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ADVANCED THERMODYNAMICS 

 

Handout II – Auxiliary Functions, Statistical 

Thermodynamics, the Third Law and the Enthalpy 

Balance 

 
(Gaskell Chapters 4- 6) 

 

BACKGROUND 

 

This handout essentially follows Gaskell’s book, but in a different order and with 

supplementary material. Auxiliary functions is considered first, as this subject follows the 

combined FL and SL naturally and does not require statistical thermodynamics. As is the 

case historically, statistical thermodynamics (ST) follows the development of the Kinetic 

Theory of gases (KTG, see HI) and is essential to understanding the Third Law of 

Thermodynamics (TL). Finally with these underpinnings, the important parameter of heat 

capacity can be better understood. The handout ends with application of the heat capacity 

in the enthalpy balance of chemical reactions and other processes.   

 

AUXILIARY FUNCTIONS 

 

The need for the co-called auxiliary functions is due simply to the fact that the dependent 

variables defining various criteria for equilibrium are not convenient ones from the point 

of view of experimentation. For example, T, P and V are much easier to control in an 

experiment than, say, S or U! Auxiliary functions provide the apparatus for converting 

inconvenient dependent variables into independent ones.  Also, there is a need to consider 

work other than that of expansion of a gas against external pressure, such as chemical 

work in the various criteria for equilibrium, as composition plays a key role in 

establishing the equilibrium state for the materials system. 

 

Two New State Functions: the Helmholtz and Gibbs Free Energy Functions 

 

In the previous handout, it was shown that the sum of the entropy change of a system and 

its surroundings is zero for a reversible process,  and is greater than zero for a 

spontaneous process. 

 

It is not convenient to calculate, or experimentally measure, entropy change for either the 

system or the surroundings in many cases. So, it is desirable to find some other function 

of state variables for the system alone which would indicate whether or not a given 
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process is potentially spontaneous. Such a function is called the Free Energy Function, of 

which there are two, depending on the independent variables: 

 

The Helmholtz Free Energy: 

 

 

       

 

 

The Gibbs Free Energy: 

 

 

       

 

 

Starting with the FL, a review is in order (See HI): 

 

 

         
 

 

But: 

 

   
  

 
        

 

 

                 
 

 

If    is only volume work (    ) then this equation becomes: 

 

 

                  
 

 

If only reversible changes are considered: 

 

 

              
 

 

Similarly (since       ),                    
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Including      , these two equations were already shown to be a criteria for spontaneous 

processes; viz.: 

 

 

                

 

And 

 

                

 

 

 

But, as stated earlier, measuring or calculating        is not easy, as it is not naturally 

subjected to external control.  

 

We can re-arrange the equation for U as: 

 

 

                 
 

And, since         cannot be negative, we get: 

 

 

          
 

 

Integration of the above equation for constant T gives: 

 

 

                   
 

Or 

 

         
 

 

This last expression represents the maximum work that can be performed by the system 

on its surroundings during a change in state at constant T. This maximum work is 

performed only for a reversible process (hence, the equality); if the process is irreversible, 

it is less efficient, with less work preformed (hence, the inequality). So, we get: 
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The quantity        represents the portion of the internal energy of a system that is 

free to do work without lowering the temperature. 

 

The foregoing states that it is possible to devise a criterion for equilibrium that is 

dependent on the reversible change in entropy of the system, not on the change in 

irreversible entropy! our new criterion is: 

 

 

           
 

Or   

 

        
 

 

For the simplest case of no volume work (i.e., constant volume) we have: 

 

         

 

Or 

 

        

 

 

As before, the equality sign refers to reversible changes, and the inequality sign, to 

spontaneous changes. 

 

That is to say that, during spontaneous changes in state at constant temperature and 

volume, the Helmholtz Free Energy of a system must decrease, and will continue to 

decrease until the system attains equilibrium, in which case, at equilibrium: 

 

 

        

 

 

In contrast to the criterion that:          
     

, now T and V are held constant instead of 

U and V, which is more practically realized. 

 

Likewise, we can devise another criterion involving pressure as a dependent variable. 

Why is this so important? Because we live in a constant-pressure atmosphere, thus this 

condition is automatically fulfilled in many experimental situations! 
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We begin with defining work as volume work as well as other work    : 
 

 

           
 

 

We have from the criterion:        , so: 

 

 

             
 

Or 

 

              
 

 

 

If the system is allowed to perform no work other than volume work (   ) then: 

 

 

        

 

 

This suggest a new criterion as a function of            ; viz.: 

 

 

            

 

If we take the differential, we get: 

 

 

              
 

 

Then, we have: 

 

 

           
 

 

 

It is insightful to point out that the state property G bears the same relationship to the 

ability of the system to do work (other than volume work, or w’) at constant T and P that 
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A bears to the ability of the system to do any work(w’ as well as volume work) at 

constant T. 

 

If the system does no work other than volume work: 

 

 

 

        

 

 

 

This means the Gibbs Free Energy of a closed system able to perform work on its 

surroundings can remain constant or decrease. (If isolated system, the work performed 

remains in the system.) Thus, at equilibrium: 

 

 

        

 

 

To summarize, there are only three possibilities in the criteria for a change in state for a 

closed system: 

 

1. <0 – the process is possible and will occur (but at an undefined rate); 

2. >0 – the process is not possible and will not occur; or 

3. =0 – the initial and final states co-exist in equilibrium. 

 

Given          and       , we arrive at two more fundamental differential 

equations. As                     , but           ; 

therefore: 

 

 

            
 

 

Similarly, as                                      , 

then: 

 

 

           
 

 

Following Gaskell, we can summarize a set of useful thermodynamic functions: 
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Note that the variables on the RHS in the differential are independent variables, while 

those on the LHS are the dependent variables. 

 

Combination of the various criteria for equilibrium given in HI  involving S, U and H 

with the two new criteria involving A and G, we have the following summary in Table 

HII.1. 

 

 

Table HII.1 - Thermodynamic Potentials, Conjugate (or Natural) Variables and the 

Criteria for Equilibrium. 

 

State Property as a 

Thermodynamic Potential 

Conjugate (or Natural) 

Variables 

Criterion of Equilibrium 

   

         U, V           

         S, V           

         S, P           

         T, V           

         T, P           

 

 

Note in the above table the parallels of A and G (constant V versus constant P, both at 

constant T) and the fact that these two criteria involve convenient variables to be 

controlled in an experiment: T and V, or T and P. 

 

Role of Composition and Size on Criterion For Equilibrium 

 

Thus far, the discussion has been restricted to a closed system of fixed size and 

composition. In this case, these are only two independent variables, when fixed, 

completely fix the state of the system. 

 

Obviously, if we let size and composition vary, we have more degrees of freedom and 

more than two independent variables: 

 

 If composition is variable (in which the number of moles of various species 

change due to a chemical reaction) then minimization of GT,P only can occur at a 

unique composition (e.g., when a reaction equilibrium is established); 

 As G is an extensive property (i.e., dependent on size of the system) the total 

number of moles must be specified to minimize GT,P. 
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The Gibbs Free Energy, in addition to being a function of T and P, is also a function of 

the number of moles of all species present in the system: 

 

 

                      

 

 

Complete differentiation of the above equation gives: 

 

 

    
  

  
 
         

    
  

  
 
         

    
  

   
 
         

     
  

   
 
           

   

   
 

 

If all moles remain constant:            . On applying the rules of 

differentiation to         , we get: 

 

 

 
  

  
 
         

    

 

And 

 

 
  

  
 
         

   

 

 

The complete differential for dG can be stated more formally as: 

 

 

              
  

   
 
         

   

 

   

 

 

 

In this equation, there are k species, and the i
th

 specie refers to the differentiation of G 

with respect to the number of moles of the i
th

 species, holding all other species (nj+…) 

constant. 
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The Chemical Potential 

 

The following term is referred to as the chemical potential of species i: 

 

 

    
  

   
 
         

 

 

 

The interpretation of     is the rate of increase of G when ni moles of species i is added to 

the system at constant T and P and constant moles of all other species. Alternatively, if 

the system is sufficiently large, the addition of one mole of i at constant T and P does not 

measurably change the overall composition of the system, and thus     is the increase in 

G by this addition. So, we can state the complete differential of G as: 

 

 

 

 

                  

 

   

 

 

 

 

 

 

 

Note that    is defined with respect to mass (ni) not mole fraction (xi)! To restate     as a 

function of mole fraction involves a somewhat complicated maneuver that is discussed in 

HIII, as the resulting equation for     is employed in the computation of phase equilibria. 

Also it is noted that if the composition remains virtually constant as one mole of ni is 

added, this means that the system is open. On the other hand, ni can still vary in a closed 

system that may be undergoing a chemical reaction, where the total number of moles is 

constant, but the various moles of particular species change in accordance to the chemical 

reaction occurring. 

