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Multi-Structured Systems:
As Studied by SAXS/SANS

Prof. Greg Beaucage

Why use small-angle x-ray/neutron scattering?

*Compliment microscopy, diffraction, NMR, spectroscopy techniques.
«Statistical description of structure is needed, mean particle size.

*In situ measurements are needed. Especially for biological and chemical systems,
stop-flow or flow through experiments, processing studies, deformation studies etc.

Disordered structures and transitions between disorder and order, i.e. folding
processes, aggregation, polymer chain structure.

*Quantification of polydispersity.
*Measure thermodynamics, interaction parameter, critical phenomena.

*Quantify nanoscale orientation.



Multi-Structured Systems:
As Studied by SAXS/SANS

Prof. Greg Beaucage

Why use small-angle x-ray/neutron scattering?

*Determination of hierarchical structure and the relationship between structural levels.
*Understanding scaling transitions in polymers and other macromolecules.
*Determine growth mechanisms and structural levels in mass-fractal aggregates.
*Other morphologically complex systems.
*Answer questions that can not be answered by other techniques:

Are particles connected or independent in a dense structure?

How folded are sheet structures in solution?

Do particles nucleate in a flame? (And many more examples...)



>

200

TTITTEE )0

Film Bubble

MDO
Unwind Roll

Blown Film Machine Direction
Process Orientation Process



Outline: Multi-Structured Systems:
utline: As Studied by SAXS/SANS

1) a) Experimental Instrumentation
USAXS and Desmearing

b) Two dimensional, anisotropic and

orientational hierarchy
|sotropic Systems
2) Specific Scattering Laws
3) General Scattering Laws
Guinier’ s Law
Porod’ s Law
Unified Scattering Function
Fractals
Branching
4) Polydispersity
5) Specific Systems
Polymer Hierarchy
Mass Fractal Hierarchy
Other Systems
6) Fitting using llavsky Programs
and the Unified Function
7) Program it yourself
8) Summary
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Nanostructure from Small Angle X-ray Scattering

,,,,,,,,,,,,,,,,,,,,,,,,,

3-Techinques are similar
SALS/LS, SANS, SAXS

A =0.5um A=0.1-0.5nm
For light For x-ray/neutron

Contrast: index of refraction, electron density,
neutron cross section



Nanostructure from Small Angle X-ray Scattering

,,,,,,,,,,,,,,,,,,,,,,,,,,,

3-Techinques are similar
SALS/LS, SANS, SAXS

Generally LS has much higher contrast so reflection and
refraction become problems and need to be considered: Mie
Scattering.

For x-ray and neutron contrast is low so we consider point
scattering only: Rayleigh-Gans Approximation (no reflection or
refraction from scatterers).
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Small- and Wide-Angle X-ray
Scattering Measurements

X-ray Source SAXS : pinhole camera : 2-d detector at Im from the sample

e

3 » .‘f p oF

*;{'5 WAXS : pinhole geometry camera : image plate detector at
' S5cm from the sample RUEELGEIP SIS

Scattering angle, 29, is typically 5-90°
Info :Crystal structure,orientation, amount.

Size probed is 0.05 to 2.0nm
%f)

0 2D measurements are useful in .-
Ini ' ' X-ray Scatteri
determining both size and relative ray Scattering

26 WAXS

(MD)

_ Scattering angle, 2 s typically < 3°
Incident x-rays Info: Crystal size, aggregate structure

orientation of various structural wavelength X e bk ot il oo

Size probed is 2nm to100nm

components



Intensity [a.u.]

The SAXS Experiment

Source Collimination = Sample Detector
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Collimation for Small-Angles is a Technical Hurdle
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Use Goebel Mirrors
or Fresnel Zone Plate

Optics (diffraction based)



Two Alternative Camera Geometries Offer Improvement in Flux
or Improvement in Angular Resolution with Smearing of Scattering Pattern

Sample - Detector = 41.4 cm

o |

Block collimation system

e, F:} ol
4_’ |
Entrance slit

Sample holder

filter oo e P
-f\ AFD
USAXS o o
sia20 Prl

sarmp le pos 1tion

www.esrf.eu/UsersAndScience/Experiments/SoftMatter/ID02/BeamlineLayout/EH1



Desmearing of SAXS Data
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www.esrf.eu/UsersAndScience/Experiments/SoftMatter/ID02/BeamlineLayout/EH1

In both Kratky and BH geometries the sample is investigated
with a line source. Data is collected in one-dimension normal
to the line



Desmearing of SAXS Data

In both Kratky and BH geometries the sample is investigated
with a line source. Data is collected in one-dimension normal

to the line.
For BH the crystal surface

Is the line. (A multi-bounce
crystal reflection has a
narrow rocking curve for

> angular resolution.)

For Kratky the line is
defined by the slits and line
source from the tube. (A
line has more flux than a
point of similar diameter/
width (typically 20 micron).)




Desmearing of SAXS Data

So scattered intensity is collected from all points along the line
rather than from a single point. (This complicates matters.

)




Desmearing of SAXS Data

The scattered intensity is an integral of each scattering point

along the line convoluted with the scattering pattern.




