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ADVANCED THERMODYNAMICS 

 

Handout IV – Calculation and 

Interpretation of Multi-Component Phase 

Diagrams 

 
(Gaskell Chapters 10 & 14) 

 

Background  

 

This handout continues on the subject of solution thermodynamics for multi-component 

systems, but the emphasis is now with its role in the stability of multi-component phase 

equilibria. The portrayal of stability fields of equilibria in temperature-composition space 

at constant pressure (1 atm) is known classically in materials as the phase diagram. 

 

With a thermodynamic model assumed for the behavior of each solution phase, coupled 

with the free energy differences among the various phases of the pure components, the 

full phase diagram can be calculated, both for complete equilibrium and for meta-stable 

equilibrium. 

 

The calculated equilibria can be compared to the measured equilibria where amenable to 

experimentation. The model is not just useful to interpolate and extrapolate among data, 

but is also immensely helpful in interpreting notable features of the phase diagram for a 

particular system.   

 

Up to five components are considered in this handout. Alloy systems are stressed over 

oxide systems, which differ in that the vertices are usually compounds, rather than the 

pure components.  

 

Introduction to Phase Diagrams 

 

A phase in materials science is any homogeneous part of a thermodynamic system. It is 

physically distinct – within which, all thermodynamic properties in its bulk are uniform. 

A system of two or more phases is called heterogeneous.   

 

Phase diagrams are traditionally maps in composition-temperature space showing the 

equilibrium domains of each phase alone, and the domains of more than one phase in 

mutual co-existence. These are typically at 1 atm pressure, but pressure can be another 

co-ordinate (as well as molar volume). 
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Phase diagrams actually pre-date the rigorous development of thermodynamics in the late 

19
th

 century. The latter eventually showed - in theory at least – that the phase diagram 

could, in fact, be calculated if the thermodynamic behavior of each phase (and the 

difference in the free energies among the various pure phases) were known. With the 

advent of the computer coupled with activity data, etc., the phase diagram could at last be 

calculated and compared to the experimentally derived one. 

 

Even the development of the infamous Gibbs Phase Rule (GPR) – which actually is 

thermodynamics at its simplest – didn’t really get understood and applied until 1900. 

Then, it soon became clear that many phase diagrams, as they were presently accepted, 

actually had numerous errors and internal inconsistencies! 

 

In a sense, phase diagrams are more than maps, which are very useful in themselves – 

such as in tracking solidification, etc.; they are actually manifestations of the 

thermodynamic properties of the system at equilibrium (at metastable equilibrium, as 

well), but are expressed in terms of the composition and temperature variables, rather 

than the usual thermodynamic variables (such as G). Indeed, reverse calculations for the 

activity, etc. can be made from knowledge of the phase diagram! Today, this endeavor is 

known as coupling phase diagram and thermodynamic measurements, the goal being to 

arrive at a more accurate assessment of both sets of data.  

 

The equilibrium state – defined as one with the lowest global free energy - is, in fact, one 

of many possible states; hence meta-stable equilibria can also be calculated, as the 

solution behavior for the meta-stable phase is still governed by the same solution model. 

 

Co-existence of phases occur in the phase diagram only when the partial molar free 

energies of each component in each phase have the same value (i.e., when they have 

equal chemical potentials), hence the technique for calculating the phase diagram. 

 

Review of Free Energy and the Activity 

 

The Gibbs Free Energy of mixing of components A and B to form one mole of solution is 

(noting that the notation for molar M has been dropped for convenience): 

 

 

 

                        
 

 

 

Conventionally, as the Gibbs Free Energy of a component cannot be measured 

absolutely, it is assigned a value of zero.  

 

For the ideal solution (where      ), we have (noting          ): 
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While in the above equation,                          is independent of 

temperature, clearly, the variation of         with composition is dependent directly on 

temperature. 

 

It is recalled from the previous handout that the tangent to the free energy curve at that 

composition gives the partial free energy (or, chemical potential)at its intercept with the 

axis     . 

 

Now consider the activity of B in the solution of A and B for the three cases depicted in 

Figure HIV.1. 

 

 
Figure IV.1 – Activity of Component B in the AB system, showing three cases: (1) ideal 

behavior; (2) slight positive departure from ideality; and (3) slight negative departure 

from ideality. 

 

As        , we can deduce the following: 
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At   
 : 

 

 

 

                      
 

 

                 
  

 

 

 

For the above equation, it is noted that             . 

 

Figure HIV.2 shows graphically the relationship between the integral molar free energy 

and the chemical potential for the three cases considered in Figure IV.1. 

 

 
Figure IV.2 – The molar Gibbs Free Energies of mixing in binary system exhibiting ideal 

behavior (1), positive deviation from ideal behavior (2), and negative deviation from 

ideal behavior (3) corresponding to Figure HIV.1. 

 

With departure from ideality      will depend not just on temperature, but also on    , 

which can change with temperature as well for a given composition. 
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The Regular Solution – Role of Temperature and Parameter α on Phase Separation 

 

Before consideration of the phase diagram – which involves generally more than one 

phase – we want to consider the simplest case, where, below a critical temperature, a 

phase separates out into two distinct phases (having the same crystal structure as the 

parent phase, but differing compositions). Such is the case for a regular solution, 

depending on the (positive) value of the regular solution parameter (here α). (For 

convenience, the notation for molar M  has been dropped.) 