 

We can now enlarge our set of differentials of thermodynamic potentials (where: 

            
 
 ) to: 
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But, we can deduce that the total differential of each thermodynamic potential must 

include a term involving the rate of change of that potential with respect to changes in 

composition; viz.: 

 

             
  

   
 
      

 

 

    

             
  

   
 
      

 

 

    

             
  

   
 
      

 

 

    

             
  

   
 
      

 

 

    

 

 

So, we have the following identity that must be true: 

 

 

 
  

   
 
      

     
  

   
 
      

  
  

   
 
      

  
  

   
 
      

 

 

 

This means that we have three equivalent definitions for   ! Thus, we can re-state our list 

of equations for the total differential of the four fundamental thermodynamic potentials, 

where it is seen we have another conjugate variable, ni: 
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To recap, the FL is: 

 

         
 

For a closed system undergoing a reversible change in composition (such as due to a 

reversible chemical reaction): 

 

      , then: 

 

          

 

 

    

 

Clearly the term 

   

 

 

    

 

is the chemical work done by the system (denoted as   ) which is in addition to the 

volume work    . 

 

Thermodynamic Relations and the Maxwell Equations 

 

As stated earlier, it is of supreme importance to be able to manipulate thermodynamic 

variables for experimental or computational convenience. Because the four key 

thermodynamic potentials are state properties, and because only three (independent) 

variables need to be defined to completely define the state of the open system (only two 

independent variables are needed for a closed system), we can write the total differential, 

and then deduce the total differential just given for these four thermodynamic potentials: 

 

 



12 

 

 

Univ. of Cincinnati MTSC-7035 Fall 2015 © D. Kundrat 

 

 

 

 

             

  

  
  

  
 
 
    

  

  
 
 
  

  
  

   
 
   

     

 

 

 
  

  
 
 
   

 

 

 
  

  
 
 
    

 

 

             

  

  
  

  
 
 
    

  

  
 
 
  

  
  

   
 
   

     

 

 

 
  

  
 
 
   

 

 

 
  

  
 
 
   

 

 

             

  

  
  

  
 
 
    

  

  
 
 
  

  
  

   
 
   

     

 

 

 
  

  
 
 
    

 

 

 
  

  
 
 
    

 

 

             

  

  
  

  
 
 
    

  

  
 
 
  

  
  

   
 
   

     

 

 

 
  

  
 
 
    

 

 

 
  

  
 
 
   

 

 

From these results, we can deduce the following identities: 

 

 

   
 
  

  
 
 
  

  

  
 
 

 

 

   
  

  

  
 
 
   

  

  
 
 
 

 

   
 
  

  
 
 
  

  

  
 
 
 

 

   
  

  

  
 
 
   

  

  
 
 

 

 

 

As reviewed in HI, state function         , such that                      is 

considered a perfect differential if: 

 

 

 
  

  
 
 

  
  

  
 
 
 

 

 

In the above equation:         
  

  
 
 
 and         

  

  
 
 
 

 

Then, we have 
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The four thermodynamic potentials are the function:         . The following table 

(HII.2) gives the so-called Maxwell Equations based on these potentials being perfect 

differentials (here, with n constant). 

 

 

Table HII.2 - The Maxwell Equations 

 
Thermodynamic 

Potential Z 

Total 

Differential 

 

L 

 

x 

 

M 

 

y 

 

Maxwell Equations 

 

Name 

 

 

 

U 

 

 

  
    
     

 

 

 

T 

 

 

 

S 

 

 

 

-P 

 

 

 

V 

 
  

  
 
 
   

  

  
 
 

 
   

    
 

 

 

 

Energy  

Maxwell 

Eqn.  

 

 

H 

 

  
    
     

 

 

T 

 

 

S 

 

 

V 

 

 

P 

 
  

  
 
 
  

  

  
 
 
 

   

    
 

 

 

Enthalpy 

Maxwell 

Eqn. 

 

 

 

A 

 

 

  
    
     

 

 

 

 

-S 

 

 

 

T 

 

 

 

-P 

 

 

 

V 

 

  
  

  
 
 
   

  

  
 
 

 
   

    
 

 

 

 

Helmholtz 

Maxwell 

Eqn. 

 

 

G 

 

  
     
     

 

 

-S 

 

 

T 

 

 

V 

 

 

P 

  
  

  
 
 
  

  

  
 
 

 
   

    
 

 

 

Gibbs 

Maxwell 

Eqn. 
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Since the partials of the Maxwell equations can be inverted, we have: 

 

 
  

  
 
 
    

  

  
 
 

 

 
  

  
 
 
   

  

  
 
 

 

 
  

  
 
 
   

  

  
 
 
 

 
  

  
 
 
   

  

  
 
 

 

 

 

The Born Square 

 

This is a mnemonic device that works because of the symmetry among the 

thermodynamic potentials and their conjugate variables. This is given in Figure HII.1 

 

 
 

Figure HII.1-The Born Square showing the symmetrical relationship among the key 

thermodynamic potentials and their conjugate variables. 

 

The Born Square works as follows. In the interior are four thermodynamic potentials (U, 

H, A and G) that are flanked to each side by each potential’s pair of conjugate variables. 

In turn, the two opposite corners of the square are the coefficients L and M of the exact 

differential of each potential. For example, taking U, its conjugate pair are S and V, and 

its exact differential are the coefficients L = T and M = -P for derivation of the Maxwell 

equation for U. Crossing the square (the RHS of Figure HII.1) shows what differential to 

couple with the coefficient. For example, taking U, P is paired with dV, and T is paired 

with dS, arriving at:  
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Application of Maxwell’s Equations and Other Thermodynamic Relations 

 

Measureable Properties 

 

How does one measure the entropy or chemical potential from experiments? We can, 

typically, measure mechanical properties such as pressure; bulk quantities like volume 

and density; and thermal properties like temperature and heat flow. 

 

Directly measureable thermodynamic variables are: 

 

T 

P 

V 

N or m  

ΔH
α→β 

 

(N is the number of particles, and m is mass.) 

 

Measureable materials properties that depend on derivatives of thermodynamic variables 

(due to a response to a perturbation) are called response functions. Several important ones 

are: 

 

    
     
  

 
 
  

  

  
 
 
   

  

  
 
 
  

  

  
 
 
   

  

  
 
 

 

 

 

    
     
  

 
 
  

  

  
 
 
   

  

  
 
 
 

 

 

Thermal compressibility at constant T: 

 

 

    
 

 
 
  

  
 
   

 

 

 

Coefficient of thermal expansion at constant P: 
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Joule-Thomson coefficient: 

 

 

     
  

  
 
 

 

 

 

A great deal of effort by thermodynamic workers has been put into manipulation of the 

fundamental thermodynamic equations to change out dependent with independent 

variables and to position the dependent variables to be a function of directly measureable 

variables and one or more of the response functions. These manipulations almost always 

employ one or more of Maxwell’s Equations and related identities, and  often employ 

properties of exact differentials conferred by calculus (see HI). While a bit tricky, this 

procedure essentially follows these steps (which are somewhat arbitrary):  

 

1.  If the state function is a thermodynamic potential, start with its 

fundamental potential (this step can also be done as part of Step 6). 

 

2.  Construct a state function involving the variables of interest; if the state 

function is a thermodynamic potential, the variables of interest  need not 

be conjugate variables, but ultimately, stem from conjugate pairs. 

Examples for an open system include:         ,         ,          
and         . 

 

3.  Write out the full total differential of the state function; e.g., for 

        : 
 

 

    
  

  
 
   

    
  

  
 
   

    
  

  
 
   

   

 

 

4.  Set to zero any differential that is constant; e.g., constant N for a closed 

system. Here it is important to remember any restrictions in further 

manipulations (in our example below, we must remember that N is being 

held constant): 

 

 

    
  

  
 
   

    
  

  
 
   

   

 

5. Take the derivative of interest, essentially by dividing by the appropriate 

differential. We must specify any previously held constant conditions, as 

well as any additional constant conditions as is necessary to meet one less 
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than the number of independent variables. Continuing the same example 

above, we further specify that S is constant: 

 

 

 
  

  
 
   

  
  

  
 
   

    
  

  
 
   

 
  

  
 
   

 

 

 

6. Substitute various fundamental equations (especially if the state function 

is a thermodynamic potential) to arrive at an expression of measureable 

quantities, including response variables and Maxwell equations. 

 

 

In the above steps, the common techniques for manipulating partial differential equations 

from calculus are necessary (see HI). 

 

Application of Maxwell Equations – Example 1 

 

As an example, we here use one of Maxwell’s equations and a response function. 