Desmearing of SAXS Data
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We have found two ways to obtain the point scattering pattern

from the smeared pattern:




Desmearing of SAXS Data

=
)
-
O]
e
D
7))
-
O
@
o
(7))
)
O
D
e
®©
N
-
)
-
o
o
L
-
12
A~~~
AN
-
)
O
©
O
(@))
O
-
7p]
O
&
)
L
-
A2
A~
-

>
e,
Q.
(©
—
—
7P
O
&
C
O
-
=
O
(7p)
o
n
()
O
()
L
ra—
g
©
n
()
=
—
| -
©
O
C
©
7))
'
| -
O
=

)

answer (Maximum Entropy)

The Direct Method.

The Indirect Method.

a) guess the answer

b) iterate for the most random
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The Direct Method.

The Indirect Method.

a) guess the answer

b) iterate for the most random
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Desmearing of USAXS Data...............

WS,
Tungsten disulfide
iIn Methanol

10

pneumatic
attenuators

10"
PD 10°
L 10f
- =
Si-220 | == 10°
5 » - ——= »,n) - . == — :
monochromator Sampl€  crossed 2" analyzer 10°
Si-111 10° o channel-cut
S A , P, o parallel crystals
- B c“ , APD 10 theoretical
-y — I .- 10—
220 ' ? | - - -2 2 .
g 5x107 |
1" analyzer ; 0-0, (urad)
| Figure 2
Comparison of rocking curves obtained using regular channelcut crystals and
S mechanically fabricated devices, each consisting of two parallel polished and etched

correlater JALVSOO0) y crystals. The parasitic scattering background in the wings of the rocking curve was
suppressed by more than one order of magnitude using the latter set-up. The
S AT X continuous line indicates the rocking curve calculated by the dynamical theory of
I I\PP’ Cryst. (2007). 40, s459—-s462 diffraction. The curves are plotted relative to the Bragg angle, 4, of Si-220.

1) Rocking curve subtraction

2) Desmear SMR data to make DSM
Using Maximum Entropy lterative
Method



WS,
Tungsten disulfide
iIn Methanol

{ ») v

a) At size-scales (1/q) smaller than the thickness, we see
surface scattering since we can not resolve the structure.

b) At size-scales between the thickness and lateral extent, we
see two-dimensional (or modified two dimensional scattering).

c) At size-scales larger than the width, we see point scattering.



Outline:

1) a) Experimental Instrumentation

USAXS and Desmearing
b) Two dimensional, anisotropic and

orientational hierarchy

|sotropic Systems

2) Specific Scattering Laws

3) General Scattering Laws
Guinier’ s Law
Porod’ s Law
Unified Scattering Function
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Small-Angle X-ray Scattering, (SAXS)

We Get Intensity as
A Function of Angle
(or radial position)

'A*

-Collimated Beam -Longer Distance for Lower Angle (Pinhole)
-Monochromatic Beam -Large Dynamic Range Detector
-Coherent Beam -Evacuated Flight Path

-Focusing Optics Perhaps -Extend Angle Range with Multiple SDD’ s

] sample
detector I 1 \ l E =
(Photodiode 20 ion \ —_ Ty
or CCD hamb : —
reen) Si (111) TR sian ! mirrors ~ 33D
7 | Io collimating 2D slit Si(111) dulat
analyzer crystals SIS monochromator unaulator

crystals



Small-Angle X-ray Scattering at Synchrotrons
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ESRF we use ID2 with T. Naryanan, APS 32-ID_with Jan llavsky
(9 other SAXS instruments at APS, Chicago)

Much easier to get time on smaller synchrotrons
We use SSRL (Stanford); CHESS (Cornell), CAMD (LSU)




The 2-d pattern can be analyzed for orientation (azimuthal
angle y) or for structure I(q) (radial angle 0).

A Bafna et al / Polymer 44 (2003) 171031775 1107

Fig. 2. 2.D SAXS ((a) and (c)) and WAXS ((b) and (&) patterns foc orsentation MN (Jeft face), NT (right face) and MT (top face) of films HD6O3 ((2) and (b))
and HDG12 ((c) and (d)). The mumbers in the paresthesis represent the reflections from the following: (a) clay tactoids, (b) modified/intercalated clay (002)
plane, (c) unmodified clay (002) plane, (d) clay (110) and (020) plane, () polymer crystalline lamellar, (f) polymer ezt cell (110) plane (inner ring) and (200)
plane (outer ring).
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Fig. 3. (a) SAXS log-Jog racial plots for clay and HD6O3, HDS

A Bafna er al. / Polymer 48 (2003) 1103-1115
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Time Resolution at APS/ESRF

\\\\\\\\\\\\\\\\\\\\\\\\\\\

Time Resolution 10 ms (Synchrotron Facility)

For Flow Through Experiment (Flame/Liquid/
Gas Flow) can be 10 us

Size Resolution 1 A to 1 um



Nano-particles are unstable and form far from equilibrium.

T ~2500°K
Time ~ 100 ms
O, ~1x 106

dp~5t050nm



2-Closely related Techniques:

ASAXS- Anomalous x-ray scattering, vary wavelength

leads to change in contrast due to the complex absorption
spectra, requires synchrotron source.

GISAXS- Promise of high resolution spectra for surface
structures but there are technical issues with data interpretation.

