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Handout I – Kinetic Theory of Gases and Classical Thermodynamics: Zeroth, First and Second Laws

(Gaskell Chapters 1-3)

BACKGROUND

General History

“A theory is the more impressive the greater the simplicity of its premises, the more different kinds of things it relates, and the more extended its area of applicability. Therefore the deep impression that classical thermodynamics made upon me. It is the only physical theory of universal content which I am convinced will never be overthrown, within the framework of applicability of its basic concepts.” Albert Einstein

· Thermodynamics gradually developed in the 18th and 19th centuries to improve the efficiency of steam engines. In 1712 Newcomen built the first steam engine to lift buckets of water out of a mine, leading to the idea of “mechanized power”.
It was understood that a steam engine essentially converts heat to mechanical work, but heat was not understood to be a form of energy! Eventually temperature was included as a variable, hence the name thermo-dynamics (for temperature + mechanical dynamics).
· By the early 20th century, it became the basic framework to understand the macroscopic behavior of matter.
Scope

Thermodynamics is the science of the effects of energy and energy exchange on the macroscopic behavior and properties of materials and systems. Thermodynamics permits:

1. Derivation of important relationships among various properties of a substance; 
2. Establishment of conditions for equilibrium within a system and conditions that give rise to spontaneous change.

· By macroscopic, we mean without any information about the microscopic (i.e., atomistic) nature of matter; instead of any treatment of the behavior of a system on an atomic scale, we define a few properties and an equation of state.
· Because thermodynamics is blind to what is inside a system, it cannot independently predict a path of a particular process nor its mechanism in a specific system; instead this information has to be obtained experimentally in terms of a thermodynamic frame work, or more recently, by quantum mechanical calculations “from the ground up”.
· The subjects of Thermodynamics and Kinetics – which are two important courses in Materials – are really just two different aspects on the study of matter, with one basic difference: time, an essential variable in Kinetics, is neither a direct nor an indirect variable in Thermodynamics. 
· While thermodynamics cannot tell us specifically just how fast equilibrium (of, say, a chemical reaction) can be approached. It does play a role in the mathematical description of the kinetics of a process as a driving force in a rate equation with a rate constant that are experimentally determined. 
 
Calculus for Thermodynamics

The study of classical thermodynamics relies heavily on multi-variable calculus. This is now reviewed.

Partial Derivatives

Consider the function:





The variation of z with respect to x at constant y is the partial derivative of z with respect to x holding y constant:




Likewise the variation of z with respect to y at constant x is:






The “Chain-Rule”

Another variable may be introduced into a partial differential. Consider a function




Here we want to introduce y into the differential :





The Total Differential

Consider the function z as a single-valued function of only the independent variables x and y: .

The total differential  is equal to the sum of the partial differentials:



Where




This change in z, dz, when passing from x and y to x+dx and y+dy is illustrated in Figure HI-1. Here, a and c are two infinitesimally distant points on the z-x-y surface, and a-b-c-d is an infinitesimal element of this surface obtained by planes parallel to the z-x ad z-y planes.

A total differential is exact or in-exact. Let  and .
 If exact, the following holds, which means the total differential is path-independent:




If in-exact, which means the total differential is path-dependent:
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Figure HI.1 - Illustration of change in z due to changes in x and y.


In this figure dz is . The slope of the line ab is the coefficient  and  is equal to this slope multiplied by dy. Likewise, the slope of line bc is the coefficient  and is .

· For such an infinitesimal change, it is immaterial which operation is considered first; we find the same result if we pass from a to d, then to c.
· We also note the inversion property, where:



There are certain manipulations of exact equations which can be deduced from this figure. If we, say, impose z as constant and move along a contour line of the elemental surface for constant z,




Since we have imposed z as constant, then we can say:




This can be written as the Triple Product Rule (also known as the Upstairs-Downstairs-Inside-Out formula):







Another manipulation is to introduce another independent variable w, in addition to z, that depends on x and y in a different manner than for z. We may impose the condition that w is constant and we obtain the Non-Natural Derivative:





The above equation states that, when we proceed upon the surface along a line of constant w, the change in z corresponding to a given infinitesimal change in x is the sum of two terms: the change in z, which would be caused by the same change in x alone, and the change in z caused by such a change in y as is necessary to keep w constant.

Finally, we have Equality of Mixed Derivatives, where the order of differentiation is immaterial:





It is important to note that the above manipulations were illustrated for a property (z) dependent on two independent variables (x and y). These manipulations are not limited to two independent variables but may be extended to any number of independent variables. For example, for the coefficient  we specify y and ni other independent variables held constant, i = 1,2,…:





Exact versus In-exact Differentials: If an exact differential is integrated from an initial set of values (say, x1 and y1) to a final set of values (say, x2 and y2), the result is dependent only on the limits and not on the integration path. If the variables have the same values at the beginning and end of integration over a complete, or closed cycle, the integral has a value of zero for the exact differential. This is true regardless of the integration path in the complete cycle:


.


Where signifies a closed cycle of integration. 

On the other hand, if the integration is path-dependent, then:





The Perfect Differential

Often in thermodynamics we consider expressions of the form, which are functions of the same dependent variable :




In the above equation,  represents an infinitesimal quantity, and   and  are different functions of the same differential variables .

Differential  may or may not be an exact or total differential. However if  is a perfect differential of function z, then





If such a function z exists, then:




And




The equality  is a necessary and sufficient condition that z is a perfect differential. Suppose we wish to integrate the total change in z, Δz, from state x1, y1 to x2, y2. If z is a perfect differential, then, without specification of the path take:





If z is, however, not a perfect differential, the path x1, y1 to x2, y2  has to be specified and (in thermodynamics) it is not considered a property of the system under consideration. The lower case symbol d (as in dz) is reserved for the perfect differential, where as the lower case Greek delta, ,  (as in) is reserved for the path-dependent infinitesimal properties.







KINETIC THEORY OF GASES (KTG)

Key variables in thermodynamics, such as temperature and pressure among others, can be understood in relatively simple terms by postulating that gases consists of a large number of very small, elastic particles moving in all directions.

· Such a theory at a minimum permits a co-ordination of various empirical laws of gaseous behavior.
· It also provides the basis for statistical thermodynamics, which is a more advanced attempt to explain, if not predict, key thermodynamic parameters by consideration of details at the microscopic level.

History

Development of the equation of state for an ideal gas as a function of just two independent variables; i.e., 





is rooted in empirical observation that began in the 1600’s. We now review the series of gas laws developed historically that lead to this equation of state:

1. Boyle’s Law (1660) At constant temperature, the pressure of a given mass of gas is inversely proportional to its volume:



Or





2. Charles’ Law (1787) At constant pressure, the volume of a given mass of gas is proportional to its temperature; ultimately at constant volume, the pressure is proportional to its temperature:




Or




Alternately, we have:






3. Gar-Lussac’s Law (1802) The coefficient of thermal expansion of a gas is essentially constant with temperature and is independent of the nature of the gas:




Or




Where α is the coefficient of thermal expansion, and t is temperature on an arbitrary scale (e.g., Celcius). 

