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Preface

This book fills a hole in the literature on glassy systems.
In the last fifteen years great progress has been made on our theoretical

understanding of structural glasses. This is also due to the use of many ideas
and concepts that have been derived in the framework of spin glasses (i.e.,
amorphous magnets) that are a different kind of amorphous system.

Spin glasses have experienced a very rapid development starting thirty years
ago; this was mainly due to the existence of solvable, but interesting models,
with infinite range forces, that display rather complex behavior. The need
for analyzing a solvable model in all its aspects has pushed theoreticians to
forge analytical tools that have been useful in many other fields, among them
structural glasses. Later, solvable models also for glassy systems were intro-
duced and studied in great detail.

The injection of these new ideas, that partially formalized old arguments,
led to a global rethinking of all the properties of the glassy state, starting
from basic thermodynamics properties. However, this new point of view is
only presented in original papers and in specialized monographs dedicated to
more specific aspects of the glassy states.

This book presents a comprehensive account of the modern theory of glasses
starting from the basic principles, i.e., thermodynamics, and from the exper-
imental analysis of some among the most important consequences of thermo-
dynamics (i.e., the Maxwell relations).

Immediately after the Introduction, the book underlines one of the most
crucial properties of glasses at low temperature: the existence of two temper-
atures in these off-equilibrium systems. Thermodynamics must be modified
in a deep and nontrivial way in order take care of this new and unexpected
phenomenon, that is at the basis of the modified fluctuation dissipation rela-
tions that are appropriate for glassy systems.

These concepts are carefully investigated using solvable (or nearly solvable)
models in which many different subtle properties can be studied in detail. In
this way one can see in an explicit and immediate manner the physical origin
of the aging phenomenon that is one of the hallmarks of glassy behavior.

At this point the reader is ready to tackle the approach based on the po-
tential energy landscape, whose features are discussed in general and studied
in simple models. Finally, more detailed theories of the glassy states are pre-
sented and analyzed where different microscopic mechanisms are discussed
also for realistic or quasi-realistic models of glasses.
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This book will certainly be extremely useful to anyone who approaches for
the first time the study of glasses because it first describes general properties
of the glassy states and later shows how these properties are present in specific
models: in this way the reader is not lost in a multitude of different models
that are used to derive general properties, as often happens in the literature.
This book will also be useful to the experienced researcher, who sometimes
may overlook the less technical consequences of his or her own work. It is
always very stimulating to read a well-done reflection on the basic results in a
developing field where the new conceptual points are discussed in a systematic
way. I am sure that this book will remain a reference text in the field for a
long time.

Giorgio Parisi
Rome, April 2007
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Introduction

Pars Syriae, quae Phoenice vocatur, finitima Iudaeae intra
montis Carmeli radices paludem habet, quae vocatur Cande-
bia. ex ea creditur nasci Belus amnis quinque milium passuum
spatio in mare perfluens iuxta Ptolemaidem coloniam. lentus
hic cursu, insaluber potu, sed caerimoniis sacer, limosus, vado
profundus, non nisi refuso mari harenas fatetur; fluctibus enim
volutatae nitescunt detritis sordibus.

tunc et marino creduntur adstringi morsu, non prius utiles.
quingentorum est passuum non amplius litoris spatium, idque
tantum multa per saecula gignendo fuit vitro. fama est ad-
pulsa nave mercatorum nitri, cum sparsi per litus epulas parar-
ent nec esset cortinis attollendis lapidum occasio, glaebas ni-
tri e nave subdidisse, quibus accensis, permixta harena litoris,
tralucentes novi liquores fluxisse rivos, et hanc fuisse originem
vitri.

Plinius, Historia Naturalis, book XXXVI, 190-1911

Thermodynamics is a theory dealing with energy balance, the most funda-
mental aspect of the universe. It puts constraints on the behavior of physical
systems but has by itself virtually no predictive power. It tends to verify
whether processes are commensurate with or in violation of this energy bal-
ance. Thermodynamics does not deal with time, that being the domain of
kinetics, or with rheological parameters such as viscosity. It indicates direc-

1That part of Syria which is known as Phoenicia and borders on Judea contains a swamp
called Candebia amid the lower slopes of Mount Carmel. This is supposed to be the source
of the River Belus, which after traversing a distance of 5 miles flows into the sea near
the colony of Ptolemais. Its current is sluggish and its waters are unwholesome to drink,
although they are regarded as holy for ritual purposes. The river is muddy and flows in a
deep channel, revealing its sands only when the tide ebbs. For it is not until they have been
tossed by the waves and cleansed of impurities that they glisten. Moreover, it is only at
that moment, when they are thought to be affected by the sharp, astringent properties of
the brine, that they become fit for use. The beach stretches for not more than half a mile,
and yet for many centuries the production of glass depended on this area alone. There is
a story that once a ship belonging to some traders in natural soda put in here and that
they scattered along the shore to prepare a meal. Since, however, no stones suitable for
supporting their cauldrons were forthcoming, they rested them on lumps of soda from their
cargo. When these became heated and were completely mingled with the sand on the beach
a strange translucent liquid flowed forth in streams; and this, it is said, was the origin of
glass [Pliny, 1972].

1
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tions, such as, for instance, the famous dictum of Clausius concerning the flow
of heat from high to low temperature, but it does not assert anything more
specific, as, for example, the amount of flow or its velocity. It is able to state
that 70-million-year-old glassy rocks represent a nonequilibrium state, but it
does not explain what prevents this system from relaxing to its crystalline
ground state.

At issue in this book is a question that has bothered and still bothers
generations of physicists: can these limitations be eliminated and can a ther-
modynamic theory be developed for a notorious nonequilibrium system, the
glassy state, in which time and viscosity are of prime importance? We shall
argue how this is, indeed, possible in certain situations, by including one ex-
tra parameter, the effective temperature, we will analyze up to which extent
this description accurately encodes the main out-of-equilibrium features of the
glassy state and we will consider and discuss what lies beyond the boundaries
of validity of this representation.

Before going into this, however, we will mention some of the classical no-
tions and observations over which mankind has pondered since the dawn of
civilization up until our present time.

Glass, a tool for mankind

Glass is a very present element in everyday life, so much so that it becomes
a complicated and long exercise to imagine being without it: no windows, no
spectacles, no bottles, no street lamps, no screens for computer, mobile phone
and television, no windscreen in the car, no light bulbs, no watches, just to
mention a few examples. Indeed, it is a necessary material. Yet, besides its
practical use, glass, e.g., in the form of lenses, mirrors, flasks or pipes, has been
fundamental in the development of scientific research and visual art, helping
and guiding the human sight to look at things in different perspectives and on
widely different length-scales, from the microscopic world of cells and bacteria
to the open space of planets and stars.2

Where and when glass first appeared is not exactly known. Naturally oc-
curring glasses, such as obsidian, were employed in the making of arrowheads,
blades and even early mirrors since the neolithic age. Obsidian was produced
during volcanic eruptions by the sudden cooling down of silica-rich magma.
Its manipulation was very advantageous because it could be easily fractured
and the cut edge of the blades could be made very sharp (the cut edge of
obsidian is theoretically one molecule thick!).

The place of birth of man-made glass is usually set in the Middle East, pos-
sibly in more than one region. Clear evidence has been discovered in Egypt,3

2For a fascinating account of the role of glass in science development, see the book of
Macfarlane & Martin [2002].
3Glass factories have been discovered in Amarna, dating back to the reign of Akhenaton
(1353/51 BC-1336/34 BC), the sun god, and in Qantir-Piramesses, in the Eastern Nile delta,
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and in Mesopotamia, but also in the Caucasus. The date is more uncertain:
while some archaeologists date the first glass crafts back to 3500 BC, some
other studies, based on the detection of glazing traces on ceramics artifacts,
go back to 8000 BC. The ancient Roman historian Pliny the Elder (AD 23/24-
79) reports in his Historia Naturalis how Phoenician merchants incidentally
(re)discovered glassmaking (likely ca. 2000 BC). Certainly, glass was used
and diffused around 1500 BC, since many discovered glass objects date to
that period. From that age on, the knowledge of glass manufacturing began
to spread off in Eastern Asia and Europe.

The development of the making of glass (as of any other manufacture) is
often nonlinear and not always the incidental discovery of the glass brought a
civilization to work out techniques and build glass objects for practical uses
in a continuous way. In some cases (in China and Japan, for instance) the
knowledge of glassmaking was acquired at some point but later forgotten and
learned again or imported in later times.

Next to the core formed and the wound techniques, glassblowing appears
around 100 BC, and it will be a key point in the further introduction of new,
lighter and transparent glass objects and the general expansion in the use of
glass. Such a technique required a very fluid glass former and, therefore, tem-
peratures much higher than in other procedures. This implied good knowledge
in the construction of furnaces and ovens.

Under Romans, the diffusion of glass around the Mediterranean Sea and in
Central and North Europe grew immensely. Roman glassmakers were able to
produce recipients at low cost, affordable for almost everyone. They made, as
well, precious refined pieces, symbols of richness and a high social status. Also
the making of transparent glass, in the form of lamps, ink pots, and beverage
containers was very much worked out. The main incentive to manufacture the
latter was to valorize wine, allowing the appreciation of its color, besides its
flavor. Windows, as well as lenses, instead, were not diffused under the Roman
empire, even though glassworkers had the expertise to make them (actually
some instances of glass windows have been discovered in Pompeii and other
places in the Italian peninsula). The making of windows spread after the
fall of the Western Roman Empire, mainly in Northern Europe, especially in
churches. Stained glass windows have been recovered in the french city of
Tours (5th century AD) and in England (7th century). A new impulse was
given to this kind of production by Benedictine monks (from the foundation
of their order in AD 1066) who considered the use of glass in churches as a
way to glorify the Lord and, in the north, by Gothic architecture, probably
the best examples being preserved in Notre Dame’s cathedral in Chartres (AD

operational during the time of Ramses the Great in the 13th century BC. The ancient
Egyptians manufactured glass jewelry with great care. An instance is the manufacture
of Tutankhamen’s vulture necklace and collar, a dedicated and intricate craftsmanship,
encrusted with blue and red glass. The eyes in his gold mask are made of colored glass
inlays, making them similar, in appearance, to lapis lazuli.
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1220).
After the fall of the Roman empire the most advanced region of the world

for manufacturing glass remained the Middle East, in particular, the territory
corresponding to present-day Syria, Egypt, Iraq and Iran, that was initially
under the rule of the Sassanid Empire and then, from the 7th century on,
under the influence of the Arabs and Islam. The inherited Roman techniques
were further refined and the extensive trade of glass objects of Islamic making
spread this knowledge very far away to Russia, Eastern Africa and China.
Arab glassmakers positively interacted with scientists, providing flasks for
chemistry and particular instruments for the studies of optics. These were
globes of transparent glass, filled with water, that were able to refract and
decompose light and to magnify objects. Ancient Arabs, however, did not
invent lenses, even though the technology existed to produce them and, more-
over, they would have been very useful in the scientific research developed at
that time. The apex of the use of glass was reached between the 13th and
the 14th century, after which, in correspondence with the Mongol invasions of
the Middle East, glass production collapsed: in AD 1400 the Mongol invader
emperor Tamerlane ordered the destruction of all laboratories in Damascus
and the deportation of all glassmakers, symbolically sanctioning the end of
the brilliant glass manufacture of the Middle East.

The making and use of glass recovered and grew, instead, in Europe, be-
tween AD 1100 and AD 1700, to include, besides windows, also beverage
glasses, lenses, spectacles, prisms and mirrors. The Republic of Venice was,
since the 14th century, the main center for glass manufacturing. Its island of
Murano jealously guarded all the most modern secrets, collected in the course
of the centuries thanks to the continuous exchange of the merchants with the
Middle East and further developed to yield new qualities such as, e.g., crystal
glass and multicolored glass. Very skilled glassmakers were active, as well, in
Bohemia, Anvers and the Netherlands and other centers in France, Germany
and, eventually, in England where the manufacture of glass was industrialized
(88 factories were counted in 1696). There, at the end of the 17th century,
George Ravenscroft invented lead glass: a combination of silica4 with potash
and lead oxide. The effect of potash is to lower the melting temperature of
the silica, that is otherwise around 2100 degrees Kelvin. The lead oxide, in-
stead, increases, depending on its concentration, the refractive index of the
glass, and thus its luster, with respect to, e.g., the glass made in Venice. The
realization of lead glass brought, in the 18th century, the construction of long-
range telescopes. It is nowadays still widely used, also because of its property
of shielding X-ray radiation.

In other regions of the Eurasian continent, glass diffused as well, although
with a different impact on the lives of common people and on the development
of technical and cultural innovation. Nevertheless, archaeological discoveries

4Silica is the common name for silicon dioxide, whose chemical formula is SiO2. Silica-based
glasses are the most used ones and are often referred to as “window” glasses.
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witness the use and manufacturing of glass crafts by the major civilizations
of Eastern Asia: India, China and Japan. In India, glass objects were in
use already around 1400 BC (discovery of Paiyampalli, Tamil Nadu) [Sen &
Chaudhary, 1985], mostly consisting of beads and decorative objects. There
is evidence that, in the first five centuries AD, they commonly circulated and
that the knowledge of glassblowing was acquired. In ancient India, however,
the applications did not evolve far beyond: glass was mainly employed to imi-
tate other objects (and for creating false gems), it was considered a surrogate
material and did not have a social nor a religious role. Even in alchemy and
medicine, the ravadanis (alchemical-medical chemists) preferred containers
made of compressed earth or clay to glass receptacles [Subbrarayappa, 1999].

In China, the development of glass manufacture was at a level far lower
than the one, actually quite advanced, reached in ceramics, metallurgy, print-
ing and weaving. Glassblowing arrived in China about 500 years after its
spread in the Middle East but it caused no substantial improvement in pro-
duction. Glass never substituted Chinese traditional porcelain in the making
of receptacles, or greaseproof paper in the fabrication of windows, to give a
few typical examples.

In Japan, the role played by glass until the 19th century was almost marginal,
apart from certain periods. The most ancient glass artifacts discovered be-
long to the Yayoi era (ca. 300 BC-AD 300). With the advent of Buddhism
(AD 538) the making of glass shrines propagated all over the country. Later,
during the Nara era (710-794), the glassblowing technique was acquired by
Japanese artisans and laboratories arose in the temples for manufacturing
religious ornamental objects. Then a decline came: from the Heian era (794-
1185) to the arrival of Jesuit missionaries and Western merchants at the end
of the 16th century the glass industry practically disappeared. Portuguese
and Dutch navigators brought to Japan lead glass and crown glass5 that were
adopted and commonly used, but only in the Meiji restoration (1868-1912)
did a real industry of glass objects eventually start [Blair, 1973].

In the rest of the world there is no strong evidence of the presence of man-
made glass, but natural rock glasses such as obsidian were extensively em-
ployed. In Mesoamerica, for instance, obsidian was used to make flakes for
religious offerings and household rituals, in butchery and hunting at the daily
life level and, eventually, in war, in the form of swords, projectiles, axes, spears
and arrowheads. Its use was common in any period and civilization, by the
Mayas (classic period ca. AD 250-900), the Toltecs (ca. AD 900-1100) and
the Aztecs that confronted the conquistador Cortes with obsidian weapons in
1521.

5The so-called crown glass is made by twirling glass blobs, or “crowns,” at the end of a
punty and cutting the glass disk obtained this way in rhomboidal, square or circular plugs.
It was introduced at the beginning of the 14th century in the region of Rouen (France) and
remained one of the most common processes for making windows until the 19th century.
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Contemporary glass

”Window glass,” the archetypal glass, is the most familiar and has revolu-
tionized architecture with each new technical innovation: from crown glass
windows to the optical good quality sheets of unlimited dimensions made
of float glass (manufactured by pouring out the glass on molten tin beds, a
procedure invented in 1959 by Pilkington Brothers). Other types are just as
familiar: optical glasses with varying refractive indices used in lenses for read-
ing, telescopes and cameras, container materials such as bottles and drinking
glasses, or television and computer screens. Less well known forms exist such
as the preservation of food by bringing it in a glassy state. Currently, com-
munication in our daily lives heavily depends on the astounding technology
embedded in silica-based fiber optics with impurity densities reaching the level
of a few parts per billion range (milligrams per 1000 kilogram) and with a ca-
pability of transmitting a signal over 200 km without amplification.

Window glass, existing in a myriad of types, is silica-based. Its typical
chemical composition is about 70% SiO2, 15% CaO and 15% Na2O, the last
two elements being added to lower the melting point of pure silicon dioxide
from about 2100 to 1600-1800 degrees Kelvin. Other oxide-based glasses are
manufactured such as borate, phosphate, and germanate glasses. They all
have as prime requirement an oxygen coordination of the glass-forming cation
of two, three or four, as postulated, more or less ad hoc, by Zachariasen
[1932].6

Numerous oxygen-free glassy compounds also exist. Glasses containing el-
ements of sulfur, selenium or tellurium, i.e., chalcogenide-based glasses, are
actively researched for novel properties, as well as halide glasses, the princi-
pal one being beryllium fluoride (BeF2), that is topologically equivalent to
cristobalite7 in its crystalline form. The latter displays an attenuation one
thousand times smaller than the one of silica-based optical waveguides, in the
optical length-wave range around 1500 nm, making it suitable to transmit a
signal without amplification around the whole globe. Unfortunately, the ab-
sence of proper drawing technology has prevented its use so far.

Further vitreous materials are the metallic glasses, containing no anions,
that find numerous applications, especially in magnetism, because of the lack
of grain boundaries. Finally, carbon-based polymer glasses constitute an im-
portant part of our daily life going by the name of nylon, polyvinyl chloride
(PVC) bottles or wraps.

6That low coordination, commonly the tetrahedral, fourfold one, is important, can be
inferred from the occurrence of glassy ice, that, because of hydrogen bonding, occurs as
a tetrahedrally coordinated solid with oxygen taking the place of the cation, and that, in
one of its crystalline forms, is topologically equivalent to cristobalite, the high temperature
SiO2 polymorph.
7Cristobalite is a polymorph that is stable only at very high temperature, above 1650 K,
but can exist as a metastable crystal also at lower temperature. The stable crystal phase
is, in this case, quartz.
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Some inkling of the large number of glassy systems can be found in the
books of Donth [2001]; de Jong [2002]; Rao [2002]; Mysen & Richet [2005].

The nonequilibrium nature of glass

From the point of view of physics, all glasses represent an excited state, and
may, in due course, relax to the crystalline ground state. Crystallization in-
volves two steps: (i) the nucleation of microscopic bubbles of crystal in the
liquid phase and (ii) their growth, rapidly transforming the whole material
into a solid whose structure is an ordered pattern. Nucleation processes tend
to be extremely slow in glassy systems on experimental times.

Such observation time may be very long, 70-million-year-old silica-rich vol-
canic glasses not being uncommon. It is the nature of this structural relaxation
which we shall consider in this book, formally encoding it in a generalized ther-
modynamic framework for glassy systems.

As a typical example consider window glass. Each window glass everywhere
in the world is far from equilibrium, a cubic micron of such glass neither be-
ing a crystal nor an ordinary undercooled liquid. It is, in some sense, an
undercooled liquid that in the glass-forming process has fallen out of its own
metastable equilibrium. As mentioned before, the glassy state is inherently a
nonequilibrium state: a substance that is glassy in daily life, on a timescale
of years, may behave like a liquid on a geological timescale. A thousand-year
time lapse movie of a window glass would show a sequence of events akin to
the popping of a soap film.

Any liquid cooled down to low enough temperature sufficiently fast will be-
come glassy, i.e., it will lack time to evolve into a long-range ordered crystalline
array. Two types of mechanisms conceivably play a role in this quenching
process: (i) fast interactions, which happen on a short timescale, characterize
relaxation processes that are rapid enough to remain in thermal equilibrium
at every step of the cooling (β relaxation processes), and (ii) slow mechanisms,
mainly reconstructive transformations involving many molecules, that prac-
tically“carry” the structural, off-equilibrium, relaxation (called α processes).
In principle, the larger the variety of molecules is, the easier the glass for-
mation becomes. The α processes start lagging behind the thermal state of
the system during cooling already in the molten state. Their relaxation time,
then, exceeds the time needed to reach equilibrium and they progressively
get out of phase with the forcing thermal field, becoming increasingly more
decoupled from it.

The viscosity

Relaxation times in glassy systems scale with viscosity, which indicates the
resistance to flow of a system and is a measure of its internal friction. The
International System unit of viscosity is Pa s = kg/(m s). An older unit
is Poise, 1 Poise = 0.1 Pa s. Water of 20 degrees Celsius has viscosity 1
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centiPoise. The viscosity of other substances of common use are reported in
the following table.

Hydrogen at 20 oC 0.008 6 cP
CO2 gas at 0 oC 0.015 cP
Air at 18 oC 0.018 2 cP
Water at 20 oC 1.002 cP
Mercury at 20 oC 1.554 cP
Olive oil at 20 oC 84.0 cP
Pancake syrup at 20 oC 2,500 cP
Maple syrup at 25 oC 3,200 cP
Honey at 25 oC 2,000-3,000 cP
Chocolate syrup at 20 oC 25, 000 cP
Peanut butter at 20 oC 250, 000 cP
Tar or pitch at 20 oC 3 × 1010 cP
Soda glass at 575 oC 1 × 1015 cP
Earth upper mantle 3 to 10 × 1023 cP
Earth lower mantle 2 to 3 × 1025 cP

An undercooled liquid is called glass, when it has a viscosity of 1013 Poise,
one thousand-million-million times as large. Viscosity has, in general, a strong
temperature dependence varying, e.g., in silica-based glassy systems, over fif-
teen orders of magnitude as shown in Fig. 1.

As a parameter, viscosity fixes the different manufacturing processes in a
glass tank and industrial terms like strain point, anneal point, softening and
working point are all defined for a specific viscosity. Despite its ubiquitous
operational use in industry, it is perhaps the least understood of all glass
properties. In silica-based systems the viscosity is dominated by the silica
concentration in the system, with high silica percentage having an enormously
higher viscosity. This manifests itself in nature in very fluid lava for low-silica-
containing fluids, or else as explosive volcanism for high-silica-containing ones,
where the high viscosity prevents softer energy release.

The point at which the viscosity, or relaxation time, are so large that equi-
librium no longer exists between the thermal state of the glass-forming sys-
tem and the surrounding heat bath, is called the glass transition temperature,
commonly occurring at about two thirds of the melting temperature in silica-
based glasses. This transition temperature, with its measurable heat effect,
discriminates between a glass and an undercooled liquid.

There are two typical phenomenological behaviors of the viscosity as a func-
tion of the temperature, as temperature decreases towards the glass transi-
tion, that have been identified so far. The first one is the so-called
Arrhenius relaxation law, according to which viscosity (as well as relaxation
time) grows exponentially at a low temperature, as exp(A/T ), where A is the
activation energy for viscous flow. The second one is the Vogel-Fulcher, or
Vogel-Fulcher-Tammann-Hesse, law, expressed as exp[B/(T − T0)], that di-
verges even faster than the Arrhenius one, as it can be expressed defining a
temperature-dependent activation energy A = BT/(T − T0), even diverging
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FIGURE 1

The most significant property of a glass-forming liquid is the large increase of the

viscosity, η. In a relatively narrow temperature interval it increases from, say, some

centiPoise, the value for water at room temperature, to 1013 Poise, where the liquid

vitrifies. In ordinary life one may think of sugar-syrup. When heated, it flows easily,

when put into the fridge, it becomes solid. We show a pictorial representation of

the viscosity behavior (in logarithmic scale). Below the temperature indicated by

“Td” the enhanced increase occurs up to the glass temperature “Tg,” under which

no viscosity can be measured because the material is in the (amorphous) solid state.

at the low but finite temperature T0. Both laws indicate a very large increase
in viscosity or, equivalently, in relaxation time, preventing the material from
reaching thermal equilibrium, that, instead, gets stuck in the glassy state.
During the last decennia two categories of glasses have been distinguished
according to the above-mentioned temperature dependence around the glass
transition: the strong glasses and the fragile glasses.8 The distinction is based
on the flow behavior of glasses in the molten state. The materials belonging
to the Arrhenius family are designated as strong. They display a very high
viscosity above the melting point. For instance, SiO2 has a viscosity of 2.4 103

Pa·s about 300 degrees above its melting point (ca. 2100 K). The materials
whose viscosity follows the Vogel-Fulcher law are designated as fragile.

The putative flow of window glass

Because of the time frame over which it happens, it is difficult to envision
flow of very highly viscous fluids. A case in point is the supposed flow of

8We immediately stress that neither the “strong” nor “fragile” property of glass refers to
resistance to crashes or heating, rather to the difficulty for macroscopically rearranging
its amorphous packing (into another, equivalent, amorphous packing), following an exter-
nal perturbation. We will come back to the difference between “strong” and “fragile” in
Chapters 1 and 3.
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windows in cathedrals, the observation being that those glass panes tend to
be thicker at the bottom relative to the top, thus being an indicator of flow
over time due to gravitational pull. However, a number of instances have
been reported where the inverse was the case, the thinner side down, clearly
questioning this view. By invoking old flat glass manufacturing technology,
either cutting glass cylinders open or making crown glass, it has been argued
that flat glass thickness would vary in antiquated technology and that artisans
would systematically put the thick side down. The jury is, of course, still out
on this one. Firstly, the flow observation in ancient windows presumes that
they have never been restored or cleaned and have remained in situ since
the 12th century. Secondly, some fragments may flow and others may not,
depending on the varying silica concentration used by different manufacturers.
This concentration, as we have already mentioned, completely dominates the
flow behavior of any silica-based glass. The problem will be addressed more in
detail in the next chapter but we anticipate that estimates for flow timescales
at environment temperature have been computed, exceeding the age of the
universe.

Crizzling: the terminator of medieval glass

Silica (SiO2) is an acidic oxide, which means that it is only soluble in a basic
solution and below a pH of about eight it is virtually insoluble. It is, therefore,
not surprising that all strong acids (hydrochloric, sulfuric, nitric, ...) except
for hydrofluoric acid, are kept in silica-based glass bottles. Resistance to acid
leaching or weathering is strongly linked to the amount of silica in the glass
and the type of modifier added to it.

For instance, medieval glass is under a continuous threat not due to flow
but due to a phenomenon called crizzling or crisseling, causing every large
museum to have a conservator for medieval glass and making transport of
ancient glass artifacts for an exhibition in other museums a delicate matter.
Crizzling is a chemical instability in glass caused by an imbalance of the
chemical components of the glass former (the “batch”), typically silica, soda
and lime, when they are not properly mixed and not homogeneously dispersed
during melting. This instability of the glass, including the archetypal soda-
lime window glass, lowers its defenses against attacks by atmospheric moisture
(the glasses absorbing moisture from the air are said hygroscopic). Among
the most hygroscopic glasses, one has potassium, rubidium or cesium silicates,
and, to a minor extent, sodium silicate. The mixture of sodium with calcium,
or lithium, can decrease this absorption.9

Particularly harmful is an excess of alkali or a deficiency of stabilizer (usu-
ally lime). It has been observed that ancient glass is often wet and, when
dried, turns wet again. Alkalis usually present in the aqueous film covering
the glass, generate a local basic environment in which silica is very soluble,

9The latter combination is a manifestation of the mixed alkali effect.
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thus producing a network of micro-cracks on the surface. In due time, these
cracks grow and may suddenly destroy the glass. This picture is confirmed by
the fact that in archaeology relatively little glass is recovered. Crizzling can
be slowed or even halted by treating the glass with soluble lithium silicates,
but the dissolved silica cannot be replaced: the degeneration of the material
cannot be reversed.

The failure of equilibrium thermodynamics for glasses

The term thermodynamics was originally coined to describe processes dealing
with the flow of heat. Flow processes are notoriously nonequilibrium processes
and it is, therefore, surprising that the word thermodynamics implicitly and
tacitly got the predicated equilibrium attached to it. Actually, in the older
literature, one may still encounter the concise word “thermostatics” for what
we now call “equilibrium thermodynamics.”

In the 1950s, 1960s, 1970s, equilibrium thermodynamics was believed to
describe the glassy state. This may be underlined from the following quote
from [Gibbs & Di Marzio, 1958] on page 373: “In any event, we can cat-
egorically state that a glass-forming material has equilibrium properties....”
This, actually is only partly the case, e.g., vibrational modes are in equi-
librium, but configurational collective modes are not. A different, somehow
complementary, widespread opinion concerns the inapplicability of many ther-
modynamic approaches to glasses, depending on the identification of thermo-
dynamics with a theory exclusively concerning equilibrium processes (see, e.g.,
the recent discussion of Kurchan [2005]). Though similar opinions are diffused
in the scientific community, especially among senior scientists, this is clearly
a faulty notion because thermodynamics, the dynamics of heat flow, is in-
trinsically not constrained to equilibrium, which is but an extremely limited
case in the total set of thermal flow processes. The success of Josiah Willard
Gibbs’ (1839-1903) equilibrium thermodynamics has presumably led to this
narrowing of the scope of thermodynamics.10

10We mention an anecdote to further illustrate this consensus. During a visit to the Newton
Institute in 1997 one of us, Th. M. N., was introduced to the director of the Institute for
Applied Physics. When hearing that the visitor’s current research area was glasses, the
director responded spontaneously by asserting that “Thermodynamics does not work for
glasses, because there is no equilibrium.” The correct statement of the Cambridge research
director and other senior physics peers, from whom we heard the same reaction, should
have been that “Equilibrium thermodynamics does not work for glasses, because there is
not a good enough equilibrium,” a non-surprising and non-embarrassing statement. It is
reminiscent of Einstein’s opinion “The second law will hold valid, I presume, as long as
its premises are fulfilled,” both being mere tautologies, that do not answer the central
question at stake: within which borders can thermodynamics be formulated? A more
recent variant of the same mistake concerns Hawking radiation by black holes. Though not
always stated in theoretical considerations, it is a two temperature problem, involving the
Hawking temperature of the black hole and the 3 K temperature of the cosmic microwave
background. Clearly, this is a nonequilibrium situation, akin to glasses [Nieuwenhuizen,
1998b].
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Phase transitions of crystalline materials have commonly been classified as
being first order, as a consequence of discontinuities in various thermodynamic
functions, or continuous, displaying a growing length-scale around the critical
point.11 In mean-field approximations, i.e., when thermodynamic fluctuations
can be neglected, there may occur a continuous transition with discontinuous
features. For glasses, a smeared discontinuity in thermodynamic variables
such as heat capacity, thermal expansion and compressibility is observed in
the vicinity of the glass transition temperature. These discontinuities tend to
be damped and smeared out, looking somewhat similar to continuous phase
transitions of the mean-field type. The analogy to mean-field type phase
transition is not perfect, however, not only because of the smeared out nature
of the transition, but also because of the smaller specific heat value recorded
below the glass transition temperature.

In first order phase transitions, there holds the well known Clausius-Clapey-
ron relation between discontinuities of thermodynamic quantities and the
slope of the transition line. For continuous phase transitions, there is a pair
of similar relations, called Keesom-Ehrenfest relations [Keesom, 1933; Ehren-
fest, 1933]. Let us just sketch the confusing situation regarding their ap-
plication to glasses, as it has existed for decades in literature, postponing
a formal discussion to the next chapter. It was investigated experimentally
whether the jumps in properties of glass versus liquid still satisfied the two
Keesom-Ehrenfest relations for crystalline materials. In a very well-known
review, Angell [1995] discusses that one Keesom-Ehrenfest relation, involving
a discontinuity in the compressibility is always violated, whereas the other,
involving a discontinuity in the specific heat, is commonly but not always
satisfied. It has become fashionable to combine these two relations by intro-
ducing the so-called Prigogine-Defay ratio. For equilibrium transitions this
quantity should be equal to unity. Values below 1 were expected not to be
possible, and for glasses typical values are supposed to range between 2 and
5 even though very careful experiments on glassy polystyrene led to a value
around 1. The Keesom-Ehrenfest relations are characteristic for equilibrium
thermodynamics and their failure in applications to glasses has prevented the
construction of an equilibrium thermodynamics for glassy systems. Even so,
still in 1981, Di Marzio belabors the issue in a paper entitled “Equilibrium
theory of glasses” with a subsection “An equilibrium theory of glasses is abso-
lutely necessary” [Di Marzio, 1981]. In view of the inherent and pronounced

In fact, it is a drawback of the success of Gibbsian statistical mechanics, that led nowadays
to the too often observed consensus that thermodynamics is an “old fashioned subject”
that has no impact on modern research and can be taught shortly or even treated as some
side issue in undergraduate courses. This consensus, as we will see, is not well founded as
the search for a thermodynamic theory of nonequilibrium systems is a lively field.
11A known example is the boiling of water, which exhibits critical opalescence near its
critical point at 220 atmospheres and a temperature of 374.2 Celsius, when the correlation
length of the liquid molecules becomes micron-sized, comparable with the wavelength of
visible light.



13

nonequilibrium character of the glassy state, we consider such an approach
untenable and intrinsically flawed. We shall present in this book a number of
instances where a quasi equilibrium fails to describe the physics, such as in
its assertion that the original Keesom-Ehrenfest relations are always satisfied
for glassy systems, violating experimental observation.

The challenge, then, lies in developing a thermodynamic description valid
for systems not close to equilibrium, with very large orders of magnitude
variation in the time dependence of their flow properties, ranging from the
picosecond regime to, for silic-rich glasses, the age of the solar system, covering
a range of twenty five orders of magnitude. We may expect naively that each
time window of a couple of orders of magnitude has its own characteristic
dynamics, which is approximately independent of the ones above and below
it, and that the existing huge nonlinearity could be segmented in quasi-linear
fragments. We will see whether this expectation is met, and under which
conditions, in the following chapters.

Our book is structured as follows. In the first chapter we will review most of
the known basic properties of glasses and glass-forming liquids and we will set
a unique notation for quantities and phenomena that will hold in the rest of the
book. In the second chapter we progressively introduce a ”two-temperature”
thermodynamics, starting from experimental observations and theoretical in-
tuitions in the last sixty years, that is a generalization of the equilibrium
thermodynamics. We will introduce the idea of ”effective temperature” and
we will make a survey of its use and misuse in recent literature. Among
other things, we will show that, contrary to common belief, the “mechanical”
Keesom-Ehrenfest relation is automatically satisfied if properly interpreted in
the effective temperature framework and we will show how the “calorimetric”
Keesom-Ehrenfest relation, the one dealing with the heat capacity, is modified
because of the generalization of a given Maxwell relation to reflect the lack
of equilibrium. In Chapters 3, 4 and 5 we present and study some simplified
models, holding all the characteristic of glass formers, yet being analytically
approachable, with the aim of exemplifying and discussing the properties,
possibilities and limits of the proposed thermodynamics for the glassy state.
Chapter 6 is dedicated to the potential energy landscape approach, widely
used in numerical simulations of computer glass models, where the concept
of effective temperature has been thoroughly investigated. In the last chap-
ter we dedicate some space both to well established theories that we often
recall in the book, such as the mode-coupling theory for undercooled liquids,
or the replica theory for mean-field glasses, both when quenched disordered
interactions are explicitly introduced and when disorder is self-induced, and
to recent theories, such as the avoided critical point theory and the random
first order transition theory.
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Theory and phenomenology of glasses: a

short review

Who when he first saw the sand and ashes by a casual intense-
ness of heat melted into a metalline form, rugged with exercise
and clouded with impurities, would have imagined that in this
shapeless lump lay concealed so many conveniences of life as
would, in time, constitute a great part of the happiness of the
world..... This was the first artificier in glass employed, though
without his knowledge or expectation. He was facilitating and
prolonging the enjoyment of light, enlarging the avenues of sci-
ence, and conferring the highest and most lasting pleasures;
he was enabling the student to contemplate nature, and the
beauty to behold herself.

Dr. Samuel Johnson (1750)1

In this first chapter, we present a general introduction to the items that are
at the basis of the book. We will give a fundamental description of materials
and phenomena, referring to different approaches in literature, both experi-
mental and theoretical, trying to link them among themselves and with the
further aim of setting a non-ambiguous notation valid throughout the text.
We will mainly concentrate on the aspects that will be discussed in the fol-
lowing chapters in order to provide a sort of glossary that can be consulted
at any moment, starting from the very definition of glass.

1.1 Processes, timescales and transitions inglass-formers

A glass can be viewed as a liquid in which a huge slowing down of the diffu-
sive motion of the particles has destroyed its ability to flow on experimental
timescales. The slowing down is expressed through the relaxation time, that

1From McGrath & Frost [1937].
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16 Thermodynamics of the glassy state

is, generally speaking, the characteristic time at which the slowest measurable
processes relax to equilibrium.

Cooling down from the liquid phase, the slow degrees of freedom of the glass
former are no longer accessible and the viscosity of the undercooled melt grows
several orders of magnitude in a relatively small temperature interval. As a
result, in the cooling process, from some point on, the time effectively spent
at a certain temperature is not enough to attain equilibrium: the system is
said to have fallen out of equilibrium.

The preparation, indeed, plays a fundamental role to get a glass out of a
liquid, thus avoiding the crystallization of the substance. Depending on the
material, the ways of obtaining a glass are very diverse and consist not only
in the cooling of a liquid but also include compression, intense grinding or
irradiation of crystals with heavy particles, decompression of crystals that are
stable at high pressure, chemical reactions, polymerization, evaporation of
solvents, drying, deposition of chemical vapors, etc. Many kinds of materials
present a glass phase at a given external condition if prepared in the proper
way. We already named silica, halide and chalkline based glasses in the In-
troduction, as well as carbon-based polymer glasses, e.g., polyvinylchloride
(PVC). Some others will appear in the following, such as germanate dioxide
(GeO2), orthoterphenyl (OTP), K+Ca2+NO−

3 and open network liquids. For
an exhaustive literature the reader can refer to [Angell et al., 2000; Debendetti
& Stillinger, 2001; de Jong, 2002; Rao, 2002; Mysen & Richet, 2005], limiting
ourselves to the current century.

Without going into details on the huge specificity of glassy compounds, a
good glass former can be defined as a system in which noncrystalline packing
modes of the molecules are intrinsically at low energy and different modes
are separated by high energy barriers. Apart from rare, often explicitly con-
structed exceptions, the crystal state is always at lower energy, but the proba-
bility of germinating a crystal instead of a glass during the vitrification process
is negligible when cooling fast enough: the nucleation of the crystal phase is
practically inhibited. In a nucleation event a small but critical number of unit
cells of the stable crystal state combine on a given characteristic timescale, the
nucleation time τnuc. In a good glass former, the number of molecules involved
in the nucleation must be much larger than the number of molecules cooper-
ating in the structural relaxation of the glass phase (composing what is called
a cooperative rearranging region - CRR), yielding, in this way, a nucleation
time much longer than the structural relaxation time, τeq. A large nucleation
time means that the probability that a fluctuation takes place, allowing a
critical number of unit cells to form a crystal, is low. In certain (computer)
binary solutions [Kob & Andersen, 1994, 1995a,b; Hansen & Yip, 1995; Parisi,
1997b], at low temperature, the amorphous state is even thermodynamically
preferred to any crystalline structure. The same appears to occur for the
atactic vinyl polymers, whose lowest energy conformations cannot pack in a
regular structure [Gibbs & Di Marzio, 1958].

Many processes are involved at the glass transition, or better around it,
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since the transition region depends on the way it is reached in an experiment,
and the timescales of the processes play an essential role for the properties
and the behavior of the glass former. The literature about glass is immense
and manifold and so is the notation. For what concerns the characteristic
times and the processes involved in different temperature domains, the list of
names is rather long, sometimes redundant or even confusing. For the sake of
clarity, we will initially define all the terms used in this book, trying to be as
precise, schematic and faithful as possible.

Imagine following a liquid glass former during a cooling procedure, starting
from a high temperature (look at Fig. 1.1 as a guide, starting from the
left side). Already in the warm liquid, different processes occur on different
timescales. At a given temperature, that we will simply denote as Tcage, the
thermal movement of particles is slow enough for the diffusion to be hindered
by the formation of cages. A cage is, in this case, a dynamic concept relative to
each particle in the liquid, whose motion is constrained to occur next to other
particles around it, with which it collides like in a three dimensional (floating)
pinball machine. This is different than the purely collisional motion taking
place in the warm liquid. We will refer to the timescale of such an inside-cage
process as the rattling time. Cooling further, a first bifurcation of timescales
takes place between the relative fast rattling time and the relaxation time
for the system. The relaxation time is, here, the characteristic timescale of
the process of diffusion from the cage, that becomes longer and longer as
the temperature decreases. This process is named in many different ways in
literature. Staying close to the notation of Donth [2001], we choose the name
αβ. The reason will become clear in a short while.

In summary, the relaxation time in this temperature region is the charac-
teristic time needed to have one long distance diffusion process of a particle
while it is rattling with a high frequency among its neighbor particles forming
a cage around it.

1.1.1 Dynamical glass transition

Cooling further, in the so called crossover region (always refer to Fig. 1.1),
a second bifurcation of timescales takes place between processes involving a
global rearrangement of the system, thanks to the large cooperativeness of the
particles (we will call them α processes), and processes that involve only a
limited number of molecules in a local, microscopically small, rearrangement,
thus not contributing to the structural relaxation of the glass former. The
latter are usually called β processes.2 We reserve the label α for the slow-

2In many amorphous materials, besides the relatively fast “rattling-in-the-cage” processes,
sometimes called βfast, other thermalized processes take place on longer timescales. Though
slower, these β processes evolve on timescales of some order of magnitude shorter than those
of the α processes. An example are the the Johari-Goldstein β processes relaxing according
to an Arrhenius law [Johari & Goldstein, 1971]. See also Sec. 6.1.3.
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FIGURE 1.1

Arrhenius diagram for the relaxation time τ of a glass former (in seconds) vs. the

inverse temperature. From left (high temperature) to right (low temperature) a

first bifurcation of the characteristic times of the warm liquid occurs at temperature

Tcage. Then, at Td, a second bifurcation occurs, more important for the onset of the

glass formation, in the dynamic crossover region where the dynamic glass transition

takes place. Eventually, at Tg, the material freezes and becomes a glass, since the

structural relaxation time becomes longer than the experimental time. At room

temperature the structural relaxation is still longer than this, possibly reaching

geological timescales.

est processes, needing a huge cooperativeness to occur below the crossover
region, stressing that, in general, different molecular mechanisms may be re-
sponsible for the lower temperature α processes and the higher temperature
αβ processes. In the crossover region, thus, αβ processes bifurcate in α pro-
cesses - whose characteristic timescale is the structural relaxation time - and
β processes with a much shorter characteristic time: this way, we are in the
presence of a separation of timescales, that becomes more and more enhanced
as temperature is lowered.

The α-β bifurcation, and the relative crossover, corresponds in mean-field
theories for glasses to an arrested state, i.e., to a transition to a non-ergodic
phase. We will come back to this in Chapter 7. Depending on the community
of scholars, the temperature at which the crossover (or the mean-field tran-
sition) takes place is named either as Tc (crossover or critical) [Donth, 2001;
Angell, 1995; Bouchaud et al., 1998], as TA (arrest) [Kirkpatrick & Wolynes,
1987b; Kirkpatrick et al., 1989], as Td (dynamic) [Mézard & Parisi, 1999a,
2000] or as Tmc (mode coupling) [Götze, 1984, 1991; Götze & Sjögren, 1992].
We will adopt Td and we will refer to the crossover as dynamical transition.
We stress that this is just a matter of convention.

