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Why use small-angle x-ray scattering?

+Compliment microscopy, diffraction, NMR, spectroscopy techniques.
Statistical description of structure is needed, mean particle size.

*In situ measurements are needed. Especially for biological and chemical systems,
stop-flow or flow through experiments, processing studies, deformation studies etc.

*Disordered structures and transitions between disorder and order, i.e. folding
processes, aggregation, polymer chain structure.

*Quantification of polydispersity.
*Measure thermodynamics, interaction parameter, critical phenomena.

*Quantify nanoscale orientation.



“Typical” SAXS Problems
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Small- and Wide-Angle X-ray
Scattering Measurements

SAXS : pmhole camera: 2-d detector at 1m from the sample

X-ray Source

L 3
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:ﬁ WAXS : pinhole geometry camera : image plate detector at
" 5cm from the sample RN et it

Scattering angle, 26, is typically 5-90°
Info :Crystal structure,orientation, amount.

Size probed is 0.05 to 2.0nm
%5)

0 2D measurements are useful in S
ni " : X-ray Scatteri
determining both size and relative ray Scattering

(TD)

26 WAXS

(MD)

. Scattering angle,2 is typically < 3°
Incident x-rays Info: Crystal size, aggregate stiucture

orientation of various structural wavelength \ Maifietss Al o) iy i creatton

Size probed is 2nm to100nm

components



Intensity [a.u.]

The SAXS Experiment
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Collimation for Small-Angles is a Technical Hurdle

Use Goebel Mirrors
or Fresnel Zone Plate
Optics (diffraction based)



Two Alternative Camera Geometries Offer Improvement in Flux
or Improvement in Angular Resolution with Smearing of Scattering Pattern

Sample - Detector = 41.4 cm

o)

Block collimation system
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Sample holder

www.chemie.uni-bayreuth.de/pci/de/forschung/22427/saxs1.gif
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www.esrf.eu/UsersAndScience/Experiments/SoftMatter/IDO2/BeamlineLayout/EH1



Nanostructure from Small Angle X-ray Scattering
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3-Techinques are similar
SALS/LS, SANS, SAXS

A=0.5um A=0.1-0.5nm
For light For x-ray/neutron

Contrast: index of refraction, electron density,
neutron cross section



30-meter

J' SANS



Small-Angle X-ray Scattering, (SAXS)

-Collimated Beam
-Monochromatic Beam
-Coherent Beam
-Focusing Optics Perhaps

[] sample

_
mirrors = 2D

Si (111) |
collimating
crystals monochromator

detector —
(photodiode ion
or CCD) 20 chamber
Si (111)

I analyzer IO

crystals

We Get Intensity as
A Function of Angle
(or radial position)

-Longer Distance for Lower Angle (Pinhole)
-Large Dynamic Range Detector
-Evacuated Flight Path

-Extend Angle Range with Multiple SDD'’s

33D

Si(111) undulator

2D slits



Small-Angle X-ray Scattering at Synchrotrons

ESRF we use ID2 with T. Naryanan, APS 32-ID_with Jan llavsky
(9 other SAXS instruments at APS, Chicago)

Much easier to get time on smaller synchrotrons
We use SSRL (Stanford); CHESS (Cornell), CAMD (LSU)




The 2-d pattern can be analyzed for orientation (azimuthal
angle y) or for structure I(q) (radial angle 0).

A Bafng ef al / Polymer $4 (2003) 1103-1775 1107

Fig. 2. 2.D SAXS ((a) and (c)) and WAXS ((b) and () patterns for onentation MN (Jeft face), NT (right face) and MT (top face) of films HD6O3 ((2) and (b))
and HDG12 ((c) and (d)). The numbers in the paresthesis represent the reflections from the following: (a) clay tactoids, (b) modified/intercalated clay (002)
plane, (c) unmodified clay (002) plane, (d) clay (110) and (020) plane, () polymer crystalline lamellar, (f) polymer enit cell (110) plane (inner ring) and (200)
plane (owter nng).
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Time Resolution at APS/ESRF

Time Resolution 10 ms (Synchrotron Facility)

For Flow Through Experiment (Flame/Liquid/
Gas Flow) can be 10 us

Size Resolution 1 A to 1 um



Nano-particles are unstable and form far from equilibrium.