· Gay-Lussac first obtained a value of  α = 1/267. This was later revised by Regnault, based on improved experimentation, to 1/273.15.
· It was observed that all gases (even those with high boiling points) obeyed these two laws as pressure decreased.

A finite coefficient of thermal expansion at low temperatures is particularly important. This sets a limit on thermal contraction, since volume cannot become negative, but only to become zero volume. At t = -273.15, the volume of a gas is finally zero for a constant α! 

Since the volume of a gas cannot be negative, this sets a lower (absolute) limit on temperature, as -273.15°C, below which, volume would be negative, hence the Absolute Temperature Scale (:





4. Avagadro’s Hypothesis (1811) Under fixed conditions of temperature and pressure, equal volumes of gas must contain the same number of particles.

5. Henry’s Law (1803) The mass of a gas dissolved by a given mass of a liquid is directly proportional to the pressure of the gas. This law is important in Solution Thermodynamics (Gaskell Chapter 6).

6. Dalton’s Law of Partial Pressures (1805) The total pressure of a mixture of non-reactive gases is the sum of the partial pressures of the individual gases. When two or more gases that don’t react are mixed in a volume, each exerts the same pressure that it would if it alone occupied the volume:





7. Graham’s Law of Diffusion (1829) The relative rates of diffusion of different gases are inversely proportional to the square root of their densities.

Development of the Equation of State of An Ideal Gas

We can derive the equation of state of the ideal gas relating P, V and T in two ways: The first (1) is by employing these laws directly, and the second (2) is by obtaining partial derivatives from these laws, which are then related from the fundamental properties of partial derivatives discussed earlier.

1. We first standardize pressure (say, Po = 1 atm) in Boyle’s law:





	Then we standardize temperature to To = 273.15 in Charles’ law

 	And continuing with Po, we have:





	Combination of these two equations gives:





Avogadro’s hypothesized that one mole of any ideal gas at 0°C, 1 atm (i.e., STP) consists of 22.414 liters. So this allows evaluation of constant C:





where R is the Universal Gas Constant. It is independent of the gas under consideration as long as it is ideal.

2. From Boyle’s Law (), we have:





	From Charles’ Law (for a constant volume, ), we have:





Assuming for function  that the total derivative applies:











This result is the same as from earlier, with  for the standard conditions of Po, To and Vo. Thus, we have the Equation of State of the ideal gas:





But, we can go further – while equal volumes of gases under the same conditions of temperature and pressure contain the same number of molecules, independent of the nature of the gas, just what is this number? Loschmidt (1861) determined via the theoretical viscosity deduced from the Kinetic Theory of Gases that 1 cm3 of a gas at 1 atm contains 2.6872 10-19 molecules. In our Universal Gas Law, volume at STP is 22.414 liters = 22,414 cm3, thus the number of molecules must be:

22,415 cm3 x 2.6872 10-19 molecules/cm3 = 6.023 1023 molecules. 

This is Avogadro’s Number, NA. So, we can now restate the Universal Gas Law as:





Here, n is the number of moles comprising volume V of gas at temperature T and pressure P. (Attention: later in derivation of pressure, etc, n is number of particles per volume!) 


Postulates for the KTG (Kinetic Theory of Gases)

There are basically three postulates comprising KTG:

1. A gas consists of a large number of molecules that collide with each other and with the walls of the container vessel in an elastic manner (think: ping-pong, not rubber balls!).
2. Molecules in a gas are separated by very great distances, so that the size of the molecules and their collective volume can be ignored relative to the volume of the vessel (think: pin-points).
3. Molecules in a gas are in continuous movement, possessing kinetic energy that increases in proportion to temperature (think: random movement that increases with heat).




Explanation of Pressure by KTG

Consider a specific gas molecule within a box of side length L. In Cartesian co-ordinates, axes x, y and z always align with the three edges of the box, as shown in Figure HI.2. 



[image: ]

Figure HI.2 - Position and velocity co-ordinates of a gas molecule.


The velocity (in 3-D) of this particle c having mass m may be resolved into x, y and z components u, v and w such that:





The molecule in our idealized model experiences perfect elastic collisions with the side of the box – the angle of reflection will equal the angle of incidence, and the component of velocity normal to the wall will change in sign but not magnitude. 

The velocity component x before impact becomes –x after impact, so that the momentum changes from +mx to –mx owing to this change in direction. The absolute value of the momentum change in the x-direction is (in units of ):





Similarly, the rate of change of our single molecule hitting perpendicular to the other two directions will be  for the y- and z-directions, respectively.

The number of impacts per second (i.e., collision rate) on the walls perpendicular to the x-, y- and z-directions, respectively:





The rate of change of momentum in each of the three directions x, y and z are, respectively, in units of mass x length/time2 (such as g cm/s2 = 1 dyne) is:





Then the total rate of change from the impact of a single molecule with all six walls of the box is (in dynes):





According to Newton, the rate of change of momentum is the active force. For a single molecule:





For n molecules (per unit volume) it is:





Here, c1, c2, …cn are the velocities of the individual molecules. The mean square velocity (which is the average of the square of the velocities) is:





Thus, the total force due to n molecules/unit volume is (in dynes):





Since the total wall area is 6L2, the pressure, defined as force per area is (in dynes/cm2):





The mean square velocity  is often referred to as C2, so that is the root mean square velocity.

Some key deductions:

1.  The total translational kinetic energy () of the nL3 molecules is:







2. Maxwell (1860) stated “ the mean kinetic energies of the molecules of all gases are the same at constant temperature”. Thus, if we assume:




And setting






This is a demonstration of Boyle’s Law!


3. Since the kinetic energies of different gas molecules are obviously additive, then for a mixture of gases:





This is in accord with Dalton’s Law of Partial Pressures!

4. Finally, if we substitute  into this equation, we get (where  is the gas density):





In this equation:

 






 Since partial pressures are additive, we have for Gas i in a mixture of gases:




5. These last two equations relate gas pressure to the number, mass and velocity of the particles. This is validation of Graham’s Law in as much as  is really gas density. If the rate at which a gas diffuses should be proportional to the speed of the molecules, for two gases with different diffusion rates D1 and D2, we can write a  proportionality between speed and diffusivity. For any two gases (say, 1 and 2) we may write (where MW is the molecular weight ):







6. If these two gases have the same pressure  , and occupy the same volume , then  ,and since, at the same temperature, they have the same kinetic energies  ,therefore ! This is validation of Avogadro’s Law that for any two gases of the same P & T, equal volumes must have equal number of molecules.