What happens at the crossover? In terms of the free energy landscape
(FEL) description of the phase space, where metastable states are represented
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by local minima and stable states by global minima, a two level structure ap-
pears: some minima of the free energy are separated by very small barriers and
between them β processes take place; groups of those minima are contained in
larger basins separated by barriers requiring a much bigger free energy varia-
tion to be crossed. To make the system go from a configuration in one of these
basins to another configuration in another basin, i.e., to have an α process, a
longer time is needed. Indeed, the typical crossing time τeq is related to the
free energy barrier ∆F separating the valley where the system is currently lo-
cated from the rest of the landscape, τeq ∼ expβ∆F . The timescale on which
these processes are occurring is, however, at Td and below (but well above the
temperature of the formation of the solid glass) still very short in comparison
with the observation time (elsewhere called the experimental time, τexp; we
will invariably use both terms). To be qualitative, we can say that for silica-
based glass-formers this time is much less than O(102) seconds. Below Td the
system is, thus, still at thermodynamic equilibrium. The phase is disordered
but the number of minima of the free energy increases and some local minima
become deeper. The dynamics of the slowest processes (αβ for T > Td, α for
T < Td) displays a huge slowing down, but the temperature is nevertheless
high enough for the system to attain equilibrium on experimental timescales.

1.1.2 Thermal glass transition

Decreasing further the temperature, an increase in depth occurs of the global
and local minima of the thermodynamic potential, corresponding to different
stable and metastable states. The barriers between them become higher and
higher until some states become unreachable during the experimental time.

And here we come to the actual glass transition from a liquid to a solid
amorphous phase, or thermal, or else calorimetric, glass transition, to bet-
ter differentiate it from the above-mentioned dynamic glass transition. To
avoid any kind of confusion due to a sometimes not too mindful conventional
notation, however, we immediately stress that this “transition” is not a true
thermodynamic phase transition. On the contrary, its origin is strictly kinetic:
it is actually another crossover, that takes place when the structural relaxation
time of the cold liquid glass former becomes longer than the observation time.
The temperature at which this happens is called the glass temperature Tg

[Kauzmann, 1948]. Its nonuniversal nature cannot be expressed better than
by stressing that its value depends on the cooling rate and, more generally,
on the preparation protocol.

It is usually observed experimentally that the relaxation evolves from a
Debye exponential at T > Td to a two step process at lower temperature, that
is more and more enhanced as T → Tg. In terms of time correlation functions
(e.g., of density), this means that they first decay rather quickly to a plateau
and, on a longer timescale, start to decay again towards equilibrium, see Fig.
1.2 for a pictorial example holding for T < Td. In the frequency domain this
is expressed by the structure of the loss part of the dielectric susceptibility (or
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Double peak structure of the imaginary

part of dielectric susceptibility as a func-

tion of the frequency. The peak shifts

towards lower frequency as tw increases,

reflecting the increase in relaxation time.

As the system is deeply in the aging

regime a secondary peak appears, cor-

responding to Johari-Goldstein β pro-

cesses.

of any other activity chosen to probe the material in a response experiment).
Its structure changes from a single-peaked spectrum to a shape with two
peaks, the one at lower frequency being the α peak (cf. Fig. 1.3). This
two step/two peaks pattern strongly depends on the time spent since the
initial preparation of the sample, the so-called waiting time tw, before the
measurement is performed.

At Tg, the heat capacity decreases in a clear way going from liquid to glass
(see Fig. 1.4) and, on reheating, an abrupt but different change shows up as
well,3 as it is shown in Fig. 1.5. Moreover, discontinuities of this kind also
occur in the compressibility and the thermal expansivity. This looks similar
to a continuous mean-field phase transition, although the analogy is far from
perfect, because of the smeared nature of the discontinuities and because
the smaller specific heat value occurs below the glass transition, rather than
above, as would normally occur in liquid-crystal phase transitions (cf. Fig.
1.4). Though the freezing of modes allows for an analogy with mean-field
phase transitions, as will be discussed in more detail in the next chapter, we
are not in the presence of a real thermodynamic phase transition.

Nevertheless, the glass state below the glass temperature Tg is often referred
to as the “thermodynamic” state of a vitrified substance. It is true that, for
not too long observation times and/or well below Tg, parameters practically
do not show any time dependence and the amorphous solid seems, therefore,

3Some generic behavior in the cooling-heating process is analyzed in Sec. 2.6.



Theory and phenomenology of glasses 21

T

Cp

Tg Tm

LIQUIDVISCOUS
LIQUID

CRYSTAL
GLASS

FIGURE 1.4

Typical pseudo-discontinuity at the

thermal glass transition in specific heat

at constant pressure, typical of the vast

majority of glassy materials. The abrupt

change occurs around the glass temper-

ature Tg where, in the supercooled glass

former (the viscous liquid), the charac-

teristic times of relaxation of the slowest

α processes become longer than the ob-

servation time: τeq ≫ τexp. As a com-

parison, the melting temperature Tm is

also shown, at which the true phase tran-
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Cp behavior around Tg, for heat-

ing and cooling experiments in liq-

uid Ca++K+NO−
3 solutions [Moynihan

et al., 1976; Torell, 1982; Angell &

Torell, 1983] by differential scanning

calorimetry. In heating an overshoot

takes place, larger as the rate q (in

K/min) increases (cf. Sec. 2.6).

The glass transition is identified in the

“transformation range.” Data obtained

by two AC measurements (at 1 Hz and

10 Hz) are also plotted: the jump occurs

at higher temperature showing that the

operative identification of Tg depends on

the technique used. Reprinted figure

with permission from [Angell & Torell,

1983]. Copyright (1983) by the Ameri-

can Institute of Physics.

to be in a properly defined thermodynamic state. However, even in this
case, the glass and the liquid phase cannot be connected by any path in the
time independent parameter space, nor can an adiabatically slow state change
ever connect the liquid phase to the glass phase below Tg. Time will always
play a fundamental role in the formation and description of the glass, the
fundamental reason simply being that it is not an equilibrium state. Glassy
substances that look like a solid on experimental timescales, of seconds or
years, may look like a liquid on geological timescales. If every 500 years a
snapshot would be taken of a window glass, the movie composed of them
would look much like that of a soap bubble (supposing temperature remains
stable enough over the 500 years). All of this would be impossible for a
crystalline state. The non-static nature of glass is seen the best near the
glass transition. To mention one aspect: after bringing a substance slightly
into its glass phase by cooling down a glass former fast enough, the simple
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act of stopping the cooling and waiting long enough, will bring it back in its
thermodynamic equilibrium state: the liquid.

The glass temperature Tg rather marks the transition from ergodic to (prac-
tically) non-ergodic behavior. At equilibrium the system configurations are
distributed with the Boltzmann-Gibbs distribution. Changing the state of the
system, this is ergodic if the configurations that the system can sample during
its evolution do not depend on the initial condition, i.e., if it forgets about
the change. The whole configuration space will be visited according to the
Boltzmann-Gibbs distribution at that temperature and, as a consequence, the
ensemble average is equal to the time average. Below Tg, the system degrees
of freedom leading the structural relaxation, i.e., the diffusion processes that
make the material flow, are frozen. This implies, e.g., that in a given time tw
(the time waited after the quench to the glass state, see also Sec. 1.3), only
a limited region of the configuration space, connected to the initial configura-
tion, can be visited in the evolution of the system. The system cannot explore
all energetically accessible parts of the configuration space in this time. As a
consequence, ensemble average and time average are no longer equivalent, at
least on the time windows considered for the glass formation. 4

We may be allowed to call this separation of explorable subregions of the
configurational space ergodicity breaking but of the weak kind. By weak we
specify that the system undergoing the glass transition does not fall into one
unique metastable state with a practically infinite lifetime as, for instance, the
diamond state. That would be ordinary or “strong” ergodicity breaking. A
precise definition of weak ergodicity breaking has been devised in the frame-
work of trap and spin-glass models [Bouchaud, 1994; Cugliandolo & Kurchan,
1995]: a system is in a weak broken ergodicity phase if the time needed to
explore an infinite system is infinite. In a long but finite time tw spent under
Tg, the glass is able to go arbitrarily far away from the metastable state in
which it initially vitrified, and nevertheless it is unable to visit the whole con-
figuration space. In general, there exists a time terg, though, beyond which
the system can be considered ergodic. The point is that, for most of the glass
compounds, terg is much longer than a human lifetime and it can be consid-
ered as infinite, making the glass practically, if not theoretically, non-ergodic.
We will reformulate this phenomenon in the next chapter (Sec. 2.8) in terms
of correlation functions.

The property displayed by the glass, of being able to go around many, not
extremely deep, metastable states, even if stuck out of equilibrium, does not
imply that a stable state (crystal) does not exist. The fact that the material
does not relax towards it but stays out of equilibrium, spending a huge amount

4In a magnetic system with Ising symmetry, a phase transition occurs to a phase where the
magnetization is either “up” or “down.” Broken ergodicity means here that the transition
between these two states takes an enormous time, so it does not occur in practice. In glasses
a similar phenomenon occurs, though it is much softer, and a process which would take a
“too long time” in one experiment, may still be achievable in another setup.
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of time exploring the phase space depends on the random initial conditions
in which the sample is prepared. The resulting very slow relaxation is called
either annealing, if it is externally driven, or aging, when it is a spontaneous
phenomenon. All of Sec. 1.3 is dedicated to the aging phenomenon. The
properties of the glass, therefore, strongly depend on its age and history, i.e.,
on the waiting time (tw) elapsed since the preparation of the sample till the
beginning of the measurements, on what happened to the system during tw
and on the preparation itself (see Figs. 1.4 and 1.5).

In general, the location of the empirical glass transition temperature Tg de-
pends on the cooling rate, the pressure and the composition, but also on the
experimental conventions adopted for its operative determination. Indeed, a
convention has to be established to fix the proper cooling and heating rates
since the glass transition is kinetic in origin. Moreover, the choice of a given
susceptibility to refer to for response measurements is made by convention,
since the behavior of the loss parts of different activities (dielectric, shear,
thermal or compression) versus mobility is not unique. Finally, a further
convention identifies which point of the smeared vitrification step, in specific
heat, one has to adopt, because no true cusp, strict discontinuity or diver-
gence, occurs in the curves.

In practice, e.g., in silica-based glasses, the empirical glass temperature Tg is

usually determined making use of a very slow cooling rate (Ṫ = 10K/min) for
which in a rather small transition interval, of O(10K), the viscosity increases
up to 15 orders of magnitude until it reaches 1013 Poise, and the equilibration
time is of the order of 102 s. It is related to the slowest possible experiment
one can realistically carry out.

Around Tg, any observation time sets the timescale between the relatively
fast β processes and the practically quenched α processes. In other words, for
T ∼ Tg, the relaxation time of α processes becomes exceedingly long with re-
spect to common experiments, so long that they will never reach equilibrium
on laboratory timescales (for T ≪ Tg not even on geological timescales [Zan-
otto, 1998]). Many more local minima of the free energy landscape appear and
the deepest local minima, corresponding to metastable states, become sepa-
rated on the time scale of the experiment. The system has a very slow aging
dynamics, proceeding by activated processes rather than thermal fluctuations
(see later, Sec. 1.4).

1.2 Strong and fragile glass formers: laws for structural

relaxation

The relaxation time of a glass-forming liquid depends on temperature and, to
a certain approximation, is related to viscosity in a proportional way, following
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the mechanical Maxwell equation

η ∼ Ggτeq (1.1)

where Gg is the infinite frequency shear modulus (∼ 109-1012 Pa).
Certain materials exhibit an Arrhenius behavior of viscosity for temperature

above Tg:

η(T ) = η0 exp
A

T
(1.2)

where η0 is the limiting high temperature viscosity, of the order of 1 cP for
a large number of substances. These show a high resistance to structural
changes, usually small jumps of specific heat (with the exception of cases
where hydrogen bonds play a major role), their vibrational spectra and radial
distribution functions show little reorganization in a wide range of temper-
ature and the potential energy hypersurface (or landscape) has few minima
and high barriers. They are called strong liquids. Examples of strong glass
formers are silica, germanate dioxide (GeO2) and open network liquids such
as boron trioxide (B2O3).

In other materials, instead, the viscosity temperature dependence presents
a large deviation from the Arrhenius law and the viscosity pattern is
phenomenologically reproduced by the so called Vogel-Fulcher (VF) law:5

η(T ) = η0 exp
B

T − T0
(1.3)

where B and T0 are fit parameters, whose possible physical meaning will be
discussed in the following section in connection with configurational properties
of glass formers. These materials are referred to as fragile liquids. In fragile
glass formers the microscopic amorphous structure at Tg can be easily made
collapsing and, with little thermal excitation, it is able to reorganize itself in
structures with different particle orientations and coordination states.

The term fragile (or strong) does not refer to a particular brittleness of the
material because of a crush or a fall. Indeed, one usually refers to fragile and
strong glass-forming liquids, as well. The word rather qualifies the easiness
(respective difficulty) of the system to change from a glassy state to another
glassy state energetically degenerate. In strong glasses large cooperative re-
arrangements responsible for this glass-to-glass transformation are more rare
than in fragile ones. In terms of the free energy landscape in which the glassy
system is evolving at a given temperature, the fragile glass presents many
more degenerate minima, separated by sensibly smaller (though large) barri-
ers than the strong glass, see Fig. 1.6. It is the shape of the configurational
space that matters in this classification. On the contrary, the structure of

5A more proper name would be Vogel-Fulcher-Tammann-Hesse law [Vogel, 1921; Fulcher,
1925; Tammann & Hesse, 1926]. In this book, however, we will use the shorter and most
used inscription VF.
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FIGURE 1.6

One dimensional pictures of the free energy landscape F in fragile and strong glass

formers. The horizontal axis represents the one dimensional projection of the con-

figurational coordinates of the degrees of freedom {r}. The crystal global minimum

is omitted.

intermolecular forces and the geometrical properties of the amorphous mate-
rial in real space determining the resistance to cracks do not play any specific
direct role in the strong/fragile classification.

In fragile glasses, usually big jumps of specific heat occur and the increase
in number of apart valleys of the free energy landscape very much increase in
order to account for the large configurational entropic contribution arising in
correspondence with the difference in specific heat. As we said already, rela-
tively low free energy barriers, in comparison with those occurring in strong
glass landscapes, are present between minima. We will study in Sec. 1.6 how
a more quantitative classification can be made for the degree of fragility of a
glass former.

Some examples of fragile glass formers are K+Ca2+NO−
3 , K+Bi3+Cl−, OTP,

toluene and chlorobenzene. In general these are liquids characterized by sim-
ple nondirectional Coulomb interactions or, else, van der Waals interactions
(e.g., for the aromatic substance OTP [Hodge & O’Reilly, 1999; Moynihan
& Angell, 2000]). The most fragile substances known are polymeric [Struik,
1978].6

The parameter T0 entering Eq. (1.3) depends on the material and, in prac-
tice, even on the range of temperatures in which the fit is performed. At this
level, it is not a physical parameter. In general, in quantitative analysis of
the relaxation time dependence on temperature, one has to be very precise

6In specific model cases (binary mixtures) the glassy state can even be lower in energy than
the crystalline one and is thermodynamically stable with respect to any crystal configura-
tion, see, e.g., [Kob & Andersen, 1994; Parisi, 1997b] for Lennard-Jones and soft spheres
binary mixtures, respectively, or Secs. 2.8, 7.3 and Appendices 6.A.1, 6.A.2.
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in identifying physically robust parameters. The region under investigation
has to be carefully chosen in order to find a meaningful interpretation for fit
parameters and a number of reasonable conventions has to be adopted. In
particular, T0 is often identified with the ”Kauzmann transition” temperature
that will be discussed in section 1.4.2.

Also a generalized VF law is used in fitting experimental data for the vis-
cosity pattern of glass-forming liquids:

η(T ) = η0 exp

(
B

T − T0

)γ

(1.4)

The exponent γ is usually set equal to 1, and an argument for setting γ = 1
was originally given by Adam & Gibbs [1965]. An alternative explanation for
this choice is provided in the framework of the so-called random first order
transition (RFOT) theory of Kirkpatrick et al. [1989] to which Sec. 7.5 is
dedicated. However, these studies do not exclude exponents γ 6= 1, always
compatible with data, merely affecting the width of the fitting interval. On
the contrary, analytic approaches [Kirkpatrick & Wolynes, 1987b; Parisi, 1995]
yield γ = 2 in three dimensions. Though, usually, the estimated value of the
exponent is γ ≥ 1, glass formers also exist for which Eq. (1.4) fits the viscosity
data with γ < 1. The same broadening can be implemented for strong glass
formers, for which a generalized Arrhenius relaxation law, i.e., Eq. (1.4) with
T0 = 0, can be used to properly fit the data of undercooled liquids, see,
e.g., Bässler [1987]. In one of the exactly solvable glass models that we will
treat in Chapter 3, the exponent γ will simply be a model parameter, so that
this standard picture can be investigated and qualitatively different dynamic
regimes can be associated to different values of the exponent.

In Chapter 7 we will discuss more intrinsic theoretical explanations for the
above-mentioned behaviors of viscosity and relaxation time.

1.3 Aging

The aging phenomenon is the property of a slowly relaxing system to depend
on its history when subjected to a certain class of measurements [Struik, 1978;
McKenna, 1989; Barrat et al., 1996]. This is strictly connected with the weak
ergodicity breaking taking place in glassy, slow relaxing systems, evolving
towards equilibrium structures on timescales longer than the characteristic
timescales of the experiments. In other words, aging is a consequence of the
fact that glassy systems are out of equilibrium even on macroscopic timescales.
The aging regime is, nevertheless, not the most general out-of-equilibrium
situation. In this dynamical regime a certain degree of universality in the
nonequilibrium behavior can still be identified. In particular, in mean-field
systems even if in the aging regime the dynamics of two time observables, such
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as correlation functions and susceptibilities, is not time translational invariant
(TTI), one can see that a kind of covariance yet occurs [Bouchaud et al., 1998].
Namely, after a transient, the dynamic evolution of a glassy system of age tw
is described by the same equations characterizing a system whose age is a
fraction (or multiple) of tw up to a rescaling in time ((t− tw)/tw like).7

Before reaching the aging regime, when the time t, elapsed since the begin-
ning of the experiment, is much shorter than tw, we have what is sometimes
called a stationary regime. It is the earliest regime of the dynamics, in which
the system evolves towards the highest metastable state available and, from
the point of view of the measured observables, it seems like relaxing to equi-
librium. The system, instead, is evolving “rapidly” towards a metastable
state. Since t − tw ≪ tw, it does not have enough time to leave this state
and to start exploring the rest of the configuration space, so it behaves like
if it was thermalizing to a ground state. Experiments on glycerol [Grigera &
Israeloff, 1999] have shown that already for t− tw ∼ 10−5tw this initial regime
is overcome (see also Sec. 2.8).

In the opposite time limit, the aging regime is overcome when the observa-
tion time becomes so long that the whole configuration space of the system can
be visited according to the equilibrium Boltzmann-Gibbs probability distri-
bution. This very long timescale (geologically long, for what concerns glasses
at room temperature) is what we call the ergodic time terg.

If we carry out a response experiment, that is if we weakly perturb the
glassy system at a “waiting” time tw with an external field and we measure
the response (activity) of its conjugated variable at some later time t, we ob-
serve that aging takes place. In addition to what is displayed in the case of
externally induced, irreversible response function, aging occurs, as well, in
the time correlation functions of thermal fluctuations (though in qualitatively
different ways). This makes the predictions of the fluctuation-dissipation the-
orem (FDT) [Kubo, 1985] not reliable any more. One speaks sometimes of
“violation” of FDT, even though the theorem has no reason to hold since
its hypotheses (based on the presence of local equilibrium) are not fulfilled.
Yet, one is free to define a fluctuation-dissipation ratio (FDR) between the
derivative of correlation function and the response function, as a measure of
the distance of the system from equilibrium. In the aging regime taking place
in slowly relaxing systems, such a ratio indicates some kind of effective tem-

perature (different from the heat-bath temperature at which the experiment is
carried out) at which the system evolves as if it were at equilibrium. We will
more carefully analyze the meaning of this statement in Chapter 2. This pos-
sibly holds exclusively on a given time window, defined as the period of time
during which the relaxation of fluctuation and response is practically indepen-
dent from the history, i.e., they are roughly constant. The lower the heat-bath

7In literature sometimes t denotes the actual age of the system, i.e., t > tw. We use this
convention in the book. Some other times t stands for the time elapsed since the experiment
began (at tw) and corresponds to what we call here t − tw.
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temperature, the longer the time window (“time sector”). Whether and up
to which extent this ratio can be considered as a temperature in the proper
calorimetric sense, will be the subject of many of the following chapters.

1.3.1 Time sector separation

Let us call t0 the characteristic time of microscopic fast mechanisms, usually of
the order of picoseconds. If, as it seems from the analysis of the aging regime
in glasses, there occur universal properties when it is both t0 ≪ tw ≪ terg
and t0 ≪ tw + t ≪ terg we can assume a separation of timescales on which
physical processes take place in the very slow relaxation dynamics. In general
one can describe the time covariance mentioned above substituting the simple
scaling (t − tw)/tw with a generic form h(t)/h(tw) [Cugliandolo & Kurchan,
1994; Bouchaud et al., 1998], where h is a generic function determining the
dynamic evolution of out-of-equilibrium quantities inside a given time sector
(i.e., for a given timescale, separated from the others). It is the called the time

sector function and represents a sort of effective age of the out-of-equilibrium
system. Indeed, if one expands h(t) ≃ h(tw) + (t − tw)h′(tw) for small t −
tw, a scaling (t − tw))/Tw is formally recovered, where Tw ≡ h(tw)/h′(tw) is
the effective age. Out of equilibrium, the time translational invariance does
not hold anymore and the two time functions (correlation and response) can
display a rich structure for t, tw ≫ t0. If we make the assumption that different
processes act on different, well-separated, timescales this would yield multiple
scaling structures describing the evolution of two time observables on different
time sectors.

These multi-scaling forms can be described by different time sector func-
tions h(t). The dynamical equations in this approach [Cugliandolo & Kur-
chan, 1993, 1994; Bouchaud et al., 1998, 1996] become invariant under any
monotonous reparametrization t → h(t). The function h(t) can, in principle,
be determined only by matching with the short time solution (t ∼ t0) or by
numerical simulations of dynamics with two times. Examples for time sector
functions and effective ages are:

h(t) ∼
(
t

t0

)θ

→ Tw ∼ tw (1.5)

for the spherical p-spin model [Cugliandolo & Kurchan, 1993, 1994] and the
trap model [Bouchaud, 1992]. This is also the time sector function behavior
that we will find in Chapter 3, for the harmonic oscillator class of models where
θ = 1/2 above zero temperature,8 for the strong glass case or for the fragile
glass case above the Kauzmann temperature (see Sec. 1.4.2). In the latter
case the aging regime can be probed also below the Kauzmann temperature
and there θ is model dependent: in particular, it is inversely proportional to

8At exactly zero temperature it is h(t) ∼ t/t0(log t/t0)2.
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the generalized VF exponent γ, cf. Eq. (1.4). For the backgammon model,
analyzed in Chapter 4, it is θ = 1/2.

Other, more general h-laws can be devised, as for instance

h(t) ∼ exp

[

1

1 − µ

(
t

t0

)1−µ]

→ Tw ∼ tµwt
1−µ
0 (1.6)

introduced by Struik [1978] to account for aging experiments in polymer
glasses or

h(t) ∼ exp [log(t/t0)]
ν → Tw ∼ tw

ν [log(tw/t0)]
ν−1 (1.7)

(see [Vincent et al., 1997]). The last two cases reduce to the first one when
µ = 1 or ν = 1.

For the sake of completeness, we also report here the existence of different
kinds of aging dynamics. One has full aging when for both tw, t ≫ t0 the
system forgets the value of t0. Sub-aging takes place when the effective aging

above examples [Rinn et al., 2000]. Eventually, super-aging occurs when the
full aging scaling is broken and the value of t0 is important also for tw → ∞.

et al. [1998] where the aging covariance has been extensively investigated.

We also mention that, even if the time sector function is a valuable the-
oretical tool, it is, in practice, very difficult to distinguish between different
forms of h(t): in numerical simulations because of possible re-equilibration
due to finite fields or to finite size effects, and in real experiments because
of the rather hard task of separating the asymptotic behavior of two time
observables from sub-asymptotic contributions.

1.4 Configurational entropy and the Kauzmann paradox

Upon cooling a glass-forming liquid, a transition occurs to a glass phase of
smaller specific heat (caused by the fact that slow modes no longer contribute
to it), see Fig. 1.4, and lower entropy and, thus, to a phase of larger free
energy. Why then is the material in the glass phase?

This happens because the condensed amorphous system has lost entropy by
having to select one out of the many equivalent metastable states available.
The entropy contribution accounting for such a large number of practically
equivalent selectable physical realizations is called configurational entropy or
complexity.

time is smaller than the waiting time, for instance for µ < 1 or ν > 1 in the

The reader can refer to the reviews of Vincent et al. [1997] and Bouchaud
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1.4.1 Kauzmann paradox

In 1948 Kauzmann pointed out the paradox that in some glassy materials
the difference between the liquid entropy and the crystal entropy (i.e., the
entropy of the most organized state for the system), would extrapolate to
zero at temperatures definitely above zero.9 To circumvent this unphysical
result, he proposed a scenario in which the glass was the only experimentally
attainable form of supercooled liquid at these temperatures, therefore inhibit-
ing any reasonable, meaningful extrapolation of data relative to the liquid
arbitrarily below the glass temperature Tg. He called the temperature below
which no distinction between (supercooled) liquid and glass could ever occur,
not even for experiments far longer and accurate than the feasible ones, a
“pseudo-critical” temperature [Kauzmann, 1948]. We will refer to it as TK ,
the Kauzmann temperature. Some years later, Gibbs & Di Marzio [1958] pro-
posed, instead, the occurrence of a true thermodynamic phase transition at
the temperature TK where the difference between the entropy of the under-
cooled liquid and the entropy of the vibrational modes of the crystal that
could in principle be formed (the residual entropy), is supposed to vanish.
This difference is usually referred to as excess entropy. Besides the vanishing
of excess entropy, such a thermodynamic transition would be characterized
by a rigorous discontinuity of the specific heat and by the mathematical di-
vergence of the relaxation time.

If compared with the temperature T0 at which the viscosity would diverge,
according to a fit by means of the VF law, cf. Eq. (1.3), the ratio TK/T0

stays in a range between 0.9 and 1.1 for a huge variety of amorphous systems
[Angell, 1997]. The supposed divergence of the viscosity at T0, moreover, has
been used as an argument in favor of the occurrence of a thermodynamic
transition at that temperature, enforcing the identification T0 = TK . As
already noticed by Kauzmann for boron trioxide, however, in some glasses
such as window glass, germanate oxides and others mentioned in Sec. 1.1, the
excess entropies usually do not extrapolate to negative values: no Kauzmann
transition occurs at finite temperature. Indeed, in the latter case, T0 = 0 and
the relaxation time happens to follow the Arrhenius law, Eq. (1.2), instead of
the Vogel-Fulcher one. These glass formers are those belonging to the strong
glass group, while the VF law is a feature of fragile glass formers.

The excess entropy is somewhat connected with the entropy contribution
induced by all the configurational states that the system at low temperature
(but above the Kauzmann temperature) can visit, even though it still con-
tains contributions from fast, equilibrated processes occurring also in the solid
glass. Already around the dynamic critical temperature Td the space of states
changes qualitatively with respect to the high temperature phase, character-
ized by only one relevant equilibrium state at any timescale (metastable states

9Kauzmann also considered other thermodynamic variables, such as the internal energy.
For the present discussion, they are less relevant.
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can also be there, but they are separated by too small barriers to be of any
relevance for hindering the dynamics of the system even at short experimental
times). Different local and global minima appear in the thermodynamic po-
tential corresponding to different metastable and stable states, respectively.
The configurational entropy is the logarithm of their number.

1.4.2 Static phase transition and Kauzmann temperature

If the supposed identification between excess entropy and configurational en-
tropy holds, the temperature TK is, then, defined as the point of vanishing
configurational entropy; this corresponds to a scenario in which the system
is stuck forever in one state, an ideal glass state. Often, after the theory of
Gibbs & Di Marzio [1958], one assumes that a thermodynamic phase transition
occurs at this temperature, although this fact is hardly checkable in experi-
ments. From an experimental point of view, TK would be the glass transition
temperature Tg in an idealized adiabatic cooling procedure, at which a real
discontinuity of specific heat would appear and the viscosity would diverge.
This prediction is impossible to test experimentally, since the relaxation time
is too long to actually perform such an experiment. Nevertheless, it has a
mean-field analogue in spin-glass models (i.e., models with ad hoc quenched
disorder) whose frozen phase is organized in a two level hierarchy of metastable
states [Kirkpatrick & Thirumalai, 1987b], very similar to the one conceived
for the glass. Moreover, mean-field theories for more realistic glass models
that assume the existence of a Kauzmann transition, provide interesting re-
sults for the glass former behavior at higher temperature in agreement with
the standard knowledge [Mézard & Parisi, 1999b], and allow for an analysis
of the glass state below the Kauzmann temperature.10 Eventually, numerical
simulations of widely investigated computer glass models, such as soft spheres
and Lennard-Jones binary mixtures, show that they display a nonzero Kauz-
mann temperature [Coluzzi et al., 1999, 2000a]. We will consider these models
in Chapter 6 (see Appendix 6.A) and we will analyze the mean-field theories
(both with and without quenched disorder) in Chapter 7.

We notice that, contrary to what happens in ordinary continuous phase
transitions, at this candidate phase transition the divergence of the relax-
ation time would not be algebraic in temperature, but exponential, and no
susceptibility diverges at the critical point.

1.4.3 “Classic” versus “modern” configurational entropy

Traditionally, the configurational entropy Sc was defined as the logarithm
of the number of different configurations. Indeed, for any molecular gas,
the kinetic motion can be easily integrated out, leaving the configurational

10The existence of TK also will be implemented in one of the models with facilitated dy-
namics discussed in Chapter 3.
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partition sum as the remaining, hard part. As an example, we may mention
the Gibbs & Di Marzio [1958] polymer model, where the configurational sum
involves summing over different configurations of polymers of arbitrary length.

In the modern view, that, among others, is reflected in the various models
and theories to be discussed later on, configurational entropy is the part of
the entropy arising from modes that have a characteristic time larger than the
observation time. This distinction automatically arises in mean-field models,
such as the p-spin model, in their dynamical regime, as initially devised by
Kirkpatrick & Wolynes [1987a], and it was proved to be exportable to glass
systems in the mean-field approximation [Monasson, 1995; Mézard & Parisi,
1996; Mézard & Parisi, 1999b; Nieuwenhuizen, 1998a].11

With this definition of configurational entropy in mind, we shall continue
to discuss historical issues such as the Adam-Gibbs (AG) relation (Sec. 1.5),
having stressed that the traditional approach can be tricky and lead to am-
biguous, or wrong, prediction. Looking back at the historical situation, say
for the Gibbs-Di Marzio model, one can only wonder why, e.g., polymers with
just a few units, so small that they have a rapid dynamics, have ever been
thought to have any bearing on glassy behavior. Indeed, only the part over
large polymers, having an equilibration time at least comparable to the
experimental time, should be relevant for slow behavior and, thus, counted
in the configurational entropy. The Gibbs-Di Marzio evaluation of the “clas-
sical” configurational entropy for a compressible polymer melt [Gibbs, 1956;
Gibbs & Di Marzio, 1958; Di Marzio & Gibbs, 1958], indeed, showed up to be
inconsistent with the results of numerical simulation of polymer melts, even
to the point that the numerical configurational entropy, as opposed to the
Gibbs-Di Marzio one, does not vanish at any finite temperature [Wolfgardt
et al., 1996].

A related problem comes from the identification of the configurational en-
tropy with the excess entropy ∆S = Sliq − Scryst, where the temperature
behavior of the liquid entropy is extrapolated to temperatures below Tg. This
relies mainly on two hypotheses: (i) the entropic contribution of the fast vibra-
tional degrees of freedom is equal in the undercooled liquid and in the crystal,
so that they cancel out in the difference and that only the contribution of
well-separated states remains; (ii) in an undercooled liquid it is possible to
separate the vibrational contribution from the configurational one.

The first hypothesis is violated, see, e.g., the experiments by Goldstein
[1976]. Different contributions to the excess entropy, besides the configura-
tional one, are indeed, identified, as the system changes from one configu-
rational state (i.e., well-separated from the others, in a deep basin of the
thermodynamic potential) to another one energetically degenerate: (a) a con-
tribution due to the change in the degree of anharmonicity, (b) a contribution

11The distinction between equilibrium entropy, related to fast processes, and configurational
entropy, related to slow processes, will be fully incorporated in our later discussion of
solvable glassy systems, e.g., in Chapters 3, 4 and 5.
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coming from the variation in the number of fast degrees of freedom, and (c) a
last contribution related to the change in vibrational frequencies. Eventually
one can conclude that the excess entropy, that actually is the only experimen-
tally measurable “configurational” quantity, is only partially related to the
configurational entropy, and does not coincide with it.

The second hypothesis corresponds to the assumption that the free energy
landscape of the undercooled liquid is very similar to the one of the vitrified
solid, even if there are no well-separated metastable states and the vibra-
tional motion mixes with the diffusive motion. What actually happens is
that molecules do vibrate but among ever-changing neighbors. In the glass-
forming liquid above Tg there is only one global minimum of the free energy
and this kind of entropy decomposition is an assumption with no topographic
support.12

1.4.4 An intrinsically dynamic “state” function

The just-defined configurational entropy is intrinsically a dynamic quantity
and depends on the experimental timescale. The total entropy of the system
will receive contributions both from the entropy of fast (equilibrated) processes,
accounting for all configurations visited by the system in the time it has at
its disposal, and from the configurational entropy, accounting for all those
configurations hidden because the system has fallen out of equilibrium. As
the observation time increases - at fixed thermodynamic parameters - the lat-
ter will decrease, since larger regions of the phase space will be reached and
will contribute to the entropy of fast processes. What happens in glasses, is
that even for extremely long, say “geological” or inconceivable (it is the same
for human) times, the configurational entropy still yield a finite contribution,
connected to the particular structure of the FEL.

In fragile glasses, as the temperature decreases, Sc tends to zero at some
temperature below any experimentally realizable Tg but strictly above zero
and apparently independent from the observation time (as far as it is texp ≪
τeq). This is called the Kauzmann temperature and, when the system is cooled
down across TK , the conjecture is made that it ends up in one stable state
and cannot move to another one even in an infinite time, terg = ∞. The only
contributions to the total entropy will be, thus, given by the configurations
belonging to the ergodic component reached by the system at TK . In other
words, in this framework, the system is thought to undergo a thermodynamic
phase transition.13

12The potential energy landscape approach of Chapter 6 is, actually, based on this assump-
tion. Even though not supported by direct observation, the analogy between undercooled
liquid phase and relative glass phase is a source of many interesting analyses and predictions
in numerical simulations of glass models.
13The temperature TK was initially defined as the temperature at which ∆S extrapolated
to zero [Kauzmann, 1948], whereas, now, we identify the Kauzmann point as the one at
which Sc(TK) = 0 and a phase transition occurs [Di Marzio & Gibbs, 1958]. Even though
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The rare fluctuations making the system pass from one glassy metastable
state to another one, are the activated processes. As the experimental timescale
grows in some order of magnitude, the subset of the fastest processes “acti-
vated” in the shorter experiment, will simply consist of equilibrium processes.
One can argue that the configurational entropy accounts for the slow degrees
of freedom, whereas the equilibrium entropy takes into account the fast ones.
The boundary between slow and fast and, therefore, between what contributes
to equilibrium entropy and what contributes to configurational entropy, is,
once again, established by our observation time.

If this picture seems too “dynamic,” or slippery, one can otherwise start
from mean-field theories where “meta”-stable states are actually eternal and
nothing depends on their lifetime (it is infinite and that is it). In these theo-
ries, at Td, dynamic arrest takes place [Götze, 1984; Kirkpatrick & Thirumalai,
1987a; Crisanti et al., 1993; Kurchan et al., 1993] and the system gets stuck in
the basin of attraction of the metastable state to which its initial condition be-
longs. The arrest occurs because the barriers between the deepest metastable
states are of the order of the size N of the system and, therefore, diverge in the
thermodynamic limit. Even though global minima, corresponding to thermo-
dynamic stable states, exist, in the mean-field approximation of model glasses,
they cannot be reached by any dynamic evolution because the probability of
being attracted by one of the metastable states at higher free energy is prac-
tically one. The activated processes are completely absent and we have true
ergodicity breaking, unless small systems (N ≪ 1023) are considered.

In the thermodynamic limit of mean-field models, the configurational en-
tropy is, then, defined as the logarithm of the number of ergodically separated
states. That is, it counts the alternative possible histories of the system.
Such a definition, though operationally requiring many different equivalent
experiments, is however very clear from a theoretical point of view and does
not depend on any timescale. The fast processes are those responsible for
changes inside an ergodic sector (and contribute to the equilibrium entropy),
whereas the slow processes are simply stuck. The configurational entropy can
be counted with no reference to operational parameters and conventions, it
being the entropy determined by the number of states existing in the range
of T ∈ [TK < T < Td].

1.5 Adam-Gibbs entropic theory

Below the dynamical crossover region, local thermal motion cannot maintain
molecular mobility when the free volume available drastically decreases. This

it is often assumed that ∆S 6= Sc the two situations are conceptually different.
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means that cooperation between molecules is necessary to continue evolving
towards equilibrium. When the free volume reduces, the motion of a single
molecule is strongly influenced by the motion of the others: the rearranging
movement of one particle is only feasible if a whole cooperative rearranging
region (CRR) of molecules contributes to the motion. In many materials
CRRs are of the order of nanometers [Matsuoka, 1992].

Adam & Gibbs [1965] considered CRRs as independent subsystems that can
be analyzed by statistical mechanics. At fixed temperature and pressure (we
will, therefore, consider enthalpy H, instead of energy in the Gibbs measure),
the partition function of all configurations of particles inside a subregion of
size n will be given by

Z(n) =
∑

E,V

g(E, V, n) e−βH(E,V ) (1.8)

where β = 1/(kBT ), kB = 1.3806505 × 10−23 Joule/Kelvin is the Boltzmann
constant and g is the density of configurations of n particles having energy
E and volume V . Adam and Gibbs also defined another partition function
exclusively counting those configurations of n particles actually allowing the
subsystem to undergo a complete rearrangement: Zr(n). The frequency by
which a rearrangement of the whole subregion occurs is, then, proportional to
Zr/Z. Considering the Gibbs free energy G = − logZ(n)/β, and its analogue
for the free energy of the rearranging configurations, Gr, at fixed temperature,
µ = G/n is the chemical potential.

The probability that a subsystem with n particles makes a cooperative
rearrangement at temperature T is, thus,

w(n, T ) ∝ e−βn∆µ (1.9)

where ∆µ = µr − µ. The structural relaxation time of the whole system is
proportional to the inverse of the average of the above probability.

Because of the assumed independence of CRRs the total number of particles
can be written as

N =
N∑

n=1

n N (n, T ) (1.10)

where N (n, T ) is the number of subsystems of size n at temperature T . Notice,
that small sizes also are considered in the sum, whereas it is unconceivable that
the rearrangement of small regions can play any role in the global structural
relaxation of the glass former. Hence, a minimal size for cooperativeness, n⋆,
is introduced, and the average of Eq. (1.9) reads

w̄(T ) =
1

N

N∑

n=n⋆

n N (n, T ) w(n, T ) (1.11)

∼ n⋆N (n⋆, T )e−βn
⋆∆µ

N

N∑

n=n⋆

n N (n, T )

n⋆N (n⋆, T )
e−β(n−n⋆)∆µ
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At this point, the extra assumption is done that the number of CRRs, N ,
practically does not depend on its size n.14

At low temperature, β∆µ is large, implying 1 ≫ e−β∆µ ≫ e−2β∆µ, so that
we can keep the first term in the sum in Eq. (1.12), corresponding to CRRs
of size n = n⋆. This way, the relaxation dynamics of the glass turns out to be
dominated by the smallest admissible CRRs, i.e., the average rearrangement
probability is

w̄(T ) ∼ n⋆N (n⋆, T )

N
e−βn

⋆∆µ (1.12)

One has, eventually, to estimate such a minimal threshold size. It can be
obtained by considering the configurational entropy Sc of the whole system
and the number of subsystems containing n⋆ particles, N (n⋆) = N/n⋆. The
configurational entropy per CRR is s⋆c = Sc/N (n⋆), and this leads to15

n⋆ =
Ns⋆c
Sc

(1.13)

so that the relaxation time can be expressed in terms of the configurational
entropy as

τeq ∝ exp

{
C

TSc(T )

}

(1.14)

This is the Adam-Gibbs (AG) relation connecting the dynamical relaxation
through CRRs to the configurational entropy Sc. The parameter in Eq. (1.14),
C = Ns⋆c∆µ/kB , is proportional to the variation of Gibbs free energy when
computed on a sub-ensemble of rearrangeable configurations (“free energy”
Gr) rather than on the whole ensemble of configurations (free energy G): it
is, thus, an extensive quantity proportional to Gr −G = n⋆∆µ.

In practice, the variation of Sc with temperature is often estimated by inte-
grating cP /T , where cP is the specific heat at constant pressure. As we have
abundantly stressed in Sec. 1.4 this is the excess entropy that contains con-
tributions from fast processes too, thus, leading, in our view, to approximate
results, whose reliability must be checked a posteriori.

Even though the configurational entropy in Eq. (1.14) is not well defined
and strong, even unrealistic, assumptions have been made in the derivation
of the AG relation (e.g., the assumption that the volume of the system is
irrelevant for the number of feasible CRRs!), the AG prediction has been
often confirmed by experiments and the entropy theory is still one of the
best recognized theories in glass physics and chemistry. This is related to its

14We notice that this implies the quite counterintuitive effect that increasing the volume of
the system at constant density the number of CRRs does not increase. We, however, stick
here to the original derivation of the Adam-Gibbs relation, postponing to a later part of
the book (Chapter 7, Sec. 7.5) a critical discussion of the theory.
15The number of configurations in a subsystem was taken as equal to 2 by Adam & Gibbs
[1965], implying s⋆

c = kb log 2.
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exponential shape, that well describes the very slow relaxation of glasses. We
will reconsider the derivation of the AG relation when we present the random
first order phase transition theory of Kirkpatrick et al. [1989] and its recent
developments (see, e.g., [Bouchaud & Biroli, 2004; Lubchenko & Wolynes,
2007]) in Sec. 7.5.

1.5.1 Absence of flow in cathedral glasses

Several scholars have estimated the timescale for flow of glasses. This is
easily found to be a geological timescale, or even larger than the age of the
Earth. To mention one example, Zanotto [1998] discusses the problem and
studies the relaxation times starting from the Maxwell equation Eq. (1.1),
τeq(T ) ∼ η(T )/Gg(T ).

