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ADVANCED THERMODYNAMICS 

 

Handout V – Equilibrium Between Gases 

and Condensed Phases 
 

 

(Gaskell Chapters 11 – 13, 15) 

 

 
Background 

 

It was seen in HIII that, in the absence of inter-atomic forces, such as in an ideal gas, the 

heat of mixing is zero. This is but one extreme of a range of possibilities, the other being 

a marked chemical affinity of two or more elements, leading to compound formation. The 

thermodynamics of these two extremes is treated on the one hand by considering the 

activities of a highly non-ideal mixture of H2 and O2, or, on the other hand by defining 

the activities and their changes after undergoing a chemical reaction. In the case of gases, 

if the pressure is low enough, a simpler approach is to examine the partial pressures of 

the final gas at equilibrium after reacting.   

 

In this handout, we first study the reactions between gases alone, then we add in pure 

condensed phases, finally we include condensed phases that are real solutions. Examples 

are, respectively, oxidation of methane (CH4) to produce a H2-H2O-CO-CO2 mixture; the 

oxidation of C to produce a C-CO-CO2 mixture; equilibrium between O2 and metals 

(Ellingham Diagram); and finally, equilibrium between CO, CO2 and an iron alloy. 

Electrochemistry, for which the ranking of Standard electrode potentials of elements is 

somewhat analogous to the Ellingham Diagram in its ranking of affinity of elements for 

oxygen, is also treated briefly. 

 

Extension of the Gibbs Phase Rule to Chemical Reactions 

 

In Handout IV, the Gibbs Phase Rule (GPR) was introduced as a useful tool for the 

interpretation of alloy phase equilibria. It was shown that calculation of the phase 

diagram itself is really an exercise in satisfying the GPR, as a solution is not guaranteed 

unless there are zero degrees of freedom for a particular equilibrium. However, as the 

number of components increases and the number of possible phases increases, the phase 

relationships are increasingly complex to depict correctly. Nonetheless, the GPR provides 

an increasingly invaluable guide, short of a full calculation.  

 

An additional complication is the inclusion of chemical reactions, as well as inclusion of 

a gas phase. So, in consideration of a multi-component system, with condensed phases as 
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well as a gas phase undergoing a chemical reaction, the GPR is essential in understanding 

the degrees of freedom available to the system, both in setting up experiments and in 

portraying the system.  

 

From a multi-component perspective, consider a system of    chemical species i, j, k … - 

none of which currently engage in a chemical reaction – which occur in   number of 

phases             The thermodynamic state is completely determined by 

specification of temperature, pressure and       composition variables        
 

. Then, 

the thermodynamic system is specified when         variables are specified; viz.: 

                   .  

 

The equations that apply at equilibrium, are: 

 

 

Equality of temperature: 

 

 

 

                            
 

 

 

Equality of pressure: 

 

 

 

                            
 

 

 

These two sets of equations number:        . 

 

Equality of chemical potential for each species i, j, k, …: 
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These   sets of equations number:        . 

 

 

Finally, the total number of independent equations is: 

 

 

 

                           
 

 

 

The Degrees of Freedom   is the maximum number of variables which can be 

independently altered in value without disturbing the equilibrium, here for the case of no 

chemical reactions: 

 

 

 

                                                    
 

 

                           
 

 

 

If a reaction occurs, the products of reaction are considered as additional species, along 

with the participating elemental chemical species before the reaction,  . But, each 

chemical reaction establishes a stoichiometric relationship among the participating 

species. Let   be the number of stoichiometric equations representing the reactions, so 

that, the number of independent equations is increased by  . Here,   refers to all species, 

including the products of reaction: 

 

 

 

                        
 

 

 

            
 

 

 

In the above equation, which refers to including chemical reaction,        . Of 

course, if there are no chemical reactions, then              . The number 

of components  can be determined as either the minimum number of chemical species 

required to produce a system at equilibrium (typically, the participating elements), or as 
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the total number of species (elements or compounds)  minus the number of  

stoichiometric equations representing the reactions among them. 

 

 

REACTIONS  OF GAS MIXTURES 

 

Consider the following reaction between two gases, producing a gas: 

 

 

 

                
 

 

 

We may write the following extensive (noted by prime) Gibbs Free energy amount: 

 

 

 

                     
 

 

 

But, we have the following mass balance:       and           , where initially 

             . The extensive free energy    is a minimum when: 

 

 

 
   

        
   

 

 

 

Thus, we have: 

 

 

 
   

        
                 

 

             
 

Or 
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For each gas species: 

 

 

 

     
         

 

 

 

In the above equation, it is remembered that                    . Thus, we have: 

 

 

 

  
           

            
          

 

 

 

On re-arranging the above equation, we get, at equilibrium: 

 

 

   
    

    
        

  
 

    
  

 

 

We define    as the equilibrium constant: 

 

 

 

    
  

 

    
 

     

 

 

And 

 

            

 

 

 

It is noted that          alone. 

 

Generally, for the reaction: 
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Finally, we have for the general case: 

 

 

 

          
  

   
   

  

  
   

   
  

          

 

 

 

In the above equation     is the Standard Free Energy Change of Reaction, where all 

components of the reaction are in their standard states. 

 

Generally, for all gases: 

 

 

   
  

    
                

 

 

 

This equation – for the Standard Free Energy of Reaction - is one of the most useful 

equations in thermodynamics. 

 

It is noted that as            , and the reaction moves to the RHS. 

 

Effect of Temperature on     

 

We apply the Gibbs-Helmholtz Equation to determine the effect of temperature on   : 

 

 
   

  
  

  

  
 

 

 

Thus, we have the following Van’t Hoff Equation, at constant P: 
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In the above equation,     is expressed empirically as a function of temperature. 

Nonetheless, over small temperature intervals, we can assume that     is essentially 

constant with temperature, giving: 

 

 

 

   
  

  
 

   

    
 
 

  
 

 

  
  

 

 

 

For small changes in temperature, this becomes, on re-arranging: 

 

 

 

    
                         

     
 

 

 

 

The relationship between    and     is revealing – if     is positive (where the 

reaction as written is endothermic), then     increases with increasing temperature. 

 

Conversely, if     is negative (where the reaction as written is exothermic), then     

decreases with increasing temperature. 

 

This direction of the variation in   with temperature can be anticipated from Le 

Chatlier’s Principle: 

 

If heat is added to a system at equilibrium, the equilibrium is displaced in the direction so 

as to absorb the heat. 

 

So, if the reaction is endothermic – requiring heat -  and if heat is made available to the 

system, the reaction will shift further to the right and make use of the extra heat, i.e., 

towards larger values of    . 
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Conversely, if the reaction as written is exothermic – giving off heat – and if heat is 

added to the system, it will shift the equilibrium to the left so as less heat is produced by 

the reaction, towards smaller values of   . 

 

Effect of Pressure on the Equilibrium Constant 

 

This is deduced by replacing    with        . For our reaction, we have, where    refers 

to mole fraction: 

 

 

 

   
  

     
 

            
 

  
 

    
    

 

 

 

If the reaction is equimolar, where equivalent number of moles are produced as reacted, 

there is no effect of pressure! However, if the reaction is not equimolar, total pressure 

remains a variable. In general, we can state: 

 

 

 

   
  

   
 

  
   

 
  

  
   

 

  
   

 
  

    
     

 

    
     

 
        

         
 

 

 

 

Obviously,     and    are equivalent for equimolar reactions, as well as for       . 

 

 

Le Chatelier’s Principle could be also applied to the effect of pressure. If there is an 

increase in the number of moles of a gas on reaction, an increase in the total pressure will 

shift the reaction so as to minimize the number of moles produced, to the LHS. 

Conversely, if the number of moles of a gas are consumed by the reaction, then an 

increase in the total pressure will shift the reaction to the right. As an example, consider 

the reaction:              . As total pressure is increased, production of      is 

favored. This is as if the reaction moves in the direction to accommodate the pressure 

requirement, where the reaction, in this case, wants to remove moles of gas so as to not 

add even more to the pressure. 