 

For a regular solution, we have: 

 

 

 

                             
 

 

 

For the ideal solution, we have: 

 

 

 

                          
 

 

 

The following figure, plotted as dimensionless       and       illustrate the big and 

unusual effect of the regular solution parameter (                    ). 
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Figure HIV.3 – The effect of the magnitude of   on the integral molar heats and integral 

molar Gibbs Free Energy of formation of a binary solution. 

 

 

The addition of       to            causes two inflexion points. These result in 

phase separation, as the equilibrium configuration of the two different phases is a lower 

free energy than only the original phase. 

 

 

Compare free energy diagrams for two different levels of α:          . This is 

shown in Figure HIV.4. 

 

 

 

 

 

 

 

 

 

 

 



7 

 

 

Univ. of Cincinnati MTSC-7035 Fall 2015 © D. Kundrat 

 

 

 
 

Figure HIV.4 – Comparison of the molar integral Gibbs Free Energy at two different 

levels of solution parameter  . (a)  At    ;  (b) At     . 

 

 

In (a) in this figure, this is the situation with a small value for α (    ), in which 

separation of the solution into two phases (identical in structure) of compositions 

            cannot happen because the total free energy of the system at Point c is higher 

than at Point d, where thereby resulting in only one phase of a 50/50 mix of A and B. 

 

In (b) in this figure, the total free energy is at a minimum at the common tangent (Point m 

at     and Point q at       , thereby resulting in two phases forming at            . 

Between points  n & p, the homogeneous solution has a greater free energy than the 

separate phases. 

 

Since we have a common tangent between          and          ,we have equal 

chemical potentials, and therefore, equal activities: 
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Or 

 

                           
 

 

 

Because temperature is a parameter as well as α, for a given value (e.g.,     ), 

temperature can be varied to compensate for the effect of α on causing the inflexion 

Points m and q. The critical temperature     occurs, where           , above which 

there is only a single homogeneous solution. 

 

In order to evaluate     ,we explore the inflexion Points m & q, where: 

 

 

    

   
 

   

 

 

At    , we have: 

 

 

   

   
 

    

   
 

                

 

Thus, we have: 

 

 

    
   

      
   

 
 

 

 

 

It is clear that Ω  must be positive for      to be positive. The value of   
   that 

maximizes     is   
      , therefore: 
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From the QC model, a positive value for Ω  means repulsion of A & B, and a tendency to 

phase separation. The larger is Ω , the higher is     . This is illustrated in Figure HIV.5. 

 

 

 
 

 

Figure HIV.5 - (a) The effect of temperature on the molar Gibbs Free Energy of mixing a 

binary solution for which             (b) The loci of the double tangent ponts in (a), 

which generate the phase diagram for the system; and (c) The activities of component B 

derived from (a). 
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Conditions of Heterogeneous Phase Equilibrium 

 

Consider one phase consisting of     moles of A and     moles of B. This system has an 

(extensive) free energy   , then: 

 

 

    
   

   
 

      

 

 

And 

 

    
   

   
 

      

 

 

 

Now, consider a heterogeneous, closed system of two phases        . The change in the 

free energy for each phase due to a reversible change in mass is: 

 

 

 

      
    

    
    

    
  

 

And 

 

      
 

   
 
   

 
   

 
   

 
 

 

 

 

Now, consider a change of the amount of A atoms in each of the two phases. Let      

atoms be transferred to the α–phase from the β–phase, keeping the number of B atoms in 

each phase constant, as shown in Figure HIV.6: 
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Figure HIV.6 – Schematic diagram showing transfer of     atoms of A to the α–phase 

from the β–phase, keeping the number of B atoms in each phase constant. 

 

As a result of the transfer of     atoms from β to α: 

 

 

 

      
    

    
  

 

And 

 

      
 

   
 
   

 
 

 

 

 

The total free energy change of the system of these two phases is the sum of the free 

energy change for each of the individual phases: 

 

 

 

      
   

       
        

 
   

    
    

 
   

 
 

 

 

 

However, the system is closed, and the amount of A lost by the β–phase is equal to the 

amount of A gained by the α–phase: 
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Since the transfer of A was done reversibly, we have: 

 

 

 

      
   

   

 

 

Thus, we have: 

 

   
    

 
    

    

 

 

Finally, we can say, at equilibrium: 

 

 

  
    

 
 

 

And 

 

  
    

 
 

 

 

 

We can generalize the above equations for a heterogeneous system consisting of N 

components and S co-existing phases, at constant T, P: 

 

 

  
    

    
                                               

 
 

 

 

 

In the above equation, it is recalled that            . 

 

Mass Balance Constraints on a Closed System at Equilibrium - The Lever Rule 

 

Reconsider the system AB consisting of   
 ,   

 
,   

  and   
 

. If this system is closed, the 

following equations describe this constraint. Let   
   be the overall or total composition of 

the entire system of the two phases and   
 

 be the composition of i in the individual 

phases (      . Finally, let    be the fraction of  each phase  . Thus, we have the 

following set of mass balances: 
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And 

 

     

 

   

 

 

 

 

The above set of mass balance equations is known as the Lever Rule (LR). This is a 

mechanical analogue to a lever force balance in the phase diagram (constant temperature) 

where the relative distance in composition space between the total composition and the 

composition of the individual phases of an equilibrium gives the fraction of each phase. 

The LR is illustrated for the two-phase equilibrium (   ) in Binary System AB in 

Figure HIV.7. 
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Figure HIV.7 – Illustration of the Lever Rule applied to the two-phase equilibrium in a 

binary system. 
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A specific calculation of the fraction liquid in the Pb-rich side of the Pb-Sn system at 

various temperatures is made in Figure HIV.8.   