Using a value for the “equilibrium viscosity” of the supercooled melt ex-
trapolated to room temperature, Zanotto arrives at τ ∼ 1032 year. But this
should be seen as an upper estimate. Together with Gupta [Zanotto & Gupta,
1999] he writes “additional remarks,” where he employs arguments from the
Adam-Gibbs theory. The viscosity is then

η = η0e
C/(ScT ) (1.15)

and the configurational entropy is

Sc(Tf ) =

∫ Tf

T0

dT
∆cp
T

(1.16)

Here Tf is the fictive temperature, introduced by Tool [1946] and formally
defined by Narayanaswamy [1971] as discussed in Sec. 2.2. For the present
example Tf can be considered as a parameter stating how far from equilibrium
is the solid glass with respect to the equilibrium it would have attained if
extrapolated from the liquid phase. It has to be compared with the heat-bath
temperature T .

It was shown by Richert & Angell [1998] that the variation of specific heat,
∆cp, in the region above Tg is well approximated by B/T , where B is a
constant, so that Sc(Tf ) ∼ ∆cP (T )(Tf/T0 − 1) ∼ B(Tf − T0)/(TfT0) and

η = η0

{
CTK
B

Tf
T (Tf − T0)

}

(1.17)

For soda-lime-silica plate glass Scherer [1986] reports

η0 = 9 × 10−6 Pa s, Q =
CTK
B

= 14 900 K, T0 = 436K (1.18)

Using T = 300K, Tf = 816K and Gg = 30 GPa, this leads to the estimate
τeq(Tf ) = 2 × 1023 years, though considerably smaller than previous 1032

years, but still much longer than 1010 years, the age of the universe. In
particular this implies that the presumed flow of cathedral glasses does not
occur on human timescales, their eventual destruction being due to contingent
processes such as crizzling (cf. Introduction).
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1.6 Fragility index

We have seen that Arrhenius glass formers are said to be strong, whereas glass
formers whose viscosity diverges as a VF law are called fragile. We have also
understood that the adjective fragile is not referred to the material considered
in the real space, but to its representation in the configurational space of the
degrees of freedom (see discussion in Sec. 1.2). Now, one can wonder about
the possibility of quantitatively describing the degree of fragility of a glass
former [Angell, 1985], for instance starting from the fit parameters of the
temperature laws expressed by Eq. (1.3) for the relaxation time or for the
viscosity (kinetic definitions of fragility).

The kinetic fragility describes how fast the relaxation time increases with
decreasing temperature as T → Tg. In strong glasses, τeq has an Arrhenius-
like dependence on T , that is the slowest increase detected in glass formers
approaching Tg. Since τeq is not easily accessible experimentally (and it can
turn out to be dependent on the technique adopted to measure it), the fragility
is usually experimentally inferred from viscosity measurements. Viscosity is
related to the relaxation time by the Maxwell relation, Eq. (1.1), involving the
infinite frequency shear modulus Gg as proportionality factor. For tempera-
tures around Tg, however, as we mentioned in Sec. 1.2, Gg strongly depends
on the material and its value can vary on about three decades, implying that
the relaxation time and the viscosity definitions do not coincide.

A further definition can be determined by means of the temperature de-
pendence of the mass diffusion coefficient. Indeed, according to the Stokes-
Einstein relation,

D = kBT/(6πrη) (1.19)

D/T is inversely proportional to the viscosity. We stress that this relation is
meant to be valid if the system is at equilibrium and, therefore, might not hold
when the system falls out of equilibrium, as in the present case approaching Tg.
Moreover, the hydrodynamic radius r can display a temperature dependence
varying from material to material. The mobility and the viscosity fragility
can, as well, be different. The reader can refer, among others, to the review
work of Ruocco et al. [2004] for a comprehensive and up-to-date description
of the state of the art of the studies on fragility.

One way of defining a fragility index K is, e.g., to rewrite Eq. (1.3) as

η = η0 exp
1

Kη(T/T0 − 1)
(1.20)

The larger Kη is, the more fragile the glass former. This is the global ki-
netic definition arising from the functional dependence of the relaxation on
temperature. Starting, instead, from the viscosity at a given value of the
temperature, without assuming any functional law, a local kinetic definition
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for the fragility can be devised [Angell, 1991]:

Kη,loc =
d log η(T )/η0

dTg/T

∣
∣
∣
∣
T=Tg

(1.21)

where η0 ∼ 10−3 Pa·s for the vast majority of liquids. This fragility takes
values going from Kη,loc ≃ 17 (strong glasses, Arrhenius viscosity behavior)
to, as far as we know, Kη,loc = 160 (for the tri-phenyl-phosphate). For a
rather recent and complete list see [Qin & McKenna, 2006].

Starting from the configurational space, considering the degrees of freedom
that freeze in as the thermal glass transition is approached, another way of
defining a fragility parameter is in terms of the configurational entropy, cf.
the AG relation, Eq. (1.14), as

Kc =
T TK Sc(T )

T − TK
(1.22)

where TK is the Kauzmann temperature introduced in Sec. 1.4.1. Actually,
this is the behavior assumed for the configurational entropy at low tempera-
ture in order to match the AG relation and the VF law and identify the fit
parameter T0 with the temperature at which the excess entropy vanishes.16

The definition is, therefore, global, based once again on a given functional
T dependence. The jump in specific heat (as well the jump of thermal ex-
pansivity and compressibility), see Fig. 1.4, is proportional to Kc: the larger
the variation, the larger the fragility. A local definition can be, otherwise,
expressed as in Martinez & Angell [2001]:

Kc,loc = Tg
d logSc(T )

dT

∣
∣
∣
∣
T=Tg

(1.23)

the relationship among the two is: Kc,loc = Kc/(TgSc(Tg)) − 1.

1.7 Kovacs effect

One memory effect that shows up in a one-time observable is the so-called
“Kovacs effect” [Kovacs, 1963], which manifests itself under a specific exper-
imental protocol. Even though more than forty years old this effect is still
the subject of many investigations, see, e.g., the recent works of [Bellon et al.,
2002; Berthier & Bouchaud, 2002; Buhot, 2003; Bertin et al., 2003; Cuglian-
dolo et al., 2004; Mossa & Sciortino, 2004; Arenzon & Sellitto, 2004; Aquino
et al., 2006a,b].

16Sc ∼ T − TK . In this context configurational and the excess entropy are thought to be
the same observable. Cf. Sec. 1.4.3 for critical discussion.
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FIGURE 1.7

A pictorial description of the Kovacs protocol. Starting from an equilibrium condi-

tion at T = Ti (step 1) at time t = 0, the system is quenched to T = Tl and let

evolve (step 2). In step 3, the temperature is switched to the final temperature Tf .

This is done at the time ta for which: V (ta; Tl) ≡ V̄ (Tf). In the frame, the typical

evolution of the volume V (t) at T = Tf , after the temperature switch, is illustrated.

Reprinted figure with permission from [Aquino et al., 2006a]. Copyright (2006) by

the American Physical Society.

In Chapter 3 we will implement the Kovacs protocol on the harmonic os-
cillator spherical spin model for fragile glasses that, in spite of its simplicity,
captures the phenomenology of the Kovacs effect and allows for a critical dis-
cussion on the validity of the definition of effective temperature in the time
regimes where memory effects take place in glasses.

The experimental protocol, as originally devised by Kovacs [1963], consists
of three main steps, reported in Fig. 1.7.

Step 1 The system is equilibrated at a given high temperature Ti.

Step 2 At time t = 0 the system is quenched to a lower temperature Tl, close
to or below the glass transition temperature, and it is left to evolve for
a time ta. One then follows the evolution of a given thermodynamic
variable. In the original Kovacs experiment this was the volume V (t) of
a sample of polyvinyl acetate.

Step 3 After the time ta, the volume, or other corresponding observable, has
reached a value which is, by definition of ta, equal to the equilibrium
value V̄ corresponding to an intermediate temperature Tf (Tl < Tf <
Ti), i.e., such that V (ta;Tl)) ≡ V̄ (Tf). At this time, the bath temper-
ature is switched to the final value Tf . The pressure (or corresponding
variable) is kept constant throughout the whole experiment.
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Naively one would expect the observable under consideration, after the third
step, to remain constant, since it already has reached its equilibrium value at
time t = t+a . The system as a whole, however, has not equilibrated yet and so
the observable goes through a non-monotonic evolution before relaxing back
to its equilibrium value, showing the characteristic hump plotted in the frame
of Fig. 1.7, whose maximum increases with the magnitude of the final jump
of temperature Tf − Tl and occurs at a time which decreases with increasing
Tf − Tl.





2

Two temperature thermodynamics

Puisque tout rétablissement d’équilibre dans le calorique peut
être la cause de la production de la puissance motrice, tout
rétablissement d’équilibre qui se fera sans production de cette
puissance devra être considéré comme une véritable perte: or,
pour peu qu’on y réfléchisse, on s’apercevra que tout change-
ment de tempèrature qui n’est pas dû à un changement de
volume des corps ne peut être qu’un rétablissement inutile
d’équilibre dans le calorique.1

Nicolas Léonard Sadi Carnot2

Below the temperature Tg, a vitreous liquid becomes solid. Even though
its properties seem to be constant in time for any practical use, we have seen
that the amorphous structure is actually not in an equilibrium state and we
cannot refer to it as a thermodynamic state. Indeed, the glass and the liquid
phase cannot be connected by any path in a time independent parameter
space: no time independent thermodynamic transformation can ever bring a
glass former from the liquid phase to the glass phase below Tg. Because of
this ever-standing lack of equilibrium, the time will always play a fundamental
role in the formation, in the description and in the properties of the glass.

Nonequilibrium thermodynamic theories were worked out in the first half of
the last century. They apply to systems close to equilibrium. Typical appli-
cations are systems with heat flows, electric currents, and chemical reactions.
Key players have been De Donder, who introduced the concept of “rate of reac-
tion” for chemical reactions, his follower Prigogine, who wrote with Defay the
book Chemical Thermodynamics [Prigogine & Defay, 1954] and received the
Nobel prize in chemistry for his contributions to nonequilibrium thermody-
namics, and Prigogine’s student Mazur, who spent most of his scientific career
in Leiden (The Netherlands) and wrote with de Groot (Leiden, Amsterdam)
the classical textbook Nonequilibrium Thermodynamics [de Groot & Mazur,

1Since all reestablishment of equilibrium in the caloric can be the cause of production of
motive power, any reestablishment of equilibrium occurring without production of such
power will be considered as a real loss: or, reflecting a bit on it, one will discern that all
changes of temperature that are not due to a change in the volume of the bodies cannot be
other than an useless reestablishment of equilibrium in the caloric.
2From Carnot [1824].
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1962]. The basic assumption in this field is the presence of local thermo-
dynamic equilibrium, and the basic task consists in calculating the entropy
production.3 For a modern review, we may mention Schmitz [1988].

The nonequilibrium thermodynamics we aim at should apply, instead, to
systems far from equilibrium. For example, neither a large nor a small piece of
glass is in local thermodynamic equilibrium; in either cases a very long waiting
time would be needed to reach equilibrium, much longer than the time of the
experiment. Thermodynamics far from equilibrium is yet a mined field, still
waiting for a comprehensive theory that could represent in a thermodynamic
frame the most general aging systems, whose behavior is dominated by non-
thermalized processes. Until very recently, some confusion has been caused
by statements implying that thermodynamics had no applicability for glasses
because these are intrinsically out of equilibrium. Actually, this point of view,
that superficially neglects the possibility of nonequilibrium thermodynamics
both near and far from equilibrium, is, in our opinion, arguable.

Thermodynamics started out as a theory on the energy household of steam
engines. The founding paper by Nicolas Léonard Sadi Carnot “Sur la puis-
sance ” still stands as a benchmark paper in the field.4 The theory was born
in the first half of the 19th century as a new way of looking at phenomena
that, in contrast with the Newtonian mechanics approach, was not determin-
istic nor predictive, and whose goal was to establish the constraints imposed
by nature in the exploitation of its forces, and to control and drive energy
transformations in order to estimate the optimum performance of a thermal
machine. The fact that the theory was later mainly developed at equilibrium
does not mean that the equilibrium hypothesis is the fundamental issue of
thermodynamics. The difficulties met so far in the attempt of using thermo-
dynamics for glasses could be simply related to the unfounded equilibrium
hypothesis.

Many kinds of dynamics can occur in nature. Our aim is to find some
universality in glassy systems, to find at least a subset of variables for which
their dynamics can be encoded in a thermodynamic framework. We should not
want much more than this. The considered systems are, at the basic level, very
intricate and too finely detailed mechanisms cannot expose thermodynamic
behavior. It may very well happen that certain variables display some kind of
thermodynamic behavior, while other variables of the same system do not.5

3In the linear regime, the entropy production is a bilinear functional in generalized ther-
modynamic forces and the elements of the coupling matrix are called Onsager coefficients.
4 Indeed, it has even survived the limits of applicability where the target system is small,
but still coupled to a large bath and a large work source [Allahverdyan & Nieuwenhuizen,
2000, 2002a; Scully, 2001]. This field is called “quantum thermodynamics” and has its own
thermodynamic rules.
5Likewise, in macroscopic or even mesoscopic systems, certain variables show classical be-
havior, even though at the basis the system is quantum mechanical. For instance, while
the point of gravity can typically be described classically, to understand the heat capacity
at low temperatures, a quantum description is needed, no matter how large the system is.
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This is still a gain, as, in principle, no universality is expected.6

Another limitation on our goal is set by thermodynamics itself. The second
law, in its Clausius formulation “Heat cannot of itself pass from a colder to
a hotter body,” is of extreme generality, but it does not quantify the amount
of heat that flows in a given system with a given initial state. Likewise, for
thermodynamics far from equilibrium we should just try to find some general
trends.

Very many decades in time are involved, ranging from the microscopic sub-
picosecond regime up to, e.g., for silicate-rich glasses, the age of the solar
system, thus covering more than 25 decades. Naively, we expect that processes
occurring on a certain time window of a couple of decades could display their
own dynamics, basically independent of the dynamics occurring on previous
time windows and not influencing the one at later time decades.

Going further, we will address the issue of building a thermodynamics work-
ing also for systems out of equilibrium, at least in the long time regime of
aging systems, where separation of timescales occurs. In order to do that,
we will insert the time dependence of the relaxing observables into effective
thermodynamic-like parameters, checking whether or not it is possible to syn-
thesize the system’s features into one unique effective temperature.

This extra variable is fundamentally a quantity keeping track not simply of
the age of the system, but of its whole history, including, e.g., also the cooling
rate under which the glass has been formed. In some cases, making use of
the effective temperature it is actually possible to connect, in the space of
thermodynamic parameters, the liquid and the glass phase like in a standard
thermodynamic transformation.

We shall discuss in this and in the following chapters the possibility that,
within a yet unknown class of systems, under a fixed dynamical protocol, such
as, e.g., cooling at a fixed rate, the glassy state is described by one extra state
variable. This relies on having, together with a set of fast processes, that are
in instantaneous equilibrium, also a set of slow modes with a much larger char-
acteristic timescale. This timescale can be the age of the system (for isolated
aging systems), or else, the inverse of the cooling rate under which the glass
has been formed. The slow modes can be so slow that they set out a sort of
quasi-equilibrium at some effective temperature Te, slowly depending on time.
In good cases, the same effective temperature describes a variety of different
physical phenomena, as if the slow modes carrying the structural relaxation
were, indeed, at an equilibrium at that effective temperature. We shall see
that in several model systems this effective temperature is a useful extra ther-
modynamic parameter, at least in the long time regime (cf. Chapters 3, 4,
6). Already in these models, however, we will find limits to the validity of
this picture. One can try to go beyond, then, by extending the theory and

6Universality occurs, for instance, in the problem of turbulence, where all possible dynami-
cal timescales are involved, but there occurs no good separation of timescales. Rather, they
should be combined in a renormalization group approach [Falkovich et al., 2001].
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involving more extra parameters, e.g., the effective volume or pressure, or,
in magnetic systems, an effective magnetic field. The drawback is, however,
that, in this case, mechanical (or magnetic) and calorimetric properties get
mixed and the physical meaning of the new parameters becomes less clear
even from a theoretical point of view (let alone the possible measurement
of these parameters!). Moreover, if one ends up needing as many effective
parameters as the number of principal observables of the system, then the
thermodynamic description loses completely any character of generality, be-
ing just a reformulation of the dynamic behavior of each observable (as was
the case for the so-called fictive temperature, cf. Sec. 2.2).

2.1 Elements of thermodynamics

In order to see how far glass dynamics owns universal properties, such that
it can be reshaped into a thermodynamic framework, we first have to recall
some basic notions of equilibrium thermodynamics.

2.1.1 First law and second law

The first law of thermodynamics states that the energy change of a system
may arise from the heat added to it and the work done on it,

dU = d̄Q+d̄W (2.1)

We call d̄W the work done on the system and d̄Q the heat exchanged from
the heat-bath towards the system, using the symbol d̄ to stress that, generi-
cally, they are not expressible as exact differentials. Mathematically, it would
generally be impossible that the sum of two non-differentials add up to a dif-
ferential. Physically, this occurs because of the internal (classical) dynamics
of the system, which quickly brings the system to a new equilibrium state.

The second law has many formulations, such as heat goes from high temper-
atures to low ones, or no work can be extracted from a cyclic change exerted
on an equilibrium system. In thermodynamic calculations, it is customary to
employ the Clausius inequality

d̄Q ≤ TdS (2.2)

For adiabatic changes, the equality sign applies.7

7In quantum thermodynamics the target system is small, so there is no thermodynamic
limit. Then each formulation has its own domain of validity [Allahverdyan & Nieuwen-
huizen, 2000, 2002a, 2005].
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2.1.2 Clausius-Clapeyron relation

Let a standard first order phase transition occur at a transition line p = pc(T )
in the pressure-temperature phase diagram. There, discontinuities appear in
the energy (the latent heat) and the volume. These are related to the slope
of the transition line via the Clausius-Clapeyron relation. We briefly bring to
mind how this comes about.

For adiabatically slow changes the Clausius inequality d̄Q ≤ TdS is an
equality and the work shift is d̄W = −pdV . For a normal liquid the first law
dU = d̄Q+d̄W becomes, then,

dU = TdS − pdV (2.3)

One can define the enthalpy H = U +pV and the free enthalpy (or Gibbs free
energy)

G = H − TS = U + pV − TS (2.4)

whose adiabatic infinitesimal change satisfies the relation

dG = −SdT + V dp (2.5)

This implies that
∂G

∂T

∣
∣
∣
p

= −S, ∂G

∂p

∣
∣
∣
T

= V (2.6)

The total or co-moving derivative along the transition line is defined as

d

dT
=

∂

∂T
+

dpc
dT

∂

∂p
(2.7)

One, thus, obtains
dG

dT
= −S + V

dpc
dT

(2.8)

This relation is valid on both sides of the transition line. Let us denote the
discontinuity of a macroscopic observable O along the transition line as

∆O(T, pc(T )) ≡ O(T+, pc(T )) −O(T−, pc(T )) (2.9)

and consider Eq. (2.8) across this line. The left-hand side coincides on both
sides, in order to keep the free enthalpy continuous, ∆G(T, pc(T )) = 0, and
one finds

∆S = ∆V
dpc
dT

(2.10)

The entropy can be eliminated using the definition of G, Eq. (2.4), and the
fact that ∆G = 0. We end up, this way, with the Clausius-Clapeyron relation

∆U + pc∆V

T
= ∆V

dpc
dT

(2.11)

This relation has been abundantly confirmed in equilibrium systems. In glassy
physics, however, it may be violated, since no true equilibrium occurs. We
will go further into this point in Sec. 2.4.
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2.1.3 Maxwell relation

The strength of thermodynamics lies in certain relations between derivatives,
that occur because they derive from a generalized potential. The mathemat-
ical consistency relation (Schwarz identity) ∂2G/∂T∂p = ∂2G/∂p ∂T yields
the physical relationship known as the Maxwell relation

−∂S
∂p

∣
∣
∣
T

=
∂V

∂T

∣
∣
∣
p

(2.12)

which relates certain entropy changes to certain volume changes. Though just
arising from Eq. 2.4, on a deeper level it goes back to the fact that statistical
mechanics is an appropriate tool to describe the physics. The free enthalpy
is, indeed, the logarithm of a partition sum, and for, what concerns G, the
above Maxwell relation is a mathematical identity.

2.1.4 Keesom-Ehrenfest relations and Prigogine-Defay ratio

In the old days Ehrenfest conjectured that, besides first order phase transi-
tions, there would exist second order phase transitions where second deriva-
tives of the free energy have jumps, third order phase transitions where third
derivatives make jumps, etc. Nowadays it is known that the picture is dif-
ferent, namely, besides first order transitions with discontinuities, there exist
continuous phase transitions with a diverging correlation length and criti-
cal behavior described by scaling power-laws with exponents being identical
within a universality class of fairly different physical systems.

The idea of second order phase transitions was based on the analysis of
so-called mean-field models, like the Curie-Weiss model for a ferromagnet
with long range interactions. For our purposes, this is still a quite useful
concept, because, when bringing a substance to the glassy phase, there will
occur a smeared discontinuity in the specific heat, the compressibility and the
thermal expansivity. They are defined, respectively, as

Cp =
∂(U + pV )

∂T

∣
∣
∣
p
, κ = −∂ log V

∂p

∣
∣
∣
T
, α =

∂ log V

∂T

∣
∣
∣
p

(2.13)

Even though their jumps are not true discontinuities in reality, the inspection
of Ehrenfest was expected to apply to them as well. We shall explain in
Sec. 2.4.3 why this is not the case for glasses, where certain nonequilibrium
aspects must be taken into account. Let us first reproduce the original result
for standard mean-field transitions.

Knowing that, in this case, besides the free enthalpy the volume also is con-
tinuous along the transition line, one differentiates the identity ∆V (T, pc(T )) =
0 with respect to T . This simply yields

∆
∂V

∂T

∣
∣
∣
p

+
dpc
dT

∆
∂V

∂p

∣
∣
∣
T

= 0 (2.14)
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With the above definitions, Eq. (2.13), one gets the so-called first, or me-

chanical, Keesom-Ehrenfest relation [Keesom, 1933; Ehrenfest, 1933; Landau
& Lifshitz, 1980]

∆α

∆κ
=

dpc
dT

(2.15)

Since the energy also is continuous, one can, otherwise, consider the temper-
ature derivative of ∆U(T, pc(T )) = 0, to obtain

∆
∂U

∂T

∣
∣
∣
p

+
dpc
dT

∆
∂U

∂p

∣
∣
∣
T

= 0 (2.16)

From the first law (2.1) we have

∂U

∂p
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T

= T
∂S

∂p
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T
− p

∂V

∂p
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T

= −T ∂V
∂T
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− p

∂V

∂p

∣
∣
∣
T

(2.17)

In the second equality, the entropy term has been eliminated with the help of
the Maxwell relation (2.12).

Now we have collected all elements to express Eq. (2.16) as

∆
∂U

dT

∣
∣
∣
p

= T
dpc
dT

∆
∂V

∂T

∣
∣
∣
p

+ p
dpc
dT

∆
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∂p

∣
∣
∣
T

(2.18)

Inserting the first Ehrenfest relation, Eq. (2.14), this may be written as

∆
∂U

∂T

∣
∣
∣
p

+ p∆
∂V

∂T

∣
∣
∣
p

= T
dpc
dT

∆
∂V

∂T

∣
∣
∣
p

(2.19)

and applying the definitions of specific heat and thermal expansivity, Eq.
(2.13), this can now be represented as the second, or calorimetric, Keesom-
Ehrenfest relation

∆Cp
TV∆α

=
dpc
dT

(2.20)

The first Ehrenfest relation is a tautology for second order phase transitions
(it is a rewriting of the requirement of continuous volume), while the second
one is nontrivial, since it relies on the Maxwell relation expressed by Eq.
(2.12). Exactly for this reason, the first Ehrenfest relation will remain to
be obeyed in glasses, while the second one may be violated, together with
the underlying Maxwell relation. We anticipate that this is against standard
belief, according to which the calorimetric relation is considered generally
satisfied and the mechanical one is not, see, e.g., the review of Hodge [1994].
We will discuss this key point later on in Sec. 2.4.3.

One can now define the Prigogine-Defay ratio involving the variations of
specific heat, compressibility and expansivity in a unique expression:

Π ≡ ∆Cp∆κ

TV∆α2
(2.21)
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It is simple to see, from Eqs. (2.15) and (2.20), that in the above-considered
equilibrium situation, one simply has

Π = 1 (2.22)

At equilibrium, the fluctuation-dissipation theorem (FDT) holds (cf. Sec.
2.8), thus allowing the rewriting of Eq. (2.21) as

Π =

〈
(∆S)2

〉 〈
(∆V )2

〉

(〈∆S∆V 〉)2
(2.23)

We may mention that Π was not explicitly introduced in the Prigogine
& Defay [1954] treatment of the Keesom-Ehrenfest relations. They did put
forward, though, that these relations apply to glasses, with the consequence
Π = 1. To make the experimental findings as clear as possible, since then it
became fashionable to consider data for Π, see, e.g., [Davies & Jones, 1953;
Gupta & Moynihan, 1976; O’Reilly, 1977; Gupta, 1980; Moynihan & Lesikar,
1981; McKenna, 1989; Richert & Angell, 1998; Hodge, 1994] and the recent
books of Donth [2001] and Rao [2002]. Moreover, exploiting Eq. (2.23) or
similar expressions, just by applying the Schwarz inequality it was “proved”
that Π = 1 was a lower band edge for the ratio describing the transition
between the out-of-equilibrium solid glass and the ergodic liquid. Hereby it
was overlooked that, because of lack of equilibrium, on one side the FDT
cannot be applied: Eq. (2.23) does not hold for the glass transition.

Typical values of Π were found to lie between 2 and 5 (but rarely also
below 1 [O’Reilly, 1977]), leaving a puzzle that remained unsolved till a deeper
insight into the definition and applicability of thermodynamics to systems out
of equilibrium has been gained. We will dedicate Sec. 2.4 to the topic.

2.2 Fictive temperature

Systems with several temperatures are abundant in nature, we only need to
think of our body temperature that exceeds the environment temperature.
Nevertheless, the idea to introduce the concept of several temperatures in the
field of glasses has met some resistance, and it took a long time before this
path was taken up, since its first formulation in literature.

The concept of mapping the nonequilibrium nature of glass relaxation into
an extra parameter is an old idea starting, as far as we know, with Tool [1946].
He, then, introduced a fictive temperature to account for the nonlinearity of
the structural relaxation of given observables across the transition interval
(around Tg). In that context, the fictive temperature Tf was a formal object
mapping the molecular ordering inside the material in the glass state, that
was inhibited with respect to the ordering in the liquid state by the freezing
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at Tg. The fictive temperature was defined as the temperature at which the
glass would have been if the ordering behavior in temperature would have
continued below Tg in the same way as it was doing above it. Otherwise said,
it was defined as the thermodynamic temperature at which some observed
nonequilibrium excess properties, e.g., volume (cf. Sec. 1.7), enthalpy, re-
fractive index, shear viscosity or electrical conductivity, would have been at
equilibrium value. It was a way to describe the progress of the structural
relaxation. Already in the 1970s, however, (cf., e.g., Moynihan et al. [1976])
it was a known fact that measuring the relaxation of different observables for
the same glassy state, the related fictive temperatures were not necessarily
identical.

In a simple isothermal experiment just below Tg, after a sudden quench
at time t′, Tf (t) depends on the history of the system for t > t′, that is,
on nonthermal perturbations. In a more complicated experiment, following a
given temperature program T (t′) (cooling or heating), the fictive temperature
at time t > t′, Tf (t), depends both on the temperature history T (t′) and on
the previous response Tf (t

′) to that history.
A phenomenological, qualitative formula has been developed to reproduce

the structural relaxation, by Narayanaswamy [1971]:

Tf (t) = Tf [t;T (t′), Tf (t
′)] , t > t′ (2.24)

where T (t′) is the reference quantity for the equilibrium fluctuations, while
Tf (t

′) describes the acceleration below the glass transition, due to the freezing
in of many degrees of freedom of the glass out of equilibrium. Acceleration
means the enhancement of the timescales separation [Donth, 2001] and, in
particular, of the slowest relaxation time increase extrapolated, below Tg, from
the behavior in the region between Td and Tg (where also a timescale sepa-
ration between fast and slow processes occurred, see Sec. 1.1.1). We should
remark that such a relation should depend on the cooling-heating history of
the system, and we believe that, in general, an equation like Eq. (2.24) can
only exist within a well-defined class of histories.

Actually, Tf is just a further fit parameter for the relaxation time with
respect, e.g., to the two parameter fit of the VF law, Eq. (1.3). Indeed,
it allows us to write down the relaxation time dependence on temperature in
terms of a parameter that takes into account the out-of-equilibrium relaxation
of the glass, the so-called Narayanaswany-Moynihan (NM) [Narayanaswamy,
1971; Moynihan et al., 1976] equation:

τeq = τeq[T (t), Tf (t)] = K exp

[
∆h⋆

R

(
x

T
+

1 − x

Tf

)]

(2.25)

where x and ∆h⋆ are two fit parameters, alternative to, e.g., B and T0 in the
VF law. The constant R = 8.31447 J·K−1·mol−1 is the gas constant. The fit
parameter x depends on the glassy material (it is roughly between 0.1 and
0.5) and ∆h⋆ is the “effective equilibrium activation energy” just above the
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glass transition at Tg, i.e.,

∆h⋆

NA
=

[
d

dβ

(

lim
Tf→T

log τeq

)]

T=Tg

(2.26)

where β = (kBT )−1 and NA = 6.022 · 1023 is the Avogadro number.
To be more quantitative, let us consider a cooling-heating experiment, see

Fig. 2.1, looking at a macroscopic observable O of a glassy system. We
said that Tf is defined as the temperature at which the equilibrium liquid
has a relaxational value of O equal to the one it has in the glassy state at a
temperature Tℓ (lower than Tf if we cool down or higher in case of heating).
For a glass former cooled down or heated up across the thermal glass transition
we can, thus, write down the equality

O(Tℓ) = Oeq(Tf (Tℓ; t)) −
∫ Tf (Tℓ;t)

Tℓ

dT

(
∂O

∂T

)

g

(2.27)

where the subscript “eq” refers to the equilibrium state and “g” to the glass
state. Differentiating with respect to the temperature one obtains an ex-

derivatives of the observable under probe:

dTf
dT

∣
∣
∣
Tℓ

=

[

dO

dT
−
(
∂O

∂T

)

g

]

Tℓ

[(
∂O

∂T

)

eq

−
(
∂O

∂T

)

g

]−1

Tf

(2.28)

In this approach, the fictive temperature is practically considered as the re-
laxational part of O in temperature units.
represented by the point A on the cooling curve has a fictive temperature
Tf (A) obtained by crossing the straight lines whose slope is the one of the
O(T ) line deep in the glass phase and the extrapolation of O(T ) for the un-
dercooled liquid below Tg.

In terms of the fictive temperature the specific heat of the glassy state
phenomenologically reproduces the Tool law [Tool, 1946]

Cp(T ) = Cglass
p + ∆Cp

dTf
dT

, ∆Cp = C liquid
p − Cglass

p (2.29)

The fictive temperature of the system seen as a time dependent ordering
parameter for the description of the thermodynamics of glass has been a long
debated issue (see, for instance, Davies & Jones [1953] or, for a more recent
report, the work of McKenna [1989] and references therein). To go beyond the
purely phenomenological fictive temperature to a more microscopic concept
that can, in addition, be partitioned in the time (or frequency) domain (see
Sec. 1.3.1 for a discussion about time sectors in the aging regime), one possible
way is to identify a connection between structural relaxation and the violation
of the FDT far from equilibrium (cf. Sec. 2.8), or with some temperature-
like parameter conjugated to the configurational entropy in a thermodynamic

pression of the derivative of the fictive parameter in terms of temperature

2.1, a glassPictorially, see Fig.
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TT̄f

A

liquid

glass

Tg

O
(T

)

T
(A)
fT!

FIGURE 2.1

Pictorial representation of the temperature behavior of an observable O, such as

the internal energy, of a glass former through the glass transition on cooling (upper

curve) and heating (lower curve). The dashed line represents the extrapolation to

low temperature of the relaxation values of O in the liquid phase. T
(A)
f is the fictive

temperature relative to the relaxation of O at the point A in the cooling. T̄f is the

limiting value for the fictive temperature as the glass is cooled down at a given rate.

description (cf. Sec. 2.4). Clearly, in any generalized thermodynamic a
necessary, though not sufficient, requisite will be that all definition of effective
temperature on a given dynamic regime will have to match. This is not
the case for fictive temperature discussed in the present section. We will
tackle in the following sections (and in the following chapters) the problem
of identifying reliable definitions of thermodynamic parameters for the glassy
state and devising measurement procedures.

2.3 Two temperature thermodynamics for a system with

separated timescales in contact with two heat baths

Having to deal with a two temperature situation, it is instructive to first con-
sider some aspects of it in an idealized standard setup composed by a subset
at equilibrium in a heat-bath at one temperature and by a remaining part
at equilibrium at a second temperature. Generally, when two independent
thermodynamic systems coupled to two different heat-baths are considered
together, the adiabatic heat exchanges will add up,

d̄Q = d̄Q1 +d̄Q2 = T1dS1 + T2dS2 (2.30)

This relation will appear to carry over to the glassy state, see Eq. (2.45).
Let us consider a system with two subsets of variables: {x1}, at equilib-

rium in a thermal bath at temperature T1, and {x2}, at equilibrium in a
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bath at temperature T2, whose generic Hamiltonian is H0({x2}, {x1}). Fol-
lowing Allahverdyan & Nieuwenhuizen [2002b] we now consider the statistical
mechanics of such a system. Our starting point will be the case where two
external fields H1,2 linearly couple to its observables M1,2. The Hamiltonian
reads:

H({x2}, {x1};H2,H1) = H0({x2}, {x1})−H2M2({x2)}−H1M1({x1}) (2.31)

Before computing thermodynamic functions, though, we introduce the time, in
the form of characteristic timescales over which the two apart sets of variables
evolve. We will call τ1,2 the typical timescale of the variables {x1,2} and we
will assume that τ2 ≫ τ1. We are, therefore, imposing that the variables 1 are
“fast,” i.e., they equilibrate in a short time with respect to the relaxation time
of the variables 2, the “slow” variables. The behavior of the fast variables {x1}
at any time depends on the value of {x2}. The values of the slow variables
stay constant on the characteristic time of {x1} dynamics: with respect to the
motion of the subset of variables 1, the subset 2 is quenched. On the contrary,
with respect to the motion of {x2}, the {x1} variables just create a noise that
can be integrated over in the partition function. The partition sum over the
fast variables reads, indeed,

Z1({x2}) = eβ1H2M2({x2})
∫

Dx1 e
−β1H0({x2,x1})+β1H1M1({x1}) (2.32)

while the total one, over all variables is

Z2 =

∫

dx2e
−β2F1({x2}) =

∫

dx2

(∫

dx1e
−β1H({x2,x1};H2,H1)

)β2/β1

(2.33)

=

∫

dx2e
β2H2M2({x2})

(∫

dx1e
−β1H0({x2,x1})+β1H1M1({x1})

)β2/β1

where β1,2 = 1/T1,2 (the Boltzmann constant is set equal to one). We shall
define the related free energies by

Z1({x2}) = e−β1F1({x2}), Z2 = e−β2F (2.34)

The magnetizations take their expected forms,

〈M1〉 = − ∂F

∂H1
=

1

Z2

∫

Dx2 e
−β2F1

1

Z1({x2})

∫

Dx1 M1 e
−β1H = 〈〈M1〉1〉2

(2.35)

〈M2〉 = − ∂F

∂H2
=

1

Z2

∫

Dx2 M2 e
−β2F1 = 〈M2〉2 (2.36)

where 〈· · · 〉1 stands for the {x2} dependent average over the fast processes at
their temperature T1, and 〈· · · 〉2 for the average over the slow processes at
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temperature T2.
8

The susceptibilities read simplest in terms of the fluctuations

δM2 ≡M2 − 〈M2〉2, δM1 ≡M1 − 〈M1〉1, δ〈M1〉1 ≡ 〈M1〉1 − 〈〈M1〉1〉2
(2.37)

Some straightforward steps lead to

∂〈M2〉

∂H2
= β2〈(δM2)

2〉2 (2.38)

∂〈M2〉

∂H1
=
∂〈M1〉
∂H2

= β2〈δM2δ〈M1〉1〉2 (2.39)

∂〈M1〉

∂H1
= β2〈(δ〈M1〉1)2〉2 + β1〈〈(δM1)

2〉1〉2 (2.40)

If H2 = 0, M1 = M and H1 = H, or, equivalently, choosing M = M2 +M1

and H1 = H2 = H, the above relations add up to

∂〈M〉

∂H
=

〈(δ〈M〉1)2〉2
T2

+
〈〈(δM)2〉1〉2

T1
(2.41)

We stress that 〈(δ〈. . .〉1)2〉2 is the contribution to fluctuations of the slow
variables (→ 〈(δ . . .)2〉slow), whereas 〈〈δ(. . .)2〉1〉2 is the contribution to the
fluctuations imputable to the fast variables (→ 〈(δ . . .)2〉fast).

The fluctuation formula Eq. (2.41) will appear to be applicable to glasses
that can be described by one extra parameter, the effective temperature (cf.
Sec. 2.7).

For systems with more than two well-separated timescales, the presentation
can be generalized directly. For infinitely many well separated timescales, the
partition sum will be infinitely nested and it will, then, coincide with the
replicated partition sum, as it is known in the theory of spin glasses [Mézard
et al., 1987; van Mourik & Coolen, 2001].

2.3.1 Two temperature thermodynamics for glassy systems

Let us now consider a glass. The temperature at which the fast variables
are thermalized, T1, will be the temperature T of the environment (or of
the experimental set-up) at which all β (fast) processes are in equilibrium on
timescales much smaller than the observation time (τ1 ≪ tobs). According
to the picture just exposed, we introduce a second, effective, thermal bath at

8Let us make a remark about the Bayes formula. It derives the conditional probability
for the process x1, given the value of the process x2, from their joint probability, viz.
P (x1|x2) = P (x1, x2)/P (x2). When the timescale τ2 of the processes x2 equals τ1, the one
of the x1, this relation makes sense, and it continues to make sense when τ2 ≫ τ1. But,
in the latter situation the definition P (x2|x1) = P (x1, x2)/P (x1) is devoid of any physical
meaning, as the time τ1 is too short to make a sensible statement about the long time
process x2.
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temperature T2 = Te in which the slow, α, modes behave as if they were at
equilibrium. They are actually far from equilibrium at the room temperature
T , but the fact that their relaxation time is τ2 ≫ tobs can induce us to consider
them as stuck in a quasi-equilibrium situation at a different temperature.

This is a very strong assignment and we will see that, actually, life is more
complicated than this. However, a relevant contribution to the analysis of
the glass behavior comes even from this simplification. Eq. (2.41), for in-
stance, becomes now the contributions of both fast and slow fluctuations to
the susceptibility (cf. Sec. 2.7)

χ =
∂〈M〉

∂H
=

〈(δ〈M〉)2〉slow
Te

+
〈(δM)

2〉fast
T

(2.42)

In more complicated situations, one might even need two effective parameters,
an effective temperature and an effective field. For instance, one can define
H1 = H and the effective field H2 = He(H,T ) [or H2 = 0 and introduce
the effective fields in H1 = H + He(H,T )]. In general, the susceptibility
expressions will depend on the choice made and will be more complicated
than Eq. (2.41), involving terms proportional to ∂He/∂H. We will see an
alternative, self-consistent, introduction of an effective field in the specific
case of the harmonic oscillator spherical spin model presented in Chapter 3.

Still another case is where M2 = 0, M1 = M , but H1 = H+He 6= H. Then
one gets

∂〈M〉

∂H
=

(

1 +
∂He

∂H

∣
∣
∣
T

)[ 〈δ〈M1〉2〉slow
Te

+
〈〈δM2

1 〉fast
T

]

(2.43)

Finally, one may consider M1 = 0, M2 = M , but He 6= H. Then one gets

∂〈M〉
∂H

=
∂He

∂H

∣
∣
∣
T

〈δM2〉2
Te

(2.44)

The latter two connections may be useful in situations where an effective field
has to be taken into account.

2.4 Laws of thermodynamics for off-equilibrium systems

Finally, we will start exploring the possibility that, within a certain class
of systems, the glass state can be described by an effective temperature,
that maps the history of the out-of-equilibrium system into a thermodynamic
frame.

In this section, we follow a scheme in which the nonequilibrium state at
time t can be represented, e.g., by the parameter T , p, and Te(t), provided t
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is long enough. A necessary check for this approach will be that the results
of cooling, heating and aging experiments are consistently described by this
set of parameters.

The assumption of separation of timescales and the concept of configura-
tional entropy (cf. Sec. 1.4) allows for the formulation of first and second law
of thermodynamics in terms of two temperatures. In order for the conserva-
tion of energy to be satisfied in a glass-forming liquid that has fallen out of
equilibrium at low temperature, the heat variation has to take the same form
as in the standard two temperature picture described in Sec. 2.3:

d̄Q = T dSep + Te dSc (2.45)

where now T is the bath temperature and Sep is the entropy of equilibrium
processes coupled to this heat-bath, while Te is the effective temperature and
Sc the configurational entropy. The equality holds in the absence of currents.

The first law, then, reads

dU = d̄Q+d̄W = T dSep + Te dSc − p dV (2.46)

and the second law, expressed as the Clausius inequality, as

d̄Q ≤ T dS = T d(Sep + Sc) (2.47)

becomes

(Te − T ) dSc ≤ 0 (2.48)

In this framework, Maxwell relations can be generalized to out-of-equilibrium
expressions, as well as the Clausius-Clapeyron relation for first order phase
transitions. Furthermore, for continuous, or second order, phase transitions,
the Keesom-Ehrenfest relations between variations of thermal expansivity,
∆α, compressibility, ∆κ, and specific heat, ∆Cp, can be rewritten showing
that the first relation, Eq. (2.15), always holds because it is a trivial ther-
modynamic equality, while the second one, Eq. (2.20), contains corrections
in terms of Te and its derivatives. As a consequence, dogmas about the
Prigogine-Defay ratio being larger than one (cf. Sec. 2.1.4) are unveiled, and
proved inconsistent. The Prigogine-Defay ratio between the caloric and the
mechanical relations - equal to one for true, equilibrium, second order phase
transitions - can take any value at the kinetic, far-from-equilibrium, smeared
liquid-glass transition. We will now analyze this topic in detail. See also
[McKenna, 1989; Hodge, 1994; Angell, 1995; Nieuwenhuizen, 1997a, 1998c,
2000] in the Bibliography for further widening of the subject.

As a first observation, we notice that in the nonequilibrium thermody-
namic formalism just introduced, the specific heat at constant pressure can
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be written as

Cp ≡
∂(U + pV )

∂T

∣
∣
∣
p

= T

(
∂Sep

∂T

∣
∣
∣
p,Te

+
∂Te
∂T

∣
∣
∣
p

∂Sep

∂Te

∣
∣
∣
p,T

)

+Te

(
∂Sc

∂T

∣
∣
∣
p,Te

+
∂Sc

∂Te

∣
∣
∣
T,p

∂Te

∂T

∣
∣
∣
p

)

= C0 + C1
∂Te

∂T

∣
∣
∣
p

(2.49)

where, in the last equality, we evaluated all prefactors at Te = T . This
is what Tool conjectured for its fictive temperature and it is a relationship
usually verified in experiments [cf. Eq. (2.29)].