 

Illustration of Gas Mixture Equilibria – Example of Important Industrial Gases 

 

Working with gas equilibria involves solving simultaneously the reaction equilibria, 

given    and the mass balance that takes into account the stoichiometry of the reaction. 
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Example I – Production of      

 

Consider the reaction: 

 

 

 

                    (g) (I) 

 

 

 

To evaluate     for this reaction, we first look up to Standard Free Energy of Formation 

of the key (non-elemental) reaction species in a table (such as the Handbook of 

Thermochemistry by O. Kubaschevski and C. B. Alcock (1979), ISBN 0-08-022107. 

From this, we obtain: 

 

 

 

Rxn. 1:                             
                      

 

And 

 

Rxn. 2:                                
                      

 

 

If we subtract (1) from (2), we get (I): 

 

 

                                                   

 

   
               

 

 

 

Then, we need to choose a basis, say, 1 mole of     . From this basis and the 

stoichiometry of the overall reaction, we see that x moles of     moles form from one 

moles of    , leaving (1-x) moles of     . The mole of oxygen remaining are:      
   . Thus, the total number of moles of gas is: 
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Since: 

 

 

   
  

  
   

 

Then 

 

    
 

      

   
   

 

 

    
 

     

   
   

 

And 

 

    
 

  

   
   

 

 

 

Combining all partial pressures with the equilibrium constant, we get: 

 

 

   
    

    
   

   
   

  
    

 

    
     

 
       

        
 

 

 

In the above equation,     is obtained from    
  at the temperature of interest. 

 

Example II – The Equilibrium of        

 

Consider the reaction (all gases): 

 

 

 

   
 

 
        (II) 

 

 

 

From the Standard Free Energy of Formation of         , we have: 
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(Note to be careful not to confuse water vapor with liquid or ice!) 

 

In turn,  

 

 

 

   
    

   
   

   
 

 

 

 

If we choose as our basis one mole of hydrogen, then, x moles of water are produced 

from x moles of hydrogen and ½ moles of   . This leaves       moles of    and  

 
 

 
 

 

 
   moles of   . 

 

This and the following reaction    
 

 
       are very important for controlling the 

oxygen partial pressure in experiments when it is needed to be much lower than possibly 

from dilution with argon – which has its own impurity level for oxygen. For example, if  

   
 needs to be 10

-10
 at 2000 °K, this can be achieved by controlling the ratio 

    

   

  to 3.4 

10
-2

, which is well within the precision of the flows of these gasses. 

 

 

Example III – The CO/CO2 Equilibrium 

 

Consider the reaction (all gases): 

 

 

 

   
 

 
              

 

 

 

We have the following Standard Free Energies of Formation: 
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If we subtract Rxn, (1) from Rxn. (2), we get: 

 

 

 

          
 

 
        

 

   
 

 
       

 

     
                 

 

 

 

Similarly, as for the hydrogen/water equilibrium, this equilibrium can be used to 

precisely control oxygen partial pressures to even lower levels. For example, if it required 

to control    
 to 10

-30
 at 1000 °K (1 atm total pressure) ,the ratio 

    

   
   needs to be a ratio 

of only 1.64. 

 

Fugacity 

 

Real gases in most applications encountered in materials science as well as process 

metallurgy are near 1 atm, and behave essentially ideally.  

 

 

REACTION OF GASES WITH PURE CONDENSED PHASES 

 

Up to this point in this handout, we considered only gases in equilibrium, but now, we 

want to include solids/liquids. First, we want to treat the case of these condensed phases 

being pure. 

 

Consider the equilibrium between a pure solid M or its oxide MO and the respective 

vapor pressures, where the total pressure is 1 atm: 
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The question is how do we change the standard state from a gas to a solid? This change is 

given by: 

 

 

         
                    

        

  

   

   

 

 

 

In the above equation, the integral is for evaluating the effect of the change in pressure 

from 1 atm to the partial pressure   . As it turns out, for solids, V is not a significant 

function of pressure up to several atmospheres, so that the value of this integral is 

negligible. Thus, we have: 

 

 

 

         
                    

  

 

           
                      

  

 

 

 

This means that the total pressure has little effect on the Gibbs Free Energy of condensed 

phases, so that in most applications near 1 atm, it is not necessary to specify 1 atm total 

pressure. 

 

This deduction has a big implication on simplifying the treatment of such equilibria, in 

that the vapor pressure of the condensed phase is absent from the statement of the 

equilibrium. 

 

For the gas equilibrium involving the vapor pressure of solids M and MO, we have: 
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But, now, we already know      
               

  and       
          

      
 , so we can state: 

 

 

 

               
 

   
       

       
            

   

And 

 

                 
 

   
        

        
             

 

 

 

Summing the above reactions (1) – (3), we get: 

 

 

     
 

 
          

 

        
 

   

   
 

 

 

 

This is the Standard Free Energy change for this reaction. In turn, we have: 
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This means that for the reaction equilibria involving pure condensed phases and a gas 

phase, the equilibrium constant K can be written solely in terms of the gas species 

participating in the reaction – here oxygen. 

 

Since     is solely a function of temperature, a different equilibrium results for each 

unique value of the partial pressure of oxygen    
     . 

 

 

Application of the Gibbs Phase Rule (GPR) to the Equilibrium Between Condensed 

Phases and a Gas Phase 

 

In the preceding section, we considered the simple reaction: 

 

 

 

     
 

 
         

 

 

 

We have two elemental components (M, O2), and three phases (M(s), MO(s) and gas, 

consisting of               
). Thus the degrees of freedom           

     . If temperature is fixed,    
 is fixed, and thus, so is total pressure, because 

              
 are all functions of temperature. 

 

In terms of chemical species, this works out to the same degrees of freedom, since there 

are three species M(s), MO(s)and O2. Because there is one additional relationship – the 

equilibrium stoichiometric relationship, then,               as in the first 

approach.  

 

The roles of temperature and oxygen partial pressure becomes readily apparent in an 

experiment involving a closed system containing initially M, MO and O2. At a given 

temperature, the partial pressure of oxygen is set at equilibrium. If the initial, 

experimentally set    
    

     
, then any M available will oxidize, consuming oxygen 

until     

     
 is achieved. Only when this is achieved can the equilibrium be established, 

with no further oxidation of M. Similarly, if the initial, experimentally set    
    

     
, 

the oxide would be reduced, providing oxygen to the gas until    

     
 is achieved, whence 

no further reduction of the oxide occurs, so long as some MO remains. 

 

Above, it was stated that the total pressure becomes fixed in this case, once temperature 

is set. This is because, all gases, including the partial pressures of M and MO, as well as 

   

     
 are only functions of temperature. So, total pressure cannot be set independent of 

temperature in this situation. On the other hand, were we to add an inert gas, such as 
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argon, this provides a way to control total pressure independently from temperature. This 

increases the degrees of freedom by one. It is noted that the inert gas added to control 

total pressure does not participate in the equilibrium reaction, thus does not count as a 

species! 

 

The Ellingham Diagram 

 

For oxidation and sulfidation of metals, Ellingham found over a large temperature range, 

    for these reactions were essentially linear in temperature: 

 

 

 

         
 

In the above equation, it is easy to see that A is identified with    , and B is identified 

with     . He plotted     with temperature, where the standard free energy is per mole 

of   . He found that, the constant A varied considerably – hence the vertical position of 

the line for a particular reaction – all the lines were basically parallel, with similar slopes 

(B). This is not surprising, since  

 

 

 

          
     

  

 

 

 

But,    

        
           

 , so         

 , corresponding to the entropy change 

(decrease) resulting from the disappearance of one mole of oxygen initially at 1 atm. As a 

result, per mole of diatomic oxygen, the entropy change is virtually the same – that is, the 

slope of each reaction is the same – for all metal/metal oxide reactions. 

