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Synopsis 

Controlling the extent of crystalline orientation is of great interest in polymer processing.  

Orientation is effected by the choice of polymer, fabrication process, and processing conditions.  

Where high degrees of uniaxial orientation are required, the polymer is typically oriented in a 

solid state drawing process, where the polymer is stretched in a single direction at temperatures 

below the melting point.  During this process, pre-existing crystallites are transformed into rigid, 

fiber-like structures with large aspect ratios.  The presence of these rigid structures significantly 

enhances the moduli and break strength of the polymer.  This work presents a practical model 

that explains the structural transformation of crystallites into fiber-like structures and predicts 

physical properties based on the proposed volume fraction of fibers (ΦF).  A connection can then 
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be formed between the polymer’s analytic characteristics, processing conditions and the final 

engineering properties. 

 

Introduction 

Semi-crystalline polymers can be oriented to improve physical properties, such as the modulus 

and tensile yield and break strengths.  Several approaches have been proposed to explain the 

molecular transitions that enhance these properties, but none are related to the inherent properties 

of the polymer [1].  These transitional models include composites consisting of fibers of finite 

length [2, 3], crystalline blocks connected with inter-crystalline tie molecules, that when oriented 

form fibrillar structures [4], fibers whose aspect ratio increases during orientation [5], and 

elaborate hierarchical systems consisting of fibrous structures on several length scales [6].  To 

fully explain the structure-property relationship of oriented polymers, an adequate model must 

incorporate the major structural transitions that occur during the orientation process.  A 

mechanical model that relates the inherent properties of the polymer to the structural changes is 

valuable for understanding the characteristics of a polymer that relate to the enhancement in 

physical properties.  Such a model would be beneficial to a fundamental understanding of 

structure property relationships and for use in polymer development for producing oriented films 

with improved properties.  

 

Transformational Model 

Relating the Machine Direction Modulus to the Fiber Volume Fraction 

A three component system consisting of fibers and a matrix of both amorphous and non-fiber 

crystallites can be used to model drawn films.  The non-fiber crystalline phase consists of 



 
 

3 

lamellar stacks with low uniaxial orientation of the c-axis and no extended chains [7].  The fiber 

portion consists of both lamellae stacks with high uniaxial orientation of the c-axis and what few 

lamellae that have unraveled to form extended chains [7, 8-10].  The components of the fiber 

portion have a very large aspect ratio relative to those components of the non-fiber crystalline 

portion so that the two phases are assumed to be easily distinguishable, both morphologically 

and in terms of mechanical response.   

  

The sum of the fractions of the non-fiber crystalline and fiber components is equivalent to the 

percent crystallinity of the polymer, which is calculated by Equation (1): 
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Where ΦC is the volume fraction crystallinity of the polymer, ρ is the density of the polymer 

measured in a gradient column, ρa is the density of the amorphous polymer (0.885 g/cc) and ρc is 

the density of the crystalline polymer (1.00 g/cc) [11].  When Φc = 0, ρ = ρa and when Φc =1, ρ = 

ρc.  

 

Due to the presence of branching and defects, the amorphous phase is unable to crystallize and 

form fibrous structures, so only the polymer chains incorporated in the crystalline region 

construct the non-fiber crystalline and fiber components [7].  The crystalline volume fraction is 

then simply the sum of the volume fractions of the fiber and non-fiber crystalline phases. 
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Where ΦF is the volume fraction of fiber components and ΦNF is the volume fraction of non-fiber 

crystalline components 
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From fiber composite theory, the following relationship is used to calculate the machine 

direction modulus of a fiber composite system with fibers of an extremely large aspect ratio [12]: 
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Where E C,MD is the machine direction modulus of the composite, Ei, MD is the modulus of the ith 

component in the machine direction, and Φi is the volume fraction of the ith component. 

