2l70j, {lOTO}, {2TTl|, (10Tl| and the important

zone circles between them. Compare with Fig. 2-38.

2-18. On a standard (001) projection of a cubic crystal, in the orientation of

Fig. 2~36(a), the pole of a certain plane has coordinates 53.3S, 26.6E. What
are its Miller indices? Verify your answer by comparison of measured angles

with those given in Table 2-3.

2-19. Duplicate the operations shown in Fig. 2-40 and thus find the locations

of the cube poles of a (TTl) reflection twin in a cubic crystal. What are their

coordinates?

2-20. Show that the twin orientation found in Prob. 2- 1 9 can also be obtained

by

(a) Reflection in a 1112) plane. Which one?

(6) 180 rotation about a (ill) axis. Which one?

(c) 60 rotation about a (ill) axis. Which one?

In (c), show the paths traced out by the cube poles during their rotation.



CHAPTER 3

DIFFRACTION I: THE DIRECTIONS OF DIFFRACTED BEAMS

3-1 Introduction. After our preliminary survey of the physics of x-rays

and the geometry of crystals, we can now proceed to fit the two together

and discuss the phenomenon of x-ray diffraction, which is an interaction

of the two. Historically, this is exactly the way this field of science de-

veloped. For many years, mineralogists and crystallographers had accumu-

lated knowledge about crystals, chiefly by measurement of interfacial

angles, chemical analysis, and determination of physical properties. There

was little knowledge of interior structure, however, although some very

shrewd guesses had been made, namely, that crystals were built up by

periodic repetition of some unit, probably an atom or molecule, and that

these units were situated some 1 or 2A apart. On the other hand, there

were indications, but only indications, that x-rays might be electromag-

netic waves about 1 or 2A in wavelength. In addition, the phenomenon
of diffraction was well understood, and it was known that diffraction, as

of visible light by a ruled grating, occurred whenever wave motion en-

countered a set of regularly spaced scattering objects, provided that the

wavelength of the wave motion was of the same order of magnitude as the

repeat distance between the scattering centers.

Such was the state of knowledge in 1912 when the German physicist

von Laue took up the problem. He reasoned that, if crystals were com-

posed of regularly spaced atoms which might act as scattering centers for

x-rays, and if x-rays were electromagnetic waves of wavelength about

equal to the interatomic distance in crystals, then it should be possible to

diffract x-rays by means of crystals. Under his direction, experiments to

test this hypothesis were carried out: a crystal of copper sulfate was set

up in the path of a narrow beam of x-rays and a photographic plate was

arranged to record the presence of diffracted beams, if any. The very

first experiment was successful and showed without doubt that x-rays

were diffracted by the crystal out of the primary beam to form a pattern

of spots on the photographic plate. These experiments proved, at one

and the same time, the wave nature of x-rays and the periodicity of the

arrangement of atoms within a crystal. Hindsight is always easy and

these ideas appear quite simple to us now, when viewed from the vantage

point of more than forty years' development of the subject, but they were

not at all obvious in 1912, and von Laue's hypothesis and its experimental

verification must stand as a great intellectual achievement.

78
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The account of these experiments was read with great interest by two

English physicists, W. H. Bragg and his son W. L. Bragg. The latter,

although only a young student at the time it was still the year 1912

successfully analyzed the Laue experiment and was able to express the

necessary conditions for diffraction in a somewhat simpler mathematical

form than that used by von Laue. He also attacked the problem of crystal

structure with the new tool of x-ray diffraction and, in the following year,

solved the structures of NaCl, KC1, KBr, and KI, all of which have the

NaCl structure; these were the first complete crystal-structure determina-

tions ever made.

3-2 Diffraction. Diffraction is due essentially to the existence of cer-

tain phase relations between two or more waves, and it is advisable, at

the start, to get a clear notion of what is meant by phase relations. Con-

sider a beam of x-rays, such as beam 1 in Fig. 3-1, proceeding from left to

right. For convenience only, this beam is assumed to be plane-polarized

in order that we may draw the electric field vector E always in one plane.

We may imagine this beam to be composed of two equal parts, ray 2 and

ray 3, each of half the amplitude of beam 1. These two rays, on the wave

front AA', are said to be completely in phase or in step; i.e., their electric-

field vectors have the same magnitude and direction at the same instant

at any point x measured along the direction of propagation of the wave.

A wave front is a surface perpendicular to this direction of propagation.

FIG. 3-1. Effect of path difference on relative phase.
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Now consider an imaginary experiment, in which ray 3 is allowed to

continue in a straight line but ray 2 is diverted by some means into a

curved path before rejoining ray 3. What is the situation on the wave

front BB' where both rays are proceeding in the original direction? On

this front, the electric vector of ray 2 has its maximum value at the instant

shown, but that of ray 3 is zero. The two rays are therefore out of phase.

If we add these two imaginary components of the beam together, we find

that beam 1 now has the form shown in the upper right of the drawing.

If the amplitudes of rays 2 and 3 are each 1 unit, then the amplitude of

beam 1 at the left is 2 units and that of beam 1 at the right is 1.4 units, if

a sinusoidal variation of E with x is assumed.

Two conclusions may be drawn from this illustration :

(1) Differences in the length of the path traveled lead to differences in

phase.

(2) The introduction of phase differences produces a change in ampli-

tude.

The greater the path difference, the greater the difference in phase, since

the path difference, measured in wavelengths, exactly equals the phase

difference, also measured in wavelengths. If the diverted path of ray 2 in

Fig. 3-1 were a quarter wavelength longer than shown, the phase differ-

ence would be a half wavelength. The two rays would then be completely

out of phase on the wave front BB' and beyond, and they would therefore

annul each other, since at any point their electric vectors would be either

both zero or of the same magnitude and opposite in direction. If the dif-

ference in path length were made three quarters of a wavelength greater

than shown, the two rays would be one complete wavelength out of phase,

a condition indistinguishable from being completely in phase since ir +

cases the two waves would combine to form a beam of amplitude 2

just like the original beam. We may conclude that two rays are

pletely in phase whenever their path lengths differ either by zero or >

whole number of wavelengths.

Differences in the path length of various rays arise quite naturally v

we consider how a crystal diffracts x-rays. Figure 3-2 shows a section

crystal, its atoms arranged on a set of parallel planes A, 5, C, D,

normal to the plane of the drawing and spaced a distance d' apart. Ass

that a beam of perfectly parallel, perfectly monochromatic x-rays of \v

length X is incident on this crystal at an angle 0, called the Bragg a,

where is measured between the incident beam and the particular cr;

planes under consideration.

We wish to know whether this incident beam of x-rays will be diffrd

by the crystal and, if so, under what conditions. A diffracted beam me

defined as a beam composed of a large number of scattered rays mutually

forcing one another. Diffraction is, therefore, essentially a scattering-
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We have here regarded a diffracted beam as being built up of rays scat-

tered by successive planes of atoms within the crystal. It would be a

mistake to assume, however, that a single plane of atoms A would diffract

x-rays just as the complete crystal does but less strongly. Actually, the

single plane of atoms would produce, not only the beam in the direction 1'

as the complete crystal does, but also additional beams in other directions,

some of them not confined to the plane of the drawing. These additional

beams do not exist in the diffraction from the complete crystal precisely

because the atoms in the other planes scatter beams which destructively

interfere with those scattered by the atoms in plane A, except in the direc-

tion I
7

.

At first glance, the. diffraction of x-rays by crystals and the reflection of

visible light by mirrors appear very similar, since in both phenomena the

angle of incidence is equal to the angle of reflection. It seems that we

might regard the planes of atoms as little mirrors which "reflect" the

x-rays. Diffraction and reflection, however, differ fundamentally in at

least three aspects:

(1) The diffracted beam from a crystal is built up of rays scattered by
all the atoms of the crystal which lie in the path of the incident beam.

The reflection of visible light takes place in a thin surface layer only.

(2) The diffraction of monochromatic x-rays takes place only at those

particular angles of incidence which satisfy the Bragg law. The reflection

of visible light takes place at any angle of incidence.

(3) The reflection of visible light by a good mirror is almost 100 percent

efficient. The intensity of a diffracted x-ray beam is extremely small com-

pared to that of the incident beam.

Despite these differences, we often speak of "reflecting planes" and

"reflected beams" when we really mean diffracting planes and diffracted

beams. This is common usage and, from now on, we will frequently use

these terms without quotation marks but with the tacit understanding that

we really mean diffraction and not reflection.
*

To sum up, diffraction is essentially a scattering phenomenon in which

a large number of atoms cooperate. Since the atoms are arranged period-

ically on a lattice, the rays scattered by them have definite phase relations

between them
;
these phase relations are such that destructive interference

occurs in most directions of scattering, but in a few directions constructive

interference takes place and diffracted beams are formed. The two essen-

tials are a wave motion capable of interference (x-rays) and a set of periodi-

cally arranged scattering centers (the atoms of a crystal).

* For the sake of completeness, it should be mentioned that x-rays can be totally

reflected by a solid surface, just like visible light by a mirror, but only at very
small angles of incidence (below about one degree). This phenomenon is of little

practical importance in x-ray metallography and need not concern us further.
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3-3 The Bragg law. Two geometrical facts are worth remembering:

(1) The incident beam, the normal to the reflecting plane, and the dif-

fracted beam are always coplanar.

(2) The angle between the diffracted beam and the transmitted beam

is always 26. This is known as the diffraction angle, and it is this angle,

rather than 6, which is usually measured experimentally.

As previously stated, diffraction in general occurs only when the wave-

length of the wave motion is of the same order of magnitude as the repeat

distance between scattering centers. This requirement follows from the

Bragg law. Since sin cannot exceed unity, we may write

n\
= sin0<l. (3-2)

2rf'

Therefore, n\ must be less than 2d'. For diffraction, the smallest value of

n is 1. (n = corresponds to the beam diffracted in the same direction

as the transmitted beam. It cannot be observed.) Therefore the condi-

tion for diffraction at any observable angle 26 is

X < 2d'. (3-3)

For most sets of crystal planes d
r
is of the order of 3A or less, which means

that X cannot exceed about 6A. A crystal could not possibly diffract ultra-

violet radiation, for example, of wavelength about 500A. On the other

hand, if X is very small, the diffraction angles are too small to be con-

veniently measured.

The Bragg law may be written in the form

X = 2 - sin 6. (3-4)
n

Since the coefficient of X is now unity, we can consider a reflection of any

order as a first-order reflection from planes, real or fictitious, spaced at a

distance 1/n of the previous spacing. This turns out to be a real con-

venience, so we set d = d'/n and write the Bragg law in the form

(3-5)

This form will be used throughout this book.

This usage is illustrated by Fig. 3-3. Consider the second-order 100 re-

flection* shown in (a). Since it is second-order, the path difference ABC
between rays scattered by adjacent (100) planes must be Jwo whole wave-

*This means the ^reflection from the (100) planes. Conventionally, the Miller

indices of a reflecting plane hkl, written without parentheses, stand for the re-

flected beam from the plane (hkl).
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(100)

(200)

FIG. 3-3. Equivalence of (a) a second-order 100 reflection and (b) a first-order

200 reflection.

lengths. If there is no real plane of atoms between the (100) planes, we

can always imagine one as in Fig. 3-3 (b), where the dotted plane midway
between the (100) planes forms part of the (200) set of planes. For the

same reflection as in (a), the path difference DEF between rays scattered

by adjacent (200) planes is now only one whole wavelength, so that this

reflection can properly be called a first-order 200 reflection. Similarly,

300, 400, etc., reflections are equivalent to reflections of the third, fourth,

etc., orders from the (100) planes. In general, an nth-order reflection

from (hkl) planes of spacing d f

may be considered as a first-order reflection

from the (nh nk nl) planes of spacing d = d'/n. Note that this convention

is in accord with the definition of Miller indices since (nh nk nl) are the

Miller indices of planes parallel to the (hkl) planes but with 1/n the spacing

of the latter.

3-4 X-ray spectroscopy. Experimentally, the Bragg law can be uti-

lized in two ways. By using x-rays of known wavelength X and measuring

6, we can determine the spacing d of various planes in a crystal: this is

structure analysis and is the subject,

in one way or another, of the greater

part of this book. Alternatively, we

can use a crystal with planes of known

spacing d, measure 0, and thus deter-

mine the wavelength X of the radia-

tion used: this is x-ray spectroscopy.

The essential features of an x-ray

spectrometer are shown in Fig. 3-4.

X-rays from the tube T are incident

on a crystal C which may be set at

any desired angle to the incident FIG. 3-4. The x-ray spectrometer.
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beam by rotation about an axis through 0, the center of the spectrometer

circle. D is an ionization chamber or some form of counter which measures

the intensity of the diffracted x-rays; it can also be rotated about and

set at any desired angular position. The crystal is usually cut or cleaved

so that a particular set of reflecting planes of known spacing is parallel to

its surface, as suggested by the drawing. In use, the crystal is positioned

so that its reflecting planes make some particular angle 6 with the incident

beam, and D is set at the corresponding angle 26. The intensity of the

diffracted beam is then measured and its wavelength calculated from the

Bragg law, this procedure being repeated for various angles 6. It is in this

way that curves such as Fig. 1-5 and the characteristic wavelengths tabu-

lated in Appendix 3 were obtained. W. H. Bragg designed and used the

first x-ray spectrometer, and the Swedish physicist Siegbahn developed it

into an instrument of very high precision.

Except for one application, the subject of fluorescent analysis described

in Chap. 15, we are here concerned with x-ray spectroscopy only in so

far as it concerns certain units of wavelength. Wavelength measurements

made in the way just described are obviously relative, and their accuracy

is no greater than the accuracy with which the plane spacing of the crystal

is known. For a cubic crystal this spacing can be obtained independently

from a measurement of its density. For any crystal,

weight of atoms in unit cell

Density = - -
>

volume of unit cell

ZA
p = , (3-6)

NV

where p = density (gm/cm
3
), SA = sum of the atomic weights of the

atoms in the unit cell, N = Avogadro's number, and V = volume of unit

cell (cm
3
). NaCl, for example, contains four sodium atoms and four chlo-

rine atoms per unit cell, so that

SA = 4(at. wt Na) + 4 (at. wt Cl).

If this value is inserted into Eq. (3-6), together with Avogadro's number

and the measured value of the density, the volume of the unit cell V can

be found. Since NaCl is cubic, the lattice parameter a is given simply by
the cube root of V. From this value of a and the cubic plane-spacing

equation (Eq. 2-5), the spacing of any set of planes can be found.

In this way, Siegbahn obtained a value of 2.8 14A for the spacing of the

(200) planes of rock salt, which he could use as a basis for wavelength
measurements. However, he was able to measure wavelengths in terms

of this spacing much more accurately than the spacing itself was known,
in the sense that he could make relative wavelength measurements accurate
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to six significant figures whereas the spacing in absolute units (angstroms)
was known only to four. It was therefore decided to define arbitrarily

the (200) spacing of rock salt as 2814.00 X units (XU), this new unit being
chosen to be as nearly as possible equal to 0.001A.

Once a particular wavelength was determined in terms of this spacing,
the spacing of a given set of planes in any other crystal could be measured.

Siegbahn thus measured the (200) spacing of calcite, which he found more
suitable as a standard crystal, and thereafter based all his wavelength
measurements on this spacing. Its value is 3029.45 XU. Later on, the

kilo X unit (kX) was introduced, a thousand times as large as the X unit

and nearly equal to an angstrom. The kX unit is therefore defined by the

relation

(200) plane spacing of calcite
1 kX = (37)

3.02945
V ;

On this basis, Siegbahn and his associates made very accurate measure-

ments of wavelength in relative (kX) units and these measurements form
the basis of most published wavelength tables.

It was found later that x-rays could be diffracted by a ruled grating
such as is used in the spectroscopy of visible light, provided that the angle
of incidence (the angle between the incident beam and the plane of the

grating) is kept below the critical angle for total reflection. Gratings thus

offer a means of making absolute wavelength measurements, independent
of any knowledge of crystal structure. By a comparison of values so ob-

tained with those found by Siegbahn from crystal diffraction, it was pos-
sible to calculate the following relation between the relative and absolute

units:

(3-8)1 kX = 1.00202A

This conversion factor was decided on in 1946 by international agreement,
and it was recommended that, in the future, x-ray wavelengths and the

lattice parameters of crystals be expressed in angstroms. If V in Eq. (3-6)

for the density of a crystal is expressed in A3
(not in kX3

) and the currently

accepted value of Avogadro's number inserted, then the equation becomes

1.66020S4
P = (3-9)

The distinction between kX and A is unimportant if no more than

about three significant figures are involved. In precise work, on the other

hand, units must be correctly stated, and on this point there has been con-

siderable confusion in the past. Some wavelength values published prior

to about 1946 are stated to be in angstrom units but are actually in kX
units. Some crystallographers have used such a value as the basis for a
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precise measurement of the lattice parameter of a crystal and the result

has been stated, again incorrectly, in angstrom units. Many published

parameters are therefore in error, and it is unfortunately not always easy

to determine which ones are and which ones are not. The only safe rule

to follow, in stating a precise parameter, is to give the wavelength of the

radiation used in its determination. Similarly, any published table of

wavelengths can be tested for the correctness of its units by noting the

wavelength given for a particular characteristic line, Cu Ka\ for example.

The wavelength of this line is 1.54051A or 1.53740 kX.

3-5 Diffraction directions. What determines the possible directions,

i.e., the possible angles 20, in which a given crystal can diffract a beam of

monochromatic x-rays? Referring to Fig. 3-3, we see that various diffrac-

tion angles 20i, 202 ,
203 ,

... can be obtained from the (100) planes by

using a beam incident at the correct angle 0i, 2 , 0s, and producing

first-, second-, third-, . . . order reflections. But diffraction can also be

produced by the (110) planes, the (111) planes, the (213) planes, and so

on. We obviously need a general relation which will predict the diffrac-

tion angle for any set of planes. This relation is obtained by combining

the Bragg law and the plane-spacing equation (Appendix 1) applicable to

the particular crystal involved.

For example, if the crystal is cubic, then

X = 2d sin

and
1 (ft

2 + fc
2 + I

2
}

Combining these equations, we have

X2

sin
2 = -

(h
2 + k2 + l

2
). (3-10)

4a2

This equation predicts, for a particular incident wavelength X and a par-

ticular cubic crystal of unit cell size a, all the possible Bragg angles at

which diffraction can occur from the planes (hkl). For (110) planes, for

example, Eq. (3-10) becomes

If the crystal is tetragonal, with axes a and c, then the corresponding gen-

eral equation is

4 a2 c
2

and similar equations can readily be obtained for the other crystal systems.
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These examples show that the directions in which a beam of given wave-

length is diffracted by a given set of lattice planes is determined by the

crystal system to which the crystal belongs and its lattice parameters. In

short, diffraction directions are determined solely by the shape and size of the

unit cell. This is an important point and so is its converse: all we can pos-

sibly determine about an unknown crystal by measurements of the direc-

tions of diffracted beams are the shape and size of its unit cell. We will

find, in the next chapter, that the intensities of diffracted beams are deter-

mined by the positions of the atoms within the unit cell, and it follows that

we must measure intensities if we are to obtain any information at all

about atom positions. We will find, for many crystals, that there are

particular atomic arrangements which reduce the intensities of some dif-

fracted beams to zero. In such a case, there is simply no diffracted beam

at the angle predicted by an equation of the type of Eqs. (3-10) and (3-11).

It is in this sense that equations of this kind predict all possible diffracted

beams.

3-6 Diffraction methods. Diffraction can occur whenever the Bragg

law, X = 2d sin 0, is satisfied. This equation puts very stringent condi-

tions on X and 6 for any given crystal. With monochromatic radiation,

an arbitrary setting of a single crystal in a beam of x-rays will not in gen-

eral produce any diffracted beams. Some way of satisfying the Bragg law

must be devised, and this can be done by continuously varying either X

or 6 during the experiment. The ways in which these quantities are varied

distinguish the three main diffraction methods:

Laue method Variable Fixed

Rotating-crystal method Fixed Variable (in part)

Powder method Fixed Variable

The Laue method was the first diffraction method ever used, and it re-

produces von Laue's original experiment. A beam of white radiation, the

continuous spectrum from an x-ray tube, is allowed to fall on a fixed single

crystal. The Bragg angle 6 is therefore fixed for every set of planes in the

crystal, and each set picks out and diffracts that particular wavelength

which satisfies the Bragg law for the particular values of d and involved.

Each diffracted beam thus has a different wavelength.

There are two variations of the Laue method, depending on the relative

positions of source, crystal, and film (Fig. 3-5). In each, the film is flat

and placed perpendicular to the incident beam. The film in the trans-

mission Laue method (the original Laue method) is placed behind the crys-

tal so as to record the beams diffracted in the forward direction. This
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(a) (b)

FIG. 3-5. (a) Transmission and (b) back-reflection Laue methods.

method is so called because the diffracted beams are partially transmitted

through the crystal. In the back-reflection Laue method the film is placed

between the crystal and the x-ray source, the incident beam passing through

a hole in the film, and the beams diffracted in a backward direction are

recorded.

In either method, the diffracted beams form an array of spots on the

film as shown in Fig. 3-6. This array of spots is commonly called a pat-

tern, but the term is not used in any strict sense and does not imply any

periodic arrangement of the spots. On the contrary, the spots are seen

to lie on certain curves, as shown by the lines drawn on the photographs.

(a)

FIG. <H*. (a) Transmission and (b) back-reflection Laue patterns of an alumi-
num crystal (cubic). Tungsten radiation, 30 kv, 19 ma.
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Z.A.

(b)

FIG. 3-7. Location of Laue spots (a) on ellipses in transmission method and (b)

on hyperbolas in back-reflection method. (C = crystal, F film, Z.A. = zone

axis.)

These curves are generally ellipses or hyperbolas for transmission patterns

[Fig. 3-6(a)] and hyperbolas for back-reflection patterns [Fig. 3-6(b)].

The spots lying on any one curve are reflections from planes belonging

to one zone. This is due to the fact that the Laue reflections from planes

of a zone all lie on the surface of an imaginary cone whose axis is the zone

axis. As shown in Fig. 3-7 (a), one side of the cone is tangent to the trans-

mitted beam, and the angle of inclination <f> of the zone axis (Z.A.) to the

transmitted beam is equal to the semi-apex angle of the cone. A film

placed as shown intersects the cone in an imaginary ellipse passing through
the center of the film, the diffraction spots from planes of a zone being

arranged on this ellipse. When the angle <t> exceeds 45, a film placed

between the crystal and the x-ray source to record the back-reflection pat-

tern will intersect the cone in a hyperbola, as shown in Fig. 3-7 (b).
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Z.A.

FIG. 3-8. Stereographic projection

of transmission Laue method.

FIG. 3-9. Rotating-crystal method.

The fact that the Laue reflections from planes of a zone lie on the surface

of a cone can be nicely demonstrated with the stereographic projection.

In Fig. 3-8, the crystal is at the center of the reference sphere, the incident

beam 7 enters at the left, and the transmitted beam T leaves at the right.

The point representing the zone axis lies on the circumference of the basic

circle and the poles of five planes belonging to this zone, PI to P5 ,
lie on

the great circle shown. The direction of the beam diffracted by any one

of these planes, for example the plane P2 ,
can be found as follows. 7, P2 ,

D2

(the diffraction direction required), and T are all coplanar. Therefore 7>2

lies on the great circle through 7, P2 ,
and T. The angle between 7 and P2

is (90 0), and 7)2 must lie at an equal angular distance on the other

side of P2 ,
as shown. The diffracted beams so found, D\ to Z>5 ,

are seen

to lie on a small circle, the intersection with the reference sphere of a cone

whose axis is the zone axis.

The positions of the spots on the film, for both the transmission and the

back-reflection method, depend on the orientation of the crystal relative

to the incident beam, and the spots themselves become distorted and

smeared out if the crystal has been bent or twisted in any way. These

facts account for the two main uses of the Laue methods: the determina-

tion of crystal orientation and the assessment of crystal perfection.

In the rotating-crystal method a single crystal is mounted with one of

its axes, or some important crystallographic direction, normal to a mono-

chromatic x-ray beam. A cylindrical film is placed around it and the

crystal is rotated about the chosen direction, the axis of the film coinciding

with the axis of rotation of the crystal (Fig. 3-9). As the crystal rotates,
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FIG. 3-10. Rotating-crystal pattern of a quartz crystal (hexagonal) rotated

about its c axis. Filtered copper radiation. (The streaks are due to the white radi-

ation not removed by the filter.) (Courtesy of B. E. Warren.)

a particular set of lattice planes will, for an instant, make the correct

Bragg angle for reflection of the monochromatic incident beam, and at

that instant a reflected beam will be formed. The reflected beams are

again located on imaginary cones but now the cone axes coincide with the

rotation axis. The result is that the spots on the film, when the film is

laid out flat, lie on imaginary horizontal lines, as shown in Fig. 3-10.

Since the crystal is rotated about only one axis, the Bragg angle does not

take on all possible values between and 90 for every set of planes. Not

every set, therefore, is able to produce a diffracted beam
;
sets perpendicular

or almost perpendicular to the rotation axis are obvious examples.
The chief use of the rotating-crystal method and its variations is in the

determination of unknown crystal structures, and for this purpose it is

the most powerful tool the x-ray crystallographer has at his disposal. How-

ever, the complete determination of complex crystal structures is a subject

beyond the scope of this book and outside the province of the average

metallurgist who uses x-ray diffraction as a laboratory tool. For this

reason the rotating-crystal method will not be described in any further

detail, except for a brief discussion in Appendix 15.

In the powder method, the crystal to be examined is reduced to a very
fine powder and placed in a beam of monochromatic x-rays. Each particle

of the powder is a tiny crystal oriented at random with respect to the inci-

dent beam. Just by chance, some of the particles will be correctly oriented

so that their (100) planes, for example, can reflect the incident beam.

Other particles will be correctly oriented for (110) reflections, and so on.

The result is that every set of lattice planes will be capable of reflection.

The mass of powder is equivalent, in fact, to a single crystal rotated, not

about one axis, but about all possible axes.

Consider one particular hkl reflection. One or more particles of powder

will, by chance, be so oriented that their (hkl) planes make the correct
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(a)

FIG. 3-11. Formation of a diffracted cone of radiation in the powder method.

Bragg angle for reflection; Fig. 3-11 (a) shows one plane in this set and

the diffracted beam formed. If this plane is now rotated about the incident

beam as axis in such a way that 6 is kept constant, then the reflected beam
will travel over the surface of a cone as shown in Fig. 3-1 l(b), the axis of

the cone coinciding with the transmitted beam. This rotation does not

actually occur in the powder method, but the presence of a large number
of crystal particles having all possible orientations is equivalent to this

rotation, since among these particles there will be a certain fraction whose

(hkl) planes make the right Bragg angle with the incident beam and which

at the same time lie in all possible rotational positions about the axis of

the incident beam. The hkl reflection from a stationary mass of powder
thus has the form of a cone of diffracted radiation, and a separate cone is

formed for each set of differently spaced lattice planes.

Figure 3-12 shows four such cones and also illustrates the most common

powder-diffraction method. In this, the Debye-Scherrer method, a narrow

strip of film is curved into a short cylinder with the specimen placed op
its axis and the incident beam directed at right angles to this axis. The
cones of diffracted radiation intersect the cylindrical strip of film in lines

and, when the strip is unrolled and laid out flat, the resulting pattern has

the appearance of the one illustrated in Fig. 3-12(b). Actual patterns,

produced by various metal powders, are shown in Fig. 3-13. Each diffrac-

tion line is made up of a large number of small spots, each from a separate

crystal particle, the spots lying so close together that they appear as a

continuous line. The lines are generally curved, unless they occur exactly

at 26 == 90 when they will be straight. From the measured position of a

given diffraction line on the film, 6 can be determined, and, knowing X, we
can calculate the spacing d of the reflecting lattice planes which produced
the line. >

Conversely, if the shape and size of the unit cell of the crystal are known,
we can predict the position of all possible diffraction lines on the film. The
line of lowest 28 value is produced by reflection from planes of the greatest
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point where

incident beam
enters (26 = 180) -/

(a)

\
26 =

(b)

FIG. 3-12. Debye-Scherrer powder method: (a) relation of film to specimen and
incident beam; (b) appearance of film when laid out flat.

26 = 180 26 =

ii
(a)

FIG. 3-13. Debye-Scherrer powder patterns of (a) copper (FCC), (b) tungsten
(BCC), and (c) zinc (HCP). Filtered copper radiation, camera diameter * 5.73

cm.



96 DIFFRACTION i: THE DIRECTIONS OF DIFFRACTED BEAMS [CHAP. 3

spacing. In the cubic system, for example, d is a maximum when

(h
2 + k2 + I

2
) is a minimum, and the minimum v#lue of this term is 1,

corresponding to (hkl) equal to (100). The 100 reflection is accordingly
the one of lowest 20 value. The next reflection will have indices hkl corre-

sponding to the next highest value of (h
2 + k2 + /

2
), namely 2, in which

case (hkl) equals (110), and so on.

The Debye-Scherrer and other variations of the powder method are very

widely used, especially in metallurgy. The powder method is, of course,

the only method that can be employed when a single crystal specimen is

not available, and this is the case more often than not in metallurgical

work. The method is especially suited for determining lattice parameters
with high precision and for the identification of phases, whetrier they occur

alone or in mixtures such as polyphase alloys, corrosion products, refrac-

tories, and rocks. These and other uses of the powder method will be fully

described in later chapters.

Finally, the x-ray spectrometer can be used as a tool in diffraction anal-

ysis. This instrument is known as a diffractometer when it is used with

x-rays of known wavelength to determine the unknown spacing of crystal

planes, and as a spectrometer in the reverse case, when crystal planes of

known spacing are used to determine unknown wavelengths. The diffrac-

tometer is always used with monochromatic radiation and measurements

may be made on either single crystals or polycrystalline specimens ; in the

latter case, it functions much like a Debye-Scherrer camera in that the

counter intercepts and measures only a short arc of any one cone of dif-

fracted rays.

3-7 Diffraction under nonideal conditions. Before going any further,

it is important to stop and consider with some care the derivation of the

Bragg law given in Sec. 3-2 in order to understand precisely under what
conditions it is strictly valid. In our derivation we assumed certain ideal

conditions, namely a perfect crystal and an incident beam composed of

perfectly parallel and strictly monochromatic radiation. These conditions

never actually exist, so we must determine the effect on diffraction of vari-

ous kinds of departure from the ideal.

In particular, the way in which destructive interference is produced in

all directions except those of the diffracted beams is worth considering in

some detail, both because it is fundamental to the theory of diffraction

and because it will lead us to a method for estimating the size of very small

crystals. We will find that only the infinite crystal is really perfect and
that small size alone, of an otherwise perfect crystal, can be considered a

crystal imperfection.

The condition for reinforcement used in Sec. 3-2 is that the waves in-

volved must differ in path length, that is, in phase, by exactly an integral
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number of wavelengths. But suppose that the angle 9 in Fig. 3-2 is such

that the path difference for rays scattered by the first and second planes

is only a quarter wavelength. These rays do not annul one another but,

as we saw in Fig. 3-1, simply unite to form a beam of smaller amplitude
than that formed by two rays which are completely in phase. How then

does destructive interference take place? The answer lies in the contribu-

tions from planes deeper in the crystal. Under the assumed conditions,

the rays scattered by the second and third planes would also be a quarter

wavelength out of phase. But this means that the rays scattered by the

first and third planes are exactly half a wavelength out of phase and would

completely cancel one another. Similarly, the rays from the second and

fourth planes, third and fifth planes, etc., throughout the crystal, are com-

pletely out of phase; the result is destructive interference and no diffracted

beam. Destructive interference is therefore just as much a consequence
of the periodicity of atom arrangement as is constructive interference.

This is an extreme example. If the path difference between rays scat-

tered by the first two planes differs only slightly from an integral number
of wavelengths, then the plane scattering a ray exactly out of phase with

the ray from the first plane will lie deep within the crystal. If the crystal

is so small that this plane does not exist, then complete cancellation of all

the scattered rays will not result. It follows that there is a connection

between the amount of "out-of-phaseness" that can be tolerated and the

size of the crystal.

Suppose, for example, that the crystal has a thickness t measured in a

direction perpendicular to a particular set of reflecting planes (Fig. 3-14).

Let there be (m + 1) planes in this set. We will regard the Bragg angle 6

as a variable and call OB the angle

which exactly satisfies the Bragg law

for the particular values of X and d

involved, or

X = 2d sin 6B .

In Fig. 3-14, rays A, D, . . .
,
M make

exactly this angle OB with the re-

flecting planes. Ray D', scattered by
the first plane below the surface, is

therefore one wavelength out of phase
with A'; and ray M', scattered by the

mth plane below the surface, is m
wavelengths out of phase with A'.

Therefore, at a diffraction angle 20#,

rays A', D', . . .
,
M' are completely

in phase and unite to form a diffracted

FIG. 3-14.

diffraction.

Effect of crystal size on
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beam of maximum amplitude, i.e., a beam of maximum intensity, since the

intensity is proportional to the square of the amplitude.

When we consider incident rays that make Bragg angles only slightly

different from 0#, we find that destructive interference is not complete.

Ray B, for example, makes a slightly larger angle 0i, such that ray L'

from the mth plane below the surface is (m + 1) wavelengths out of ph6.se

with B', the ray from the surface plane. This means that midway in the

crystal there is a plane scattering a ray which is one-half (actually, an

integer plus one-half) wavelength out of phase with ray B' from the surface

plane. These rays cancel one another, and so do the other rays from sim-

ilar pairs of planes throughout the crystal, the net effect being that rays

scattered by the top half of the crystal annul those scattered by the bottom

half. The intensity of the beam diffracted at an angle 20i is therefore zero.

It is also zero at an angle 202 where 2 is such that ray N' from the mth

plane below the surface is (m 1) wavelengths out of phase with ray C'

from the surface plane. It follows that the diffracted intensity at angles

near 2fe, but not greater than 26 1 or less than 202 ,
is not zero but has a

value intermediate between zero and the maximum intensity of the beam
diffracted at an angle 20s- The curve of diffracted intensity vs. 28 will

thus have the form of Fig. 3-15(a) in contrast to Fig. 3-15(b), which illus-

trates the hypothetical case of diffraction occurring only at the exact Bragg

angle.

The width of the diffraction curve of Fig. 3-1 5 (a) increases as the thick-

ness of the crystal decreases. The width B is usually measured, in radians,

at an intensity equal to half the maximum intensity. As a rough measure

202 20i

20

20*

20-

(a) (b)

FIG. 3-15. Effect of fine particle size on diffraction curves (schematic).
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of J5, we can take half the difference between the two extreme angles at

which the intensity is zero, or

B = f (20i
- 202 )

=
0i
-

2 .

The path-difference equations for these two angles are

2t sin 2
= (m - 1)X.

By subtraction we find

(sin 0i sin 2 )
=

X,

(/>

i n \ //) /) \
CM ~"T~ f2 \ i ^1 ^2 \

1 sin I
)
= X.

2 / \ 2 /

But 0i and 2 are both very nearly equal to 0#, so that

0i + 02
= 200 (approx.)

and

sin f

^J
= f

j
(approx.).

Therefore

2t[ -) cos B =
X,

t = (3-12)
JS cos SB

A more exact treatment of the problem gives

, . _*_. (3-13)
B cos BR

which is known as the Scherrer formula. It is used to estimate the particle

size of very small crystals from the measured width of their diffraction

curves. What is the order of magnitude of this effect? Suppose X = 1.5A,

d = LOA, and = 49. Then for a crystal 1 mm in diameter the breadth

J5, due to the small crystal effect alone, would be about 2 X 10~7
radian

(0.04 sec), or too small to be observable. Such a crystal would contain

some 10
7
parallel lattice planes of the spacing assumed above. However,

if the crystal were only 500A thick, it would contain only 500 planes, and

the diffraction curve would be relatively broad, namely about 4 X 10~~
3

radian (0.2).

Nonparallel incident rays, such as B and C in Fig. 3-14, actually exist

in any real diffraction experiment, since the "perfectly parallel beam"
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assumed in Fig. 3-2 has never been produced in the laboratory. As will

be shown in Sec. 5-4, any actual beam of x-rays contains divergent and

convergent rays as well as parallel rays, so that the phenomenon of dif-

fraction at angles not exactly satisfying the Bragg law actually takes

place.

Neither is any real beam ever strictly monochromatic. The usual

"monochromatic" beam is simply one containing the strong Ka component

superimposed on the continuous spectrum. But the Ka line itself has a

width of about 0.001A and this narrow range of wavelengths in the nom-

inally monochromatic beam is a further cause of line broadening, i.e., of

measurable diffraction at angles close, but not equal, to 20#, since for each

value of A there is a corresponding value of 8. (Translated into terms of

diffraction line width, a range of wavelengths extending over 0.001A leads

to an increase in line width, for X = 1.5A and 8 = 45, of about 0.08

over the width one would expect if the Incident beam were strictly mono-

chromatic.) Line broadening due to this natural "spectral width" is

proportional to tan 8 and becomes quite noticeable as 8 approaches 90.

Finally, there is a kind of crystal

imperfection known as mosaic struc-

ture which is possessed by all real

crystals to a greater or lesser degree

and which has a decided effect on

diffraction phenomena. It is a kind

of substructure into which a "single"

crystal is broken up and is illustrated

in Fig. 3-16 in an enormously ex-

aggerated fashion. A crystal with

mosaic structure does not have its

atoms arranged on a perfectly regular

lattice extending from one side of the

crystal to the other; instead, the lattice is broken up into a number of tiny

blocks, each slightly disoriented one from another. The size of these blocks

is of the order of 1000A, while the maximum angle of disorientation be-

tween them may vary from a very small value to as much as one degree,

depending on the crystal. If this angle is
,
then diffraction of ^a parallel

monochromatic beam from a "single" crystal will occur not only at an

angle of incidence 0# but at all angles between 8s and OR + c. Another

effect of mosaic structure is to increase the intensity of the reflected beam

relative to that theoretically calculated for an ideally perfect crystal.

These, then, are some examples of diffraction under nonideal conditions,

that is, of diffraction as it actually occurs. We should not regard these as

"deviations" from the Bragg law, and we will not as long as we remember

that this law is derived for certain ideal conditions and that diffraction is

FIG. 3-K). The mosaic structure of

a real crystal.
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(a)

(1))

FIG. 3-17. (a) Scattering by
atom, (b) Diffraction by a crystal.

crystal

liquid or amorphous solid

90 180

DIFFRAC TION (SCATTERING)
ANGLE 28 (degrees)

FIG. 3-18. Comparative x-ray scat-

tering by crystalline solids, amorphous

solids, liquids, and monatomic gases

(schematic).

only a special kind of scattering. This latter point cannot be too strongly

emphasized. A single atom scatters an incident beam of x-rays in all

directions in space, but a large number of atoms arranged in a perfectly

periodic array in three dimensions to form a crystal scatters (diffracts)

x-rays in relatively few directions, as illustrated schematically in Fig. 3-17.

It does so precisely because the periodic arrangement of atoms causes

destructive interference of the scattered rays in all directions except those

predicted by the Bragg law, and in these directions constructive inter-

ference (reinforcement) occurs. It is not surprising, therefore, that meas-

urable diffraction (scattering) occurs at non-Bragg angles whenever any

crystal imperfection results in the partial absence of one or more of the

necessary conditions for perfect destructive interference at these angles.
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These imperfections are generally slight compared to the over-all regularity

of the lattice, with the result that diffracted beams are confined to very

narrow angular ranges centered on the angles predicted by the Bragg law

for ideal conditions.

This relation between destructive interference and structural periodicity

can be further illustrated by a comparison of x-ray scattering by solids,

liquids, and gases (Fig. 3-18). The curve of scattered intensity vs. 26 for a

crystalline solid is almost zero everywhere except at certain angles where

high sharp maxima occur: these are the diffracted beams. Both amorphous

solids and liquids have structures characterized by an almost complete

lack of periodicity and a tendency to "order" only in the sense that the

atoms are fairly tightly packed together and show a statistical preference

for a particular interatomic distance; the result is an x-ray scattering curve

showing nothing more than one or two broad maxima. Finally, there are

the monatomic gases, which have no structural periodicity whatever; in

such gases, the atoms are arranged perfectly at random and their relative

positions change constantly with time. The corresponding scattering

curve shows no maxima, merely a regular decrease of intensity with in-

crease in scattering angle.

PROBLEMS

3-1. Calculate the "x-ray density" [the density given by Eq. (3-9)] of copper

to four significant figures.

3-2. A transmission Laue pattern is made of a cubic crystal having a lattice

parameter of 4.00A. The x-ray beam is horizontal. _
The [OlO] axis of the crystal

points along the beam towards the x-ray tube, the [100] axis points vertically up-

ward, and the [001] axis is horizontal and parallel to the photographic film. The

film is 5.00 cm from the crystal.

(a) What is the wavelength of the radiation diffracted from the (3TO) planes?

(6) Where will the 310 reflection strike the film?

3-3. A back-reflection Laue pattern is made of a cubic crystal in the orientation

of Prob. 3-2. By means of a stereographic projection similar to Fig. 3-8, show that

the beams diffracted by the planes (120), (T23), and (121), all of which belong to

the zone [210], lie on the surface of a cone whose axis is the zone axis. What is

the angle <f> between the zone axis and the transmitted beam?

3-4. Determine the values of 20 and (hkl) for the first three lines (those of low-

est 26 values) on the powder patterns of substances with the following structures,

the incident radiation being Cu Ka:

(a) Simple cubic (a = 3.00A)

(6) Simple tetragonal (a = 2.00A, c = 3.00A)

(c) Simple tetragonal (a == 3.00A, c = 2.00A)

(d) Simple rhombohedral (a = 3.00A, a = 80)
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3-6. Calculate the breadth B (in degrees of 26), due to the small crystal effect

alone, of the powder pattern lines of particles of diameter 1000, 750, 500, and 250A.

Assume 6 = 45 and X = 1.5A. For particles 250A in diameter, calculate the

breadth B for =
10, 45, and 80.

3-6. Check the value given in Sec. 3-7 for the increase in breadth of a diffrac-

tion line due to the natural width of the Ka emission line. (Hint: Differentiate

the Bragg law and find an expression for the rate of change of 26 with X.)



CHAPTER 4

DIFFRACTION II: THE INTENSITIES OF DIFFRACTED BEAMS

4-1 Introduction. As stated earlier, ^.he positions of the atoms in the

unit cell affect the intensities but not the directions of the diffracted beams.

That this must be so may be seen by considering the two structures shown

in Fig. 4-1. Both are orthorhombic with two atoms of the same kind per

unit cell, but the one on the left is base-centered and the one on the right

body-centered. Either is derivable from the other by a simple shift of

ope atom by the vector ^c.

/ Consider reflections from the (001) planes which are shown in profile in

Ftg. 4-2. For the base-centered lattice shown in (a), suppose that the

Bragg law is satisfied for the particular values of X and 6 employed. This

means that the path difference ABC between rays 1' and 2' is one wave-

length, so that rays 1' and 2' are in phase and diffraction occurs in the

direction shown. Similarly, in the body-centered lattice shown in (b),

rays 1' and 2' are in phase, since their path difference ABC is one wave-

length. However, in this case, there is another plane of atoms midway
between the (001) planes, and the path difference DEF between rays 1'

and 3' is exactly half of ABC, or one half wavelength. Thus rays 1' and

3' are completely out of phase and annul each other. Similarly, ray 4'

from the next plane down (not shown) annuls ray 2', and so on throughout
the crystal. There is no 001 reflection from the body-centered latticeTJ

This example shows how a simple rearrangement of atoms within the

unit cell can eliminate a reflection completely. More generally, the in-

tensity of a diffracted beam is changed, not necessarily to zero, by any

change in atomic positions, and, conversely, we can only determine atomic

positions by observations of diffracted intensities. To establish an exact

relation between atom position and intensity is the main purpose of this

chapter. The problem is complex because of the many variables involved,
and we will have to proceed step by step : we will consider how x-rays are

scattered first by a single electron, then by an atom, and finally by all the

,$
(a) (b)

FIG. 4-1. (a) Base-centered and (b) body-centered orthorhombic unit cells.
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(a) (b)

FIG. 4-2. Diffraction from the (001) planes of (a) base-centered and (b) body-
centered orthorhombir lattices.

atoms in the unit cell. We will apply these results to the powder method

of x-ray diffraction only, and, to obtain an expression for the intensity of a

powder pattern line, we will have to consider a number of other factors

which affect the way in which a crystalline powder diffracts x-rays.

4-2 Scattering by an electron. We have seen in Chap. 1 that aq| x-ray

beam is an electromagnetic wave characterized by an electric field whose

strength varies sinusoidally with time at any one point in the beam., Sipce

anVlectric field exerts a force on a Charged particle such as an electron^lhe

oscillating electric field of an x-ray beam will set any electron it encounters

into oscillatory motion about its mean
position.}

Wow an accelerating or decelerating electron emits an electromagnetic

wave. We have already seen an example of this phenoinejionjn the x-ray

tube, where x-rays are emitted because of the rapid deceleration of the

electrons striking the target. Similarly, an electron which has been set

into oscillation by an x-ray beam is continuously accelerating and de-

celerating during its motion and therefore emits an electromagnetic, .wjave.

In this sense, an electron is said to scatter x-rays, the scattered beam being

simply ITie beam radiated by the electron under the action of the incident

beam. The scattered beam has the same wavelength and frequency as

the incident beam and is said to be coherent with it, since there is a definite

relationship T>etwee7fT1ie "phase of lite scattereHbeam anJTEat of the inci-

denFfieam which produced it. \

"""'

Although x-rays are scattered in all directions by an electron, the in-

tensity of the scattered beam depends on the angle of scattering, in a way
which was first worked out by J. J. Thomson. He found that the intensity

/ of the beam scattered by a single electron of charge e and mass m, at a

^stance r from the electron, is given by

sin
2
a, (4-1)
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where /o = intensity of the incident beam, c = velocity of light, and

a = angle between the scattering direction and the direction of accelera-

tion of the electron. Suppose the incident beam is traveling in the direc-

tion Ox (Fig. 4-3) and encounters an electron at 0. We wish to know the

scattered intensity at P in the xz plane where OP is inclined at a scattering

angle of 26 to the incident beam. An unpolarized incident beam, such as

that issuing from an x-ray tube, has its electric vector E in a random

direction in the yz plane. This beam may be resolved into two plane-

polarized components, having electric vectors Ey and E 2 where

On the average, Ey will be equal to E, since the direction of E is perfectly

random. Therefore

E,
2 = E z

2 = E2
.

The intensity of these two components of the incident beam is proportional

to the square of their electric vectors, since E measures the amplitude of

the wave and the intensity of a wave is proportional to the square of its

amplitude. Therefore

IQV
= IQ Z

=
2^0-

The y component of the incident beam accelerates the electron in the

direction Oy. It therefore gives rise to a scattered beam whose intensity

at P is found from Eq. (4-1) to be

r
2
ra

2
c
4

since a = ^yOP = w/2. Similarly, the intensity of the scattered z com-

ponent is given by

since a = r/2 20. The total scattered intensity at P is obtained by

summing the intensities of these two scattered components:

IP = Ipv + Ip z

e
4

= -r-r-r (7o + hz cos
2
20)

r'm'c'

e
4

//o /o 2o \
=

(
~

-^ cos
2
2^

)

r
2m2

c
4 \2 2 /

^V
+ cos

2
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\

before impact

FIG. 4-3. Coherent scattering of x-

rays by a single electron.

after impart

FIG. 4-4. Elastic collision of photon
and electron (Compton effect).

This is the Thomson equation for the scattering of an x-ray beam by a

single electron. If the values of the constants e, r, m, and c are inserted

into this equation, it will be found that the intensity of the scattered beam

is only a minute fraction of the intensity of the incident beam. The equa-

tion also shows that the scattered intensity decreases as the inverse square

of the distance from the scattering atom, as one \vould expect, and that

the scattered beam is stronger in forward or backward directions than in a

direction at right angles to the incident beam.

The Thomson equation gives the absolute intensity (in ergs/sq cm/sec)

of the scattered beam in terms of the absolute intensity of the incident

beam. These absolute intensities are both difficult to measure and difficult

to calculate, so it is fortunate that relative values are sufficient for our

purposes in practically all diffraction problems. In most cases, all factors

in Eq. (4-2) except the last are constant during the experiment and can

be omitted.* This last factor, ^(1 + cos
2
26), is called the polamation

factor; this is a rather unfortunate term because, as we have just seen, this

factor enters the equation simply because the incident beam is unpolarized.

The polarization factor is common to all intensity calculations, and we

will use it later in our equation for the intensity of a beam diffracted by a

crystalline powder.

There is another and quite different way in which an electron can scatter

x-rays, and that is manifested in the Compton effect. This effect, discovered

by A. H. Compton in 1923, occurs whenever x-rays encounter loosely

bound or free electrons and can be best understood by considering the

incident beam, not as a wave motion, but as a stream of x-ray quanta or

photons, each of energy hvi. When such a photon strikes a loosely bound

electron, the collision is an elastic one like that of two billiard balls (Fig.

\ The electron is knocked aside and the photon is deviated through

Jigle 26. Since some of the energy of the incident photon is used in

/iding kinetic energy for the electron, the energy hv2 of the photon
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after impact is less than its energy hv\ before impact. The wavelength

X2 of the scattered radiation is thus slightly greater than the wavelength

Xi of the incident beam, the magnitude of the change being given by the

equation

The increase in wavelength depends only on the scattering angle, and it

varies from zero in the forward direction (26
=

0) to 0.05A in the extreme

backward direction (20
= 180).

Radiation so scattered is called Compton modified radiation, and, be-

sides having its wavelength increased, it has the important characteristic

that its phase has no fixed relation to the phase of the incident beam. For

this reason it is also known as incoherent radiation. It cannot take part

in diffraction because its phase is only randomly related to that of the inci-

dent beam and cannot therefore produce any interference effects. Comp-
ton modified scattering cannot be prevented, however, and it has the

undesirable effect of darkening the background of diffraction patterns.

[It should be noted that the quantum theory can account for both the

coherent and the incoherent scattering, whereas the wave theory is only

applicable to the former. In terms of the quantum theory, coherent scat-

tering occurs when an incident photon bounces off an electron which is so

tightly bound that it receives no momentum from the impact, The scat-

tered photon therefore has the same energy, and hence wavelength, as it

had before

4-3 Scattering by an atom. 1 When an x-ray beam encounters an atom,

each electron in it scatters part of the radiation coherently in accordance

with the Thomson equation. One might also expect the nucleus to take

part in the coherent scattering, since it also bears a charge and should be

capable of oscillating under the influence of the incident beam,} However,
the nucleus has an extremely large mass relative to that of tne electron

and cannot be made to oscillate to any appreciable extent; in fact, the

Thomson equation shows that the intensity of coherent scattering is in-

versely proportional to the square of the mass of the scattering particle.

The net effect is that coherent scattering by an atom is due only to the

electrons contained in that atom.

The following question then arises: is the wave scattered by an atom

simply the sum of the waves scattered by its component electrons? More

precisely, does an atom of atomic number Z, i.e., an atom containing Z
electrons, scatter a wave whose amplitude is Z times the amplitude of

the wave scattered by a single electron? The answer is yes, if the scatter-

ing is in the forward direction (20 = 0), because the waves scattered1
"

by
all the electrons of the atom are then in phase and the amplitudes o f all

the scattered waves can be added directly.
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This is not true for other directions of scattering. iThe fact that the

electrons of an atom are situated at different points in space introduces

differences in phase between the waves scattered by different electrons:^

Consider Fig. 4-5, in which, for simplicity, the electrons are shown as

points arranged around the central nucleus. The waves scattered in the

forward direction by electrons A and_J^are exactly* in phase on_a_3Kave

front such as XX', because each wave has traveled the same distance

before and after scattering. The other scattered waves shown in' the 'fig-

ure, however, have a path difference equal to (CB AD) and are thus

somewhat out of phase along a wave front such as YY', the path differ-

ence being less than one wavelength. Partial interference occurs between

the waves scattered by A and 5, with the result that the net amplitude of

the wave scattered in this direction is less than that of the wave scattered

by the same electrons in the forward direction.

IA quantity /, the atomic scattering factor, is used to describe the "effi-

ciency" of scattering of a given atom in a given direction. It is defined

as a ratio of amplitudes :

/ =
amplitude of the wave scattered by an atom

amplitude of the wave scattered by one electron
f

From what has been* said already, lit is clear that / = Z for any atom

scattering in the forward direction^ As increases, however, the waves

scattered by individual electrons become more and more out of phase and

/ decreases. The atomic scattering factor also depends on the wavelength
of the incident beam : at a fixed value of 0, f will be smaller the shorter the

X'

FIG, 4-5. X-ray scattering by an atom.



FIG. 4-6. The atomic scattering fac-

tor of copper.
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wavelength, since the path differ-

ences will be larger relative to the

wavelength, leading to greater in-

terference between the scattered

beams. The actual calculation of /

involves sin 6 rather than 6, so that

the net effect is that / decreases as

the quantity (sin 0)/X increases!

Calculated values of / for various

atoms and various values of (sin 0)/X

are tabulated in Appendix 8, and a

curve showing the typical variation

of/, in this case for copper, is given

in Fig. 4-6. Note again that the

curve begins at the atomic number

of copper, 29, and decreases to very

low values for scattering in the back-

ward direction (0 near 90) or for

very short wavelengths. Since the intensity of a wave is proportional to

the square of its amplitude, a curve of scattered intensity fit)m an atom

can be obtained simply by squaring the ordinates of a curve such a& Fig.

4-6. (The resulting curve closely approximates the observed scattered in-

tensity per atom of a monatomic gas, as shown in Fig. 3-18.)

The scattering just discussed, whose amplitude is expressed in terms of

the atomic scattering factor, is coherent, or unmodified, scattering, which

is the only kind capable of being diffracted. On the other hand, incoherent,

or Compton modified, scattering is occurring at the same time. Since the

latter is due to collisions of quanta with loosely bound electrons, its in-

tensity relative to that of the unmodified radiation increases as the pro-

portion of loosely bound electrons increases. The intensity of Compton

modified radiation thus increases as the atomic number Z decreases. It

is for this reason that it is difficult to obtain good diffraction photographs

of organic materials, which contain light elements such as carbon, oxygen,

and hydrogen, since the strong Compton modified scattering from these

substances darkens the background of the photograph and makes it diffi-

cult to see the diffraction lines formed by the unmodified radiation. It is

also found that the intensity of the modified radiation increases as the

quantity (sin 0)/X increases. The intensities of modified scattering and of

unmodified scattering therefore vary in opposite ways with Z and with

(sin0)/X.
i

To summarize,|when a monochromatic beam of x-rays strikes an atom,

two scattering processes occur4 Tightly bound electrons are jet,into
pscTP"

lation and radiate x-rays of the saiffi wavelength as that of the incident
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incident beam

absorbing substance

fluorescent x-rays

unmodified

(coherent)

Compton modified

(incoherent)

Compton recoil

electrons

photoelectrons

FIG. 4-7. Effects produced by the passage of x-rays through matter. (After

N. F. M. Henry, H. Lipson, and W. A. Wooster, The Interpretation of X-Ray Dif-

fraction Photographs, Macmillan, London, 1951.)

beam. More loosely bound electrons scatter part of the incident beam

and slightly increase its wavelength in the process, the exact amount of

increase depending on the scattering angle. The former is called coherent

or unmodified scattering and the latter incoherent or modified
;
both kinds

occur simultaneously and in all directions. If the atom is a part of a large

group of atoms arranged in spaceTh aTegular periodic fashion as in a crys-

tal, then another phenomenon occurs. The coherently scattered radiation

from all the atoms undergoes reinforcement in certain directions and can-

cellation in other directions, thus producing diffracted beams. Djttjw^p^

is, essentially, reinforced coherent scattering. I ^1
We are now in a position to summarize, from the preceding sections and

from Chap. 1, the chief effects associated with the passage of x-rays through

matter. This is done schematically in Fig. 4-7. The incident x-rays are

assumed to be of high enough energy, i.e., of short enough wavelength,

to cause the emission of photoelectrons and characteristic fluorescent radia-

tion. The Compton recoil electrons shown in the diagram are the loosely

bound electrons knocked out of the atom by x-ray quanta, the interaction

giving rise to Compton modified radiation.

Scattering by a unit cell. To arrive at an expression for the in-

tensity of a diffracted beam, we must now restrict ourselves to a considera-

tion of the coherent scattering, not from an isolated atom, but from all

the atoms making up the crystal. The mere fact that the atoms are Ar-

ranged in a periodic fashion in space mftans that the scattered radiation is

nowjeverely limited~to certain definite directions and is now referred to

as a set of diffracted beams. 'The directions of these beams are fixed by
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FIG. 4-8. The effect of atom position on the phase difference between diffracted

rays.

the Bragg law, Avhich is, in a sense, a negative law. If the Bragg law is not

satisfied, no. diffracted beam can occur; however, the Bragg law may be

satisfied for a certain set of atomic planes and yet no diffraction may occur,
as in the example given at the beginning of this chapter, because of a

particular arrangement of atoms within the unit cell [Fig. 4-2(b)].

Vssuming that the Bragg law is satisfied, we wish to find the intensity
oMhhe frftftm diffracted by " .

fgrgjgjjis fl fijnrtinn nf
fl.tnrjijvisit.inn Since

the crystal is merely a repetition of the fundamental unit cell, it is enough
to consider the way in which the arrangement of atoms within a single

unit cell affects the diffracted intensity.\

Qualitatively, the effect is similar to*the scattering from ar^ atom, dis-

cussed in the previous section. [There we found that phase differences

occur in the waves scattered by thejndividual plentrnns
j
for any direction

of scattering except the.extreme forward direction. Similarly, the waves
scattered by the individual atoms of a unit cell are not necessarily in phase
except in the forward direction,! and we must now determine how the

phase difference depends on the arrangement of the atoms.

|This problem is most simply approached by finding the phase difference

between waves scattered by an atom at the origin and another atom whose

position is variable in the x direction only. \ For convenience. consklex*an

orjJvjgoriaJunit cell, a section of which is shown in Fig. 4-8. Taice.aiDm

^as the origm^and let diffraction occur from the (AOO) planes shown as

heavy hnftsJiTthe drawings This means that the Bragg law is satisfied for

this reflection and that 52'iV$he path difference between ray 2' and ray^ t I . _ ^^
' ... . . .. f.

( )

_*. I IM.I ........ |/

52 'i' = MCN =
2rf/,00 sin = X.
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From the definition of Miller indices,

a
= AC = -

n

How is this reflection affected by x-rays scattered in the same direction

by atom B, located at a distance x from Al Note that only this direction

need be considered since only in this direction is the Bragg law satisfied

for the AGO reflection. Clearly, the path difference between ra%._ 3' and.

ray 1', 63 'i>, will be less than X; by simple proportion it is found to be

(X)
=

(X).
AC

..._a/ft

Phase differences may be expressed in angular measure as well as in

wavelength: two rays, differing in path length by one whole wavelength,

are said to differ in phase by 360, or 2?r radians. If the path difference is

6, then the 'phase difference jjn_

= -
(27T). .

The use of angular measure is convenient because it makes the expression

of phase differences independent of wavelength, whereas the use of a path

difference to describe a phase difference is meaningless unless the wave-

length is specified.

The phase difference, then, between the wave scattered by atom B and

that scattered by atom A at the origin is given by

5vi' 2irhx ^

If the position of atom B is specified by its fractional coordinate u = -
,

then the phase difference becomes

This reasoning may be extended to three dimensions, as in Fig. 4-9, in

xyz
which atom B has actual coordinates x y z or fractional coordinates - - -

a o c

equal to u v w, respectively. We then arrive at the following important

relation for the phase difference between the wave scattered by atom B
and that scattered by atom A at the origin, for the hkl reflection:

faL^bJm). (4-4)

This relation is general and applicable to a unit cell of any shape.
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FIG. 4-9. The three-dimensional analogue of Fig. 4-8.

These two waves may differ, not only in phase, jbut^also in amplitude if

atom B and the atonTstr-trre ongih"^l^^d^fferent kinds. In that case,

v.ie amplitudes of these waves are given, relative to the amplitude of the

wave scattered by a single electron, by the appropriate values of /, the

atomic scattering factor.

We now see that the problem of scattering from a unit cell resolves itself

into one of adding waves of different phase and amplitude in order to find

the resultant wave. Waves scattered by all the atoms of the unit cell,

including the one at the origin, must be added. The most convenient way
of carrying out this summation is by expressing each wave as & complex

exponential function.

+E

FIG. 4-10. The addition of sine waves of different phase and amplitude.
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~-2

FIG. 4-11. Vector addition of waves. FIG. 4-12. A
complex plane.

wave vector in the

The two waves shown as full lines in Fig. 4-10 represent the variations

in electric field intensity E with time t of two rays on any given wave front

in a diffracted x-ray beam. Their equations may be written

EI = A\ sin (2irvt ^i), (4-5)

E2
= A 2 sin (2wt

-
$2). (

4~^)

These waves are of the same frequency v and therefore of the same wave-

length A, but differ in amplitude A and in phase </>.
The dotted curve

shows their sum E3 ,
which is also a sine wave, but of different amplitude

and phase.

Waves differing in amplitude and phase may also be added by represent-

ing them as vectors. In Fig. 4-11, each component wave is represented

by a vector whose length is equal to the amplitude of the wave and which

is inclined to the :r-axis at an angle equal to the phase angle. The ampli-

tude and phase of the resultant wave is then found simply by adding the

vectors by the parallelogram law.

This geometrical construction may be avoided by use of the following

analytical treatment, in which complex numbers are used to represent the

vectors. A complex number is the sum of a real and anjmaginary num-

ber, such as (a + 6z), where a and 6 are real andjt
= V-il is imaginary.

Such numbers may be plotted in the "complex plane," in which real num-

bers are plotted as abscissae and imaginary numbers as ordinates. Any

point in this plane or the vector drawn from the origin to this point then

represents a particular complex number (a + bi).

To find an analytical expression for a vector representing a wave, we

draw the wave vector in the complex plane as in Fig. 4-12. Here again

the amplitude and phase of the wave is given by A, the length of the vector,

and 0, the angle between the vector and the axis of real numbers. The

analytical expression for the wave is now the complex number (A cos <t> +
iA sin </>), since these two terms are the horizontal and vertical components
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md ON of the vector. Note that multiplication of a vector by i

jtates it counterclockwise by 90; thus multiplication by i converts the

horizontal vector 2 into the vertical vector 2i. Multiplication twice by i,

that is, by i
2 =

1, rotates a vector through 180 or reverses its sense;

thus multiplication twice by i converts the horizontal vector 2 into the

horizontal vector 2 pointing in the opposite direction.

If we write down the power-series expansions of e
ix

,
cos x

y
and sin x, we

find that

e
ix = cos x + i sin x (4-7)

or

Ae* = A cos <t> + Ai sin 4. (4-8)

Thus the wave vector may be expressed analytically by either side of

Eq. (4-8). The expression on the left is called a complex exponential

function.

Since the intensity of a wave is proportional to the square of its ampli-

tude, we now need an expression for A 2
,
the square of the absolute value

of the wave vector. When a wave is expressed in complex form, this quan-

tity is obtained by multiplying the complex expression for the wave by
its complex conjugate, which is obtained simply by replacing i by i.

Thus, the complex conjugate of Ael*
is Ae~ l

*. We have

\Ae
l

*\
2 = Ae l+Ae-* = A 2

, (4-9)

which is the quantity desired. Or, using the other form given by Eq. (4-8),

we have

A (cos + i sin 4)A(cos < i sin <) = A 2
(cos

2
<t> + sin

2
</>)

== A 2
.

We return now to the problem of adding the scattered waves from each

of the atoms in the unit cell. The amplitude of each wave is given by the

appropriate value of / for the scattering atom considered and the value

of (sin 0)/X involved in the reflection. The phase of each wave is given by
Eq. (4-4) in terms of the hkl reflection considered and the uvw coordinates

of the atom. Using our previous relations, we can then express any scat-

tered wave in the complex exponential form

(4-10)

The resultant wave scattered by alljbhe atoms of the unit cell is called the

structure factor and is designated by the symBol F. It" is" obtained by simply

adding together all the waves scattered by the individual atoms> If a

unit cell contains atoms 1, 2, 3, . . .
, N, with fractional coordinates

Ui vi !!, u2 v2 tt?2 , MS *>3 MS, ... and atomic scattering factors /i, /2 , /a, . . .
,

then the structure factor for the hkl reflection is given by

^ y e
2*i(hu2+kvi+lwti i /

g2iri(Au3-H;i>s-fIwi)
i

. . .
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This equation may be written more compactly as

N
1
hkl Z^Jn

1

\~*
f 14-11)

the summation extending over all the atoms of the unit cell.

F is, in general, a complex number, and it expresses both the amplitude
and phase of the resultant wave. {Its absolute value |F| gives the ampli-

tude of the resultant wave in termsofr tne amplitude of the wa/ve^scaTEered

ay a single electron.~Like the atomic scattering factoFJT |^'|
is~definect as

i ratio of amplitudes :\

**"

amplitude of the wave scattered by all the atoms of a unit cell

|/P|
=-

amplitude of the wave scattered by one electron

.4

The intensity of the beanL diffracted by all the atoms of the unit cell in a

direction predicted by the Bragg law is proportional simply to |f|
2

,
the

square of the amplitude oQiiejresul^^^ |F|
2

is ^obtained ITy

multiplying the expression given for F in Eq. (4-1 1) by its complex con-

jugate* Equation (4-11) is therefore a very important relation in x-ray

crystallography, since it permits a calculation of the intensity of any hkl

reflection from a knowledge of the atomic positions.

We have found the resultant scattered wave by adding together waves,

differing in phase, scattered by individual atoms in the unit cell. Note

that the phase difference between rays scattered by any two atoms, such

as A and B in Fig. 4-8, is constant for every unit cell. There is no question

here of these rays becoming increasingly out of phase as we go deeper in

the crystal as there was when we considered diffraction at angles not

exactly equal to the Bragg angle OB- In the direction predicted by the

Bragg law, the rays scattered by all the atoms A in the crystal are exactly

in phase and so are the rays scattered by all the atoms B, but between

these two sets of rays there is a definite phase difference which depends on

the relative positions of atoms A and B in the unit cell and which is given

by Eq. (4-4).

Although it is more unwieldy, the following trigonometric equation may be

used instead of Eq. (4-11):

N
F = Z/n[cOS 2ir(7Wn + kVn + lwn ) + I SU1 2v(hun + kVn + lWn)].

1

One such term must be written down for each atom in the unit cell. In general,

the summation will be a complex number of the form

F = a + ib,
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where
N

<* a = /n cos 2ir(hun + kvn + Jwn),

JV

b = /n sin 27r(/mn + ^n + lwn),
1

\F\
2 - (a + ib)(a

-
ib) = a2 + &2

.

Substitution for a and fe gives the final form of the equation:

\F\*
=

[/i cos 2r(hui + fan + Ztin) + /2 cos 2r(Atii + fa* + ^2) + ]

2

+ [/i sin 2ir(hui + kvi + Iwi) + /, sin 2ir(fctt2 + kv2 + Iw2) + -]
2

-

Equation (4-11) is much easier to manipulate, compared to this trigonometric

form, particularly if the structure is at all complicated, since the exponential

form is more compact.

4-5 Some useful relations. In calculating structure factors by com-

plex exponential functions, many particular relations occur often enough
to be worthwhile stating here. They may be verified by means of Eq.

(4-7).

(a) e
vi = e*

Ti == e
5iri = -1,

(fc) c*' **< = 6
"

+1,

(c) In general, e
nTl =

( l)
n

,
where n is any integer,

(d) e
nvi = e~~

nTl
,
where n is any integer,

(e) e
lx + e~lx = 2 cos z.

4r-6 Structure-factor calculations. Facility in the use of Eq. (4-11) can

be gained only by working out some actual examples, and we shall con-

sider a few such problems here and again in Chap. 10.

(a) The simplest case is that of a unit cell containing only one atom at

the origin, i.e., having fractional coordinates 000. Its structure factor is

F =
/e

2Tl(0) = /
and

F2 =/2
.

F2
is thus independent of A, fc, and I and is the same for all reflections.

(6) Consider now the base-centered cell discussed at the beginning of

this chapter and shown in Fig. 4-1 (a). It has two atoms of the same kind

per unit cell located at 0,and J J 0.

/[I
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This expression may be evaluated without multiplication by the complex

conjugate, since (h + fc) is always integral, and the expression for F ig

thus real and not complex. If h and fc are both even or both odd, :Te.,

"unmixed," then their sum is always even and e*l(h+k} has the value 1.

Therefore
F = 2/ for h and k unmixed;

F2 = 4/
2

.

On the other hand, if h and k are one even and one odd, i.e., "mixed,"
then their sum is odd and e

7rl^ +/r) has the value 1. Therefore

F = for h and k mixed;

F2 = 0.

Note that, in either case, the value of the I index has no effect on the struc-

ture factor. For example, the reflections 111, 112, 113, and 021, 022, 023

all have the same value of F, namely 2/. Similarly, the reflections Oil,

012, 013, and 101, 102, 103 all have a zero structure factor.

(c) The structure factor of the hody-ppntfifpH r,el] ahnwn In Fig. 4-1 (b^

may also be calculated. This cell has two atoms of the same kind located

at and f | |.

F = fe
27n(0) + S

e
2iri(h/2+k/2+l/2)

F = 2f when (h + k + I) is even;

F2 = 4/
2

.

F = when (h + k + I) is odd;

We had previously concluded from geometrical considerations that the

base-centered cell would produce a 001 reflection but that the body-centered

cell would not. This result is in agreement with the structure-factor equa-

tions for these two cells. A detailed examination of the geometry of all

possible reflections, however, would be a very laborious process compared
to the straightforward calculation of the structure factor, a calculation

that yields a set of rules governing the value of F2
for all possible values of

otene indices.

(d) A face-centered cubic cell, such as that shown in Fig. 2-14, may
now be considered. Assume it to contain four atoms of the same kind,

located at 0, | f 0, \ |, and \ \.
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If A, fc, and I are unmixed, then all three sums (h + ft), (h + Z), and (fc +
are even integers, and each term in the above equation has the value 1.

F = 4f for unmixed indices;

F2 = 16/
2

. ^ *>
V;

^
<

If ft, /c, and Z are mixed, then the sum of the three exponentials is 1,

whether two of the indices are odd and one even, or two even and one odd.

Suppose for example, that h and I are even and k is odd, e.g., 012. Then
F =

/(I 1 -f 1 1)
=

0, and no reflection occurs.

F = for mixed indices;

F2 =

Thus, reflections will occur for such planes as (111), (200), and (220) but

not for the planes (100), (210), (112), etc.

The reader may have noticed in the previous examples that some of the

information given was not used in the calculations. In (a), for example,

the cell was said to contain only one atom, but the shape of the cell was

not specified; in (6) and (c), the cells were described as orthorhombic and

in (d) as cubic, but this information did not enter into the structure-factor

calculations. This illustrates the important point that the structure factor

is independent of the shape and size of the unit cell. For example, any body-
centered cell will have missing reflections for those planes which have

(h + fc + I) equal to an odd number, whether the cell is cubic, tetragonal,

or orthorhombic. The rules we have derived in the above examples are

therefore of wider applicability than would at first appear and demonstrate

the close connection between the Bravais lattice of a substance and its

diffraction pattern. They are summarized in Table 4-1. These rules are

subject to some qualification, since some cells may contain more atoms

than the ones given in examples (a) through (d), and these atoms may be

in such positions that reflections normally present are now missing. For

example, diamond has a face-centered cubic lattice, but it contains eight

TABLE 4-1

* These relations apply to a cell centered on the C face. If reflections are present

only when h and I are unmixed, or when k and I are unmixed, then the cell is cen-

tered on the B or A face, respectively.
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carbon atoms per unit cell. All the reflections present have unmixed

indices, but reflections such as 200, 222, 420, etc., are missing. The fact

that the only reflections present have unmixed indices proves that the lat-

tice is face-centered, while the extra missing reflections are a clue to the

actual atom arrangement in this crystal.

(e) This point may be further illustrated by the structure of NaCl

(Fig. 2-18). This crystal has a cubic lattice with 4 Na and 4 Cl atoms

per unit cell, located as follows:

Na 000 f | | Off

Cl HI 00 i OfO fOO

In this case, the proper atomic scattering factors for each atom must be

inserted in the structure-factor equation :

F = /Na[l + e

+ e'*
7 + e*

lk +

As discussed in Sec?. 2-7, the sodium-atom positions are related by the

face-centering translations and so are the chlorine-atom positions. When-

ever a lattice contains common translations, the corresponding terms in

the structure-factor equation can always be factored out, leading to con-

siderable simplification. In this case we proceed as follows :

F = /Natl +

The signs of the exponents in the second bracket may be changed, by rela-

tion (d) of Sec. 4-5. Therefore

Here the terms corresponding to the face-centering translations appear in

the first factor. These terms have already appeared in example (d), and

they were found to have a total value of zero for mixed indices and 4 for

unmixed indices. This shows at once that NaCl has a face-centered lattice

and that

F = for mixed indices;
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For unmixed indices,

F - 4(/N + /ci) if (h + k + is even;

f2 = 16(/Na +/Cl)
2

.

F - 4(/Na
-

/ci) if (ft + fc + 9 is odd;

F2 - 16(/Na
~

In this case, there are more than four atoms per unit cell, but the lattice

is still face-centered. The introduction of additional atoms has not elim-

inated any reflections present in the case of the four-atom cell, but it has

decreased some in intensity. For example, the 111 reflection now involves

the difference, rather than the sum, of the scattering powers of the two

atoms.

(/) One other example of structure factor calculation will be given here.

The close-packed hexagonal cell shown in Fig. 2-15 has two atoms of the

same kind located at and J.

F = fe
2iri(0)

- fM _|_ e

For convenience, put [(h + 2/c)/3 + 1/2]
=

g.

F = /(I + e
2

').

Since g may have fractional values, such as ^-, $, ^, etc., this expression

is still complex. Multiplication by the complex conjugate, however, will

give the square of the absolute value of the resultant wave amplitude F.

|F|
a =/2

(l + e
2
"')(l + c-"

2' t

')

= /
2
(2 + e

2vi* + <T2Tl*).

By relation (e) of Sec. 4-5, this becomes

|F|
2 = /

2
(2 + 2 cos 2*0)

= /
2
[2 + 2(2 cos

2
*g
-

1)]

when (h + 2fc) is a multiple of 3 and I is odd.
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It is by these missing reflections, such as 11-1, 11-3, 22-1, 22-3, that a

hexagonal structure is recognized as being close-packed. Not all the re-

flections present have the same structure factor. For example, if (h + 2k)

is a multiple of 3 and I is even, then

/h + 2k l\
I
--h -

)
=

n, where n is an integer;
\ o 2t/

cos irn = 1
,

cos
2
trn = 1

,

|F|
2 = 4/

2
.

When all possible values of h, k, and 7 are considered, the results may be

summarized as follows:

3n odd

3w even 4/
2

3n 1 odd 3/
2

3 A? 1 even /
2

4-7 Application to powder method. Any calculation of the intensity of

a diffracted beam must always begin with the structure factor. The re-

mainder of the calculation, however, varies with the particular diffraction

method involved. For the Laue method, intensity calculations are so

difficult that they are rarely made, since each diffracted beam has a differ-

ent wavelength and blackens the film by a variable amount, depending
on both the intensity and the film sensitivity for that particular wave-

length. The factors governing diffracted intensity in the rotating-crystal

and powder methods are somewhat similar, in that monochromatic radia-

tion is used in each, but they differ in detail. The remainder of this chapter

will be devoted to the powder method, since it is of most general utility

in metallurgical work.

There ^re_six_factorsaffecting the relative intensity of the diffraction

lines on a powder pattern:

(1) polarization factor,

(2) structure factor,

(3) multiplicity factor,

(4) Lorentz factor,

(5) absorption factor,

(6) temperature factor^

The first two of these have already been described, and the others will be

discussed in the following sections.
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4-8 Multiplicity factor. Consider the 100 reflection from a cubic lat-

tice. In the powder specimen, some of the crystals will be so oriented that

reflection can occur from their (100) planes. Other crystals of different

orientation may be in such a position that reflection can occur from their

(010) or (001) planes. Since all these planes have the same spacing, the

beams diffracted by them all form part of the same cone. Now consider

the 111 reflection. There are four sets of planes of the form {111) which

have the same spacing but different orientation, namely, (111), (111),

(111), and (ill), whereas there are only three sets of the form (100).

Therefore, the probability that {111 } planes will be correctly oriented for

reflection is f the probability that {100} planes will be correctly oriented.

It follows that the intensity of the 1 11 reflection will be f that of the 100

reflection, other things being equal.

This relative proportion of planes contributing to the same reflection

enters the intensity equation as the quantity p, the multiplicity factor,

which may be defined as the number of different planes in a form having

the same spacing. Parallel planes with different Miller indices, such as

(100) and (TOO), are counted separately as different planes, yielding num-

bers which are double those given in the preceding paragraph. Thus the

multiplicity factor for the {100} planes of a cubic crystal is 6 and for the

{111} planes 8.

The value of p depends on the crystal system: in a tegragonal crystal,

the (100) and (001) planes do not have the same spacing, so that the value

of p for {100} planes is reduced to 4 and the value for {001} planes to 2.

Values of the multiplicity factor as a function of hkl and crystal system

are given in Appendix 9.

4-9 Lorentz factor. We must now consider certain trigonometrical fac-

tors which influence the intensity of the reflected beam. Suppose there is

incident on a crystal [Fig. 4-13 (a)] a narrow beam of parallel monochro-

matic rays, and let the" crystal be rotated at a uniform angular velocity

about an axis through and normal to the drawing, so that a particular

set of reflecting planes, assumed for convenience to be parallel to the crys-

tal surface, passes through the angle fe, at which the Bragg law is exactly

satisfied. As mentioned in Sec. 3-7, the intensity of reflection is greatest

at the exact Bragg angle but still appreciable at angles deviating slightly

from the Bragg angle, so that a curve of intensity vs. 20 is of the form

shown in Fig. 4-13 (b). If all the diffracted beams sent out by the crystal

as it rotates through the Bragg angle are received on a photographic film

or in a counter, the total energy of the diffracted beam can be measured.

This energy is called the integrated intensity of the reflection and is given

by the area under the curve of Fig. 4-13 (b). The integrated intensity is

of much more interest than the maximum intensity, since the former is
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(a)

DIFFRACTION ANGLE 26

(b)

FIG. 4-13. Diffraction by a crystal rotated through the Bragg angle.

characteristic of the specimen while the latter is influenced by slight adjust-

ments of the experimental apparatus. Moreover, in the visual comparison

of the intensities of diffraction lines, it is the integrated intensity of the

line rather than the maximum intensity which the eye evaluates.

The integrated intensity of a reflection depends on the particular value

of BB involved, even though all other variables are held constant. We can

find this dependence by considering, separately, two aspects of the diffrac-

tion curve: the maximum intensity and the breadth. When the reflecting

planes make an angle BB with the incident beam, the Bragg law is exactly

satisfied and the intensity diffracted in the direction 26s is a maximum.
But some energy is still diffracted in this direction when the angle of inci-

dence differs slightly from fe, (and the total energy diffracted in the direc-

tion 20# as the crystal is rotated through the Bragg angle is given by the

value of /max of the curve of Fig. 4-13(b). ^The value of /max therefore

depends on the angular range of crystal rotation over which the energy
diffracted in the direction 20 is appreciable.) In Fig. 4-14(a), the dashed

lines show the position of the crystal after rotation through a small angle
2,

2'

(a) (b)

FIG. 4-14. Scattering in a fixed direction during crystal rotation.
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A0 from the Bragg position. The incident beam and the diffracted beam
under consideration now make unequal angles with the reflecting planes,

the former making an angle 0i = OB + A0 and the latter an angle 2

OB A0. The situation on an atomic scale is shown in Fig. 4-14(b). Here

we need only consider a single plane of atoms, since the rays scattered by
all other planes are in phase with the corresponding rays scattered by the

first plane. Let a equal the atom spacing in the plane and Na the total

length* of the plane. The difference in path length for rays 1' and 2'

scattered by adjacent atoms is given by

5r2 ' = AD - CB

= a cos 62 a cos B\

= a[cos (Bs A0)
- cos (SB + A0)].

By expanding the cosine terms and setting sin A0 equal to A0, since the

latter is small, we find:

$i> 2 ' = 2aA0 sin 0#,

and the path difference between the rays scattered by atoms at either end

of the plane is simply N times this quantity. When the rays scattered by
the two end atoms are (N + 1) wavelengths out of phase, the diffracted

intensity will be zero. (The argument here is exactly analogous to that

used in Sec. 3-7.) The condition for zero diffracted intensity is therefore

2JVaA0 sin B = (N + 1)X,

or

(AT + 1)X
A0

2Na sin 6B

This equation gives the maximum angular range of crystal rotation over

which appreciable energy will be diffracted in the direction 20#. Since

/max depends on this range, we can conclude that /max is proportional to

I/sin 0fl. Other things being equal, /max is therefore large at low scatter-

ing angles and small in the back-reflection region.

The breadth of the diffraction curve varies in the opposite way, being

larger at large values of 20#, as was shown in Sec. 3-7, where the half-

maximum breadth B was found to be proportional to I/cos BB. The inte-

grated intensity of the reflection is given by the area under the diffraction

curve and is therefore proportional to the product /max-B, which is in turn

proportional to (l/sin0#)(l/cos0B) or to I/sin 26B . (Thus, as a crystal

is rotated through the Bragg angle, the integrated intensity of a reflection,

which is the quantity of most experimental interest, turns out to be greater

*
If the crystal is larger than the incident beam, then Na is the irradiated length

of the plane; if it is smaller, Na is the actual length of the plane.
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for large and small values of 200 than for intermediate values, other things

being equal.

The preceding remarks apply just as well to the powder method as they

do to the case of a rotating crystal, since the range of orientations available

among the powder particles, some satisfying the Bragg law exactly, some

not so exactly, are the equivalent of single-crystal rotation.

However, in the powder method, a second geometrical factor arises when

we consider thatfyhe integrated intensity of a reflection at any particular

Bragg angle depends on the number of particles oriented at or near that

angled This number is not constant even though the particles are oriented

completely at random. In Fig. 4-15

a reference sphere of radius r is drawn

around the powder specimen located

at 0. For the particular hkl reflec-

tion shown, ON is the normal to this

set of planes in one particle of the

powder. Suppose that the range of

angles near the Bragg angle over

which reflection is appreciable is A0.

Then, for this particular reflection,

only those particles will be in a re-

flecting position which have the ends

of their plane normals lying in a band

of width rA0 on the surface of the

sphere. Since the particles are as-

sumed to be oriented at random, the

ends of their plane normals will be uniformly distributed over the surface

of the sphere; the fraction favorably oriented for a reflection will be given

by the ratio of the area of the strip to that of the whole sphere. If AAT is

the number of such particles and N the total number, then

AAT rA0 2nr sin (90
- B ) A0 cos 6B

FIG. 4-15. The distribution of plane

normals for a particular cone of re-

flected rays.

The number of particles favorably oriented for reflection is thus propor-

tional to cos B and is quite small for reflections in the backward direction.

In assessing relative intensities, we do not compare the total diffracted

energy in one cone of rays with that in another but rather the integrated

intensity per unit length of one diffraction line with that of another. For

example, in the most common arrangement of specimen and film, the

Debye-Scherrer method, shown in Fig. 4-16, the film obviously receives a

greater proportion of a diffraction cone when the reflection is in the forward

or backward direction than it does near 20 = 90. Inclusion of this effect
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R sin 20/i

FIG. 4-16. Intersection of cones of diffracted rays with Debye-Scherrer film.

thus leads to a third geometrical factor affecting the intensity of a reflec-

tion. The length of any diffraction line being 2vR sin 20s, where R is the

radius of the camera, the relative intensity per unit length of line is pro-

portional to I/sin 20B.

In intensity calculations, the three factors just discussed are combined

into one and called the Lorentz factor. Dropping the subscript on the

Bragg angle, we have:

Lorentz factor ==
( ) [ cos 6 } [ I

Vsin 207 \ / Vsin 207

1CO80

sin
2 28 4 sin

2
6 cos

This in turn is combined with the polarization factor

Sec. 4-2 to give the combined Lorentz-

polarization factor which, with a con-

stant factor of -^ omitted, is given by

Lorentz-polarization factor = ^
o

1 + cos
2
26

5|
CSJ

sin'
2
6 cos 6 3

+ cos
2
26) of

Values of this factor are given in

Appendix 10 and plotted in Fig. 4-17

as a function of 6. (jhe over-all effect

of these geometrical factors is to de-

crease the intensity of reflections at

intermediate angles compared tothose

in forward or backward directions.

10

45 90

BRAGG ANGLE 6 (degrees)

FIG. 4-17. Lorentz-polarization factor.
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\

(a) (h)

FIG. 4-18. Absorption in Debye-Scherrer specimens: (a) general case, (b) highly

absorbing specimen.

4-10 Absorption factor. Still another factor affecting the intensities of

the diffracted rays must be considered, and that is the absorption which

takes place in the specimen itself. The specimen in the Debye-Scherrer
method has the form of a very thin cylinder of powder placed on the camera

axis, and Fig. 4-18 (a) shows the cross section of such a specimen. For

the low-angle reflection shown, absorption of a particular ray in the inci-

dent beam occurs along a path such as AB] at 5 a small fraction of the

incident energy is diffracted by a powder particle, and absorption of this

diffracted beam occurs along the path BC. Similarly, for a high-angle

reflection, absorption of both the incident and diffracted beams occurs

along a path such as (DE + EF). The net result is that the diffracted

beam is of lower intensity than one would expect for a specimen of no

absorption.

A calculation of this effect shows that the relative absorption increases

as 6 decreases, for any given cylindrical specimen. That this must be so

can be seen from Fig. 4-18 (b) which applies to a specimen (for example,

tungsten) of very high absorption. The incident beam is very rapidly

absorbed, and most of the diffracted beams originate in the thin surface

layer on the left side of the specimen ,-f
backward-reflected beams then

undergo very little absorption, but forward-reflected beams have to pass

through the whole specimen and are greatly absorbed.^ Actually, the

forward-reflected beams in this case come almost entirely from the top and
bottom edges of the specimen.* This difference in absorption between

* The powder patterns reproduced in Fig. 3-13 show this effect. The lowest-

angle line in each pattern is split in two, because the beam diffracted through the

center of the specimen is so highly absorbed. It is important to keep the possi-

bility of this phenomenon in mind when examining Debye-Scherrer photographs,
or split low-angle lines may be incorrectly interpreted as separate diffraction lines

from two different sets of planes.
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high-0 and low-0 reflections decreases as the linear absorption coefficient

of the specimen decreases, but the absorption is always greater for the

low-0 reflections. (These remarks apply only to the cylindrical specimen

used in the Debye-Scherrer method. The absorption factor has an entirely

different form for the flat-plate specimen used in a diffractometer, as will

be shown in Sec. 7-4.)

Exact calculation of the absorption factor for a cylindrical specimen is

often difficult, so it is fortunate that this effect can usually be neglected in

the calculation of diffracted intensities, when the Debye-Scherrer method

is used. Justification of this omission will be found in the next section.

4-11 Temperature factor. So far we have considered a crystal as a

collection of atoms located at fixed points in the lattice. Actually, the

atoms undergo thermal vibration about their mean positions even at the

absolute zero of temperature, and the amplitude of this vibration increases

as the temperature increases. In aluminum at room temperature, the

average displacement of an atom from its mean position is about 0.1 7A,

which is by no means negligible, being about 6 percent of the distance of

closest approach of the mean atom positions in this crystal.

^Thermal agitation decreases the intensity of a diffracted beam because

it has the effect of smearing out the lattice planes;*atoms can be regarded

as lying no longer on mathematical planes but rather in platelike regions

of ill-defined thickness. Thus the reinforcement of waves scattered at the

Bragg angle by various parallel planes, the reinforcement which is called a

diffracted beam, is not as perfect as it is for a crystal with fixed atoms.

This reinforcement requires that the path difference, which is a function

of the plane spacing d, between waves scattered by adjacent planes be an

integral number of wavelengths. Now the thickness of the platelike

"planes'
'

in which the vibrating atoms lie is, on the average, 2?/, where

u is the average displacement of an atom from its mean position. Under

these conditions reinforcement is no longer perfect, and it becomes more

imperfect as the ratio u/d increases, i.e., as the temperature increases,

since that increases u, or as increases, since high-0 reflections involve

planes of low d value. TThus the intensity of a diffracted beam decreases

as the temperature is raised, and, for a constant temperature, thermal

vibration causes a greater decrease in the reflected intensity at high angles

than at low angles. /

The temperature effect and the previously discussed absorption effect

in cylindrical specimens therefore depend on angle in opposite ways and,

to a first approximation, cancel each other. In back reflection, for exam-

ple, the intensity of a diffracted beam is decreased very little by absorption

but very greatly by thermal agitation, while in the forward direction the

reverse is true. The two effects do not exactly cancel one other at all
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angles; however, if the comparison of line intensities is restricted to lines

not differing too greatly in 6 values, the absorption and temperature effects

can be safely ignored. This is. a fortunate circumstance, since both of

these effects are rather difficult to calculate exactly.

It should be noted here that thermal vibration of the atoms of a crystal

does not cause any broadening of the diffraction lines; they remain sharp

right up to the melting point, but their maximum intensity gradually de-

creases. It is also worth noting that the mean amplitude of atomic vibra-

tion is not a function of the temperature alone but depends also on the

elastic constants of the crystal. At any given temperature, the less "stiff"

the crystal, the greater the vibration amplitude u. This means that u

is much greater at any one temperature for a soft, low-melting-point metal

like lead than it is for, say, tungsten. Substances with low melting points

have quite large values of u even at room temperature and therefore yield

rather poor back-reflection photographs.

The thermal vibration of atoms has another effect on diffraction pat-

terns. Besides decreasing the intensity of diffraction lines, it causes some

general coherent scattering in all directions. This is called temperature-

diffuse scattering; it contributes only to the general background of the

pattern and its intensity gradually increases with 26. Contrast between

lines and background naturally suffers, so this effect is a very undesirable

one, leading in extreme cases to diffraction lines in the back-reflection

region scarcely distinguishable from the background.