Consider: 

 

 

 
  

  
 
 
  

   

    
    

  

  
 
 

 

 

 

But, we already know the coefficient of thermal expansion: 

 

 

   
 

 
 
  

  
 
 

 

 

 

Thus, we have: 

 

 

 
  

  
 
 
      

 

 

Application of Maxwell Equations – Example 2 
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Here is a more complicated example for manipulation into response parameters; say, we 

want to know:  
  

  
 
 
   

 

From Maxwell, we have: 

 

 

 
  

  
 
 
   

   

    
   

  

  
 
 
 

 

 

Now we want to use the property of partials: 

 

 

 
  

  
 
 
 
  

  
 
 
 
  

  
 
 
    

 

 

So, we can re-arrange this equation to be: 

 

 

 
  

  
 
 
 

  

 
  
  

 
 
 
  
  

 
 

  
 
  
  

 
 

 
  
  

 
 

  

 

 

 

 
 

 

  
  

 
  
  

 

 

 

Application of Maxwell Equations – Example 3 

 

 

Here we want to derive an equation for the change in entropy as a function of T and V for 

an ideal gas. Since S is a state variable, we immediately choose:         , so, on 

differentiation, we get: 

 

 

    
  

  
 
 
    

  

  
 
 
   

 

 

We can replace        with a function of   : 
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Or 

 

   
     

 
 

 

Or 

 

 
  

  
 
 
 
   
 

 

 

 

Similarly, we can replace           with           from Maxwell”s equations. So, 

we know have: 

 

 

   
     

 
  

  

  
 
 
   

 

 

 

We know from the Ideal Gas Law; 

 

 

 
  

  
 
 
 
  

 
 

 

 

 

So, we can substitute the above equation in to finally arrive at: 

 

 

   
     

 
 
  

 
   

 

 

 It is noted that the above equation is readily integrated, giving: 
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Application of Maxwell Equations – Example 4 

 

As our final example, we will take two of the fundamental equations to arrive at functions 

that depend only on T, P and V (closed system): 

 

 For internal energy, we have: 

 

 

            

 

 

 
  

  
 
 
   

  

  
 
 
   

 

 

From Maxwell, we have: 

 

 

 
  

  
 
 
  

  

  
 
 
 

 

 

 

So, we have: 

 

 

 
  

  
 
 
   

  

  
 
 
   

 

 

This result shows that the internal energy of a closed system is a function of measureable 

quantities T, V, and P. 

 

For enthalpy, we have: 

 

            
 

 

 
  

  
 
 
   

  

  
 
 
   

From Maxwell, we have: 
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So, we have: 

 

 

 
  

  
 
 
    

  

  
 
 
   

 

 

This result shows that, for an ideal gas (       : 
 

 

 
  

  
 
 
 
  

 
  

  

  
 
 
 
    

 
        

 

 

The Gibbs-Helmholtz Equation 

 

The following is a very important derivation, which shows how     can be obtained from 

a measurement of     for a closed system of fixed composition (such as a chemical 

reaction occurring in a closed container). 

 

We have:  
        

 

 

 
  

  
 
 
    

 

 

Therefore, we have: 

 

 

     
  

  
 

 

 

Or, this is: 
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If we divide through by T
2
, we get: 

 

 
       

  
  

 

  
   

 

 

From calculus, we know:                   , so that: 

 

 
      

  
  

 

  
 

 

 

For an isobaric change of state of a closed system of fixed composition: 

 

 
       

  
  

  

  
 

 

 

Alternatively, we could have started with the fundamental equation:  

 

            
 

Since:          , we could write: 

 

 

    
     

 
       

 

 

Thus, at constant pressure: 

 

 

    
     

 
   

 

 

Or, this is: 

 

             
If we divide now by T

2
, we get:  
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Or, this is: 

 

 

       
    

  
         

 

 

This leads to either: 

 

 

 
       

      
 
    

    

 

 

Or to: 

 

 

 
       

    
 
    

  
  

  
 

 

 

An equivalent pair of equations can be developed for the Helmholtz Free Energy A: 

 

 

 
       

      
 
    

    

 

 

Or to: 
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STATISTICAL THERMODYNAMICS 

 

Background 

 

In the previous handout, the Kinetic Theory of Gases (KTG) provided an elemental, 

physical understanding of important thermodynamic properties, such as pressure, 

temperature and internal energy. While startlingly simplistic, KTG does give an intuitive 

feel for the FL. The SL, however, cannot be intuited from KTG.  

 

Historically, the FL was readily accepted largely because of its intuitive basis (i.e., it 

stems from the idea of mass and energy balances). This was far from the case for the SL, 

even after entropy was deduced to be a state function, as is internal energy! 

 

Understanding the SL was facilitated by classical statistical mechanics that introduced 

probability theory and the idea that equilibrium corresponded to the most probable of all 

possible states available to the system. But understanding the exact nature – what 

distinguishes each of these states – awaited the advent of quantum mechanics and the 

idea that the energy levels of individual atoms are actually quantized, possessing only 

specific energy levels. Each site of a lattice, for example, can now be understood to be in 

one of many distinct energy states and assigned a probability of occurrence. As a result, 

many different arrangements were understood to be possible among all the atoms of the 

system. The most probable arrangement could now be computed and accepted as a 

quantitative measure of the maximum degree of thermal disorder, providing a link to the 

macroscopic property of thermal entropy. 

 

Earlier in this handout, temperature was seen to be a conjugate of the entropy function – 

this result deduced from purely on the logic of the combined FL and SL. Statistical 

thermodynamics gives us yet another interpretation of temperature – in addition to that 

provided by KTG and the Ideal Gas Law. It provides the basis for the Third Law (TL) 

which asserts that the entropy of a pure, stoichiometric, perfectly ordered crystal is zero 

at 0 degrees K.  

 

The idea of zero absolute temperature was first deduced by extrapolating volume to zero 

in the Ideal Gas Law. Then, further confirmation from the combined FL and SL was 

deduced based on analysis of the Carnot cycle as the lowest temperature whereby 100 % 

efficiency could be obtained. Finally a third confirmation is given by the combination of 

classical thermodynamics (i.e., the FL and SL) and statistical mechanics, where a key 

parameter (the Lagrange multiplier β) is found rigorously to be a singular function of 

absolute temperature. 

 

Macro- and Microstates 

 

We first need to distinguish the macrostate and the microstate. The former is, in classical 

thermodynamics, called a state, which is characterized by only a few state properties 

(viz.: T, P, U …). A microstate of a system characterizes all the particles in the system at 
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a particular time – we must specify the position and velocity of each atomic species of the 

system: 

 

 

 While equilibrium appears to be static on a macroscopic scale – appearing to be in 

a state of rest – it is actually dynamic, where all atomic species (T > 0°K) are in 

motion, with their configuration changing constantly. 

 

 The property of the macrostate is considered to be an average over all its 

properties in the microstates experienced by the system.  

 

 The time-average of the properties of a system is assumed to be equivalent to the 

instantaneous average over the totality of microstates available to the system. 

 

 Measurement of a macroscopic property captures an average in all of the 

microstates experienced by the system during the time of observation. 

 

To quantify the macroscopic average of a property from consideration of the microscopic 

requires: 

 

1. The property of each microstate; 

2. Knowledge of which microstate the system can be in; and 

3. The probability that the system will be in a given microstate. 

 

Types of disorder 

 

The thermodynamic (macro) state of a system is established by a macroscopic measuring 

of state properties, such as U, V, xi, in addition to specifying T and P. Microscopically, 

this state is comprised of a large number of atoms, each one in one of several quantum 

states available to a particular system. This situation is characterized by a high degree of 

energy, or thermal disorder. If the atoms are also dissimilar, there are many different 

ways to arrange the lattice, which contributes additionally a degree of chemical disorder. 

The first type of disorder is quantified as thermal entropy, and the second as 

configurational entropy. The state of thermal and chemical equilibrium, in turn, is 

associated with both types of disorder, quantified as the most probable distribution of all 

possibilities, being at a maximum. 

 

Determination of the Microstates of a Macrostate 

 

We want to illustrate the difference between the microstates possible for a given 

macrostate. Consider a pure crystal with three distinguishable lattice sites A, B and C 

each containing atoms. Now consider three identical (hence, distinguishable) particles – 

these can be considered to be electrons – capable of possessing energy of one of four 

quantized energy levels: 
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1. A ground level at zero relative energy, where:       ; 

2. Level 1 with:       ; 

3. Level 2 with:       ; and 

4. Level 3 with:       . 

 

 So, we have a situation of three particles taking on one of four possible energy levels. 

 

Now, we want to consider all the number of ways the three particles can be associated 

(or, reside) on the lattice sites. For simplicity in the present analysis, we want to keep the 

total energy constant at:     . Figure HII.2 shows three different distributions are 

possible, each with:     . 

 

 
 

Figure HII.2 – The distribution of particles among energy levels in a system of 

constant energy. 