1000 ¢ T T
100 L ~0.58% Gold on Zirconia] | 200 0.0 o
E —— Zirconia Particles 3
—— Gold Particles Bt
F S —— Minimized Fit Iqo L
—_ 10 & SNy 3
~ F 2.00
= L ]
& \ nN
i”’), 1 ; _é 0.0
.‘? I \'\, ]
2 o ] N
3 E 1 m" o € T
= [ 002 001 000 001
0.01 : E q A1
0.001 E ” GISAXS from the polymer film
E E shown on the left.
C AFM image of a diblock copolymer film [Smilgies]
0.0001 L | L Lo L displaying vertical lamellae [Busch2]
: 2 3 4 56789 2 34 6789
0.01 0.1
-1
a(A)

http://staff.chess.cornell.edu/~smilgies/gisaxs/GISAXS.php
Chopra S, Beaucage G, in preparation
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SAXS Modeling

Assumption: Binary interference pattern.




SAXS Modeling

Assumption: Binary interference pattern.

A S(q) F4(q)

Form Factor, F3(q)

Structure Factor, S(q)

()




Four Methods of SAXS Modeling

|) Calculate the amplitude for specific structures.

Viable for simple structures, spheres, rods, core/shell models
Intensity for some cases Gaussian coil.

2) Develop general laws for scattering. -
Viable for all structures, analysis depends on specific models. Most useful for g

systems with low degrees of structural regularity (unfolded states or aggregates). f“\'r)“’( \i
3) Calculate the pair distance distribution function PDDF from the scattered |

intensity. Analyze the PDDF using models and general rules.

Viable when a wide range of scattering vector, q, is available or valid -

extrapolations can be made to high and low q. A direct link between calculated =~ =

structural features and the observed features in the data is lost. .

4) Calculate the PDDF using structural models (spheres).
Use an inverse Fourier transform to calculate the scattered intensity and a least-
squares or other method to iterate the model parameters for a best fit.
Most useful for systems with a high degree of structural regularity (native state).




Four Methods of SAXS Modeling

/I) Calculate the amplitude for specific structures. \

Viable for simple structures, spheres, rods, core/shell models
Intensity for some cases Gaussian coil.

2) Develop general laws for scattering. r
Viable for all structures, analysis depends on specific models. Most useful for g

\systems with low degrees of structural regularity (unfolded states or aggregates)/ o f“\'r)“’( \i
3) Calculate the pair distance distribution function PDDF from the scattered |
intensity. Analyze the PDDF using models and general rules.
Viable when a wide range of scattering vector, q, is available or valid
extrapolations can be made to high and low q. A direct link between calculated =~ =
structural features and the observed features in the data is lost. .

4) Calculate the PDDF using structural models (spheres).

Use an inverse Fourier transform to calculate the scattered intensity and a least-
squares or other method to iterate the model parameters for a best fit.

Most useful for systems with a high degree of structural regularity (native state).




Debye Function

Ha)=(F(@)=Ve: [ () 2 arar

Assumptions:

|) Centro-symmetric Particle
e "M =cos(geOM,)

2) Random Orientation (translational & rotational symmetry)

singr

<cos(6707)> = o




Debye Function

singr
I(q) = <F2(q)> = Vpe2 T % (r) qrq 4ﬂ7'2dr
0
P, Electron Density

Yo (r) Characteristic Function, Correlation Function

Probability that at a distance “r” from a point in a
particle another particle can be found

V()

|4

Yo(r)=

Average for translation and rotation



Debye Function @

I(g)=(F*(q))=Vp? I 7 (r) Si;‘j” 4rdr

Yo (r) Characteristic Function, Correlation Function

For simple objects such as a sphere we
can calculate the characteristic function

— T

V(r)= E(2R-r)2(41re+r)




Debye Function

g

Ha)=(F(@)=Ve: [ () 2 4

Yo (r) Characteristic Function, Correlation Function

For simple objects such as a sphere we
can calculate the characteristic function

yo(r):V(")zl_ 3 1 (,,]:

|4 4R 16\ R
"

singR—gRcosgR
I(Q)anZ 3 =4 3 1
\ (9R) )




—s— Sold sphere
Ig I(s), relative —+— Long rod
Flat disk
0 —s— Hollow sphere
~a— Dumbbell

Figure 5. Scattering intensities and distance distribution functions of geometrical bodies.

Svergun DI, Koch MHJ Rep. Prog. Phys. 66 1735-1782 (2003)



Other direct calculations are possible for simple objects  1(g)=Nn.F*(q)S(q)
singR—gRcosgR

Sphere F . (qg)=3
ph ( ) (qR)3
Si(gL)  sin*(qL/2)
FX(q)=229") _4
Rod (9) oL %
2 J,(2gR
Disk Fz(q)zquz[l_ l(qR ):|

(VSheII (psm-u ~ Psotvent )Fsphm (R.S'hcﬂ ) - chre (pSheH ~ Pcore )F Sphere (RCure ))

Core and Shell Sphere £, . (q)= (Vewe = Vorr)
Core ~ ¥ Shell

exp(—q2R§)+ q°R’ -1
(@'Y

Gaussian Polymer Chain 2(q =

Core and Shell with Gaussian Chain
Attached

Pedersen JS, Chapter |6 in Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter, Linder P, Zemb Th editors
North Holland Press (2002).