Explanation of Temperature by KTG

Earlier we had; if we postulate (Maxwell) that T is proportional to the mean kinetic energy , we can write, where k is a proportionality constant that is universal for all gases:




· If pressure is maintained constant (and with n & k constant):




This is confirmation of Gay-Lussac’s Law!

· The essence of the Mechanical Theory of Heat is that heat is manifested by molecular motion; the conversion of work into heat may be regarded as conversion of motion on a macroscopic scale to motion on a molecular scale!

Since , we may write (per mole):




Or


 

This states that temperature is the direct measure of the translation kinetic energy of a mole of (monatomic) gas.

Mean Velocity

The molecules of a gas do not at all move with the same speed. Because of frequent collisions there is a continual interchange of momentum between molecules; hence their velocity will vary.

Maxwell (1860) using the theory of probability, gave the Law of Distribution of Molecular Velocities:







The LHS is approximately the fraction of the total number of molecules n  having a particular velocity c. By specifying molecular weight (MW) and T, this fraction can be determined (not derived here). The result is shown in Figure HI.3:
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Figure HI.3 - Maxwell’s Law of Distribution of Molecular Velocities ().


· The maximum of the curve is the most probable velocity, which is possessed by more molecules than any other velocity. This (maximum) is found from Maxwell’s distribution of velocity equation by setting its differential to zero, in which case:





· The average (or mean) velocity  is defined:





	This is also derived from Maxwell’s equation to give:







· The ratio of the mean velocity to the most probable velocity is: 

· The ratio of the root mean square mean velocity to the mean velocity is:





· It is important to note that, while the majority of the molecules have speeds in the vicinity of the mean or most probable velocities, there are always some at very low and very high speeds!


· As temperature increases, the curve flattens out and shifts to the RHS. The flattening of the maximum indicates a wider distribution of velocities, with a pronounced increase in the number of molecules possessing higher speeds than the average. To wit – the total fraction of molecules having speeds equal to or greater than, say, at A is determined by the area under the curve from A to infinity. This area increases quickly as temperature increases.

The Barometric Formula

A very important insight is gained by relating kinetic energy to potential energy, leading to the famous Boltzmann equation indicating an exponential effect of temperature on many properties, such as the exponential dependency of reaction rates on temperature.

Consider a column of the earth’s atmosphere of height h of unit cross-sectional area.
The pressure is  and  at height :





But  from the Ideal Gas Law, so:





If we integrate from h = 0 (where ) to height h, we get:





Or, if we re-arrange:





This assumes g is a constant (i.e., h is relatively small compared to the diameter of the earth). 

We may re-arrange this equation in terms of gas concentrations n (at h) and no (at h=0): 





In this equation, Ep and ep are the gravitation potential energy per mole and per molecule, respectively.

We may now re-write this equation as the Boltzmann Equation:



Here, n1 is the number of molecules in a given volume in any specified energy State 1 and n2 is the number in the equivalent volume in State 2, where the potential energy E per mole is excess of that in State 1 and both states are at the same temperature.


Mean Free Path and Collision Diameter

The mean free path is the average distance a molecule travels between two successive collisions. This depends on the number of molecules in a given volume and a property of the molecules known as the collision diameter. Figure HI.4 shows the collision diameter  as the distance between the centers of two molecules at the point of closest approach.	
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Figure HI.4 - Collision diameter .


Even as gas molecules collide with the walls of a vessel – giving rise to pressure – they also collide with each other.

In a simplistic treatment, one gas molecule can be seen to sweep out a (collision) path of diameter , where d is the diameter of the molecule. Figure HI.5 illustrates this collision.

[image: ]
Figure HI.5 – Molecular collision path of a molecular collision.


Different values of relative speed , 0 and  are illustrated in Figure HI.6.


[image: ]
Figure HI.6 - Relative speeds: (a) Head-on collision at ; (b) Grazing collision at zero speed and (c) Right angle collision at .


Consider two molecules A and B moving at the average molecular velocity  , but at angle  as shown in Figure HI.7.
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Figure HI.7 - Determination of relative speed.


The relative velocity is the difference in their velocity vectors, the horizontal component being  and the vertical component being . The relative speed is the magnitude of the relative velocity:








· If it is assumed that all possible values of  are evenly distributed between 0 and  (i.e., the angle of movement is random) the average value of  . Ultimately, this leads to:





Thus, one molecule has the collision rate  of:





· In turn, a unit volume of gas containing n molecules is thus:






(The factor ½ is introduced to avoid double counting for two molecules involved.)


· Finally, the mean free path λ is seen as simply the distance traveled in a unit of time, divided by the number of collisions per unit time:







Viscosity

The internal friction, or resistance, of motion in a fluid can be defined for experimental purposes as the force (in dynes) that must be exerted between two parallel layers, 1 cm2 in area and 1 cm apart in order to maintain a velocity of 1 cm/s of one layer past the other,  where 1 dyne/cm2 = 1 poise).

Poiseuille (1844) deduced viscosity η by this definition, where v is the volume (in cubic cm) of a fluid which will flow through a narrow tube of length L and radius r in unit time (s), when under the influence of a driving pressure p (in dynes/cm2):





On the molecule level, a molecule jumping from the faster layer to the slower layer possesses a momentum greater than that of the average of those molecules on the slower layer, causing the slower layer to speed up, and vice-versa. Thus there is a connection between η and λ (where  is the gas density):





Most gases have about the same mean free path, which, at STP, is about 10-5 cm. This is because, for a given T and P, η is a constant (by Avogadro), and the collusion diameter ranges from 2 to 4 10-8 cm.

The effect of T & P on λ can also be deduced. As , the product n λ should be constant for a given T and P, we have the following. 

At constant , , thus, as , we expect , or .

Likewise, for constant , , so, as , then we have  at constant T.

To show the quantitative effect of P & T on η, we can substitute for  and λ into  to arrive at:






As a result, we see η is independent of pressure, but increases with the square root of (absolute) temperature!


Collision Numbers

While a gas molecule travels a very small distance (about 10-5 at STP) the total number of collisions must be very large. Since  is the mean velocity and λ is the mean distance between collisions, the number of collisions one molecule makes per unit time is  and the total among all molecules would appear to be . However, we must divide by two, since a collision is between two molecules. Thus the number of collisions per unit time and volume Z is:






On substituting in for  and λ:





In the above equations, we see . Thus, for constant T, we have . 

We can go a step further to replace  from earlier results in terms of n. First, we have:





Finally, on substituting in for  , we have:








This equation can be adapted to a mixture of Gases A and B, which yields insight into kinetic rate expressions based on KTG, where ZAB is the number of collisions between molecules A and B:





In the above equation, is the mean collision diameter, equal to . Note that the equation for ZAB  is based on fundamental parameters, not requiring experimentally derived parameters.

