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ADVANCED THERMODYNAMICS 

 

Handout III – Behavior of Gases, Solution 

Thermodynamics and the Single-Component Phase 

Diagram 

 
(Gaskell Chapters 7, 8 & 9) 

 

BACKGROUND 

 

This Handout is primarily concerned with the behavior of gases, leading to solution 

thermodynamics of the solid and liquid phases, whose link with gases is through the 

vapor pressure of components in these condensed phases. It begins with a brief review of 

ideal versus real gases, then onto ideal and real solutions. Also included is the single-

component phase diagram, where regions of stability for all three phases are identified, 

depending on temperature and pressure. The multi-component phase diagrams (Gaskell 

Chapters 10 and 15) are left to the subsequent handout. 

 

BEHAVIOR OF GASES 

 

As discussed at length in HI, the modern understanding of a gas – leading to the equation 

of state – first began with Boyle (1660), who observed, at constant T: 

 

            
 

If pressure was held constant, the volume of a gas was found to be a function of 

temperature alone: 

 

              
 

Here, T is some arbitrary scale, such as Celcius) so that, by definition at, say, 0 °C, 

volume is taken to be     (Charles, 1787). Gay-Lussac observed α to be a constant for 

most gases, and in 1802 decided on a value of 1/267 at 0 °C. Regnault (1847) with 

greater experimental precision settled on 1/273, so: 
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Clearly, the quantity        , found to not be a function of anything else for constant 

P and V, was defined as the Ideal Gas Temperature, which is consistent with the Kelvin 

scale for temperature coming from the SL. 

 

The constant            clearly depended on V at constant P, so for P measured in atm, 

V was measured in liters. Later, a more significant refinement was due to Avogadro, who 

hypothesized that one mole of any ideal gas occupies the same volume at 273 °K: 22.414 

liters.  

 

So, now: 

 

   
       

      
             

 

 

In the above equation, R in equivalent units is:  

 

          
   

 
          

   

 
     

 

Gases are important in materials – first, it is the simplest of the three phases (the others 

being liquids and solids) and secondly, most gases at pressures and temperatures 

normally encountered in materials extraction and processing are close to ideal. 

 

With use of the Ideal Gas Law, the chemical potential of a single-component gas can be 

expressed as follows: 

 

       
 

But since       : 

 

 

 

   
  

 
          

 

For a finite change in state: 

 

             
  

  
 

 

Since we have no means to compute an absolute value for the free energy corresponding 

to a particular state, it is customary to choose a particular state, known as the standard 

state, where the free energy is relative to that state. 
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For ideal gases, the standard state is chosen as the pure gas at 1 atm at the temperature in 

question (in Kelvin): 

 

                   
 

 

We can write, since this is a single-component system: 

 

       
 

Thus, the chemical potential of a one-component ideal gas becomes: 

 

                   
 

 

Ideal Gas Mixtures 

 

Dalton stated that each component species of an ideal gas mixture behaves as though it 

alone occupies the volume containing the mixture. Thus, for i species: 

 

         
 

In the above equation     is the number of molar species i, and      is the partial pressure 

of i. The total pressure is, of course: 

 

     

 

 

 

Since the Ideal Gas Law is valid for a mixture if: 

 

     

 

 

 

Then, we have: 

 
  

 
 

 

 
 

  

  
 

 

The partial pressure of i is given as: 
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In the above equation:        . 

 

If we consider a closed system containing one mole of an ideal gas mixture at constant T, 

we may write: 

 

       
  

 
         

  

 

 

In the above equation: 

 

    
  

 
    

 

Thus, we may substitute in for        : 

 

      

  

  
              

 

Finally, we have: 

 
   

  
         

 

The LHS of the above equation is just the variation per mole of the Gibbs Free Energy 

attributable to component i; i.e., the chemical potential of i: 

 

                 
     

     
  

 

As with the pure-component gas, it is convenient to define a standard state of a gas 

mixture so as to express the chemical potential of each component relative to that 

standard state. This is chosen as the pure species i at 1 atm and temperature of the 

mixture, thus: 

 

 

           
              

 

 

 

           
               

 

 

 

From this equation, we may write: 
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This can be rewritten as: 

 

 

   

 
 

  
 

 
         

 

 

 

In the above equation      is the partial molar Gibbs Free Energy of component i, and   
   

is its standard state. 

 

If we differentiate and employ the Gibbs-Helmholtz equation: 

 

  
   

 
  

  
  

   

  
 

 

(where     and   
   are the partial molar enthalpy of specie i in the mixture and in the 

standard state, respectively), and since: 

 

 

  
   

 
  

  
 

  
   

 

 
  

  
 

 

Then, we have: 

 

 

      
  

 

Thus: 
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Here         is the total enthalpy of the gas mixture, whereas    
 

  is that for the 

constituent gas species in their respective standard states (i.e., pure gases). 

 

For the mixing of ideal gases,    is zero; viz.: 

 

            

 

    

 

  
    

 

We can write for the Gibbs Free Energy of the mixture: 

 

                 

 

     
           

  

 

 

Similarly, for the Gibbs Free Energy of the component gases before mixing: 

 

 

                          

 

     
           

  

 

 

Thus, we may write: 

 

         

 

              

 

  
  

  
 

 

If the mixing process is conducted at constant volume, then: 

 

 

 

            
 

 

 

Thus, we have: 

 

 

           

 

  
  

 
 

 

 

This is equivalent to: 
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Or, if per mole for the ideal gas: 

 

 

                
 

 

Finally, since: 

 

 

      
     

 
 

     

 
 

 

 

We find for constant volume for the ideal gas (where        ) : 

 

 

                
 

Note that for an ideal gas,       is a negative quantity; this corresponds with the fact 

that mixing of gases is generally a spontaneous process. 

 

Imperfect Gases – Van der Waals and Joule-Thomson Effects 

 

Real gases are not ideal, but approximately ideal under most experimental conditions. An 

important way to model any deviation is to modify the ideal gas equation of state by 

introducing two empirical parameters. Van der Waals (1823) proposed: 

 

 

   
 

  
          

 

These parameters a and b have been evaluated for a number of gases. 