Scattering Function for Monodisperse Spheres

Rayleigh, 1914 1(q)=9<;{squ(‘ j:;qR] G = Nn_2
q
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The Debye (1947) Scattering Function for a Polymer Coil

I(Q)—Q > (Q—1+exp(-0))
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100 &
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Outline: Multi-Structured Systems:
utline: As Studied by SAXS/SANS

1) a) Experimental Instrumentation
USAXS and Desmearing

b) Two dimensional, anisotropic and

orientational hierarchy
|sotropic Systems
2) Specific Scattering Laws
3) General Scattering Laws
Guinier’ s Law
Porod’ s Law
Unified Scattering Function
Fractals
Branching
4) Polydispersity
5) Specific Systems
Polymer Hierarchy
Mass Fractal Hierarchy
Other Systems
6) Fitting using llavsky Programs
and the Unified Function
7) Program it yourself
8) Summary

Flame A Flame B

ter

F TR R

HAB
m o ‘

6

3 &;" ‘m-. 6:1

50mm'f'-|/'\B
£ s«éﬁ? ¥

. ig@ 5 gwmz.,

Kammler HK, Beaucage G, Kohls DJ, Agashe N. Ilavsky J
J Appl. Phys. 97(2005) (Article 054309).



If you do not have a sphere or a Gaussian linear chain

There are some general rules for all structures

Guinier’ s Law

Porod’ s Law

Mass Fractal Scaling Laws
The Unified Function

With these tools we can build a scattering function
for any “random” structure



Binary Interference Yields Scattering Pattern.

(@) ~ N n,2

n, Reflects the density of a
Point generating waves

N is total number of points

q= —sin(éy) d= 2—ﬂ~r

q

General scattering laws by which all scatters are governed
1) “Particles” have a size and
2) “Particles” have a surface.



Binary Interference Yields Scattering Pattern.

i

-Consider that an in-phase
wave scattered at angle 6 was
In phase with the incident
wave at the source of
scattering.

-This can occur for points
separated by r such that

Irl = 2n/]q|

_ 4T . 6
q=——SIn—

A



Binary Interference Yields Scattering Pattern.

\\ -For high 6, q; ris small




Binary Interference Yields Scattering Pattern.

-For small 6, q; ris large




Binary Interference Yields Scattering Pattern.

-For small 6, q; ris large

We can consider just the vector “r”, and for isotropic

samples we do not need to consider direction.



For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.
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The vector fixed and rotate the particle
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.

Rather than random placement of the vector we can hold
The vector fixed and rotate the particle



The particle becomes a probability density function
from the center of mass.

That follows a Gaussian Distribution.

—3r*

2
4R,

p(r)=exp



The particle becomes a probability density function
from the center of mass.

Whose Fourier Transform is Guinier’ s Law.

= = I(q)=G ——f
p(r) exp R g2 (q) exp{ 3 ]

G = Nn°

€




Guinier’ s Law Pertains to a Particle with no Surface.

—3]/‘2 quZ
— I(q) = Gexpl — g
4Rg2 (9) P 3

p(r)=exp

G = Nn;

Any “Particle” can be approximated as a Gaussian
probability distribution. (Problem: finite limit to size.)
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Intensity (cm)
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Particle with No Interface

I(g)= N(d)n2(d)
~4*(R;,)
3

I(q) =G, exp




Guinier’ s Law can be thought of as the
First Premise of Scattering:

All “Particles” have a finite size
reflected by the radius of gyration.



The Debye Scattering Function for a Polymer Caill

Q= 2 (0-1+exp(-Q))

Q IOOEr
10
<< D
For ng 1 = 0
< :
_ o 0 0 =
Xp(-Q)=1-0+ Sr =TT 2l
E |
0, q'R’ 0.01
I(g)=1-=+..=exp| — J :
(q) 3 P 3 5
0.001 “mg i e
0.001 0.01 0.1 1

Guinier’ s Law!



At the other extreme consider a surface.

(@) ~ N n,2

n, Reflects the density of a
Point generating waves

N is total number of points




(@) ~ N n,2

n, Reflects the density of a
Point generating waves

N is total number of points

At the other extreme we consider a surface.

The only location for contrast between phases is
at the interface (for every vector r there is a vector r/2)

I 4 ,

Q n€: 3 r




I(q) ~ N ne2

n, Reflects the density of a
Point generating waves

N is total number of points

At the other extreme we consider a surface.
We can fill the interface with spheres of size r

I N=S/aR) n =2F,

<> ‘ 3




Porod’ s Law can be thought of as the
Second Premise of Scattering:

All “Particles” have a surface reflected by S/V.
(d, = (SIV)T)

S
, (s Yam? T 165w 2 i(vj
I(q) ~ Nn; ~| — ~ =

3

TTr 9 Vq'




For a Rough Surface: d <3
(This Function decays to Porod’ s Law at small sizes)

3
I(q)~Nn62~(§ anr ~ S =




Sphere Function

singR —qRcosgR )
(4R)

I(q)=9G

For gR >> 1

<singR>=>0
<cos?qR> => 1/3

I(q) = Porod’ s Law for a Sphere!