2.4.1 Maxwell relation for aging systems

We define the generalized Gibbs free enthalpy with an extra temperature

G = U − TSep − TeSc + pV (2.50)

whose differential form is

dG = −SepdT − ScdTe + V dp (2.51)

Within this setup we have now three Maxwell relations instead of one [cf. Eq.
(2.12)]:

−∂Sep

∂p

∣
∣
∣
Te,T

=
∂V

dT

∣
∣
∣
Te,p

(2.52)

−∂Sep

∂Te

∣
∣
∣
T,p

= −∂Sc

∂T

∣
∣
∣
Te,p

(2.53)

−∂Sc

∂p

∣
∣
∣
T,Te

=
∂V

∂Te

∣
∣
∣
T,p

(2.54)

The last two set constraints on the newly introduced configurational contri-
bution to the entropy: Sc. These relations cannot be used immediately, since
it is unknown how to control Te at fixed T and p. The basic step is to specify
a protocol for a smooth set of experiments to be discussed [Nieuwenhuizen,
1997a]. For a smooth sequence of cooling procedures at a set of nearby pres-
sures of a glass-forming liquid, Eq. (2.51) implies a modified Maxwell relation
between macroscopic observables, such as, e.g., energy [U(t;T, p) → U(T, p) =
U(T, Te(T, p), p)] and volume. This solely occurs since Te = Te(T, p) is a non-
trivial function of temperature and pressure, within the set of experiments
under consideration. The Schwarz identity ∂2G/∂T∂p = ∂2G/∂p ∂T now
yields

−∂Sep

∂p

∣
∣
∣
T
− ∂Sc

∂p

∣
∣
∣
T

∂Te
∂T

∣
∣
∣
p

=
∂V

∂T

∣
∣
∣
p
− ∂Sc

∂T

∣
∣
∣
p

∂Te

∂p

∣
∣
∣
T

(2.55)
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The differential relations, Eqs. (2.46, 2.51), do not invoke the functional
dependence Te(T, p), since they hold for any functional dependence, and even
in the absence of it. However, their interdependence does become relevant
when taking the time, i.e., the Te, derivatives as it was done to obtain Eq.
(2.55).

As before, we eliminate Sep from these relations. The first law, Eq. (2.46),
implies

T
∂Sep

∂p

∣
∣
∣
T

=
∂U

∂p

∣
∣
∣
T
− Te

∂Sc

∂p

∣
∣
∣
T

+ p
∂V

∂p

∣
∣
∣
T

(2.56)

Combining equations (2.55) and (2.56) one obtains

∂U

∂p

∣
∣
∣
T
+p

∂V

∂p

∣
∣
∣
T
+T

∂V

∂T

∣
∣
∣
p

= T
∂Sc

∂T

∣
∣
∣
p

∂Te
∂p

∣
∣
∣
T
−T ∂Sc

∂p

∣
∣
∣
T

∂Te
∂T

∣
∣
∣
p
+Te

∂Sc

∂p

∣
∣
∣
T

(2.57)

This is the modified Maxwell relation between observables U and V . The
effects of aging are represented by the terms in the right-hand side and all
involve the configurational entropy. In equilibrium one has Te(T, p) = T , so
that the right-hand side vanishes, and the standard form is recovered.

2.4.2 Generalized Clausius-Clapeyron relation

Let us consider a first order transition between two glassy phases A and B.
An example could be the transition from low-density amorphous ice to high-
density amorphous ice [Mishima et al., 1985] or the coordination transfor-
mation occurring in strong glasses such as, for instance, germanium dioxide
(from fourfold to sixfold coordination raising the pressure) and silica (from
tetrahedral to octahedral coordination) [Tsiok et al., 1998]. Another kind
of pressure-induced amorphous-amorphous transition takes place in densified
porous silicon, where the high-density amorphous packing transforms into a
low-density amorphous packing upon decompression [Deb et al., 2001]. A
similar transition also takes place in undercooled water [Poole et al., 1992].9

9Theoretical models have been recently introduced to describe an amorphous-amorphous
transition. As, for instance, a model of hard-core repulsive colloidal particles subject to a
short-range attractive potential that induces the particles to stick to each other [Dawson
et al., 2000; Zaccarelli et al., 2001; Sciortino, 2002]. In the framework of the mode cou-
pling theory (MCT) it has been shown that the interplay of the attractive and repulsive
mechanisms results in the existence of a high(er) temperature “repulsive” glass, where the
hard-core repulsion is responsible for the freezing in of many degrees of freedom and the ki-
netic arrest, and a low(er) temperature “attractive” glass that is energetically more favored
than the other one but only occurs when the thermal excitation of the particles is rather
small. Such theoretical and numerical predictions seem to have been successfully tested in
recent experiments [Chen et al., 2003; Eckert & Bartsch, 2002; Pham, 2002]. Other models
where amorphous-amorphous transitions are found are the spherical p-spin model on lattice
gas of Caiazzo et al. [Caiazzo et al., 2004] where an off-equilibrium Langevin dynamics is
considered, and the s + p-spin models [Crisanti & Leuzzi, 2004, 2006], both going beyond
the MCT assumption of equilibrium.
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For the standard Clausius-Clapeyron relation one observes that the free
enthalpy G is continuous along the first order phase transition line pg(T ), and
it is commonly assumed to hold for the glass transition as well.10 The phases
A and B under probe, will have their own Te, Sep and Sc. In principle, they
are all discontinuous along the first order transition line. Let us denote the
discontinuities of an observable O between the two phases as

∆O(T, pg(T )) ≡ OA −OB (2.58)

Taking O = G and differentiating the identity ∆G = 0 one finds

[

∆V − ∆

(
∂Te
∂p

∣
∣
∣
T
Sc

)]
dpg
dT

= ∆Sep + ∆

(
∂Te
∂T

∣
∣
∣
p
Sc

)

(2.59)

The entropy of equilibrated processes, Sep, can be eliminated by means of Eq.
(2.50). Using again ∆G = 0, Eq. (2.59) becomes

∆V
dpg
dT

=
∆U + pg∆V

T
+ ∆

(
dTe
dT

Sc −
Te
T
Sc

)

(2.60)

where d/dT = ∂/∂T +(dpg/dT )∂/∂p is the “total” derivative, i.e., the deriva-
tive along the transition line. This is the modified Clausius-Clapeyron equa-
tion. One possible application of the above formulation could be tested
on physical systems undergoing amorphous-amorphous transitions present-
ing first order discontinuities. No experimental tests have been attempted so
far.11

If phase A is an equilibrium undercooled liquid, and phase B is a glass,
Te = T in the A phase and its Sc-terms will cancel from Eq. (2.60) that
reduces to

∆V
dpg
dT

=
∆U + p∆V

T
+

(
Te
T

− dTe
dT

)

Sc (2.61)

where Te and Sc are properties of the glassy phase B [Nieuwenhuizen, 1997a].12

2.4.3 Keesom-Ehrenfest relations and Prigogine-Defay ratio
out of equilibrium

For standard glass-forming liquids, there are, actually, no discontinuities in
U and V . It holds that, along the glass transition line, Te(T, pg(T )) = T ,

10Since Te 6= T , it is actually not obvious that G should still be continuous there. But
if there exists a statistical mechanics description by some type of partition sum, it follows
again automatically.
11For ice, Mishima & Stanley [1998] have presented a thermodynamic construction of the
free enthalpy G. This is, however, based on equilibrium ideas and does not involve the
effective temperature in the amorphous phases. In particular, they assumes the validity of
the original Clausius-Clapeyron relation.
12Notice that Eq. (7) by Nieuwenhuizen [1997a] contains a misprint in the prefactor of Sc.
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implying dTe/dT = 1, which, indeed, removes the Sc terms from Eqs. (2.60),
(2.61) and reduces them to trivial statements. To describe what happens at
the thermal glass transition we can, then, use a generalization of the Keesom-
Ehrenfest relations reported in Sec. 2.1.4.

When deriving the mechanical Keesom-Ehrenfest relation, we may just copy
the derivation of Sec. 2.1.4 and again arrive at Eq. (2.15). It is a rather trivial
equality,

∆α

∆κ
=

dpg
dT

(2.62)

that is not related to the thermodynamics of the system. Actually, in many
experiments, this equation appears as violated. In boron trioxide, for instance,
the left-hand side amounts to 8.010−7 K/Pa [Richert & Angell, 1998] whereas
the right-hand side is 1.9710−7 K/Pa [O’Reilly, 1962], four times smaller.
Analogous discrepancies are detected in selenium, PVC and polyvinyl acetate
(PVAC).

Why is a mathematical identity, just stating that the volume decreases con-
tinuously at the glass transition, with no discontinuities, so often violated by
some of the most common glassy materials? The answer is in the experi-
mental procedures adopted to measure the variations of the compressibility
and, to a lesser extent, of the thermal expansivity. Since one extreme of the
variations of κ, α and Cp is out of equilibrium, any techniques relying on the
equilibrium hypothesis will provide strongly biased results. Indeed, this is
what happens when, as was often done, the compressibility is measured by
the sound waves in the amorphous media. Sound waves are fast modes, that
cannot pick up slow contributions to κ and, thus, yield a too small value.
This is by itself not a problem, but it forbids replacement of ∆κ in Eq. (2.62)
by the one obtained from speed of sound measurements.13 For this reason,
one should carefully review all experimental protocols adopted to determine
where the source of deviation from identity is in the cited data (and many
more). Fundamentally, the point is that out of equilibrium the only way to de-
rive the right compressibility and thermal expansivity is by their definitions,
Eq. (2.13). In order to do this, however, the whole phase diagram p,V,T
must be reconstructed in the glass phase as well, and the pg(T ) line must
be obtained by direct measurements. As an instructive instance we show in
Fig. 2.2 the re-elaboration of the data obtained by the experiments of Re-
hage & Oels [1977] on atactic polystyrene. In the figure, the specific volume,
the pressure and the temperature are reported both in the liquid phase and
in the glass phase. In both phases they lie on a surface. The two surfaces
meet at the glass transition, across which the volume continuously decreases

13In spin-glass theory with one step of replica symmetry breaking (cf. Sec. 7.2), the long
time susceptibility would be the field cooled susceptibility, while the analogue of speed of
sound measurements would yield the zero-field-cooled susceptibility, which is smaller, as
the slow processes do not contribute to it.
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liquid

glass

FIGURE 2.2

Data of the glass transition for cooling atactic polystyrene at a rate of 18 K/h,

scanned from the paper of Rehage & Oels [1977]: specific volume V (cm3/g) versus

temperature T (K) at various pressures p (kbar). As confirmed by a polynomial fit,

the data in the liquid essentially lie on a smooth surface, and so do the data in the

glass. The first Keesom-Ehrenfest relation [see Eq. (2.15)] describes no more than

the intersection of these surfaces, and is, therefore, automatically satisfied. The val-

ues for the compressibility derived in this manner by its definition ∂ log V/∂p|T , will

generally differ from results obtained via other experimental procedures. Reprinted

figure with permission from [Nieuwenhuizen, 2000]. Copyright (2000) by the Amer-

ican Physical Society.

as temperature decreases. The equation of this intersection is nothing else
than the mechanical Keesom-Ehrenfest relation. Compressibility and thermal
expansivity, both in the glass and liquid phase, can be obtained from the p
and T derivatives of the volume curves, respectively.

For what concerns the calorimetric Keesom-Ehrenfest relation, it was al-
ready observed in Sec. 2.1 that the thermodynamics of the system does,
instead, play a role, since the Maxwell relation is employed in its derivation.
Outside equilibrium, the Maxwell relation is modified, see Eq. (2.57). We
thus obtain the generalized relation

∆Cp
TgV∆α

=
dpg
dT

+
1

V∆α

(

1 − ∂Te
∂T

∣
∣
∣
p

)(
∂Sc

∂T

∣
∣
∣
p

+
dpg
dT

∂Sc

∂p

∣
∣
∣
T

)

=
dpg
dT

+
1

V∆α

(

1 − ∂Te
∂T

∣
∣
∣
p

)
dSc

dT
(2.63)
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where dSc/dT is the total derivative of the configurational entropy along the
glass transition line. The last term is new and vanishes only at equilibrium,
where Te = T .

Combining the two Keesom-Ehrenfest relations one may eliminate the slope
of the transition line and compute the Prigogine-Defay ratio. For equilibrium
transitions it should be equal to unity. Assuming that at the glass transition
a number of unspecified parameters undergo a phase transition, Davies &
Jones [1953] showed that Π ≥ 1, while Di Marzio [1974] showed that in that
case the correct value is Π = 1. To explain the glass property Π > 1 in
terms of the framework for relaxation presented in Sec. 2.2, Gupta [1980]
introduced a “fictive pressure” next to the fictive temperature. It was, hence,
generally expected that Π ≥ 1 is a strict inequality. As we have shown in
Sec. 2.1, however, these results completely rely of the validity of the FDT
or just on the equilibrium hypothesis. In glasses, typical experimental values
are reported in the range 2 < Π < 5. Although, in order to give credit to all
these numbers, the experimental protocol should be known as well.

Being conscious of the out-of-equilibrium nature of the glassy state, we have
pointed out that, as the first Ehrenfest relation is satisfied, the second one is
not, implying

Π = 1 +
1

V∆α

(

1 − ∂Te
∂T

∣
∣
∣
p

)
dSc

dT

(
dpg
dT

)−1

= 1 +
1

V∆α

(

1 − ∂Te
∂T

∣
∣
∣
p

)
dSc

dp
(2.64)

Depending on the set of experiments to be chosen, dpg/dT can be small or
large, and Π can also be below unity, and even be negative. [Rehage &
Oels, 1977] found Π = 1.09 ≈ 1 at p = 1 k bar, using a short-time value
for κ. Indeed, though these authors understand very well that speed of sound
measurements do not yield a proper long time compressibility, they still try to
measure it independently, by inserting extra temperature steps in the cooling
protocol. However, this method also is bound to fail in reproducing the value
of κ from Eq. (2.62) that is needed for the Keesom-Ehrenfest relations, derived
without accounting for such steps. Reanalyzing their data one computes, from
Eq. (2.64), a Prigogine-Defay ratio Π = 0.77 [Nieuwenhuizen, 1997a, 2000].
Surprisingly, this lies below unity. As this would be impossible in equilibrium,
it stresses, once more, that a nonequilibrium approach is needed for a proper
description of the glass transition.

In summary, even though the definition (2.23) of Π looks like a combination
of equilibrium quantities this is not the case when the glass state is involved in
the transition. The Prigogine-Defay ratio is, indeed, a misleading expression,
since κglass sensitively depends on how the experiment is carried out and the
commonly accepted inequality Π ≥ 1, based on equilibrium or stationary
assumptions, is incorrect. In particular, this rules out the Gibbs & Di Marzio
[1958] model as a principally correct model for the glassy state, simply because
it is an equilibrium model and, hence, leads to predictions in contradiction to
experiments (such as Π = 1).
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2.5 Laws of thermodynamics for glassy magnets far from

equilibrium

In this section we give, without derivation, the analogous relations for glassy
magnets, i.e., collections of magnetic moments (spins). The work, at constant
volume, is

d̄W = −MdH (2.65)

The generalized Helmholtz free energy is

F = U − TSep − TeSc (2.66)

and the differential comes out to be

dF = −SepdT − ScdTe −MdH (2.67)

The modified Maxwell relation for a glassy magnet reads

∂U
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∣
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T

+M − T
∂M

∂T
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H
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+ T

(
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T
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H
− ∂Te
∂T
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H

∂Sc

∂H

∣
∣
∣
T

)

(2.68)
Instead of compressibility and thermal expansivity, for magnets we have

the susceptibility χ and we, further, define a thermal “magnetizability” αM ,

χ =
1

N

∂M

∂H
, αM =

1

N

∂M

∂T
(2.69)

where N is the number of spins. The specific heat is now taken at constant
volume: CV .

The first, magnetic Keesom-Ehrenfest relation is written, in this case, as

∆α

∆χ
=

dHg

dT
(2.70)

whereas the modified calorimetric Keesom-Ehrenfest relation becomes
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NT∆α

=
dHg

dT
+

1

N∆α

(

1 − ∂Te
∂T

∣
∣
∣
H

)(
∂Sc

∂T

∣
∣
∣
H

+
dHg

dT

∂Sc

∂H

∣
∣
∣
T

)

(2.71)

Along the glass transition line, the equality Te(T,Hg(T )) = T implies

dTe
dT

=
∂Te
∂T

∣
∣
∣
H

+
∂Te
∂H

∣
∣
∣
T

dHg

dT
= 1 (2.72)

Using Eq. (2.72) and dividing Eq. (2.71) by Eq. (2.70), the Prigogine-Defay
ratio takes the form

Π ≡ ∆C∆χ

NT (∆α)2
= 1 +

1

N∆α

(

1 − ∂Te
∂T

∣
∣
∣
H

)
dSc

dH
(2.73)

where d/dH is the total derivative along the transition line Tg(H).
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2.6 Effective temperature in thermal cycles: a universal

nonlinear cooling-heating procedure

In the field of glass physics, there are not many universal or exact results. Ex-
periments are usually performed at linear cooling or heating, e.g., in [Moyni-
han et al., 1976; Torell, 1982; Angell & Torell, 1983] for boron trioxide, borosil-
icate crown glass (strong) and Ca++K+NO−

3 (fragile) (cf. also Fig. 1.5). We
denote the thermal history imposed on the glass sample by T (t). A general
feature is that, both in cooling and heating, the glass transition temperature,
that is, the “transformation range” in which the specific heat sensibly changes,
shifts towards a lower temperature as the rate of change, Ṫ , decreases. In the
heating processes, furthermore, a hump in the specific heat is observed, its
height depending on the cooling rate with which the glass was formed.

Let us now discuss the behavior of the specific heat near the glass transi-
tion for a different kind of protocol, which appears to bear universal features.
Inspired by the study of analytical models for glassy behavior, like the har-
monic oscillator model of Bonilla et al. [1998] (to be discussed in the next
chapter) and a spherical spin model [Nieuwenhuizen, 1998c], Nieuwenhuizen
[2000] considered a nonlinear cooling-heating process with universal aspects.

Let us begin considering, for simplicity, a strong glass, the relaxation of
which is described by an Arrhenius law,

τeq(T ) = τ0 exp
A

T
, (2.74)

whose inverse function is

T̃eq(τ) =
A

log(τ/τ0)
(2.75)

The specific nonlinear cooling or heating setup T (t) exploits this inverse Ar-
rhenius law and is defined as

T (t) = (1 − Q̃)Tg + Q̃T̃eq(t) = (1 − Q̃)Tg + Q̃
A

ln(t/τ0)
(2.76)

It involves two parameters: the thermal glass transition temperature Tg and

the dimensionless parameter Q̃. Cooling is described by Q̃ > 0 and heating
by Q̃ < 0. A nonlinear cooling experiment of this form could be performed in
any system with a quickly diverging relaxation time.

We first show that a glass transition occurs around the timescale and tem-
perature

tg = τ0e
A/Tg , Tg =

A

ln(tg/τ0)
(2.77)
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where one has T (t) = Tg. The timescale during which the system basically
remains at temperature T during the temperature program T (t) is

τcool/heat =
T (t)

|Ṫ (t)|
∼ t (2.78)

where we neglected logarithmic corrections. Writing t = s tg, we are around
the glass transition for s = O(1) and Eq. (2.76) yields

T = Tg + Q̃A

(
1

ln tg + ln s
− 1

ln tg

)

≈ Tg −
Q̃A ln s

ln2 tg
(2.79)

where we used ln tg ≫ ln s. In the same approximation we may write this as

β = βg +
Q̃

A
ln s (2.80)

so it yields

τeq(T (t)) = τ0e
βgAsQ̃ = tg

(
t

tg

)Q̃

(2.81)

The ratio of the cooling-heating timescale to the momentary equilibrium
timescale is

τcool/heat(T (t))

τeq(T (t))
∼
(
tg
t

)Q̃−1

(2.82)

We can discriminate three cases depending on the value of Q̃.

• Q̃ > 1. Cooling, Ṫ < 0: for t ≪ tg there is equilibrium at the in-
stantaneous temperature T (t), whereas for t ≫ tg the instantaneous
equilibration time τeq is larger than the cooling timescale τcool/heat, and
the system becomes glassy.

• 0 < Q̃ < 1. Slow (adiabatic) cooling: Eq. (2.76) describes cooling
inside a glassy state (Ṫ < 0) but occurring so slowly, that equilibrium
is reached around time tg. Indeed, for t ≪ tg, one has τcool/heat ≪ τeq
and for t≫ tg, τcool/heat ≫ τeq.

• Q̃ < 0. Heating from the glassy state: as time goes by, and temperature
increases, equilibrium is reached around time tg.

The parameter Q̃ can, then, be considered as a dimensionless “nonlinear”
cooling parameter (with negative values corresponding to heating).

Let us now introduce the effective temperature Te and write an expression
for the specific heat depending on its derivatives, in the spirit of Tool’s pio-
neering observations [cf. Eqs. (2.29) and (2.49)]. Generally, in an approach
where Te(t) is close to T (t), we may define the effective temperature by

U(t) = Ū(T (t)) + C2[Te(t) − T (t)] (2.83)
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FIGURE 2.3

Specific heat factor ∂Te/∂T as a func-

tion of reduced temperature in non-

linear, universal cooling obtained by

solving Eqs. (2.87)-(2.90), with different

values of the speed parameter Q̃. The

asymptotic values are 1 to the right and

1/Q̃ to the left. Reprinted figure with

permission from [Nieuwenhuizen, 2000].
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Specific heat factor ∂Te/∂T as a func-

tion of reduced temperature in nonlinear

heating, Eq. (2.90), with different values

of the parameter Q̃ controlling the in-

crease of the temperature (Q̃ < 0 for

heating). Reprinted figure with permis-

sion from [Nieuwenhuizen, 2000].

This implies for the specific heat

CV =
U̇

Ṫ
= C̄V + C2

[

Ṫe

Ṫ
− 1

]

≡ C1 + C2
dTe
dT

(2.84)

where the barred functions are the equilibrium ones. Now, from the general
relaxation for energy fluctuations near equilibrium at temperature T , we have

U̇ = −U − Ū(T )

τeq(T )
(2.85)

It seems reasonable to assume that, in the glassy regime, the slow part of the
left-hand side of Eq. (2.83) is ruled by the slow part of the right-hand side,
i.e.,

Ṫe = −Te − T

τeq(Te)
(2.86)

Here we have inserted for the characteristic time τeq(Te), which, in the aging
regime, is basically τeq(Te) ≈ t, while close to equilibrium it will just be
τeq(T ). In the next chapter, we shall find support for these assumptions in the
harmonic oscillator model, where they are exact properties of the dynamics.

Inverting and deriving Eq. (2.76) with respect to time one obtains

Ṫ =
Q̃

τ ′eq(Tg − (Tg − T )/Q̃)
(2.87)
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where the prime denotes the derivative with respect to the whole argument.
We may combine Eqs. (2.86) and (2.87) in a thermodynamic shape, where
time does not appear explicitly,

dTe
dT

≡ Ṫe

Ṫ
=
T − Te

Q̃

τ ′eq(Tg − (Tg − T )/Q̃)

τeq(Te)
(2.88)

and we may, then, go to dimensionless variables by putting

T = Tg +
T 2

g

A
x, Te = Tg +

T 2
g

A
y (2.89)

and obtain (recalling that Tg ≪ A),

dy

dx
=
y − x

Q̃
ey−x/Q̃ (2.90)

This equation, valid in the linear regime |T − Tg| ≪ A, has some universality
and can be extended to fragile glasses, as well. Indeed, when τeq satisfies a
generalized Vogel-Fulcher law τeq ∼ exp(Bγ(T−T0)

−γ), and a glass transition
occurs in a narrow range around some Tg, with Tg − T0 ≪ B, one may define
the deviations x and y as

T = Tg +
(Tg − T0)

γ+1

γBγ
x, Te = Tg +

(Tg − T0)
γ+1

γBγ
y (2.91)

and verify that, to the leading order in T − Tg, one arrives at the same Eq.
(2.90). The derivation still holds for T0 = 0, where the timescale satisfies an
enhanced Arrhenius law. This finding invites us to carry out the nonlinear
cooling protocol Eq. (2.76) for any good glass former. In all cases, the specific
heat will be

C = C1 + C2
dy

dx
(2.92)

where C1,2 are material parameters.
Eq. (2.90) can be solved perturbatively for large negative and large positive

values of x = (T − Tg)A/T
2
g , the scaled temperature distance from the glass

transition. The derivation of the solution is displayed in Appendix 2.A.
In the intermediate regime, the differential Eq. (2.90) can be solved nu-

merically. In Figs. 2.3-2.7 we present the universal line-shapes for the specific
heat factor (C−C1)/C2 = dTe/dT for several values of cooling-heating speed
parameter Q̃. The labels along the x-axis refer to the Arrhenius situation,
but the same plots would apply to the Vogel-Fulcher situation. They exhibit
the features known from experiments: upon cooling (in the figures: Q̃ > 0
and going from right to left) there occurs a smeared downward jump, while
upon heating (in the figures: Q̃ < 0 and going from left to right) an overshoot
shows up. The latter is related to a rather late, steep increase of the internal
energy from the glassy value to the equilibrium value.
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FIGURE 2.5

Specific heat factor ∂Te/∂T as a function of reduced temperature in a nonlinear

cooling with Q̃ = 2 and in a nonlinear heating experiment with Q̃ = −2. Dashed

lines are asymptotes (2.A.4) and (2.A.9), obtained from the analytic solution of Eq.

(2.90) for large positive and large negative x. Reprinted figure with permission from

[Nieuwenhuizen, 2000].

FIGURE 2.6

Specific heat factor ∂Te/∂T in nonlinear

universal cooling (Q̃ = 3) and heating

(Q̃ = −3). The “universal” curve is ob-

tained solving Eq. (2.90). The full curve

is computed by solving the differential-

integral Eq. (3.31) for the dynamics

of the harmonic oscillator model (next

chapter). Reprinted with permission

from [Nieuwenhuizen, 2000].

FIGURE 2.7

Factor ∂Te/∂T as a function of reduced

temperature in a nonlinear universal

cooling followed by heating. The jump

from cooling to heating is adjusted such

that peaks overlap. “Full” denotes the

solution of Eq. (3.31). The parameter Q̃

is switched from 3 to −3 after reaching

T/A = 0.045. Reprinted with permis-

sion from [Nieuwenhuizen, 2000].
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The analysis of this section thus shows that cooling in systems with an
Arrhenius law or a Vogel-Fulcher law, leads to glassy behavior quite similar to
that expected for realistic glasses. More specifically, following Nieuwenhuizen
[1998c, 2000] we have considered a cooling protocol that predicts universal
behavior near typical glass transitions. To implement it in practice, one should
first determine the equilibrium timescale τeq(T ), and then impose a cooling
or heating protocol as defined by the first equality in Eq. (2.76).

2.7 Fluctuation formula and effective temperatures

The basic result of nonequilibrium statistical physics is the capability of relat-
ing fluctuations in macroscopic variables to response of the averages of these
variables caused by changes in external fields or temperature.

One can try to generalize such relations to the glassy phase. Susceptibilities
appear to have a nontrivial decomposition, that look to be general in form,
even though, every susceptibility (each one bound to a different activity) can,
in principle, bring quantitatively different coefficients of the decomposition

14

Let us consider, as exemplification, a model with an external field H and
the conjugated coordinate, M . In slow-cooling experiments at a set of fixed
fields, according to the framework presented in Sec 2.4, it holds that M =
M(T (t), Te(t,H),H). For thermodynamics one eliminates time to express
Te(t,H) as Te(T,H), implyingM = M(T, Te(T,H),H). One may then expect
that the susceptibility will decompose as

χ ≡ 1

N

∂M
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∂Te
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∣
∣
∣
T

(2.93)

In a cooling (heating) experiment, the time t on which the susceptibility
depends is the time of the cooling (heating) program T (t). In the above de-
composition such cooling is considered slow enough to allow for the definition
of an effective temperature Te(t), depending on time both through the cool-
ing program applied to the system and through its out-of-equilibrium aging
relaxation.

In order to better identify the different components, we have to consider a
pure aging relaxation without cooling, thus fixing T . The system will continue
to age, as expressed by Te = Te(t;T,H).

14If this always would be the case, it would be something dangerously similar to the ob-
servable dependence of the fictive temperature measured experimentally [Moynihan et al.,
1976; Donth, 2001], that brought about the downfall of the idea of fictive temperature as
... a temperature (cf. Sec. 2.2).

(see also Sec. 2.8.2).
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We may, then, use the equality
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(2.94)

Exploiting the assumption of separation of timescales, it can be conjectured,
cf. Sec. 2.3, that the left-hand side of Eq. (2.94) is the sum of fluctuation
terms for fast and slow processes,

χfluct(t) =
1

N

∂M

∂H

∣
∣
∣
T,t

=
〈δM(t)δM(t)〉fast

NT
+

〈δM(t)δM(t)〉slow
NTe(t)

(2.95)

where the first “fast” term in the right-hand side corresponds to the fluctu-
ations in the stationary regime preluding to the aging regime: it is just the
standard equilibrium expression for the β equilibrium processes. The second
term is the contribution given by the fluctuations of those degrees of free-
dom of the partially frozen, out-of-equilibrium, glassy system. Notice that
slow processes enter with their own temperature, the effective temperature,
cf. Eq. (2.41).

The fluctuation terms are instantaneous, and they are, thus, the same for
aging and cooling. Looking back to Eq. (2.94), one can, then, identify the last
term on the right-hand side with a corrective loss term, related to an aging
experiment:

χloss = − 1

N

∂M

∂Te

∣
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T,H

∂Te
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∣
∣
∣
T,t

(2.96)

It measures the decrease of fluctuations below the glass transition, due to the
partial freezing in of the degrees of freedom of the glass. In actual situations
that we will discuss in next chapter, it will be seen that this loss term decays
very fast in the glassy regime,15 so that it can basically be neglected.

The first term in Eq. (2.93) can be, then, decomposed in a fluctuation
contribution and a loss term:

χfluct + χloss =
1

N
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T,Te

(2.97)

The second term in Eq. (2.93) is a new, configurational, term:

χconf =
1
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(2.98)

different from zero as far as Te 6= T . This allows us to write Eq. (2.93) as

χ = χfluct + χconf + χloss ≈ χfluct + χconf (2.99)

15Notice that the quantity χloss is conceptually different from the loss part of the sus-
ceptibility discussed in Chapter 1, that is the imaginary part of the susceptibility in the
frequency domain.



72 Thermodynamics of the glassy state

TABLE 2.1

Conjugated field-variable couples are shown together with the name of the
associated ”susceptibility” for some of the most typical response experiments
on glasses.

Fluctuating variable Perturbing field Susceptibility

Entropy Temperature Entropy compliance

Volume Pressure Compressibility

Volume Temperature Thermal expansivity

Shear angle Shear stress Shear compliance

Dielectric polarization Electric field Dielectric susceptibility

Magnetization Magnetic field Magnetic susceptibility

The configurational contribution originates from the difference in the system’s
structure for cooling experiments at nearby fields. For glass-forming liquids
such a term occurs in the compressibility. Its existence was anticipated in
some earlier works. Goldstein [1973] pointed out that the volume of the glass
phase depends more strongly on the pressure of formation than on the pressure
eventually exerted on the system, after that a partial release of pressure has
taken place. Jäckle [1989] also assumed an extra parameter and argued the
existence of a configurational term, but he limited himself to the case of
infinitely slow cooling and took as an extra parameter only the formation
pressure, predicting eventually a Prigogine-Defay ratio Π larger than one. Not
restricting ourselves to adiabatically slow cooling, ignoring any constraint on
Π, that would be meaningless as seen in Sec. 2.1.4, the approach we have just
presented allows, in principle, us to find the configurational term (2.98) for
typical cooling procedures from the construction of the function M(T, Te,H)
in full (T, Te,H)-space.

2.8 Fluctuation and dissipation out of equilibrium

The fluctuation-dissipation theorem states that the connection between the
thermodynamic fluctuation of a generic variable v and the response of such
a variable to a small perturbation in its conjugated field f are simply con-
nected by a linear relation, whose proportionality factor is the temperature
of the heat-bath in which the system under probe is embedded. Examples of
conjugated variables are shown in Table 2.1.
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The first proof of the theorem, based on the second law of thermodynamics,
was given by Nyquist [1928]. Further on, more complete proofs for general-
izations of the theorem were provided by Callen & Welton [1951], Takahasi
[1952] and Kubo [1957]. It is a very considerable finding, since it states an
equivalence between quite different concepts such as reversible fluctuation
and irreversible response. We define the correlation function Ceq(t− t′) as the
product of fluctuations of v at time t and at time t′ < t averaged over the
ensemble of all configurations at equilibrium:

Ceq(t− t′) ≡ 〈δv(t) δv(t′)〉 (2.100)

and the response function

Geq(t− t′) ≡ δ 〈v(t)〉
δf(t′)

∣
∣
∣
f=0

(2.101)

The brackets 〈. . .〉 stand for the ensemble average. At equilibrium, time trans-
lational invariance (TTI) holds and, therefore, the statistical ensemble at time
t is the same as the ensemble at t′. In other words, the system forgets its pre-
vious history. For what concerns quantities depending on two times, such
a property implies that they are actually only functions of the difference of
times. The susceptibility is an integrated response:

χeq(t− t′) =

∫ t

t′
dt′′G(t− t′′) (2.102)

The FDT can, then, be written both in terms of time- and frequency-dependent
observables. In the time domain it reads:

χeq(t− t′) =
Ceq(0) − Ceq(t− t′)

T
(2.103)

whereas in the frequency domain it becomes:

χ′′(ω) =
πω

T
C̃(ω) (2.104)

where χ′′ is the imaginary part (loss part), of the Fourier transform of the
integrated response function and C̃ is the spectral density, usually denoted
by S(ω).16

If instead of χ we use G, Eq. (2.103) becomes

Geq(t− t′) = − 1

T

∂Ceq(t− t′)
∂t

=
1

T

∂Ceq(t− t′)
∂t′

(2.105)

16An example widely used in experiments is the spectral density of voltage noise (see exper-
iments mentioned later in this section), conjugated to the impedance of the experimental
setup.
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What we said up to now is valid as long as TTI holds,17 i.e., as far as systems
are at equilibrium or in a quasi-equilibrium state.18 For up-to-date reviews of
the FDT in connection with glassy systems, the reader can refer to [Crisanti
& Ritort, 2003; Cugliandolo, 2003]. For what concerns glasses, that are intrin-
sically never at true thermodynamic equilibrium, the situation is sensitively
different. The correlation and the response functions depend both on the
waiting time and on the observation time. Moreover, the statistical ensemble
on which the average 〈. . .〉 is computed changes with time. Since TTI does
not hold anymore, the off-equilibrium average has to be performed over a set
of different time trajectories, each starting from different, random, initial con-
ditions. For the typical correlation and response function behavior in a glass,
look at Figs. 1.2, 1.3.

2.8.1 Fluctuation-dissipation ratio

Out of equilibrium, the contribution of the frozen states to the fluctuations and
to the response will, in general, be different from the one in the warm liquid
state (in particular, the contribution to the response will be damped with
respect to the one to the fluctuations) and no theorem can be enunciated to
connect the ratio of fluctuation and response to the heat-bath temperature. In
jargon, one speaks of“FDT violation,” even though no theorem actually exists
when the hypothesis of equilibrium (or stationarity) is not satisfied. Contrary
to what is written in Eqs. (2.103), (2.104), the relation between fluctuation
and response will not display the time- and frequency-independent heat-bath
temperature T as a proportionality factor [Cugliandolo & Kurchan, 1993,
1994; Cugliandolo et al., 1997; Parisi, 1997b].19

Consider structural relaxation after a quench from high temperature to
T < Tg and, after a time tw, probe this state by linear response in the time
(frequency) domain. Let us call the probing time t (or the probing frequency
ω ∼ 1/t). Assuming that we are able to measure the correlation functions
C(t, tw) [or spectral densities C̃(ω, tw)] in the frozen phase and the corre-
sponding susceptibilities χ(t, tw) [loss parts χ′′(ω, tw)] depending on tw, we
can investigate their relation as it is brought about in the FDT.

17Even in chaotic systems FDT holds, provided a suitable generalization is implemented
[Falcioni & Vulpiani, 1995].
18The fact that many glasses are quite stable at low temperature (e.g., room temperature
for window glass), displaying extremely long relaxation times to equilibrium, very low en-
ergy dissipation rates (else called small entropy production), stable mechanical, electrical,
optical and, possibly, magnetic properties, may induce us to think that they are in a quasi-
equilibrium state. This is not the case, however, as it is observed, cf. Chapter 1, that
measurements yield constant results only if performed on timescales much smaller than the
waiting time, otherwise the phenomenon of aging becomes evident.
19In the time domain, the “violation” is usually described by the multiplicative fluctuation-
dissipation violation factor X(t, tw) entering in Eq. (2.109) as χ(t, tw) = [C(tw, tw) −
C(t, tw)]X(t, tw)/T . The further assumption is, then, made that X(t, tw) = X[C(t, tw)].
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Indeed, one can still consider the fluctuation-dissipation ratio (FDR) (C0−
C)/χ, (or C̃/χ′′, else ∂t′C/G) as an indication of how far the system is out of
equilibrium, at least for what concerns the property whose fluctuations and
response are measured or computed.

A step forward is, then, to regard such a FDR as an effective tempera-
ture, i.e., as the temperature of the slow processes occurring in the aging
system. This has been put forward in several ways, starting from the mean-
field approximation for spin models with quenched disordered exchange in-
teractions,20 e.g., by Sompolinsky [1981]; Sompolinsky & Zippelius [1982];
Sommers & Dupont [1984], by Horner [1992b,a]; Crisanti et al. [1993] or
by [Cugliandolo & Kurchan, 1993, 1994; Cugliandolo et al., 1997] (see also
[Bouchaud et al., 1998; Cugliandolo & Kurchan, 1999]) or analyzing spatially
extended chaotic systems [Hohenberg & Shramian, 1989].

The study of FDR in slowly relaxing systems, either aging isolated or driven
out of equilibrium by external forces, is a field on its own and we cannot give
a complete overview of the state of the art. We will just concentrate on
the possibility of interpreting the ratio as an effective temperature, limiting
ourselves to glassy systems. For an up-to-date review we indicate the work of
Crisanti & Ritort [2003].

In the time domain, a “FD” effective temperature is, then, introduced either
through the ratio

TFD
e (t, tw) ≡ C(tw, tw) − C(t, tw)

χ(t, tw)
(2.106)

or by means of

TFD
e (t, tw) ≡ 1

G(t, tw)

∂C(t, tw)

∂tw
(2.107)

where we have put t′ = tw, i.e., the waiting time elapsed between the prepa-
ration21 of the sample and the beginning of the measurements (the switching
on of the external perturbative field). The relation between susceptibility and
response function out of equilibrium is

χ(t, tw) =

∫ t

tw

dt′G(t, t′) (2.108)

20Some of these models, indeed, very well describe the phenomenology of structural glasses,
e.g., the spherical p-spin glass model or other models whose statics is computable by means
of a one step replica symmetry breaking [Kirkpatrick & Thirumalai, 1987a,b; Kirkpatrick
et al., 1989; Crisanti & Sommers, 1992; Crisanti et al., 1993; Crisanti & Sommers, 1995;
Franz & Parisi, 1997; Nieuwenhuizen, 1998a; Mézard & Parisi, 1999b,a; Coluzzi et al.,
2000b], cf. Secs. 7.2-7.3. The verified conjecture that p-spin like spin-glass models and
structural glasses are in the same universality class has been the basis to extend analytical
results on spin-glass [Cugliandolo & Kurchan, 1993, 1994; Franz & Parisi, 1997; Cugliandolo
et al., 1997; Nieuwenhuizen, 1997b; Exartier & Peliti, 2000] to the study of structural glasses
in the context of complex systems.
21By preparation we mean not only the growth of the sample but also the setting of the
thermodynamic parameters at which the experiment has to take place.
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We notice that Eqs. (2.106) and (2.107) are equivalent only at the long times,
in the aging regime.

In the frequency domain, the effective parameter TFD
e (ω, tw) can, as well,

be defined as

TFD
e (ω, tw) ≡ πωC̃(ω, tw)

χ′′(ω, tw)
. (2.109)

Numerous numerical tests of this FDT violation and of the model depen-
dence of the FDR have been made and some evidence has been found in favor
of its interpretation as a thermodynamic-like temperature. Among those, be-
sides the ones already cited, some remarkable analyses have been carried out
on binary mixtures of soft particles [Parisi, 1997b; Grigera et al., 2004] and on
Lennard-Jones interacting particles [Barrat & Kob, 1999; Berthier & Barrat,
2002] with size ratios preventing crystallization, as well as on a mono-atomic
Lennard-Jones glass provided with a many-body interaction term inhibiting
crystallization [di Leonardo et al., 2000]. More will be considered in Chapters
3, 4 and 6.

The usual picture is that, in as far as the observation time is less than
the waiting time of the system, the ratio between response and correlation
behaves as if it is in a stationary state, i.e., FDT seems to be satisfied. As
the time goes by and t becomes of the order of tw, this apparent stationarity
is, however, unmasked and aging takes over: TFD

e 6= T . Making glass by
cooling down a liquid, the effective temperature is higher than the heat-bath
temperature. One can understand this by thinking that slow processes were
stuck out of equilibrium at a higher temperature with respect to that of the
environment in which the glass lives and they, somehow, “remember” it.

In mean-field models for glasses, the effective temperature turns out to
depend exclusively on time through the value of the correlation function. A
rather standard way to visualize all this is, mostly by theoreticians, to plot the
χ(C) parametric curve, see Fig. 2.8. This is the shape usually occurring in
models for structural glasses (mean-field, certainly, but also short-range, see
the above-mentioned examples and Figs. 2.9-2.10). Other out-of-equilibrium
aging systems, such as models of coarsening and domain growth [Cugliandolo
& Kurchan, 1995]22 and spin-glasses [Marinari et al., 1998; Ricci-Tersenghi,
2003] display other characteristic shapes (see insets in Fig. 2.8).

In order for TFD
e to be a well-defined temperature, a necessary condition is

that it is the same for any measurable observable reacting to a perturbation
in a small conjugate field. A remarkable analysis on the insensitivity of the
FDR to the observable chosen is represented in Fig. 2.9 for a Lennard-Jones
binary mixture (LJBM), see also Appendix 6.A.2, a computer model with a
van der Waals-like interaction [Berthier & Barrat, 2002].

Experimental evidence has been reached, as well, for the existence of such
a kind of effective parameter. A violation of FDT has been measured in the

22Read further for criticism on this behavior: Sec. 2.8.2.
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FIGURE 2.8

Susceptibility times heat-bath temperature versus correlation function. As the cor-

relation decreases, that is, as time increases from tw, the slope passes from minus one

(i.e., FDR= T ) to something less than one (i.e., FDR= Te > T ). The value C⋆ at

which the departure from equilibrium occurs is the plateau value of the correlation

function as plotted in Fig. 1.2 and it depends on the waiting time. In the insets on

the right-hand side the typical behaviors expected for coarsening systems (top) and

spin-glasses (bottom) are shown.

