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Outcomes/Deliverables

* Understanding the structure of gels and polymer
aggregates/agglomerates using neutron
scattering (SANS), x-ray scattering (SAXS),
dynamic light scattering (DLS) and static light
scattering (SALS).

* Understand thermodynamic basis for polymer
aggregation, “phase-diagram”.

WHERE DISCOVERIES BEGIN

* Quantify gel structure, molecular weight between
crosslinks, crosslink functionality from SANS
measurement.
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WHERE DISCOVERIES BEGIN

Impact

Understand gel product lines for synthetic
control of properties.

Ability to design and control gel functional
properties.

Understand complex rheological phenomena
associated with polymer aggregation/
agglomeration.

Relate complex colloidal rheology to
chemistry and thermodynamic conditions.
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Prior work and project scope

e |dentify relationship between rheological enhancement,
polymer microstructure, and polymer chain chemistry in
water soluble polymers and gels.

* Develop scattering and rheological methods to characterize
aggregation and gelation in a range of systems including
water soluble and water borne polymers

* Model samples for gel structure/property studies

WHERE DISCOVERIES BEGIN

SANS on gels swollen in deuterated solvents

Modeling of SANS with Gel-Tensile Blob Model for
molecular weight between crosslinks, functionality and
thermodynamics of gels
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Couple rheology and GTB model SANS results
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National Science Foundation
WHERE DISCOVERIES BEGIN

Prior work and project scope

The molecular architecture of polymer aggregates/agglomerates and swollen
networks (gels) are not understood.

For gels, both the Flory-Rehner approach as well as the de Gennes c* model fail
to describe structures commonly observed with neutron scattering.

For aggregation of aqueous polymers the structure model or a "phase diagram”
model may be more appropriate to correlate aggregate/gel microstructure with
measured rheological properties

Design of consumer products based on macromolecular topology of these
materials is difficult in the absence of a viable structural model that agrees with
structural measurements using SANS.

We have proposed the Gel-Tensile Blob Model that can be used to describe
SANS measurements as well as to predict molecular weight between crosslinks,
branch structure, branch functionality and thermodynamic characteristics of
gels. A synthesis/structure/property relationship can be developed for these
materials using this approach.

The project can couple efforts using SANS, theory, dynamic light scattering and
rheology to develop a comprehensive understanding of gels, polymer aggregation
and agglomeration in rheologically complex fluids.
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Supplementary Material
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WHERE DISCOVERIES BEGIN

Innovation through Partnerships




National Science Foundation

WHERE DISCOVERIES BEGIN

‘““Gel Tensile Blob” (GTB) Model
1) Disinterspersion
Excluded Volume Expansion
2) Regions of High Topological Constraint Move Apart
Due to Bulk Volume Expansion and Limited by
Network Connectivity/Entanglements
3) Large Scale Structures are a Result, L ~ N,,, Q!

4) Tensile Blobs Describe the Local Structure & ~ kKT/f

Consider the equilibrium structure (Sequence is not known)

Sukumaran SK, Beaucage G A structural model for equilibrium
swollen networks Europhys. Lett. 59 714-720 (2002).

Panyukov S, Rubenstein M, Explanation of anomalous scaling of swollen
entangled chains Macromolecules 38 3511-3514 (2005).
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Model end-linked PDMS.

Fig. 9. L versus N&i"”o}. The straight line passes through the g
origin as predicted by equation (12).

At times L is larger than
the extended chain
between crosslinks!
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WHERE DISCOVERIES BEGIN
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Sukumaran SK, Beaucage G A structural model for equilibrium Sukumaran SK, Beaucage G, Mark JE, Viers B, Neutron scattering from
swollen networks Europhys. Lett. 59 714-720 (2002). equilbrium swollen networks Eur. Phys. J. E 18 29-36 (2005).
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WHERE DISCOVERIES BEGIN

Light and Neutron Scattering from a

Equilibrium Swollen Superabsorbant Hydrogel

P D DU B N0 S L) IR

10 O SALS in Water —

- A Saturated Salt Hydrogel A s

10‘2 - ] Saturated Salt HydrogelN | —

o B .

s 10k =

> L , |

E: 10°6 Gel Particles Bl
2 o3k C%ll
= .

S of Scattering

w10 B

10§ Excess Scattering” * =7

10—14 Y BT BT BT BT BT
10 100 10" 10 1 10° 10° 10

q (um)

Innovation through Partnerships



Why study microstructure?

For example: structure matters for Poly(ethylene) oxide (PEO)
drag reduction.

Aggregate Structure Fast pipeline transport

WHERE DISCOVERIES BEGIN

(Kalashnikov et al., Inzhenerno-Fizicheskii Zhurnal 1990)

National Science Foundation

PEO will yield greater improvement per unit mass because of its
aggregate structure.




Anomalous PEO Rheology

Molecular structure of PEO not consistent with that of isolated polymer chains.
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Work done in collabaration with Ron Larson, Youngsuk Heo, Bamin Khomani, Eric Shaqgfeh and
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Collective dynamics by means of dynamic
light scattering
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Special methods for non-ergodic samples: Pusey and van Megen, 1989
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Modifying aggregate structure: Magnesium sulfate
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WHERE DISCOVERIES BEGIN

Project Overview

The molecular architecture of polymer aggregates/agglomerates and swollen
networks (gels) are not understood.

For gels, both the Flory-Rehner approach as well as the de Gennes c* model
fail to describe structures commonly observed with neutron scattering.

For aggregation of aqueous polymers the structure model or a “phase diagram”
model may be more appropriate to correlate aggregate/gel microstructure with
measured rheological properties

Design of consumer products based on macromolecular topology of these
materials is difficult in the absence of a viable structural model that agrees
with structural measurements using SANS.

We have proposed the Gel-Tensile Blob Model that can be used to describe
SANS measurements as well as to predict molecular weight between
crosslinks, branch structure, branch functionality and thermodynamic
characteristics of gels. A synthesis/structure/property relationship can be
developed for these materials using this approach.

The project can couple efforts using SANS, theory, dynamic light scattering

and rheology to develop a comprehensive understanding of gels, polymer
aggregation and agglomeration in rheologically complex fluids.
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