General Laws for Scattering

Mass Fractal Power-Law
A) Rod

1A/ ~N(n(r)’  N(r)~(L7)  n(r)~ (%i)
1/in~(L)r= (L )g" =Ng™




General Laws for Scattering

B) Disk

I(1/7)~ N(r)n(r)’ N(r)~(l%)2 ”(”)“’(%)2

I(/r)~ (l%)zr2 = (l%)zq'2 =Ng~



General Laws for Scattering

Mass Fractal Power-Law
.. dp C) Generic Mass Fractal

A

I(/r)~ N(r)n(r)2 N(r)~ (%)df n(r) ’”[ rdef

f
I1/r)~ % rY = % g% =Ng
p p



First and Second Premise of Scattering

Incorporated in the Unified Function
100 ¢ T

11 1 11111

=Gexp(—q°R>/3)+ B||er, J6 )
ol 1{q)=Gexp(~°R: /3)+ B (e (ar, /6)) o]

-1
1 llIIIIlI 1 Illlllll

Intensity (cm)
o)
I | LI

1 lIlllllI

0.01 & i
0,00 e e e
0.001 0.01 0.1 1
1
q (Ang)

Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering, Beaucage, G,
J. Appl. Cryst. 29 7171-728 (1995)



General Laws for Scattering

Unified Function

1(g) = Gexp (—¢*R%/3) + B[erf (qR,,/6"’)1’/ql” One Structural Level

I(q) ~ Gexp(—¢*R2/3)
+ Bexp (—q* R /3)lerf (gR, /6" /g)"

2 p2 123 s AP Two Structural Levels
+ G,exp(—q°R;/3) + B,lerf (gR, /6" /") /q)"

1g) = (G, exp (~q*R% /3) + B, exp (—a°R;, ., /3)

=]

“n” Structural Levels

x {[erf (gkR, /6")] /q)" ).

Beaucage G J.Appl. Cryst. 28 717-728 (1995).



General Laws for Scattering

Unified Function

100

al

0.01

Calculated Intensity

0.001

ad)!

Fig. 11. Calculated scattering (O) from polydisperse spheres with Porod
surfaces (power law — 4). The solid line follows equation (24) with
R, =39.495 A as calculated and P=4, G=100 cm ~ ' (fixed in the
sphere calculation) and B =0.000 127 52 from Porod’s law.

Beaucage G J.Appl. Cryst. 28 717-728 (1995).
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Fig. 10. Log-log plot of Debye equation (O) and equation (24) (solid
line). For the Debye equation, R, = 50 Aand A=100 cm ™", For
the unified equation, (24), all parameters are fixed. R,=50 A,
G =100 cm™', P=2 (the Debye equation represents a mass fractal
with d; = 2) and B=0.08 = 2G/R} from equation (30).



Unified Function

Calculated Intensity
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T ’ 1

)
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Fig. 12. Calculated scattering curve for an ellipsoid of revolution with a
sphenical shell of Jower electron density, 0.36 of core, with
major : minor axis ratio of 4:1 and minor axis of R=50 A and
60 A for the core and shell, respectively. Equation (24) is calculated
using Ry =879, G=100cm ™', P=491 and B=199 x 10~ %
The mismatch at g=0.07 A ~ ' is due to a residual Founer peak that
has not been averaged out and that would normally not appear in
experimental data for a diffuse interface.
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General Laws for Scattering
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Fig. 13. Calculated scattening curve [Guinier & Foumet, 1955, p. 19,

equation (33)] from randomly oriented rods of diameter 40 A and
length 800 A (+). /(0) is fixed at 100, The calculated scattering curve
using ecquation (28) is shown by the bold line, and G=100,
R,=2314 A, P=1, B=0393, Raw=R,=173 A, G,=0.111,
B,=625x 10" and P,=4 as discussed in the text. High-q
oscillations in the + curve are due to poor averaging in the
calculation.’

Beaucage G J.Appl. Cryst. 28 717-728 (1995).

T

10" ——rvrry

TrTTYTY

Ty

10’

Calculated Intensity

lo‘ FEPITETT R T TSP ErTerT BTy 1Y
10¢ 10”° 10”7 10! 10°
q (A"

Fig. 14. Calculated scattering curve [Guinier & Foumet, 1955, p. 19,
equation (33)] from randomly oriented disc-like lamellae of thickness
40 A and diameter 800 A (+). K0) is fixed at 100, The calculated
scattering curve using equation (28) is shown by the bold line, and
G=100, R, =283.1 A P=2B=125x 10 ", Rep=R,=20 A,
G,=278 x 10 " B,=156 x 10 “and P, =4 as discussed in the
text. High-¢ oscillations in the + curve are due 1o poor averaging in
the calculation,



Unified Function

Calculated Intensity
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Fig. 12. Calculated scattering curve for an ellipsoid of revolution with a
sphenical shell of Jower electron density, 0.36 of core, with
major :minor axis ratio of 4:1 and minor axis of R=50 A and
60 A for the core and shell, respectively. Equation (24) is calculated
using Ry =879, G=100cm ™', P=491 and B=199 x 10~ %
The mismatch at g=0.07 A ~ ' is due to a residual Founer peak that
has not been averaged out and that would normally not appear in
experimental data for a diffuse interface.
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Fig. 13. Calculated scattening curve [Guinier & Foumet, 1955, ,K 19,
and

equation (33)] from randomly onented rods of diameter 40

length 800 A (+). /(0) is fixed at 100, The calculated scattering curve
using equation (28) is shown by the bold line, and G=100,
R,=2314 A, P=1, B=0393, Raw=R,=173 A, G,=0.111,
B,=6.25x 10~ and P,=4 as discussed in the text. High-q
oscillations in the + curve are due to poor averaging in the
calculation.’