 

By multiplying through, it is seen that this equation is, in fact, cubic in V, with three 

roots: 

 

         
 

 
 

  

  
 

 

It has been found that these three roots are real under certain conditions of temperature 

and pressure. This represents liquefaction of the gas (Zone B-C in Figure HIII.1 (a), 

where two phases (liquid and vapor) co-exist. 
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Figure HIII.1 – (a) P-V isotherms for a typical gas. (b) Fields of stability for the gas, 

vapor and liquid phases. The gas below the critical temperature is technically called a 

vapor, because, on isothermal compression the vapor can be condensed. 

 

At temperatures above the critical temperature, all three roots are identical, representing 

the limit of liquefaction. Corresponding to the critical temperature is a critical pressure. 

It may be shown that:  

 

 

 

 
  

  
 
         

 
   

   
   

 

 

 

This represents an inflection of the pressure versus volume curve.   

 

At      in terms of the Van deer Waals gas, we have: 
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By defining a reduced pressure, volume and temperature, we have: 

 

 

 

  
 

   
    

 

   
       

 

   
 

 

 

 

Substituting for P, V and T into the Van der Waals equation, we find: 

 

 

 

   
 

  
           

 

 

 

This equation is referred to as the reduced equation of state. It is noted that this resulting 

equation, neither involves empirical constant a or b, nor the Universal Gas Constant R; 

thus, it is independent of the substance to which it refers. This means two different gases, 

which obey the original Van der Waals equation of equal molar volume have the same 

reduced pressure and volume, therefore, reduced temperature. Such gases are said to be in 

corresponding states. 

 

It is desirable to characterize the degree of deviation of a real gas from ideal behavior by 

a single parameter. For this, the compressibility    is chosen (where V is per mole): 

 

  
  

  
 

 

The above parameter is unity for the ideal gas. 

 

In terms of reduced properties, we have: 

 

 

 

  
        

     
 

 

 

 

In the above equation: 
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Thus, we may write: 

 

 

   
  

 
 

 

 

 

Another means of characterizing deviation from ideality for gases is called the Joule-

Thomson Effect, which is based on experiments run between 1852 and 1862. The Joule-

Thomson coefficient is defined as the change of temperature with respect to pressure at a 

constant enthalpy: 

 

 

     
  

  
 
 

 

 

 

 

This coefficient refers specifically to the temperature change experienced by the gas as it 

passes through a porous plug, which reduces its pressure (    not to be confused with the 

symbol for chemical potential µ). 

 

If this experiment is conducted either rapidly, or the system is insulated, virtually no heat 

is exchanged between the gas and its surroundings, and    . Here, the work done on 

the gas in forcing it through the plug is       , so that the net work done is: 

 

 

                  
 

On re-arranging, this becomes: 

 

                
 

This is equivalent to: 

 

      
 

Applying calculus, we may re-write      as: 
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On a molar basis, this becomes (where H is per mole): 

 

 

 

     
 

  
 
  

  
 
 
 

 

 

 

In turn, we have (where H, S and V are all per mole): 

 

 

 

           

 

 

 

Thus, we have: 

 

 

 
  

  
 
 
   

  

  
 
 
   

 

 

 

Moreover, we have: 

 

 

 

            
 

 

 

So, we have: 
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Here, we define: 

 

 

  
  

   
   

 

 

 

This is the (volume) coefficient of thermal expansion. 

 

Finally, we have: 

 

 

    
 

  

       

 

 

 

This expression reverts to zero for the ideal gas. 

 

Following the simplicity of the chemical potential for the ideal gas, we have: 

 

 

 

                   

 

Or 

 

                      

 

 

 

It is consistent to define a new function called the fugacity (which literally means the 

escaping tendency) of a gas, such that: 
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The above equation has the following limit: 

 

 

   
   

 

 
   

 

 

For a real gas, we have: 

 

 

 

          
                   

 

 

 

 

This has the accompanying limit: 

 

 

 

   
   

 

  
   

 

 

 

 

Obviously:           for the ideal gas. 

 

The relationship between the fugacity of a gas and the compressibility factor    is: 

 

 

 

          
 

 

 

But, we also have (where V is molar volume): 
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At constant temperature: 

 

 

           
 

 

 

If we subtract        from both sides of the above equation, we get: 

 

 

 

     
 

 
    

  

 
    

 

 

 

On re-arranging this equation, we have: 

 

 

 

   
 

 
  

 

  
 

 

 
    

 

 

 

This is: 

 

 

   
 

 
  

   

 
    

 

 

 

Integration of the above equation between the limits of      (where 
 

 
  ) and      

(where 
 

 
 

  

  
) we have: 

 

 

            
   

 
   

  

 

 

 

 

The above equation is for a real, single-component gas. For a real gas mixture, we have: 
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BEHAVIOR OF SOLUTIONS 

 

Ideal Solutions 

 

KTG (HI) and statistical thermodynamics (HII) allow for a useful, albeit, simplistic 

visualization of equilibrium, as well as temperature and pressure.  In KTG, temperature is 

seen as a measure of the potential or intensity of heat in a system, and a measure of the 

tendency for heat to leave a system not in thermal equilibrium; pressure is seen as a 

measure of the potential for massive movement by expansion or contraction if the system 

is not in mechanical equilibrium. Finally, the chemical potential of a species i in a phase 

is a measure of the tendency of it to leave the phase – it is a measure of the chemical 

pressure exerted by i in the phase as seen when the system is not in chemical equilibrium.  

 

Consider a pure liquid or solid phase in equilibrium with its own vapor. The interface 

between these two phases is seen as a continuous flux of those molecules from the 

condensed phase that have sufficient kinetic energy to escape into the vapor phase, and 

those molecules in the vapor phase that collide with the condensed phase and are trapped 

through a loss of kinetic energy. 

 

 At equilibrium, these two fluxes are equal but opposite in magnitude. 

 If the vapor pressure is less than equilibrium, the rate of condensation will 

become less than the rate of evaporation, creating a net flux into the vapor phase, 

and vice versa. 

 

If the condensed phase of Species A is diluted with another Species B, to a first 

approximation, the rate at which A escapes into the vapor phase is reduced in proportion 

to the degree by which their access to the interface is diminished. 

 

 If Species A and B are inert to each other (i.e., in a mechanical mixture) this will 

be proportional to the relative number of A molecules, or mole fraction of A in 

the condensed phase    . 