FIGURE 2.9

Plot of χ(C) for the LJBM. Several mea-

sures done in numerical simulations are

reported at the heat- temperature of

T = 0.3 (the slope of the stationary

part is 1/0.3) and all curves display the

same slope as they fall out of equilib-

rium (1/TFD
e = 1/0.65): the FD effec-

tive temperature is observable indepen-

dently. Reprinted with permission from

[Berthier & Barrat, 2002]. Copyright

(2002) by American Institute of Physics.

FIGURE 2.10

Effective temperature versus waiting

time in the soft sphere binary mixture

obtained by numerical simulations with

different Monte Carlo algorithms at T =

0.89Td. The χ(C) plot is shown in the

inset for tw = 104 Monte Carlo steps

at a lower temperature, T = 0.53Td.

Reprinted with permission from [Grig-

era et al., 2004]. Copyright (2004) by

the American Physical Society.
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fragile glass former glycerol by Grigera & Israeloff [1999], via electric noise
applying a small AC field of fixed angular frequency ω. For frequencies slightly
larger than 1 Hz one can probe the long waiting time regime, where aging and
violation of FDT is expected to occur, within the measurement time. Instead
of formula (2.104), the equivalent relation initially given by Nyquist [1928]
between electrical resistance and voltage noise has been used to get the noise
power spectral density

SV(ω) =
2

π
kBT

FD
e (ω, tw)ReZ (2.110)

where Z is the (aging) impedance of the circuit employed in the measure-
ments. The glassy behavior is signaled whenever the proportionality factor
Te(ω, tw) is different from the heat-bath temperature T . The deviation from
T is evident, though weak, even for ωtw . 105 at T = 180K, cf. Fig. 2.11
where, for this material, the glass temperature is Tg ∼ 196K.23 Grigera &
Israeloff [1999] also measured the fictive temperature from the excess enthalpy
[Simon & McKenna, 1997]. Its behavior versus heat bath temperature turns
out, however, to be different from the one of the effective temperature as can
be seen in Fig. 2.12. As a matter of fact, there would have been no reason
to account for their coincidence. Te is relative to voltage fluctuations (and
dielectric response), while Tf rationalizes the excess enthalpy relaxation and
we know that, for what concerns the latter, every observable relaxation is
described by a different fictive temperature (Sec. 2.2).

Another experiment has been carried out on a colloidal material, Laponite
RD, 24 a synthetic clay made of disc shaped charged particles [Bellon et al.,
2001; Bellon & Ciliberto, 2002]. At low temperature this material forms a
solid-like solution that, for low concentration, turns out to be glassy. General
characteristics of Laponite RD are a fast dispersion in water, solidification
even for a very low mass fraction, aging behavior below the transition and,
at low concentration, a structure function very similar to the one of glass
formers [Kroon et al., 1996]. The fluctuation-dissipation relation between
the voltage noise spectral density SV(ω) and the electrical impedance Z of
the experimental setup has been analyzed by Bellon et al. [2001]; Bellon &
Ciliberto [2002], again using the generalization of the Nyquist formula given
in Eq. (2.110). Different from the previous experiment, measurements are
not done at one fixed frequency, but a two dimensional map of TFD

e is built
both in time and frequency (see Figs. 2.13 and 2.14). The effective tem-
perature measured in this way turns out to be a decreasing function of time
and frequency (as expected) and, in the time domain, Te decays faster to the

23This persistence of the FDT violation is actually unexpected since the aging regime sets
in as t − tw ∼ 1/ω ∼ tw, whereas on shorter timescales, t − tw ∼ 1/ω ≪ tw, the local
equilibrium of the stationary regime is expected to occur, and FDT holds (cf. the right
part of the line plotted in Fig. 2.8).
24Laponite RD is a registered trademark of Laporte Absorbents - P.O Box 2, Cheshire,
U.K.
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FIGURE 2.11

Effective temperature dependence on

the waiting time at a fixed observation

time in glycerol. The heat-bath tem-

perature is T = 180K. Reprinted fig-

ure with permission from [Grigera & Is-

raeloff, 1999]. Copyright (1999) by the

American Physical Society.

FIGURE 2.12

Distance of Te and Tf from T . The

barred points are for dielectric ∆TFD
e ,

whereas the full curve represents the en-

thalpy ∆Tf . Reprinted figure with per-

mission from [Grigera & Israeloff, 1999].

Copyright (1999) by the American Phys-

ical Society.

heat-bath temperature T at high frequency than a low frequency, as shown
in Fig. 2.13.25 Moreover, as it was observed also from the measurements of
the density fluctuations in polymers in the glassy phase [Wendorff & Fischer,
1973], the violation of FDT at a given angular frequency ω lasts for twω ≫ 1,
in agreement with the experiment on glycerol. What is peculiar on Laponite,
however, is that, for relatively long waiting times, the TFD

e at low frequencies
is several orders of magnitude larger than the heat-bath temperature.

This very large FDR, as well as the persistence of aging for long times (at
low frequencies), has been confirmed by Buisson et al. [2003b,a] by comparing
noise and dielectric response functions in a polymer glass (Makrofol DE 1-
1C, a bisphenol A polycarbonate). Here, the glass transition occurs lowering
the temperature, unlike Laponite where the vitrification occurs varying the
density of the discoidal particles. In this material Tg = 419 K and, for low
frequencies and tw of the order of hours, the FDR at T = 333 K is still a couple
of orders of magnitude larger than Tg. One has to reach an aging waiting time
of a day to measure an FDR similar to Tg, that is, the temperature where the α
processes (low frequency) fall out of equilibrium with the heat-bath. Buisson
et al. [2003b] bring the large FDR back to a highly intermittent dynamics
characterized by large fluctuations (similar, in some ways, to the trap model,
cf. Sec. 2.8.2), but the physical origin of these large fluctuations is yet to be
understood. All in all, however, it seems that, at least in the time-frequency

25In Chapter 4 we discuss an exactly solvable model, the disordered backgammon model,
where modes at higher energy, in absolute value, thermalize much faster than modes at low
energy.
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Effective temperature dependence on
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Reprinted with permission from [Bellon
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European Physical Society.
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Effective temperature as defined in Eq.

(2.110) is measured in Laponite varying
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Reprinted figure with permission from

[Bellon et al., 2001]. Copyright (2001)

by the European Physical Society.

range explored by these experiments, the FDR cannot be taken as a plausible
definition of effective temperature.

Very recently, Jabbari-Farouji et al. [2007] observed no deviation from the
FDT in Laponite, on the basis of microrheology experiments, rather than
voltage noise, performed using optical tweezers to study the motion of silica
probe particles. They compare the directly (actively) measured loss part
χ′′(ω, tw) with the response obtained from the spectral density by means of Eq.
(2.104) (passive measurement), i.e., assuming the validity of the FDT. The
displacement power spectral density C̃(ω) is obtained as the Fourier transform
of the time correlation function of the silica bead position x:

2πC̃(ω) =
〈
|x(ω)|2

〉
=

∫ ∞

0

dt 〈x(t)x(0)〉 eiωt

In Fig. 2.15 the two loss parts are compared at two different waiting times.
The real part of the response function is computed, as well, using the principal-
value Kramers-Kroning integral

χ′(ω) =
2

π
P

∫ ∞

0

dξ
ξ χ′′(ξ)
ξ2 − ω2

Even though both correlation and response display aging, the actively and
passively measured data sets collapse on each other at different waiting times,
implying the validity of the FDT also out of equilibrium, for the timescales
and the range of frequencies considered.
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FIGURE 2.15

Real and imaginary parts of the response χ(ω) ≡ α(ω) at tw ≡ ta = 100 and 300

min, obtained from active (solid symbols) and passive (open symbols) microrheology

performed on the same 1.16 µm silica bead in the Laponite sample. In “passive”

measurements the response is computed from the spectral density via the FDT, cf.

Eq. (2.104). α′ is calculated from α′′ using a Kramers-Kronig relation (see text).

Reprinted with permission from [Jabbari-Farouji et al., 2007]. Copyright (2007) by

the American Physical Society.

Going back to Fig. 2.8, it is interesting to note that even if very spread
among theoreticians, the parametrization χ(C) is very rarely probed by ex-
perimentalists and mostly in experiments on spin-glasses, see, e.g., [Herisson
& Ocio, 2002] and also the indirect determination of χ(C) curves from exist-
ing experimental data performed by Cugliandolo et al. [1999]. As far as we
know, if truth be told, no analysis of this kind has ever appeared for real glass
materials. The only example we know is the just-mentioned measurements
of Buisson et al. [2003a] and a preliminary study on Laponite [Maggi, 2006],
where, however, the occurrence of an aging regime describable by means of a
unique Te, at least for a long time window, is far from being evident.

2.8.2 Limits to the role of FDR as a temperature

The framework above reported is, actually, not valid for any aging system. In
particular, drawbacks on the definition of an effective temperature by means
of Eq. (2.106) have been found in model systems for which the mean-field (or
else the “mean-bath,” cf. Sec. 2.9) approximation does not hold. Most of
these inconsistencies have been noticed in coarsening systems, for which the
mean-field expectation is an infinite effective temperature as the system falls
out of equilibrium (see top inset in Fig. 2.8). In one and two dimensional
ferromagnetic Ising spin chains with Glauber dynamics [Godrèche & Luck,
2000; Sollich et al., 2002; Mayer et al., 2003; Pleiming, 2004; Mayer et al.,
2004; Mayer & Sollich, 2005] different couples of conjugated field-variable pro-
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vide different FDRs in the same aging time sector; in plaquette spin models
the FDR has been found to be nonuniversal, depending on the observation
wave-vector, and even takes negative values in probes at small wave numbers
[Buhot & Garrahan, 2002; Jack et al., 2006]; in the Ising spin dynamically fa-
cilitated model introduced by Fredrickson & Andersen [1984], a negative FDR
is found both in one and three dimensions [Crisanti et al., 2000; Mayer et al.,
2006]; in two dimensional ferromagnets with Kawasaki dynamics [Krzakala,
2005] for temperatures not much lower than the critical one and not too long
waiting times, the response function is not monotonic as a function of the
correlation. The FDR in coarsening systems has been systematically studied
in phase-ordering systems by Lippiello & Zannetti [2000], Godrèche & Luck
[2000] and Corberi et al. [2001a,b, 2002b,a, 2003b,a, 2004] that have analyzed
systems with conserved and nonconserved order parameters (both scalar and
vectorial) in different space dimensions, reaching the conclusion that above
the lower critical dimension of a model the FDR is flat (as in the top inset of
Fig. 2.8), whereas at the lower critical dimension a finite FDR occurs.

For what concerns out-of-equilibrium aging systems that resemble glasses, a
generalized version of the trap model of Bouchaud [1992] (see also [Bouchaud
& Dean, 1995; Monthus & Bouchaud, 1996] for a description of its glass phe-
nomenology) has been studied, where, besides the energy, arbitrary observ-
ables (in the form of energy biased probability distributions) can be con-
sidered. Under the assumption that dynamics is Markovian, i.e., that the
transition rate for the evolution from one initial state to a final one only de-
pends on the initial state, Fielding & Sollich [2002] have shown that FDR is
observable dependent.26

Also in dense granular materials,27 where the heat-bath temperature actu-
ally plays no role, an effective temperature can be defined as FDR and also in
this field a negative FDR has been found in numerical simulations of lattice
gas models for vibrated dry granular media [Nicodemi, 1999]. However, us-
ing an Einstein relation for sheared granular matter between the diffusion of
tracer particles and the response function to the shear (the mobility), recent
experiments by D’Anna et al. [2003] and Song et al. [2005] have measured an
effective temperature that, besides being positive, is also independent of the
tracer and of the packing.

All in all, the impression that the indirect FDR measure of effective temper-
ature is ill-defined or nonuniversal for the particular class of off-equilibrium
aging systems called glasses (stricto sensu, cf. Chapter 1) does not gather
much evidence. Indeed, going to more realistic computer models the FDR
seems to hold the right properties to be a valid effective temperature can-
didate (observable independent, constant on a long time window), cf. the

26The reader can refer to Chapter 4 for a discussion on the validity of Markovian approxi-
mation for the relaxation of glassy systems.
27For the definition of temperature in diluted granular systems (granular gases) we refer,
instead, to Puglisi et al. [2002]; Barrat et al. [2004]; Baldassarri et al. [2005].
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Lennard-Jones and the soft spheres binary mixtures mentioned above (cf.
Figs. 2.9, 2.10). Certainly, to understand the problem, a much wider inspec-
tion is necessary both in more and more realistic models and in experiments
on real materials. We will see, however, in the next section and in the next
chapters, that, possibly, other questions have to be addressed to express a
quantity with the properties of a temperature that can encode the history of
a glass on a wide timescale and describe the glass state by means of a two
temperature thermodynamics.

2.9 Direct measurement of the effective temperature

We have looked, so far, at different proposals for a generalization of thermo-
dynamics out of equilibrium involving a time dependent effective temperature
next to the standard thermodynamic parameters such as heat-bath tempera-
ture, pressure, volume, magnetic field (or any other kind of external field).

In particular, we have concentrated on a two temperature picture that,
assuming separation of timescales, implements a description of the out-of-
equilibrium thermodynamics by means of the conjugated variables effective
temperature and configurational entropy. Furthermore, we have seen that,
both theoretically and experimentally, some evidence exists that the effective
temperature defined as the FDR is a well-defined thermodynamic parame-
ter for long time windows (longer than or comparable with the observation
timescale). At least, this seems to hold in a certain subclass of systems, in-
cluding not only mean-field models but also microscopically realistic computer
glass models and real glass substances such as glycerol and Laponite, while,
in general, even limiting ourselves to the class of out-of-equilibrium aging sys-
tems, some counterexamples have been found, above all in domain growth
models (Sec. 2.8.2).

We will see in the following chapters how most of the approaches presented
in this chapter to build a thermodynamics of the glassy state can be carried
out in exactly solvable models (Chapters 3 and 4). In Chapter 6, we will also
introduce the concept of inherent structure and, there, we will see how an
effective temperature can be defined, associated with the symbolic dynamics
occurring through inherent structures (rather than through the actual config-
urations of the system).

In Table 2.2 we report all the effective temperatures that we inspect in the
book, together with the chapters where they are considered and discussed.

In order to call Te a temperature, however, it has to satisfy some minimal
thermologic requirements.

1. It should be possible to measure it directly with some kind of thermome-
ter. We stress that, for instance, the FDR is an indirect measure of the
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TABLE 2.2

Different possible definitions of effective temperature considered in the book.
The Boltzmann constant kB is set equal to one.

Effective Out-of-equilibrium Definition Section
temperature generalized formulas equation

Fictive Tf (t) = Ft>t′ [T (t′), Tf (t′)] 2.24 2.2

Thermodynamic d̄Q = TedSc 2.45, 2.4
configurational Te = ∂Φ/∂Sc|T 3.143 3.3.2

Fluctuation χfluct = 〈(d̄M)2〉slow
NT fl

e
2.95 2.7, 3.3.6

FDR TFD
e (t, tw) =

∂twC(t,tw)

G(t,tw)
2.106 2.8

3.3.4

FDR TFD
e (t, tw) =

Ceq(0)−C(t,tw)

χ(t,tw)
2.107 2.8, 6.3.2

(integrated) 6.5.1

Quasi-static ω(T, Te, He) 3.127 3.3.1

= e−Heff ({xi},T,He)/Te

Transition rate W (∆E)
W (−∆E)

= e∆E/Te 3.148 3.3.3

Adiabatic u(t) z(T ⋆(t)) 4.36 4.1.3

= −e1/T⋆(t)−z(T⋆(t))

PEL equilibrium φ̄(T eq
e (t)) = φ̄(T, t) 6.37 6.3.1, 6.5.1

matching 6.6.1

PEL configurational T int
e (φ, T ) 6.39 6.3.1

=
“

1 + ∂fvib
∂φ

” “

∂sc
∂φ

”−1

PEL quasi-static ω(0, Tis, His) 6.78 6.6.1

= e−Φ({xi},His)/Tis

Te by means of fluctuations and responses.

2. There should be a heat flux from modes whose temperature is Te to
modes whose temperature is T (if the glass is formed by cooling Te > T ).
Moreover, if different off-equilibrium processes are evolving and they
are at different effective temperatures, there has to be a heat exchange
between them.

3. Processes evolving on similar timescales should have the same effective
temperature (constant for the whole time window considered). In other
words, the zeroth law of thermodynamics is expected to hold on a given
timescale.

Actually, it is not clear, so far, which properties of a thermodynamic tem-
perature are shared by the effective temperature(s) defined in the previous
sections (e.g., Gibbs-like, conjugated to the configurational entropy, FDR).
Let us consider a glass former, a silica-based one, for instance, and suppose
that it vitrified at about 2000 Kelvin degrees and has been cooled down to
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room temperature and let relax for a long time tw (long enough to overcome
the stationary regime and reach the aging regime). Following the formal def-
initions of two temperature thermodynamics, or the experimental measure-
ments of FDR, its effective temperature will be larger (much larger in the
present example) than the heat-bath temperature. Yet, if we touch a window
at room temperature we do not burn ourselves. If we measure the tempera-
ture inside the glass with a standard thermometer the temperature detected
is the room one. This is more than obvious, according to our experience. The
problem, then, arises of the compatibility of the definition of an effective tem-
perature as the “temperature of the slow processes” and what we experience
in everyday life.

We know that, in a glass, fast processes occur that have thermalized on a
short timescale. One can, hence, hypothesize that a standard thermometer
couples right to these modes and our hand exclusively perceives these modes
at equilibrium. What about the off-equilibrium α modes? They are there, by
definition of a glass, and are responsible for the structural relaxation. If Te

can be identified as their temperature there must be some reason why it is
not detected at all by ordinary instruments (hands included). A first reason
might be that a thermometer should have response time comparable with the
characteristic timescales of structural relaxation, therefore very long. A sec-
ond one might be that the thermal conductivity of slow modes decays very
fast so that the heat exchange with the environment is negligible. This, we
notice, would have further implications on the zeroth law of thermodynamics.
These reasonable assumptions would explain the compatibility of the exis-
tence of the effective temperature with the impossibility of a direct measure
of it. They would, if we could verify them experimentally, or, at least, prove
them theoretically.

Cugliandolo, Kurchan and Peliti [1997] tried a comprehensive treatment of
the measurability problem and designed a consistent framework based on the
FDR definition of effective temperature and on the observation that a stan-
dard thermometer just measures the room temperature. In that theoretical
framework the effective temperature controls the direction of the heat flux
between different processes (provided they evolve on comparable timescales)
and effective thermalization between different processes occurs in the aging
regime. Moreover, they predicted that a thermometer with long response time
would measure an effective temperature larger than the room one in a glass
cooled down and left at room temperature for a long time. We have seen that
this last property has been indirectly verified by Grigera & Israeloff [1999];
Bellon et al. [2001] who measured correlations and response functions in the
aging regime and calculated the corresponding evolution of their ratio (Sec.
2.8).

Following Kurchan [2005], one can try to give a pictorial idea of a direct
measurement, taking the simplest thermometer, a harmonic oscillator, Θ, and
coupling it to an observable OA of a system A, yielding a perturbation as small
as possible. To deal with a very small coupling, imagine first duplicating many
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FIGURE 2.16

Thermometer Θ (a harmonic oscillator) coupled to the observable O in M copies of

a system A embedded in a heat-bath at temperature T .

times our slow relaxing system at some point of its evolution and couple the
same thermometer to each one of the copies (see Fig. 2.16). The more the
copies, the smaller the perturbation. The observable O fluctuates around its
mean value and reacts to the presence of Θ, being slightly modified. This is
described, respectively, by the correlation function Eq. (2.100) and by the
response function (2.101). The change in OA causes a feedback in Θ, dissi-
pating energy. The thermometer, thus, interacts with the noise due to the
fluctuations of the observable it is measuring and is sensitive to the reaction
of OA to its own presence. At equilibrium, the two effects maintain energy
equipartition, for any observable and any thermometer and in order for this
to occur, the FDT, Eq. (2.103), or Eq. (2.104), must be satisfied.

Always sticking to this Gedanken experiment we can couple Θ to an ob-
servable OB of yet another system, B. By the same mechanisms by which
the thermometer system thermally interacts with the system A, the system
B will feel the noise of OA in the system A and the feedback of OA to the
presence of Θ, through the coupling to Θ itself (and vice versa).

What happens if we are not at equilibrium? If we are in a specific subclass
on nonequilibrium, namely, in the system A, processes take place on two dif-
ferent, well-separated, timescales, and if each type of process behaves as if at
equilibrium at a different temperature (i.e., we are considering a glass) the
propagation from system A to system B will work the same way as in the
equilibrium case: fluctuation and dissipation will occur in the same way also
in B, even if, this time, they will yield both a fast and a slow contribution
and there will be two different proportionality factors, corresponding to two
different temperatures of the system.

Instead of many copies we can consider a decomposition of a single large
system in many thermally coupled components. One component will, then,
play the role of Θ. This scheme is self-consistent if all components are sup-
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posed to behave in the same way in the average (from the point of view of
correlation functions), that is, if we can neglect the fluctuations of the fluc-
tuations. This reminds us of the mean-field approximation, but now we deal
with mean fluctuations. Kurchan [2005] calls this a “mean-bath” approxima-
tion. In this approximation, an out-of-equilibrium system belonging to the
class of aging systems, whose processes evolve on well-separated timescales,
consistently owns a two temperature state.

So far, however, no direct measurement procedure has been devised, nor
has a comprehensive theory involving differently defined Te been proposed.
We will see in Chapter 3 how a step forward in the latter issue can be made
using exactly solvable model glasses, but in general the question remains wide
open.

2.A Asymptotic solution in nonlinear cooling

Let us recall Eq. (2.90),
dy

dx
=
y − x

Q̃
ey−x/Q̃ (2.A.1)

We shall analyze this here for large positive and large negative x, that is,
for temperatures far above and far below the glass transition. We introduce
w = (1/Q̃ − 1)x. For large negative w we set y = x − ln z(v) and v = ew =

e−(Q̃−1)x/Q̃, to obtain the differential equation

(Q̃− 1)v2z′(v) + ln z(v) + Q̃vz(v) = 0 (2.A.2)

This allows a series expansion in the small variable v,

z = 1 −Q̃v +
Q̃

2
(5Q̃− 2)v2 − Q̃

3
(29Q̃2 − 27Q̃+ 6)v3

+
Q̃

24
(1181Q̃3 − 1812Q̃2 + 900Q̃− 144)v4 (2.A.3)

− Q̃

5
(1529Q̃4 − 3345Q̃3 + 2690Q̃2 − 940Q̃+ 120)v5 + · · ·

and it implies for the specific heat factor an exponential approach to equilib-
rium

∂Te
∂T

∣
∣
∣
H

=
dy

dx
= − ln z(v)

Q̃vz(v)

= 1 + (Q̃− 1)[−v + 2(2Q̃− 1)v2 − 3

2
(5Q̃− 2)(3Q̃− 2)v3

+
4

3
(4Q̃− 3)(29Q̃2 − 27Q̃+ 6)v4 + · · · ] (2.A.4)
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When Q̃ > 1 or Q̃ < 0, this result applies for a large positive reduced tem-
perature x, while for 0 < Q̃ < 1, it applies for large negative x. In all these
cases, w is large negative and v = ew is exponentially small.

For large positive w we set

s =
1

w
= − Q̃

(Q̃− 1)x
(2.A.5)

and

y = − 1

(Q̃− 1)s
+ ln s− lnu(s) (2.A.6)

which yields the differential equation

u(s) = 1 + s ln s− s lnu(s) − (Q̃− 1)su(s) + (Q̃− 1)s2u′(s) (2.A.7)

By iteration there arises an expansion in powers of s and Λ = ln s

u(s) = 1 + (Λ − Q̃+ 1)s+ (2Q̃− 2 − Λ)s2 +
(

−8Q̃+
11

2
+ 3Λ +

1

2
Λ2

−2ΛQ̃+
5

2
Q̃2
)

s3 +
(

−57

2
Q̃2 +

16

3
Q̃3 + 45Q̃+ 18ΛQ̃+ 2Λ2Q̃

−5ΛQ̃2 − 1

3
Λ3 − 7

2
Λ2 − 14Λ − 131

6

)

s4 + · · · (2.A.8)

This implies for the specific heat factor an algebraic approach to the low
temperature value 1/Q̃, with logarithms in the sub-leading terms,

∂Te
∂T

∣
∣
∣
H

=
dy

dx
=

1 + sΛ − s lnu(s)

Q̃u(s)
(2.A.9)

=
1

Q̃
+
Q̃− 1

Q̃

{

s+ (Q̃− Λ − 2) s2 +
[

Q̃2 − (2Λ + 7)Q̃+ Λ2 + 5 Λ + 7
]

s3

+
[

Q̃3 −
(

35

2
+ 3Λ

)

Q̃2 +
(
23Λ + 46 + 3Λ2

)
Q̃

−26Λ − 17

2
Λ2 − 61

2
− Λ3

]

s4
}

When Q̃ > 1 or Q̃ < 0 this applies for large negative x; if 0 < Q̃ < 1 it applies
for large positive x. In all these cases, the variable s is small.

It is evident that both Eqs. (2.A.4) and (2.A.9) go the correct value
∂Te/∂T = 1 in the limit Q̃ → 1. Indeed, in that limit the system cools
down, but remains in equilibrium at all times, because the procedure, Eq.
(2.76), reduces to T (t) = τ−1

eq (t), just imposing a sliding state, always in good
enough equilibrium.
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Exactly solvable models for the glassy state: a

dynamic approach to a dynamic phenomenon

The study of exactly solvable models has been always an active area of re-
search in the field of statistical physics. They help us to grasp general prin-
ciples governing the physical behavior of realistic systems that, due to the
complicated interactions among their different constituents, cannot be pre-
dicted using standard perturbative techniques. Glasses in general are systems
falling into this category. The slow relaxation of glasses observed in the labo-
ratory is a consequence of the simultaneous interplay of its components that
yields a very complex and rich phenomenology.

Firstly, we want to get more insight into the glassy dynamics, in its vari-
ous aspects, exploiting the analytical solubility of the models we will discuss.
Indeed, thanks to their simplicity, the features of the glassy materials can
be connected in a direct correspondence with given elements of the models.
We can even switch on and off certain properties or certain dynamic behav-
iors, tuning the model parameters or implementing a given - facilitated or
constrained - dynamics in alternative ways. Furthermore, in some cases, the
thermodynamic state functions, including the configurational entropy, can be
computed as functions of the dynamic variables of the model. Our second goal
is to check the principal applicability and generality of the concept of effective

temperature, very often discussed in literature in many different approaches
(see Chapter 2) and to verify whether the possibility exists of inserting such a
parameter into the construction of a consistent out-of-equilibrium thermody-
namic theory. The question whether there exists a single effective temperature
encoding the aging dynamics and whether this coincides with the fluctuation-
dissipation ratio is still controversial (see Sec. 2.8.2). We believe that this and
other related questions can be better addressed by analyzing simple models.
Recent reviews of kinetically constrained models for glass are, e.g., Workshop
[2002], Ritort & Sollich [2003], Leonard et al. [2007].

In this chapter, we propose a set of dynamically facilitated models un-
dergoing a Monte Carlo parallel dynamics. For these models the statics is
trivial and, nevertheless, the exactly solvable dynamics exhibits interesting
glassy aspects. Basically all of the relevant features of much more compli-
cated real glasses are displayed, such as aging, diverging relaxation time to
equilibrium (either Arrhenius or Vogel-Fulcher), configurational entropy, the
Adam-Gibbs relation between relaxation time and configurational entropy,

89
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Kauzmann transition, off-equilibrium fluctuation-dissipation relation and Ko-
vacs effect.

In the next chapter, we present urn models whose dynamics proceeds through
entropic barriers and that can be exactly computed in a certain adiabatic ap-
proximation. The dynamic behavior describes the slow relaxation and many
related properties typical of glasses. Also there we will face the case where the
dynamical relaxation of different energy modes can be made explicitly clear.
In Chapter 5 we present another solvable model based on directed polymers,
that is simple enough to be analytically worked out and yet displays glassy
behavior.

The possibility of computing an exact solution for the dynamics allows for
a precise formulation of the two temperature picture presented in Secs. 2.3,
2.4, 2.5. Even though the physics of the class of models that we are going
to discuss in this chapter is simple, we shall formulate general aspects of the
results by analyzing them in thermodynamic language. This thermodynamic
formulation also incorporates the interpretation of the fluctuation-dissipation
ratio (FDR) as an effective temperature, as exposed in Sec. 2.8. Indeed, the
relation between thermal correlation functions and responses to external driv-
ings has become a central point in investigating out-of-equilibrium systems.
The approach of Sec. 3.3, will show that the effective temperature that oc-
curs in thermodynamics and the one that occurs in the FDR can be equal in
the aging regime only if the relaxation is slow enough. We will discuss and
quantify the latter expression in terms of the parameters of the models that
will be presented in the following.

The working hypothesis at the basis of the simplified models we will deal
with is shaped on one particular physical property of glasses: the exponen-
tial divergence of timescales around the glass transition.1 This induces an
asymptotic decoupling of the time-decades (cf. Sec. 1.1). The reasonable as-
sumption is then made that, in a glass system that has aged a long time t, all
processes with equilibration time much less than t are in equilibrium (the β
processes) while those evolving on timescales much larger than t (if existing)
are still quenched, leaving the processes with a timescale of the order t (i.e.,
the α processes) as the only interesting ones. The asymptotic decoupling of
timescales is the input for the family of models we are going to analyze in Sec.
3.2 and could be the basis for a generalization of equilibrium thermodynamics
to systems out of equilibrium. We will see, specifically in Sec. 3.3, how this
approach involves systems in which one extra variable (the effective tempera-
ture) describes the nonequilibrium physics and if and up to which extent the
addition of this single variable is sufficient to yield a consistent thermody-
namic theory, able to describe even typical off-equilibrium phenomena such
as memory effects (Sec. 3.5). Always employing harmonic oscillators, in Sec.
3.6 we will discuss the problem of the direct measurement of an effective
temperature and, in Sec. 3.7, its dependence on different frequency modes.

1As opposed to the algebraic divergence in standard continuous phase transitions.
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3.1 Harmonic oscillator model

In order to introduce the dynamic approach, we will first consider the study
of a simplified model, the harmonic oscillator (HO) model of Bonilla et al.

[1996a], to which an external field contribution is added [Nieuwenhuizen,
1998c]. The aim is to be very clear about the procedure involved, presenting
the principal steps in the derivation of the equations of motion, before gener-
alizing the same dynamics to a class of models representing both strong and
fragile glasses.

The Hamiltonian of the harmonic oscillator model is

Hho[{xi}] =
N∑

i=1

(
K

2
x2
i −Hxi

)

(3.1)

where K is the Hooke constant, H an external field and {xi} ∈] −∞,∞[ the
harmonic oscillator positions.

We also define

m1 ≡ M1

N
≡ 1

N

N∑

i=1

xi; m2 ≡ M2

N
≡ 1

N

N∑

i=1

x2
i (3.2)

The statics of the model is trivial. The free energy is simply given by

F

N
= −1

2

H2

K
− T

2
log

2πT

K
(3.3)

and the equilibrium value of the harmonic oscillator position is

xi =
H

K
∀i (3.4)

independent of the temperature.
The entropic contribution to Eq. (3.3), S = 1

2 log T/K+const, is clearly
ill-defined at zero temperature, but this is a known artifact of the fact that
the HO variables are continuous even at zero temperature. No quantization is
considered and the Nernst principle (vanishing entropy at zero temperature)
is, thus, not expected to be satisfied.

Many generalizations of this model have been studied for gaining insight
into the properties of slowly relaxing materials. Besides the two timescales
generalization [Nieuwenhuizen, 1999; Leuzzi & Nieuwenhuizen, 2001a,b, 2002]
that we will extensively consider in Sec. 3.2, further examples are

1. the homogeneous potential model [Ritort, 2004]:

H[{xi}] =
K

p

N∑

i=1

xpi p > 2 (3.5)
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2. the wedge potential model [Ritort, 2004]:

H[{xi}] = K
N∑

i=1

|xi| (3.6)

3. the disordered harmonic oscillator model [Garriga & Ritort, 2005]:

H[{xi}; {ǫi}] =
K

2

N∑

i=1

ǫix
2
i (3.7)

where {ǫi} takes random values with a certain distribution (Sec. 3.7 is
dedicated to it)

4. spherical spins in a random and an external field [Nieuwenhuizen, 1998c,
2000]

H[{Si}] = −J
N∑

i=1

xiSi − L
N∑

i=1

Si (3.8)

where the xi are quenched random Gaussian variables with zero average
and unit variance and the spherical spins have arbitrary lengths under
the constraint

∑N
i=1 S

2
i = N .

3.1.1 Analytically solvable Monte Carlo dynamics

The dynamics that we apply to the system is a parallel Monte Carlo dynamics,
as first introduced by Bonilla et al. [1996a]. The thus-obtained dynamical
model composed by the simple local Hamiltonian (3.1) and the dynamic rules
that we are going to present in the following is analytically solvable.

In a Monte Carlo step, a random updating of the harmonic oscillator vari-
ables is performed,

xi → x′i = xi +
ri√
N

(3.9)

where the variables {ri} are independent random variables with a Gaus-
sian distribution of zero mean and a variance ∆2. We indicate by δE the
energy between the proposed new configuration and the initial one, viz.,
δE ≡ H({x′i}) −H({xi}). The dynamics is set by the Metropolis probability
W of performing a randomly proposed update of all oscillator positions:

W (δE) =

{
1 if δE ≤ 0

exp(−βδE) if δE > 0
(3.10)

If the energy of the new configuration is higher than the energy of the initial
configuration (δE > 0) the move is accepted with a probability exp(−βδE);
if δE is negative, the proposed move is always accepted.
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We look at how the quantities M1 and M2 are updated in a Monte Carlo
(MC) step. Let us denote the changes induced by Eq. (3.9) as

y1 ≡ M ′
1 −M1 =

N∑

i=1

ri√
N

(3.11)

y2 ≡ M ′
2 −M2 =

∑

i=1

N

(
2√
N
rixi +

r2i
N

)

(3.12)

As a consequence, the distribution function of y1 and y2, for prescribed values
of m1 and m2, is:

p(y1, y2|m1,m2) ≡
∫ N∏

i=1

dri√
2π∆2

exp

(

− r2i
2∆2

)

(3.13)

×
∫ 2∏

a=1

δ

(
N∑

i=1

(x′i)
a −

N∑

i=1

(xi)
a − ya

)

=
1

4π∆2
√

m2 −m2
1

exp

(

− y2
1

2∆2
− (y2 − ∆2 − 2y1m1)

2

8∆2(m2 −m2
1)

)

As a function of the M ’s updates, the energy difference reads

x ≡ δE =
K

2
y2 −H y1 (3.14)

In terms of x and y ≡ y1 the distribution function can be formally written
as the product of two Gaussian distributions:

p(y1, y2|m1,m2) dy1 dy2 (3.15)

=
1√

2π∆x

exp

(

− (x− x)2

2∆x

)
1

√
2π∆y

exp

(

− [y − y(x)]
2

2∆y

)

dx dy

= p(x|m1,m2) p(y|x,m1,m2) dx dy

where

x =
∆2K

2
, ∆x = ∆2K2

(
µ2 + µ2

1

)
, (3.16)

y(x) =
µ1

µ2 + µ2
1

x− x

K
, ∆y =

∆2µ2

µ2 + µ2
1

(3.17)

In the above expressions we have introduced the abbreviations

µ1 ≡ H

K
−m1 (3.18)

µ2 ≡ m2 −m2
1 (3.19)
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They are just the deviations from the equilibrium values of m1,2 at zero tem-
perature [cf. Eqs. (3.2, 3.4)]. As equilibrium is approached, µ1 → 0 and
µ2 → T/K.

We now derive the equation of motion of the dynamic observables m1,2.
After a MC update from time t to time t+ dt the probability distribution of
the new values M ′

1,M
′
2 after the update evolves like

P (M ′
1,M

′
2, t+ dt) =

∫ 2∏

a=1

dMa P (M1,M2, t)

∫ 2∏

a=1

dya p(y1, y2|m1,m2)

×
[

W (βx)
2∏

a=1

δ(M ′
a −Ma − ya) + (1 −W (βx))

2∏

a=1

δ(M ′
a −Ma)

]

= P (M ′
1,M

′
2, t) +

∫ 2∏

a=1

dMa dya P (M1,M2, t) p(y1, y2|m1,m2)

× W (βx)

[
2∏

a=1

δ(M ′
a −Ma − ya) −

2∏

a=1

δ(M ′
a −Ma)

]

(3.20)

where we have used the closure property

∫ 2∏

a=1

dya p(y1, y2|m1,m2) = 1 (3.21)

This induces, in the evolution of the mean values of the Ms,

〈Mb(t+ dt)〉 =

∫ 2∏

a=1

dM ′
a M

′
b P (M ′

1,M
′
2, t+ dt) (3.22)

= 〈Mb(t)〉 +

∫ 2∏

a=1

dMa P (M1,M2, t)

∫ 2∏

a=1

dya p(y1, y2|m1,m2) yb W (βx)

The time interval dt of a MC step is then set equal to dt = 1/N , that is, it
becomes infinitesimal in the thermodynamic limit. As N → ∞ the probability
distribution of the Ms is strictly peaked around their mean values, i.e.,

lim
N→∞

P (M1,M2, t) =
2∏

a=1

δ(Ma − 〈Ma(t)〉) (3.23)

and one has

d 〈ma〉
dt

= lim
N→∞

1

N

〈Ma(t+ dt)〉 − 〈Ma(t)〉
dt

(3.24)

=

∫ 2∏

k=1

dyk ya p(y1, y2| 〈m1(t)〉 , 〈m2(t)〉)W (βx)
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Let us denote 〈mi(t)〉 = mi(t) from now on, to ease the notation.
Going to integration variables x, y, the integration over y in Eq. (3.24) can

be carried out, and we obtain the MC equations of motion:2

ṁ1(t) =

∫

dx W (βx) y(x) p(x|m1(t),m2(t)) (3.25)

ṁ2(t) =
2

K

∫

dx W (βx) [x+H y(x)] p(x|m1(t),m2(t)) (3.26)

where ȳ is defined in Eq. (3.17). Let us define the parameter

α ≡ x√
2∆x

=
∆

√

8(µ2 + µ2
1)

(3.27)

Dynamically speaking this quantity is large when equilibrium is approached
and temperature is small. We also introduce two basic MC integrals. The
first one is the acceptance rate of the proposed MC move,

A0(t) =

∫

dx W (βx) p(x|m1(t),m2(t)) (3.28)

For large times, A0 is proportional to the inverse of the relaxation time to
equilibrium. The second integral is the average of the change in energy in the
MC move,

A1(t) =

∫

dx W (βx) x p(x|m1(t),m2(t)) (3.29)

In terms of A0 and A1 one can rewrite Eqs. (3.25)-(3.25)

ṁ1(t) = 4α2(t)µ1(t)

[

A0(t) −
2

∆2K
A1(t)

]

, (3.30)

ṁ2(t) = 8α2(t)µ1(t)
H

K
A0(t) +

2

K

[

1 − 8α2(t)µ1(t)

∆2

H

K

]

A1(t) (3.31)

It is useful, to identify the long time contributions in the equations, to
compute A0(t) and A1(t) as functions of the parameter α(t). The acceptance
rate is

A0(t) =

∫ 0

−∞

dx√
2π∆x

exp

[

− (x− x)2

2∆x

]

+

∫ ∞

0

dx√
2π∆x

e−βx exp

[

− (x− x)2

2∆x

]

(3.32)

2These equations hold provided that spring constant, external field and temperature are
kept constant. If they change in time, extra contributions appear, that can be identified
in a straightforward manner, starting with the proper expression δE = 1

2
Ky2 − Hy1 +

dt (K̇m2 + Ḣm1)|m1,m2 , generalizing Eq. (3.14) accordingly. We shall not go into this any
further here.
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Making the transformations

z =
(x− x)√

2∆x

, ζ =
x√
2∆x

+

√

∆x

2

(

β − x

∆x

)

(3.33)

in the first and the second integral, respectively, A0(t) is rewritten as

A0(t) =
1

2
erfc[α(t)] +

b(α(t))

2
(3.34)

where erfc is the complementary error function [defined in Eq. (3.A.2)] and
we have introduced the function

b(α(t)) ≡ exp

[
β2x2

4α2(t)
− βx

]

erfc

[

β
x

2α(t)
− α(t)

]

(3.35)

In a similar way one also can express A1(t) as:

A1(t) =
x

2

[

erfc(α(t)) + b(α(t))

(

1 − βx

2α2(t)

)]

(3.36)

The case of our interest is the slow relaxation regime, thus large α. Therefore,
one can expand the above expressions for large α, see Eq. (3.A.3).

Since everything in the long time regime is more clearly expressed in terms
of µ1, µ2, it is more useful to work with the equations of motion for these
observables, connected to Eqs. (3.30)-(3.31) by

µ̇1(t) = −ṁ1(t), (3.37)

µ̇2(t) = ṁ2(t) − 2m1(t) ṁ1(t) (3.38)

We will come back to these equations in Sec. 3.2.2, in the framework of an
interesting generalization of the HO model.

3.1.2 Parallel Monte Carlo versus Langevin dynamics

We have so far presented the formalism for an analytical treatment of the
parallel MC dynamics that leads, as we will see in the next sections, to slow
relaxation and aging. Before going into the details of the resolution of the MC
equation, we would like to explain why the Langevin dynamics has not been
applied in this case. In the field of disordered systems, indeed, the dynamics
is usually computed following Langevin’s approach, that is, embedding the
(disordered) Hamiltonian dynamics into a heat-bath, represented by a white
noise of variance T . Why are Langevin dynamics not applied in our simplified
models? What are the differences between the two, both widely used, dynamic
approaches?

The Monte Carlo-Metropolis algorithm is the kernel of very many numer-
ical simulations of glassy materials of any kind, among which are coarsening
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systems, spin-glasses, structural glasses, colloids and polymers. We saw in
the previous section - and we will verify in detail later on - that a main role
in the MC equations of motion is played by the acceptance ratio A0: the
frequency by which the proposed updates of the harmonic oscillator positions
are accepted. In the infinite time limit the acceptance rate is the inverse of
the relaxation time to equilibrium τeq.

The nature of the off-equilibrium MC dynamics strongly depends on the
behavior of A0. Indeed, in models like HO (and its generalizations in the next
sections), the very slow evolution dynamic, including the Arrhenius tempera-
ture behavior of the relaxation time are connected to the fact that acceptance
rates are very small. In Langevin dynamics, no analogue of the acceptance
rate is present, though, with the consequence that no slow relaxation, no
glass-like behavior, no aging, no Arrhenius law ever arise. Thus, our choice
for parallel updating is lastly a compromise between having a simple model
for a system with glassy dynamics and demanding analytic solvability.

Exactly at T = 0, furthermore, the MC dynamics is intrinsically non-ergodic
because only moves decreasing the energy value can be accepted. A dynamic
regime is, thus, reached that cannot be traced back to any regime displayed
in Langevin dynamics.