Beaucage G J.Appl. Cryst. 28 717-728 (1995).
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Fig. 14. Calculated scattering curve [Guinier & Foumet, 1955, p. 19,
equation (33)] from randomly oriented disc-like lamellae of thickness
40 A and diameter 800 A (+). K0) is fixed at 100, The calculated
scattering curve using equation (28) is shown b\y the bold line, and
G=100, R;=283.1 A, P=2, B=125x 10 ', Rpp=R,=20 A,
G,=2.78 x 10 " B,=156 x 10 “and P, =4 as discussed in the
text, High-¢ oscillations in the + curve are due 10 poor averaging in
the calculation.
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Fitting of USAXS Data using
Unified Function/llavsky Program....

WS,
Tungsten disulfide
iIn Methanol

{ ») W

a) At size-scales (1/q) smaller than the thickness, we see
surface scattering since we can not resolve the structure.

b) At size-scales between the thickness and lateral extent, we
see two-dimensional (or modified two dimensional scattering).

c) At size-scales larger than the width, we see point scattering.



Fitting of USAXS Data using
Unified Function/llavsky Program....

WS,
Tungsten disulfide
iIn Methanol

Calculation of Degree of Crumpling
df = dmln
dmin = BR,Y/(GI(d/2))

Z= 62/61 = (Nagg (Zprimaryne,primary) ) ((Nagg prlmary)n prlmaryz)

= 1/dmin-1
Dy =1 —zdmin



Polydispersity of Fractal Structures (Chris Sorensen Method)

3.0 i |
~ ® LLDPE TREF fractions
~ C d G d A Blends (Linear + LDPE)
S pPmin 2 | Py & PE (High PDI)
R’ 2
i 82
5 < (21,
S
20 _
% (C+%imln)(1+c+%lmm)
)
=
QL | o Zoin, \d2f2
N— 151 ' C 4 _‘+J(['1 i —
. L= i
O o A A‘ ! b Z Zs !
o ° e o i
o ‘A """"""""""""""""""""""
1.0 0680 | 1 1 1 1
1 2 3 4 5 6 7 8

*Ramachandran, R.; Beaucage, G.; Kulkarni, A. S.; McFaddin, D.; Merrick-Mack, J.; Galiatsatos, V., Persistence Length of Short-
Chain Branched Polyethylene. Macromolecules 2008, 41 (24), 9802-9806.

*Sorensen, C. M.; Wang, G. M., Size distribution effect on the power law regime of the structure factor of fractal aggregates. Physical
Review E 1999, 60 (6), 7143-7148.



Construction of
A Scattering Curve



Complex Scattering Pattern (Unified Calculation)
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Guinier and Porod Scattering

Spherical Particle
; With Interface (Porod)
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Polydispersity Index, PDI
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Particle size distributions from small-angle scattering
using global scattering functions, Beaucage, Kammler,
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Polydisperse Particles
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Large Scale (low-q) Agglomerates
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Small-scale Crystallographic Structure
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Branched Aggregates
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Particle Size, d,
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Figure 1. An USAXS pattern of agglomerated fumed silica
(Aerosil 200, Degussa AG). The scattering data (circles) are
well described by the global unified fit equation (solid line).
Furthermore, three Porod regimes (dashed line, dashed—dotted
line, and long—short-dashed line) are shown together with the
Guinier regimes (dotted line and dashed—double-dotted line).
The appearance of the second Porod (weak power-law) regime
(OAOO(%)A" < g < 0.01 A7) proves that S\ese particles are
%%‘glomerated and mass fractal as shown by the TEM insert.

e gray shaded area indicates the integral part for determi-
nation of dps.

O Daa i
10° e Global Unifiad Fil;
Porod FE1 |

Lroeeees Guimer Fil 1

== Parod Ft 3
0.0001 0.001 0.01 0.1 1
q vector, A”
Figure 2. A USAXS plot of a nonagglomerated fumed silica
(Si-B 32) made in a 17 g/h sustained premixed flame reactor
(ref 18). The scattering data (circles) are well described by the
global unified fit equation (solid line). Furthermore, Porod
regimes (dashed line and long—short-dashed line) are shown
together with the Guinier regime (dotted line). The lack of the
Porod (weak power-law) regime at 0.0005 A™! < c? < 0.005 A~
indicates that the particles are nonagglomerated as shown by

the TEM insert. The gray shaded area indicates the integral
part for determination of djys.

Porod’ s Law
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Figure 3. Comparison of dysand deer for agglomerated silica

owders made in our vapor-or liquid-fed flame aerosol reactors
?refs 18 and 20-22) and those of commercially available powders
(Aerosil 200 and Aerosil 380, Degussa AC{

B Premixed flame, Ref, 18
E g0 | &Sprayflame, Rel. 20: Fig. 7 °
& [0, Rarme, Rel. 18: Fig. 5
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Figure 4. Comparison of dys and deer for various nonag-
omerated silica powders made in our vapor-fed (refs 18 and
9) and liquid-fed (ref 20) flame aercsol reactors.