 From KTG, as the rate of collisions of gas molecules with a surface is 

proportional to the (partial) pressure of those molecules, the partial pressure of 

gaseous A in equilibrium with the molecules of B in A must be proportionally 

reduced: 
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 In the limit of      (i.e., no B), the partial pressure is that over the pure 

substance, which can be written as (where   
   is the vapor pressure of the pure 

substance): 

 

       
  

 

 

 

Real Solutions – Raoult and Henry’s Laws 

 

Raoult defined the concept of the ideal solution in terms of the relationship between the 

partial pressure of a component in a solution relative to the vapor pressure of the pure 

substance. 

 

In the ideal solution, we have: 

 

 

 

       
  

 

 

 

The ratio of these partial pressures is called the activity of Specie i: 

 

 

 

   
  

  
                     

 

 

 

(It is to be noted that, more rigorously, if the gas is non-ideal, the ratio of partial pressures 

is replaced by the corresponding ratio of fugacities:     
  .) 

 

It is intuitive to say see that as:           
 , since at     , the substance is 

pure. 

 

On the other extreme, such as a solution that is dilute in i in a solvent, experiments 

reveal: 
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The above equation is a statement of Henry’s Law of dilute solutions.  

 

These two very important laws in materials thermodynamics are illustrated schematically 

in Figure HIII.2 

 

 
Figure HIII.2 – Illustration of Raoult’s and Henry’s Laws in terms of behavior of vapor 

pressure of a component in a condensed solution versus mole fraction of the component. 

(a) Showing positive deviation from ideal behavior; and (b) Showing negative deviation 

from ideal behavior. 

 

Analysis of Figure HIII.2 reveals three possible cases. 

 

Case I – The ideal (Raoultian) solution, where the actual vapor pressure traces the ideal 

line from            to           . 

 

Case II – The actual vapor pressure deviates positively from the line of ideality, towards 

a greater, positive slope. 

 

Case III – The actual vapor pressure deviated negatively from the line of ideality, 

towards a lower, positive slope. 

 

 For Case I – The ideal solution, the attraction or repulsion of A and B atoms is no 

greater than between like atoms. In terms on bond energies, we have for the 

attractive force between atoms: 
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 For Case II – Positive departure from ideality, the attraction of A and B atoms is 

less than between like atoms. In terms on bond energies, we have for the 

attractive force between atoms: 

 

                        
 

Here, the mixture of B and A acts as if the concentration of B in A is greater that 

it actually is, giving a greater than expected vapor pressure of B from the solution 

than an equivalent concentration in an ideal solution. This can be interpreted as a 

tendency towards repulsion. In a sense, dissimilar atoms – not so attractive to 

each other – show a tendency to escaping. 

 

In the extreme – towards total repulsion of B to A - there is complete separation 

of A and B into separate phases (as in a mechanical mixture of pure A and pure 

B) at equilibrium, with complete immiscibility! 

 

 

 For Case III – Negative departure from ideality, the effective concentration is less 

than that of an ideal solution at an equivalent concentration. In terms on bond 

energies, we have for the attractive force between atoms: 

 

                        
 

 

This case represents a tendency toward mutual solubility, leading, in the extreme, 

to compound formation, the complete opposite to Case II. 

 

The Thermodynamic Activity 

 

If the vapor pressure is approximately ideal (as is typically the case in most materials 

applications) we have: 

 

 

 

   
  

  
  

 

 

 

If the solution is also ideal: 
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Thus, we have for the ideal solution: 

 

 

 

 

                      
 

 

 

 

For a real solutions (including ideal solutions), at high concentrations of i: 

 

 

 

 

 
  

  
   

       

 

 

 

 

 

For real solutions at extreme dilution of solute i in a solvent, the activity of i is 

proportional to the concentration of i: 

 

 

 

 

 
  

  
   

       

 

 

 

 

 

Unlike the earlier plots, we replace vapor pressure with the activity to show departure 

from ideality, as shown in Figure HIII.3 below. 
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Figure HIII.3 – Plot of the activity of component i in solution as a function of 

concentration, showing a positive deviation, no deviation and negative deviation from 

ideality. (Note that in all cases, slope k is positive, equaling unity if the solution is ideal.) 

 

 

Partial Molar Quantities and The Gibbs-Duhem Equation (GDE)  

 

The total free energy of a multi-component solution, consisting of i components is: 

 

 

 

                    
 

 

 

Note that in the above equation, the prime refers to the extensive quantity. 

 

When a tiny quantity      of component i is added to the system (holding P and T 

constant) the total free energy changes by the amount      . As       in the limit, we 

have: 

 

 

   
     

 
   

   
 

      

  
   

   
 

      

        

 

 

 

More formally, the variation of    with a variation of each component i in the solution is: 
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The above equation is equivalent to: 

 

 

 

                    

 

 

 

Thus, if       is the value of G per mole of i as it occurs in solution, the value of    for a 

solution of                   is: 

 

 

 

                 

 

 

 

Now, the complete differential of     is: 

 

 

 

                                   

 

 

 

It is now apparent (and this applies to any extensive state property         ) that: 

 

 

 

                

 

 

 

More generally, we can state: 
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If we divide through by           , we get the famous Gibbs-Duhem Equation: 

 

 

 

   

 

       

 

   
  

    
 

 

 

 

The Gibbs-Duhem Equation (GDE) is of immense importance in determining the 

behavior of one component from the measurements of the behavior of the other (s) in 

non-ideal systems. 

 

Relation between the Integral Moalr Free and the Partial Molar Free Energies 

 

We already know how to express the extensive free energy of a solution in terms of the 

(intensive) partial molar free energies: 

 

 

                 

 

 

For a system of two components A and B, we have                 , so we have 

the intensive statement of the free energy of the system as: 

 

 

 

              
 

Where 

 

   
  

    
              

 

 

 

The complete differential of the above equation is: 
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From the GDE, we have: 

 

 

 

                
 

 

 

Thus: 

 

 

                 
 

 

It is noted that that         : 

 

So, we have: 

 
  

   
         

 

 

 

If the above equation is multiplied through by   , this gives: 

 

 

 

  

  

   
             

 

 

 

Now, we add the following equation to both sides: 

 

 

 

              
 

 

 

This gives (noting that        ): 
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Thus, we get a symmetric pair of equations involving only intensive properties: 

 

 

 

 

        

  

   
 

 

And 

 

        

  

   
 

 

 

 

 

In the above equations, it is noted that:                        . 