In the phenomenon of temperature-diffuse scattering we have another

example, beyond those alluded to in Sec. 3-7, of scattering at non-Bragg

angles. Here again it is not surprising that such scattering should occur,

since the displacement of atoms from their mean positions constitutes a

kind of crystal imperfection and leads to a partial breakdown of the con-

ditions necessary for perfect destructive interference between rays scat-

tered at non-Bragg angles.

The effect of thermal vibration also illustrates what has been called

"the approximate law of conservation of diffracted energy.
"

This law

states that the total energy diffracted by a particular specimen under par-

ticular experimental conditions is roughly constant. Therefore, anything
done to alter the physical condition of the specimen does not alter the total

amount of diffracted energy but only its distribution in space. This "law"

is not at all rigorous, but it does prove helpful in considering many diffrac-

tion phenomena. For example, at low temperatures there is very little

background scattering due to thermal agitation and the diffraction lines

are relatively intense; if the specimen is now heated to a high temperature,

the lines will become quite weak and the energy which is lost from

the lines will appear in a spread-out form as temperature-diffuse scat-

tering.
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4-12 Intensities of powder pattern lines. We are now in a position to

gather together the factors discussed in preceding sections into an equation

for the relative intensity of powder pattern lines:

Y 1 + C0s22g>

)
, (4-12)

\ sin
2
6 cos 6 /

where I = relative integrated intensity (arbitrary units), F = structure

factor, p = multiplicity factor, and 6 = Bragg angle. In arriving at this

equation, we have omitted factors which are constant for all lines of the

pattern. For example, all that is retained of the Thomson equation (Eq.

4-2) is the polarization factor (1 + cos
2
26), with constant factors, such

as the intensity of the incident beam and the charge and mass of the elec-

tron, omitted. The intensity of a diffraction line is also directly propor-

tional to the irradiated volume of the specimen and inversely proportional

to the camera radius, but these factors are again constant for all diffraction

lines and may be neglected. Omission of the temperature and absorption

factors means that Eq. (4-12) is valid only for the Debye-Scherrer method

and then only for lines fairly close together on the pattern; this latter

restriction is not as serious as it may sound. Equation (4-12) is also re-

stricted to the Debye-Scherrer method because of the particular way in

which the Lorentz factor was determined; other methods, such as those

involving focusing cameras, will require a modification of the Lorentz

factor given here. In addition, the individual crystals making up the

powder specimen must have completely random orientations if Eq. (4-12)

is to apply. Finally, it should be remembered that this equation gives the

relative integrated intensity, i.e., the relative area under the curve of in-

tensity vs. 20.

It should be noted that "integrated intensity" is not really intensity,

since intensity is -expressed in terms of energy crossing unit area per unit

of time. A beam diffracted by a powder specimen carries a certain amount

of energy per unit time and one could quite properly refer to the total

power of the diffracted beam. If this beam is then incident on a measuring

device, such as photographic film, for a certain length of time and if a

curve of diffracted intensity vs. 26 is constructed from the measurements,

then the area under this curve gives the total energy in the diffracted beam.

This is the quantity commonly referred to as integrated intensity. A
more descriptive term would be "total diffracted energy," but the term

"integrated intensity" has been too long entrenched in the vocabulary of

x-ray diffraction to be changed now.

4-13 Examples of intensity calculations. The use of Eq. (4-12) will

be illustrated by the calculation of the position and relative intensities of
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the diffraction lines on a powder pattern of copper, made with Cu Ka.

radiation. The calculations are most readily carried out in tabular form,

as in Table 4-2.

TABLE 4-2

Remarks:

Column 2: Since copper is face-centered cubic, F is equal to 4/Cu for lines of un-

mixed indices and zero for lines of mixed indices. The reflecting plane indices, all

unmixed, are written down in this column in order of increasing values of (h
2

-f-

fc
2 + Z

2
), from Appendix 6.

Column 4: For a cubic crystal, values of sin
2 6 are given by Eq. (3-10) :

sm"0 =
j-gC/r -h /r -h r;.

In this case, X = 1.542A (Cu Ka) and a = 3.615A (lattice parameter of copper).

Therefore, multiplication of the integers in column 3 by X2
/4a

2 = 0.0455 gives the

values of sin2
listed in column 4. In this and similar calculations, slide-rule

accuracy is ample.

Column 6: Needed to determine the Lorentz-polarization factor and (sin 0)/X.

Column 7: Obtained from Appendix 7. Needed to determine /Cu -

Column 8: Read from the curve of Fig. 4-6.

Column 9: Obtained from the relation F2 = 16/Cu
2

-

Column 10: Obtained from Appendix 9.
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Column 11: Obtained from Appendix 10.

Column 12: These values are the product of the values in columns 9, 10, and 11.

Column 13: Values from column 12 recalculated to give the first line an arbitrary

intensity of 10.

Column 14: These entries give the observed intensities, visually estimated ac-

cording to the following simple scale, from the pattern shown in Fig. 3-1 3(a)

(vs = very strong, s = strong, m = medium, w = weak).

The agreement obtained here between observed and calculated intensities

is satisfactory. For example, lines 1 and 2 are observed to be of strong

and medium intensity, their respective calculated intensities being 10 and

4.0. Similar agreement can be found by comparing the intensities of any

pair of neighboring lines in the pattern. Note, however, that the com-

parison must be made between lines which are not too far apart: for exam-

ple, the calculated intensity of line 2 is greater than that of line 4, whereas

line 4 is observed to be stronger than line 2. Similarly, the strongest lines

on the pattern are lines 7 and 8, while calculations show line 1 to

be strongest. Errors of this kind arise from the omission of the absorption

and temperature factors from the calculation.

A more complicated structure may now be considered, namely that of

the zinc-blende form of ZnS, shown in Fig. 2-19(b). This form of ZnS is

cubic and has a lattice parameter of 5.41A. We will calculate the relative

intensities of the first six lines on a pattern made with Cu Ka radiation.

As always, the first step is to work out the structure factor. ZnS has

four zinc and four sulfur atoms per unit cell, located in the following posi-

tions:

'Zn: \ \ \ + face-centering translations,

S: + face-centering translations.

Since the structure is face-centered, we know that the structure factor

will be zero for planes of mixed indices. We also know, from example (e)

of Sec. 4-6, that the terms in the structure-factor equation corresponding

to the face-centering translations can be factored out and the equation for

unmixed indices written do\vn at once:

|F|
2

is obtained by multiplication of the above by its complex conjugate:

This equation reduces to the following form:

|F|
2 = 16 I/!,

2 + /Zn
2 + 2/s/Zn cos *-

(h + k +
J
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Further simplification is possible for various special cases:

\F\
2 =

16(/s
2 + /Zn

2
) when (h + k + I) is odd; (4-13)

\F\
2 = 16(/s

-
/Z n)

2 when (h + k + 1} is an odd multiple of 2; (4-14)

|^|
2 = 16(/s + /zn)

2 when (h + k + I) is an even multiple of 2. (4-15)

The intensity calculations are carried out in Table 4-3, with some columns

omitted for the sake of brevity.

TABLE 4-3

Remarks:

Columns 5 and 6: These values are read from scattering-factor curves plotted

from the data of Appendix 8.

Column 7: \F\~ is obtained by the use of Eq. (4-13), (4-14), or (4-15), depending

on the particular values of hkl involved. Thus, Eq. (4-13) is used for the 111 re-

flection and Eq. (4-15) for the 220 reflection.

Columns 10 and 11: The agreement obtained here between calculated and ob-

served intensities is again satisfactory. In this case, the agreement is good when

any pair of lines is compared, because of the limited range of 6 values involved.

One further remark on intensity calculations is necessary. In the powder

method, two sets of planes with different Miller indices can reflect to the

same point on the film: for example, the planes (411) and (330) in the

cubic system, since they have the same value of (h
2 + k2 + I

2
) and hence

the same spacing, or the planes (501) and (431) of the tetragonal system,
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since they have the same values of (h? + fc
2
) and I

2
. In such a case, the

intensity of each reflection must be calculated separately, since in general

the two will have different multiplicity and structure factors, and then

added to find the total intensity of the line.

4-14 Measurement of x-ray intensity. In the examples just given, the

observed intensity was estimated simply by visual comparison of one line

with another. Although this simple procedure is satisfactory in a sur-

prisingly large number of cases, there are problems in which a more precise

measurement of diffracted intensity is necessary. Two methods are in

general use today for making such measurements, one dependent on the

photographic effect of x-rays and the other on the ability of x-rays to ionize

gases and cause fluorescence of light in crystals. These methods have

already been mentioned briefly in Sec. 1-8 and will be described more fully

in Chaps. 6 and 7, respectively.

PROBLEMS

4-1. By adding Eqs. (4-5) and (4-6) and simplifying the sum, show that E 3 ,

the resultant of these two sine waves, is also a sine wave, of amplitude

A 3
= [Ai

2 + A 2
* + 2A,A 2 cos fa - <*>2)]

and of phase
. AI sin fa + Az sin 92

</>3
= tan" 1

-; ^ ,

,

AI COS fa + A 2 COS 02

4-2. Obtain the same result by solving the vector diagram of Fig. 4-11 for the

right-angle triangle of which A 3 is the hypotenuse.

4^3. Derive simplified expressions for F2 for diamond, including the rules gov-

erning observed reflections. This crystal is cubic and contains 8 carbon atoms per

unit cell, located in the following positions:

000 HO $0i OH
Hi Hi Hi Hi

4-4. A certain tetragonal crystal has four atoms of the same kind per unit cell,

located at H. i i, \ f, H-

(a) Derive simplified expressions for F2
.

(b) What is the Bravais lattice of this crystal?

(c) What are the values of F2 for the 100, 002, 111, and Oil reflections?

4-6. Derive simplified expressions for F2 for the wurtzite form of ZnS, includ-

ing the rules governing observed reflections. This crystal is hexagonal and con-

tains 2 ZnS per unit cell, located in the following positions:

Zn:000, Hi
S:OOf,Hi
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Note that these positions involve a common translation, which may be factored

out of the structure-factor equation.

4-6. In Sec. 4-9, in the part devoted to scattering when the incident and scat-

tered beams make unequal angles witli the reflecting planes, it is stated that

"rays scattered by all other planes are in phase with the corresponding rays scat-

tered by the first plane." Prove this.

4-7. Calculate the position (in terms of 6) and the integrated intensity (in rela-

tive units) of the first five lines on the Debye pattern of silver made with Cu Ka
radiation. Ignore the temperature and absorption factors.

4-^8. A Debye-Scherrer pattern of tungsten (BCC) is made with Cu Ka radia-

tion. The first four lines on this pattern were observed to have the following 8

values:

Line 6

1 20.3
2 29.2

3 36.7
4 43.6

Index these lines (i.e., determine the Miller indices of each reflection by the use

of Eq. (3-10) and Appendix 6) and calculate their relative integrated intensities.

4-9. A Debye-Scherrer pattern is made of gray tin, which has the same struc-

ture as diamond, with Cu Ka radiation. What are the indices of the first two lines

on the pattern, and what is the ratio of the integrated intensity of the first to that

of the second?

4-10. A Debye-Scherrer pattern is made of the intermediate phase InSb with

Cu Ka radiation. This phase has the zinc-blende structure and a lattice parameter
of 6.46A. What are the indices of the first two lines on the pattern, and what is

the ratio of the integrated intensity of the first to the second?

4-11. Calculate the relative integrated intensities of the first six lines of the

Debye-Scherrer pattern of zinc, made with Cu Ka radiation. The indices and ob-

served 6 values of these lines are:

Line hkl 6

(Line 5 is made up of two unresolved lines from planes of very nearly the same

spacing.) Compare your results with the intensities observed in the pattern

shown in Fig. 3-13(b).



CHAPTER 5

LAUE PHOTOGRAPHS

6-1 Introduction. The experimental methods used in obtaining diffrac-

tion patterns will be described in this chapter and the two following ones.

Here we are concerned with the Laue method only from the experimental

viewpoint; its main applications will Be dealt with in Chap. 8.

Laue photographs are the easiest kind of diffraction pattern to make and

require only the simplest kind of apparatus. White radiation is necessary,

and the best source is a tube with a heavy-meta! target, such as tungsten,

since the intensity of the continuous spectrum is proportional to the atomic

number of the target metal. Good patterns can also be obtained with

radiation from other metals, such as molybdenum or copper. Ordinarily,

the presence of strong characteristic components, such as W Lai, Cu Ka,
Mo Ka, etc., in the radiation used, does not complicate the diffraction

pattern in any way or introduce difficulties in its interpretation. Such a

component will only be reflected if a set of planes in the crystal happens to

be oriented in just such a way that the Bragg law is satisfied for that com-

ponent, and then the only effect will be the formation of a Laue spot of

exceptionally high intensity.

The specimen used in the Laue method is a single crystal. This may
mean an isolated single crystal or one particular crystal grain, not too

small, in a polycrystalline aggregate. The only restriction on the size of a

crystal in a polycrystalline mass is that it must be no smaller than the

incident x-ray beam, if the pattern obtained is to correspond to that crystal

alone.

Laue spots are often formed by overlapping reflections of different

orders. For example, the 100, 200, 300, . . . reflections are all superimposed
since the corresponding planes, (100), (200), (300), ... are all parallel.

The first-order reflection is made up of radiation of wavelength X, the

second-order of X/2, the third-order of X/3, etc., down to XSWL, the short-

wavelength limit of the continuous spectrum.
The position of any Laue spot is unaltered by a change in plane spacing,

since the only effect of such a change is to alter the wavelength of the

diffracted beam. It follows that two crystals of the same orientation and

crystal structure, but of different lattice parameter, will produce identical

Laue patterns.

5-2 Cameras. Laue cameras are so simple to construct that home-
made models are found in a great many laboratories. Figure 5-1 shows
a typical transmission camera, in this case a commercial unit, and Fig.

138
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FIG. 5-1. Transmission Laue camera. Specimen holder not shown. (Courtesy

of General Electric Co., X-Ray Department.)

5-2 illustrates its essential parts. A is the collimator, a device used to

produce a narrow incident beam made up of rays as nearly parallel as pos-

sible; it usually consists of two pinholes in line, one in each of two lead

disks set into the ends of the collimator tube. (7 is the single-crystal

specimen supported on the holder B.

cassette, made of a frame, a removable

metal back, and a sheet of opaque

paper; the film, usually 4 by 5 in. in

size, is sandwiched between the metal

back and the paper. S is the beam

stop, designed to prevent the trans-

mitted beam from striking the film

and causing excessive blackening. A

F is the light-tight film holder, or

FIG. 5-2. Transmission Laue camera.
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small copper disk, about 0.5 mm thick, cemented on the paper film cover

serves very well for this purpose: it stops all but a small fraction of the

beam transmitted through the crystal, while this small fraction serves to

record the position of this beam on the film. The shadow of a beam stop

of this kind can be seen in Fig. 3-6(a).

The Bragg angle corresponding to any transmission Laue spot is found

very simply from the relation

tan 20 = -> (5-1)
D

where r\
= distance of spot from center of film (point of incidence of trans-

mitted beam) and D = specimen-to-film distance (usually 5 cm). Adjust-

ment of the specimen-to-film distance is best made by using a feeler gauge

of the correct length.

The voltage applied to the x-ray tube has a decided effect on the appear-

ance of a transmission Laue pattern. It is of course true that the higher

the tube voltage, the more intense the spots, other variables, such as tube

current and exposure time, being held constant. But there is still another

effect due to the fact that the continuous spectrum is cut off sharply on

the short-wavelength side at a value of the wavelength which varies in-

versely as the tube voltage [Eq. (1-4)]. Laue spots near the center of a

transmission pattern are caused by first-order reflections from planes in-

clined at very small Bragg angles to the incident beam. Only short-wave-

length radiation can satisfy the Bragg law for such planes, but if the tube

voltage is too low to produce the wavelength required, the corresponding

Laue spot will not appear on the pattern. It therefore follows that there

is a region near the center of the pattern which is devoid of Laue spots and

that the size of this region increases as the tube voltage decreases. The

tube voltage therefore affects not only the intensity of each spot, but also

the number of spots. This is true also of spots far removed from the center

of the pattern; some of these are due to planes so oriented and of such a

spacing that they reflect radiation of wavelength close to the short-wave-

length limit, and such spots will be eliminated by a decrease in tube voltage

no matter how long the exposure.

A back-reflection camera is illustrated in Figs. 5-3 and 5-4.. Here the

cassette supports both the film and the collimator. The latter has a re-

duced section at one end which screws into the back plate of the cassette

and projects a short distance in front of the cassette through holes punched

in the film and its paper cover.

The Bragg angle for any spot on a back-reflection pattern may be

found from the relation

tan (180
-

20)
= -> (5-2)
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t

Back-re
f
ec
L
tion Laue camera. The specimen holder shown permits

the h
tm 1th6 Spedme\" We" as rotation about an ** Pail tothe incident beam. The specimen shown is a coarse-grained polycrystaJline one

poBitioned so that only a single, selected grain will be struck by the incident beam!
FIG. 5-4. Back-reflection Laue camera (schematic).

where r2 = distance of spot from center of film and D =
specimen-to-film

distance (usually 3 cm). In contrast to transmission patterns, back-reflec-
tion patterns may have spots as close to the center of the film as the size
of the colhmator permits. Such spots are caused by high-order over-
lapping reflections from planes almost perpendicular to the incident beam
bmce each diffracted beam is formed of a number of wavelengths the only
effect of a decrease in tube voltage is to remove one or more short-wave-
ength components from some of the diffracted beams. The longer wave-
lengths will still be diffracted, and the decrease in voltage will not in
general, remove any spots from the pattern.

'

Transmission patterns can usually be obtained with much shorter ex-
posures than back-reflection patterns. For example, with a tungsten-
target tube operating at 30 kv and 20 ma and an aluminum crystal about
1 mm thick, the required exposure is about 5 min in transmission and
30 mm in back reflection. This difference is due to the fact that the atomic
scattering factor / decreases as the quantity (sin0)/A increases, and this
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quantity is much larger in back reflection than in transmission. Trans-

mission patterns are also clearer, in the sense of having greater contrast

between the diffraction spots and the background, since the coherent

scattering, which forms the spots, and the incoherent (Compton modified)

scattering, which contributes to the background, vary in opposite ways

with (sin 0)/X. The incoherent scattering reaches its maximum value in

the back-reflection region, as shown clearly in Fig. 3-6(a) and (b); it is

in this region also that the temperature-diffuse scattering is most intense.

In both Laue methods, the short-wavelength radiation in the incident

beam will cause most specimens to emit K fluorescent radiation. If this

becomes troublesome in back reflection, it may be minimized by placing a

filter of aluminum sheet 0.01 in. thick in front of the film.

If necessary, the intensity of a Laue spot may be increased by means

of an intensifying screen, as used in radiography. This resembles a fluores-

cent screen in having an active material coated on an inert backing such

as cardboard, the active material having the ability to fluoresce in the

visible region under the action of x-rays. When such a screen is placed

with its active face in contact with the film (Fig. 5-5), the film is blackened

not only by the incident x-ray beam but also by the visible light which

the screen emits under the action of the beam. Whereas fluorescent screens

emit yellow light, intensifying screens are designed to emit blue light,

which is more effective than yellow in blackening the film. Two kinds of

intensifying screens are in use today, one containing calcium tungstate

and the other zinc sulfide with a trace of silver; the former is most effective

at short x-ray wavelengths (about 0.5A or less), while the latter can be

used at longer wavelengths.

An intensifying screen should not be used if it is important to record

fine detail in the Laue spots, as in some studies of crystal distortion, since

the presence of the screen will cause the spots to become more diffuse than

paper screen

film / back plate

r

diffracted

beam

emulsion

film base

D

active side

of screen

FIG. 5-5. Arrangement of film and

intensifying screen (exploded view).

(a) (b)

FIG. 5-6. Effect of double-coated film

on appearance of Laue spot: (a) section

through diffracted beam and film; (b)

front view of doubled spot on film.
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they would ordinarily bo. Each particle of the screen which is struck by

x-rays emits light in all directions and therefore blackens the film outside

the region blackened by the diffracted beam itself, as suggested in Fig. 5-5.

This effect is aggravated by the fact that most x-ray film is double-coated,

the two layers of emulsion being separated by an appreciable thickness of

film base. Even when an intensifying screen is not used, double-coated

film causes the size of a diffraction spot formed by an obliquely incident

beam to be larger than the cross section of the beam itself; in extreme

cases, an apparent doubling of the diffraction spot results, as shown in

Fig. 5-0.

5-3 Specimen holders. Before going into the question of specimen

holders, we might consider the specimen itself Obviously, a specimen for

the transmission method must have low enough absorption to transmit the

diffracted beams; in practice, this means that relatively thick specimens
of a light element like aluminum may be used but that the thickness of a

fairly heavy element like copper must be reduced, by etching, for example,
to a few thousandths of an inch On the other hand, the specimen must

not be too thin or the diffracted intensity will be too low, since the intensity

of a diffracted beam is proportional to the volume of diffracting material.

In the back-reflection method, there is no restriction on the specimen
thickness and quite massive specimens may be examined, since the dif-

fracted beams originate in only a thin surface layer of the specimen. This

difference between the two methods may be stated in another way and

one which is well worth remembering: any information about a thick

specimen obtained by the back-reflection method applies only to a

thin surface layer of that specimen,

whereas information recorded on a

transmission pattern is representative

of the complete thickness of the speci-

men, simply because the transmission

specimen must necessarily be thin

enough to transmit diffracted beams

from all parts of its cross section.*

There is a large variety of specimen
holders in use, each suited to some

particular purpose. The simplest

consists of a fixed post to which the

specimen is attached with wax or

plasticine. A more elaborate holder is

required when it is necessary to set a

crystal in some particular orientation

FIG* 5-7. Goniometer with

rotation axes, (Courtesy of

Supper Co,)

'

See Sec. 9-5 for further discussion of this point.
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relative to the x-ray beam. In this case, a three-circle goniometer is used

(Fig. 5-7) ;
it has three mutually perpendicular axes of rotation, two hori-

zontal and one vertical, and is so constructed that the crystal, cemented

to the tip of the short metal rod at the top, is not displaced in space by

any of the three possible rotations.

In the examination of sheet specimens, it is frequently necessary to

obtain diffraction patterns from various points on the surface, and this

requires movement of the specimen, between exposures, in two directions

at right angles in the plane of the specimen surface, this surface being per-

pendicular to the incident x-ray beam. The mechanical stage from a

microscope can be easily converted to this purpose.

It is often necessary to know exactly where the incident x-ray beam
strikes the specimen, as, for example, when one wants to obtain a pattern

from a particular grain, or a particular part of a grain, in a polycrystalline

mass. This is sometimes a rather difficult matter in a back-reflection

camera because of the short distance between the film and the specimen.

One method is to project a light beam through the collimator and observe

its point of incidence on the specimen with a mirror or prism held near the

collimator. An even simpler method is to push a stiff straight wire through
the collimator and observe where it touches the specimen with a small

mirror, of the kind used by dentists, fixed at an angle to the end of a rod.

6-4 Collimators. Collimators of one kind or another are used in all

varieties of x-ray cameras, and it is therefore important to understand their

function and to know what they can and cannot do. To "collimate"

means, literally, to "render parallel," and the perfect collimator would

produce a beam composed of perfectly parallel rays. Such a collimator

does not exist, and the reason, essentially, lies in the source of the radia-

tion, since every source emits radiation in all possible directions.

Consider the simplest kind of collimator (Fig. 5-8), consisting of two

circular apertures of diameter d separated by a distance u, where u is

large compared to d. If there is a point source of radiation at S, then all

the rays in the beam from the collimator are nonparallel, and the beam is

conical in shape with a maximum angle of divergence f$\ given by the

FIG. 5-8. Pinhole collimator and small source.
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where v is the distance of the exit pinhole from the source. Since 1 is

always very small, this relation can be closely approximated by the equa-
tion

d
ft i

= - radian. (5-3)
v

Whatever we do to decrease 0\ and therefore render the beam more

nearly parallel will at the same time decrease the energy of the beam. We
note also that the entrance pinhole serves no function when the source is

very small, and may be omitted.

No actual source is a mathematical point, and, in practice, we usually

have to deal with x-ray tubes which have focal spots of finite size, usually

rectangular in shape. The projected shape of such a spot, at a small target-

to-beam angle, is either a small square or a very narrow line (Fig. 1-16),

depending on the direction of projection. Such sources produce beams

having parallel, divergent, and convergent rays.

Figure 5-9 illustrates the case when the projected source shape is square
and of such a height h that convergent rays from the edges of the source

cross at the center of the collimator and then diverge. The maximum

divergence angle is now given by

,.

($2
= radian,

u
(5-4)

and the center of the collimator may be considered as the virtual source of

these divergent rays. The beam issuing from the collimator contains not

only parallel and divergent rays but also convergent ones, the maximum

angle of convergence being given by

u + w
radian, (5-5)

FIG. 5-9. Pinhole collimator and large source. S = source, (7 = crystal.



146 LAUE PHOTOGRAPHS [CHAP. 5

where w is the distance of the crystal from the exit pinhole. The size of

the source shown in Fig. 5-9 is given by

/2u \

-d(--l).\u /
(5-6)

In practice, v is very often about twice as large as u, which means that the

conditions illustrated in Fig. 5-9 are achieved when the pinholes are about

one-third the size of the projected source. If the value of h is smaller than

that given by Eq. (5-6), then conditions will be intermediate between

those shown in Figs. 5-8 and 5-9; as h approaches zero, the maximum

divergence angle decreases from the value given by Eq. (5-4) to that given

by Eq. (5-3) and the proportion of parallel rays in the beam and the max-

imum convergence angle both approach zero. When h exceeds the value

given by Eq. (5-6), none of the conditions depicted in Fig. 5-9 are changed,

and the increase in the size of the source merely represents wasted energy.

When the shape of the projected source is a fine line, the geometry of

the beam varies between two extremes in two mutually perpendicular

planes. In a plane at right angles to the line source, the shape is given by

Fig. 5-8, and in a plane parallel to the source by Fig. 5-9. Aside from the

component which diverges in the plane of the source, the resulting beam

is shaped somewhat like a wedge. Since the length of the line source

greatly exceeds the value given by Eq. (5-6), a large fraction of the x-ray

energy is wasted with this arrangement of source and collimator.

The extent of the nonparallelism of actual x-ray beams may be illus-

trated by taking, as typical values, d = 0.5 mm, u = 5 cm, and w = 3 cm.

Then Eq. (5-4) gives 2
= 1.15 and Eq. (5-5) gives a = 0.36. These

values may of course be reduced by decreasing the size of the pinholes, for

example, but this reduction will be obtained at the expense of decreased

energy in the beam and increased exposure time.

6-5 The shapes of Laue spots. We will see later that Laue spots be-

come smeared out if the reflecting crystal is distorted. Here, however,

we are concerned with the shapes of spots obained__from perfect, undis-

torted crystals. These shapes are greatly influenced by the nature of the

incident beam, i.e., by its convergence or divergence, and it is important

to realize this fact, or Laue spots of "unusual" shape may be erroneously

taken as evidence of crystal distortion.

Consider the transmission case first, and assume that the crystal is thin

and larger than the cross section of the primary beam at the point of inci-

dence. If this beam is mainly divergent, which is the usual case in practice

(Fig. 5-8 or 5-9), then a focusing action takes place on diffraction. Figure

5-10 is a section through the incident beam and any diffracted beam; the

incident beam, whose cross section at any point is circular, is shown issuing
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H

FIG. 5-10. Focusing of diffracted beam in the transmission Laue method. S
T =

source, C = crystal, F = focal point.

from a small source, real or virtual. Each ray of the incident beam which

lies in the plane of the drawing strikes the reflecting lattice planes of the

crystal at a slightly different Bragg angle, this angle being a maximum i

'

A and decreasing progressively toward B. The lowermost rays are there-

fore deviated through a greater angle 28 than the upper ones, with the

result that the diffracted beam converges to a focus at F. This is true

only of the rays in the plane of the drawing; those in a plane at right angles

continue to diverge after diffraction, with the result that the diffracted

beam is elliptical in cross section. The film intersects different diffracted

beams at diJerent distances from the crystal, so elliptical spots of various

sizes are observed, as shown in Fig. 5-11. This is not a sketch of a Laue

pattern but an illustration of spot size and shape as a function of spot

position in one quadrant of the film. Note that the spots are all elliptical

with their minor axes aligned in a radial direction and that spots near the

center and edge of the pattern are thicker than those in intermediate posi-

tions, the latter being formed by beams near their focal point. Spots

having the shapes illustrated are fairly common, and Fig. 3-6(a) is an

example.
In back reflection, no focusing oc-

curs and a divergent incident beam
intinues to diverge in all directions

ter diffraction. Back-reflection

le spots are therefore more or less

* near the center of the pat-
1

they become increasingly

ward the edge, due to the

>nce of the rays on the

)r axes of the ellipses

lately radial. Figure FlG . ^_1L shape of transmission

.al. Laue spots as a function of position.
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PROBLEMS

5-1. A transmission Laue pattern is made of an aluminum crystal with 40-kv

tungsten radiation. The film is 5 cm from the crystal. How close to the center

of the pattern can Laue spots be formed by reflecting planes of maximum spacing,

namely (111), and those of next largest spacing, namely (200)?

6-2. A transmission Laue pattern is made of an aluminum crystal with a speci-

men-to-film distance of 5 cm. The (111) planes of the crystal make an angle of

3 with the incident beam. What minimum tube voltage is required to produce a

111 reflection?

6-3. (a) A back-reflection Laue pattern is made of an aluminum crystal at 50

kv. The (111) planes make an angle of 88 with the incident beam. What orders

of reflection are present in the beam diffracted by these planes? (Assume that

wavelengths larger than ? A are too weak and too easily absorbed by air to regis-

ter on the film.)

(6) What orders of the 111 reflection are present if the tube voltage is reduced
'

) 40 kv?



CHAPTER 6

POWDER PHOTOGRAPHS

6-1 Introduction. The powder method of x-ray diffraction was de-

vised independently in 1916 by Debye and Scherrer in Germany and in

1917 by Hull in the United States. It is the most generally useful of all

diffraction methods and, when properly employed, can yield a great deal

of structural information about the material under investigation. Basi-

cally, this method involves the diffraction of monochromatic x-rays by a

powder specimen. In this connection, "monochromatic" usually means

the strong K characteristic component of the general radiation from an

x-ray tube operated above the K excitation potential of the target mate-]

rial. "Powder" can mean either an actual, physical powder held together

with a suitable binder or any specimen in polycrystalline form. The

method is thus eminently suited for metallurgical work, since single crys-

tals are not always available to the metallurgist and such materials as

polycrystalline wire, sheet, rod, etc., may be examined nondestructively

without any special preparation.

There are three main powder methods in use, differentiated by the rela-

tive position of the specimen and film:

(1) Debye-Scherrer method. The film is placed on the surface of a cylin-

der and the specimen on the axis of the cylinder.

(2) Focusing method. The film, specimen, and x-ray source are all placed

on the surface of a cylinder.

(3) Pinhole method. The film is flat, perpendicular to the incident x-ray

beam, and located at any convenient distance from the specimen.

In all these methods, the diffracted beams lie on the surfaces of cones

whose axes lie along the incident beam or its extension; each cone of rays

is diffracted from a particular set of lattice planes. In the Debye-Scherrer

and focusing methods, only a narrow strip of film is used and the recorded

diffraction pattern consists of short lines formed by the intersections of the

cones of radiation with the film. In the pinhole method, the whole cone

intersects the film to form a circular diffraction ring.

6-2 Debye-Scherrer method. A typical Debye camera is shown in

Fig. 6-1. It consists essentially of a cylindrical chamber with a light-tight

cover, a collimator to admit and define the incident beam, a beam stop to

confine and stop the transmitted beam, a means for holding the film

tightly against the inside circumference of the camera, and a specimen
holder that can be rotated.

149
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\

FIG. 6-1. Debye-Scherrer camera, with cover plate removed. (Courtesy of
North American Philips Company, Inc.)

Camera diameters vary from about 5 to about 20 cm. The greater the

diameter, the greater the resolution or separation of a particular pair of

lines on the film. In spectroscopy, resolving power is the power of dis-

tinguishing between two components of radiation which have wavelengths
very close together and is given by X/AX, where AX is the difference be-
tween the two wavelengths and X is their mean value; in crystal-structure

analysis, we may take resolving power as the ability to separate diffraction

lines from sets of planes of very nearly the same spacing, or as the value
of d/M. *

Thus, if S is the distance measured on the film from a particular
diffraction line to the point where the transmitted beam would strike the
film (Fig. 6-2), then

S = 2dR

*
Resolving power is often defined by the quantity AX/X, which is the reciprocal

of that given above. However, the power of resolving two wavelengths which are

nearly alike is a quantity which should logically increase as AX, the difference be-
tween the two wavelengths to be separated, decreases. This is the reason for the
definition given in the text. The same argument applies to interplanar spacings d.
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and AS = #A20, (6-1)

where R is the radius of the camera. Two sets of planes of very nearly

the same spacing will give rise to two diffracted beams separated by a

small angle A20; for a given value of A20, Eq. (6-1) shows that AS, the

separation of the lines on the film, increases with R. The resolving power

may be obtained by differentiating the Bragg law:*

X = 2d sin

d0 -1
= tan 0.

, (6-2)
dd d

But

_ dS
6 ~

2R
Therefore

dS 2R ^1G ' ^"^' ^eome^ry

= '. an 0, Scherrer method. Section through

dd d film and one diffraction cone. ^

d -2R
Resolving power = = tan 0, (6-3,

Arf AS

where d is the mean spacing of the two sets of planes, Ad the difference in

their spacings, and AS the separation of two diffraction lines which appear

just resolved on the film. Equation (6-3) shows that the rcsolyjng power

increases with the size of the camera; this increased resolution is obtained,

however, at the cost of increased exposure time, and the smaller cameras

are usually preferred for all but the most complicated patterns. A camera

diameter of 5.73 cm is often used and will be found suitable for most work.

This particular diameter, .equal to 1/10 the number of degrees in a radian,

facilitates calculation, since 0, (in degrees) is obtained simply by multipli-

cation of S (in cm) by 10, except for certain corrections necessary in pre-

cise work. Equation (6-3) also shows that the resolving power of a given

camera increases with 0, being directly proportional to tan 0.

The increased exposure time required by an increase in camera diameter

is due not only to the decrease in intensity <rf the diffracted beam with

increased distance from the specimen, but also to the partial absorption

of both the incident and diffracted beams by the air in the camera. For

example, Prob. 1-7 and the curves of Fig. 6-3 show that, in a camera of

19 cm diameter (about the largest in common use), the decrease in in-

tensity due to air absorption is about 20 percent for Cu Ka radiation and

about 52 percent for Cr Ka radiation. This decrease in intensity may be

* A lower-case roman d is used throughout this book for differentials in order to

avoid confusion with the symbol d for distance between atomic planes.
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avoided by evacuating the camera or

by filling it with a light gas such as

hydrogen or helium during the ex-

posure.

Correct design of the pinhole system
which collimates the incident beam is

important, especially when weak dif-

fracted beams must be recorded. The
exit pinhole scatters x-rays in all di-

rections, and these scattered rays, if

not prevented from striking the film,

can seriously increase the intensity

of the background. A "guarded-

pinhole" assembly which practically

5 10 15 20

PATH LENGTH (cm)

FIG. 6-3. Absorption of Cu Ka and
Cr Ka radiation by air.

eliminates this effect is shown in Fig. 6-4, where the divergent and con-

vergent rays in the incident beam are ignored and only the parallel com-

ponent is shown. The collimator tube is extended a considerable distance

beyond the exit pinhole and constricted so that the end A is close enough
to the main beam to confine the radiation scattered by the exit pinhole

to a very narrow angular range and yet not close enough to touch the

main beam and be itself a cause of further scattering. The beam stop is

usually a thick piece of lead glass placed behind a fluorescent screen, the

combination allowing the transmitted beam to be viewed with safety when

adjusting the camera in front of the x-ray tube. Back scatter from the

stop is minimized by extending the beam-stop tube backward and con-

stricting its end B. Another reason for extending the collimator and

beam-stop tubes as close to the specimen as possible is to minimize the

extent to which the primary beam is scattered by air, as it passes through
the camera. Both tubes are tapered to interfere as little as possible with

low-angle and high-angle diffracted beams.

Some cameras employ rectangular slits rather than pinholes to define

the beam, the long edges of the slits being parallel to the axis of the speci-

fluorescent

screen

FIG. 6-4. Design of collimator and beam stop (schematic).
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men. The use of slits instead of pinholes decreases exposure time by in-

creasing the irradiated volume of the specimen, but requires more accurate

positioning of the camera relative to the source and produces diffraction

lines which are sharp only along the median line of the film.

6-8 Specimen preparation. Metals and alloys may be converted to

powder by filing or, if they are sufficiently brittle, by grinding in a small

agate mortar. In either case, the powder should be filed or ground as

fine as possible, preferably to pass a 325-mesh screen, in order to produce

smooth, continuous diffraction lines. The screened powder is usually an-

nealed in evacuated glass or quartz capsules in order to relieve the strains

due to filing or grinding.

Special precautions are necessary in screening two-phase alloys. If a

small, representative sample is selected from an ingot for x-ray analysis,

then that entire sample must be ground or filed to pass through the screen.

The common method of grinding until an amount sufficient for the x-ray

specimen has passed the screen, the oversize being rejected, may lead to

very erroneous results. One phase of the alloy is usually more brittle than

the other, and that phase will more easily be ground into fine particles; if

the grinding and screening are interrupted at any point, then the material

remaining on the screen will contain less of the more brittle phase than the

original sample while the undersize will contain more, and neither will be

representative.

The final specimen for the Debye camera should be in the form of a thin

rod, 0.5 mm or less in diameter and about 1 cm long. There are various

ways of preparing such a specimen, one of the simplest being to coat the

powder on the surface of a fine glass fiber with a small amount of glue or

petroleum jelly. Other methods consist in packing the powder into a thin-

walled tube made of a weakly absorbing substance such as cellophane or

lithium borate glass, or in extruding a mixture of powder and binder

through a small hole. Polycrystalline wires may be used directly, but

since they usually exhibit some preferred orientation, the resulting diffrac-

tion pattern must be interpreted with that fact in mind (Chap. 9). Strongly

absorbing substances may produce split low-angle lines (see Sec. 4-10);

if this effect becomes troublesome, it may be eliminated by diluting the

substance involved with some weakly absorbing substance, so that the

absorption coefficient of the composite specimen is low. Both flour and

cornstarch have been used for this purpose. The diluent chosen should

not produce any strong diffraction lines of its own and too much of it

should not be used, or the lines from the substance being examined will

become spotty.

After the specimen rod is prepared, it is mounted in its holder so that it

will lie accurately along the axis of the camera when the specimen holder
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is rotated.
(Rotation

of the specimen during the exposure is common prac-

tice but not an intrinsic part of the powder method; its only purpose is to

produce continuous, rather than spotty, diffraction lines by increasing the

number of powder particles in reflecting positions.
|

6-4 Film loading. Figure 6-5 illustrates three methods of arranging

the film strip in the Debye method. The small sketches on the right show

the loaded film in relation to the incident beam, while the films laid out

flat are indicated on the left. In (a), a hole is punched in the center of the

film so that the film may be slipped over the beam stop; the transmitted

beam thus leaves through the hole in the film. The pattern is symmetrical

on either side, and the 6 value of a particular reflection is obtained by

measuring U, the distance apart of two diffraction lines formed by the

same cone of radiation, and using the relation

4BR = U.

Photographic film always shrinks slightly during processing and drying,

and this shrinkage effectively changes the camera radius. The film-shrink-

age error may be allowed for by slipping the ends of the film under metal

knife-edges which cast a sharp shadow near each end of the film. In this

way, a standard distance is impressed on the film which will shrink in the

same proportion as the distance between a given pair of diffraction lines.

If the angular separation 40* of the knife-edges in the camera is known,

either by direct measurement or by calibration with a substance of known

lattice parameter, then the value of for a particular reflection may be

obtained by simple proportion:

6 U

where UK is the distance apart of the knife-edge shadows on the film.

Figure 6-5(b) illustrates a method of loading the film which is just the

reverse of the previous one. Here the incident beam enters through the

hole in the film, and is obtained from the relation

(27T
- 4S)R ^ V.

Knife-edges may also be used in this case as a basis for film-shrinkage cor-

rections.

The unsymmetrical, or Straumanis, method of film loading is shown in

Fig. 6-5 (c). Two holes are punched in the film so that it may be slipped

over both the entrance collimator and the beam stop. Since it is possible

to determine from measurements on the film where the incident beam en-

tered the film circle and where the transmitted beam left it, no knife-edges

are required to make the film-shrinkage correction. The point X (20
=
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5 4

knife-edge
shadow

2 1 12 45

26

12 3 4 5 5 4

(c)

FIG. 6-5. Methods of film loading in Debye cameras,

have the same numbers in all films.

Corresponding lines

180), where the incident beam entered, is halfway between the measured

positions of lines 5,5; similarly, the point Y (26 = 0), where the trans-

mitted beam left, is halfway between lines 1,1. The difference between

the positions of X and Y gives W, and 6 is found by proportion :

29 _ 8

7
~
W

Unsymmetrical loading thus provides for the film-shrinkage correction

without calibration of the camera or knowledge of any camera dimension.

The shapes of the diffraction lines in Fig. 6-5 should be noted. The low-

angle lines are strongly curved because they are formed by cones of radia-

tion which have a small apex angle 48. The same is true of the high-angle

lines, although naturally they are curved in the opposite direction. Lines

for which 40 is nearly equal to 180 are practically straight. This change
of line shape with change in 6 may also be seen in the powder photographs
shown in Fig. 3-13.
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6-6 Cameras for high and low temperatures. Metallurgical investiga-

tions frequently require that the crystal structure of a phase stable only

at high temperature be determined. In many cases, this can be accom-

plished by quenching the specimen at a high enough rate to suppress the

decomposition of the high-temperature phase and then examining the

specimen in an ordinary camera at room temperature. In other cases, the

transformation into the phases stable at room temperature cannot be sup-

pressed, and a high-temperature camera is necessary in order that the

specimen may be examined at the temperature at which the phase in ques-

tion is stable.

The design of high-temperature Debye cameras varies almost from

laboratory to laboratory. They all involve a small furnace, usually of the

electric-resistance type, to heat the specimen and a thermocouple to meas-

ure its temperature. The main design problem is to keep the film cool

without too great an increase in the camera diameter; this requires water-

cooling of the body of the camera and/or the careful placing of radiation

shields between the furnace and the film, shields so designed that they will

not interfere with the diffracted x-ray beams. The furnace which sur-

rounds the specimen must also be provided with a slot of some kind to

permit the passage of the incident and diffracted beams. If the specimen

is susceptible to oxidation at high temperatures, means of evacuating the

camera or of filling it with an inert gas must be provided; alternately, the

powder specimen may be sealed in a thin-walled silica tube. Because of

the small size of the furnace in a high-temperature camera, the tempera-

ture gradients in it are usually quite steep, and special care must be taken

to ensure that the temperature recorded by the thermocouple is actually

that of the specimen itself. Since the intensity of any reflection is de-

creased by an increase in temperature, the exposure time required for a

high-temperature diffraction pattern is normally rather long.

Debye cameras are also occasionally required for work at temperatures

below room temperature. Specimen cooling is usually accomplished by

running a thin stream of coolant, such as liquid air, over the specimen

throughout the x-ray exposure. The diffraction pattern of the coolant will

also be recorded but this is easily distinguished from that of a crystalline

solid, because the typical pattern of a liquid contains only one or two very

diffuse maxima in contrast to the sharp diffraction lines from a solid. Scat-

tering from the liquid will, however, increase the background blackening

of the photograph.

6-6 Focusing cameras. Cameras in which diffracted rays originating

from an extended region of the specimen all converge to one point on the

film are called focusing cameras. The design of all such cameras is based

on the following geometrical theorem (Fig. 6-6) : all angles inscribed in a
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FIG. 6-6. Geometry of focusing cameras.

circle and based on the same arc SF are equal to one another and equal to

half the angle subtended at the center by the same arc. Suppose that

x-rays proceeding in the directions SA and SB encounter a powder speci-

men located on the arc AB. Then the rays diffracted by the (hkl) planes

at points A and B will be deviated through the same angle 26. But these

deviation angles 26 are each equal to (180 a), which means that the

diffracted rays must proceed along AF and BF, and come to a focus at F
on a film placed along the circumference of the circle.

6-7 Seemann-Bohlin camera. This focusing principle is utilized in the

Seemann-Bohlin camera shown in Fig. 6-7. The slit S acts as a virtual

line source of x-rays, the actual source being the extended focal spot on

the target T of the x-ray tube. Only converging rays from the target can

enter this slit and, after passing it, they diverge to the specimen AB.

(Alternatively, if a tube with a fine-line focal spot is available, the slit

may be eliminated and exposure time shortened by designing the camera

to use the focal spot itself as a source of divergent radiation.) For a par-

ticular hkl reflection, each ray is then diffracted through the same angle

26, with the result that all diffracted rays from various parts of the spec-

imen converge to a focus at F. As in any powder method, the diffracted

beams lie on the surfaces of cones whose axes are coincident with the inci-

dent beam; in this case, a number of incident beams contribute to each

reflection and a diffraction line is formed by the intersection of a number

of cones with the film. As in the Debye-Scherrer method, a diffraction

line is in general curved, the amount of curvature depending on the par-



158 POWDER PHOTOGEAPHS

A

[CHAP. 6

B

N

film

FIG. 6-7. Seemann-Bohlin focusing camera. Only one hkl reflection is shown.

ticular value of 6 involved. Figure 0-8 shows a typical powder pattern

made with this camera.

The ends of the film strip are covered by knife-edges M and N, which

cast reference shadows on the film. The value of 6 for any diffraction line

may be found from the distance U, measured on the film, from the line to

the shadow of the low-angle knife-edge N, by use of the relation

46R *rcSABN. (6-4)

In practice, is found by calibrating the camera with a standard sub-

stance of known lattice parameter, such as NaCl, rather than by the use

of Eq. (6-4). Several patterns are prepared of the same standard with

radiations of different wavelength, in order to obtain diffraction lines at a

large number of 26 positions. Line positions are measured on each film,

as well as the total length of the film between the knife-edge shadows M
and N. Because of variable film shrinkage, these films will generally have

unequal lengths. The length of one is taken as a standard, and a multiply-

ing factor is found for each of the other films which will make its length

equal to the standard length. This factor is then applied to the U value

of each diffraction line. The corrected values of U are then plotted against

calculated values of 6 to obtain a calibration curve for the camera.

FIG. 6-8. Powder pattern of tungsten, made in a Seemann-Bohlin camera, 8.4

cm in diameter. This camera covers a 28 range of 92 to 166. High-angle end of

film at left. Filtered copper radiation. (Courtesy of John T. Norton.)
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A similar procedure is then followed when an "unknown" specimen is

being examined. A correction factor is found which will convert the meas-

ured film length of the unknown to the standard length. This factor is

then applied to each measured U value before finding the corresponding

value from the calibration curve.

If more accuracy is desired than this graphical method can give, the

calibration data can be handled analytically. Equation (6-4) is written

in the form
= K 1 U + K2 ,

where KI and K2 are constants. The values of these constants are then

determined by the method of least squares (see Sec. 11-6). Once the

constants are known, this equation can be used to calculate 0, or a table

of corresponding and U values can be constructed.

By differentiating Eq. (0-4), we obtain

dU
dd =

4R

This relation may be combined with Eq. ((5-2) to give

dU 4R
= tan 6.

dd d

d 4R
Resolving power = = tan 6. (6-5)M AU

The resolving power, or ability to separate diffraction lines from planes

of almost the same spacing, is therefore twice that of a Debye-Scherrer

camera of the same radius. In addition, the exposure time is much shorter,

because of the fact that a much larger specimen is used (the arc AB of

Fig. 6-7 is of the order of 1 cm) and diffracted rays from a considerable

volume of material are all brought to one focus. The Seemann-Bohlin

camera is, therefore, very useful in studying complex diffraction patterns,

whether they are due to a single phase or to a mixture of phases such as

occur in alloy systems.

For metallurgical work, this camera has the further advantage that a

massive polycrystalline specimen may be used as well as a powder. For

example, a metallographic specimen, mounted in the usual 1-in. diameter

bakelite mount for microscopic examination, can be fastened to the cir-

cumference of the camera and used directly. When a flat specimen placed

tangentially to the camera circle is substituted for a curved specimen, the

focusing action of the camera is slightly decreased but not objectionably

so, while the advantage of being able to examine the same area of the

specimen both with the microscope and with x-rays is obvious. It is



160 POWDER PHOTOGRAPHS [CHAP. 6

worth noting also that both methods of examination, the optical and the

x-ray, provide information only about the surface layer of the specimen,

since the x-ray method here involved is of the reflection, and not the trans-

mission, type.

A powder specimen may also be used in this camera by fixing a thin

layer of the powder to a piece of paper with glue or petroleum jelly. The

paper is then curved and held against the camera circumference by an

attachment provided with the camera. Whether the specimen is in the

massive or powder form, smoother diffraction lines can be obtained by

oscillating the specimen about the camera axis.

On the debit side, the Seemann-Bohlin camera has the disadvantage that

the reflections registered on the film cover only a limited range of 26 values,

particularly on the low-angle side; for this reason, it is better to make a

preliminary survey of the whole pattern with a Debye camera, reserving

the focusing camera for a closer study of certain portions. Some investiga-

tors use a set of three Seemann-Bohlin cameras, designed to cover practically

the whole range of 26 values in overlapping angular ranges.

Diffraction lines formed in a Seemann-Bohlin camera are normally

broader than those in a Debye-Scherrer pattern. The focused line is, in a

sense, an image of the slit, and decreasing the slit opening will decrease

the line breadth but increase the exposure time. The line breadth in-

creases as 26 Becomes smaller, since at low 26 values the diffracted rays

strike the film at a very low angle. This effect is aggravated by the double-

emulsion film normally used for x-ray diffraction. In special cases, it may
pay to use single-emulsion film at the cost of increased exposure time.

6-8 Back-reflection focusing cameras. The most precise measurement

of lattice parameter is made in the back-reflection region, as discussed in

greater detail in Chap. 11. The most suitable camera for such measure-

ments is the symmetrical back-reflection focusing camera illustrated in

Fig. 6-9.

It employs the same focusing principle as the Seemann-Bohlin camera,

but the film straddles the slit and the specimen is placed diametrically

opposite the slit. Means are usually provided for slowly oscillating the

specimen through a few degrees about the camera axis in order to produce

smooth diffraction lines. A typical film, punched in the center to allow

the passage of the incident beam, is shown in Fig. 6-10. The value of 6

for any diffraction line may be calculated from the relation

(4T
- 86)R = V, (6-6)

where V is the distance on the film between corresponding diffraction lines

on either side of the entrance slit.
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film

FIG. 6-9. Symmetrical back-reflection focusing camera. Only one hkl reflec-

tion is shown.

Differentiation of Eq. (6-6) gives

--'ft-4R \2/
A0 (6-7)

where A(F/2) is the separation on the film of two reflections differing in

Bragg angle by A0. Combination of this equation with Eq. (6-2) shows

that

d 4R
Resolving power = = tan 6.M A(F/2)

The resolving power of this camera is therefore the same as that of a

Seemann-Bohlin camera of the same diameter.

In the pattern shown in Fig. 6-10, two pairs of closely spaced lines can

be seen, lines 1 and 2 and lines 4 and 5. Each pair is a doublet formed by
321 i

6 5 4 3 2 1

FIG. 6-10. Powder photograph of tungsten made in a symmetrical back-reflec-

tion focusing camera, 4.00 in. in diameter. Unfiltered copper radiation.
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reflection from one set of planes of the two components, Ka\ and Ka^
which make up Ka radiation. These component lines are commonly found

to be resolved, or separated, in the back-reflection region. (The ft lines in

this photograph are not resolved since K/3 radiation consists only of a

single wavelength.) To determine the conditions under which a given

camera can separate two components of radiation which have almost the

same wavelength, we must use the spectroscopic definition of resolving

power, namely X/AX, where AX is the difference between the two wave-

lengths and X is their mean value. For Cu Ka radiation, these wave-

lengths are :

\(CuKa2 )
= 1.54433A

X(Cu#a!) = 1.54051A

AX = 0.00382A
Therefore

X 1.542
= = 404.

AX 0.00382

The resolving power of the camera must exceed this value, for the partic-

ular reflection considered, if the component lines are to be separated on

the film.

By differentiating the Bragg law, we obtain

X = 2d sin 0,

d<9 1 tan tan

dX 2d cos S 2d sin

X tan S

AX A0

Substitution of Eq. (0-7) gives

(6-8)

X 4J?tan0
Resolving power = = (6-9)

AX A(7/2)

The negative sign here can be disregarded; it merely means that an in-

crease in X causes a decrease in F/2, since the latter is measured from the

center of the film. Equation (6-9) demonstrates that the resolving power
increases with the camera radius and with 6, becoming very large near 90.

This latter point is clearly evident in Fig. 6-10, which shows a greater

separation of the higher-angle 400 reflections as compared to the 321 re-

flections.

By use of Eq. (6-9), we can calculate the resolving power, for the 321

reflections, of the camera used to obtain Fig. 6-10. The camera radius is
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2.00 in., and the mean 6 value for these reflections is about 65.7. The
line breadth at half maximum intensity is about 0.04 cm. The two com-

ponent lines of the doublet will be clearly resolved on the film if their

separation is twice their breadth. Therefore

0- 2(0.04) = 0.08 cm,

X

AX

(4) (2.00) (2.54) (tan 05.7)

(0.08)

= 5(8.

Since this value exceeds the resolving power of 404, found above to be

necessary for resolution of the Cu Ka doublet, we would expect this doublet

to be resolved for the 321 reflection, and such is seen to be the case in

Fig. (>-10. At some lower angle, this would not be true and the two com-

ponents would merge into a single, unresolved line. The fact that resolu-

tion of the Ka doublet normally occurs only in the back-reflection region

can be seen from the Debye photographs reproduced in Fig. 3-13.

6-9 Pinhole photographs. When monochromatic radiation is used to

examine a polycrystalline specimen in a Latie camera, the result is called,

for no particularly good reason, a pinhole photograph. Either a trans-

mission or a back-reflection camera may be used. A typical transmission

photograph, made of fine-grained aluminum sheet, is shown in Fig. 6-11.

The pinhole method has the ad-

vantage that an entire Debye ring,

and not just a part of it, is recorded

on the film. On the other hand, the

range of 6 values which are recorded

is rather limited : either low-angle or

high-angle reflections may be ob-

tained, but not those in the median

FIG. 6-11. Transmission pinhole

photograph of an aluminum sheet

specimen. Filtered copper radiation.

(The diffuse circular band near the

center is caused by white radiation.

The nonuniform blackening of the

Debye rings is due to preferred orien-

tation in the specimen; see Chap. 9.)

FIG. 6-12. Angular relationships in

the pinhole method.
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range of 6 (see Fig. 6-12). In the transmission method, the value of for

a particular reflection is found from the relation

U
tan 21? = . (6-10)

2D

where U = diameter of the" Debye ring and D = specimen-to-film dis-

tance. The corresponding relation for the back-reflection method is

tan (*
-

28)
= > (6-11)

where V = diameter of the Debye ring. The distance D is usually of the

order of 3 to 5 cm.

Powder specimens may be prepared simply by spreading a bit of the

powder mixed with a binder on a glass slide or a small piece of paper.

However, the greatest utility of the pinhole method in metallurgical work

lies in the fact that massive, polycrystalline specimens may be used. In

back reflection, mounted metallographic specimens may be examined di-

rectly, while the transmission method is of course restricted to wire and

sheet specimens which are not too highly absorbing.

There is an optimum specimen thickness for the transmission method,

because the diffracted beams will be very weak or entirely absent if the

specimen is either too thin (insufficient volume of diffracting material) or

too thick (excessive absorption). As will be shown in Sec. 9-9, the speci-

men thickness which produces the maximum diffracted intensity is given

by I/M, where M is the linear absorption coefficient of the specimen. In-

spection of Eq. (1-10) shows that this condition can also be stated as

follows: a transmission specimen is of optimum thickness when the inten-

sity of the beam transmitted through the specimen is 1/c, or about
,
of

the intensity of the incident beam. Normally this optimum thickness is

of the order of a few thousandths of an inch. There is one way, however,

in which a partial transmission pattern can be obtained from a thick

specimen and that is by diffraction from an edge (Fig. 6-13). Only the

upper half of the pattern is recorded on the film, but that is all that is

necessary in many applications. The same technique has also been used

in some Debye-Scherrer cameras.

The pinhole method is used in studies of preferred orientation, grain

size, and crystal perfection. With a back-reflection camera, fairly precise

parameter measurements can be made by this method. Precise knowledge

of the specimen-to-film distance D is not necessary, provided the proper

extrapolation equation is used (Chap. 1 1) or the camera is calibrated. The

calibration is usually performed for each exposure, simply by smearing a

thin layer of the calibrating powder over the surface of the specimen; in

this way, reference lines of known 8 value are formed on each film.
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specimen

(a)

film

(b)

FIG. 6-13. Transmission pinhole method for thick specimens: (a) section through
incident beam; (b) partial pattern obtained.

When the pinhole method is used for parameter measurements, the film

or specimen, or both, is moved during the exposure to produce smooth,
continuous diffraction lines. By rotating or oscillating the film about the

axis of the incident beam, the reflections from each reflecting particle or

grain are smeared out along the Debye ring. The specimen itself may be

rotated about the incident beam axis or about any axis parallel to the

incident beam, or translated back and forth in any direction in a plane

parallel to the specimen surface. Such movements increase the number

of grains in reflecting positions and allow a greater proportion of the total

specimen surface to take part in diffraction, thus ensuring that the informa-

tion recorded on the film is representative of the surface as a whole. Any
camera in which the specimen can be so moved during the exposure that

the incident beam traverses a large part of its surface is called an integrating

camera.

6-10 Choice of radiation. With any of the powder methods described

above, the investigator must choose the radiation best suited to the prob-

lem at hand. In making this choice, the two most important considera-

tions are :

(1) The characteristic wavelength used should not be shorter than the

K absorption edge of the specimen, or the fluorescent radiation produced
will badly fog the film. In the case of alloys or compounds, it may be

difficult or impossible to satisfy this condition for every element in the

specimen.

(2) The Bragg law shows that the shorter the wavelength, the smaller

the Bragg angle for planes of a given spacing. Decreasing the wavelength
will therefore shift every diffraction line to lower Bragg angles and increase

the total number of lines on the film, while increasing the wavelength will

have the opposite effect. The choice of a short or a long wavelength de-

pends on the particular problem involved.
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The characteristic radiations usually employed in x-ray diffraction are

the following:
MoKa: 0.711A

CuKa: 1.542

CoKa: 1.790

YeKa: 1.937

CrKa: 2.291

In each case, the appropriate filter is used to suppress the K/3 component

of the radiation. All in all, Cu Ka radiation is generally the most useful.

It cannot be employed with ferrous materials, however, since it will cause

fluorescent radiation from the iron in the specimen; instead, Co Ka, Fe Ka

or Cr Ka radiation should be used.

Precise lattice-parameter measurements require that there be a num-

ber of lines in the back-reflection region, while some specimens may yield

only one or two. This difficulty may be avoided by using unfiltered radia-

tion, in order to have Kfi as well as Ka lines present, and by using an alloy

target. For example, if a 50 atomic percent Fe-Co alloy is used as a tar-

get, and no filter is used in the x-ray beam, the radiation will contain the

Fe Ka, Fe K0, Co Ka, and Co K/3 wavelengths, since each element will

emit its characteristic radiation independently. Of course, special targets

can be used only with demountable x-ray tubes.

Background radiation. A good powder photograph has sharp in-

tense lines superimposed on a background of minimum intensity. How-

ever, the diffraction lines themselves vary in intensity, because of the struc-

ture of the crystal itself, and an appreciable background intensity may

exist, due to a number of causes. The two effects together may cause the

weakest diffraction line to be almost invisible in relation to the background.

This background intensity is due to the following causes:

(1) Fluorescent radiation emitted by the specimen. It cannot be too

strongly emphasized that the characteristic wavelength used should be

longer than the K absorption edge of the specimen, in order to prevent

the emission of fluorescent radiation. Incident radiation so chosen, how-

ever, will not completely eliminate fluorescence, since the short-wavelength

components of the continuous spectrum will also excite K radiation in the

specimen. For example, suppose a copper specimen is being examined

with CuKa radiation of wavelength 1.542A from a tube operated at

30 kv. Under these conditions the short-wavelength limit is 0.413A. The

K absorption edge of copper is at 1.380A. The Ka component of the

incident radiation will not cause fluorescence, but all wavelengths between

0.413 and 1.380A will. If a nickel filter is used to suppress the K/3 com-

ponent of the incident beam, it will also have the desirable effect of reducing
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the intensity of some of the short wavelengths which cause fluorescence,

but it will not, of course, eliminate them completely, particularly in the

wavelength region near 0.6A, where the intensity of the continuous spec-

trum is high and the absorption coefficient of nickel rather low.

It is sometimes possible to filter part of the fluorescent radiation from

the specimen by placing the proper filter over the film. For example, if

a steel specimen is examined with copper radiation, which is not generally

advisable, the situation may be improved by covering the film with alu-

minum foil, because aluminum has a greater absorption for the fluorescent

Fe KOL radiation contributing to the background than for the Cu Ka radia-

tion forming the diffraction lines. In fact, the following is a good general

rule to follow: if it is impossible to use a wavelength longer than the K
absorption edge of the specimen, choose one which is considerably shorter

and cover the film with a filter. Sometimes the air itself will provide

sufficient filtration. Thus excellent patterns of aluminum can be obtained

with CuKa radiation, even though this wavelength (1.54A) is much

shorter than the K absorption edge of aluminum (6.74A), simply because

the Al Ka radiation excited has such a long wavelength (8.34A) that it is

almost completely absorbed in a few centimeters of air.

(2) Diffraction of the continuous spectrum. Each crystal in a powder

specimen forms a weak Laue pattern, because of the continuous radiation

component of the incident beam. This is of course true whether or not

that particular crystal is in the correct position to reflect the characteristic

component into the Debye ring. Many crystals in the specimen are there-

fore contributing only to the background of the photograph and not to

the diffraction ring, and the totality of the Laue patterns from all the

crystals is a continuous distribution of background radiation. If the inci-

dent radiation has been so chosen that very little fluorescent radiation is

emitted, then diffraction of the continuous spectrum is the largest single

cause of high background intensity in powder photographs.

(3) Diffuse scattering from the specimen itself.

(a) Incoherent (Compton modified) scattering. This kind of scat-

tering becomes more intense as the atomic number of the specimen

decreases.

(6) Coherent scattering.

(i) Temperature-diffuse scattering. This form is more intense

with soft materials of low melting point.

(ii) Diffuse scattering due to various kinds of imperfection in

the crystals. Any kind of randomness or strain will cause such

scattering.

(4) Diffraction and scattering from other than the specimen material.

(a) Collimator and beam stop. This kind of scattering can be mini-

mized by correct camera design, as discussed in Sec. 6-2.
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(b) Specimen binder, support, or enclosure. The glue or other

adhesive used to compact the powder specimen, the glass fiber to

which the powder is attached, or the glass or fused-quartz tube in

which it is enclosed all contribute to the background of the photo-

graph, since these are all amorphous substances. The amount of

these materials should be kept to the absolute minimum.

(c) Air. Diffuse scattering from the air may be avoided by evacu-

ating the camera or filling it with a light gas such as hydrogen or

helium.

6-12 Crystal monochromators. The purest kind of radiation to use in

a diffraction experiment is radiation which has itself been diffracted, since

it is entirely monochromatic.* If a single crystal is set to reflect the strong

Ka component of the general radiation from an x-ray tube and this reflected

beam is used as the incident beam in a diffraction camera, then the causes of

background radiation listed under (1) and (2) above can be completely elimi-

nated. Since the other causes of background scattering are less serious, the

use of crystal-monochromated radiation produces diffraction photographs of

remarkable clarity. There are two kinds of monochromators in use, depend-

ing on whether the reflecting crystal is unbent or bent and cut.

An unbent crystal is not a very efficient reflector, as can be seen from

Fig. 6-14. The beam from an x-ray tube is never composed only of parallel

rays, even when defined by a slit or collimator, but contains a large pro-

portion of convergent and divergent radiation. When the crystal is set

at the correct Bragg angle for the parallel component of the incident beam,

it can reflect only that component and none of the other rays, with the

* This statement requires some qualification. When a crystal monochromator

is set to diffract radiation of wavelength X from a particular set of planes, then

these same planes will also diffract radiation of wavelength A/2 and A/3 in the

second and third order, respectively, and at exactly the same angle 26. These

components of submultiple wavelength are of relatively low intensity when the

main component is Ka characteristic radiation but, even so, their presence is un-

desirable whenever precise calculations of the intensity diffracted by the specimen

must be made. The submultiple components may be eliminated from the beam

from the monochromator by reducing the tube voltage to the point where these

wavelengths are not produced. If the main component is Cu Ka radiation, this

procedure is usually impractical because of the decrease in intensity attendant on

a reduction in tube voltage to 16 kv (necessary to eliminate the A/2 and A/3 com-

ponents). Usually, a compromise is made by operating at a voltage just insuffi-

cient to generate the A/3 component (24 kv for copper radiation) and by using a

crystal which has, for a certain set of planes, a negligible reflecting power for the

A/2 component. Fluorite (CaF2) is such a crystal, the structure factor for the 222

reflection being much less than for the 111. The diamond cubic crystals, silicon

and germanium, are even better, since their structure factors for the 222 reflec-

tion are actually zero.
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FIG. 6-14. Monochromatic reflec-

tion when the incident beam is non-

parallel.

result that the reflected beam is of

very low intensity although it is itself

perfectly parallel, at least in the plane

of the drawing. In a plane at right

angles, the reflected beam may con-

tain both convergent and divergent

radiation.

A large gain in intensity may be

obtained by using a bent and cut crys-

tal, which operates on the focusing

principle illustrated in Fig. 6-15. A
line source of x-rays, the focal line on the tube target, is located at S per-

pendicular to the plane of the drawing. The crystal AB is in the form of a

rectangular plate and has a set of reflecting planes parallel to its surface.

It is elastically bent into a circular form so that the radius of curvature of

the plane through C is 2R = CM; in this way, all the plane normals are

made to pass through M, which is located on the same circle, of radius J?,

as the source S. If the face of the crystal is then cut away behind the

dotted line to a radius of 72, then all rays diverging from the source S will

encounter the lattice planes at the same Bragg angle, since the angles

SDM, SCM, and SEM are all equal to one another, being inscribed on the

same arc SM, and have the value (ir/2 8).

When the Bragg angle is adjusted to that required for reflection of the

Ka component of the incident beam, then a strong monochromatic beam

focusing
circle

FIG. 6-15. Focusing monochromator (reflection type).
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will be reflected by the crystal. Moreover, since the diffracted rays all

originate on a circle passing through the source S, they will converge to a

focus at F, located on the same circle as S and at the same distance from

C, in much the same way as in the focusing cameras previously discussed.

In practice the crystal is not bent and then cut as described above, but

the unbent crystal, usually of quartz, is first cut to a radius of 2R and then

bent against a circular form of radius R. This procedure will produce the

same net result. The value of 6 required for the diffraction of a particular

wavelength X from planes of spacing d is given by the Bragg law:

X = 2rfsin0. (0-12)

The source-to-crystal distance 8C, which equals the crystal-to-focus dis-

tance CF, is given by

SC = 2fl cos
(-

- 0V (0-13)

By combining Eqs. (6-12) and (0-13), we obtain

SC = R-- (0-M)
d

For reflection of Cu Ka radiation from the (10-1) planes of quartz, the

distance SC is 14.2 cm for a value of K of 30 em.

The chief value of the focusing monochromator lies in the fact that all

the monochromatic rays in the incident beam are utilized and the diffracted

rays from a considerable area of the crystal surface are all brought to a

focus. This leads to a large concentration of energy and a considerable

reduction in exposure time compared to the unbent-crystal monochromator

first described. However, the latter does produce a semiparallel beam of

radiation, and, even though it is of very low intensity, such a beam is re-

quired in some experiments.

If the monochromating crystal is bent but not cut, some concentration

of energy will be achieved inasmuch p,s the reflected beam will be con-

vergent, but it will not converge to a perfect focus.

The focusing monochromator is best used with powder cameras especially

made to take advantage of the particular property of the reflected beam,

namely its focusing action. Figure 0-10(a) shows the best arrangement.

A cylindrical camera is used with the specimen and film arranged on the

surface of the cylinder. Low-angle reflections are registered with the cam-

era placed in position C, in which case the specimen D must be thin enough

to be examined in transmission. High-angle reflections are obtained by

back reflection with the camera in position C", shown dotted, and the

specimen at D 1

. In the latter case, the geometry of the camera is exactly

similar to that of the Seemann-Bohlin camera, the focal point F of the
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(h) '/"

FIG. 6-16. Cameras used with focusing monochromators (a) focusing cameras;
(b) Debye-Scherrer and flat-film cameras Only one diffracted beam is shown in

each case. (After A. (Juinier, X-ray Crystallographic Technology, Hilger and Watts,
Ltd., London, 1952)

monochromatic beam acting as a virtual source of divergent radiation.

In either case, the diffracted rays from the specimen are focused on the

film for all hkl reflections; the only requirement is that the film be located

on a circle passing through the specimen and the point F.

A Debye-Scherrer or flat-film camera may also be used with a focusing

monochromator, if the incident-beam collimator is removed. Figure
6-1 6(b) shows such an arrangement, where D is the specimen, E is a

Debye camera, and PP' is the position where a flat film may be placed.

In neither case, however, is the above-mentioned focusing requirement

satisfied, with the result that no more than one diffracted beam, corre-

sponding to one particular hkl reflection, can be focused on the film at the

same time.

A bent crystal may also be used in transmission as a focusing mono-
chromator. It must be thin enough to transmit a large fraction of the

incident radiation arid have a set of reflecting planes at right angles to its

surface; mica is often used. In Fig. 6-17, the line ACB represents the

crystal, bent to a radius 2/2, its center of curvature located at M. Three

of its transverse reflecting planes are shown. If radiation converging to

A' were incident on these planes and reflected at the points //, C, and (/,

the reflected radiation would converge to a perfect focus at F, all the

points mentioned being on a focusing circle of radius R centered at 0.

But the reflecting planes do not actually extend out of the crystal surface

in the way shown in the drawing and reflection must occur at the points
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focusing

circle

FIG. 6-17. Focusing monoohromator (transmission type).

D, C, and K. Under these conditions the reflected rays from all parts of

the crystal do not converge to a perfect focus at F. Nevertheless there is

sufficient concentration of diffracted energy in a very narrow region near

F to make this device a quite efficient and usable monochromator. The

crystal-to-focus distance CF is given by

CF = 2R cos 0. (0-15)

Combination of this equation with the Bragg law will give the bending
radius required for specific applications.

The use of a monochromator produces a change in the relative intensities

of the beams diffracted by the specimen. Equation (4-12), for example,

was derived for the completely unpolarized incident beam obtained from

the x-ray tube. Any beam diffracted by a crystal, however, becomes par-

tially polarized by the diffraction process itself, which means that the

beam from a crystal monochromator is partially polarized before it reaches

the specimen. Under these circumstances, the usual polarization factor

(1 + cos
2
20)/2, which is included in Eq. (4-12), must be replaced by the

factor (I + cos
2 2 cos

2
20)/(l + cos

2
2a), where 2a is the diffraction

angle in the monochromator [Fig. 6-16(b)]. Since the denominator in

this expression is independent of 0, it may be omitted; the combined

Lorentz-polarization factor for a Debye-Scherrer camera and crystal-

monochromated radiation is therefore (1 + cos
2 2a cos

2
20) /sin

2
cos 6.
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FIG. 6-18. Film-measuring device.

Department.)

(Courtesy of General Electric Co., X-Ray

6-13 Measurement of line position. The solution of any powder pho-

tograph begins with the measurement of the positions of the diffraction

lines on the film. A device of the kind shown in Fig. 6-18 is commonly
used for this purpose. It is essentially a box with an opal-glass plate on

top, illuminated from below, on which the film to be measured is placed.

On top of the glass plate is a graduated scale carrying a slider equipped
with a vernier and cross-hair; the cross-hair is moved over the illuminated

film from one diffraction line to another and their positions noted. The

film is usually measured without magnification. A low-power hand lens

may be of occasional use, but magnification greater than 2 or 3 diameters

usually causes the line to merge into the background and become invisible,

because of the extreme graininess of x-ray film.

6-14 Measurement of line intensity. Many diffraction problems re-

quire an accurate measurement of the integrated intensity, or the breadth

at half maximum intensity, of a diffraction line on a powder photograph.

For this purpose it is necessary to obtain a curve of intensity vs. 26 for

the line in question.

The intensity of an x-ray beam may be measured by the amount of

blackening it causes on a photographic film. The photographic density D,
or blackening, of a film is in turn measured by the amount of visible light
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it will transmit and is defined by the relation

,
/0

D = Iog10y
where / = intensity of a beam of light incident on the film and / = inten-

sity of the transmitted beam. For most x-ray films, the density is directly

proportional to the exposure up to a density of about 1.0 (which corre-

sponds to 10 percent transmission of the incident light). Here, "exposure"

is defined by the relation

Exposure = (intensity of x-ray beam) (time).

Since the time is constant for all the diffraction lines on one film, this means

that the photographic density is directly proportional to the x-ray in-

tensity.

Density is measured by means of a microphotometer. There are sev-

eral forms of such instruments, the simplest consisting of a light source

and an arrangement of lenses and slits which allows a narrow beam of

light to pass through the x-ray film and strike a photocell or thermopile

connected to a recording galvanometer. Since the current through the

galvanometer is proportional to the intensity of the. light striking the

photocell, the galvanometer deflection 8 is proportional to the transmitted

light intensity /.

The light beam is rectangular in cross section, normally about 3 mm
high and 0.1 mm wide. With movement of the film, this beam is made to

traverse the film laterally, crossing one diffraction line after another [Fig.

6-19(a)]. The resulting galvanometer record [Fig. 6-1 9(b)] shows gal-

vanometer deflection as ordinate and distance along the film as abscissa,

the latter being increased by a factor of about 5 in order to spread the

lines out. The line A at the top of the record marks zero deflection of the

galvanometer; the line B at the bottom marks the maximum galvanometer

deflection S when the light beam passes through an unexposed portion of

the film, a portion which has been shielded from all scattered x-rays. SQ is

therefore constant and proportional to the incident light intensity 7 . In

this way the readings are corrected for the normal background fog of

unexposed film. The density of any exposed part of the film is then ob-

tained from the relation

r, i
/0

i
SQ

D = Iog10
-- =

logio
1 o

Finally, a curve is constructed of x-ray intensity as a function of 26 [Fig.

6-19(c)]. Such a plot is seen to consist of a number of diffraction peaks

superimposed on a curve of slowly varying background intensity, due to

fluorescent radiation, diffraction of the continuous spectrum, Compton
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DISTANCE ALONCJ FILM (Yj>)
20

1C)

FIG. 6-19. Measurement of line intensity with a microphotomctci (schematic)

(a) film; (b) galvanometei recoul, (c) x-iay intensity curve

scattering, etc., as previously discussed. A continuous background line

is drawn in below each peak, after which measurements of the integrated

intensity and the breadth K at half maximum intensity can be made.

Note that the integrated intensity is given by the shaded area, measured

above the background. A microphotorneter record of an actual pattern is

shown in Fig (>-20.

In very precise work, or when the line density exceeds a value of 1.0, it

is no longer safe to assume that the density is proportional to the x-ray

exposure Instead, each film should be calibrated by exposing a strip near

its edge to a constant-intensity x-ray beam for increasing amounts of time

so that a series of stepwise increasing exposures is obtained. The exact

relation between density and x-ray exposure can then be determined ex-

perimentally.

1*10. 6-20. Powder pattern of quartz (above) and corresponding mirrophotom-
eter trace (below). (J. W. Ballard, H. I. Oshry, and II. II Schrcrik, T. S. Bur
Mines R. I. 520. Courtesy of U. S. Bureau of Mines.)
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PROBLEMS

6-1. Plot a curve similar to that of Fig. 6-4 showing the absorption of Fe Ka
radiation by air. Take the composition of air as 80 percent nitrogen and 20 per-

cent oxygen, by weight. If a 1-hr exposure in air is required to produce a certain

diffraction line intensity in a 19-cm-diameter camera with Fe Ka radiation, what

exposure is required to obtain the same line intensity with the camera evacuated,

other conditions being equal?

6-2. Derive an equation for the resolving power of a Debye-Scherrer camera

for two wavelengths of nearly the same value, in terms of AS, where S is defined

by Fig. 6-2.

6-3. For a Debye pattern made in a 5.73-crn-diameter camera with Cu Ka radi-

ation, calculate the separation of the components of the Ka doublet in degrees

and in centimeters for =
10, 35, 60, and 85.

6-4. What is the smallest value of 6 at which the Cr Ka doublet will be resolved

in a 5.73-cm-diameter Debye camera? Assume that the line width is 0.03 cm and

that the separation must be twice the width for resolution.

6-5. A powder pattern of zinc is made in a Debye-Scherrer camera 5.73 cm in

diameter with Cu Ka radiation.

(a) Calculate the resolving power necessary to separate the 11.0 and 10.3 diffrac-

tion lines. Assume that the line width is 0.03 cm.

(b) Calculate the resolving power of the camera used, for these lines.

(c) What minimum camera diameter is required to produce resolution of these

lines?

(See Fig. 3-13(c), which shows these lines unresolved from one another. They

form the fifth line from the low-angle end.)

6-6. A transmission pinhole photograph is made of copper with Cu Ka radia-

tion. The film measures 4 by 5 in. What is the maximum specimen-to-film dis-

tance which can be used and still have the first two Debye rings completely re-

corded on the film?

6-7. A powder pattern of iron is made with Cu Ka radiation. Assume that

the background is due entirely to fluorescent radiation from the specimen. The

maximum intensity (measured above the background) of the weakest line on the

pattern is found to be equal to the background intensity itself at that angle. If

the film is covered with aluminum foil 0.0015 in. thick, what will be the ratio of

/max for this line to the background intensity?

6-8. A microphotometer record of a diffraction line shows the following gal-

vanometer deflections:

Position of Light Beam Deflection

On unexposed film 5 . cm
On background, just to left of line 3.0

On background, just to right of line 3.2

On center of diffraction line 1 . 2

Assume that x-ray intensity is proportional to photographic density. Calculate

the ratio of 7max for the diffraction line (measured above the background) to the

intensity of the background at the same Bragg angle.



CHAPTER 7

DIFFRACTOMETER MEASUREMENTS

7-1 Introduction. The x-ray spectrometer, briefly mentioned in Sec.

3-4, has had a long and uneven history in the field of x-ray diffraction. It

was first used by W. H. and W. L. Bragg in their early work on x-ray

spectra and crystal structure, but it then passed into a long period of rela-

tive disuse during which photographic recording in cameras was the most

popular method of observing diffraction effects. The few spectrometers in

use were all home made and confined largely to the laboratories of research

physicists. In recent years, however, commercially made instruments

(based mainly on a design developed by Friedman about 1943) have be-

come available, and their use is growing rapidly because of certain par-

ticular advantages which they offer over film techniques. Initially a

research tool, the x-ray spectrometer has now become an instrument for

control and analysis in a wide variety of industrial laboratories.

Depending solely on the way it is used, the x-ray spectrometer is really

two instruments:

s
(1) An instrument for measuring x-ray spectra by means of a crystal of

known structure.

(2) An instrument for studying crystalline (and noncrystalline) mate-

rials by measurements of the way in which they diffract x-rays of known

wavelength.

The term spectrometer has been, and still is, used to describe both instru-

ments, but, properly, it should be applied only to the first instrument.

The second instrument has been aptly called a diffractometer: this is a term

of quite recent coinage but one which serves well to emphasize the par-

ticular use to which the instrument is being put, namely, diffraction anal-

ysis rather than spectrometry. In this chapter, the design and operation

of diffractometers will be described with particular reference to the com-

mercial models available.

7-2 General features. In a diffraction camera, the intensity of a dif-

fracted beam is measured through the amount of blackening it produces

on a photographic film, a microphotometer measurement of the film being

required to convert "amount of blackening" into x-ray intensity. In the

diffractometer, the intensity of a diffracted beam is measured directly,

.either by means of the ionization it produces in a gas or the fluorescence

177
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it produces in a solid. As we saw in Sec. 1-5, incident x-ray quanta can

eject electrons from atoms and thus convert them into positive ions. If

an x-ray beam is passed into a chamber containing a gas and two elec-

trodes, one charged positively and the other negatively, then the ejected

electrons will be drawn to the positive electrode (the anode) and the posi-

tive ions to the negative electrode (the cathode). A current therefore

exists in the external circuit connecting anode to cathode. Under special

conditions, which are described later in detail, this current can be caused

to surge or pulse rather than be continuous; each pulse results from the

ionization caused by a single entering x-ray quantum. By use of the

proper external circuit, the number of current pulses produced per unit

of time can be counted, and this number is directly proportional to the

intensity of the x-ray beam entering the gas chamber. Appropriately,

this device is called a counter, and two varieties are in common use, the

proportional counter and the Geiger counter. In another type, the scintil-

lation counter, incident x-ray quanta produce flashes or scintillations of

fluorescent blue light in a crystal and these light flashes are converted into

current pulses in a phototube.

Basically, a diffractometer is designed somewhat like a Debye-Scherrer

camera, except that a movable counter replaces the strip of film. In both

instruments, essentially monochromatic radiation is used and the x-ray

detector (film or counter) is placed on the circumference of a circle cen-

tered on the powder specimen. The essential features of a diffractometer

are shown in Fig. 7-1. A powder specimen C, in the form of a flat plate,

is supported on a table H, which can be rotated about an axis*0 perpen-

dicular to the plane of the drawing. The x-ray source is S, the line focal

spot on the target T of the x-ray tube; S is also normal to the plane of the

drawing and therefore parallel to the diffractometer axis 0. X-rays di-

verge from this source and are diffracted by the specimen to form a con-

vergent diffracted beam which comes to a focus at the slit F and then

enters the counter G. A and B are special slits which define and collimate

the incident and diffracted beams.

The receiving slits and counter are supported on the carriage Ey
which

may be rotated about the axis and whose angular position 26 may be

read on the graduated scale K. The supports E and H are mechanically

coupled so that a rotation of the counter through 2x degrees is automatically

accompanied by rotation of the specimen through x degrees. This cou-

pling ensures that the angles of incidence on, and reflection from, the flat

specimen will always be equal to one another and equal to half the total

angle of diffraction, an arrangement necessary to preserve focusing con-

ditions. The counter may be power-driven at a constant angular velocity

about the diffractometer axis or moved by hand to any desired angular

position.
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FKJ 7 1. X-ray difTrartoinetei (schematic)

Figures 7-2 and 7-3 illustrate two commercial instruments. Basically,

both adhere to the design principles described above, but they differ in

detail and in positioning: in the (General Electric unit, the diffractometer

axis is vertical and the counter moves in a horizontal plane, whereas the

axis of the Xorelco unit is horizontal and the counter moves in a vertical

plane.

The way in which a diffract ometer is used to measure a diffraction pat-

tern depends on the kind of circuit used to measure the rate of production
of pulses in the counter. The pulse rate may be measured in t\\o different

uuys:

(1) The succession of current pulses is converted into a steady current,

which is measured on a meter called a counting-rate meter, calibrated in

such units as counts (pulses) per second. Such a circuit gives a continuous

indication of x-ray intensity.

(2) The pulses of current are counted electronically in a circuit called a

sealer, and the average counting rate is obtained simply by dividing the

number of pulses counted by the time spent in counting. This operation

is essentially discontinuous because of the time spent in counting, and a

scaling circuit cannot be used to follow continuous changes in x-ray in-

tensity.

Corresponding to these two kinds of measuring circuits, there are two

ways in which the diffraction pattern of an unknown substance may be

obtained with a diffract ometer:
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FIG. 7-2. General Electric diffractometer. (Courtesy of General Electric Co.,
X-Ray Department.)
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'
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FIG. 7-3. Norelco diffractometer. In this particular photograph, the specimen
holder for a thin rod specimen is shown instead of the usual holder for a flat plate

specimen. X-ray tube not shown. (Courtesy of North American Philips Co., Inc.)



Ig2 DIFFRACTOMETER MEASUREMENTS [CHAP. 7

(1) Continuous. The counter is set near 26 = and connected to a

counting-rate meter. The output of this circuit is fed into a fast-acting

automatic recorder of the kind used to record temperature changes as

measured by a thermocouple. The counter is then driven at a constant

angular velocity through increasing values of 20 until the whole angular

range is "scanned." At the same time, the paper chart on the recorder

moves at a constant speed, so that distances along the length of the chart

are proportional to 26. The result is a chart, such as Fig. 7-4, which gives

a record of counts per second (proportional to diffracted intensity) vs. dif-

fraction angle 26.

(2) Intermittent. The counter is connected to a sealer and set at a fixed

value of 26 for a time sufficient to make an accurate count of the pulses

obtained from the counter. The counter is then moved to a new angular

position and the operation repeated. The whole range of 26 is covered in

this fashion, and the curve of intensity vs. 26 is finally plotted by hand.

When the continuous background between diffraction lines is being meas-

ured, the counter may be moved in steps of several degrees, but determina-

tions of line profile may require measurements of intensity at angular

intervals as small as 0.01 . This method of obtaining a diffraction pattern

is much slower than that involving a rate meter and automatic recorder

but it yields more precise measurements of intensity.

There is a fundamental difference between the operation of a powder

camera and a diffractometer. In a camera, all diffraction lines are recorded

simultaneously, and variations in the intensity of the incident x-ray beam

during the exposure can have no effect on relative line intensities. On

the other hand, with a diffractometer, diffraction lines are recorded one

after the other, and it is therefore imperative to keep the incident-beam

intensity constant when relative line intensities must be measured accu-

rately. Since the usual variations in line voltage are quite appreciable,

the x-ray tube circuit of a diffractometer must include a voltage stabilizer

and a tube-current stabilizer, unless a monitoring system is used (see

Sec. 7-8).

The kind of specimen used depends on the form and amount of material

available. Flat metal sheet or plate may be examined directly; however,

such materials almost always exhibit preferred orientation and this fact

must be kept in mind in assessing relative intensities. This is also true of

wires, which are best examined by cementing a number of lengths side by

side to a glass plate. This plate is then inserted in the specimen holder

so that the wire axes are at right angles to the diffractometer axis.

Powder specimens are best prepared by placing the powder in a recess in

a glass or plastic plate, compacting it under just sufficient pressure to

cause cohesion without use of a binder, and smoothing off the surface.

Too much pressure causes preferred orientation of the powder particles.

Alternately, the powder may be mixed with a binder and smeared on the
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surface of a glass slide. The powder should be ground extremely fine, to a

size of 10 microns or less, if relative line intensities are to be accurately

reproducible; since the flat specimen is not rotated as a Debye-Scherrer

specimen is, the only way of obtaining an adequate number of particles

having the correct orientation for reflection is to reduce their average size.

Surface roughness also has a marked effect on relative line intensities. If

the surface is rough, as in the case of a coarse powder compact, and the

linear absorption coefficient high, the intensities of low-angle reflections

will be abnormally low, because of the absorption of the diffracted rays in

each projecting portion of the surface. The only way to avoid this effect

is to use a flat-surfaced compact of very fine powders or a specimen with

a polished surface.

If not enough powder is available for a flat specimen, a thin-rod speci-

men of the kind used in Debye-Scherrer cameras may be used ; it is mounted

on the diffractometer axis and continuously rotated by a small motor

(see Fig. 7-3). However, the use of such a small specimen should be

avoided if possible, since it leads to intensities very much lower than those

obtainable with a flat, specimen.

Single-crystal specimens may also be examined in a diffractometer by

mounting the crystal on a three-circle goniometer, such as that shown in

Fig. 5-7, which will allow independent rotation of the specimen and coun-

ter about the diffractometer axis.

A diffractometer may be used for measurements at high or low tempera-

tures by surrounding the specimen with the appropriate heating or cooling

unit. Such an adaptation of the instrument is much easier with the dif-

fractometer than with a camera because of the generally larger amount of

free working space around the specimen in the former.

In the succeeding sections, the various parts of the diffractometer will

be described in greater detail. This summary of the general features of

the instrument is enough to show its principal advantage over the powder

camera: the quantitative measurement of line position and intensity is

made in one operation with a diffractometer, whereas the same measure-

ment with film technique requires three steps (recording the pattern on

film, making a microphotometer record of the film, and conversion of

galvanometer deflections to intensities) and leads to an over-all result

which is generally of lower accuracy. This superiority of the diffractometer

is reflected in the much higher cost of the instrument, a cost due not only

to the precision machining necessary in its mechanical parts but also to

the expensive circuits needed to stabilize the power supply and measure

the intensity of diffracted beams.

7-3 X-ray optics. The chief reason for using a flat specimen is to take

advantage of the focusing action described in Sec. 6-6 and so increase the
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(a)

FIG. 7-5. Focusing geometry for flat specimens in (a) forward reflection and

(h) hack reflection.

intensity of weak diffracted beams to a point where they can he accurately

measured. Figure 7-5 shows how this is done. For any position of the

counter, the receiving slit F and the x-ray source S are always located on

the difTractometer circle, which means that the face of the specimen, be-

cause of its mechanical coupling with the counter, is always tangent to a

focusing circle centered on the normal to the specimen and passing through

F and $. The focusing circle is not of constant size but increases in radius

as the angle 26 decreases, as indicated in Fig. 7-5. Perfect focusing at F

requires that the specimen be curved to fit the focusing circle, but that is

not practical because of the changing radius of curvature of the circle.

This inevitably causes some broadening of the diffracted beam at F but

not to any objectionable degree, so long as the divergence of the incident

beam is not too large.