 

We may write: 

 

 

 

                            
      

 

 

 

Thus, we have: 
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Thus, we have: 

 

 

 

   
          

    

  
     

   

 
     

   

  
          

 

 

 

We observe from the above equation that (since     is negative for oxidation): 

 

 For a given     ,    
      increases exponentially with temperature. 

 

 For a given temperature,     
      decreases with more negative values of     . 

 

We now want to explore the role of pressure as well as temperature on the change in the 

Gibbs Free Energy. We know for ideal gases: 

 

 

 

         
 

 
 

 

 

 

In this simple equation – applied to, say, one mole of diatomic oxygen gas – gives the 

change in G for a given T, as P is changed. Equivalently, for a given value of G, it can 

give a temperature T for a given pressure P. 

 

In the latter case, one can plot a series of lines – each for a constant P – of      versus T.  

 

As see in Figure HV.1, we note that all lines pivot from 0 °K on the     axis, i.e.,  
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Figure HV.1 – Variation with temperature of the difference between the Gibbs Free 

Energy of 1 mole of ideal gas in the state (P = P atm, T) and the Gibbs Free Energy of 

one mole of gas in the state (P = 1 atm, T). 

 

 

We now superimpose onto this plot     versus T for any oxidation reaction. Now, the 

isobaric lines become lines of constant    
      since diatomic oxygen is the only 

relevant gas. This is shown in Figure HV.2. 
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Figure HV.2 – The superposition of an Ellingham line on Figure HV.1. 

 

 

Now consider two different oxidation reactions plotted in the same Ellingham Diagram, 

as shown if Figure HV.3.  

 

 

 

 

 

 

 

 

 



20 

 

 

Univ. of Cincinnati MTSC-7035 Fall 2015 © D. Kundrat 

 

 

 
 

Figure HV.3 – Ellingham Diagram with two different oxidation reactions. 

 

 

If metals X and Y were placed in a closed system, initially at 1 atm oxygen pressure and 

at   , both metals would oxidize, consuming oxygen, and    
would decrease. On 

reaching   
      , metal X would cease further oxidation. But, metal Y continues to 

oxidize, since for Y,        
          

 . 

 

Thus    
continues to drop. Simultaneously oxide XO becomes unstable, giving up its 

oxygen to metal Y. When complete equilibrium is finally achieved at this temperature, 

the closed system contains:         . There is no XO remaining! 

 

Generally, if the prevailing    
 at a given temperature is below the equilibrium line for 

an oxidation equilibrium, the oxide is not stable. (An easy way to remember this is to 
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consider the    
 levels below the line at a given temperature as lacking sufficient oxygen 

to keep the metal oxidized.) 

 

The reverse analysis is true for     . At   , starting with        in a closed 

system, we would end up at equilibrium with no    , but only        . The oxide  

   is not stable at the equilibrium         
 ,i.e., the prevailing    

 is below that for the 

Y/YO2 equilibrium at   , so     is not stable. 

 

However, at   .  and at     
      , both oxides and metals would be present at 

equilibrium. 

 

It is obvious that this diagram on which is plotted a series of reactions for different metals 

(and metalloids) and their oxides is immensely useful. A single diagram provides a 

ranking of the reducing power of one metal versus another at a given temperature 

 

The proper Ellingham Diagram, such as is shown in Figure HV.4 shows at a glance the 

different tendencies of metals to oxidize. 
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Figure HV.4 – The Ellingham Diagram for a variety of metals and metalloids. 

 

 

There is no question that this is a powerful diagram in that it is very practical; 

nevertheless, it is very important to understand the assumptions behind the diagram, and 

whether they match the application at issue. Often in industry, the diagram is sought to be 

applied beyond its limits of applicability. This is because it is much easier to consult the 

diagram than to crank through the calculations involving the actual activities. 
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A key assumption is that all metals and their oxides are pure (i.e., in their standard states 

of pure species). (Otherwise, you would have a family of lines for each constituent of an 

equilibrium, depending on their activity, and the diagram would no longer be simple; in 

fact there would be essentially an infinite number of diagrams.) In practical applications – 

such as in steelmaking and extractive metallurgy in general – most of the elements at 

issue are not pure, but in dilute concentrations in some solvent metal (e.g., liquid iron), 

and the oxides are not pure, but in solution in a slag. So, not only are the constituents 

typically in far lower concentrations (than 100% pure) they are also in a solution, which 

is often non- ideal.  

 

On the other hand there is a way to make the appropriate adjustments in the diagram for 

changes in standard state and activities less than unity. Since the lines representing the 

metal/oxide equilibria all radiate from a point at 0 °K, this becomes a pivot, where the 

lines will rotate with these adjustments. One still has to calculate the appropriate changes 

in terms of the Standard Free Energy for each constituent, but the advantage is that these 

changes can be viewed in the diagram, and are no less rigorous. This is illustrated in 

Figure HV.5. 

 

AIST Specialty Steelmaking Seminar

Page 14

M→ M

MO→(MO)

M(s)+1/2O2=MO(s)

ΔG° @ 

T=0 K

Temperature

T1

Log PO2

M+1/2O2=MO(s)

M(s)+1/2O2=(MO)

Alloy Steel Chemistry

ΔG°MO

 
 

Figure HV.5 – Rotation of the metal/oxide equilibrium line in response to changes in 

standard state and changes to the activities of each constituents. It is noted that the line 

will move counter-clockwise as the activity of the metal is lowered; whereas, it will move 

clockwise as the activity of the metal oxide is lowered. 

 

 

In Figure HV.5, the line representing the metal/oxide equilibrium is seen pivoting about 

the point 0 °K. The following are the two key changes to make to the free energy for the 

equilibrium to accommodate activities less than unity. 

 

 

 



24 

 

 

Univ. of Cincinnati MTSC-7035 Fall 2015 © D. Kundrat 

 

 

For the metal/metalloid:  

 

 

                 
  

 

 

 

For the metal oxide:  

 

 

 

                     
  

 

 

 

The first change is to convert the standard state to infinite dilution, where the activity is 

the concentration of the solute,  multiplied by the Henrian activity coefficient (if 

oxidation of a solute from a solvent). Otherwise, it is simply for adjusting the activity to 

whatever it is in the solution at issue. The second change is to adjust for a less-than-unity 

activity, generally keeping the same standard state. (These conversions and adjustments 

are treated later in this handout.) 

 

Effect of Phase Transformations in the Ellingham Diagram 

 

Phase transformations at specific temperatures include changes in crystal structure, 

melting and boiling in either the metal/metalloid, oxide or both. These are revealed in the 

diagram by changes in slope for a particular equilibrium.  

 

Generally, for the disappearance of one mole of O2, the entropy change is negative. In the 

diagram for most metal/oxide equilibria, this is seen as a positive slope, where the slope 

is     . When a temperature is reached where the metal melts, the entropy change is 

decreased further, causing the slope in the diagram to increase further. As an example, 

consider melting of a metal X (note that for melting           is negative; and that both 

    and     are negative numbers for oxidation): 

 

 

 

                
       

 

 

 

 

In the above equilibrium,    
       

 is a positive quantity, and that    
       

 

   
       

  
             

 is also a positive quantity. Thus, for the following reaction, we 

can say: 
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The net change of enthalpy is     
       

  
             

  and is a more negative number. 

The net change of entropy    
     

       
  

             
  is a larger negative number, 

so that the slope of the equilibrium line in the Ellingham Diagram becomes more 

negative. 

 

Therefore, above the melting point of a metal in the diagram, the slope (which is the 

negative of the entropy change) becomes more positive 

 

The reverse is true for melting of the oxide – because it is on the RHS of the equilibrium, 

rather than on the LHS, where the metal appears. In this case, the slope of the line 

decreases above the melting point of the oxide, only to increase, once the melting point 

of the metal is reached for the case where the melting point of the oxide is below that of 

the metal. This is illustrated in Figure HV.6 for two different oxide equilibria, depending 

on the melting points of the metal relative to the oxide. 