 

By distribution is meant a distinct combination of the particles of the energy levels to 

achieve the total energy U. Each distribution must achieve the same total energy U. In 

our example, for Distribution a, only       is employed; for Distribution b, one particle 

is at     and the other two are at the ground level     , and finally, for Distribution c, each 

of the three particles are in a different energy level, but where the total is U. 

 

But, because the sites are considered distinguishable, i.e., a site with an atom possessing 

an electron of one energy level is distinguishable from another site with an atom 

possessing an electron of a different energy level, there is the possibility of several 

different arrangements of the lattice sites. Figure HII.3 shows all possible arrangements. 
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Figure HII.3 – Illustration of the complexions or microstates within distributions of 

particles among energy levels in a system of constant energy of U=3u. There are three 

different distributions (a, b, c) each with a different Ω. 

 

At issue is to determine how many different distinguishable arrangements are possible: 

 

Distribution a – - Here, there is only one arrangement for this distribution; i.e., 

interchanging the particles, all at energy level      , among the three lattice stesa does 

not produce a different arrangement. 

 

Distribution b – Any of the three distinguishable lattice sites can be occupied by the 

particles of energy     , and the remaining two sites are each occupied by a particle of 

the ground state energy level. As interchange of the particles of zero energy does not 

produce a different arrangement, there can only be three arrangements. 

 

Distribution c – Any of the three distinguishable lattice sites can be occupied by the 

particles of energy   ,  and either of the two remaining sites can be occupied by the 

particles of energy    , and the single remaining site is occupied by the particles of zero 

energy. The number of distinguishable arrangements in all thus is:          . 

 

In all, there are 10 distinguishable ways in which three particles can be placed, keeping 

the total energy of the system of three sites equal to     . Each arrangement is called 

a microstate, and all 10 correspond to a single macrostate. 

 

In Figure HII.3, the following formula is invoked, corresponding to the total number of 

microstates Ω for a given distribution (where it is noted that 0! = 1): 
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While, in the previous discussion, the total energy level is     , in reality, we want to 

consider other total energy levels for the system; e.g.,                  In this 

case, we would get additional microstates depending on the total energy levels 

considered. If U is not held constant, the total number of microstates ΩT is obviously 

much greater. Similarly, as the number of atoms per lattice site increases, Ω increases.  

For one mole of atoms (= 6.023 10
23

 atoms) then n! is an inconceivably large number.  

 

For simplicity, we are going to now consider just three energy levels (ground level, u and 

2u). So, for     ,we still have Distributions a and c in Figure HII.3, for which Ω = 1 

and 6, respectively. These two distributions for      are shown in the following table 

(HII.1) as Columns E and F.  

 

 
Table HII.1 Possible Distributions of Three Particles Among Three Different Quantum 

Energy Levels and Six different Total Energy Levels 

(                          . 
 

The Microcanical Ensemble, the Canonical Ensemble and the Partition Function 

 

In an isolated system of n particles in a volume V, with a fixed total energy U, each of the 

microstates can only have the same total energy. A basic assumption in statistical 

thermodynamics is that all microstates corresponding to the same total energy are equally 

probable. This particular set of microstates for a given total energy is called a 

microcanical ensemble. Corresponding to each energy state will be a number of quantum 

states. The totality over multiple energy states is:   , for which all the quantum states 

possible for the system is termed the canonical ensemble. However, microstates 

corresponding to different energy/temperature levels are not equally probable. 

 

Consider a molar volume of a pure crystal (i.e., one containing only one atomic specie). 

The n atoms in the crystal have a total energy U. All the atoms do not necessarily have 

the same energy level, as fluctuations will occur whining the crystal. These energies are 

quantized, so that the atoms can only have discrete energy levels (          ) and no 

at 2u 

at 1u 

at 0u 
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values in between. The question occurs: How may atoms occupy each state? How many 

atoms are associated with each of the discrete energy levels available to the system? 

 

At first glance, it would appear that the crystal at a minimum average energy state would 

have all atoms in the ground state (  ) so that for the crystal        . However, this 

ignores the extremely important contribution of (thermal) disorder, or entropy, in 

determining the thermal equilibrium state. Here, the thermal entropy is due to random 

mixing of atoms of different energy states due to the fact that these energy states are 

discrete (i.e., numbered) and the fact that the atoms (while all of the same atomic specie) 

are distinguishable from the point of view of energy. The state of thermal equilibrium 

corresponds to a maximum value of these mixing, hence, leading to occupancy of states 

other than the ground state. 

 

The Boltzmann Hypothesis 

 

Boltzmann expressed the relationship between the entropy of a system in a given state 

and the probability of existence of the given state. In this way, it now possible to 

calculate the entropy by calculating the probability of different states from analysis of the 

various distributions possible, and thereby link classical and statistical thermodynamics: 

 

 

       

 

 

In the above equation, k is the Boltzmann constant. 

 

The expression for entropy as merely a logarithm of the total number of distributions is a 

simple, but brilliant insight. This characterization can be understood by considering the 

mathematical nature of the microstate versus the macrostate. For the macrostate, entropy 

is an extensive state property, so that combination of two systems results in the addition 

of the individual values of the entropy. But, for the microstate, it is quantified by 

probability, so combining two systems must be a product of the number of microstates 

for each. Because of the additive nature of entropy as a state property and the 

multiplicative nature of thermodynamic probability, the function that relates the two had 

to be a logarithm! 

 

The most probable distribution of atoms possessing one of the discrete energy levels is 

obtained by determining the set of numbers of atoms in each energy state that maximizes 

Ω. For n (on the order of the size of 1 mole),       is significantly larger than the sum of 

all other arrangements         , so: 
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For this maximization, we need to consider the mass and energy balances in terms of a 

variation in the number of atoms in each energy state:                  , as it is this 

variation, not the number themselves (       ) that allows for the maximization to be 

calculated. 

 

The energy balance is: 

 

 

                                

 

   

       

 

 

Here,  

 

 

   
 

  
 

 

Where 

 

   =1 

 

 

 In the above equation,     is the probability of atoms being in a particular energy state i. 

 

The mass balance is: 

 

 

                        

 

   

      

 

 

As seen earlier, the formula for determining the number of arrangements for a 

distribution is: 

 

 

  
  

             
 

 

 

For n being large, Stirling’s Approximation (for large x) greatly simplifies this equation: 
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So, we have: 

 

 

                   

   

   

      

 

 

 

  
  
 
  
  
 
         

   

   

 

 

 

 

But, as stated earlier, we need to vary ni; viz.:    . To do this, we must restate the energy 

and mass balances: 

 

 

       

 

     

 

 

        
 

   

 

 

Finally, to maximize Ω,       , or: 

 

 

             

 

 

The solution for maximization of Ω is found by the Technique of Lagrange Multipliers. 

The result is: 
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In the above equation, the numerator is called the Partition Function  : 

 

 

          

 

 

 

 

The equation: 

 

 

   
       

         

 
  
 

 

 

 

Gives the distribution of atoms (or particles) in the various discrete energy levels that 

maximizes Ω. The nature of this solution is exponential. Occupancy of these levels is 

such that it decreases exponentially with energy level – there are fewer atoms (or 

particles) associated with the higher energy levels than with the lower. This is shown in 

Figure HII.4. 

 

 
 

Figure HII.4 – Schematic representation of the most probable distribution of particles 

among quantized energy levels. 
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One of the startlingly simple and elegant result of this analysis is proof on combining 

classical and statistical thermodynamics that the Lagrange multiplier β is in fact actually 

temperature: 

 

 

   
 

  
 

 

 

This provides a third interpretation of temperature! The proof is as follows. 

 

From classical thermodynamics, we have: 

 

 

           

 

 

 

Thus: 

 

 

 
  

  
 
 
   

 

Or 

 

 
  

  
 
 
 
 

 
 

 

 

From our earlier analysis of     : 

 

 

      
 

  
  

 

  
                     

 

 

 

But: 

 

 

              
So: 
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Since  β  and εi  are constants, and setting         , we have: 

 

 

           

 

 

Finally: 

 

 

                 
 

 

Now, we invoke calculus manipulations (see HI). First, we take the differential of this 

function for S with respect to U: 

 

 

 
  

  
 
 
 
 

 
 
  

  
 
 
       

  

  
 
 

 

 

 

 

From the chain rule: 

 

 

 
  

  
 
 
 
 

 
 
  

  
 
 

 
  

  
 
 
       

  

  
 
 
 

 

 

Now, we want to differentiate the partition function    with respect to β: 
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But, we have:  

 

 

            

 

 

Also, we know: 

 

 

        

 

 

 

So that, we have: 

 

 

 
  

  
 
 

                 

 

 

 

 
  

  
 
 

     

 

 

Finally, we have, on inserting for the above: 
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The foregoing analysis to arrive at the partition function as a function of β  and  εi  was 

based on holding U (which means T) constant. But, given the result that       , we 

can now see how the distribution changes with T, which is equivalent to changes in U. 