The line source $ extends considerably above and below the plane of

the drawing of Fig. 7-5 and emits radiation in all directions, but the focus-

ing described above requires that all rays in the incident beam be parallel

to the plane of the drawing. This condition is realized as closely as pos-

sible experimentally by passing the incident beam through a Soller slit

(Fig. 7-0), slit A in Fig. 7-1, which contains a set of closely spaced, thin

metal plates parallel to the plane of the diffractometer circle. These plates

remove a large proportion of rays inclined to the plane of the diffractometer

circle and still allow the use of a line source of considerable length. Typical

dimensions of a Soller slit are: length of plates 32 mm, thickness of

plates 0.05 mm, clear distance between plates 0.43 mm. At either end of

the slit assembly are rectangular slits a and 6, the entrance slit a next to

the source being narrower than the exit slit b. The combination of slits

and plates breaks up the incident beam into a set of triangular wedges of

radiation, as indicated in Fig. 7-6. There are, of course, some rays, not

shown in the drawing, which diverge in planes perpendicular to the plane
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incident-beam slits

specimen
S

*-- iecei\ ing slit

.^ ^_ to counter
FIG. 7-7. Arrangement of slits in diffractometer.

of the plates, and these rays cause the wedges of radiation to merge into

one another a short distance away from the exit slit. However, the long,

closely spaced plates do restrict this unwanted divergence to an angle of

about 1.5. Slits a and b define the divergence of the incident beam in the

plane of the diffractometer circle. The slits commonly available have

divergence angles ranging from very small values up to about 4. In the

forward-reflection region, a divergence angle of 1 is sufficient because of

the low inclination of the specimen surface to the incident beam, but in

back reflection an increase in divergence angle to 3 or 4 will increase the

diffracted intensity. But if line intensities are to be compared over the

whole range of 26, the same divergence must be used throughout and the

specimen must be wider than the beam at all angles.

The beam diffracted by the specimen passes through another Soller-slit

assembly and the receiving slit F before entering the counter. Since the

receiving slit defines the width of the beam admitted to the counter, an

increase in its width will increase the maximum intensity of any diffraction

line being measured but at the expense of some loss of resolution. On the

other hand, the relative integrated intensity of a diffraction line is inde-

pendent of slit width, which is one reason for its greater fundamental im-

portance.
*

Figure 7-7 illustrates the relative arrangement of the various

*A number of things besides slit width (e.g., x-ray tube current) will change
the integrated intensity of a single diffraction line. The important thing to note,

however, is that a change in any one of the operating variables changes the inte-

grated intensities of all diffraction lines in the same ratio but can produce very

unequal effects on maximum intensities. Thus, 'if /i//2 is the ratio of the inte-

grated intensities of two lines measured with a certain slit width and Mi/M2 the

ratio of their maximum intensities, then another measurement with a different

slit width will result in the same ratio I\/h for the integrated intensities, but the

ratio of the maximum intensities will now, in general, differ from Afi/Af2.
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slits in a typical diffractometer and shows the passage of a few selected

rays from source to counter.

Because of the focusing of the diffracted rays and the relatively large

radius of the diffractometer circle, about 15 cm in commercial instruments,

a diffractometer can resolve very closely spaced diffraction lines. Indica-

tive of this is the fact that resolution of the Cu Ka doublet can be obtained

at 20 angles as low as about 40. Such resolution can only be achieved

with a correctly adjusted instrument, and it is necessary to so align the

component parts that the following conditions are satisfied for all diffrac-

tion angles :

(1) line source, specimen surface, and receiving-slit axis are all parallel,

(2) the specimen surface coincides with the diffractometer axis, and

(3) the line source and receiving slit both lie on the diffractometer circle.

7-4 Intensity calculations. The calculation of the relative integrated

intensities of beams diffracted by a powder specimen in a diffractometer

follows the general principles de-

scribed in Chap. 4, but the details of

the calculation depend on the form

of the specimen.

The use of a flat-plate specimen,

making equal angles with the incident

and diffracted beams, not only pro-

duces focusing as described above but

makes the absorption factor inde- FIG. 7-*- Diffraction from a flat

pendent of the angle 0. We can prove f
late: ^id

f
nt an

f

d diffmcted beams

, i i i rr t i
have a thickness of 1 cm in a direction

this by calculating the effect of absorp- normfll t() the plane ()f the drawing .

tion in the specimen on the intensity

of the diffracted beam, and, since this effect will come up again in later

parts of this book, we will make our calculation quite general. In Fig. 7-8,

the incident beam has intensity 7 (ergs/cm
2
/ec), is 1 cm square in cross

section, and is incident on the powder plate at an angle a. We consider

the energy diffracted from this beam by a layer of the powder of length /

and thickness dr, located at a depth x below the surface. Since the inci-

dent beam undergoes absorption by the specimen over the path length

AB, the energy incident per second on the layer considered is I e~^ (AB}

(ergs/sec), where M is the linear absorption coefficient of the powder com-

pact. Let a be the volume fraction of the specimen containing particles

having the correct orientation for reflection of the incident beam, and b

the fraction of the incident energy which is diffracted by unit volume.

Then the energy diffracted by the layer considered, which has a volume

Idx, is given by aW/ e~"u *'}

dx. But this diffracted energy is also de-

creased by absorption, by a factor of e~~
(BC

\ since the diffracted rays
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have a path length of BC in the specimen. The energy flux per second in

the diffracted beam outside the specimen, i.e., the integrated intensity, is

therefore given by

dID = ablI c- (AB+BC} dx (ergs/sec). (7-1)

But
1 x x

sin a sin a sin ft

Therefore,
in /J) dj (7_2)

sn a.

For the particular specimen arrangement used in the diffractometer,

a = ^ 0, and the above equation becomes

m 9 dx (7
_
3)

sin 6

The total diffracted intensity is obtained by integrating over an infinitely

thick specimen : x

ID =

Here 7
, 6, and M are constant for all reflections (independent of 8) and we

may also regard a as constant. Actually, a varies with 0, but this variation

is already taken care of by the cos0 portion of the Lorentz factor (see

Sec. 4-9) and need not concern us here. We conclude that the absorption

factor, l/2/i, is independent of for a flat specimen making equal angles

with the incident and diffracted beams, provided the specimen fills the

incident beam at all angles and is effectively of infinite thickness.
* This

* '1 The criterion adopted for "infinite thickness" depends on the sensitivity of
pur

intensity measurements or on what we regard as negligible diffracted intensity.

For example, we might arbitrarily but quite reasonably define infinite thickness as

that thickness t which a specimen must have in order that the intensity diffracted

by a thin layer on the back side be T^Vo f tne intensity diffracted by a thin layer

on the front side. Then, from Eq. (7-3) we have

dip (at x = 0) = ^t/Bm e = ]0()0
d!D (at x -=

from which .

_ 3.45 sin 8

M

This expression shows that "infinite thickness," for a metal specimen, is very

small indeed. For example, suppose a specimen of nickel powder is being ex-

amined with Cu KOL radiation at 8 values approaching 90. The density of the

powder compact may be taken as about 0.6 the density of bulk nickel, which is

8.9 gm/cm
3

, leading to a value of M for the compact of 263 cm" 1
. The value of t

is therefore 1.31 X 10
~2

cm, or about five thousandths of an inch.
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independence of 6 is due to the exact balancing of two opposing effects.

When 6 is small, the specimen area irradiated by an incident beam of fixed

cross section is large, but the effective depth of x-ray penetration is small
;

when is large, the irradiated area is small, but the penetration depth is

relatively large. The net effect is that the effective irradiated volume is

constant and independent of 6. Absorption occurs in any case, however,

and the larger the absorption coefficient of the specimen, the lower the in-

tensity of the diffracted beams, other things being equal. The important

fact to note is that absorption decreases the intensities of all diffracted

beams by the same factor and therefore does not enter into the calculation

of relative intensities. This means that Eq. (4-1 2) for the relative integrated

intensity of a diffraction line from a powder specimen, namely,

+ cos
2
20

sm2
6 cos 8

needs only the insertion of a temperature factor to make it precise, for the

case of a flat specimen examined in a diffractometer. As it stands, it may
still be used to calculate the approximate relative intensities of two adja-

cent lines on the pattern, but the calculated intensity of the higher-angle

line, relative to that of the lower-angle one, will always be somewhat too

large because of the omission of the temperature factor.

When the specimen used in the diffractometer has the form of a thin

rod, no focusing occurs and the incident-beam slits are chosen to produce
a thin, essentially parallel beam. The x-ray geometry is then entirely

equivalent to that of a Debye-Scherrer camera equipped with slits, and

Eq. (4-12) applies, with exactly the same limitations as mentioned in

Sec. 4-12.

7-5 Proportional counters. Proportional, Geiger, and scintillation

counters may be used to detect, not only x- and 7-radiation, but also

charged particles such as electrons or a-particles, and the design of the

counter and associated circuits depends to some extent on what is to be

detected. Here we are concerned only with counters for the detection of

x-rays of the wavelengths commonly employed in diffraction.

Consider the device shown in Fig. 7-9, consisting of a cylindrical metal

shell (the cathode) filled with a gas and containing a fine metal wire (the

anode) running along its axis. Suppose there is a constant potential dif-

ference of about 200 volts between anode and cathode. One end of the

cylinder is covered with a window material, such as mica or beryllium, of

high transparency to x-rays. Of the x-rays which enter the cylinder, a

small fraction passes right through, but the larger part is absorbed by the

gas, and this absorption is accompanied by the ejection of photoelectrons
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insulator

to

detector

circuit

and Compton recoil electrons from

the atoms of the gas. The net result

is ionization of the gas, producing

electrons, which move under the in-

fluence of the electric field toward

the wire anode, and positive gas ions,

which move toward the cathode shell.

At a potential difference of about

200 volts, all these electrons and ions

will be collected on the electrodes,

and, if the x-ray intensity is constant, FlG ?_g Gas counter (prop rtional

there will be a small constant current orGeiger) and basic circuit connections,

of the order of 10~ 12
amp or less

through the resistance R\. This current is a measure of the x-ray in-

tensity. When operated in this manner, this device is called an ionization

chamber. It was used in the original Bragg spectrometer but is now

obsolete for the measurement of x-ray intensities because of its low sensi-

tivity.

The same instrument, however, can be made to act as a proportional

counter if the voltage is raised to the neighborhood of 600 to 900 volts.

A new phenomenon now occurs, namely, multiple ionization or "gas ampli-

fication." The electric-field intensity is now so high that the electrons

produced by the primary ionization are rapidly accelerated toward the

wire anode and at an ever increasing rate of acceleration, since the field

intensity increases as the wire is approached. The electrons thus acquire

enough energy to knock electrons out of other gas atoms, and these in turn

cause further ionization and so on, until the number of atoms ionized by

the absorption of a single x-ray quantum is some 10
3
to 10

5 times as large

as the number ionized in an ionization chamber. As a result of this ampli-

fication a veritable avalanche of electrons hits the wire and causes an easily

detectible pulse of current in the external circuit. This pulse leaks away

through the large resistance RI but not before the charge momentarily

added to the capacitor Ci has been detected by the ratemeter or scaling

circuit connected to Ci. At the same time the positive gas ions move to

the cathode but at a much lower rate because of their larger mass. This

whole process, which is extremely fast, is triggered by the absorption of

one x-ray quantum.
We can define a gas amplification factor A as follows : if n is the number

of atoms ionized by one x-ray quantum, then An is the total number

ionized by the cumulative process described above. Figure 7-10 shows

schematically how the gas amplification factor varies with the applied

voltage. At the voltages used in ionization chambers, A =
1; i.e., there

is no gas amplification, since the electrons produced by the primary ioniza-
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FIG. 7-10. Effect of voltage on the gas amplification factor. (H. Friedman,

Proc. /.#.#. 37,791, 1949.)

tion do not acquire enough energy to ionize other atoms. But when the

voltage is raised into the proportional counter region, A becomes of the

order of 10
3
to 10

5
.

The current pulse in the anode wire is normally expressed in terms of the

momentary change of voltage in the wire, and this change is of the order

of a few millivolts. The proportional counter receives its name from the

fact that the size of this pulse, for a given applied voltage, is directly pro-

portional to n, the number of ions formed by the primary ionization process,

and this number is in turn proportional to the energy of the x-ray quantum
absorbed. Thus, if absorption of a Cu Ka quantum (hv

= 9,000 ev) pro-

duces a voltage pulse of 1 .0 mv, then absorption of a Mo Ka quantum

(hv
= 20,000 ev) will produce a pulse of (20,000/9,000) (1.0)

= 2.2 mv.

The proportional counter is essentially a very fast counter; i.e., it can

resolve separate pulses arriving at a rate as high as 10 per second. It can

do this because each avalanche is confined to an extremely narrow region

of the wire, 0.1 mm or less, and does not spread longitudinally along the

counter tube. This is an important feature of the process and one to wrhich

we will return in the next section.

By inserting special circuits between a proportional counter and the measuring

instrument (sealer or ratemeter), it is possible to take advantage of the fact that

the sizes of the pulses produced are inversely proportional to the wavelengths of

the x-rays producing them. For example, one such circuit allows only pulses

larger than a certain selected size to pass and discriminates against smaller ones;

it is called a pulse-height discriminator. If two such circuits are used together, one
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set to pass only those pulses larger than Vi volts and the other only those larger

than ^2 volts, then the difference between their two outputs is due only to pulses

having sizes in the V\- to VVvolt range. This subtraction may be done electroni-

cally, in which case the composite circuit is called a single-channel pulse-height

analyzer.

Such a device allows a proportional counter to be operated under essentially

monochromatic conditions. For example, if a diffraction pattern is being obtained

with copper radiation, the analyzer can be set to pass only pulses due to Cu Ka
radiation and reject those due to other wavelengths, such as Cu Kft, fluorescent

radiation from the specimen, white radiation, etc.

7-6 Geiger counters. If the voltage on a proportional counter is in-

creased some hundreds of volts, it will act as a Geiger counter. The exact

operating voltage is determined in the following way. The counter is

exposed to a beam of x-rays of constant intensity and connected to an

appropriate circuit which will measure its counting rate, i.e., the rate of

production of current pulses in the external circuit. The applied voltage

is then gradually increased from zero, and the counting rate is found to

vary with voltage in the manner shown in Pig. 7-11. No counts are ob-

tained below a certain minimum voltage called the starting voltage,* but

above this value the counting rate increases rapidly with voltage until

the threshold of the Geiger region is reached. In this region, called the

plateau, the counting rate is almost ^ plateau

independent of voltage. At voltages

beyond the plateau, the counter goes & i^

(

-l!Lg(l!

into a state of continuous discharge. p \\ \ continuous

A Geiger counter is operated on the ~
4 4 1^^ '

plateau, normally at an overvoltage

of about 100 volts, i.e., at 100 volts

higher than threshold. The plateau APPLIMI) \()LTA(JK

has a finite slope, about 0.05 per-
. . . , , PIG. 7-11. Effect of voltage on

cent/volt, which means that the oper-
(

.ountmg rato for (>onstant x.ray in_

ating voltage must be stabilized if the
tensity,

counting rate is to be accurately pro-

portional to x-ray intensity. (The same is true of proportional counters.)

No exact figures can be given for the starting voltage, threshold voltage,

and length of plateau of Geiger counters, as these depend on such variables

as counter dimensions and nature of the gas mixture, but the operating

* Pulses are produced below /his voltage, but they are too small to be counted

by the measuring circuit (sealer or ratemeter). Below the starting voltage, the

counter is acting as a proportional counter and the pulses are much smaller than

those produced in the (Jeiger region. Since the measuring circuit used with a

Geiger counter is designed to operate only on pulses larger than a certain size,

usually 0.25 volt, no pulses are counted at voltages less than the starting voltage
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voltage of most counters is commonly found to lie in the range of 1000 to

1500 volts. It should be noted that some counters can be permanently

damaged if subjected, even for brief periods, to voltages high enough to

cause a continuous discharge.

There are several important differences between the action of a Geiger

counter and that of a proportional counter:

(1) The absorption of an x-ray quantum anywhere within the volume

of a Geiger counter triggers an avalanche that extends over the whole

length of the counter.

(2) The gas amplification factor of a Geiger counter is therefore much

larger, about 10
8
to 10

9
(see Fig. 7-10), and so is the voltage pulse in the

wire, now about 1 to 10 volts. This means that less amplification is needed

in the external circuit. (Pulses from either kind of counter are always

amplified before being fed to a sealer or ratemeter.)

(3) At a constant applied voltage, all Geiger pulses are of the same size,

independent of the energy of the x-ray quantum that caused the primary

ionization. x.
ra> (iuantimi

These differences are illustrated absorbed hm-

schematically in Fig. 7-12. The ab-

sorption of an x-ray quantum in a

proportional counter produces a very
pHU])()lrn()NAL ( , n NT ,,K

localized radial column ot ions ana

electrons. In a Geiger counter, on the

other hand, the applied voltage is so

high that not only are some atoms

ionized but others are raised to ex-

cited states and caused to emit ultra- r.KKiKK < 'orvrat

violet radiation. These ultraviolet FIG. 7-12. Differences in the extent

photons then travel throughout the of ionization between proportional and

counter at the speed of light, knock- Geiger counters. Each plus (or minus)
. ,, . symbol represents a large number ol

mg electrons out of other gas atoms
positiye kms (or ele(

,

trons) .

and out of the cathode shell. All the

electrons so produced trigger other avalanches, and the net result is that

one tremendous avalanche of electrons hits the whole length of the anode

wire whenever an x-ray quantum is absorbed anywhere in the tube.

All these electrons hit the wire in less than a microsecond, but the slowly

moving positive ions require about 200 microseconds to reach the cathode.

This means that the electron avalanche in a Geiger counter leaves behind

it a cylindrical sheath of positive ions around the anode wire. The presence

of this ion sheath reduces the electric field between it and the wire below

the threshold value necessary to produce a Geiger pulse. Until this ion

sheath has moved far enough away from the wire, the counter is insensitive

to entering x-ray quanta. If these quanta are arriving at a very rapid
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FIG. 7-13. Dependence of pulse amplitude on pulse spacing.

rate, it follows that not every one will cause a separate pulse and the coun-

ter will become "choked." This places an upper limit on the rate at

which entering quanta can be accurately counted without losses. This

limit is much lower than that of a proportional counter, since the positive

ions produced by a discharge are very localized in the proportional counter

and do not render the rest of the counter volume insensitive.

The way in which pulses occur in a Geiger counter is worth examining

in some detail. It must be remembered that the arrival of x-ray quanta

in the counter is random in time. Therefore pulse production in the coun-

ter is also random in time, and a curve showing the change in voltage of

the anode wire with time would have the appearance of Fig. 7-13 (a).

During each pulse, the voltage rises very rapidly to a maximum and then
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decreases more slowly to its normal value. All pulses have the same ampli-

tude and are spaced at random time intervals.

But if the rate of pulse production is so high that two successive pulses

occur too closely together, it is found that the second one has less than

normal amplitude, as indicated in Fig. 7-13(b) on enlarged voltage-time

scales. If the interval between pulses becomes smaller than that shown in

(b), then the amplitude of the second pulse becomes still smaller, as shown

in (c). Figure 7-13(d) sums up a number of curves of this kind; i.e., it is

a superposition of a number of curves like (b) and (c), and it shows the

amplitude which any given pulse will have when it follows the initial pulse

at the time interval indicated by its position on the time axis. This de-

crease in pulse height with decrease in pulse spacing has been correlated

with the phenomena occurring in the counter as follows. When the ava-

lanche of electrons hits the anode wire to form the initial pulse, the voltage

rapidly builds up to its maximum value and then decays more slowly to

zero as the charge on the wire leaks away. But, as stated above, the posi-

tive ion sheath left behind reduces the field strength between it and the

wire. The field strength increases as the ions move away from the wire,

and the time at which the field reaches the threshold value marks theVhid

of the dead time
,/, during which the counter is absolutely insensitive to

entering quanta. The arrival of the ion sheath at the cathode restores the

field to its normal strength and marks the end of the recovery time tr . Be-

tween id and tr the field is above threshold but not yet back to normal;

during this interval entering quanta can cause pulses, but they will not

have the full amplitude characteristic of the applied voltage. The recov-

ery time, at which the pulses regain their full amplitude, is fixed by the

counter design and generally is of the order of 2 X 10~4
sec. However,

the detecting circuit can usually detect pulses smaller than maximum

amplitude, and we can therefore speak of the resolving time ts of the counter-

circuit combination, defined ,by the time after the initial pulse at which a

following pulse can first be detected.

If the arrival, and absorption, of entering quanta were absolutely periodic

in time, the maximum counting rate without losses would be given simply

by \/t8 . But even if their average rate of arrival is no greater than l/t8 ,

some successive quanta may be spaced less than t8 apart because of their

randomness in time. It follows that counting losses will occur at rates

less than \/t8 and that the losses will increase as the rate increases, as

shown in Fig. 7-14. Here "quanta absorbed per second" are directly

proportional to the x-ray intensity, so that this curve has an important

bearing on diffractometer measurements, since it shows the point at which

the observed counting rate is no longer proportional to the x-ray intensity.

The straight line shows the ideal response which can be obtained with a

proportional counter at the rates shown.
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FIG. 7-14. The effect of counting rate on counting losses (schematic).

Since the resolving time of the ordinary Geiger counter is of the order
of 10~4

sec, counting-rate curves should be linear up to about 10,000 cps

(counts per second) if the arrival of quanta were periodic in time. How-
ever, counting losses are observed to begin at much lower rates, namely,
at a few hundred counts per second, as shown in Fig. 7-14. In the multi-

chamber counter the counting rate is linear up to more than 1000 cps;
such a counter has a number of chambers side by side, each with its own
anode wire, and one chamber can therefore register a count while another
one is in its insensitive period. (The proportional counter, much faster

than either of these, has a linear counting curve up to about 10,000 cps.
Its resolving time is less than a microsecond; this is the time required for

an electron avalanche to hit the wire, immediately after which the pro-

portional counter is ready to register another pulse, since the positive ions

formed produce no interference.)

The particular counting rate where losses begin with a particular Geiger-
counter-scaler combination must be determined experimentally, and this

can be done as follows. Position the counter to receive a strong diffracted

beam, and insert in this beam a sufficient number of metal foils of uniform

thickness to reduce the counting rate almost to the cosmic background.
(Cosmic rays, because of their high penetrating power, pass right through
the walls of the counter and continually produce a few counts per second.)
Measure the counting rate, remove one foil, measure the counting rate, and
continue in this manner until all the foils have been removed. Since each
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foil produces the same fractional absorption of the energy incident on it,

a plot of observed counting rate (on a logarithmic scale) vs. number of

foils removed from the beam (on a linear scale) will be linear up to the

point where losses begin and will in fact resemble Fig. 7-14. A curve of

this kind is shown in Fig. 7-15. Once the length of the linear portion of

the calibration curve has been determined, it is best to make all further

measurements in this region. Of course, the losses attendant on very high

counting rates can be determined from the calibration curve and used to

correct the observed rate, but it is usually safer to reduce the intensity of a

very strong beam, by means of foils of known absorption, to a point where

the observed counting rate is on the linear portion of the curve.

Figure 7-15 also shows that the range of linearity of a counting rate

curve is dependent on the x-ray tube voltage and is shorter for lower voltages.

The reason for this dependence is the fact that the x-ray tube emits charac-

teristic x-rays not continuously but only in bursts during those times when
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x-ray tube (schematic).

the tube voltage exceeds the critical

excitation voltage of the target mate-

rial. Suppose, for example, that a

copper target (excitation voltage =

9 kv) is operated at a peak voltage

of 50 kv. Then, if the wave form is

like that shown in Fig. 7-16, Cu Ka
radiation will be emitted during the

time intervals ^2 and t^ but not

during <2fe- But if the peak voltage

is decreased to 25 kv, Cu Ka emission

is limited to the shorter time intervals

t5tG and /7<8 . If the x-ray intensity is

made the same at both voltages by

adjusting the tube current, then it fol-

lows that the same number of Cu Ka

quanta are bunched into shorter times at the lower tube voltage than at

the higher. Lowering the tube voltage therefore decreases the average

time interval between quanta entering the Geiger counter during each

half-cycle and may cause counting losses to occur at rates at which no

losses are produced at higher tube voltages. It follows that a counter cali-

bration curve applies only to measurements made at voltages not less than

the voltage at which the calibration was performed.

One other aspect of Geiger-counter operation deserves mention, and

that is the method used to prevent the discharge actuated by the absorp-

tion of one quantum from continuing indefinitely. If the counter is filled

with a single gas such as argon, the positive argon ions on reaching the

cathode are able to eject electrons from the cathode material. These

electrons are accelerated to the anode and initiate another chain of ioniza-

tion, with the result that a continuous discharge is set up in the counter,

rendering it incapable of counting any entering quanta after the first one.

This discharge may be prevented or "quenched" if an external circuit is

used which abruptly lowers the voltage on the counter after each pulse

to a value below that necessary to maintain a discharge but high enough

to clear all ions from the gas. As soon as the ions are neutralized at the

cathode, the high voltage is reapplied and the counter is again sensitive.

To avoid the necessity for a quenching circuit, counters have been designed

which are self-quenching by virtue of the gas mixture they contain. To

the main gas in the counter, usually argon or krypton, is added a small

proportion of "quench gas," which is either a polyatomic organic vapor,

such as alcohol, or a halogen, such as chlorine or bromine. As its name

implies, the quench gas plays the role of the quenching circuit used with

single-gas counters and prevents the initial avalanche of ionization from
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becoming a continuous discharge. In an argon-chlorine counter, for exam-

ple, ionized argon atoms acquire electrons from chlorine molecules by

collision, forming neutral argon atoms and ionized chlorine molecules.

The latter are merely neutralized on reaching the cathode and do not re-

lease electrons as argon ions do. Most counters used today are of the

self-quenching variety.

The efficiency of a Geiger or proportional counter and its associated

circuits is given by the product of two efficiencies, that of quantum ab-

sorption and that of quantum detection. The absorption efficiency de-

pends on the absorption coefficient and thickness of the counter window,

both of which should be as small as possible, and on the absorption coeffi-

cient of the counter gas and the length of the counter, both of which should

be as large as possible. The detection efficiency of a Geiger counter, as we

have seen, depends on the counting rate and is effectively 100 percent at

low rates; with a proportional counter this efficiency is near 100 percent

at any rate likely to be encountered in diffraction experiments. The over-

all efficiency of either counter at low rates is therefore determined by the

absorption efficiency, which is commonly about 60 to 80 percent.

The absorption efficiency, however, is very much dependent on the

x-ray wavelength, the kind of gas used, and its pressure, since these factors

determine the amount of radiation absorbed in a counter of given length.

Figure 7-17 shows how the amount absorbed depends on wavelength for

the two gases most often used in x-ray counters. Note that a krypton-

filled counter has high sensitivity for

all the characteristic radiations nor-

mally used in diffraction but that an

argon-filled counter is sensitive only

to the longer wavelengths. This latter

characteristic may be advantageous
in some circumstances. For example,

if a diffraction pattern is made with

filtered radiation from a copper tar-

get, use of an argon-filled counter wr
ill

produce semimonochromatic condi-

tions, in that the counter will be

highly sensitive to Cu Ka radiation

and relatively insensitive to the short

wavelength radiation which forms the

most intense part of the continuous

spectrum. The diffraction background
will therefore be lower than if a

krypton-filled counter had been

used.

Mo A
c KM)

05 10 1.5

WAVELENGTH
2.0

(A)

FIG. 7-17. Absorption of x-rays in

a 10-cm path length of krypton and

argon, each at a pressure of 65 cm
Hg.
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7-7 Scintillation counters. This type of counter utilizes the ability of

x-rays to cause certain substances to fluoresce visible light. The amount
of light emitted is proportional to the x-ray intensity and can be measured

by means of a phototube. Since the amount of light emitted is small, a

special kind of phototube called a photomultiplier has to be employed in

order to obtain a measurable current output.

The substance generally used to detect x-rays is a sodium iodide crystal

activated with a small amount of thallium. It emits blue light under

x-ray bombardment. The crystal is cemented to the face of a photo-

.multiplier tube, as indicated in Fig. 7-18, and shielded from external light

by means of aluminum foil. A flash of light is produced in the crystal for

every x-ray quantum absorbed, and this light passes into the photomulti-

plier tube and ejects a number of electrons from the photocathode, vhich

is a photosensitive material generally made of a caesium-antimony inter-

metallic compound. (For simplicity, only one of these electrons is shown

in Fig. 7-18.) The emitted electrons are then drawn to the first of several

metal dynodes, each maintained at a potential about 100 volts more posi-

tive than the preceding one, the last one being connected to the measuring
circuit. On reaching the first dynode, each electron from the photocathode
knocks two electrons, say, out of the metal surface, as indicated in the

drawing. These are drawn to the second dynode where each knocks out

two more electrons and so on. Actually, the gain at each dynode may
be 4 or 5 and there are usually at least 10 dynodes. If the gain per dynode
is 5 and there are 10 dynodes, then the multiplication factor is 5

10 = 10
7

.

Thus the absorption of one x-ray quantum in the crystal results in the

collection of a very large number of electrons at the final dynode, producing

a pulse about as large as a Geiger pulse, i.e., of the order of volts. Further-

more, the whole process requires less than a microsecond, so that a scintil-

lation counter can operate at rates as high as 10
5
counts per second without

As in the proportional counter, the pulses produced in a scintillation

counter have sizes proportional to the energy of the quanta absorbed.

photocathode dynodes vacuum

\

crystal photoniultiplicr tube

FIG. 7-18. Scintillation counter (schematic). Electrical connections not shown.
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But the pulse size corresponding to a certain quantum energy is much

less sharply defined than in a proportional counter; i.e., scintillation-

counter pulses produced by x-ray quanta of a given energy have a mean

size characteristic of that energy, but there is also a fairly wide distribu-

tion of pulse size about this mean. As a result, it is difficult to discriminate

between x-ray quanta of different energies on the basis of pulse size.

The efficiency of a scintillation counter approaches 100 percent over the

whole range of x-ray wavelengths, short and long, because all incident

x-ray quanta are absorbed in the crystal. Its chief disadvantage is its

rather high background count; a so-called "dark current" of pulses is pro-

duced even when no x-ray quanta are incident on the counter. The main

source of this dark current is thermionic emission of electrons from the

photocathode.

7-8 Sealers. A sealer is an electronic device which counts each pulse

produced by the counter. Once the number of pulses over a measured

period of time is known, the average counting rate is obtained by simple

division. If the rate of pulse production were always low, say a few counts

per second, the pulses could be counted satisfactorily by a fast mechanical

counter, but such devices cannot handle high counting rates. It is there-

fore necessary to divide, or scale down, the pulses by a known factor before

feeding them to the mechanical counter. As its name implies, the sealer

fulfills this latter function. There are two main kinds, the binary sealer,

in which the scaling factor is some power of 2, and the decade sealer, in

which it is a power of 10.

We will consider sealer operation only in terms of binary sealers but

the principles involved are applicable to either type. A typical binary

sealer has several scaling factors available at the turn of a switch, ranging

from 2 (= 1) to about 2
14
(= 16384). The scaling circuit is made up of a

number of identical "stages" connected in series, the number of stages

being equal to n where 2
n

is the desired scaling factor. Each stage is com-

posed of a number of vacuum tubes, capacitors, and resistors so connected

that only one pulse of current is transmitted for every two pulses received.

Since the output of one stage is connected to the input of another, this

division by two is repeated as many times as there are stages. The output

of the last stage may be connected to a mechanical counter which will

register one count for every pulse transmitted to it by the last stage. Thus,

if N pulses from a counter are passed through a circuit of n stages, only

N/2
n

will register on the mechanical counter.

There are two ways of using a sealer to obtain an average counting rate :

counting for a fixed time and counting a fixed number of pulses. In the

first method, the sealer is turned on for a time t and then shut off. If the

mechanical counter then shows NQ counts, the number of input pulses
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must have been

AT = N (2
n
) + a, (7-5)

where a is an integer ranging from up to (2
n

1). The integer a gives
the number of pulses still "in the circuit" when the input pulses were shut

off, and its value is found by noting which of several neon interpolation

lamps connected to the several stages are still on. As indicated in Fig.
7-19 for a scale-of-16 circuit, there is a neon lamp connected to each stage
and the number opposite each lamp is 2

n~ 1
where n is the number of the

stage. The initial pulse entering a stage turns the lamp on and the second

pulse turns it off. Since the second entering pulse causes a pulse to be

transmitted to the next stage, the lamp on that stage goes on at the same
time that the lamp on the preceding stage goes out. The integer a is

therefore given by the sum of the numbers opposite lighted neon lamps.
The total count shown in Fig. 7-19, for example, is N = 18(16) + (2 + 4)
= 294. Once the total number of counts is known, the average counting
rate is given simply by N/t.

In the second method of scaling (counting a fixed number of pulses),
the mechanical counter is replaced by an electric timer. The timer is con-

nected to the circuit in such a way that it starts when the sealer is started

and stops at the instant a pulse is transmitted from the last stage. For

example, if the timer is connected to a 10-stage sealer, it will stop when
exactly 1024 (= 2

10
) pulses have entered the first stage, because at that

instant the tenth stage will transmit its first pulse; the average counting
rate is then given by the quotient of 1024 and the time shown on the timer.

Such a circuit requires no interpolation since no counts remain in the circuit

at the instant the final stage transmits its pulse to the timer; i.e., all the

neon lights are off. The total number of counts, which must be a power
of 2 in a binary sealer, is selected by a switch which connects the timer to

any desired stage, thus making that stage the final stage and short-circuit-

ing the remainder.

Because the arrival of x-ray quanta in the counter is random in time,
the accuracy of a counting rate measurement is governed by the laws of

probability. Two counts of the same x-ray beam for identical periods of

time will not be precisely the same because of the random spacing between

interpolation x v

numbers ~~^
\i)

mechanical

counter

FIG. 7-19. Determination of sealer counts.
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pulses, even though the counter and sealer are functioning perfectly.

Clearly, the accuracy of a rate measurement of this kind improves as the

time of counting is prolonged, and it is therefore important to know how

long to count in order to attain a specified degree of accuracy. The prob-

able error* in a single count of N pulses, relative to an average value

obtained by a great many repetitions of the same counting operation, is

given by
67

EN = = percent, (7-6)

so long as N is fairly large. For some of the total counts obtainable from

a binary sealer, this expression gives the following errors:

Note that the error depends only on the number of pulses counted and not

on their rate, which means that high rates and low rates can be measured

with the same accuracy, if the counting times are chosen to produce the

same total number of counts in each measurement. It also follows that

the second scaling method outlined above, in which the time is measured

for a fixed number of counts, is generally preferable to the first, since it

permits intensity measurements of the same precision of both high- and

low-intensity beams.

Equation (7-6) is valid only when the counting rate due to the radiation

being measured is large relative to the background. (Here "background"
means the unavoidable background counting rate measured with the x-ray

tube shut off, and not the "diffraction background" at non-Bragg angles

due to any of the several causes listed in Sec. 6-11 and of which fluorescent

radiation is usually the most important. The unavoidable background is

due to cosmic rays and may be augmented, in some laboratories, by stray

* The probable error is that which is just as likely to be exceeded as not. Three

times the probable error is a somewhat more useful figure, as the probability that

this will be exceeded is only 0.04. Thus, if a single measurement gives 1000 counts,
then the probable error is 67/^/1000

= 2.1 percent or 21 counts. Then the prob-

ability is 0.5 that this count lies in the range Nt 21, where N t is the true number
of counts, while the probability is 0.96 that the measured value lies in the range
Nt 63.
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radiation from nearby radioactive material; it may be rather high, if a

scintillation counter is used, because of the dark current of this counter.)

Suppose a measurement is required of the diffraction background, always
rather low, in the presence of a fairly large unavoidable background. In

these circumstances, Eq. (7-6) does not apply. Let TV be the number of

pulses counted in a given time with the x-ray tube on, and Nb the number
counted in the same time with the tube off. Then Nb counts are due to

the unavoidable background and (N Nb) to the diffraction background

being measured, and the relative probable error in (N Nb) is

07V'N + Nb
E*-x* =

-~7^ ^7T~ Percent - (7-7)
(N - Nb)

Comparison of Eqs. (7-0) and (7-7) shows that longer counts must be

made when the unavoidable background is of comparable intensity to

the radiation being measured than when the unavoidable background is

completely negligible by comparison, if the same accuracy is to be obtained

in both measurements.

As indicated in Sec. 7-2, the integrated intensity of a diffraction line

may be measured with a sealer by determining the average counting rate

at several angular positions of the counter. The line profile, the curve of

intensity vs. 26, is then plotted on graph paper, and the area under the

curve, and above the continuous background, is measured with a planimeter.

To obtain the same relative accuracy of both the line profile and the adja-

cent background, all measurements should be made by counting a fixed

number of pulses. Three other methods of measuring integrated intensities

have been used, all of which utilize the integrating properties of the scaling

circuit to replace the curve plotting and planimeter measurement:

(1) The line is scanned from one side to the other at a constant angular

rate, the sealer being started at the beginning of the scan and stopped at

its end. The total number of counts registered by the sealer, minus the

number of counts due to the background, is then proportional to the in-

tegrated intensity of the line. All lines on the pattern must be measured

with the same receiving slit and the same scanning rate. The background

adjacent to, and on either side of, the line may be measured by the same

procedure, i.e., by scanning at the same rate over the same angular range,

or by counting at a fixed position for the same time required to scan the

line.

(2) The counter is moved stepwise across the line and maintained in

each position for the same length of time, the sealer being operated con-

tinuously except when changing counter positions. The total count accu-

mulated by the sealer, minus the background correction, is again propor-

tional to the integrated intensity. A wide receiving slit is used, and the
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angular interval between counter positions is so chosen that the overlap

between adjacent settings of the slit is negligibly small and constant and

never coincides with the maximum intensity of the line being measured.

(3) A receiving slit is used which is wider than the line being measured.

The slit is centered on the line and a count made for a given time. The

background is measured by counting at a position adjacent to the line

with the same slit for the same length of time.

Because all these methods involve counting for a fixed time, the back-

ground and low-intensity portions of the diffraction line are measured

with less accuracy than the high-intensity portions. The counting time

should be chosen so that the low intensities are measured to the accuracy

required by the particular problem involved; it will then follow that the

high intensities are measured with unnecessarily high accuracy, but that

is unavoidable in fixed-time methods such as these.

The integrating ability of a sealer is also put to use in x-ray tube moni-

tors. In Sec. 7-2 it was mentioned that the incident-beam intensity had

to be maintained absolutely constant in a diffractometer and that this

constancy required tube current and voltage stabilizers. These stabilizing

circuits are not needed if an extra counter and sealer are available to

"watch," or monitor, the tube output. The monitor counter may be posi-

tioned to receive the direct beam, suitably filtered to reduce its intensity,

from another window of the x-ray tube, or an auxiliary crystal may be set

to diffract a portion of the beam used in the diffractometer into the monitor

counter. In either case, every intensity measurement with the diffrac-

tometer is made by starting the diffractometer sealer and monitor sealer

simultaneously and stopping both when the monitor sealer has registered

a constant number of counts N. In this way, every intensity measurement

is made in terms of the same amount of energy incident on the specimen,

and variations in tube output have no effect.

7-9 Ratemeters. The counting-rate meter, as its name implies, is a

device which indicates the average counting rate directly without requir-

ing, as in the sealer-timer combination, separate measurements of the

number of counts and the time. It does this by a circuit which, in effect,

smooths out the succession of randomly spaced pulses from the counter

into a steady current, whose magnitude is proportional to the average

rate of pulse production in the counter.

The heart of a ratemeter circuit is a series arrangement of a capacitor

and resistor. To understand the action of a ratemeter, we must review

some of the properties of such a circuit, notably the way in which the

current and voltage vary with time. Consider the circuit shown in Fig.

7-20(a), in which the switch S can be used either to connect a to c and thus

apply a voltage to the capacitor, or to connect b to c and thus short-circuit
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FIG. 7-20. The capacitor-resistor circuit.

the capacitor and resistor. When a is suddenly connected to c, the voltage

across the capacitor reaches its final value V not instantaneously but only

over a period of time, and at a rate which depends on the resistance R and

the capacitance C, as shown in Fig. 7-20(b). The product of R and C has

the dimensions of time (seconds, in fact, if R is in megohms and C in micro-

farads), and it may be shown that the voltage across the capacitor reaches

63 percent of its final value in a time given by RC, known as the time

constant of the circuit. The time required to reach 99 percent of its final

value is 4.6RC. Conversely, if the fully charged capacitor, bearing a

charge Q = CV, is suddenly shorted through the resistor by connecting

b to c, the charge does not immediately disappear but leaks away at a rate

dependent on the time constant. The charge drops to 37 percent of its

initial value in a time equal to RC and to 1 percent in a time equal to

A complete ratemeter circuit consists of two parts. The first is a pulse-

amplifying and pulse-shaping portion which electronically converts the

counter pulses, which vary in amplitude and shape from counter to counter,

into rectangular pulses of fixed dimensions in voltage and time. These

pulses are then fed into the second portion, which is the measuring circuit

shown in Fig. 7-21, a circuit basically pulse input

similar to that of Fig. 7-20 (a) and

having a time constant #2^2- $,

shown as a simple switch, is actually

an electronic circuit which connects a

to c each time a pulse arrives and then

connects b to c immediately after-

wards. A constant charge is thus

added to the capacitor for each pulse pIG . 7.21. Measuring portion of

received and this charge leaks away ratemeter circuit.



208 DIFFRACTOMETER MEASUREMENTS [CHAP. 7

through the resistor until, at equilibrium, the rate of addition of charge is

just balanced by the rate of leakage. The rate of charge leakage is simply

the current through the microammeter M, which therefore indicates the

rate of pulse production in the counter and, in turn, the x-ray intensity.

The circuit usually contains, in addition to the indicating meter, a chart

recorder which produces a continuous record of the intensity.

Even when the x-ray intensity is constant (constant average counting

rate), the spacing of the counter pulses is random in time, which means

that the counting rate actually varies with time over short periods. The

ratemeter responds to these statistical fluctuations in the counting rate,

and its response speed is greater the smaller the time constant. This fol-

lows from the discussion of the capacitor-resistor circuit: any change in

the pulse rate causes a change in the current through the circuit, but the

latter change always lags behind the former; the amount of lag is less for a

small time constant than for a large one. Random fluctuations in the

counting rate are therefore more evident with a small time constant, be-

cause the current in the circuit then follows the changes in counting rate

more closely. This feature is illustrated in Fig. 7-22, which shows the

automatically recorded output of a ratemeter when the counter is receiving

a constant-intensity x-ray beam. The large fluctuations at the left have

been reduced in magnitude by successive increases in the time constant,

effected by changing the value of C2 . Evidently, a single reading of the

position of the indicating meter needle or the recorder pen of a ratemeter

may be seriously in error, and more so at low time constants than at high.

In Sec. 7-8 we saw that the error in a counting-rate measurement de-

creased as the number of counts increased. Now it may be shown that a

ratemeter acts as if it counted for a time 2R2C2 ,
in the sense that the

accuracy of any single reading is equivalent to a count made with a sealer

for a time 2R2C2 . Therefore, the relative probable error in any single

ratemeter reading is given by the counterpart of Eq. (7-G), namely by

C7

E =
; percent, (7-8)

\/2nR2C2

where n is the average counting rate. This equation also shows that the

probable error is less for high counting rates than for low, when the time

constant remains the same. This is illustrated graphically in Fig. 7-23,

which shows how the recorded fluctuations in the counting rate decrease

as the rate itself is increased.

The most useful feature of a ratemeter is its ability to follow changes in

the average counting rate, a function which the sealer is totally unable to

perform, since a change in the average counting rate occurring during the

time a count is being made with a sealer will go entirely undetected. It is

this feature of a ratemeter which is so useful in diffractometry. A diffrac-
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FIG. 7-22. Effect of time constant (T.C.) on recorded fluctuations in counting
rate at constant x-ray intensity (schematic). Time constants changed abruptly at

times shown. (T.C.)i < (T.C.) 2 < (T.C.) 3 .

tion pattern can be scanned from one end to the other, and the moving
counter automatically transmits, through the ratemeter, a continuous

record of the intensity it observes as the diffraction angle is changed. On
the other hand, the ratemeter is less accurate than the sealer, both because

of the unavoidable statistical fluctuations in its output and because of the

errors inherent in its indicating or recording instruments.

As mentioned earlier, a large time constant smooths out fluctuations in

the average counting rate by increasing the response time to changes in

rate. But when a sharp diffraction line is being scanned, the average

counting rate is changing rapidly and we would like the ratemeter to indi-

cate this change as accurately as possible. From this point of view a short

response time, produced by a small time constant, is required. A rate-

meter must therefore be designed with these two conflicting factors in

TIME

FIG. 7-23. Effect of average counting rate on recorded fluctuations in counting

rate, for a fixed time constant (schematic). X-ray intensity changed abruptly at

times shown.
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mind, and the time constant should be chosen large enough to smooth out

most of the statistical fluctuations and yet small enough to give a reason-

ably short response time.

Most commercial ratemeters have several scales available to cover var-

ious ranges of x-ray intensity (100, 1000, and 10,000 cps for full-scale

deflection of the recorder pen, for example). Smaller time constants are

used with the higher scales, just as short counting times are used with a

sealer when the counting rate is high. In some instruments, the time con-

stant appropriate to each scale is fixed by the manufacturer, and in others

the operator can select any one of several time constants, ranging from

about 0.5 to 15 sec, by switches which insert the proper capacitance in the

circuit. The proper time constant to use is, of course, not unrelated to the

scanning speed, for a fast scan demands a fast response from the ratemeter

and therefore a short time constant. A time constant which is too large

for the scanning speed used will slightly shift the peaks of diffraction lines

in the direction of the scan and lower their maximum intensity and, be-

cause of its excessive smoothing action, may actually obliterate weak dif-

fraction lines and cause them to go unnoticed. In choosing a time constant,

it is therefore better to err on the short side. A good rule to follow is to

make the time constant less than half the time width of the receiving slit,

where the time width is defined as the time required for the slit to travel

its own width. For example, if a 0.2 slit is used at a scanning speed of

2/min, then the time width of the slit is (0.2/2) (60)
= 6 sec, and the

time constant should therefore be less than 3 sec. The same rule can be

used to find the proper slit width for a given scanning speed when the time

constant is fixed.

The relation between the x-ray intensity, i.e., the average counting rate,

and the deflection of the indicating meter needle or recorder pen is linear

for some ratemeters and logarithmic for others. The exact relation may
be found by a calibration procedure similar to that used for the Geiger

counter and sealer, as outlined in Sec. 7-8. A number of identical metal

foils are placed in a strong diffracted beam entering the counter and these

are withdrawn one by one, with the counter in a fixed position. After

each withdrawal, the counting rate is measured accurately with a sealer,

and the ratemeter operated for a time at least equal to the scaling time,

the recording chart speed being selected to give a trace of reasonable

length. An average straight line is then drawn through each trace, in such

a way as to make the positive and negative fluctuations as nearly equal as

possible. (Figure 7-23 shows a portion of a calibration run made in this

way.) Finally, the distances of these straight lines from the chart zero are

plotted against the corresponding average counting rates as determined by

the sealer, and the calibration curve so obtained is used as a basis for* future

intensity measurements with the ratemeter-recorder combination.
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7-10 Use of monochromators. Some research problems, notably the

measurement of diffuse scattering at non-Bragg angles, require a strictly

monochromatic incident beam if the effects to be measured are not to be

blotted out by the continuous spectrum. In such a case, the focusing

crystal monochromator described in Sec. 6-12 may be used in conjunction

with a diffractometer in the manner shown in Fig. 7-24. Rays from the

physical line source S on the x-ray tube target T are diffracted by the bent

and cut crystal M to a line focus at S', located on the diffractometer circle,

and then diverge to the specimen C. After diffraction from the specimen,

they are again focused at F, the counter receiving slit. The diffractometer

geometry is therefore identical with that shown in Fig. 7-1 but with the

important difference that the rays incident on the specimen are mono-

chromatic and issue from the virtual source S', the focal line of the mono-

chromating crystal.

There is another method of operating under essentially monochromatic

conditions, a method peculiar to the diffractometer, and that is by the

use of Ross filters, also called balanced filters. This method depends on

the fact that the absorption coefficients of all substances vary in the same

way with wavelength; i.e., they are proportional to X
3

,
as shown by Eq.

(1-13). If filters are made of two substances differing in atomic number

by one, and their thicknesses adjusted so that they produce the same ab-

sorption for a particular wavelength, then they will have the same absorp-

tion for all wavelengths except those lying in the narrow wavelength region

between the K absorption edges of the two substances. This region is

called the pass band of the filter combination. If these filters are placed

alternately in a heterochromatic x-ray beam, i.e., a beam containing rays

of different wavelengths, then the difference between the intensities trans-

mitted in each case is due only to wavelengths lying in the pass band.

FIG. 7-24. Use of crystal monochromator with diffractometer.
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When the pass band is chosen to include a strong characteristic component
of the spectrum, then the net effect is that of a strong monochromatic

beam.

The isolation of Cu Ka radiation may be taken as an example. Its

wavelength is 1.542A, which means that cobalt and nickel can be used as

filter materials since their K absorption edges (1.608 and 1.488A, respec-

tively) effectively bracket the Cu Ka line. Their linear absorption coeffi-

cients M are plotted in Fig. 7-25 (a), which shows that balancing can be

obtained by making the nickel filter somewhat thinner than the cobalt one.

When their thicknesses x are adjusted to the correct ratio, then MN^NI =

MCO^CO except in the pass band, and a plot of px vs. X has the appearance
of Fig. 7-25(b). Since /LT

= In /x// ,
the transmission factors /V/o

(ratio of transmitted to incident intensity) of the two filters are now equal

for all wavelengths except those in the pass band, which is only 0.1 2A

wide. At each angle 20 at which the intensity is to be measured with the

diffractometer, first one filter and then the other is placed in the diffracted

beam before it enters the counter. The intensity of the diffracted beam

passing through each filter is then measured, and the difference in the

measurements gives the diffracted intensity of only the Cu A'a line and

the relatively weak wavelengths immediately adjacent to it in the pass

band.

It should be emphasized that the beam entering the counter is never

physically monochromatic, as it is when a crystal monochromator is used.

Radiation with a great many wavelengths enters the counter when either

filter is in place, but every wavelength transmitted by one filter has the

same intensity as that transmitted by the other filter, except those wave-

lengths lying in the pass band, and these are transmitted quite unequally

by the two filters. Therefore, when the intensity measured with one filter

is subtracted from that measured with the other filter, the difference is

zero for every wavelength except those in the pass band.

In practice, balancing of the filters is carried out by inserting two foils

of approximately the same thickness into suitable holders which can be

slipped into place in the beam entering the counter. One foil is always

perpendicular to the x-ray beam, while the other may be rotated about

an axis at right angles to the beam; in this way the second foil may be in-

clined to the beam at such an angle that its effective thickness x equals

the thickness required for balancing. Perfect balancing at all wavelengths
outside the pass band is not possible, although it may be approached quite

closely, because n does not vary exactly as X3 and because the magnitude
of the K absorption jump (ratio of absorption coefficients for wavelengths

just shorter and just longer than the K edge) is not exactly the same for

all elements.
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PROBLEMS

7-1. A powder specimen in the form of a rectangular plate has a width of 0.5

in., measured in the plane of the diffractometer circle, which has a radius of 5.73

in. If it is required that the specimen entirely fill the incident beam at all angles

and that measurements must be made to angles as low as 26 = 10, what is the

maximum divergence angle (measured in the plane of the diffractometer circle)

that the incident beam may have?

7-2. Prove the statement made in Sec. 7-4 that the effective irradiated volume

of a flat plate specimen in a diffractometer is constant and independent of 6.

7-3. In measuring the maximum intensity of a certain diffraction line with a

sealer, 2048 pulses were counted in 1.9 sec. When the "diffraction background"
a few degrees away from the line was measured, 2048 pulses were counted in 182

seconds. The average counting rate determined over a long period of time with

the x-ray tube shut off was 2.2 cps.

(a) What is the ratio of the maximum intensity of the line to that of the "dif-

fraction background"?

(6) What is the probable error in each of these intensities?

(c) How long must the "diffraction background" be counted in order to obtain

its intensity with the same accuracy as that of the diffraction line?

7-4. (a) Calculate the ratio of the effective thicknesses of cobalt and nickel

filters when they are balanced for all wavelengths except Cu Ka. (Obtain an av-

erage value applicable to a wavelength range extending from about 0.5A to about

2A.)

(6) When the filters are balanced, calculate the ratio of the intensity of Cu Ka
radiation transmitted by the nickel filter to that transmitted by the cobalt filter,

assuming the same incident intensity in each case. The effective thickness of the

nickel filter is 0.00035 in.



CHAPTER 8

ORIENTATION OF SINGLE CRYSTALS

8-1 Introduction. Much of our understanding of the properties of poly-

crystalline materials has been gained by studies of isolated single crystals,

since such studies permit measurement of the properties of the individual

building blocks in the composite mass. Because single crystals are usually

anisotropic, research of this kind always requires accurate knowledge of

the orientation of the single crystal test specimen in order that measure-

ments may be made along known crystallographic directions or planes.

By varying the crystal orientation, we can obtain data on the property
measured (e.g., yield strength, electrical resistivity, corrosion rate) as a

function of crystal orientation.

In this chapter the three main x-ray methods of determining crystal

orientation will be described: the back-reflection Laue method, the trans-

mission Laue method, and the diffractometer method. It is also con-

venient to treat here the question of crystal deformation and the measure-

ment of this deformation by x-ray methods. Finally, the subject of rela-

tive crystal orientation is discussed, and methods are given for determining

the relative orientation of two naturally associated crystals, such as the

two parts of a twin or a precipitated crystal and its parent phase.

8-2 The back-reflection Laue method. As mentioned in Sec. 3-6, the

Laue pattern of a single crystal consists of a set of diffraction spots on the

film and the positions of these spots depend on the orientation of the crys-

tal. This is true of either Laue method, transmission or back-reflection,

so either can be used to determine crystal orientation. However, the back-

reflection method is the more widely used of the two because it requires no

special preparation of the specimen, which may be of any thickness,

whereas the transmission method requires relatively thin specimens of low

absorption.

In either case, since the orientation of the specimen is to be determined

from the location of the Laue spots on the film, it is necessary to orient

the specimen relative to the film in some known manner. The single

crystal specimens encountered in metallurgical work are usually in the

form of wire, rod, sheet, or plate, but crystals of irregular shape must occa-

sionally be dealt with. Wire or rod specimens are best mounted with

their axis parallel to one edge of the square or rectangular film; a fiducial

mark on the specimen surface, for example on the side nearest the film,

then fixes the orientation of the specimen completely. It is convenient to

215
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FIG. 8-1. Intersection of a conical array of diffracted beams with a film placed

in the back-reflection position. C =
crystal, F = film, Z.A = zone axis.

mount sheet or plate specimens with their plane parallel to the plane of

the film and one edge of the sheet or plate parallel to an edge of the film.

Irregularly shaped crystals must have fiducial marks on their surface which

will definitely fix their orientation relative to that of the film.

The problem now is to determine the orientation of the crystal from the

position of the back-reflection Laue spots on the film. If wo wished, we

could determine the Bragg angle corresponding to each Laue spot from

Eq. (5-2), but that would be no help in identifying the planes producing

that spot, since the wavelength of the diffracted beam is unknown. We

can, however, determine the orientation of the normal to the pianos caus-

ing each spot, because the plane normal always bisects the angle between

incident and diffracted beams. The directions of tho piano normals can

then bo plotted on a steroographic projection, the angles between thorn

measured, and the planes identified by comparison with a list of known

interplanar angles for the crystal involved.

Our first problem, therefore, is to derive, from the measured position of

each diffraction spot on the film, the position on a stereographic projection

of the pole of the plane causing that spot. In doing this it is helpful to

recall that all of the planes of one zone reflect beams which lie on tho sur-

face of a cone whoso axis is tho zono axis and whoso somi-apox angle is

equal to the angle <t> at which tho zono axis is inclined to the transmitted

beam (Fig. 8-1). If <t> doos not exceed 45, tho cone will not intersect a

film placed in tho back-reflection region; if < lies between 45 and 90, the

cone intersects tho film in a hyperbola; and, if </> oquals 90, the intersection

is a straight line passing through tho incident beam. (If </> exceeds 90,
the cone shifts to a position below tho transmitted beam and intersects

the lower half of the film, as may be soon by viewing Fig. 8-1 upside down.)

Diffraction spots on a back-reflection Laue film therefore lie on hyper-
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film

[ornri cut tor

identification

Fid S 2 Locution oi buck-ieflertion hnuo spot. Note that 7 =- 1)0 0.

bolas or straight lines, and the distance of any hyperbola from the center

of the film is a measure of the inclination of the zone axis.

In Fig. 8 2 the film is \ie\\ed from the crystal. Coordinate axes are

set up such that the incident beam proceed* along the z-axis in the direc-

tion Oz and the .r- and //-axes he in the plane of the film. The beam re-

flected by the plane shown strikes the film at S. The normal to this reflect-

ing plane is (\\ and the plane itself is assumed to belong to a zone \\hose

axis lies in the //;-plane. If we imagine this plane to rotate about the zone

axis, it will pass through all the positions at which planes of this zone in an

actual crystal might lie. During this rotation, the plane normal would cut

the film in the straight line AB and the reflected beam in the hyperbola HK.
AB is therefore the locus of plane normal intersections with the film and

HK the locus of diffracted beam intersections. The plane \\hich reflects a

beam to N, for example, has a normal which intersects the film at N, since

the incident beam, plane normal, and diffracted beam are coplanar. Since

the orientation of the plane normal in space can be described by its angular

coordinates 7 and 6, the problem is to determine 7 and 6 from the measured

coordinates x and //
of the diffraction spot S on the film.

A graphical method of doing this was devised by (Ireninger who devel-

oped a chart which, when placed on the film, gives directly the 7 and 5

coordinates corresponding to any diffraction spot. To plot such a chart,

we note from Fig. 8-2 that

jc = OK sin /x, U = OS cos M, and OS = OC tan 2a,
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where OC = D = specimen-film distance. The angles ju and <r are ob-

tained from 7 and d as follows:

FN CF tan 8 tan 6

tan M = = =
FO CF sin 7 sin 7

OC \sin M/ \CF cos y/ \ sin M / \CF cos 7

tan 5

sin /i cos 7

With these equations, the position (in terms of x and y) of any diffraction

spot can be plotted for given values of 7 and d and any desired specimen-

film distance D. The result is the Greninger chart, graduated at 2 inter-

vals shown in Fig. 8-3. The hyperbolas running from left to right are

curves of constant 7, and any one of these curves is the locus of diffraction

spots from planes of a zone whose axis is tilted away from the plane of the

film by the indicated angle 7. If points having the same value of d are

joined together, another set of hyperbolas running from top to bottom is

obtained. The lower half of the chart contains a protractor whose use

will be referred to later. Greninger charts should have dark lines on a

transparent background and are best prepared as positive prints on photo-

graphic film.

In use, the chart is placed over the film with its center coinciding with

the film center and with the edges of chart and film parallel. The 7 and

S coordinates corresponding to any diffraction spot are then read directly.

Note that use of the chart avoids any measurement of the actual coordinate

distances x and y of the spot. The chart gives directly, not the x and y

coordinates of the spot, but the angular coordinates y and d of the normal to

the plane causing the spot.

Knowing the 7 and 8 coordinates of any plane normal, for example CN
in Fig. 8-2, we can plot the pole of the plane on a stereographic projection.

Imagine a reference sphere centered on the crystal in Fig. 8-2 and tangent
to the film, and let the projection plane coincide with the film. The point

of projection is taken as the intersection of the transmitted beam and the

reference sphere. Since the plane normal CN intersects the side of the

sphere nearest the x-ray source, the projection must be viewed from that

side and the film "read" from that side. In order to know, after processing,

the orientation the film had during the x-ray exposure, the upper right-

hand corner of the film (viewed from the crystal) is cut away before it is

placed in the cassette, as shown in Fig. 8-2. When the film is read, this
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6 20

7 = 20

7 = 10

7=0

21)

FIG. (S-3. (jreniiifter chait for the solution of back-reflection Laue patterns,

reproduced in the correct size for a specimen-to-film distance D of 3 cm.

cut corner must therefore be at the upper left, as shown in Fig. 8-4(a).

The angles 7 and 6, read from the chart, are then laid out on the projection

as indicated in Fig. 8-4 (b). Note that the underlying Wulff net must be

oriented so that its meridians run from side to side, not top to bottom.

The reason for this is the fact that diffraction spots which lie on curves of

constant y come from planes of a zone, and the poles of these planes must
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(b)

P'IG. <S-4. Use of the Greninger chart to plot the pole of a reflecting plane on a

stereographic projection. Pole 1' m (b) is the pole of the plane causing diffraction

spot 1 in (a).
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therefore lie on a great circle on the

projection. The 7,6 coordinates cor-

responding to diffraction spots on the

lower half of the film are obtained

simply by reversing the Greninger

chart end for end.

This procedure may be illustrated

by determining the orientation of the

aluminum crystal whose back-reflec-

tion Laue pattern is shown in Fig.

3-(>(b)- Fig. 8-5 is a tracing of this

photograph, showing the more im-

portant spots numbered for reference.

The poles of the planes causing these

numbered spots are plotted stereo-

graphically in Fig. 8-0 by the method

of Fig. 8-4 and are shown as solid

circles.

221

FIG. X-5. Selected diffraction spots
of back-reflection Laue pattern of an

aluminum crystal, traced from Fig.

3-6(b).

FIG. 8-6. Stereographic projection corresponding to back-reflection pattern of

Fig. 8-5.
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The problem now is to "index" these planes, i.e., to find their Miller

indices, and so disclose the orientation of the crystal. With the aid of a

Wulff net, great circles are drawn through the various sets of poles corre-

sponding to the various hyperbolas of spots on the film. These great

circles connect planes of a zone, and planes lying at their intersections are

generally of low indices, such as
j
100

} , {110}, {
11 1

} ,
and {112}. The axes

of the zones themselves are also of low indices, so it is helpful to locate

these axes on the projection. They are shown as open circles in Fig. 8-6,

PA being the axis of zone .4, PB the axis of zone B, etc. We then measure

the angles between important poles (zone intersections and zone axes)

and try to identify the poles by comparison of these measured angles with

those calculated for cubic crystals (Table 2-3). The method is essentially

one of trial and error. We note, for example, that the angles PA PB,

PA _ 5'
?
and pB 5' are all 90. This suggests that one or more of these

poles might be |100| or {110}, since the angle between two {100} poles

or between two jllOj poles is 90. Suppose we tentatively assume that

PA, PB, and 5' are all J100} poles.* Then PE < which lies on the great

circle between PA and PB and at an angular distance of 45 from each,

must be a
j
1 10} pole. We then turn our attention to zone C and find that

the distance between pole 6' and either pole 5' or PR is also 45. But

reference to a standard projection, such as Fig. 2-37, shows that there is

no important pole located midway on the great circle between {100},

which we have identified with 5', and {110}, which we have identified

with PR. Our original assumption is therefore wrong. We therefore make

a second assumption, which is consistent with the angles measured so far,

namely that 5' is a {100! pole, as before, but that PA and PB are {110}

poles. PE must then be a {100} pole and & a {110} pole. We can check

this assumption by measuring the angles in the triangle a b 5'. Both

a and b are found to be 55 from 5', and 71 from each other, which con-

clusively identifies a and b as {111} poles. We note also, from a standard

projection, that a {111} pole must lie on a great circle between
{
100

j
and

{110}, which agrees with the fact that a, for example, lies on the great

circle between 5', assumed to be {100}, and PB, assumed to be {110}-

Our second assumption is therefore shown to be correct.

* i1 The reader may detect an apparent error in nomenclature here. Pole 5' for

example, is assumed to be a {100} pole and spot 5 on the diffraction pattern is

assumed, tacitly, to be due to a 100 reflection. But aluminum is face-centered

cubic and we know that there is no 100 reflection from such a lattice, since hkl

must be unmixed for diffraction to occur. Actually, spot 5, if our assumption is

correct, is due to overlapping reflections from the (200), {400}, (600), etc., planes.

But these planes are all parallel and are represented on the stereographic projec-

tion by one pole, which is conventionally referred to as { 100} . The corresponding

diffraction spot is also called, conventionally but loosely, the 100 spot.
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FIG. 8-7. Stereographic projection of Fig. 8-6 with poles identified.

Figure 8-7 shows the stereographic projection in a more complete form,

with all poles of the type {100}, {110}, and {111} located and identified.

Note that it was not necessary to index all the observed diffraction spots

in order to determine the crystal orientation, which is specified completely,

in fact, by the locations of any two
{
100

} poles on the projection. The

information given in Fig. 8-7 is therefore all that is commonly required.

Occasionally, however, we may wish to know the Miller indices of a par-

ticular diffraction spot on the film, spot 11 for example. To find these

indices, we note that pole IT is located 35 from (001) on the great circle

passing through (001) and (111). Reference to a standard projection and

a table of interplanar angles shows that its indices are (112).

As mentioned above, the stereographic projection of Fig. 8-7 is a com-

plete description of the orientation of the crystal. Other methods of

description are also possible. The crystal to which Fig. 8-7 refers had the

form of a square plate and was mounted with its plane parallel to the plane
of the film (and the projection) and its edges parallel to the film edges,

which are in turn parallel to the NS and EW axes of the projection. Since

the (001) pole is near the center of the projection, which corresponds to
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the specimen normal, and the (010) pole near the edge of the projection

and approximately midway between the K and *S
Y

poles, we may very

roughly describe the crystal orientation as follows: one set of cube planes

is approximately parallel to the surface of the plate while another set

passes diagonally through the plate and approximately at right angles to

its surface.

Another method of description may be used when only one direction in

the crystal is of physical significance, such as the plate normal in the pres-

ent case. For example, we may wish to make a compression test of this

crystal, with the axis of compression normal to the plate surface. We are

then interested in the orientation of the crystal relative to the compression

axis (plate normal) or, stated inversely, in the orientation of the compres-

sion axis relative to certain directions of low indices in the crystal. Now

inspection of a standard projection such as Fig. 2-36(a) shows that each

half of the reference sphere is covered by 24 similar and equivalent spherical

triangles, each having f 100}, 1 110), and
j

1 1 1
1
as its vertices The plate

normal will fall in one of these triangles and it is necessary to draw only

one of them in order to describe the precise location of the normal. In

Fig. 8-7, the plate normal lies in the (001)-(101)-(1 Jl) triangle which is

redrawn in Fig. 8-8 in the conventional orientation, as though it formed

part of a (001) standard projection. To locate the plate normal on this

new drawing, we measure the angles between the center of the projection

in Fig. 8-7 and the three adjacent poles. Let these angles be pooi, Pioi,

and pin- These angles are then used to determine the three arcs shown

in Fig. 8-8. These are circle arcs,

but they are not centered on the cor-

responding poles; rather, each one is

the locus of points located at an equal

angular distance from the pole in-

volved and their intersection there-

fore locates the desired point. An

alternate method of arriving at Fig.

8-8 from Fig. 8-7 consists simply in

rotating the whole projection, poles

and plate normal together, from the

orientation shown in Fig. 8-7 to that

of a standard (001) projection.

Similarly, the orientation of a

single-crystal wire or rod may be de- FIG. 8-8. Use of the unit stereo-

scribed in terms of the location of its ff?P
hic

.

tHan^
e t()

.

A &*^l

. . xl . A , , . , . , orientation. The point inside the tn-
axis in the unit stenographic triangle.

angle ig ^ normal to the gingle cryg
.

Note that this method does not tal plate whose orientation is shown

completely describe the orientation in Fig. 8-7.
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of the crystal, since it allows one rotational degree of freedom about the

specimen axis. This is of no consequence, however, when we are only

interested in the value of some measured physical or mechanical property

along a particular direction in the crystal.

There arc alternate ways of manipulating both the Gremnger chart and the

stereographic projection, and the particular method used is purely a matter of

personal preference For example, we may ignore the individual spots on the film

and focus our attention instead on the various hyperbolas on which they lie. The

spots on one hyperbola are due to reflections from planes of one zone and, by means

of the Greninger chart, we can plot directly the axis of this zone without plotting

the poles of any of the planes belonging to it. The procedure is illustrated in Fig.

S-9. Keeping the centers of film and chart coincident, we rotate the film about

this center until a particular hyperbola of spots coincides with a curve of constant

7 on the chart, as in (a). The amount of rotation required is read from the inter-

section of a vertical pencil line, previously ruled through the center of the film and

parallel to one edge, with the protractor of the Greninger chart. Suppose this

angle is e. Then the projection is mtftted by the same angle c with respect to the

underlying Wulff net and the
zojueaxis

is
j

plotted on the vertical axis of the pro-

jection at an angle 7 {wm&e 'circumference, as in (b). (Note that zone A itself

is represented by a greatyrcle located at an angle 7 above the center of the pro-

jection. However, tlprpK)tting of the zone circle is not ordinarily necessary since

the zone axis adequately represents the whole zone.)* Proceeding in this way,

we plot the poles of all the important zones and, by the method of Fig. 8-4, the

pole of the plane causing the most important spot or spots on the pattern. (The

latter are, like spot 5 of Fig. S-5, of high intensity, at the intersection of a number

of hyperbolas, and well separated from their neighbors.) The points so obtained

are always of low indices and can usually be indexed without difficulty.

An alternate method of indexing plotted poles depends on having available a

set of detailed standard projections in a number of orientations, such as {100(,

(
1 10|, and

(
11 1

1
for cubic crystals. It is also a trial and error method and may

be illustrated with reference to Fig S-6. First, a prominent zone is selected and

an assumption is made as to its indices, for example, we might assume that zone

B is a (100) zone. This assumption is then tested by (a) rotating the projection

about its center until PH lies on the equator of the Wulff net and the ends of the

zone circle coincide uith the N and A> poles of the net, and (b) rotating all the im-

portant points on the projection about the MS-axis of the net until PB lies at the

center and the zone circle at the circumference. The new projection is then super-

imposed on a (100) standard projection and rotated about the center until all

points on the projection coincide with those on the standard. If no such coinci-

dence is obtained, another standard projection is tried. For the particular case

* Note that, when a hyperbola of spots is lined up with a horizontal hyperbola
on the chart as in Fig. 8-9(a), the vertical hyperbolas can be used to measure the

difference in angle 5 for any two spots and that this angle is equal to the angle be-

tween the planes causing those spots, just as the angle between two poles lying

on a meridian of a Wulff net is given by their difference in latitude.
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cut corner

row of .spots

from planes of

zone A

(b)

FIG. 8-9. Use of the Greninger chart to plot the axis of a zone of planes on the

stereographic projection. PA is the axis of zone A.
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plane

FIG. 8-10. Relation between diffraction spot 8 and stereographic projection P
of the plane causing the spot, for back reflection.

of Fig. 8-6, a coincidence would be obtained only on a
{
1 1

1 standard, since PB
is actually a

( 110) pole. Once a match has been found, the indices of the unknown

poles are given simply by the indices of the poles on the standard with which they
coincide.

In the absence of a Greninger chart, the pole corresponding to any observed

Laue spot may be plotted by means of an easily constructed "stereographic ruler."

The construction of the ruler is based on the relations shown in Fig. 8-10. This

drawing is a section through the incident beam OC and any diffracted beam CS.

Here it is convenient to use the plane normal ON' rather than ON and to make the

projection from T, the intersection of the reference sphere with the incident beam.

The projection of the pole N' is therefore at P. From the measured distance OS
of the diffraction spot from the center of the film, we can find the distance PQ of

the projected pole from the center of the projection, since

and

OS = OC tan (180 -
20) = D tan (180

-
26)

PQ = TQ tan ~
f)

= 2r tan

(8-1)

(8-2)

where D is the specimen-film distance and r the radius of the reference sphere.

The value of r is fixed by the radius R of the Wuiff net used, since the latter equals
the radius of the basic circle of the projection. We note that, if the pole of the
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PROJECTION

FIG. 8-11. Use of a stereographic ruler to plot the pole of a reflecting plane on a

stereographic projection in the back-reflection Laue method. Pole 1' is the pole
of the plane causing diffraction spot 1 .

plane were in its extreme position at M, then its projection would he at U. The

point U therefore lies on the basic circle of the projection, and UQ is the radius R
of the basic circle. Because the triangles TUQ and TMC are similar, ft = 2r and

PQ = R tan
^45

-
-) (8-3)

The ruler is constructed by marking off, from a central point, a scale of centi-

meters by which the distance ON may be measured. The distance PQ correspond-

ing to each distance OS is then calculated from Eqs. (S-l) and (S 3), and marked
off from the center of the ruler in the opposite direction. Corresponding gradua-

tions are given the same number and the result is the rulei shown in Fig. 8-11,

which also illustrates the method of using it. [Calculation of the various distances

PQ can be avoided by use of the Wulff net itself. Fig. 8-10 shows that the pole

of the reflecting plane is located at an angle 6 from the edge of the projection, and
6 is given for each distance OS by Eq. (8-1). The ruler is laid along the equator
of the Wulff net, its center coinciding with the net center, and the distance PQ
corresponding to each angle 6 is marked off with the help of the angular scale on

the equator.]

From the choice of plane normal made in Fig. 8-10, it is apparent that the pro-

jection must be viewed from the side opposite the x-ray source. This requires

that the film be read from that side also, i.e., with its cut corner in the upper right-

hand position. The projection is then placed over the film, illuminated from be-

low, as shown in Fig. 8-11. With the center of the ruler coinciding with the cen-

ter of the projection, the ruler is rotated until its edge passes through a particular



8-3] TRANSMISSION LAUE METHOD 229

diffraction spot. The distance 08 is noted and the corresponding pole plotted as

shown, on the other side of center and at the corresponding distance PQ. This

procedure is repeated for each important diffraction spot, after which the projec-

tion is transferred to a Wulff net and the poles indexed by either of the methods

previously described. Note that this procedure gives a projection of the crystal

from the side opposite the x-ray source, whereas the Oreninger chart gives a pro-

jection of the crystal as seen from the x-ray source. A crystal orientation can,

of course, be described just as well from one side as the other, and either projec-

tion can be made to coincide with the other by a 180 rotation of the projection

about its EW-axis. Although simple to use and construct, the stereographic ruler

is not as accurate as the Greninger chart in the solution of back-reflection patterns.

The methods of determining and describing crystal orientation have

been presented here exclusively in terms of cubic crystals, because these

are the simplest kind to consider and the most frequently encountered.

These methods are quite general, however, and can be applied to a crystal

of any system as long as its interplariar angles are known.

8-3 Transmission Laue method. Given a specimen of sufficiently low

absorption, a transmission Laue pattern can be obtained and used, in much
the same way as a back-reflection Laue pattern, to reveal the orientation

of the crystal.

In either Laue method, the diffraction spots on the film, due to the

planes of a single zone in the crystal, always lie on a curve which is some

kind of conic section. When the film is in the transmission position, this

curve is a complete ellipse for sufficiently small values of </>, the angle be-

tween the zone axis and the transmitted beam (Fig. 8-12). For somewhat

larger values of </>, the ellipse is incomplete because of the finite size of the

film. When = 45, the curve becomes a parabola, when </> exceeds 45, a

FIG. 8-12. Intersection of a conical array of diffracted beams with a film placed
in the transmission position. C =

crystal, F =
film, Z.A. = zone axis.
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Z A

FIG. 8-13, Relation between plane normal orientation and diffraction spot posi-

tion in the transmission Laue method.

hyperbola, and when </>
= 90, a straight line. In all cases, the curve

passes through the central spot formed by the transmitted beam.

The angular relationships involved in the transmission Laue method

are illustrated in Fig. 8-13. Here a reference sphere is described about

the crystal at C, the incident beam entering the sphere at / and the trans-

mitted beam leaving at 0. The film is placed tangent to the sphere at 0,

and its upper right-hand corner, viewed from the crystal, is cut off for

identification of its position during the x-ray exposure. The beam reflected

by the lattice plane shown strikes the film at R, and the normal to this

plane intersects the sphere at P.

Suppose we consider diffraction from a zone of planes whose axis lies in

the jyz-plane at an angle <t> to the transmitted (or incident) beam. If a

single plane of this zone is rotated so that its pole, initially at A, travels

along the great circle APEBWA, then it will pass through all the orienta-

tions in which planes of this zone might occur in an actual crystal. During
this rotation, the diffraction spot on the film, initially at D, would travel

along the elliptical path DROD shown by the dashed line.

Any particular orientation of the plane, such as the one shown in the

drawing, is characterized by particular values of <t> and 5, the angular co-
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231

60

FIG. (S-14. Leonhardt chart for the solution of transmission Laue patterns, re-

produced in the correct size for a specimen-to-film distance of 3 cm. The dashed
lines are lines of constant </>, and the solid lines are lines of constant 5. (Courtesy
of C. G. Dunn.)

ordinates of its pole. These coordinates in turn, for a given crystal-film

distance D (= TO), determine the x,y coordinates of the diffraction spot

R on the film. From the spot position we can therefore determine the

plane orientation, and one way of doing this is by means of the Leonhardt

chart shown in Fig. 8-14.

This chart is exactly analogous to the Greninger chart for solving back-

reflection patterns and is used in precisely the same way. It consists of a

grid composed of two sets of lines: the lines of one set are lines of constant <t>

and correspond to the meridians on a Wulff net, and the lines of the other

are lines of constant 5 and correspond to latitude lines. By means of this

chart, the pole of a plane causing any particular diffraction spot may be

plotted stereographically. The projection plane is tangent to the sphere
at the point / of Fig. 8-13 and the projection is made from the point 0.

This requires that the film be read from the side facing the crystal, i.e.,
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FILM

10 20 30

PROJECTION
underlying

Wulff net

FIG. 8-15. Use of the Leonhardt chart to plot the pole of a plane on a stereo-

graphic projection. Pole 1' in (b) is the pole of the plane causing diffraction spot
1 in (a).
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FILM
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(a)

Ellipse of spots from

plant' of zone A
10 20 / JO

cut cornel

(b)

FIG. S-16. Use of the Leonhardt chart to plot the axis of a zone of planes on the

projection. PA is the axis of zone A.

with the cut corner at the upper right. Figure 8-15 shows how the pole

corresponding to a particular spot is plotted when the film and chart are

in the parallel position. An alternate way of using the chart is to rotate

it about its center until a line of constant <t> coincides with a row of spots
from planes of a single zone, as shown in Fig. 8-16; knowing and the

rotation angle 6, we can then plot the axis of the zone directly.
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reference

sphere

film /?

FIG. 8-17. Relation between diffraction spot S and stereographic projection P
of the plane causing the spot, in transmission.

FIG. 8-18. Use of a stereographic ruler to plot the pole of a reflecting plane on
a stereographic projection in the transmission Laue method. Pole 1' is the pole of

the plane causing diffraction spot 1 .
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A stereographic ruler may be constructed for the transmission method

and it will give greater accuracy of plotting than the Leonhardt chart,

particularly when the angle <t> approaches 90. Figure 8-17, which is a

section through the incident beam and any diffracted beam, shows that

the distance of the diffraction spot from the center of the film is given by

OS = D tan 20.

The distance of the pole of the reflecting plane from the center of the pro-

jection is given by

PQ = R tan
(
45 - -

V 2

Figure 8-18 illustrates the use of a ruler constructed according to these equa-

tions. In this case, the projection is made on a plane located on the same

side of the crystal as the film and, accordingly, the film must be read with

its cut corner in the upper left-hand position.

Whether the chart or the ruler is employed to plot the poles of reflecting

planes, they are indexed in the same way as back-reflection patterns. For

example, the transmission Laue pattern shown in Fig. 8-19 in the form

of a tracing yields the stereographic projection shown in Fig. 8-20. The

solid symbols in the latter are the poles of planes responsible for spots on

the film and are numbered accordingly; the open symbols are poles derived

by construction. (The reader will note that the poles of planes responsible

for observed spots on a transmission film are all located near the edge of

the projection, since such planes must necessarily be inclined at small

angles to the incident beam. The reverse is true of back-reflection pat-

terns, as inspection of Fig. 8-6 will show.) The solution of Fig. 8-20

hinged on the identification of the zone axes PA, PB, and PC. Measure-

ment showed that the stereographic triangle formed by these axes had

sides equal to 35 (PA
- PB ), 45 (PB

-
PC), and 30 (Pc

-
PA), which

identified PA , PB, and PC as {211}, {100}, and {110} poles, respectively.

Now the transmission pattern shown in Fig. 8-19 and the back-reflection

pattern shown in Fig. 8-5 were both obtained from the same crystal in the

same orientation relative to the incident beam. The corresponding pro-

jections, Figs. 8-20 and 8-7, therefore refer to a crystal of the same orien-

tation. But these were made from opposite sides of the crystal and so

appear completely dissimilar. However, a rotation of either projection

by 180 about its EW-&xis will make it coincide with the other, although

no attempt has been made to make the indexing of one projection con-

sistent with that of the other.
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----^ 3

FIG. 8-19. Transmission Laue pattern of an aluminum crystal, traced from Fig.
3-6 (a). Only selected diffraction spots are shown.

FIG. 8-20. Stereographic projection corresponding to transmission pattern of

Fig. 8-19.
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8-4 Diffractometer method. Still another method of determining crys-

tal orientation involves the use of the diffractometer and a procedure radi-

cally different from that of either Laue method. With the essentially

monochromatic radiation used in the diffractometer, a single crystal will

produce a reflection only when its orientation is such that a certain set of

reflecting planes is inclined to the incident beam at an angle 6 which satis-

fies the Bragg law for that set of planes and the characteristic radiation

employed. But when the counter, fixed in position at the corresponding

angle 20, discloses that a reflection is produced, then the inclination of the

reflecting planes to any chosen line or plane on the crystal surface is known

from the position of the crystal. Two kinds of operation are required:

(1) rotation of the crystal about various axes until a position is found

for which reflection occurs,

(2) location of the pole of the reflecting plane on a stereographic projec-

tion from the known angles of rotation.

The diffractometer method has many variations, depending on the par-

ticular kind of goniometer used to hold and rotate the specimen. Only one

of these variations will be described here, that involving the goniometer

used in the reflection method of determining preferred orientation, since

that is the kind most generally available in metallurgical laboratories.

This specimen holder, to be described in detail in Sec. 9-9, needs very

little modification for use with single crystals, the chief one being an in-

crease in the width of the primary beam slits in a direction parallel to the

diffractometer axis in order to increase the diffracted intensity. This type

of holder provides the three possible rotation axes shown in Fig. 8-21 : one

coincides with the diffractometer axis, the second (AA') lies in the plane

of the incident beam / and diffracted beam D and tangent to the specimen

surface, shown here as a flat plate, while the third (BB
r

) is normal to the

specimen surface.

Suppose the orientation of a cubic crystal is to be determined. For such

crystals it is convenient to use the {111) planes as reflectors; there are

four sets of these and their reflecting power is usually high. First, the 26

value for the 111 reflection (or, if desired, the 222 reflection) is computed

from the known spacing of the {111} planes and the known wavelength of

the radiation used. The counter is then fixed in this 28 position. The

specimen holder is now rotated about the diffractometer axis until its sur-

face, and the rotation axis AA', is equally inclined to the incident beam

and the diffracted beam, or rather, to the line from crystal to counter with

which the diffracted beam, when formed, will coincide. The specimen

holder is then fixed in this position, no further rotation about the diffrac-

tometer axis being required. Then, by rotation about the axis BB f

,
one

edge of the specimen or a line drawn on it is made parallel to the diffrac-

tometer axis. This is the initial position illustrated in Fig. 8-21.
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The crystal is then slowly rotated

about the axes AA ' and BE' until an

indication of a reflection is observed

on the counting-rate meter. Once a

reflecting position of the crystal has

been found, we know that the normal

to one set of (111! planes coincides

with the line CN
9
that is, lies in the

plane of the diffractometer circle and

bisects the angle between incident

and diffracted beams. The pole of

these diffracting planes may now be

plotted stereographically, as shown in

Fig. 8-22. The projection is made
on a plane parallel to the specimen

surface, and with the MS-axis of the

projection parallel to the reference

edge or line mentioned above. When
the crystal is rotated degrees about BB' from its initial position, the

projection is also rotated degrees about its center. The direction CAT,

which might be called the normal to "potential" reflecting planes, is repre-

FIG. 8-21. Crystal rotation axes

for the diffractometer method of de-

termining orientation.

PROJECTION

FIG. 8-22. Plotting method used when determining crystal orientation with the

diffractometer. (The directions of the rotations shown here correspond to the

directions of the arrows in Fig. 8-21.)
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sented by the pole Nf

,
which is initially at the center of the projection but

which moves y degrees along a radius when the crystal is rotated y degrees

about A A'.

What we are trying to do, essentially, is to make N f

coincide with a

{
111

J pole and so disclose the location of the latter on the projection. The
search may be made by varying y continuously for fixed values of 4 or 5

apart; the projection is then covered point by point along a series of radii.

It is enough to examine one quadrant in this way since there will always
be at least one {111} pole in any one quadrant. Once one pole has been

located, the search for the second is aided by the knowledge that it must

be 70.5 from the first. Although two {111) poles are enough to fix the

orientation of the crystal, a third should be located as a check.

Parenthetically, it should be noted that the positioning of the crystal

surface and the axis AA' at equal angles to the incident and diffracted

beams is done only for convenience in plotting the stereographic projec-

tion. There is no question of focusing when monochromatic radiation is

reflected from an undeformed single crystal, and the ideal incident beam
for the determination of crystal orientation is a parallel beam, not a di-

vergent one.

In the hands of an experienced operator, the diffractometer method is

faster than either Laue method. Furthermore, it can yield results of

greater accuracy if narrow slits are used to reduce the divergence of the

incident beam, although the use of extremely narrow slits will make it

more difficult to locate the reflecting positions of the crystal. On the other

hand, the diffractometer method furnishes no permanent record of the

orientation determination, whereas Laue patterns may be filed away for

future reference. But what is more important, the diffractometer method
does not readily disclose the state of perfection of the crystal, whereas a

Laue pattern yields this kind of information at a glance, as we will see in

Sec. 8-6, and in many investigations the metallurgist is just as much inter-

ested in the relative perfection of a single crystal as he is in its orientation.

All things considered, the Laue methods are preferable when only occa-

sional orientation determinations are required, or when there is any doubt

as to the perfection of the crystal. When the orientations of large num-
bers of crystals have to be determined in a routine manner, the diffrac-

tometer method is superior. In fact, this method was developed largely

for just such an application during World War II, when the orientation of

large numbers of quartz crystals had to be determined. These crystals

were used in radio transmitters to control, through their natural frequency

of vibration, the frequency of the transmitted signal. For this purpose

quartz wafers had to be cut with faces accurately parallel to certain crys-

tallographic planes, and the diffractometer was used to determine the

orientations of these planes in the crystal.
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8-5 Setting a crystal in a required orientation. Some x-ray investiga-

tions require that a diffraction pattern be obtained of a single crystal

having a specified orientation relative to the incident beam. To obtain

this orientation, the crystal is mounted in a three-circle goniometer like

that shown in Fig. 5-7, whose arcs have been set at zero, and its orienta-

tion is determined by, for example, the back-reflection Laue method. A

projection of the crystal is then made, and from this projection the goni-

ometer rotations which will bring the crystal into the required orientation

are determined.

For example, suppose it is required to rotate the crystal whose orienta-

tion is given by Fig. 8-7 into a position where [Oil] points along the inci-

dent beam and [100] points horizontally to the left, i.e., into the standard

(Oil) orientation shown by Fig. 2-36 (b) if the latter were rotated 90

about the center. The initial orientation (Position 1) is shown in Fig. 8-23

by the open symbols, referred to NSEW-&xes. Since (01 1) is to be brought

to the center of the projection and (100) to the left side, (010) will lie on

the vertical axis of the projection when the crystal is in its final position.

The first step therefore is to locate a point 90 away from (Oil) on the

great circle joining (010) to (Oil), because this point must coincide with

the north pole of the final projection. This is simply a construction point;

FIG. 8-23. Crystal rotation to produce specified orientation. Positions 1 and 2

are indicated by open symbols, position 3 by shaded symbols, and position 4 by
solid symbols.
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in the present case it happens to coincide with the (Oil) pole, but gen-

erally it is of no crystallographic significance. The projection is then

rotated 22 clockwise about the incident-beam axis to bring this point

onto the vertical axis of the underlying Wulff net. (In Fig. 8-23, the

latitude and longitude lines of this net have been omitted for clarity.) The

crystal is now in Position 2, shown by open symbols referred to N'S'E'W-
axes. The next rotation is performed about the .EW-axis, which requires

that the underlying Wulff net be arranged with its equator vertical so that

the latitude lines will run from top to bottom. This rotation, of 38, moves

all poles along latitude lines, shown as dashed small circles, and brings

(Oil) to the N'-pole, and (100) and (Oil) to the E'W'-'dxis of the projec-

tion, as indicated by the shaded symbols (Position 3). The final orienta-

tion is obtained by a 28 rotation about the JV'S'-axis, with the equator

of the underlying Wulff net now horizontal
;
the poles move to the positions

shown by solid symbols (Position 4).

The necessity for selecting a construction point 90 from (Oil) should

now be evident. If this point, which here happens to be (Oil), is brought
to the Af'-pole, then (Oil) and (100) must of necessity lie on the SW-axis;
the final rotation about N'S' will then move the latter to their required

positions without disturbing the position of the (Oil) pole, since [Oil]

coincides with the N'$'-axis.

The order of these three rotations is not arbitrary. The stereographic

rotations correspond to physical rotations on the goniometer and must be

made in such a way that one rotation does not physically alter the position

of any axis about which a subsequent rotation is to be made. The goni-

ometer used here was initially set with the axis of its uppermost arc hori-

zontal and coincident with the primary beam, and with the axis of the

next arc horizontal and at right angles to the incident beam. The first

rotation about the beam axis there-

fore did not disturb the position of

the second axis (the UW-axis), and

neither of the first two rotations dis-

FIG. 8-24. Back-reflection Laue pat-
tern of an aluminum crystal. The in-

cident beam is parallel to [Oil], [Oil]

points vertically upward, and [100] points

vertically to the left. Tungsten radia-

tion, 30 kv, 19 ma, 40 min exposure, 5 cm
specimen-to-film distance. (The shadow
at the bottom is that of the goni-
ometer which holds the specimen.)
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turbed the position of the third axis (the vertical WS'-axis). Whether or

not the stereographic orientations are performed in the correct order makes

a great difference in the rotation angles found, but once the right angles

are determined by the correct stereographic procedure, the actual physical

rotations on the goniometer may be performed in any sequence.