 

 
 

Figure HV.6 – Illustration of the effects of phase changes of the reactants and products of 

a reaction on the Ellingham line for the reaction. (a) Melting point of X less than the 

melting point of XO2. (b) Melting point of Y greater than the melting point of YO2. 
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EQUILIBRIUM BETWEEN A GAS AND A CONDENSED PHASE WITH 

MULTIPLE COMPONENTS IN SOLUTION  

 

As an example of the equilibrium between a gas phase and a pure condensed phase is the 

oxidation of pure metals. This is represented in the Ellingham Diagram, which shows, at 

each temperature, each metal/oxide equilibrium has a unique oxygen partial pressure 

(constant total pressure at 1 atm.). 

 

 If it were required to reduce the oxide back into a pure metal for a given 

temperature, the partial pressure of oxygen only has to be decreased. 

 

 Alternatively, if the partial pressure of oxygen were, instead, fixed, then any 

increase in temperature has the effect of reducing the oxide. 

 

 In general for the Ellingham Diagram, all metals and oxides are assumed to be 

pure, thus at unit activity, although changes can be made to express less than unit 

activity for a species in the diagram, by rotation of the equilibrium line about the 

origin at 0 °K. 

 

In many experimental, or industrial situations, neither the metal, nor its oxide can be 

assumed to be pure, and possibly in solution, with a result that their activities would be 

lower. 

 

In general, the key difference is that the equilibrium oxygen partial pressure simply 

changes in response to departures of the activities of the condensed phases involved in an 

equilibrium. The changes in the activities are from measurement, or calculated from a 

solution model that represents the interactions among the atomic species.  

 

Consider the general equilibrium (constant T,P): 

 

 

 

            
 

 

 

In the above equilibrium, a and b are the moles of Species A and B, respectively, per 

mole of the species (A, B, C, or D), and c and d are the number of moles of Species C 

and D, respectively. 

 

When all reactants and products are in their standard states, we say: 
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When the reactants and products are not in their standard states, they still have a chemical 

potential: 

 

 

 

                       
 

 

 

Subtraction of the above two equations give: 

 

 

                
           

           
           

   

 

 

Individually, the chemical potentials for each species not in its standard state is expressed 

in terms of the activity: 

 

 

 

      
              

         

 

 

 

Substitution of the above expression leads to the following: 

 

 

 

                                                
 

     
  

   
 

  
   

 
        

 

Where  

 

  
  
   

 

  
   

 = the activity quotient 

 

 

 

The reaction is at equilibrium when      , in which case: 
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When the reaction is at equilibrium,            is numerically equal to K. 

 

 

It is important to not confuse            . The Standard Free Energy change     is 

only equal to zero in the rare case where the equilibrium values of all activities happen to 

be unity; generally      . 

 

The key to understanding the thermodynamic treatment of multi-component, multi-phase 

reaction equilibria is to understand that, with K set by temperature (and thus Q is set), if 

one or more activities are modified by being in a solution, other activities have to 

compensate so as to maintain the same value of K (and Q) for the temperature at issue. 

This is none other than Le Chatlier’s Principle at work. 

 

Consider the simple oxidation reaction: 

 

 

 

                        
 

 

 

Generally, we have: 

 

 

  
    

     

 

 

 

 

Now, if M and MO2 are pure (occurring in their standard states) then        
   

and    
    

      . Then, on reaching equilibrium, with both M and MO2 remaining 

pure, we have: 
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Note that, only in a rare case does                happen to be unity, with      . 

 

Now at issue is what happens when M and/or MO2 become impure, due to, for example, 

being in solution? Then, the activities simply depart from their standard states.  

 

For the simpler case where the oxide remains pure, but M does not, we have at 

equilibrium: 

 

 

       
 

                
      

 

 

 

We can state the following: 

 

 

For     : 

 

 

 

               
    

                
    

 

 

 

 

For     : 

 

 

               
    

                
    

 

 

 

 

Similarly, for unit activity for M, but activity of the oxide departed from unit activity, we 

have: 

 

 

 

       
    

              
      

 

 

 

We can state the following: 
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For     
  : 

 

 

 

 
              

    
  

  
              

    
  

 

 

 

 

For     
  : 

 

 

 
              

    
  

  
              

    
  

 

 

 

 

In all cases, K is fixed by temperature, but it varies so as to maintain this value of K as 

activities depart from their standard states. In general, we have at equilibrium: 

 

 

 

       
    

                
      

 

 

 

As an example, consider the equilibrium of liquid alloy Fe-Mn and a liquid slag, both in 

equilibrium with an oxygen-containing atmosphere at 1800 °C. 

 

From thermodynamic tables, we have: 

 

 

           
 

 
                     

                                  

 

           
 

 
                     

                                  

 

 

 

If we combine both of the above reactions, the equilibrium becomes one in which oxygen 

shifts between Fe and Mn, depending on the temperature and the prevailing oxygen 

partial pressure. At 1800 °C (=2073 °K): 
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Thus, we have: 

 

 

  
       

       
     

 

 

 

Now, depending on the solutions of the mixture of Fe and Mn, and of MnO anf FeO, the 

activities may – or may not – exhibit ideality. 

 

For simplicity, in this example, we are going to assume Raoultian behavior for all species 

in their respective solutions, in which case, we have: 

 

 

          Standard State is pure liquid MnO 

          Standard State is pure liquid FeO (in 

contact with solid Fe) 

        Standard State is pure liquid Mn 

        Standard State is pure liquid Fe 

 

 

Thus, we have – with the notation of parentheses    representing mole fraction in the 

slag phase, and brackets    representing mole fraction in the metal phase: 

 

 

 
         

         
     

 

 

 

This becomes: 
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So far, we merely showed that the metal ratio is fixed at a given temperature to the oxide 

ratio. But, what is the role of the partial pressure of oxygen? To answer this, we go back 

to the first two reactions at this temperature, from the free energy data: 

 

 

 
     

    
            

   
           

 

And 

 

 
     

    
           

   
            

 

 

 

If    
 is fixed (say, experimentally) then, both ratios 

     

    
 and 

     

    
 become fixed at 

equilibrium. 

 

Because the original equilibrium (I) is the result of combination of these two equations, it 

is automatically satisfied. 

 

It is thus seen that the fixed values of    
 controls the ratios 

     

    
 and 

     

    
 differently, 

despite (here) assuming Raoultian behavior for each! 

 

If, at the same temperature, one of the ratios were to be fixed in lieu of     
, then the 

latter would be dictated at equilibrium by this ratio, and the other ratio would shift to the 

new value for    
 via the equations (II) of (III), or via the set ratio via (I). 

 

For example, should one choose to determine    
 at which 

     

    
 is an arbitrarily fixed 

ratio 
     

    
  , then, from (II): 

 

 

     

    
   

  

 
   

 

 
        

 

 

 

 

In the above equation, the number 
 

        
 is actually    

   
 for the ratio 

     

    
  . 
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Then, the ratio 
     

    
 is calculated from (III): 

 

 

 

     

    
   

  

 
   

 

 
       

 

 

 

 

Likewise in the above equation, the number 
 

        is actually    

   
 for the ratio 

     

    
  . 

 

Then, it is seen that the following equation is automatically satisfied: 

 

 

 

   
     

    
  

     

    
     

 

 

 

Application of the Gibbs Phase Rule (GPR) to Metal-Oxide-Gas Equilibria – 

Example I 

 

It is constructive to review the GPR in terms of the example of the FeO/Fe/MnO/Mn 

equilibrium just explored. Clearly, this is a three-component system (Fe-Mn-O) that 

consists of three phases (metal/oxide/gas). Note that the oxides FeO and MnO are part of 

the same solution phase (slag), and they are not separate phases in this example. Thus, by 

the GPR, we have: 

 

 

           
 

 

 

Thus, any two of the following four variables can be selected to be independent: 

     
                         (noting that                         

 ). 