 

Halpin and Kardos [2] found that this model reasonable predicts the machine direction modulus 

of the composite with fibers of aspect ratios greater than 103.  By definition, Equation (3) is valid 

for systems containing fibers that are perfectly oriented in the machine direction, have an 

extremely large aspect ratio, and when no slippage occurs at the fiber-matrix interface.  For the 

case where the fiber aspect ratio is relatively small or interfacial slippage occurs, short fiber 

composite techniques such as the Halpin-Kardos [2], Halpin-Tsai [3], and shear-lag based [4, 5] 

theories could be considered. 

 

In applications of fiber composite theory to semi-crystalline polymers, the main issue is 

distinguishing which phase is the “fiber” and which is the “matrix”.  The simplest approach 

would be to attribute the crystalline region to the “fiber” and the amorphous region to the 

“matrix” [10].  This is because in highly drawn, high crystalline polymers, the crystalline phase 

is continuous throughout the sample, with the amorphous phase merely filling in the 

imperfections.  Moduli values between 240-345 GPa have been reported for the extended 

polyethylene chain [5, 6, 13-15] and moduli values reported in the literature for the amorphous 

region are of two to three orders of magnitude lower than that of the extended chain, and range 
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from 0.1-1 GPa [5, 6].  This means that at the elevated temperatures at which commercial 

drawing processes operate, the amorphous region serves merely as a flexible medium, facilitating 

the transformation of non-fiber crystallites into fibers.  Due to the very low modulus of 

amorphous polyethylene relative to crystalline polyethylene, the contribution of the amorphous 

component in the composite can be omitted to greatly simplify the model into a dynamic two 

component system consisting of fibers and non-fibrous crystallites transforming into fibers.   

 

Omitting the minor contribution from the amorphous region to the machine direction modulus, 

Equation (3) then becomes: 
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Substituting Equation (2) into Equation (4) provides: 
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Limiting Moduli of the Transitional Model 

As a polymer film is drawn, the modulus increases monotonically in draw ratio until failure due 

to the conversion of non-fiber crystallites into fibrous structures.  At failure, the entire non-fiber 

crystalline region has been converted into fibers, resulting in the highest practically obtainable 

modulus.  This concept is supported by Peterlin [6], who states that the fracture of the drawn 

sample in constant rate tensile experiments occurs almost instantaneously as soon as necking has 

transformed the whole sample into a fibrous structure.   

 

At this limiting condition, Equation (3) becomes: 
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This relationship provides a calculation of the machine direction modulus of the fiber, EF, MD, for 

a given polymer and sample type, which is assumed to be constant with draw ratio [5]. 

 

Substituting EF, MD calculated from Equation (6) into Equation (5), we obtain the following 

relationship between the machine direction modulus of a non-fiber crystalline/fiber composite 

with respect to the fiber volume fraction. 

)7()(
,

, FCNF

C

MAXMDC

FMDC
E

E
E !"!+##

$

%
&&
'

(

!
!=  

Where EC,MD is the machine direction modulus of the composite, EC,MD MAX is the machine 

direction modulus of the composite at the highest attainable draw ratio prior to failure, and ENF is 

the modulus of the non-fibrous crystalline component of the composite matrix. 

 

Relating the Transverse Direction Modulus to the Fiber Composition 

From fiber composite theory [12], the following relationship is used to calculate the transverse 

direction modulus of a composite system: 
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E C,TD is the transverse direction modulus of the composite, Ei is the modulus of the ith 

component and Φi is the volume fraction of the ith component. 

 

Utilizing Equations (2) and (8) and the previous arguments regarding the effects of the 

amorphous phase, an equation for the two component system of fibers and non-fiber crystallites 

is generated for the transverse direction modulus. 
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Based on the same assumptions used to derive Equation (6), the transverse direction fiber 

modulus, EF, TD, can be calculated by the following equation. 
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Substituting the EF, TD calculated from Equation (10) into Equation (9), the following relationship 

between the transverse direction modulus of a non-fiber crystallite/fiber composite with respect 

to the fiber volume fraction is derived. 
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Use of Fiber Composite Theory for Predicting Properties with Empirical Functions 

The characteristic draw ratio can be defined by the following equation for polymer films, 
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Where DR is the characteristic draw ratio, tdrawn is the thickness of the drawn film, and tundrawn is 

the thickness of the undrawn film. 