This relationship –between integral and partial molar free energies – can be readily 

understood graphically by the use of tangential intercept. This is illustrated in Figure 

III.4. 

 
 

Figure III.4 – Illustration of the relationship between the integral and partial free energies 

by the use of the tangent and its intercepts in a binary system. 
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Why is this so important? Because – as we will see in the following handout – the 

equilibrium composition of two or more phases is located at the minimum positions of 

the integral molar free energy by a common tangent (a line in the binary system) thus 

expressing the equilibrium condition of equal partial molar free energies (or, chemical 

potentials) of all of the phases participating in the equilibrium.  

 

For a ternary system A-B-C, where           , composition is represented by an 

equilateral triangle. The intercept of a tangential plane to the integral molar free energy 

surface with the pure component axes of the compositional triangle gives the three partial 

molar free energies of the three components. This is illustrated in figure HII.5. 

 

 

 
 

Figure HIII.5– Illustration of the relationship between the integral and partial free 

energies by the use of the tangent and its intercepts in a ternary system. 
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Relationship Between Partial Molar Free Energy and Activity 

 

First, we need to review the free energy change due to a change in pressure: 

 

 

 

                     

 

 

 

For an ideal gas, where V is molar: 

 

 

 

      
 

 

 

Thus, we have: 

 

 

   
  

 
          

 

 

 

Then, we have, on integration: 

 

 

 

                    
  

  
 

 

 

 

The above equation applies in the case of vapor pressure – exerted by a component in a 

condensed mixture     compared to that exerted by the pure condensed substance   
  – all 

at constant temperature: 
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But, we also know that: 

 

 

 

      
      

  

  
  

 

 

 

Since, we already defined the activity in terms of the ratio of these partial pressures; viz.: 

 

 

 

   
  

  
  

 

 

 

Hence, we arrive at the following important equation: 

 

 

 

      
             

  

 

Or, in terms of the chemical potential 

 

     
             

 

 

 

 

The following notation is now introduced: 

 

 

The partial molar free energy of mixing (M) relative to a standard state: 

 

 

 

    
        

  

 

 

 

The chemical potential relative to a standard state: 
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The chemical potential can also be referred to as the relative partial molar free energy. 

 

Partial Molar Free Energy of the Ideal Solution 

 

The ideal (or Raoultian) solution obeys a simple relationship with composition: 

 

 

      
 

 

Also, we have: 

 

 

 

                      
 

 

 

The above equation becomes on substation in for the activity: 

 

 

 

                      
 

 

 

It is noted that the above equation is always a negative number for      because of the 

logarithm of a number less than unity is negative. Employing the notation of M for 

mixing, we have for the ideal solution: 

 

 

 

    
         

 

And  
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From this equation, we can deduce the molar enthalpy and entropy of mixing for the 

solution relative to the pure components. Recall earlier the Gibbs-Helmholtz equation: 

 

 

 

  
 
  

  
  

 

  
 

 

 

 

This relation also applies to the integral, as well as the partial molar properties; viz.: 

 

 

 

  
   

  

  
  

   

  
 

 

 

 

For an ideal solution: 

 

 

 

   

 
                  

 

 

 

But, we know: 

 

 

 

                   

  
   

 

 

 

Thus, we conclude for the ideal solution: 
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Since:       , or          , then we have for the ideal solution: 

 

 

                       
 

With 

 

    
         

 

And 

 

    
         

 

 

The above expressions for     for the ideal liquid or solid solution is due sole to 

configurational entropy – this is a measure of the increase in the number of 

configurations which are available to the system as a result of the mixing process (see 

HII). 

 

This calculation – first encountered in HI - is reviewed below. The configurational 

entropy can be calculated by examining the number of distinguishing ways in which 

discrete particles (here, atoms) of a system can be arranged or mixed over a fixed number 

of  positions (here, lattice sites). Consider     particles of A and     particles of B: 

 

 

                         

 

 

            
        

      
  

 

 

This leads to the following equation for one mole total of atoms (where     is 

Avogadro’s Number): 

 

 

              
                       

 

 

Figure HIII.6 shows schematically the variation of      with composition, with a 

maximum at 50% of Component B when the solution is ideal. Figure HIII.7 shows the 

effect of temperature on        
   , due solely to the entropy component when the solution 

is ideal. 
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Figure HIII.6 – Plot of ideal entropy in the A-B binary system. 

 

 

 

 
 

Figure HIII.7 – Plot of ideal free energy in the A-B binary system at two temperatures. 

 

Real (Non-Ideal) Solutions 

 

Departure from ideality was introduced earlier in the discussion of Henry’s Law. In 

general, the departure of the chemical potential from ideality is quantified by the activity 

coefficient γ: 
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where: 

 

    

 

 

 

When       Positive Departure         is + 

When       Ideal Solution         is 0 

When       Negative Dep.        is - 

 

 

We invoke the same interpretation in term of bond strength as before to understand the 

activity coefficient. First, we employ the Gibbs-Helmholtz equation: 

 

 

 

  
    

 

  

  
  

    
 

  
 

 

 

 

Since     
                      , we have: 

 

 

 

  
    

 

  

  
 

        

  
  

    
 

  
 

 

 

 

Since              , we have: 
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What does this equation say mathematically? This is answered in Figure HIII.8. 

 

 

 
 

Figure HIII.8 – Logarithm of activity coefficient versus 1/T. 

 

 

The foregoing can be summarized as: 

 

 A positive slope corresponds to     . This means that     
  is positive; 

 

 A negative slope corresponds to     . This means that     
  is negative; 

 

 No slope corresponds to     . This means that     
  is zero; 

 

 

We can interpret the sign of     
   in terms of the relative bond energies, and the 

tendency toward repulsion or attraction. 

 

Generally, bond energies are negative numbers. What determines repulsion or attraction 

is the relative difference on forming a solution, where, now, the difference can be 

positive, negative or none at all. 