T ~ 2500°K
Time ~ 100 ms
O, ~1x 100

d,~5 to 50 nm



2-Closely related Techniques:

ASAXS- Anomalous x-ray scattering, vary
wavelength leads to change in contrast due to the complex
absorption spectra, requires synchrotron source.

GISAXS- Promise of high resolution spectra for
surface structures but there are technical issues with data
interpretation.
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Chopra S, Beaucage G, in preparation
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SAXS Modeling

Assumption: Binary interference pattern.




SAXS Modeling

Assumption: Binary interference pattern.

Structure Factor, $(q)

Form Factor, F(q)

A $(q) F*(q)

(q)



Four Methods of SAXS Modeling

|) Calculate the amplitude for specific structures.
Viable for simple structures, spheres, rods, core/shell models
Intensity for some cases Gaussian coil.

2) Develop general laws for scattering.
Viable for all structures, analysis depends on specific models. Most useful for
systems with low degrees of structural regularity (unfolded states or aggregates).

3) Calculate the pair distance distribution function PDDF from the scattered
intensity. Analyze the PDDF using models and general rules.
Viable when a wide range of scattering vector, q, is available or valid
extrapolations can be made to high and low q. A direct link between calculated =~ =
structural features and the observed features in the data is lost. - el «

4) Calculate the PDDF using structural models (spheres).
Use an inverse Fourier transform to calculate the scattered intensity and a least-
squares or other method to iterate the model parameters for a best fit.
Most useful for systems with a high degree of structural regularity (native state).




Four Methods of SAXS Modeling

/I) Calculate the amplitude for specific structures.

Viable for simple structures, spheres, rods, core/shell models
Intensity for some cases Gaussian coil.

2) Develop general laws for scattering.
Viable for all structures, analysis depends on specific models. Most useful for

Ksystems with low degrees of structural regularity (unfolded states or aggregates)/ “f;\ ;}_{,r \i
3) Calculate the pair distance distribution function PDDF from the scattered o~ 5%
intensity. Analyze the PDDF using models and general rules.
Viable when a wide range of scattering vector, q, is available or valid
extrapolations can be made to high and low gq. A direct link between calculated @ = =
structural features and the observed features in the data is lost. - I

4) Calculate the PDDF using structural models (spheres).

Use an inverse Fourier transform to calculate the scattered intensity and a least-
squares or other method to iterate the model parameters for a best fit.

Most useful for systems with a high degree of structural regularity (native state).




Debye Function

Ha)=(F(@)=Ve: [ () o arar

Assumptions:

) Centro-symmetric Particle
e—lq.OMk — COS(q ® OMk)

2) Random Orientation (translational & rotational symmetry)

singr

<cos(c7 OF)> = o




Debye Function

singr
I(q)= <F2(q)> =Vp? T Y (7) qrq 47r*dr
0
P, Electron Density

Yo (r) Characteristic Function, Correlation Function

6

Probability that at a distance “r” from a point in a
particle another particle can be found

)

Yo(r)= v

Average for translation and rotation



Debye Function @

Ha)=(F(@)=Ve: [ () o arar

Yo (r) Characteristic Function, Correlation Function

For simple objects such as a sphere we
can calculate the characteristic function

— T

V(r)= E(2R-r)2(41na+r)




Debye Function @

Ha)=(F(@)=Ve: [ () o arar

Yo (r) Characteristic Function, Correlation Function

For simple objects such as a sphere we
can calculate the characteristic function

yo(r)=‘7(r)=1— 3r 1 (rj

4 4R 16\ R

"
singR—gRcosgR

I(g)=Nn \3 (qR)3 /




—s— Sold sphere
Ig I(8), relative —+— Longrod
Flat disk

Figure 5. Scattering intensities and distance distribution functions of geometrical bodies.