Figure HII.5 shows this qualitatively. 

 

 

 
 

Figure HII.5 – The influence of temperature on the most probable distribution of particles 

among energy levels in a closed system of constant volume. 

 

It is now seen that higher temperatures shift more atoms/particles to the higher energy 

levels than lower temperatures. From KTG, this stands to reason – as temperature 

increases, the average energy of the atoms/particles of a system directly increases. 

 

Production of Entropy in Attainment of Equilibrium 

 

We know from everyday experience that the transfer of heat from a body at a higher 

temperature to one at a lower temperature is irreversible. This is also deduced from 

classical thermodynamics as delineated in HI, where entropy increases as a result of this 

heat transfer. Now, from the point of view of the microstate, we see that why this is so. 

What is considered classical thermodynamics to be impossible, or irreversible is seen 

simply to be improbable! 

 

The following analysis also shows clearly that entropy is at a maximum when thermal 

equilibrium is achieved. Consider two closed Systems A and B. Let the total energy be 

UA and the total number of complexions for A be ΩA, and UB and ΩB for B, respectively. 
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When thermal contact is made between A and B, the product      will not have a 

maximum value if heat begins to transfer between A and B. Heat continues to one system 

from the other, increasing       until a maximum is reached, whence: 

 

 

          

 

 

 

But: 

 

 

      
   
   

 

 

And 

 

      
   
   

 

 

 

Furthermore, for a constant total energy: 

 

 

          

 

 

Thus: 

 

 

                     
 

  
 

 

  
 
  

 
 

 

 

 

It is now readily seen at the maximum:      , which corresponds to the classical 

definition of thermal equilibrium! 

 

Configurational Entropy 

 

Consider the mixing effect of two dissimilar atomic Species A and B, resulting in an ideal 

solution, where the positioning of the mix of atoms on a lattice is completely random. (It 

is to be noted that for an ideal solution, there is no energy – enthalpy - of mixing; all 
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configurations are at the same energy level and are equally probable.)  For one mole of 

atoms (= 6.023 10
23

 atoms) we have: 

 

 

  
  

      
 

 

 

This equation may or may not seem obvious. One way to arrive at this equation is to 

realize that there are n ways of introducing the atoms onto the lattice, one at a time. The 

first atom can be chosen at random from among nA and nB, in n different ways. The 

second atom may be chosen in n-1 different ways from the remaining pool of n-1 atoms, 

and so forth. The total number of ways of placing all the atoms onto the lattice is: 

 

 

                         
 

 

However, not all of the configurations are distinguishable! To account for this, we must 

divide by the number of different ways that the nA atoms can be distributed on their sites 

– re-arranging atoms of nA labeled 1, labeled 2, … can be done nA! number of ways. 

Since these are all indistinguishable – all being A atoms, the total number of 

configurations must be divided by this amount: nA! for the indistinguishable A atoms, and 

by nB! for the indistinguishable B atoms. What remains is the number of ways of 

arranging n atoms, two at a time. 

 

So, now we have: 

 

 

             
  

      
 

 

Or 

 

                         
 

 

 

This equation can be simplified as before using Stirling’s Approximation, where: 

 

                 

 

Or 
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So that: 

 

 

            
  
 
     

  
 
  

 

 

Or, in terms of mole fraction, where:                , we have: 

 

 

                       
 

 

In the above equation, R (= kn) is the Universal gas Constant; taking n to be one mole of 

atoms, we have the intensive entropy of mixing. 

 

Obviously, this formula can be generalized for the entropy of mixing of one mole of an 

ideal solution of i components (where the underline signifies the intensive property): 

 

 

           
 

 

 

 

Combination of Thermal and Configurationsl Entropy 

 

The total entropy of a system consists of the sum of the thermal entropy      and the 

configurational entropy, or entropy of mixing     : 

 

 

 

                                            
 

 

 

Consider the mixing of two closed systems, each containing only one atomic specie, but 

not the same specie between the two systems. If the systems on contact are also at 

different temperatures, in addition to the diffusion to the diffusion of dissimilar atom into 

each system, there is the transfer of heat until chemical and thermal equilibrium – that is, 

complete equilibrium – is attained in the transition from State 1 (pure A at TA and pure B 

at TB versus State 2, consisting of A & B in solution in a lattice at a mutual temperature 

    . The net change in total entropy is: 
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Note that             , since the systems are initially pure. Obviously, if both 

systems initially are at the same temperature, then: 

 

 

                 

 

 

In point of fact, this is for the ideal mixing process – one where mixing does not involve 

a change in total energy of the combined systems per total number of atoms. Ideal mixing 

is hardly ever the result of the mixing of two atomic species! Instead, in most instances, 

U and V do change (whether positive or negative) on mixing, and this must involve the 

distribution of the particles among the various discrete energy levels. This is seen 

macroscopically not only in a measureable change in these state properties, but physically 

as a tendency of dissimilar species to either cluster (in the extreme, forming compounds) 

or to repel (clustering of like species, causing a mechanical mixture in the extreme, where 

the characteristics of the pure species are retained for the mixture). Nonetheless, in all 

cases, the equilibrium state of the system is that which, at a constant U, V and n, 

maximizes the product        .  

 

The Barometric Equation Verified by Statistical Thermodynamics 

 

As with KTG, we can derive the barometric equation from first principles by applying the 

partition function. Consider an isothermal column of gas of height h. The potential 

energy of an atom at the top of the column relative to the bottom is the difference in the 

potential energy    , as seen in Figure HII.6. 
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Figure HII.6 - Isothermal column of gas. 

 

 

Consider two spaces of equal volume, one at the top of the column, and the other one at 

the bottom. The probability of finding any atom in the top (  ) relative to the bottom 

(  ) is: 

 

 

   
           

 
 

 

And 

 

   
           

 
  

 
  

  
                               

 

 

Because this ratio of probability applies to all the atoms at each location,   and   , we 

have: 
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Now, consider the gas to be ideal, so that from the Ideal Gas Law applied to each 

location, we get: 

 

 

 
  

  
              

 

 

 

In the above equation, m is the mass of one atom and P is the pressure (not to be confused 

with probability ( ). Taking M to be one mole of atoms, we finally have the Barometric 

Equation: 

 

 

 
  

  
              

 

 

Insight Into the Third Law 

 

It is interesting to revisit entropy of mixing for the case of a perfect compound. By 

perfect, we mean mixing of Species A and Species B are in perfect accord as a 

compound, with no imperfections in its stoiciometry. Such an arrangement is shown in 

Figure HII.7. 

 

 
 

Figure HII.7 – Arrangement of atoms in a perfect compound. 
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Now, we want to reason as to the number of arrangements on forming this compound 

from pure A and  pure B. Because we are following a stoiciometric formula (here A:B is 

1:1) Ω is equal to unity: 

 

 

  
      

      
 

 

 

 

The only difference is the selection process: once an atom has been selected (say, from 

the upper left hand corner of the lattice) it follows that the sites immediately surrounding 

it must be of the other specie. The second atom selected is not drawn from the pool of the 

first atom selected, but the pool of the second specie. If the first atom chosen is A, it is 

selected from the pool of      atoms, but the second is from the pool of B atoms   .The 

third atom must be selected from the pool of       atoms, and the fourth atom from the 

pool of      and so forth. Hence, the numerator, which accounts for the 

indistinguishability of the A atoms on the A sites and the B atoms on the B sites is also: 

     .  

 

This result gives insight into the basis of the Third Law (TL). If two components of 

atomic species are, at absolute zero, combines to form a perfectly ordered crystal, the 

entropy change is zero. Thus, entropy must range from zero for the perfectly ordered 

crystal to       for random mixing of an ideal solution. 

 

Degeneracy 

 

The equation given earlier for the partition function    can be modified from an 

accounting perspective, depending on how the arrangements are counted. Here, we 

distinguish the difference between energy level and energy state. A factor    can be 

introduced in the equation for partition function to account for the statistical weight of the 

energy level; i.e., at any one energy level   , there may be     states – all having the same 

energy, but different arrangements. 

 

The probability a particle will be in a specific state is: 
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In the above equation,    is summed over all the states of the system; viz.:   

             . On the other hand, the probability that a particle will be in a specified 

energy level is: 

 

     

           

 
 

 

 

In the above equation,                    , which is summed over all the levels. 

 

This is merely an accounting procedure. With reference to Table HII.1, one can sum over 

each possible state, where all the sub-states within one energy level is assumed to be 

independent.  

 

Alternatively, if one accounts for the number of sub-states in each energy level straight 

on, then the sum is over all energy levels. 