The back-reflection Laue pattern of an aluminum crystal rotated into

the orientation described above is shown in Fig. 8-24. Note that the

arrangement of spots has 2-fold rotational symmetry about the primary

beam, corresponding to the 2-fold rotational symmetry of cubic crystals

about their (110) axes. (Conversely, the observed symmetry of the Laue

pattern of a crystal of unknown structure is an indication of the kind of

symmetry possessed by that crystal. Thus the Laue method can be used

as an aid in the determination of crystal structure.)

There is another method of setting a crystal in a standard orientation,

which does not require either photographic registration of the diffraction

pattern or stereographic manipulation of the data. It depends on the fact

that the diffracted beams formed in the transmission Laue method are so

intense, for a crystal of the proper thickness, that the spots they form on a

fluorescent screen are visible in a dark room. The observer merely rotates

the crystal about the various arcs of the goniometer until the pattern cor-

responding to the required orientation appears on the screen. Obviously,

he must be able to recognize this pattern when it appears, but a little

study of a few Laue photographs made of crystals in standard orientations

will enable him to do this. The necessity for working in a darkened room

may be avoided by use of a light-tight viewing box, if the job of crystal

setting occurs sufficiently often to justify its construction. This box en-

closes the fluorescent screen which the observer views through a binocular

eyepiece set in the wall of the box, either directly along the direction of

the transmitted beam, or indirectly in a direction at right angles by means

of a mirror or a right-angle prism. For x-ray protection, the optical system
should include lead glass, and the observer's hands should be shielded

during manipulation of the crystal.

8-6 The effect of plastic deformation. Nowhere have x-ray methods

been more fruitful than in the study of plastic deformation. The way in

which a single crystal deforms plastically is markedly anisotropic, and

almost all of our knowledge of this phenomenon has been gained by x-ray

diffraction examination of crystals at various stages during plastic defor-

mation. At the outset we can distinguish between two kinds of deforma-

tion, that of the crystal lattice itself and that of the crystal as a whole.

This distinction is worth while because crystal deformation, defined as a

change in the shape of the crystal due to lattice rotation, can occur with

or without lattice deformation, defined as the bending and/or twisting of
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originally flat lattice planes. On the other hand, lattice deformation

cannot occur without some deformation of the crystal as a whole.

A crystal lattice can therefore behave in two quite different ways during

plastic deformation : it can simply rotate without undergoing deformation

itself, or it can become bent and/or twisted. Laue photographs can easily

decide between these two possibilities. In the Laue method, any change
in the orientation of the reflecting planes is accompanied by a correspond-

ing change in the direction (and wavelength) of the reflected beam. In

fact, Laue reflection of x-rays is often compared to the reflection of visible

light by a mirror. If the lattice simply rotates during deformation, then

Laue patterns made before and after will merely show a change in the

position of the diffraction spots, corresponding to the change in orientation

of the lattice, but the spots themselves will remain sharp. On the other

hand, if the lattice is bent or twisted, the Laue spots will become smeared

out into streaks because of the continuous change in orientation of the

reflecting planes, just as a spot of light reflected by a flat mirror becomes

elongated when the mirror is curved.

A classic example of simple lattice rotation during crystal deformation

is afforded by the tensile elongation of long cylindrical single metal crystals.

When such a crystal is extended plastically, Laue photographs of the

center section made before and after the extension show that the lattice

has been rotated but not deformed. Yet the crystal itself has undergone
considerable deformation as evidence by its change in shape it has be-

come longer and thinner. How this occurs is suggested by Fig. 8-25.

The initial form of the crystal is shown in (a), with the potential slip

planes seen in profile. The applied tensile forces can be resolved into

^ . bonding

bonding

t ?

(b) Co

P'iG. 8-25. Slip in tension (schematic).
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shearing forces parallel to these slip planes and tensile forces normal to

them. The normal forces have no effect, but the shearing forces cause

slip to occur, and the crystal would, as a result, assume the shape shown

in (b) if the ends were not constrained laterally. However, the grips of

the tensile machine keep the ends of the crystal aligned, causing bending

of the crystal lattice near each grip, as indicated in (c), which illustrates

the appearance of the crystal after considerable extension. Note that the

lattice of the central portion has undergone reorientation but not distor-

tion. This reorientation clearly consists in a rotation which makes the

active slip plane more nearly parallel to the tension axis.

Analysis of the Laue patterns yields further information about the

deformation process. The changes in orientation which occur in the cen-

tral section can be followed stereographically, either by plotting the before

and after orientations of the crystal on a fixed projection plane, or by

plotting the before and after orientations of the specimen axis in the unit

stereographic triangle. The latter method is the more common one and

is illustrated by Fig. 8-26, which applies to a face-centered cubic crystal.

The initial position of the tension axis is represented by point 1. After

successive extensions, the position of this axis is found to be at points

2, 3, 4, . . .
; i.e., the axis moves

along a great circle passing through
the initial position and the direction

[T01], which is the direction of slip.

During this extension the active slip

plane is (111). We can conclude that

the lattice reorientation occurs in such

a way that both the slip plane and

the slip direction in that plane rotate

toward the axis of tension. This

process becomes more complicated at

later stages of the deformation, and

the interested reader is referred to

books on crystal plasticity for further

details. Enough has been said here

to indicate the way in which x-ray

diffraction may be applied to this

particular problem.

One other example of lattice reorientation during slip may be given in

order to illustrate the alternate method of plotting the data. In Fig. 8-27,

the successive orientations which a cylindrical magnesium crystal assumes

during plastic torsion are plotted on a fixed projection plane parallel to the

specimen axis (the axis of torsion). Since the poles of reflecting planes
are found to move along latitude circles on the projection, it follows that

slip plane -NAiii

FIG. 8-26. Lattice rotation during

slip in elongation of FCC metal crys-

tal.
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-SPECIMEN AXIS

AFTER TWIST OF 2

AFTER TWIST OF 11

FIG. 8-27. Change in lattice orientation during plastic torsion of a magnesium
crystal. The active slip plane is (0001), the basal plane of the hexagonal lattice.

(S. S. Hsu and B. D. Cullity, Trans. A.I.M.E. 200, 305, 1954.)

the lattice reorientation is mainly one of rotation about the specimen axis.

Some lattice distortion also occurs, since special x-ray methods reveal

that twisting of the lattice planes takes place, but the main feature of the

deformation is the lattice rotation described above. Similarly, in the

plastic elongation of single crystals, it should not be supposed that abso-

lutely no lattice deformation occurs. Here again the main feature is lattice

rotation, but sensitive x-ray methods will always show some bending or

twisting of lattice planes, and in some cases this lattice distortion may be

so severe that ordinary Laue patterns will reveal it.

A good example of severe lattice distortion is afforded by those parts of

a single-crystal tension specimen immediately adjacent to the grips. As

mentioned earlier, these portions of the crystal lattice are forced to bend

during elongation of the specimen, and Laue photographs made of these

sections will accordingly show elongated spots. If the bending is about a

single axis, the Miller indices of the bending axis can usually be determined
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(a) Transmission (b) Back reflection

FIG. 8-28. Laue photographs of a deformed aluminum crystal. Specimen-to-

film distance 3 cm, tungsten radiation, 30 kv.

stereographically; each Laue streak is plotted as an arc representing the

range of orientation of the corresponding lattice plane, and a rotation axis

which will account for the directions of these arcs on the projection is

found. The angular lengths of the arcs are a measure of the amount of

bending which has occurred. In measuring the amount of bending by
this method, it must be remembered that the wavelengths present in the

incident beam do not cover an infinite range. There is no radiation of

wavelength shorter than the short-wavelength limit, and on the long-

wavelength side the intensity decreases continuously as the wavelength

increases.- This means that, for a given degree of lattice bending, some

Laue streaks may not be as long as they might be if a full range of wave-

lengths were available. The amount of bending estimated from the lengths

of these streaks would therefore be smaller than that actually present.

Transmission and back-reflection Laue patterns made from the same

deformed region usually differ markedly in appearance. The photographs
in Fig. 8-28 were made, under identical conditions, of the same region of a

deformed aluminum crystal having the same orientation relative to the

incident beam for each photograph. Both show elongated spots, which

are evidence of lattice bending, but the spots are elongated primarily in a

radial direction on the transmission pattern while on the back-reflection

pattern they tend to follow zone lines. The term asterism (from the Greek

aster = star) was used initially to describe the starlike appearance of a

transmission pattern such as Fig. 8-28 (a), but it is now used to describe any
form of streaking, radial or nonradial, on either kind of Laue photograph.
The striking difference between these two photographs is best under-

stood by considering a very general case. Suppose a crystal is so deformed
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film

FIG. 8-29. Effect of lattice distortion

on the shape of a transmission Laue

spot. CN is the normal to the reflect-

ing plane.

FIG. 8-30. Effect of lattice distortion

on the shape of a back-reflection Laue

spot. CN is the normal to the reflecting

plane.

that the normal to a particular set of reflecting lattice planes describes a

small cone of apex angle 2e; i.e., in various parts of the crystal the normal

deviates by an angle c in all directions from its mean position. This is

equivalent to rocking a flat mirror through the same angular range and,

as Fig. 8-29 shows, the reflected spot S is roughly elliptical on a film placed

in the transmission position. When the plane normal rocks through the

angle 2c in the plane ACN, the reflected beam moves through an angle 4c,

and the major axis of the ellipse is given approximately by t(AC) when

26 is small. On the other hand, when the plane normal rocks through the

angle 2e in a direction normal to the plane of reflection ACN, the only

effect is to rock the plane of reflection through the same angle 2c about

the incident beam. The minor axis of the elliptical spot is therefore given

by 2e(AS) 2e(AC) tan 26 2e(AC)26. The shape of the spot is charac-

terized by the ratio

Major axis

Minor axis 2e(AC)26 6

For 26 = 10, the major axis is some 12 times the length of the minor axis.
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In the back-reflection region, the situation is entirely different and the

spot S is roughly circular, as shown in Fig. 8-30. Both axes of the spot

subtend an angle of approximately 4c at the crystal. We may therefore

conclude that the shape of a back-reflection spot is more directly related

to the nature of the lattice distortion than is the shape of a transmission

spot since, in the general case, circular motion of the end of the reflecting

plane normal causes circular motion of the backward-reflected beam but

elliptical motion of the forward-reflected beam. For this reason, the back-

reflection method is generally preferable for studies of lattice distortion.

It must not be supposed, however, that only radial streaking is possible on

transmission patterns. The direction of streaking depends on the orienta-

tion of the axis about which the reflecting planes are bent and if, for exam-

ple, they are bent only about an axis lying in the plane ACN of Fig. 8-29,

then the spot will be elongated in a direction at right angles to the radius

AS.

^

x enlaiged
\ Laue spot

Laue spot
- ^^ \

\

1 Deb\ e a ic -

potential -*-
;

'

Debye ring /

(a) Undeformed crystal (l>) Deformed cnstal

FIG. 8-31. Formation of Debye arcs on Laue patterns of deformed crystals.

One feature of the back-reflection pattern of Fig. 8-28 deserves some

comment, namely, the short arcs, concentric with the film center, which

pass through many of the elongated Laue spots. These are portions of

Debye rings, such as one might expect on a pinhole photograph made of a

polycrystalline specimen with characteristic radiation (Sec. 6-9). With
a polycrystalline specimen of random orientation a complete Debye ring

is formed, because the normals to any particular set of planes (hkl) have

all possible orientations in space; in a deformed single crystal, the same
normals are restricted to a finite range of orientations with the result that

only fragments of Debye rings appear. We may imagine a circle on the

film along which a Debye ring would form if a polycrystalline specimen
were used, as indicated in Fig. 8-31. If a Laue spot then becomes enlarged
as a result of lattice deformation and spreads over the potential Debye
ring, then a short portion of a Debye ring will form. It will be much
darker than the Laue spot, since the characteristic radiation* which

* In Fig. 8-28(b), the characteristic radiation involved is tungsten L radiation.

The voltage used (30 kv) is too low to excite the K lines of tungsten (excitation

voltage = 70 kv) but high enough to excite the L lines (excitation voltage =12
kv).
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HKXT POLYGOMZKD

FlG. 8-32.

(schematic).

Reflection of white radiation by bent and polygonized lattices

forms it is much more intense than the wavelengths immediately adjacent

to it in the continuous spectrum. In fact, if the x-ray exposure is not

sufficiently long, only the Debye arcs may be visible on the film, and the

observer may be led to erroneous conclusions regarding the nature and

extent of the lattice deformation.

With these facts in mind, re-examination of the patterns shown in Fig.

8-28 leads to the following conclusions:

(1) Since the asterism on the transmission pattern is predominantly

radial, lattice planes inclined at small angles to the incident beam are bent

about a number of axes, in such a manner that their plane normals are

confined to a small cone in space.

(2) Since the asterism on the back-reflection pattern chiefly follows zone

lines, the major portion of planes inclined at large angles to the incident

beam are bent about a single axis. However, the existence of Debye arcs

shows that there are latent Laue spots of considerable area superimposed

on the visible elongated spots, and that a small portion of the planes

referred to are therefore bent about a number of axes.

On annealing a deformed crystal at a sufficiently high temperature, one

of the following effects is usually produced:

(1) Polygonization. If the deformation is not too severe, plastically

bent portions of the crystal break up into smaller blocks, which are strain-

free and disoriented by approximately the same total amount (never more

than a few degrees) as the bent fragment from which they originate, as

suggested by Fig. 8-32. (The term "polygonization" describes the fact

that a certain crystallographic direction [uvw] forms part of an arc before

annealing and part of a polygon afterwards.) Moreover, the mean orienta-

tion of the blocks is the same as that of the parent fragment. The effect

of polygonization on a Laue pattern is therefore to replace an elongated

Laue streak (from the bent lattice) with a row of small sharp spots (from

the individual blocks) occupying the same position on the film, provided

each block is sufficiently disoriented from its neighbor so that the beams
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FIG. 8-33. Enlarged transmission Laue

spots from a thin crystal of silicon fer-

rite (a-iron containing 3.3 percent silicon

in solid solution) : (a) as bent to a radius

of f in., (b) after annealing 10 min at

950C, (c) after annealing 4 hr at 1 300C.

(C. G. Dunn and F. W. Daniels, Trans.

(c) A.I.M.E. 191, 147, 1951 )

reflected by adjoining blocks are resolved one from another. Figure 8-33

shows an example of polygonization in a crystal of silicon ferrite.

(2) Recrystalhzalion. If the deformation is severe enough, the crystal

may recrystallize into a new set of strain-free grains differing completely

in orientation from the original crystal. The appearance of the diffraction

pattern then depends on the size of the new grains relative to the cross-

sectional area of the incident x-ray beam. The appearance of such pat-

terns is discussed and illustrated in Sec. 9-2.

8-7 Relative orientation of twinned crystals. In this and the next sec-

tion we shall consider, not single crystals, but pairs of crystals which are

naturally associated one with another in certain particular ways. Twinned

crystals are obvious examples of such pairs: the two parts of the twin have

different orientations, but there is a definite orientation relationship be-

tween the two. Furthermore, the two parts are united on a plane, the

composition plane, which is also fixed and invariable, not merely a random

surface of contact such as that between two adjacent grains in a poly-

crystalline mass. Twinned crystals therefore present a twofold problem,

that of determining the orientation relationship and that of determining

the indices of the composition plane.

The orientation relationship is established by finding the orientation of

each part of the twin and plotting the two together on the same stereo-

graphic projection. Determination of the composition-plane indices re-

quires a knowledge of how to plot the trace, or line of intersection, of one

plane in another, and we must digress at this point to consider that problem.

Suppose that, on the polished surface of a twinned grain, the trace of the

composition plane makes an angle a with some reference line NS
t
as shown

in Fig. 8-34(a). Then, if we make the projection plane parallel to the

plane of polish, the latter will be represented by the basic circle of the pro-

jection and any directions in the plane of polish by diametrically opposite

points on the basic circle. Thus, in Fig. 8-34 (b), the AT- and $-poles repre-

sent the reference line NS and the points A and B, located at an angle a
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trace of

composition

plane

(a)

FIG. 8-34. Projection of the trace of a plane in a surface.

from N and S, represent the trace. Note that the diameter ACB does not

represent the trace; ACB represents a plane perpendicular to the plane of

polish which could have caused the observed trace, but so could the in-

clined planes ADB, AFB, and AGB. Evidently any number of planes
could have caused the observed trace, and all we can say with certainty is

that the pole of the composition plane lies somewhere on the diameter HK,
where H and K are 90 from the trace direction A ,B. HK is called a trace

normal.

To fix the orientation of the composition plane requires additional infor-

mation which can be obtained by sectioning the twinned grain by another

AT
^^-

direction A, H

(a) (b)

FIG. 8-35. Projection of the trace of a plane in two surfaces.
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plane and determining the trace direction in this new plane. Suppose the

section is made through a line WE, chosen for convenience to be at right

angles to NS, and that the new plane of polish (Plane 2) makes an angle 4

with the original one (Plane 1), as shown in Fig. 8-35(a). It is now con-

venient to use the edge WE as a reference direction. Let the traces of the

composition plane in surfaces 1 and 2 make angles of ft (equal to 90 -
a)

and 7 with the edge WE. Then, if the stenographic projection plane is

again made parallel to surface 1, surface 2 is represented by a great circle

through W and E and at an angle #>
from the circumference [Fig. 8-35(b)J.

The trace of the composition plane in surface 1 is then represented by A,B

as before and the same trace in surface 2 by the direction C, both angles ft

(c) A and B

FIG 8-36 Back-reflection Laue photographs of two parts, A and B, of a twinned

crystal of copper. Tungsten radiation, 30 kv, 20 ma. Film covered with 0.01-m.-

thick aluminum to reduce the intensity of K fluorescent radiation from specimen.
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and y being measured from the edge \V,K. Two nonparallel lines in the

unknown composition plane -Y are now known, namely the direction A,B
and the direction C. A great circle drawn through B, (\ and A therefore

describes the orientation of plane -Y, and PA' is its pole.

An application of this method is afforded by annealing twins in copper.

The back-reflection Lane photographs of Fig. 8-30 were obtained from a

large grain containing a twin band; by shifting the specimen in its own

plane between exposures, the incident beam was made to fall first on one

part of the twin [pattern (a)], then on the other part [pattern (b)], and

finally on each side of the trace of the composition plane [pattern (c)].

The latter photograph is therefore a double pattern of both parts of the

twin together.

The orientations derived from patterns (a) and (b) are shown in Fig.

8-37, and certain poles of each part of the twin are seen to coincide, par-

ticularly the (111) pole in the lower right quadrant. These coincidences

are also evident in Fig. 8-3()(<0 in the form of coincident Laue spots. By
measuring the directions ot the trace of the composition plane X in two

surfaces, the orientation of X was determined, as shown in the projection.

l>x is found to coincide with the (111) pole common to each part of the

FIG. 8-37. Projection of part A (open symbols) and part B (solid symbols) of

a twin in copper, made from Figs. 8-36(a) and (b).
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twin, thus disclosing the indices of the composition plane. By the methods

described in Sec. 2-11, it may also be shown that the two parts of the twin

are related by reflection in this same (111) plane. The twinning plane

(the plane of reflection) in copper is therefore shown to be identical with

the composition plane.

Similar problems arise in studies of plastic deformation. For example,

we may wish to find the indices of slip planes responsible for the observable

slip lines on a polished surface. Or we may wish to identify the composi-

tion plane of a deformation twin. The simplest procedure, if it can be

used, is to convert the test specimen into grains large enough so that the

orientation of any selected grain can be directly determined by one of the

Laue methods. The polished specimen is then strained plastically to pro-

duce visible slip lines or deformation twins. The orientation of a grain

showing such traces is determined and the directions of these traces are

measured. If traces are measured on two surfaces, the method of solution

is identical with that described above for twinned copper. If traces are

measured only on one plane, then the trace normals are plotted on a stereo-

graphic projection of the grain; the crystal orientation and the trace nor-

mals are rotated into some standard orientation and superimposed on a

detailed standard projection. Intersection of the normals with certain

poles of the standard will then disclose the indices of the planes causing the

observed traces.

But it may happen that the grain size is too small to permit a deter-

mination of grain orientation. The problem is now much more difficult,

even when trace directions are measured on two surfaces. The first step

is to plot the trace normals corresponding to the traces on both surfaces;

these normals will be straight lines for the traces on the surface on which

the projection is being made and great circles for the traces on the other

surface. A standard (/hWi) projection is then superimposed on the pro-

jection of the trace normals, and a rotation is sought which will bring

[h\kili } poles into coincidence with the intersections of straight and curved

trace normals. If such coincidence cannot be found, an (h^h) standard

projection is tried, and so on. If the traces in either plane have more than

one direction, it will be helpful to note how many different directions are

involved. For example, if there are more than three different directions in

one grain of a cubic metal, the traces cannot be caused by {100} planes;

if more than four directions are observed, both {100} and {111} planes

are ruled out; and so on.

Up to this point we have been concerned with the problem of finding

the indices of planes causing certain observed traces, generally in a grain

of known orientation. The same problem may be solved in reverse: given

traces in two surfaces of a plane of known indices (hkl\ the orientation of

the crystal may be found without using x-rays. The trace normals are
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FIG. 8-38. Determination of crystal orientation of copper from traces of two
known twin planes in one surface.

plotted on one sheet of paper and on this is superposed a standard projec-

tion showing only {hkl\ planes. By trial and error, a rotation is found

which will make the {hkl\ poles fall on the observed trace normals.

By the same method, crystal orientation can also be determined from

two nonparallel traces of planes of known indices in one surface. In this

way, it is sometimes possible to determine the orientation of a single grain

in a polycrystalline mass when the grain size is too small to permit direct

x-ray determination. For example, we may use the fact that annealing
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twins in copper have {111} composition planes to determine the orienta-

tion of the grain shown in Fig. 8-38 (a), where twin bands have formed on

two different {111} planes of the parent grain. The trace normals are

plotted in Fig. 8-38(b), and on this is placed a standard (001) projection

containing only (111) poles. If the standard is rotated about its center

to the position shown, then it is possible by a further rotation about the

axis AB to bring the {111} poles of the standard, shown by open symbols,

to positions lying on trace normals, shown by solid symbols. The solid

symbols therefore show an orientation of the crystal which will account

for the observed traces. Unfortunately, it is not the only one : the orienta-

tion found by reflecting the one shown in the plane of projection is also a

possible solution. A choice between these two possibilities can be made

only by sectioning the crystal so as to expose trace directions in a second

surface.

8-8 Relative orientation of precipitate and matrix. When a supersatu-

rated solid solution precipitates a second phase, the latter frequently

takes the form of thin plates which lie parallel to certain planes of low

indices in the matrix. The matrix plane on which the precipitate plate

lies is called the habit plane and its indices always refer to the lattice of the

matrix. There is also a definite orientation relationship between the lattice

of the precipitate and that of the matrix. Both of these effects result from

a tendency of the atomic arrangement in the precipitate to conform as

closely as possible to the atomic arrangement in the matrix at the interface

between the two. For example, precipitation of an HCP phase from an

FCC solid solution often occurs in such a way that the basal (0001) plane

of the precipitate is parallel to a (111) plane of the matrix, since on both

of these planes the atoms have a

hexagonal arrangement.

Relations of this kind are illustrated

on an atomic scale in Fig. 8-39. In

this hypothetical case the habit plane

is (HO) and the lattice relationship is

such that the plane (010) of the pre-

cipitate is parallel to the plane (110)

of the matrix; the direction [100] in

the former plane is parallel to the

direction [110] in the latter, or, in the

usual shorthand notation,

MATRIX PRECIPITATE
UNIT CELL UNIT CELL
FIG. 8-39. Matrix-precipitate rela-

tionship.

where the subscripts p and m refer to

precipitate and matrix, respectively.
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FIG. X-40. Widmanstatten structure (schematic). Cubic matrix has (100)

habit. Top grain is intersected parallel to
{ 100).

If a certain solid solution has an \hkl\ habit plane, then precipitation

can of course take place on all planes of the form \hkl\. Thus one grain

may contain sets of precipitate plates having quite different orientations.

When such a grain is sectioned, the thin precipitate plates appear as

needles on the plane of polish resulting in a structure such as that shown

in Fig. 8-40 in a highly idealized form. This is called a Widmanstatten

structure. It is very often the product of nucleation and growth reactions,

such as precipitation and eutectoid decomposition. Somewhat similar

structures are also observed as the result of the martensitic reaction and

other diffusionless transformations. (There are some secondary differences,

however: martensite often takes the form of needles as well as plates and

the indices of its habit plane are often irrational, e.g., (259), and may even,

as in the case of Fe-C martensite, change with composition.)

The crystallographic problems presented by such structures are very

much the same as those described in Sec. 8-7, except that the plates of the

second phase almost always differ in crystal structure from the matrix,

unlike the two parts of a twin or the material on either side of a slip plane.

The habit plane is identified by the methods previously described for the

identification of slip or twinning planes. The orientation relationship is

easily determined if a single precipitate plate can be found which is large

enough to permit determination of its orientation by one of the Laue

methods. Ordinarily, however, the precipitate is so fine that this method

cannot be applied and some variant of the rotating-crystal method must

be used.
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PROBLEMS

8-1. A back-reflection Laue photograph is made of an aluminum crystal with

a crystal-to-film distance of 3 cm. When viewed from the x-ray source, the Laue

spots have the following ^-coordinates, measured (in inches) from the center of

the film :

x y x y

+0.26 +0.09 -0.44 +1.24
+0.45 +0.70 -1.10 +1.80
+ 1.25 +1.80 -1.21 +0.40
+ 1.32 +0.40 -1.70 +1.19
+0.13 -1.61 -0.76 -1.41

+0.28 -1.21 -0.79 -0.95

+0.51 -0.69 -0.92 -0.26

+0.74 -0.31

Plot these spots on a sheet of graph paper graduated in inches. By means of a

Greninger chart, determine the orientation of the crystal, plot all poles of the form

(100), (110), and (111), and give the coordinates of the {100J poles in terms of

latitude and longitude measured from the center of the projection.

8-2. A transmission Laue photograph is made of an aluminum crystal with a

crystal-to-film distance of 5 cm. To an observer looking through the film toward

the x-ray source, the spots have the following ^-coordinates (in inches) :

x y x y

+0.66 +0.88 -0.10 +0.79
+0.94 +2.44 -0.45 +2.35
+ 1.24 +0.64 -0.77 +1.89
+ 1.36 +0.05 -0.90 +1.00
+ 1.39 +1.10 -1.27 +0.50
+0.89 -1.62 -1.75 +1.55
+ 1.02 -0.95 -1.95 +0.80
+ 1.66 -1.10 -0.21 -0.58

-0.59 -0.28
-0.85 -1.31
-1.40 -1.03
-1.55 -0.36

Proceed as in Prob. 8-1, but use a stereographic ruler to plot the poles of reflecting

planes.

8-3. Determine the necessary angular rotations about (a) the incident beam

axis, (6) the east-west axis, and (c) the north-south axis to bring the crystal of

Prob. 8-2 into the "cube orientation/' i.e., that shown by Fig. 2-36(a).

8-4. With reference to Fig. 8-35(a), if ft
= 120, y = 135, and <t>

= 100,

what are the coordinates (in terms of latitude and longitude) of the pole of the

composition plane?

8-6. Precipitate plates in a cubic matrix form a Widmanstatten structure. The

traces of the plates in the plane of polish lie in three directions in one particular

grain, making azimuthal angles of 15, 64, and 113, measured clockwise from a

"vertical" NS reference line. Determine the indices of the habit plane and the

orientation of the matrix grain (in terms of the coordinates of its {100} poles).



CHAPTER 9

THE STRUCTURE OF POLYCRYSTALLINE AGGREGATES

9-1 Introduction. In the previous chapter we were concerned with the

orientation and relative perfection of single crystals. But the single metal

crystal is, after all, somewhat of a laboratory curiosity; the normal way in

which metals and alloys are used is in the form of polycrystalline aggregates,

composed of a great many individual crystals usually of microscopic size.

Since the properties of such aggregates are of great technological impor-

tance, they have been intensively studied in many ways. In such studies

the two most useful techniques are microscopic examination and x-ray

diffraction, and the wise investigator will use them both; one complements
the other, and both together can provide a great deal of information about

the structure of an aggregate.

The properties (mechanical, electrical, chemical, etc.) of a single-phase

aggregate are determined by two factors:

(1) the properties of a single crystal of the material, and

(2) the way in which the single crystals are put together to form the

composite mass.

In this chapter we will be concerned with the second factor, namely, the

structure of the aggregate, using this term in its broadest sense to mean
the relative size, perfection, and orientation of the grains making up the

aggregate. Whether these grains are large or small, strained or unstrained,

oriented at random or in some preferred direction, frequently has very

important effects on the properties of the material.

If the aggregate contains more than one phase, its properties naturally

depend on the properties of each phase considered separately and on the

way these phases occur in the aggregate. Such a material offers wide

structural possibilities since, in general, the size, perfection, and orienta-

tion of the grains of one phase may differ from those of the other phase or

phases.

CRYSTAL SIZE

9-2 Grain size. The size of the grains in a polycrystalline metal or

alloy has pronounced effects on many of its properties, the best known

being the increase in strength and hardness which accompanies a decrease

in grain size. This dependence of properties on grain size makes the meas-

urement of grain size a matter of some importance in the control of most

mjetal forming operations.

The grain sizes encountered in commercial metals and alloys range from

about 10""
1
to 10~4 cm. These limits are, of course, arbitrary and repre-

259
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sent rather extreme values; typical values fall into a much narrower range,

namely, about 10~2
to 10~3 cm The most accurate method of measuring

grain size in this range is by microscopic examination; the usual procedure

is to determine the average number of grains per unit area of the polished

section and report this in terms of an "index number" established by the

American Society for Testing Materials. The equation

n =

relates n, the number of grains per square inch when viewed at a magnifi-

cation of 100 X, and TV, the ASTM "index number" or "grain-size

number."

Although x-ray diffraction is decidedly inferior to microscopic examina-

tion in the accurate measurement of grain size, one diffraction photograph

can yield semiquantitative information about grain size, together with infor-

mation about crystal perfection and orientation. A transmission or back-

reflection pinhole photograph made with filtered radiation is best. If the

back-reflection method is used, the surface of the specimen (which need

not be polished) should be etched to remove any disturbed surface layer

which might be present, because most of the diffracted radiation originates

in a thin surface layer (see Sees. 9-4 and 9-5).
*

The nature of the changes produced in pinhole photographs by progres-

sive reductions in specimen grain size is illustrated in Fig. 9-1. The gov-

erning effect here is the number of grains which take part in diffraction.

This number is in turn related to the cross-sectional area of the incident

beam, and its depth of penetration (in back reflection) or the specimen

thickness (in transmission). When the grain size is quite coarse, as in

Fig. 9-1 (a), only a few crystals diffract and the photograph consists of a

set of superimposed Laue patterns, one from each crystal, due to the white

radiation present. A somewhat finer grain size increases the number of

Laue spots, and those which lie on potential Debye rings generally are

more intense than the remainder, because they are formed by the strong

characteristic component of the incident radiation. Thus, the suggestion

of a Debye ring begins to appear, as in (b). When the grain size is further

reduced, the Laue spots merge into a general background and only Debye

rings are visible, as in (c). These rings are spotty, however, since not

enough crystals are present in the irradiated volume of the specimen to

reflect to all parts of the ring. A still finer grain size produces- the smooth,

continuous Debye rings shown in (d).

Several methods have been proposed for the estimation of grain size

purely in terms of various geometrical factors. For example, an equation

may be derived which relates the observed number of spots on a Debye

ring to the grain size and other such variables as incident-beam diameter,

multiplicity of the reflection, and specimen-film distance. However, many
approximations are involved and the resulting equation is not very accu-
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(a) (b)

(c) (d)

FIG. 9-1. Back-reflection pinhole patterns of recrystallized aluminum specimens;

grain size decreases in the order (a), (b), (c), (d). Filtered copper radiation.

rate. The best way to estimate grain size by diffraction is to obtain a set

of specimens having known ASTM grain-size numbers, and to prepare

from these a standard set of photographs of the kind shown in Fig. 9-1.

The grain-size number of an unknown specimen of the same material is

then obtained simply by matching its diffraction pattern with one of the

standard photographs, provided both are made under identical conditions.

I 32ia, the grain size reaches a value somewhere in the range 10~3
to

10""
4
cm, the exact value depending on experimental conditions, the Debye

rings lose their spotty character and become continuous. Between this

value and 10~5 cm (1000A), no change occurs in the diffraction pattern.

At about 10~5 cm the first signs of line broadening, due to small crystal

size, begin to be detectable. There is therefore a size range, from 10~~
3

(or 10"""
4
) to 10~~

5
cm, where x-ray diffraction is quite insensitive to varia-

tions in grain size. I

9-3 Particle size. When the size of the individual crystals is less than

about 10~~
6 cm (1000A), the term "particle size" is usually used. As we
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saw in Sec. 3-7, crystals in this size range cause broadening of the Debye

rings, the extent of the broadening being given by Eq. (3-13) :

B = ^L, (3-13)
*COS0

where B = broadening of diffraction line measured at half its maximum

intensity (radians) and t = diameter of crystal particle. All diffraction

lines have a measurable breadth, even when the crystal size exceeds 1000A,

due to such causes as divergence of the incident beam and size of the sam-

ple (in Debye cameras) and width of the x-ray source (in diffractometers).

The breadth B in Eq. (3-13) refers, however, to the extra breadth, or

broadening, due to the particle-size effect alone. In other words, B is

essentially zero when the particle size exceeds about 1000A.

The chief problem in determining particle size from line breadths is to

determine B from the measured breadth BM of the diffraction line. Of the

many methods proposed, Warren's is the simplest. The unknown is mixed

with a standard which has a particle size greater than 1000A, and which

produces a diffraction line near that line from the unknown which is to be

used in the determination. A diffraction pattern is then made of the mix-

ture in either a Debye camera or, preferably, a diffractometer. This pat-

tern will contain sharp lines from the standard and broad lines from the

unknown, assumed to consist of very fine particles. Let B$ be the meas-

ured breadth, at half maximum intensity, of the line from the standard.

Then B is given, not simply by the difference between BM and 5$, but by

the equation R2 _ r> 2 _ r> 2

(This equation results from the assumption that the diffraction line has

the shape of an error curve.) Once B has been obtained from Eq. (9-1),

it can be inserted into Eq. (3-13) to yield the particle size /. There are

several other methods of finding B from BM', compared with Warren's

method, they are somewhat more accurate and considerably more intricate.

The experimental difficulties involved in measuring particle size from

line broadening increase with the size of the particle measured. Roughly

speaking, relatively crude measurements suffice in the range 0-500A, but

very good experimental technique is needed in the range 500-1000A. The

maximum size measurable by line broadening has usually been placed at

1000A, chiefly as a result of the use of camera techniques. Recently,

however, the diffractometer has been applied to this problem and the upper

limit has been pushed to almost 2000A. Very careful work wasjgcmired

and back-reflection lines were -employed, since such lines exhibit the largest

pSrtictePSize broadening, as shown by Eq*, (SHIS).

From the above discussion it might be inferred
tha^

line broadening is

chiefly used to measure the particle size of loose powders rather than the
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size of the individual crystals in a solid aggregate.! That is correct. At-

tempts have been made to apply Eq. (3-13) to the broadened diffraction

lines from very fine-grained metal specimens and so determine the size of

the individual grains. Such determinations are never very reliable, how-

ever, because the individual grains of such a material are often nonuni-

formly strained, and this condition, as we shall see in the next section,

can also broaden the diffraction lines; an uncertainty therefore exists as

to the exact cause of the observed broadening. On the other hand, the

individual crystals which make up a loose powder of fine particle size can

often be assumed to be strain-free, provided the material involved is a

brittle (nonplastic) one, and all the observed broadening can confidently

be ascribed to the particle-size effect. (But note that loose, unannealed

metal powders, produced by filing, grinding, ball milling, etc., almost

always contain nonuniform strain.) The. chief applications of the line-

broadening method have been in the measurement of the particle size of

such materials as carbon blacks, catalysts, and industrial dusts.

JAnother x-ray method of measuring the size of small particles deserves

some mention, although a complete description is beyond the scope of this

book. This is the method of small-angle scattering. It is a form of diffuse

scattering very near the undeviated transmitted beam, i.e., at angles 20

ranging from up to roughly 2 or 3. From the observed variation of

the scattered intensity vs. angle 20, the size, and to some extent the shape,

of small particles can be determined, whether they are amorphous or crys-

talline. Small-angle scattering has also been used to study precipitation

effects in metallic solid solutions.
|

CRYSTAL PERFECTION

9-4 Crystal perfection. Of the many kinds of crystal imperfection, the

one we are concerned with here is nonuniform strain because it is so charac-

teristic of the cold-worked state of metals and alloys. When a polycrystal-

line piece of metal is plastically deformed, for example by rolling, slip

occurs in each grain and the grain changes its shape, becoming flattened

and elongated in the direction of rolling. The change in shape of any one

grain is determined not only by the forces applied to the piece as a whole,

but also by the fact that each grain retains contact on its boundary sur-

faces with all its neighbors. Because of this interaction between grains,

a single grain in a polycrystalline mass is not free to deform in the same

way as an isolated single crystal would, if subjected to the same deforma-

tion by rolling. As a result of this restraint by its neighbors, a plastically

deformed grain in a solid aggregate usually has regions of its lattice left

in an elastically bent or twisted condition or, more rarely, in a state of

uniform tension or compression. The metal is then said to contain residual
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(Such stress is often called "internal stress" but the term is not

very informative since all stresses, residual or externally imposed, are

internal. The term "residual stress" emphasizes the fact that the stress

remains after all external forces are removed.) Stresses of this kind are

also called microstresses since they vary from one grain to another, or from

one part of a grain to another part, on a microscopic scale. On the other

hand, the stress may be quite uniform over large distances; it is then re-

ferred to as macrostress.

The effect of strain, both uniform

and nonuniform, on the direction of

x-ray reflection is illustrated in Fig.

9-2. A portion of an unstrained grain

appears in (a) on the left, and the set

of transverse reflecting planes shown

has everywhere its equilibrium spac-

ing d . The diffraction line from these

planes appears on the right. If the

grain is then given a uniform tensile

strain at right angles to the reflecting

planes, their spacing becomes larger

than d
>
and the corresponding dif-

fraction line shifts to lower angles but

does not otherwise change, as shown

in (b). This line shift is the basis of

the x-ray method for the measurement

of macrostress, as will be described

in Chap. 17. In (c) the grain is bent

and the strain is nonuniform
;
on the

top (tension) side the plane spacing

exceeds d
,
on the bottom (compres-

sion) side it is less than d
,
and some- NONTNIFORM STRAIN

where in between it equals d . We
may imagine this grain to be com-

posed of a number of small regions in

jach of which the plane spacing is substantially constant but different

from the spacing in adjoining regions. These regions cause the various

sharp diffraction lines indicated on the right of (c) by the dotted curves.

The sum of these sharp lines, each slightly displaced from the other, is the

broadened diffraction line shown by the full curve and, of course, the

broadened line is the only one experimentally observable. We can find a

relation between the broadening produced and the nonuniformity of the

strain by differentiating the Bragg law. We obtain

UNIFORM STRAIN

(c)

FIG. 9-2. Effect of lattice strain

on Debye-line width and position.

A20 -2 tan0,
d

(9-2)
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where b is the broadening due to a fractional variation in plane spacing

Ad/d. This equation allows the variation in strain, Ad/d, to be calculated

from the observed broadening. This value of Ad/d, however, includes

both tensile and compressive strain and must be divided by two to obtain

the maximum tensile strain alone, or maximum compressive strain alone,

if these two are assumed equal. The maximum strain so found can then

be multiplied by the elastic modulus E to give the maximum stress present.

For example,

/Ad\ Eb
(Max. tens, stress)

= E - (max. tens, strain) = (E)(?) \~) =
"A ~*'

\ a / 4 tan B

When an annealed metal or alloy is cold worked, its diffraction lines

become broader. This is a well-established, easily verified experimental

fact, but its explanation has been a matter of controversy. Some investi-

gators have felt that the chief effect of cold work is to fragment the

grains to a point where their small size alone is sufficient to account for

all the observed broadening. Others have concluded that the nonuni-

formity of strain produced by cold work is the major cause of broadening,

with grain fragmentation possibly a minor contributing cause. Actually,

it is impossible to generalize, inasmuch as different metals and alloys may
behave quite differently. By advanced methods of mathematical analysis,

it is possible to divide the observed change in line shape produced by cold

work into two parts, one due to fine particle size and the other due to

nonuniform strain. When this is done, it is found, for example, that in

alpha brass containing 30 percent zinc the observed broadening is due

almost entirely to nonuniform strain, while in thoriated tungsten (tung-

sten containing 0.75 percent thorium oxide) it is due both to nonuniform

strain and fine particle size. But no example is known where all the

observed broadening can be ascribed to fine particle size. In fact, it is

difficult to imagine how cold work could fragment the grains to the

degree necessary to cause particle-size broadening without at the same

time introducing nonuniform strains, in view of the very complex forces

that must act on any one grain of an aggregate no matter how simple the

forces applied to the aggregate as a whole.

The broadening of a diffraction line by cold work cannot always be

observed by simple inspection of a photograph unless some standard is

available for comparison. However, the separation of the Ka doublet

furnishes a very good "internal standard." In the back-reflection region,

an annealed metal produces a well-resolved doublet, one component due

to Kai radiation and the other to Ka2 - For a given set of experimental

conditions, the separation of this doublet on the film is constant and inde-

pendent of the amount of cold work. But as the amount of cold work

is increased, the broadening increases, until finally the two components
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of the doublet overlap to such an extent that they appear as one unresolved

line. An unresolved Ka doublet can therefore be taken as evidence of

cold work, if the same doublet is resolved when the metal is in the an-

nealed condition.

We are now in a position to consider some of the diffraction effects

associated with the processes of recovery, recrystallization, and grain growth.

When a cold-worked metal or alloy is annealed at a low temperature,

recovery takes place; at a somewhat higher temperature, recrystallization;

and at a still higher temperature, grain growth. Or at a sufficiently high

constant temperature, these processes may be regarded as occurring con-

secutively in time. Recovery is usually defined as a process involving

changes in certain properties without any observable change in micro-

structure, while recrystallization produces an easily visible structure of

new grains, which then grow at the expense of one another during the

grain-growth stage.

The above is a highly oversimplified description of some very complex

processes which are not yet completely understood. In particular, the

exact nature of recovery is still rather obscure. It seems clear, however,

that some form of polygonization takes place during recovery and may,
in fact, constitute the most important part of that process. (Polygoniza-

tion can occur in the individual grains of an aggregate just as in a single

crystal. The structure so produced is called a substructure, and the

smaller units into which a grain breaks up are called subgrains. Subgrain

boundaries can be made visible under the microscope if the proper etching

technique is used.) In some metals and alloys, recovery appears to overlap

recrystallization (in temperature or time), while in others it is quite sepa-

rate. It is usually associated with a partial relief of residual stress, on

both a microscopic and a macroscopic scale, without any marked change

in hardness. Since microstress is the major cause of line broadening, we

usually find that the broad diffraction lines characteristic of cold-worked

metal partially sharpen during recovery. When recrystallization occurs,

the lines attain their maximum sharpness and the hardness decreases

rather abruptly. During grain growth, the lines become increasingly

spotty as the grain size increases.

The nature of these changes is illustrated for alpha brass containing

30 weight percent zinc by the hardness curve and diffraction patterns of

Fig. 9-3. The hardness remains practically constant, for an annealing

period of one hour, until a temperature of 200 C is exceeded, and then

decreases rapidly with increasing temperature, as shown in (a). The dif-

fraction pattern in (b) exhibits the broad diffuse Debye lines produced by
the cold-rolled, unannealed alloy. These lines become somewhat narrower

for specimens annealed at 100 and 200 C, and the Ka doublet becomes

partially resolved at 250C. At 250, therefore, the recovery process
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(e) 1 hour at

UK) 200 300 400 500

ANNEALING TEMPERATURE (O

(a) Hardness curve (d) 1 houi tit 4f>0"('

FIG. 9-3. Changes in hardness and diffraction lines of 70-30 brass specimens,
reduced in thickness by 90 percent by cold rolling, and annealed foi 1 hour at the

temperatures indicated in (a), (b), (c), and (d) are poitions of back-reflection

pinhole patterns of specimens annealed at the temperatures stated (filtered cop-

per radiation).

appears to be substantially complete in one hour and recrystallization is

just beginning, as evidenced by the drop in Rockwell B hardness from

98 to 90. At 300 C the diffraction lines are quite sharp and the doublets

completely resolved, as shown in (c). Annealing at temperatures above

300C causes the lines to become increasingly spotty, indicating that the

newly recrystallized grains are increasing in size. The pattern of a speci-

men annealed at 450C, when the hardness had dropped to 37 Rockwell B,

appears in (d).

Diffractometer measurements made on the same specimens disclose

both more, and less, information. Some automatically recorded profiles

of the 331 line, the outer ring of the patterns shown in Fig. 9-3, are repro-

duced in Fig. 9-4. It is much easier to follow changes in line shape by
means of these curves than by inspection of pinhole photographs. Thus

the slight sharpening of the line at 200 C is clearly evident in the diffrac-

tometer record, and so is the doublet resolution which occurs at 250 C.

But note that the diffractometer cannot "see" the spotty diffraction lines

caused by coarse grains. There is nothing in the diffractometer records
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I
x;

135 134 133 132

IS (degrees)

131 130 129

FIG. 9-4. Diffractometer traces of the 331 line of the cold-rolled and annealed
70-30 brass specimens referred to in Fig. 9-3. Filtered copper radiation. Loga-
rithmic intensity scale. All curves displaced vertically by arbitrary amounts.
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FIG 9-5. Back-reflection pinhole

patterns of coarse-grained lecrystal-

lized copper. Vnfiltered coppei ra-

diation (a) from surface ground on a

belt sandei , (h) after removal of 0.003

in fiom this suiface by etching.

made at 300 and 450C which would immediately .suggest that the speci-

men annealed at 450 O had the coarser grain size, hut this fact is quite

evident in the pinhole patterns shown in Figs. 9-3 (c) and (d).

It must always he remembered that a hack-reflection photograph is

representative of only a thin surface layer of the specimen. For example,

Fig. 9-5 (a) was obtained from a piece of copper and exhibits unresolved

doublets in the high-angle region. The unexperienced observer might
conclude that this material was highly cold worked. What the x-ray

"sees" is cold worked, but it sees only to a limited depth. Actually, the

bulk of this specimen is in the annealed condition, but the surface from

which the x-ray pattern was made had had 0.002 in. removed by grinding

on a belt sander after annealing. This treatment cold worked the surface

to a considerable depth. By successive etching treatments and diffraction

patterns made after each etch, the change in structure of the cold-worked

layer could be followed as a function of depth below the surface. Not

until a total of 0.003 in. had been removed did the diffraction pattern be-

come characteristic of the bulk of the material; see Fig. 9-5 (b), where the

sf>otty lines indicate a coarse-grained, recrystallized structure.

9-6 Depth of x-ray penetration. Observations of this kind suggest that

it might be well to consider in some detail the general problem of x-ray

penetration. Most metallurgical specimens strongly absorb x-rays, and

the intensity of the incident beam is reduced almost to zero in a very short

distance below the surface. The diffracted beams therefore originate

chiefly in a thin surface layer whenever a reflection technique, as opposed

to a transmission technique,* is used, i.e., whenever a diffraction pattern

* Not even in transmission methods, however, is the information on a diffrac-

tion pattern truly representative of the entire cross section of the specimen. Cal-

culations such as those given in this section show that a greater proportion of the

total diffracted energy originates in a layer of given thickness on the back side of

the specimen (the side from which the transmitted beam leaves) than in a layer

of equal thickness on the front side. If the specimen is highly absorbing, a trans-

mission method can be just as non-representative of the entire specimen as a back-

reflection method, in that most of the diffracted energy will originate in a thin

surface layer.* See Prob. 9-5.
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is obtained in a back-reflection camera of any kind, a Seemann-Bohlin

camera or a diffractometer as normally used. We have just seen how a

back-reflection pinhole photograph of a ground surface discloses the cold-

worked condition of a thin surface layer and gives no information what-

ever about the bulk of the material below that layer.

These circumstances naturally pose the following question: what is the

effective depth of x-ray penetration? Or, stated in a more useful manner,
to what depth of the specimen does the information in such a diffraction

pattern apply? This question has no precise answer because the intensity

of the incident beam does not suddenly become zero at any one depth but

rather decreases exponentially with distance below the surface. However,
we can obtain an answer which, although not precise, is at least useful, in

the following way. Equation (7-2) gives the integrated intensity dif-

fracted by an infinitesimally thin layer located at a depth x below the

surface as

d//> = e-^ (1/8in + 1/8in &
dx, (7-2)

sin a

where the various symbols are defined in Sec. 7-4. This expression, inte-

grated over any chosen depth of material, gives the total integrated in-

tensity diffracted by that layer, but only in terms of the unknown constants

/o, a, and b. However, these constants will cancel out if we express the

intensity diffracted by the layer considered as a fraction of the total inte-

grated intensity diffracted by a specimen of infinite thickness. (As we
saw in Sec. 7-4, "infinite thickness" amounts to only a few thousandths

of an inch for most metals.) Call this fraction Gx . Then

[

J r i
JlfrSL- = 1 - e

- x(ll*ina+llB{nf .

Jx

X-X

dlD

G

This expression permits us to calculate the fraction Gx of the total dif-

fracted intensity which is contributed by a surface layer of depth x. If

we arbitrarily decide that a contribution from this surface layer of 95 per-

cent (or 99 or 99.9 percent) of the total is enough so that we can ignore

the contribution from the material below that layer, then x is the effective

depth of penetration. We then know that the information recorded on the

diffraction pattern (or, more precisely, 95 percent of the information)

refers to the layer of depth x and not to the material below it.

In the case of the diffractometer, a = =
8, and Eq. (9-3) reduces to

Gx = (1
-
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which shows that the effective depth

of penetration decreases as 6 decreases

and therefore varies from one diffrac-

tion line to another. In back-reflec-

tion cameras, a = 90, and
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Gx
=

[1
-

(9-5)

03 1.0 1.5

x (thousandths of an inch)

FIG. 9-6. The fraction Gx of the

total diffracted intensity contributed

by a surface layer of depth x, for

M = 473 cm" 1

,
26 = 136.7, and nor-

mal incidence.

where ft
= 20 - 90.

For example, the conditions appli-

cable to the outer diffraction ring

of Fig. 9-5 are M = 473 cm""
1 and

26 = 136.7. By using Eq. (9-5), we
can construct the plot of Gr as func-

tion of x which is shown in Fig. 9-6.

We note that 95 percent of the infor-

mation on the diffraction pattern re-

fers to a depth of only about 0.001 in.

It is therefore not surprising that the

pattern of Fig. 9-5 (a) discloses only

the presence of cold-worked metal,

since we found by repeated etching treatments that the depth of the cold-

worked layer was about 0.003 in. Of course, the information recorded on

the pattern is heavily weighted in terms of material just below the surface;

thus 95 percent of the recorded information applies to a depth of 0.001 in.,

but 50 percent of that information originates in the first 0.0002 in. (Note
that an effective penetration of 0.001 in. means that a surface layer only

one grain thick is effectively contributing to the diffraction pattern if the

specimen has an ASTM grain-size number of 8.)

Equation (9-4) can be put into the following form, which is more suitable

for calculation:

-^- = In

sin 6

1

Kx sin B
x =

Similarly, we can rewrite Eq. (9-5) in the form

M.T (l + -^} = In ( V) = Kx ,

\ sin /3/ \1 - Gj
Kx sin ft

x =
+ sin/3)



272 THE STRUCTURE OF POLYCRYSTALLINE AGGREGATES [CHAP. 9

TABLE 9-1

Values of Kx corresponding to various assumed values of Gx are given in

Table 9-1.

Calculations of the effective depth of penetration can be valuable in

many applications of x-ray diffraction. We may wish to make the effective

depth of penetration as large as possible in some applications. Then a

and ft in Eq. (9-3) must be as large as possible, indicating the use of high-

angle lines, and ^ as small as possible, indicating short-wavelength radia-

tion. Other applications may demand very little penetration, as when we

wish information, e.g., chemical composition or lattice parameter, from a

very thin surface layer. Then we must make M large, by using radiation

which is highly absorbed, and a and small, by using a diffractometer at

low values of 20.* By these means the depth of penetration can often be

made surprisingly small. For instance, if a steel specimen is examined in a

diffractometer with Cu Ka. radiation, 95 percent of the information afforded

by the lowest angle line of ferrite (the 110 line at 26 = 45) applies to a

depth of only 9 X 10~5
in. There are limits, of course, to reducing the

depth of x-ray penetration, and when information is required from very

thin surface films, electron diffraction is a far more suitable tool (see Appen-
dix 14).

CRYSTAL ORIENTATION

9-6 General. Each grain in a polycrystalline aggregate normally has

a crystallographic orientation different from that of its neighbors. Con-

sidered as a whole, the orientations of all the grains may be randomly
distributed in relation to some selected frame of reference, or they may
tend to cluster, to a greater or lesser degree, about some particular orienta-

tion or orientations. Any aggregate characterized by the latter condition

is said to have a preferred orientation, or texture, which may be defined

simply as a condition in which the distribution of crystal orientations is

nonrandom.

There are many examples of preferred orientation. The individual crys-

tals in a cold-drawn wire, for instance, are so oriented that the same crystal-

lographic direction [uvw] in most of the grains is parallel or nearly parallel

* Some of these requirements may be contradictory. For example, in measur-

ing the lattice parameter of a thin surface layer with a diffractometer, we must

compromise between the low value of 6 required for shallow penetration and the

high value of required for precise parameter measurements.
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to the wire axis. In cold-rolled sheet, most of the grains are oriented with

a certain plane (hkl) roughly parallel to the sheet surface, and a certain

direction [uvw] in that plane roughly parallel to the direction in which the

sheet was rolled. These are called deformation textures. Basically, they

are due to the tendency, already noted in Sec. 8-6, for a grain to rotate

during plastic deformation. There we considered the rotation of a single

crystal subjected to tensile forces, but similar rotations occur for each

grain of an aggregate as a result of the complex forces involved, with the

result that a preferred orientation of the individual grains is produced by
the deformation imposed on the aggregate as a whole.

When a cold-worked metal or alloy, possessed of a deformation texture,

is recrystallized by annealing, the new grain structure usually has a pre-

ferred orientation too, often different from that of the cold-worked mate-

rial. This is called an annealing texture or recrystallization texture, and two

kinds are usually distinguished, primary and secondary, depending on the

recrystallization process involved. Such textures are due to the influence

which the texture of the matrix has on the nucleation and/or growth of

the new grains in that matrix.

Preferred orientation can also exist in castings, hot-dipped coatings,

evaporated films, electrodeposited layers, etc. Nor is it confined to metal-

lurgical products: rocks, natural and artificial fibers and sheets, and similar

organic or inorganic aggregates usually exhibit preferred orientation. In

fact, preferred orientation is generally the rule, not the exception, and the

preparation of an aggregate with a completely random crystal orientation

is a difficult matter. To a certain extent, however, preferred orientation

in metallurgical products can be controlled by the proper operating con-

ditions. For example, some control of the texture of rolled sheet is possible

by the correct choice of degree of deformation, annealing temperature,

and annealing time.

The industrial importance of preferred orientation lies in the effect, often

very marked, which it has on the over-all, macroscopic properties of mate-

rials. Given the fact that most single crystals are anisotropic, i.e., have

different properties in different directions, it follows that an aggregate

having preferred orientation must also have directional properties to a

greater or lesser degree. Such properties are usually objectionable. For

example, in the deep drawing of sheet the metal should flow evenly in all

directions, but this will not OCCUF if the metal has a high degree of preferred

orientation, since the yield point, and in fact the whole flow stress curve

of the material, will then differ in different directions in the sheet. More

rarely, the intended use of the material requires directional properties,

and then preferred orientation is desirable. For example, the steel sheet

used for transformer cores must undergo repeated cycles of magnetization

and demagnetization in use, requiring a high permeability in the direction



274 THE STRUCTURE OF POLYCRYSTALLINE AGGREGATES [CHAP. 9

of the applied field. Since single crystals of iron are more easily mag-

netized in the [100] direction than in any other, the rolling and annealing

treatments given the steel sheet are deliberately chosen to produce a high

degree of preferred orientation, in which as many grains as possible have

their [100] directions parallel to a single direction in the sheet, in this case

the rolling direction.

It should be noted that preferred orientation is solely a crystallographic

condition and has nothing to do with grain shape as disclosed by the micro-

scope. Therefore, the presence or absence of preferred orientation cannot

be disclosed by microscopic examination. It is true that grain -shape is

affected by the same forces which produce preferred orientation; thus

grains become flattened by rolling, and rolling is usually accompanied by

preferred orientation, but a flattened shape is not in itself direct evidence

of preferred orientation. Only x-ray diffraction can give such evidence.

This fact is most apparent in recrystallized metals, which may have an

equiaxed microstructure and, at the same time, a high degree of preferred

orientation.

At various places in this book, we have already noted that a pinhole

photograph made of a polycrystalline specimen with characteristic radia-

tion consists of concentric Debye rings. We have more or less tacitly

assumed that these rings are always continuous and of constant intensity

around their circumference, but actually such rings are not formed unless

the individual crystals in the specimen have completely random orienta-

tions.* If the specimen exhibits preferred orientation, the Debye rings

are of nonuniform intensity around their circumference (if the preferred

orientation is slight), or actually discontinuous (if there is a high degree

of preferred orientation). In the latter case, certain portions of the Debye

ring are missing because the orientations which would reflect to those

parts of the ring are simply not present in the specimen. Nonuniform

Debye rings can therefore be taken as conclusive evidence for preferred

orientation, and by analyzing the nonuniformity we can determine the

kind and degree of preferred orientation present.

Preferred orientation is best described by means of a pole figure. This

is a stereographic projection which shows the variation in pole density

with pole orientation for a selected set of crystal planes. This method of

describing textures was first used by the German metallurgist Wever in

1924, and its meaning can best be illustrated by the following simple ex-

ample. Suppose we have a very coarse-grained sheet of a cubic metal

containing only 10 grains, and that we determine the orientation of each

of these 10 grains by one of the Laue methods. We decide to represent

the orientations of all of these grains together by plotting the positions of

1

See the next section for one exception to this statement.
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FIG. 9-7. (100) pole figures for sheet material, illustrating (a) random orienta-

tion and (b) preferred orientation. R.D. (rolling direction) and T.D. (transverse

direction) are reference directions in the plane of the sheet.

their {100J poles on a single stereographic projection, with the projection

plane parallel to the sheet surface. Since each grain has three
{ 100} poles,

there will be a total of 3 X 10 = 30 poles plotted on the projection. If

the grains have a completely random orientation, these poles will be dis-

tributed uniformly* over the projection, as indicated in Fig. 9-7 (a). But

if preferred orientation is present, the poles will tend to cluster together

into certain areas of the projection, leaving other areas virtually unoc-

cupied. For example, this clustering might take the particular form shown

in Fig. 9-7(b). This is called the "cube texture/' because each grain is

oriented with its (100) planes nearly parallel to the sheet surface and the

[001] direction in these planes nearly parallel to the rolling direction. (This

simple texture, which may be described by the shorthand notation (100)

[001], actually forms as a recrystallization texture in many face-centered

cubic metals and alloys under suitable conditions.) If we had chosen to

construct a (111) pole figure, by plotting only {111) poles, the resulting

pole figure would look entirely different from Fig. 9-7 (b) for the same pre-

ferred orientation; in fact, it would consist of four "high-intensity" areas

located near the center of each quadrant. This illustrates the fact that

the appearance of a pole figure depends on the indices of the poles plotted,

and that the choice of indices depends on which aspect of the texture one

wishes to show most clearly.

*
If the orientation is random, there will be equal numbers of poles in equal

areas on the surface of a reference sphere centered on the specimen. There will

not be equal numbers, however, on equal areas of the pole figure, since the stereo-

graphic projection is not area-true. This results, for randomly oriented grains,

in an apparent clustering of poles at the center of the pole figure, since distances

representing equal angles are much smaller in this central region than in other

parts of the pole figure.
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Naturally, when the grain size is small, as it normally is, separate deter-

mination of the orientations of a representative number of grains is out of

the question, so x-ray methods are used in which the diffraction effects

from thousands of grains are automatically averaged. The (hkl) pole

figure of a fine-grained material is constructed by analyzing the distribu-

tion of intensity around the circumference of the corresponding hkl Debye

ring. There are two methods of doing this, the photographic and the dif-

fractometer method. The photographic method is qualitative and, al-

though affording sufficient accuracy for many purposes, it is rapidly being
made obsolete by the more accurate diffractometer method. Both methods

are described in the following sections.

Although only a pole figure can provide a complete description of pre-

ferred orientation, some information can be obtained simply by a com-

parison of calculated diffraction line intensities with those observed with a

Debye-Scherrer camera or a diffractometer. As stated in Sec. 4-12, rela-

tive line intensities are given accurately by Eq. (4-12) only when the

crystals of the specimen have completely random orientations. Therefore

any radical disagreement between observed and calculated intensities is

immediate evidence of preferred orientation in the specimen, and, from

the nature of the disagreement, certain limited conclusions can usually be

drawn concerning the nature of the texture. For example, if a sheet

specimen is examined in the diffractometer in the usual way (the specimen

making equal angles with the incident and diffracted beams), then the

only grains which can contribute to the hkl reflection are those whose

(hkl) planes are parallel to the sheet surface. If the texture is such that

there are very few such grains, the intensity of the hkl reflection will be

abnormally low. Or a given reflection may be of abnormally high inten-

sity, which would indicate that the corresponding planes were preferen-

tially oriented parallel or nearly parallel to the sheet surface. As an

illustration, the 200 diffractometer reflection from a specimen having the

cube texture is abnormally high, and from this fact alone it is possible to

conclude that there is a preferred orientation of (100) planes parallel to

the sheet surface. However, no conclusion is possible as to whether or not

there is a preferred direction in the (100) plane parallel to some reference

direction on the sheet surface. Such information can be obtained only by
making a pole figure.

9-7 The texture of wire and rod (photographic method). As mentioned
in the previous section, cold-drawn wire normally has a texture in which a

certain crystallographic direction [uvw] in most of the grains is parallel,

or nearly parallel, to the wire axis. Since a similar texture is found in

natural and artificial fibers, it is called a fiber texture and the axis of the

wire is called the fiber axis. Materials having a fiber texture have rota-
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FIG. 9-8. Geometry of reflection from material having a fiber texture. F.A. =

fiber axis.

tional symmetry about an axis in the sense that all orientations about this

axis are equally probable. A fiber texture is therefore to be expected in

any material formed by forces which have rotational symmetry about a

line, for example, in wire and rod, formed by drawing, swaging, or extru-

sion. Less common examples of fiber texture are sometimes found in sheet

formed by simple compression, in coatings formed by hot-dipping, electro-

deposition, and evaporation, and in castings among the columnar crystals

next to the mold wall. The fiber axis in these is perpendicular to the plane

of the sheet or coating, and parallel to the axis of the columnar crystals.

Fiber textures vary in perfection, i.e., in the scatter of the direction

[uvw] about the fiber axis, and both single and double fiber textures have

been observed. Thus, cold-drawn aluminum wire has a single [111] texture,

but copper, also face-centered cubic, has a double [111] + [100] texture;

i.e., in drawn copper wire there are two sets of grains, the fiber axis of one

set being [111] and that of the other set [100].

The only crystallographic problem presented by fiber textures is that

of determining the indices [uvw] of the fiber axis, and that problem is best

approached by considering the diffraction effects associated with an ideal

case, for example, that of a wire of a cubic material having a perfect [100]

fiber texture. Suppose we consider only the 111 reflection. In Fig. 9-8,

the wire specimen is at C with its axis along NS, normal to the incident

beam 1C. CP is the normal to a set of (111) planes. Diffraction from

these planes can occur only when they are inclined to the incident beam
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F A. F.A

reflect ion circle

(b)

FIG. 9-9. Perfect [100] fiber texture: (a) (1 11) pole figure; (b) location of reflect-

ing plane normals.

at an angle which satisfies the Bragg law, and this requires that the (111)

pole lie somewhere on the circle PUV, since then the angle between the

plane normal and the incident beam will always be 90 6. For this

reason, PUQV is called the reflection circle. If the grains of the wire had

completely random orientations, then (111) poles would lie at all positions
on the reflection circle, and the 111 reflection would consist of the com-

plete Debye ring indicated in the drawing. But if the wire has a perfect

[100] fiber texture, then the diffraction pattern produced by a stationary

specimen is identical with that obtained from a single crystal rotated about
the axis [100], because of the rotational symmetry of the wire. During
this rotation, the (111) pole is confined to the small circle PAQB, all points
of which make a constant angle p = 54.7 with the [100] direction N. Dif-

fraction can now occur only when the (111) pole lies at the intersections

of the reflection circle and the circle PAQB. These intersections are located

at P and Q, and the corresponding diffraction spots at /? and T, at an
azimuthal angle a from a vertical line through the center of the film. Two
other spots, not shown, are located in symmetrical positions on the lower
half of the film. If the texture is not perfect, each of these spots will

broaden peripherally into an arc whose length is a function of the degree
^f scatter in the texture.

By solving the spherical triangle IPN, we can find the following general
relation between the angles p, 0, and a:

cos p = cos B cos a. (9-6)

These angles are shown stereographically in Fig. 9-9, projected on a plane
lormal to the incident beam. The (111) pole figure in (a) consists simply
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of two arcs which are the paths traced out by fill} poles during rotation

of a single crystal about [100]. In (b), this pole figure has been superposed
on a projection of the reflection circle in order to find the locations of the

reflecting plane normals. Radii drawn through these points (P, Q, P',

and Q') then enable the angle a to be measured and the appearance of the

diffraction pattern to be predicted.

An unknown fiber axis is identified

by measuring the angle a on the

film and obtaining p from Eq. (9-6).

When this is done for a number of dif-

ferent hkl reflections, a set of p values

is obtained from which the indices

[uvw] of the fiber axis can be deter-

mined. The procedure will be illus-

trated with reference to the diffraction

pattern of drawn aluminum wire

shown in Fig. 9-10. The first step is

to index the incomplete Debye rings.

Values of 6 for each ring are calculated

from measurements of ring diameter,

and hkl indices are assigned by the use

of Eq. (3-10) and Appendix 0. In

this way the inner ring is identified as

a 111 reflection and the outer one as

200. The angle a is then measured

from a vertical line through the center

of the film to the center of each strong Debye arc. The average values of

these angles are given below, together with the calculated values of p:

FIG. 9-10. Transmission pinhole

pattern of cold-drawn aluminum wire,

wire axis vertical. Filtered copper
radiation, (The radial streaks near

the center are formed by the white

radiation in the incident beam.)

Line

Inner

Outer

hkl

111

200

69

52

19.3

22.3

70

55

The normals to the (111) and (200) planes therefore make angles of 70

and 55, respectively, with the fiber axis. We can determine the indices

[uvw] of this axis either by the graphical construction shown in Fig. 8-8 or

by inspection of a table of interplanar angles. In this case, inspection of

Table 2-3 shows that [uvw] must be [111], since the angle between (111)

and (111) is 70.5 and that between (111) and (100) is 54.7, and these

values agree with the values of p given above within experimental error.

The fiber axis of drawn aluminum wire is therefore [111]. There is some

scatter of the [111] direction about the wire axis, however, inasmuch as

the reflections on the film are short arcs rather than sharp spots. If we
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wish, this can be taken into account by measuring the angular range of

a for each arc and calculating the corresponding angular range of p. A

(111) pole figure of the wire would then resemble Fig. 9-9 (a) except that

the two curved lines would be replaced by two curved bands, each equal

in width to the calculated range of p for the (111) poles.

One other aspect of fiber textures should be noted. In materials having

a fiber texture, the individual grains have a common crystallographic

direction parallel to the fiber axis but they can have any rotational posi-

tion about that axis. It follows that the diffraction pattern of such mate-

rials will have continuous Debye rings if the incident x-ray beam is parallel

to the fiber axis. However, the relative intensities of these rings will not

be the same as those calculated for a specimen containing randomly oriented

grains. Therefore, continuous Debye rings are not, in themselves, evi-

dence for a lack of preferred orientation.

9-8 The texture of sheet (photographic method). The texture of rolled

sheet, either as rolled or after recrystallization, differs from that of drawn

wire in having less symmetry. There is no longer a common crystallo-

graphic direction about which the grains can have any rotational position.

Sheet textures can therefore be described adequately only by means of a

pole figure, since only this gives a complete map of the distribution of

crystal orientation.

The photographic method of determining the pole figure of sheet is quite

similar to the method just described for determining wire textures. A
transmission pinhole camera is used, together with general radiation con-

taining a characteristic component. The sheet specimen, reduced in thick-

ness by etching to a few thousandths of an inch, is initially mounted per-

pendicular to the incident beam with the rolling direction vertical. The

resulting photograph resembles tha,t of a drawn wire: it contains Debye

rings of nonuniform intensity and the pattern is symmetrical about a

vertical line through the center of the film. However, if the sheet is now

rotated by, say, 10 about the rolling direction and another photograph

made, the resulting pattern .will differ from the first, because the texture

of sheet does not have rotational symmetry about the rolling direction.

This new pattern will not be symmetrical about a vertical line, and the

regions of high intensity on the Debye rings will not have the same azi-

muthal positions as they had in the first photograph. Figure 9-11 illus-

trates this effect for cold-rolled aluminum. To determine the complete

texture of sheet, it is therefore necessary to measure the distribution of

orientations about the rolling direction by making several photographs
with the sheet normal at various angles to the incident beam.

Figure 9-12 shows the experimental arrangement and defines the angle

ft between the sheet normal and the incident beam. The intensity of the
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FIG. 9-11. Transmission pinhole patterns of cold-rolled aiummum sneet, roiling
direction vertical: (a) sheet normal parallel to incident beam; (b) sheet normal at
30 to incident beam (the specimen has been rotated clockwise about the rolling
direction, as in Fig. 9-12). Filtered copper radiation.

diffracted rays in any one Debye cone is decreased by absorption in the

specimen by an amount which depends on the angle 0, and when ft is not
zero the rays going to the left side of the film undergo more absorption
than those going to the right. For this reason it is often advisable to make
measurements only on the right side of the film, particularly when ft is

large.

The usual practice is to make photographs at about 10 intervals from
ft
= to ft

= 80, and to measure the intensity distribution around a par-

film RD

TD

sheet

normal
TD

FIG. 9-12. Section through sheet

specimen and incident beam (specimen FIG. 9-13. Measurement of azimuthal
thickness exaggerated). Rolling direc- position of high-intensity arcs on a
tion normal to plane of drawing. Debye ring, ft

= 40, R.D. =
rolling

T.D. = transverse direction. direction.
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T.D. + ==i TD.

FIG. 9-14. Method of plotting reflecting pole positions for nonzero values of

ft. Drawn for 6 = 10 and ft
= 40.

ticular Debye ring on each photograph. The procedure for plotting the

pole figure from these measurements will be illustrated here for an idealized

case like that shown in Fig. 9-13, where the intensity of the Debye ring is

constant over certain angular ranges and zero between them. The range
of blackening of the Debye arcs is plotted stereographically as a range of

reflecting pole positions along the reflection circle, the azimuthal angle a

on the film equal to the azimuthal angle a on the projection. Although
the reflection circle is fixed in space (see Fig. 9-8 where SCN is now the

rolling direction of the sheet specimen), its position on the projection

varies with the rotational position of the specimen, since the projection

plane is parallel to the surface of the sheet and rotates with it.

When ft
= 0, the reflection circle is concentric with the basic circle of

the projection and degrees inside it, as shown in Fig. 9-14, which is

drawn for = 10. When the specimen is then rotated, for example by
40 in the sense shown in Fig. 9-12, the new position of the reflection circle

is found by rotating two or three points on the .reflection circle bv 40
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to the right along latitude lines and drawing circle arcs, centered on the

equator or its extension, through these points. This new position of the

reflection circle is indicated by the arcs ABCDA in Fig. 9-14; since in this

example exceeds 0, part of the reflection circle, namely CDA, lies in the

back hemisphere. The arcs in Fig. 9-13 are first plotted on the reflec-

tion circle, as though the projection plane were still perpendicular to the

incident beam, and then rotated to the right along latitude circles onto

the 40 reflection circle. Thus, arc M\N\ in Fig. 9-13 becomes M2A^2 and

then, finally, M37V3 in Fig. 9-14. Similarly, Debye arc U\Vi is plotted as

U^Vz, lying on the back hemisphere.
The texture of sheet is normally such that two planes of symmetry exist,

one normal to the rolling direction (R.D.) and one normal to the trans-

verse direction (T.D.). For this reason, arc -M3W3 may be reflected in

the latter plane to give the arc M^N^ thus helping to fill out the pole

figure. These symmetry elements are also the justification for plotting

the arc t
T

3F3 as though it were situated on the front hemisphere, since

reflection in the center of the projection (to bring it to the front hemi-

sphere) and successive reflections in the two symmetry planes will bring it

to this position anyway. If the diffraction patterns indicate that these

symmetry planes are not present, then these short cuts in plotting may
not be used.

By successive changes in 0, the reflection circle can be made to move
across the projection and so disclose the positions of reflecting poles. With

the procedure described, however, the regions near the N and S poles of

the projection will never be cut by a reflection circle. To explore these

regions, we must rotate the specimen 90 in its own plane, so that the

transverse direction is vertical, and take a photograph with @ ~ 5.

Figure 9-15 shows what might result from a pole figure determination

involving measurements at =
0, 20, 40, 60, and 80 (R.D. vertical) and

R.D R.D

T.D.

T.D.

FIG. 9-15. Plotting a pole figure.

FIG. 9-16. Hypothetical pole figure

derived from Fig. 9-15.
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R.D

= 5 (T.D. vertical). The arcs in Fig. 9-14 are replotted here with the

same symbols, and the arcs E\Fi and E2F2 lie on the 5 reflection circle

with the transverse direction vertical. The complete set of arcs defines

areas of high pole density and, by reflecting these areas in the symmetry

planes mentioned above, we arrive at the complete pole figure shown in

Fig. 9-16.

In practice, the variation of inten-

sity around a Debye ring is not abrupt

but gradual, as Fig. 9-11 demon-

strates. This is taken into account

by plotting ranges in which the in-

tensity is substantially constant, and

no more than four such ranges are

usually required, namely, zero, weak,

medium, and strong. The result is

a pole figure in which various areas,

distinguished by different kinds of

cross-hatching, represent various de-

grees of pole density from zero to a

maximum. Figure 9-17 is a photo-

graphically determined pole figure in

which this has been done. It repre-

T.D

FIG. 9-17. (Ill) pole figure of re-

crystallized 70-30 brass, determined

by the photographic method. (R. M.

Brick, Trans. A.I.M.E. 137, 193, 1940.)

sents the primary recrystallization texture of 70-30 brass which has been

cold-rolled to a 99 percent reduction in thickness and then annealed at

400C for 30 minutes.

The texture of sheet is often described in terms of an "ideal orientation,"

i.e., the orientation of a single crystal whose poles would lie in the high-

density regions of the pole figure. For example, in Fig. 9-17 the solid

triangular symbols mark the positions of the Jill} poles of a single crys-

tal which has its (113) plane parallel to the plane of the sheet and the

[211] direction in this plane parallel to the rolling direction. This orienta-

tion, when reflected in the two symmetry planes normal to the rolling and

transverse directions, will approximately account for all the high-density

regions on the pole figure. Accordingly, this texture has been called a

(113) [2ll] texture. The actual pole figure, however, is a far better de-

scription of the texture than anystatement of an ideal orientation, since

the latter is frequently not very exact and gives no information about the

degree of scatter of the actual texture about the ideal orientation.

The inaccuracies of photographically determined pole figures are due

to two factors:

(1) intensity "measurements" made on the film are usually only visual

estimates, and
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(2) no allowance is made for the change in the absorption factor with

changes in ft and a. This variation in the absorption factor makes it very

difficult to relate intensities observed on one film to those observed on

another, even when the exposure time is varied for different films in an

attempt to allow for changes in absorption.

9-9 The texture of sheet (diffractometer method). In recent years

methods have been developed for the determination of pole figures with

the diffractometer. These methods are capable of quite high precision

because

(1) the intensity of the diffracted rays is measured quantitatively with

a counter, and

(2) either the intensity measurements are corrected for changes in ab-

sorption, or the x-ray optics are so designed that the absorption is constant

and no correction is required.

For reasons given later, two different methods must be used to cover

the whole pole figure.

The first of these, called the transmission method, is due to Decker,

Asp, and Harker, and Fig. 9-18 illustrates its principal features. To deter-

mine an (hkl) pole figure, the counter is fixed in position at the correct

angle 26 to receive the hkl reflection. The sheet specimen, in a special

holder, is positioned initially with the

rolling direction vertical and coinci-

dent with the diffractometer axis,*

and with the plane of the specimen

bisecting the angle between the inci-

dent and diffracted beams. The speci-

men holder allows rotation of the

specimen about the diffractometer

axis and about a horizontal axis nor-

mal to the specimen surface. Al-

though it is impossible to move the

counter around the Debye ring and so

explore the variation in diffracted in-

tensity around this ring, we can ac-

complish essentially the same thing

by keeping the counter fixed and ro-

tating the specimen in its own plane.

This rotation, combined with the

other rotation about the diffractom-

eter axis, moves the pole of the (hkl)

specimen

I
normal /

diffractometer

axis

counter

FIG. 9-18. Transmission method
for pole-figure determination. (After

A. H. Geisler, "Crystal Orientation

and Pole Figure Determination" in

Modern Research Techniquesin Physical

Metallurgy, American Society for Met-

als, Cleveland, 1953.)

* For simplicity, the method is described here only in terms of a vertical-axis

diffractometer.
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FIG. 9-19. Specimen holder used in the transmission method, viewed from trans-
mitted-beam side. (Courtesy of Paul A. Beck.)

reflecting plane over the surface of the pole figure, which is plotted on a

projection plane parallel to the specimen plane, as in the photographic
method. At each position of the specimen, the measured intensity of the
diffracted beam, after correction for absorption, gives a figure which is pro-
portional to the pole density at the corresponding point on the pole figure.

Figure 9-19 shows the kind of specimen holder used for this method.
The method of plotting the data is indicated in Fig. 9-20. The angle a

measures the amount of rotation about the diffractometer axis;* it is

zero when the sheet bisects the angle between incident and diffracted

beams. The positive direction of a is conventionally taken as counter-
clockwise. The angle 6 measures the amount by which the transverse
direction is rotated about the sheet normal out of the horizontal plane and

* a is the conventional symbol for this angle, which is measured in a horizontal
plane. It should not be confused with the angle a used in Sec. 9-8 to measure
azimuthal positions in a vertical plane.
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reflecting-

plane *-) / T.D.

diffrartometer

axis

(a) (b)

FIG. 9-20. Angular relationships in the transmission pole-figure method (a) in

space and (b) on the stereographic projection. (On the projection, the position of

the reflecting plane normal is shown for 5 = 30 and a = 30.)

is zero when the transverse direction is horizontal. The reflecting plane

normal bisects the angle between incident and diffracted beams, and re-

mains fixed in position whatever the orientation of the specimen. To plot

the pole of the reflecting plane on the pole figure, we note that it coincides

initially, when a and 6 are both zero, with the left transverse direction. A
rotation of the specimen by d degrees in its own plane then moves the pole

of the reflecting plane 8 degrees around the circumference of the pole figure,

and a rotation of a degrees about the diffractometer axis then moves

it a degrees from the circumference along a radius. To explore the pole

figure, it is convenient to make intensity readings at intervals of 5 or 10

of a for a fixed value of d: the pole figure is thus mapped out along a

series of radii.* By this procedure the entire pole figure can be deter-

mined except for a region at the center extending from about a = 50

to a = 90; in this region not only does the absorption correction be-

come inaccurate but the frame of the specimen holder obstructs the dif-

fracted x-ray beam.

An absorption correction is necessary in this method because variations

in a cause variations in both the volume of diffracting material and the

path length of the x-rays within the specimen. Variations in 6 have no

effect. We can determine the angular dependence of the absorption factor

* The chart shown in skeleton form in Fig. 9-20(b) is useful for this purpose.
It is called a polar stereographic net, because it shows the latitude lines (circles)

and longitude lines (radii) of a ruled globe projected on a plane normal to the polar

NS-axis. In the absence of such a net, the equator or central meridian of a Wulff

net can be used to measure the angle a.
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by a method similar to that used for the reflection case considered in Sec.

7-4. The incident beam in Fig. 9-21 has intensity 7 (ergs/cm
2
/sec) and

is 1 cm square in cross section. It is incident on a sheet specimen of thick-

ness t and linear absorption coefficient p, and the individual grains of this

specimen are assumed to have a completely random orientation. Let a

be the volume fraction of the specimen containing grains correctly oriented

for reflection of the incident beam, and b the fraction of the incident energy

diffracted by unit volume. Then the total energy per second in the dif-

fracted beam outside the specimen, originating in a layer of thickness dx

located at a depth x, is given by

dID = ab(DB)IQe-
(AB+BC} dx (ergs/sec),

where

1 x t x
AB = . and BC =

COS (0 a) COS (0 a) COS (0 + a)

By substitution, we obtain

a^o ,^Q ffi ,>, _= C
(0-a)-l/cos (0+a)J

J^.

COS (0 a)

(Only clockwise rotation of the specimen about the diffractometer axis,

i.e., rotation in the sense usually designated by a, is considered here.

However, in these equations and in Fig. 9-21, the proper sign has already

been inserted, and the symbol a stands for the absolute value of this angle.)

If we put a = in Eq. (9-7) and integrate from x = to x =
/, we obtain

the total diffracted energy per second, the integrated intensity, for this

position of the specimen:*

ID (a = 0) =-- e- tlco
'. (9-8)

COS0

When a is not zero, the same integration gives

(0 a) _ e n

ID (a = a)
= - 1- .

(9-9)
M[COS (0

-
a)/COS (0 + a)

~
1]

* In Sec. 6-9 mention was made of the fact that the diffracted beams in any
transmission method were of maximum intensity when the thickness of the speci-

men was made equal to I/M. This result follows from Eq. (9-8). If we put = a
=

0, then the primary beam will be incident on the specimen at right angles (see

Fig. 9-21), as in the usual transmission pinhole method, and our result will apply

approximately to diffracted beams formed at small angles 20. The intensity of

such a beam is given by
ID =

By differentiating this expression with respect to t and setting the result equal to

zero, we can find that ID is a maximum when t = 1 //*.
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FIG. 9-21. Path length and irradi-

ated volume in the transmission method.

FIG. 9-22. Variation of the correc-

tion factor R with a for clockwise rota-

tion from the zero position, pi = 1.0,

6 = 19.25.

We are interested only in the ratio of these two integrated intensities,

namely,

R = D a ~ a
=

COB * e

.. ^ : : (9-10)
JD (a = 0) '[cos (6

-
a) /cos (6 + a) -

1]

A plot of R vs. a is given in Fig. 9-22 for typical values involved in the 111

reflection from aluminum with Cu Ka radiation, namely, pi = 1.0 and

6 = 19.25. This plot shows that the integrated intensity of the reflection

decreases as a increases in the clockwise direction from zero, even for a

specimen containing randomly oriented grains. In the measurement of

preferred orientation, it is therefore necessary to divide each measured in-

tensity by the appropriate value of the correction factor 7? in order to

arrive at a figure proportional to the pole density. From the way in which

the correction factor R was derived, it follows that we must measure the

integrated intensity of the diffracted beam. To do this with a fixed counter,

the counter slits must be as wide as the diffracted beam for all values of a

so that the whole width of the beam can enter the counter. The ideal

incident beam for this method is a parallel one. However, a divergent

beam may be used without too much error, provided the divergence is not

too great. There is no question of focusing here: if the incident beam is

divergent, the diffracted beam will diverge also and very wide counter

slits will be required to admit its entire width.

The value of pt used in Eq. (9-10) must be obtained by direct measure-

ment, since it is not sufficiently accurate to use a tabulated value of M

together with the measured thickness t of the specimen. To determine

pi we use a strong diffracted beam from any convenient material and meas-

ure its intensity when the sheet specimen is inserted in the diffracted beam
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counter

FIG. 9-23. Reflection method for pole-figure determination.

and again when it is not. The value of pt is then obtained from the general

absorption equation, I t
= /o^~"

M
', where 7 and // are the intensities inci-

dent on and transmitted by the sheet specimen, respectively.

As already mentioned, the central part of the pole figure cannot be cov-

ered by the transmission method. To explore this region we must use a

reflection method, one in which the measured diffracted beam issues from

that side of the sheet on which the primary beam is incident. The reflec-

tion method here described was developed by Schulz. It requires a special

holder which allows rotation of the specimen in its own plane about an

axis normal to its surface and about a horizontal axis; these axes are shown
as BB' and AA 1

in Fig. 9-23. The horizontal axis AA' lies in the specimen
surface and is initially adjusted, by rotation about the diffractometer axis,

to make equal angles with the incident and diffracted beams. After this

is done, no further rotation about the diffractometer axis is made. Since

the axis AA' remains in a fixed position during the other rotations of the

specimen, the irradiated surface of the specimen is always tangent to a

focusing circle passing through the x-ray source and counter slits. A
divergent beam may therefore be used since the diffracted beam will con-

verge to a focus at the counter slits. Figure 9-24 shows a specimen holder

for the reflection method.

When the specimen is rotated about the axis A A', the axis BB' normal

to the specimen surface rotates in a vertical plane, but CAT, the reflecting

plane normal, remains fixed in a horizontal position normal to AA'. The
rotation angles a and 6 are defined in Fig. 9-23. The angle a is zero when
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FIG. 9-24. Specimen holder used in the reflection method, viewed from re-

flected-beam side. (Courtesy of Paul A. Beck.)

the sheet is horizontal and has a value of 90 when the sheet is in the

vertical position shown in the drawing. In this position of the specimen,

the reflecting plane normal is at the center of the projection. The angle 5

measures the amount by which the rolling direction is rotated away from

the left end of the axis AA' and has a value of +90 for the position illus-

trated. With these conventions the angles a and 5 may be plotted on the

pole figure in the same way as in the transmission method [Fig. 9-20(b)].

The great virtue of the reflection method is that no absorption correc-

tion is required for values of a between 90 and about 40, i.e., up to

about 50 from the center of the pole figure. In other words, a specimen

whose grains have a completely random orientation can be rotated over

this range of a values without any change in the measured intensity of the

diffracted beam. Under these circumstances, the intensity of the dif-

fracted beam is directly proportional to the pole density in the specimen,

without any correction. The constancy of the absorption factor is due

essentially to the narrow horizontal slit placed in the primary beanr at D
(Fig. 9-23). The vertical opening in this slit is only about 0.020 in. in

height, which means that the specimen is irradiated only over a long nar-

row rectangle centered on the fixed axis AA'. It can be shown that a
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FIG. 9-25. (Ill) pole figure of cold-rolled 70-30 brass, determined by the dif-

fractometer method. (H. Hu, P. R. Sperry, and P. A. Beck, Trans. A.LM.E.

194,76, 1952.)

change in absorption does occur, as the specimen is rotated about A A',

but it is exactly canceled by a change in the volume of diffracting material,

the net result being a constant diffracted intensity for a random specimen

when a lies between 90 and about 40. To achieve this condition,

the reflecting surface of the specimen must be adjusted to accurately coin-

cide with the axis A A' for all values of a and 5. This adjustment is ex-

tremely important.

It is evident that the transmission and reflection methods complement

one another in their coverage of the pole figure. The usual practice is to

use the transmission method to cover the range of a from to 50 and

the reflection method from 40 to 90. This produces an overlap of

10 which is useful in checking the accuracy of one method against the

other, and necessary in order to find a normalizing factor for one set of

readings which will make them agree with the other set in the region of

overlap.

When this is done, the numbers which are proportional to pole density

can then be plotted on the pole figure at each point at which a measure-

ment was made. Contour lines are then drawn at selected levels con-

necting points of the same pole density, and the result is a pole figure such

as that shown in Fig. 9-25, which represents the deformation texture of

70-30 brass cold-rolled to a reduction in thickness of 95 percent. The

numbers attached to each contour line give the pole density in arbitrary
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units. A pole figure such as this is far more accurate than any photo-

graphically determined one, and represents the best description available

today of the kind and extent of preferred orientation. The accuracy ob-

tainable with the diffractometer method is sufficient to allow investigation,

with some confidence, of possible asymmetry in sheet textures. In most

sheet, no asymmetry of texture is found (see Fig. 9-25), but it does occur

when sheet is carefully rolled in the same direction, i.e., without any

reversal end for end between passes. In such sheet, the texture has only

one reflection plane of symmetry, normal to the transverse direction; the

plane normal to the rolling direction is no longer a symmetry plane.

In Fig. 9-25, the solid triangular symbols representing the ideal orienta-

tion (110) [lT2] lie approximately in the high-density regions of the pole

figure. But here again the pole figure itself must be regarded as a far

better description of the texture than any bare statement of an ideal orien-

tation. A quantitative pole figure of this kind has about the same relation

to an ideal orientation as an accurate contour map of a hill has to a state-

ment of the height, width, and length of the hill.

Geisler has recently pointed out two sources of error in the diffractometer

method, both of which can lead to spurious intensity maxima on the pole

figure if the investigator is not aware of them:

(1) When an (AiMi) pole figure is being determined, the counter is set

at the appropriate angle 26 to receive Ka radiation reflected from the

(hikili) planes. But at some position of the specimen, there may be another

set of planes, (/^tt), so oriented that they can reflect a component of the

continuous spectrum at the same angle 26. If the (hjtj,^) planes have a

high reflecting power, this reflection may be so strong that it may be taken

for an fcjJMi reflection of the Ka wavelength. Apparently the only sure

way of eliminating this possibility is to use balanced filters.

(2) The crystal structure of the material being investigated may be such

that a set of planes, (h3kM, has very nearly the same spacing as the

(hikili) planes. The Ka reflections of these two sets will therefore occur

at very nearly the same angle 26. If the counter is set to receive the hik^i

reflection, then there is a possibility that some of the feaMs reflection may
also be received, especially in the transmission method for which a wide

receiving slit is used. The best way out of this difficulty is to select another

reflection, A4fc4/4 ,
well separated from its neighbors, and construct an

A4fc4/4 pole figure instead of an ftiMi- (It is not advisable to attempt to

exclude the unwanted hjc^ reflection by narrowing the slits. If this is

done, then the counter may not receive the entire hik^i diffracted beam,

and if all of this beam is not received, Eq. (9-10) will no longer give the

correct value of R. If a narrow receiving slit must be used, then the varia-

tion of R with a must be determined experimentally. This determination

requires a specimen of the same material as that under investigation, with
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the same value of \d and a perfectly random orientation of its constituent

grains.)