 
Figure IV.8 – Calculation of fraction of liquid phase in the Pb-rich Pb-Sn system. 

 

The Gibbs Phase Rule 

 

The system of equations in i and j give W independent relationships, as follows, where S 

is the total number of phases of an equilibrium, and N is the number of components: 
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What is the number of independent variables Q? Since the phase diagram itself as well as 

the chemical potentials are expressed in terms of the (intensive) composition variables, 

we have the following mass balance constraints: 

 
 
 

  
 
   

 
    

 
             

 
 
 
So, we have            independent variables, including T,P. (The quantity 
      is because the N

th
 component  composition is calculated from      

   
   
   .) Thus, the degrees of freedom    of this system of equations describing an 

equilibrium is: 

 
 
 

                      
 
 
 
This becomes the infamous Gibbs Phase Rule (GPR): 

 
 
 

        
 
 
 
The degrees of freedom   is the number of variables (composition, T & P) that can be 

varied while remaining in an equilibrium. 

 

(It is to be noted that, unlike for the LR for a specific equilibrium, at a specific 

temperature, the chemical potential is generally not a function of the fraction of a phase, 

nor of the total composition of the system, so that for the GPR, only the mass balance for 

the phases j apply individually (as in   
 
   

 
    

 
            ).) 

 

Application of the GPR  is made here with reference to Figure HIV.9.  
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Figure HIV.9 – Application of the Gibbs Phase Rule (GPR) in the binary system 

exhibiting a eutectic equilibrium at constant pressure. 

 

 

Complications with application of the GPR can arise when chemical reactions are 

involved and when there is an inert gas to control pressure. This is discussed further in 

the subsequent handout. 



18 

 

 

Univ. of Cincinnati MTSC-7035 Fall 2015 © D. Kundrat 

 

 

 

Phase Stabilities 

 

So far, we have not been concerned with different standard states for the chemical 

potential. This was easily circumvented in the discussion of phase separation, as the new 

phases continued to have the same crystal structure as the parent phase. 

 

 The topic of standard states can be somewhat complicated , especially where calculation 

of phase diagrams is concerned, because there are more than one phases at issue, and the 

chemical potential may be referenced to any of the pure phases as its standard state. 

Usually (but not always) the standard state for a chemical potential of a component in a 

phase is the phase of the pure component. But sometimes, the phase is metastable in the 

pure component! Other times, activity for the chemical potential may be measured 

relative to some other, more convenient standard state.  The general topic of standard 

states is handled in the subsequent handout.  For the present discussion, the issue is 

consistency in the handling of the different standard states corresponding to the variety of 

phases encountered when calculating phase diagrams. 

 

We now revisit the conditions of equilibrium using the example of the two-phase       

equilibrium in a multi-component system (constant pressure), where i =A, B, …: 

 

 

 

   
     

     
      

 
 

   
        

      
       

      
 

And 
 

   
 

       
 

        

 
 
 

 

In the above set of equations,    
        

      
       

     
 are known as the phase 

stability of pure i, here, between pure liquid and pure solid i. 

 

 

If the activity of a component in a phase has the same phase as the standard state, it is 

noted as such: 
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For example, say an activity for i  is known (i.e., measured) in the liquid phase, relative 

to the pure liquid i, we write: 

 

 

 

   
    

    
          

                         
   

  
 

 

 

Similarly, for the solid phase, we write: 
 

 

 

   
    

    
          

                        
   

  
 

 

 

Insertion of the above two equations into our original statement of equilibrium between 

the liquid and solid phase results in the following system of equations (I = A,B,…): 

 

 

 

   
     

     
     

 

 

 

  
    

      
    

      
      

     

 

 

 

  
    

  

 

Or 

 

   
     

  

 

 

 

 

In so doing, we have changed the activity of i in the solid phase, so that it is now 

referenced to the liquid phase. In many textbooks, the equality of chemical potentials is 

given in the form of the equation stated above.  This simple form belies the subtlety that 

in so doing, the chemical potential of i in the solid is in the same standard state as it is 

for i in the liquid! 
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On the other hand, suppose the activities   
  and   

  are already given relative to the  same 

phase, say, the liquid phase, we may write: 

 

 

 

   
    

    
          

                         
   

  
 

   
    

    
          

                         
   

  
 

 

 

In the above equation, note that the standard state for solid i is the pure liquid i! 

 

When the standard states for a set of co-existing phases are given relative to the same 

standard state, a simple set of equations result, where there is no need for phase 

stabilities, in which case we write: 

 

 

   
     

  

 

 

In general, the set of phase stabilities are (where   can be any of the j phases, j = 1,2, … 

S; and i = 1,2 …N): 

 

 

 

   
           

        

 

 

 

Calculation of Binary Phase Diagrams – Graphical Approach 

 

By graphical approach, we mean establishing the chemical potentials as tangents to the 

integral (molar) free energy curves for each phase, whence, equality of all tangents 

establishes the compositions for the equilibrium at issue at a given temperature (constant 

pressure). The systematic change in temperature establishes new tangents, and therefore a 

new set of compositions for the equilibrium, thereby mapping out the phase diagram. 

Today, this approach is replaced by a numerical procedure, but it is, nevertheless, 

instructive. 