 

So, referring to this table, the partition function evaluated as the sum over all the states of 

the system would have                                                               
 

The partition function evaluated as the sum over energy levels would have only 7 terms, 

one for each of the 7 energy levels. At each energy level,   would equal the number of 

microstates for a given energy level. For example, the b level would have a degeneracy of 

3. 

 

Distinguishability of Particles  

 

It is important to distinguish a gas from a solid in considering the question of 

distinguishability. It comes down to whether the atoms are localized or not. Atomic 

species in a crystal are localized; atomic species in a gas are not. In a solid (or liquid, 

which essentially is a solid, but with short range ordering) the atomic species vibrate 

about a fixed space, hence are localized, because they can have different vibrations 

corresponding to a thermal distinguishability among different species of the system. If the 

species are not interacting when combined, where there is no additional change in energy 

from any interaction, the so called Grand Partition Function (GPF)   for the system of 

combined species is simply the partition function of the individual atoms, but where 

account is taken of the combination of energy states of the system of combined species: 

 

 

                     

 

 

For a gas, it is important to recognize that the individual species are not distinguishable. 

So, following the previous procedure to deduct for non-distinguishability, we have: 
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From the GPF, we can deduce the macrostate properties for S, A and P. These are shown 

in Table HII.2.  

 

 

 
 

Table HII.2 – Partition function ( ) for many (N) particles based on the partition 

function for one particle (    ). 

 

 

This calculation is illustrated considering a system of one particle. We begin with the 

equation: 

 

 

       
 

 
 

 

 

 

The internal energy of this one particle is: 
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We note that: 

 

 

              

 

  

 

 

 

 
  

  
 
 
             

 

  
   

 
 

   
              

 

 

 

 

This gives: 

 

 

              

 

  
  

  
 
 
    

 

 

 

Therefore 

 

 

  
 

 
    

  

  
 
 
     

    

  
 
 
 

 

 

Now, on substitution back in this equation for S, we get: 

 

 

          
    

  
 
 
 

 

 

Similarly, since the Helmholtz Free Energy is       , we have: 
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What actually is   for an ideal gas in terms of a mass m of the gas in terms of its kinetic 

energy? For this, we consider the simplest case, which involves the motion of this mass 

of one particle in a cubical box of dimensions      , where its velocity is quantized. 

Here, we are considering only translation motion leading to kinetic energy (rotation, 

vibration, or electronic excitation are all ignored). 

 

This velocity is quantized, having a wavelength in the x-direction defined by the 

DeBrogolie relationship (where                , and h is Plank’s constant : 

 

 

   
 

 
 

 

Consider the x-direction, then: 

 

 

   
  

   
 

 

 

Its energy (noting    
 

 
   

   is: 

 

 

   
    

   
 

 

 

Therefore, the partition function in the x-direction becomes: 

 

 

    
     

  
 
   

  

 

 

 

Finally. For all three directions, we have: 
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The pressure of an ideal, monatomic gas now can be calculated, as follows. The 

Helmholtz Free Energy (for one mole of gas) is: 

 

 

                 
 

         
    

 

 

Since: 

 

 

    
  

  
 
 
 

 

 

Then, we have: 

 

 

              
    

  
 
 
 

 

 

In the above equation: 

 

 

   
     

  
 
   

  

 

 

In the above equation, h is Plank’s constant. 

 

Finally, the grand result, inserting for the partition function derived for translational 

motion of the gas particle, is: 

 

 

  
           

 
 
  

 
 

 

 

 

Obviously this above result is none other than the Ideal Gas Law!  
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Since this is true, it is easy to show that for an ideal gas, the partial of internal energy 

with respect to volume, holding temperature constant is zero. We start with the 

fundamental equation: 

 

 

 

           

 

 

 

From this we find: 

 

 

 

 
  

  
 
 
   

  

  
 
 
   

 

 

 

Then, from the fundamental equation: 

 

 

 

            

 

 

We find: 

 

 

 

 
  

  
 
 
  

  

  
 
 
 

 

 

 

Finally: 
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We can already use the result given above, where the Ideal Gas Law resulted from 

employing the partition function in for the Helmholtz Free Energy. Here, we re-derive 

pressure employing the partition function directly: 

 

 

 

              
    

  
 
 
 

 

 

Where: 

 

 

      
     

  
 
   

  

 

 

 

 

From this expression, we find: 

 

 

 

 
    

  
 
 
  

    

  
 
 
 
 

 
 

 

 

 

So that, once again, using the expression for the partition function, we get the Ideal Gas 

Law: 

 

 

 

              
 

 
 
 
 

 

 

 

Finally, using this result, we have: 
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So that insertion into the relation above for internal energy: 

 

 

 

 
  

  
 
 
  

          

 
 
           

 
   

 

 

 

Demonstration of Exponential Temperature Dependencies of Diffusivity and the 

Rate Constant 

 

Diffusivity and the chemical rate constant (k) show exponential increases with T. The 

partition function can be employed to quantify this phenomena, since the fraction of 

particles in the excited state – that fraction having sufficient energy to overcome an 

energy barrier – increase directly with temperature.  

 

Most diffusional processes involve an excited state. If the average energy of an atom in a 

typical lattice is   ,    is the increase in energy for the atom to move from one site to 

another. If it is assumed that the quantized energy levels are so close together that a 

continuous curve may be used to describe the energy change, as shown in Figure HII.8. 

 

 

 
 

Figure HII.8 – Illustration of the activated state process as a continuous function. 

 

 

The partition function    may then be expressed as a continuum: 
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For this calculation, not only those with energy     between        will be able to 

move over the barrier, but those with any high energy as well. The probability that an 

atom will have an energy between U and U+ dU is: 

 

 

       
            

           
 

 
  

 

 

 

The probability that an atom will have an energy between    and     is: 

 

 

               
 

  

 
             
 

  

           
 

 
  

 

 

Or 

 

                    
 

 

Similarly, the fraction of atoms having an energy between     and     is: 

 

 

                    
 

 

Taking    as the ground state of the atom, then we have for the fraction of atoms in an 

excited state     corresponding to      (where ΔU is the activation energy) is: 

 

 

               
 

 

This equation also describes the activation energy barrier necessary for atomic species to 

react in a chemical reaction.  

 

This equation has to be refined further – it was assumed that the number of states 

available at any energy level is independent of the energy level. This is not categorically 
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true, as entropy considerations need to be taken into account. So, this equation is 

modified into: 

 

 

                         
 

 

In the above equation, ΔS is the entropy change associated with the process. It clearly 

shows that the fraction of particles in a higher energy state increases exponentially with 

temperature as the activation energy level increases. 

 

Distribution of Velocities in the Ideal Gas – the Maxwell-Boltzmann Versus the 

Fermi-Dirac Distribution 

 

KTG was employed in HI to derive the average energy of an atom in a monatomic gas. 

However, this approach does not reveal any information on the distribution of velocities. 

This can now be derived employing the partition function. From Maxwell-Boltzmann, the 

final result (after a lengthy derivation) is: 

 

 

    
      
 

 

 
 
   

  

   

 

 

 

However, in the above derivation, the electron particles are not subject to the Pauli 

Exclusion Principle, which states that no two electrons may have the same set of quantum 

numbers, including electron spins. 

 

So, the partition function is modified (again, after a lengthy derivation) to subtract from 

the quantized energy level    the Fermi energy     . The two different distributions 

become equivalent when: 

 

 

    
     

  
    

 

 

 

This is shown schematically in the following figure (HII.9). 
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Figure HII.9 – The Fermi-Dirac distribution. 

 

 

In contrast with the Maxwell-Boltzmann distribution, the population of states in the 

Fermi-Dirac distribution changes very little with temperature (i.e., only near the higher 

end of the distribution). This means with the latter distribution, it is necessary for only a 

few particles to change energy levels to change the temperature. This contrasts with the 

collection of the Maxwell-Boltzmann distribution, in which many more particles change 

energy levels to change temperature. 

 

 

 

THEORETICAL CALCULATION OF HEAT CAPACITY 

 

Background 

 

Dulong and Petite (1819) postulated that all solid elements have a molar heat capacity 

equal to 3R (2.4 J/°K) and Kopp (1865) postulated that the molar heat capacity of 

compound is the sum of that of its components. In accordance with Dulong and Petite, 

Figure HII.10 shows heat capacity to be highly non-linear in temperature, however, at 

room temperature most elements have heat capacities close to 3R. Some elements, 

particularly silicon and the diamond structure for carbon show a lesser effect of 

temperature, and significantly lower values over a range of temperatures, especially at 

lower temperatures, as shown in Figure HII.10. 
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Figure HII.10 – The constant-volume molar heat capacities of Pb, Cu, Si, and the 

diamond form of C as a function of temperature. 

 

With the advent, first of classical thermodynamics, then statistical thermodynamics, and 

finally, quantum theory, for the first time heat capacity was able to be calculated from 

first principles. Einstein (1907) was the first to have successfully made this calculation, 

using a simple mechanical analogue, where each of the n atoms of a crystal behave as a 

harmonic oscillator vibrating independently about its lattice point at a frequency of ν.  