 

Alternatively, the GPR including reactions can be applied in this situation. Consider 

    species of the group                 . But we have two equations: 
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If we choose T and    
 as the independent variables, then we have: 

 

 

 
      

     
         

   
       

 

 

 

Then: 

 

 

 
      

     
 

        

       
          

   
       

 

 

 

Thus, we have two remaining variables     and   , and two equations, so the system 

has zero degrees of freedom. 

 

Application of the Gibbs Phase Rule to Metal-Oxide-Gas Equilibria – Example II 

 

Four important oxide equilibria are the following: 
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And 

 

                                    
 

 

 

Application of the GPR to each of these four equilibria is explored below. 

 

Equilibrium (i) -      
 

 
                

 

The number of components is two: M and O. The number of phases is three: M, MO and 

gas. If temperature is fixed, so must the partial pressures be fixed: 

                
   . 

 

So if    
 is fixed, so is total pressure, as:         

       .  

 

(Now, if an inert gas – such as argon – is included, this is a way to control total pressure 

independently from controlling oxygen partial pressure. This adds another component, 

increasing the Degrees of Freedom, so that, in addition to temperature, the partial 

pressure of oxygen as well as the total pressure both need to be specified.) 

 

Consider the case sans Ar, prior to fixing any variable, we have:           
     . If we choose to fix temperature, then    

 via    is fixed, and so is the total 

pressure, since        
                . Thus the system has no degrees of 

freedom, and it is completely specified. 

 

Equilibrium (ii) -                           

 

We now introduce a third component, but no additional phases. This means    , so 

that, prior to fixing any variable, we now have two Degrees of Freedom. Thus me may 

select two to be fixed from the group                    
, where we note that      

        
             . If we choose temperature and total pressure, the system 

becomes fixed. (Note that, as 
   

    

       , this ratio is fixed when temperature is fixed 

– here for unit activities for M and MnO 0 , so that the total pressure is now fixed.) 

 

Equilibrium (iii) -                                  

 

Now we have the situation where there is evidence of solid MC in with the other 

constituents. This means that there is another phase – that of solid MC – so that    , 

but we still have only three components. Thus, we have lost a degree of freedom, and : 

   . This means we can fix any one of the following variables:                 
 . 

 

Another way to understand this is in terms of the reaction equilibria:  
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Here, we have     species participating in the reaction               . Note that 

oxygen is not included here as a species since it does not overtly participate in either of 

the above reactions. But,    , so, we have             independent 

equilibria (       and       ), so                  . If we fix 

temperature, than the ratios are fixed: 
   

    

 and 
    

   
 . This means that, with T fixed, then, 

    and     
 are fixed, hence, total pressure ix fixed:              

. 

Equilibrium (iv) -                                     

 

 

If solid carbon is present, along with solid MC, we have five distinct phases now: 

             . But   is also increased by one, since we have an equilibrium among 

C, CO and CO2: 

 

 

                    
 

 

 

Thus, since    , but    , we are back to zero degrees of freedom. 

 

It is noted that various other combinations can be written based on the three equilibria 

equations involving            , but only three are independent, from which the other 

combinations can be obtained. Thus, the following equations are not unique, but are 

obtained from these three equilibria: 
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Alternative Standard States 

 

We have already discussed two very different standard states for the binary system AB: 

 

The Raoultian Standard State (also called the pure  standard state): 
 
 
 

  

  
           

 
 
 
The Henrian Standard State (also called the infinite dilution standard state): 
 
 
 

  

  
   

          

 
 
 
The relationship between these two standard states is depicted in the following 
figure (HV.7). Here, we are assuming a negative departure from ideality of B in A): 
 

 
 

Figure HV.7 – Graphical illustration of the change of standard state from Raoultian 
to Henrian for the case where there is a negative departure from ideality of B in A. 
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In terms of the Gibbs Free Energy, the transformation from one standard state to 
another is relatively easy: 
 
 

                         
 

      
       

                  
             

           
        

  

 
 

 

In terms of the chemical potential, we have for this change in standard state: 

 

 
 

  
             

                   
  

 
 
 
At issue is the deviation of the activity in the dilute region from the Henrian ideal 
(where the slope of the activity approaches a constant as the concentration of solute 
approaches zero). 
 
We express this deviation in terms of the Henrian activity coefficient    - which is 
distinguished from the activity coefficient   

  for the pure standard state. At the 
Henrian standard state: 
 
 
 

   
  

  
         

 
 
 
(It is to be noted that the activity itself, relative to this infinitely dilute standard 
state is sometimes designated as     in lieu of   .) 
 
So far in our discussion, we have not changed the concentration scale to any other 
than mole fraction. But, we can have any concentration scale we want. 
 
For convenience, we may want to use the weight percent scale, rather than the mole 
fraction – this is simply because chemical analyses are generally reported as wt. pct. 
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The relationship between mole fraction and weight percent in system AB is (where 
    is the molecular weight of i): 
 
 
 

   

        
   

 

        
   

  
            

   
 

 
            

      
 

 
 
 
We are interested in the standard state defined not just by conversion to the 
Henrian solution of B in A, but also as wt. pct. B instead of mole fraction B. So, we 
need to convert concentration scales in the definition of the activity, but we can 
choose where this activity is unity. We choose this to be true at 1wt. pct. B: 
 
 
 

                          

        
                 

 
 
 
In the above equation, the activity is so defined, that it is unity in its standard state 
at 1 wt. pct. B. This is located on the Henrian Law line which corresponds to a 
concentration of 1 wt, pct. B (point w in Figure HV.7). 
 
Deviation from unit activity on this scale is expressed by: 
 
 
 

           
                   

        
 

 
 
 
In this expression            is the wt. pct. activity coefficient in the Henrian (dilute) 

composition range of B in A  When Henry’s Law is obeyed              . Then, we 

have: 
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  This standard state is called the one weight percent standard state because, 
numerically, the activity is unity at 1 wt. pct. B, if Henrian. In real, non-Henrian 
solutions, at 1 wt. pct., the activity will not be equal to unity. 
 
Transformation from the Raoultian, mole fraction standard state to the Henrian, 
weight percent standard state is straightforward if done in three steps: 
 

1. Change from Raoultian, mole fraction to Henrian mole fraction. 
2. Change from Henrian, mole fraction to Henrian, weight percent 
3. Combination of the first two steps: 

 
 
Step 1: - Conversion from Raoultian, mole fraction to Henrian, mole fraction: 
 
 
 

 

  
  

                            

                          
 

  

  
    

 
 
 
In Figure HV.7, this amounts to removal of the Henrian activity coefficient (   
   ) from the slope for the Raoultian activity coefficient (rb). 
 
In terms of the Standard Gibbs Free Energy change, we have: 
 
 
 

   
                                               

                        
                           

             

        
      

 
 
 
Step 2: - Conversion from Henrian, mole fraction to Henrian, 1 weight percent 
standard state: 
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In Figure HV.7 this conversion – from mole fraction to weight percent - is seen as a 
numerical adjustment on the mole fraction scale. 
 
 
In terms of the Standard Gibbs Free Energy change, we have: 
 
 
 

   
                                       

                    
                           

 

                   
   

      
  

 
 
 
Combination of Steps (1) and (2) give: 
 
 
 

                                                   
 

   

      
 
  

 

 
 
 
 

   
                                         

                    
                             

             

         
 

   

      
  

 
 
 
This relationship is usually tabulated for various Solutes B in Solvent A (e.g., Solvent 
A can be a base metal, such as Fe, Cu and Al, and Solutes B can be dilute alloying 
elements in Fe, such as C, Si, Mn, etc., or in Al, such as Si, etc.). It is seen in the above 
equation that the change of standard states can be expressed in terms of the 
Standard Free Energy. 
 