In the case of oriented polymer films, an  empirical exponential relationship has been reported 

between the machine direction modulus and the characteristic draw ratio [7], 
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MM and BM are constants that are specific to the polymer.  
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Empirically, the transverse direction modulus is logarithmically related to the characteristic draw 

ratio [7]. 

)14()ln(*, TDTDTDC
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MT and BT are constants that are specific to the polymer. 

 

These empirical equations can be coupled with the transitional model (Equations (5, 7, 11)) to 

predict both the machine and transverse direction moduli of the oriented film. 

 

Problems with a Simple Model 

The machine direction modulus of an oriented polymer film is proportional to the degree of 

crystallinity (including both fibrous and non-fibrous crystalline components) and lamellar 

thickness [7, 12, 16, 17].  At a specific draw ratio, EC,MD is primarily a function of molecular 

orientation and fraction of crystallinity [10] and not heavily dependent on molecular weight [7].  

Worth noting is that polymers with  higher number average molecular weights are able to be 

oriented to higher draw ratios, resulting in films with higher moduli values prior to the breaking 

of the specimen [7, 10, 18].  The reason why the higher molecular weight polymers can be drawn 

to higher ratios is likely due to this higher number of chain entanglements and the fewer number 

of chain ends.  The likelihood of the occurrence of a chain entanglement increases with 

molecular weight [10], which increases the probability of two chains becoming intertwined and 

unable to detangle without the application of an external force.  Lower molecular weight 

polymers also have more chain ends per unit volume, with the chain ends serving as a site for the 

initiation of the catastrophic failure of the composite [15].  These small imperfections could 

result in the failure of the film at the high tensile stress of the orientation process, considering the 



 
 

9 

fracture stress is proportional to the inverse square-root of the imperfection size from Griffith’s 

theory on failure mechanics [19].  The effects of the chain ends on the maximum draw ratio are 

amplified further in polymers with lower percent crystallinity.  The difference between the 

maximum draw ratios of polymers with the same degree of crystallinity, but different number 

average molecular weights, increases with respect to decreasing polymer percent crystallinity. 

 

Correlations between the polymers’ percent crystallinity and the transverse direction moduli are 

similar to those discussed for the machine direction moduli.  Polymers with higher percent 

crystallinity obtain the highest transverse direction moduli.    

 

Determining the Volume Fraction of Fibers from the Moduli of the Specimen 

The transition model indicates that the mechanical properties of polymer films are determined by 

ΦF, which is calculated by first combining Equations (7) and (13) for the machine direction: 
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For the transverse direction modulus, Equations (11) and (14) are combined to yield: 
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Equations (15) and (16) are then set equal to each other and the equation is solved for the fiber 

volume fraction in the composite. 

 

Discussion 
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This transition model is similar to that of Weeks and Porter [20] and Gibson, Davies, and Ward 

[4] (which utilized Cox’s shear lag theory [21]), but is improved in the sense that the effects of 

the orientation process on the modulus of the non-fiber crystalline component is incorporated 

into the model by allowing a transition to fibers.  In the case of Weeks and Porter’s sheath and 

core model [19], they neglect any changes in the morphology of the sheath.  When compared to 

the short fiber model of Halpin-Kardos [2] or the shear lag based models of Gibson, Davies, and 

Ward [4] and Barham and Arridge [5], knowledge of a finite aspect ratio of the fibers is 

necessary, while changes in the “matrix” of the composite are ignored.  In addition, once the 

fibers are formed, further drawing does little to enhance that fiber’s contribution to the composite 

[2].  The transition model is unique in that the enhancements in film properties are the direct 

result of both the increase in the volume fraction of fibers and the enhancements in the properties 

of the continuous phase.  This is a result of the process of forming additional fibers through the 

transformation of non-fiber crystallites into fibers.  Previous methods neglect changes in the 

matrix during the orientation process that significantly contribute to the physical properties of the 

composite.  This is overcome in the transitional model in a simple and usable way through 

incorporating two equations for the non-fiber crystalline modulus derived from the machine and 

transverse direction moduli (Equations (15) and (16)).  Film stiffening occurs from the 

transformation of the less rigid, non-fiber crystallites into fiber-like structures at low draw ratios, 

which leaves the stiffer non-fiber crystallites in the continuous phase and results in a matrix with 

overall higher moduli.    