One other point about pole-figure determinations should be mentioned,

and that is the necessity for integrating devices when the grain size of the

specimen is large, as in recrystallized metals and alloys. With such speci-

mens, the incident x-ray beam will not strike enough grains to give a good

statistical average of the orientations present. This is true of both methods,

the photographic and the diffractometer. With coarse-grained specimens

it is therefore necessary to use some kind of integrating device, which will

move the specimen back and forth, or in a spiral, in its own plane and so

expose a larger number of grains to the incident beam.

Pole-figure determination is by no means a closed subject, and varia-

tions and improvements are constantly being described in the technical

literature. The most interesting among these are devices for the auto-

matic plotting of pole figures by the diffractometer method. Jn these de-

vices, the specimen is slowly rotated about the various axes by a mechan-

ical drive, and the output of the counter-ratemeter circuit is fed to a

recorder whose chart is driven in synchronism with the rotation of the

specimen. The chart may be either of the simple strip variety, or even a

circular pole-figure chart on which the recorder prints selected levels of

pole density at the proper positions. The time is probably not far off when

most pole figures will be determined in an automatic or semi-automatic

manner, at least in the larger laboratories.

TABLE 9-2

Appearance of diffraction lines Condition of specimen

Continuous

Spotty

Narrow (1)

Broad (1)

Uniform intensity

Nonuniform intensity

Fine-grained (or coarse-grained and

cold-worked)

Coarse-grained

Strain-free

Residual stress and possibly small particle

size (if specimen is a solid aggregate)

Small particle size (if specimen is a

brittle powder)

Random orientation (2)

Preferred orientation

Notes:

(1) Best judged by noting whether or not the Ka doublet is resolved in back re-

flection.

(2) Or possibly presence of a fiber texture, if the incident beam is parallel to the
fiber axis.
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9-10 Summary. In this chapter we have 'considered various aspects

of the structure of polycrystalline aggregates and the quantitative effects

of variations in crystal size, perfection, and orientation on the diffraction

pattern. Although a complete investigation of the structure of an aggre-

gate requires a considerable amount of time and rather complex apparatus,

the very great utility of the simple pinhole photograph should not be over-

looked. It is surprising how much information an experienced observer

can obtain simply by inspection of a pinhole photograph, without any

knowledge of the specimen, i.e., without knowing its chemical identity,

crystal structure, or even whether it is amorphous or crystalline. The

latter point can be settled at a glance, since diffraction lines indicate crys-

tallinity and broad haloes an amorphous condition. If the specimen is

crystalline, the conclusions that can be drawn from the appearance of the

lines are summarized in Table 9-2.

PROBLEMS

9-1. A cold-worked polycrystalline piece of metal, having a Young's modulus of

30,000,000 psi, is examined with Cu Ka radiation. A diffraction line occurring at

28 = 150 is observed to be 1.28 degrees 28 broader than the same line from a

recrystallized specimen. If this broadening is assumed to be due to residual micro-

stresses varying from zero to the yield point both in tension and compression,

what is the yield point of the material?

9-2. If the observed broadening given in Prob. 9-1 is ascribed entirely to a frag-

mentation of the grains into small crystal particles, what is the size of these par-

ticles?

9-3. For given values of 6 and /x, which results in a greater effective depth of

x-ray penetration, a back-reflection pinhole camera or a diffractometer?

9-4. Assume that the effective depth of penetration of an x-ray beam is that

thickness of material which contributes 99 percent of the total energy diffracted

by an infinitely thick specimen. Calculate the penetration depth in inches for a

low-carbon steel specimen under the following conditions:

(a) Diffractometer; lowest-angle reflection; Cu Ka radiation.

(6) Diffractometer; highest-angle reflection; Cu Ka radiation.

(c) Diffractometer; highest-angle reflection; Cr Ka radiation.

(d) Back-reflection pinhole camera; highest-angle reflection; Cr Ka radiation.

9-6. (a) A transmission pinhole photograph is made of a sheet specimen of

thickness t and linear absorption coefficient p. Show that the fraction of the total

diffracted energy in any one reflection contributed by a layer of thickness w is

given by
_ tt(x+(t x)/6O6 2ff\T0 nw(l l/cos 29) I]

TTT I? Jw =

where x is the distance to the side of the layer involved, measured from the side

of the specimen on which the primary beam is incident.
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(b) A transmission pinhole photograph is made of a sheet of aluminum 0.5 mm
thick with Cu Ka radiation. Consider only the 111 reflection which occurs at

26 = 38.4. Imagine the sheet to be divided into four layers, the thickness of

each being equal to one-fourth of the total thickness. Calculate W for each layer.

9-6. A transmission pinhole pattern is made with Co Ka radiation of an iron

wire having an almost perfect [110] fiber texture. The wire axis is vertical. How
many high-intensity maxima will appear on the lowest-angle 110 Debye ring and

what are their azimuthal angles on the film?



CHAPTER 10

THE DETERMINATION OF CRYSTAL STRUCTURE

10-1 Introduction. Since 1913, when W. L. Bragg solved the struc-

ture of NaCl, the structures of some five thousand crystals, organic and

inorganic, have been determined. This vast body of knowledge is of funda-

mental importance in such fields as crystal chemistry, solid-state physics,

and the biological sciences because, to a large extent, structure determines

properties and the properties of a substance are never fully understood

until its structure is known. In metallurgy, a knowledge of crystal struc-

ture is a necessary prerequisite to any understanding of such phenomena
as plastic deformation, alloy formation, or phase transformations.

The work of structure determination goes on continuously since there

is no dearth of unsolved structures. New substances are constantly being

synthesized, and the structures of many old ones are still unknown. In

themselves crystal structures vary widely in complexity: the simplest can

be solved in a few hours, while the more complex may require months or

even years for their complete solution. (Proteins form a notable example
of the latter kind; despite intensive efforts of many investigators, their

structure has not yet been completely determined.) Complex structures

require complex methods of solution, and structure determination in its

entirety is more properly the subject of a book than of a single chapter.

All we can do here is to consider some of the principles involved and how

they can be applied to the solution of fairly simple structures. Moreover,

we will confine our attention to the methods of determining structure from

powder patterns alone, because such patterns are the kind most often en-

countered by the metallurgist.

The basic principles involved in structure determination have already

been introduced in Chaps. 3 and 4. We saw there that the crystal struc-

ture of a substance determines the diffraction pattern of that substance or,

more specifically, that the shape and size of the unit cell determines the

angular positions of the diffraction lines, and the arrangement of the atoms

within the unit cell determines the relative intensities of the lines. It may
be worthwhile to state this again in tabular form :

Crystal structure Diffraction pattern

Unit cell <- Line positions

Atom positions <-> Line intensities

297
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Since structure determines the diffraction pattern, it should be possible to

go in the other direction and deduce the structure from the pattern. It is

possible, but not in any direct manner. Given a structure, we can calculate

its diffraction pattern in a very straightforward fashion, and examples of

such calculations were given in Sec. 4-13; but the reverse problem, that

of directly calculating the structure from the observed pattern, has never

been solved, for reasons to be discussed in Sec. 10-8. The procedure

adopted is essentially one of trial and error. On the basis of an educated

guess, a structure is assumed, its diffraction pattern calculated, and the

calculated pattern compared with the observed one. If the two agree in

all detail, the assumed structure is correct; if not, the process is repeated

as often as is necessary to find the correct solution. The problem is not

unlike that of deciphering a code, and requires of the crystallographer the

same qualities possessed by a good cryptanalyst, namely, knowledge,

perseverance, and not a little intuition.

The determination of an unknown structure proceeds in three major

steps:

(1) The shape and size of the unit cell are deduced from the angular

positions of the diffraction lines. An assumption is first made as to which

of the seven crystal systems the unknown structure belongs to, and then,

on the basis of this assumption, the correct Miller indices are assigned to

each reflection. This step is called "indexing the pattern" and is only

possible when the correct choice of crystal system has been made. Once

this is done, the shape of the unit cell is known (from the crystal system),

and its size is calculable from the positions and Miller indices of the dif-

fraction lines.

(2) The number of atoms per unit cell is then computed from the shape

and size of the unit cell, the chemical composition of the specimen, and its

measured density.

(3) Finally, the positions of the atoms within the unit cell are deduced

from the relative intensities of the diffraction lines.

Only when these three steps have been accomplished is the structure

determination complete. The third step is generally the most difficult,

and there are many structures which are known only incompletely, in the

sense that this final step has not yet been made. Nevertheless, a knowl-

edge of the shape and size of the unit cell, without any knowledge of atom

positions, is in itself of very great value in many applications.

The average metallurgist is rarely, if ever, called upon to determine an

unknown crystal structure. If the structure is at all complex, its deter-

mination is a job for a specialist in x-ray crystallography, who can bring

special techniques, both experimental and mathematical, to bear on the

problem. The metallurgist should, however, know enough about structure
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determination to unravel any simple structures he may encounter and,

what is more important, he must be able to index the powder patterns of

substances of known structure, as this is a routine problem in almost all

diffraction work. The procedures given below for indexing patterns are

applicable whether the structure is known or not, but they are of course

very much easier to apply if the structure is known beforehand.

10-2 Preliminary treatment of data. The powder pattern of the un-

known is obtained with a Debye-Scherrer camera or a diffractometer, the

object being to cover as wide an angular range of 26 as possible. A camera

such as the Seemann-Bohlin, which records diffraction lines over only a

limited angular range, is of very little use in structure analysis. The speci-

men preparation must ensure random orientation of the individual par-

ticles of powder, if the observed relative intensities of the diffraction lines

are to have any meaning in terms of crystal structure. After the pattern

is obtained, the value of sin
2
6 is calculated for each diffraction line; this

set of sin
2
6 values is the raw material for the determination of cell size

and shape.

Since the problem of structure determination is one of finding a struc-

ture which will account for all the lines on the pattern, in both position

and intensity, the investigator must make sure at the outset that the ob-

served pattern does not contain any extraneous lines. The ideal pattern

contains lines formed by x-rays of a single wavelength, diffracted only by
the substance whose structure is to be determined. There are therefore

two sources of extraneous lines:

(1) Diffraction of x-rays having wavelengths different from that of the prin-

cipal component of the radiation. If filtered radiation is used, then Ka
radiation is the principal component, and characteristic x-rays of any
other wavelength may produce extraneous lines. The chief offender is

Kf$ radiation, which is never entirely removed by a filter and may be a

source of extraneous lines when diffracted by lattice planes of high reflect-

ing power. The presence of K0 lines on a pattern can usually be revealed

by calculation, since if a certain set of planes reflect K/3 radiation at an

angle fy, they must also reflect Ka radiation at an angle a (unless a ex-

ceeds 90), and one angle may be calculated from the other. It follows

from the Bragg law that

(

X 2

sin
2

a , (10-1)

where X#a
2
/Xx/3

2
has a value near 1.2 for most radiations. If it is sus-

pected that a particular line is due to K$ radiation, multiplication of its

sin
2

value by X/ra
2
/A#0

2
will give a value equal, or nearly equal, to the
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value of sin
2
8 for some Ka line on the pattern, unless the product exceeds

unity. The K0 line corresponding to a given Ka line is always located at a

smaller angle 26 and has lower intensity. However, since Ka and Kfl

lines (from different planes) may overlap on the pattern, Eq. (10-1) alone

can only establish the possibility that a given line is due to Kft radiation,

but it can never prove that it is. Another possible source of extraneous

lines is L characteristic radiation from tungsten contamination on the

target of the x-ray tube, particularly if the tube is old. If such contamina-

tion is suspected, equations such as (10-1) can be set up to test the possi-

bility that certain lines are due to tungsten radiation.

(2) Diffraction by substances other than the unknown. Such substances

are usually impurities in the specimen but may also include the specimen
mount or badly aligned slits. Careful specimen preparation and good ex-

perimental technique will eliminate extraneous lines due to these causes.

For reasons to be discussed in Chap. 11, the observed values of sin
2

always contain small systematic errors. These errors are not large enough
to cause any difficulty in indexing patterns of cubic crystals, but they can

seriously interfere with the determination of some noncubic structures.

The best method of removing such errors from the data is to calibrate the

camera or diffractometer with a substance of known lattice parameter,
mixed with the unknown. The difference between the observed and calcu-

0.008 -

2 0.4 6 0.8 1

sm2 (observed)

FIG. 10-1. An example of a correction curve for sin2 6 values.

lated values of sin
2

for the standard substance gives the error in sin
2

6,

and this error can be plotted as a function of the observed values of sin
2

6.

Figure 10-1 shows a correction curve of this kind, obtained with a par-
ticular specimen and a particular Debye-Scherrer camera.* The errors

represented by the ordinates of such a curve can then be applied to each
of the observed values of sin

2
6 for the diffraction lines of the unknown

substance. For the particular determination represented by Fig. 10-1,
the errors shown are to be subtracted from the observed values.

* For the shape of this curve, see Prob. 11-5.
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10-3 Indexing patterns of cubic crystals. A cubic crystal gives dif-

fraction lines whose sin
2
6 values satisfy the following equation, obtained

by combining the Bragg law with the plane-spacing equation for the cubic

system:

sin
2
B sin

2
B X

2

Since the sum s = (h? + k2 + I
2
) is always integral and A2

/4a
2

is a con-

stant for any one pattern, the problem of indexing the pattern of a cubic

substance is one of finding a set of integers s which will yield a constant

quotient when divided one by one into the observed sin
2
6 values. (Certain

integers, such as 7, 15, 23, 28, 31, etc., are impossible because they cannot
be formed by the sum of three squared integers.) Once the proper integers
s are found, the indices hkl of each line can be written down by inspection
or from the tabulation in Appendix 6.

The proper integers s can be determined by means of the C and D scales

of an ordinary slide rule, which permit simultaneous division of one set of

numbers by another, if the quotient is constant. Pencil marks correspond-

ing to the sin
2

values of the first five or six lines on the pattern are placed
on the D scale. A single setting of the C scale is then sought which will

bring a set of integers on the C scale into coincidence with all the pencil
marks on the D scale. Because of the systematic errors mentioned earlier,

these coincidences are never exact, but they are usually close enough to per-
mit selection of the proper integer, particularly if the C scale is shifted

slightly from line to line to compensate for the systematic errors in sin
2

6. If

a set of integers satisfying Eq. (10-2) cannot be found, then the substance

involved does not belong to the cubic system, and other possibilities (tetrag-

onal, hexagonal, etc.) must be explored.

The following example will illustrate the steps involved in indexing the

pattern of a cubic substance and finding its lattice parameter. In this

particular example, Cu Ka radiation was used and eight diffraction lines

were observed. Their sin
2

values are listed in the second column of

Table 10-1. By means of a slide rule, the integers s listed in the third

column were found to produce the reasonably constant quotients listed in

the fourth column, when divided into the observed sin
2

values. The
fifth column lists the lattice parameter calculated from each line position,
and the sixth column gives the Miller indices of each line. The systematic
error in sin

2
6 shows up as a gradual decrease in the value of X2/4a

2
,
and a

gradual increase in the value of a, as 8 increases. We shall find in Chap. 11

that the systematic error decreases as increases; therefore we can select

the value of a for the highest-angle line, namely, 3.62A, as being the most
accurate of those listed. Our analysis of line positions therefore leads to
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TABLE 10-1

the conclusion that the substance involved, copper in this case, is cubic in

structure with a lattice parameter of 3.62A.

We can also determine the Bravais lattice of the specimen by observing
which lines are present and which absent. Examination of the sixth col-

umn of Table 10-1 shows that all lines which have mixed odd and even

indices, such as 100, 110, etc., are absent from the pattern. Reference to

the rules relating Bravais lattices to observed and absent reflections, given
in Table 4-1, shows that the Bravais lattice of this specimen is face-

centered. We now have certain information about the arrangement of

atoms within the unit cell, and it should be noted that we have had to make
use of observed line intensities in order to obtain this information. In

this particular case, the observation consisted simply in noting which

lines had zero intensity.

Each of the four common cubic lattice types is recognizable by a charac-

teristic sequence of diffraction lines, and these in turn may be described

by their sequential s values:

Simple cubic: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, ...

Body-centered cubic: 2, 4, 6, 8, 10, 12, 14, 16, ...

Face-centered cubic: 3, 4, 8, 11, 12, 16, ...

Diamond cubic: 3, 8, 11, 16, ...

The same information is tabulated in Appendix 6 and shown graphically
in Fig. 10-2, in the form of calculated diffraction patterns. The calcula-

tions are made for Cu Ka radiation and a lattice parameter a of 3.50A.

The positions of all the diffraction lines which would be formed under
these conditions are indicated as they would appear on a film or chart of

the length shown. (For comparative purposes, the pattern of a hexagonal

close-packed structure is also illustrated, since this structure is frequently



FIG. 10-2. Calculated diffraction patterns for various lattices, s ti
2 + k2 + I

2
.

encountered among metals and alloys. The line positions are calculated

for CuKa radiation, a = 2.50A, and c/a =
1.633, which corresponds to

the close packing of spheres.)

Powder patterns of cubic substances can usually be distinguished at a

glance from those of noncubic substances, since the latter patterns nor-
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mally contain many more lines. In addition, the Bravais lattice can usu-

ally be identified by inspection: there is an almost regular sequence of

lines in simple cubic and body-centered cubic patterns, but the former

contains almost twice as many lines, while a face-centered cubic pattern

is characterized by a pair of lines, followed by a single line, followed by a

pair, another single line, etc.

The problem of indexing a cubic pattern is of course very much sim-

plified if the substance involved is known to be cubic and if the lattice

parameter is also known. The simplest procedure then is to calculate the

value of (\
2
/4a

2
) and divide this value into the observed sin

2
6 values to

obtain the value of s for each line.

There is one difficulty that may arise in the interpretation of cubic powder pat-

terns, and that is due to a possible ambiguity between simple cubic and body-

centered cubic patterns. There is a regular sequence of lines in both patterns up

to the sixth line; the sequence then continues regularly in body-centered cubic

patterns, but is interrupted in simple cubic patterns since s = 7 is impossible.

Therefore, if X is so large, or a so small, that six lines or less appear on the pattern,

the two Bravais lattices are indistinguishable. For example, suppose that the

substance involved is actually body-centered cubic but the investigator mistakenly

indexes it as simple cubic, assigning the value s = 1 to the first line, s = 2 to the

second line, etc. He thus obtains a value of X 2
/4a

2 twice as large as the true one,

and a value of a which is l/\/2 times the true one. This sort of difficulty can be

avoided simply by choosing a wavelength short enough to produce at least seven

lines on the pattern.

10-4 Indexing patterns of noncubic crystals (graphical methods). The

problem of indexing powder patterns becomes more difficult as the number

of unknown parameters increases. There is only one unknown parameter

for cubic crystals, the cell edge a, but noncubic crystals have two or more,

and special graphical and analytical techniques have had to be devised in

order to index the patterns of such crystals.

The tetragonal system will be considered first. The plane-spacing equa-

tion for this system involves two unknown parameters, a and c:

I h
2 + k

2
I
2

-5- + T (10-3)
d2 a

2
c
2

This may be rewritten in the form

i
-![(* + *") + _

d2 a2 L (c/o)
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or

r i
2

i
2 log d = 2 log a - log (h

2 + k2 ) + (10-4)
L (c/a)

2
J

Suppose we now write Eq. (10-4) for any two planes of a tetragonal crys-

tal, distinguishing the two planes by subscripts 1 and 2, and then subtract

the two equations. We obtain

= -
log

[
L

2 log d,
- 2 log d2

= -
log (V + fc,

2
) +

(c/a)
2

2

r^ + fc2
2
) + -A- 1 .

L (c/arj

This equation shows that the difference between the 2 log d values for any
two planes is independent of a and depends only on the axial ratio c/a and

the indices hkl of each plane. This fact was used by Hull and Davey as

the basis for a graphical method of indexing the powder patterns of tetrag-

onal crystals.

The construction of a Hull-Davey chart is illustrated in Fig. 10-3. First,

the variation of the quantity [(/i
2 + k2 ) + l

2
/(c/a)

2
]
with c/a is plotted

on two-range semilog paper for particular values of hkl. Each set of indices

hkl, as long as they correspond to planes of different spacing, produces a

different curve, and when I = the curve is a straight line parallel to the

c/a axis. Planes of different indices but the same spacing, such as (100)

and (010), are represented by the same curve on the chart, which is then

marked with the indices of either one of them, in this case (100). [The

chart shown is for a simple tetragonal lattice; one for a body-centered

tetragonal lattice is made simply by omitting all curves for which

(h + k + I) is an odd number.] A single-range logarithmic d scale is then

constructed; it extends over two ranges of the [(h
2 + k

2
) + Z

2
/(c/a)

2
]

scale and runs in the opposite direction, since the coefficient of logd in

Eq. (10-4) is -2 times the coefficient of log [(h
2 + k2) + I

2
/(c/a)

2
]. This

means that the d values of two planes, for a given c/a ratio, are separated

by the same distance on the scale as the horizontal separation, at the same

c/a ratio, of the two corresponding curves on the chart.

The chart and scale are used for indexing in the following manner. The

spacing d of the reflecting planes corresponding to each line on the diffrac-

tion pattern is calculated. Suppose that the first seven of these values for

a particular pattern are 6.00, 4.00, 3.33, 3.00, 2.83, 2.55, and 2.40A. A
strip of paper is then laid alongside the d scale in position I of Fig. 10-3,

and the observed d values are marked off on its edge with a pencil. The
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paper strip is then placed on the chart and moved about, both vertically

and horizontally, until a position is found where each mark on the strip

coincides with a line on the chart. Vertical and horizontal movements

correspond to trying various c/a and a values, respectively, and the only

restriction on these movements is that the edge of the strip must always

be horizontal. When a correct fit has been obtained, as shown by posi-

tion II of Fig. 10-3, the indices of each line are simply read from the corre-

sponding curves, and the approximate value of c/a from the vertical

position of the paper strip. In the present example, the c/a ratio is 1.5

and the first line on the pattern (formed by planes of spacing 6.00A) is a

001 line, the second a 100 line, the third a 101 line, etc. After all the lines

have been indexed in this way, the d values of the two highest-angle lines

are used to set up two equations of the form of Eq. (10-3), and these are

solved simultaneously to yield the values of a and c. From these values,

the axial ratio c/a may then be calculated with more precision than it can

be found graphically.

Figure 10-3 is only a partial Hull-Davey chart. A complete one, show-

ing curves of higher indices, is reproduced on a small scale in Fig. 10-4,

which applies to body-centered tetragonal lattices. Note that the curves

of high indices are often so crowded that it is difficult to assign the proper

indices to the observed lines. It then becomes necessary to calculate the

indices of these high-angle lines on the basis of a and c values derived from

the already indexed low-angle lines.

Some Hull-Davey charts, like the one shown in Fig. 10-4, are designed

for use with sin
2
6 values rather than d values. No change in the chart

itself is involved, only a change in the accompanying scale. This is possible

because an equation similar to Eq. (10-4) can be set up in terms of sin
2
8

rather than d, by combining Eq. (10-3) with the Bragg law. This equa-

tion is

log sin
2 = log 2

+ log [ (h
2 + k2 ) + -^T4a2 L (c/a

The sin
2
6 scale is therefore a two-range logarithmic one (from 0.01 to 1.0),

equal in length to the two-range [(h
2 + fc

2
) + I

2
/(c/a)

2
] scale on the charl

and running in the same direction. A scale of this kind appears at the top

of Fig. 10-3.

When the c/a ratio becomes equal to unity, a tetragonal cell becomes

cubic. It follows that a cubic pattern can be indexed on a tetragonal Hull-

Davey chart by keeping the paper strip always on the horizontal line corre-

sponding to c/a = 1. This is seldom necessary because a slide rule wil

serve just as well. However, it is instructive to consider a tetragonal eel

as a departure from a cubic one and to examine a Hull-Davey chart ii
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10-4. Complete Hull-Davey chart for body-centered tetragonal lattices.
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that light, since the chart shows at a glance how the powder pattern

changes for any given change in the c/a ratio. It shows, for example, how
certain lines split into two as soon as the c/a ratio departs from unity, and

how even the order of the lines on the pattern can change with changes

in c/a.

Another graphical method of indexing tetragonal patterns has been de-

vised by Bunn. Like the Hull-Davey chart, a Bunn chart consists of a

network of curves, one for each value of hkl, but the curves are based on

somewhat different functions of hkl and c/a than those used by Hull and

Davey, with the result that the curves are less crowded in certain regions

of the chart. The Bunn chart is accompanied by a logarithmic scale of d

values, and the combination of chart and scale is used in exactly the same

way as a Hull-Davey chart and scale.

Patterns of hexagonal crystals can also be indexed by graphical methods,
since the hexagonal unit cell, like the tetragonal, is characterized by two

variable parameters, a and c. The plane-spacing equation is

1 _ 4 h2 + hk + k2
I
2

d*

=
3 tf

+
72

'

After some manipulation, this becomes

21ogd = 21oga -
log \- (h

2 + hk + k2) + -4-
L3 (c/a

which is of exactly the same form as Eq. (10-4) for the tetragonal system.

A Hull-Davey chart for the hexagonal system can therefore be constructed

by plotting the variation of log [ (h
2 + hk + k

2
) + I

2
/(c/a)

2
] with c/a.

A Bunn chart may also be constructed for this system. Special charts for

hexagonal close-packed lattices may also be prepared by omitting all

curves for which (h + 2k) is an integral multiple of 3 and I is odd.

Figure 3-13(c), the powder pattern of zinc made with Cu Ka radiation,

will serve to illustrate how the pattern of a hexagonal substance is indexed.

Thirteen lines were observed on this pattern ;
their sin

2
6 values and rela-

tive intensities are listed in Table 10-2, A fit was obtained on a Hull-

Davey chart for hexagonal close-packed lattices at an approximate c/a

ratio of 1.87. The chart lines disclosed the indices listed in the fourth

column of the table. In the case of line 5, two chart lines (10-3 and 11-0)

almost intersect at c/a = 1.87, so the observed line is evidently the sum
of two lines, almost overlapping, one from the (10-3) planes and the other

from (11 -0) planes. The same is true of line 11. Four lines on the chart,

namely, 20-0, 10-4, 21-0, and 20-4, do not appear on the pattern, and it

must be inferred that these are too weak to be observed. On the other

hand, all the observed lines are accounted for, so we may conclude that



310 THE DETERMINATION OF CRYSTAL STRUCTURE

TABLE 10-2

[CHAP. 10

the lattice of zinc is actually hexagonal close-packed. The next step is to

calculate the lattice parameters. Combination of the Bragg law and the

plane-spacing equation gives

(h
2 + hk + k2 ) 1

2 ~

20 = _ -sm" = -1-
C
2
\

where X
2
/4 has a value of 0.595A2

for Cu Ka radiation. Writing this

equation out for the two highest-angle lines, namely, 12 and 13, we obtain:

. , 7
0.806 = 0.595 ( r i + -

0.879 = 0.595 {--= + -;

Simultaneous solution of these two equations gives a = 2.66A, c = 4.95A,

and c/a = 1.86.

Rhombohedral crystals are also characterized by unit cells having two

parameters, in this case a and a. No new chart is needed, however, to

index the patterns of rhombohedral substances, since, as mentioned in

Sec. 2-4, any rhombohedral crystal may be referred to hexagonal axes. A

hexagonal Hull-Davey or Bunn chart may therefore be used to index the

pattern of a rhombohedral crystal. The indices so found will, of course,

refer to a hexagonal cell, and the method of converting them to rhombo-

hedral indices is described in Appendix 2.

We can conclude that the pattern of any two-parameter crystal (tetrag-

onal, hexagonal, or rhombohedral) can be indexed on the appropriate Hull-

Davey or Bunn chart. If the structure is known, the procedure is quite

straightforward. The best method is to calculate the c/a ratio from the
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known parameters, lay a straightedge on the chart to discover the proper

line sequence for this value of c/a, calculate the value of sin
2
6 for each line

from the indices found on the chart, and then determine the indices of

the observed lines by a comparison of calculated and observed sin
2
6

values.

If the structure is unknown, the problem of indexing is not always so

easy as it seems in theory. The most common source of trouble is the

presence of extraneous lines, as defined in Sec. 10-2, in the observed pat-

tern. Such lines can be very confusing and, if any difficulty in indexing

is encountered, every effort should be made to eliminate them from the

pattern, either experimentally or by calculation. In addition, the ob-

served sin
2
6 values usually contain systematic errors which make a simul-

taneous fit of all the pencil marks on the paper strip to curves on the chart

impossible, even when the paper strip is at the correct c/a position. Be-

cause of these errors, the strip has to be shifted slightly from line to line

in order to make successive pencil marks coincide with curves on the chart.

Two important rules must always be kept in mind when using Hull-Davey
or Bunn charts:

(1) Every mark on the paper strip must coincide with a curve on the

chart, except for extraneous lines. A structure which accounts for only a

portion of the observed lines is not correct : all the lines in the pattern must

be accounted for, either as due to the structure of the substance involved

or as extraneous lines.

(2) There need not be a mark on the paper strip for every curve on the

chart, because some lines may have zero intensity or be too weak to be

observed.

Orthorhombic, monoclinic, and triclinic substances yield powder pat-

terns which are almost impossible to index by graphical methods, although

the patterns of some orthorhombic crystals have been indexed by a com-

bination of graphical and analytical methods. The essential difficulty is

the large number of variable parameters involved. In the orthorhombic

system there are three such parameters (a, b, c), in the monoclinic four

(a, b, c, 0), and in the triclinic six (a, b, c, a, 0, 7). If the structure is known,

patterns of substances in these crystal systems can be indexed 6y com-

parison of the observed sin
2
B values with those calculated for all possible

values of hkl.

10-5 Indexing patterns of noncubic crystals (analytical methods).

Analytical methods of indexing involve arithmetical manipulation of the

observed sin
2
6 values in an attempt to find certain relationships between

them. Since each crystal system is characterized by particular relation-

ships between sin
2

values, recognition of these relationships identifies

the crystal system and leads to a solution of the line indices.
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For example, the sin
2
6 values in the tetragonal system must obey the

relation:

sin
2 = A(h

2 + k2) + Cl
2

, (10-7)

where A (
= X

2
/4a

2
) and C (

= X
2
/4c

2
) are constants for any one pattern.

The problem is to find these constants, since, once found, they will disclose

the cell parameters a and c and enable the line indices to be calculated.

The value of A is obtained from the hkO lines. When / = 0, Eq. (10-7)

becomes

sin
2 - A(h

2 + k2).

The permissible values of (h
2 + k2) are 1, 2, 4, 5, 8, etc. Therefore the

hkO lines must have sin
2
6 values in the ratio of these integers, and A will

be some number which is 1, ^, f , ^, , etc., times the sin
2
6 values of these

lines. C is obtained from the other lines on the pattern and the use of

Eq. (10-7) in the form

k2)
= Cl2 .

Differences represented by the left-hand side of the equation are set up,

for various assumed values of h and k, in an attempt to find a consistent

set of Cl
2
values, which must be in the ratio 1, 4, 9, 16, etc. Once these

values are found, C can be calculated.

For hexagonal crystals, an exactly similar procedure is used. In this

case, sin
2
8 values are given by

where A = X2
/3a

2 and C = X
2
/4c

2
. Permissible values of (h

2 + hk + k2 )

are tabulated in Appendix 6; they are 1, 3, 4, 7, 9, etc. The indexing pro-

cedure is best illustrated by means of a specific example, namely, the pow-
der pattern of zinc, whose observed sin

2
8 values are listed in Table 10-2.

We first divide the sin
2
8 values by the integers 1, 3, 4, etc., and tabulate

the results, as shown by Table 10-3, which applies to the first six lines of

the pattern. We then examine these numbers, looking for quotients which

are equal to one another or equal to one of the observed sin
2
8 values. In

TABLE 10-3
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this case, the two starred entries, 0.112 and 0.111, are the most nearly

equal, so we assume that lines 2 and 5 are hkO lines. We then tentatively

put A =0.112 which is equivalent to saying that line 2 is 100. Since the

sin
2
6 value of line 5 is very nearly 3 times that of line 2, line 5 should be

1 10. To find the value of C, we must use the equation

sin
2 0- A(h

2 + hk + k2 )
= Cl

2
.

We now subtract from each sin
2
6 value the values of A (= 0.112),

34 (= 0.336), 4A (= 0.448), etc., and look for remainders (Cl
2
) which

are in the ratio of 1, 4, 9, 16, etc. These figures are given in Table 10-4.

Here the five starred entries are of interest, because these numbers (0.024,

0.097, 0.221, and 0.390) are very nearly in the ratio 1, 4, 9, and 16. We
therefore put 0.024 = C(l)

2
,
0.097 = C(2)

2
,
0.221 = C(3)

2
,
and 0.390 =

C(4)
2

. This gives C = 0.024 and immediately identifies line 1 as 002 and

line 6 as 004. Since line 3 has a sin
2

value equal to the sum of A and C,

its indices must be 101. Similarly, the indices of lines 4 and 5 are found

to be 102 and 103, respectively. In this way, indices are assigned to all

the lines on the pattern, and a final check on their correctness is made in

the usual manner, by a comparison of observed and calculated sin
2

values.

In the orthorhombic system, the basic equation governing the sin
2

values is

sin
2
6 = Ah2 + Bk2 + Cl

2
.

The indexing problem is considerably more difficult here, in that three

unknown constants, A, B, and C, have to be determined. The general

procedure, which is too lengthy to illustrate here, is to search for signifi-

cant differences between various pairs of sin
2
6 values. For example, con-

sider any two lines having indices hkO and hkl, with hk the same for each,

such as 120 and 121
;
the difference between their sin

2
values is C. Sim-

ilarly, the difference between the sin
2

values of two lines such as 310 and

312 is 4C, and so on. If the structure is such that there are many lines

missing from the pattern, because of a zero structure factor for the corre-

sponding planes, then the difficulties of indexing are considerably increased,

inasmuch as the missing lines may be the very ones which would supply
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the most easily recognized clues if they were present. Despite such diffi-

culties, this analytical method has been applied successfully to a number

of orthorhombic patterns. One requisite for its success is fairly high accu-

racy in the sin
2
6 values (at least 0.0005), and the investigator should

therefore correct his observations for systematic errors before attempting

to index the pattern.

Monoclinic and triclinic substances yield powder patterns of great com-

plexity because the number of independent constants involved is now four

and six, respectively. No generally successful method, either analytical

or graphical, of indexing such patterns has yet been devised.

We can therefore conclude that the powder pattern of a substance hav-

ing more than two independently variable cell parameters is extremely

difficult, if not impossible, to solve. The structures of such materials are

almost always determined by the examination of a single crystal, by either

the rotating-crystal method or one of its variations. With these methods

it is a relatively easy matter to determine the shape and size of an un-

known unit cell, no matter how low its symmetry. Many substances, of

course, are very difficult to prepare in single-crystal form, but, on the

other hand, if the substance involved is one of low symmetry, the time

spent in trying to obtain a single crystal is usually more fruitful than the

time spent in trying to solve the powder pattern. The single-crystal speci-

men need not be large: a crystal as small as 0.1 mm in any dimension can

be successfully handled and will give a satisfactory diffraction pattern.

Readers interested in these single-crystal methods will find them described

in some of the books listed in Chap. 18.

10-6 The effect of cell distortion on the powder pattern. At this point

we might digress slightly from the main subject of this chapter, and exam-

ine some of the changes produced in a powder pattern when the unit cell

of the substance involved is distorted in various ways. As we have already

seen, there are many more lines on the pattern of a substance of low sym-

metry, such as triclinic, than on the pattern of a substance of high sym-

metry, such as cubic, and we may take it as a general rule that any distor-

tion of the unit cell which decreases its symmetry, in the sense of intro-

ducing additional variable parameters, will increase the number of lines on

the powder pattern.

Figure 10-5 graphically illustrates this point. On the left is the calcu-

lated diffraction pattern of the body-centered cubic substance whose unit

cell is shown at the top. The line positions are computed for a = 4.00A

and Cr Ka radiation. If this cell is expanded or contracted uniformly but

still remains cubic, the diffraction lines merely shift their positions but do

not increase in number, since no change in cell symmetry is involved.

However, if the cubic cell is distorted along only one axis, then it becomes
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FIG. 10-5. Effects of cell distortion on powder patterns,

position are connected by dashed lines.

Lines unchanged in

tetragonal, its symmetry decreases, and more diffraction lines are formed.

The center pattern shows the effect of stretching the cubic cell by 4 percent

along its [001] axis, so that c is now 4.16A. Some lines are unchanged in

position, some are shifted, and new lines have appeared. If the tetragonal
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cell is now stretched by 8 percent along its [010] axis, it becomes ortho-

rhombic, with a = 4.00A, b = 4.32A, and c = 4.16A, as shown on the

right. The result of this last distortion is to add still more lines to the pat-

tern. The increase in the number of lines is due essentially to the intro-

duction of new plane spacings, caused by nonuniform distortion. Thus,

in the cubic cell, the (200), (020), and (002) planes all have the same spac-

ing and only one line is formed, called the 200 line, but this line splits into

two when the cell becomes tetragonal, since now the (002) plane spacing

differs from the other two. When the cell becomes orthorhombic, all three

spacings are different and three lines are formed.

Changes of this nature are not uncommon among phase transformations

and ordering reactions. For example, the powder pattern of slowly cooled

plain carbon steel shows lines due to ferrite (body-centered cubic) and

cementite (FeaC, orthorhombic). When the same steel is quenched from

the austenite region, the phases present are martensite (body-centered

tetragonal) and, possibly, some untransformed austenite (face-centered

cubic). The a and c parameters of the martensite cell do not differ greatly

from the a parameter of the ferrite cell (see Fig. 12-5). The result is that

the diffraction pattern of a quenched steel shows pairs of martensite lines

occurring at about the same 20 positions as the individual lines of ferrite

in the previous pattern. If the quenched steel is now tempered, the mar-

tensite will ultimately decompose into ferrite and cementite, and each pair

of martensite lines will coalesce into a single ferrite line. Somewhat similar

effects can be produced in a copper-gold alloy having the composition repre-

sented by the formula AuCu. This alloy is cubic in the disordered state

but becomes either tetragonal or orthorhombic when ordered, depending
on the ordering temperature (see Sec. 13-3).

The changes produced in a powder pattern by cell distortion depend, in

degree, on the amount of distortion. If the latter is small, the pattern re-

tains the main features of the pattern of the original undistorted cell. Thus,
in Fig. 10-5, the nineteen lines of the orthorhombic pattern fall into the six

bracketed groups shown, each group corresponding to one of the single

lines on the cubic pattern. In fact, an experienced crystallographer, if

confronted with this orthorhombic pattern, might recognize this grouping
and guess that the unit cell of the substance involved was not far from

cubic in shape, and that the Bravais lattice was either simple or body-

centered, since the groups of lines are spaced in a fairly regular manner.

But if the distortion of the cubic cell had been much larger, each line of

the original pattern would split into such widely separated lines that no

features of the original pattern would remain.

10-7 Determination of the number of atoms in a unit cell. To return

to the subject of structure determination, the next step after establishing
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the shape and size of the unit cell is to find the number of atoms in that

cell, because the number of atoms must be known before their positions

can be determined. To find this number we use the fact that the volume

of the unit cell, calculated from the lattice parameters by means of the

equations given in Appendix 1, multiplied by the measured density of the

substance equals the weight of all the atoms in the cell. From Eq. (3-9),

we have
V

SA =
1.66020

where SA is the sum of the atomic weights of the atoms in the unit cell,

p is the density (gm/cm
3
), and V is the volume of the unit cell (A

3
). If the

substance is an element of atomic weight A ,
then

SA =

where HI is the number of atoms per unit cell. If the substance is a chem-

ical compound, or an intermediate phase whose composition can be repre-

sented by a simple chemical formula, then

ZA = n2M,

where n2 is the number of "molecules" per unit cell and M the molecular

weight. The number of atoms per cell can then be calculated from n2 and

the composition of the phase.

When determined in this way, the number of atoms per cell is always an

integer, within experimental error, except for a very few substances which

have "defect structures." In these substances, atoms are simply missing

from a certain fraction of those lattice sites which they would be expected

to occupy, and the result is a nonintegral number of atoms per cell. FeO

and the ft phase in the Ni-Al system are well-known examples.

10-8 Determination of atom positions. We now have to find the posi-

tions of a known number of atoms in a unit cell of known shape and size.

To solve this problem, we must make use of the observed relative inten-

sities of the diffracted beams, since these intensities are determined by

atom positions. In finding the atom positions, however, we must again

proceed by trial and error, because there is no known method of directly

calculating atom positions from observed intensities.

To see why this is so, we must consider the two basic equations involved,

namely,
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which gives the relative intensities of the reflected beams, and

N

F = ^fne
2 l(hu*+kvn+lw

n\ (4-11)
1

which gives the value of the structure factor F for the hkl reflection in terms

of the atom positions uvw. Since the relative intensity 7, the multiplicity

factor p, and the Bragg angle are known for each line on the pattern, we

can find the value of \F\ for each reflection from Eq. (4-12). But \F\ meas-

ures only the relative amplitude of each reflection, whereas in order to use

Eq. (4-11) for calculating atom positions, we must know the value of F,

which measures both the amplitude and phase of one reflection relative to

another. This is the crux of the problem. The intensities of two reflected

beams are proportional to the squares of their amplitudes but independent

of their relative phase. Since all we can measure is intensity, we can de-

termine amplitude but not phase, which means that we cannot compute

the structure factor but only its absolute value. Any method of avoiding

this basic difficulty would constitute the much-sought-after direct method

of structure determination. This difficulty appears to be insurmountable,

however, since no direct method, generally applicable to all structures, has

yet been devised, despite the large amount of effort devoted to the problem.

Atom positions, therefore, can be determined only by trial and error.

A set of atom positions is assumed, the intensities corresponding to these

positions are calculated, and the calculated intensities are compared with

the observed ones, the process being repeated until satisfactory agreement

is reached. The problem of selecting a structure for trial is not as hope-

lessly broad as it sounds, since the investigator has many aids to guide

him. Foremost among these is the accumulated knowledge of previously

solved structures. From these known structures he may be able to select

a few likely candidates, and then proceed on the assumption that his un-

known structure is the same as, or very similar to, one of these known ones.

A great many known structures may be classified into groups according to

the kind of bonding (ionic, covalent, metallic, or mixtures of these) which

holds the atoms together, and a selection among these groups is aided by a

knowledge of the probable kind of atomic bonding in the unknown phase,

as judged from the positions of its constituent elements in the periodic table.

For example, suppose the phase of unknown structure has the chemical

formula AB, where A is strongly electropositive and B strongly electro-

negative, and that its powder pattern is characteristic of a simple cubic

lattice. Then the bonding is likely to be ionic, and the CsCl structure is

strongly suggested. But the FeSi structure shown in Fig. 2-19 is also a

possibility. In this particular case, one or the other can be excluded by a

density measurement, since the CsCl cell contains one "molecule" and the

FeSi cell four. If this were not possible, diffracted intensities would have
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to be calculated on the basis of each cell and compared with the observed

ones. It is this simple kind of structure determination, illustrated by an

example in the next section, which the metallurgist should be able to carry

out unaided.

Needless to say, many structures are too complex to be solved by this

simple approach and the crystallographer must turn to more powerful

methods. Chief among these are space-group theory and Fourier series.

Although any complete description of these subjects is beyond the scope

of this book, a few general remarks may serve to show their utility in struc-

ture determination. The theory of space groups, one of the triumphs of

mathematical crystallography, relates crystal symmetry, on the atomic

scale, to the possible atomic arrangements which possess that symmetry.

For example, if a given substance is known to be hexagonal and to have n

atoms in its unit cell, then space-group theory lists all possible arrange-

ments of n atoms which will have hexagonal symmetry. This listing of

possible arrangements aids tremendously in the selection of trial struc-

tures. A further reduction in the number of possibilities can then be made

by noting the indices of the reflections absent from the diffraction pattern.

By such means alone, i.e., before any detailed consideration is given to

relative diffracted intensities, space-group theory can often exclude all but

two or three possible atomic arrangements.

A Fourier series is a type of infinite trigonometric series by which any

kind of periodic function may be expressed. Now the one essential prop-

erty of a crystal is that its atoms are arranged in space in a periodic fashion.

But this means that the density of electrons is also a periodic function of

position in the crystal, rising to a maximum at the point where an atom is

located and dropping to a low value in the region between atoms. To re-

gard a crystal in this manner, as a positional variation of electron density

rather than as an arrangement of atoms, is particularly appropriate where

diffraction is involved, in that x-rays are scattered by electrons and not

by atoms as such. Since the electron density is a periodic function of posi-

tion, a crystal may be described analytically by means of Fourier series.

This method of description is very useful in structure determination be-

cause it can be shown that the coefficients of the various terms in the series

are related to the F values of the various x-ray reflections. But such a

series is not of immediate use, since the structure factors are not usually

known both in magnitude and phase. However, another kind of series has

been devised whose coefficients are related to the experimentally observ-

able |F values and which gives, not electron density, but information re-

garding the various interatomic vectors in the unit cell. This information

is frequently enough to determine the phase of the various structure fac-

tors; then the first kind of series can be used to map out the actual electron

density throughout the cell and thus disclose the atom positions.
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10-9 Example of structure determination. As a simple example, we

will consider an intermediate phase which occurs in the cadmium-tellurium

system. Chemical analysis of the specimen, which appeared essentially

one phase under the microscope, showed it to contain 46.6 weight percent

Cd and 53.4 weight percent Te. This is equivalent to 49.8 atomic percent

Cd and can be represented by the formula CdTe. The specimen was re-

duced to powder and a diffraction pattern obtained with a Debye-Scherrer

camera and Cu Ka radiation.

The observed values of sin
2
6 for the first 16 lines are listed in Table 10-5,

together with the visually estimated relative line intensities. This pattern

can be indexed on the basis of a cubic unit cell, and the indices of the ob-

served lines are given in the table. The lattice parameter, calculated from

the sin
2
6 value for the highest-angle line, is 6.46A.

The density of the specimen, as determined by weighing a quantity of

the powder in a pyknometer bottle, was 5.82 gm/cm
3

. We then find, from

Eq. (3-9), that

^ j (5.82) (6.46)
3

1.66020
948.

Since the molecular weight of CdTe is 240.02, the number of "molecules"

per unit cell is 948/240.02 = 3.94, or 4, within experimental error.

At this point, we know that the unit cell of CdTe is cubic and that it

contains 4 "molecules" of CdTe, i.e., 4 atoms of cadmium and 4 atoms of

tellurium. We must now consider possible arrangements of these atoms

in the unit cell. First we examine the indices listed in Table 10-5 for evi-

dence of the Bravais lattice. Since die indices of the observed lines are all

TABLE 10-5
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unmixed, the Bravais lattice must be face-centered. (Not all possible sets

of unmixed indices are present, however: 200, 420, 600, 442, 622, and 640

are missing from the pattern. But these reflections may be too weak to be

observed, and the fact that they are missing does not invalidate our con-

clusion that the lattice is face-centered.) Now there are two common face-

centered cubic structures of the AB type, i.e., containing two different

atoms in equal proportions, and both contain four "molecules" per unit

cell: these are the NaCl structure [Fig. 2-18(b)] and the zinc-blende form

of ZnS [Fig. 2-19(b)]. Both of these are logical possibilities even though
the bonding in NaCl is ionic and in ZnS covalent, since both kinds of bond-

ing have been observed in telluride structures.

The next step is to calculate relative diffracted intensities for each struc-

ture and compare them with experiment, in order to determine whether

or not one of these structures is the correct one. If CdTe has the NaCl

structure, then its structure factor for unmixed indices [see Example (e)

of Sec. 4-6] is given by

F2 = 16(/cd + /Te)
2

,
if (h + k + I) is even,

F2 = 16(/cd
-

/Te)
2

,
if (h + k + I) is odd.

On the other hand, if the ZnS structure is correct, then the structure factor

for unmixed indices (see Sec. 4-13) is given by

\F\
2 = 16(/cd

2 + /Te
2
), if(h + k + l) is odd,

\F\
2 = 16(/cd

-
/Te)

2
,
if (h + k + I) is an odd multiple of 2, (10-9)

\F\
2 =

16(/cd + /Te)
2

,
if (h + k + I) is an even multiple of 2.

Even before making a detailed calculation of relative diffracted inten-

sities by means of Eq. (4-12), we can almost rule out the NaCl structure

as a possibility simply by inspection of Eqs. (10-8). The atomic numbers

of cadmium and tellurium are 48 and 52, respectively, so the value of

(fed + /Te)
2

is several hundred times greater than the value of (/cd /Te)
2

,

for all values of sin 0/X. Then, if CdTe has the NaCl structure, the 111

reflection should be very weak and the 200 reflection very strong. Actu-

ally, 111 is strong and 200 is not observed. Further evidence that the

NaCl structure is incorrect is given in the fourth column of Table 10-6,

where the calculated intensities of the first eight possible lines are listed:

there is no agreement whatever between these values and the observed in-

tensities.

On the other hand, if the ZnS structure is assumed, intensity calcula-

tions lead to the values listed in the fifth column. The agreement between

these values and the observed intensities is excellent, except for a few

minor inconsistencies among the low-angle reflections, and these are due

to neglect of the absorption factor. In particular, we note that the ZnS
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(N.B. Calculated intensities have been adjusted so that the 220

line has an intensity of 10.0 for both structures.)

structure satisfactorily accounts for all the missing reflections (200, 420,

etc.), since the calculated intensities of these reflections are all extremely
low. We can therefore conclude that CdTe has the structure of the zinc-

blende form of ZnS.

After a given structure has been shown to be in accord with the diffrac-

tion data, it is advisable to calculate the interatomic distances involved in

that structure. This calculation not only is of interest in itself, but serves

to disclose any gross errors that may have been made, since there is obvi-

ously something wrong with a proposed structure if it brings certain atoms

impossibly close together. In the present structure, the nearest neighbor
to the Cd atom at is the Te atom at \ \. The Cd-Te interatomic

distance is therefore \/3 a/4 = 2.80A. For comparison, we can calcu-

late a
"
theoretical" Cd-Te interatomic distance simply by averaging the

distances of closest approach in the pure elements. In doing this, we re-

gard the atoms as rigid spheres in contact, and ignore the effects of coordi-
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nation number and type of bonding on atom size. These distances of

closest approach are 2.98A in pure cadmium and 2.87A in pure tellurium,

the average being 2.93A. The observed Cd-Te interatomic distance is

2.80A, or some 4.5 percent smaller than the calculated value; this differ-

ence is not unreasonable and can be largely ascribed to the covalent bond-

ing which characterizes this structure. In fact, it is a general rule that the

A-B interatomic distance in an intermediate phase AxBj, is always some-

what smaller than the average distance of closest approach in pure A and

pure B, because the mere existence of the phase shows that the attractive

forces between unlike atoms is greater than that between like atoms. If

this were not true, the phase would not form.

PROBLEMS

10-1. The powder pattern of aluminum, made with Cu Ka radiation, contains

ten lines, whose sin
2 6 values are 0.1118, 0.1487, 0.294, 0.403, 0.439, 0.583, 0.691,

0.727, 0.872, and 0.981 . Index these lines and calculate the lattice parameter.

10-2. A pattern is made of a cubic substance with unfiltered chromium radia-

tion. The observed sin
2 6 values and intensities are 0.265(m), 0.321(vs), 0.528(w),

0.638(8) f 0.793(s), and 0.958(vs). Index these lines and state which are due to

Ka and which to K0 radiation. Determine the Bravais lattice and lattice param-
eter. Identify the substance by reference to Appendix 13.

10-3. Construct a Huil-Davey chart, and accompanying sin2 6 scale, for hex-

agonal close-packed lattices. Use two-range semilog graph paper, 8j X 11 in.

Cover a c/a range of 0.5 to 2.0, and plot only the curves 00-2, 10-0, 10-1, 10-2,

and 11-0.

10-4. Use the chart constructed in Prob. 10-3 to index the first five lines on the

powder pattern of a-titanium. With Cu Ka radiation, these lines have the fol-

lowing sin
2 B values: 0.091, 0.106, 0.117, 0.200, and 0.268.

In each of the following problems the powder pattern of an element is represented by

the observed &in
2 values of the first seven or eight lines on the pattern, made with

Cu Ka radiation. In each case, index the lines, find the crystal system, Bravais lattice,

and approximate lattice parameter (or parameters), and identify the ekment from the

tabulation given in Appendix 18.

10-5 10-6 10-7 10-8

0.0806 0.0603 0.1202 0.0768

0.0975 0.1610 0.238 0.0876

0.1122 0.221 0.357 0.0913

0.210 0.322 0.475 0.1645

0.226 0.383 0.593 0.231

0.274 0.484 0.711 0.274

0.305 0.545 0.830 0.308

0.321 0.645 0.319



CHAPTER 11

PRECISE PARAMETER MEASUREMENTS

11-1 Introduction. Many applications of x-ray diffraction require pre-

cise knowledge of the lattice parameter (or parameters) of the material

under study. In the main, these applications involve solid solutions; since

the lattice parameter of a solid solution varies with the concentration of

the solute, the composition of a given solution can be determined from a

measurement of its lattice parameter. Thermal expansion coefficients

can also be determined, without a dilatometer, by measurements of lattice

parameter as a function of temperature in a high-temperature camera. Or

the stress in a material may be determined by measuring the expansion or

contraction of its lattice as a result of that stress. Since, in general, a

change in solute concentration (or temperature, or stress) produces only

a small change in lattice parameter, rather precise parameter measure-

ments must be made in order to measure these quantities with any accu-

racy. In this chapter we shall consider the methods that are used to obtain

high precision, leaving the various applications to be discussed at a later

time. Cubic substances will be dealt with first, because they are the sim-

plest, but our general conclusions will also be valid for noncubic materials,

which will be discussed in detail later.

The process of measuring a lattice parameter is a very indirect one, and

is fortunately of such a nature that high precision is fairly easily obtainable.

The parameter a of a cubic substance

is directly proportional to the spacing

d of any particular set of lattice

planes. If we measure the Bragg

angle 6 for this set of planes, we can

use the Bragg law to determine d and,

knowing d, we can calculates. But

it is sin 0, not 0, which appears in the

Bragg law. Precision in d, or a, there-

fore depends on precision in sin 0, a

derived quantity, and not on precision

in 0, the measured quantity. This is

fortunate because the value of sin0

changes very slowly with in the

neighborhood of 90, as inspection of

Fig. 11-1 or a table of sines will show.

For this reason, a very accurate value

324
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6 (degrees)
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FIG. 11-1. The variation of sin

with 0. The error in sin caused by a

given error in decreases as increases

(A0 exaggerated).
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of sin can be obtained from a measurement of 6 which is itself not particu-

larly precise, provided that 6 is near 90. At = 85, for example, a 1

percent error in leads to an error in sin B of only 0.1 percent. Stated in

another way, the angular position of a diffracted beam is much more sensi-

tive to a given change in plane spacing when 6 is large than when it is small.

We can obtain the same result directly by differentiating the Bragg law

with respect to B. We obtain

= ~ cot0A0. (H-1)
d

In the cubic system,

a = dVh2 + k2 + I
2

.

Therefore
Aa Arf , - rts_ = _ = - cot0A0. (11-2)
a d

Since cot 6 approaches zero as approaches 90, Aa/a, the fractional error

in a caused by a given error in 0, also approaches zero as approaches 90,

or as 20 approaches 180. The key to precision in parameter measurements

therefore lies in the use of backward-reflected beams having 20 values as

near to 180 as possible.

Although the parameter error disappears as 20 approaches 180, we can-

not observe a reflected beam at this angle. But since the values of a calcu-

lated for the various lines on the pattern approach the true value more

closely as 20 increases, we should be able to find the true value of a simply

by plotting the measured values against 20 and extrapolating to 20 = 180.

Unfortunately, this curve is not linear and the extrapolation of a nonlinear

curve is not accurate. However, it may be shown that if the measured

values of a are plotted against certain functions of 0, rather than against

or 20 directly, the resulting curve is a straight line which may be extrapo-

lated with confidence. The bulk of this chapter is devoted to showing how

these functions can be derived and used. Because the exact form of the

function depends on the kind of camera employed, we shall have to con-

sider successively the various cameras that are normally used for parameter

measurements.

But first we might ask: what sort of precision is possible with such

methods? Without any extrapolation or any particular attention to good

experimental technique, simply by selection of the parameter calculated

for the highest-angle line on the pattern, we can usually obtain an accuracy

of 0.01A. Since the lattice parameters of most substances of metallurgical

interest are in the neighborhood of 3 to 4A, this represents an accuracy of

about 0.3 percent. With good experimental technique and the use of the

proper extrapolation function, this accuracy can be increased to 0.001A,
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or 0.03 percent, without much difficulty. Finally, about the best accuracy

that can be expected is 0.0001A, or 0.003 percent, but this can be obtained

only by the expenditure of considerable effort, both experimental and com-

putational.

In work of high precision it is imperative that the units in which the

measured parameter is expressed, kX or A, be correctly stated. In order

to avoid confusion on this point, the reader is advised to review the dis-

cussion of these units given in Sec. 3-4.

11-2 Debye-Scherrer cameras. The general approach in finding an

extrapolation function is to consider the various effects which can lead to

errors in the measured values of 6, and to find out how these
t
errors in 6

vary with the angle 6 itself. For a Debye-Scherrer camera, the chief

sources of error in 6 are the following:

(1) Film shrinkage.

(2) Incorrect camera radius.

(3) Off-centering of specimen.

(4) Absorption in specimen.

Since only the back-reflection region is suitable for precise measurements,

we shall consider these various errors in terms of the quantities S' and 0,

defined in Fig. 11-2. S f

is the distance on the film between two correspond-

ing back-reflection lines; 2<f> is the supplement of 26, i.e., </>
= 90 6.

These quantities are related to the camera radius R by the equation

S f

4R
(H-3)

Shrinkage of the film, caused by processing and drying, causes an error

AS' in the quantity S'. The camera radius may also be in error by an

amount Afl. The effects of these two errors on the value of <t> may be found

by writing Eq. (11-3) in logarithmic

form:

In <f>
= In S' - In 4 - In R.

Differentiation then gives

A< AS' Aft
= (11-4)

4> S' R

The error in <j> due to shrinkage and

the radius error is therefore given by

^AS' &R\
U. (11-5)

R ' FIGURE 11-2
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(a) v ,,,

FIG. 11-3. Effect of specimen displacement on line positions.

The shrinkage error can be minimized by loading the film so that the inci-

dent beam enters through a hole in the film, since corresponding back-

reflection lines are then only a short distance apart on the film, and their

separation S' is little affected by film shrinkage. The method of film load-

ing shown in Fig. 6-5 (a) is not at all suitable for precise measurements.

Instead, methods (b) or (c) of Fig. 6-5 should be used. Method (c), the

unsymmetrical or Straumanis method of film loading, is particularly recom-

mended since no knowledge of the camera radius is required.

An off-center specimen also leads to an error in 0. Whatever the dis-

placement of the specimen from the camera center, this displacement can

always be broken up into two components, one (Ax) parallel to the incident

beam and the other (Ay) at right angles to the incident beam. The effect

of the parallel displacement is illustrated in Fig. 11-3 (a). Instead of being

at the camera center C", the specimen is displaced a distance Ax to the

point 0. The diffraction lines are registered at D and C instead of at A
and B, the line positions for a properly centered specimen. The error in

S' is then (AC + DB) = 2DB, which is approximately equal to 20AT, or

AS' 20N = 2Aaxsin 2<t>. (11-6)

The effect of a specimen displacement at right angles to the incident beam

[Fig. ll-3(b)] is to shift the lines from A to C and from B to D. When

Ay is small, AC is very nearly equal to BD and so, to a good approximation,

no error in S' is introduced by a right-angle displacement.

The total error in S' due to specimen displacement in some direction in-

clined to the incident beam is therefore given by Eq. (11-6). This error

in S f

causes an error in the computed value of . Inasmuch as we are con-

sidering the various errors one at a time, we can now put the radius error

A# equal to zero, so that Eq. (11-4) becomes

* S'
(H-7)
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which shows how an error in S' alone affects the value of <t>. By combining

Eqs. (11-3), (ll-), and (11-7), we find that the error in <t> due to the fact

that the specimen is off center is given by

sin 2^>) Ax
sin </> cos </>. (11-8)

o 4/i0 it

It should not be assumed that the centering error is removed when the

specimen is so adjusted, relative to the rotating shaft of the camera, that

no perceptible wobble can be detected when the shaft is rotated. This sort

of adjustment is taken for granted in this discussion. The off-center error

refers to the possibility that the axis of rotation of the shaft is not located

at the center of the camera, due to improper construction of the camera.

Absorption in the specimen also causes an error in <. This effect, often

the largest single cause of error in parameter measurements, is unfortu-

nately very difficult to calculate with any accuracy. But we have seen, in

Fig. 4-18(b), that back-reflected rays come almost entirely from that side

of the specimen which faces the collimator. Therefore, to a rough approx-

imation, the effect of a centered, highly absorbing specimen is the same as

that of a nonabsorbing specimen displaced from the camera center in the

manner shown in Fig. 11-3 (a). Consequently we can assume that the

error in <t> due to absorption, A<fo ,
is included in the centering error given

byEq. (11-8).

Thus, the over-all error in </> due to film shrinkage, radius error, centering

error, and absorption, is given by the sum of Eqs. (11-5) and (11-8):

/AS' A#\ Ax
A<te,/2,c,A

=
I ) <t> + sm </> cos </>. (1 1-9)
\ O K / 1

But

= 90 0, A0 = A0, sin <t>
= cos 0, and cos <f>

= sin 0.

Therefore Eq. (11-2) becomes

Ad cos sin
=

:
A0 =

A</>

d sin cos <t>

and

Ad sin^r/AS' A#\ Ax 1
=

( )<H sin cos (11-10)
d cos < L \ S' R I R J

In the back-reflection region, < is small and may be replaced, in the second

term of Eq. (11-10), by sin< cos<, since sin< <f> and cos</> 1, for
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small values of <t>. We then have

Ad /AS' Aft Ax\
=

( h 1 sin
2

<t>.

d \S' R R

The bracketed terms are constant for any one film, so that

= K sin
2
4 = K cos

2
6, (11-11)

d

where K is a constant. Accordingly, we have the important result that

the fractional errors in d are directly proportional to cos
2

0, and therefore

approach zero as cos
2
6 approaches zero or as 6 approaches 90. In the

cubic system,

= = tfcos2
0. (11-12)

d a

Hence, for cubic substances, if the value of a computed for each line on the

pattern is plotted against cos
2

6, a straight line should result, and a
,
the

true value of a, can be found by extrapolating this line to cos
2
6 = 0. (Or,

since sin
2 0=1 cos

2
0, the various values of a may be plotted against

sin
2

0, and the line extrapolated to sin
2
0=1.)

From the various approximations involved in the derivation of Eq.

(1 1-12), it is clear that this equation is true only for large values of 6 (small

values of #). Therefore, only lines having 6 values greater than about 60

should be used in the extrapolation, and the more lines there are with

greater than 80, the more precise is the value of a() obtained. To increase

the number of lines in the back-reflection region, it is common practice to

employ unfiltered radiation so that K/3 as well as Ka can be reflected. If

the x-ray tube is demountable, special alloy targets can also be used to in-

crease the number of lines; or two exposures can be made on the same film

with different characteristic radiations. In any case, it must never be

assumed that the process of extrapolation can automatically produce a

precise value of a from careless measurements made on a film of poor

quality. For high precision, the lines must be sharp and the Ka doublets

well resolved at high angles, which means in turn that the individual par-

ticles of the specimen must be strain-free and not too fine. The line posi-

tions must be determined carefully and it is best to measure each one two

or three times and average the results. In computing a for each line, the

proper wavelength must be assigned to each component of the Ka doublet

when that line is resolved and, when it is not resolved, the weighted mean

wavelength should be used.

To illustrate this extrapolation method, we shall consider a powder pat-

tern of tungsten made in a Debye-Scherrer camera 5.73 cm in diameter

with unfiltered copper radiation. The data for all lines having values
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greater than 60 are given in Table 11-1. The drift in the computed a

values is obvious: in general they increase with 6 and tend to approach the

true value a at high angles. In Fig. 11-4, these values of a are plotted

against sin
2

6, and ao is found by extrapolation to be 3.165A.

Other functions of 0, besides sin
2

or cos
2

0, may be used as a basis for

extrapolation. For example, if we replace sin < cos <f> in Eq. (11-10) by

<t>, instead of replacing </> by sin 4> cos <, we obtain

=
K<t> tan 0.

d

Therefore, a plot of a against </> tan < will also be linear and will extrapolate

to a at <t> tan = 0. In practice, there is not much difference between an

extrapolation against < tan <f> and one against cos
2

(or sin
2
0), and either

will give satisfactory results. If the various sources of error, particularly

absorption, are analyzed more rigorously than we have done here, it can

be shown that the relation ~-
cos2 d

Arf

T
/cos

2

K(
\ sin0

cos
2
6\ = 3.170

tf i 3165

1 0.2 0.3

holds quite accurately down to very

low values of 6 and not just at high

angles. The value of ao can be found

by plotting a against (cos
2
0/sin 6 +

cos
2
0/6), which approaches zero as 6

W |3

3 155

J.O 0.9

n <2

08 07

FIG. 11-4. Extrapolation of meas-

ured lattice parameters against sin2 6

(or cos2
0).

approaches 90. Although it is doubt-

ful whether any advantage results

from using (cos
2
0/sin 6 + cos

2
6/6)

instead of cos
2
6 in the back-reflection region, the greater range of linearity

of the former function is an advantage in certain cases.

Noncubic crystals present additional difficulties, regardless of the par-

ticular extrapolation function chosen. (In the following discussion, we
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shall confine our attention to hexagonal and tetragonal crystals, but the

methods to be described can be generalized to apply to crystals of still

lower symmetry.) The difficulty is simply this: the position of a line which

has indices hkl is determined by two parameters, a and c, and it is impos-

sible to calculate both of them from the observed sin
2

value of that line

alone. One way of avoiding this difficulty is to ignore the hkl lines and

divide the remainder into two groups, those with indices hkO and those

with indices 001. A value of a is calculated for each hkO line and a value

of c from each 001 line; two separate extrapolations are then made to find

a and c . Since there are usually very few hkO and 001 lines in the back-

reflection region, some low-angle lines have to be included, which means

that the extrapolations must be made against (cos
2
0/sin + cos

2
0/0)

and not against cos
2

0. And if there are no lines of the type hkO and 001

with greater than 80, even the former function will not assure an accu-

rate extrapolation.

A better but more laborious method, and one which utilizes all the data,

is that of successive approximations. In the tetragonal system, for exam-

ple, the value of a for any line is given by

I
2

(11-13)

x r
a =

(

2sm0L

The first step is to calculate approximate values, a\, and Ci, of the lattice

parameters from the positions of the two highest-angle lines, as was done

in Sec. 10-4. The approximate axial ratio Ci/a\ is then calculated and

used in Eq. (11-13) to determine an a value for each high-angle line on the

pattern. These values of a are then extrapolated against cos
2

to find a

more accurate value of a, namely a2 . The value of c2 is found in similar

fashion by use of the relation

2sm0

and another extrapolation against cos
2

6. The process is repeated with

the new value of the axial ratio c2/a2 to yield still more accurate values of

the parameters, namely c3 and a3 . Three extrapolations are usually suffi-

cient to fix the parameters with high accuracy. In addition, the accuracy

of each extrapolation can be improved by a suitable choice of lines. For

example, the value of a calculated from Eq. (11-13) is only slightly affected

by inaccuracies in c/a when (h
2 + k2) is large compared to Z

2
,
since the

term involving c/a is itself small. Therefore, lines with large h and k in-

dices and a small I index should be chosen for each determination of a.

Just the reverse is true in the determination of c, as inspection of Eq.

(11-14) will show.
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cos2 e
(] cos2 e

(a) (b)

FIG. 11-5. Extreme forms of extrapolation curves (schematic): (a) large sys-

tematic errors, small random errors; (b) small systematic errors, large random

errors.

To conclude this section, a few general remarks on the nature of errors

may not be amiss. In the measurement of a lattice parameter, as in many
other physical observations, two kinds of error are involved, systematic^

and random. A systematic error is one which varies in a regular manner

with some particular parameter. Thus the fractional errors in a due to

the various effects considered above (film shrinkage, incorrect radius, off-

center specimen, absorption) are all systematic errors because they vary in

a regular way with B, decreasing as B increases. Further, a systematic

error is always of the same sign: for example, the effect of absorption in a

Debye-Scherrer camera is always to make the computed value of a less than

the true value. Random errors, on the other hand, are the ordinary chance

errors involved in any direct observation. For example, the errors involved

in measuring the positions of the various lines on a film arc random errors;

they may be positive or negative and do not vary in any regular manner

with the position of the line on the film.

As we have already seen, the systematic errors in a approach zero as B

approaches 90, and may be eliminated by use of the proper extrapolation

function. The magnitude of these errors is proportional to the slope of

the extrapolation line and, if these errors are small, the line will be quite

flat. In fact, if we purposely increase the systematic errors, say, by using

a slightly incorrect value of the camera radius in our calculations, the

slope of the line will increase but the extrapolated value of a will remain

the same. The random errors involved in measuring line positions show

up as random errors in a, and are responsible for the deviation of the var-

ious points from the extrapolation line. The random errors in a also de-

crease in magnitude as B increases, due essentially to the slow variation of

sin with at large angles.

These various effects are summarized graphically in Fig. 1 1-5. In (a)

the calculated points conform quite closely to the line, indicating small

random errors, but the line itself is quite steep because of large systematic
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errors. The opposite situation is shown in (b) : here the systematic error

is small, but the wide scatter of the points shows that large random errors

have been made. Inasmuch as the difficulty of drawing the line increases

with the degree of scatter, it is obvious that every possible effort should

be made to minimize random errors at the start.

11-3 Back-reflection focusing cameras. A camera of this kind is pre-

ferred for work of the highest precision, since the position of a diffraction

line on the film is twice as sensitive to small changes in plane spacing with

this camera as it is with a Debye-Scherrer camera of the same diameter.

It is, of course, not free from sources of systematic error. The most im-

portant of these are the following :

(1) Film shrinkage.

(2) Incorrect camera radius.

(3) Displacement of specimen from camera circumference.

(4) Absorption in specimen. (If the specimen has very low absorption,

many of the diffracted rays will originate at points outside the camera cir-

cumference even though the specimen surface coincides with the circum-

ference.)

A detailed analysis of these various sources of error shows that they pro-

duce fractional errors in d which are very closely proportional to < tan 0,

where </> is again equal to (90 8). This function is therefore the one to

use in extrapolating lattice parameters measured with this camera.

11-4 Pinhole cameras. The pinhole camera, used in back reflection,

is not really an instrument of high precision in the measurement of lattice

parameters, but it is mentioned here because of its very great utility in met-

allurgical work. Since both the film and the specimen surface are flat, no

focusing of the diffracted rays occurs, and the result is that the diffraction

lines are much broader than is normally desirable for precise measurement

of their positions. The chief sources of systematic error are the following:

(1) Film shrinkage.

(2) Incorrect specimen-to-film distance.

(3) Absorption in the specimen.

In this case it may be shown that the fractional error in d is proportional

to sin 40 tan <, or to the equivalent expression cos
2
8(2 cos

2
6 1), where

= (90 6). With either of these extrapolation functions a fairly pre-

cise value of the lattice parameter can be obtained
;
in addition, the back-

reflection pinhole camera has the particular advantage that mounted metal-

lographic specimens may be examined directly. This means that a param-
eter determination can be made on the same part of a specimen as that ex-

amined under the microscope. A dual examination of this kind is quite val-

uable in many problems, especially in the determination of phase diagrams.
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11-6 Diffractometers. The commercial diffractometer is a rather new

instrument and relatively little use has been made of it for the precise

measurement of lattice parameters. For that reason, no generally valid

procedure for use in such measurements has yet been devised, and until

this is done the back-reflection focusing camera must be recognized as the

most accurate instrument for parameter measurements.

One reason for the inferiority of the diffractometer in this respect is the

impossibility of observing the same back-reflected cone of radiation on both

sides of the incident beam. Thus, the experimenter has no automatic

check on the accuracy of the angular scale of the instrument or the pre-

cision of its alignment.

When a diffractometer is used to measure plane spacings, the more im-

portant sources of systematic error in d are the following :

(1) Misalignment of the instrument. In particular, the center of the

incident beam must intersect the diffractometer axis and the position

of the receiving slit.

(2) Use of a flat specimen instead of a specimen curved to conform to

the focusing circle.

(3) Absorption in the specimen.

(4) Displacement of the specimen from the diffractometer axis. (This

is usually the largest single source of error.)

(5) Vertical divergence of the incident beam.

These sources of error cause the fractional error in d to vary in a compli-

cated way with 0, so that no simple extrapolation function can be used to

obtain high accuracy. Because some, but not all, of these sources of error

cause Ad/d to be approximately proportional to cos
2

0, a fairly accurate

value of the lattice parameter can be obtained by simple extrapolation

against cos
2

0, just as with the Debye-Scherrer camera. Therefore, in the

light of our present knowledge, the suggested procedure is:

(a) Carefully align the component parts of the instrument in accordance

with the manufacturer's instructions.

(b) Adjust the specimen surface to coincide as closely as possible with

the diffractometer axis.

(c) Extrapolate the calculated parameters against cos
2

8.

This procedure will undoubtedly be improved as additional experience

with this instrument is accumulated. In fact, some investigators feel that

lattice parameters will one day be measurable with the diffractometer with

greater accuracy than with any kind of powder camera, but whether this

is true or not remains to be seen. There is, however, one circumstance in

which the diffractometer is superior to a camera for parameter measure-

ments and that is wheij the diffraction lines are abnormally broad; this

particular application arises in stress measurement and will be described

in Chap. 17.
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11-6 Method of least squares. All the previously described methods of

accurately measuring lattice parameters depend in part on graphical ex-

trapolation. Their accuracy therefore depends on the accuracy with which

a straight line can be drawn through a set of experimental points, each of

which is subject to random errors. However, different persons will in gen-

eral draw slightly different lines through the same set of points, so that it is

desirable to have an objective, analytical method of finding the line which

best fits the data. This can be done by the method of least squares. Since

this method can be used in a variety of problems, it will be described here

in a quite general way; in the next section, its application to parameter

measurements will be taken up in detail.

If a number of measurements are made of the same physical quantity

and if these measurements are subject only to random errors, then the

theory of least squares states that the most probable value of the measured

quantity is that which makes the sum of the squares of the errors a mini-

mum. The proof of this theorem is too long to reproduce here but we can

at least demonstrate its reasonableness by the following simple example.

Suppose five separate measurements are made of the same physical quan-

tity, say the time required for a falling body to drop a given distance, and

that these measurements yield the following values: 1.70, 1.78, 1.74, 1.79,

and 1.74 sec. Let x equal the most probable value of the time. Then the

error in the first measurement is ei
= (x

-
1.70), the error in the second

is e2
= (x

-
1.78), and so on. The sum of the squares of the errors is given

by

Z(e
2
)
= (x

-
1.70)

2 + (x
-

1.78)
2

+ (x
-

1.74)
2 + (x

-
1.79)

2 + (x
-

1.74)
2

.

We can minimize the sum of the squared errors by differentiating this

expression with respect to x and equating the result to zero:

^-t = 2(x
-

1.70) + 2(x
-

1.78) ,+ 2(x
-

1.74) + 2(x
-

1.79)

dx
+ 2(x

-
1.74)

-

whence
x = 1.75 sec.

On the other hand, the arithmetic average of the measurements is also

1.75 sec. This should not surprise us as we know, almost intuitively, that

the arithmetic average of a set of measurements gives the most probable

value. This example may appear trivial, in that no one would take the

trouble to use the method of least squares when the same result can be

obtained by simple averaging, but at least it illustrates the basic principle

involved in the least-squares method.



336 PRECISE PARAMETER MEASUREMENTS [CHAP. 11

Naturally, there are many problems in which the method of simple

averaging cannot be applied and then the method of least squares becomes

particularly valuable. Consider, for example, the problem referred to

above, that of finding the straight line which best fits a set of experimen-

tally determined points. If there are only two points, there is no problem,

because the two constants which define a straight line can be unequivocally

determined from these two points. But, in general, there will be more

points available than constants to be determined. Suppose that the vari-

ous points have coordinates x\y\, X2y2 , #32/3, and that it is known that

x and y are related by an equation of the form

y - a + bx. (11-15)

Our problem is to find the values of the constants a and 6, since these de-

fine the straight line. In general, the line will not pass exactly through

any of the points since each is subject to a random error. Therefore each

point is in error by an amount given by its deviation from the straight line.

For example, Eq. (11-15) states that the value of y corresponding to x = x\

is (a + tei). Yet the first experimental point has a value of y =
y\.

Therefore e^ the error in the first point, is given by

ei
=

(a + 6x0 -
yi.

We can calculate the errors in the other points in similar fashion, and then

write down the expression for the sum of the squares of these errors :

2(e
2
)
= (a + bx l

-
yi)

2 + (a + bx2
-

y2 )
2 + . (1 1-16)

According to the theory of least squares, the "best" straight line is that

which makes the sum of the squared errors a minimum. Therefore, the

best value of a is found by differentiating Eq. (11-16) with respect to a

and equating the result to zero:

= 2(a + bx l
-

yi ) + 2(a + bx2
-

y2 ) + - - - =
0,

da

or
Sa + fcSz - Zy = 0. (11-17)

The best value of b is found in a similar way:

= 2xi(a + bx l
-

yi) + 2x2 (a + 6a*
-

2 ) + =
0>

d&

or + &Ss2 - 2x = 0. (11-18)

Equations (11-17) and (11-18) are the normal equations. Simultaneous

solution of these two equations yields the best values of a and 6, which

can then be substituted into Eq. (11-15) to give the equation of the line.
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The normal equations as written above can be rearranged as follows:

Zt/ = Sa + 62x

and (11-19)

A comparison of these equations and Eq. (11-15) shows that the following

rules can be laid down for the formation of the normal equations :

(a) Substitute the experimental values of x and y into Eq. (11-15). If

there are n experimental points, n equations in a and b will result.

(b) To obtain the first normal equation, multiply each of these n equa-

tions by the coefficient of a in each equation, and add.

(c) To obtain the second normal equation, multiply each equation by
the coefficient of b, and add.

As an illustration, suppose that we determine the best straight line

through the following four points :

The normal equations are obtained in three steps :

(a) Substitution of the given values:

15 = a + 106

11 = a + 186

11 = a + 306

8 = a + 426

(b) Multiplication by the coefficient of a:

15 =
11 =

11 =

8 =

106

186

306

426

45 = 4a + 1006 (first normal equation)

(c) Multiplication by the coefficient of 6 :

150 = 10a + 1006

198 = 18a + 3246

330 = 30a + 9006

336 = 42a + 17646

1014 = lOOa + 30886 (second normal equation)
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Simultaneous solution of the two

normal equations gives a = 16.0 and

6 = -0.189. The required straight

line is therefore

y = 16.0 - 0.189*.

This line is shown in Fig. 11-6, to-

gether with the four given points.

The least-squares method is not

confined to finding the constants of a

straight line; it can be applied to any

kind of curve. Suppose, for example,

that x and y are known to be related

by a parabolic equation

y = a + bx + ex
2

.

20

15

10

10 20 30 40 50

FIG. 11-6. Best straight line, de-

termined by least-squares method.

Since there are three unknown constants here, we need three normal equa-

tions. These are

Si/ = Sa + b2x + cSx2
,

(11-20)

2x2
y - aZz2 + blx* + cSx4

,

These normal equations can be found by the same methods as were used

for the straight-line case, i.e., successive multiplication of the n observa-

tional equations by the coefficients of a, 6, and c, followed by addition of

the equations in each set.

It should be noted that the least-squares method is not a way of finding

the best curve to fit a given set of observations. The investigator must

know at the outset, from his understanding of the phenomenon involved,

the kind of relation (linear, parabolic, exponential, etc.) the two quantities

x and y are supposed to obey. All the least-squares method can do is give

him the best values of the constants in the equation he selects, but it does

this in a quite objective and unbiased manner.

11-7 Cohen's method. In preceding sections we have seen that the

most accurate value of the lattice parameter of a cubic substance is found

by plotting the value of a calculated for each reflection against a particular

function, which depends on the kind of camera used, and extrapolating to

a value a at 6 = 90. Two different things are accomplished by this pro-

cedure: (a) systematic errors are eliminated by selection of the proper

extrapolation function, and (b) random errors are reduced in proportion

to the skill of the investigator in drawing the best straight line through the



11-7] COHEN'S METHOD 339

experimental points. M. U. Cohen proposed, in effect, that the least-squares

method be used to find the best straight line so that the random errors

would be minimized in a reproducible and objective manner.

Suppose a cubic substance is being examined in a Debye-Scherrer camera.

Then Eq. (11-12), namely,

Ad Aa
= = #cos2

0, (11-12)
d a

defines the extrapolation function. But instead of using the least-squares

method to find the best straight line on a plot of a against cos
2

0, Cohen

applied the method to the observed sin
2
6 values directly. By squaring

the Bragg law and taking logarithms of each side, we obtain

(X

2
\-
J
- 2 In d.

Differentiation then gives

A sin
2
6 2Ad

sm d

By substituting this into Eq. (11-12) we find how the error in sin
2
6 varies

with 6:

A sin
2
6 = -2K sin

2
6 cos

2
6 = D sin

2
26, (11-22)

where D is a new constant. [This equation is valid only when the cos
2

extrapolation function is valid. If some other extrapolation function is

used, Eq. (11-22) must be modified accordingly.] Now the true value of

sin
2
6 for any diffraction line is given by

X
2

sin
2
9 (true)

= -
(h

2 + k
2 + I

2
),

4a 2

where a
,
the true value of the lattice parameter, is the quantity we are

seeking. But

sin
2
6 (observed) sin

2
6 (true)

= A sin
2

6,

X2

sin
2
e ---

(h
2 + fc

2 + I
2
)
= D sin

2
20,

4oo
2

sin
2 = Ca + Ad, (11-23)

where

C = X2/4a
2

,
a =

(ft

2 + k2 + I
2
), A = D/10, and 6 = 10 sin

2
20.

(The factor 10 is introduced into the definitions of the quantities A and d

solely to make the coefficients of the various terms in the normal equations

of the same order of magnitude.)
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The experimental values of sin
2

0, a, and d are now substituted into

Eq. (11-23) for each of the n back-reflection lines used in the determina-

tion. This gives n equations in the unknown constants C and A, and these

equations can be solved for the most probable values of C and A by the

method of least squares. Once C is found, OQ can be calculated directly

from the relation given above; the constant A is related to the amount of

systematic error involved and is constant for any one film, but varies

slightly from one film to another. The two normal equations we need to

find C and A are found from Eq. (11-23) and the rules previously given.

They are

Sasin2 =

26 sin
2
6 = C2a5 + A282

.

To illustrate the way in which such calculations are carried out, we will

apply Cohen's method to a determination of the lattice parameter of tung-

sten from measurements made on the pattern shown in Fig. 6-10. Since

this pattern was made with a symmetrical back-reflection focusing camera,

the correct extrapolation function is

Ad
=

K<t> tan <t>.

d

Substituting this into Eq. (11-21), we have

A sin
2 = -2K<t> sin

2
6 tan

= 2K0cos
2
^ tan

=
D<t> sin 20,

where D is a new constant. We can therefore write, for each line on the

pattern,
X2

sin
2
B = cos

2 ---
(h? + k2 + I

2
) + D<t> sin 20, (11-24)

4a 2

C0s
2 = Ca + A5, (11-25)

where

C = X2/4a
2

,
a = (h

2 + k2 + I
2
), A = D/10, and 8 = 100 sin 20.

Equation 11-24 cannot be applied directly because lines due to three

different wavelengths (Cu Kai, Cu Ka%, and Cu K/3) are present on the

pattern, which means that X varies from line to line, whereas in Eq. (11-24)

it is treated as a constant. But the data can be "normalized" to any one

wavelength by use of the proper multiplying factor. For example, sup-

pose we decide to normalize all lines to the Kfi wavelength. Then for a
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TABLE 11-2

341

particular line formed by Kai radiation, for instance, we have

COS
2

<t>Kai
= Ot + A8xai,

/ X A ,+ (
2 )

ASKai .

VA/JCai /\X - 2
/

From the Bragg law,

cos
J

4>A- ai
=

COS
2

<t>Ka ,

= COS
2

<t>Ktl,

cos

where (\K0
2
/^Kai

2
)f>Ka }

is a normalized 5. Equation (11-26) now refers

only to the K/3 wavelength. Lines due to Ka^ radiation can be normalized

in a similar manner. When this has been done for all lines, the quantity

C in Eq. (11-25) is then a true constant, equal to XAr

j3

2
/4a

2
. The values

of the two normalizing factors, for copper radiation, are

= 0.816699 and = 0.812651.

Table 11-2 shows the observed and normalized values of cos
2

<t> and 6

for each line on the tungsten pattern. The values of 6 need not be calcu-

lated to more than two significant figures, since 6 occurs in Eq. (11-25)

only in the last term which is very small compared to the other two. From
the data in Table 11-2, we obtain

Sa2 = 1628, 252 =
21.6, 2a5 = 157.4,

Sa cos
2

<t>
= 78.6783, 25 cos

2
<f>
= 7.6044.
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The normal equations are

78.6783 = 1628C + 157.4A,

7.6044 = 157.4C + 21.6A.

Solving these, we find

C = X*0
2
/4a

2 = 0.0483654 and a = 3. 1651A,

A = -0.000384.

The constant A, called the drift constant, is a measure of the total sys-

tematic error involved in the determination.

Cohen's method of determining lattice parameters is even more valuable

when applied to noncubic substances, since, as we saw in Sec. 1 1-2, straight-

forward graphical extrapolation cannot be used when there is more than one

lattice parameter involved. Cohen's method, however, provides a direct

means of determining these parameters, although the equations are natu-

rally more complex than those needed for cubic substances. For example,

suppose that the substance involved is hexagonal. Then

X2 4 h2 + hk + k2 \2 I
2

sin
2
6 (true)

= - + - ^

and
X2 X

2

sin
2
6 (h

2 + hk + k2) (I
2
)
= D sin

2
26,

3a 2 4c
2

if the pattern is made in a Debye-Scherrer camera. By rearranging this

equation and introducing new symbols, we obtain

sin
2
6 = Ca + By + ,46, (11-27)

where

C = X2/3a
2

,
a = (h

2 + hk + /c
2
), B = X2

/4c
2

, 7 = I
2

,

A = D/10, and 6 = 10 sin
2
26.

The values of C, #, and A, of which only the first two are really needed,

are found from the three normal equations:

Za sin
2
6 = CZa2 + B2ay + AZat,

S7 sin
2
6 = CZay + BZy

2 + AZyd,

S6 sin
2
6 = CSaS + fiZfry + A282

.

11-8 Calibration method. One other procedure for obtaining accurate

lattice parameters is worth mentioning, if only for its relative simplicity,

and that is the calibration method already alluded to in Sec. 6-7. It is

based on a calibration of the camera film (or diffractometer angular scale)

by means of a substance of known lattice parameter.



PROBLEMS 343

If the specimen whose parameter is to be determined is in the form of a

powder, it is simply mixed with the powdered standard substance and a

pattern made of the composite powder. If the specimen is a polycrystal-

line piece of metal, the standard powder may be mixed with petroleum

jelly and smeared over the surface of the specimen in a thin film. The

amount of the standard substance used should be adjusted so that the in-

tensities of the diffraction lines from the standard and those from the speci-

men are not too unequal. Inasmuch as the true angle can be calculated

for any diffraction line from the standard substance, a calibration curve

can be prepared relating the true angle 6 to distance along the camera film

(or angular position on the diffractometer scale). This curve is then used

to find the true angle 6 for any diffraction line from the specimen, since

it may be assumed that any systematic errors involved in the determina-

tion will affect the diffraction lines of both substances in the same way.

This method works best when there is a diffraction line from the stand-

ard substance very close to a line from the specimen and both lines are in

the back-reflection region. Practically all systematic errors are thus elim-

inated. To achieve this condition requires an intelligent choice of the

standard substance and/or the incident wavelength. The most popular

standard substances are probably quartz and sodium chloride, although

pure metals such as gold and silver are also useful.

One disadvantage of the calibration method is that the accuracy of the

parameter determination depends on the accuracy with which the param-

eter of the standard substance is known. If the absolute value of the

parameter of the standard is known, then the calibration method gives the

absolute value of the parameter of the specimen quite accurately. If not,

then only a relative value of the parameter of the specimen can be ob-

tained, but it is an accurate relative value. And frequently this is no dis-

advantage at all, since we are often interested only in the differences in the

parameters of a number of specimens and not in the absolute values of

these parameters.

If absolute values are required, the only safe procedure is to measure the

absolute value of the parameter of the standard substance by one of the

methods described in the preceding sections. It should not be assumed

that a particular sample of quartz, for example, has the exact lattice param-

eters tabulated under "quartz" in some reference book, because this par-

ticular sample may contain enough impurities in solid solution to make

its lattice parameters differ appreciably from the tabulated values.

PROBLEMS

11-1. The lattice parameter of copper is to be determined to an accuracy of

dbO.OOOlA at 20C. Within what limits must the temperature of the specimen

be controlled if errors due to thermal expansion are to be avoided? The linear

coefficient of thermal expansion of copper is 16.6 X 10~6
in./in./C.
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11-2. The following data were obtained from a Debye-Scherrer pattern of a

simple cubic substance, made with copper radiation. The given sin2 6 values are

for the KOLI lines only.

h* + A:
2 + P sin2

38 0.9114

40 0.9563

41 0.9761

42 0.9980

Determine the lattice parameter a, accurate to four significant figures, by graphi-

cal extrapolation of a against cos2 6.

11-3. From the data given in Prob. 11-2, determine the lattice parameter to

four significant figures by Cohen's method.

11-4. From the data given in Table 11-2, determine the lattice parameter of

tungsten to five significant figures by graphical extrapolation of a against <j> tan <t>.