Multi-component Solutions – the Epsilon Formalism 

 

The thermodynamic behavior of a particular solute in a solution can be affected by the 

pressure of other solutes, depending on their concentrations and strengths of interactions 

with the solvent and other solutes. 
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In dilute solutions, where the Henrian coefficient (  
 ) has already be taken out of the 

activity in changing the standard state from pure to dilute, there remains two types of 

interactions: 

 

1. The interaction of the solute at issue with other solutes; and 

 

2. The additional effect of the solute on itself at higher concentrations. 

 

 
Real solutions are really multi-component solutions, no matter the purity, since no 

material cam be absolutely pure. The effects of the impurities may, or may not need to be 

taken into account. A good example in the freezing-point-lowering due to impurities in a 

so-called purest available metal, where the cumulative effect of all the measureable 

impurities can be a noticeable, experimentally verified reduced melting point (on the 

order of 1 to 2 degrees!). 

 

This activity coefficient for Solute B    in a multi-component solution A (solvent)-B-

C,… is both a function of    (its own concentration) but also the concentrations of the 

other solutes         . 

 

The interdependency of Solutes B, C, D, … on B is expressed as: 

 

 

 

 

     
   

   
   

 

Or 

 

         
      

      
    

 

 

 

The activity coefficient for B    is at a given concentration of B in solution   . The self-

interaction activity coefficient   
  is for the same concentration of B, but in the absence 

of C, D, …, as the effects of these other solutes are handled independently. The 

interaction coefficients   
   

   are a measure of the effects of Solutes C, D, …, 

respectively, on the activity coefficient of B. 

 

Experimentally,   
   

    have been found to be a logarithmic function of         , but 

independent of the concentrations    . This first-order concentration dependency is 

expressed by the constant: 
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Or 

 

      
 

   
   

 
                     

 

 

 

 

Theoretically, this logarithmic dependency may be non-linear. In this case, we introduce 

second-order and cross-effects. The importance of these, of course, depends on the 

concentrations and strengths of interactions. 

 

 

For the Mole Fraction Scale For the Weight Percent Scale 

      
 

   
 

   
  

       
 

          
   

  

      
   

      
   

   
 

       
   

                  
   

   
 

      
   

      
   

   
 

       
   

                  
   

   
 

    
 

 

Note that all coefficients (first-order, second-order, cross-terms, etc.) are independent of 

concentration; they are, in effect, parameters of a Taylor expansion of the logarithm of 

  as a function of all solute components in the Henrian standard state (either for the mole 

fraction, or the weight percent concentration scales. This empirical representation of the 

activity coefficient at infinite dilution is called the Epsilon Formalism. Here is the Taylor 

series for the mole fraction scale, where all derivatives are taken at zero concentrations: 
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Thus, we have, in terms of the interaction coefficients for the Henrian solution based on 

mole fraction: 

 

 

 

         
      

      
     

   
        

          
          

      

 

 

 

 

Likewise, for the weight percent scale, we have: 

 

 

 

                 
             

             
               

 

                     
                        

   

                     
      

 

 

 

In practical applications, the higher-order coefficients are usually neglected, depending 

on strength and on concentration levels, as few have been evaluated from experiments. 

Obviously, the absence of these terms restricts application in concentrated solutions. In 

this case, it is very helpful to find a thermodynamic model (such as the regular solution 

model)to represent the interactions. Such a model might, in the absence of any data other 

than the first-order coefficients, might be based on them. 

 

Obviously, if the system is nearly ideal, the interaction coefficients will be very close to 

zero, so that, when multiplied by concentrations, the net effect on the activity coefficient 

would be effectively zero. 

 

It can be shown that the interaction coefficients for the two concentration scales 

considered are related. Here, for the A-B-i solution: 

 

 

 

  
    

 
   

      
 

 

 

 

Also, the interaction coefficients in each concentration scale are interrelated: 
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And 

 

  
  

   

   
  

  

 

 

 

Solubility of Gases in Solutions 

 

An example of direct application of the dilute treatment of solutes is the solubility of 

gases in condensed phases of various metals, as this occurs in dilute concentrations. The 

various impurities, or alloys in low concentration will affect the degree of solubility. 

 

Gases tend to dissolve atomistically, but can also dissolve as a molecule. Diatomic gases, 

such as O2, S2, N2 and H2 dissolve in both liquid as well as solid metals as a single atom: 

 

 

 
 

 
          

 

 

 

The above equilibrium has an equilibrium constant that depends on temperature 

(dissolution in weight percent): 

 

 

 

     
    

   

   
 

 

 

 

Gaseous compounds, such as CO, H2O and SO2 also tend to dissolve in their elemental 

form on solution. These equilibria are very important in control of the properties of many 

commercially important alloys. For example, in iron (the value of the equilibrium 

constant for a given temperature depends on which condensed phase), we have: 
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Gas Dissolution Equilibrium Equilibrium Equation 

              
     

        

   
 

  O(g)=2        
     

         

    
 

                
     

         

    

 

  

 

In these equations, the gases are all sufficiently dilute so as to obey Henry’s Law, so the 

standard state is the dilute mole fraction, or weight percent (more typically the latter). 

Also, as written is the implicit assumption that the coefficients     
  in the Epsilon 

Formalism for the self-interaction and remaining interactions are all unity, Y being other 

solutes in a solvent, such as Fe, Al or Cu. This is not necessarily the case, depending on 

concentration levels. Specifically of interest is evaluation of the effect of various 

important solute elements on the activity coefficient of the soluble gas, and therefore, on 

its equilibrium concentration in solution. 

 

Note that an alternative practice is to underline the dissolved solute, rather than use 

brackets. 

 

The foregoing treatment of dilute solutions gives us the apparatus for this evaluation. 

 

Example I – Solubility of Oxygen and Silicon in Liquid Iron 

 

Consider the equilibrium: 

 

 

 

                                        
 

                                
 

       
 

 
                           

                               

 

 

 

Combination of these two equilibria gives: 
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(For simplicity, we are now dropping the notation wt. % in Fe.)  

 

At 1600 °C (=1873 °K), we may write from the second equilibrium (II): 

 

 

 
  

   

   
          

 

Where 

 

            
 

 

 

Also, we have from the third equilibrium (III): 

 

 

 
     

  
    

          

 

Where 

 

               
 

Or 

 
     

                       
          

 

 

 

If, experimentally,    

   
 is set to, say, 4.4 10

-4
, and if it can be assumed that SiO2 is pure 

(i.e.,      
     ), then we can calculate O and Si. If           , this is straight-

forward: 
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Given this result, we have: 

 

 

 

   
 

   
 
          

               

 

 

 

But, we want to verify are assumption of unity for the activity coefficients at infinite 

dilution; With a first-iteration value for Si and for O, we can evaluate          . For 

this, we employ the following: 

 

 

 

         
      

   

 

 

            
        

  

 

Where 

 

  
   ;    

       ;   
        ; and    

         

 

 

 

Thus, for         , we have: 

 

 

 

                                               

            
 

 

                                                 
 

 

 

Insertion of     back into the equilibrium (III) yields: 
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In this example, it is now clear that the initial assumption that            didn’t 

contribute significant error. This is not the case  at significantly lower partial pressures of 

oxygen. Take   

   
 now set to 10

-8
. As before, we first start assuming     . Then, we 

have            . Now assuming both           , then 

We get               . We now evaluate          (for the first iteration): 

                                                
          . But: 

 

 

 

                                                     
 

 

   
 

   
 
                

                 

 

 

 

This last calculation shows that the calculated silicon level is actually much lower than 

when it was assumed that        The error from this assumption is considerable! 

 

 

Example II - The Fe-C-O Equilibrium 

 

Here, we wish to calculate O in equilibrium in liquid iron containing 1 wt. % C in 

solution (1 atm. pressure, 1600 °C). 