 

First, we need to briefly review the relationship between the integral (molar) free energy 

and the chemical potential (partial molar free energy) discussed earlier. This is illustrated 

in Figure HIV.10 for the   -phase in AB binary system. 
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Figure HIV.10 – Relationship between the molar free energy and the chemical potential 

in a binary system. 

 

 

If pure A and pure B are in the same standard state (for example, if a solid, having the 

same crystal structure, such as BCC, FCC, HCP, etc.) then   
    

   and        for 

the un-mixed components. For simplicity in this case,   
 and   

  can be arbitrarily set to 

zero, so     can be represented by a horizontal line at the origin on the y-axis. 

 

More often the case, pure A and pure B do not have the same standard state at a given 

temperature.  Then, this line for     is tilted. Each pure component must be in have an 

equilibrium standard state, but in this case, they are not the same, so the tilt reflects the 

difference between the standard states for the components from their equilibrium 

standard states. 

 

 This is more easily seen by plotting two curves of the integral (molar) free energy of 

mixing – one for the phase that is stable for the pure Component A, and the other for the 

phase that is stable for Component B.  

 

We will consider the case, where   
  

   
  

, so, at an intermediary temperature, pure A 

is solid, but pure B is liquid. 

 

The common tangency between these two curves generates the liquidus and solidus of the 

phase diagram (by systematically varying temperature). This is shown schematically in 

Figure HIV.11, with explanation. 
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Figure HIV.11 – Establishment of the location of the liquidus and solidus compositions 

for a temperature intermediary between the melting point of A and that of B, by the 

technique of common tangents to the integral free energy curves for each phase. 
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Figure HIV.12, in turn, shows application of the common tangency technique at a 
series of temperatures, where the integral free energy curves for the liquid and solid 
phases shift positions, generating different locations of the solidus and liquidus, 
depending on temperature. 
 

 
 

Figure HIV.12 – Generation of the liquidus and solidus  for the phase diagram of the AB 

system by the common tangent technique at several temperatures. 
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Finally, Figure HIV.13 shows the eutectic system comprised by the       
          equilibria, and the corresponding integral free energy curves for each phase 

at a series of temperatures, where the common tangents to each set of curves locate the 

compositions of each equilibrium. 

 

 
 

Figure HIV.13 – Illustration of the common tangent method for establishing the phase 

diagram, here, a eutectic involving the                 equilibria. 
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Calculation of Binary Phase Diagrams – Numerical Approach 

 

It is customary, unless otherwise stated, to assume that the activity of a component in a 

phase is in the standard state consisting of the pure component in that phase. 

Complications can arise when a phase that is stable for a portion of the phase diagram 

may not be stable in one of the pure components. An example is the Fe-Cr system, which 

has the FCC phase protruding from the iron rich side into the binary, resulting in the 

well-known gamma-loop. But, the FCC phase is meta-stable in pure Cr. For calculation 

of this feature in the Fe-Cr system, the free energy difference between FCC and BCC 

chromium is needed. How to obtain this, if FCC Cr is not s stable phase? There are two 

approaches: (1) this is inferred (i.e., back-calculated) from details of equilibria  in the 

binary system; or (2) this is estimated from fundamental considerations and correlations 

with other known phase stabilities, depending on characteristics, such as position in the 

Periodic Chart.  

 

Generally, before proceeding with calculating a phase diagram, a solution model needs to 

be assumed for each solution phase appearing anywhere in the diagram, and the phase 

stabilities of the pure components of all participating phases. 

 

In the following procedure, it is assumed that the standard state is the pure component in 

each phase. For example, for the     equilibrium in the AB system,   
  and   

  have 

the pure liquid A and pure liquid B as the standard states, respectively, and   
   and    

   

have pure solid A and pure solid B as the standard states, respectively. 

 

Here, we designate the (two) phases as      and     , so the following two 

equations are solved for an equilibrium of two phases: 

 

 

   
     

     
     

 

 

And 

 

   
     

     
     

 

 

 

 

For the above two equations, T is specified and two of the four composition 

  
    

    
        

  variables  are unknown, so there are zero degrees of freedom, and a 

unique solution. 

 

For Component A, we have, on insertion for the activity, taking, say,   
  as one of the two 

composition variables (  
      

 ) and taking   
  as the other composition variable 

(  
      

 ): 
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And 

 

   
        

      
        

       
      

       
     

       
  

 

 

 

 

For Component B, we have, on insertion for the activity, taking the same variables,   
  as 

one of the two composition variables (  
      

 ) and taking the same   
  as the other 

composition variable (  
      

 ): 

 

 

 

 

   
    

    
          

      
   

 

   
    

    
          

      
   

 

And 

 

   
        

      
        

       
      

       
     

       
  

 

 

 

 

 

In the above equations     
   and     

   are from a specific solution model of the 

integral (molar) free energy, such as the QC model, where, for i = A,B, and   is    : 
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Where (if QC model) 

 

            
 
   

 

 

The above set of equations is, in general, transcendental, and cannot be solved 

analytically. Today, it is easily solved using software for solving a system of equations 

numerically, such as an EXCEL macro. 

 

Calculation of Binary Eutectic or Peritectic Equilibria 

 

Consider the following figure (HIV.14) for the AB binary. In each case, we have an 

invariant equilibrium, where there are three phases in mutual equilibrium. 

 

 
 

Figure HIV.14 – System of equations to be solved to calculate the invariant eutectic or 

peritectic equilibrium in the binary system. 
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Analytical Calculations  of Binary Systems - Selected  Cases 

 

Analytical calculations of features in binary systems can be made for certain limiting 

cases. These are useful for seeing directly what controls the calculation. 