Svergun DI, Koch MHJ Rep. Prog. Phys. 66 1735-1782 (2003)



Other direct calculations are possible for simple objects  1(g)=Nn.F*(q)S(q)
_ ,SiIngR—qRcosgR

Sphere F; ere q - 3
ph ( ) (q R)3
Si(gL)  sin’*(qL/2)
F¥(q)=2"292)_4
Rod (9) oL %
2 [ J(2qR
Disk Fz(q)_quz[l_ (qR ):I

Core an d Sh e" Sph ere ch& o (q) _ (Vsmu (psm-u ~ Psotvent )Fsphm ((I:/smn ) _VVcor; (psmu — Pcore )F Sphere (RCun' ))
Core ~ " Shell

) exp(—q2R§)+ g°R’ -1
(R)

Gaussian Polymer Chain 2(‘1 ) =

Core and Shell with Gaussian Chain
Attached

Pedersen ]S, Chapter 16 in Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter, Linder P, Zemb Th editors
North Holland Press (2002).



Scattering Function for Monodisperse Spheres

Rayleigh, 1914 z<q):9<;[8i“qR(‘ j:;‘ﬂ G = Nn,2
q
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The Debye (1947) Scattering Function for a Polymer Coil

Q= 2 (0—1+exp(-0))

Q=

100

10 |

-1

[u—y
T T T 171

Intensity (cm)
=
|
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0.001 0.01 0.1 1
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If you do not have a sphere or a Gaussian linear chain

There are some general rules for all structures

Guinier’s Law

Porod’s Law

Mass Fractal Scaling Laws
The Unified Function

With these tools we can build a scattering function
for any “random” structure



Binary Interference Yields Scattering Pattern.

I(q) ~ N ne2

n, Reflects the density of a
Point generating waves

N is total number of points

q = —sin(e/) d—2—7r~r

q

General scattering laws by which all scatters are governed
1) “Particles” have a size and
2) “Particles” have a surface.



Binary Interference Yields Scattering Pattern.

il

-Consider that an in-phase
wave scattered at angle 6 was
In phase with the incident
wave at the source of
scattering.

-This can occur for points
separated by r such that

Irl = 2n/]q|

) 4 . O
q=——SIn—

A



Binary Interference Yields Scattering Pattern.

\\ -For high 8, ris small
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Binary Interference Yields Scattering Pattern.

-For small 6, ris large




Binary Interference Yields Scattering Pattern.

-For small 6, ris large

We can consider just the vector “r”, and for isotropic

samples we do not need to consider direction.



For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.
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Rather than random placement of the vector we can hold
The vector fixed and rotate the particle
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.

Rather than random placement of the vector we can hold
The vector fixed and rotate the particle



The particle becomes a probability density function
from the center of mass.

That follows a Gaussian Distribution.

—3r*

2
4R,

p(r)=exp



The particle becomes a probability density function
from the center of mass.

Whose Fourier Transform is Guinier’s Law.

= = I(q)=G ——8f
p(r) exp R ; (q) exp( 3 )

G = Nn°

€




Guinier’s Law Pertains to a Particle with no Surface.

= = I(q)=G ——=
p(r) exp R ; (q) exp( 3 )

G = Nn’

Any “Particle” can be approximated as a Gaussian
probability distribution. (Problem: finite limit to size.)
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Guinier’'s Law can be thought of as the
First Premise of Scattering:

All “Particles” have a finite size
reflected by the radius of gyration.



The Debye Scattering Function for a Polymer Cail

Q= 2 (0—1+exp(-0))

Q 100E
10;
<< P
For gR, 1 =
< E
I N S -
R IMPTIRE B
E
o) q'R’ 0.01
I(g)=1-=+ ...=exp —= :
(@) =1-3 773 ;
0.001 =gt e
0.001 0.01 0.1 1

Guinier’s Law!