 

The transitional model proposes that as films are oriented, the amount of non-fiber crystallites 

decrease due to their transformation into fibers, leaving the stiffer non-fiber crystallites that are 
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more resistant to transformation in the matrix.  This results in an increase in the modulus of the 

non-fiber crystalline phase and a decrease in the volume fraction of non-fiber crystallites with 

increasing characteristic draw ratio.  At low characteristic draw ratios, the less rigid non-fiber 

crystallites are easily converted to fiber-like structures, while extremely high characteristic draw 

ratios are needed to transform the stiffest of the non-fiber crystallites into fiber-like structures. 

 

Model for ΦF and Comparison with the Transitional Model 

While changes in the moduli of the transforming non-fiber crystallites are of definite interest, a 

deeper understanding of the dynamics regarding how the fibers are formed with respect to the 

changing draw ratios is of more importance.  These fiber structures have significantly higher 

moduli values [5-7, 13-15], and thus by Equation (4), play a larger role in the contribution to the 

physical properties of the specimen as their volume fraction increases with higher draw ratio.  

We can propose an activated rate law where ΦF, the volume fraction of fibers in the composite, is 

a function of draw down ratio. 

( ) )17()1(*exp* !"=" DRK
FoF

 

Where Φo is the amount of fibers present in the undrawn polymer and KF is the rate constant for 

the fiber formation process.  The value of such an analysis is to correlate values for Φo and KF to 

the characteristics of the polymers.   

 

The rate of fiber formation is heavily influenced by the entangled high molecular weight portion 

of the distribution, namely the breadth of the distribution and size of the higher molecular weight 

polymer chains.  Polymers with more entanglements have a greater interconnected network of 

crystallites and are more resistant to small perturbations and are generally characteristic 
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polymers with higher average molecular weights [10].   As a result, increasing the amount of 

entanglements within the polymer decreases the volume fraction of fibers at a given draw ratio as 

a result of molecular mobility restrictions by the higher viscosity.  At orientation temperatures 

below the melting point of the polymer, it may be difficult to produce fibrous structures in 

polymers with extremely high molecular weights (Mw > 1,000,000) by simple tensile drawing 

[10].  Branching also affects the process of fiber formation.  Low density and linear low density 

polyethylenes, both of which have high levels of long and/or short chain branches that form 

entanglements, typically can not for fibrous structures, even at elevated orientation temperatures 

[22].   For these same reasons, films produced with polymers having significant molecular 

entanglements will have lower volume fractions of fibers in an undrawn film.   

 

Increasing Mz+1 increases the volume fraction of fibers at a given draw ratio and increases the 

volume fraction of fibers in an undrawn film.  This characteristic is the direct result of the 

relaxation time being longer than the duration of the orientation process.  These polymer behave 

similarly in the extrusion process, where these chains retain more of the uniaxial orientation 

induced by the die.  In addition, increasing the breadth of the relaxation time spectrum by 

increasing the breadth of the high end of the molecular weight distribution, indicated by ET
 [23], 

decreases the volume fraction of fibers at a given draw ratio and decreases the rate at which the 

fibers are formed throughout the drawing process.   

 

Relating the Machine Direction Break Stress (σ*
C, MD) and Strain (ε*

C, MD) to the Volume 

Fraction of Fibers 
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From fiber composites [12], the following relationship is used to calculate the machine direction 

break stress: 
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Where σ*
C,MD = composite machine direction break stress, σ*

i = break stress of the ith component, 

and Φi = volume fraction of the ith component. 

 

Based on the earlier assumption that the amorphous region does not contribute significantly to 

the overall strength of the composite, relative to the crystalline region, Equation (20) simplifies 

to: 
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Substituting Equation (2) into Equation (21), the composite break strength is obtained in terms of 

the volume fractions of fiber-like structures present in the composite. 
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As with the moduli, a close relationship is seen between the percent crystallinity and the break 

stress of the polymers [10].   