11-5. If the fractional error in the plane spacing d is accurately proportional to

the function (cos
2
0/sin 6 + cos2

6/6) over the whole range of 0, show that a plot

of A sin
2 6 against sin

2 6 has a maximum, as illustrated for a particular case by

Fig. 10-1. At approximately what value of 6 does the maximum occur?



CHAPTER 12

PHASE-DIAGRAM DETERMINATION

12-1 Introduction. An alloy is a combination of two or more metals,

or of metals and nonmetals. It may consist of a single phase or of a mix-

ture of phases, and these phases may be of different types, depending only
on the composition of the alloy and the temperature,* provided the alloy

is at equilibrium. The changes in the constitution of the alloy produced

by given changes in composition or temperature may be convenieptly shown

by means of a phase diagram, also called an equilibrium diagram or consti-

tution diagram. It is a plot of temperature vs. composition, divided into

areas wherein a particular phase or mixture of phases is stable. As such it

forms a sort of map of the alloy system involved. Phase diagrams are

therefore of great importance in metallurgy, and much time and effort have

been devoted to their determination. In this chapter we will consider how

x-ray methods can be used in the study of phase diagrams, particularly of

binary systems. Ternary systems will be discussed separately in Sec. 12-6.

X-ray methods are, of course, not the only ones which can be used in

investigations of this kind. The two classical methods are thermal analysis

and microscopic examination, and many diagrams have been determined

by these means alone. X-ray diffraction, however, supplements these older

techniques in many useful ways and provides, in addition, the only means
of determining the crystal structures of the various phases involved. Most

phase diagrams today are therefore determined by a combination of all

three methods. In addition, measurements of other physical properties

may be used to advantage in some alloy systems: the most important of

these subsidiary techniques are measurements of the change in length and

of the change in electric resistance as a function of temperature.
In general, the various experimental techniques differ in sensitivity, and

therefore in usefulness, from one portion of the phase diagram to another.

Thus, thermal analysis is the best method for determining the liquidus and

solidus, including eutectic and peritectic horizontals, but it may fail to

reveal the existence of eutectoid and peritectoid horizontals because of the

sluggishness of some solid-state reactions or the small heat effects involved.

Such features of the diagram are best determined by microscopic examina-

tion or x-ray diffraction, and the same applies to the determination of solvus

(solid solubility) curves. It is a mistake to rely entirely on any one method,
and the wise investigator will use whichever technique is most appropriate
to the problem at hand.

* The pressure on the alloy is another effective variable, but it is usually
constant at that of the atmosphere and may be neglected. ,

-
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liquid

12-2 General principles. The key to the interpretation of the powder

patterns of alloys is the fact that each phase produces its own pattern in-

dependently of the presence or absence of any other phase. Thus a single-

phase alloy produces a single pattern while the pattern of a two-phase alloy

consists of two superimposed patterns, one due to each phase.

Assume, for example, that two metals A and B are completely soluble in

the solid state, as illustrated by the phase diagram of Fig. 12-1. The

solid phase a, called a continuous solid solution, is of the substitutional type;

it varies in composition, but not in crystal structure, from pure A to pure

B, which must necessarily have the same structure. The lattice parameter

of a also varies continuously from that of pure A to that of pure B. Since

all alloys in a system of this kind consist of the same single phase, their

powder patterns appear quite similar, the only effect of a change in composi-

tion being to shift the diffraction-

line positions in accordance with the

change in lattice parameter.

More commonly, the two metals A
and B are only partially soluble in the

solid state. The first additions of B
to A go into solid solution in the A
lattice, which may expand or contract

as a result, depending on the relative

sizes of the A and B atoms and the

type of solid solution formed (substi-

tutional or interstitial). Ultimately

the solubilitylimit of B in A is reached,

and further additions of B cause the

precipitation of a second phase. This

second phase may be a B-rich solid

solution with the same structure as B,

as in the alloy system illustrated by Fig. 12-2(a). Here the solid solutions

a and /3 are called primary solid solutions or terminal solid solutions. Or the

second phase which appears may have no connection with the B-rich solid

solution, as in the system shown in Fig. 12-2(b). Here the effect of super-

saturating a. with metal B is to precipitate the phase designated 7. This

phase is called an intermediate solid solution or intermediate phase. It usu-

ally has a crystal structure entirely different from that of either a or 0, and
it is separated from each of these terminal solid solutions, on the phase di-

agram, by at least one two-phase region.

Phase diagrams much more complex than those just mentioned are often

encountered in practice, but they are always reducible to a combination of

fairly simple types. When an unknown phase diagram is being investi-

gated, it is best to make a preliminary survey of the whole system by pre-

PERCENT B
B

FIG. 12-1. Phase diagram of two

metals, showing complete solid solu-

bility.
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PERCENT B

(a)

PERCENT B

(b)

FIG. 12-2. Phase diagrams showing (a) partial solid solubility, and (b) partial
solid solubility together with the formation of an intermediate phase.

paring a series of alloys at definite composition intervals, say 5 or 10 atomic

percent, from pure A to pure B. The powder pattern of each alloy and each

pure metal is then prepared. These patterns may appear quite complex

but, no matter what the complexities, the patterns may be unraveled and
the proper sequence of phases across the diagram may be established, if

proper attention is paid to the following principles :

(1) Equilibrium. Each alloy must be at equilibrium at the temperature
where the phase relations are being studied.

(2) Phase sequence. A horizontal (constant temperature) line drawn
across the diagram must pass through single-phase and two-phase regions

alternately.

(3) Single-phase regions. In a single-phase region, a change in composi-
tion generally produces a change in lattice parameter and therefore a shift

in the positions of the diffraction lines of that phase.

(4) Two-phase regions. In a two-phase region, a change in composition
of the alloy produces a change in the relative amounts of the two phases
but no change in their compositions. These compositions are fixed at the

intersections of a horizontal "tie line" with the boundaries of the two-phase
field. Thus, in the system illustrated in Fig. 12-2(a), the tie line drawn at

temperature TI shows that the compositions of a and ft at equilibrium at

this temperature are x and y respectively. The powder pattern of a two-

phase alloy brought to equilibrium at temperature TI will therefore consist

of the superimposed patterns of a of composition x and ft of composition y.

The patterns of a series of alloys in the xy range will all contain the same
diffraction lines at the same positions, but the intensity of the lines of the

a phase relative to the intensity of the lines of the ft phase will decrease in
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a regular manner as the concentration of B in the alloy changes from x to y,

since this change in total composition decreases the amount of a relative

to the amount of ft.

These principles are illustrated with reference to the hypothetical alloy

system shown in Fig. 12-3. This system contains two substitutional ter-

minal solid solutions a and p, both assumed to be face-centered cubic, and

an intermediate phase 7, which is body-centered cubic. The solubility of

either A or B in 7 is assumed to be negligibly small: the lattice parameter

of 7 is therefore constant in all alloys in which this phase appears. On the

other hand, the parameters of a and ft vary with composition in the manner

shown by the lower part of Fig. 12-3. Since the B atom is assumed to be

larger than the A atom, the addition of B expands the A lattice, and the

parameter of a increases from ai for pure A to a3 for a solution of composi-

tion x, which represents the limit of solubility of B in A at room tempera-

ture. In two-phase (a + 7) alloys containing more than x percent B, the

parameter of a remains constant at its saturated value a3 . Similarly, the

addition of A to B causes the parameter of ft to decrease from a2 to a4 at

the solubility limit, and then remain constant in the two-phase (7 + ft)

field.

Calculated powder patterns are shown in Fig. 12-4 for the eight alloys

designated by number in the phase diagram of Fig. 12-3. It is assumed that

the alloys have been brought to equilibrium at room temperature by slow

cooling. Examination of these patterns reveals the following :

(1) Pattern of pure A (face-centered cubic).

(2) Pattern of a almost saturated with B. The expansion of the lattice

causes the lines to shift to smaller angles 20.

(3) Superimposed patterns of a and 7. The a phase is now saturated

and has its maximum parameter a3 .

(4) Same as pattern 3, except for a change in the relative intensities of

the two patterns which is not indicated on the drawing.

(5) Pattern of pure 7 (body-centered cubic).

(6) Superimposed patterns of 7 and of saturated ft with a parameter of a4 .

(7) Pattern of pure ft with a parameter somewhat greater than a4 .

(8) Pattern of pure B (face-centered cubic).

When an unknown phase diagram is being determined, the investigator

must, of course, work in the reverse direction and deduce the sequence of

phases across the diagram from the observed powder patterns. This is

done by visual comparison of patterns prepared from alloys ranging in

composition from pure A to pure B, and the previous example illustrates

the nature of the changes which can be expected from one pattern to an-

other. Corresponding lines in different patterns are identified by placing
the films side by side as in Fig. 12-4 and noting which lines are common to
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PERCENT B *-

FIG. 12-3. Phase diagram and lattice constants of a hypothetical alloy system.

26 = 26 = 180

(2)

FIG. 12-4. Calculated powder patterns of alloys 1 to 8 in the alloy system shown
in Fig. 12-3.
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the two patterns.
* This may be difficult in some alloy systems where the

phases involved have complex diffraction patterns, or where it is suspected

that lines due to K$ radiation may be present in some patterns and not in

others. It is important to remember that a diffraction pattern of a given

phase is characterized not only by line positions but also by line intensities.

This means that the presence of phase X in a mixture of phases cannot be

proved merely by coincidence of the lines of phase X with a set of lines in

the pattern of the mixture; the lines in the pattern of the mixture which

coincide with the lines of phase X must also have the same relative intensities

as the lines of phase X. The addition of one or more phases to a particular

phase weakens the diffraction lines of that phase, simply by dilution, but it

cannot change the intensities of those lines relative to one another. Finally,

it should be noted that the crystal structure of a phase need not be known

for the presence of that phase to be detected in a mixture : it is enough to

know the positions and intensities of the diffraction lines of that phase.

Phase diagram determination by x-ray methods usually begins with a

determination of the room-temperature equilibria. The first step is to

prepare a series of alloys by melting and casting, or by melting and solidifi-

cation in the melting crucible. The resulting ingots are homogenized at a

temperature just below the solidus to remove segregation, and very slowly

cooled to room temperature, t Powder specimens are then prepared by

grinding or filing, depending on whether the alloy is brittle or not. If the

alloy is brittle enough to be ground into powder, the resulting powder is

usually sufficiently stress-free to give sharp diffraction lines. Filed pow-
ders, however, must be re-annealed to remove the stresses produced by

plastic deformation during filing before they are ready for x-ray examina-

tion. Only relatively low temperatures are needed to relieve stresses, but

the filings should again be slowly cooled, after the stress-relief anneal, to

ensure equilibrium at room temperature. Screening is usually necessary
to obtain fine enough particles for x-ray examination, and when two-phase

alloys are being screened, the precautions mentioned in Sec. 6-3 should be

observed.

After the room-temperature equilibria are known, a determination of

the phases present at high temperatures can be undertaken. Powder

*
Superposition of the two films is generally confusing and may make some of

the weaker lines almost invisible. A better method of comparison consists in slit-

ting each Debye-Scherrer film lengthwise down its center and placing the center
of one film adjacent to the center of another. The curvature of the diffraction

lines then does not interfere with the comparison of line positions.

t Slow cooling alone may not suffice to produce room-temperature equilibrium,
which is often very difficult to achieve. It may be promoted by cold working and
recrystallizing the cast alloy, in order to decrease its grain size and thus accelerate

diffusion, prior to homogenizing and slow cooling.
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specimens are sealed in small evacuated silica tubes, heated to the desired

temperature long enough for equilibrium to be attained, and rapidly

quenched. Diffraction patterns of the quenched powders are then made at

room temperature. This method works very well in many alloy systems,

in that the quenched powder retains the structure it had at the elevated

temperature. In some alloys, however, phases stable at high-temperature
will decompose on cooling to room temperature, no matter how rapid the

quench, and such phases can only be studied by means of a high-tempera-

ture camera or diffractometer.

The latter instrument is of particular value in work of this kind because

it allows continuous observation of a diffraction line. For example, the

temperature below which a high-temperature phase is unstable, such as a

eutectoid temperature, can be determined by setting the diffractometer

counter to receive a prominent diffracted beam of the high-temperature

phase, and then measuring the intensity of this beam as a function of tem-

perature as the specimen is slowly cooled. The temperature at which the

intensity falls to that of the general background is the temperature re-

quired, and any hysteresis in the transformation can be detected by a simi-

lar measurement on heating.

12-3 Solid solutions. Inasmuch as solid solubility, to a greater or

lesser extent, is so common between metals, we might digress a little at

this point to consider how the various kinds of solid solutions may be dis-

tinguished experimentally. Irrespective of its extent or its position on the

phase diagram, any solid solution may be classified as one of the following

types, solely on the basis of its crystallography :

(1) Intersitial.

(2) JSubstitutional.

(a) Random.

(b) Ordered. (Because of its special interest, this type is described

separately in Chap. 13.)

(c) Defect. (A very rare type.)

An interstitial solid solution of B in A is to be expected only when the

B atom is so small compared to the A atom that it can enter the interstices

of the A lattice without causing much distortion. As a consequence, about

the only interstitial solid solutions of any importance in metallurgy are

those formed between a metal and one of the elements, carbon, nitrogen,

hydrogen, and boron, all of which have atoms less than 2A in diameter.

The interstitial addition of B to A is always accompanied by an increase in

the volume of the unit cell. If A is cubic, then the single lattice parameter
a must increase. If A is not cubic, then one parameter may increase and

the other decrease, as long as these changes result in an increase in cell
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FIG. 12-5. Variation of martensite and austenite lattice parameters with

carbon content. (After C. S. Roberts, Trans. A.I.M.E. 197, 203, 1953.)

volume. Thus, in austenite, which is an interstitial solid solution of car-

bon in face-centered cubic -y-iron, the addition of carbon increases the cell

edge a. But in martensite, a supersaturated interstitial solid solution of

carbon in a-iron, the c parameter of the body-centered tetragonal cell in-

creases while the a parameter decreases, when carbon is added. These

effects are illustrated in Fig. 12-5.

The density of an interstitial solid solution is given by the basic density

equation
1.660202^1

, ^
p . (3-9)

where

n lA l ] (12-1)

n8 and nl are numbers of solvent and interstitial atoms, respectively, per

unit cell; and A 8 and A t are atomic weights of solvent and interstitial

atoms, respectively. Note that the value of n8 is constant and independent

of the concentration of the interstitial element, and that nt is normally a

small fraction of unity.

The formation of a random substitutional solid solution of B and A

may be accompanied either by an increase or decrease in cell volume, de-

pending on whether the B atom is larger or smaller than the A atom. In

continuous solid solutions of ionic salts, the lattice parameter of the solu-

tion is directly proportional to the atomic percent solute present. This

relationship, known as Vegard's law, is not strictly obeyed by metallic

solid solutions and, in fact, there is no reason why it should be. However,
it is often used as a sort of yardstick by which one solution may be com-

pared with another. Figure 12-6 shows examples of both positive and

negative deviations from Vegard's law among solutions of face-centered

cubic metals, and even larger deviations have been found in hexagonal close-
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FIG. 12-6. Lattice parameters of some continuous solid solutions. Dot-dash

lines indicate Vegard's law. (From Structure of Metals, by C. S. Barrett, 1952,

McGraw-Hill Book Company, Inc.)

packed solutions. In terminal and intermediate solid solutions, the lattice

parameter may or may not vary linearly with the atomic percent solute

and, when the variation is linear, the parameter found by extrapolating to

100 percent solute does not usually correspond to the atom size deduced

from the parameter of the pure solute, even when allowance is made for a

possible change in coordination number.

The density of a random substitutional solid solution is found from Eq.

(3-9) with the 2A factor being given by

^solvent^solvent I (12-2)

where n again refers to the number of atoms per cell and A to the atomic

weight. Whether a given solution is interstitial or substitutional may be

decided by determining whether the x-ray density calculated according to

Eq. (12-1) or that calculated according to Eq. (12-2) agrees with the di-

rectly measured density.

Defect substitutional solid solutions are ones in which some lattice

sites, normally occupied by atoms at certain compositions, are simply

vacant at other compositions. Solutions of this type are rare among metals ;

the best-known example is the intermediate ft solution in the nickel-alu-

minum system. A defect solution is disclosed by anomalies in the curves

of density and lattice parameter vs. composition. Suppose, for example,

that the solid solution of B and A is perfectly normal up to x percent B,
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but beyond that point a defect lattice is formed; i.e., further increases in

B content are obtained, not by further substitution of B for A, but by

dropping A atoms from the lattice to leave vacant sites. Under these cir-

cumstances, the density and parameter curves will show sudden changes

in slope, or even maxima or minima, at the composition x. Furthermore,

the x-ray density calculated according to Eq. (12-2) will no longer agree

with the direct density simply because Eq. (12-2), as usually used, applies

only to normal solutions where all lattice sites are occupied; i.e., it is tacitly

assumed there that (n80 ivent + nso i ute) equals the total number of lattice sites

in the structure involved. The actual structure of a defect solid solution,

including the proportion of vacant lattice sites at any given composition,

can be determined by a comparison of the direct density with the x-ray

density, calculated according to Eq. (12-2), and an analysis of the dif-

fracted intensities.

12-4 Determination of solvus curves (disappearing-phase method). To

return to the main subject of this chapter, we might now consider the

methods used for determining the position of a solvus curve on a phase

diagram. Such a curve forms the boundary between a single-phase solid

region and a two-phase solid region, and the single-phase solid may be a

primary or intermediate solid solution.

One method of locating such curves is based on the "lever law." This

law, with reference to Fig. 12-7 for example, states that the relative propor-

tions of a. and ft in an alloy of composition ^ in equilibrium at temperature

TI is given by the relative lengths of the lines zy and zx, or that

Wa (z
-

x) =

where Wa and W& denote the relative

weights of a and ft if x, y, and z are

expressed in weight percent. It fol-

lows from Eq. (12-3) that the weight
fraction of ft in the alloy varies line-

arly with composition from at point

x to 1 at point y. The intensity of

any diffraction line from the ft phase
also varies from zero at x to a maxi-

mum at y, but the variation with

weight percent B is not generally

linear.
*

Nevertheless, this variation

may be used to locate the point x. A
series of alloys in the two-phase region

(12-3)

PS
w

WEIGHT PERCENT B *>

FIG. 12-7. Lever-law construction

for finding the relative amounts of two

phases in a two-phase field.

* The reasons for nonlinearity are discussed in Sec. 14-9.
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is brought to equilibrium at temperature T\ and quenched. From diffrac-

tion patterns made at room temperature, the ratio of the intensity /# of a

prominent line of the ft phase to the intensity Ia of a prominent line of the

a phase is plotted as a function of weight percent B. The composition at

which the ratio /0//a extrapolates to zero is taken as the point x. (Use of

the ratio I$/Ia rather than /# alone eliminates the effect of any change
which may occur in the intensity of the incident beam from one diffraction

pattern to another. However, this ratio also varies nonlinearly with weight

percent B.) Other points on the solvus curve are located by similar experi-

ments on alloys quenched from other temperatures. This method is known,
for obvious reasons, as the disappearing-phase method.

Since the curve of Ip/Ia vs. weight percent B is not linear, high accuracy

in the extrapolation depends on having several experimental points close

to the phase boundary which is being determined. The accuracy of the

disappearing-phase method is therefore governed by the sensitivity of the

x-ray method in detecting small amounts of a second phase in a mixture,

and this sensitivity varies widely from one alloy system to another. The

intensity of a diffraction line depends on, among other things, the atomic

scattering factor /, which in turn is almost directly proportional to the

atomic number Z. Therefore, if A and B have nearly the same atomic

number, the a. and ft phases will consist of atoms having almost the same

scattering powers, and the intensities of the a and ft diffraction patterns

will also be roughly equal when the two phases are present in equal amounts.

Under favorable circumstances such as these, an x-ray pattern can reveal

the presence of less than 1 percent of a second phase. On the other hand,

if the atomic number of B is considerably less than that of A, the intensity

of the ft pattern may be so much lower than that of the a pattern that a

relatively large amount of ft in a two-phase mixture will go completely un-

detected. This amount may exceed 50 percent in extreme cases, where the

atomic numbers of A and B differ by some 70 or 80 units.
'

Under such cir-

cumstances, the disappearing-phase x-ray method is practically worthless.

On the whole, the microscope is superior to x-rays when the disappearing-

phase method is used, inasmuch as the sensitivity of the microscope in de-

tecting the presence of a second phase is generally very high and independ-

ent of the atomic numbers of the elements involved. However, this sensi-

tivity does depend on the particle size of the second phase, and if this is

very small, as it often is at low temperatures, the second phase may not be

detectable under the microscope. Hence the method of microscopic ex-

amination is not particularly accurate for the determination of solvus

curves at low temperatures.

Whichever technique is used to detect the second phase, the accuracy of

the disappearing-phase method increases as the width of the two-phase re-

gion decreases. If the (a + ft) region is only a few percent wide, then the
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relative amounts of a and ft will vary rapidly with slight changes in the

total composition of the alloy, and this rapid variation of Wa/Ws will

enable the phase boundary to be fixed quite precisely. This is true, for the

x-ray method, even if the atomic numbers of A and B are widely different,

because, if the (a + ft) region is narrow, the compositions of a and ft do not

differ very much and neither do their x-ray scattering powers.

12-6 Determination of solvus curves (parametric method). As we have

just seen, the disappearing-phase method of locating the boundary of the

a field is based on a determination of the composition at which the ft phase

just disappears from a series of (a + ft) alloys. The parametric method, on

the other hand, is based on observations of the a solid solution itself. This

method depends on the fact, previously mentioned, that the lattice pa-

rameter of a solid solution generally changes with composition up to the

saturation limit, and then remains constant beyond that point.

Suppose the exact location of the solvus curve shown in Fig. 12-8(a) is

to be determined. A series of alloys, 1 to 7, is brought to equilibrium at

temperature T\, where the a field is thought to have almost its maximum

width, and quenched to room temperature. The lattice parameter of a is

measured for each alloy and plotted against alloy composition, resulting in

a curve such as that shown in Fig. 12-8(b). This curve has two branches:

an inclined branch 6c, which shows how the parameter of a varies with the

composition of a, and a horizontal branch de, which shows that the a phase
in alloys 6 and 7 is saturated, because its lattice parameter does not change
with change in alloy composition. In fact, alloys 6 and 7 are in a two-

phase region at temperature T\, and the only difference between them is in

the amounts of saturated a they contain. The limit of the a field at tem-

perature TI is therefore given by the intersection of the two branches of

ID
H

12345' 6 7

A y x
WEIGHT PERCENT B -*

(a)

WEIGHT PERCENT B

(b)

FIG. 12-8. Parametric method tor determining a solvus curve.
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the parameter curve. In this way, we have located one point on the solvus

curve, namely x percent B at T\.

Other points could be found in a similar manner. For example, if the

same series of alloys were equilibrated at temperature T2 ,
a parameter

curve similar to Fig. 12-8(b) would be obtained, but its inclined branch

would be shorter and its horizontal branch lower. But heat treatments

and parameter measurements on all these alloys are unnecessary, once the

parameter-composition curve of the solid solution has been established.

Only one two-phase alloy is needed to determine the rest of the solvus.

Thus, if alloy 6 is equilibrated at T2 and then quenched, it 'will contain a

saturated at that temperature. Suppose the measured parameter of a in

this alloy is ay . Then, from the parameter-composition curve, we find that

a of parameter ay contains y percent B. This fixes a point on the solvus at

temperature T2 . Points on the solvus at other temperatures may be found

by equilibrating the same alloy, alloy 6, at various temperatures, quench-

ing, and measuring the lattice parameter of the contained a.

The parameter-composition curve, branch be of Fig. 12-8(b), thus serves

as a sort of master curve for the determination of the whole solvus. For a

given accuracy of lattice parameter measurement, the accuracy with which

the solvus can be located depends markedly on the slope of the parameter-

composition curve. If this curve is nearly flat, i.e., if changes in the com-

position of the solid solution produce very small changes in parameter, then

the composition, as determined from the parameter, will be subject to con-

siderable error and so will the location of the solvus. However, if the curve

is steep, just the opposite is true, and relatively crude parameter measure-

ments may suffice to fix the location of the solvus quite accurately. In

either case, relative parameter measurements are just as good as absolute

parameter measurements of the same accuracy.

Figure 12-9 illustrates the use of the parametric method in determining
the solid solubility of antimony in copper as a function of temperature.
The sloping curve in (a) was found from parameter measurements made
on a series of alloys, containing from to about 12 weight percent Sb, equi-

librated at 630C. The horizontal lines represent the parameters of two-

phase alloys, containing about 12 weight percent Sb, equilibrated at the

temperatures indicated. The solvus curve constructed from these data is

given in (b), together with adjoining portions of the phase diagram.
In most cases, the parametric method is more accurate than the disap-

pearing-phase method, whether based on x-ray measurements or micro-

scopic examination, in the determination of solvus curves at low tempera-
tures. As mentioned earlier, both x-ray diffraction and microscopic ex-

amination may fail to disclose the presence of small amounts of a second

phase, although for different reasons. When this occurs, the disappearing-

phase method always results in a measured extent of solubility higher than
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FIG. 12-9. Solvus curve determination in the copper-antimony system by the

parametric method: (a) parameter vs. composition curve; (b) solubility vs. tempera-

ture curve. (J. C. Mertz and C. H. Mathevvson, Trans. A.I.M.E. 124, 59, 1937.)

the actual extent. But the parametric method, since it is based on measure-

ments made on the phase whose range of solubility is being determined

(the a phase), is not influenced by any property of the second phase (the

phase). The ft phase may have an x-ray scattering power much higher

or lower than that of the a phase, and the phase may precipitate in the

form of large particles or small ones, without affecting the parameter

measurements made on the a phase.

Note that the parametric method is not confined to determining the

extent of primary solid solutions, as in the examples given above. It may

also be used to determine the solvus curves which bound an intermediate

solid solution on the phase diagram. Note also that the parametric method

may be employed even when the crystal structure of the a phase is so com-

plex that its diffraction lines cannot be indexed. In this case, the plane

spacing d corresponding to some high-angle line, or, even more directly,

the 28 value of the line, is plotted against composition and the resulting

curve used in exactly the same way as a parameter-composition curve. In

fact, the "parametric" method could be based on the measurement of any

property of the solid solution which changes with the composition of the

solid solution, e.g., its electric resistivity.
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12-6 Ternary systems. The determination of a ternary phase diagram
is naturally more complicated than that of a binary diagram, because of

the extra composition variable involved, but the same general principles

can be applied. The x-ray methods described above, based on either the

disappearing-phase or the parametric technique, can be used with very

little modification and have proved to be very helpful in the study of ter-

nary systems.

Phase equilibria in a ternary system can only be represented completely

in three dimensions, since there are three independent variables (two com-

positions and the temperature). The composition is plotted in an equi-

lateral triangle whose corners represent the three pure components, A, B,

and C, and the temperature is plotted at right angles to the plane of the

composition triangle. Any isothermal section of the three-dimensional

model is thus an equilateral triangle on which the phase equilibria at that

temperature can be depicted in two dimensions. For this reason we usually

prefer to study ternary systems by determining the phase equilibria at a

one phase
two phases

three phases

number of selected temperatures.

The study of a ternary system of

components A, B, and C begins with

a determination of the three binary

phase diagrams AB, BC, and CA, if

these are not already known. We then

make up a number of ternary alloys,

choosing their compositions almost

at random but with some regard for

what the binary diagrams may sug-

gest the ternary equilibria to be. The

diffraction patterns of these explora-

tory alloys will disclose the number

and kind of phases at equilibrium in

each alloy at the temperature selected.

These preliminary data will roughly delineate the various phase fields on

the isothermal section, and will suggest what other alloys need be prepared

in order to fix the phase boundaries more exactly.

Suppose these preliminary results suggest an isothermal section of the

kind shown in Fig. 12-10, where the phase boundaries have been drawn to

conform to the diffraction results represented by the small circles. This

section shows three terminal ternary solid solutions, a, /3, and 7, joined in

pairs by three two-phase regions, (a + 0), (ft + 7), and (a + 7), and in

the center a single region where the three phases, a, 0, and 7, are in equi-

librium.

In a single-phase region the composition of the phase involved, say a, is

continuously variable. In a two-phase region tie lines exist, just as in

A c

FIG. 12-10. Isothermal section of

hypothetical ternary diagram.
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binary diagrams, along which the relative amounts of the two phases change
but not their compositions. Thus in the (a + 7) field of Fig. 12-10, tie

lines have been drawn to connect the single-phase compositions which are

in equilibrium in the two-phase field. Along the line de, for example, a of

composition d is in equilibrium with y of composition e, and the relative

amounts of these two phases can be found by the lever law. Thus the con-

stitution of alloy X is given by the relation

Wa(Xd) = Wy (Xe).

Both the relative amounts and the compositions of the two phases will vary

along any line which is not a tie line.

In a three-phase field, the compositions of the phases are fixed and are

given by the corners of the three-phase triangle. Thus the compositions

of a, 0, and 7 which are at equilibrium in any alloy within the three-phase

field of Fig. 12-10 are given by a, 6, and c, respectively. To determine the

8

fa

<

along nhc

PERCENT A PERCENT A

(c)

FIG. 12-11. Parametric method of locating phase boundaries in ternary diagrams.
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relative amounts of these phases, say in alloy Y, we draw a line through Y
to any corner of the triangle, say 6, and apply the lever law:

and

Wa (ag)
= Wy (ge).

These relations form the basis of the disappearing-phase method of locat-

ing the sides and corners of the three-phase triangle.

Parametric methods are very useful in locating phase boundaries on all

portions of the isothermal section. Suppose, for example, that we wish to

determine the a/(a. + 7) boundary of the phase diagram in Fig. 12-11 (a).

Then we might prepare a series of alloys along the line abc, where be is a

tie line in the (a + 7) field, and measure the parameter of a in each one.

The resulting parameter-composition curve would then look like Fig.

12-ll(b), since the composition and parameter of a in alloys along be is

constant. However, we do not generally know the direction of the line be

at this stage, because tie lines cannot be located by any geometrical con-

struction but must be determined by experiment. But suppose we measure

the parameter of a along some arbitrary line, say the line Abd. Then we

can expect the parameter-composition curve to resemble Fig. 12-1 l(c).

The parameter of a along the line bd is not constant, since bd is not a tie

line, but in general it will change at a different rate than along the line Ab
in the one-phase field. This allows us to locate the point b on the phase

boundary by the point of inflection on the parameter curve.

The point / on the (a + 7)/(a + & + 7) boundary can be located in

similar fashion, along a line such as efg chosen at random. Along ef the

parameter of a will change continuously, because ef crosses over a series of

tie lines, but along fg in the three-phase field the parameter of a will be

constant and equal to the parameter of saturated a of composition h. The

parameter-composition curve will therefore have the form of Fig. 12-ll(b).

PROBLEMS

12-1. Metals A and B form a terminal solid solution a, cubic in structure. The

variation of the lattice parameter of a with composition, determined by quench-

ing single-phase alloys from an elevated temperature, is found to be linear, the

parameter varying from 3.6060A for pure A to 3.6140A in a containing 4.0 weight

percent B. The solvus curve is to be determined by quenching a two-phase alloy

containing 5.0 weight percent B from a series of temperatures and measuring the

parameter of the contained a. How accurately must the parameter be measured

if the solvus curve is to be located within 0.1 weight percent B at any tempera-

ture?

12-2. The two-phase alloy mentioned in Prob. 12-1, after being quenched from

a series of temperatures, contains a having the following measured parameters:
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Temperature Parameter

100C 3.6082A
200 3.6086

300 3.6091

400 3.6098

500 3.6106

600 3.6118

Plot the solvus curve over this temperature range. What is the solubility of B in

A at 440C?



CHAPTER 13

ORDER-DISORDER TRANSFORMATIONS

13-1 Introduction. In most substitutional solid solutions, the two

kinds of atoms A and B are arranged more or less at random on the atomic

sites of the lattice. In solutions of this kind the only major effect of a

change in temperature is to increase or decrease the amplitude of thermal

vibration. But, as noted in Sec. 2-7, there are some solutions which have

this random structure only at elevated temperatures. When these solu-

tions are cooled below a certain critical temperature TV, the A atoms

arrange themselves in an orderly, periodic manner on one set of atomic

sites, and the B atoms do likewise on another set. The solution is then

said to be ordered or to possess a superlattice. When this periodic arrange-

ment of A and B atoms persists over very large distances in the crystal, it

is known as long-range order. If the ordered solution is heated above Tc ,

the atomic arrangement becomes random again and the solution is said to

be disordered.

The change in atom arrangement which occurs on ordering produces

changes in a large number of physical and chemical properties, and the

existence of ordering may be inferred from some of these changes. How-

ever, the only conclusive evidence for a disorder-order transformation is a

particular kind of change in the x-ray diffraction pattern of the substance.

Evidence of this kind was first obtained by the American metallurgist Bain

in 1923, for a gold-copper solid solution having the composition AuCua.
Since that time, the same phenomenon has been discovered in many other

alloy systems.

13-2 Long-range order in AuCua. The gold and copper atoms of

AuCu3 ,
above a critical temperature of about 395C, are arranged more or

less at random on the atomic sites of a face-centered cubic lattice, as illus-

trated in Fig. 13-1 (a). If the disorder is complete, the probability that a

particular site is occupied by a gold atom is simply f ,
the atomic fraction

of gold in the alloy, and the probability that it is occupied by a copper atom

is f ,
the atomic fraction of copper. / These probabilities are the same for

every site and, considering the structure as a whole, we can regard each

site as being occupied by a statistically "average" gold-copper atom. Be-

low the critical temperature, the gold atoms in a perfectly ordered alloy

occupy only the corner positions of the unit cube and the copper atoms the

face-centered positions, as illustrated in Fig. 13-1 (b). Both structures are

cubic and have practically the same lattice parameters. Figure 13-2 shows
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gold atom

copper atom

V_y
'

'average"

gold-copper atom

(a) Disordered (b) Ordered

FIG. 13-1. Unit cells of the disordered and ordered forms of AuCu 3 .

how the two atomic arrangements differ on a particular lattice plane. The

same kind of ordering has been observed in PtCu 3 ,
FeNi3 ,

MnNi3 ,
and

(MnFe)Ni3 .

What differences will exist between the diffraction patterns of ordered

and disordered AuCu3 ? Since there is only a very slight change in the size

of the unit cell on ordering, and none in its shape, there will be practically

no change in the positions of the diffraction lines. But the change in the

positions of the atoms must necessarily cause a change in line intensities.

We can determine the nature of these changes by calculating the structure

factor F for each atom arrangement:

(a) Complete disorder. The atomic scattering factor of the "average"

gold-copper atom is given by

/av
= (atomic fraction Au) /Au + (atomic fraction Cu) /cu ,

/av = 4/Au + f/Cu-

There are four "average" atoms per unit cell, at 0, f \ 0, \ \, and

\ \. Therefore the structure factor is given by

F = 2f Q
2* i (ku+kv+iw )

F = Av[l + e

Disordered Ordered

( j gold ^B copper

FIG. 13-2. Atom arrangements on a (100) plane, disordered and ordered AuCu 3.
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By example (d) of Sec. 4-6, this becomes

F = 4/av = (/Au + 3/cu), for hkl unmixed,

F =
0, for hkl mixed.

We therefore find, as might be expected, that the disordered alloy produces

a diffraction pattern similar to that of any face-centered cubic metal, say

pure gold or pure copper. No reflections of mixed indices are present.

(b) Complete order. Each unit cell now contains one gold atom, at 0,

and three copper atoms, at ^ ^ 0, ^ f ,
and ^ f .

F = /A

F = (/AU + 3/cu), for hkl unmixed,
(13-1)

F = (/AU
-

/Cu), for hkl mixed.

The ordered alloy thus produces diffraction lines for all values of hkl, and

its diffraction pattern therefore resembles that of a simple cubic substance.

In other words, there has been a change of Bravais lattice on ordering; the

Bravais lattice of the disordered alloy is face-centered cubic and that of the

ordered alloy simple cubic.

The diffraction lines from planes of unmixed indices are called fundamen-
tal lines, since they occur at the same positions and with the same intensi-

ties in the patterns of both ordered and disordered alloys. The extra lines

which appear in the pattern of an ordered alloy, arising from planes of

mixed indices, are called superlattice lines, and their presence is direct evi-

dence that ordering has taken place. The physical reason for the forma-

tion of superlattice lines may be deduced from an examination of Fig. 13-1.

Consider reflection from the (100) planes of the disordered structure, and

let an incident beam of wavelength X make such an angle of incidence B

that the path difference between rays scattered by adjacent (100) planes is

one whole wavelength. But there is another plane halfway between these

two, containing, on the average, exactly the same distribution of gold and

copper atoms. This plane scatters a wave which is therefore X/2 out of

phase with the wave scattered by either adjacent (100) plane and of ex-

actly the same amplitude. Complete cancellation results and there is no

100 reflection. In the ordered alloy, on the other hand, adjacent (100)

planes contain both gold and copper atoms, but the plane halfway between

contains only copper atoms. The rays scattered by the (100) planes and

those scattered by the midplanes are still exactly out of phase, but they now
differ in amplitude because of the difference in scattering power of the gold
and copper atoms. The ordered structure therefore produces a weak 100

reflection. And as Eqs. (13-1) show, all the superlattice lines are much
weaker than the fundamental lines, since their structure factors involve
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FIG. 13-3. Powder patterns of AuCiis (very coarse-grained) made with filtered

copper radiation: (a) quenched from 440C (disordered); (b) held 30 min at 360C
and quenched (partially ordered) ; (c) slowly cooled from 360C to room tempera-
ture (completely ordered).

the difference, rather than the sum, of the atomic scattering factors of each

atom. This effect is shown quite clearly in Fig. 13-3, where / and s are

used to designate the fundamental and superlattice lines, respectively.

At low temperatures, the long-range order in AuCua is virtually perfect

but, as Tc is approached, some randomness sets in. This departure from

perfect order can be described by means of the long-range order parameter

S, defined as follows:

S =
i -F (13-2)

where TA = fraction of A sites occupied by the "right" atoms, i.e., A atoms,
and FA = fraction of A atoms in the alloy. When the long-range order is

perfect, rA = 1 by definition, and therefore $ = 1. When the atomic

arrangement is completely random, rA = FA and S = 0. For example,
consider 100 atoms of AuCus, i.e., 25 gold atoms and 75 copper atoms.

Suppose the ordering is not perfect and only 22 of these gold atoms are on

"gold sites," i.e., cube corner positions, the other 3 being on "copper sites."

Then, considering the gold atom as the A atom in Eq. (13-2), we find that

rA = f| = 0.88 and FA =
-fifc

= 0.25. Therefore,

S
0.88 - 0.25

1.00 - 0.25

= 0.84

describes the degree of long-range order present. The same result is ob-

tained if we consider the distribution of copper atoms.
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Any departure from perfect long-range order in a superlattice causes the

superlattice lines to become weaker. It may be shown that the structure

factors of partially ordered AuCua are given by

F = (/AU + 3/cu), for hkl unmixed,

F = S(/Au
-

/cu), for hkl mixed.
(13-3)

i o

08

Of)

04

02

s AuOus

Comparing these equations with Eqs. (13-1), we note that only the super-

lattice lines are affected. But the effect is a strong one, because the inten-

sity of a superlattice line is proportional to \F\
2 and therefore to S2

. For

example, a decrease in order from K = 1 .00 to S = 0.84 decreases the in-

tensity of a superlattice line by about 30 percent. The weakening of super-

lattice lines by partial disorder is illustrated in Fig. 13-3. By comparing
the integrated intensity ratio of a superlattice and fundamental line, we

can determine S experimentally.

Values of S obtained in this way are

shown in Fig. 13-4 as a function of

the absolute temperature T, expressed

as a fraction of the critical tempera-

ture Te . For AuCu3 the value of S

decreases gradually, with increasing

temperature, to about 0.8 at Tc and

then drops abruptly to zero. Above

Tc the atomic distribution is random

and there are no superlattice lines.

Recalling the approximate law of con-

servation of diffracted energy, already

alluded to in Sec. 4-12, we might ex-

pect that the energy lost from the su-

perlattice lines should appear in some

form in the pattern of a completely

disordered alloy. As a matter of fact

it does, in the form of a weak diffuse

background extending over the whole

range of 26. This diffuse scattering is due to randomness, and is another

illustration of the general law that any departure from perfect periodicity

of atom arrangement results in some diffuse scattering at non-Bragg angles.

Von Laue showed that if two kinds of atoms A and B are distributed

completely at random in a solid solution, then the intensity of the diffuse

scattering produced is given by

o

4 0.5 G 08 09 1.007

T/TC

FIG. 13-4. Variation of the long-

range order parameter with temper-

ature, for AuCu 3 and CuZn. (AuCu 3

data from D. T. Keating and B. E.

Warren, J. Appl. P%s. 22, 286, 1951;

CuZn data from D. Chipman and

B. E. Warren, J. Appl. Phys. 21, 696,

1950.)

where k is a constant for any one composition, and /A and /B are atomic

scattering factors. Both /A and /B decrease as (sin 0)/\ increases, and so
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FIG. 1 3-5. Phase diagram of the gold-copper system. Two-phase fields not

labeled for lack of room. (Compiled from Metals Handbook, American Society

for Metals, 1948; J. B. Newkirk, Trans. A.I.M.E. 197, 823, 1953; F. N. Rhines,

W. E. Bond, and R. A. Rummel, Trans, A.S.M, 47, 1955; R. A. Onani, Ada Metal-

lurgica 2, 608, 1954; and G. C. Kuczynski, unpublished results.)

does their difference; therefore ID is a maximum at 20 = and decreases

as 20 increases. This diffuse scattering is very difficult to measure experi-

mentally. It is weak to begin with and is superimposed on other forms of

diffuse scattering that may also be present, namely, Compton modified

scattering, temperature-diffuse scattering, etc. It is worth noting, how-

ever, that Eq. (13-4) is quite general and applies to any random solid solu-

tion, whether or not it is capable of undergoing ordering at low tempera-

tures. We will return to this point in Sec. 13-5.
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Another aspect of long-range order that requires some mention is the

effect of change in composition. Since the ratio of corner sites to face-

centered sites in the AuCu3 lattice is 1:3, it follows that perfect order can

only be attained when the ratio of gold to copper atoms is also exactly

1 :3. But ordering can also take place in alloys containing somewhat more,
or somewhat less, than 25 atomic percent gold, as shown by the phase dia-

gram of Fig. 13-5. (Here the ordered phase is designated
'
to distinguish

it from the disordered phase a stable at high temperatures.) In an ordered

alloy containing somewhat more than 25 atomic percent gold, all the corner

sites are occupied by gold atoms, and the remainder of the gold atoms

occupy some of the face-centered sites normally occupied by copper atoms.

Just the reverse is true for an alloy containing less than 25 atomic percent

gold. But, as the phase diagram shows, there are limits to the variation in

composition which the ordered lattice will accept without becoming un-

stable. In fact, if the gold content is increased to about 50 atomic per-

cent, an entirely different ordered alloy, AuCu, can be formed.

13-3 Other examples of long-range order. Before considering the or-

dering transformation in AuCu, which is rather complex, we might examine

the behaviour of /3-brass. This alloy is stable at room temperature over a

composition range of about 46 to almost 50 atomic percent zinc, and so

may be represented fairly closely by the formula CuZn. At high tempera-
tures its structure is, statistically, body-centered cubic, with the copper and

zinc atoms distributed at random. Below a critical temperature of about

465C, ordering occurs; the cell corners are then occupied only by copper
atoms and the cell centers only by zinc atoms, as indicated in Fig. 13-6.

The ordered alloy therefore has the CsCl structure and its Bravais lattice

is simple cubic. Other alloys which have the same ordered structure are

CuBe, CuPd, AgZn, FeCo, NiAl,* etc. Not all these alloys, however,

(
j

zinc atom

copper atom

f
j "average"

copper-zinc atom

(a) Disordered (b) Ordered

FIG. 13-6. Unit cells of the disordered and ordered forms of CuZn.

* NiAl is the ft phase referred to in Sec. 12-3 as having a defect lattice at certain

compositions.
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undergo an order-disorder transformation, since some of them remain

ordered right up to their melting points.

By calculations similar to those made in the previous section, the struc-

ture factors of 0-brass, for the ideal composition CuZn, can be shown to be

F = (/cu + /zn), for (h + k + l) even,

F = S(fcu
~

/zn), for (h + k + I) odd.

In other words, there are fundamental lines, those for which (h + k + l)

is even, which are unchanged in intensity whether the alloy is ordered or

not. And there are superlattice lines, those for which (h + k +'l) is odd,

which are present only in the pattern of an alloy exhibiting some degree

of order, and then with an intensity which depends on the degree of order

present.

Figure 13-4 indicates how the degree of long-range order in CuZn varies

with the temperature. The order parameter for CuZn decreases continu-

ously to zero as T approaches Te ,
whereas for AuCu3 it remains fairly high

right up to Tc and then drops abruptly to zero. There is also a notable dif-

ference in the velocity of the disorder-order transformation in these two

alloys. The transformation in AuCu3 is relatively so sluggish that the

structure of this alloy at any temperature can be retained by quenching to

room temperature, as evidenced by the diffraction patterns in Fig. 13-3.

In CuZn, on the other hand, ordering is so rapid that disorder existing at

an elevated temperature cannot be retained at room temperature, no mat-

ter how rapid the quench. Therefore, any specimen of CuZn at room tem-

perature can be presumed to be completely ordered. (The S vs. T/TC

curve for CuZn, shown in Fig. 13-4, was necessarily based on measure-

ments made at temperature with a high-temperature diffractometer.)

Not all order-disorder transformations are as simple, crystallographically

speaking, as those occurring in AuCu3 and CuZn. Complexities are en-

countered, for example, in gold-copper alloys at or near the composition

AuCu; these alloys become ordered below a critical temperature of about

420C or lower, depending on the composition (see Fig. 13-5). Whereas

the ratio of gold to copper atoms in AuCu3 is 1 :3, this ratio is 1 : 1 for AuCu,

and the structure of ordered AuCu must therefore be such that the ratio

of gold sites to copper sites is also 1:1. Two ordered forms are produced,

depending on the ordering temperature, and these have different crystal

structures:

(a) Tetragonal AuCu, designated a" (I), formed by slow cooling from

high temperatures or by isothermal ordering below about 380C. The unit

cell is shown in Fig. 13-7 (a). It is almost cubic in shape, since c/a equals

about 0.93, and the gold and copper atoms occupy alternate (002) planes.

(b) Orthorhombic AuCu, designated a" (II), formed by isothermal

ordering between about 420 and 380C. Its very unusual unit cell, shown
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(a) "(I)-Utragonal

(h) a" ( 1 1 l-oithorhombic

FIG. 13-7. Unit cells of the two ordered forms of AuCu.

in Fig. 13-7 (b), is formed by placing ten tetragonal cells like that of a"(I)
side by side and then translating five of them by the vectors c/2 and a/2
with respect to the other five. (Some distortion occurs, with the result that-

each of the ten component cells, which together make up the true unit cell,

is not tetragonal but orthorhombic; i.e., b is not exactly ten times a, but

equal to about 10.02a. The c/a ratio is about 0.92.) The result is a struc-

ture in which the atoms in any one (002) plane are wholly gold for a dis-

tance of 6/2, then wholly copper for a distance of 6/2, and so on.

From a crystallographic viewpoint, there is a fundamental difference

between the kind of ordering which occurs in AuCu3 or CuZn, on the one

hand, and that which occurs in AuCu, on the other. In AuCu3 there is a

change in Bravais lattice, but no change in crystal system, accompanying
the disorder-order transformation: both the disordered and ordered forms

are cubic. In AuCu, the ordering process changes both the Bravais lattice

and the crystal system, the latter from cubic to tetragonal, AuCu(I), or

orthorhombic, AuCu(II). These changes are due to changes in the sym-

metry of atom arrangement, because the crystal system to which a given
structure belongs depends ultimately on the symmetry of that structure

(see Sec. 2-4). In the gold-copper system, the disordered phase a is cubic,

because the arrangement of gold and copper atoms on a face-centered lat-

tice has cubic symmetry, in a statistical sense, at any composition. In

3 ,
the ordering process puts the gold and copper atoms in definite
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positions in each cell (Fig. 13-1), but this arrangement still has cubic sym-

metry so the cell remains cubic. In ordered AuCu, on the other hand, to

consider only the tetragonal modification, the atom arrangement is such

that there is no longer three-fold rotational symmetry about directions of

the form (111). Inasmuch as this is the minimum symmetry requirement

for the cubic system, this cell [Fig. 13-7 (a)] is not cubic. There is, how-

ever, four-fold rotational symmetry about [001], but not about [010] or

[100]. The ordered form is accordingly tetragonal. The segregation of

gold and copper atoms on alternate (002) planes causes c to differ from a,

in this case in the direction of a small contraction of c relative to a, because

of the difference in size between the gold and copper atoms. But even if

c were equal to a, the cell shown in Fig. 13-7 (a) would still be classified as

tetragonal on the basis of its symmetry.

13-4 Detection of superlattice lines. We have already seen that the

intensity of a superlattice line from an ordered solid solution is much lower

than that of a fundamental line. Will it ever be so low that the line cannot

be detected? We can make an approximate estimate by ignoring the varia-

tion in multiplicity factor and Lorentz-polarization factor from line to line,

and assuming that the relative integrated intensities of a superlattice and

fundamental line are given by their relative \F\
2
values. For fully ordered

AuCu3 ,
for example, we find from Eqs. (13-1) that

Intensity (superlattice line) \F\ 8
2

_ (/AU
~

/GU)"

Intensity (fundamental line) |F|/
2

(/AU + 3/cJ

At (sin 0)/X
= we can put / = Z and, since the atomic numbers of gold

and copper are 79 and 29, respectively, Eq. (13-6) becomes, for small

scattering angles, _^
zz 0.09.

If [79 + 3(29)]
2

Superlattice lines are therefore only about one-tenth as strong as fundamen-

tal lines, but they can still be detected without any difficulty, as shown by

Fig. 13-3.

But in CuZn, even when fully ordered, the situation is much worse. The

atomic numbers of copper and zinc are 29 and 30, respectively, and, mak-

ing the same assumptions as before, we find that

I, (/cu
-

/zn)
2

(29
-

30)
2

//~(/Cu+/Zn)
2

(29 +
0.0003.

This ratio is so low that the superlattice lines of ordered CuZn can be de-

tected by x-ray diffraction only under very special circumstances. The

same is true of any superlattice of elements A and B which differ in atomic
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FIG. 13-8. Variation of A/ with X/X/t. (Data from R. W. James, The Optical

Principles of the Diffraction of X-Rays, G. Bell and Sons, Ltd., London, 1948, p. 608.)

number by only one or two units, because the superlattice-line intensity is

generally proportional to (/A /e)
2

-

There is one way, however, of increasing the intensity of a superlattice

line relative to that of a fundamental line, when the two atoms involved

have almost the same atomic numbers, and that is by the proper choice of

the incident wavelength. In the discussion of atomic scattering factors

given in Sec. 4-3 it was tacitly assumed that the atomic scattering factor

was independent of the incident wavelength, as long as the quantity

(sin 0)/X was constant. This is not quite true. When the incident wave-

length X is nearly equal to the wavelength \K of the K absorption edge of

the scattering element, then the atomic scattering factor of that element

may be several units lower than it is when X is very much shorter than X#.

If we put / = atomic scattering factor for X \K (this is the usual value

as tabulated, for example, in Appendix 8) and A/ = change in / when X is

near XA, then the quantity /'
= / + A/ gives the value of the atomic scat-

tering factor when X is near XA- Figure 13-8 shows approximately how

A/ varies with X/XA, and this curve may be used to estimate the correction

A/ which must be applied for any particular combination of wavelength and

scattering element.*

*
Strictly speaking, A/ depends also on the atomic number of the scattering ele-

ment, which means that a different correction curve is required for every element.

But the variation of A/ with Z is not very large, and Fig. 13-8, which is computed
for an element of medium atomic number (about 50), can be used with fairly good

accuracy as a master correction curve for any element.
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FIG. 13 9.

04 06

sin 6

^''

Atomic scattering factors of copper for two different wavelengths.

When A/AA- is less than about 0.8, the correction is practically negligible.

When A/A A- exceeds about 1.6, the correction is practically constant and

independent of small variations in AA. But when A is near AA, the slope

of the correction curve is quite steep, which means that the A/ correction

can be quite different for two elements of nearly the same atomic number.

By taking advantage of this fact, we can often increase the intensity of a

superlattice line above its normal value.

For example, if ordered CuZn is examined with Mo Ka radiation, \/\K
is 0.52 for the copper atom and 0.55 for the zinc atom. The value of A/ is

then about +0.3 for either atom, and the intensity of a superlattice line

would be proportional to [(29 + 0.3)
-

(30 + 0.3)]
2 = 1 at low values of

20. Under these circumstances the line would be invisible in the presence

of the usual background. But if Zn Ka radiation is used, A/AA becomes

1.04 and 1.11 for the copper and zinc atoms, respectively, and Fig. 13-8

shows that the corrections are 3.6 and 2.7, respectively. The super-

lattice-line intensity is now proportional to [(29 3.6) (30 2.7)]
2 =

3.6, which is large enough to permit detection of the line. Cu Ka radia-

tion also offers some advantage over Mo Ka, but not so large an advantage
as Zn /fa, and order in CuZn can be detected with Cu Ka only if crystal-

monochromated radiation is used.

To a very good approximation, the change in atomic scattering factor

A/ is independent of scattering angle and therefore a constant for all lines

on the diffraction pattern. Hence, we can construct a corrected /' curve

by adding, algebraically, the same value A/ to all the ordinates of the usual

/ vs. (sin 0)/A curve, as in Fig. 13-9.
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By thus taking advantage of this anomalous change in scattering factor

near an absorption edge, we are really pushing the x-ray method about as

far as it will go. A better tool for the detection of order in alloys of metals

of nearly the same atomic number is neutron diffraction (Appendix 14).

Two elements may differ in atomic number by only one unit and yet their

neutron scattering powers may be entirely different, a situation conducive

to high superlattice-line intensity.

13-5 Short-range order and clustering. Above the critical tempera-

ture Tc long-range order disappears and the atomic distribution becomes

more or less random. This is indicated by the absence of superlattice lines

from the powder pattern. But careful analysis of the diffuse scattering

which forms the background of the pattern shows that perfect randomness

is not attained. Instead, there is a greater than average tendency for un-

like atoms to be nearest neighbors. This condition is known as short-range

order.

For example, when perfect long-range order exists in AuCu3 ,
a gold atom

located at is surrounded by 12 copper atoms at f \ and equivalent

positions (see Fig. 13-1), and any given copper atom is likewise surrounded

by 12 gold atoms. This kind of grouping is a direct result of the existing

long-range order, which also requires that gold atoms be on corner sites

and copper atoms on face-centered sites. Above Tc this order breaks down

and, if the atomic distribution became truly random, a given gold atom

might be found on either a corner or face-centered site. It would then

have only f (12) = 9 copper atoms as nearest neighbors, since on the aver-

age 3 out of 4 atoms in the solution are copper. Actually, it is observed

that some short-range order exists above Tc : at 460C, for example, which

is 65C above TC1 there are on the average about 10.3 copper atoms around

any given gold atom.

This is a quite general effect. Any solid solution which exhibits long-

range order below a certain temperature exhibits some short-range order

above that temperature. Above Tc the degree of short-range order de-

creases as the temperature is raised; i.e., increasing thermal agitation tends

to make the atomic distribution more and more random. One interesting

fact about short-range order is that it has also been found to exist in solid

solutions which do not undergo long-range or4ering at low temperatures,

such as gold-silver and gold-nickel solutions.

We can imagine another kind of departure from randomness in a solid

solution, namely, a tendency of like atoms to be close neighbors. This

effect is known as clustering, and it has been observed in aluminum-silver

and aluminum-zinc solutions. In fact, there is probably no such thing as

a perfectly random solid solution. All real solutions probably exhibit either

short-range ordering or clustering to a greater or lesser degree, simply be-
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FIG. 13-10. Calculated intensity /D of diffuse scattering in powder patterns of

solid solutions (here, the face-centered cubic alloy Xi 4Au) which exhibit complete

randomness, short-range order, and clustering. The short-range order curve is

calculated on the basis of one additional unlike neighbor ovei the random con-

figuration, and the clustering curve on the basis of one less unlike neighbor.

(B. E. Warren and B. L. Averbach, Modern Research Techniques in Physical Metal-

lurgy, American Society for Metals, Cleveland, 1953, p. 95.)

cause they are composed of unlike atoms with particular forces of attrac-

tion or repulsion operating between them.

The degree of short-range order or clustering may be defined in terms of

a suitable parameter, just as long-range order is, and the value of this

parameter may be related to the diffraction effects produced. The general

nature of these effects is illustrated in Fig. 13-10, where the intensity of the

diffuse scattering is plotted, not against 26, but against a function of sin B.

(The fundamental lines are not included in Fig. 13-10 because their in-

tensity is too high compared with the diffuse scattering shown, but the

positions of two of them, 111 and 200, are indicated on the abscissa.) If

the atomic distribution is perfectly random, the scattered intensity de-

creases gradually as 20 or sin 6 increases from zero, in accordance with

Eq. (13-4). If short-range order exists, the scattering at small angles be-

comes less intense and low broad maxima occur in the scattering curve;

these maxima are usually located at the same angular positions as the sharp

superlattice lines formed by long-range ordering. Clustering causes strong

scattering at low angles.

These effects, however, are all very weak and are masked by the other

forms of diffuse scattering which are always present. As a result, the de-
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tails shown in Fig. 13-10 are never observed in an ordinary powder pattern
made with filtered radiation. To disclose these details and so learn some-

thing about the structure of the solid solution, it is necessary to use strictly

monochromatic radiation and to make allowances for the other, forms of

diffuse scattering, chiefly temperature-diffuse and Compton modified,
which are always present.

PROBLEMS

13-1. A Debye-Scherrer pattern is made with Cu Ka radiation of AuCu 3

quenched from a temperature TV The ratio of the integrated intensity of the 420

line to that of the 421 line is found to be 4.38. Calculate the value of the long-

range order parameter S at temperature T\. (Take the lattice parameter of AuCua
as 3.75A. Ignore the small difference between the Lorentz-polarization factors

for these two lines and the corrections to the atomic scattering factors mentioned

in Sec. 13-4.)

13-2. Calculate the ratio of the integrated intensity of the 100 superlattice line

to that of the 110 fundamental line for fully ordered #-brass, if Cu Ka radiation

is used. Estimate the corrections to the atomic scattering factors from Fig. 13-8.

The lattice parameter of /3-brass (CuZn) is 2.95A.

13-3. (a) What is the Bravais lattice of AuCu(I), the ordered tetragonal

modification?

(b) Calculate the structure factors for the disordered and ordered (tetragonal)

forms of AuCu.

(c) On the basis of the calculations made in (6) and a consideration of the change
in the c/a ratio, describe the differences between the powder patterns of the or-

dered and disordered (tetragonal) forms of AuCu.



CHAPTER 14

CHEMICAL ANALYSIS BY DIFFRACTION

14-1 Introduction. A given substance always produces a characteris-

tic diffraction pattern, whether that substance is present in the pure state

or as one constituent of a mixture of substances. This fact is the basis for

the diffraction method of chemical analysis. Qualitative analysis for a par-

ticular substance is accomplished by identification of the pattern of that

substance. Quantitative analysis is also possible, because the intensities

of the diffraction lines due to one constituent of a mixture depend on the

proportion of that constituent in the specimen.

The particular advantage of diffraction analysis is that it discloses the

presence of a substance as that substance actually exists in the sample, and

not in terms of its constituent chemical elements. For example, if a sample
contains the compound A^By, the diffraction method will disclose the pres-

ence of AXEV as such, whereas ordinary chemical analysis would show only

the presence of elements A and B. Furthermore, if the sample contained

both AxBy and AXB2 |/,
both of these compounds would be disclosed by the

diffraction method, but chemical analysis would again indicate only the

presence of A and B.* To consider another example, chemical analysis

of a plain carbon steel reveals only the amounts of iron, carbon, man-

ganese, etc., which the steel contains, but gives no information regarding

the phases present. Is the steel in question wholly martensitic, does it

contain both martensite and austenite, or is it composed only of ferrite

and cementite? Questions such as these can be answered by the diffrac-

tion method. Another rather obvious application of diffraction analysis

is in distinguishing between different allotropic modifications of the same

substance: solid silica, for example, exists in one amorphous and six crys-

talline modifications, and the diffraction patterns of these seven forms are

all different.

Diffraction analysis is therefore useful whenever it is necessary to know
the state of chemical combination of the elements involved or the par-

ticular phases in which they are present. As a result, the diffraction method

* Of course, if the sample contains only A and B, and if it can be safely assumed
that each of these elements is wholly in a combined form, then the presence of

AJB,, and A^B^ can be demonstrated by calculations based on the amounts of

A and B in the sample. But this method is not generally applicable, and it usually
involves a prior assumption as to the constitution of the sample. For example, a

determination of the total amounts of A and B present in a sample composed of

A, AjBy, and B cannot, in itself, disclose the presence of AxBy ,
either qualitatively

or quantitatively.

378
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has been widely applied for the analysis of such materials as ores, clays,

refractories, alloys, corrosion products, wear products, industrial dusts,

etc. Compared with ordinary chemical analysis, the diffraction method

has the additional advantages that it is usually much faster, requires only

a very small sample, and is nondestructive.

QUALITATIVE ANALYSIS

14-2 Basic principles. The powder pattern of a substance is charac-

teristic of that substance and forms a sort of fingerprint by which the sub-

stance may be identified. If we had on hand a collection of diffraction pat-

terns for a great many substances, we could identify an unknown by pre-

paring its diffraction pattern and then locating in our file of known patterns

one which matched the pattern of the unknown exactly. The collection

of known patterns has to be fairly large, if it is to be at all useful, and then

pattern-by-pattern comparison in order to find a matching one becomes

out of the question.

What is needed is a system of classifying the known patterns so that the

one which matches the unknown can be located quickly. Such a system

was devised by Hanawalt in 1936. Any one powder pattern is charac-

terized by a set of line positions 26 and a set of relative line intensities I.

But the angular positions of the lines depend on the wavelength used, and

a more fundamental quantity is the spacing d of the lattice planes forming

each line. Hanawalt therefore decided to describe each pattern by listing

the d and / values of its diffraction lines, and to arrange the known pat-

terns in decreasing values of d for the strongest line in the pattern. This

arrangement made possible a search procedure which would quickly locate

the desired pattern. In addition, the problem of solving the pattern was

avoided and the method could be used even when the crystal structure

of the substance concerned was unknown.

14-3 The Hanawalt method. The task of building up a collection of

known patterns was initiated by Hanawalt and his associates, who ob-

tained and classified diffraction data on some 1000 different substances.

This work was later extended by the American Society for Testing Mate-

rials with the assistance, on an international scale, of a number of other

scientific societies. The ASTM first published a collection of diffraction

data in 1941 in the form of a set of 3 X 5" cards which contained data on

some 1300 substances. Various supplementary sets have appeared from

time to time, the most recent in 1955, and all the sets taken together now
cover some 5900 substances. Most of these are elements and inorganic

compounds, although some organic compounds and minerals are also in-

cluded.
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The original set (1941) and the first supplementary set (1944) have been out

of print since 1947. Both of these sets were revised and reissued in 1949. The fol-

lowing sets are currently available:

Year Approx. number

Name of set Section issued of substances

Revised original 1 1949 1300

Revised first supplementary 2 1949 1300

Second supplementary 3 1949 1300

Fourth
*

4 1952 700

Fifth 5 1954 700

Sixth 6 1955 600

Each card contains a five-digit code number: x-xxxx. The digit before the hyphen

is the section number and the digits after the hyphen form the number of that

card in the section. Thus, card 3-0167 is the 167th card in Section 3 (the second

supplementary set).

Since more than one substance can have the same, or nearly the same,

d value for its strongest line and even its second strongest line, Hanawalt

decided to characterize each substance by the d values of its three strongest

lines, namely di, d2 ,
and c?3 for the strongest, second-strongest, and third-

strongest line, respectively. The values of di, d2 ,
and d3 , together with

relative intensities, are usually sufficient to characterize the pattern of an

unknown and enable the corresponding pattern in the file to be located.

In each section of the ASTM file, the cards are arranged in groups charac-

terized by a certain range of d\ spacings. Within each group, e.g., the

group covering d\ values from 2.29 to 2.25A, the cards are arranged in de-

creasing order of d2 values, rather than di values. When several sub-

stances in the same group have identical d2 values, the order of decreasing

d3 values is followed. The groups themselves are arranged in decreasing

order of their d\ ranges.

A typical card from the ASTM file is reproduced in Fig. 14-1. At the

upper left appear the d valties for the three strongest lines (2.28, 1.50,

1.35A) and, in addition, the largest d value (2.60A) for this structure.

Listed below these d values are the relative intensities ///i, expressed as

percentages of the strongest line in the pattern. Immediately below the

symbol I/I\ is the serial number of the card, in this case 1-1188. Below

the intensity data are given details of the method used for obtaining the

pattern (radiation, camera diameter, method of measuring intensity, etc.),

and a reference to the original experimental work. The rest of the left-

hand portion of the card contains room for various crystallographic, opti-

cal, and chemical data which are fully described on introductory cards of

the set. The lower right-hand portion of the card lists the values of d and

///i for all the observed diffraction lines.
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FIG. 14-1. Standard 3 X 5" ASTM diffraction data card tor molybdenum
carbide. (Courtesy of American Society for Testing Materials.)

Although a particular pattern can be located by a direct search of the

card file, a great saving in time can usually be effected by use of the index

books which accompany the file. Each book contains two indexes:

(1) An alphabetical index of each substance by name. After the name
are given the chemical formula, the d values and relative intensities of the

three strongest lines, and the serial number of the card in the file for the

substance involved. All entries are fully cross-indexed; i.e., both "sodium

chloride" and "chloride, sodium" are listed. This index is to be used if

the investigator has any knowledge of one or more chemical elements in

the sample.

(2) A numerical index, which gives the spacings and intensities of the

three strongest lines, the chemical formula, name, and card serial number.

Each substance is listed three times, once with the three strongest lines

listed in the usual order did^d^ again in the order d^d\d^ and finally in

the order d^did2 . All entries are divided into groups according to the

first spacing listed; the arrangement within each group is in decreasing

order of the second spacing listed. The purpose of these additional listings

(second-strongest line first and third-strongest line first) is to enable the

user to match an unknown with an entry in the index even when compli-

cating factors have altered the relative intensities of the three strongest

lines of the unknown.* These complicating factors are usually due to the

* In the original set of cards (1941) and the first supplementary set (1944), this

threefold method of listing extended to the cards themselves, i.e., there were three

cards in the file for each substance. Because the resulting card file was too bulky,
this method was abandoned in all sets issued in 1949 and thereafter.
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presence of more than one phase in the specimen. This leads to additional

lines and even superimposed lines. Use of the numerical index requires no

knowledge of the chemical composition of the sample.

Qualitative analysis by the Hanawalt method begins with the prepara-

tion of the pattern of the unknown. This may be done with a Debye-

Scherrer camera or a diffractometer, and any convenient characteristic

radiation as long as it is so chosen that fluorescence is minimized and an

adequate number of lines appear on the pattern. (Most of the data in the

ASTM file were obtained with a Debye-Scherrer camera and Mo Ka radia-

tion. Since a change in wavelength alters the relative intensities of the

diffraction lines, this means that a pattern made with Cu Ka radiation,

for example, may not be directly comparable with one in the file. Factors

for converting intensities from a Cu Ka to a Mo Ka basis are given on an

introductory card in the ASTM file.) Specimen preparation should be

such as to minimize preferred orientation, as the latter can cause relative

line intensities to differ markedly from their normal values. If the speci-

men has a large absorption coefficient and is examined in a Debye-Scherrer

camera, the low-angle lines may appear doubled, and both their positions

and relative intensities may be seriously in error. This effect may be

avoided by dilution of the unknown, as described in Sec. 6-3.

After the pattern of the unknown is prepared, the plane spacing d corre-

sponding to each line on the pattern is calculated, or obtained from tables

which give d as a function of 26 for various characteristic wavelengths.

Alternately, a scale may be constructed which gives d directly as a func-

tion of line position when laid on the film or diffractometer chart
;
the accu-

racy obtainable by such a scale, although not very high, is generally

sufficient for identification purposes. If the diffraction pattern has been

obtained on film, relative line intensities are estimated by eye. The ASTM

suggests that these estimates be assigned the following numerical values:

Very, very strong (40
(strongest line)

= 100 1
30

Very strong = 90 Faint = 20

80 Very faint = 10
Strong

[GOMedium .n
[
OU

In many cases very rough estimates are all that are needed. If greater

accuracy is required, relative line intensities may be obtained by com-

parison with a graded intensity scale, made by exposing various portions

of a strip of film to a constant intensity x-ray beam for known lengths of

time. (Many of the intensity data in the ASTM file, including the values

shown for molybdenum carbide in Fig. 14-1, were obtained in this way.)
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If a diffractometer is used to obtain the pattern, automatic recording will

provide sufficient accuracy, and it is customary to take the maximum in-

tensity above the background rather than the integrated intensity as a

measure of the "intensity" of each line, even though the integrated inten-

sity is the more fundamental quantity.

After the experimental values of d and I/l\ are tabulated, the unknown

can be identified by the following procedure :

(1) Locate the proper d\ group in the numerical index.

(2) Read down the second column of d values to find the closest match

to d2 . (In comparing experimental and tabulated d values, always allow

for the possibility that either set of values may be in error by 0.01A.)

(3) After the closest match has been found for d 1? d2 ,
and d3 , compare

their relative intensities with the tabulated values.

(4) When good agreement has been found for the three strongest lines

listed in the index, locate the proper data card in the file, and compare the

d and 7//i values of all the observed lines with those tabulated. When
full agreement is obtained, identification is complete.

14-4 Examples of qualitative analysis. When the unknown is a single

phase, the identification procedure is relatively straightforward. Con-

sider, for example, the pattern described by Table 14-1. It was obtained

with Mo Ka radiation and a Debye-Scherrer camera ;
line intensities were

estimated. The experimental values of di, d2 ,
and da are 2.27, 1.50, and

1.34A, respectively. By examination of the ASTM numerical index we

find that the strongest line falls within the 2.29 to 2.25A group of di values.

Inspection of the listed d2 values discloses four substances having d2 values

close to 1.50A. The data on these substances are shown in Table 14-2, in

the form given in the index. Of these four, only molybdenum carbide has

a d3 value close to that of our unknown, and we also note that the relative

intensities listed for the three strongest lines of this substance agree well

TABLE 14-1

PATTERN OF UNKNOWN
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TABLE 14-2

PORTION OF ASTM NUMERICAL INDEX

with the observed intensities. We then refer to the data card bearing

serial number 1-1188, reproduced in Fig. 14-1, and compare the complete

pattern tabulated there with the observed one. Since the agreement is

satisfactory for all the observed lines, the unknown is identified as molyb-

denum carbide, Mo2C.

When the unknown is composed of a mixture of phases, the anal-

ysis naturally becomes more complex, but not impossible. Consider

the pattern described in Table 14-3, for which d l
= 2.09A, rf2

= 2.47A,

and d3
= 1.80A. Examination of the numerical index in the c/i group

2.09 to 2.05A reveals several substances having d2 values near 2.47A, but

in no case do the three strongest lines, taken together, agree with those of

the unknown. This impasse suggests that the unknown is actually

a mixture of phases, and that we are incorrect in assuming that the three

strongest lines in the pattern of the unknown are all due to the same sub-

stance. Suppose we assume that the strongest line (d = 2.09A) and the

second-strongest line (d
= 2.47A) are formed by two different phases, and

that the third-strongest line (d
= 1.80A) is due to, say, the first phase.

In other words, we will assume that di = 2.09A and d2
= 1.80A for one

phase. A search of the same group of di values, but now in the vicinity of

d2
= 1.80A, discloses agreement between the three strongest lines of the

pattern of copper, serial number 4-0836, and three lines in the pattern of

our unknown. Turning to card 4-0836, we find good agreement between

all lines of the copper pattern, described in Table 14-4, with the starred

lines in Table 14-3, the pattern of the unknown.

One phase of the mixture is thus shown to be copper, providing we can

account for the remainder of the lines as due to some other substance.

These remaining lines are listed in Table 14-5. By multiplying all the

observed intensities by a normalizing factor of 1.43, we increase the inten-

sity of the strongest line to 100. We then search the index and card file
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TABLE 14-3

PATTERN OF UNKNOWN

TABLE 14-4

PATTERN OF COPPER

in the usual way and find that these remaining lines agree with the pattern
of cuprous oxide, Cu2O, which is given at the right of Table 14-5. The
unknown is thus shown to be a mixture of copper and cuprous oxide.

The analysis of mixtures becomes still more difficult when a line from

one phase is superimposed on a line from another, and when this composite
line is one of the three strongest lines in the pattern of the unknown. The
usual procedure then leads only to a very tentative identification of one

phase, in the sense that agreement is obtained for some d values but not

for all the corresponding intensities. This in itself is evidence of line super-

position. Such patterns can be untangled by separating out lines which

agree in d value with those of phase X, the observed intensity of any super-

imposed lines being divided into two parts. One part is assigned to phase

X, and the balance, together with the remaining unidentified lines, is

treated as in the previous example.
Some large laboratories find it advantageous to use diffraction data cards

containing a punched code. These are of two kinds, both obtainable from

the ASTM: Keysort cards, which can be sorted semimechanically, and

TABLE 14-5
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standard IBM cards, which can be machine-sorted. A card file of either

type can be searched on the basis of observed d values, and, in addition,

particular categories of cards can be removed from the file more rapidly

than by hand. For example, suppose a complex mixture is to be identified

and it is known that one particular element, say copper, is present. Then

the punch coding will permit rapid removal of the cards of all compounds

containing copper, and the diffraction data on these cards can then be com-

pared with the pattern of the unknown.

14-5 Practical difficulties. In theory, the Hanawalt method should

lead to the positive identification of any substance whose diffraction pat-

tern is included in the card file. In practice, various difficulties arise, and

these are usually due either to errors in the diffraction pattern of the un-

known or to errors in the card file.

Errors of the first kind, those affecting the observed positions and inten-

sities of the diffraction lines, have been discussed in various parts of this

book and need not be reexamined here. There is, however, one point that

deserves some emphasis and that concerns the diffractometer. It must be

remembered that the absorption factor for this instrument is independent

of the angle 20, whereas, in a Debye-Scherrer camera, absorption decreases

line intensity more at small than at large angles; the result is that the low-

angle lines of most substances appear stronger, relative to medium- or

high-angle lines, on a diffractometer chart than on a Debye-Scherrer photo-

graph. This fact should be kept in mind whenever a diffractometer pattern

is compared with one of the standard patterns in the ASTM file, because

practically all of the latter were obtained with a Debye-Scherrer camera.

On the other hand, it should not be concluded that successful use of the

Hanawalt method requires relative intensity measurements of extremely

high accuracy. It is enough, in most cases, to be able to list the lines in

the correct order of decreasing intensity.

Errors in the card file itself are generally more serious, since they may
go undetected by the investigator and lead to mistaken identifications.

Even a casual examination of the ASTM alphabetical index will disclose

numerous examples of substances represented in the file by two or more

cards, often with major differences in the three strongest lines listed. This

ambiguity can make identification of the unknown quite difficult, because

the user must decide which pattern in the file is the most reliable. Work
is now in progress at the National Bureau of Standards to resolve such

ambiguities, correct other kinds of errors, and obtain new standard pat-

terns. The results of this work, which is all done with the diffractometer,

are published from time to time in NBS Circular 539, "Standard X-Ray
Diffraction Powder Patterns,

"* and incorporated in card form in the most

* Four sections of this circular have been issued to date: Vols. I and II in 1953,

Vol. Ill in 1954, and Vol. IV in 1955.
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recently issued sections of the ASTM file.

Whenever any doubt exists in the investigator's mind as to the validity

of a particular identification, he should prepare his own standard pattern.

Thus, if the unknown has been tentatively identified as substance X, the

pattern of pure X should be prepared under exactly the same experimental

conditions used for the pattern of the unknown. Comparison of the two

patterns will furnish positive proof, or disproof, of identity.

The Hanawalt method fails completely, of course, when the unknown

is a substance not listed in the card file, or when the unknown is a mixture

and the component to be identified is not present in sufficient quantity to

yield a good diffraction pattern. The latter effect can be quite trouble-

some, and, as mentioned in Sec. 12-4, mixtures may be encountered which

contain more than 50 percent of a particular component without the pat-

tern of that component being visible in the pattern of the mixture.

14-6 Identification of surface deposits. Metal surfaces frequently be-

come contaminated, either by reaction of some substance with the base

metal to produce a scale of oxide, sulfide, etc., or by simple adherence of

some foreign material. Detection and identification of such deposits is

usually an easy matter if the metal object is examined directly by some

reflection method of diffraction, without making any attempt to remove

the surface deposit for separate examination.

A reflection method is particularly suitable because of the very shallow

penetration of x-rays into most metals and alloys, as discussed at length

in Sec. 9-5. The result is that most of the recorded diffraction pattern is

produced by an extremely thin surface layer, a circumstance favorable to

the detection of small amounts of surface deposits. The diffractometer is

an ideal instrument for this purpose, particularly for the direct examination

of sheet material. Its sensitivity for work of this kind is often surprisingly

high, as evidenced by strong diffraction patterns produced by surface de-

posits which are barely visible.

An example of this kind of surface analysis occurred in the operations

of a steel plant making mild steel sheet for "tin" cans. The tin coating

was applied by hot-dipping, and the process was entirely satisfactory ex-

cept for certain batches of sheet encountered from time to time which were

not uniformly wetted by the molten tin. The only visible difference be-

tween the satisfactory and unsatisfactory steel sheet was that the surface

of the latter appeared somewhat duller than that of the former. Examina-

tion of a piece of the unsatisfactory sheet in the diffractometer revealed

the pattern of iron (ferrite) and a strong pattern of some foreign material.

Reference to the ASTM card file showed that the surface deposit was

finely divided graphite.

One difficulty that may be encountered in identifying surface deposits

from their diffraction patterns is caused by the fact that the individual



388 CHEMICAL ANALYSIS BY DIFFRACTION [CHAP. 14

crystals of such deposits are often preferentially oriented with respect to

the surface on which they lie. The result is a marked difference between

the observed relative intensities of the diffraction lines and those given on

the ASTM cards for specimens composed of randomly oriented crystals.

In the example just referred to, the reflection from the basal planes of the

hexagonal graphite crystals was abnormally strong, indicating that most

of these crystals were oriented with their basal planes parallel to the sur-

face of the steel sheet.

QUANTITATIVE ANALYSIS (SINGLE PHASE)

14-7 Chemical analysis by parameter measurement. The lattice pa-

rameter of a binary solid solution of B in A depends only on the percentage

of B in the alloy, as long as the solution is unsaturated. This fact can be

made the basis for chemical analysis by parameter measurement. All

that is needed is a parameter vs. composition curve, such as curve be of

Fig. 12-8(b), which can be established by measuring the lattice parameter

of a series of previously analyzed alloys. This method has been used in

diffusion studies to measure the change in concentration of a solution with

distance from the original interface. Its accuracy depends entirely on the

slope of the parameter-composition curve. In alpha brasses, which can

contain from to about 40 percent zinc in copper, an accuracy of 1 per-

cent zinc can be achieved without difficulty.

This method is applicable only to binary alloys. In ternary solid solu-

tions, for example, the percentages of two components can be independently

varied. The result is that two ternary solutions of quite different compo-

sitions can have the same lattice parameter.

QUANTITATIVE ANALYSIS (MULTIPHASE)

14-8 Basic principles. Quantitative analysis by diffraction is based on

the fact that the intensity of the diffraction pattern of a particular phase

in a mixture of phases depends on the concentration of that phase in the

mixture. The relation between intensity and concentration is not gen-

erally linear, since the diffracted intensity depends markedly on the

absorption coefficient of the mixture and this itself varies with the con-

centration.

To find the relation between diffracted intensity and concentration, we

must go back to the basic equation for the intensity diffracted by a powder

specimen. The form of this equation depends on the kind of apparatus

used, namely, camera or diffractometer; we shall consider only the diffrac-

tometer here. [Although good quantitative work can be done, and has

been done, with a Debye-Scherrer camera and microphotometer, the mod-
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ern trend is toward the use of the diffractometer, because (a) this instru-

ment permits quicker measurement of intensity and (b) its absorption

factor is independent of B.] The exact expression for the intensity diffracted

by a single-phase powder specimen in a diffractometer is:

/7 e
4 \ /

-
GsO (

~2M

where / = integrated intensity per unit length of diffraction line, 7 =

intensity of incident beam, e, m = charge and mass of the electron, c =

velocity of light, X = wavelength of incident radiation, r = radius of

diffractometer circle, A = cross-sectional area of incident beam, v = vol-

ume of unit cell, F = structure factor, p multiplicity, = Bragg angle,

e
-2M _

temperature factor (a function of 6) (previously referred to quali-

tatively in Sec. 4-11), and M = linear absorption coefficient (which enters

as 1/2M, the absorption factor).

This equation, whose derivation can be found in various advanced texts,

applies to a powder specimen in the form of a flat plate of effectively in-

finite thickness, making equal angles with the incident and diffracted beams.

[The fourth term in Eq. (14-1), containing the square of the structure

factor, the multiplicity factor, and the Lorentz-polarization factor, will

be recognized as the approximate equation for relative integrated inten-

sity used heretofore in this book.]

We can simplify Eq. (14-1) considerably for special cases. As it stands,

it applies only to a pure substance. But suppose that we wish to analyze

a mixture of two phases, a and /3. Then we can concentrate on a particular

line of the a phase and rewrite Eq. (14-1) in terms of that phase alone.

/ now becomes /, the intensity of the selected line of the a phase, and

the right side of the equation must be multiplied by ca ,
the volume frac-

tion of a in the mixture, to allow for the fact that the diffracting volume

of a in the mixture is less than it would be if the specimen were pure a.

Finally, we must substitute Mm for M, where Mm is the linear absorption

coefficient of the mixture. In this new equation, all factors are constant

and independent of the concentration of a except ca and Mm, and we can

write

la = (14-2)
Mm

where KI is a constant.

To put Eq. (14-2) in a useful form, we must express M in terms of the

concentration. From Eq. (1-12) we have

Ma\
)

Pa/

Mm Ma M/3=M
Pm \Pa
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where w denotes the weight fraction and p the density. Consider unit

volume of the mixture. Its weight is pm and the weight of contained a is

wapm . Therefore, the volume of a is wapm/pa ,
which is equal to ca ,

and a

similar expression holds for cp. Equation (14-3) then becomes

Mm = CaMa + Cpup
= Ca/ia + ~ Ca )/*/3

= Ca (fJLa
-

M0) + M/3J

This equation relates the intensity of a diffraction line from one phase to

the volume fraction of that phase and the linear absorption coefficients of

both phases.

We can put Eq. (14-4) on a weight basis by considering unit mass of

the mixture. The volume of the contained a is wa/pa and the volume of

ft is wp/pp. Therefore,

^L (14-5)
Wa/Pa + V>P/P0

77)-. //>_

(14-6)
Pa
-

1/P0)

Combining Eqs. (14-4) and (14-6) and simplifying, we obtain

/.-- __ (14-7)
Pa[u>a(Palp*

-
M0/P0) + M0/P0]

For the pure a phase, either Eq. (14-2) or (14-7) gives

Iap = ^- (14-8)ap
Ma

where the subscript p denotes diffraction from the pure phase. Division

of Eq. (14-7) by Eq. (14-8) eliminates the unknown constant KI and

gives

lap Wa(v-a/Pa
~

M/8/P/?) + M/3/P/3

This equation permits quantitative analysis of a two-phase mixture, pro-

vided that the mass absorption coefficients of each phase are known. If

they are not known, a calibration curve can be prepared by using mixtures

of known composition. In each case, a specimen of pure a must be avail-

able as a reference material, and the measurements of Ia and Iap must be

made under identical conditions.
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In general, the variation of the intensity ratio 7a//aP with wa is not

linear, as shown by the curves of Fig. 14-2. The experimental points were

obtained by measurements on synthetic binary mixtures of powdered

quartz, cristobalite, beryllium oxide,

and potassium chloride; the curves

were calculated by Eq. (14-9). The

agreement is excellent. The line

obtained for the quartz-cristobalite

mixture is straight because these sub-

stances are two allotropic forms of

silica and hence have identical mass

absorption coefficients. When the

mass absorption coefficients of the

two phases are equal, Eq. (14-9) be-

comes simply o 05 1 o

WK1GHT FRACTION OF

j QUARTZ W(l

- - = wa .

lap FIG. 14-2. Diffractometer meas-

urements made with Cu Ka radiation

Fig. 14-2 illustrates very clearly how on binary mixtures. /Q is the iriten-

the intensity of a particular diffrac- *y of the reflection from the d =
,. r

"

i , i 3.34A j)lanes of quartz in a mixture.
tion lino from one phase depends on ^ w^ intenjty ()f ^ flamc ^
the absorption coefficient of the other

fle(
,tion flom pure quartz. (L. E.

phase. For Cu Ka radiation, the Alexander ami H. P. Klug, Anal.

mass absorption coefficient of Be() is Chew. 20, XSG, 194S.)

8.0, of Si()2 is 34.9, and of KC1 is 124.

For various reasons, the analytical procedure just outlined cannot be

applied to most specimens of industrial interest. A variety of other meth-

ods, however, has been devised to solve particular problems, and the two

most important of these, the direct comparison method and the internal

standard method, will be described in succeeding sections. It is worth noting

that all these methods of analysis have one essential feature in common:

the measurement of the concentration of a particular phase depends on the

measurement of the ratio of the intensity of a diffraction line from that

phase to the intensity of some standard reference line. In the "single line"

method described above, the reference line is a line from the pure phase.

In the direct comparison method, it is a line from another phase in the

mixture. In the internal standard method, it is a line from a foreign mate-

rial mixed with the specimen.

14-9 Direct comparison method. This method is of greatest metallur-

gical interest because it can be applied directly to massive, polycrystalline

specimens. It has been widely used for measuring the amount of retained
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austenite in hardened steel and will be described here in terms of that

specific problem, although the method itself is quite general.

Many steels, when quenched from the austenite region, do not trans-

form completely to martensite even at the surface. At room temperature,

such steels consist of martensite and retained austenite; in addition, undis-

solved carbides may or may not be present. The retained austenite is

unstable and may slowly transform while the steel is in service. Since

this transformation is accompanied by an increase in volume of about

4 percent, residual stress is set up in addition to that already present, or

actual dimensional changes occur. For these reasons, the presence of even

a few percent retained austenite is undesirable in some applications, such

as gage blocks, closely fitting machine parts, etc. There is therefore con-

siderable interest in methods of determining the exact amount of austenite

present. Quantitative microscopic examination is fairly satisfactory as

long as the austenite content is fairly high, but becomes unreliable below

about 15 percent austenite in many steels. The x-ray method, on the other

hand, is quite accurate in this low-austenite range, often the range of

greatest practical interest.

Assume that a hardened steel contains only two phases, martensite and

austenite. The problem is to determine the composition of the mixture,

when the two phases have the same composition but different crystal

structure (martensite is body-centered tetragonal and austenite is face-

centered cubic). The "single line" method could be used if a sample of

pure austenite or of known austenite content is available as a standard.

Ordinarily, however, we proceed as follows. In the basic intensity equa-

turn, Eq. (14-1), we put

\32

(14-10)

The diffracted intensity is therefore given by

/ = ^, (14-11)
2n

where K2 is a constant, independent of the kind and amount of the diffract-

ing substance, and R depends on d, hkl, and the kind of substance. Desig-

nating austenite by the subscript y and martensite by the subscript a, we

can write Eq. (14-11) for a particular diffraction line of each phase:

/, =
7
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/Y2/taCa

7a= ~^r
Division of these equations yields

p /.

(14-12)

The value of cy/ca can therefore be obtained from a measurement of 77//a

and a calculation of Ry and Ra . Once cy/ca is found, the value of CT can

be obtained from the additional relationship:

We can thus make an absolute measurement of the austenite content

of the steel by direct comparison of the integrated intensity of an austenite

line with the integrated intensity of a martensite line.* By comparing

several pairs of austenite-martensite lines, we can obtain several inde-

pendent values of the austenite content; any serious disagreement between

these values indicates an error in observation or calculation.

If the steel contains a third phase, namely, iron carbide (cementite), we

can determine the cementite concentration either by quantitative micro-

scopic examination or by diffraction. If we measure 7C ,
the integrated

intensity of a particular cementite line, and calculate RC, then we can set

up an equation similar to Eq. (14-12) from which c7/cc can be obtained.

The value of c7 is then found from the relation

cy + ca + cc = 1.

In choosing diffraction lines to measure, we must be sure to avoid over-

lapping or closely adjacent lines from different phases. Figure 14-3 shows

the calculated patterns of austenite and martensite in a 1.0 percent carbon

steel, made with Co Ka radiation. Suitable austenite lines are the 200,

220, and 311 lines; these may be compared with the 002-200 and 112-211

martensite doublets. These doublets are not usually resolvable into sepa-

rate lines because all lines are usually quite broad, both from the martensite

and austenite, as shown in Fig. 14-4. (Figure 14-4 also shows how refrig-

eration, immediately after quenching to room temperature, can decrease

the amount of retained austenite and how an interruption in the quench,

followed by air cooling, can increase it.) The causes of line broadening are

the nonuniform microstrains present in both phases of the quenched steel

and, in many cases, the very fine grain size.

*
Recalling the earlier discussion of the disappearing-phase x-ray method of lo-

cating a solvus line (Sec. 12-4), we note from Eq. (14-12) that the intensity ratio

Iy/Ia is not a linear function of the volume fraction c^, or, for that matter, of the

weight fraction wy .
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FIG. 14-3. Calculated powder patterns of austenite and martensite, each con-

taining 1.0 percent carbon. Co Ka radiation.