At the other extreme consider a surface.

I(q) ~ N r]e2

n, Reflects the density of a
Point generating waves

N is total number of points




I(q) ~ N r]e2

n, Reflects the density of a
Point generating waves

N is total number of points

At the other extreme we consider a surface.

The only location for contrast between phases is
at the interface (for every vector r there is a vector r/2)

I 4t ,

<> ne:3r




I(q) ~ N r]e2

n, Reflects the density of a
Point generating waves

N is total number of points

At the other extreme we consider a surface.
We can fill the interface with spheres of size r

I N=S(u?) n =%

<> ‘ 3




Porod’s Law can be thought of as the
Second Premise of Scattering:

All “Particles” have a surface reflected by S/V.
(d, = (S/V)7)

S
, (s Yam?) 168w 2mﬁ(v)
I(q) ~ Nn, ~| — ~ =

3

tr 9 vqg*

N = S/(rr2)




For a Rough Surface: 2<d <3
(This Function decays to Porod’s Law at small sizes)

2

3
I(g) ~ Nn; ~( 5 LU Srod =
res 3 qg

S Amr

N ~

s I © 3




Sphere Function

sin gR — gR cos qR_
(9R)

I(q)=9G

For gR >> 1

<singR>=>0
<cos?qgR> => 1/3

I(q) = Porod’s Law for a Sphere!



General Laws for Scattering

Mass Fractal Power-Law

A) Rod



General Laws for Scattering

B) Disk



General Laws for Scattering

Mass Fractal Power-Law

C) Generic Mass Fractal




First and Second Premise of Scattering
Incorporated in the Unified Function
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Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering, Beaucage, G,
J. Appl. Cryst. 29 7171-728 (1995)
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General Laws for Scattering

Unified Function

I(q) = Gexp (—¢°R%/3) + Blerf (qR,/6'*))’ /a) One Structural Level

I(q) ~ Gexp(—¢°R2/3)
+ Bexp (—* R /3)[erf (gR,/6')T /)"

1 12 133 s o Two Structural Levels
+ G,exp(~q'R!/3) + B, ([erf (gR, /6" /q)"

1g) = 3 (Giexp ('R /3) + B, exp (~a°R2, /3)

i=1

“n” Structural Levels

x {[erf (gkR, /6" ) /)" ).

Beaucage G J.Appl. Cryst. 28 717-728 (1995).



General Laws for Scattering

Unified Function

100 100
10
&g >
a 1 % 10 3
& E  f
- o -
g a g | 1
3 =
7} 1
3 0.01 73' 3
< C
0,001 I
0.1
0.0001
0.001 0.01 0.1 1 0.001 .
at’ 1)
_ ) ) ) Fig. 10. Log-log plot of Debye equation (Q) and equation (24) (solid
Fig. 11. Calculated scattering (O) from polydisperse spheres with Porod line). For the Debye equation, R; =50 A and A =100 cm ~". For
surfaces (power law — 4). The solid line follows equation (24) with the unified equation, (24), all parameters are fixed. R =50 A,
R, =39.495 A as calculated and P=4, G=100 cm ~ ' (fixed in the G=100 cm™', P=2 (the Debye etzquation represents a mass fractal
sphere calculation) and B =0.000 127 52 from Porod's law. with d; = 2) and B=0.08 =2G/R} from equation (30).

Beaucage G J.Appl. Cryst. 28 717-728 (1995).



Unified Function

Calculated Intensity

Fig. 12. Calculated scattering curve for an ellipsoid of revolution with a
sphenical shell of Jower electron density, 0.36 of core, with
major : minor axis ratio of 4:1 and minor axis of R=50 A and
60 A for the core and shell, respectively. Equation (24) is calculated
using Ry =879, G=100cm ™", P=491 and B=199 x 10~ *
The mismatch at g=0.07 A ~ ' is due to a residual Founer peak that
has not been averaged out and that would normally not appear in
experimental data for a diffuse interface.