 

From fiber composite theory, the machine direction break strain of a composite is [12]: 
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Where ε* C,MD is the composite machine direction break strain, ε* F is the break strain of the fiber, 

and ε*
NF is the break strain of the non-fiber crystallites at the break stress of the fiber. 
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For Equation (23), the composite will only deform to the extent that the fiber can elongate.  

Beyond this point, the fiber breaks and the composite fails due to the significantly lower break 

strength of the more flexible lamellar and amorphous regions [7].   

 

For oriented polymers, a deviation from this concept is observed at low fiber volume fractions 

[7].  For Equation (23) to be valid, the assumption must be made that perfect bonding exists 

between the components of the composite, in this case the fiber, non-fiber crystalline, and 

amorphous regions.  This means that no slippage can occur at the interface between the phases.  

The deviation from Equation (23) at low fiber volume fractions is likely the result of interfacial 

slippage between the few fibers that are present, the non-fiber crystalline and the amorphous 

regions.  In addition, the flexibility of the amorphous region dominates at lower draw ratios, 

allowing for more energy to be absorbed by this phase.  This would not be the case with highly 

drawn systems where the deformation of the amorphous region is significantly hindered by the 

presence of rigid fibrous structures.  At moderate characteristic draw ratios, an ample amount of 

fibers have been generated where they dominate the tensile properties and control the 

extensibility of the specimen.  Beyond this “critical volume fraction of fibers”, all of the samples 

produced from similar polymers [7] converge upon a uniform, very low machine direction break 

strain.  A relatively low machine direction break elongation is expected when the fibers 

generated by the drawing process dominate the tensile properties of the composite [7]. 

 

Conclusions 

This discussion has presented a model and empirical functions for understanding the effects of 

uniaxial drawing on various physical properties of semi-crystalline polymers.  The model 
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predicts the linear relationship between the moduli and break strength to the volume fraction of 

fibers of an infinitely long fiber composite.   

 

The model suggests that the machine direction modulus increases exponentially with respect to 

the characteristic draw ratio until all crystals are converted into fiber-like structures.  This 

translates to a linear relationship between the machine direction modulus and the volume fraction 

of fibers present in the structure.  The relationship between the machine direction modulus and 

the volume fraction of fibers follows fiber composite theory and is shown in Equation (3) 

 

The transverse direction modulus increases logarithmically with respect to draw ratio until all 

lamellae are converted into fiber structures.  This translates to a linear relationship between the 

transverse direction modulus and the inverse of the volume fraction of fibers.  The relationship 

between the transverse direction modulus and the volume fraction of fibers following fiber 

composite theory is shown in Equation (8).   

 

The machine direction break stress, increases exponentially with respect to the characteristic 

draw ratio until all crystals are converted into fiber structures, indicating a linear relationship 

between the machine direction break stress and the volume fraction of fibers present in the 

structure consistent with composite theory, Equation (21).  The machine direction break stress 

conforms to fiber composite theory, represented in Equation (23), after a critical volume fraction 

of fibers are generated.  Below this critical volume fraction of fibers, the break elongation is 

dominated by the less rigid non-fibrous crystallites and amorphous regions.  
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In addition, a relationship describing an activated process has been presented in Equation (17) 

that explains the process of formation of fibrous structures and relates the volume fraction of 

fibers to inherent characteristics of the polymer.  Such information could be utilized to 

synthesize new polymers that provide unique properties when oriented in the solid state. 



 
 

17 

References 

1. Breese, D. R., Beaucage, G., Current Opinions in Materials Science, submitted (2005). 

2. Halpin, J. C., Kardos, J. L., Journal of Applied Physics, 45, 5, 2235 (1972). 

3. Ashton, J. E. , Halpin, J. C., Petit, P. H., Primer on Composite Materials Analysis, Technomic, 

Stamford, Conn. (1969). 