 

Case for     : 

 

This is the case corresponding to a positive departure, so that both     
   and      are 

positive: 
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Tendency toward repulsion. 

 

 

 

The attractive force is the absolute value of the bond energy    . Here, the A-A and B-B 

bonds ‘s attractive forces are a larger (negative) number than the A-B attractive force. As 

a result, the change is a positive number. 

 

Case for     : 

 

This is the case corresponding to a negative departure, so that both     
   and      are 

negative: 

 

 

    
 

 
      

 

 
      

 

       
 

 
           

 

        
 

 
             

 

Tendency toward attraction. 

 

 

 

The attractive force is the absolute value of the bond energy    . Here, the A-A and B-B 

bonds ‘s attractive forces are a smaller (negative) number than the A-B attractive force. 

As a result, the change is a negative number. 

 

 

We have examined what determines    , but the equilibrium lattice configuration will 

also depend on    . We will now see that     reflects a tendency toward or away from 

ordering, whereas    reflects a tendency towards or away from random mixing. 
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In an absence currently of a mathematical model to describe the behavior of the solution 

(to be developed soon) the Gibbs-Duhem Equation (GDE) allows for determining γ for 

one component, based on a measures value of another (others). In this case, a 

mathematical model is not needed. On the other hand, with a model that describes 

mathematically the solution behavior, all values for γ can be calculated. Thus, a 

mathematical model is more powerful in that it can be used to interpolate/extrapolate 

among data points, once it is confirmed to adequately represent the data. 

 

As just discussed, no assumptions are needed for application of the GDE, short of activity 

data for the remaining components. This involves a graphical method that employs the 

data directly. 

 

 In recent years much effort has been focused on developing solution models to represent 

the data. These can be totally empirical, semi-empirical or fundamentally based, the latter 

derived from statistical mechanics, but with still some adjustable parameters. In this 

handout, we will here develop an important, but simple fundamental model the Quasi-

chemical Model (QCM). 

 

First, however, we introduce the empirical Regular Solution Model. 

 

The Regular Solution Model 

 

This is technically a classification of a specific type of behavior. Its roots are empirical; it 

is a one-parameter model, but it is consistent with the more sophisticated QCM, and 

ascribes meaning to the one parameter of the model. Margules (1835) decided to express  

    as a function of composition employing a power-series expansion (here for binary 

system A-B, where        : 

 

 

 

          
 

 
    

  
 

 
    

    

 

          
 

 
    

  
 

 
    

    

 

 

 

He showed by application of the GDE: 
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that        . This is an example of the power of the GDE, which imposes an 

internal thermodynamic consistency on the model, because the GDE it itself 

thermodynamic. 

 

On limiting the power series to the first two terms (with little loss of accuracy) he found 

     . Then, Hildebrand (1929) assigned the term regular solution to one which 

obeys the simple quadratic form: 

 

 

 

          
  

 

          
  

 

 

 

Unlike the ideal solution,      . In the so-called strictly regular solution, the entropy 

of mixing remains ideal: 

 

 

 

           
            

 

 

 

That is, the departure from ideality in the model occurs only in the enthalpy, not the 

entropy of the solution. 

 

This analytical treatment, though simple, is applicable across many systems, particular 

over limited composition domains within a given system. This is because in many 

materials systems, there is little departure in the entropy of mixing from ideality. In the 

absence of a validated mathematical model or data, choosing the behavior of a phase to 

be regular is a much better choice than choosing ideality. (Of course, at least one data 

point is needed to determine the value for α, or some knowledge of how a given system 

has similar characteristics to other systems for which this is known or, if the phase 

diagram within which the phase is stable is known, then if other critical parameters are 

known,  α may  be back-calculated from details of the equilibria in the phase diagram.) 

 

The properties of the strictly regular solution model are best examined by removing the 

ideal (entropy) contribution to the (molar) free energy of mixing for analysis: 
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On re-arrangement, this becomes: 

 

 

 
             

 

 

 

Because         ,            , then: 

 

 

 

                           
 

 

 

 

On substituting in for gamma, we have for the regular solution: 

 

 

 

             
 

 

 

It is noted that the regular solution is symmetrical in composition in its free energy. As a 

result, a plot of the activity curve in composition for one component is the mirror image 

of that for the other component in the binary system, as shown in Figure HIII.9. 

 

 

 
 

Figure HIII.9 – Plot of the activity curves for the strictly regular solution. 
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In case of a strictly regular solution,           is not a function of temperature (note 

that the temperature dependence for       for a strictly regular solution is from the 

(ideal) entropy portion). This means: 

 

 

            
 

 

 

Note that        .  

 

Finally, we have: 

 

 

 

    
                                   

  

 

 

 

Thus: 

 

 

 
       

       

 
   

 
  

  
 

 

 

 

The Quasi-Chemical (QC) Model 

 

This is the simplest fundamental model in which important atomistic factors are taken 

into account. As a result, the parameters of the model have meaning. 

 

Here, the individual atom to atom bond energies are summed as a distinct parameter. This 

model not only predicts regular solution behavior under certain conditions, but the model 

also anticipates both the tendency of real solutions towards ideality as      , as well as 

Henrian behavior as     . 

 

The energy of the solution is calculated by summing the short-range atom to atom 

bonding energies. Consider one mole of A & B atoms in a crystal (noting        ): 
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There are three types of bonds: 

 

 A-A bonds, each of energy    ; 

 B-B bonds, each of energy    ; 

 A-B bonds, each of energy    . 

 

Energies         and     are all negative quantities, which only approach zero when 

atoms are separated by an infinite distance. 

 

Let z be the co-ordination number, so that each atom has z nearest neighbors. 

 

In our crystal,. there are: 

 

     number of A-A bonds; 

     number of B-B bonds; 

     number of A-B bonds. 