 

Analysis of the Gibbs Free Energy of mixing for condensed phases (liquids and solids) 

reveals three limiting cases. 

 
For such phases, we have: 

 

 

                   
 

 

 Ideal Entropy of Mixing – In this case,                       . The 

enthalpy of mixing is still finite, as in a regular solution, where            . 

 

 Ideal Solution – In this case,        , but we still have       
                . Unlike the following case, we still have intimate 

atomic (completely random) mixing. 

 

 Immiscible Solutions – Here, there is no intimate atomic mixing or interacting of 

the components, so all mixing is a mechanical mixture of phases of pure 

components, so that both the enthalpy and entropy of mixing are zero, so that 

       . 

 

Case I - Ideal Solutions in Both Phases 

 

Consider, say, the equilibrium between liquid and solid in the binary system, where both 

phases are ideal. We can write at   : 

 

 

   
    

    
          

  
 

   
    

    
          

  

 

   
    

    
          

  
 

   
    

    
          

  

 

 

This results in a liquidus and solidus that extends completely from one component to the 

other (i.e., complete miscibility). This is shown in Figure IV.15. 
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Figure HIV.15 – Schematic binary phase diagram that results if both condensed phases 

are ideal. 

 

 

At equilibrium, the chemical potentials are equal, so we can write: 

 

 

 

  
          

    
          

  

 

  
          

    
          

  

 

 

 

Thus, we have, on re-arranging: 

 

 

 

     
  

 

  
 

   
      

       
       

 
  

 

  
      

   
       

   
 

 

 

     
    

 

    
 

   
      

       
       

 
    

 

    
      

   
       

   
 

 

 

 

Solving for   
   and   

  gives the following equations: 
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Compositions for the liquidus and solidus are thus obtained for this limiting case 

analytically, by the above equations for each temperature specified. Systematic variation 

of the temperature generates the entire liquidus and solidus. 

 

Note that for this special case – where both phases of the two-phase equilibrium are ideal 

– that the shape of both the liquidus and the solidus is controlled directly by    
       

, 

or, assuming    
       

    
       

  
  

 , by    
       

 and   
  

. 

 

Case II – Complete Miscibility in One Phase and Complete Immiscibility in the 

Other Phase 

 

Here, we want to calculate   
 

 from the two-phase equilibrium in a binary system, or 

vice-versa. Consider the liquid-solid equilibrium for this case, where the liquid phase is 

completely miscible in A and B, but the two eutectic solid phases are completely 

immiscible (in which case, the two solid phases are essentially pure A and pure B). This 

is shown schematically in Figure HI.16. 
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Figure IV.16 – Binary eutectic phase diagram for complete miscibility in the liquid 

phase, but complete immiscibility for the solid phases. 

 

 

At    , we have the following set of equations: 

 

 

 

   
    

    
           

  
 

 

   
    

    
           

             
    

   
 

 

 

 

At equilibrium, we have: 

 

 

  
    

  

 

 

  
           

    
     

 

 

        
    

      
       

       
         

   
   

 

 

Finally, on re-arranging, we get: 
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In the above equation, both    
       

 and   
  are functions of    , so given   

 ,   
  is 

calculated at that temperature, or vice-versa. 

 

Case III – Calculation of  the Eutectic Temperature for Case II, but Assuming Ideal 

Liquid Phase 

 

Figure HIV.17 illustrates the phase diagram for this case. 

 

 
 

Figure IV.17 - Binary eutectic phase diagram for complete ideality in the liquid phase, 

but complete immiscibility for the solid phases. 

 

 

 

 

Case IV – Calculation of the Henrian Coefficient From the Two-Phase Equilibrium 

in the Binary System 

 

This is the situation, where, if the solubility is sufficiently dilute for the dilute phase, and 

if the other phase is essentially pure (i.e., the two phases are almost immiscible), then the 

Henrian coefficient for the dilute phase can be calculated. This situation is illustrated 

schematically in Figure HIV.18. 
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Figure HIV.18 – The α-β equilibrium in the AB binary system, with limited solubility of 

B in α and   being essentially pure B, allowing calculation of the Henrian coefficient for 

the dilute solubility of B in the  -phase. 

 

 

The key assumptions are that α  is dilute in Solute B, and that For Solute B on the  -side 

of the phase diagram (where   
  is the Henrian coefficient): 

 is essentially pure B.  

 

For Solute B on the  -side of the phase diagram (where   
  is the Henrian coefficient): 

 

 

 

  
    

   
       

                                   
   

   
       

    

 

 

 

For Solute B on the   -side of the phase diagram (where   is taken to be pure B): 

 

 

 

  
 

   
   

       
                                   

   
   

        

 

 

 

Thus, we have, on setting equal chemical potentials (noting the same standard states for 

the activity of B in either phase): 
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Role of the Solution Parameter Ω in Shaping the Phase Diagram 

 

If we assume regular solution behavior in the liquid in the AB binary system, we have: 

 

 

    
       

       
        

  
 
 

 

 

Of interest is the role of increasing parameter   from, say, zero (i.e., the ideal solution). 

For this analysis, we need to specify    
       

. Consider a hypothetical system, where 

   
       

  10 KJ, and   
  

  2000 °K. Then, we have: 

 

 

                
        

  
 
 

 

This is illustrated in Figure HIV.19. 
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Figure HIV.19 – The liquidus of a hypothetical system, where    
       

  10 KJ, 

  
  

  2000 °K and    . 