Calculated Intensity
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General Laws for Scattering
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Fig. 13, Calculated scattering curve [Guinier & Foumet, 1955, p. 19,

equation (33)] from randomly oriented rods of diameter 40 A and
length 800 A (+). /(0) is fixed at 100, The calculated scattering curve
using equation (28) is shown by the bold line, and G=100,
R,=2314 A, P=1, B=0393, Ryp= =173 A, G,=0.111,
B,=6.25x 10~ % and P,=4 as discussed in the text. High-g
oscillations in the + curve are due to poor averaging in the
calculation.”

Beaucage G J.Appl. Cryst. 28 717-728 (1995).
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Fig. 14. Calculated scattering curve [Guinier & Foumet, 1955, p. 19,
equation (33)] from randomly oriented disc-like lamellae of thickness
40 A and diameter 800 A (+). A0) is fixed at 100, The calculated
scattering curve using equation (28) is shown by the bold line, and
G=100, R,=283.1 A, P=2, B=125x 10 °, Rap=R,=20 A,
G,=2.78 x 10 * B,=156 x 10~ “and P, =4 as discussed in the

text, High-¢ oscillations in the + curve are due 1o poor averaging in
the calculation,
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Fig. 12. Calculated scattering curve for an ellipsoid of revolution with a
sphenical shell of Jower electron density, 036 of core, with
major : minor axis ratio of 4:1 and minor axis of R=50 A and
60 A for the core and shell, respectively. Equation (24) is calculated
using Ry =879, G=100cm ™", P=491 and B=199 x 10~ *
The mismatch at g=0.07 A ~ ' is due to a residual Founer peak that
has not been averaged out and that would normally not appear in
experimental data for a diffuse interface.
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Fig. 13. Calculated scattering curve [Guinier & Foumet, 1955, ,K 19,
and

equation (33)] from randomly oriented rods of diameter 40

length 800 A (+). A0) is fixed at 100, The calculated scattering curve
using equation (28) is shown by the bold line, and G=100,
R,=2314 A, P=1, B=0393, Rew=R;=173 A, G,=0.111,
B,=6.25x 10~ " and P,=4 as discussed in the text. High-g
oscillations in the + curve are due to poor averaging in the
calculation.”

Beaucage G J.Appl. Cryst. 28 717-728 (1995).
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Fig. 14. Calculated scattering curve [Guinier & Foumet, 1955, p. 19,
cquation (33)] from randomly oriented disc-like lamellae of thickness
40 A and diameter 800 A (+). K0) is fixed at 100, The calculated
scattering curve using equation (28) is shown bx the bold line, and
G=100, R,=283.1 A, P=2, B=125x 10 °, Rap=R,=20 A,
G,=278 x 10 * B,=156 x 10 “and P, =4 as discussed in the
text. High-¢ oscillations in the + curve are due 1o poor averaging in
the calculation,
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Structure of Flame Made Silica Nanoparticles
By Ultra-Small-Angle X-ray Scattering
Kammler/Beaucage Langmuir 2004 20 1915-1921
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Polydispersity Index, PDI
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Particle size distributions from small-angle scattering
using global scattering functions, Beaucage, Kammler,
Pratsinis J. Appl. Cryst. 37 523-535 (2004).

Polydisperse Particles
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Beaucage G, Small-angle Scattering from Polymeric
Mass Fractals of Arbitrary Mass-Fractal Dimension, J.
Appl. Cryst. 29 134-146 (1996).
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Large Scale (low-q) Agglomerates
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Small-scale Crystallographic Structure
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Branched Aggregates
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Figure 1. An USAXS pattern of agglomerated fumed silica
(Aerosil 200, Degussa AG). The scattering data (circles) are
well described by the global unified fit equation (solid line).
Furthermore, three Porod regimes (dashed line, dashed —dotted
line, and long—short-dashed line) are shown together with the
Guinier regimes (dotted line and dashed—double-dotted line).
The appearance of the second Porod (weak power-law) regime
(O.OO(EJA" < g = 001 A proves that these particles are
WOmerated and mass fractal as shown :{ the TEM insert.