Structure of flame made silica nanoparticles by ultra-snall-
angle x-ray scattering. Kammmler HK, Beaucage G,
Mueller R, Pratsinis SE Langmuir 20 1915-1921 (2004).



For Particles with Correlations
(Concentrated non-fractal)

1
1+ pA(q.&)
3(sing& —g& cosgé)
(4€)’

[(q) = Idilute (q)S(q) = Idilufe (q)

p = packing factor, A(q.§) =

10’

; ()
E 10 No Correlation
E Effect at High-g

O

.
l“ i 3 4 $ 678 b | ] 4 s 4741
0001 0.0 0.1
q! \ : )

Figure 6. Demonstration of the effect of varying the packing factor "k” on
the scatiering pattern for the data of figure 4, Packing of the domains does
not affect the power-law scaling regime at high-q.



Branching in different systems

* Long Chain and Short Chain

Rant

* Model Branched Polymers (Stars, Hyperbranched, Dendrimers)

. Branchmg governed by kinetics (nano-scale aggregates)




. & Fractal dimensions (d,, d_ .
degree of aggregation (z)

, ¢) and

dy
LIPS S
p ©)6) ~\| —/—
cockpp? o0, a,
< R >
dmin
-F - F P min dp
< @) p—
Hos? g%,
c _ _dr/dmn
z~p'=p

d,;, should effect perturbations & dynamics, transport
electrical conductivity & a variety of important features.

Beaucage G, Determination of branch fraction and minimum dimension of frac. agg. Phys. Rev. E 70 031401 (2004).
Kulkarni, AS, Beaucage G, Quant. of Branching in Disor. Mats. J. Polym. Sci. Polym. Phys. 44 1395-1405 (2006).



Linear/Branched Polyethylene

Intensity (cm)
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Beaucage, G.,
Determination of branch
fraction and minimum
dimension of mass-
fractal aggregates.
Physical Review E 2004,
70 (3).

Branching dimensions are obtained by combining local scattering laws



Printed Electronics Solar Cells

Silicon cluster Extracted Parameters VSR [ s St Uy e Tom]
10 —— Unified Fit (UC SAXS/USAXS Sachit Chopra)
10' - .
Fractal Dimension 2.64 W' ]
Degree of Aggregation 47,600 _owr 7
CEER UM .
Primary Particle Diameter 43A g Wik i
z
\ Aggregate Diameter 368 A FRUN ]
\ .. . . T 0'r .
! Minimum Dimension 1.14 = ok _
'," Connectivity dimension 2.32 1oj - .
! Number of branches 13,200 1::_'10 i 1
Branch fraction 0.998 T —— T
0.0001 0.001 0.01 0.1 1
Meandering fraction 0.733 o
q(
Branches in minimum path 27
Number per branch 3.6

Clear Anode, e-

+
Catnoae, I3~ + 2e=> 3I

Platinum Coated

Beaucage G, Jonah E, Britton DA, Harting M, Aggregate structure and electrical

performance of printed silicon layers, in preparation (2010).



Summary: - Flame A JFIa'mewB

1) Experimental Instrumentation

&

2) Specific Scattering Laws rmac®

3) General Scattering Laws ﬁﬁ,‘,y‘m =";W ‘:
Guinier’ s Law f&,‘ ;’3
Porod’ s Law LW TR T R
Unified Scattering Function ¢ Wf&“’f T, -w’»%w‘é
Fractals R
Branching o R

4) Polydispersity

5) Summary

Kammler HK, Beaucage G, Kohls DJ, Agashe N. Ilavsky J
J Appl. Phys. 97(2005) (Article 054309).






Particle Size Distributions
From SAXS
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Particle Size Distribution Curves From SAXS i €:
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10° 4
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Fiz. 8. Nomalized mckel number particle size distibutions of catalysts
smtered at 650°C obtaned by ASAXS a: descrbed m the text. The

Fig. 7. ASAXS scattering curve measured at 8308 ¢V on the fresh catalyst nickel particles are assumed to be spherical with radius 7, but otherwise

(full line). The circles represent the separated scattering curve (KI(q)) no assumption on the shape of the distribution is made. The full line is
obtained by subtracting the normalized scattering curves measured at 8308 the distribution of the fresh catalyst. The short dash (long dash) is the
and 8326 eV. The dashed line represent the best fit to the data using the diztnbution after sintening for Sh (100h).

approach described in the text.

Assumption Method
i) Assume a distribution function.
ii) Assume a scattering function (sphere)
ili) Minimize calculation )
singqR —qRcosqR
1(q)=9G

(qR)




Particle Size Distribution Curves From SAXS g €:

Assumption Method. a
i) Assume a distribution function.
ii) Assume a scattering function (sphere)
iii) Minimize calculation

—
15 T T T ] 02 40 T T T T T T 40°$
< - ~ =)
2 & o
[+ A]O— 7 = — g
Y L0 = 30- 430
Q S 84 - = —— 3V o
€ g = po =
5 2 — un| =
7w 07 ] Z O S
Z A o 20- 420
< 20 O
2 n <
S << o - 5 /-———O s
51 -~ §e =
(j.)" 0 T T T < 107 COO 410 =
0 2 4 6 8 . . . . . . =
Specific Ni surface area, Scup (m™/g) 0 200 40 60 80 100 >
Time (hours)
Fig. 11. Comparison of specific nickel surface areas derived from the
sulfur chemisorption capacity (Scap) and ASAXS (Tables 3 and 4). The Fig. 10. Average nickel particle radius (squares) and variance (circles) of
line is the result of a linear regression (Sasaxs = 1.4(0.2) S5, +0.6(0.8)). distribution determined by ASAXS after sintering at 650 °C.