 

Thus, the crystal the total energy (per mole) is: 

 

 

 

                       
 

 

 

The number of bonds P is evaluated as follows. Consider A atoms. The total number of 

bonds is the number of A atoms times the number of bonds containing the A atom: 

 

 

 

                                                               
 

 

 

Thus, we have: 

 

 

 

                                                    
 

 

 

Re-arranging the above equation, we get: 
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Similarly, for the B atoms: 

 

 

 

                                                    
 

 

 

Or: 

 

 

    
   

 
 

   

 
 

 

 

 

 

We now substitute for     and     in terms of      and     in our total energy: 

 

 

 

   
   

 
 

   

 
      

   

 
 

   

 
            

 

  
 

 
       

 

 
                

 

 
           

 

 

 

It is clear that if A & B were un-mixed, then: 

 

 

 

    
 

 
    

  

And 
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Thus, we have: 

 

 

 

                       
 

 
           

 

 

 

 

In this model, it is assumed that volume remains constant on mixing, thus: 

 

 

 

                
 

 

 

Finally, we have for the QC model: 

 

 

 

            
 

 
           

 

 

 

Obviously, the case where       corresponds to the ideal solution, where: 

 

 

 

    
       

 
 

 

 

 

Departure from ideality is summarized below: 
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Now, we want to calculate    as a function of composition. The model assumes the 

same random distribution of atoms as in an ideal solution. 

 

Consider two neighboring lattice sites, labeled 1 and 2 in our model of the A-B crystal. 

 

The probability that Site 1 is occupied by an atom of A is: 

 

 
                 

                       
 

  

   
    

 

 

Similarly, the probability that Site 1 is occupied by a B atom is   . 

 

 

The probability that Site 1 is occupied by A when Site 2 is occupied by B is also     . 

 

The reverse – the probability that Site B is occupied by B when Site 2 is occupied by A is 

also     , thus the probability a neighboring pair of sites contain an A-B pair is      . 

 

In a similar fashion, that two neighboring sites contain an A-A pair is   
 , or contain a B-

B pair is  
  . 

 

In total, there are 
 

 
      pairs of sites. Thus, the total number of A-B pairs is: 

 

 

 

                                              
 

Or 

 

    
 

 
                       

 

 

 

Similarly, we have: 
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And 

 

    
 

 
        

  

 

 

 

Finally, we have      as a function of both bond energy differences and composition: 

 

 

 

                   
 

 
           

 

 

 

If we define: 

 

 

             
 

 
           

 

 

 

Then, we have: 

 

 

 

          
 

Where 

 

         
    

 

 

We see that Ω from the QC model is exactly the empirical regular solution parameter  

αRT, but, now, we have insight into its meaning and the compositional dependency 

of          .  

 

We immediately see that the parabolic compositional term      arises from the 

probability of nearest neighboring sites being an A-B bond. 
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Now that we have confidence in the QC model, we want to express the partial 

thermodynamic properties in terms of Ω. We already know the relationship between 

molar and partial properties For enthalpy, we have (dropping notation M for molar): 

 

 

 

          

   

   
 

 

And 

 

          

   

   
 

  

 

 

Given the QC model, we now have: 

 

 

 
   

   
          

 

 

 

Thus, we have: 

 

 

 

                         
  

 

 

 

Similarly, we have: 

 

 

 

        
  

 

 

 

Finally, we have: 
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And 

 

                   
         

 

 

 

Also, we have: 

 

 

     
    

  
 

 

  
  

  
 

  
      

  

 

And 

 

     
    

  
 

 

  
  

  
 

  
        

 

 

 

 

Consider both Raoult’s Law and Henry’s Law for each component in solution AB in 

terms of the QC model: 

 

For component B, Raoult’s Law is satisfied by this model, since: 

 

 

 

                  

 

 

 

Henry’s Law is also satisfied as follows: 
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Generally, the equilibrium configuration of a solution is, at constant T and P, that which 

minimizes   , where           is a measure of the effect of mixing relative to 

unmixed components. 

 

It is a compromise between    and   . If the latter is ideal, minimization of the term 

             always occurs at a 50-50 mixture, and increases to more negative values 

with increasing temperature. 

 

Enthalpy    opposes this entropy effect if positive, and adds to it if negative, further 

lowering free energy. This is illustrated in the following figures (HIII.10 (a) and (b)). 

 

 

 
 

Figure HIII.10 (a) Enthalpy, entropy (multiplied by T) and Gibbs Free Energy changes 

with composition, here for    being positive. (b) Same as (a), but for    being 

negative. Note for both cases the symmetry about the 50-50 mixture. 

 

 

For real solutions,    varies in sign and magnitude, depending on the components. The 

entropy change is close to ideal (within experimental verification) for many alloy systems 

(for example, Sn-Ti) but departure can be rather significant in other systems, such as 

oxide systems). 

 

In the cases where there is significant departure, it is seen as a skewing of s plot of    

To the right, or to the left of the 50-50 composition. If skewed by a small amount 

(especially if within the experimental error), the QC model can be used to represent the 

solution behavior, but, obviously, this becomes a limitation of this particular model. 

 

In the QC model, A and B are assumed to mix randomly, yet    is allowed to 

accommodate a tendency to cluster, or to order. This appears to be somewhat 
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contradictory, but it is really a question of the degree of departure of    from ideality! 

This is discussed in greater detail below. 

 

The critical parameters in the QC model are Ω and T, where     refers to the bond energy 

differences on mixing relative to un-mixing: 

 

 

 

      
 

 
          

 

 

 

But,      does not refer to the number of A-B pairs     , which is assumed to be 

random; viz.: 

 

 

                  
       

 

 

 

If   is negative, this is a tendency toward ordering of A and B (ultimately leading to 

compound formation, such as AB). 

 

If   is a large, negative number, the greater the tendency to ordering means the actual 

    should be larger than    
      . 

 

Because the actual     is larger, the number of ways of arranging the atoms randomly on 

the lattice is smaller, and    decreases below the random value. Higher temperatures 

help to maximize     to compensate for smaller    values.  

 
If        

      , the model is not applicable. 

 

If   is positive – this being a tendency towards clustering of A to A and B to B – or, 

phase separation. (In the extreme, this leads to complete immiscibility of A in B and B in 

A.)  

 

If   is a large, positive number, this also means the actual     is below    
      , and 

    again, decreases because the number of ways to arrange the atoms on the lattice 

decreases below the random number. To maximize    , temperature again needs to be 

increased. If        
      , again, the model is not applicable. 
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Application of the GDE to Determine Activity 

 

It is very commonly the situation that data is more easily measured for one component 

than another. 