 

The following data are available from thermodynamic compilations (where gr refers to 

graphite): 

 

 

(i) Equilibrium Standard Gibbs Free 

Energy Change    
  

(cal/mole) 

(I) 
      

 

 
            

 

-26,700-20.95T 

(II)         5,400-10.1T 

(III)  

 
       (g) 

 

-28,000-0.69T 
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Combination of these three equilibria gives (IV): 

                  
                

 
   

    
          

  

 

 

 

Also, we have from the Epsilon Formalism: 

 

 

 

        

 

And 

 

        

 

 

 

At 1600 °C = 1873 °K, we can evaluate KIV: 

 

 

 
   

            
     

 

            
 

 

 

 

Also, we have from thermodynamic tables: 

 

 

 

  
      ;   

      ;   
        ; and   

        

 

 

 

Taking the logarithm of both sides of the combined equilibrium gives: 
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In the above, we see: 

 

 

 

                     

 

                    

 

                    

 

             

 

 

 

Had    and   been assumed to be unity, then                        , 

which is an error of 24%! 

  

 

STABILITY PHASE DIAGRAMS 

 

We saw in the previous handout that, in a binary system, at constant T,P, fixing the 

activity of one component fixes the activities of the other – since for each component, the 

chemical potentials of the two phases are equal at equilibrium. Similarly, for the ternary 

system, fixing the activities of two of the three components fixes the activity of the third, 

in compliance with the GDE. 

 

If, say, we have a ternary system A-B-C, where one of the components is a gas, such as 

oxygen, then if    
 is specified, along with an activity of the two remaining components, 

the equilibrium is completely specified. In turn, we may represent the phase relationships 

one of two ways: 

 

1. At constant T, in a plot of           versus    
; or 

 

2. At constant     (or    ) or     
 with T and either   , or   , or     

as the 

variables. 

 

Application of the GPR to the three-component system shows that up to five phases can 

co-exist, but all five phases in mutual equilibrium has no degrees of freedom:     
           . In this case, since the five-fold equilibrium is unique – 

occurring at only one T and P, the later does not need to be fixed.  

 

Now, if we consider one of the three components to be a gas phase, we have the 

following: 
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1. A maximum of four condensed phases can be in mutual equilibrium with one 

another and a gas phase – all being invariant, not requiring either T or P to be 

fixed. 

 

2. Three condensed phases can be in equilibrium with each other and a gas phase at 

an arbitrarily chosen temperature. (Total pressure is not fixed independently.) 

 

3. Two condensed phases can be in equilibrium with one another and a gas phase at 

an arbitrarily chosen temperature and value of   , or    
. (Total pressure is not 

fixed independently.) 

 

4. One condensed phase can be in equilibrium with the gas phase at an arbitrarily 

chosen temperature,    and    
. (Total pressure is not fixed independently.) 

 

Now, we want to consider all the number of different ways we can represent this 

equilibria. For Case (1), as it is invariant, we have only one way to show this equilibrium. 

For Case (2), we have multiple combinations showing three of the four condensed phases 

in equilibrium with a gas phase, and so on. 

 

Example of a Stability Diagram – The Si-C-O System at Constant T)  
 

Let’s examine this system at constant temperature, using                 
as the two 

independent variables.  The six possible ways involving two condensed phases and a gas 

phase are: 

 

1.             

2.            

3.              

4.           

5.            

6.        
 

Similarly, we have four possible equilibria involving three condensed phases and a gas 

phase: 

 

1.                 

2.              

3.                

4.               
 

 

The six ways involving two condensed phases and a gas phase at 1273 °K are now 

discussed. 
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1. The equilibrium            : 

 

We have the equilibrium: 

 

 

 

                              
       

 

 

 

This gives (at 1273 °K):       
       , so in the plot of  

                   
, we have a vertical line AB, which is independent of    for 

the         stability field. To the LHS of Line AB,     is unstable, whereas, to 

the RHS of Line AB, Si is unstable. This is shown in Figure HV.8. 

 

 
 

Figure HV.8 – Construction of the phase stability diagram for the system Si-C-O at 

1000 °C. 

 

2. The equilibrium           : 

 

The equilibrium is: 
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This gives:            , which is represented in Figure HV.8 as Line CD. 

This means that at 1000 °C, to have Si in equilibrium with SiC, the system must 

also be on this line -    has to be fixed at -2.6. Where line BA crosses Line CD, 

this is the invariant point P. Here, only at             and       
 

       can we have all three solid phases co-existing:                : 
 

 

 

                                   
       

 

 

 

3. The equilibrium             : 

 

From (iii), we have:             
      . This gives rise to Line EF in 

Figure HV.8, where, above this line,     is stable relative to     , and below, the 

reverse -      is stable relative to    . 

 

4. The equilibrium          : 

 

This equilibrium between pure solid     and pure solid   can only occur where 

        (where     ). Thus, in this figure, this equilibrium exists only 

along the line of        , at values of       
       , which would be the 

point of intersection of Line EF with the         line, Point F. 

 

5. The equilibrium           : 

 

For this equilibrium,        . Thus, this equilibrium can only occur in the 

diagram along this line at values greater than -25.44. 

 

6. The equilibrium         : 

 

Here, the equilibrium is: 

 

 

 

                                 
       

 

 

 

Since, at this temperature,     
  is negative (=-63,300 J/mole), then with    and   

both present, they would spontaneously react with each other to produce   , 
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leaving either  , or   , but not both (as one or the other becomes consumed). This 

implies that these two can’t be in equilibrium with each other. 

The solid carbon phase exists only along the         line, thus, this figure 

contains fields of stability of the single phases                . consequently, 

of the six lines in the diagram radiating from Point P, three represent stable 

equilibria involving two condensed phases and a gas phase, and three represent 

metastable equilibria involving two condensed phases and a gas phase. So, the 

problem is how to distinguish between the stable and the metastable. It is a 

property of these type of diagrams that the lines of metastable and stable 

equilibria radiate alternatively from a point, such as P. Thus, on set of lines is PA-

PC-PF, and the other is PE-PB-PD. In Figure HV.8,    is stable relative to 

    in states to the left of PA and is stable relative to     in states below PC. As 

a consequence, the stable equilibrium lines are PA-PC-PF and defines the fields 

of stability as shown in Figure HV.9. These fields of stability of a single 

condensed phase and a gas phase, at constant temperature have two degrees of 

freedom. The boundary between these fields of stability is a line representing the 

equilibrium occurring among two condensed phases and a gas phase, indicating 

only one degree of freedom. Obviously, the intersection of the three boundary 

lines at Point P occurs when three condensed phases are in equilibrium with a gas 

phase, indicating zero degrees of freedom. 

 

 
 

Figure HV.9 – The Si-C-O phase stability diagram, showing the fields of stability 

of the stable condensed phases. 

 

 

OXIDE PHASES OF VARIABLE COMPOSITION 
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Phase diagrams of metals and metalloids with oxygen are an interesting class by 

themselves. Because of the relatively strong tendency to form oxides, there is typically 

only a very small range of stability of oxygen in solution in the metal, but the bulk of the 

M-O phase diagram consists of equilibria among the various stable oxides. In turn, these 

oxides tend to fall into one of the following stoichiometry:                 . (Note 

that      and      are equivalent to                 , respectively.) In turn, 

particularly at higher temperatures, the oxides tend to depart somewhat from a strict 

stoichiometry. While this is, nevertheless, a solution phase, the fact that it is somewhat 

stoichiometric lends to its characterization in terms of a stoichiometric coefficient and a 

Gibbs Free Energy of formation, akin to the oxides in the Ellingham Diagram. 

 

Figure HV.10 shows a schematic of the integral Gibbs Free Energy of a typical metal-

oxygen system. This shows some solubility of oxygen in the metal, where the activity of 

M varies along f-g in the diagram.  

 
 

Figure HV.10 – The integral free energy of the system M-O which forms two oxide 

phases of variable composition showing a significant solubility of oxygen in the metal. 

 

 

As the oxygen concentration increases from the M-rich corner, the first oxide phase to 

appear is “MO”, then “M3O4” (parentheses added to indicate that these compounds are 

quasi-stoichiometric). The common tangent i-k identifies the equilibrium between M at 

oxygen solubility i and oxide “MO”. In many systems, the extent of solubility of oxygen 

O is relatively very small, on the order of PPM. For the phase diagram, whose scale is 0 – 

100%, this solubility is virtually zero, so that f-g in the figure effectively shrinks to a 

point. This is represented schematically in the following figure (HV.11). 
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Figure HV.11 – The integral free energy of the system M-O which forms oxide phases of 

variable composition, and which shows a negligible solubility of oxygen in M. 