Heat Capacity

This can be defined as the quantity of heat required to raise the temperature of the system by one degree. For all substances – and particularly for gases - heat capacity depends on pressure and volume, leading to heat capacity at constant volume CV and heat capacity at constant pressure CP. (Note the upper case is for extensive properties, and the lower case is for molar properties, here called the specific heat capacity: cV and cP.)

If (monatomic) molecules of a gas possess only one level of energy – kinetic energy of translation – then, as temperature and volume is constant, all the heat goes into increasing this kind of energy.

We know from earlier equations that the kinetic energy of one mole of ideal gas is equal to  at constant temperature. Thus, as temperature is raised by one degree to , the kinetic energy becomes , and:





Thus:





When a gas expands, it has to do work against the external pressure. So, when temperature increases at constant pressure, the volume increases, and heat must be supplied to:

1. Perform external work as the gas expands in volume; and
2. Increase the kinetic energy of the molecules.

The work done against external pressure is simply the product of the force acting and the displacement that results: External work in gas expansion equals pressure times distance, equal to  (in ergs).

This result holds for any system (gaseous, liquid or solid). For one mole of an ideal gas at temperature T, , so that if the temperature  is raised by one degree at constant pressure, the volume increases by ΔV  to  V + ΔV , so that:





Thus:





This result indicates that when the temperature of one mole of an ideal gas is raised by one degree at constant pressure, the work of expansion is equal to the gas constant R. To this must be added the increase in kinetic energy to raise the temperature by one degree:





Summarizing, we have two important results from our simple analysis:


·  (=1.987 cal/° mole)


· 


For polyatomic molecules (where CP – CV is still equal to R):





Why this? Rotational energy and vibrational energy become important due to rotation of the (polyatomic) molecules about all the axes, and oscillations of atoms within the molecule. The heat capacity of any molecule should be the sum of   R for each of the three translational components, ½ R for rotational, and 2 x ½ R=R   for each mode of vibration. For a diatomic molecule, R. 

FIRST LAW (FL) OF THERMODYNAMIC

Key Definitions

From the extensive review of KTG, you should have an elementary understanding of key thermodynamic variables thermodynamic variables, such as temperature and pressure, and the Ideal Gas Law. Prior to delving into the First and Second Laws, we need to define a few basic terms so that there is less ambiguity.

System - A quantity of matter, or a special entity amenable to precise definition that is under specific consideration for analysis. An open system allows exchange of both energy and mass; a closed system allows only the exchange of energy; an isolated system cannot exchange energy or mass. 

Surroundings - is the immediate environment of the system that, unless otherwise specified, is capable of exchanging energy and matter with the system.

Boundary - The interface between a system and its surroundings.

Universe – A system and its surroundings (also called an isolated system) i.e., all that is of concern in a specific situation.

Property – Of a system is any observable characteristic of the system. An extensive property depends on the quantity of matter considered; an intensive property does not depend on this property and is usually termed specific.

Process – Is the means of accomplishing a change in the state of the system. It is usually described in terms of the path and interactions of the system with its surroundings.

Equilibrium – A system is in an equilibrium state if a finite change of any property of the system cannot occur without a change of corresponding magnitude in the surroundings.

Reversible Path – This is a path of equilibrium states. As such, it can be reversed at any point to return the system to its original condition, where it and the surroundings have all returned to the identical macroscopic state they held initially.

State – A given condition of a system that is determined by measurable parameters; i.e., when a system is in a given thermodynamic state, all measurable parameters of a system will have characteristic values of that state. 

 Work – Is an interaction between the system and the surroundings in which the sole external effect can be reduced to the movement of a force through distance (in the direction of the force, where, by convention, work to or on a system is negative, and work by or from a system is positive.

Energy – Any property that can be produced from or converted to work. The mechanisms of energy exchange are: heat; work; and mass flows.

Heat - Literally, this is the exchange of energy between a hot and a cold body. Thermodynamically, it is the result of dissipation of work (i.e., friction). Heat is the result of all interactions between a system and the surroundings that are not work interactions. By convention, heat from a system is negative (exothermic); heat added to a system is positive (endothermic).
Equation of State – Relationship among properties of a system. For an ideal gas, we have the equation:  , where there are three variables (pressure, P, volume, V,  and temperature, T, two of which are independent. We may say, generally, unless proven otherwise (as yet!), that for a given amount of a substance of fixed composition (solid, liquid or gas), only two properties are required as independent variables.

Generally:

· Boundaries need not be physical, nor localized in space;
· A system’s definition (i.e., specifically, the choice of boundaries) is a choice; if clever enough, it can lead to a short, elegant solution’ while other definitions for the same situation can be very cumbersome, though no less rigorous. The obvious choice for the system is not always the most convenient one to solve a problem.
· System boundaries can be open or closed to the flow of matter, deformation, insulating or heat-transparent.
· Just as a system can be physical or non-physical, it can be defined by tagging a certain quantity of matter.
· Energy is a thermodynamic property; work is not.
· It is possible only to measure the change in energy of a system as a result of interactions between it and the surroundings, but not possible to ascertain the absolute energy content of a system without recourse to quantum mechanics.


Primary Thermodynamic Laws

Prior to introducing the first, Second and Third thermodynamics laws, we have three primary laws implied by these thermodynamic laws. These are the Law of Continuity; the Law of Conservation of Matter; and the Zeroth Law of thermodynamics.

Law of Continuity - Matter cannot pass from one position to another without traversing the intervening space in one form or another.

Conservation of Matter – Atomic species (including electrons, neutrons and protrons) are conserved, except in nuclear/relativistic processes. For the latter, the famous equation,  , is accommodated in the First Law. Electrical charges are also conserved in themselves in all processes.

Zeroth Law – Two bodies, each in thermal equilibrium with a third body, are in thermal equilibrium with each other. These bodies have in common the property of temperature. From a phenomenological viewpoint, temperatures are equal when heat ceases to flow among a set of bodies. When there is a spontaneous heat interaction from a system to the surroundings, the system is said to have a higher temperature. Alternatively, heat is that which passes from one body to another solely as a result of the difference in the temperature of the two bodies. 

The First Law (FL) of Thermodynamics

A. Energy is a state function of a system; changes in energy are path-independent.
B. Energy cannot be created nor destroyed in non-relativistic processes.
C. The change in internal energy ΔU  is equal to the difference in heat Q and work W:





D. The total amount of energy of an isolated system remains constant, although it may change from one form to another.
E. We may broaden the FL to include mass flows M as:





· The change in Internal energy (), as distinguished from macroscopic changes in kinetic energy or potential energy, is the change in state brought about by the exchange of heat and/or work.
· Heat Q and work W are path-dependent and are not state properties individually (however, the difference between Q and W is a state property!).
· For infinitesimal changes, the FL is written as, where d refers to the exact differential, and   refers to an in-exact differential:






Internal Energy Change of a Cyclic Process

Because the internal energy is a state property, in a cyclic process, which referes to its initial state, :


Or


This is illustrated in Figure HI.8.
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Figure HI.8 - Example of three different process paths in moving from State 1 to State 2.
If we choose T and V as our two independent variables, then we may say (at constant mass and composition):









Key Forms Of Work

Work is defined in mechanics as the product of a force and a displacement of a force along a path. In thermodynamics, there are several forms of work. These are identified below with reference to Figure HI.9. We can generalize that work always has the form XdY, where X is some force and Y is a response. The variables X and Y are called conjugate variables (for example, P and V form a conjugate pair).
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Figure HI.9 - Some forms of work.