 

 

An inflexion is seen in this liquidus; this occurs when the second and third derivatives of 

the integral free energy of mixing is zero: 
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The third derivative can equal zero only at          . Thus, from the second 

derivative,    . Therefore, the value for  , above which phase separation must occur is: 

 

 

       

 

 

          
         

  
 

 

 

 

For the hypothetical system A-B considered,                                      
 

 

The following phase diagram (Figure HIV.20) is for the hypothetical system, where 

                .  
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Figure HIV.20 – Hypothetical phase diagram for regular solution parameter   

              . 
 

It is seen that the liquidus curve changes into an immiscibility gap – where two liquids, 

each at a different composition, are in equilibrium, depending on temperature. The phase 

separation begins at                  . At the monotectic temperature (1640 °K), we 

have        . 

 

The following figure (HIV.21) shows how features of the phase diagram change as values 

for regular solution parameters    for the liquid and for the solid phases change in a 

systematic way. 
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Figure HIV.21 – Calculated series of binary phase diagrams for a systematic chance in 

regular solution parameter   for each of the two phases (here, liquid and solid phases). 

 

 

Finally, Figure HIV.22 shows examples of how features of the phase diagram change as 

    and     change systematically. 
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Figure HIV.22 – Example of how features of the calculated binary phase diagram change 

as     and     are changed systematically. 
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TOPOLOGY OF TERNARY AND HIGHER-ORDER PHASE DIAGRAMS 

 

Because of the nature of mole fractions totally unity,            for the ternary 

system, it is convenient to represent its co-ordinates as the vertices of an equilateral 

triangle, the so-called Gibbs Triangle. This is in contrast to the perpendicular axes used 

normally for three variables. Figure HIV.23 illustrates the relationship between the Gibbs 

Triangle and the Cartesian co-ordinates x-y-z. In the Gibbs triangle, all three 

compositions can be read directly, as            at all times. 

 

 
 

 
Figure HIV.23 – The Gibbs triangle used to represent composition of the ternary 

system in relation to Cartesian co-ordinates. 
 
 

As one might expect, since the limiting boundaries of the Gibbs Triangle are the 
three binary systems that make up the ternary system, any equilibria existing in the 
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binary systems at a given temperature must extend into the ternary system. A tie-
line in a binary system at constant temperature (and constant pressure) becomes a 
continuum of tie-lines in the Gibbs Triangle because there is now an additional 
degree of freedom, afforded by the third component. 

 
The Lever Rule, previously introduced for the two-phase equilibrium in the binary 

system, applies as well in the Gibbs Triangle. Figure HIV.24 shows one of a continuum 

of tie-lines in the Gibbs Triangle. 

 
 

Figure HIV.24 – Application of the Lever Rule to a tie-line of an equilibrium between 

two phases in the Gibbs Triangle. 

 

 

Consider a mixture of phases whose compositions are represented by Points p and q in 

the Gibbs Triangle of Figure HIV.24. The fraction of phase of composition p, and the 

fraction of phase of composition q are: 
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The distances r-q, p-r and p-q can be conveniently measured/read directly in the Gibbs 

Triangle, which is, of course, convenient.  In point of fact, the fractions    and    can 

also be calculated from the prevailing mass balances for a specified total composition 

     as discussed earlier. 

 

The Isomorphous Ternary Syatem 

 

Figure IV.25 shows the simplest two-phase equilibrium in the ternary system, analogous 

to the isomorphous binary system exhibiting complete solubility in both the phases (here, 

liquid and solid) across the Gibbs Triangle. 

 

 

 
Figure IV.25 – The simplest two-phase equilibrium in the ternary system, where each 

phase has complete solubility in the Gibbs Triangle. 

 

 

It is instructive to apply the Gibbs Phase Rule (GPR) to all regions of this Gibbs Triangle. 

Generally, in the ternary system (at constant pressure, P), we have: 
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In this equation,   are the degrees of freedom, and   is the number of phases. For the 

liquid or solid primary (or, single) phase fields,     , thus,     . If we now fix 

temperature, then we reduce the degrees of freedom to two. This means that two of the 

compositions have to be specified (the third composition specified by distance) to 

completely specify the system, in this case, the location in the primary phase field. 

 

It is clear, extending the above logic, that in the two-phase equilibrium field, the number 

of phases is increased to two, so that, at constant T,P, the degrees of freedom is now 

reduced to one, meaning one of the six compositions representing each tie-line has to be 

specified to specify one of the continuum tie-lines of the equilibrium.  

 

As discussed earlier, the Gibbs Phase Rule is none other than the criterion guaranteeing a 

solution to the system of equations of governing the equilibrium with more than one co-

existing phases. Thus, for the two-phase field in the Gibbs Triangle, represented by a 

continuum of tie-lines, each tie-line is calculated at a specified temperature and one of 

the six composition variables, viz.: 
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The above system of equations consists of five independent equations (of which three are 

statements of equal chemical potentials for each of the three components, and two are 

mass balance equations, one for each phase). However, there are six independent 

composition variables, so that any one of these can be specified to arrive at a unique 

solution. 

 

So, it should be clear exactly how a the continuum of tie-triangles of a particular 

equilibrium at a particular temperature is generated by calculation – one for each step-

wise increment in a composition variable beginning just inside the Gibbs Triangle of one 

of the binary systems exhibiting the two-phase equilibrium, and exiting the Gibbs 
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Triangle in one of the other two binary systems, where the two-phase equilibrium is 

stable. The procedure is repeated for another selected temperature, and so on. This is 

shown graphically in Figure HIV.26. 