e gray shaded area indicates the integral part for determi-
nation of ds.

| © Daa

§
Giohal Liniad Fil,
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Figure 2. A USAXS plot of a nonagg,lomrated fumed silica
(Si-B 32) made in a 17 g/h sustained premixed flame reactor
(ref 18). The scattering data (circles) are well described by the
global unified fit equation (solid line). Furthermore, Porod
regimes (dashed line and long—short-dashed line) are shown
together with the Guinier regime (dotted line). The lack of the
Porod (weak power-law) regime at 0.0005 A" < g < 0.005 A~
indicates that the particles are nonagglomerated as shown by
the TEM insert. Tﬂe gray shaded area indicates the integral
part for determination of dj;s.

Porod’s Law
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Figure 3. Comparison of dysand deer for agglomerated silica
owders made in our vapor-or liquid-fed flame aerosol reactors

refs 18 and 20—-22) and those of oommerdall{ available powders

(Aerosil 200 and Aerosil 380, Degussa AG).
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Figure 4. Comparison of dys and deer for various nonag-
§lomerated silica powders made in our vapor-fed (refs 18 and
9) and liquid-fed (ref 20) flame aerosol reactors.

Structure of flame made silica nanoparticles by ultra-snall-
angle x-ray scattering. Kammmler HK, Beaucage G,
Mueller R, Pratsinis SE Langmuir 20 1915-1921 (2004).



For Particles with Correlations
(Concentrated non-fractal)
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Figure 6. Demonstration of the effect of varying the packing factor "k” on
the scatiering pattern for the data of figure 4, Packing of the domains does
not affect the power-law scaling regime at high-q.



Branching in different systems

 Long Cham and Short Chain

* Model Branched Polymers (Stars, Hyperbranched, Dendrimers)

x ?& s

* Branching govemed by kinetics (nano scale aggregates)

o g 3o
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@ 5 Fractal dimensions (d,, d_.
degree of aggregation (z)

, ¢) and

F F )
< dp — Z~|—
dp

< R >
dmin

N R

-F ° F P = me = d_

< — p

O
ZNpc :pdf/dmin

d, ., should effect perturbations & dynamics, transport
electrical conductivity & a variety of important features.

Beaucage G, Determination of branch fraction and minimum dimension of frac. agg. Phys. Rev. E 70 031401 (2004).
Kulkarni, AS, Beaucage G, Quant. of Branching in Disor. Mats. J. Polym. Sci. Polym. Phys. 44 1395-1405 (2006).



Linear/Branched Polyethylene
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Beaucage, G.,
Determination of branch
fraction and minimum
dimension of mass-fractal
aggregates. Physical
Review E 2004, 70 (3).

Branching dimensions are obtained by combining local scattering laws



Printed Electronics Solar Cells

100 © —— Unified Fit (UC SAXS/USAXS Sachit Chopra)
Fractal Dimension 2.64 11(:)-1 I 3 _
Degree of Aggregation 47,600 - 10:2 B i
Primary Particle Diameter 43 A g 34 : :
Aggregate Diameter 368 A g w'r .
Minimum Dimension 1.14 E 137 : :
Connectivity dimension 2.32 10° s
Number of branches 13,200 1:]01: i |
Branch fraction 0.998 10-01.10001 H“ ‘;)..Iolol ool o 1
Meandering fraction 0.733 »
Branches in minimum path 27 i
Number per branch 3.6

]
+Cathode, I3~ + 2e7=> 3I
Platinum Coated

Beaucage G, Jonah E, Britton DA, Harting M, Aggregate structure and electrical

performance of printed silicon layers, in preparation (2010).