where the number in parentheses is the standard deviation of the fit.
Sintering of Ni/Al,O, catalysts studied by
anomalous small angle x-ray scattering.
Rasmussen RB, Sehested J, Teunissen HT,

Not unique & _ Aol s A 20, 165173 (2004
Based on assumptions
But widely used & easy to understand



Particle Size Distribution Curves From SAXS

Unified Method 1.62G
i) Global fit for B, and G. n(PDI) )"

ii) Calculate PDI (no assumptions & ‘7=ln(‘7g)={ = }
unique “solution”)

- . . ) V2
iii) Assume log-normal distribution i SR,
for s, and distribution curve 3140
(or other models) P
iv) Data to unique solution o' :
Solution to distribution ol |
H'*E* 10° - -
i’ 10° -
Advantages E o' .
Generic PDI (asymmetry also) E o' .
Global fit (mass fractal etc.) 107 - i
Direct link (data => dispersion) 107 - ~— Dic Sprre(ncoriaion)
Use only available terms i — lst’gﬁf;eﬁg;:;’%%te
Slmple tO implement 1(()):0001 o H(I)I.IOOI T I”(I)I.OI T H“(;.ll T ""'1

q ()"



Particle Size Distribution Curves
from SAXS

PDI/Maximum Entropy/TEM Counting
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Figure 2

USAXS data from aggregated nanoparticles (circles) showing unified fits (bold grey lines), primary particle Guinier and Porod functions at high g, the
intermediate mass fractal scaling regime and the aggregate Guinier regime (dashed lines). (a) Fumed titania sample with multi-grain particles and low-g
excess scattering due to soft agglomerates. dyis = 16.7 nm (corrected to 180 nm), PDI =301 (6, =1.35), R, = 112 nm,d: = 199, 221 = I'.‘S.z,—,‘ =226,Rp2 =
171 nm. From gas adsorption, dp = 162 nm. (b)Fumed zirconia sample (Mueller er al., 2004) with single-grain particles, as shown in the inset. The primary
particles for this sample have high polydispersity leading to the observed hump near the primary particle scattering regime. dy,¢ = 2.3 nm, PDI = 10.8
(6, =156), R,= 26.5 nm, d; = 2.90. From gas adsorption, 4, = 19.7 nm.

Particle size distributions from
small-angle scattering using global
scattering functions, Beaucage,
Kammler, Pratsinis J. Appl. Cryst. 37
523-535 (2004).
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Figure 6

Comparison of particle volume distributions for titania made without an
electric field using TEM (circles; Kammler er al., 2003), PDI (grey line)
and maximum entropy (black line). (a) 0.5g h~" [fractal dy;g = 12.1 nm,
PDI =3.52 (o, = 1.38), R, =8.9nm, d, = 1.59, 22, = 1160, z,, = 1343].
(b) 55gh~" [dyg = 372 om, PDI = 200 (g, = 165), R, = 508 nm).
(¢) 11 gh™" [dy,s =468 nm,PDI =155 (6, =161), R, =608 nm).(3 g b™"
is shown in Fig. 5.)




Particle Size Distribution Curves From SAXS

Maximum Entropy Method
i) Assume sphere or other
scattering function
i) Assume most random solution
ili) Use algorithm to
guess/compare/calculate
iv) Iterate till maximum “entropy”
Advantages
No assumption concerning
distribution function

No assumption for number of modes

Matches detail PSD’ s well
Related Alternatives
Regularization

Particle size distributions from small-angle scattering
using global scattering functions, Beaucage, Kammler,
Pratsinis J. Appl. Cryst. 37 523-535 (2004).
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Figure 5

3.1 gh~" titania. (@) Repeat USAXS runs on a non-aggregated titania
powder (Fg. 1). (b) Particle size distributions from TEM (circles;
Kammler ez al., 2003), equations (1), (2), (17) and (18) wsing PDI and R,
and using the maximum-entropy program of Jemian (Jemian et al, 1991).
Distribution curves are shifted vertically for clarity. dy,g =34.9nm, PDI =
144 (6, = 1.60), R, =442 nm.



Software for My Collaborators/Students



Particle Size Distribution Curves From SAXS

All Methods are available in Jan llavsky’ s Igor Code
http://www.uni.aps.anl.gov/usaxs/

Anomalous Scattering
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Particle Size Distribution Curves From SAXS

All Methods are available in Jan llavsky’ s Igor Code
http://www.uni.aps.anl.gov/usaxs/

Unified Fit

Irena manual version August 2004
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Particle Size Distribution Curves From SAXS

All Methods are available in Jan llavsky’ s Igor Code
http://www.uni.aps.anl.gov/usaxs/

Sphere (or any thing you could imagine) Distributions

Irena manual, verzion August 2004
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Particle Size Distribution Curves From SAXS

All Methods are available in Jan llavsky’ s Igor Code
http://www.uni.aps.anl.gov/usaxs/

Maximum Entropy/Regularization Code (Jemian)

Irena manual, verzion August 2004
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