Langevin dynamics for the HO model

The Langevin equations for the HO model in an external field H are

∂xi(t)

∂t
= −∂H

∂xi
+ ηi(t) ∀i (3.39)

where the white noise ηi(t) is such that

〈ηi(t)ηj(t′)〉 = 2Tδijδ(t− t′) (3.40)

Manipulating the above equations and averaging over the noise one obtains
the equations of motion

µ̇1(t) = −Kµ1(t), (3.41)

µ̇2(t) = 2 [T −Kµ2(t) −Hµ1(t)] (3.42)

whose solution is

µ1(t) = µ1(0) e−Kt, (3.43)

µ2(t) =
T

K
+

[

µ2(0) − T

K

]

e−2K t

−
{
µ̇2(0)

K
+ 2

[

µ2(0) − T

K

]}

e−Kt
(
1 − e−Kt

)
(3.44)

i.e., an exponential decay with a temperature-independent relaxation time
that is a straightforward generalization of the Brownian harmonic oscillator
[van Kampen, 1981].
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Parallel MC and Langevin coincide as ∆ → 0.

Bonilla et al. [1996a,b, 1998] showed, for the spin-glass spherical version of the
Sherrington-Kirkpatrick model and for the HO model that, when the variance
of the parallel MC update move is vanishingly small, the MC equations of
motion, e.g., Eqs. (3.30, 3.31), can be reduced to the Langevin equations,
provided the scaling

tMC → tL = tMCβ∆2/2 (3.45)

is imposed.
In the model of harmonic oscillators {xi} of spring constant K, embedded

in an external field H linearly coupling to xi, Eqs. (3.34, 3.36, 3.30) and
(3.31) tend, for small ∆, to

A0 = 1 (3.46)

A1 =
∆2K

2

[
1 − βK

(
µ2 + µ2

1

)]
(3.47)

ṁ1 =
β∆2

2
Kµ1 (3.48)

ṁ2 = ∆2
[
1 − βK

(
µ2 + µ2

1

)]
(3.49)

Imposing the rescaling Eq. (3.45) one recovers Eqs. (3.41, 3.42), together
with their exponential relaxation to equilibrium. When, instead, the variance
of distribution of the update change {ri} is finite, the acceptance ratio de-
creases with time. The larger is ∆, the faster A0 decreases.

When using the MC dynamics in the HO model and generalizations thereof,
even though there is no energy barrier to be overcome, the system spends a
long time looking for a configuration of lower energy because the available con-
figurational space decreases as the system evolves toward equilibrium. This
regime can be referred to as an entropic barrier regime and takes over when
the value of the acceptance rate A0 becomes small. It has no counterpart in
Langevin relaxation dynamics.

The MC updating that we implement is parallel and it is this particular
feature that yields the collective behavior leading to exponentially divergent
timescales, notably in a model with no interactions between particles. A se-
quential MC updating, like the Langevin dynamics, does not produce any
glassy effect. In this sense, there is an analogy with facilitated Ising models
[Fredrickson & Andersen, 1984], and with the kinetic lattice-glass model with
contrived dynamics of Kob & Andersen [1993], where the transition proba-
bilities depend dynamically on the neighboring configuration; this dynamics
may induce glassy behavior in situations where ordinary Glauber [1963] or
Langevin dynamics would not. Models of this type may give valuable in-
sight into the long time dynamics, at least within a class that exhibits some
longtime universality.
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3.2 Kinetic models with separation of timescales:

harmonic oscillator spherical spin models

In the HO model in an external field, as well as in any other model of the
class recalled in Sec. 3.1, only variables evolving on one, long, timescale
were considered, uncoupled to any fast relaxing process. Having determined
the essential formalism for these models we move now to study a related
class of models possessing both “fast” and “slow” variables, the latter still
undergoing the same MC dynamics as before. The existence of fast modes,
and the nonlinearity that they induce, is the source, e.g., of the memory effects
reported in Sec. 3.5, that would not be reproducible otherwise.

The model we are going to analyze is described by the Hamiltonian

H[{xi}, {Si}] =
N∑

i=1

(
1

2
Kx2

i −H xi − J xiSi − L Si

)

(3.50)

where N is the size of the system and {xi} and {Si} are continuous vari-
ables, the last satisfying a spherical constraint:

∑

i S
2
i = N . We call them

respectively harmonic oscillators and spherical spins (accordingly, we will use
the abbreviation “HOSS model”). The parameter J is the coupling constant
between {xi} and {Si} on the same site i and L is the external field acting
on the spherical spins. Relying on the hypothesis of asymptotic decoupling
of timescales, we assume that the {Si} relaxes to equilibrium on a timescale
much shorter than the one of the harmonic oscillators. In other words, the
spins have fast dynamics, which keeps them in instantaneous equilibrium,
while the oscillators are slow and may exhibit glassy dynamics.

This model is a drastic simplification of a system of interacting particles
with an inner degree of freedom, varying on a timescale shorter than the
particles’ motion. The potential is harmonic and each particle independently
interacts with the medium, encoded in the spring constant K. The inner
degree of freedom, the spherical spin Si, is coupled exclusively to the position
of the particle (xi), and the only global interaction is provided by the spherical
constraint.

The model owns a very simple statics and evolves with the parallel dynamics
exposed in Sec. 3.1, that retains the fundamental collective nature of the
glassy dynamics. We will see how this dynamics undergoes a huge slowing
down as the system is cooled down and which kind of aging dynamics the
system sets out (Secs. 3.2.2-3.2.4). We can also implement the occurrence
of an underlying Kauzmann transition (cf. Sec. 1.4.2). This allows us to
perform a dynamic probe also below the Kauzmann temperature, thus getting
information in a regime where experimental results on relaxation dynamics
are not achievable (Secs. 3.2.4, 3.4 and Appendix 3.A). Memory effects
taking place when the system is cooled down and then reheated are eventually
considered and satisfactorily reproduced (as reported in Sec. 3.5).



100 Thermodynamics of the glassy state

As we said, the spins represent the fast modes and the harmonic oscillators
the slow ones. From the point of view of the motion of the {xi}, the spins are
just a noise. To describe the long time regime of the {xi} we can average over
this noise by performing the computation of the {Si} partition function, ob-
taining an effective Hamiltonian depending only on the {xi}, that determines
the dynamics of these variables.3

Using the saddle point approximation for large N , we find the following
partition function for the subsystem of spins at a given {xi} configuration:

ZS({xi}) =

∫
(

N∏

i=1

dSi

)

exp {−βH [{xi}, {Si}]} δ

(
N∑

i=1

S2
i −N

)

≃ exp

[

−βN
(

K

2
m2 −Hm1 − w +

T

2
log

w + T
2

2πT

)]

(3.51)

where DS ≡ ∏

i dSi. The explicit dependence on {xi} is expressed in the
argument of ZS and coded in the m1,2, defined in Eq. (3.2). We have, further,
introduced the function of the harmonic oscillator positions

w({xi}) ≡
√

J2m2 + 2JLm1 + L2 +
T 2

4
(3.52)

We stress that m1,2 are just abbreviations for the xi-dependent expressions.
We define, then, the effective Hamiltonian Heff({xi}) ≡ −T logZS({xi}),
which is the free energy for a given configuration of {xi}:

Heff({xi}) =
K

2
m2N −Hm1N − wN +

TN

2
log

w + T
2

T
(3.53)

This can also be written in terms of the internal energy U({xi}) and of the
entropy Sep({xi}) of the equilibrium processes:

Heff({xi}) = U({xi}) − TSep({xi}) (3.54)

U({xi})
N

=
K

2
m2 −H m1 − w +

T

2
(3.55)

Sep({xi})
N

=
1

2
− 1

2
log

w + T/2

T
(3.56)

The function U is the internal energy of the fast processes given a blocked,
quenched, {xi} configuration, i.e., it is the average over the spins of the Hamil-
tonian (3.50). The quantity Sep is the entropy of the spins. We stress that,
depending on the timescale of interest, Heff({xi}) is both an effective Hamil-
tonian, for what concerns the xi variables (mimicking α processes), and a free
energy, for the spins (β-like processes).

3This approach is fully in line with Ginzburg-Landau theory, where fast modes are inte-
grated out to yield the Ginzburg-Landau free energy for the slow modes. Also there, the
role of the fast modes is coded in the temperature dependence of prefactors.
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To shorten the notation and to allow for a straightforward connection with
the simpler case of Sec. 3.1, we define here the effective “spring constant” K̃
and the effective “external field” H̃, viz.

K̃({xi}) = K − J2

w({xi}) + T/2
, H̃({xi}) = H +

JL

w({xi}) + T/2
(3.57)

We also define the (truly) constant combination

D ≡ HJ +KL = H̃J + K̃L (3.58)

If the interaction between xi and Si is absent (complete decoupling, J = 0),
it holds that K̃ = K and H̃ = H, without any nonlinear contributions, and
Eq. (3.53) reduces to Eq. (3.1) (apart from an irrelevant constant related to
the free energy of the uncoupled spins).

Before introducing the dynamics, we first derive the statics of the model.

3.2.1 Statics and phase space constraint

The partition function of the whole system at equilibrium is:

Z(T ) =

∫

DxDS exp [−βH({xi}, {Si})] δ
(
∑

i

S2
i −N

)

(3.59)

=

∫

dm1dm2 exp {−βU(m1,m2) + Sep(m1,m2) + Sc(m1,m2)}

where Dx ≡ ∏

i dxi. Besides U [cf. Eq. (3.55)] and Sep [cf. (3.56)], the
additional object Sc that appears in the exponent is the contribution to the
total entropy of the {xi} configurations, i.e., the configurational entropy:

Sc(m1,m2) ≡
N

2

[
1 + log(m2 −m2

1)
]

(3.60)

The configurational entropy of the HOSS model will be widely discussed in
Sec. 3.3 in the framework of the two temperature thermodynamic picture,
after having explicitly computed the dynamics. Here it simply comes out
from the Jacobian eSc of the transformation of variables Dx → eScdm1dm2.
We can compute the large N limit of the partition function using, once again,
the saddle point approximation. The saddle point equations are found by
minimizing with respect to the variables m1 and m2 the function

β

N
F (T,m1,m2) ≡ β

(
K

2
m2 −Hm1 − w

)

(3.61)

+
1

2

[

log
w + T/2

T
− 1 − log(m2 −m2

1)

]
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Denoting the saddle point values of m1 and m2 as m̄1 and m̄2, their self-
consistent equations are:

m̄1 =
H̃(m̄1, m̄2)

K̃(m̄1, m̄2)
(3.62)

m̄2 = m̄2
1 +

T

K̃(m̄1, m̄2)
(3.63)

The form of the solutions m̄1(T ), m̄2(T ) is quite complicated because each of
these equations is actually a fourth order equation, but they can be explicitly
computed analytically and easily solved numerically. In terms of the equi-
librium values m̄k, we find the following expression for the equilibrium free
energy:

F (T, m̄1, m̄2) = U(T, m̄1, m̄2) − T [Sep(T, m̄1, m̄2) + Sc(T, m̄1, m̄2)] (3.64)

When the spin-oscillator coupling J is zero, one has K̃ → K, H̃ → H, m̄2 −
m̄2

1 → T/K, while Sc simply corresponds to the entropic contribution in Eq.
(3.3) (the fast process entropy Sep is zero if one sets also L = 0, but for J = 0
it is irrelevant anyhow).

Constraint on configurations: modeling a fragile glass

Another possible ingredient for the model is a constraint on the slow processes
configuration space introduced to prevent the existence of a single global min-
imum, thus implementing a large degeneracy of the allowable lowest states.
The constraint is, hence, taken on the {xi}, concerning the long time regime.
It reads

m2 −m2
1 ≥ m0 (3.65)

where m0 is a fixed, but arbitrary, positive constant (a null m0 would provide
no constraint at all). The model glass obtained this way, with m0 strictly
larger than zero, has no “crystalline” state. In other words the constraint
prevent the system from evolving towards the lowest energy configurations
(the equilibrium state) in phase space, irrespective of the initial conditions.

This constraint applied to the harmonic oscillator dynamics is a way to re-
produce the behavior of fragile glass formers, (e.g., K+Ca2+NO−

3 , K+Bi3+Cl−,
OTP, toluene and chlorobenzene, cf. Sec. 1.2).

If the constraint, Eq. (3.65), is absent, the dynamics at very low T will still
be glassy even though for t→ ∞ the system will eventually relax to its global
minimum, without having to overcome energy barriers.

As we will explain in detail in the next section, either we can implement
a dynamics that satisfies this constraint, thus introducing an extra global
coupling among {xi} in a dynamic way, or we can adopt a dynamics that is not
influenced by the constraint (m0 = 0), but parallel and, thus, approximately
reproducing the collective motion of cooperative regions in the glass. The
dynamical model that one obtains with the very simple local Hamiltonian
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(3.50) and the parallel MC dynamics appear to yield typical examples of glass
relaxation. With no constraint, the relaxation time will follow an Arrhenius
law as a function of the temperature, Eq. (1.2). Introducing the constraint in
the dynamic rule, instead, the relaxation time will take a VF form, Eq. (1.3).

If temperature is large enough, the constraint practically plays no role.
More precisely, the constraint is basically inactive above a temperature T0,
consistently defined as the temperature at which the system reaches the phase
space constraint in the asymptotic limit t→ ∞:

T0 ≡ m0 K̃(m̄1(T0), m̄2(T0)) (3.66)

Indeed, for the fragile glass case at T < T0, when the constraint is reached
at finite t, the saddle point equation (3.63) becomes m̄2 − m̄2

1 = m0, no
matter what the temperature of the thermal bath is. The equilibrium values
of m1 and m2 are, thus, expressed by the solution of equation (3.62) and of a
modified Eq. (3.63), taking into account the existence of the constraint:

m̄2 − m̄2
1 =

{

T/K̃(m̄1, m̄2) if T > T0

m0 if T < T0
(3.67)

If m0 = 0 the constraint does not exist and T0 = 0.
When Eq. (3.65) is first satisfied, at T0, in the infinite time limit, the

configurational entropy Sc [cf. Eq. (3.60)] goes to its minimal value

Sc
(0) ≡ Sc(T0) =

N

2
(1 + logm0) (3.68)

Zero configurational entropy would mean that only one configuration is al-
lowed for the system, but here we are not using discrete, “quantum,” vari-
ables and entropies are, therefore, ill-defined at low T , cf. Sec. 3.1. Indeed,
the Nernst principle is violated because the configurational entropy counts all
the multiple ways in which the continuous harmonic oscillators can arrange
themselves in order to satisfy the constraint (3.65). As a consequence, the
value Sc(T0) can take any value different from zero in our model. Since we
are dealing with classical variables, we can bypass this inconvenience by just
subtracting from Sc the constant Sc

(0) in order to have Sc(T ∈ [0, T0]) = 0.4

Coming from high temperature there would thus be a transition from a many
(metastable) states phase to a phase in which the system is stuck forever in
one single minimum (or a subextensive number of minima). T0 is, hence, the
Kauzmann temperature (cf. Sec. 1.4.2).

We will look at the Kauzmann transition later on, in Sec. 3.4, in terms of
the effective temperature of the model, that we will introduce in Sec. 3.3.

4From a dynamic point of view the entropy value Sc
(0) is related to the dynamics on

timescales where all the degenerate minima are sampled. These are much longer than the
scales of our interest, and, for our purposes, the value of Sc at T0 (and below) is irrelevant.
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3.2.2 Parallel Monte Carlo dynamics of the HOSS model:
equations of motion

We make use of the MC dynamic formalism presented in Sec. 3.1.1 to build
the equations of motion. The energy difference between the new and the old
states is, in the HOSS model case,

δE ≡ Heff({x′i}) −Heff({xi}) ≃
K̃

2
y2 − H̃ y1 (3.69)

where the last expression is obtained upon neglecting the variations of m1 and
m2 that are O(y2

1,2/N) ∼ ∆2/N . If J = 0, that is, if we consider only slow
modes (no coupling with fast spherical spins), it is exactly δE = K/2 y2−H y1,
as we already discussed [cf. Eq. (3.14)].

In terms of the energy difference x ≡ δE and of y ≡ y1, the distribution
function can, once again, be written as the product of two Gaussian distri-
butions, as in Eq. (3.15), with averages and variances formally very similar
to those presented in Eqs. (3.16)-(3.17), provided the definitions (3.57) are
adopted:

x = ∆2K̃/2, ∆x = ∆2K̃2
(
µ2 +m0 + µ2

1

)
(3.70)

y(x) =
µ1

µ2 +m0 + µ2
1

x− x

K̃
, ∆y =

∆2(µ2 +m0)

µ2 +m0 + µ2
1

(3.71)

The abbreviations µ1,2, inspired by the static self-consistency Eqs. (3.62)-
(3.63), are now

µ1 ≡ H̃

K̃
−m1 (3.72)

µ2 ≡ m2 −m2
1 −m0 (3.73)

Notice that Eq. (3.73) is different from the definition of the same quantity in
the HO model [Eq. (3.19)], since now we allow for a strictly positive m0. We
will study the dynamics for these two specific combinations of the variables
m1 and m2. The first variable is defined, starting from the saddle point
equation (3.62), as the deviation from the instantaneous equilibrium state.
When equilibrium is reached, µ1 is zero, whereas outside equilibrium µ1 6= 0
and its magnitude can be considered as a measure of how far the system is
from relaxation.

For µ2 there are two basic cases:

• T0 = 0. The variable µ2 is the distance from the ground state of the
model (when the constraint constant m0 is zero there is one unique
global minimum). In equilibrium, at T = 0, from Eq. (3.67) we know
that µ2 = 0, while for T > 0, µ̄2 = T/K̃(T ) with the denominator
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taking the following expression for low T :

K̃∞(T ) = lim
t→∞

K̃ (m1(t),m2(t);T ) =
KD

D + J2
+
T

2

J2K2

(D + J2)2
(3.74)

+
T 2

8

J6K3(J2 − 3D)

D(D + J2)5
+ O(T 3)

For simplicity and for physical interest, we will limit ourselves to the sets
of interaction parameters yielding a positive K̃ (andD = HJ+KL > 0).
Such a choice guarantees that µ̄2 is always nonnegative. Moreover, it
implies that at T = 0 the system reaches its minimum

xi =
H + J

K
∀i (3.75)

• T0 > 0. When the constraint constant is different from zero, the asymp-
totic value of µ2 is T/K̃(T ) −m0 if T ≥ T0, or else it is zero.

In terms of µ1, µ2 the square root w, introduced in Eq. (3.52), becomes

w(µ1, µ2) =

√

J2(m0 + µ2) +

(
D

K̃(µ1, µ2)
− JK̃(µ1, µ2)µ1

)2

+
T 2

4
(3.76)

In the following sections we will present separately the two kinds of dynam-
ics corresponding to the relaxation of a strong glass (no constraint) and to
that of a fragile glass (configurational constraint plus dynamics depending on
constraint).

The equations of motion for the one time variables m1,2 are given by Eqs.

(3.30)-(3.31), providedH → H̃, K → K̃. The long time regime is more clearly
expressed in terms of µ1, µ2, whose equations of motion are now:

µ̇1 =
˙̃H

K̃
−

˙̃K H̃

K̃2
− ṁ1 (3.77)

µ̇2 = ṁ2 − 2m1 ṁ1 (3.78)

Introducing the abbreviations

Q(m1,m2) ≡
J2 D

K̃3w (w + T/2)
2 , Q̄ ≡ Q(m̄1, m̄2) (3.79)

P (m1,m2) ≡
J4(m2 −m2

1)

2K̃w (w + T/2)
2 , P̄ ≡ P (m̄1, m̄2) (3.80)

where w(µ1, µ2) is expressed by Eq. (3.76), after a lengthy but straightforward
manipulation one obtains

µ̇1 = −4α2µ1(1 +Q D)

{

A0(t) −
2

∆2K̃
A1(t)

}

−QJA1(t) (3.81)

µ̇2 = 8α2µ2
1

{

A0(t) −
2

∆2K̃
A1(t)

}

+
2

K̃
A1(t) (3.82)
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The acceptance rate A0(t) and the average energy shift A1(t) are defined in
Eqs. (3.28)-(3.29) and the parameter α is the one introduced in Eq. (3.27),
provided µ2 → µ2+m0 to deal with the possible presence of the configurational
constraint; α2 = x2/(2∆x) = 8/∆2(µ2 +m0 + µ2

1).
The dependence of A0 and A1 on µ1 and µ2 is hidden in the variables α, x

and ∆x. Their functional dependence on µ1, µ2 passes through K̃ and can be
obtained, e.g., by solving the equation (see definition 3.57)

(K̃ −K)(w + T/2) = −J2 (3.83)

It results in a complicated but analytically solvable fourth order equation for
K̃,

(K̃−K)2(D−JK̃µ1)
2+(K̃−K)2K̃2J2(m0+µ2)−J4K̃2+TJ2K̃2(K̃−K) = 0

(3.84)
The explicit solution appears not to be very appealing but is easily com-
putable.

3.2.3 Dynamics of the strong glass model

To model a strong glass we will consider the dynamics without imposing any
constraint on the configuration space and making use of the above-introduced
MC dynamics, with a variance ∆2 for the randomly chosen updating {ri} of
the slow variables {xi}. We will see that this dynamics displays an Arrhenius
relaxation near zero temperature. This happens for similar models, e.g., the
oscillator model of Sec. 3.1 or the spherical spin model of Nieuwenhuizen
[1998c, 2000], where exactly the same dynamics is applied. The difference is
that now the formalism includes two types of dynamical processes: fast and
slow.

Zero temperature dynamics

We first present the dynamics exactly at zero temperature. For long times,
α(t) is large and diverging and we can expand A0(t) and A1(t) [cf., e.g., Eq.
(3.27)], obtaining

A0(t) ≃
e−α

2(t)

2α(t)
√
π

(3.85)

A1(t) ≃ − e−α
2(t)

2α(t)
√
π

∆2K̃(t)

4α2(t)
(3.86)

First of all, we solve the equation of motion for µ2, Eq. (3.82) neglecting
terms of order µ2

1 with respect to those of order µ2, i.e., assuming α2 ≃
∆2/(8µ2). Using Eq. (3.86), Eq. (3.82) becomes

µ̇2 ≃ −2 (2µ2)
3/2

exp
(

− ∆2

8µ2

)

√
π∆2

(3.87)
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or, equivalently, α̇ ≃ e−α
2

/
√
π, yielding the implicit solution of the dynamics:

erf[i α(t)]

i
=

2

π
t+ const (3.88)

The error function erf is defined in Eq. (3.A.1). At T = 0, the solution in the
aging regime turns out to be:

µ2(t) ≃
∆2

8

1

log 2t√
π

+ 1
2 log log 2t√

π

(3.89)

Combining Eq. (3.85) with Eq. (3.86), Eq. (3.81) takes the form

µ̇1 =
e−α

2

2α
√
π

{

JQ∆2K̃

4α2
− 2µ1(1 +DQ)

(
2α2 + 1

)

}

(3.90)

Dividing Eq. (3.90) by Eq. (3.87) we can write down a differential equation
for µ1 as a function of µ2:

dµ1

dµ2
≃ 8(1 +DQ)

α4

∆2
µ1 −

JQK̃

2
(3.91)

where we have neglected terms of order 1/α2 ∼ µ2 with respect to those of
O(1). To obtain the leading order behavior we can neglect the left-hand side
of the equation with respect to the right-hand side, i.e., we can perform an
adiabatic approximation stating that the relative variation of µ1 with respect
to a change µ2 is very slow in the aging regime (it has to be verified after-
ward). This amounts to assuming that the evolution of µ1 mainly occurs on
a hypersurface of configurations satisfying the constraint µ2 =const.

In such an adiabatic approximation the solution to Eq. (3.91) turns out to
be

µ1(t) ≃
4J3K

∆2(D + J2)2
µ2

2(t) (3.92)

where we have inserted the infinite time limits K̃∞ = KD/(D + J2) and
Q̄ = J2/D2. This result is both consistent with the initial assumption of
neglecting µ2

1 ∼ µ4
2 with respect to µ2 and with the adiabatic approximation

of neglecting dµ1/dµ2 ∼ µ2 with respect to the right-hand side of Eq. (3.91),
which is of O(1). At zero temperature and for long times, one, thus, obtains
µ1 ∼ µ2

2 ≪ µ2.
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Dynamics at T > 0

If T is above zero, but still small, the leading order of the expansion of A0

and A1 for large times (α≫ 1) reads:

A0 ≃ e−α
2

2α
√
π

1

1 − 4Tα2

∆2K̃

(3.93)

A1 ≃ − e−α
2

2α
√
π

∆2K̃

4α2

1 − 8Tα2

∆2K̃(

1 − 4Tα2

∆2K̃

) (3.94)

where the terms Tα2 are of O(1) (in order for α to be large T must be small).
Indeed, introducing the difference δµ2(t) = µ2(t) − µ̄2, the O(Tα2) term can
be written as

8Tα2

∆2K̃
=

8T

∆2K̃

∆2

8µ2
=
µ̄2

µ2
=

1

1 + δµ2

µ̄2

(3.95)

[see the definition of α, Eq. (3.27)] so that limt→∞ 8Tα2/(∆2K̃) = 1.

In the latter notation the MC equations (3.81, 3.82) are rewritten as

µ̇1 ≃ e−α
2

α
√
π

1 + δµ2

µ̄2

1 + 2 δµ2

µ̄2

[

JQ∆2K̃

2α2

δµ2

µ̄2

1

1 + 2 δµ2

µ̄2

− 4α2(1 +DQ)µ1

]

(3.96)

µ̇2 = ˙δµ2 ≃ e−α
2

α
√
π

∆2

α2

δµ2

µ̄2

1 + δµ2

µ̄2
(

1 + 2 δµ2

µ̄2

)2 (3.97)

The solution to Eq. (3.97) in the time regime O(1) ≪ t≪ τeq is, to leading
order,

δµ2(t) ≃
∆2

8

1

log 2t√
π

(3.98)

and the behavior of µ1 comes out to be

µ1 ≃ 4JQK̃

∆2(1 +DQ)
µ2

2

δµ2

µ̄2

2

1 + 2 δµ2

µ̄2

≃ 8JQ̄

∆2(1 +DQ̄)
Tδµ2(t)

(3.99)

Notice that the above expression vanishes linearly when equilibrium is ap-
proached, since then δµ2 → 0. This is at variance with the quadratic behav-
ior at T = 0, cf. Eq. (3.92). In the present case, though, dµ1/dµ2 can still
be considered small with respect to O(1) if T is low enough. We recall that
we are actually assuming as a starting point that α2 ∼ 1/T is large, cf. Eq.
(3.93), and this is precisely equivalent to assume that µ̄2 ∼ T is small.
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Arrhenius relaxation to equilibrium

For times even longer than the timescale of the aging regime, the system
finally relaxes, exponentially fast, to equilibrium.

From the equations of motion studied above [see for instance Eq. (3.87)] we
find that the relaxation time to equilibrium, i.e., the inverse of the acceptance
ratio [cf. Eq. (3.93)] is

τeq ∝ eα
2

(3.100)

From the definition of α, Eq. (3.27), its asymptotic value at low temperature
turns out to be

α(T ) =

√

∆2

8µ̄2(T )
=

√

As

T
(3.101)

with

As ≡
∆2K̃∞

8
=

∆2KD

8(D + J2)
+O(T ) (3.102)

Accordingly, Eq. (3.100) is the Arrhenius law

τeq ∼ exp

(
As

T

)

(3.103)

We notice that, in general, in all quantities computed above, the zero tem-
perature and the infinite time limits commute.

3.2.4 Dynamics of the fragile glass model

We now analyze what happens to the dynamics if the constraint Eq. (3.65)
is switched on (m0 > 0). First of all, it must be implemented in the dynamic
rules in order to affect the entire evolution and not just its trivial static limit.
We, therefore, let ∆2 depend on the distance from the constraint, i.e., on the
whole {xi} configuration before the MC step:

∆2(t) ≡ 8[m0 + µ2(t)] [µ2(t)]
−γ (3.104)

where γ is larger than zero. We abbreviate

Λ(t) ≡ [µ2(t)]
−γ (3.105)

The nearer the system goes to the constraint (i.e., the smaller the value of µ2 =
m2−m2

1−m0), the larger the variance becomes, thus implying almost always
a refusal of the proposed updating. In this way, in the neighborhood of the
constraint, the dynamics is slower and proceeds through very rare but typically
very large moves, a mechanism that can be interpreted as activated dynamics.5

5This can be realized as well by taking m0 = 0, yielding, eventually, a generalized Arrhenius
relaxation.
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When the constraint is reached, Λ becomes infinite and the system dynamics is
stuck forever. The system no longer evolves toward equilibrium but is blocked
in one single ergodic component of the configuration space. At large enough
temperatures, the combination µ2(t) will remain strictly positive throughout
the whole relaxation process and the dynamics will be qualitatively identical
to that of the strong glass. Contrary to the latter, however, the dynamics
will get stuck forever out of equilibrium at some temperature T0, Eq. (3.66),
identifiable with the Kauzmann temperature.

In terms of Λ, the parameter α [Eq. (3.27)] can be rewritten as

α =

√
√
√
√

Λ

1 +
µ2

1

m0+µ2

≃
√

Λ (3.106)

for µ2
1 ≪ µ2 + m0. When all system parameters are fixed (aging setup) the

equations of motion, in terms of µ1 and µ2, are still Eqs. (3.81)-(3.82).

Detailed balance

The question whether detailed balance is satisfied or not is nontrivial in this
case. Indeed, it happens to be satisfied for this kind of dynamics only for
large N . For exact detailed balance we should have

p(x|m1,m2) exp(−βx) = p(−x|m1,m2) (3.107)

but now, the probability distribution also depends on the harmonic oscillator
configuration, through ∆2, as defined in Eq. (3.104). When we perform
the inverse move {x′i} → {xi}, hence, the right-hand side of the detailed
balance consists of p(−x|m′

1,m
′
2;∆

′2) 6= p(−x|m1,m2;∆
2). Expanding this

probability distribution in powers of 1/N , however, we obtain

p(−x|m′
1,m

′
2;∆

′2) = p(−x|m1,m2;∆
2) + O(∆2/N) (3.108)

Terms of O(∆2/N) were already neglected in the approximation of the energy
shift x done in Eq. (3.14). So, inasmuch as the whole approach is valid, i.e.,
for large N , detailed balance is also satisfied. It would be, instead, slightly
violated in a finite N numerical simulation. Even though ∆2 ∝ Λ(t) grows as
the system approaches equilibrium (it even diverges at the Kauzmann temper-
ature), in our approach, we first perform the thermodynamic limit computing
the dynamic equations and only eventually the limit t→ ∞.6

6This is what is done, e.g., in spherical p-spin models representing the mean-field approxi-
mation for structural glasses [Cugliandolo & Kurchan, 1993, 1994]. If we did the opposite,
there would have been a region around the Kauzmann temperature where the detailed bal-
ance would have been violated and the dynamics would have been different from the one
discussed here. However, to probe the latter order of limits is not our aim since we are inter-
ested in the slow relaxation that takes place in systems with a large number (Avogadro-like)
of variables.
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Aging dynamics

In the previous section the dynamics was performed within the same frame-
work but at fixed ∆: the relaxation time is diverging at low temperature with
an Arrhenius law, typical of strong glasses. Setting m0 = 0 in Eq. (3.104) it
would yield a strong glass system relaxing slowly to equilibrium with a gen-
eralized Arrhenius law τeq ∼ exp(A/T )γ , with a generic γ, and the slowing
down would be enhanced with respect to the strong glass dynamics with a
fixed ∆2 because of the increase of the variance of the proposed oscillator
move as equilibrium is approached.

Here we will, instead, develop a model representing a fragile glass with
a Kauzmann transition at a finite temperature, keeping m0 > 0. First of
all, we look at the probability distribution of energy shifts in the MC update
procedure. The variance ∆x of Eq. (3.15) is now diverging as Λ → ∞. Indeed,
it is

∆x = ∆2K̃2(m0 + µ2 + µ2
1) = 8ΛK̃2(m0 + µ2)

2 +O
(
Λµ2

1

)
(3.109)

In the time regime where Λ is large (µ2 ≪ 1), x2/∆x will be small. This
allows us to approximate, in the aging regime of our interest, the Gaussian
distribution of x as the exponential distribution

p(x|m1,m2) ≃
exp (−Λ)√

2π∆x

exp

(
x x

∆x

) (

1 − x2

2∆x
+

x4

8∆2
x

)

(3.110)

Looking at the asymptotic equation for µ2 and noticing that the infinite time
limit is µ̄2 = T/K̃∞(T )−m0, we introduce the temperature-like abbreviation

T ⋆(t) ≡ K̃(t) [m0 + µ2(t)] (3.111)

tending to T as t→ ∞, provided T ≥ T0.

To the leading order, the acceptance ratio, Eq. (3.28), is

A0(t) ≃ Υ(t) ≡ e−Λ

4T ⋆
√
πΛ

{∫ 0

−∞
dx e

x
2T⋆ +

∫ ∞

0

dx e−(β− 1
2T⋆ )x

}

=
e−Λ

√
πΛ

T ⋆

2T ⋆ − T
(3.112)

with

Υ(t) ≡ e−Λ(t)[1 − r(t)]
√

πΛ(t)
(3.113)

We further introduce another parameter, a sort of reduced temperature, that
is small as times are large:

r ≡ T ⋆ − T

2T ⋆ − T
(3.114)
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In this notation the dynamic Eqs. (3.81)-(3.82) become

µ̇1 = 4Υ

{

JQK̃(m0 + µ2)r

[

1 − 3(1 − 2r + 2r2)

Λ
+O

(
1

Λ2

)]

(3.115)

−Λµ1(1 +QD)

1 +
µ2

1

m0+µ2

[

1 − 1 − 3r + 4r2

Λ
+O

(
1

Λ2

)]}

µ̇2 = −8Υ

{

(m0 + µ2)r

(

1 − 3(1 − 2r + 2r2)

Λ

)

(3.116)

−Λµ2
1

[

1 − 1 − 3r + 4r2

Λ
+O

(
1

Λ2

)]}

The solutions to Eqs. (3.115) and (3.116) depend on the relative sizes of
µ1 and µ2, and thus also on γ, as well as on r, which has a different behavior
above T0, where T ⋆ tends to T in the infinite time limit, and below T0, where
T ⋆ never equals the heat-bath temperature (we will see in Sec. 3.3 what is
the physical meaning of T ⋆).

The resolution of Eq. (3.116) can be carried out by neglecting the second
term, proportional to Λµ2

1, i.e., assuming µ2
1 ≪ µγ2 . If γ < 1, this is a

stricter hypothesis than the one leading to Eq. (3.82) for the strong glass
case (µ2

1 ≪ µ2). We will actually see that this hypothesis is not satisfied as
γ < 1 (see the end of the present section). The rest of Eq. (3.116) can be
rewritten as a closed equation for Λ:

Λ̇ =
8γm0

π
e−ΛΛ

1
2+ 1

γ r(Λ) [1 − r(Λ)] (3.117)

where r(Λ(t)) is defined in Eq. (3.114) and where only the leading terms
in Λ are kept. The solution we obtain will, then, be valid in the long time
regime and for T & T0 or T < T0 (in the latter case γ must be larger than
one). Indeed, above T0, Λ = 1/(µ̄2 + δµ2)

γ . We can neglect µ̄2 with respect
to δµ2(t) at temperatures very close to the Kauzmann temperature and for
times that are not extremely long, so that we are far from thermalization and
the dynamics still displays aging behavior. However, as is clear from Fig. 3.1,
as soon as we go too far from T0, we cannot neglect the asymptotic value µ̄2

anymore.
The behavior of r discriminates between the aging regimes above and below

T0:

T ≥ T0, Λ(t) → Λ̄(T ) ∼ 1
(T−T0)γ

, r ≃ µ2 − µ̄2

T < T0, Λ(t) → ∞, r ≃ r∞ ∼ T0 − T
(3.118)

In Appendix 3.A we present the details of the resolution of Eq. (3.117).
Here we directly present the results in terms of the distance from the config-
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with a Vogel-Fulcher exponent γ = 2.

Reprinted figure with permission from

[Leuzzi & Nieuwenhuizen, 2001a]. Copy-

right (2001) by the American Physical

Society.

0

0.1

0.2

0.3

0.4

0.5

1 10
2

10
4

10
6

10
8

10
10

µ
2
(t

) 
- 

µ
2
(∞

)

t

exact
approx

0.3

0.35

0.4

0.45

0.5

5 10 15 20

µ2(t) - µ2(∞)

t

exact
approx

FIGURE 3.2

The difference µ2(t) − µ̄2 is plotted for

T = 0.41, slightly above the Kauzmann

temperature T0 = 4.00248, for which

µ̄2 = 0.09763. The full curve repre-

sents the exact solution to Eq. (3.116),

with initial condition Λ(0) = 1. The

dashed curve is a plot of the approxi-

mated solution, Eq. (3.119). In the inset

the initial behavior is shown. Reprinted

figure with permission from [Leuzzi &

Nieuwenhuizen, 2001a].

urational space constraint µ2:

µ2(t) ≃
1

[log(t/t0) + ω log (log(t/t0))]
1/γ

+

[
T

K̃∞(T )
−m0

]

θ(T−T0) (3.119)

The expressions for the parameters t0 and ω depend on the temperature phase
as reported in Eq. (3.A.8). θ(x) is the Heaviside function: θ(x ≥ 0) = 1 and
theta(x < 0) = 0.

In Fig. 3.2 we show the exact solution, numerically computed, to Eq.
(3.116) for a particular choice of the parameter values, K = J = 1, H = L =
0.1, m0 = 5, γ = 2 and we compare it with the approximated solution yielded
by Eq. (3.119). We can see that, already after one decade, the behaviors
coincide.

The dynamics of µ1(t) is less general. As T < T0 its behavior is, actually,
strongly model dependent. The ratio of Eqs. (3.115) and (3.116) yields the
equation

dµ1

dµ2
=
µ1(1 +QD)(Λ + 2 − 3r + 2r2) − JQT ⋆r

2r(m0 + µ2) − µ2
1(Λ + 2 − 3r + 2r2)

(3.120)

With respect to the relative weights of µ1 and µ2, we can identify different
regimes, where the solution displays different behaviors.
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1. Aging regime above the Kauzmann temperature: T & T0, ∀γ.
The leading term of the solution is given by the stationary solution of
Eq. (3.120). We expand r for long times, r = r1δµ2 (the expression for
r1 is reported in Appendix 3.A, Eq. (3.A.9)), thus yielding the following
long time behavior of µ1:

µ1(t) ≃
TJQ̄r1
1 + Q̄D

δµ2(t)

Λ
(3.121)

2. Aging regime below the Kauzmann temperature, enhanced separation
of timescales: T < T0, γ > 1.
In this and in the following cases δµ2(t) = µ2(t). Also in this dynamic
regime the adiabatic approximation can be carried out and the second
term in the denominator of Eq. (3.120) is again negligible. The leading
term of r in its expansion in powers of µ2, r∞, is of O(1) [cf. Eq.
(3.A.11)]. Therefore we get

µ1(t) =
JK̃∞m0r∞Q̄

1 + Q̄D

1

Λ(t)
+ O

(µ2

Λ

)

(3.122)

3. Non-generic regimes.
Below T0 and for γ = 1 many different regimes occur, that are model
dependent. Furthermore, in some of these regimes the assumption at the
basis of the adiabatic approximation (µ1 relaxing on faster timescales
than µ2) is not valid anymore. This also occurs in the regime for γ < 1.
We will not need the details of these regimes for the test of the out-
of-equilibrium thermodynamics formulated on the HOSS model in Sec.
3.3. For completeness, however, we report them in Appendix 3.A.

The one time dependent variables µ1(t) and µ2(t) provide the dynamic
behavior of every observable in the long, preasymptotic, time regime, i.e.,
as we will explicitly see in Sec. 3.3.4, in the aging regime. When the time
increases further the dynamics eventually relaxes to equilibrium exponentially,
as exp(−t/τeq).

Vogel-Fulcher relaxation time to equilibrium

The relaxation time to equilibrium is the characteristic time on which the
system initially out of equilibrium (because, for instance, of a sudden quench
to low temperature) relaxes toward equilibrium. It can be defined, for in-
stance, from the dynamical equations of the observables m1,2 of the harmonic
oscillators ṁi = −mi/τeq, as the time at which the quantity of interest goes
to 1/e of its initial value. Equivalently, it is identified with the inverse of the
acceptance ratio in the asymptotic time limit, τeq ∼ 1/Ā0, cf. Eq. (3.112).
Hence, in any temperature regime the relaxation time turns out to have an
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exponential behavior in Λ:

τeq ∼ eΛ = exp

(
1

µ2

)γ

(3.123)

Making use of Eq. (3.119) we find the behavior for the relaxation time
versus temperature when T > T0: µ2(t) tends asymptotically to µ̄2(T ) =
T/K̃∞(T ) − T0/K̃∞(T0), and, near enough to the Kauzmann temperature,
we can linearize the latter as µ̄2 ≃ (T − T0)K̃∞(T0). We get, thus, the expo-
nential law

τeq ∝ exp

(

K̃∞(T0)

T − T0

)γ

(3.124)

This is a generalized VF law where γ can have any value and, in particular,
the value γ = 1. In practice, the exponent is used in experiments to make the
best Vogel-Fulcher-like fitting of the relaxation time [Angell, 1995; McKenna,
1989]. In our model γ is a constant; it has no prescribed value since we do
not make any connection with a microscopic system. Its value has relevance
on the speed of structural relaxation [see, e.g., Eq. (3.119)] and there are
three qualitatively different dynamic regimes depending on its value: γ > 1,
γ = 1 and 0 < γ < 1. We have seen that, for γ = 1 (the original VF law) the
situation is actually non-generic. We anticipate that the difference induced
on the aging dynamics by different values of γ will imply that a consistent
thermodynamic picture cannot be always constructed in terms of a single
extra temperature-like parameter, not even for the very simple HOSS model.
We will analyze in Sec. 3.3 what the limits and the reasons for this are.

Below T0 no relaxation to equilibrium can occur and the system is stuck
for ever out of equilibrium. However, also in this case it is possible to define
a characteristic time describing the structural relaxation. We will come back
to this in Sec. 3.4 after having applied the two temperature thermodynamic
theory, presented in Secs. 2.3, 2.4 and 2.5, to the HOSS model.

3.2.5 Adam-Gibbs relation in the HOSS model

The configurational entropy Sc for the fragile HOSS glass model is ill-defined
at zero temperature because we are using continuous variables, cf. Sec. 3.2.1.
To cure such a violation of the Nernst principle we can, however, subtract the
constant Sc

(0) ≡ Sc(T0) from the configurational entropy, thus obtaining

Sc =
N

2
log

(

1 +
µ2

m0

)

(3.125)

Expanding this regularized entropy in powers of µ2 we find the leading
order: Sc ≃ N

2m0
µ2. Using this result we also find, from Eq. (3.123), the

following relation between the configurational entropy and the relaxation dy-



116 Thermodynamics of the glassy state

namics in the fragile HOSS:

τeq ∝ exp

[
B

Sc(T )

]γ

(3.126)

with B ≡ N/(2m0). Looking at Eq. (1.14) of Sec. 1.4, we recognize that the
above relation is just the AG relation generalized to exponents γ also different
from one, provided the identification B = C/T is done, where C in the original
work [Adam & Gibbs, 1965] was an extensive quantity proportional to the
difference between the Gibbs free energy of the system and a reduced Gibbs
free energy computed counting only those configurations including CRRs and,
thus, contributing to the glass relaxation.