Summary:

Experimental Instrumentation
Specific Scattering Laws
General Scattering Laws
Guinier’'s Law

Porod’'s Law

Unified Scattering Function
Fractals

Branching

Polydispersity

Summary

A W% T ,w’*wz, .
f‘d}; i&@& & 20 mm HAB
i ‘*’?’E m‘%

Kammler HK, Beaucage G, Kohls DJ, Agashe N. Ilavsky J
J Appl. Phys. 97(2005) (Article 054309).






Particle Size Distributions
From SAXS



Particle Size Distribution Curves From SAXS ﬁ%‘

10” .

Intensity (sz/cm3)

Fig. 7. ASAXS scattering curve measured at 8308 eV on the fresh catalyst
(full line). The circles represent the separated scattering curve (KI(q))
obtained by subtracting the normalized scattering curves measured at 8308
and 8326eV. The dashed line represent the best fit to the data using the
approach described in the text.

Assumption Method

—
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0.04

P(r) (A™)
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Figz. 8. Nomalized mickel number particle size distibutions of catalysts
smtered at 650°C obtammed by ASAXS a: desenbed m the text. The
nickel particles are assumed to be sphencal with radius 7, but otherwise
no azsumption on the shape of the distnbution 15 made. The full line iz
the distibution of the fresh catalyst The short dash (longz dash) 15 the
distnbution after sintering for 5h (100h)

i) Assume a distribution function.
ii) Assume a scattering function (sphere)

ili) Minimize calculation

I(q)=9G

sin gR —gRcosgR
(4R)’




Particle Size Distribution Curves From SAXS ﬁ%‘

Assumption Method. i ﬂ
i) Assume a distribution function.
ii) Assume a scattering function (sphere)
iii) Minimize calculation

—_
12 - T T T 1 02 40 T T T T T T 40°$
g Z :
5 104 - s - S
o= =
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Z %, i o 201 420
< o0 o)
2w <
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(;.)" 0 T T T < 10 © 10 z
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Specific Ni surface area, SCup (m™/g) 0 200 40 60 80 100 >
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Fig. 11. Comparison of specific nickel surface areas derived from the
sulfur chemisorption capacity (Scap) and ASAXS (Tables 3 and 4). The Fig. 10. Average nickel particle radius (squares) and variance (circles) of
line is the result of a linear regression (Sasaxs = 1.4(0.2)Ss,, +0.6(0.8)). distribution determined by ASAXS after sintering at 650 °C.

where the number in parentheses is the standard deviation of the fit.
Sintering of Ni/Al,O, catalysts studied by
anomalous small angle x-ray scattering.
Rasmussen RB, Sehested J, Teunissen HT,

Not unique & Aopto oSl Aoy 455173 2004,
Based on assumptions
But widely used & easy to understand



Particle Size Distribution Curves From SAXS

B 4
. PD] =——¢%
Unified Method 1.62G
|) Global fit for B, and G. | o ) In(PDI)]"
ii) Calculate PDI (no assumptions & O=Mo. =T,
unique “solution”) "
amnm . . . 2
ili) Assume log-normal distribution = SR,
for 6, and distribution curve 3e!49”
(or other models) i —
iv) Data to unique solution e 1
Solution to distribution | I |
'T'E* 10° - .
i’ 10° 7
Advantages E ow'n -
Generic PDI (asymmetry also) E 10'F .
Global fit (mass fractal etc.) 107 - - ]
Direct link (data => dispersion) 10° - Iél”tps?wﬂ%P'y"ﬁ’t)
Use only available terms o —eraenes Aggre?géte B
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Particle Size Distribution Curves
from SAXS

PDIl/Maximum Entropy/TEM Counting
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Figure 2