In calculating the value of R for a particular diffraction line, various fac-

tors should be kept in mind. The unit cell volume v is calculated from the

measured lattice parameters, which are a function of carbon and alloy con-

tent. When the martensite doublets are unresolved, the structure factor

and multiplicity of the martensite are calculated on the basis of a body-

austenite

martensite 200

220

tiller-quenched and

then cooled to -321F
2 9'V austenite

v\atei -quenched

V*^^^ XvHrtv**

9 3 r
(, austenite

quenched to 125F,
air-cooled to room temperature

14 \
c '

(l austenite

FIG. 14-4. Microphotometer traces of Debye-Scherrer patterns of hardened

1.07 percent carbon steel. Co Ka. radiation, inonochromated by reflection from

an XaCl crystal. (B. L. Averbach and M. Colien, Trans. A.I.M.E. 176, 401 , 1948.)
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centered cubic cell; this procedure, in effect, adds together the integrated
intensities of the two lines of the doublet, which is exactly what is done

experimentally when the integrated intensity of an unresolved doublet is

measured. For greatest accuracy in the calculation of F, the atomic scat-

tering factor / should be corrected for anomalous scattering by an amount

A/ (see Fig. 13-8), particularly when Co Ka radiation is used. The Lo-

rentz-polarization factor given in Eq. (14-10) applies only to unpolarized
incident radiation; if crystal-monochromated radiation is used, this factor

will have to be changed to that given in Sec. 6-12. The value of the tem-

perature factor e~2M can be taken from the curve of Fig. 14-5.

1 .2 3 4 5 7 8

FIG. 14-5. Temperature factor e~*M of iron at 20C as a function of (sin 0)/X.

Specimen preparation involves wet grinding to remove the surface layer,

which may be decarburized or otherwise nonrepresentative of the bulk of

the specimen, followed by standard metallographic polishing and etching.

This procedure ensures a flat, reproducible surface for the x-ray examina-

tion, and allows a preliminary examination of the specimen to be made
with the microscope. In grinding and polishing, care should be taken not

to produce excessive heat or plastic deformation, which would cause par-

tial decomposition of both the martensite and austenite.

In the measurement of diffraction line intensity, it is essential that the

integrated intensity, not the maximum intensity, be measured. Large vari-

ations in line shape can occur because of variations in microstrain and grain

size. These variations in line shape will not affect the integrated intensity,

but they can make the values of maximum intensity absolutely meaning-

The sensitivity of the x-ray method in determining small amounts of

retained austenite is limited chiefly by the intensity of the continuous back-

ground present. The lower the background, the easier it is to detect and

measure weak austenite lines. Best results are therefore obtained with

crystal-monochromated radiation, which permits the detection of as little

as 0.1 volume percent austenite. With ordinary filtered radiation, the

minimum detectible amount is 5 to 10 volume percent.
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TABLE 14-6

COMPARISON OF AUSTENITE DETERMINATION BY X-RAY DIFFRACTION AND
LINEAL ANALYSIS*

* B. L. Averbach and M. Cohen, Trans. A.LM.E. 176, 401 (194X).

Table 14-6 gives a comparison between retained austenite determina-

tions made on the same steel (1.0 percent C, 1.5 percent Cr, and 0.2 percent

V) by x-ray diffraction and by quantitative microscopic examination (lineal

analysis). The steel was austenitized for 30 minutes at the temperatures
indicated and quenched in oil. The x-ray results were obtained with a

Debye-Scherrer camera, a stationary flat specimen, and crystal-monochro-

mated radiation. The carbide content was determined by lineal analysis.

Note that the agreement between the two methods is good when the austen-

ite content is fairly high, and that lineal analysis tends to show lower aus-

tenite contents than the x-ray method when the austenite content itself is

low (low austenitizing temperatures). This is not unexpected, in that the

austenite particles become finer with decreasing austenitizing temperatures
and therefore more difficult to measure microscopically. Under such cir-

cumstances, the x-ray method is definitely more accurate.

14-10 Internal standard method. In this method a diffraction line from

the phase being determined is compared with a line from a standard sub-

stance mixed with the sample in known proportions. The internal standard

method is therefore restricted to samples in powder form.

Suppose we wish to determine the amount of phase A in a mixture of

phases A, B, C, . . .
,
where the relative amounts of the other phases pres-

ent (B, C, D, . . . ) may vary from sample to sample. With a known
amount of original sample we mix a known amount of a standard substance

S to form a new composite sample. Let CA and CA
'

be the volume fractions

of phase A in the original and composite samples, respectively, and let cs

be the volume fraction of S in the composite sample. If a diffraction pat-

tern is now prepared from the composite sample, then from Eq. (14-2)

the intensity of a particular line from phase A is given by

, KSCA'
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and the intensity of a particular line from the standard S by

Mm

Division of one expression by the other gives

IA ^3CA= (14-13)

(Note that Mm, the linear absorption coefficient of the mixture and an un-

known quantity, drops out. Physically, this means that variations in

absorption, due to variations in the relative amounts of B, C, D, . . .
,

have no effect on the ratio /A//S since they affect 7A and 7g in the same

proportion.)

By extending Eq. (14-5) to a number of components, we can write

WA VPA + WB'/PB + WC'/PC H h

and a similar expression for eg. Therefore

Substitution of this relation into Eq. (14-13) gives

(14-14)

if WQ is kept constant in all the composite samples. The relation between

the weight fractions of A in the original and composite samples is:

wjj = wA (l
-

w&). (14-15)

Combination of Eqs. (14-14) and (14-15) gives

^ = K,wA . (14-16)
^s

The intensity ratio of a line from phase A and a line from the standard S

is therefore a linear function of WA, the weight fraction of A in the original

sample. A calibration curve can be prepared from measurements on a

set of synthetic samples, containing known concentrations of A and a con-

stant concentration of a suitable standard. Once the calibration curve is

established, the concentration of A in an unknown sample is obtained

simply by measuring the ratio IA/I& for a composite sample containing

the unknown and the same proportion of standard as was used in the cali-

bration.
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5

WEIGHT FRACTION OF QUARTZ ITQ

FIG. 14-6. Calibration curve for

quartz analysis, with fluorite as inter-

nal standard. /Q is the intensity of

the d = 3.34A line of quartz, and 7F

is the intensity of the d = 3.16A line

of fluorite. (L. E. Alexander and

H. P. King, Anal. Chern. 20, 886,

1948.)

The internal standard method has

been widely used for the measurement

of the quartz content of industrial

dusts. (Knowledge of the quartz con-

tent is important in industrial health

programs, because inhaled quartz or

other siliceous material is the cause

of the lung disease known as silicosis.)

In this analysis, fluorite (CaF2 ) has

been found to be a suitable internal

standard. Figure 14-6 shows a cali-

bration curve prepared from mixtures

of quartz and calcium carbonate, of

known composition, each mixed with

enough fluorite to make the weight

fraction of fluorite in each composite

sample equal to 0.20. The curve is

linear and through the origin, as pre-

dicted by Eq. (14-16).

Strictly speaking, Eq. (14-16) is valid only for integrated intensities,

and the same is true of all other intensity equations in this chapter. Yet

it has been found possible to determine the quartz content of dusts with

satisfactory accuracy by simply measuring maximum intensities. This

short cut is permissible here only because the shape of the diffraction lines

is found to be essentially constant from sample to sample. There is there-

fore a constant proportionality between maximum and integrated intensity

and, as long as all patterns are made under identical experimental condi-

tions, the measurement of maximum intensities gives satisfactory results.

Quite erroneous results would be obtained by this procedure if the particle

size of the samples were very small and variable, since then a variable

amount of line broadening would occur, and this would cause a variation

in maximum intensity independent of sample composition.

14-11 Practical difficulties. There are certain effects which can cause

great difficulty in quantitative analysis because they cause observed in-

tensities to depart widely from the theoretical. The most important of

these complicating factors are :

(1) Preferred orientation. The basic intensity equation, Eq. (14-1), is

derived on the premise of random orientation of the constituent crystals

in the sample and is not valid if any preferred orientation exists. It fol-

lows that, in the preparation of powder samples for the diffractometer,

every effort should be made to avoid preferred orientation. If the sample

is a solid polycrystalline aggregate, the analyst has no control over the
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distribution of orientations in it, but he should at least be aware of the pos-

sibility of error due to preferred orientation.

(2) Microabsorption. Consider diffraction from a given crystal of a in

a mixture of a and crystals. The incident beam passes through both a

and |8 crystals on its way to a particular diffracting a crystal, and so does

the diffracted beam on its way out of the sample. Both beams are de-

creased in intensity by absorption, and the decrease can be calculated from

the total path length and /zm ,
the linear absorption coefficient of the mix-

ture. But a small part of the total path lies entirely within the diffracting

a crystal, and for this portion /* is the applicable absorption coefficient.

If na is much larger than JL% or if the particle size -of a is much larger than

that of 0, then the total intensity of the beam diffracted by the a crystals

will be much less than that calculated, since the effect of microabsorption

in each diffracting a crystal is not included in the basic intensity equation.

Evidently, the microabsorption effect is negligible when Ma M/J and both

phases have the same particle size, or when the particle size of both phases

is very small. Powder samples should therefore be finely ground before

analysis.

(3) Extinction. As mentioned in Sec. 3-7, all real crystals are im-

perfect, in the sense that they have a mosaic structure, and the degree of

imperfection can vary greatly from one crystal to another. Equation

(14-1) is derived on the basis of the so-called "ideally imperfect'' crystal,

one in which the mosaic blocks are quite small (of the order of 10~4 to 10~~
5

cm in thickness) and so disoriented that they are all essentially nonparallel.

Such a crystal has maximum reflecting power. A crystal made up of large

mosaic blocks, some or all of which are accurately parallel to one another,

is more nearly perfect and has a lower reflecting power. This decrease in

the intensity of the diffracted beam as the crystal becomes more nearly

perfect is called extinction. Extinction is absent for the ideally imperfect

crystal, and the presence of extinction invalidates Eq. (14-1). Any treat-

ment which will make a crystal more imperfect will reduce extinction and,

for this reason alone, powder specimens should be ground as fine as pos-

sible. Grinding not only reduces the crystal size but also tends to decrease

the mosaic block size, disorient the blocks, and strain them nonuniformly.

Microabsorption and extinction, if present, can seriously decrease the

accuracy of the direct comparison method, because this is an absolute

method. Fortunately, both effects are negligible in the case of hardened

steel. Inasmuch as both the austenite and martensite have the same com-

position and only a 4 percent difference in density, their linear absorption

coefficients are practically identical. Their average particle sizes are also

roughly the same. Therefore, microabsorption does not occur. Extinc-

tion is absent because of the very nature of hardened steel. The change

in specific volume accompanying the transformation of austenite to mar-
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tensite sets up nonuniform strains in both phases so severe that both kinds

of crystals can be considered highly imperfect. If these fortunate circum-

stances do not exist, and they do not in most other alloy systems, the

direct comparison method should be used with caution and checked by

some independent method.

On the other hand, the presence of microabsorption and extinction does

not invalidate the internal standard method, provided these effects are

constant from sample to sample, including the calibration samples. Micro-

absorption and extinction affect only the values of the constants K3 and

K4 in Eq. (14-13), and therefore the constant KQ in Eq. (14-16), and the

latter constant determines only the slope of the calibration curve. There-

fore, microabsorption and extinction, if present, will have no effect on the

accuracy of the internal standard method as long as the crystals of the

phase being determined, and those of the standard substance, do not vary

in degree of perfection or particle size from one sample to another.

PROBLEMS

The d and l/l\ values tabulated in Probs. 14~1 to 14~4 represent the diffraction pat-

terns of various unknown substances. Identify the substances involved by reference to

an ASTM diffraction file.

14-1. d(A)i I/I rf(A) ///i d(A) ///i

3.66 ~5(T 1.46 10 1.06 10

3.17 100 1.42 50 1.01 10

2.24 80 1.31 30 0.96 10

1.91 40 1.23 10 0.85 10

1.83 30 1.12 10

1.60 20 1.08 10

14-2.

5.85 60 2.08 10 1.47 20

3.05 30 1.95 20 1.42 10

2.53 100 1.80 60 1.14 20

2.32 10 1.73 20 1.04 10

14-3.

240 5( 1.25 20 0.85 10

2.09 50 1.20 10 0.81 20

2.03 100 1.06 20 0.79 20

1.75 40 1.02 10

1.47 30 0.92 10

1.26 10

14-4. d(A) ///i

3702 TocT 2AI 10 L46 10

2.79 10 1.90 20 1.17 10

2.52 10 1.65 10

2.31 30 1.62 10
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14-6. Microscopic examination of a hardened 1 .0 percent carbon steel shows no

undissolved carbides. X-ray examination of this steel in a diffractometer with

filtered cobalt radiation shows that the integrated intensity of the 311 austenite

line is 2.325 and the integrated intensity of the unresolved 112-211 martensite

doublet is 16.32, both in arbitrary units. Calculate the volume percent austenite

in the steel. (Take lattice parameters from Fig. 12-5, A/ corrections from Fig.

13-8, and temperature factors e~23f from Fig. 14-5.)



CHAPTER 15

CHEMICAL ANALYSIS BY FLUORESCENCE

16-1 Introduction. We saw in Chap. 1 that any element, if made the

target in an x-ray tube and bombarded with electrons of high enough en-

ergy, would emit a characteristic line spectrum. The most intense lines of

this spectrum are the Ka and K$ lines. They are always called "charac-

teristic lines" to emphasize the fact that their wavelengths are fixed and

characteristic of the emitting element. We also saw that these same lines

would be emitted if the element were bombarded with x-rays of high enough

energy (fluorescence).

In these phenomena we have the basis for a method of chemical analysis.

If the various elements in the sample to be analyzed are made to emit

their characteristic lines by electron or x-ray bombardment, then these

elements may be identified by analyzing the emitted radiation and showing

that these specific wavelengths are present. The analysis is carried out in

an x-ray spectrometer by diffracting the radiation from lattice planes of

known d spacing in a single crystal. In accordance with the Bragg law,

radiation of only a single wavelength is reflected for each angular setting

of the crystal and the intensity of this radiation can be measured with a

suitable counter. The analysis of the sample may be either qualitative, if

the various characteristic lines in the emitted spectrum are simply identi-

fied, or quantitative, if the intensities of these lines are compared with the

intensities of lines from a suitable standard.

Two kinds of x-ray spectroscopy are possible, depending on the means

used to excite the characteristic lines :

(1) The sample is made the target in an x-ray tube and bombarded with

electrons. Historically, this was the first method. It was employed by

Moseley in his work on the relation between characteristic wavelength and

atomic number. It is not used today, except as an occasional research tool,

because it has certain disadvantages for routine work. For example, the

specimen must be placed in a demountable x-ray tube, which must then be

evacuated before the analysis can begin. The same procedure has to be

repeated for each sample. In addition, the heat produced in the sample by

electron bombardment may cause some contained elements to vaporize.

(2) The sample is placed outside the x-ray tube and bombarded with

x-rays. The primary radiation (Fig. 15-1) causes the sample to emit sec-

ondary fluorescent radiation, which is then analyzed in a spectrometer.

This method, commonly known as fluorescent analysis, has come into wide

402
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spectrometer circle
x-iay nine

rountci

FIG. 15-1. Fluorescent x-rav spectroscopy.

use in recent years. Tlie phenomenon ot fluorescence, which is just a nui-

sance in diffraction experiments, is here made to serve a useful purpose.

It may be helpful to compare some features of x-ray fluorescent analysis

with those of optical spectroscopy, i.e
, spectroscopy in the visible region of

the spectrum, since the latter method has been used for years as a routine

analytical tool and its essential features at least are well known. The main

differences between the two methods are the following:

Exciting agent
Emitted radiation

Analyzer
Detector

Nature of spectra

Optical

speotroscopy

arc or spark
visible light

prism or grating

photographic film

or phototube

complex

Fluorescent

analysis

x-rays

x-rays

crystal

photographic film

or counter

simple

Both these methods give information about the chemical elements present

in the sample, irrespective of their state of chemical combination or the

phases in which they exist. X-ray diffraction, on the other hand, as we
saw in the previous chapter, discloses the various compounds and phases

present in the sample. Fluorescent analysis and diffraction analysis there-

fore complement one another in the kind of information they provide.

Fluorescent analysis is nondestructive and much more rapid than the

ordinary wet methods of chemical analysis. It is best suited to determin-

ing elements present in amounts ranging from a few percent up to 100

percent, and in this range it is superior to optical spectroscopy. In gen-

eral, fluorescent analysis is inferior to optical spectroscopy in the concen-

tration range below 1 percent, but it can be used to advantage in this range

in special cases. Fluorescent analysis is used today in the analysis of alloys

(particularly high-alloy steels and high-temperature alloys), ores, oils, gaso-

line, etc.
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Chemical analysis by x-ray spectroscopy dates back to the pioneer work

of von Hevesy and Coster in Germany about 1923. They used photo-

graphic film to record the spectra. The x-ray method never became popu-

lar, however, until recent years, when the development of various kinds of

counters allowed direct measurement of x-ray intensity and thus decreased

the time required for analysis. The methods of fluorescent analysis are

still undergoing rapid development, and a wider range of application, to-

gether with greater speed and accuracy, can be expected in the near future.

16-2 General principles. Most fluorescent spectrometers, of which

there are many forms, have the analyzing crystal and counter mechanically

coupled, as in a diffractometer. Thus, when the crystal is set at a particular

Bragg angle 0, the counter is automatically set at the corresponding angle

26. The counter is connected to a sealer, or to a ratemeter and automatic

recorder. The intensity of individual spectral lines emitted by the sample

may be measured with the counter-sealer combination, or the whole spec-

trum may be continuously scanned and recorded automatically.

Figure 15-2 shows an example of a fluorescent spectrum automatically

recorded with a commercial spectrometer. The wavelength of each spec-

tral line is calculable from the corresponding Bragg angle and the inter-

planar spacing of the analyzing crystal used. The primary radiation was

supplied by a tungsten-target tube operated at 50 kv, and the sample was

stainless steel containing 18 percent chromium and 8 percent nickel. The

K lines of all the major constituents (Fe, Cr, and Ni) and of some of the

minor constituents (Mn and Co) are apparent. (In addition, tungsten L
lines can be seen; these will always be present when a tungsten tube is used,

since they are excited in the tube and scattered by the sample into the

beam of secondary radiation. The copper K lines are due to copper exist-

ing as an impurity in the tungsten target.)

In fluorescent spectrometry, the fluorescent radiation emitted by the

sample and diffracted by the crystal should be as intense as possible, so

that it will be accurately measurable in a short counting time. The in-

tensity of this emitted radiation depends on both the wavelength and the

intensity of the incident primary radiation from the x-ray tube. Suppose
that monochromatic radiation of constant intensity and of wavelength X

is incident on an element which has a K absorption edge at X#, and that we
can continuously vary X. As we decrease X from a value larger than \K,

no K fluorescence occurs until X is just shorter than \K- The fluorescent

intensity is then a maximum. Further decrease in X causes the fluorescent

intensity to decrease, in much the same manner as the absorption coeffi-

cient. This is natural since, as mentioned in Sec. 1-5, fluorescence and

true absorption are but two aspects of the same phenomenon. At any
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FIG. 15-3. Variation with atomic number of the \\avelength of the strongest

lines of the K and L series.

one value of X, the fluorescent intensity is directly proportional to the inci-

dent intensity.

The best exciting agent would therefore be a strong characteristic line

of wavelength just shorter than X#. It is clearly impossible to satisfy this

requirement for more than one fluorescing element at a time, and in prac-

tice we use a tungsten-target tube with as high a power rating as possible.

The exciting radiation is then that part of the continuous spectrum and

such L lines of tungsten as have shorter wavelengths than the absorption

edge of the fluorescing element. Molybdenum-target tubes are also used.

The beam of secondary radiation issuing from the sample consists largely

of fluorescent radiation, but there are some other weak components present

as well. These are coherent scattered radiation, coherent diffracted radia-

tion, -and incoherent (Compton modified) radiation. These components
are partially scattered and diffracted by the analyzing crystal into the

counter, and appear as a background on which the spectral lines are super-

imposed. This background is normally low (see Fig. 15-2), but it may
become rather high if the sample contains a large proportion of elements of

low atomic number, because the sample will then emit a large amount of

Compton modified radiation.

The useful range of fluorescent wavelengths extends from about 0.5 to

about 2.5A. The lower limit is imposed by the maximum voltage which

can be applied to the x-ray tube, which is 50 kv in commercial instruments.

At this voltage the short-wavelength limit of the continuous spectrum from

the tube is 12,400/50,000 = 0.25A. The maximum intensity occurs at

about 1.5 times this value, or 0.38A. Incident radiation of this wavelength



15-3] SPECTROMETERS 407

would cause K fluorescence in tellurium (atomic number 52), and the

emitted Ka radiation would have a wavelength of 0.45A. At a tube volt-

age of 50 kv, little or no K fluorescence is produced in elements with atomic

numbers greater than about 55, and for such elements the L lines have to

be used. Figure 15-3 shows how the wavelength of the strongest line in

each of these series varies with atomic number.

The upper limit of about 2.5A is imposed by the very large absorption of

radiation of this wavelength by air and the counter window. This factor

limits the elements detectable by fluorescence to those with atomic numbers

greater than about 22 (titanium). Ti Ka radiation (X
= 2.75A) is de-

creased to one-half its original intensity by passage through only 10 cm of

air. If a path filled with helium is provided for the x-rays traversing the

spectrometer, absorption is decreased to such an extent that the lower limit

of atomic number is decreased to about 13 (aluminum). Boron (atomic

number 5) should be detectable in a vacuum spectrometer.

Another important factor which limits the detection of light elements is

absorption in the sample itself. Fluorescent radiation is produced not only

at the surface of the sample but also in its interior, to a depth depending

on the depth of effective penetration by the primary beam, which in turn

depends on the over-all absorption coefficient of the sample. The fluores-

cent radiation produced within the sample then undergoes absorption on

its way out. Since long-wavelength fluorescent radiation will be highly

absorbed by the sample, the fluorescent radiation outside the sample comes

only from a thin surface skin and its intensity is accordingly low. It fol-

lows that detection of small amounts of a light element in a heavy-element

matrix is practically impossible. On the other hand, even a few parts per

million of a heavy element in a light-element matrix can be detected.

16-3 Spectrometers. There are various types of fluorescent spectrom-

eters, differentiated by the kind of analyzing crystal used: flat, curved

transmitting, or curved reflecting.

The flat crystal type, illustrated in Fig. 15-4, is the simplest in design.

The x-ray tube is placed as close as possible to the sample, so that the pri-

mary radiation on it, and the fluorescent radiation it emits, will be as in-

tense as possible. For the operator's protection against scattered radiation,

the sample is enclosed in a thick metal box, which contains a single opening

through which the fluorescent beam leaves. The sample area irradiated is

of the order of f in. square. Fluorescent radiation is emitted in all direc-

tions by this area, which acts as a source of radiation for the spectrometer

proper. Because of the large size of this source, the beam of fluorescent

radiation issuing from the protective box contains a large proportion of

widely divergent and convergent radiation. Collimation of this beam be-

fore it strikes the analyzing crystal is therefore absolutely necessary, if any
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x-rav tube

sample

FIG. 15-4. Essential parts of a fluorescent x-ray spectrometer, flat-crystal type

(schematic).

resolution at all is to be obtained. This collimation is achieved by passing

the beam through a Seller slit whose plates are at, right angles to the plane

of the spectrometer circle, because it is the divergence (and convergence)

in this plane that we want to eliminate.

Essentially parallel radiation from the collimator is then incident on the

flat crystal, and a portion of it is diffracted into the counter by lattice planes

parallel to the crystal face. Since no focusing occurs, the beam diffracted

by the crystal is fairly wide and the counter receiving slit must also be wide.

The analyzing crystal is usually NaCl or LiF, with its face cut parallel to

the (200) planes.

x-ray tube

-
sample

/conn lor

FIG. 15-5. Fluorescent x-ray spectrometer, curved-transmitting-ciystul type

(schematic).
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Both the commercial diffractometers mentioned in Sec. 7-2 can be

readily converted into fluorescent spectrometers of this kind. The conver-

sion involves the substitution of a high-powered (50-kv, 50-ma) tungsten-

or molybdenum-target tube for the usual tube used in diffraction experi-

ments, and the addition of an analyzing crystal, a shielded sample box, and

a different Soller slit.

The main features of a spectrometer employing a curved transmitting

crystal are shown in Fig. 15-5. The crystal is usually mica, which is easily

obtainable in the form of thin flexible sheets. The beam of secondary
radiation from the sample passes through a baffled tunnel, which removes

most of the nonconverging radiation. The convergent beam is then re-

flected by the transverse (33l) planes of the bent mica crystal, and focused

on the receiving slit of the counter. (The focusing action of such a crystal

is described in Sec. 6-12.) The beam tunnel is not an essential part of the

instrument; for a given setting of the crystal, only incident convergent radi-

ation of a single wavelength will be diffracted into the counter slit. The

only purpose of the tunnel is to protect the operator by limiting the beam.

A set of two or three mica crystals of different thicknesses is needed to

obtain the highest diffraction efficiency over the whole range of wave-

lengths, inasmuch as thin crystals must be used in analyzing easily ab-

sorbed long-wavelength radiation and thicker crystals for harder radiation.

The thickness range is about 0.0006 to 0.004 in.

Besides the usual two-to-one coupling between the counter and crystal,

this spectrometer must also have a mechanism for changing the radius of

curvature of the crystal with every change in 0, in order that the diffracted

rays be always focused at the counter slit. The necessary relation between

the radius of curvature 27? (R is the radius of the focusing circle) and the

crystal-to-focus distance D is given by Eq. (6-15), which we can write in

the form
D

2R =
COS0

to emphasize the fact that D is fixed and equal to the radius of the spec-

trometer circle. The change in 2R with change in 6 is accomplished auto-

matically in commercial instruments of this type. The General Electric

diffractometer shown in Fig. 7-2 may be converted into either this kind of

spectrometer or the flat crystal type.

The curved reflecting crystal spectrometer is illustrated in Fig. 15-6.

Radiation from the sample passes through the narrow slit S and diverges

to the crystal (usually NaCl or LiF), which has its reflecting planes bent

to a radius of 2R and its surface ground to a radius R. Diffracted radiation

of a single wavelength is brought to a focus at the counter receiving slit,

located on the focusing circle passing through S and the face of the crystal,
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FIG. 15-6. Fluorescent x-ray spectrometer, curved-reflecting-crystal type.

as described in Sec. 6-12. But now the radius R of the focusing circle is

fixed, for a crystal of given curvature, and the slit-to-crystal and crystal-

to-focus distances must both be varied as 6 is varied. The focusing relation,

found from Eq. (6-13), is

D = 2R sin 0,

where D stands for both the slit-to-crystal and crystal-to-focus distances,

which must be kept equal to one another. This is accomplished by rotation

of both the crystal and the counter about the center of the focusing circle,

in such a manner that rotation of the crystal through an angle x (about 0)
is accompanied by rotation of the counter through an angle 2x. At the

same time the counter is rotated about a vertical axis through its slit, by
means of another coupling, so that it always points at the crystal.

D increases as 6 increases and may become inconveniently large, for a

crystal of given radius of curvature R\, at large values. In order to keep
D within reasonable limits, it is necessary to change to another crystal, of

smaller radius 7?2 ,
for this high-0 (long-wavelength) range.

Spectrometers employing curved reflecting crystals are manufactured by

Applied Research Laboratories.

15-4 Intensity and resolution. We must now consider the two main

problems in fluorescent analysis, namely the attainment of adequate in-

tensity and adequate resolution. The intensity of the fluorescent radiation
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emitted by the sample is very much less than that of the primary radiation

incident on it, and can become very low indeed when the fluorescing ele-

ment is only a minor constituent of the sample. This fluorescent radiation

is then diffracted by the analyzing crystal, and another large loss of in-

tensity occurs, because diffraction is such an inefficient process. The dif-

fracted beam entering the counter may therefore be very weak, and a long

counting time will be necessary to measure its intensity with acceptable

accuracy. Spectrometer design must therefore ensure maximum intensity

of the radiation entering the counter. At the same time, the spectrometer
must be capable of high resolution, if the sample contains elements which

have characteristic lines of very nearly the same wavelength and which

must be separately ident ified. Both these factors, intensity and resolution,

are affected by the kind of analyzing crystal used and by other details of

spectrometer design.

If we define resolution, or resolving

power, as the ability to separate

spectral lines of nearly the same wave-

length, then we see from Fig. 15-7

that resolution depends both on A20,

the dispersion, or separation, of line

centers, and on B, the line breadth at y
half-maximum intensity. The resolu- H
tion will be adequate if A20 is equal to

or greater than 2B. By differentiat-

ing the Bragg law, we obtain

A20

X

AX

2 tan

A20
(15-1)

When the minimum value of A20,

namely 2B, is inserted, this becomes

X tan
=

(15-2)
AX B

FIG. 15 7. Resolution of closely

spaced spectral lines. The lines sho\\ n

have A20 = 2B. Any smaller separa-
tion might make the two lines appear
as one.

The left-hand side of this equation gives the resolution required to separate

two lines of mean wavelength X and wavelength difference AX. The right-

hand side gives the resolving power available, and this involves both the

mean Bragg angle of the lines and their breadth. Note that the available

resolving power increases rapidly with 0, for a given line breadth. This

means that, of two crystals producing the same line breadth, the one with

the smaller plane spacing d will have the greater resolving power, because

it will reflect to higher 20 angles. The crystals normally used in spectrom-

eters have the following d values: mica, (33l) planes, 1.5A; LiF, (200)

planes, 2.01 A; NaCl, (200) planes, 2.82A. For a given crystal, second-
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order reflections provide greater resolving power than first-order reflections,

because they occur at larger angles, but their intensity is less than a fifth

of that of first-order reflections.

The factors affecting the line width B can be discussed only with refer-

ence to particular spectrometers. In the flat crystal type (Fig. 15-4),

the value of B depends partly on the collimation of the beam striking the

crystal and partly on the perfection of the crystal itself. The beam re-

flected by the crystal into the counter is fairly wide, in a linear sense, but

almost parallel; its angular width is measured by its divergence, and this is

equal, if the crystal is perfect, to the divergence of the beam striking the

crystal. The latter divergence is controlled by the Soller slit. If I is the

length of the slit and 5 the spacing between plates, then the maximum di-

vergence allowed is
2$

a = radian.

For a typical slit with I = 4 in. and s = 0.010 in., a = 0.3. But further

divergence is produced by the mosaic structure of the analyzing crystal:

this divergence is related to the extent of disorientation of the mosaic

blocks, and has a value of about 0.2 for the crystals normally used. The
line width B is the sum of these two effects and is therefore of the order of

0.5. The line width can be decreased by increasing the degree of collima-

tion, but the intensity will also be decreased. Conversely, if the problem
at hand does not require fine resolution, a more "open" collimator is used

in order to increase intensity. Normally, the collimation is designed to

produce a line width of about 0.5, which will provide adequate resolution

for most work.

In the curved transmitting crystal spectrometer (Fig. 15-5), the line

width B depends almost entirely on the degree of focusing of the reflected

beam at the counter slit. The focusing action of the bent mica crystal,

although never perfect, can be made good enough to produce extremely fine

lines if a very narrow slit is used; however, the intensity would then be low,

so the width of the counter slit is usually made equal to 0.3 to achieve a

reasonable balance between line width and intensity. Even so, the inten-

sity is still less than that produced by a flat crystal of NaCl or LiF.

When a curved reflecting crystal (Fig. 15-6) is used, the line width de-

pends mainly on the width of the source slit S and the precision with which

the crystal is ground and bent. The line width is normally about the same
as that obtained with a flat crystal, namely, about 0.5.

When intensities are considered, we find tha't a curved reflecting crystal

provides the greatest intensity and a curved transmitting crystal the least,

with a flat crystal in an intermediate position.

Returning to the question of resolution, we can now calculate the resolv-

ing powers available with typical spectrometers, and compare these values
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with the maximum resolution required to separate closely spaced spectral

lines. The smallest wavelength difference in the K series occurs between

the K/3 line of an element of atomic number Z and the Ka line of an element

of atomic number (Z + 1). This difference itself varies with atomic num-
ber and is least for the K0 line of vanadium (Z = 23) and the Ka line of

chromium (Z =
24); these two wavelengths are 2.284 and 2.291A, respec-

tively, and their difference is only 0.007A. A more common problem is the

separation of the Kft line of chromium (Z = 24) from the Ka line of man-

ganese (Z =
25), since both of these elements occur in all stainless steels.

The wavelength difference here is 0.018A and the mean wavelength 2.094A.

The required resolution X/AX is therefore 2.094/0.018 or 116. The avail-

able resolving powers are given by (tan 0)/B, and are equal to 182 for

curved mica in transmission, 70 for flat or curved LiF in reflection, and 46

for flat or curved NaCl in reflection, for assumed line widths of 0.3, 0.5,

and 0.5, respectively, and first-order reflections. Mica would therefore

provide adequate resolution, but LiF and NaCl would not.* Figure 15-2

shows the Cr K/3 and Mn Ka lines resolved with a mica crystal in the spec-

trum of a stainless steel.

To sum up, flat or curved crystals of either LiF or NaCl produce much

higher reflected intensities but have lower resolution than curved mica

crystals. High intensity is desirable in fluorescent analysis in order that

the counting time required to obtain good accuracy be reasonably short; if

the element to be detected is present only in small concentrations and a

crystal of low reflecting power is used, the required counting times will be

prohibitively long. In the determination of major elements, any of the

three types of crystals will give adequate intensity. High resolution is de-

sirable whenever the analysis requires use of a spectral line having very

nearly the same wavelength as another line from the sample or the x-ray

tube target.

There is another point that deserves some consideration, namely, the

angle 26 at which a particular wavelength is reflected by the analyzing

crystal. This angle depends only on the d spacing of the crystal. The

Bragg law shows that the longest wavelength that can be reflected is equal

to 2d. But wavelengths approaching 2d in magnitude are reflected almost

backward, and their reflected intensity is low at these large angles. We
are consequently limited in practice to wavelengths not much longer than d.

This means that a crystal like gypsum (d = 7.6A) must be used to detect a

light element like aluminum whose Ka wavelength is 8.3A. Some of the

* An alternative, but equivalent, way of arriving at the same result is to calcu-

late the dispersion A20 produced by a given crystal and compare it with the dis-

persion required, namely, 2B. The value of A20 is given by 2 tan 0(AX/X), from

Eq. (15-1), and is equal to 1.0 for mica, 0.6 for LiF, and 0.4 for NaCl, for first-

order reflections. The corresponding assumed values of 2B are 0.6, 1.0, and 1.0.
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other crystals that have been used for light-element detection are oxalic

acid (d
= 6.1A) and mica in reflection (d = 10. 1A).

15-5 Counters. The reader is advised to review at this point the gen-

eral discussion of counters given in Chap. 7. Here we are concerned mainly

with the variation in counter behavior with variation in x-ray wavelength.

This variation is of no great importance in diffractometer measurements,

since all diffracted beams have the same wavelength. In spectrometry,

however, each spectral line has a different wavelength, and variations in

counter behavior with wavelength must be considered.

The pulse size is inversely proportional to x-ray wavelength in propor-

tional and scintillation counters, but independent of wavelength in Geiger

counters. Of more importance, however, is the variation of counter effi-

ciency with wavelength. The efficiency of a gas-filled counter (propor-

tional or Geiger) depends on the gas used; in this respect, krypton is supe-

rior to argon for fluorescent analysis, in that krypton detects all radiation

having wavelengths greater than 0.5A fairly efficiently while argon does

not (see Fig. 7-17). Below 0.5A, both gases have low efficiency. The

scintillation counter, on the other hand, is almost 100 percent efficient for

all wavelengths. The use of scintillation counters in conjunction with

x-ray tubes operable at higher voltages than those now available would

permit the detection of heavy elements by their fluorescent A" lines having

wavelengths below 0.5A.

Counter speed is another important factor in quantitative analysis, be-

cause a counter which can operate at high counting rates without losses

can be used to measure both strong lines and weak lines without correc-

tions or the use of absorbing foils. In this respect, proportional and scintil-

lation counters are definitely superior to Geiger counters.

15-6 Qualitative analysis. In qualitative work sufficient accuracy can

be obtained by automatic scanning of the spectrum, with the counter out-

put fed to a chart recorder. Interpretation of the recorded spectrum will

be facilitated if the analyst has on hand (a) a table of corresponding values

of X and 26 for the particular analyzing crystal used, and (b) a single table

of the principal K and L lines of all the elements arranged in numerical

order of wavelength.
Since it is important to know whether an observed line is due to an ele-

ment in the sample or to an element in the x-ray tube target, a preliminary

investigation should be made of the spectrum emitted by the target alone.

For this purpose a substance like carbon or plexiglass is placed in the sam-

ple holder and irradiated in the usual way; such a substance merely scat-

ters part of the primary radiation into the spectrometer, and does not con-

tribute any observable fluorescent radiation of its own. The spectrum so
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obtained will disclose the L lines of tungsten, if a tungsten-target tube is

used, as well as the characteristic lines of whatever impurities happen to

be present in the target.

15-7 Quantitative analysis. In determining the amount of element A
in a sample, the single-line method is normally used: the intensity /u of a

particular characteristic line of A from the unknown is compared with the

intensity 7b of the same line from a standard, normally pure A. The way
in which the ratio IU/I8 varies with the concentration of A in the sample

depends markedly on the other elements present and cannot in general be

predicted by calculation. It is therefore necessary to establish the varia-

tion by means of measurements made on samples of known composition.

Figure 15-8 illustrates typical curves of this kind for three binary mixtures

containing iron.

These curves show that the intensity of a fluorescent line from element A
is not in general proportional to the concentration of A. This nonlinear be-

havior is due mainly to two effects:

(1) Matrix absorption. As the composition of the alloy changes, so does

its absorption coefficient. As a result there are changes both in the absorp-

tion of the primary radiation traveling into the sample and in the absorp-

tion of the fluorescent radiation traveling out. The absorption of the pri-

mary radiation is difficult to calculate, because the part of that radiation

effective in causing K fluorescence, for example, in A has wavelengths ex-
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FIG. 15-8. Effect of iron concentration on the intensity of Fe Ka radiation

fluoresced by various mixtures. 7U and /B are the Fe Ka intensities from the mix-
ture and from pure iron, respectively. (H. Friedman and L. S. Birks, Rev. 8ci.

Inst. 19, 323, 1948.)
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tending from XSWL, the short-wavelength limit of the continuous spectrum,
to X#A, the K absorption edge of A. To each of these incident wavelengths

corresponds a different incident intensity and a different matrix absorption

coefficient. The absorption of the fluorescent radiation, of wavelength

X/A, depends only on the absorption coefficient of the specimen for that

particular wavelength. (Absorption effects are particularly noticeable in

the Fe-Al and Fe-Ag curves of Fig. 15-8. The absorption coefficient of an

Fe-Al alloy is less than that of an Fe-Ag alloy of the same iron content,

with the result that the depth of effective penetration of the incident beam
is greater for the Fe-Al alloy. A larger number of iron atoms can therefore

contribute to the fluorescent beam, and this beam itself will undergo less

absorption than in the Fe-Ag alloy. The over-all result is that the intensity

of the fluorescent Fe Ka radiation outside the specimen is greater for the

Fe-Al alloy.)

(2) Multiple excitation. If the primary radiation causes element B in

the specimen to emit its characteristic radiation, of wavelength X/B, and if

X/B is less than \KA, then fluorescent K radiation from A will be excited

not only by the incident beam but also by fluorescent radiation from B.

(This effect is evident in the Fe-Ni curve of Fig. 15-8. Ni Ka radiation

can excite Fe Ka radiation, and the result is that the observed intensity of

the Fe Ka radiation from an Fe-Ni alloy is closer to that for an Fe-Al alloy

of the same iron content than one would expect from a simple comparison
of the absorption coefficients of the two alloys. In the case of an Fe-Ag
alloy, the observed Fe Ka intensity is much lower, even though Ag Ka
can excite Fe Ka> because of the very large absorption in the specimen.)

Because of the complications these effects introduce into any calculation

of fluorescent intensities, quantitative analysis is always performed on an

empirical basis, i.e., by the use of standard samples of known composition.
The greatest use of fluorescent analysis is in control work, where a great

many samples of approximately the same composition have to be analyzed
to see if their composition falls within specified limits. For such work, the

calibration curves need not be prepared over a 0-100 percent range, as in

Fig. 15-8, but only over quite limited composition ranges. The usual refer-

ence material for such analyses is one of the standard samples used in the

calibration, rather than a pure metal.

Sample preparation for fluorescent analysis is not particularly difficult.

Solid samples are ground to produce a flat surface but need not be polished;

however, a standardized method of sample preparation should be adhered

to for best results. Powder specimens, finely ground and well mixed, can

be pressed into special holders; adequate mixing is essential, since only a

thin surface layer is actually analyzed and this must be representative of

the whole sample. Liquid samples can be contained in various kinds of

cells.



16-8] AUTOMATIC SPECTROMETERS 417

Line intensities should be measured with a sealer rather than taken from

a recorded chart. For a given line intensity, the accuracy of the analysis

depends on the time spent in counting, since the relative probable error in

a measurement of N counts is proportional to l/\/Af. If a line is weak, a

correction must be made for the background of scattered and diffracted

radiation. Because of this background, the number of counts required to

obtain a given accuracy in the measurement of a weak line is larger than

that required for a strong line (see Eq. 7-7).

Since the intensity of a particular line from the sample is usually com-

pared with the intensity of the same line from a standard, the output of the

x-ray tube must be stabilized or the tube must be monitored.

The resolution of the spectrometer should be no greater than that re-

quired by the particular analytical problem involved. The analyzing

crystal and collimator or counter slit should be chosen to produce this

minimum amount of resolution and as much intensity as possible, since

the greater the intensity, the less time required for analysis.

16-8 Automatic spectrometers. Automatic direct-reading optical spec-

trometers have been in use for several years and have proved to be of great

value in industrial process control. A sample is inserted and the concen-

trations of a number of selected elements are rapidly and directly indicated

on a chart or set of dials. Because such spectrometers must be preset and

precalibrated for each particular element determined, they are suitable

only for control laboratories where large numbers of samples must be ana-

lyzed for the same set of elements, each of which is variable only over a

limited range of concentration.

Recently, x-ray counterparts of these direct-reading optical spectrom-

eters have become available. There are two types:

(1) Single-channel type. An instrument of this kind is manufactured by
North American Philips Co. and called the Autrometer. It uses a flat ana-

lyzing crystal in reflection and a scintillation counter as a detector. Cor-

responding to the elements A, B, C, ... to be detected are the wavelengths

X/A, VB, Vc, of their characteristic spectral lines, and to these corre-

spond certain diffraction angles 20A, 20B, 20c, ... at which these wave-

lengths will be diffracted by the crystal. The counter is designed to move

stepwise from one predetermined angular position to another rather than to

scan a certain angular range. The various elements are determined in se-

quence: the counter moves to position 20A, remains there long enough to

accurately measure the intensity of the spectral line from element A, moves

rapidly to position 20B, measures the intensity of the line from B, and so on.

At each step the intensity of the line from the sample is automatically com-

pared with the intensity of the same line from the standard and the ratio of

these two intensities is printed on a paper tape. The instrument may also be
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FIG. 15-9. Relative arrangement of x-ray tube, sample, and one analyzing
channel of the X-Ray Quantometer (schematic). (The tube is of the "end-on"

type: the face of the target is inclined to the tube axis and the x-rays produced
escape through a window in the end of the tube.)

adjusted so that the actual concentration of the element involved is printed

on the tape. As many as twelve elements per sample may be determined.

The curved reflecting crystal spectrometer manufactured by Applied Re-

search Laboratories (see Sec. 15-3) may also be arranged for this kind of

automatic, sequential line measurement.

(2) Multichannel type, manufactured by Applied Research Laboratories

and called the X-Ray Quantometer. The analyzing crystal is a bent and
cut LiF or NaCl crystal, used in reflection. Near the sample is a slit which

acts as a virtual source of divergent radiation for the focusing crystal (Fig.

15-9). Eight assemblies like the one shown, each consisting of slits, ana-

lyzing crystal, and counter, are arranged in a circle about the centrally

located x-ray tube; seven of these receive the same fluorescent radiation

from the sample, while the eighth receives fluorescent radiation from a

standard. Each of these seven assemblies forms a separate "channel"

for the determination of one particular element in the sample. In channel

A, for example, which is used to detect element A, the positions of the crys-

tal and counter are preset so that only radiation of wavelength X/A can be

reflected into the counter. The components of the other analyzing chan-

nels are positioned in similar fashion, so that a separate spectral line is

measured in each channel. The eighth, or control, channel monitors the

output of the x-ray tube.

In this instrument each counter delivers its pulses, not to a sealer or rate-

meter, but to an integrating capacitor in which the total charge delivered

by the counter in a given length of time is collected. When a sample is

being analyzed, all counters are started simultaneously. When the control

counter has delivered to its capacitor a predetermined charge, i.e., a pre-

determined total number of counts, all counters are automatically stopped.
Then the integrating capacitor in each analyzing channel discharges in

turn into a measuring circuit and recorder, and the total charge collected
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in each channel is recorded in sequence on a chart. The quantity indi-

cated on the chart for each element is the ratio of the intensity of a given

spectral line from the sample to that of a line from the standard, and the

instrument can be calibrated so that the concentration of each element in

the sample can be read directly from the chart recording. Because the total

fluorescent energy received in each analyzing counter is related to a fixed

amount of energy entering the control counter, variations in the x-ray tube

output do not affect the accuracy of the results.

16-9 Nondispersive analysis. Up to this point we have considered only

methods of dispersive analysis, i.e., methods in which x-ray beams of dif-

ferent wavelengths are physically separated, or dispersed, in space by an

analyzing crystal so that the intensity of each may be separately measured.

But the separate measurement of the intensities of beams of different wave-

lengths can often be accomplished without the spatial separation of these

beams. Methods for doing this are

called nondispersive. No analyzing

crystal is used and the experimental
, , , ,, , r x-ray tube

arrangement takes on the simple torm x"~x
illustrated in Fig. 15-10. The counter

receives fluorescent radiation directly

from the sample, and the filter shown

may or may not be present.* Three

methods of nondispersive analysis sample c
have been used: selective excitation, FlG 15_ia Apparatus for nondis-

selective filtration, and selective
persive analysis.

counting.

Selective excitation of a particular spectral line is accomplished simply

by control of the x-ray tube voltage. Suppose, for example, that a Cu-Sn

alloy is to be analyzed. If the tube is operated at 28 kv, then Cu Ka will

be excited (excitation voltage = 9 kv) but not Sn Ka (excitation voltage

= 29 kv). The L lines of Sn will be excited at 28 kv but their wavelengths

are so long (about 3A) that this radiation will be almost completely ab-

sorbed in air. The radiation entering the counter therefore consists almost

entirely of Cu Ka together with a small amount of white radiation scat-

tered from the primary beam by the sample; the counter output can there-

fore be calibrated in terms of the copper concentration of the sample. Evi-

* The x-ray tube and counter should be as close as possible to the sample but,

if necessary, a fluorescent spectrometer may be used, with the analyzing crystal

removed and the counter set at 20 = 0. Or a diffractometer may be used, with

the sample in the usual position and the counter set almost anywhere except at

the position of a diffracted beam. In either case, since no focusing of the fluores-

cent beam occurs, the counter receiving slit should be removed in order to gain

intensity.
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dently, the selective excitation method works best where the elements in-

volved differ fairly widely in atomic number.

When the K radiations of both elements are excited in the sample, se-

lective filtration can be used to ensure that only one of them enters the

counter. Consider the analysis of a Cu-Zn alloy. The K excitation voltage

of copper is 9.0 kv and that of zinc 9.7 kv. Even if the operating voltage

could be accurately set between these values, the intensity of the fluorescent

Cu Ka radiation would be very low. It is better to operate at a voltage

higher than either of these, say 12-15 kv, and use a nickel filter between the

sample and the counter. This filter will absorb most of the Zn Ka and pass

most of the Cu Ka radiation. Selective filtration of this kind is most effec-

tive when the two elements have either nearly the same atomic numbers

or widely different atomic numbers, because, in either case, a filter material

can be chosen which will have quite different absorption coefficients for the

two radiations. (Of course, the air between the sample and counter itself

acts as a very effective selective filter in many applications. Consider the

determination of copper in a Cu-Al alloy. The K lines of both elements will

be excited at any voltage above 9 kv but Al Ka, of wavelength 8.3A, is so

strongly absorbed by air that practically none of it reaches the counter.)

Balanced filters do not appear to have been used in nondispersive analysis,

but there is no reason why they should not be just as effective in this field

as in diffractometry.

Finally, the method of selective counting may be used. As mentioned

in Sec. 7-5, it is possible to measure the intensity of radiation of one wave-

length in the presence of radiations of other wavelengths by means of a

proportional counter and a single-channel pulse-height analyzer. Thus the

counter-analyzer combination can receive two or more characteristic radia-

tions from the sample and be responsive to only one of them. No filtration

is needed and the measured intensities are very high. This method works

best when the elements involved differ in atomic number by at least three.

If the difference is less, their characteristic radiations will not differ suffi-

ciently in wavelength for efficient discrimination by the analyzer.

There is, of course, no reason why any one of these methods cannot be

combined with any other, or all three may be used together. Thus a par-

ticular analytical problem may require the use of selective excitation and

selective filtration, one technique aiding the other. Such combinations

will usually be necessary when the sample contains more than two elements.

In general, nondispersive analysis is most effective when applied to binary

alloys, since the difficulties involved in distinguishing between one charac-

teristic radiation and another, or in exciting one and not another, increase

with the number of elements in the sample. These difficulties can be alle-

viated by a multichannel arrangement, and the X-Ray Quantometer de-

scribed in the previous section can be used for nondispersive analysis in
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that manner, simply by removing the analyzing crystals and changing the

counter positions. Each channel contains a different filter material, chosen

in accordance with the particular element being determined in that channel.

The main advantage of nondispersive methods of analysis is the very

large gain in intensity over dispersive methods. The high loss of intensity

involved in diffraction from an analyzing crystal is completely avoided.

As a result, the beam entering the counter of a nondispersive system is

relatively intense, even after passing through the rather thick filters which

are used to prevent interference from other wavelengths. The greater the

intensity, the shorter the counting time required to obtain a given accuracy,

or the higher the accuracy for a given counting time.

15-10 Measurement of coating thickness. Fluorescent radiation can

be utilized not only as a means of chemical analysis but also as a method

for measuring the thickness of surface layers. The following methods,

both based on fluorescence, have been used to measure the thickness of a

surface coating of A on B :

(1) A dispersive system is used and the counter is positioned to receive

the A Ka line from the sample. The intensity of the A Ka line increases

with the thickness of the A layer up to the point at which this layer becomes

effectively of infinite thickness, and then becomes constant. (Effectively

infinite thickness, which is about 0.001 in. for a metal like nickel, corre-

sponds to the effective depth of penetration of the primary beam striking

the sample, and this method is in fact a way of determining this depth.)

The relation between A Ka intensity and the thickness of A must be ob-

tained by calibration. The operation of this method is independent of the

composition of the base material B, which may be either a metal or a non-

metal. This method may also be used with a nondispersive system, pro-

vided that B is a nonmetal, or, if B is a metal, provided that the atomic

numbers of A and B are such that nondispersive separation of A Ka and

B Ka is practical (see the previous section).

(2) A dispersive system is used and the intensity of B Ka radiation is

measured. This intensity decreases as the thickness of A increases, and

becomes effectively zero at a certain limiting thickness which depends on

the properties of both A and B. Calibration is again necessary. A non-

dispersive system may also be used if conditions are favorable, as they are,

for example, in the measurement of the thickness of tin plate on sheet steel.

In this case, selective excitation of Fe Ka is the simplest procedure inas-

much as the operating conditions are exactly similar to those involved in

the analysis of Cu-Sn alloys described in the previous section. This

method is used industrially: tinned sheet steel passes continuously beneath

a nondispersive analyzer, and the thickness of the tin coating is continu-

ously recorded on a chart.
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Although they have nothing to do with fluorescence, it is convenient to

mention here the corresponding diffraction methods for measuring the

thickness of a coating of A on B :

(1) The specimen is placed in a diffractometer and the intensity of a

strong diffraction line from A is measured. The intensity of this line, rela-

tive to the intensity of the same line from an infinitely thick sample of A,

is a measure of the thickness of A. The thickness may he directly calcu-

lated from this intensity ratio by means of Eq. (9-4) and the form of the

line intensity vs. thickness curve will resemble that of Fig. 9-6. The

coating A must be crystalline, but B can be any material.

(2) The intensity of a strong diffraction line from B is measured in a

diffractometer. The observed intensity 7 depends on the thickness t of the

A layer in an easily calculable manner. Since the total path length of the

incident and diffracted beams in the A layer is 2//sin 8, the intensity of a

diffraction line from B is given by

where /o =
intensity of the same diffraction line from uncoated B, and

H = linear absorption coefficient of A. In this case B must be crystalline,

but A can be anything.

Any one of these methods, whether based on fluorescence or diffraction,

may be used for measuring the thickness of thin foils, simply by mounting

the foil on a suitable backing material.

PROBLEMS

16-1. Assume that the line breadth B in a fluorescent x-ray spectrometer is

0.3 for a mica analyzing crystal used in transmission and 0.5 for either a LiF

or NaCl crystal in reflection. Which of these crystals will provide adequate reso-

lution of the following pairs of lines?

(a) Co K$ and Ni Ka (b) Sn K$ and Sb Ka

Calculate A20 values for each crystal.

16-2. What operating conditions would you recommend for the nondispersive

fluorescent analysis of the following alloys with a scintillation counter?

(a) Cu-Ni (b) Cu-Ag

15-3. Diffraction method (2) of Sec. 15-10 is used to measure the thickness of

a nickel electroplate on copper with Cu Ka. incident radiation. What is the maxi-

mum measurable thickness of nickel if the minimum measurable line intensity is

1 percent of that from uncoated copper?



CHAPTER 16

CHEMICAL ANALYSIS BY ABSORPTION

16-1 Introduction. Just as the wavelength of a characteristic line is

characteristic of an emitting element, so is the wavelength of an absorption

edge characteristic of an absorbing element. Therefore, if a sample con-

taining a number of elements is used as an absorber and if the absorption

it produces is measured as a function of wavelength, absorption edges will

be disclosed, and the wavelengths of these edges will serve to identify the

various elements in the sample. The method may also be made quantita-

tive, if the change in absorption occurring at each edge is measured.

Such measurements require monochromatic radiation of controlled wave-

length, and this is usually obtained by reflection from a single crystal in a

diffractometer. The sample whose absorption is to be measured is placed

in the diffracted beam, as indicated in Fig. 16-1 (a), and x-rays of any de-

sired wavelength are picked out of the white radiation issuing from the

tube simply by setting the analyzing crystal at the appropriate angle 6.

Alternately, the sample may be placed in the beam incident on the crystal.

Another source of monochromatic radiation of controlled wavelength
is an element fluorescing its characteristic radiation. The arrangement
shown in Fig. 16-1(b) is used, with the crystal set to reflect the charac-

teristic radiation of whatever element is used as radiator. By having on

hand a set of elements of atomic number Z, (Z + 1), (Z + 2), . . .
,
we

have available a discontinuous range of characteristic wavelengths, and

FIG. 16-1. Experimental arrangement for absorption measurements: (a) with

diffractometer, (b) with fluorescent spectrometer.

423
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the intensity of this radiation at the sample will be considerably larger

than that of the white radiation components used in the diffractometer

method. Even though the wavelengths furnished by fluorescence do not

form a continuum, they are spaced closely enough to be useful in measuring
the variation in absorption of the sample with wavelength. In the wave-

length range from 0.5 to 1.5A, for example, the average difference between

the Ka wavelengths of an element of atomic number Z and one of (Z + 1)

is only 0.06A. If a particular element is not available in the pure form,

its oxide, or some other compound or alloy containing a substantial amount
of the element, can be used as a radiator of fluorescent radiation.
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FIG. 16-2. Variation of transmitted intensity \\ith wavelength near an absorp-

tion edge. (For this particular curve, three thicknesses of photographic film were

used as an absorber and the absorption edge shown is the A' edge of the silver in

the emulsion.)

16-2 Absorption-edge method. Suppose we wish to determine the con-

centration of element A in a sample containing a number of other elements.

The sample, prepared in the form of a flat plate or sheet of uniform thick-

ness, is placed in a beam of controllable wavelength, and the intensity /

of the transmitted radiation is measured for a series of wavelengths on

either side of an absorption edge of element A. The resulting curve of

/ vs. X will have the form of Fig. 16-2, since the transmitted intensity will

increase abruptly on the long wavelength side of the edge. (The exact
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form of the curve depends on the kind of radiation available. The data

in Fig. 16-2 were obtained with radiation reflected from the continuous

spectrum in a diffractometer; the upward slope of the curve at wavelengths

longer than the edge is due to the fact that the intensity of the incident

beam increases with wavelength in this region of the continuous spectrum
and this effect more than compensates for the increase in the absorption

coefficient of the sample with wavelength.) By the extrapolations shown

we obtain the values of /i and 72 ,
the transmitted intensities for wave-

lengths just longer and just shorter, respectively, than the wavelength of

the edge.

The mass absorption coefficient of the sample is given by

where w denotes weight fraction, and the subscripts ra, A, and r denote

the mixture of elements in the sample, element A, and the remaining ele-

ments in the sample, respectively. At a wavelength not equal to that of

an absorption edge the transmitted intensity is given by

where 7 is the intensity of the incident beam, pm is the density of the

sample, and t is the thickness of the sample. At wavelengths just longer

and just shorter than that of the absorption edge of A, let the mass absorp-

tion coefficients of A be (M/P)AI and (M/p)A2> respectively. Then the trans-

mitted intensities for these two wavelengths will be

since (M/P)T is the same for both. Division of one equation by the other

gives

= e
W)Al(M/p)A2- (M/p)Ailpm^ (16-1)

^2

If we put [(M/p)A2
~ WP)AI] = &A and pmt = Afm ,

then Eq. (16-1) be-

comes

(16-2)

This equation can be used to determine WA from measured and tabulated

quantities. The constant &A, which measures the change in the mass

absorption coefficient of A at the absorption edge, is a property of the

element involved and decreases as the atomic number increases. Mm is
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the mass of sample per unit area and is given by the mass of the sample

divided by the area of one face.

Since Mm varies with w\ for samples of constant thickness, and may in

fact vary independently of w\, it is convenient to lump the two together

and put wAMm M\ = mass of A per unit area of sample. A plot of

In (/i //2 ) vs. MA will then be a straight line through the origin with a slope

of A. If there is any doubt about the accuracy of the tabulated absorption

coefficients from which A'A is derived, this curve can be established by
measurements on samples of known A content. It is important to note

that the slope of this curve depends only on the clement A being deter-

mined and is independent, not only of the other elements present, but

also of any variations in the concentrations of these elements with respect

to one another. The other elements present affect only Mm ,
which must

be measured for each sample. The value of w\ is then given by M\/Mm .

The fact that the curve of In (I\/I<z) vs. MA forms a master plot for the

determination of A whatever the other constituents of the sample repre-

sents a distinct advantage of the absorption-edge method over fluorescent

analysis. For example, if element A is being determined by fluorescence

in samples containing A, B, and C, a calibration curve for the determina-

tion of A is valid only for samples containing a fixed concentration of B
or C.

The main disadvantage of the absorption-edge method, when applied to

the analysis of alloys, is the very thin sample required to obtain measurable
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FIG. 16-3. Absorption coefficients of lead, showing K and L absorption edges.

(Plotted from data in Handbook of Chemistry and Physics, 23rd ed., Chemical Rub-
ber Publishing Co., Cleveland, 1939.)
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transmitted intensity. Many alloy samples have to be ground down to a

thickness of one or two thousandths of an inch, and this is a tedious and

time-consuming operation. The method is best suited to the determina-

tion of a fairly heavy element in a light-element matrix. It is difficult

to determine light elements, even though they have large values of fc,

because their absorption edges occur at such long wavelengths that the

incident radiation is almost completely absorbed even by very thin samples.

(However, the difficulties involved in preparing thin samples of solid

materials may be avoided by dissolving the sample, in a known concentra-

tion, in a suitable liquid. The resulting solution is contained in a flat-

sided cell of some highly transparent material, and the total sample thick-

ness may be several millimeters.)

When the atomic number of the element being determined exceeds about

50, the LIU rather than the A' absorption edge should be used. Not only

is k much larger for the Lm edge of such elements, but their K absorption

edges occur at wavelengths shorter than those available from an x-ray

tube operated at 50 kv. Figure 16-3 shows the relative size and location

of the K and L absorption edges of lead.

16-3 Direct-absorption method (monochromatic beam). Absorption

methods not involving measurements at an absorption edge have also been

used. The mass absorption coefficient of a mixture of two elements A and

B, for a wavelength not equal to that of an absorption edge of either, is

given by

\P/A B

The relation between the incident intensity 7 and the transmitted inten-

sity 7 is therefore

In ~ = LA (-} + (1
-

A) (-) 1 Pmt. (16-)
I I \p/A Vp/BJ

This relation can be used for the determination of the amount of A present,

provided that pm ,
the density of the sample, is known as a function of com-

position. A strong characteristic line is normally used for such measure-

ments: for greatest sensitivity its wavelength should lie between the ab-

sorption edges of A and B.

Naturally, if pm is known as a function of composition, density measure-

ments alone can disclose the composition of an unknown without any

necessity for absorption measurements. But there are circumstances in

which an absorption measurement is more convenient than a density

measurement. Such circumstances arise in diffusion studies. Metals A
and B are joined together to form a diffusion couple [Fig. 16-4(a)], held
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FIG. 16-4. Application of the direct-absorption method to diffusion measurements.

at a constant elevated temperature for a given period of time, and then

cooled to room temperature. The problem is to determine the penetration

of one metal into another, i.e., to arrive at a curve like Fig. l(>-4(b), show-

ing the change in composition of the alloy along a line normal to the original

interface. This is usually done by cutting the couple into a number of thin

slices, parallel to the //z-plane of the original interface, and determining

the composition of each slice. In the absorption method, a single slice is

taken parallel to the zz-plane, normal to the original interface. This slice

is then placed between the diffract ometer counter and a narrow fixed slit

which defines the x coordinate of the area irradiated. If the sample is then

moved stepwise relative to the slit in the x direction, a series of measure-

ments can be made from which the composition vs. distance curve can be

plotted.

Another way in which the direct absorption method can be made useful

involves making measurements at two wavelengths, \i and X 2 ,
since no

knowledge of the density or thickness of the sample is then required. Desig-

nating measurements made at each of these wavelengths by subscripts 1

and 2, we find from Eq. (16-3) that

In -
(M/P)BI] + (M/P)BI

In (1Q2/1 2) WA[(M/P)A2
~

(M/p)B2l + Wp)fi2
(16-4)

The wavelengths Xi and X2 should be chosen to lie near, and on either side

of, an absorption edge of A. One way of applying this method to routine

analyses is to use a multichannel nondispersive fluorescent analyzer. Three

channels are required: channel 1 contains an element which fluoresces

characteristic radiation of wavelength Xi, channel 2 contains another ele-

ment producing radiation of wavelength X2 ,
and channel 3 is used for

control. The absorption produced by the sample is measured first in

channel 1 and then in channel 2, and the ratio of the intensities /i and 72
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transmitted in these two channels is taken as a measure of the A content

of the sample. The control channel is used to ensure that all samples

receive the same total energy of incident radiation. No use is made of

Eq. (16-4). Instead, a calibration curve showing the relation between

WA and In (/i//2) is prepared from samples of known composition.

The methods outlined in this section are normally used only for the

analysis of two-component samples. If more than two components are

present and equations of the form of (16-3) and (16-4) are used, then all

but two components in the sample must have known concentrations. If

the concentration of a particular element is obtained from a calibration

curve rather than from these equations, the calibration curve applies only

to samples containing fixed concentrations of all but two components.

16-4 Direct-absorption method (polychromatic beam). The absorp-

tion of a polychromatic beam, made up of the sum total of continuous and

characteristic radiation issuing from an x-ray tube, may also be made the

basis for chemical analysis. The experimental arrangement is very simple:

the sample is merely placed in the direct beam from the x-ray tube, and a

counter behind the sample measures the transmitted intensity. Because

of the multiplicity of wavelengths present, no exact calculation of trans-

mitted intensity as a function of sample composition can be made. How-

ever, a calibration curve can be set up on the basis of measurements made

on samples of known composition, and this curve will be valid for the

determination of a particular element in a series of samples, provided all

samples have the same thickness and the concentrations of all but two

components are fixed.

The chief advantage of this method is the very large gain in intensity

over methods involving monochromatic beams. A monochromatic beam,

whether produced by diffraction or fluorescence, is quite feeble in com-

parison to the direct beam from an x-ray tube. The higher the incident

intensity, the thicker the sample that can be used; or, for the same sample

thickness, the higher the intensity, the shorter the analysis time for a

given accuracy of counting.

16-5 Applications. Absorption methods of analysis are limited to sam-

ples whose total absorption is low enough to produce a transmitted beam

of accurately measurable intensity. This means that samples of most

metallic alloys have to be made extremely thin, at least for methods involv-

ing low-intensity monochromatic beams, or they have to be dissolved in

a liquid.

In industry today, absorption methods are almost entirely confined to

the analysis of organic liquids and similar materials of low absorption

coefficient. A typical example of such analyses is the determination of

tetraethyl lead in gasoline.
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PROBLEMS

16-1. The values of I\ and /2, taken from Fig. 16-2, for the absorption pro-

duced by three thicknesses of unprocessed x-ray film are 1337 and 945 cps, re-

spectively. The upper and lower values of the mass absorption coefficient of sil-

ver at its K absorption edge are 62.5 and 9.8 cm2
/gm, respectively. Calculate

the silver content (in mg/cm2
) of a single piece of this film.

16-2. If the minimum detectable increase in transmitted intensity at an absorp-

tion edge is 5 percent, what is the minimum detectable amount of copper (in weight

percent) in an Al-Cu alloy if the absorption-edge method is used on a sample 1 mm
thick? Assume that the density of the sample is the same as that of pure alumi-

num. The upper and lower values of the mass absorption coefficient of copper

at its K absorption edge are 307 and 37 cm2
/gm, respectively.

16-3. The composition of an Fe-Ni alloy, known to contain about 50 weight

percent iron, is to be determined by the direct absorption method with Cu Ka
radiation. Its density is 8.3 gm/cm

3
. The maximum available incident intensity

is 10,000 cps. The minimum transmitted intensity accurately measurable in a

reasonable length of time in the presence of the background is 30 cps. What is

the maximum specimen thickness?



CHAPTER 17

STRESS MEASUREMENT

17-1 Introduction. When a polycrystalline piece of metal is deformed

elastically in such a manner that the strain is uniform over relatively large

distances, the lattice plane spacings in the constituent grains change from

their stress-free value to some new value corresponding to the magnitude
of the applied stress, this new spacing being essentially constant from one

grain to another for any particular set of planes. This uniform macro-

strain, as we saw in Sec. 9-4, causes a shift of the diffraction lines to new
26 positions. On the other hand, if the metal is deformed plastically, the

lattice planes usually become distorted in such a way that the spacing of

any particular (hkl) set varies from one grain to another or from one part

of a grain to another. This nonuniform microstrain causes a broadening

of the corresponding diffraction line. Actually, both kinds of strain are

usually superimposed in plastically deformed metals, and diffraction lines

are both shifted and broadened, because not only do the plane spacings

vary from grain to grain but their mean value differs from that of the

undeformed metal.

In this chapter we will be concerned with the line shift due to uniform

strain. From this shift the strain may be calculated and, knowing the

strain, we can determine the stress present, either by a calculation involving

the mechanically measured elastic constants of the material, or by a cali-

bration procedure involving measurement of the strains produced by
known stresses. X-ray diffraction can therefore be used as a method of

"stress" measurement. Note, however, that stress is not measured directly

by the x-ray method or, for that matter, by any other method of "stress"

measurement. It is always strain that is measured; the stress is deter-

mined indirectly, by calculation or calibration.

The various methods of "stress" measurement differ only in the kind of

strain gauge used. In the common electric-resistance method, the gauge
is a short length of fine wire cemented to the surface of the metal being

tested; any strain in the metal is shared by the wire, and any extension

or contraction of the wire is accompanied by a change in its resistance,

which can therefore be used as a measure of strain. In the x-ray method,
the strain gauge is the spacing of lattice planes.

17-2 Applied stress and residual stress. Before the x-ray method is

examined in any detail, it is advisable to consider first a more general

subject, namely, the difference between applied stress and residual stress,

431
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and to gain a clear idea of what these terms mean. Consider a metal bar

deformed elastically, for example in uniform tension. The applied stress

is given simply by the applied force per unit area of cross section. If the

external force is removed, the stress disappears, and the bar regains its

initial stress-free dimensions. On the other hand, there are certain opera-

tions which can be performed on a metal part, which will leave it in a

stressed condition even after all external forces have been removed. This

stress, which persists in the absence of external force, is called residual

stress.

For example, consider the assembly shown in Fig. 17-1 (a). It consists

of a hollow section through which is passed a loosely fitting bolt with

threaded ends. If nuts are screwed on these ends and tightened, the sides

of the assembly are compressed and the bolt is placed in tension. The
stresses present are residual, inasmuch as there are no external forces

acting on the assembly as a whole. Notice also that the tensile stresses in

one part of the assembly are balanced by compressive stresses in other

parts. This balance of opposing stresses, required by the fact that the

assembly as a whole is in equilibrium, is characteristic of all states of

residual stress.

An exactly equivalent condition of residual stress can be produced by

welding a cross bar into an open section, as shown in Fig. 17-1 (b). We
can reasonably assume that, at the instant the second weld is completed,
a substantial portion of the central bar is hot but that the two side mem-
bers are far enough from the heated zone to be at room temperature. On

cooling, the central bar tries to contract thermally but is restrained by the

side members. It does contract partially, but not as much as it would if

it were free, and the end result is that the side members are placed in com-

pression and the central rod in tension when the whole assembly is at

weld

(a) (b)

FIG. 17-1. Examples of residual stress. T = tension, C = compression.
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room temperature. Residual stress is quite commonly found in welded

structures.

Plastic flow can also set up residual stresses. The beam shown in Fig.

17-2 (a) is supported at two points and loaded by two equal forces F applied

near each end. At any point between the two supports the stress in the

outside fibers is constant, tensile on the top of the beam and compressive
on the bottom. These stresses are a maximum on the outside surfaces and

decrease to zero at the neutral axis, as indicated by the stress diagram at

the right of (a). This diagram shows how the longitudinal stress varies

across the section A A', when all parts of the beam are below the elastic

limit. Suppose the load on the beam is now increased to the point where

the elastic limit is exceeded, not only in the outer fibers but to a consider-

able depth. Then plastic flow will take place in the outer portions of the

beam, indicated by shading in (b), but there will be an inner region still

only elastically strained, because the stress there is still below the elastic

limit. The stresses above the neutral axis are still entirely tensile, both

in the elastically and plastically strained portions, and those below entirely

compressive. If the load is now removed, these stresses try to relieve

themselves by straightening the beam. Under the action of these internal

forces, the beam does partially straighten itself, and to such an extent that

/'

A'

FIG. 17-2. Residual stress induced by plastic flow in bending: (a) loaded below

elastic limit; (b) loaded beyond elastic limit; (c) unloaded. Shaded regions have

been plastically strained.
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the stress in the outer regions is not only reduced to zero but is actually

changed in sign, as indicated in (c). The end result is that the unloaded

beam contains residual compressive stress in its top outside portion and

residual tensile stress in its lower outside portion. It is quite common to

find residual stress in metal parts which have been plastically deformed,

not only by bending but by drawing, swaging, extrusion, etc.

17-3 Uniaxial stress. With these basic ideas in mind, we can now go
on to a consideration of the x-ray method of stress measurement. The

simplest way to approach this method is through the case of pure tension,

where the stress acts only in a single direction. Consider a cylindrical rod

of cross-sectional area A stressed elastically in tension by a force F (Fig.

17-3). There is a stress vy F/A in the ^/-direction but none in the x-

or 2-directions. (This stress is the only normal stress acting; there are also

shear stresses present, but these are not measurable by x-ray diffraction.)

The stress vy produces a strain ev in the ?/-direction given by

AL Lf L
y
= - =- '

L Lo

where L and L/ are the original and final lengths of the bar. This strain

is related to the stress by the fundamental elastic equation

v
=

E*y, (17-1)

where E is Young's modulus. The elongation of the bar is accompanied

by a decrease in its diameter D. The strains in the r- and ^-directions

are therefore given by

D

where Z) and D/ are the original and final diameters of the bar. If the

material of the bar is isotropic, these strains are related by the equation

.-, -? (17-2)

where v is Poisson's ratio for the material of the bar. The value of v

ranges from about 0.25 to about 0.45 for most metals and alloys.

To measure *y by x-rays would require diffraction from planes perpen-

dicular to the axis of the bar. Since this is usually physically impossible,

we utilize instead reflecting planes which are parallel, or nearly parallel,

to the axis of the bar by taking a back-reflection photograph at normal

incidence, as shown in Fig. 17-3. (It is essential that a back-reflection

technique be used, in order to gain sufficient precision in the measurement

of plane spacing. Even quite large stresses cause only a very small change
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FIG. 17-3. Pure tension. FIG. 17-4. Diffraction from strained

aggregate, tension axis vertical. Lat-

tice planes shown belong; to the same

(hkl) set. A' = reflecting-plane normal.

in rf.) In this way we obtain a measurement of the strain in the z direction

since this is given by

,-
- '^'. (.7-3)

where dn is the spacing of the planes reflecting at normal incidence under

stress, and rfo is the spacing of the same planes in the absence of stress.

Combining Eqs. (17-1), (17 2), and (17-3), we obtain the relation

77T /

V \

dn -
(17-4)

which gives the required stress in terms of known and observed quantities.

It should be noted that only a particular set of grains contributes to a

particular hkl reflection. These are grains whose (hkl) planes are almost

parallel to the surface of the bar, as indicated in Fig. 17-4, and which are

compressed by the applied stress, that is, dn is less than d()
. Grains whose

(hkl) planes are normal to the surface have these planes extended, as shown

in an exaggerated fashion in the drawing. The spacing dhki therefore

varies with crystal orientation, and there is thus no possibility of using

any of the extrapolation procedures described in Chap. 11 to measure
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line from specimen

line from

reference material

FIG. 17-5. Back-reflection method at normal incidence.

accurately. Instead we must determine this spacing from the position

of a single diffraction line on the film.

A direct comparison method is usually used. A powder of some reference

material of known lattice parameter is smeared on the surface of the speci-

men, and the result is a photograph like that illustrated in Fig. 17-5,

where the Ka lines are shown unresolved for greater clarity. Since the

line from the reference material calibrates the film, it is unnecessary to

know the specimen-to-film distance /). The plane spacings of the specimen

are determined simply by measuring the diameters of the Debye rings

from the specimen (2S8) and from the reference material (2S r).

Equation (17-4) shows that a measurement of d on the unstressed ma-

terial must be made. If the specimen contains only applied stress, then

d is obtained from a measurement on the unloaded specimen. But if

residual stress is present, d must be measured on a small stress-free por-

tion cut out of the specimen.

17-4 Biaxial stress. In a bar subject to pure tension the normal stress

acts only in a single direction. But in general there will be stress com-

ponents in two or three directions at right angles to one another, forming

so-called biaxial or triaxial stress systems. However, the stress at right

angles to a free surface is always zero, so that at the surface of a body,

which is the only place where we can measure stress, we never have to deal

with more than two stress components and these lie in the plane of the

surface. Only in the interior of a body can the stresses be triaxial.

Consider a portion of the surface of a stressed body, shown in Fig. 17-6.

We set up a rectangular coordinate system xyz, with x and y lying in the

plane of the surface in any convenient orientation. Whatever the stress

system, three mutually perpendicular directions (1,2, and 3) can be found

which are perpendicular to planes on which no shear stress acts. These

are called the principal directions, and the stresses acting in these direc-

tions, ffiy a2 ,
and <73 ,

are called the principal stresses. At the free surface

shown, 0-3, like <r, is equal to zero. However, 3 ,
the strain normal to the



17-4] BIAXIAL STRESS

"3

437

FIG. 17-6. Angular relations between stress to be measured (o0), principal

stresses (<TI, 0-2, and 0-3), and arbitrary axes (x, y, z).

surface, is not zero. It is given by

(17-5)

The value of 3 can be measured by means of a diffraction pattern made

at normal incidence and is given by Eq. (17-3). Substituting this value

into (17-5), we obtain

dn dQ
(17-6)

Therefore, in the general case, only the sum of the principal stresses can

be obtained from a pattern at normal incidence. [If only a single stress is

acting, say a tensile stress in direction 1, then 0-2
= and Eq. (17-6) re-

duces to Eq. (17-4).]

Normally, however, we want to measure the stress <r+ acting in some

specified direction, say the direction OB of Fig. 17-6, where OB makes an

angle <t> with principal direction 1 and an angle /3 with the z-axis. This is

done by making two photographs, one with the incident beam normal to

the surface and one with it inclined along OA at some angle ^ to the sur-

face normal. OA lies in a vertical plane through the direction OB in which

it is desired to measure the stress, and \l/
is usually made equal to 45. The

normal-incidence pattern measures the strain approximately normal to the

surface, and the inclined-incidence pattern measures the strain approx-

imately parallel to OA. These measured strains are therefore approx-

imately equal to 3 and ^, respectively, where ^ is the strain in a direction
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at an angle ^ to the surface normal. Elasticity theory gives the following

relation for the difference between these two strains:

^- 3
= ^(l + ")sin

2 ^ (17-7)
E

But

(17-8)
do

where di is the spacing of the inclined reflecting planes, approximately

normal to OA, under stress, and d is their stress-free spacing. Combining

Eqs. (17-3), (17-7), and (17-8), we obtain

di -d dn - d d l
- dn or^ .

(i _)- ,,) sin
^

^/. (17-9)
d d d

Since d
, occurring in the denominator above, can be replaced by dn with

very little error, Eq. (17-9) can be written in the form

E '"' ~" 1

(17-10)
(1 + v) sin

2 $\ dn

This equation allows us to calculate the stress in any chosen direction from

plane spacings determined from two photographs, one made at normal

incidence and the other with the incident beam inclined at an angle \f/ to

the surface normal. Notice that the angle <t> does not appear in this equa-

tion and fortunately so, since we do not generally know the directions of

the principal stresses a priori. Nor is it necessary to know the unstressed

plane spacing d
;
the measurement is therefore nondestructive, because

there is no necessity for cutting out part of the specimen to obtain a stress-

free sample.

The direct comparison method is again used to obtain an accurate meas-

urement of the spacings, and Fig. 17-7 illustrates the appearance of the

film in the inclined-incidence exposure. The Debye ring from the speci-

men is no longer perfectly circular. The reason lies in the fact that the

strain along the normal to reflecting planes varies with the angle \f/
between

these plane normals and the surface normal, as shown by Eq. (17-7).

There will therefore be slightly different diffraction angles 26 for planes

reflecting to the "low" side of the film (point 1) and those reflecting to the

"high" side (point 2). These planes therefore form two sets of slightly

different orientation, sets 1 and 2, having normals NI and N% at angles of

i and 2 to the incident beam, (cq and a2 are nearly equal to one another

and to 90 0.) Measurements of the specimen Debye-ring radii Si and

82 therefore give information about strains in directions at angles of

(^ + e*i) and (\l/ 2) to the surface normal. The usual practice is to
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FIG. 1 7-7. Back-reflection method at inclined incidence.

measure only Si, since the position of this side of the ring is more sensitive

to strain.*

To save time in calculation, we can put Eq. (17-10) in more usable

form. By differentiating the Bragg law, we obtain

= cot 6 A0.
d

(17-11)

The Debye-ring radius S, in back reflection, is related to the specimen-

to-film distance D by

S = D tan (180
-

26) = -D tan 26,

AS = -2Dsec2 20A0.

Combining Eqs. (17-11) and (17-12), we obtain

Ad
AS = 2D sec

2
26 tan

d

(17-12)

*
S\ and Sz cannot be measured directly because of the hole in the center of the

film, but they can be found indirectly. If the measured diameter of the Debye
ring from the reference material is 2Sr ,

then the point where the incident beam

passed through the film is located at a distance Sr from any point on the reference

ring. If xi and z2 are the measured distances between the specimen and reference

rings on the "low" side and "high" side, respectively, of the film [see Fig. 17-8(c)],

then Si = Sr x\ and 2
= Sr 2-
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Ad di dn
Put = -

a dn
and

AS = S t
- Sn ,

where St is the Debye-ring radius in the inclined-incidence photograph,

usually taken as the radius S\ in Fig. 17-7, and Sn is the ring radius in the

normal incidence photograph. Combining the last three equations with

Eq. (17-10), we find

~
2D(l + v) sec

2
20 tan 6 sin

2
f

Put
E

K =---
(17-13)

2D(l + v) sec
2
26 tan 6 sin

2
^

Then

cr*
= K,(S,

- Sn ). (17-14)

This forms a convenient working equation. K\ is known as the stress

factor, and it can be calculated once and for all for a given specimen,

radiation, and specimen-to-film distance. To ensure that the specimen-to-

film distance D is effectively equal for both the inclined- and normal-inci-

dence exposures, it is enough to adjust this distance to within 1 mm of its

nominal value with a distance gauge and make the final correction by
means of the measured diameter 2Sr of the Debye ring from the reference

material. For example, with tungsten powder as a reference material,

Co Ka radiation, and a specimen-to-film distance of 57.8 mm, 2Sr is 50 mm
for the 222 line from tungsten. Then for each film a multiplying factor is

found which will make the tungsten-ring diameter equal to exactly 50.00

mm; this same factor is then applied to the measured radii S and Sn of

the specimen rings before inserting them in Eq. (17-14). All measure-

ments are best made on the a\ component of the Ka doublet.

What sort of accuracy can be expected in the measurement of stress by

x-rays? For a steel specimen examined with Co Ka. radiation, the highest-

angle reflection is the 310 line, which occurs at about 160 20. Then E =

30 X 10
6

psi, v = 0.28, D = 57.8 mm, = 80, and ^ = 45 + (90
-

0)

= 55, if the incident beam is inclined at an angle of 45 to the surface

normal and we measure the radius Si, rather than S2 ,
in the inclined-

incidence photograph. Putting these values into Eq. (17-13), we find

the stress factor KI to be 47,000 psi/mm. If the quantity (St
- Sn) is

measured to an accuracy of 0.1 mm, which requires an accuracy of 0.05

mm in the measurement of the separate quantities Si and Sn ,
then the

stress can be determined with an accuracy of 4700 psi. Accuracies some-

what better than this can sometimes be obtained in practice, but a prob-



17-5] EXPERIMENTAL TECHNIQUE (PINHOLE CAMERA) 441

able error of 4000 to 5000 psi is probably typical of most measurements

made on steel specimens. Higher accuracies are attainable on materials

having substantially lower elastic moduli, such as aluminum-base alloys,

since the stress factor is directly proportional to the modulus.

The stress o^ acting in any specified direction may also be measured by a single

inclined exposure like that shown in Fig. 17-7, the normal-incidence exposure be-

ing omitted. Both Debye-ring radii, Si and $2, are measured, the former being

used to calculate the strain at an angle (^ + i) to the surface normal and the

latter the strain at an angle (^ o^)- Equation (17-9) is then applied separately

to each measurement:
E /d t i

- dn\Q __ I
J,

(1 + v) sin 2
(\// + oil) \ do /

(1 + v) sin2
(^ #2) \ do

where d l i and dl % are the plane spacings calculated from S\ and $2, respectively.

Putting a\ 2
= = (90 0), and eliminating dn from the two equations

above, we find

/ E \ Mi - dl2\ ( 1 \
> =

( T~T~ ) ( ^ ) (
~r~^r^T )

\1 + v/ \ do / \sm 2^ sin 2a/

In this equation do need not be known accurately. Since only one exposure is

required, this method is twice as fast as the usual two-exposure method, but it

entails a probable error two or three times as large.

17-6 Experimental technique (pinhole camera). In this and the next

section we shall consider the techniques used in applying the twr

o-exposure

method to the measurement of stress.

Pinhole cameras of special design are used for stress measurement. The

design is dictated by two requirements not ordinarily encountered :

(1) Since the specimens to be examined are frequently large and un-

wieldy, it is necessary to bring the camera to the specimen rather than the

specimen to the camera.

(2) Since the highest accuracy is required in the measurement of diffrac-

tion-line positions, the lines must be smooth and continuous, not spotty.

This is achieved by rotating or oscillating the film about the incident-beam

axis. (Complete rotation of the film is permissible in the normal-incidence

exposure but not in the one made at inclined incidence. In the latter case

the Debye ring is noncircular to begin with, and complete rotation of the

film would make the line very broad and diffuse. Instead, the film is

oscillated through an angle of about 10. If the specimen grain size is

extremely coarse, the specimen itself should be oscillated, if possible,

through an angle of 2 or 3 about an axis normal to the incident beam.)
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These two requirements are satisfied by the camera design illustrated

in Fig. 17-8(a). The camera is rigidly attached to a portable x-ray tube

(a shockproof tube energized through a flexible shockproof cable), which

is held in an adjustable support, permitting the camera to be oriented in

any desired way relative to the specimen. The film is held in a circular

cassette which can be oscillated or rotated by means of a gear-and-worm

arrangement. Both the normal-incidence and inclined-incidence photo-

graphs may be registered on one film by using the opaque metal film cover

shown in (b). It has two openings diametrically opposite; after one ex-

posure is made, the film holder is rotated 90 in its own plane with respect

to the cover, and the other exposure made. The resulting film has the

appearance of (c). Figure 17-9 shows a typical camera used for stress

measurements.

Some investigators like to use a well-collimated incident beam, like the

one indicated in Fig. 17-8(a). Others prefer to use a divergent beam and

utilize the focusing principle shown in Fig. 17-10. A fine pinhole is located

behind the film at the point A and a larger one, to limit the divergence, at

point B. Then a circle passing through A and tangent to the specimen

worm
drive

(asset tf

him cover

(a) (b)

line from

specimen

inclined-

incidence

exposure

(0
exposure

FIG. 17-8. Pinhole camera for stress measurement (schematic): (a) section

through incident beam; (b) front view of cassette; (c) appearance of exposed film.
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FIG. 17-9. Stress camera in position for the measurement of stress in a welded

steel plate. A combined distance gauge and beam indicator has been temporarily

attached to the collimator to aid in adjusting the specimen-film distance and the

angle between the incident beam arid the specimen surface. The latter adjust-

ment may be quickly made with the protractor shown. (H. J. Isenburger, Machin-

ery, July 1947, p. 167.)

focusing circle

film

x-ray tube

specimen

FIG. 17-10. Back-reflection pinhole camera used under semifocusing conditions.



444 STRESS MEASUREMENT [CHAP. 17

will intersect the film at the point where a reflected beam will focus. The

result is a sharper line and reduced exposure time. Note, however, that

the focusing condition can only be satisfied for one line on the pattern.

But line sharpness and exposure time are not the only criteria to be con-

sidered in deciding between the collimated and divergent beam techniques.

One of the real advantages of the x-ray method over all other methods of

stress measurement is the ability to measure the stress almost at a point

on the specimen. This can be done with a collimated beam, which can be

made very narrow, but not with a divergent beam, which covers a fairly

wide area of the specimen. The collimated-beam technique is therefore

to be preferred when the stress in the specimen varies rapidly from point

to point on the surface, and when it is important that the existing stress

gradient be evaluated.

When the stress gradient normal to the surface is large, errors of interpre-

tation may arise unless it is realized that the effective depth of x-ray pene-

tration varies with the angle of incidence of the x-rays. Suppose, for

example, that 6 = 80 and \l/
= 45. Then it may be shown, by means of

Eq. (9-3), that the effective penetration depth is 83 percent greater in the

normal-incidence exposure than it is in the inclined one.

Correct specimen preparation is extremely important. If dirt and scale

are present, they may be ground off, but the grinding must be followed by

deep etching to remove the surface layer left in compression by the grinding.

The surface is then lightly polished with fine emery paper, to remove the

roughness caused by deep etching, and lightly re-etched. Surface rough-

ness must be strictly avoided, because the high points in a rough surface

are not stressed in the same way as the bulk of the material and yet they
contribute most to the diffraction pattern, especially the one made at

inclined incidence, as indicated in Fig.

17-11. Of course, the surface should

not be touched at all prior to the

stress measurement, if the object is

to measure residual surface stresses

caused by some treatment such as

machining, grinding, shot peening,

etc. Such treatments produce steep

stress gradients normal to the surface,

and the removal of any material by FlQ 1?_n Diffraction from a

polishing or etching would defeat the
rough surface when the indent beam

purpose of the measurement. is inclined.

17-6 Experimental technique (diffractometer). The diffractometer may
also be used for stress measurement, and many details of the diffractometer

technique, e.g., specimen preparation, are identical to those mentioned in
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the preceding section. The only instrumental changes necessary are the

addition of a specimen holder which will allow independent rotation of the

specimen about the diffractometer axis, and a change in the position of the

receiving slit.

Figure 17-12 illustrates the angular relationships involved. In (a), the

specimen is equally inclined to the incident and diffracted beams
; \l/ is zero

and the specimen normal N* coincides with the reflecting plane normal

Np . Radiation divergent from the source S is diffracted to a focus at F
on the diffractometer circle. Even though the primary beam is incident

on the surface at an angle 8 rather than at 90, a diffraction measurement

made with the sample in this position corresponds to a normal-incidence

photograph made with a camera, except that the reflecting planes are now

exactly parallel to the surface and the strain is measured exactly normal

to the surface. In (b) the specimen has been turned through an angle \l/

for the inclined measurement. Since the focusing circle is always tangent

to the specimen surface, rotation of the specimen alters the focusing circle

both in position and radius, and the diffracted rays now come to a focus

at F', located a distance r from F. If R is the radius of the diffractometer

circle, then it may be shown that

r _ cos

R
~

cos

+ (90
-

0)]

-
(90

-
0)]

If ^ = 45, then r/R is 0.30 for 6 = 80 and 0.53 for 8 = 70

specimen

diffractometcr
*S "

circle

counter

(a) (b)

FIG. 17-12. Use of a diffractometer for stress measurement: (a) ^ = 0; (b) ^ ^.
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When ^ is not zero, the focal point of the diffracted beam therefore lies

between F, the usual position of the counter receiving slit, and the speci-

men. If the receiving slit is kept at F, the intensity of the beam entering

the counter will be very low. On the other hand, if a wide slit is used at F,

resolution will suffer. The proper thing to do is to put a narrow slit at

F' and a wide slit at F, or put a narrow slit at F' and move the counter to a

position just behind it. In theory, different slit arrangements are therefore

necessary for the measurement made at \l/
= and the one made at ^ =

45. In practice, a change in slit position between each of these measure-

ments is avoided by making a compromise between intensity and resolution,

and placing a narrow slit at some point between F and F' where experiment
indicates that satisfactory results are obtained. The slit is then left in

this position for both measurements.