 

 

 

The Einstein Crystal 

 

The energy of the i
th

 level of a harmonic oscillator is given as: 

 

 

                         

 

 

Considering the simplest treatment of vibration in all three directions, we have 3n linear 

harmonic oscillators, and we have: 
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Substitution of the equation for    as a function of the vibration frequency and the 

partition function for ni (               ) in this equation yields: 

 

 

               
                    

                   
   

 

 

 

     
                     

                   
 

 
 
                   

                   
   

 

 

 

     
                 

               
 
 

 
   

 

 

 

 

 
      

                  

               
 
          

  

 

 

Now, we can simplify this equation by replacing the series by its truncated bi-nomial 

series: 

 

 
 

      
             

 

 

 
 

      
              

 

 

Also, we have: 
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First, we want to simplify our notation by setting              . So that 

 

 

                                       

 

 

But, since                       , then: 

 

 

                
            

                
  

 

 

Finally, we have: 

 

 

                          
 

     
 

 

Or 

 

    
 

      
 

 
     

   
  

     
 

 

 

Thus: 
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Finally, we have: 

 

 

   
 

 
    

    

            
 

 

 

 

So, we have: 

 

 

    
   

  
 
 

                     
  

  
             

 

 

 

    
  

 
 
           

               
 

 

 

 

Letting          , where     is the Einstein Characteristic Temperature, and if we 

taken to be Avogadro’s Number, we have for the Einstein Crystal: 

 

 

 

      
  
 
 
     

  
  

     
  
     

  

 

 

Figure HII.11 shows the variation of   for Al with 
 

  
. Although the Einstein equation for 

   adequately represents the experimental values for heat capacity at higher temperatures 

(  taken as the adjustable parameter based on the data), this equation shows the 

theoretical values approach zero faster than the experimental values. This discrepancy is 

attributed to assuming only a single frequency for the harmonic oscillations. 
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Figure HII.11- Variation of    for aluminum with     , where heat capacity is 

calculated by the Debeye equation, by the Einstein equation and measured.  

 

 

Debeye (1912) devised a more complex model, by assuming a range of frequencies as is 

found in elastic vibration in a continuous solid. Taking the wavelength as equal to the 

inter-atomic distance, neighboring atoms would be in phase, so there would not be 

vibration of one atom with respect to another. In contrast, taking the shortest wavelength 

as twice the atomic distance, the neighboring atoms would vibrate in opposition to 

another. 

 

 Taking       to be on the order of 5 10
-8

 cm, the wave velocity would be 5 10
5
 

cm/s, giving a maximum vibration of the atom as an oscillator about 10
13

/s. 

 

Debye assumed a frequency distribution, where the number of vibrations per unit volume 

per unit frequency range increase in a parabolic manner with increasing frequency in the 

allowed range of 0 to     . By integrating Einstein’s equation over this range of 

frequencies, Debye got: 
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Taking         gives: 

 

 

      
 

  
 
 

 
     

        

    

 

   

 

 

In the above equation,    is the maximum (Debeye) frequency, and           is the 

characteristic Debeye temperature of the solid. In a plot of    versus           (not 

shown) many of the data points to fall in a single line, verifying the advancement over the 

Einstein crystal, as shown in Figure HII.11.  

 

The value of the integral from zero to infinity is 25.98, so that, at very low temperatures: 

 

 

           
 

  
 
 

      
 

  
 
 

 

 

 

The above equation is called the Debeye T
3
 Law for heat capacity at low temperatures. 

 

 

Debeye’s theory does not consider the change of the energy of the electrons themselves 

with temperature. The electron theory of metals predicts the electronic contribution to the 

heat capacity is proportional to absolute temperature, so it becomes large at elevated 

temperatures. 

 

Empirical Representation of Heat Capacities 

 

The accepted analytical expression (whose constants are only applicable over the 

temperature range measured) is: 

 

             

 

 

THE THIRD LAW (TL) OF THERMODYNAMICS 

 

Background 

 

With early attempts to understand the behavior of    with temperature as        by 

Le Chatelier in the latter half of the nineteenth century, and by Lewis in the early 20
th
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century, a sounder understanding was finally achieved by Nernst in 1906 which was 

somewhat modified by Plank shortly after. 

 

At issue is the slope of    with T (which is   ) near absolute zero. Figure HII.12 shows 

two possible paths, whether the slope is essentially constant, or whether the slope goes to 

zero. 

 

 
Figure HII.12 – (a) Two possible ways for    to approach    near 0 °K: Path 1   
         and Path 2            . (b) Variation of the change in the Gibbs Free 

Energy for a reaction with temperature approaches absolute zero. 

 

Nernst postulated a heat theorem that states: for all reactions involving substances in the 

condensed state,      at     . Plank added: the entropy of any homogeneous 

substance, which is in complete internal equilibrium, may be taken as zero at absolute 

zero. 

 

A more contemporary statement is (A. Sommerfell, 1956): As the temperature of a 

system tends to zero at absolute temperature, its entropy tends to a constant value   , 

which is independent of pressure, state of aggregation, etc. 

 

What does this really mean?  

 

 For a given process      at     . If a given system consists of two or more 

substances, only their differences in entropy are zero, but the entropies of the 

individual substances themselves       need not be zero. 

 Since      need not be zero itself, and since it is un-measureable, by convention, 

the absolute values for the entropy of the individual components of a reaction in 

the same standard state are assigned a value of zero as a reference state: 
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Plank’s and Nernst’s original theorem applied to only pure, crystalline solids, not to 

solutions, or glasses, and it later turned out to be applicable to gases and pure compounds, 

as well as substances in different standard states (i.e., different crystal structures). 

Situations where there is not complete internal equilibrium typically involve a lack of 

energy or time for complete ordering into the lowest energy state to occur. Examples are: 

 

1. Solid solution – As a stable solid solution is cooled to absolute zero, two 

processes may occur: 

a. The maximum solubility of one of the constituents in a crystal decreases 

all the way to zero at absolute zero, in which case, the solute has 

completely precipitated out; 

b. The solid solution becomes ordered with respect to arrangement of the 

constituents on the lattice. 

 

If either one of these two processes were to occur completely,     , but, in 

reality, as temperature decreases, there could be a lack of mobility and a 

metastable structure could be frozen in, in which the ordered state is not one of 

the lowest energy, or some randomness is frozen in. 

 

 

2. Pure Crystalline Solid With Vacancies - At a finite temperature, a pure crystalline 

solid solution contains an equilibrium number of vacant lattice sties (due to 

random positioning, resulting in an entropy of mixing). 

 

3. Compounds not Completely Ordered – Similarly to the problem of vacancies 

remaining as       , a compound may not have sufficient mobility to be 

completely ordered, including crystallographic disorientation. In principle, a 

completely ordered compound has a zero entropy, as discussed previously. 

 

4. Glasses – This class of materials is essentially a super-cooled liquid, where the 

ordering is short ranged. It obviously does not exhibit internal equilibrium, as 

even at temperatures well above absolute zero, a high degree of atomic disorder is 

the case, with immobility preventing a unique freezing temperature in a 

reasonable time. This is observed macroscopically as a viscous liquid. 

 

 

Effect of Temperature on Entropy, and Its Consequences 

 

Starting with the definition          , we can take the total differential: 
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This equation becomes, on rearrangement at constant pressure: 

 

 

 
   

  
 
 
  

   

  
 
 
   

   

  
 
 
     

 

 

      
   

  
 
 
    

 

 

Also, we have:            , which can be restated as: 

 

 

 

 
   

  
 
 
     

 

 

Thus: 

 

 

      
   

  
 
 

 

 

 

As       ,          if           is finite as         
 

Effect of Pressure on Enthalpy and Entropy 

 

For a closed system of fixed composition undergoing a change of pressure at constant 

temperature: 

 

 

    
  

  
 
 
   

 

 

 

And, since we have           , then: 
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From Maxwell, we have the following equivalency: 

 

 

 

 
  

  
 
 
   

  

  
 
 

 

 

 

Thus, we have: 

 

 

 
  

  
 
 
    

  

  
 
 
   

 

 

 

We also have the isobaric coefficient of thermal expansion α: 

 

 

  
 

 
 
  

  
 
 

 

 

 

 

Thus, we have: 

 

 

 
  

  
 
 
              

 

 

 

Finally, the change in molar enthalpy from State 1 (P1, T) to State 2 (P2, T) is: 
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For the effect of temperature and pressure on entropy, we begin with the effect of 

temperature for a given pressure: 

 

 

                    
  
 
  

  

  

 

 

 

For the effect of pressure: 

 

 

    
  

  
 
 
   

 

 

But, we have from Maxwell: 

 

 

 
  

  
 
 
     

 

 

Thus, we have: 

 

 

                         

  

  

 

 

 

For an ideal gas, this is: 

 

 

               
  

  

  

  

 

 

Finally for the effects of both temperature and pressure on entropy, we have: 

 

 

                      
  

 
  

  

  
       

  

  
. 
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THE ENTHALPY BALANCE 

 

Enthalpy as a Function of Temperature: Chemical Reactions and Phase Change 

 

For a closed system of fixed composition undergoing a change in temperature from T1 to 

T2 at constant P, we have: 

 

 

                        

  

  

 

 

 

 

From this equation, it can be seen that, graphically,        is simply the area under the 

curve of   versus T between the limits T1 and T2, where     is generally a function of T. 