Mechanical Work – Here the force is a result of a force F resulting in a displacement dx:



Volume Work – Here the force is a result of pressure P acting on a designated area A, resulting in a displacement dx:



Surface Work – A surface film exerting a tension 2γ (per unit length) as in a soap film being pulled by a wire on a rigid frame (γ is surface tension):



(Note that the factor of 2 is because of the work  for each side of the surface.)

Electrical Work – The displacement here is the movement of a quantity of charge across a potential difference ξ, where  is the Faraday Constant, and n is the charge.





Other Work Terms – Any displacement against an external field, such as gravitational and magnetic fields, results in work. A more abstract, albeit very important, type of work is the movement of a chemical species in a chemical potential gradient, which can also be referred to as a driving force for reaction. These terms will be introduced later, in HII.

Constant Volume Versus Constant Pressure Processes Obeying the FL

If the volume of a surface is maintained constant during a process, the system can do no volume work, so that. As a consequence:





Or, after integration, this becomes: . In this case, all of the heat exchanged affects only the change in the internal energy of the system.

If, on the other hand, pressure is maintained constant, while volume is allowed to expand or contract during a process, the volume work is:





From the FL:





 On re-arrangement, we have:






The LHS of the above equation contains only state properties and is defined as enthalpy H:








This means that the change in enthalpy can be measured during a constant pressure process by the amount of heat admitted or withdrawn from the system during the process.

Heat Capacity and the FL

We already saw from KTG that the heat capacity of a system C is the ratio of the heat added or withdrawn from the system to effect a change in temperature:





If the temperature change is vanishingly small, we have:





As stated earlier, the system has two independent variables in its equation of state. This means we must specify both of these to completely determine the final state of the state. In the evaluation of  heat capacity, we already specify temperature (as in the change in temperature: ). To completely specify the system, we have two choices: P or V, hence we end up thermodynamically with two different possible paths (one at constant P, and the other at constant V) leading to two different definitions of heat capacities:




And





Physical understanding of each situation was explained earlier in KTG.

We may write from the FL and, depending on any volume work:





And





The difference between CV and CP was attributed in KTG to the work of expansion against a constant pressure per degree of temperature rise. Macroscopically, we can represent this work per degree in terms of the thermodynamic variables P, V and T as:





With the use of our manipulations from calculus, we can show rigorously with only these thermodynamic variables that:





The above equation is deduced as follows from the definitions of Cp and CV:










But, we have:






















It can be shown experimentally for a gas approximating ideality: , but, for real gases   and for liquids and solids .

For an ideal gas  (one mole), thus:








For liquids and solids, we introduce the parameters coefficient of thermal expansion α  and coefficient of compressibility β  , both of which can be measured:




And




Then, we can relate  to α  and β as follows. First, it will be shown after the Second Law (SL) is introduced (on mathematical manipulation of the partial derivative for a perfect differential) that:





Given this expression, we can make further manipulations as follows:








The above equation can now be expressed in terms of  α  and β:






It is to be noted that statistical thermodynamics gives greater insight into CV, but for CP, this is usually evaluated experimentally. Thus, the above equation provides a convenient link between theory and experiment!

Reversible Adiabatic Expansion/Contraction

Adiabatic means no heat transfer between the system and the surroundings: , thus:





But, as a gas is expanded or contracted adiabatically () as temperature increases or decreases via the Ideal Gas Law, the internal energy is changed. First, we derive:








But, from KTG:




Also, we have:





But: . Thus:




Since from the ideal Gas Law 





We integrate between State 1 at t and State 2 at :




Or



Or




For the Ideal Gas Law, , or , where . Thus:





But, the Ideal Gas Law still applies, so we can recast this equation in terms of P and V, instead of T and V:




Finally, for reversible, adiabatic changes, this results in the following form, which is illustrated in Figure HI.10:







This is a specific reversible path, where the condition is imposed that . There are other possible specific reversible paths: the reversible isothermal path (where temperature is constant); the constant pressure path (where T, Q, V are variable); the constant volume path (where T and P are variable); and any combination of these paths.

Reversible Isothermal Expansion/Compression

If we impose that temperature remain constant as we expand or contract a gas, , and, since , then , so, from the FL:









Integration yields:





This path is illustrated in Figure HI.10 below.
[image: ]

Figure HI.10 - Schematic illustration of process paths of reversible expansion versus isothermal expansion, where work is the area under the curve to zero pressure.


The Carnot Cycle

Here, we use the two process paths just discussed – adiabatic expansion/contraction and isothermal expansion/contraction for a complete cycle, where the gas ends up back in the initial state after undergoing expansion/contraction according to these two paths. This is illustrated schematically in Figure HI.11.


[image: ]

Figure HI.11- Schematic illustration of the Carnot Cycle ().


Table HI.1 summarizes each step in this cycle. Starting from P1, V1, T1, Path A is adiabatic compression of ideal gas from P1, V1, T1 to P2, V2, T2, where P2>P1, V2<V1 and T2>T1. Path B is isothermal expansion at T2 from P2, V2, T2 to P2’, V2’, T2, where P2’<P2, V2’>V2 and T = constant = T2. Path C is adiabatic expansion from P2’, V2’, T2 to P1’, V1’, T1, where P1’<P2’, V1’>V2’ and T1<T2. Finally, to complete the cycle, Path D is isothermal compression at T1 from P1’, V1’, T1 to P1, V1, T1, where P1>P1’, V1<V1’ and T = constant = T1.

[image: ]

Table HI.1
Example of Cycle Involving Constant Pressure and Constant Volume processes

As illustrated by Gaskell, a cycle of compression/expansion of an ideal gas need not be limited to only adiabatic and isothermal processes, but can include constant pressure and constant volume processes as well. Gaskell Figure 2.3 (p 30) is reproduced here as Figure HI.12, where each path is now labeled. It is immaterial what combination of reversible paths is used as long as the cycle can be closed. This is only possible because the initial and final states are independent of the path taken.

[image: ]


Figure HI.12 - Five ways to go from State a to State c, and vice-versa.