4. Gibson, A. G., Davies, G. R., Ward, I. M., Polymer, 19, 683 (1978). 

5. Barham, P. J., Arridge, R. G. C., Journal of Polymer Science, Polymer Physics Edition, 

15, 1177 (1977). 

6. Peterlin, A., Advan. Chem. Ser., 142, 1 (1975). 

7. Breese, D. R., Masters of Science Thesis, University of Cincinnati (2005). 

8. Tagawa, T., Journal of Polymer Science, 18, 971, (1980). 

9. Matsumoto, T., Kawai, T., Maeda, H., Die Makromolekulare Chemie, 107, 250, (1967). 

10. Peacock, A. J., Handbook of Polyethylene Structures, Properties, and Applications, Marcel 

Dekker, Inc., 2000. 

11. Brandrup, J., Immergut, E. H., “Polymer Handbook”, John Wiley & Sons, Inc. (1966). 

12. Agarwal, B. D., Broutman, L. J., “Analysis and Performance of Fiber Composites”, John 

Wiley & Sons, Inc. (1990).  

13. Ward, I. M., Plastics and Rubber Processing and Applications, 4, 77 (1984). 

14. Karasawa, N., Dasgupta, S., Goddard, W. A., J. Phys. Chem., 95, 2260 (1991). 

15. Crist, Buckley.  Annual Review of Materials Science, 25, 295 (1995). 

16. Bassett, D. C., Carder, D. R., Philosophical Magazine, 28, 3, 535, (1973).  

17. Krigbaum, W. R., Roe, R. J., Smith, K. J., Polymer, 5, 3, 533, (1964). 

18. Kalb, B., Pennings, A. J., Journal of Material Science, 15, 2584, (1980). 



 
 

18 

19. Young, R. J., Lovell, P. A., Introduction to Polymers, Chapman & Hall, London, (1991). 

20. Weeks, N. E., Porter, R. S., Journal of Polymer Science, Polymer Physics Edition, 12, 635  

(1974). 

21. Cox, H. L., British Journal of Applied Physics,3, 72 (1952). 

22. Araimo, L, De Candia, F., Vittoria, V., Peterlin, A., Journal of Polymer Science, Polymer 

Physics Edition, 16, 2087 (1978). 

23. Shroff, R., Mavridis, H., Journal of Applied Polymer Science, 57, 1605 (1995). 

 

Table of Terms 

Term Definition Units 

ΦC volume fraction crystallinity of the polymer  

ρ density of the polymer g/cc 

ρa density of the amorphous polymer 0.885 g/cc [2] 

 ρc density of the crystalline polymer 1.00 g/cc [2] 

ΦF volume fraction of fiber components  

ΦNF volume fraction of non-fiber crystalline components  

E C,MD machine direction modulus of the composite GPa 

Ei, MD modulus of the ith component GPa 

Φi volume fraction of the ith component  

EF. MD modulus of the fiber component in the machine direction GPa 

ENF modulus of the non-fiber crystalline component GPa 

E C,MD Max 
machine direction modulus of the composite at the maximum 

machine direction orientation 
GPa 
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E C,TD transverse direction modulus of the composite GPa 

EF. TD modulus of the fiber component in the transverse direction GPa 

E C,TD Max 
transverse direction modulus of the composite at the maximum 

machine direction orientation 
GPa 

DR characteristic draw ratio  

tundrawn undrawn film gauge µm 

tdrawn drawn film gauge µm 

MMD modulus of undrawn film in the machine direction GPa 

BMD 
rate constant for machine direction modulus relationship to draw 

ratio 
 

MTD modulus of undrawn film in the transverse direction GPa 

BTD 
rate constant for transverse direction modulus relationship to 

draw ratio 
 

σ*
C,MD composite machine direction break stress GPa 

σ*
i break stress of the ith component GPa 

σ*
F break stress of the fiber component GPa 

σ*
NF break stress of the non-fiber crystalline component GPa 

ε*
C,MD composite machine direction break strain % 

ε*
F break strain of the fiber component % 

ε*
NF break strain of the non-fiber crystalline component % 

 