 

When a system undergoes a chemical reaction, or a transformation, the change in 

enthalpy is the difference between the enthalpy of the products (State 2) and the enthalpy 

of the reactants (State 1): viz.: 

 

Chemical Reaction:      
   
                   

 

Phase Change:      
   
                        

 

 

                                      
 

 

                           
 

 

This is known as Hess’Law. As        , if     is negative, heat is evolved by the 

system, and the reaction is considered to be exothermic. Likewise, if     is positive, heat 

is absorbed from the surroundings, and the process is endothermic. 

 

To determine    for a process change, such as a chemical reaction or a phase change for 

any T at constant P, the enthalpy change for all species (reactants and products) is 

calculated, and an enthalpy balance (i.e., cycle) calculation is made given     from a 

given temperature. This procedure is known as Kirkhoff’s Law, or Kirkhoff’s Square. 

This procedure is illustrated in Figure HII.13 for the case of melting. 
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Figure HII.13 – Illustration of Kirckhoff’s Square. 

 

 

Consider the phase change for Species A: 

 

At T1:      
   
                    

       
     

    

 

At T2:      
   
                    

       
     

    

 

Not surprisingly, as enthalpy is a state property, the enthalpy change at one temperature 

can be calculated given the enthalpy change at another temperature if the heat capacities 

of the liquid and solid are known. This is shown by the following enthalpy balance: 

 

                                
 

           
   

  

  

 

 

            
    

 

           
   

  

  

     
   

  

  

 

 

So, for Species A, we have: 
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Thus, we have, generally: 

 

                
  

  

 

 

 

In the above equation       
    

 . 

 

Clearly, one of the two enthalpies for the phase change must be known, as well as the 

heat capacities of the species in both states. If        , then      can be considered to 

be independent of temperature. (True for small enough changes in temperature for any 

species, and surprisingly true for many species when the experimental error is taken into 

account, allowing the same heat capacities to be employed at process temperature versus, 

say, room temperature; a better shortcut is to take an average of a heat capacity over a 

temperature range, then, use this average as if it were a constant.)  

 

As enthalpy does not have an absolute value (either does entropy) only changes in 

enthalpy    can be measured. For facility in use, by convention, the enthalpy of any 

element in its stable state at 298° K (25° C) is assigned a value of zero enthalpy. This is 

not true for the enthalpy change for a reaction or a phase change, in which case, they 

must be measured. These are tabulated for 298° K (25° C). This is stated symbolically for 

the oxide MO as follows: 

 

     
 

 
                

 

 

     
                        

 

 
        

 

 

 

When there are phase changes, including melting among either the elements or 

compounds, or both, the foregoing procedure still applies, but proper accounting of signs 

and standard states can be cumbersome. 

 

This procedure for a complex reaction involving both elements and compounds can be 

generalized. Consider the cycle shown in Figure HII.14. 
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Figure HII.14 – Illustration of application of the Kirkhoff Square to a generalized 

chemical reaction. 

 

 

The general procedure can be stated as: 

 

 

 

   
         

   

        
        

        
                           

                    

 

 

 

The enthalpy change      
           is for any compound appearing as a reactant, and is 

found in a table. Likewise      
        

  is for any compound appearing as a product.   

 

The enthalpy change for          is the overall integral    
 

   
  (for products and for 

reactants). Care must be taken to employ the value for      only over the temperature for 

which it is valid for each state. Thus, there can be intermediate temperatures where a 

change of phase occurs that necessitates employing a different value for     in the 

integration over the temperature range and state for which it is valid. 

 

As a result, there can be multiple integrals, each over a different temperature range within 

the over temperature change of 298 to T, each temperature range associated with a 

specific    for the state valid over that temperature range. Also, as    is per mole, the 

stoiciometry of the reaction as written has to be taken into account. 

 

Finally           refers to the sum of all the enthalpy changes from phase changes a 

(for the reactants, separately for the products) such as from changes in crystal structure 
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and change of state, such as melting. There can be multiple contributions due to several 

possible changes in crystal structure (both elements as well as compounds) before 

melting. 

 

Example of a Complex Reaction and Associated Enthalpy Balance 

 

As a relatively simple example, consider the reaction at 1 atm: 

 

         

   
  3Si+2A     

 

Figure HII.14 shows the Kirkhoff Square qualitatively for this reaction. 

 

 

 
 

Figure HII.15 – The Kirckhoff Square for reduction of quartz (SiO2) with aluminum. 

 

 

We want to evaluate        for this reaction at 800 °C (1073 °K). However, we must 

consider the fact that quartz transforms from the   form to the    form at 848 °C, with an 

enthalpy change:       

   
    

   

    
   Also, Al melts at 932 °K, with:     

    

    
   

    
  Thus for our general equation, we have: 
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And, we have for the phase changes: 

 

 

                    

 

But 

 

                                
     

 

                
 

 

 

Finally, we need to evaluate: 

 

 

 

       
        

        
               

      

   

 

 

 

 

For the above equation, it is noted that    is different, depending on the crystal structure: 
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A more complex reaction might involve phase changes and melting of both elements and 

compounds in both the reactants and products. 

 

Application of the Enthalpy Balance – The Process Heat Balance 

 

The enthalpy balance (when combined with a mass balance for an open system) is central 

to understanding and modeling materials processes – whether they are examined on a 

fundamental level, or whether they are of the scale and scope of an industrial process. It 

provides a framework for more sophisticated modeling incorporating, for example, rate 

laws. Typically heat losses have to be considered, and often there are mass flows to 

consider.  

 

Here, we are going to consider a very simple system that is closed and adiabatic, with no 

exchange of mass or heat with its surroundings. The enthalpy balance is shown to 

determine what fraction of a pure metal will freeze when super-cooled below its 

equilibrium freezing point.  

 

Consider a quantity of liquid tin that is super-cooled 10 °K below its equilibrium melting 

point of 505 °K. It is adiabatically contained. After nucleation (at 495° K) the tin freezes 

spontaneously. What is the fraction of tin that is able to freeze? 

 

The data needed for this problem is as follows: 

 

 

     
         

   

    
         

 

   
                  

   

    
   

 

   
                  

   

    
   

 

   
  

        

 

 

 

The equilibrium state is the co-existence of liquid and solid tin at the melting point. The 

fraction of tin able to solidify depends in this case only on the quantity of heat that brings 

the system back to its melting point, but no higher.(Thus, different metals, each with 

different heats of freezing, different melting points and different heat capacities, will 

result in different fractions for an equivalent degree of super-cooling. Also, in point of 

fact, this degree of super-cooling itself, can be a variable, depending on nucleation factors 

intrinsic to the metal at issue.) Since the system is adiabatic, there are no heat losses to 
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take into account. (If, for example, this process were to occur in a mold, the heat losses to 

the mold, depending on heat transfer issues, would need to be taken into account.) 

 

As enthalpy is a state property, the process path is immaterial. Here, we can consider one 

of two paths shown in the figure below (HII.16). It is immaterial which path to choose, 

because the enthalpy balance is closed, so either path gives the same answer. 

 

 
 

Figure HII.16 – Enthalpy balance for the spontaneous freezing of super-cooled tin, 

showing two possible thermodynamic paths: a→b→c, or a→d→c. 

 

 

 

Taking Path a→b→c , we have the following enthalpy balance: 
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Solving the above leads to: 

 

  
    

    
        

 

 

The above result indicates that only about 4% of the tin can solidify! 

 

Alternatively, for Path a→d→c, we can write an enthalpy balance – note that this path is 

irreversible, but can be used to evaluate the change in enthalpy: 

 

 

                  

 

               
    

 

 

             
   

   

   

           
   

   

   

            

 

 

But, we also have: 

 

     
         

        
      

   

   

 

 

 

              

 

 

Solving the above equation leads to: 

 

                   

 

 

         

 

 

Obviously, the first path (a→b→c) is easier to evaluate, because the data as given for the 

enthalpy change on melting is employed directly. The actual path taken – which will be 

irreversible – will be between these two extreme possible paths, because the process of 

freezing and the increase in temperature occur simultaneously! 
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