Referring to Figure HI.12, the following detail these paths. Starting from Point a, there are five paths:

Path i – An isothermal process, followed by a constant-volume process, Points a → e → c. Note that T = 298 °K from Points a → e, but does decrease to 119 °K from e → c.

Path ii – A constant-volume process, followed by an isothermal process, Points a → d → c. Here, T decreases from 298 to 119 °K from a → d, then remains constant from d → c.

Path iii – An isothermal process, followed by a constant-pressure process, Points a → b → c. Here, T is constant at 298 °K from a → b, but decreases from b → c to 119 °K.

Path iv – A constant-volume process, followed by a constant-pressure process, Points a → f → c. Here T decreases from 298 °K all the way to 30 °K from a → f, then increases from 30 °K to 119 °K from f → c.

Path v – A constant-pressure process, followed by a constant-volume process, Points a → g → c. Here, T increases from 298 °K to 1186 °K from a → g, then decreases to 119 °K from g → c. Gaskell gives the details of ΔU, q and w along each step, where it is shown no matter which of the five paths is taken, ΔU is constant. Obviously, if any of these paths were taken in reverse, completing a cycle, so as to end up back at the starting point, ΔU = 0.

THE SECOND LAW (SL ) OF THERMODYNAMICS

Background

In the previous section, we observed heat and work effects as a system underwent reversible processes. The SL concerns what governs the magnitudes of these effects. On the one extreme, we have w = 0, and on the other extreme q = 0. But for , what can the system do in general during its change of state? The answer depends whether the processes are conducted reversibly or irreversibly.

A system will do one of two things: it will remain in its current state, or it will move to some other state. 

· If the initial state is one of equilibrium, the system remains in that state if left to itself. 
· If the initial state is not one of equilibrium, when acted on by an external agency, the system will move spontaneously toward its equilibrium state.
· Because a movement from a non-equilibrium state to an equilibrium state is spontaneous, the process cannot be reversed by an external agency without consequences that leave a permanent change in the universe; i.e., the system and its surroundings.

Why are these concepts so important in materials science? Knowledge of the initial state of any materials reaction will allow a determination to be made of the direction, if any, of the reaction. Consider the chemical reaction:

A + B  C + D



Under what conditions does this reaction proceed from L to R; from R to L, or no change (equilibrium)?

So, what is needed is to quantify irreversibility. To do this, we introduce a new state property called entropy. This property is intimately tied to the transfer of heat to and from a system undergoing a process change.

Spontaneous Processes

There are two distinct kinds of spontaneous processes:

1. Conversion of work to heat via degradation, such as the waste heat of friction;
2. Flow of heat down a temperature gradient (Fick’s First Law).

Since energy can be degraded, there must be an extent of degradation, so that there is a degree that can be quantified. It is now shown that this degree of irreversibility is captured by the function , which, it turns out conveniently, to be a state function!

The Heat Engine

Any system not in complete equilibrium can still be made to do useful work. However, there is always some waste of opportunity.

Consider the flow of heat between two large reservoirs at different temperatures. By large, we mean the reservoir is sufficiently large so as to remain at its temperature regardless of the transfer of heat.

Qualitative Demonstration of Degree of Irreversibility

Now, consider a device for converting work into heat, such as the weight-pulley-heat reservoir arrangement shown in Figure HI.13. Here, as the weight is allowed to fall, there is a change in potential energy, which is converted (i.e., degraded) into heat, by turning a fly wheel in the reservoir, which causes the fluid to experience friction due to movement. 


[image: ]

Figure HI.13 - Weight-pulley-reservoir arrangement, where the potential energy (work source) is degraded into heat dissipated in the reservoir (heat sink).


Now, consider the following thought experiment, illustrated schematically in Figure HI.14.


[image: ]


Figure HI.14 - The quantity of heat converted from work or transferred q is the same in each of these three process steps ().


By us of the weight-pulley-reservoir arrangement depicted in Figure HI.13, we want to convert work into heat. The heat transferred by the fly wheel is essentially frictional heat. However, the reservoir in Process 1 is at T2, but that in Process 3 is at T1, where T2>T1. Clearly, the amount of heat converted or transferred is the same in each of these three processes (q). However, the amount of degradation is not the same! The amount of degradation for Process 1 is obviously less than for Process 3, because to get to Process 3 has to involve the added step of Process 2, which entails additional degradation in the transfer of heat from T2 to T1. We can, therefore, say that quantitatively, Process 3 must be more irreversible than either Process 1 or 2.

This degree of irreversibility can be quantified by incorporating temperature as well as heat:  (because T2>T1) but q is constant. This quantity q/T is the measure of irreversibility, and is named entropy, given the symbol S. 

Reversible Processes

Not surprisingly, since the degree of irreversibility is variable, is there a manner to conduct a process so that irreversibility is minimized? Conceptually, there is such a process – the reversible process, where the system is in equilibrium at all times (i.e., it passes through a continuum of equilibrium states) and not permitting any irreversibility. In practice in the real world, this can only be approached, as some distance from (thermal) equilibrium is still needed to transfer heat (down a temperature gradient).

Quantification of the Second Law

The SL deals with conversion of heat into work, and, quite simply, such a process cannot be carried out completely.

No device for converting heat into work (i.e., heat engine) can absorb heat from a reservoir at a uniform temperature and convert it to an equal amount of work (in the same units) without causing some change elsewhere in the universe (Universe = System (heat engine) + Surroundings (reservoir)) due to the need for a temperature difference to transfer the heat:

· The heat engine undergoing a full cycle must return to its starting position, but each subsequent cycle produces a change in the reservoir.
· This is the reason there has never been invented a perpetual motion machine!

The foregoing concepts can be stated quantitatively in terms of state property S:





The Carnot Cycle and Entropy Creation

Following the treatment of the Carnot cycle involving reversible paths in the expansion/contraction of an ideal gas given in the last section, the quantitative changes in internal energy, heat and work can be directly applied to evaluate the change in entropy for each process.

Conceptually, entropy is introduced by considering the properties and processes of heat engines, but, as will be shortly seen (HII) it can be extended to any system undergoing heat interaction from any source, such as the mixing of dissimilar elements. The factors governing efficiency was first introduced by Sadi Carnot (1824) as:





Before resorting to the various process paths involving reservoir changes in P and V (as shown in Figure HI.11), we want to quantify the two key reversible steps in the expansion/compression of an ideal gas: isothermal and adiabatic processes.

Reversible Isothermal Compression of an Ideal Gas 

(To avoid confusion, in this and the following section, the same convention is employed as in Gaskell. But, note that these two sections do not refer to Figure HI.15, as in that figure  , where as in this and the next section, the reverse is true: !) Consider the reversible isothermal compression from VA, T to VB, T (P and V constant). As before, if compression is done isothermally, , so 





Since VA>VB,  is a negative quantity (i.e., work is done on the gas, not by the gas); therefore:






As this heat  is transferred from the gas to the reservoir, the latter experiences its own change in entropy; viz.:






For the universe (gas + surroundings (reservoir)):






· In the P-V-T space, as T is constant for reversible processes, all states of the ideal gas are located o the constant PV surface (= nRT), which is also the surface of constant internal energy.