3.3 Out-of-equilibrium thermodynamics

The history of a system that is far from equilibrium can be expressed by
means of a number of effective parameters, like the effective temperature or
other effective fields, in order to recast the out-of-equilibrium dynamics into a
thermodynamic approach. The aim is, indeed, to yield a formalism in which
any two metastable states can be connected inside a phase diagram of a certain
(reasonably small) number of thermodynamic parameters.

The number of effective parameters needed to make such a translation is,
in principle, equal to the number of independent observables considered. For
a certain class of system, however, some partial thermalization takes place
and the effective parameters pertaining to processes evolving on the same
characteristic (long) timescale become equal to each other in time, at least on
a wide time window. Examples of out-of-equilibrium regimes governed by a
single effective temperature have been considered in Chapter 2 and more will
be presented in Chapters 4, 6 and 7.

3.3.1 Quasi-static approach

Given the solution of the dynamics, i.e., the time dependence of the functions
m1(t) and m2(t), a quasi-static approach can be followed by computing the
partition function Ze of all the macroscopically equivalent states (those hav-
ing the same values for m1,2) at a given time t. The measure on which this
out-of-equilibrium partition function is evaluated is not the Gibbs measure.
In order to generalize the equilibrium thermodynamics we introduced an effec-
tive temperature Te and an effective field He, and substitute the equilibrium
measure by a mimicking function

ω(T, Te,He) ≡ exp

[

− 1

Te
Heff({xi}, T,He)

]

(3.127)
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The Hamiltonian Heff is the one derived in Eq. (3.54), where we have substi-
tuted the true external field H with the effective field He.

The quantities Te and He are, at this step of the computation, simply ficti-
tious parameters. However, as soon as we get the expression of the candidate
effective thermodynamic potential Fe ≡ −Te logZe as a function of macro-
scopic variables m1,2 and effective parameters, we can determine Te and He

from the conditions of minimum Fe with respect to m1 and m2 and evalu-
ate the resulting analytic expressions at the dynamic values m1 = m1(t) and
m2 = m2(t). Counting all the macroscopically equivalent states at time t, at
which the dynamic variables take values m1 and m2, we obtain

Ze (m1,m2;Te,He) ≡
∫

Dx exp

[

− 1

Te
Heff({xi}, T,He)

]

(3.128)

×δ
(

Nm1 −
∑

i

xi

)

δ

(

Nm2 −
∑

i

x2
i

)

From this partition function we can build an effective thermodynamic po-
tential as a function of Te and He, besides T and H, where the effective
parameters depend on time through the slowly varying m1(t) and m2(t), so-
lutions of the dynamics. The parameters Te and He are actually a way of
describing the evolution in time of the system out of equilibrium in a thermo-
dynamic language. The effective free energy takes the form

Fe(t) = U (m1(t),m2(t)) − TSep (m1(t),m2(t)) (3.129)

−Te(t)Sc (m1(t),m2(t)) + [H −He(t)]Nm1(t)

with

Te(t) = K̃ (m1(t),m2(t))
[
m2(t) −m2

1(t)
]

= T ⋆(t) (3.130)

He(t) = H − K̃ (m1(t),m2(t))µ1(t) (3.131)

where the last term of Fe replaces the −HNm1 occurring in U [see Eq. (3.55)]
with −HeNm1.

The quantity

Sc(t) =
N

2
log

m2(t) −m2
1(t)

m0
(3.132)

is the configurational entropy (3.57) and the formal expressions for U and
Sep are given in Eqs. (3.55) and (3.56) (now m1 and m2 are time-dependent
quantities). Furthermore, we recognize in Eq. (3.130) that the parameter T ⋆,
introduced in Eq. (3.111) in the study of the dynamics and entering in many
essential expressions, turns out to be the effective temperature for the HOSS
model.

The formalism so far discussed holds both for the strong and fragile dynamic
cases and also for the HO model without fast processes (for which J = L = 0,
K̃ = K and H̃ = H). Indeed, the new thermodynamic-like parameters are
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specified only as the actual dynamic behaviors of m1,2(t) (equivalently µ1,2(t))
are inserted.

In the regimes where µ1 ≪ µ2, the effective temperature Te(t) alone is
enough for a complete thermodynamic description of the dominant, out-of-
equilibrium, physical phenomena (i.e., He ≃ H, for t0 ≪ t ≪ τeq). The
difference between the effective field and the external field is negligible with
respect to Te − T . These are the dynamic regimes occurring for long times
in the HO model (Sec. 3.1), in the strong HOSS model (Sec. 3.2.3) and in
the fragile HOSS model (Sec. 3.2.4) as T ≥ T0 and also for T < T0 provided
that γ > 1. In the cases where γ ≤ 1, on the contrary, the effective field
He is also needed to map the history of the aging system (µ1 is no longer
negligible, see Appendix 3.A). We will come back to the regime of validity
of a two temperature thermodynamic (T and Te) in Sec. 3.5 where we will
tackle the Kovacs effect and its implementation on the HOSS model.

3.3.2 Effective temperature from generalized laws

Let us suppose that we are considering aging regimes where He = H. The
effective free energy (3.129) is, then,

Fe = U − TSep − TeSc (3.133)

and its differential, using Eqs. (3.54), (3.55) and (3.56), turns out to be:

dF = −SepdT − ScdTe −MdH (3.134)

Above, we have combined the generalization of the second law of thermody-
namics for the heat variations,

d̄Q = TdSep + TedSc (3.135)

with the first law of thermodynamics

dU = d̄Q+d̄W = TdSep + TedSc −MdH (3.136)

writing the variation in work done on the system as d̄W = −MdH (we define
M = Nm1).

This is the same expression obtained in the two temperature picture of
Sec. 2.4. At equilibrium, where Te = T , this reduces to the usual expression
for ideal reversible quasi-static transformations, d̄Q = TdStot, with Stot =
Sep + Sc.

If we now add the possibility of an extra effective field, the candidate ther-
modynamic potential that we obtain as a starting point is

Fe = U − TSep − TeSc + (H −He)M (3.137)

If we generalize Eq. (3.135) as

d̄Q = TdSep + TedSc + (He −H)dM (3.138)
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the induced internal energy variation turns out to be

dU = d̄Q+d̄W = TdSep + TedSc + (He −H)dM −MdH (3.139)

and, hence,
dF = −SepdT − ScdTe −MdHe (3.140)

Once again, at equilibrium, where He = H and Te = T , this reduces to the
usual expression d̄Q = TdStot. In Eq. (3.138), however, there is an odd
mixing of “mechanical” (observables conjugated to external fields imposed
on the system) and thermal objects. This is, in a way, the price to pay to
generalize the two temperature thermodynamics including an extra effective
field, He, that is not a true field but a quantity representing the (thermal)
history of the system.

Starting from Eq. (3.136) we can derive the effective temperature through
a generalization of the relation T = ∂U/∂S, valid at equilibrium for a system
of internal energy U and entropy S, with the derivative taken at constant
magnetization (or volume). For simplicity, we put He = H in the derivation
(eventually we will apply our result to the case µ1 ≪ µ2 where this setting is
correct). Out of equilibrium, together with the previous equation of state for
equilibrium processes (where S has to be substituted by Sep) the following
generalization also holds:

Te =
∂U

∂Sc

∣
∣
∣
∣
Sep

(3.141)

A more feasible identity, where the variable to be kept constant during the
transformation is the heat-bath temperature, rather than the entropy of the
fast processes, can be reworked [Franz & Virasoro, 2000; Crisanti & Ritort,
2000c; Mézard & Parisi, 2001]. To this aim, let us introduce the function F̄ :

F̄ ≡ Fe + TeSc (3.142)

inducing dF̄ = TedSc −SepdT .7 Through this auxiliary potential function we
can then rewrite the effective temperature as

Te =
∂F̄

∂Sc

∣
∣
∣
∣
T

(3.143)

This result is a firm prediction for systems that satisfy the assumption of a
two temperature thermodynamics. Writing the right-hand side of Eq. (3.143)

as ˙̄F/Ṡc and using Eqs. (3.81, 3.82), one obtains

Te(t) = K̃(m1(t),m2(t))
[
m2(t) −m2

1(t)
]
+ O(µ1) (3.144)

that is the thermodynamic effective temperature derived in section 3.3.1 [Eq.
(3.130)]. We notice that the error is of order µ1, exactly the order of difference
between He and H that we are neglecting.

7In Chapter 7, Secs. 7.2, 7.3 and 7.5 we will analyze the meaning of F̄ in a more general
context and its relationship with the total free energy.
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3.3.3 Dynamic transition rate and effective temperature

In the dynamic scenario that we have been analyzing in Sec. 3.2, an effective
temperature can be directly related to the transition rate from a configuration
of harmonic oscillators {xi} of energy E to a configuration of energy E′ such
that

x = E′ − E (3.145)

We can ask ourselves whether just looking at the frequency by which relax-
ation steps occur we might be able, in principle without knowing any details
of the system under probe, to find the effective temperature. At the basis of
this connection there is the assumption that partial equilibration occurs on
a certain hypersurface in the configurational space (e.g., the constant energy
surface in the HO model or the one fixed by µ2 = const in the HOSS model)
before moving to lower energy configurations.

This procedure has been originally devised by Ritort [2004] (see also [Crisanti
& Ritort, 2003; Crisanti & Ritort, 2004; Garriga & Ritort, 2005]) in the HO
model. Here we will generalize it to the HOSS model, as well. The starting
point for the HO model is a microcanonical argument, since we are dealing
with systems that partially equilibrate on the energy hypersurface E = const.
Because the system evolves exclusively through entropic barriers, the ratio
between the probability of transition from a configuration i to a configuration
f and its inverse f → i is simply proportional to the ratio of the number of
available configurations having energy E′ = E(f) to the one having energy
E = E(i):

p(x)

p(−x) ∝ ω(E′)
ω(E)

(3.146)

where the density ω of configurations at energy E is the exponential of the
configurational entropy Sc(E). Here we are referring to slow relaxing αmodes,
taking for granted that the thermalization of all fast processes has already
taken place. This is why the contribution of the transitions is connected to
the configurational entropy and no contribution from the Sep is considered.

The rate of transition ν(x) from a configuration at energy E to one at
energy E′ is defined as the ratio of the probability p(x) of proposing a move
yielding an energy shift x to the characteristic time τ(E) that the system
spends in the configuration at energy E:

ν(x) =
p(x)

τ(E)
(3.147)

Assuming that, for energy changes x = O(1), τ(E) ≃ τ(E′) one finds

ν(x)

ν(−x) ≃ p(x)

p(−x) ≃ eSc(E
′)−Sc(E) ≃ e

∂Sc(E)
∂E x = eβex (3.148)
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where we have used the effective temperature definition Eq. (3.141).8 So the
effective temperature also shows up in the ratio of the transition rate to its
time-reversed one.

Partial equilibration over the constant energy hypersurface

According to the above picture, measuring the rate of transition of a process
allows one to determine an independent estimate of the effective temperature.
To begin we show the explicit derivation of Te from the rate’s ratio in the case
of the HO model (Sec. 3.1) without an external field. The initial configuration

{x(i)
k } is at energy E = U = KM2/2 [H = 0, implying m1 = 0 in Eq. (3.1)]

and the energy shift in the MC update is given by Ky2/2 ≡ K(M ′
2 −M2)/2.

The proposed xi changes to a new configuration of energy U ′ are randomly

distributed with a variance ∆2. The accessible points at energy U ′ from {x(i)
k }

thus satisfy the relation

N∑

k=1

(

xk − x
(i)
k

)

= ∆2 (3.149)

We draw in Fig. 3.3 a two dimensional projection of the two energy hyper-
spheres. The larger one has a radius R =

√
M2, the smaller one, R′ =

√

M ′
2.

The small dashed circle centered on {x(i)
k } intersects the U ′[{xk}] = const

surface in two points. In an N dimensional representation this corresponds to
an N − 2 dimensional hypersphere. We call R∩ its radius. The probability of
the proposed update is proportional to the surface of the intersecting region:

p(x) ∝ RN−2
∩ (3.150)

From Fig. 3.3 one deduces the expression for R∩:

R2
∩ = ∆2 −

(
R2 −R′2 + ∆2

)2

4R2
(3.151)

Using this geometrical relation for the HO model one has [cf. Eqs. (3.15)-
(3.17) with p(y1) = δ(y1)]

R2
∩ = ∆2 −

(
y2 − ∆2

)2

4Nm2
= ∆2

[

1 − (x− x)
2

N∆x

]

(3.152)

Consequently, the density of configurations turns out to be

ω ∝ RN−2
∩ ∼ exp

{

− (x− x)2

2∆x

}

(3.153)

8In the HO model no fast processes are involved and, indeed, x = δE = δU . In the HOSS
model, there would be an extra contribution from the entropy of equilibrated processes and
x = δE would rather be the variation of U − TSep = Fe + TeSc, cf. Eqs. (3.54), (3.69) and
(3.142). In this case Eq. (3.143) can be used instead.
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that is, indeed, proportional to the exchange probability p(x) as we know it
from Eqs. (3.15, 3.16, 3.17).

The expression for Te is eventually determined by the recipe Eq. (3.148)

p(x)

p(−x) = exp

{
2x

∆x
x

}

→ Te =
∆x

2x
= Km2 (3.154)

This result coincides with the previous computations of Te, as, e.g., in Eqs.
(3.130, 3.141), where, for the model at issue, it is m1 = H = J = 0 (and,
therefore, K̃ → K).

Partial equilibration over the hypersurface µ2 = const

To extend the previous approach to the presence of an external field H and,
further, of fast processes, one has to observe that in these other cases the hy-
persurface over which the {xi} are partially equilibrated is not the one at con-
stant energy, but the one identified by the condition

∑

i x
2
i /N−(

∑

i xi/N)2 =
const. Indeed, the slow observable carrying the structural relaxation is now
the variable µ2({xi}).

In the HOSS model, as a relaxation MC step is performed,

N [µ2({x′k}) − µ2({xk})] = y2 − 2m1y1 =
2x

K̃({xi})
+ 2µ1({xi})y1 ≃ 2x

K̃({xk})
(3.155)

where, in neglecting O(µ1) terms, we have exploited the knowledge of the
dynamics for the strong glass case and for the regimes of our interest in the

R
′

R

R∩ R∩

R
′

∆ ∆
R− d

d

{x
(i)
k
} {x

(i)
k
}

FIGURE 3.3

A pictorial representation in two dimension of the transition between two configu-

rations of harmonic oscillator positions, {xk} in the N dimensional space of their

degrees of freedom. The point {x(i)
k } stands for the initial configuration, at energy

U . The locus of final configurations at energy U is given by the intersection between

the dashed circle of radius ∆ and the inner circle of radius R′. Eq. (3.151) is easily

obtained looking at the triangle on the right-hand side of the figure.
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fragile glass case [T & T0, ∀γ and T < T0 provided γ > 1, cf. Eqs. (3.92,
3.121, 3.122) in Secs. 3.2.3, 3.2.4].

The different choice in the slow relaxing observable changes the argument
of the functions in Eqs. (3.146, 3.148): U → M2 −M2

1 = Nµ2. However,
the fact that the µ2 shift in a MC update is proportional to the energy shift
x, makes Eq. (3.148) holding also when external fields (and/or fast spherical
spins) are present. This is very important since it establishes a compatibility
between the present approach and the introduction of perturbing fields, e.g.,
for studying the response functions, the two-time dynamics and analyzing the
FDR out of equilibrium (Sec. 3.3.4).

We again refer to Fig. 3.3 where now the radii are R =
√

N(µ2 +m0),

R′ =
√

N(µ′
2 +m0) and

R2
∩ = ∆2

[

1 −
(
N(µ2 − µ′

2) − ∆2
)2

4N(µ2 +m0)∆2

]

≃ ∆2




1 −

(

2x/K̃ + ∆2
)2

4N(µ2 +m0)∆2




 (3.156)

implying a configuration density

ω ∝ RN−2
∩ ∼ exp







−

(

x− ∆2K̃
2

)2

2∆2K̃2µ2







= exp

{

− (x− x)
2

2∆x

}

(3.157)

In the last equality we have used Eqs. (3.70, 3.16), consistently with the
present approximation (µ2

1 ≪ µ2).
The formula leading to the transition rate effective temperature is Eq.

(3.148) that, together with Eq. (3.70), yields

Te = K̃(µ2 +m0) +O(µ1) (3.158)

It coincides with the quasi-static derivation Eq. (3.130), and with the gener-
alized Maxwell derivation, Eq. (3.143). Setting m0 = 0 the Te for the strong
glass model is obtained. Setting further K̃ = K, the one for the HO model
with an external field is recovered, cf. Eq. (3.154). Therefore, also this phase
space argument is consistent with the thermodynamic approach.

3.3.4 FDR and effective temperature

At equilibrium, temperature plays the role of a proportionality factor between
thermodynamic fluctuations and response to external perturbations in the
FDT. Out of equilibrium the fluctuation-dissipation equivalence is not granted
by a theorem anymore, but a generalization can be devised, as explained in
Sec. 2.8. We will look here at this relation in the fragile glass HOSS model,
in the aging dynamics far from equilibrium.

First we define and compute the correlation and response functions that,
unlike the one-time quantities m1(t) and m2(t), depend in a nontrivial way on
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two times when the system is out of equilibrium, thus showing directly the loss
of time translation invariance (TTI) with respect to the case at equilibrium.

The correlation function between the thermodynamic fluctuation of a quan-
tity ma(t) at time t and that of a quantity mb(t

′) at an earlier time t′ are
defined as

Cab(t, t
′) ≡ N 〈δma(t)δmb(t

′)〉 , δma ≡ ma − 〈ma〉 , a, b = 1, 2 (3.159)

where 〈....〉 is the average over the dynamic processes, i.e., the harmonic os-
cillators.

The response of an observable ma at time t to a perturbation in a conjugate
field Hb at some previous time t′ takes the form

Gab(t, t
′) ≡ δ 〈ma(t)〉

δHb(t′)
a, b = 1, 2 (3.160)

In the models that we are considering, H1 = H and H2=−K/2.

We will probe the most general case treated in this chapter, i.e., we will use
the formalism for the fragile HOSS model. Setting, then, m0 = 0 will give
back the strong model, while eliminating the fast-slow interaction (J = 0) will
lead to the two time functions for the HO model in an external field (cf. Sec.
3.1).

Equations of motion of the correlation functions

The two-time behavior of the HO and HOSS models with parallel MC dynam-
ics can also be studied analytically. Indeed, using the approach exposed for
one time observables in Sec. 3.1.1 we can obtain the MC equations of motion
for two-time quantities.9

The following equations hold for the equal time correlation functions in all
models with MC dynamics for which the formal decomposition of probability
distributions in two Gaussian distributions, cf. Eq. (3.15), is allowed:

d

dt
Cab(t, t) =

∫

dxW (βx)

{

ya(x)yb(x) + ∆y

(

−H1

H2

)a+b−2

(3.161)

+
∑

c=1,2

∂

∂mc
[ya(x)Ccb(t, t) + yb(x)Cca(t, t)]

}

p(x|m1,m2) a, b = 1, 2

The functions ya(x) and the parameters ∆y, H1 and H2 entering the above
equation are those specifying the model. For the HOSS model they are

9The relevant manipulations to yield the equations for correlations and response functions
can be found in Nieuwenhuizen [2000]; Leuzzi & Nieuwenhuizen [2001a].
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[recalling Eqs. (3.14), (3.16), (3.17) and using (3.67) and (3.130)]:

y1(x) =
µ1

m2 −m2
1 + µ2

1

x− x

K̃
=

(

4Λµ1 − µ1
x

Te

)

+ O(µ3
1) (3.162)

y2(x) =
2

K̃

(

x+ H̃ y1(x)
)

(3.163)

x =
∆2K̃

2
= 4T ⋆Λ (3.164)

∆y =
∆2(m2 −m2

1)

m2 −m2
1 + µ2

1

= 8(m0 + µ2)Λ + O(Λµ2
1) (3.165)

H1 = H̃; H2 = −K̃
2

Expanding the integrals appearing in Eq. (3.161) for large times (i.e., small
µ2 and µ1 ∼ µ1+γ

2 ) one has the system of linear differential equations

Ċ11(t, t) = c(t) + 2d(1)
y1 (t)C11(t, t) + 2d(2)

y1 (t)C12(t, t) (3.166)

Ċ12(t, t) = 2m1(t) c(t) + d(1)
y2 (t)C11(t, t) (3.167)

+
[

d(1)
y1 (t) + d(2)

y2 (t)
]

C12(t, t) + d(2)
y1 (t)C22(t, t)

Ċ22(t, t) = 4m1(t)
2c(t) + o(t) + 2d(1)

y2 (t)C12(t, t) + 2d(2)
y2 (t)C22(t, t)

(3.168)

with

c(t) ≡ 8 [m0 + µ2(t)] Λ(t)

(

1 − 1 − 2r + 4r2

Λ(t)

)

Υ(t) (3.169)

o(t) ≡ 32 [m0 + µ2(t)]
2
Υ(t) (3.170)

The functions d
(j)
yk are the derivative with respect to mj of the MC integral

of yk. They are reported in Appendix 3.B, together with the relevant terms
of their long time expansion both in the case (slightly) above the Kauzmann
temperature T0 and below it (in the latter case we only tackle the case for
γ > 1 as we did for the one-time variables in Sec. 3.2.4). Indeed, due to the
complicated form of the equations we are not able to find analytic solutions
valid at any time. We are obliged to compute approximate solutions valid on
given timescales and temperature intervals. We will present the solutions in
the aging regime, for times that are long but not as long as the relaxation time
to equilibrium, τeq. For high temperature the present approximation will be
valid as far as µ̄2 ≪ δµ2, that is for T not too much larger than T0, cf., e.g.,
Fig. 3.1. The regime where T is well above T0 exposes little glassy behavior
and will not be discussed. Below T0, the approximation chosen will hold for
the two-time variable behavior in the regime where µ1 ≪ µ2, that is for γ > 1
[cf. Eq. (3.122)].
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The study of the dynamics of correlation and response functions for times
longer than τeq, when the system approaches equilibrium, can also be per-
formed [Leuzzi & Nieuwenhuizen, 2001a] but is not of interest in the present
context.

Dynamics in the aging regime for T > T0

In the aging regime, for temperatures just above the Kauzmann temperature
T0, we can neglect µ̄2 with respect to δµ2(t).

10

To find the solutions of Eqs. (3.166)-(3.168) we first perform an adiabatic
expansion neglecting the time derivatives of the correlations functions. In-
deed, to first order approximation, Ċab is proportional to µ̇2: it is of O(µ2Υ),
negligible with respect to the right-hand side terms (of O(ΛΥ)). For the case
T & T0, in the aging regime, µ̄2 is negligible, µ1 ∼ r/Λ and r ∼ µ2(t), leading
to

Cab(t, t) ≃
[2m1(t)]

a+b−2

1 +DQ(t)
{m0 + µ2(t)} + O (1/Λ)

︸ ︷︷ ︸
+ O(µ2

2) (3.171)

observable dependent

Notice that the inclusion of the terms of order O (1/Λ) breaks the proportion-
ality between the three equal time correlation functions. If γ > 1 (strictly)
this is not an issue since the correction is of an order smaller than µ2, but if
γ ≤ 1 the three expressions become much more involved than Eq. (3.171).
We report them in Appendix 3.B for completeness. The main consequence is
that the FDR will depend on the conjugated observable-field couple used. The
correction terms breaking the proportionality are actually all proportional to
some power of m0, implying that the problem arises only for the fragile glass
case. Here we will concentrate, however, on the case where O (1/Λ) ≪ O(µ2).

Once we have the equal time solutions, we can solve the equations for the
two-time functions. Extending the parallel MC dynamics introduced in Sec.
3.1.1 to the two-time variables, we are able to derive the equations

∂tCab(t, t
′) = d(1)

ya (t)C1b(t, t
′) + d(2)

ya (t)C2b(t, t
′) a, b = 1, 2 (3.172)

valid for the response functions Gab(t, t
′), as well. The coefficients d

(j)
ya are

those appearing in Eqs. (3.166)-(3.168) and are reported in Appendix 3.B
[Eqs. (3.B.18)-(3.B.21)].

Combining the correlation function equations, Eq. (3.172), and expanding
down to order O(Υ) the coefficients of the correlation functions, one obtains

∂t [C2b(t, t
′) − 2m1(t)C1b(t, t

′)] (3.173)

≃ [C2b(t, t
′) − 2m1(t)C1b(t, t

′)] d1(t) + 2ṁ1(t)C1b(t, t
′), b = 1, 2

10This means, in particular, that in expressions (3.A.33)-(3.A.36) we have to put µ̄2 equal
to zero everywhere, including inside the constants Q̄, P̄ and K̃∞ [defined respectively in
(3.79), (3.80) and (3.57)] and we can write δµ2(t) = µ2(t).
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Since

ṁ1(t) = 4Λµ1 [A0(t) − 4T ⋆(t)Λ(t)A1(t)] ∼ O(µ2Υ) + O(µ2
2ΛΥ) (3.174)

[cf. Eq. (3.30) generalized to the fragile HOSS model: α →
√

Λ, K → K̃]
the first term in the right-hand side of Eq. (3.173) can be neglected at the
order of the current approximation. In the adiabatic approximation, the latter
equation reduces to

C2b(t, t
′) ≃ 2m1(t)C1b(t, t

′) b = 1, 2 (3.175)

and

∂tC1b(t, t
′) ≃

[

d(1)
y1 (t) + 2m1(t)d

(2)
y1 (t)

]

C1b(t, t
′) b = 1, 2 (3.176)

yielding the aging behavior

Cab(t, t
′) ≃ Cab(t

′, t′)
h(t)

h(t′)
(3.177)

In the above expression we have introduced the time sector function

h(t) ≡ exp

∫ t

−∞
dτ
[

d(1)
y1 (τ) + 2m1(τ)d

(2)
y1 (τ)

]

(3.178)

≃ exp

{

−4

∫ t

−∞
dτΥ(τ) [Λ(τ) − 1] [1 +Q(τ)D]

}

(3.179)

The two-time dependence is all included in the ratio of the time sector function
computed at different times, h(t)/h(t′) (compare with Sec. 1.3).

Response functions

The equal time response functions can be recovered as the limit

lim
∆t→0

1

∆t

δ 〈ma (t+ ∆t)〉
δHb(t)

∣
∣
∣
Hb=0

(3.180)

of the two-time response function Gab(t + ∆t, t). Neglecting O(Υ2) terms
(called switch terms in [Nieuwenhuizen, 2000]), such a limit, for a = b = 1,
becomes

G11(t
+, t) = −β

∫

dy1dy2 W
′(βx) y2

1 p(y1, y2|m1,m2) (3.181)

=
4ΥΛ

K̃
− 2Υ

K̃
+ O(µ2Υ)

whereW ′(βx) is the derivative of the Metropolis transition probabilityW (βx),
Eq. (3.10), with respect to its argument:

W ′(βx) =

{
−e−βx if x > 0

0 if x ≥ 0
(3.182)
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The function p(x|m1,m2) is the Gaussian distribution of x conditioned by the
values of m1, m2 at the time the update is proposed [see Eq. (3.15) for its
definition] and ∆y and y1(x) are given in Eqs. (3.162), (3.165).

Analogue expressions are derived for G12 and G22:

G12(t
+, t) = −β

∫

dy1dy2 W
′(βx) y1 y2 p(y1, y2|m1,m2)

=
8m1

K̃
ΥΛ − 4m1Υ

K̃
+ O (µ2Υ) (3.183)

G22(t
+, t) = −β

∫

dy1dy2 W
′(βx) y2

2 p(y1, y2|m1,m2)

=
16m2

1

K̃
ΥΛ − 8m2

1Υ

K̃
− 32Υm2

0 + O (µ2Υ) (3.184)

Notice here that the O(Υ) term of G22 has an extra −32m2
0, breaking the

proportionality between the three response functions written above in the
fragile glass case, exactly as it happens for the correlation functions. The
existence of this term, anyway, has no consequences for the leading term of
the FDR.

The equations describing the evolution in t of the response to a perturbation
at t′ have the same shape as those for the correlation functions (3.172). The
solutions are then

Gab(t, t
′) = Gab(t

′, t′)
h(t)

h(t′)
(3.185)

With these results we can generalize the FDT defining another effective
temperature, TFDe , by means of the ratio between the derivative with respect
to the initial time (also called the “waiting” time) t′ of the correlation function
Cab and the corresponding response function Gab:

TFDe;a,b(t, t
′) ≡ ∂t′Cab(t, t

′)
Gab(t, t′)

(3.186)

To compute it we need:

∂t′Cab(t, t
′) = (∂t′C11(t

′, t′))
h(t)

h(t′)
− Cab(t

′, t′)
h(t)

h2(t′)
∂t′h(t

′) (3.187)

= 4Υ(t′)[Λ(t′) − 1][1 +Q(t′)D]Cab(t
′, t′)

h(t)

h(t′)
+ O(µ2Υ)

≃ 4 [2m1(t
′)]
a+b−2

[m0 + µ2(t
′)]Υ(t′) [Λ(t′) − 1]

h(t)

h(t′)

Eventually, we get the main result of this section:

TFDe (t, t′) = TFDe (t′) ≃ T ⋆(t′)

[

1 + O
(

1

Λ(t′)

)

+ O
(
µ2(t

′)2
)
]

, ∀ (a, b)

(3.188)
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where T ⋆ was first introduced in Sec. 3.2.4, Eq. (3.111) and, later on, in
Sec. 3.3, it was identified with the effective temperature [Eqs. (3.130, 3.141,
3.158)]. We recall that Λ−1 = µγ2 .

Looking back to Eq. (3.188) we see that TFD
e coincides, in the timescale

of our interest, with the effective temperature Te that we got by previous ap-
proaches, only if 1/Λ is negligible with respect to µ2, as we assumed already
in Eq. 3.171. This is true, indeed, if the exponent γ of the generalized VF law
(3.124), is greater than one. Otherwise, as we stressed since the beginning
of the computation, the last correction is no longer sub-leading: already for
γ = 1, TFDe → Te exclusively in the infinite time limit, when they both tend
to T , i.e., for timescales longer than those of the considered aging regime.
As already discussed in Sec. 3.2.2, where we presented the results of the dy-
namics of the one-time observables, the value of the exponent γ discriminates
between different regimes. For γ > 1 an out of equilibrium thermodynamics
can be built in terms of a single additional effective parameter (the effective
temperature Te). For γ ≤ 1, Te alone does not give consistent results in the
generalization of the equilibrium properties to the non equilibrium case and in
order to cure this inconsistency, more effective parameters are needed. This
discrepancy was already clear from section 3.2.4, for the regimes below T0

where the one-time variables had different behaviors depending on the value
of γ being greater, equal to or lesser than 1. For T > T0 such a difference
was apparently absent but it emerges here at the level of two-time variable
dynamics.

Low temperature case: T < T0, γ > 1

Our approach allows us to study the regime even below the Kauzmann temper-
ature T0. In the latter case, though, we have qualitatively different behaviors
depending on the value of γ, i.e., on the relative weight of µ1 and µ2. We
describe here the case γ > 1, where µ1 ≪ µ2 [cf. Eq. (3.122)] and where we
can still hope to find a unique effective temperature linking out-of-equilibrium
dynamics with thermodynamic properties of the model in the same way as
it does above T0. For γ > 1, according to the results shown in Sec. 3.3.1
and 3.2.2, it is, indeed, not necessary to introduce any effective thermody-
namic parameter other than the effective temperature, and the analysis can
be carried out in a way similar to the one above T0 (Sec. 3.3.4).11

The equations of motion for the equal time correlation functions are iden-
tical to the Eqs. (3.166)-(3.168). What changes are sub-leading terms in the

time-dependent coefficients d
(j)
ya . Solutions to these equations are obtained,

as before, in the adiabatic approximation and expanding all the functions in

11In expanding the time-dependent coefficients of Cab in the equations of motion [d
(1,2)
y1,2 , in

Eqs. (3.B.18)-(3.B.21)] we now have to take into account that r never vanishes, while the
asymptotic value of µ2(t), denoted by µ̄2, is zero. For the technical discussion about which
terms are now leading and sub-leading, we refer to Appendix 3.B.
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powers of µ2(t). We notice that, because of the presence of the Kauzmann
transition, we lose the static limit.

Below T0, the two-time correlation functions turn out to be, at the leading
order:

Cab(t, t
′) ≃ [2m1(t

′)]a+b−2

1 +DQ(t′)
[m0 + µ2(t

′) + O(µ1(t
′))]

h(t)

h(t′)

a, b = 1, 2 (3.189)

where h(t) is still given by Eq. (3.178) at order ΛΥ. Also in this case, the
leading orders of different correlation functions are proportional to each other
(it is γ > 1). The breaking of proportionality occurs only in the correction
terms. For the response functions, from Eqs. (3.181)-(3.184) we get

G11(t, t
+) ≃ 4ΥΛ

K̃
− 2Υ(1 − 2r)2

K̃
+

8Υ (Λµ1)
2

Te
(3.190)

G12(t, t
+) ≃ 2m1G11(t, t

+) +
16rΛµ1Υ

K̃
(3.191)

G22(t, t
+) ≃ 4m2

1G11(t, t
+) +

64m1rΛµ1Υ

K̃
+

8m0(1 − 2r)2Υ

K̃
(3.192)

where this time the contributions Λµ1 and (Λµ1)
2 are both of the order Υ

and we have to take them both into account. Notice that the Gs differ by
terms of order O(Υ) (the first sub-leading order).

The two-time behavior of the response functions is as in Eq. (3.185), pro-
vided only terms of order ΛΥ are considered in the exponent of the time sector
function h(t).

The last thing that we need, before computing TFD
e , is the derivative

∂t′Cab(t, t
′) =

[

∂t′C11(t
′, t′) − C11(t, t

′)
∂t′h(t

′)
h(t′)

]
h̃(t)

h̃(t′)
(3.193)

≃ 4Υ(t′) [m0 + µ2(t
′)] Λ(t′)

h̃(t′)

h̃(t)

(3.194)

It follows that

TFD
e (t, t′) ≡ ∂t′Cab(t, t

′)
Gab(t, t′)

≃ T ⋆(t′)

[

1 + O
(

1

Λ

)

+ O(µ1+γ
2 )

]

= TFD
e (t′)

∀ (a, b) (3.195)

Now O(1/Λ) = O(µ1) ≪ O(µ2), because γ > 1: in the long time regime
TFD

e (t) coincides with Te(t) for any (a, b) couple of conjugated variables. The
differences remain at the level of sub-leading terms, therefore beyond the aging
regime.
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3.3.5 Heat flow of α processes

From Eqs. (3.56, 3.59, 3.130 and 3.131) the complete expression for the rate
of change of the heat flow turns out to be:12

Q̇ =
NK̃

2

1

1 +QD − K̃JQµ1

{

µ̇1

[

2µ1 +
TQK̃

J

(

w +
T

2

)]

(3.196)

+µ̇2

[

1 +DQ− TQK̃2

D

(

w +
T

2

)]}

The rate of the heat flowing out of the system is −Q̇. Referring to the aging
regimes described in section 3.2.3 for the strong glass model and in section
3.2.4 for the fragile one, the quantity Q̇ is proportional to µ̇2 (that is negative).
In the non-generic dynamic regimes for the fragile glass model reported in
Appendix 3.A, the heat flow is −Q̇ ∝ −(µ̇1 + µ̇2) in the cases 3a and 3b
(T < T0, γ = 1, ǫ ≥ 1) and −Q̇ ∝ −µ̇1 in the cases 3c, 3d, 3e (T < T0, γ = 1,
ǫ ≤ 1) and 4 (T < T0, γ < 1).

In every dynamic aging regime examined, µ̇1 and µ̇2 are negative and this
implies that the heat flow of the out-of-equilibrium system is positive in its
approach to equilibrium, no matter what the values of the parameters of the
model are. This is just what one expects: during relaxation heat is dumped
in the bath, in order to allow the system to go to states of lower energy.

3.3.6 Effective temperature from a fluctuation formula

From the expression of m1(t;T ) as function of H we can compute the quantity
χfluct ≡ ∂m1

∂H

∣
∣
T,t

that is the contribution to susceptibility in a cooling-heating

setup caused by a change in the field H at fixed time (also called fluctuation

susceptibility). In Sec. 2.7, cf. Eq. (2.93), we saw that in a cooling experiment
the whole susceptibility can, indeed, be written as

χab ≡
∂ma

∂Hb

∣
∣
∣
∣
T

=
∂ma

∂Hb

∣
∣
∣
∣
T,Te

+
∂ma

∂Te

∣
∣
∣
∣
T,Hb

∂Te
∂Hb

∣
∣
∣
∣
T

=

=
∂ma

∂Hb

∣
∣
∣
∣
T,t

− ∂ma

∂Te

∣
∣
∣
∣
T,Hb

∂Te
∂Hb

∣
∣
∣
∣
T,t

+
∂ma

∂Te

∣
∣
∣
∣
T,Hb

∂Te
∂Hb

∣
∣
∣
∣
T

≡ χfluct
ab + χloss

ab + χconf
ab (3.197)

Here we are considering an aging situation, so only the first term is rele-
vant. Assuming separation of timescales, we propose the following form for

12We use Q in order to avoid confusion with the abbreviation Q, Eq. (3.79), widely used
for the HOSS model, that is not a heat.
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χfluct
ab (t, t)

χfluct
ab (t, t) =

∂ma

∂Hb

∣
∣
∣
∣
T,t

= N
〈δma(t)δmb(t)〉fast

T
+N

〈δma(t)δmb(t)〉slow
T fl
e (t)

(3.198)
where 〈. . .〉fast/slow is the average, respectively, over fast and slow processes.
The fast ones are governed by the heat-bath temperature, the slow ones by
some effective temperature T fl

e depending on the timescale t. Through χfluct
ab (t)

one can look at the connection between the fluctuation effective temperature
T fl
e and the other effective temperatures so far defined. To work it out we

start, e.g., from:

χfluct
11 (t) ≡ ∂m1

∂H

∣
∣
∣
∣
T,t

= N
〈δm1(t)δm1(t)〉

T fl
e

=
C11(t, t)

T fl
e

(3.199)

Using the following expression for m1, obtained from Eq. (3.62),

m1(t;T,H) = −L
J

+
D

JK̃ (m1(t;T,H),m2(t;T,H);T )
(3.200)

the fluctuation susceptibility χfl
11 turns out to be:

∂m1

∂H

∣
∣
∣
∣
T,t

=
1

K̃(1 +QD)
+ O (µ1) (3.201)

Here we are neglecting terms like ∂µ1/∂H and ∂µ2/∂H, of order µ1 or higher
(we deal, hence, with the regimes [T > T0,∀γ] and [T < T0, γ > 1] where
µ1 ≪ µ2). Taking Eq. (3.171), we see that the leading term of C11 can be
written as

C11(t, t) =
m0 + µ2

1 +QD
+ O (µγ2) (3.202)

and this leads to
T fl
e = K̃(m0 + µ2) + O(µγ2) (3.203)

thus coinciding with previous definitions of the effective temperature, see Eqs.
(3.130, 3.141, 3.158, 3.188) at the order of our interest, i.e., O(µ2). At higher
orders and in other regimes (i.e., with γ ≤ 1) there will be nonuniversalities.
If γ ≤ 1 the terms of O(µγ2) become dominant with respect to O(µ2), leading
to the same situation that we had for FDR, namely, the off-equilibrium ther-
modynamic description cannot be implemented by means of a unique effective
parameter.

3.4 Below the Kauzmann transition

As we anticipated in Sec. 3.2.1 for the fragile model version, a thermodynamic
phase transition to a glass occurs at TK ≡ T0 = K̃∞(T0) m0. To see how the
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FIGURE 3.4

In the static regime, the effective temperature is shown as a function of the heat-

bath temperature. At high temperatures they coincide but below the Kauzmann

point T0, T̄e never reaches T , not even in the infinite time limit: the system remains

forever out of equilibrium. Values of the constants are K = J = 1, H = L = 0.1,

m0 = 5.

transition takes place we first look at the asymptotic behavior of the effective
temperature. When T ≥ TK and t → ∞, Te approaches the heat-bath tem-
perature T . When T < TK , instead, Te never reaches such a temperature. It
rather goes toward some limiting value T̄e(T ) that we can compute from Eq.
(3.130), rewritten for clarity in the explicit form

T̄ 4
e − (2Km0 + T )T̄ 3

e +m0

[

(Km0 + T )K +
D2 − J4

J2

]

T̄ 2
e (3.204)

−2

(
D

J

)2

Km2
0 T̄e +

(
D

J

)2

K2m3
0 = 0

i.e., a quartic equation for the effective temperature in the infinite time limit.13

The same equation evaluated at T̄e = T = TK yields the value of the Kauz-
mann temperature T0 as a function of the parameters of the model. In Fig.
3.4 we plot T̄e versus T for a specific choice of parameter values.

From Eq. (3.130), or Fig. 3.4, we observe that dT̄e/dT
∣
∣
T−

K

< 1, whereas,

coming from above the Kauzmann temperature, one has dT̄e/dT
∣
∣
T+
K

= 1.

The derivative of T̄e(T ) shows, thus, a discontinuity at T = T0. Any ther-
modynamic function, like U and M ≡ Nm1, will depend on the heat-bath
temperature both explicitly and through this effective temperature. For the

13The present equation is equivalent to Eq. (3.84) for K̃(T, t) in the infinite time limit,
since T̄e(T ) is just K̃∞(T )m0.
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specific heat we will have, for instance:

C ≡ 1

N

dU

dT

∣
∣
∣
∣
H

=
1

N

∂U

∂T

∣
∣
∣
∣
H

+
1

N

∂U

∂T̄e

∣
∣
∣
∣
H,T

dTe
dT

∣
∣
∣
∣
H

(3.205)

This is of the same form as C = c1 + c2 (∂Te/∂T )p assumed originally by
Tool [1946] (see also Sec. 2.2) for the study of caloric behavior in the glass
formation region.

The discontinuity in dT̄e/dT
∣
∣
H

causes a discontinuity in the specific heat

and also in the quantity − ∂M/∂T |H14 because both of these quantities con-
tain terms proportional to ∂T̄e/∂T

∣
∣
H

. Different from the glassy regime above
T0, this result holds even for infinite time, since no relaxation to the equilib-
rium, globally stable, “crystal” state takes place.

3.4.1 Instantaneous relaxation time

In Sec. 3.2.4, we find a VF form for the relaxation time above TK when
both t, tw → ∞. Far from equilibrium, in the aging regime, we might as well
define a time dependent τα, giving the characteristic timescale on which the
α processes are taking place.

For T & TK , in the aging regime, µ̄2, the static part of µ2, is negligible
with respect to the dynamic part δµ2 so that for the effective temperature we
have the following expansion:

Te(t) ≃ T + K̃∞

1 +DQ̄+ P̄

1 + Q̄D
δµ2(t) (3.206)

≃ T0

(

1 +
1

m0

1 +DQ̄+ P̄

1 + Q̄D
δµ2(t)

)

+ O(T − T0)

where, in the last expression, Q̄ and P̄ , cf. Eqs. (3.79), (3.80), are computed
at T0 and K̃∞(T0) = T0/m0.