 

However, a problem often exists when applying the GDE to activities, where it can be 

asymmetric in the composition variable      . This can be circumvented by working 

with the activity coefficient rather than the activity: 

 

 

                     

 

 

 

            
    

  

  
      

              
 

             
 

 

 

 

This technique is illustrated in Figure HIII.11 (a) and (b).  

 

 

 
 

Figure HIII.11 (a) Schematic of plot of log of the activity coefficient versus ratio of the 

compositions – here the area under the curve is most generally finite. 

(b) Illustration of the nature of log of the activity versus ratio of the components – the 

area under the curve can be infinite. 

 

 

A further aid in application of the GDE to obtain activity coefficient data for one 

component from another is to introduce the following function: 
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This function has the benefit of being finite as      when      . In this application: 

 

 

 

                   

     
 

    

 

 

 

 

 

This function allows for evaluation of      and    , given       and    . 

 

Note that no assumption has been made as to solution behavior, other than the fact that 

     
  is empirically the second-order term of a power series expansion, where the third 

and higher-order terms are assumed to be insignificant. (The first-order terms are zero.) If 

it turns out that      , the solution over the composition region investigated may be 

considered regular!) 

 

The GDE provides an excellent illustration of thermodynamic consistency – of Raoult’s 

and Henry’s Laws.; when the former applies for the solvent, the latter also applies for the 

dilute solution for the solute. 

 

For the Henrian solution composition range for Solute B, we have: 

 

 

 

                          
 

 

 

Thus, we have: 

 

 

              
 

 

 

The GDE is for the binary system: 
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So, we have: 

 

 

        
  

  
        

   

  
 

   

  
        

 

 

 

Integration of the above equation gives: 

 

 

                                       
 

 

Since, by definition      when      , the constant must equal unity, regardless of 

the value of near unity. Thus Raoult’s Law is obeyed for Solvent A when Henry’s Law is 

obeyed for Solute B, and vice-versa. 

 

 

PHASE EQUILIBRIA IN A ONE-COMPONENT SYSTEM 

 

The remainder of this handout is devoted to phase equilibria, in the simplest – the one-

component - system. Consideration of the one-component diagram that includes pressure 

stems naturally from the treatment of gases earlier in the present handout, since the 

equilibria includes the gas phase as a stable phase in equilibrium with condensed phases.  

 

Portrayal of phase equilibria for the one-component system typically employs T and P as 

co-ordinates. Since there is no composition co-ordinate – the substance being pure – such 

a depiction is not normally thought of as a phase diagram. This is because the two-

dimensional phase diagram normally encountered in materials involves temperature and 

composition, but not pressure, as variables (pressure being constant at 1 atm for most 

materials phase diagrams). But, multi-component phase diagram can also include 

pressure, as is treated in Gaskell’s Chapter 14. The subsequent handout (HIV) treats two 

or more components. 

 

Variation of Gibbs Free Energy With Temperature 

 

Consider Species A undergoing a phase change, such as melting: 
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For the system of solid and liquid A (where    refers to the extensive Gibbs Free Energy: 

 

 

                     

 

 

Earlier, we had: 

 

 

                   

 

 

So that, at constant T,P: 

 

 

 

                      

 

 

      
 

 

 

Above the melting point of A   
  

: 

 

 

 

            

 

 

 

The above equation indicates the system becomes unstable, and melts, in which case: 
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Why? Because the phase with the lowest free energy is the more stable phase (for 

example, the liquid phase is the more stable phase above the melting point). 

 

 

Below   
  

: 

 

 

          

 

 

 

This situation is shown schematically in Figure HIII.12. 

 

 
 

Figure HIII.12 – Schematic of molar Gibbs Free Energy of pure solid and liquid with 

temperature (constant pressure). 

 

 

Since we have: 

 

 

 

            
 

And 
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The slope of the line in Figure HIII.12 corresponds to entropy. 

 

 

Now consider the curvature of the line (i.e., change in slope): 

 

 

 

 
   

   
 

 

  
  

   
  

  

 
 

 

 

 

If we subtract the two lines from each other, we get    
        . This is depicted in 

Figure HIII.13. 

 

 

 
 

Figure HIII.13 – Schematic of Gibbs Free Energy of melting of a pure material with 

temperature (constant pressure). 

 

 

Figure HIII.13 can be summarized as: 
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Below  
  

     
    is positive Liquid is unstable 

At   
  

    
    is zero L/S equilibrium 

Above   
  

    
    is negative Solid is unstable 

 

 

Since       : 

 

 

 

          
 

And 

 

           
 

 

 

   
       

        
    

 

 

 

To know precisely    
        , we must use enthalpy and entropy (via the Kirchoff 

Square) to evaluate    
         and    

        . But, if we assume   
    

  
     , then we have the following useful expressions: 

 

 

 

   
       

    
 

   
   

    

 

Or 

 

   
       

      
 

   
  

 

 

 

 

Variation of Gibbs Free Energy With Pressure 

 

For most materials, molar volume increases on melting; not so for water, where      . 

From the expression           , we have: 
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We can express this graphically in Figure HIII.14, analogous to Figure HIII.12. 

 

 
 

Figure HIII.14 – Schematic of the Gibbs Free Energy of pure liquid and solid with 

pressure (constant temperature). 

 

 

For the system of liquid and solid: 
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Gibbs Free Energy As a function of Temperature and Pressure 

 

In consideration of Figures HIII.12-14, it is clear that equilibrium between a solid and a 

liquid of a pure substance could be maintained by simultaneously varying T vs. P, 

keeping        . The precise relationship between T and P at equilibrium can be 

derived, as follows.  

 

For any infinitesimal (i.e., reversible) change in T and P: 

 

 

 

        
 

 

                          
 

 

 
  

  
 
  

 
     

     
 

     

     
 

 

 

 

 

At equilibrium             , thus, we get the Claperyon Equation: 

 

 

 

 

 
  

  
 
  

 
     

      
 

 

 

 

 

The Claperyon Equation  is not restricted to just to the liquid/solid equilibrium, but 

equilibrium between any two phases. 

 

For all materials      is positive; for most materials on melting       is also positive, 

so       generally is positive. However, for water       is negative. Thus, for most 

materials, as pressure is increased, the melting point increases; for water, as pressure 

increases, its melting point decreases. (That is why skating on ice works – the pressure of 

your body weight melts and lubricates the contact area between the blade and the ice.) 