Reversible Adiabatic Expansion of an Ideal Gas

Consider the reversible adiabatic expansion of an ideal gas from PA, TA to PB, TB, where PB < PA and TB < TA. In this case,  is constant. But, as , all the work done by the gas is a result of a decrease in its internal energy, and corresponding decrease in temperature. As   , then ; there is no exchange with any heat reservoir, and within the gas, there is no thermal degradation.

However, if the pressure were to be decreased suddenly and irreversibly, any heat produced remains in the gas and the final temperature will be higher than TB for the reversible process. In this case, there is an entropy increase from thermal degradation, although it doesn’t involve heat exchanged from a reservoir. The work done by the gas in expansion in this case still equals the change in internal energy, but this decrease is less than had the process been carried out reversibly.

· In the P-V-T space for  for reversible processes, all states of the ideal gas are located on the constant   surface, which is also the surface of constant entropy. 

Now, we refer again to the Carnot cycle, but in a different schematic, as shown in Figure HI.15.
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Figure HI.15 - The Carnot Cycle (t2> t1).

The following is a summary of the key processes for a complete cycle depicted in this figure. Note that, below, work is identified as an area in the diagram, therefore it is positive because all areas are positive numbers:

Step A→B – Isothermal Expansion – Heat has to be reversibly transferred from a reservoir at t2; work (by the gas) is the area ABba = .

Step B→C – Adiabatic Expansion – Temperature (and internal energy) decreases from t2 to t1, and the work (by the gas) is the area BCcb =  .

Step C→D – Isothermal Compression – Heat has to be transferred to the reservoir; work (on the gas) is the area DCcd =  .

Step D→A – Adiabatic Compression – Temperature increases from t1 to t2; work (on the gas) is the area ADda = .

During this complete cyclic process, work was performed; net work accomplished is: , which is the work done by the gas (a positive number) plus the work done on the gas (a negative number, but as an area it is positive, therefore the minus sign), equal to the net area ABCD in Figure HI.15.

The net heat transferred is: .

Efficiency η is defined as:





We note:

· The maximum efficiency is for the case where all processes are conducted reversibly;
· It is impossible to take heat from a reservoir and convert it to work without transferring heat to a colder reservoir;
· It is impossible to transfer heat from a cold to a hot reservoir without conversion of some work to heat.

The Thermodynamic Tempertature Scale

It should be clear from the formula just given, that thermal efficiency of the Carnot cycle is only a function of working temperatures. This is because  can only be a function of temperature, and not of the nature of the thermodynamic substance involved (an ideal gas in this example). This is demonstrated mathematically below, where lower case is used to designate an arbitrary empirical temperature scale. We start with:





Consider two Carnot cycles operating between T1 and T2, and between T2 and T3, respectively; it is clear that this must be equivalent to one cycle operating between T1 and T3. Thus:








Thus, we can deduce mathematically that:






As  is independent of , then  and  must have the form: .

Lord Kelvin assigned a simple form to the above function:




And




Thus:






This designation (from t to T) defines an absolute (Kelvin) temperature scale that is independent of the working substance in the heat reservoir. It is unambiguously clear that 100 percent efficiency of a reversible process can only be achieved at absolute zero!

That this temperature scale – deduced by Lord Kelvin for 100 % efficiency can be shown to be the same as for the ideal gas as follows. For this, we refer to Figure HI.15 for one mole of gas. (Now, we use upper case for temperature, where .)



1.  State A to State B – Reversible Isothermal Expansion T2:




Or






By the FL , thus:





This is the heat absorbed from the heat reservoir at ; the work has a positive sign, as it is done by the gas.

2. State B to State C – Reversible Adiabatic Expansion:




Or




Since , we have from the FL:





As  , the work has a positive sign, as it is done by the gas.

3. State C to State D – Reversible Isothermal Compression at T1:






The heat released to the cold reservoir (at T1) is ; here, the work is negative, as it is done on the gas

4. State D to State A – Reversible Adiabatic Compression:



Or






As ,this work has a negative sign, as it is done on the gas.


The total work 








It can be shown:





Thus:






Finally:





We now have two rigorous bases for the absolute temperature scale:

1. Based on compressibility: 
2. Based on efficiency: .


Generalization of the Second Law

Following Gaskell:





This can be written as:





Obviously, this can be generalized to an infinite number of temperatures:





This is shown schematically in Figure HI.16.
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Figure HI.16 - Large cyclic process broken down into an infinite number of smaller Carnot cycles, where q is positive for heat entering the system and negative for heat leaving the system.


In the limit, we have:





This vanishing integral indicates a perfect differential of some function of the system :






Therefore, the SL can be stated formally as:

1. The entropy of the system S is defined by the equation , and is a function of state;
2. The entropy of a system in an adiabatic enclosure can never decrease; it increases during an irreversible process, but, at best, remains constant for reversible processes:



  at constant U and V.


Maximum Work and the Second Law

Referring to the Carnot cycle, we can see how the SL sets a limit on the maximum amount of work which can be obtained during a change of state (here, for an ideal gas). It also, therefore, sets a limit on the quantity of heat which the system absorbs.

In our example of the Carnot cycle for the isothermal thermal expansion of an ideal gas from State A to B:


If reversible:


















If irreversible: (This is the free expansion of gas by spontaneous decrease of pressure from , such as in a vacuum, where  



















Notice that this thermal degradation occurs in the gas!

· The entropy created during irreversible expansion of the gas is the result of a degradation of work that would have been performed had the process been carried out reversibly.
· We can conclude that w varies from  to 0 and the change in entropy  varies from 0 to .
· Entropy is a state function; the entropy change for the gas is the same whether the process is carried out reversibly or irreversibly! The difference is the heat effect. If the process is reversible, all heat is converted to work.


Combined Statement of the First And Second Laws

Consider an incremental change in the state of a closed system. The FL gives:





If the process is carried out reversibly, the SL gives:





Or  



And




Combination of these two laws gives, for a reversible change:







In the above equation, S and V are considered as the natural independent variables, whereas, U is a dependent variable.

Restrictions on this equation are:
1. There is no exchange of matter with the surroundings (i.e., it is a closed system);
2. Work only due to volume change is considered.