Since the angular position 26 of the diffracted beam is measured directly

with a diffractometer, it is convenient to write the stress equation in terms

of 26 rather than plane spacings. Differentiating the Bragg law, we obtain

Ad _ cot 6 A20

~d

~
2

Combining this relation with Eq. (17-10) gives

_ E cot 6(26n
- 20t)

'*
2(1 + iOsin

2
*

Put
E cot6

2
""

2(1 + v) sin
2
^

Then

er,
= K2 (26n

- 20t), (17-15)

where 20n is the observed value of the diffraction angle in the "normal"

measurement ($ = 0) and 20, its value in the inclined measurement

(^ = ^). For measurements made on the 310 line of steel with Co Ka
radiation, putting E = 30 X 10

6
psi, v = 0.28,

= 80, and ^ = 45, we
obtain for the stress factor K2 a value of 720 psi/0.01 20. If 20n and 20t

are both measured to an accuracy of 0.02, then the probable error in the

stress measured is 2880 psi.

Essentially, the quantity measured in the diffractometer method is

A20 =
(20n 20), the shift in the diffraction line due to stress as the

angle \l/ is changed. But certain geometrical effects, particularly the com-

promise position of the receiving slit, introduce small errors which cause

a change in 20 even for a stress-free specimen, when
\l/

is changed from

to 45. It is therefore necessary to determine this change experimentally
and apply it as a correction (A20) to all A20 values measured on stressed
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specimens. The correction is best determined by measurements on a

sample of fine powder, which is necessarily free of macrostrain, at ^ =

and ^ = 45. The powder should have the same composition as the mate-

rial in which stress is to be measured in order that its diffraction line occur

at the same position 20, since the correction itself, (A20) , depends on 26.

17-7 Superimposed macrostress and microstress. As mentioned in the

introduction, a specimen may contain both a uniform macrostress and a

nonuniform microstress. The result is a diffraction line which is both

shifted and broadened. This effect occurs quite commonly in hardened

steel parts: nonuniform microstress is set up by the austenite-to-martensite

transformation and on this is superimposed a uniform residual macro-

stress, due to any one of a number of causes, such as quenching, prior

plastic deformation, or grinding.

Stress measurement by x-rays requires the measurement of diffraction-

line shift. If the lines are sharp, it is relatively easy to measure this shift

visually with a device such as shown in Fig. 6-18. But if the lines are

broad (and a breadth at half-maximum intensity of 5 to 10 26 is not

uncommon in the case of hardened steel), an accurate visual measurement

becomes impossible. It is then necessary to determine the profile of the

line, either from a microphotometer record of the film if a camera was used,

or by directly measuring the intensity at various angles 28 with the dif-

fractometer.

After the line profile is obtained, the problem still remains of locating

the "center" of the line. Since the line may be, and frequently is, unsym-

metrical, "center" has no precise meaning but is usually taken as the peak

of the line, i.e., the point of maximum intensity. But the top of a broad

line is often almost flat so that direct determination of the exact point of

maximum intensity is extremely difficult.

Two methods have been used to fix the positions of broadened lines.

The first is illustrated in Fig. 17-13 (a) and may be used whenever the lines

line center

line profile

line center

line profile

parabola parabola

20 26

(a) (b)

FIG. 17-13. Methods of locating the centers of broad diffraction lines.
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involved have straight sides. The linear portions are simply extrapolated

and their point of intersection taken as the "center" of the line. If the

line is unsymmetrical, the point so found will not have the same 26 value

as the point of maximum intensity. But this is of no consequence in the

measurement of stress, as long as this "center" is reproducible, since all

that is required is the difference between two values of 26 and not the abso-

lute magnitude of either.

The other method depends on the fact that the profile of a broad line

near its peak has the shape of a parabola with a vertical axis, as shown in

Fig. 17-13(b), even when the over-all shape of the line is unsymmetrical.

Now the equation

y = ax2 + bx + c (17-16)

is the general equation of a parabola whose axis is parallel to the y axis.

The maximum on this curve occurs when

= 2ax + b = 0,
dx

x = - - (17-17)
2a

If we put x = 26 and y =
/, then Eq. (17-16) represents the shape of the

diffraction line near its peak. We then substitute several pairs of observed

26, 1 values into this equation and solve for the best values of the constants

a and b by the method of least squares. Equation (17-17) then gives the

exact value of x (
= 20) at which the maximum occurs. Only two or three

points on either side of the peak near its maximum are sufficient to locate

the parabola with surprising accuracy. The positions of diffraction lines

as broad as 8 26 at half-maximum intensity have been reproducibly deter-

mined to within 0.02 by this method.

Choice of the proper radiation is an important matter when the positions

of broad diffraction lines have to be accurately measured. Every effort

should be made to reduce the background, since the accurate measurement

of a broad, diffuse diffraction line superimposed on a high-intensity back-

ground is very difficult. Thus, cobalt radiation filtered through iron oxide

is satisfactory for annealed steel, because the diffraction lines are sharp.

However, the background is high, since the short wavelength components

of the continuous spectrum cause fluorescence of iron K radiation by the

specimen. For this reason cobalt radiation is completely unsuitable for

stress measurements on hardened steel, where very broad lines have to be

measured. For such specimens chromium radiation should be used, in

conjunction with a vanadium filter between the specimen and the photo-

graphic film or diffractometer counter. The vanadium filter suppresses

not only the Cr Kfl component of the incident radiation but also the
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fluorescent iron K radiation from the specimen, since the K edge of vana-

dium lies between the wavelengths of Fe Ka and Cr Ka. The tube voltage

should also be kept rather low, at about 30 to 35 kv, to minimize the inten-

sity of the fluorescent radiation. The large gain in the line-to-background

intensity ratio obtained by using chromium instead of cobalt radiation

more than compensates for the fact that the diffraction lines occur at

smaller 26 values with the former.

17-8 Calibration. For the measurement of stress by x-rays we have

developed two working equations, Eqs. (17-14) and (17-15), one for the

pinhole camera and one for the diffractometer. Each of them contains an

appropriate stress factor K, by which diffraction line shift is converted to

stress. Furthermore each was derived on the assumption that the material

under stress was an isotropic body obeying the usual laws of elasticity.

This assumption has to be examined rather carefully if a calculated value

of K is to be used for stress measurement.

The stress factor K contains the quantity E/(l + p), and we have

tacitly assumed that the values of E and v measured in the ordinary way

during a tensile test are to be used in calculating the value of K. But

these mechanically measured values are not necessarily the correct ones to

apply to a diffraction measurement. In the latter, strains are measured in

particular crystallographic directions, namely, the directions normal to the

(hkl) reflecting planes, and we know that both E and v vary with crystal-

lographic direction. This anisotropy of elastic properties varies from one

metal to another: for example, measurements on single crystals of a-iron

show that E has a value of 41.2 X 10
6
psi in the direction [111] and 19.2 X

10
6

psi in [100], whereas the values of E for aluminum show very little

variation, being 10.9 X 10
6

psi in [111] and 9.1 X 10
6

psi in [100]. The

mechanically measured values are 30 X 10
6 and 10 X 10

6
psi for poly-

crystalline iron and aluminum, respectively. These latter values are evi-

dently average values for aggregates of contiguous grains having random

orientation. In the x-ray method, however, only grains having a particular

orientation relative to the incident beam, and therefore a particular orien-

tation with respect to the measured stress, are able to reflect. There is

therefore no good reason why the mechanically measured values of E and

v should be applied to these particular grains. Stated alternately, an

aggregate of randomly oriented grains may behave isotropically but indi-

vidual grains of particular orientations in that aggregate may not.

These considerations are amply supported by experiment. By making

x-ray measurements on materials subjected to known stresses, we can

determine the stress factor K experimentally. The values of K so obtained

differ by as much as 40 percent from the values calculated from the mechan-

ically measured elastic constants. Moreover, for the same material, the
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x-ray

-ray

(a) (b)

FIG. 17-14. Specimens used for calibrating x-ray method.

measured values of K vary with the wavelength of the radiation used and

the Miller indices of the reflecting planes. With steel, for example, the

calculated value of K happens to be in good agreement with the measured

value if CoKa radiation is reflected from the (310) planes but not if

some other combination of X and (hkl) is employed.

Methods have been proposed for calculating the proper values of E
and v to use with x-ray measurements from the values measured in various

directions in single crystals, but such calculations are not very accurate.

The safest procedure is to measure K on specimens subjected to known

stresses. We will consider this calibration in terms of the diffractometer

method, but the same procedure may also be used for calibrating the

camera method.

The usual practice is to set up known stresses in a body by bending.

Both flat beams and heavy split rings have been used, as illustrated in

Fig. 17-14. The beam shown in (a) is supported at two points and loaded

by the two forces F\ ;
tensile stress is therefore produced in the top surface

on which the x-ray measurements are made. The split ring shown in (b)

may be either expanded by the forces F2 , producing compressive stress at

the point of x-ray measurement, or compressed by the forces F3 , producing

tensile stress at the same point. If the applied forces and the dimensions

and over-all elastic properties of the stressed member are known, then the

stress at the point of x-ray measurement may be computed from elasticity

theory. If not, the stress must be measured by an independent method,

usually by means of electric-resistance strain gauges placed at the points

marked X. At no time during the calibration should the elastic limit of

the material be exceeded.

A typical calibration curve might have the appearance of Fig. 17-15,

where the known stress o> is plotted against the observed value of A20 =

(26n
- 20t), in this case for an applied positive (tensile) stress. The slope

of this line is the stress factor K2 . However, the experimental curve must
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be corrected by an amount (A20) ,

measured on a stress-free sample in

the manner previously described. The

corrected working curve is therefore a

line of the same slope as the experi-

mental curve but shifted by an

amount (A20) . The working curve

may or may not pass through zero,

depending on whether or not the cali-

brating member contains residual

stress. In the example shown here,

a small residual tensile stress was

present.

FIG. 17-15. Calibration curve for

stress measurement.

17-9 Applications. The proper field of application of the x-ray method

will become evident if we compare its features with those of other methods

of stress, or rather strain, measurement. If a camera with a pinhole col-

limator is used, the incident x-ray beam can be made quite small in diam-

eter, say TV in., and the strain in the specimen may therefore be measured

almost at a point. On the other hand, strain gauges of the electrical or

mechanical type have a length of an inch or more, and they therefore

measure only the average strain over this distance. Consequently, the

x-ray method is preferable whenever we wish to measure highly localized

stresses which vary rapidly from point to point, in a macroscopic sense.

There is a still more fundamental difference between the x-ray method

and methods involving electrical or mechanical gauges. The latter meas-

ure the total strain, elastic plus plastic, which has occurred, whereas x-rays

measure only the elastic portion. The reason for this is the fact that the

spacing of lattice planes is not altered by plastic flow, in itself, but only

by changes in the elastic stress to which the grains are subjected. The

x-ray "strain gauge" can therefore measure residual stress, but an electric-

resistance gauge can not. Suppose, for example, that an electric-resistance

gauge is fixed to the surface of a metal specimen which is then deformed

plastically in an inhomogeneous manner. The strain indicated by the

gauge after the deforming forces are removed is not the residual elastic

strain from which the residual stress can be computed, since the indicated

strain includes an unknown plastic component which is not recovered

when the deforming force is removed. The x-ray method, on the other

hand, reveals the residual elastic stress actually present at the time the

measurement is made.

However, the x-ray method is not the only way of measuring residual

stress. There is another widely used method (called mechanical relaxa-

tion), which involves (a) removing part of the metal by cutting, grinding,
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FIG. 17-16. Residual stress pattern
set up by localized heating: (a) trans-

verse stress; (b) longitudinal stress.

c? is diameter of heated area. (J. T.

Norton and D. Rosenthal, Proc. oc.

Exp. Stress Analysis 1 (2), 77, 1943.)

etching, etc., and (b) measuring the

change in shape or dimensions pro-

duced as a result of this removal.

For example, the residual stress in

the weldment discussed earlier [Fig.

17-1 (b)] could be measured by cut-

ting through the central rod along the

line AA' and measuring the length I

before and after cutting. When the

rod is cut through, the tensile stress

in it is relieved and the two side mem-

bers, originally in compression, are

free to elongate. The final length If

is therefore greater than the original

length i and the strain present before

the cut was made must have been

(If lG)/lf. This strain, multiplied

by the elastic modulus, gives the

residual compressive stress present in

the side members before the central

rod was cut. Similarly, the residual

stress at various depths of the bent

beam shown in Fig. 17-2(c) may be

measured by successive removal of

layers parallel to the neutral plane,

and a measurement of the change in

curvature of the beam produced by
each removal.

There are many variations of this

method and they are all destructive,

inasmuch as they depend on the par-

tial or total relaxation of residual

stress by the removal of a part of the

stressed metal. The x-ray method,

on the other hand, is completely non-

destructive: all the necessary meas-

urements may be made on the stressed

metal, which need not be damaged in

any way.
We can conclude that the x-ray

method is most usefully employed for

the nondestructive measurement of

residual stress, particularly when the
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stress varies rapidly over the surface of the specimen. This latter condi-

tion is frequently found in welded structures, and the measurement of

residual stress in and near welds is one of the major applications of the

x-ray method. For the measurement of applied stress, methods involving

electrical or mechanical gauges are definitely superior: they are much more

accurate, faster, and require less expensive apparatus. In fact, they are

commonly used to calibrate the x-ray method.

Figure 17-16 shows an example of residual stress measurement by x-rays.

The specimen was a thin steel bar, 3 in. wide and 10 in. long. A small

circular area, whose size is indicated on the graph, was heated locally to

above 1 100 F for a few seconds by clamping the bar at this point between

the two electrodes of a butt-welding machine. The central area rapidly

expanded but was constrained by the relatively cold metal around it. As

a result, plastic flow took place in and near the central region on heating

and probably also on cooling as the central region tried to contract. Resid-

ual stresses were therefore set up, and the curves show how these stresses,

both longitudinal and transverse, vary along a line across the specimen

through the heated area. In and near this area there is a state of biaxial

tension amounting to about 55,000 psi, which is very close to the yield

point of this particular steel, namely, 60,500 psi. There is also a very steep

stress gradient just outside the heated area: the transverse stress drops

from 55,000 psi tension to zero in a distance of one inch, and the longi-

tudinal stress drops from 55,000 psi tension to 25,000 psi compression in

less than half an inch. Residual stresses of similar magnitude and gradient

can be expected in many welded structures.

PROBLEMS

17-1. Calculate the probable error in measuring stress in aluminum by the

two-exposure pinhole-camera method. Take E = 10 X 106
psi and v = 0.33.

The highest-angle line observed with Cu Ka radiation is used. For the inclined-

incidence photograph, the incident beam makes an angle of 45 with the speci-

men surface, and the radius S\ (see Fig. 17-7) of the Debye ring from the speci-

men is measured. Assume an accuracy of 0.05 mm in the measurement of line

position and a specimen-to-film distance of 57.8 mm. Compare your result with

that given in Sec. 17-4 for steel.

17-2. A certain aluminum part is examined in the diffractometer, and the 20

value of the 511,333 line is observed to be 163.75 when ^ =
0, and 164.00 for

\j/
= 45. The same values for a specimen of aluminum powder are 163.81 and

163.88, respectively. What is the stress in the aluminum part, if it is assumed

that the stress factor calculable from the elastic constants given in Prob. 17-1 is

correct?

17-3. Verify the statement made in Sec. 17-5 that the effective depth of x-ray

penetration is 83 percent greater in normal incidence than at an incidence of 45,

when 6 = 80.



CHAPTER 18

SUGGESTIONS FOR FURTHER STUDY

18-1 Introduction. In the previous chapters an attempt has been made

to supply a broad and basic coverage of the theory and practice of x-ray

diffraction and its applications to metallurgical problems. But in a book

of this scope much fundamental theory and many details of technique

have had to be omitted. The reader who wishes to go on to advanced work

in this field will therefore have to turn to other sources for further informa-

tion. The purpose of the following sections is to point out these sources

and indicate the sort of material each contains, particularly material which

is mentioned only briefly or not at all in this book.

One thing is absolutely necessary in advanced work on diffraction and

that is familiarity with the concept of the reciprocal lattice. This concept

provides a means of describing diffraction phenomena quite independently

of the Bragg law and in a much more powerful and general manner. In

particular, it supplies a way of visualizing diffuse scattering effects which

are difficult, if not impossible, to understand in terms of the Bragg law.

Such effects are due to crystal imperfections of one kind and another, and

they provide a valuable means of studying such imperfections. These

faults in the crystal lattice, though seemingly minor in character, can have

a profound effect on the physical and mechanical properties of metals and

alloys; for this reason, there is no doubt that much of the metallurgical re-

search of the future will be concerned with crystal imperfections, and in

this research the study of diffuse x-ray scattering will play a large role.

The utility of the reciprocal lattice in dealing with diffuse scattering effects

is pointed out in Appendix 15, where the interested reader will find the

basic principles and more important applications of the reciprocal lattice

briefly described.

18-2 Textbooks. The following is a partial list of books in English

which deal with the theory and practice of x-ray diffraction and crystal-

lography.

(1) Structure of Metals, 2nd ed., by Charles S. Barrett. (McGraw-Hill
Book Company, Inc., New York, 1952.) Deservedly the standard work

in the field, it has long served as a text and reference book in the crystallo-

graphic aspects of physical metallurgy. Really two books in one, the first

part dealing with the theory and methods of x-ray diffraction, and the

second part with the structure of metals in the wider sense of the word.

454
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Includes a very lucid account of the stereographic projection. Contains

an up-to-date treatment of transformations, plastic deformation, structure

of cold-worked metal, and preferred orientations. Gives a wealth of refer-

ences to original papers.

(2) X-Ray Crystallographic Technology, by Andr6 Guinier. (Hilger and

Watts Ltd., London, 1952. Translation by f . L. Tippel, edited by Kath-

leen Lonsdale, of Guinier's Radiocristallographie, Dunod, Paris, 1945.)

Written with true French clarity, this book gives an excellent treatment of

the theory and practice of x-ray diffraction. A considerable body of theory

is presented, although this is not suggested by the title of the English trans-

lation, and experimental techniques are given in detail. The theory and

applications of the reciprocal lattice are very well described. Unusual fea-

tures include a full description of the use of focusing monochromators and

chapters on small-angle scattering and diffraction by amorphous substances.

Crystal-structure determination is not included.

(3) X-Ray Diffraction Procedures, by Harold P. Klug and Leroy E. Alex-

ander. (John Wiley & Sons, Inc., New York, 1954.) As its title indicates,

this book stresses experimental methods. The theory and operation of

powder cameras and diffractometers are described in considerable and use-

ful detail. (Single-crystal methods, Laue and rotating crystal, are not in-

cluded.) Particularly valuable for its discussion of quantitative analysis

by diffraction, a subject to which these authors have made important con-

tributions. Also includes chapters on particle-size measurement from line

broadening, diffraction by amorphous substances, and small-angle scatter-

ing.

(4) X-Ray Diffraction by Polycrystalline Materials, edited by H. S.

Peiser, H. P. Rooksby, and A. J. C. Wilson. (The Institute of Physics,

London, 1955.) This book contains some thirty chapters, contributed by

some thirty different authors, on the theory and practice of the powder

method in its many variations. These chapters are grouped into three

major sections: experimental technique, interpretation of data, and appli-

cations in specific fields of science and industry. A great deal of useful

information is presented in this book, which will be of more value to the

research worker than to the beginning student, in that most of the con-

tributors assume some knowledge of the subject on the part of the reader.

(5) Applied X-Rays, 4th ed., by George L. Clark. (McGraw-Hill Book

Company, Inc., New York, 1955.) A very comprehensive bodk, devoted

to the applications of x-rays in many branches of science and industry.

Besides diffraction, both medical and industrial radiography (and micro-

radiography) are included, as well as sections on the chemical and biological

effects of x-rays. The crystal structures of a wide variety of substances,

ranging from organic compounds to alloys, are fully described.
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(6) X-Rays in Practice, by Wayne T. Sproull. (McGraw-Hill Book

Company, Inc., New York, 1946.) X-ray diffraction and radiography,

with emphasis on their industrial applications.

(7) An Introduction to X-Ray Metallography, by A. Taylor. (John

Wiley & Sons, Inc., New York, 1945.) Contains extensive material on the

crystallographic structure of metals and alloys and on methods of deter-

mining alloy equilibrium diagrams by x-ray diffraction. Sections on radi-

ography and microradiography also included.

(8) X-Rays in Theory and Experiment, by Arthur H. Compton and

Samuel K. Allison. (D. Van Nostrand Company, Inc., New York, 1935.)

A standard treatise on the physics of x-rays and x-ray diffraction, with

emphasis on the former.

(9) The Crystalline State. Vol. I: A General Survey, by W. L. Bragg.

(The Macmillan Company, New York, 1934.) This book and the two listed

immediately below form a continuing series, edited by W. L. Bragg, to

which this book forms an introduction. It is a very readable survey of the

field by the father of structure analysis. Contains very clear accounts in

broad and general terms of crystallography (including space-group theory),

diffraction, and structure analysis. An historical account of the develop-

ment of x-ray crystallography is also included.

(10) The Crystalline State. Vol. II: The Optical Principles of the Diffrac-

tion of X-Rays, by R. W. James. (George Bell & Sons, Ltd., London, 1948.)

Probably the best book available in English on advanced theory of x-ray

diffraction. Includes thorough treatments of diffuse scattering (due to

thermal agitation, small particle size, crystal imperfections, etc.), the use

of Fourier series in structure analysis, and scattering by gases, liquids, and

amorphous solids.

(11) The Crystalline State. Vol. Ill: The Determination of Crystal Struc-

tures, by H. Lipson and W. Cochran. (George Bell & Sons, Ltd., London,

1953.) Advanced structure analysis by means of space-group theory and

Fourier series. Experimental methods are not included; i.e., the problem

of structure analysis is covered from the point at which \F\
2 values have

been determined by experiment to the final solution. Contains many illus-

trative examples.

(12) The Interpretation of X-Ray Diffraction Photographs, by N. F. M.

Henry, H. Lipson, and W. A. Wooster. (The Macmillan Company, Lon-

don, 1951.) Rotating and oscillating crystal methods, as well as powder

methods, are described. Good section on analytical methods of indexing

powder photographs.

(13) X-Ray Crystallography, by M. J. Buerger. (John Wiley & Sons,

Inc., New York, 1942.) Theory and practice of rotating and oscillating

crystal methods. Space-group theory.

(14) Small-Angle Scattering of X-Rays, by Andrg Guinier and Gerard

Fournet. Translated by Christopher B. Walker, and followed by a bibli-
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ography by Kenneth L. Yudowitch. (John Wiley & Sons, Inc., New York,

1955.) A full description of small-angle scattering phenomena, including

theory, experimental technique, interpretation of results, and applications.

18-3 Reference books. Physical and mathematical data and informa-

tion on specific crystal structures may be found in the following books:

(1) Internationale Tabellen zur Bestimmung von Kristallstrukturen [Inter-

national Tables for the Determination of Crystal Structures]. (Gebriider

Borntraeger, Berlin, 1935. Also available from Edwards Brothers, Ann

Arbor, Mich., 1944.)

Vol. 1 . Space-group tables.

Vol. 2. Mathematical and physical tables (e.g., values of sin
2

0, atomic

scattering factors, absorption coefficients, etc.).

(2) International Tables for X-ray Crystallography. (Kynoch Press,

Birmingham, England.) These tables are published by the International

Union of Crystallography and are designed to replace the Internationale

Tabellen (1935), much of which was in need of revision.

Vol. I. Symmetry groups (tables of point groups and space groups)

(1952). The reader should not overlook the interesting Historical Intro-

duction written by M. von Laue.

Vol. II. Mathematical tables (in preparation).

Vol. IIL Physical and chemical tables (in preparation).

(3) Absorption coefficients and the wavelengths of emission lines and

absorption edges, not included in the Internationale Tabellen (1935), can

generally be found in the book by Compton and Allison (item 8 of the

previous section) or in the Handbook of Chemistry and Physics (Chemical

Rubber Publishing Co., Cleveland). Wavelengths are given in kX units.

(4) Longueurs d'Onde des Emissions X et des Discontinuity d 1

Absorption

X [Wavelengths of X-Ray Emission Lines and Absorption Edges], by
Y. Caiichois and H. Hulubei. (Hermann & Cie, Paris, 1947.) Wavelengths

of emission lines and absorption edges in X units, listed both in numerical

order of wavelength (useful in fluorescent analysis) and in order of atomic

number.

(5) Strukturbericht. (Akademische Verlagsgesellschaft, Leipzig, 1931-

1943. Also available from Edwards Brothers, Ann Arbor, Mich., 1943.)

A series of seven volumes describing crystal structures whose solutions

were published in the years 1913 to 1939, inclusive.

(6) Structure Reports. (Oosthoek, Utrecht, 1951 to date.) A continua-

tion, sponsored by the International Union of Crystallography, of Struk-

turbericht. The volume numbers take up where Strukturbericht left off:

Vol. 8. (In preparation.)

Vol. 9. (1956) Structure results published from 1942 to 1944.

Vol. 10. (1953) Structure results published in 1945 and 1946.

Vol. 11. (1952) Structure results published in 1947 and 1948.



458 SUGGESTIONS FOR FURTHER STUDY [CHAP. 18

Vol. 12. (1951) Structure results published in 1949.

Vol. 13. (1954) Structure results published in 1950.

The results of structure determinations are usually given in sufficient

detail that the reader has no need to consult the original paper.

(7) The Structure of Crystals, 2nd ed., by Ralph W. G. Wyckoff. (Chem-
ical Catalog Company, New York, 1931. Supplement for 1930-34, Rein-

hold Publishing Corporation, New York, 1935.) Crystallography (includ-

ing space-group theory) and x-ray diffraction. In addition, full descrip-

tions are given of a large number of known crystal structures.

(8) Crystal Structures, by Ralph W. G. Wyckoff. (Interscience Pub-

lishers, Inc., New York.) A continuation of Wyckoff's work (see previous

item) of classification and presentation of crystal structure data. Three

volumes have been issued to date (Vol. I, 1948; Vol. II, 1951; Vol. Ill,

1953) and more are planned for the future. Each volume is in loose-leaf

form so that later information on a particular structure can be inserted in

the appropriate place.

(9) Lists of known structures and lattices parameters can also be found

in the Handbook of Chemistry and Physics (organic and inorganic com-

pounds) and in the book by Taylor, item 7 of the previous section (inter-

metallic "compounds").

18-4 Periodicals. Broadly speaking, technical papers involving x-ray

crystallography are of two kinds:

(a) Those in which crystallography or some aspect of x-ray diffraction

form the central issue, e.g., papers describing crystal structures, crystallo-

graphic transformations, diffraction theory, diffraction methods, etc. Such

papers were published in the international journal Zeitschrift fur Kristal-

lographie, in which each paper appeared in the language of the author (Eng-

lish, French, or German). Publication of this journal ceased in 1945 and a

new international journal, Acta Crystallographica, a publication of the In-

ternational Union of Crystallography, was established to take its place,

publication beginning in 1948. (Publication of Zeitschrift fur Kristal-

lographie was resumed in 1954.) Although the bulk of the papers appear-

ing in Acta Crystallographica are confined to structure results on complex

organic and inorganic compounds, occasional papers of metallurical interest

appear. Papers on diffraction theory and methods are also found in jour-

nals of physics, applied physics, and instrumentation.

(b) Those in which x-ray diffraction appears in the role of an experimen-
tal tool in the investigation of some other phenomenon. Much can be

learned from such papers about the applications of x-ray diffraction. Many
papers of this sort are to be found in various metallurgical journals.
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LATTICE GEOMETRY

Al-1 Plane spacings. The value of d, the distance between adjacent

planes in the set (hkl), may be found from the following equations.

1 h2 + k2 + I
2

Cubic: - =
d2 cr

1 h2 + k2 I
2

Tetragonal:
= h -5

d2 a2 (?

1 4 /h2 + hk + k?\ I
2

3\ a2

Rhombohedral:

1 _ (h
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2
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TricUnic: ~T2
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2 (Snh
2 + S22k

2 + S33^
2 + 2S12/ifc + 2S23kl + 2Sl3hl)

In the equation for triclinic crystals

V = volume of unit cell (see below),

Sn = 6
2
c
2
sin

2
a,

2
ft

S33
= a262 sin

2
7,

Si2 = abc
2
(cos a cos )S cos 7),

^23 = a26c(cos ft cos 7 cos a),

<Si3
= ob2c(cos 7 cos a cos ft).
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Al-2 Cell volumes. The following equations give the volume V of the

unit cell.

Cubic: V = a3

Tetragonal: V = a2c

Hexagonal: V =- = 0.866a
2
c

Rhombohedral: V = a3VI 3 cos
2 a + 2 cos

3 a

Orthorhombic: V = abc

Monoclinic: V = abc sin ft

Tridinic: V abcV 1 cos
2 a cos

2
ft cos

2
7 + 2 cos a cos cos 7

Al-3 Interplanar angles. The angle </> between the plane (AiA'i/i), of

spacing dj, and the plane (/i2 /c2fe), of spacing rf2 , may be found from the

following equations. (F is the volume of the unit cell.)

Cubic: cos <t>
=

Tetragonal: cos< =

,

2 + fc,

2 + /IW + *2
2
""+

cos
<t>
=

Rhombohedral:

3a2

Z
4c

2

fc2
2 + *2 fc2 +

4c2

cos </>
=

[sin
2

a(/ii/i2 + fc^g +

+ (cos
2 a - cos a)(*!fe + fc2 ^i + hh* + fefci + ftifc2 +
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Orthorhombic: cos </>
=

/

2 2 2 2 iT2

Monocfo'm'c:

cos ^>
= -

^ I TT I
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sin
2
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2

c
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APPENDIX 2

THE RHOMBOHEDRAL-HEXAGONAL TRANSFORMATION

The lattice of points shown in Fig. A2-1 is rhombohedral, that is, it

possesses the symmetry elements characteristic of the rhombohedral sys-

tem. The primitive rhombohedral cell has axes ai(R), a2 (R), and aa(R).

The same lattice of points, however, may be referred to a hexagonal cell

having axes ai(H), a2 (H), and c(H). The hexagonal cell is no longer primi-

tive, since it contains three lattice points per unit cell (at 000, ^ ^, and

f f f), and it has three times the volume of the rhombohedral cell.

If one wishes to know the indices (HK-L), referred to hexagonal axes,

of a plane whose indices (/i/c/), referred to rhombohedral axes, are known,
the following equations may be used :

H = h - k,

K = k-l,

L = h + k + l.

FIG. A2-1. Rhombohedral and hexagonal unit cells in a rhombohedral attice.
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Thus, the (001) face of the rhombohedral cell (shown shaded in the figure)
has indices (01 1) when referred to hexagonal axes.

Since a rhombohedral lattice may be referred to hexagonal axes, it fol-

lows that the powder pattern of a rhombohedral substance can be indexed
on a hexagonal Hull-Davey or Bunn chart. How then can we recognize
the true nature of the lattice? From the equations given above, it follows

that

-H + K + L = 3/r.

If the lattice is really rhombohedral, then k is an integer and the only lines

appearing in the pattern will have hexagonal indices (HK L) such that the

sum ( H + K + L) is always an integral multiple of 3. If this condition

is not satisfied, the lattice is hexagonal.
When the pattern of a rhombohedral substance has been so indexed,

i.e., with reference to hexagonal axes, and the true nature of the lattice de-

termined, we usually want to know the indices (hkl) of the reflecting planes
when referred to rhombohedral axes. The transformation equations are

h = J(2H + K + L),

I = (-//- 2K + L).

There is then the problem of determining the lattice parameters an and a
of the rhombohedral unit cell. But the dimensions of the rhombohedral
cell can be determined from the dimensions of the hexagonal cell, and this

is an easier process than solving the rather complicated plane-spacing equa-
tion for the rhombohedral system. The first step is to index the pattern
on the basis of hexagonal axes. Then the parameters an and c of the

hexagonal cell are calculated in the usual way. Finally, the parameters of

the rhombohedral cell are determined from the following equations:

+ c
2

,

Finally, it should be noted that if the c/a ratio of the hexagonal cell in

Fig. A2-1 takes on the special value of 2.45, then the angle a of the rhom-
bohedral cell will equal 60 and the lattice of points will be face-centered

cubic. Compare Fig. A2-1 with Figs. 2-7 and 2-16.

Further information on the rhombohedral-hexagonal relationship and on
unit cell transformations in general may be obtained from the International

Tablesjor X-Ray Crystallography (1952), Vol. 1, pp. 15-21.
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WAVELENGTHS (IN ANGSTROMS) OF SOME CHARACTERISTIC
EMISSION LINES AND ABSORPTION EDGES

In averaging, A'ai is given twice the weight of A~e*2 .

464

(cont.)
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CHARACTERISTIC L LINES OF TUNGSTEN

The above wavelengths are based on those in Longueurs d'Onde des Emissions X
et des Discontinuity d'Absorption X by Y. Cauchois and H. Hulubei (Hermann,
Paris, 1947). The Cauchois-Hulubei values have been multiplied by 1.00202 X
10~ 3 to convert them from X units to angstroms. Values, in angstroms, for the

K lines and K absorption edge were kindly furnished by G. 1). Rieck prior to

publication in Vol. Ill of the International Tables for X-Ray Crystallography, and
are published here with the permission of the Editorial Commission of the Inter-

national Tables.
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MASS ABSORPTION COEFFICIENTS (|t/p) AND DENSITIES (p)

(coni.)
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(conf.)
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VALUES OF sin
2
9

(cont.)
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From The Interpretation of X-Ray Diffraction Photographs, by N. F. M. Henry,
H. Lipson, and W. A, Wooster (Macmillan, London, 1951).



APPENDIX 6

QUADRATIC FORMS OF MILLER INDICES

(cont.)
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APPENDIX 7

VALUES OF (sin 6)/X (A~')

(con*.)
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APPENDIX 8

ATOMIC SCATTERING FACTORS

(cont.)
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(cont.)
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From X-Ray Diffraction by Polycrystalline Materials, edited by H. S. Peiser,

H. P. Rooksby, and A. J. C. Wilson (The Institute of Physics, London, 1955).
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MULTIPLICITY FACTORS FOR POWDER PHOTOGRAPHS

Cubic: hkl hhl Okl Okk hhh 001

48* 24 24* 12 8 ~6~

Hexagonal and hk-l hh-l Ok-l hk-0 hh-0 Ok-0 00-1

Rhombohedral: 04* 19* 12* 12* 6 6 2

Tetragonal: hkl hhl Okl hkO hhO OkO 001

16* 8 8 8* 4 4 2

Orthorhombic: hkl Okl hOl hkO hOO OkO 0018444222
Monodinic: hkl hOl OkO

T T IT

Triclinic: hkl

~2

* These are the usual multiplicity factors. In some crystals, planes having these

indices comprise two forms with the same spacing but different structure factor,

and the multiplicity factor for each form is half the value given above. In the

cubic system, for example, there are some crystals in which permutations of the

indices (hkl) produce planes which are not structurally equivalent; in such crys-

tals (AuBe, discussed in Sec. 2-7, is an example), the plane (123), for example,

belongs to one form and has a certain structure factor, while the plane (321) be-

longs to another form and has a different structure factor. There are ~^-
= 24

planes in the first form and 24 planes in the second. This question is discussed

more fully by Henry, Lipson, and Wooster: The Interpretation of X-Ray Diffraction

Photographs (MacMillan).

477



APPENDIX 10

LORENTZ-POLARIZATION FACTOR
/l + cos

2 29\

\ sin
2
6 cos 6 /

(cont.)
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From The Interpretation of X-Ray Diffraction Photographs, by N. F. M. Henry,
H. Lipson, and W. A. Wooster (Macmillan, London, 1951).



APPENDIX 11

PHYSICAL CONSTANTS

Charge on the electron (e)
= 4.80 X 10~~

10
esu

Mass of electron (m) = 9.11 X 10~28 gm

Mass of neutron = 1.67 X 10~24 gm

Velocity of light (c)
= 3.00 X 10

10
cm/sec

Planck's constant (h)
= 6.62 X 10~27 erg -sec

Boltzmann's constant (k)
= 1.38 X 10~16

erg/A

Avogadro's number (JV)
= 6.02 X 10

23
per mol

Gas constant (R) = 1.99 cal/A/mol

1 electron volt = 1.602 X 10~~
12

erg

1 cal = 4.182 X 10
7
ergs

1 kX = 1.00202A
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INTERNATIONAL ATOMIC WEIGHTS, 1953

* A bracketed value is the mass number of the isotope of longest known half-life.

t Because of natural variations in the relative abundance of its isotopes, the
atomic weight of sulfur has a range of 0.003.
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CRYSTAL STRUCTURE DATA

(N.B. The symbols Al, Bl, etc., in this Appendix are those used in Strukturbericht

to designate certain common structural types.)

TABLE A13-1 THE ELEMENTS

(cont.)

*
Ordinary form of an element that exists (or is thought to exist) in more than

one form.
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(cont.)

*
Ordinary form of an element that exists (or is thought to exist) in more than

one form.
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*
Ordinary form of an element that exists (or is thought to exist) in more than

one form.

From Structure of Metals, 2nd edition, by Charles S. Barrett (McGraw-Hill Book

Company, Inc., New York, 1952).
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TABLE A13-2. SOME COMPOUNDS AND SOLID SOLUTIONS
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APPENDIX 14

ELECTRON AND NEUTRON DIFFRACTION

A14-1 Introduction. Just as a beam of x-rays has a dual wave-particle

character so, inversely, does a stream of particles have certain properties

peculiar to wave motion. In particular, such a stream of particles can be

diffracted by a periodic arrangement of scattering centers. This was first

predicted theoretically by de Broglie in 1924 and demonstrated experimen-

tally by Davisson and Germer in 1927 (for electrons) and by Von Halban

and Preiswerk in 1936 (for neutrons).

If a stream of particles can behave like wave motion, it must have a

wavelength associated with it. The theory of wave mechanics indicates

that this wavelength is given by the ratio of Planck's constant h to the

momentum of the particle, or

h
\ = >

(1)
mv

where m is the mass and v the velocity of the particle. If a stream of parti-

cles is directed at a crystal under the proper conditions, diffraction will

occur in accordance with the Bragg law just as for x-rays, and the direc-

tions of diffraction can be predicted by the use of that law and the wave-

length calculated from Eq. (1). Both electrons and neutrons have proved

to be useful particles for the study of crystalline structure by diffraction

and numerous applications of these techniques have been found in metal-

lurgy. The differences between x-ray, electron, and neutron diffraction by

crystals are such that these three techniques supplement one another to a

remarkable degree, each giving a particular kind of information which the

others are incapable of supplying.

A14-2 Electron diffraction. A stream of fast electronsjg^btjdned. jn a

tubgjopgrating^ on muchj/hg same^rmcipl^s as an x-ray tube. Thej5!&ve-

iength associated with the electrons depends on the a^pjifijj.xo[tage t since

the kinetic energy of the electrons is given by

2m^J=j!^ (2)

where e is the charge on the electron and D the applied voltage (in esu).

Combination of Eqs. (1) and (2) shows the inverse relation between wave-

length and voltage:

/ISO

\~F
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where X is in angstroms and the applied voltage V is in volts. This equa-

tion requires small relativistic corrections at high voltages, due to the varia-

tion of electron mass with velocity. At an operating voltage of 50,000 volts,

the electron wavelength is about 0.05A, or considerably shorter than the

wavelength of x-rays used in diffraction.

The important fact to note about electrons is that they are much less

penetrating than x-rays. They are easily absorbed by air, which means

that the specimen and the photographic plate on which the diffraction pat-

tern is recorded must both be enclosed within the evacuated tube in which

the electron beam is produced. An electron-diffraction "camera" therefore

contains source, specimen, and detector all in one apparatus. Another re-

sult is that transmission patterns can be made only of specimens so thin as

to be classified as foils or films, and reflection patterns will be representative

only of a thin surface layer of the specimen, since diffraction occurs over

a depth of only a few hundred angstroms or less. But even these thin

layers of material will give good electron-diffraction patterns, since elec-

trons are scattered much more intensely than x-rays.

These characteristics of electron diffraction give it a particular advantage

over x-ray diffraction when it is a question of investigating the structure

of thin films, foils, and the like. Electron diffraction has been successfully

used to study the structures of metal foils, electrodeposits, oxide films on

metal, surface layers due to polishing, and metal films deposited by evapo-

ration.

A14-3 Neutron diffraction. By making a small opening in the wall of

a chain-reacting pile, a beam of neutrons can be obtained. The neutrons

in such a beam have kinetic energies extending over a considerable range,

but a "monochromatic" beam, i.e., a beam composed of neutrons with a

single energy, can be obtained by diffraction from a single crystal and this

diffracted beam can be used in diffraction experiments. If E is the kinetic

energy of the neutrons, then

E = imv
2

, (3)

where m is the mass of the neutron (1.67 X 10~24 gm) and v is its velocity.

Combination of Eqs. (1) and (3) gives the wavelength of the neutron beam:

X =-_ (4)

The neutrons issuing from a pile have their kinetic energies distributed in

much the same way as those of gas molecules in thermal equilibrium; i.e.,

they follow the Maxwell distribution law. The largest fraction of these

so-called "thermal neutrons" therefore has kinetic energy equal to kT,

where k is Boltzmann's constant and T the absolute temperature. If this
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fraction is selected by the monochromating crystal, then we can insert

E = kT in Eq. (4) and find

X =

T is of the order of 300 to 400 A, which means that X is about 1 or 2A, i.e.,

of the same order of magnitude as x-ray wavelengths. Diffraction experi-

ments are performed with a neutron diffractometer, in which the intensity

of the beam diffracted by the specimen is measured with a proportional

counter filled with BF3 gas.

The main difference between neutron diffraction on the one hand and

x-ray and electron diffraction on the other lies in the variation of atomic

scattering power* with atomic number Z and with scattering angle 26.

The scattering power of an atom increases as Z increases and decreases as

20 increases, both for x-rays and for electrons, although not in exactly the

same manner. Neutrons, however, are scattered with the same intensity

at all scattering angles and with a fine disregard for atomic number; in

other words, there is no regular variation between scattering power for

neutrons and the atomic number of the scatterer. Elements with almost

the same values of Z may have quite different neutron-scattering powers

and elements with widely separated values of Z may scatter neutrons

equally well. Furthermore, some light elements scatter neutrons more

intensely than some heavy elements. The following valuesf illustrate how

irregularly the scattering power for neutrons varies with atomic number:

Element

~~H
C
Al

Fe
Co
Ni

Cu
W
U

It follows that structure analyses can be carried out with neutron diffrac-

tion that are impossible, or possible only with great difficulty, with x-ray

* This term is here used as a loose designation for the effectiveness of an atom

in coherently scattering incident radiation or particles. The "atomic scattering

power" for x-rays is evidently proportional to f
2

,
the square of the atomic scatter-

ing factor.

f Largely from Experimental Nuclear Physics, Vol. 2. Edited by E.

(John Wiley & Sons, Inc., New York, 1953.)
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or electron diffraction. In a compound of hydrogen or carbon, for example,
with a heavy metal, x-rays will not "see" the light hydrogen or carbon
atom because of its relatively low scattering power, whereas its position in

the lattice can be determined with ease by neutron diffraction. Neutrons
can also distinguish in many cases between elements differing by only one

atomic number, elements which scatter x-rays with almost equal intensity;
neutron diffraction, for example, shows strong superlattice lines from or-

dered FeCo, whereas with x-rays they are practically invisible. Neutron
diffraction therefore complements x-ray diffraction in a very useful way,
and the only obstacle to its more widespread application would seem to be

the very small number of high-intensity neutron sources available for gen-
eral use.



APPENDIX 15

THE RECIPROCAL LATTICE

A15-1 Introduction. All the diffraction phenomena described in this

book have been discussed in terms of the Bragg law. This simple law,

admirable for its very simplicity, is in fact applicable to a very wide range

of phenomena and is all that is needed for an understanding of a great

many applications of x-ray diffraction. Yet there are diffraction effects

which the Bragg law is totally unable to explain, notably those involving

diffuse scattering at non-Bragg angles, and these effects demand a more

general theory of diffraction for their explanation. The reciprocal lattice

provides the framework for such a theory. This powerful concept was

introduced into the field of diffraction by the German physicist Ewald in

1921 and has since become an indispensable tool in the solution of many

problems.

Although the reciprocal lattice may at first appear rather abstract or

artificial, the time spent in grasping its essential features is time well spent,

because the reciprocal-lattice theory of diffraction, being general, is ap-

plicable to all diffraction phenomena from the simplest to the most intri-

cate. Familiarity with the reciprocal lattice will therefore not only provide

the student with the necessary key to complex diffraction effects but will

deepen his understanding of even the simplest.

A15-2 Vector multiplication. Since the reciprocal lattice is best for-

mulated in terms of vectors, we shall first review a few theorems of vector

algebra, namely, those involving the multiplication of vector quantities.

The scalar product (or dot product) of two vectors* a and b, written

a-b, is a scalar quantity equal in magnitude to the product of the absolute

values of the two vectors and the cosine of the angle a between them, or

a-b = ab cos a.

Geometrically, Fig. A15-1 shows that the scalar product of two vectors

may be regarded as the product of the length of one vector and the projec-

tion of the other upon the first. If one of the vectors, say a, is a unit vector

(a vector of unit length), then a-b gives immediately the length of the pro-

jection of b on a. The scalar product of sums or differences of vectors is

formed simply by term-by-term multiplication:

(a + b)-(c
-

d) - (a-c)
-

(a-d) + (b-c)
-

(b-d).

* Bold-face symbols stand for vectors. The same symbol in italic stands for

the absolute value of the vector.

490
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a x b

v

FIG. At 5-1.

vectors.

Scalar product of two FIG. A15-2. Vector product of two

vectors.

The order of multiplication is of no importance; i.e.,

a b = b a.

The rector product (or cross product) of two vectors a and b, written

a X b, is a vector c at right angles to the plane of a and b, and equal in mag-

nitude to the product of the absolute values of the two vectors and the

sine of the angle a between them, or

c = a X b,

c ab sin a.

The magnitude of c is simply the area of the parallelogram constructed

on a and b, as suggested by Fig. A15-2. The direction of c is that in which

a right-hand screw would move if rotated in such a way as to bring a into b.

It follows from this that the direction of the vector product c is reversed if

the order of multiplication is reversed, or that

a X b = -(b X a).

A16-3 The reciprocal lattice. Corresponding to any crystal lattice, we

can construct a reciprocal lattice, so called because many of its properties

are reciprocal to those of the crystal lattice. Let the crystal lattice have a

unit cell defined by the vectors ai, a2 ,
and a3 . Then the corresponding re-

ciprocal lattice has a unit cell defined by the vectors bi, b2 ,
and ba ,

where

bi =-(a2 Xa3), (1)

b2
= - (a3 X

ba =
i Xa2 ),

(2)

(3)

and V is the volume of the crystal unit cell. This way of defining the vec-

tors bi, b2 ,
b3 in terms of the vectors a 1? a2 ,

a3 gives the reciprocal lattice

certain useful properties which we will now investigate.
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Ab;

FIG. A15-3. Location of the reciprocal-lattice axis b 3 .

Consider the general triclinic unit cell shown in Fig. A 15-3. The recip-

rocal-lattice axis b3 is, according to Eq. (3), normal to the plane of ai and
a2 ,

as shown. Its length is given by

|ai X a2 |

V

(area of parallelogram OACB)

(area of parallelogram OA CB) (height of cell)

1

OP

1

since OF, the projection of a3 on b3 ,
is equal to the height of the cell, which

in turn is simply the spacing d of the (001) planes of the crystal lattice.

Similarly, we find that the reciprocal lattice axes bi and b2 are normal to

the (100) and (010) planes, respectively, of the crystal lattice, and are equal
in length to the reciprocals of the spacings of these planes.

By extension, similar relations are found for all the planes of the crystal

lattice. The w^hole reciprocal lattice is built up by repeated translations

of the unit cell by the vectors bi, b2 ,
b3 . This produces an array of points

each of which is labeled writh its coordinates in terms of the basic vectors.

Thus, the point at the end of the bi vector is labeled 100, that at the end of

the b2 vector 010, etc. This extended reciprocal lattice has the following

properties :

(1) A vector H/^ drawn from the origin of the reciprocal lattice to any

point in it having coordinates hkl is perpendicular to the plane in the crys-

tal lattice whose Miller indices are hkl. This vector is given in terms of its

coordinates by the expression

(2) The length of the vector

d of the (hkl) planes, or

i + kb2 -f Ib3 .

is equal to the reciprocal of the spacing

1
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0.25A- 1

493

1A
I <

(010)

020 220

(110)

v(210)

(100)

,200

crystal lattice reciprocal lattice

FIG. A15-4. The reciprocal lattice of a cubic crystal which has ai = 4A. The
axes as and bs are normal to the drawing.

The important thing to note about these relations is that the reciprocal-

lattice array of points completely describes the crystal, in the sense that

each reciprocal-lattice point is related to a set of planes in the crystal and

represents the orientation and spacing of that set of planes.

Before proving these general relations, we might consider particular

examples of the reciprocal lattice as shown in Figs. A15-4 and A15-5 for

cubic and hexagonal crystals. In each case, the reciprocal lattice is drawn

from any convenient origin, not necessarily that of the crystal lattice, and

to any convenient scale of reciprocal angstroms. Note that Eqs. (1)

through (3) take on a very simple form for any crystal whose unit cell is

0.25A- 1

1A

020

(100)

crystal lattice

220reciprocal lattice

FIG. A15-5. The reciprocal lattice of a hexagonal crystal which has ai = 4A.

(Here the three-symbol system of plane indexing is used and as is the axis usually

designated c.) The axes as and ba are normal to the drawing.
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based on mutually perpendicular vectors, i.e., cubic, tetragonal, or ortho-

rhombic. For such crystals, b 1? b2 ,
and b3 are parallel, respectively, to

EI, a2 ,
and a3 ,

while 61, 62 ,
and 63 are simply the reciprocals of ai, a2 ,

and

a3 . In Figs. A15-4 and A15-5, four cells of the reciprocal lattice are shown,

together with two H vectors in each case. By means of the scales shown,
it may be verified that each H vector is equal in length to the reciprocal of

the spacing of the corresponding planes and normal to them. Note that

reciprocal lattice points such as n/i, nk, nl, where n is an integer, correspond

to planes parallel to (hkl) and having 1/n their spacing. Thus, H220 is

perpendicular to (220) planes and therefore parallel to HH O ,
since (110)

and (220) are parallel, but H220 is twice as long as HH O since the (220)

planes have half the spacing of the (110) planes.

Other useful relations between the crystal and reciprocal vectors follow

from Eqs. (1) through (3). Since b3 ,
for example, is normal to both ai and

a2 ,
its dot product with either one of these vectors is zero, or

b3 -ai = b3 -a2 = 0.

The dot product of b3 and a3 , however, is unity, since (see Fig. A15-3)

b3 -a3 = (63 ) (projection of a3 on b3 )

= (^)(OP)

In general,

= 1.

am -bn =
1, if m

=
0, if m n.

(4)

(5)

The fact that H/^ is normal to (hkl) and Hhki is the reciprocal of

may be proved as follows. Let ABC of Fig. A15-6 be part of the plane
nearest the origin in the set (hkl).

Then, from the definition of Miller

indices, the vectors from the origin

to the points A, 5, and C are ai/A,

a2/fc, and a3 /Z, respectively. Con-

sider the vector AB, that is, a vector

drawn from A to B, lying in the

plane (hkl). Since

H

then

+ AB = .

k

FIG. A15-6. Relation between re-

ciprocal-lattice vector H and cry&tal

plane (hkl).
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Forming the dot product of H and AB, we have

H AB =
(fcbi + fcb2 + ft>3) (

- V
\k h/

Evaluating this with the aid of Eqs. (4) and (5), we find

H-AB = 1-1=0.

Since this product is zero, H must be normal to AB. Similarly, it may be

shown that H is normal to AC. Since H is normal to two vectors in the

plane (hkl), it is normal to the plane itself.

To prove the reciprocal relation between H and d, let n be a unit vector

in the direction of H, i.e., normal to (hkl). Then

d = ON = - n.
h

But
H

n =
H

Therefore
EI H

d ==

h H

h H
1

~
#'

Used purely as a geometrical tool, the reciprocal lattice is of considerable

help in the solution of many problems in crystal geometry. Consider, for

example, the relation between the planes of a zone and the axis of that zone.

Since the planes of a zone are all parallel to one line, the zone axis, their nor-

mals must be coplanar. This means that planes of a zone are represented,

in the reciprocal lattice, by a set of points lying on a plane passing through
the origin of the reciprocal lattice. If the plane (hkl) belongs to the zone

whose axis is [uvw], then the normal to (hkl), namely, H, must be perpen-

dicular to [uvw]. Express the zone axis as a vector in the crystal lattice

and H as a vector in the reciprocal lattice:

Zone axis = UBL\ + va.% +
H = hbi + kb2 + fl>3 .

If these two vectors are perpendicular, their dot product must be zero:

va2 + wa3) (hbi + fcb2 + ft>3)
=

0,

hu + kv + Iw - 0.
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This is the relation given without proof in Sec. 2-6. By similar use of

reciprocal-lattice vectors, other problems of crystal geometry, such as the

derivation of the plane-spacing equations given in Appendix 1, may be

greatly simplified.

A15-4 Diffraction and the reciprocal lattice. The great utility of the

reciprocal lattice, however, lies in its connection with diffraction problems.

We shall consider how x-rays scattered by the atom at the origin of the

crystal lattice (Fig. A15-7) are affected by those scattered by any other

atom A whose coordinates with respect to the origin are pai, ga2 and ra3 ,

where p, q, and r are integers. Thus,

OA = pai + q&2 + 3 .

Let the incident x-rays have a wavelength X, and let the incident and dif-

fracted beams be represented by the unit vectors S and S, respectively.

S
, S, and OA are, in general, not coplanar.

To determine the conditions under which diffraction will occur, we must

determine the phase difference between the rays scattered by the atoms

and A. The lines On and Ov in Fig. A 15-7 are wave fronts perpendicular

to the incident beam S and the diffracted beam S, respectively. Let 6

be the path difference for rays scattered by and A. Then

5 = uA + Av

= Om + On

= S OA+ (-S)-OA

= -OA (S- S ).

- S )

(S
- S )

FIG. A15-7. X-ray scattering by atoms at and A. (After Guinier, X-Ray

Crystdlographic Technology, Hiiger & Watts, Ltd., London, 1952.)
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The corresponding phase difference is given by

497

(6)

Diffraction is now related to the reciprocal lattice by expressing the vector

(S S )/X as a vector in that lattice. Let

S-Sn
kb2

This is now in the form of a vector in reciprocal space but, at this point, no

particular significance is attached to the parameters A, fc, and I. They are

continuously variable and may assume any values, integral or nonintegral.

Equation (6) now becomes

fcb2 + Zb3 ) ra3) = -2ir(hp + kq + Ir).

A diffracted beam will be formed only if reinforcement occurs, and this

requires that <t> be an integral multiple of 2?r. This can happen only if h, fc,

and I are integers. Therefore the condition for diffraction is that the vector

(S SQ)/X end on a point in the reciprocal lattice, or that

S-S
= H = + fcb2 + n>3 (7)

where h, &, and I are now restricted to integral values.

Both the Laue equations and the Bragg law can 'be derived from Eq. (7).

The former are obtained by forming the dot product of each side of the

equation and the three crystal-lattice vectors EI, a2 , as successively. For

example,

or

Similarly,

EI (S
- S )

= h\.

a2 -(S - S )
=

fcX,

aa-(S - S )
* ZX.

(8)

(9)

(10)
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Equations (8) through (10) are the vector form of the equations derived

in 1912 to express the necessary conditions far diffraction._
They mustHbe satisfied simultaneously for diffraction to occur.

As shown in Fig. A15-7, the vector (S S ) bisects the angle between

the incident beam S and the diffracted beam S. The diffracted beam S

can therefore be considered as being

reflected from a set of planes perpen-

dicular to (S
- S ). In fact, Eq. (7)

states that (S S ) is parallel to

H, which is in turn perpendicular to

the planes (hkl). Let 6 be the angle

between S (or So) and these planes.

Then, since S and Sp are

sphere of

reflection

FIG. A15-8. The Ewald construc-

tion. Section through the sphere of

reflection containing the incident and

diffracted beam vectors.

(S
- S )

- 2 sin 0.

Therefore

2 sin S - S
= H =

or

X = 2d sin 6.

The conditions for diffraction expressed by Eq. (7) may be represented

graphically by the "Ewald construction" shown in Fig. A15-8. The vec-

tor S /X is drawn parallel to the incident beam and 1/X in length. The ter-

minal point of this vector is taken as the origin of the reciprocal lattice,

drawn to the same scale as the vector S /X. A sphere of radius 1/X is

drawn about C, the initial point of the incident-beam vector. Then the

condition for diffraction from the (hkl) planes is that the point hkl in the

reciprocal lattice (point P in Fig. A15-8) touch the surface of the sphere,

and the direction of the diffracted-beam vector S/X is found by joining C
to P. When this condition is fulfilled, the vector OP equals both HAH
and (S So)/X, thus satisfying Eq. (7). Since diffraction depends on a

reciprocal-lattice point's touching the surface of the sphere drawn about

C, this sphere is known as the "sphere of reflection.
"

Our initial assumption that p, g, and r are integers apparently excludes

all crystals except those having only one atom per cell, located at the cell

corners. For if the unit cell contains more than one atom, then the vector

OA from the origin to "any atom" in the crystal may have nonintegral

coordinates. However, the presence of these additional atoms in the unit

cell affects only the intensities of the diffracted beams, not their directions,

and it is only the diffraction directions which are predicted by the Ewald
construction. Stated in another way, the reciprocal lattice depends only

on the shape and size of the unit cell of the crystal lattice and not at all
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on the arrangement of atoms within that cell. If we wish to take atom

arrangement into consideration, we may weight each reciprocal-lattice

point hkl with the appropriate value of the scattering power (= |F|
2

,

where F is the structure factor) of the particular (hkl) planes involved.

Some planes may then have zero scattering power, thus eliminating some

reciprocal-lattice points from consideration, e.g., all reciprocal-lattice points

having odd values of (h + k + I) for body-'centered crystals.

The common methods of x-ray diffraction are differentiated by the

methods used for bringing reciprocal-lattice points into contact with the

surface of the sphere of reflection. The radius of the sphere may be varied

by varying the incident wavelength (Laue method), or the position of the

reciprocal lattice may be varied by changes in the orientation of the crystal

(rotating-crystal and powder methods).

A15-6 The rotating-crystal method. As stated in Sec. 3-6, when mono-

chromatic radiation is incident on a single crystal rotated about one of its

axes, the reflected beams lie on the surface of imaginary cones coaxial with

the rotation axis. The way in which this reflection occurs may be shown

very nicely by the Ewald construction. Suppose a simple cubic crystal is

rotated about the axis [001]. This is equivalent to rotation of the recipro-

cal lattice about the bs axis. Figure A15-9 shows a portion of the recipro-

cal lattice oriented in this manner, together with the adjacent sphere of

reflection.

rotation axis

of crystal and

axis of film

rotation axis of

reciprocal lattice

sphere of

reflection

FIG. A15-9. Reciprocal-lattice treatment of rotating-crystal method.
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All crystal planes having indices (hkl) are represented by points lying

on a plane (called the "I = 1 layer") in the reciprocal lattice, normal to b3 .

When the reciprocal lattice rotates, this plane cuts the reflection sphere in

the small circle shown, and any points on the I = 1 layer which touch the

sphere surface must touch it on this circle. Therefore all diffracted-beam

vectors S/X must end on this circle, which is equivalent to saying that the

diffracted beams must lie on the surface of a cone. In this particular case,

all the hkl points shown intersect the surface of the sphere sometime dur-

ing their rotation about the b3 axis, producing the diffracted beams shown

in Fig. A15-9. In addition many hkO and hkl reflections would be pro-

duced, but these have been omitted from the drawing for the sake of clarity.

This simple example may suggest how the rotation photograph of a crys-

tal of unknown structure, and therefore having an unknown reciprocal lat-

tice, can yield clues as to the distribution in space of reciprocal-lattice

points. By taking a number of photographs with the crystal rotated suc-

cessively about various axes, the crystallographer gradually discovers the

complete distribution of reflecting points. Once the reciprocal lattice is

known, the crystal lattice is easily derived, because it is a corollary of Eqs.

(1) through (3) that the reciprocal of the reciprocal lattice is the crystal

lattice.

A15-6 The powder method. The random orientations of the individual

crystals in a powder specimen are equivalent to the rotation of a single

crystal about all possible axes during the x-ray exposure. The reciprocal

lattice therefore takes on all possible orientations relative to the incident

beam, but its origin remains fixed at the end of the So/X vector.

Consider any point hkl in the reciprocal lattice, initially at PI (Fig.

A15-10). This point can be brought into a reflecting position on the sur-

face of the reflection sphere by a rotation of the lattice about an axis through

and normal to OC, for example. Such a rotation would move PI to P2 .

But the point hkl can still remain on the surface of the sphere [i.e., reflec-

tion will still occur from the same set of planes (hkl)] if the reciprocal lat-

tice is then rotated about the axis OC, since the point hkl will then move

around the small circle P2P.3. During this motion, the H vector sweeps

out a cone whose apex is at 0, and the diffracted beams all lie on the surface

of another cone whose apex is at C. The axes of both cones coincide with

the incident beam.

The number of different hkl reflections obtained on a powder photograph

depends, in part, on the relative magnitudes of the wavelength and the

crystal-lattice parameters or, in reciprocal-lattice language, on the relative

sizes of the sphere of reflection and the reciprocal-lattice unit cell. To find

the number of reflections we may regard the reciprocal lattice as fixed

and the incident-beam vector S /X as rotating about its terminal point
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of

FIG. A15-10. Formation of a cone

of diffracted rays in the powder method .

FIG. A15-11. The limiting sphere
for the powder method.

through all possible positions. The reflection sphere therefore swings about

the origin of the reciprocal lattice and sweeps out a sphere of radius 2/X,

called the "limiting sphere" (Fig. A15-11). All reciprocal-lattice points

within the limiting sphere can touch the surface of the reflection sphere

and cause reflection to occur.

It is also a corollary of Eqs. (1) through (3) that the volume v of the

reciprocal-lattice unit cell is the reciprocal of the volume V of the crystal

unit cell. Since there is one reciprocal-lattice point per cell of the reciprocal

lattice, the number of reciprocal-lattice points within the limiting sphere is

given by
(47r/3)(2/X)

3 327TF
n = .

(11)
v 3)r

Not all of these n points will cause a separate reflection : some of them may
have a zero structure factor, and some may be at equal distances from the

reciprocal-lattice origin, i.e., correspond to planes of the same spacing.

(The latter effect is taken care of by the multiplicity factor, since this gives

the number of different planes in a form having the same spacing.) How-

ever, Eq. (11) may always be used directly to obtain an upper limit to the

number of possible reflections. For example, if V = 50A3 and X = 1.54A,

then n = 460, If the specimen belongs to the triclinic system, this num-

ber will be reduced by a factor of only 2, the multiplicity factor, and the

powder photograph will contain 230 separate diffraction lines! As the

symmetry of the crystal increases, so does the multiplicity factor and the

fraction of reciprocal-lattice points which have zero structure factor, re-

sulting in a decrease in the number of diffraction lines. For example, the

powder pattern of a diamond cubic crystal has only 5 lines, for the same

values of V and X assumed above.
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, 120 reflection

1410
reflection

A15-7 The Laue method. Diffraction occurs in the Laue method be-

cause of the continuous range of wavelengths present in the incident beam.

Stated alternatively, contact between a fixed reciprocal-lattice point and

the sphere of reflection is produced by continuously varying the radius of

the sphere. There is therefore a whole set of reflection spheres, not just

one; each has a different center, but all pass through the origin of the re-

ciprocal lattice. The range of wavelengths present in the incident beam is

of course not infinite. It has a sharp lower limit at XSWL, the short-wave-

length limit of the continuous spectrum ;
the upper limit is less definite but

is often taken as the wavelength of the K absorption edge of the silver in

the emulsion (0.48A), because the

effective photographic intensity of the

continuous spectrum drops abruptly

at that wavelength [see Fig. l-18(c)].

To these two extreme wavelengths

correspond two extreme reflection

spheres, as shown in Fig. A15-12,

which is a section through these

spheres and the / = layer of a recip-

rocal lattice. The incident beam is

along the bi vector, i.e., perpendicular

to the (M)0) planes of the crystal.

The larger sphere shown is centered

at B and has a radius equal to the

reciprocal of XSWL, while the smaller

sphere is centered at A and has a radius

equal to the reciprocal of the wave-

length of the silver K absorption edge.

There is a whole series of spheres lying between these two and centered

on the line segment AB. Therefore any reciprocal-lattice point lying in

the shaded region of the diagram is on the surface of one of these spheres

and corresponds to a set of crystal planes oriented to reflect one of the in-

cident wavelengths. In the forward direction, for example, a 120 reflection

will be produced. To find its direction, we locate a point C on AB which is

equidistant from the origin and the reciprocal-lattice point 120; C is

therefore the center of the reflection sphere passing through the point 120.

Joining C to 120 gives the diffracted-beam vector S/X for this reflection.

The direction of the 410 reflection, one of the many backward-reflected

beams, is found in similar fashion; here the reciprocal-lattice point in ques-

tion is situated on a reflection sphere centered at D.

There is another way of treating the Laue method which is more con-

venient for many purposes. The basic diffraction equation, Eq. (7), is

rewritten in the form

wipe

FIG.

treatment of the

(S
-

So)A = H.

\SWL

Al 5~12. Reciprocal-lattice

Laue method.
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(12)

Both sides of this equation are now dimensionless and the radius of the

sphere of reflection is simply unity, since S and S are unit vectors. But
the position of the reciprocal-lattice points is now dependent on the wave-

length used, since their distance from the origin of the reciprocal lattice

is now given by \H.

In the Laue method, each reciprocal-lattice point (except 0) is drawn

out into a line segment directed to the origin, because of the range of wave-

lengths present in the incident beam. The result is shown in Fig. A15-13,*
which is drawn to correspond to Fig. A15-12. The point nearest the origin

on each line segment has a value of \H corresponding to the' shortest wave-

length present, while the point on the other end has a value of \H corre-

sponding to the longest effective wavelength. Thus the 100 reciprocal-

lattice line extends from A to B, where OA = Xmm^ioo and OB = Amax#ioo-

Since the length of any line increases as H increases, for a given range of

wavelengths, overlapping occurs for the higher orders, as shown by 200,

300, 400, etc. The reflection sphere is drawn with unit radius, and reflec-

tion occurs whenever a reciprocal-lattice line intersects the sphere surface.

Graphically, the advantage of this construction over that of Fig. Alo-12

is that all diffracted beams are now drawn from the same point C, thus

facilitating the comparison of the diffraction angles 26 for different reflec-

tions.

This construction also shows why the diffracted beams from planes of a

zone are arranged on a cone in the Laue method. All reciprocal-lattice

lines representing the planes of one zone lie on a plane passing through

120 reflection

sphere of reflection

410

reflection

000

100
400

FIG. A15-13. Alternate reciprocal-lattice treatment of the Laue method.

S - So = XH.

* In this figure, as well as in Figs. A15-11 and A15-12, the size of the reciprocal

lattice, relative to the size of the reflection sphere, has been exaggerated for clarity.
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- sphere of reflection

FIG. A15-14. The effect of thermal vibration on the reciprocal lattice.

the origin of the reciprocal lattice. This plane cuts the reflection sphere in

a circle, and all the diffracted beam vectors S must end on this circle, thus

producing a conical array of diffracted beams, the axis of the cone coincid-

ing with the zone axis.

Another application of this construction to the problem of temperature-
diffuse scattering will illustrate the general utility of the reciprocal-lattice

method in treating diffuse scattering phenomena. The reciprocal lattice

of any crystal may be regarded as a distribution of "scattered intensity"
in reciprocal space, in the sense that a scattered beam will be produced
whenever the sphere of reflection intersects a point in reciprocal space
where the "scattered intensity" is not zero. If the crystal is perfect, the

scattered intensity is concentrated at points in reciprocal space, the points
of the reciprocal lattice, and is zero everywhere else. But if anything occurs

to disturb the regularity of the crystal lattice, then these points become
smeared out, and appreciable scattered intensity exists in regions of re-

ciprocal space where fe, fr, and / are nonintegral. For example, if the atoms
of the crystal are undergoing thermal vibration, then each point of the re-

ciprocal lattice spreads out into a region which may be considered, to a

first approximation, as roughly spherical in shape, as suggested by Fig.

A15-14(a). In other words, the thermally produced elastic waves which
run through the crystal lattice so disturb the regularity of the atomic

planes that the corresponding H vectors end, not on points, but in small

spherical regions. The scattered intensity is not distributed uniformly
within each region: it remains very high at the central point, where A, k,

and / are integral, but is very weak and diffuse in the surrounding volume,
as indicated in the drawing.
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What then will be the effect of

thermal agitation on, for example, a

transmission Laue pattern? If we
use the construction of Fig. A 15-13,

i.e., if we make distances in the recip-

rocal lattice equal to \H, then each

spherical volume in the reciprocal

lattice will be drawn out into a rod,

roughly cylindrical in shape and di-

rected to the origin, as indicated in

Fig. A15-14(b), which is a section

through the reflection sphere and one

such rod. The axis of each rod is a

line of high intensity and this is sur-

rounded by a low-intensity region.

This line intersects the reflection

sphere at a and produces the strong

diffracted beam A, the ordinary Laue

reflection. But on either side of A
there are weak scattered rays, extend-

ing from B to C, due to the intersec-

tion, extending from b to c, of the diffuse part of the rod with the sphere

of reflection. In a direction normal to the drawing, however, the diffuse

rod intersects the sphere in an arc equal only to the rod diameter, which

is much shorter than the arc be. We are thus led to expect, on a film placed
in the transmission position, a weak and diffuse streak running radially

through the usual sharp, intense Laue spot.

Figure A15-15 shows an example of this phenomenon, often called

thermal asterism because of the radial direction of the diffuse streaks.

This photograph was obtained from aluminum at 280C iri 5 minutes.

Actually, thermal agitation is quite pronounced in aluminum even at room

temperature, and thermal asterism is usually evident in overexposed room-

temperature photographs. Even in Fig. 3-6(a), which was given a normal

exposure of about 15 minutes, radial streaks are faintly visible. In this

latter photograph, there is a streak near the center which does not pass

through any Laue spot : it is due to a reciprocal-lattice rod so nearly tangent
to the reflection sphere that the latter intersects only the diffuse part of

the rod and not its axis.

FIG. A15-15. Transmission Laue

pattern showing thermal asterism.

Aluminum crystal, 280C, 5 min ex-

posure.



ANSWERS TO SELECTED PROBLEMS

CHAPTER 1

1-1. 4.22 X lOlrtsec-
1

,
2.79 X 10~8

erg; 1.95 X 1&* sec' 1

,
1.29 X 10~8

erg

1-5. 4 cmVgm 1-7. (a) 30.2 cm2
/gm, 3.88 X 10~2 cm" 1

1-9. 8980 volts

1-11. 1.54A 1-14. 0.000539 in., 0.55 1-16. 1000 watts, 20 ma 1-18.

3.28 to 1

CHAPTER 2

2-7. A section on (T210) will show this 2-11. Shear strain = 0.707

2-14. (a) 20S, 30W; (6) 27S, 48E; (r) 39S, 61 E 2-19. 42N, 26E;
19S, 45W;42S,63E

CHAPTER 3

3-1. 8.929 gm/cm
3 3-3. 63.5

3-5. t B SB
1000A 0.11 10 0.31

750 0.14 45 0.43

500 0.22 80 1.76

250 0.43

CHAPTER 4

4-3. F2 = for mixed indices; F2 = for (h + k + I) an odd multiple of 2;

F* =
64/r

2
for (h + k + /) an even multiple of 2; F~ - 32/r

2
for (h + k + I) odd.

4-5.

h + 2k / F2

3n 2p + } (as 1, 3, 5, 7 . . .)

3n 8p(as8, 10,24 . . .) 4(fZn + fs)
2

3n 4(2/> + 1) (as 4, 12, 20, 2S . . .) 4(fZn
-

/s)
2

3n 2(2p + 1) (as 2, (5, 10, 14 . . .) 4(/Zn
2 + /s

2
)

3n 1 8p 1 (as 1, 7, 9, 15, 17 . . .) 3(/Zn
2 + /s

2 -
3n db 1 4(2p + 1) d= 1 (as 3, 5, 11, 13, 19, 21 . . .) 3(fZn

2 + fs
2 +

3nl 8;; (/Zn-f/s)
2

3n db 1 4(2p + 1) (/2n
-

fs)
2

3nl 2(2p + l) (/zn
2 +/s

2

)

n and p are any integers, including zero.

4-8. Line hkl Gale. Int.

1 110 10.0

2 200 17
3 211 3.3

4 220 1.1

4-10. Ill and 200. The ratio is 2100 to 1.
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CHAPTER 5

6-1. 0.67 cm for (111); 0.77 cm for (200) 5-3. (a) Third, fourth and fifth;

(6) third and fourth.

CHAPTER 6

6-1. 38 minutes

6-3. 6 AS A20

6-5. (a) 144; (b) 67; (c) 12.3 cm 6-7. 1.58 to 1

CHAPTER 7

7-1. 0.44 7-4. (a) 1.14 (Co) to 1 (Ni); (6) 10.5

CHAPTER 8

8-1. 8N, 23E; 74S, 90E; 16S, 64W 8-3. 26 about beam axis, clock-

wise, looking from crystal to x-ray source; 3 about EW, clockwise, looking from

E to W; 9 about NS, counterclockwise, looking from N to S 8-6. Habit

plane is
j 100} . 26N, 14W; 14S, 69E; 60S, 46W.

CHAPTER 9

9-1. 45,000 psi 9-3. Diffractometer 9-5. (6) 0.11, 0.18, 0.28, and 0.43,

listed in the order in which the incident beam traverses the layers

CHAPTER 10

10-1. Ill, 200, 220, 311, 222, 400, 331, 420, 422, and 511 (333); a = 4.05A

10-4. 100, 002, 101, 102, 110 10-6. Ill, 220, 311, 400, 331, 422, 511 (333),

440. Diamond cubic; a = 5.4A; silicon. 10-8. 100, 002, 101, 102, 110, 103,

200, 112. Hexagonal close-packed; a = 3.2A, c = 5.2A; magnesium.

CHAPTER 11

11-1. =bl.7C 11-3. 4.997A 11-5. Near 6 = 30

CHAPTER 12

12-1. 0.0002A

CHAPTER 13

13-2. 0.0015
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CHAPTER 14

14-1. BaS 14-3. Mixture of Ni and NiO 14-5. 12.5 volume percent

austenite

CHAPTER 15

16-1. (a) A20 = 1.75 (mica), 1.20 (LiF), 0.81 (NaCl). Mica and LiF ade-

quate, NaCi inadequate, (6) A20 =1.41 (mica), 1.05 (LiF), 0.75 (NaCl).
Mica and LiF adequate, NaCl inadequate. 16-3. 0.0020 in.

CHAPTER 16

16-1. 2.20 mg/cm 2 16-3. 0.00147 in.

CHAPTER 17

17-1. dblSOOpsi
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Absorption of x-rays, 10

Absorption analysis (see Chemical anal-

ysis by absorption)

Absorption coefficients, 10, 11

table, 466

Absorption edges, table, 464

Absorption factor, Debye-Scherrer, 129

diffractometer, 189

for reflection from flat plate, 189

for transmission through flat plate,

287

ALEXANDER, LEROY E., 455

ALLISON, SAMUEL K., 456

Annealing texture, 273

Annealing twins, 55

Applied Research Laboratories, 410, 418

Asterism, 246

thermal, 505

ASP, E. T., 285

A.S.T.M., diffraction data cards, 379

grain size number, 260

Atomic scattering factor, 109

change near an absorption edge, 373

table, 474

Atomic weights, table, 481

Atom sizes, 52

AuBe structure, 49

AuCu, ordering in, 370

AuCus, ordering in, 363

Austenite determination, 391

Automatic spectrometers, 417

Background radiation, powder method,
166

Back-reflection focusing camera, 160

errors, 333

Back-reflection Laue camera, 140

Back-reflection Laue method, 90

for crystal orientation, 215

Back-reflection pinhole camera, 163

errors, 333

semifocusing, 443

Balanced filters, 211

BARRETT, CHARLES S., 454

Body-centered cubic structure, 43

BRAGG, W. H., 8, 79, 177

BRAGG, W. L., 79, 82, 177, 297, 456

Bragg law, 82, 84

BRAVAIS, M. A., 31

Bravais lattice, 31

table, 31

Broad lines, measurement of, 447

BUERGER, M. J., 456

BUNN, C. W., 309

Bunn chart, 309

Caesium chloride structure, 47

Calibration method (for lattice param-

eters), 342

Cell distortion, effect on powder pat-

tern, 314

Characteristic radiation, 6

wavelength table, 464

Chemical analysis by absorption, 423

absorption-edge method, 424

direct method, monochromatic, 427

polychromatic, 429

Chemical analysis by diffraction, 378

qualitative, 379

quantitative, 388

direct comparison method, 391

internal standard method, 396

single line method, 389

Chemical analysis by fluorescence, 402

automatic, 417

counters, 414

intensity and resolution, 411

nondispersive, 419

qualitative, 414

quantitative, 415

spectrometers, 407

wavelength range, 406

Chemical analysis by parameter meas-

urement, 388
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Choice of radiation, 165

CLARK, GEORGE L., 455

Clustering, 375

Coating thickness, 421

COCHRAN, W., 456

COHEN, M. U., 338

Cohen's method, 338

for cubic substances, 339

for noncubic substances, 342

Coherent scattering, 105, 111

Cold work, 263

Collimators, 144, 152

Complex exponential functions, 115

COMPTON, ARTHUR H., 107, 456

Compton effect, 107

Compton modified radiation, 108, 111

Conservation of diffracted energy, 131

Continuous spectrum, 4

COOLIDGE, W. D., 17

Coordination number, 53

COSTER, D., 404

Counters, Geiger, 193

proportional, 190

scintillation, 201

Counting-rate meter (see Ratemeter)

Crystal monochromators, reflection, 168

transmission, 171

use with diffractometer, 211

Crystal perfection, 100, 263

Crystal rotation during slip, 243

Crystal setting, 240

Crystal shape, 54

Crystal structure, 42

of compounds, table, 485

of elements, table, 482

Crystal-structure determination, 297

example of, 320

Crystal systems, 30

table, 31

CsCl structure, 47

CuZn, ordering in, 369

DAVEY, W. P., 305

DEBYE, P., 149

Debye-Scherrer camera, 149

high-temperature, 156

Debye-Scherrer method, 94

errors, 326

Debye-Scherrer method (continued)

film loading, 154

intensity equation, 132

specimen preparation, 153

DECKER, B. F., 285

Defect structures, 317, 353

Deformation texture, 273

Deformation twins, 58

Densities, table, 466

Depth of x-ray penetration, 269

Detection, of superlattice lines, 372

of x-rays, 23

Diamond structure, 48

Diffracted energy, conservation of, 131

Diffraction, 79

Diffraction and reciprocal lattice, Laue

method, 502

powder method, 500

rotating-crystal method, 499

Diffraction lines, extraneous, 299

Diffraction methods, 89

Diffractometer, 96

absorption factor, 189

errors, 334

general features, 177

intensity calculations, 188, 389

optics, 184

specimen preparation, 182

use in determining crystal orienta-

tion, 237

Diffusion studies, by absorption meas-

urements, 428

by parameter measurements, 388

Disappearing-phase method, 354

Doublet, 7

Electromagnetic radiation, 1

Electron diffraction, 272, 486

Energy level calculations, 13

Errors, back-reflection focusing method,

333

Debye-Scherrer method, 326

diffractometer method, 334

pinhole method, 333

random, 332

in ratemeter measurements, 208

in sealer measurements, 204

systematic, 332
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EWALD, P. P., 490

Ewatd construction, 498

Excitation voltage, 7

Extinction, 399

Extrapolation functions, back-reflec-

tion focusing method, 333

Debye-Scherrer method, 329, 330

diffractometer method, 334

pinhole method, 330

Face-centered cubic structure, 43

Ferrite, 51

FeSi structure, 49

Fiber axis, 276

Fiber texture, 276

Film (see Photographic film)

Filters, 16

balanced (Ross), 211

table, 17

Fluorescent analysis (see Chemical anal-

ysis by fluorescence)

Fluorescent radiation, 12, 111

Fluorescent screens, 23

Focal spot, 22

Focusing cameras, 156

Form, 37, 41

Fourier series, 319

FOURNBT, GERARD, 456

FRIEDMAN, H., 177

Fundamental lines, 363

Geiger counter, 193, 414

counting losses, 197

efficiency, 200

quenching, 199

GEISLER, A. H., 293

General Electric Co., 179, 409

Goniometer, 143

Grain growth, 266

Grain size, 259

GRENINGER, A. B., 217

Greninger chart, 218

GUINIER, AN&ais, 455, 456

Habit plane, 256

HANAWALT, J. D., 379

Hanawalt method, 379

HARKER, D., 285

HENRY, N. F. M., 456

HEVESY, GEORQ VON, 404

Hexagonal close-packed structure, 43

Hexagonal-rhombohedral transforma-

tion, 462

High-temperature cameras, 156

HULL, A. W., 149, 305

Hull-Davey chart, 305

IBM diffraction data cards, 386

Incoherent scattering, 108, 111

Indexing powder patterns, cubic crys-

tals, 301

noncubic crystals, analytical, 311

graphical, 304

Indices, of directions, 37

of planes, 38

Integrated intensity, 124, 132, 175

measurement with sealer, 205

Integrating camera, 165, 294

Intensifying screens, 142

Intensities of powder pattern lines, in

Debye-Scherrer camera, 132

in diffractometer, 188, 389

Intensity calculations, CdTe, 320

copper, 133

ZnS (zinc blende), 134

Intensity measurements, photographic,

173

with Geiger counter, 193

with proportional counter, 190

with scintillation counter, 201

Internal stress (see Residual stress*)

Interplanar angles, cubic system, table,

72

equations, 460

Interstitial solid solutions, 51, 351

lonization chamber, 191

lonization devices, 25

JAMES, ty. W., 456

Keysort diffraction data cards, 385

KLUG, HAROLD P., 455

kX u" ;

t, 87

Lattice, 29

Lattice parameters, 30
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Lattice-parameter measurements, 324

with back-reflection focusing camera,
333

with Debye-Scherrer camera, 326

with diffractometer, 334

with pinhole camera, 333

LAUE, M. VON, 78, 367, 457

Laue cameras, back-reflection, 140

specimen holders, 143

transmission, 138

Laue equations, 497 \f
Laue method, 89, 502

back-reflection, 90, 215

diffraction spot shape, 146

experimental technique, 1 38

transmission, 89, 229

Least squares, method of, 335

Leonhardt chart, 231

Limiting sphere, 501

Line broadening, due to fine particle

size, 97-99, 262

due to nonuniform strain, 264

LIPSON, H., 456

Long-range order, 363

Long-range order parameter, 366

LONSDALE, KATHLEEN, 455

Lorentz factor, 124

Lorentz-polarization factor, 128

table, 478

when monochromator is used, 172

Low-temperature cameras, 156

Macrostrain, 431

Macrostress, 264, 447

Matrix absorption (in fluorescence), 415

Microabsorption, 399

Microphotometer, 174

Microstrain, 431

Microstress, 264, 447

MILLER, W. H., 38

Miller-Bravais indices, 40

Miller indices, 38

Monitors, 206

Monochromators (see Crystal mono-

chromators)

Mosaic structure, 100

MOSELEY, H. G. J., 402

Moseley's law, 8

Multiple excitation (in fluorescence),

416

Multiplicity factor, 124

table, 477

NaCl structure, 47

National Bureau of Standards, 386

Neutron diffraction, 375, 486, 487

Nondispersive analysis, 419

Nonprimitive cells, 33, 36

North America Philips Co., 179, 417

Optimum specimen thickness, 164

Order, long-range, 363

parameter, 366

short-range, 375

Order-disorder transformations, 363

in AuCu, 370

in AuCu3 ,
363

in CuZn, 369

Ordered solid solutions, 52, 363

Orientation of single crystals, 215

by back-reflection Laue method, 215

by diffractometer method, 237

by transmission Laue method, 229

Parametric method, 356

Particle size, 261

Particle-size broadening, 97-99, 262

PEISER, H. S., 455

Penetration depth (x-rays), 269

Phase diagrams, determination of, 345

Photoelectrons, 12, 111

Photographic film, 24

Photographic measurement of intensity,

173

Photomultiplier, 201

Physical constants, table, 480

Pinhole method, cameras, 163

conclusions from film inspection, 294

errors, 333

for parameter measurement, 333

under semifocdsing conditions, 443

for stress measurement, 441

for texture determination, 276, 280

Plane-spacing equations, table, 459

Plastic deformation, effect on Laue

photographs, 242
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Plastic deformation (continued)

effect on powder photographs, 263

Point lattice, 29

Polarization factor, 107

when monochromator is used, 172

Pole figure, 274

Polycrystalline aggregates, 259

crystal orientation, 272

crystal perfection, 263

crystal size, 259

Polygonization, 249, 266

Powder method, 93, 149, 500

Preferred orientation (see Texture)

Primitive cells, 33, 36

Principal stresses, 436

Proportional counters, 190, 414

Pulse-height analyzer, single-channel ,

193

Pulse-height discriminator, 192

Quadratic forms of Miller indices, tabk,

471

Quartz, determination in dust, 398

Radiography, 1

Random solid solution, 50, 352

x-ray scattering from, 367, 376

Ratemeter, 179, 206

calibration, 210

errors, 208

Rational indices, law of, 54

Reciprocal lattice, 454, 490

Recovery, 266

Recrystallization, 250, 266

Recrystallization texture, 273

Residual stress, 263, 431

in weldments, 432, 453

Resolving power, for plane spacings,

151, 159, 161

for wavelengths, 162, 411

Retained austenite determination, 391

Rhombohedral-hexagonal transforma-

tion, 462

Rock-salt structure, 47

ROENTGEN, W. C., 1

ROOKSBY, H. P., 455

Ross filters, 211

Rotating-crystal method, 92, 314, 499

Sealers, 179, 202

errors, 204

use in measuring integrated intensity,

205

Scattering (see X-ray scattering)

SCHERRER, P., 149

Scherrer formula, 99

SCHULZ, L. G., 290

Scintillation counter, 201, 414

Seemann-Bohlin camera, 157

Setting a crystal in a required orienta-

tion, 240

Short-range order, 375, 376

Short-wavelength limit, 5

SIEGBAHN, M., 9, 86

(sin 0)/X values, table, 472

sin2 B values, tabk, 469

Slip, 243

Slip plane, determination of indices, 254

Small-angle scattering, 263

Sodium chloride structure, 47

Solid solutions, defect, 317, 353

interstitial, 51, 351

ordered, 52, 363

substitutional, 51, 352

Seller slits, 185, 408

Space groups, 319

Specimen holders, for Laue method, 143

for texture determination, 286, 291

Specimen preparation, Debye-Scherrer

method, 153

diffractometer method, 182

Spectrometer, 85

automatic, 417

curved reflecting crystal, 409

curved transmitting crystal, 409

flat crystal, 407

Sphere of reflection, 498

SPROULL, WAYNE T., 456

Standard projections, 71, 73, 74

Stereographic projection, 60

Stereographic ruler, for back-reflection

Laue, 227

for transmission Laue, 235

Straumanis method, 154

Stress measurement, 431

applications, 451

biaxial, 436
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Stress measurement (continued)

calibration, 449

camera technique, 441

diffractometer technique, 444

focusing conditions, 442

uniaxial, 434

when lines are broad, 447

Structure factor, 116

of BCC element, 119

of FCC element, 119

of HCP element, 122

of NaCl, 121

of ZnS (zinc blende), 134

Substitutional solid solutions, 51, 352

Superlattice, 52, 363

Surface deposits, identification of, 387

Symmetry elements, 34

table, 35

TAYLOR, A., 456

Temperature-diffuse scattering, 131

Temperature factor, 130, 389, 395

Ternary systems, 359

Texture (preferred orientation), 272, 398

Texture determination, of sheet,

diffractometer method, 285

photographic method, 280

of wire, photographic method, 276

Thermal asterism, 505

Thermal vibration, 130

Thickness of specimen, optimum. 164

THOMSON, J. J., 105

Thomson equation, 107

Time constant, 207

Time width of slit, 210

TIPPEL, T. L., 455

Torsion, 244

Transmission Laue camera, 1 38

Transmission Laue method, 89

for crystal orientation, 229

Twinned crystals, 75

determination of composition plane,

250

Twins, annealing, 55

deformation, 58

Unit cell, 29

Unit-cell volume, equations, 460

Uranium structure, 46

Vector multiplication, 490

Vegard's law, 352

WALKER, CHRISTOPHER B., 456

WARREN, B. E., 262

Wavelengths, of absorption edges, table,

464

of characteristic lines, tofcfe, 464

WEVER, F., 274

Widmanstatten structure, 257

WILSON, A. J. C., 455

Wire texture, 276

WOOSTER, W. A., 456

Wulff net, 64

WYCKOPP, RALPH W. G., 458

X-rays, absorption of, 10

characteristic, 6

continuous, 4

depth of penetration of, 269

detection of, 23

fluorescent, 12, 111

production of, 17

safety precautions, 25

X-ray scattering, 12

by amorphous solids, 102

by an atom, 108

coherent, 105

Compton modified, 108

by an electron, 105

by gases and liquids, 102

incoherent, 108

by random solid solutions, 367

at small angles, 263

temperature-diffuse, 131

by a unit cell, 111

X-ray spectroscopy, 85

X-ray tubes, gas type, 21

hot-filament type, 17

rotating-anode type, 23

X unit, 87

YUDOWITCH, KENNETH L., 457

ZnS (zinc-blende) structure, 49

Zone, 41

Zone law, 41, 495