Figure HIII.15 shows the melting point range for pure water as a function of T and P 

(points m-o). 
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Figure HIII.15 – Gibbs Free Energies of pure solid and liquid water as a function of T 

and P.  

 

 

Saturated Vapor Pressure 

 

If the molar volume of the condensed phase (l or s) is much smaller than that of the 

equilibrium vapor pressure, then, without much error, we can state: 

 

 

          

 

 

In addition, if it can be assumed that the vapor phase behaves as an ideal gas (where 

      ) then, the Claperyon Equation can be modified into the Clasius-Claperyon 

Equation: 
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Or 

 

     
  

   
   

 

 

 

Finally, if   
     

   
               

, then        , so, on integration, we have: 

 

 

     
  

  
          

 

 

The value of P from this equation is the saturated vapor pressure exerted by the 

condensed phase in equilibrium with the vapor phase at temperature T. In this equation, 

   refers to the heat of evaporation. 

 

The Phase Diagram for the One-Component System and the Gibbs Phase Rule 

 

The effect of T and P on the solid/liquid; solid/vapor and liquid/vapor equilibria of a pure 

component when displayed in a plot constitutes a phase diagram for the one-component 

system. This phase diagram for water is shown in Figure HIII.16. 
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Figure HIII.16 – Log-log schematic plot of the P-T phase diagram for H2O. 

 

 

For the l/s line (i.e., the line of saturation of the l/s equilibrium) is calculated from the 

Claperyon Equation of the form: 

 

 

  
  

  
              

 

 

For water,       is generally a function of temperature, unless it is assumed that  

  
    

 . 

 

It is seen that the intersection of all three lines of saturation occurs at a precise T and P 

(viz.: 0.006 atm and 0.0075 °C). This is a unique (invariant) point called the triple point 

(labeled O in figure HIII.16). Obviously, if only two of the lines of saturation are 

known/calculated, their intersection identifies the triple point, so that the third line of 

saturation must begin there. 

 

This figure also illustrates what is known as a guiding principle in the construction and 

interpretation of phase diagrams: the Gibbs Phase Rule (GPR). The lines in this figure are 
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identified as Lines OA, OB and OC. These divide the phase diagram into three areas, 

within each of which only one phase is stable. This means that within any one of these 

domains, temperature and pressure can be varied independently, and the domain for the 

single phase remains stable. Thus, this particular equilibrium – the single phase domain – 

has two degrees of freedom, which means that the two variables of P and T can be varied 

independently. The lines OA, OB and OC delineate the boundaries of the single-phase 

domain. On any of these three boundary lines, if T or P is varied, the other must follow 

suit. This means that there is now only one degree of freedom. Finally, at the unique 

(invariant) triple point, there is no single variable (T or P) to be varied; it occurs at a 

unique value of T and P, corresponding to zero degrees of freedom.  

 

The GPR can be stated as: 

 

 

 

        
 

 

 

In the above equation,   is the degrees of freedom;   is the number of components (here, 

equal to one) and   is the number of phases participating in the equilibrium.  

 

As an example, for the single phase region in the one-component system,    , thus 

         ; for the boundary lines,          ; finally, for the triple 

point,          . 

 

Solid/Solid Equilibria in the One-Component System 

 

Elements that exhibit one or more crystal structures are called alloptropic (for 

compounds, it is called polymorphic). Figure HIII.17 shows the variation of the vapor 

pressure of pure iron with temperature, where there are three triple points: α (BCC)/ γ 

(FCC)/v; γ (FCC)/δ (BCC)/v and δ (BCC)/l/v. Note the slope of the α/γ equilibrium line, 

which is negative. This means that a decrease of    compared to   . Likewise, the line 

for the γ/δ equilibrium is positive, indicating    is greater than   . 
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Figure HIII.17 – The phase diagram for pure iron 

 

 

In the following figure (HIII.18), the variation of the molar Gibbs Free Energy for the 

BCC, FCC, liquid and vapor phases of iron are shown as a function of T, P. Here, it is 

seen that the slope             corresponding to each phase progressively increase 

with T. This indicates that the entropy of the solid phase at higher temperatures is larger 

than at lower temperatures. 
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Figure HIII.18 – Schematic representation of the variation of the molar Gibbs Free 

Energy of the BCC, FCC, liquid and vapor phases of iron with temperature at constant 

pressure. 

 

Finally, back to water, the phase diagram at very high pressures and a range of 

temperatures from -60 to 40 °C is given in Figure HIII.19. Clearly, there are five different 

crystal structures for ice! 

 

 
 

Figure HIII.19 – The P-T phase diagram for water, showing five crystal structures for ice. 
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The P-T-V Phase Diagram for the One-Component System 

 

The phase diagram for any one-component system need not be restricted to just P and T 

as variables, but also may include molar volume V. 

 

Earlier, we illustrated (Figure HIII.1) a version of this, showing the existence of a region 

of liquefaction for a gas. The critical temperature represents the limit of liquefaction in 

this diagram, and it is actually a phase diagram. 

 

In point of fact, any pure substance exhibits such behavior as shown in this phase 

diagram for a gas, albeit, at, possibly extreme temperatures, extreme pressures, or both! 

So, Figure HIII.1 is reproduced here as Figure HIII.20 to represent any pure substance on 

a P-V plot with isotherms. 

 

 
 

Figure HIII.20 – Isotherms in a P-V phase diagram of a pure substance. 

 

 

So, the P-T phase diagrams shown earlier can be expanded to include V as a third 

variable, producing a 3-D phase diagram as P-T-V space. 

 

Volume →  
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Figure (HIII.21) shows such a plot (here, schematically) for a substance that contracts on 

melting (such as water). Also, note that the original P-T plot for water (Figure HIII.15) is 

log-log.  

 

 
 

Figure HIII.21 – A schematic P-V-T phase diagram for a pure substance that contracts on 

melting, where   is temperature. 

 

The final figure (HIII.22) shows the actual 3-D plot for water, with the various differing 

structural form of ice, and corresponding triple points. Note that the scale here is not log-

log, thus Figure HIII.16 does not directly correspond. 
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Figure HIII.22 – The actual P-V-T phase diagram for water. 
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