 

 
 

 

Figure HIV.26 – Illustration of the calculation of a continuum of tie-lines of a two-phase 

equilibrium in a ternary system, by systematically varying one of six composition 

variables (here,       
       

 ) across the Gibbs Triangle for selected temperatures    

(a) and    (b). 

 

 

A very useful diagram results, if the primary phase field, such as a liquidus or solidus – 

which is a line at constant T,P , but becomes a surface in the Gibbs Triangle when 

temperature is relaxed – is projected over a range of temperatures onto the basal plane of 

the Gibbs Triangle (called a liquidus, or solidus projection). Such a projection is shown in 

depicted in Figure HIV.27. While information from multiple diagrams is collapsed onto 

one diagram for such a projection, what is lost is the full tie-line, because only one of the 

co-ordinates of the tie-line is retained in the projection. 
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Figure HIV.27 – Example of projection of a primary phase field (here, a liquidus) that 

exists over a range of temperatures, onto the basal plane of the Gibbs Triangle. 

 

 

The Three-phase Ternary Equilibrium 

 

When there are three co-existing phases in the ternary system, we have from the GPR, at 

constant pressure: 

 

 

                
 

 

 

If we fix temperature (pressure already is fixed), then we have zero degrees of freedom; 

this means we have only one unique set of compositions of the three phases of this 

particular equilibrium. Such a set of unique compositions in the Gibbs Triangle is the tie-

triangle. The sides of the tie-triangle representing the three-phase equilibrium can be 

thought of a set of tie-lines for each of the three sub-sets of two-phase equilibria of the 

three-phase equilibrium. Similarly, the three-phase equilibrium in the binary system (such 

as at the eutectic/oid, or peritectic/oid temperature) can also be thought of as a collapsed 

tie-triangle, which, then expands into a tie-triangle – one for each temperature – in the 

ternary system. It is calculated in the ternary system by specifying only temperature 

(constant pressure already assumed), whence the system of nine equations (three 

components, three phases) can be solved for a unique solution without specifying any of 
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the nine composition variables. As temperature is systematically varied, the continuum of 

tie-triangles in the Gibbs Triangle is generated by this calculation. 

 

The Lever Rule is equally applicable to the three-phase equilibrium in the Gibbs 

Triangle. The amount of each of the three phases can be calculated when the vertices 

(i.e., compositions) of each of the three phases is known, as well as the overall 

composition of the system of three phases. This is illustrated in Figure HIV.28, where 

             can be determined, knowing the positions in the Gibbs Triangle of the 

vertices R, S and L, and overall composition Point P.  

 

 

 
 

Figure HIV.28 – Determination of fractional amounts of each of the three phases of the 

mutual equilibrium in the Gibbs Triangle from application of the Lever Rule, where 

           . 

 

There three ways to do this calculation: 

 

1. The easiest way to perform this calculation is to read the actual distances directly 

in the Gibbs Triangle to arrive at the relative distances. For example, for 

calculating the fractional amount of the   α–phase,          . This can be 

done without having to identify numerically any of the compositions of the vertex 

or overall composition Point P, and the distances can be read off a ruler. 

 

2. A far more cumbersome procedure is to work numerically with the actual 

compositions in the Gibbs Triangle for R, S, L,P, etc. to determine the distances 

between each point in the Gibbs Triangle, so that the relative proportions could 



47 

 

 

Univ. of Cincinnati MTSC-7035 Fall 2015 © D. Kundrat 

 

 

then be determined – this is totally unnecessary, as in the end, the relative 

distances can be read anyway from the tie-triangle in the Gibbs Triangle without 

working with the actual numerical values for each point.  

 

3. Finally, since the LR is just a manifestation of the prevailing mass balances, the 

fractions               are determined by solving the system of equations of the 

appropriate mass balances; i.e., the mass balances of composition of each 

component for each phase, and the mass balance among the phases for each 

component. In this procedure, the calculations are done without recourse to the 

Gibbs Triangle, other than reading the composition for the vertex corresponding 

to each phase, and Point P if is not already given: 
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Clearly, as with tie-lines, the tie-triangle obeys certain rules that become obvious when 

calculated: it must be isothermal; they never intersect each other, and it collapses into the 

three-phase conjugal tie-lines of the binary, three-phase equilibrium on reaching one of 

the limiting binary systems. 

 

Topology of the Ternary Phase Diagram 

 

Figure HIV.29 shows a schematic example of the ternary system, whose limiting binary 

systems consists of one isomorphous system and two eutectic systems. Between the two 

binary systems in the Gibbs Triangle is a continuum of tie-triangles, one for each 

temperature. This begins at the eutectic temperature in AB binary system, proceeds to 
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map out the continuum of tie-triangles in the Gibbs Triangle, then exits as a co-incidental 

tie-lines at the lower eutectic temperature in the AB binary system.   

 

 
 

Figure HIV.29 – The three-phase equilibrium in a simple ternary system, consisting of 

one isomorphous binary and two eutectic binary systems. The three-phase equilibrium 

begins at the eutectic temperature in the AB system, traverses the Gibbs Triangle as a 

continuum of tie-triangles, then exist at the lower eutectic temperature in the CB system. 