From this equation, it is seen that: . In this equation, U is the dependent variable, and S and V are the two independent variables that completely define the system. If we apply the property of a total/exact differential:





In comparison with the equation given earlier for the combination of the FL and SL, it is clear that:




And




It is to be noted that only two state variables are needed if a system obeys an equation of state (viz.: ). Consider a function:. As only two independent variables are needed with an equation of state in this example, we may express internal energy by any of the following three possibilities:





Then dU can be expressed in any of the following forms:











We can equally re-arrange the combined FL and SL so that S is now the dependent variable, and U and V are the independent variables:





On considering S as the total/exact differential of , we have:






Now, further relationships are evident:





From the forgoing, we now have two different equations of one dependent variable (LHS) and two independent variables (RHS). These are employed as different criteria for equilibrium.

The Isolated System

The concept of the isolated system needs to be elaborated, since the criteria for equilibrium holds for the isolated system. 

By definition, an isolated system is closed to the transfer of heat or mass. Also, while not necessarily obvious, it can do no work on its surroundings, since there are none to do or receive benefit of work. This is approximated experimentally by an adiabatic enclosure, which cannot interact with its environment (i.e., it must be insulated as perfectly as possible, and it must be rigid so that there can be no work of expansion or contraction. From the FL, we have:





Also, because there is no work of expansion as V is constant (i.e., ), then for an isolated system, both U and V are constant. 

Criteria for Equilibrium

Now, we want to restrict the system to one that is isolated. Also, we want to include the possibility of irreversible processes.

It is desirable to employ state properties (e.g., T, P, V, S U, etc.) in determining whether a system is in a state of equilibrium. 



Entropy as a Criterion (Restricted to only Volume Work)

Consider the isolated system, where U, V and mass are constant as explained above and where the system is restricted here to only volume work.  In this case, entropy is at a maximum, once the system is in a state of equilibrium. This is understood by the following:




In the above equation,  if reversible, and  if irreversible.

 By the FL:







And




For an isolated system:






After an isolated system has exhausted all possible spontaneous changes (each with  ) such as a chemical reaction, the entropy will have reached a maximum value. Further changes, if infinitesimal, will now be reversible, with .
Consider the chemical reaction:



Originally, before pure A and B were brought in contact with each other, they were each essentially isolated and in (thermal) equilibrium. Once in contact with each other in an isolated system, the reaction is spontaneous, and .

Internal Energy as a Criterion

Similarly, for U as the dependent variable, we have:





For an isolated system:





Enthalpy as a criterion  

We had earlier:




Or




By the FL:





By the SL:





Combining the FL and SL, retaining H as the dependent variable:





For an isolated system:







There are other criteria for equilibrium, specifically: the Helmholtz Free Energy, and the Gibbs Free Energy, but these definition await procedures (see Auxiliary Functions, HII) to allow manipulation to interchange dependent and independent variables. This is because we want to employ independent variables that are more amenable to experiment (such as holding pressure or temperature rather than entropy as constant in an experiment).

Derivation of a Key Identity from Combined Fl and SL

Earlier, we derived the relationship:. We employed the equation:





This equation can now be derived from the combined statements of the FL and SL:








Now, we can employ the total differential (which is also exact) for dU from :





Thus, on substituting in for dU:








Because  is path independent, the total differential must be exact, thus we can state:




Or




If we multiply the above equation by T, then cancel the second derivative of U, we get:




Or




The following are the two numerical examples given in Gaskell (pp 63-66) which apply the foregoing analysis in the calculation of entropy change for two different types of process changes.

Application of the First and Second Laws to the Irreversible Adiabatic Expansion of a Gas

Key points in Gaskell’s Numerical example #1 are highlighted below. In this example, an ideal gas is adiabatically and irreversibly expanded. (In this case, the pressure is suddenly released from 50 atm to 10 atm.) The problem is to show that the final temperature of the gas after the irreversible expansion is greater than had the expansion been conducted reversibly. This is also a demonstration that entropy, being a state property, can be evaluated along different process paths.

We know P1 and T1 initially, thus can calculate V1 from the Ideal Gas Law: . Likewise, we know for adiabatic expansion that is conducted reversibly:




Or




Thus, we can calculate T2 from the Ideal Gas Law now knowing V2 and P2 (where ). Since the adiabatic process is adiabatic, q = 0, so from the FL: . But, now we know w, since:  , and we can calculate , where .

How to calculate the entropy change from the adiabatic expansion? The key is to use a reversible path that gets us to the final temperature for the irreversible expansion T3. Why? Because entropy is a state function, so knowing the final state V2, P2 and T3, we can calculate the entropy difference that changes along a reversible path that gets us there from the initial state V1, P1 and T1. This is considered in Figure HI.17 below.
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Figure HI.17 - Two different totally reversible paths to produce a process change along an irreversible path to go from State 1 to State 3.
If we take the completely reversible Path 1 → a → 3, which a reversible decrease of temperature by a constant-volume process, followed by a reversible, isothermal expansion to V2 (= V3). 

For the reversible, constant-volume process (Path 1 → a), where w = 0 and , we have (where ):











For the reversible, constant-volume expansion (Path a → 3) where dU = 0 and , we have:








So, the total entropy change for either the reversible path (Path 1 → a → 3) or the irreversible path (Path 1 → 3) is:






It is noted that another reversible path that could give us identical results is Path 1 → 2 → 3, as follows.

In the change of state along Path 1 → 2, there is no transfer of heat (q = 0) and , since this path is taken to be reversible, then , so   For the reversible Path 2→3, where pressure is constant, this is a constant-pressure expansion of the gas. We need not calculate the work interaction; we only need to get at .

We already know: . And, since pressure is constant, we have: , thus:




Or




Numerically, we have:





In the above equation, the LHS is Path 1 → 2 → 3, where as the RHS is Path 1 → a → 3.

Application of the First and Second Laws to the Spontaneous Freezing of Lead

This is Gaskell’s Numerical Example #2 (pp 63-66). While the melting point of lead is 600 K, at issue is what is the entropy produced if, instead, the lead wasn’t able to freeze until 590 K (for example due to a failure to nucleate solid lead, causing freezing point depression). This is irreversibly freezing, since it occurs below the equilibrium freezing point, and, once nucleated, all the lead suddenly freezes, releasing heat. This problem is tackled by considering totally reversible paths as shown in Figure HI.18 below.


[image: ]

Figure HI.18 - Reversible paths to be taken to evaluate the spontaneous freezing of lead at 590 K versus reversible freezing at the freezing of 600 K.

As entropy is a state property, it can be evaluated by any combination of reversible paths leading to the end state from the initial state. Clearly from Figure HI.18, the spontaneous freezing of lead below its equilibrium freezing temperature, Path a →  d, the change in entropy is the sum of the entropy changes along reversible Paths a →  b →  c →  d. This allows calculation of the irreversible change due to the spontaneous freezing of lead:





But, as heat is transferred from the lead to its surroundings, we must add the entropy change for this transfer of heat to . The latter is obtained from a heat balance:








Finally, we have for this situation:





In the above equation, the first term on the RHS is positive, but the second term on the RHS is negative.
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