USAXS data from aggregated nanoparticles (circles) showing unified fits (bold grey lines), primary particle Guinier and Porod functions at high g, the
intermediate mass fractal scaling regime and the aggregate Guinier regime (dashed lines). (a) Fumed titania sample with multi-grain particles and low-g
excess scattering due to soft agglomerates. dyis = 16.7 nm (corrected to 180 nm), PDI=301 (6, =1.35), R, =112 nm,d: = 1.99, 221 = l‘.’5,z,,. =226,Rp2 =
171 nm. From gas adsorption, dp = 162 nm. (b ) Fumed zirconia sample (Mueller ef al., 2004) with single-grain particles, as shown in the inset. The primary
particles for this sample have high polydispersity leading to the observed hump near the primary particle scattering regime. dy,g = 2.3 nm, PDI = 10.8
(6, =156), R,= 26.5 nm, d; = 2.90. From gas adsorption, 4, = 19.7 nm.

Particle size distributions from
small-angle scattering using global
scattering functions, Beaucage,
Kammler, Pratsinis J. Appl. Cryst. 37
523-535 (2004).
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Figure 6

Comparison of particle volume distributions for titania made without an
electric field using TEM (circles; Kammler er al., 2003), PDI (grey line)
and maximum entropy (black line). {a) 0.5g h™" [fractal dy,g = 12.1 nm,
PDI =3.52 (g, = 1.38), R, =8.90m, d; = 1.59, 22, = 1160, z, = 1343].
(b) 55gh™" (4, 37.2 nm, PDI = 200 (o, = 165), R, = 508 nm).
()11 g b [dy,s=468 nm ,PDI =155 (6, =161), R, =608 nm).(3 g h™"
is shown in Fig. 5.)




Particle Size Distribution Curves From SAXS

Maximum Entropy Method
i) Assume sphere or other
scattering function
if) Assume most random solution
ili) Use algorithm to
guess/compare/calculate
iv) Iterate till maximum “entropy”
Advantages
No assumption concerning

distribution function
No assumption for number of modes
Matches detail PSD’s well
Related Alternatives
Regularization

Particle size distributions from small-angle scattering
using global scattering functions, Beaucage, Kammler,
Pratsinis J. Appl. Cryst. 37 523-535 (2004).

| | | |

Intensity, a.u.

Non-Aggregated Titania
<+ Repeat on Same Titania

" === LUnified Function

107} Guinier Component

Porod Component

4 L " " FreTy L L
10
0.0001 0.001 0.01 0.l 1

q. A"

— T
3,1 g/ No Field
= TEM
First Measmrement
DI ancl Rg
s Maximum Entropy
Second Measurment
PDI anel Rg
Maximu

in

m Entropy

-
=

Scaled Volume Fraction

»
T

i \
0.0 " e e N S
= p 1 34 56 ] J 45 b} 3 A4S

" * 1 = : 3 ' 4
10 10 1) 10
Particle Diameter, A

Figure 5

3.1 gh~" titania. {a) Repeat USAXS runs on a non-aggregated titania
powder (Fig. 1). () Particle size distributions from TEM (circles;
Kammler eral., 2003), equations (1), (2), (17) and (18) wing PDI and R,
and using the maximum-entropy program of Jemian (Jemian eral., 1991).
Distribution curves are shifted vertically for clarity. dy,g =34.9nm, PDI =
144 (6, = 1.60), R, =442 nm.



Software for My Collaborators/Students



Particle Size Distribution Curves From SAXS

All Methods are available in Jan llavsky’s Igor Code
http://www.uni.aps.anl.gov/usaxs/

Anomalous Scattering
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Particle Size Distribution Curves From SAXS

All Methods are available in Jan llavsky’s Igor Code

http://www.uni.aps.anl.gov/usaxs/

Unified Fit
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Particle Size Distribution Curves From SAXS

All Methods are available in Jan llavsky’s Igor Code
http://www.uni.aps.anl.gov/usaxs/

Sphere (or any thing you could imagine) Distributions

Irena manual, version August 2004
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Particle Size Distribution Curves From SAXS

All Methods are available in Jan llavsky’s Igor Code
http://www.uni.aps.anl.gov/usaxs/

Maximum Entropy/Regularization Code (Jemian)
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