 

 

The following figure (HIV.30) is an exploded model, where the topological features of 

each of the fields of stability are shown schematically. While such a diagram is of limited 

practical use, it does help with understanding the relationship among the various fields to 

each other. 
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Figure HIV.30 – Exploded model of the diagram shown in Figure HIV.29. 
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More useful is the isothermal section, such as shown in Figures HIV.31 and HIV.32 for 

the same diagram as shown in Figure HIV.29.  

 

 

 
 

Figure HIV.31 – Spatial diagrams showing selection of isotherms    through    of the 

ternary system shown in Figure HIV.29. Isothermal sections in the Gibbs Triangle are 

shown in Figure HIV.32. 
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Figure HIV.32 – Isothermal sections in the Gibbs triangle corresponding to temperatures 

selected in Figure HIV.31. 

 

 

Another example of the three-phase equilibrium, but emanating from peritectic equilibria 

in two of the binaries is shown in Figure HIV.33. Again, we have a continuum of tie-

triangles for the three-phase equilibrium in the ternary system, one for each temperature. 

 

 
 

Figure HIV.33 – A simple ternary system with a peritectic three-phase equilibrium 

initiating in the AB system at the binary peritectic temperature, and exiting the ternary 

system in the CB system at the binary peritectic temperature. 

 



52 

 

 

Univ. of Cincinnati MTSC-7035 Fall 2015 © D. Kundrat 

 

 

The Ternary Four-Phase Equilibrium 

 

The four-phase can occur in the ternary system when at least one binary system has a 

eutectic/oid reaction, the others having the peritectic/oid reaction. According to the phase 

rule, the co-existence of four phases in the ternary system (at constant pressure) can occur 

at only one (unique) temperature, in which case, the degrees of freedom is zero; viz.: 

               . This means no variable needs to be specified, 

including temperature, because this equilibrium occurs at one and only one temperature. 

Figure HIV.34 illustrates this equilibrium in a ternary system.  
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Figure HIV.34 – Example of the four-phase equilibrium in the ternary system, where the 

temperatures correspond to the isothermal sections in Figure HIV.32. 

 

 
It is noted that such an equilibrium requires at least one binary eutectic/oid system, the 

other two being eutectic/oid, eutectic and peritectic/oid, or both peritectic/oid systems. In 

Figure HIV.34, it is seen that at the unique ternary eutectic temperature (which is the 

lowest temperature where liquid is stable) the three sets of tri-triangles emanating from 

each of the three eutectic equilibria in the binary systems become co-incident and touch 

at this temperature at the Ternary Eutectic Point in the diagram. Immediately below this 

temperature, the equilibrium is back to a tie-triangle consisting for the equilibrium among 

the three solid phases. Figure HIV.35 is an exploded model corresponding to the ternary 

system depicted in Figure HIV.34. 
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Figure HIV.35 – Exploded model of ternary system with a four-phase equilibrium shown 

in Figure HIV.34 
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Quaternary and Higher-order Systems 

 

It is abundantly clear that visualization of equilibria beyond three components quickly 

stretches the imagination. Nevertheless, the process of depicting the multi-component 

phase diagram has its internal logic emanating from the lower-order systems. The 

compositional phase diagram (constant T and P) is represented by equilateral (Gibbs) 

polyhedrea.  In turn, the equilibria depicted in the polyhedrea has a systematic 

consistency: each additional component adds another dimension to this representation. 

For example, the liquidus, which is a point in the binary system, becomes a line in the 

Gibbs Triangle for the ternary system, a surface in the four-component system, a volume 

in the five-component system, and so forth.  

 

Figure HIV.36 gives the polyhedrea for up to five components. 

 

 
 

Figure HIV.36 – The equilateral polyhedrea used to represent compositions up to five 

components (constant T and P). 

 

 

The structural element that depicts the conjugate compositions of a multi-phase 

equilibrium in the equilateral polyhedrea is called the hyper-conode.  These are depicted 

in Figure HIV.37. For the ternary system, up to three of these are employed: the tie-line, 

the tie-triangle and the tie-tetrahedron, the latter being collapsed into four co-incident tie-

triangles for the four phase equilibrium occurring  at one temperature. 
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Figure HIV.37 – The hyper-conodes used to depict the conjugate compositions of multi-

phase equilibria. 

 

 

To include, say, temperature in the depiction of the equilibria, of course, requires another 

dimension. The technique of polythermal projection is employed to get a representation 

in two- or three- dimensional space.  By this is meant depicting the temperature –

composition relationships onto one of the limiting planes of the polyhedrea, for example, 

projection of the liquidus of a quaternary system onto one of the limiting ternary systems. 

While visualization of such diagrams can be exceedingly difficult, they produce diagrams 

that are rather beautiful in themselves, but, are also full of meaning, and can be 

understood by following the equilibria from the limiting systems into the higher-order 

system. As the number of components become larger, tracking equilibria, for example, to 

assist in understanding compositional changes during, say, solidification, is best done by 

a computer program, where the depiction in a traditional diagram format becomes 

essentially meaningless. The following figures (HIV.38 and HIV.39) are just two 

examples of polythermal projection from a quaternary system onto the limiting ternary 

systems. These are shown here without additional comment. Enjoy! 
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Figure HIV.38 – Polythermal projection of the four-phase equilibrium of the type 

        in the quaternary system on to the surfaces of the limiting ternary Gibbs 

triangles of a quadrahedron. 
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Figure HIV.39 – Polythermal projection of the Bi-Cd-Pb-Sn quaternary system with a 

five-phase equilibrium of the type            . 

 

 

 