  

The equilibrium between M and “MO” can be represented in terms of the Standard Free 

Energy of formation. In Figure HV.11, the distance f-g  is       , but if the distance 

effectively shrinks to zero, we can say that the equilibrium is between “pure” M of 

activity of unity and “MO”. Since the distance lm at 100 % oxygen is           MO , 

so we have: 

 

 

   
 

 
       

 

 

              MO  

 

 

 

Now, if the oxygen partial pressure is increased, the metal phase disappears i.e., (the M-

“MO” equilibrium becomes metastable) and the oxygen content of the phase “MO” 

increases.. Thus, the integral free energy of the system moves along line k-n, where a new 

equilibrium is established, between “MO” and the next higher oxide “M3O4”, shown as 

the tangent n-o.  

 

A classic demonstration of the foregoing discussion is the Fe-O system, shown in Figure 

HV.12 and 13. 
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Figure HV.12 – The Fe_O system, showing the very low solubility of oxygen in iron in 

the iron-rich side. The oxygen-rich side (up to 34%) is also shown here and in the 

following figure between compounds FeO and Fe2O3. 
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Figure HV.13 - A portion of the phase diagram for the system Fe-O between compounds 

FeO and Fe3O4 (where the concentration scale has been reset to be the relative 

proportions from 0 % FeO to 100 % Fe3O4). The dotted lines in the diagram are oxygen 

(atm) isobars (constant total pressure of 1 atm).   

 

 

In this system, the phase “MO” is called wustite, where the departure from the 

stoichiometry increases with temperature. With increasing oxygen, the next phase to 

appear is magnetite “Fe3O4”, and then hemetite “Fe2O3”. These latter two oxide phases 

also show a departure from stoichiometry at higher temperatures, but to a lesser extent 

than wustite.  
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What is unique of this system is the dependency of composition on independent variable 

     
. The oxygen isobars in this figure trace the loci of variation of the equilibrium 

compositions with temperature for a fixed total pressure (1 atm). For example, consider a 

small quantity of hematite at room temperature held in a gas reservoir of      
      , 

the volume of which is sufficiently large that any oxygen gas produced by the reaction of 

the oxide has an insignificant effect on the pressure of oxygen in the gas reservoir. Let 

the oxide be heated slowly enough that equilibrium with the gas phase is maintained. 

From Figure HV.13 it is seen that the oxide remains as homogeneous hematite until 875 

°C is reached, at which temperature 10
-8

 atm is the invariant partial pressure of oxygen 

required for the equilibrium: 

 

 

 

       
 

 
          

 

 

 

At 875 °C, magnetite of composition b is in equilibrium with hematite of composition a, 

and any increase in temperature upsets the equilibrium toward the magnetite side, with 

the consequent disappearance of the hematite phase. Further increase in temperature 

moves the oxide along the 10
-8

 atm isobar in the magnetite phase field until 1275°C is 

reached, at which temperature  is the invariant partial pressure of oxygen required for the 

equilibrium: 

 

 

 

       
 

 
         

 

 

 

At 1275°C, wustite of composition d is in equilibrium with magnetite of composition c. 

Further increase in temperature causes the disappearance of the magnetite phase, and the 

composition of the solid homogeneous wustite moves along the 10
-8

 atm oxygen isobar 

until the solidus temperature of 1400°C is reached, in which state solid wustite of 

composition e melts to form a liquid oxide of composition f at    
      atm. 

Continued increase in temperature moves the composition of the liquid oxide along the 

10
-8

 atm oxygen isobar to saturation with iron at the temperature 1635°C  , where the 

liquid oxide has the composition g, and the oxygen-saturated liquid appears. In this state, 

the equilibrium: 
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is established. An increase in temperature beyond 1635°C causes the disappearance of the 

liquid oxide phase and a decrease in the dissolved oxygen content of the liquid iron. 

 

Similarly, isothermal reduction of hematite is achieved by decreasing the partial pressure 

of oxygen in the system. For example, from Figure HV.13, at 1300°C, hematite is the 

stable phase until the partial pressure has been decreased to 1.34 10
-2

 atm, in which state 

magnetite of composition b’ is in equilibrium with hematite of composition a’. Magnetite 

is then stable until the partial pressure of oxygen has decreased to 2.15 10
-8

 atm, where 

wustite of composition d’ is in equilibrium with magnetite of composition c’. Wustite is 

then stable until the partial pressure of oxygen has been decreased to 1.95 10
-11

 atm 

where solid iron appears in equilibrium with wustite of composition e’. Further decrease 

in the pressure of oxygen causes the disappearance of the oxide phase. 

 

It is important to verify this diagram in terms of the GPR. The partial pressure of oxygen 

is obviously a thermodynamic variable in deciding the degrees of freedom. The GPR is 

easily modified to include the partial pressure of oxygen as another variable, in addition 

to total pressure (by adding argon) and temperature: 

 

 

 

        
 

 

 

But now, we have another phase, in addition to the condensed phases – the gas phase 

from equilibrium of the system with oxygen gas. If total pressure is held constant (at one 

atm), then, with two components and these three phases,          . This means 

the system is completely fixed by fixing one of the two remaining variables, either 

temperature of partial pressure of oxygen. As a consequence, the oxygen isobars must run 

horizontally across the two-condensed phase region (it is actually a three-phase region 

since gas is included as a phase), as is shown in Figure HV.13. That is, if T is fixed, then 

   
is fixed, and vice-versa. Similarly, for the single-condensed phase region in the 

diagram, there are two degrees of freedom, so that if T and    
are both fixed, the system 

is completely specified. 

 

Instead of the fields of stability being shown in a temperature versus composition plot, 

they can be shown in a temperature versus       
, as shown in Figure HV.14. 
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Figure HV.14 – Phase stability in the Fe-Fe2O3 system as a function of temperature and 

      
. 

 

 

Here, paths a-g and a’-e’ compare to those in Figure HV.10 discussed above. Clearly, a 

disadvantage of this plot (Figure HV.13) is not having information of the compositions of 

the co-existing phases.  

 

Yet another version of the latter plot is       
          , as shown in Figure HV.15 

– which closely resembles the Ellingham Diagram. In this form, the slope of any of the 

invariant three-phase equilibrium lines at any temperature is the change in enthalpy per 
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mole of oxygen during changes of oxidation states (i.e., 

       
                        ), where    is the enthalpy change per mole 

of oxygen consumed during the change of oxide phase. A linear variation of  

      
           occurs in ranges of temperature over which the composition of the 

oxide phases are constant.  

 

 

 
Figure HV.15 – Phase stability in the Fe-Fe2O3 system as a function of 1/T and       

. 

 

 

If the abscissa in Figure HV.15 is multiplied by        and plotted versus T produces 

the Ellingham Diagram shown in the following figure (HV.16). 
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Figure HV.16 – Phase stability in the system Fe-Fe2O3 as a function of     and 

temperature. 

 

Here, again, Paths a-g and a’-g’ correspond to those in Figure HV.13. It is noted that, 

except for the Fe3O4-Fe2O3 line in Figure HV.15, the lines are all drawn for oxide 

reactions involving consumption of one mole of oxygen of the type: 

 

 

 

                   

 

 

 

in which the lower oxide of composition       is in equilibrium with thehigher oxide of 

composition           . The Fe3O4-Fe2O3 line is hypothetical, referring to the 

completely stiochiometric compounds. In the Ellingham Diagram, lines radiating from 

the origin (for        at 0 °K) are oxygen isobars. Clearly, in view of the diagram 

shown in Figure HV.12, 13, 14 or 15, a distinct advantage of the Ellingham Diagram is to 

view, at a glance, the relative stabilities of a large number of metal-oxide systems. 

 

ELECTROCHEMISTRY 