With the above formula we determine the expression

τα(t) ∝ exp

(
1

δµ2(t)

)

≃ exp

(
A(T )

Te(t) − T

)γ

≃ exp

(
A(T0)

Te(t) − T0

)γ

,

A(T ) ≡ K̃∞(T )

(

1 +
P̄ (T )

1 + Q̄(T )D

)

(3.207)

We can do the same below the Kauzmann temperature, provided that the
VF exponent is γ > 1. For T < T0 the relaxation time always diverges for
t → ∞. However, an instantaneous relaxation time can be considered and

14This quantity has been termed “magnetizability” by Nieuwenhuizen [1998c, 2000]. It
is the analogue of a thermal expansivity of the model for which the external field is the
pressure and M is the volume.
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expressed in terms of the effective temperature using the first order expansion
of Te in µ2:

Te(t) = T̄e + K̃∞

(

1 +
P̄

1 + Q̄D

)

µ2(t). (3.208)

We find, from Eq. (3.123)

τα(t) = τα(T, Te(t)) ∝ exp

(
A(T )

Te(t) − T̄e(T )

)γ

(3.209)

where A(T ) is given in Eq. (3.207) and T̄e(T ) = K̃∞(T )m0. The aging be-
havior just above and well below T0 are, thus, intimately related. Eq. (3.209)
resembles a VF law where the heat-bath temperature has been substituted
by a time-dependent effective temperature Te(t) and the Kauzmann tempera-
ture by its asymptotic value T̄e. Such a relation could hold very well in more
general systems exhibiting universal behavior in the aging regime.

When γ ≤ 1, in those regimes where µ1 cannot be neglected with respect to
µ2, there is no simple expression for τα, because a unique effective thermody-
namic parameter is not enough to describe the out-of-equilibrium dynamics
of the system and those are the nonuniversal regimes.

3.5 Kovacs effect: limits of two temperature

thermodynamics

We use the HOSS model for fragile glass studied up to now to implement a
particular experimental protocol in order to get some insight into the memory
effect initially observed by Kovacs [1963], see Sec. 1.7. We show that, in spite
of its simplicity, this model captures the phenomenology of the Kovacs effect:
it makes it possible to implement the protocol not only with temperature shifts
but with magnetic field shifts as well, and it allows us to obtain analytical
expressions for the evolution of the thermodynamic observables (in specific
time regimes). The HOSS model property, of displaying both fast and slow
processes, turns out to be necessary for the memory effect to occur.

The system is prepared at a temperature Ti (step 1) and quenched to a
region of temperature close to the TK , i.e., Tl & TK (step 2). After a time ta,
during which a given observable reaches the value it would have at equilibrium
at a certain temperature Tf > Tl, the system is heated up to Tf (step 3), cf.
Fig. 1.7. Solving Eqs. (3.30)-(3.31), or equivalently Eqs. (3.81)-(3.82), we
determine the evolution of the system both in step 2 and 3 of the protocol.
In step 2, the time ta at which m1(ta;Tl) = m̄1(Tf), is such that:

m1(t
+
a ;Tf) = m̄1(Tf) (3.210)

m2(t
+
a ;Tf) = m2(ta;Tl)
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FIGURE 3.5

Fragile glass with γ = 1. The Ko-

vacs protocol is implemented with a

quench from temperature Ti = 10 to

Tl, and a final jump to the intermedi-

ate temperature Tf = 4.3 at t = ta.

The full curves, bottom to top, refer to

Tl = 4.005, 4.05, 4.15. The dashed curve

refers to Tl = Tf (simple aging with no

final temperature shift). Reprinted fig-

ure with permission from [Aquino et al.,

2006a]. Copyright (2006) by the Ameri-

can Physical Society.

FIGURE 3.6

Fragile glass with γ = 2. The Ko-

vacs protocol is implemented with a

quench from temperature Ti = 10 to

Tl, and a final jump to Tf = 4.3.

The full curves, bottom to top, refer to

Tl = 4.005, 4.05, 4.15, 4.25. The dashed

line refers to Tl = Tf (simple aging).

The hump occurs on longer timescales

with respect to to the case γ = 1.

Reprinted figure with permission from

[Aquino et al., 2006a].

The evolution of the fractional “magnetization”

δm1(t) =
m1(t) − m̄1(Tf)

m̄1(Tf)
(3.211)

after step 3 (t > ta) for different values of Tl is reported in Figs. 3.5 and
3.6 respectively for γ = 1 and γ = 2. In both the figures, the values for the
parameters of the model are: J = K = 1, L = H = 0.1, m0 = 5. For such
parameter values, the Kauzmann temperature turns out to be TK = 4.00248
(see also Fig. 3.2).

Since the equilibrium value of m1 decreases with increasing temperature
(as opposed to what happens to the volume in the original experiment), we
observe a reversed “Kovacs hump.” The curves keep the same properties typ-
ical of the Kovacs effect, the minima occur at a time that decreases and have
a depth that increases with increasing magnitude Tf −Tl of the final switch of
temperature. As expected, since increasing γ corresponds to further slowing
the dynamics, the effect is displayed on a longer timescale in the case of γ = 2
as compared to γ = 1.
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The sign of the Kovacs hump

We rewrite Eq. (3.30) exploiting the expressions for the acceptance rate A0(t)
and the average energy shift A1(t) [Eqs. (3.34), (3.36)]:

ṁ1 = µ1β
∆2K̃

2
b(α) (3.212)

where b(α) is defined in Eq. (3.35) and α2 = ∆2/(8(m0 +µ2 +µ2
1)). Actually,

since in the last step of the protocol m1(t = ta) = m̄1(Tf) and b(α) is always
positive, from Eq. (3.212) one soon realizes that the hump for this model can
be either positive or negative, depending on the sign of the term µ1 = H̃/K̃−
m1 at t = t+a . As we know from its definition, this term is zero when both
m1 = m̄1(Tf) and m2 = m̄2(Tf), so one would expect m2(t = t+a ) = m̄2(Tf)
to be the border value determining the positivity or negativity of the hump.
Since H̃(m̄1(Tf),m2(t)) decreases with increasing m2 while K̃(m̄1(Tf),m2(t))
increases, it follows that the condition for a positive hump is:

m2(t = t+a ) < m̄2(Tf) (3.213)

For shifts of temperature in a wide range close to the Kauzmann tempera-
ture TK , where the dynamics is slower and the effect is expected to show up
significantly on a long timescale, the condition (3.213) is never fulfilled and,
hence, a negative hump is expected.

Kovacs protocol at constant temperature with magnetic field shifts

Interchanging the roles of T and H, the Kovacs protocol can be implemented
at constant temperature, by changing the magnetic field H. Indeed, from
Eqs. (3.63), (3.66), one notices that the value of the transition temperature
TK depends on H as well. Therefore, the protocol must be implemented in
the following way. The temperature is kept fixed at Ti. This is a Kauzmann
temperature for a specific value of the field H = HK , i.e., it is the solution of
the equation [cf, Eq. (3.66)]

Ti = m0K̃∞(Ti,HK) (3.214)

The temperature TK decreases with decreasing H. So, if we work at T = Ti
with magnetic fields H < HK , we are sure to implement every step of the
protocol keeping the system always above the H-driven Kauzmann transition.
The three steps are schematically depicted in Fig. 3.7. We start with the
system equilibrated at T = Ti and H = Hi ≪ HK , and, at time t = 0, we
shift instantaneously the field to a larger value Hl, such that Hi < Hl . HK .
Then we let the system age for a time ta such that m1(ta;Hl) = m̄1(Hf ). At
this time the field is shifted to Hf (with Hf < Hl < HK). The subsequent
evolution of the fraction magnetization δm1(t) is shown in Fig. 3.8. Again
the curves show all the typical properties of the Kovacs hump, with a very
slow relaxation back to equilibrium due to the fact that Hf has been chosen
very close to HK .
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Ti
Ti = m0K̃(Ti, HK)

TK(1) = m0K̃(Ti, Hi)

TK(2) = m0K̃(Ti, Hl)
TK(3) = m0K̃(Ti, Hf )

Hi ! HK Hf < HlHi < Hl < HK

step 1 step 2 step 3
T

FIGURE 3.7

A pictorial sketch of the Kovacs protocol implemented at fixed temperature Ti vary-

ing the external field and, therefore, the relative Kauzmann transition temperature

according to TK(H) = m0K̃∞(Ti, H). In the first step TK is much less than Ti

because Hi ≪ HK , the field value for which Ti is the Kauzmann temperature. At

step 2, increasing the field makes TK larger, slightly below Ti, so that the system

turns out to be just above the Kauzmann transition. Then, in step 3, by lowering

H → Hf , the Kauzmann temperature decreases.

3.5.1 Analytical solution in the long-time regime

Through a numerical solution of the dynamics, we have, thus, seen that the
HOSS model reproduces the phenomenology of the Kovacs effect, showing the
same qualitative properties of the Kovacs hump as obtained in experiments
(see, for example, [Kovacs, 1963; Josserand et al., 2000]) or in other mod-
els [Berthier & Bouchaud, 2002; Buhot, 2003; Bertin et al., 2003; Mossa &
Sciortino, 2004; Cugliandolo et al., 2004].

The peculiarity of the present model is that, by carefully choosing the work-
ing conditions in which the protocol is implemented, it further provides us
with an analytical solution for the evolution of the variable of interest. We
will make use of µ1 and µ2, whose equations of motion are Eqs. (3.81)-(3.82).

We will choose to implement steps 2 and 3 of the protocol in a range of
temperatures very close to the Kauzmann temperature TK . As exhaustively
discussed in Sec. 3.2.4, cf. Eq. (3.119), in the long time regime the variable
µ2(t) decays logarithmically to its equilibrium value, that is small for T ∼ TK .
So, if ta is large enough, the following equation is shown to be valid [from Eq.
(3.120)], assuming Λµ2

1 ≪ O(1) and r ≪ O(Λ):

dµ1

dµ2
=
µ1(1 +QD) (µ̄2 + δµ2)

−γ

2r(m0 + µ̄2 + δµ2)
− J Q K̃

2
(3.215)

where now the variable δµ2(t) = µ2(t) − µ̄2 is used and barred variables
always refer to the equilibrium condition. Of course, choosing Tl close to TK
and waiting a long time ta so that the system approaches equilibrium, allows
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FIGURE 3.8

The Kovacs protocol at constant Ti =

4.2, with a sequence of field shifts.

HK = 2.24787. The initial field is

Hi = 0.1, the field is then switched to

Hl and is left to evolve (step (2)). At

t = ta, m1(ta, Hl) = m̄1(Hf ) and the

field is switched to Hf = 2.17 (step (3)).

The curves, bottom to top, refer to Hl =

2.22, 2.20, 2.18, the dashed line refers to

the case Hl = Hf (γ = 1, J = K = 1

and L = 0.1). Reprinted figure with

permission from [Aquino et al., 2006a].

FIGURE 3.9

Numerical solution (continuous lines)

compared to the analytical solution

for short times (dot-dashed) and for

intermediate-long times (dashed), in the

aging regime. Ti = 10, Tf = 4.018. The

left curve is realized with Tl = 4.005,

the right one with Tl = 4.008. For long

times the system loses memory of the

intermediate temperature. Reprinted

figure with permission from [Aquino

et al., 2006a].

only small temperature shifts for the final step of the protocol, meaning also
that Tf will be close to TK . All the coefficients which appear in Eq. (3.215),
can be assumed constant and equal to their equilibrium values at Tf with a
very good approximation. The equation can then be easily integrated:

µ1(δµ2) = exp

[

−1 + Q̄D

γ(δµ2)γ
2F1

(

γ, γ, γ + 1,− µ̄2

δµ2

)]

(3.216)

×
{

µ+
1 exp

[
1 + Q̄D

γ(δµ+
2 )γ

2F1

(

γ, γ, γ + 1,− µ̄2

δµ+
2

)]

−JQ̄K̃∞
2

∫ δµ2

δµ+
2

dz exp

[
1 + Q̄D

γzγ
2F1

(

γ, γ, γ + 1,− µ̄2

z

)]
}

where the superscript + indicates that µ1 is evaluated at t = t+a and 2F1 is the
hyper-geometric function (see Appendix 3.A.3). This expression simplifies in
cases where γ = 1, 3/2, 2. Here, we limit ourselves to the case γ = 1 which
corresponds to ordinary VF relaxation law. The other solutions and relative
coefficients are reported in Appendix 3.A.3. In the case γ = 1, the solution
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can be written as

µ1(t) =

(
δµ2(t)

δµ2(t) + µ̄2

) (1+Q̄D)
µ̄2



µ+
1

(
δµ+

2 + µ̄2

δµ+
2

) 1+Q̄D
µ̄2

(3.217)

−JQ̄K̃∞
2

∫ δµ2(t)

δµ+
2

dz

(
z

z + µ̄2

)− 1+Q̄D
µ̄2





where:

∫ b

a

dz

(
z

z + η

)α

=
xα+1

2F1(1 − α,−α, 2 − α,−x
η )

ηα(1 + α)

∣
∣
∣
∣
∣

x=b

x=a

One can then expand m1(t) in terms of µ1 and δµ2, and obtain the following
expression for the Kovacs curves:

δm1(t) =
K̃∞(w̄ + T/2)

K̃∞(w̄ + T/2) +D

{
µ1(t) − µ+

1

m̄1(Tf)
+ 2(δµ2(t) − δµ+

2 )

}

(3.218)

where the coefficients are approximately constant in the regime chosen and
can be evaluated at equilibrium.

For small t − ta, a linear approximation for the variable δµ2, with a slope
given by Eq. (3.82) evaluated at t = t+a , turns out to be very good. Inserting
this expression in Eq. (3.217) to get µ1(t) and then in Eq.(3.218), a good
approximation of the first part of the hump for small and intermediate t− ta
is obtained, as shown in Fig. 3.9.

When t − ta is very large, we can use Eq. (3.217) and the pre-asymptotic
approximation for µ2(t) [Eq. 3.119]

µ2(t) =

(

log
t

t0
+

1

2
log log

t

t0

)−1/γ

Inserting this expression in Eq. (3.217) to obtain µ1(t) and then in Eq.
(3.218), a good approximation for the hump and the tail of the Kovacs curves
is obtained. In Fig. 3.9 we show the agreement between the analytical ex-
pression so obtained and the numerical solution.

3.5.2 Effective temperature and effective field

The out-of-equilibrium state of the system can be expressed by a number of
effective parameters which is, in general, equal to the number of indepen-
dent observables considered. In the HOSS model, given the solution of the
dynamics, a quasi-static approach was followed to generalize the equilibrium
thermodynamics (see Sec. 3.3.1) by computing the partition function of all
the macroscopic equivalent states at a given time t and providing the effective



Exactly solvable models for the glassy state 141

FIGURE 3.10

Effective field vs. effective temperature in the Kovacs protocol. The continuous

line AB refers to the last part of step 2 of the protocol, i.e., aging at Tl = 4.005

after a quench from Ti = 10 (we do not show the full line starting at Te = 9.13 and

He = 0.0826, outside our picture). The continuous line CD represents the evolution

of the system in step (3) of the protocol, after an instantaneous switch of the bath

temperature from Ti = 4.005 to Tf = 4.018 (resulting in a jump from point B to C).

The non-monotonicity of the curve CD, i.e., of the evolution of He after the jump,

is the signature of the Kovacs effect. The dashed line represents simple aging at Tf

after a quench from Ti (H = 0.1). Reprinted figure with permission from [Aquino

et al., 2006a].

temperature Te(t) = K̃(m1(t),m2(t))[m2(t) − m2
1(t)], and the effective field

He(t) = H − K̃(m1(t),m2(t))µ1(t) [Eqs. (3.130, 3.131)]. We plot He as a
function of Te in a Kovacs’ setup, in Fig. 3.10.

We see that in step 2 of the protocol (lower continuous line), equivalent to
a simple aging experiment, the effective magnetic field relaxes monotonically
to the value H. In step 3 (upper continuous line CD), after the final jump of
the bath temperature, represented in the figure by the jump from point B to
point C, the effective magnetic field goes through a non-monotonic evolution
before relaxing to the equilibrium value H. This is where the Kovacs effect
occurs. A conclusion that can be drawn is that a thermodynamic-like picture
in terms of the effective temperature alone is not possible in the Kovacs setup
unless at the cost of neglecting effects of the order of magnitude of the Ko-
vacs effect itself! So, while in an aging experiment in the long time regime
He(t) − H is very small compared to Te(t) − T (so that one can consider
He = H and use only Te as effective parameter), in the Kovacs protocol, it is
in the non-monotonic evolution of the effective field that the memory effect
manifests itself.
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An additional effective field is, then, needed to recover a thermodynamic-
like picture of the system inclusive of the Kovacs effect. The dashed line in
the figure represents a simple aging experiment at T = Tf , cf. the dashed
lines in Figs. 3.5, 3.6 and 3.8. In this case a thermodynamic-like picture with
only an effective temperature is feasible, assuming He = H. From Fig. 3.10
one can argue that such a picture would be possible also in step 3 of the pro-
tocol (curve CD) since the two curves, for Te close enough to TfTf , coincide.
But this happens when δm1(t) is beyond the hump and the signature of the
memory effect, the non-monotonic evolution, is lost. This analysis confirms
the results obtained by Mossa & Sciortino [2004] in a molecular model liquid,
where the impossibility of a thermodynamic-like picture with only the effec-
tive temperature was based on a potential energy landscape (PEL) analysis
(see Chapter 6 for an introduction to the PEL method). In the latter model,
in the last step of the Kovacs protocol, the system happens to explore regions
of the PEL never explored in equilibrium, and, therefore, a simple mapping to
an equilibrium condition at a different temperature (the effective temperature
by definition) is not possible.

3.6 Measuring effective temperature in HO models

We introduced the problem of the direct thermologic measurement of the ef-
fective temperature in Sec. 2.9. One important and not well understood issue
is whether effective temperatures relative to two apart off-equilibrium aging
glass systems tend to become equal as they are put in contact, as it would
happen at equilibrium according to the zeroth law of thermodynamics. The
point is, then, to see whether such a law can be generalized out of equilibrium
where only one or none of the two systems is actually at equilibrium with the
heat-bath.

Since we are off equilibrium, another question to address would be on which
timescale such partial thermalization would take place. Indeed, it cannot be
taken for granted that two different aging systems, each one with its own
effective temperature, will interact in such a way to yield an equal Te and
the reason might be the same preventing the two systems to equilibrate: the
hypothesized extremely low thermal conductivity (cf. Sec. 2.9).

Garriga & Ritort [2001b,a] face this problem making use of the HO model of
Sec. 3.1 and explicitly computing the heat flow between two off-equilibrium
systems. They consider a system A composed by N harmonic oscillators
xA = {xi,A} and a system B composed by N harmonic oscillators xB =
{xi,B}. The two systems are connected by means of a weak, local interaction.
The Hamiltonian of the whole set is:

H =
KA

2
M2,A +

KB

2
M2,B − ǫ QAB (3.219)
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where

M
(A)
2 = Nm

(A)
2 ≡

N∑

i=1

|xA|2 (3.220)

M
(B)
2 = Nm

(B)
2 ≡

N∑

i=1

|xB |2 (3.221)

QAB = NqAB ≡
N∑

i=1

xA · xB (3.222)

The dynamics imposed is, as usual, the parallel Monte Carlo dynamics
introduced in Sec. 3.1.1, where, however, the distributions of the updates
of the positions of the oscillators in A and in B have different widths (the
variances are ∆A 6= ∆B). The interesting case occurs when the dynamics is
implemented separately on the two subsystems, that is, when the two sets of
variables are sequentially updated and the Metropolis algorithm, Eq. (3.10),
only depends on the energy shifts relative to one set at a time:

δEA,B = x(A,B) =
KA,B

2
y
(A,B)
2 − ǫ δQAB (3.223)

The only coupling between A and B is, then, through the Hamiltonian cou-
pling.

The equations of motion both for the one-time and the two-time variables
are those considered throughout this chapter. In the present case there are
no fast variables (J = L = 0), the external field H is zero and one works at
a zero heat-bath temperature. For small ǫ, in the aging regime, the one-time
dynamics evolves, thus, as

m
(A,B)
2 ≃

KAKB∆2
A,B

8(KAKB − ǫ2)

1

log t
(3.224)

qAB ≃ ǫ
KA∆2

A +KB∆2
B

16(KAKB − ǫ2)

1

log t
(3.225)

The two-time variables are the correlation functions CA(t, tw) and CB(t, tw),
cf. Eq. (3.159) with a = b = 1, involving the fluctuations between variables
belonging to the same subsystem, and CA|B(t, tw) and CB|A(t, tw) describing
the correlation between the fluctuations in B at time tw and in A at time t,
and vice versa.

Analogously, four response functions can be defined. Two of them, GA(t, tw)
and GB(t, tw),15 cf. Eq (3.160) with a = b = 1, are the responses to small,
external perturbations acting on the same subsystem, whereas the other two,

15C(t, tw) ≡ N 〈δm1(t)δm1(tw)〉, where δm1(t) = m1(t)− m̄1 and m1 = 1/N
P

i xi. If the
external fields are zero, as in Eq. (3.219), m̄1 = 0.
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GA|B(t, tw) and GB|A(t, tw) describe the response at time t of the system A
(respectively B) to a linear perturbation of system B (resp. A) at time tw:

GA|B(t, tw) ≡ δ
〈
m

(A)
1

〉

δHB(tw)

∣
∣
∣
HB=0

(3.226)

The equations governing their evolution are similar to Eq. (3.161) for the
equal time correlations and to Eq. (3.172) for the two-time correlation and
response functions. Now, however, only fluctuations and perturbations in
m1 are considered and no fast spherical spins are present (i.e., K̃ → KA,B

and H̃ → HA,B , independent of the oscillator variables). Furthermore, the
unperturbed values of the external fields are zero. The two-time behavior of
such quantities is necessary to define the FDR, that is interpretable as an
effective temperature (cf. Secs. 2.8 and 3.3.4).

The formal resolution in the aging regime is carried out by Garriga & Ritort
[2001b] yielding, for the FDRs at small coupling ǫ:

TFD
e,A (tw) ≡ ∂twCA(t, tw)

GA(t, tw)
≃ KAm2,A(tw) + O(ǫ2) ∼ 1

log tw
(3.227)

TFD
e,B (tw) ≡ ∂twCB(t, tw)

GB(t, tw)
≃ KBm2,B(tw) + O(ǫ2) ∼ 1

log tw
(3.228)

Both expressions display the same logarithmic decay to zero (the heat-bath
temperature). However, in the aging regime, their ratio never equals one,
unless both systems have the same spring constant and the same MC updates
distribution. Indeed

TFD
e,A

TFD
e,B

=
KA∆2

A

KB∆2
B

(3.229)

This is easy to understand because, if the spring constant of A is larger (at
equal ∆), the proposed energy shift in a MC collective move will, typically, be
larger and the transition probability will, hence, be smaller and the relaxation
relatively slower (i.e., the effective temperature will be larger). Similarly,
fixing Ks, if the distribution of the updates of system A is wider, the proposed
move will be, typically, larger and, therefore, less probable. Again TFD

e,A >

TFD
e,B .
This implies that no “effective thermalization” holds on the timescales of

the aging regime (t, tw ≫ O(1) and |t − tw| ≪ tw) and the zeroth law of
thermodynamics is satisfied only when equilibrium is reached, when both
effective temperatures relax to the heat-bath temperature.

3.6.1 Heat flux between off-equilibrium systems

In order to better comprehend this, one has to observe the heat transfer
between the two subsystems. According to the proposals of Cugliandolo et al.
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[1997] and Exartier & Peliti [2000], Garriga & Ritort [2001a] define the heat
flux between the two systems A and B as the balance of the supplied powers:

J(t, tw) ≡ ǫ
∂

∂t

[
CA|B(t, tw) − CB|A(t, tw)

]

=
ǫ

N
[ẋA(t) · xB(tw) − ẋB(t) · xA(tw)] (3.230)

Let us, now, consider A as the thermometer and B the out-of-equilibrium
system whose effective temperature should be measured. In order for A to
be a good thermometer, the power it supplies to the system B should be
negligible. In Eq. (3.230) this amounts to considering ∂tCA|B ≪ ∂tCB|A.
We said, in Sec. 2.9, that one possible explanation for the impossibility of
devising a thermometer able to measure the effective temperature of the slow
modes might be that its response time should be comparable with the typ-
ical timescales on which those modes evolve in the aging regime. A normal
thermometer, indeed, with a fast response, interacts with the fast degrees of
freedom equilibrated at the heat-bath temperature and can, therefore, only
measure the latter. However, the condition ∂tCA|B ≪ ∂tCB|A can only be
satisfied if ẋA ≪ ẋB , that is if the relaxation time of the thermometer is
smaller than the one of the system under probe (notice that β processes are
not considered in the present analysis).

If, at time s ∼ O(1), we couple a generic thermometer A to a generic glassy
system B and we measure the heat transfer occurring between the waiting
time tw and the time t, Eq. (3.230), for both t and tw much larger than s and
next to each other, its analytic expression will be

J(t ≃ tw, tw) = ǫ2∂uCB(t, u)
∣
∣
u=tw

CA(tw, tw)(βA − βB(tw)) (3.231)

−ǫ2
∫ t

s

du {GA(t, u) [+βB(u)TA∂uCB(t, u) + ∂tCB(t, u)]

+CA(t, u)
[
βA∂

2
uCB(t, u) + βB(u)∂u∂tCB(t, u)

]}

where βB(u) = 1/TFD
e,B (u) and βA = 1/TA is the inverse temperature of the

thermometer. It turns out that only if the characteristic response time of the
thermometer (supposed at equilibrium) is much less than the time t at which
the measurement is completed, the thermometer temperature can eventually
become equal to the effective temperature.16

The heat flux is related to the thermal conductivity κT by the Fourier law,
a linear relationship involving the temperature gradient in an off-equilibrium,
though stationary, situation [de Groot & Mazur, 1962]

J = −κT∇T = LO∇β (3.232)

16Even though it is not clear whether this can happen for a t that is not infinitely long, for
which also the system B would reach equilibrium and, therefore, we would find ourselves
describing a standard equilibrium measurement.
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where LO is the Onsager coefficient. We stress, however, that the aging regime
is not stationary and the results derived by using the above formula must,
therefore, be carefully verified. Certainly, a sort of stationarity sets in if, in
the aging timescale, one, exploits the idea of an effective temperature Te(t)
that evolves so slowly to be considered constant in a given time interval (some
decades) around t.

If both A and B are HO systems, as in Eq. (3.219), the heat flux relative
to the above-described situation is

J(t ≃ tw, tw) ∼ ǫ2
1

t(log t)2
(βA − βB(t)) ∼ −ǫ2 1

t
(TA − TB(t)) (3.233)

Being in the aging regime, we have seen that βB = 1/TFD
e,B ∼ log tw, cf.

Eq. (3.228), implying ∇β ≃ βA − βB(tw) ∼ log tw. This leads to J ∼
1/(tw log tw). The heat transferred between the thermometer A and the off-
equilibrium system B in a certain interval of time, ∆t, in the aging regime is,
therefore,

Q =

∫ tw+∆t

tw

dt′J(t′) ∝ log
log(tw + ∆t)

log tw
(3.234)

If ∆t ≪ tw, then Q ∼ ∆t/(tw log tw) and the total transferred heat cannot
lead to TA = TFD

e,B (t), since to achieve this the heat exchanged should decay as
Q ∼ 1/ log tw. To transfer enough heat to compensate the difference between
the thermometer and the system, that is to measure the effective temperature,
∆t must, then, be of the same order of tw, that is the age of the system: the
thermal conductivity decays too fast to allow for a partial “off-equilibrium”
thermalization and the zeroth law of thermodynamics only holds very near to
equilibrium.

3.7 Mode-dependent effective temperature

We have seen in Sec. 2.8 that the effective temperature indirectly measured
by means of the FDR depends on the frequency of the AC measurement.
In Sec. 7.5 we will further explore the possibility that the viscous liquid
is heterogeneous in space, that is, composed by local regions belonging to
different homogeneous glassy states (by state, meaning a minimum of the free
energy landscape), a framework in which an effective temperature, however
defined, might become dependent on the space, yielding a distribution of
effective temperatures rather than a single valued thermodynamic parameter.
It becomes important, then, to generalize the class of HO models studied in
this chapter to the case in which more modes are present and probe how the
effective temperature depends on the modes distribution.
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Garriga & Ritort [2005] generalized the Hamiltonian of the HO model, Eq.
(3.1), substituting the Hooke constant by a disordered parameter with a given
distribution:

H =
K

2

N∑

i=1

ǫix
2
i (3.235)

where the ǫi are all positive and distributed according to the function g(ǫ) =
1/N

∑

i δ(ǫi − ǫ) that, for N → ∞, is a continuous function.
The usual MC dynamics is applied (Sec. 3.1.1) and, for what concerns the

novelty of the presence of the quenched randomness, the technical approach
is analogous to the one developed to the backgammon model that will be
exhaustively presented in the next chapter, in Sec. 4.3 and Appendices 4.A-
4.D. Hence, here, we will only concentrate on the physical results in the case
of the harmonic oscillators.

Thermodynamics is trivial and the free energy per oscillator reads

βf = −1

2
log

(
2π

βK

)

+
1

2

∫ ∞

0

dǫ g(ǫ) log ǫ (3.236)

The second term is zero in the ordered case (g(ǫ) = δ(ǫ − 1)), yielding back
Eq. (3.3).

In the dynamics, the probability distribution of the MC energy shift x, is
still the Gaussian of Eq. (3.15) (with H = 0), but average and variance, Eq.
(3.16), are generalized as

x =
∆2K

2
ǭ, ∆x = ∆2K2[m2]ǫ2 (3.237)

where

ǭ ≡ 1

N

N∑

i=1

ǫi, [m2]ǫℓ ≡
〈

1

N

N∑

i=1

ǫℓix
2
i

〉

(3.238)

The brackets average is carried out over different initial conditions and dy-
namical histories of the system.

The equations of motion at zero temperature consist in the hierarchy

dU

dt
= A1(t) =

x

2

[

erfc(α) +

(

1 − βx

2α2

)

b(α)

]

(3.239)

d[m2]ǫℓ

dt
= ∆2

(

ǭℓ − ǭ
[m2]ǫℓ+1

[m2]ǫ2

)

A0(t) +
[m2]ǫℓ+1

[m2]ǫ2
A1(t) (3.240)

where A0, A1 and b are defined in Eqs. (3.34), (3.35) and (3.36), respec-
tively, and α2 = x2/(2∆x) = ∆2ǭ/(8[m2]ǫ2). In the adiabatic approximation,
[m2]ǫ2 can be linearly related to the energy, assuming that the system has
equilibrated over the hypersurface of constant energy (cf., e.g., Sec. 3.2.3,
Eqs. (3.91)-(3.92) for the relation between µ1 and µ2 or the microcanonic
argument of Sec. 3.3.3) and the equations of motion can be closed and solved
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analytically. In particular, the acceptance ratio A0, Eq. (3.34), does not de-
pend on the disorder and the energy long time behavior only depends on the
average ǭ:

A0(t) ≃
1

4t log(2t/
√
π)

(3.241)

U(t) ≃ K∆2ǭ

16

1

log(2t/
√
π) + 1/2 log[log(2t/

√
π)]

(3.242)

3.7.1 Quasi-static effective temperature

The effective temperature defined in the quasi-static approach (cf. Sec. 3.3.1
for the HOSS model) reads, in this case,

Te(t) =
K

ǭ
[m2]ǫ2(t) (3.243)

returning Eq. (3.130), with m1 = 0 and K̃ = K, in the ordered case (ǫ = ǭ =
1).

To probe the contributions related to different oscillation modes one intro-
duces a mode-dependent energy density, describing the energy contribution
of those oscillators of spring constant Kǫ:

w(ǫ, t) ≡ K

2

〈

1

N

N∑

i=1

δ(ǫi − ǫ)x2
i (t)

〉

(3.244)

whose equation of motion reads

ẇ(ǫ, t) =
2

K

ǫw(ǫ, t)

[m2]ǫ2
A1(t) + ∆2

[
K

2
g(ǫ) − ǭ ǫw(ǫ, t)

[m2]ǫ2

]

A0(t) (3.245)

Studying its dynamics it is possible to identify a threshold energy ǫ⋆ discrim-
inating between two qualitatively different dynamic regimes:

ǫ⋆w(ǫ⋆, t) =
K

2ǭ
g(ǫ⋆)[m2]ǫ2(t) (3.246)

All modes with ǫ > ǫ⋆ are equilibrated at the effective temperature yielded by
Eq. (3.243), whereas modes with ǫ < ǫ⋆ are, instead, off equilibrium. In Fig.
3.11 we display the behavior of w(ǫ, t) for a system with a binary distribution
of the disorder, g(ǫ) = 1/2[δ(ǫ − ǫ1) + δ(ǫ − ǫ2)] and we compare it with the
expression

w(ǫ, t) =
K

2

g(ǫ)

ǫ ǭ
[m2]ǫ2(t) (3.247)

valid when ǫ > ǫ⋆.
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FIGURE 3.11

w(ǫ, t) at T = 0 for a binary distribu-

tion of the random energies. The nu-

merical resolution of Eq. (3.245) and

the approximated adiabatic expression

(“equipartition”), Eq. (3.247), are com-

pared. Symbols correspond to MC sim-

ulations for a system with N = 5000.

Reprinted figure with permission from

[Garriga & Ritort, 2005]. Copyright

(2005) by American Physical Society.
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FIGURE 3.12

Fluctuation-dissipation ratio vs. ǫ at dif-

ferent waiting times and at zero tem-

perature. The distribution g(ǫ) of the

quenched disorder is uniform between

0.01 and 1. In the inset the scaling of

TFD
e with the threshold energy is dis-

played. Reprinted figure with permis-

sion from [Garriga & Ritort, 2005].

3.7.2 Mode-dependent fluctuation-dissipation ratio

Let us define the two-time dependent correlation and response functions:

C(ǫ, t, tw) =

〈

1

N

N∑

i=1

δ(ǫi − ǫ)xi(t)xi(tw)

〉

(3.248)

G(ǫ, t, tw) =
δm1(ǫ, t)

δH(tw)

∣
∣
∣
H(tw)→0

; t > tw (3.249)

where

m1(ǫ, t) ≡
〈

N∑

i=1

δ(ǫi − ǫ)xi(t)

〉

(3.250)

and enters in the Hamiltonian, Eq. (3.235), adding the term −HNm1. Solving
the equal time and the two-time equations of motion, cf., respectively, Eqs.
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(3.161) and (3.172) with J = L = 0 and K̃ → Kǫ, one finds

C(ǫ; t, t′) ≃ C(ǫ; t′, t′)
h(t)

h(t′)
(3.251)

C(ǫ; t′, t′) ≃ 2

K
w(ǫ, t′) (3.252)

G(ǫ; t, t′) ≃ G(ǫ; t′, t′)
h(t)

h(t′)
(3.253)

G(ǫ; t′, t′) ≃
(
K∆2ǭ

2
A0(t

′) −A1(ǭ, t
′)

)
g(ǫ)

K2[m2]ǫ2(t′)
(3.254)

where the time sector function is now the ǫ-dependent

h(t) = exp

{

− ǫ

K

∫ t

−∞
dτ

[
K∆2ǭ

2
A0(τ) −A1(ǭ, τ)

]
1

[m2]ǫ2(τ)

}

(3.255)

The mode dependent FDR eventually turns out to be

TFD
e (ǫ; t′) ≡ ∂t′C(ǫ; t, t′)

G(ǫ; t, t′)
=

1

g(ǫ)

[

2ǫw(ǫ, t′) + 2K
[m2]ǫ2

(K/2∆2ǭA0(t′) −A1(ǭ, t′))

]

(3.256)
For ǫ > ǫ⋆ this reduces to

TFD
e (ǫ, t) ≃ K

ǭ
[m2]ǫ2 = Te(t) (3.257)

that is the quasi-static expression obtained in the adiabatic approximation,
Eq. (3.243), independent of the mode frequency.

For ǫ < ǫ⋆, instead,

TFD
e (ǫ, t) = 2Te − 2

ǫ w(ǫ, t)

g(ǫ)
(3.258)

This implies, in particular, that those modes with larger timescales are at
higher temperature with respect to modes with frequencies above the thresh-
old. This can be observed in Fig. 3.12, where for oscillators with ǫ < ǫ⋆,
TFD

e (ǫ, t)/Te(t) > 1. In the ǫ → 0 limit, the FDR is twice the quasi-static
effective temperature and this corresponds to the effective temperature of a
diffusive process [Cugliandolo & Kurchan, 1994]. Processes with ǫ < ǫ⋆ can,
thus, be interpreted as diffusive, off-equilibrium, processes.

3.7.3 Transition rate effective temperature

The effective temperature can be estimated from the transition probability
as well, as explained in Sec. 3.3.3. Looking at the energy shifts in the MC
dynamics, Eq. (3.148) holds also in the present model, yielding a Te coinciding
with Eq. (3.243).
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The same approach can be implemented considering, instead of the average
energy shift, the mode-dependent energy shift

δEǫ ≡
〈

ǫ
K

2

1

N

N∑

i=1

δ(ǫi − ǫ)x2
i

〉

= ǫw(ǫ, t) (3.259)

yielding an effective temperature equal to Eq. (3.256), that reduces to Eq.
(3.257), provided ǫ > ǫ⋆ (partial thermalization regime).



152 Thermodynamics of the glassy state

3.A HOSS equations of motion for one-time variables

First of all we recall some integrals and functions that will be useful not only
for the HOSS model but throughout the book. The first ones are the erf
function, the error function defined, as

erf(α) ≡ 2√
π

∫ α

−∞
dz e−z

2

(3.A.1)

and its complementary erfc, defined as

erfc(α) ≡ 2√
π

∫ ∞

α

dz e−z
2

= 1 − erf(α) (3.A.2)

3.A.1 Strong glass

The asymptotic expansion of erfc for large α is

erfc(α) =
e−α

2

α
√
π

[

1 +
∞∑

k=1

(−1)k
2k!

k!(2α)2k

]

≃ e−α
2

α
√
π

(

1 − 1

2α2

)

(3.A.3)

where, in the last part, we reported the terms that are relevant for express-
ing the slow relaxing dynamics of our concern, and that yield the following
equation of motion [equivalent to Eq. 3.87]:

α̇ =
e−α

2

√
π

(3.A.4)

whose solution is [cf. Eq. 3.88]

−i erf(iα(t)) =
2t

π
+ const (3.A.5)

Using Eq. (3.A.3) for large α this can be approximately inverted as

α(t) ≃
√

log
2t√
π

+
1

2
log log

2t√
π

(3.A.6)

leading to Eq. (3.89) for the strong glass case.

3.A.2 Fragile glass

Dynamics of µ2(t)

Now we look at the equations for the fragile glass. Neglecting higher order
terms in Eq. (3.82) the approximated equation for large Λ, i.e., large times,
is:

Λ̇ =
Λω

t0
e−Λ (3.A.7)
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with
t0 =

√
π

8(m0+µ̄2)γr1
, ω = 1

2 , T ≥ T0,

t0 =
√
π

8m0γr∞(1−r∞) , ω = 2+γ
2γ , T < T0.

(3.A.8)

This holds for T & T0 and for any T < T0. The parameters r1 and r∞ come
from the expansion of r, defined in Eq. (3.114), for small µ2, respectively,
above and below T0.

• Above T0, the first order expansion is

r ≃ 1

T (1 + Q̄D)

[

K̃(1 + Q̄D + P̄ )δµ2(t) − µ1(t)
2P̄D

J

]

(3.A.9)

where P̄ and Q̄ were introduced, together with P and Q, in Eqs. (3.79)
and (3.80). Even though we have expanded in µ1 as well, this contri-
bution turns out to be negligible for the present level of approximation
(see also [Leuzzi & Nieuwenhuizen, 2001a; Leuzzi, 2002]). For future
convenience we, then, define the abbreviation

r1 ≡ 1

m0 + µ̄2(T )

1 + Q̄D + P̄

1 + Q̄D
(3.A.10)

To study the case above T0, we use the variable δµ2(t) = µ2(t) − µ̄2.
Here we work at T not too far from T0 and we concentrate on the aging
regime rather than on the eventual Debye relaxation to equilibrium, i.e.,
we consider µ̄2(T ) ≪ δµ2, approximating δµ2(t) ≃ µ2(t) = Λ(t)−1/γ in
the aging regime. In this range of temperature T ⋆(t) − T ∼ µ2(t).

• Below T0, the qualitative behavior of µ2(t) (in this case the µ̄2 part is
zero) is the same, but T is never reached. This implies that r tends to
some asymptotic constant

r∞ =
m0 − T/K̃∞(T )

2m0 − T/K̃∞(T )
(3.A.11)

The generic implicit solution of Eq. (3.A.7) is

Γ (1 − ω,−Λ(t)) [−Λ(t)]ω[Λ(t)]−ω =
t

t0
+ const (3.A.12)

where Γ(κ, x) is the Euler incomplete gamma function

Γ(κ, a) =

∫ ∞

a

dx xκ−1e−x (3.A.13)

In the case above T0, i.e., where ω = 1/2, Eq. (3.A.12) takes the special form
−i erf(iΛ) = t/t0, identical to the one for strong glasses (indeed, it is Λ ∼ α2

as far as µ2
1 < m0 + µ2).
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Eq. (3.A.7) represents the dynamics for large times and low temperatures,
i.e., large Λ. Consistently we expand the solution (3.A.12) as

eΛΛ−ω ≃ t

t0
(3.A.14)

Inverting it one obtains:

Λ(t) ≃ log(t/t0) + ω log log(t/t0) (3.A.15)

and, eventually Eq. (3.119).17

Dynamics of µ1(t)

For the dynamics of µ1 we observe that many different regimes arise as the
temperature drops below T0. Here, we report them all for the sake of com-
pleteness, even though those of our interest are only the first two in the list.
Indeed, our effort to map the aging dynamics of a system into a unique effec-
tive thermodynamic parameter turns out to be successful for the HOSS model
only in those dynamic regimes where µ1 ≪ µ2 (see the approach of Sec. 3.3.1
to understand why).

The starting equation is Eq. (3.120), i.e., the ratio of equations (3.115) and
(3.116):

dµ1

dµ2
=
µ1(1 +QD)(Λ + 2 − 3r + 2r2) − JQT ⋆r

2r(m0 + µ2) − µ2
1(Λ + 2 − 3r + 2r2)

(3.A.16)

Depending on the temperature and the value of the exponent γ the above
equation can be differently approximated in the regime of long times.

1. Aging regime above the Kauzmann temperature: T > T0, ∀γ. Neglect-
ing the term of O(µ2

1Λ) in the denominator, according to the order of
the approximation already used in devising the equation of motion for
µ2, the solution is

µ1(t) =
TJQ̄r1
1 + Q̄D

δµ2(t)

Λ
+ O(δµ2

2) + O(δµ2γ+1
2 ) (3.A.17)

where r1 is defined in Eq. (3.A.10). The parameter Λ = (µ̄2+δµ2)
−γ can

be further expanded in powers of δµ2/µ̄2 provided that the temperature
is not too close to T0. As T → T0, implying µ̄2 → 0, one has instead
to consider that δµ2/µ̄2 ≪ 1 only as the equilibration occurs (i.e., even
beyond the aging relaxation) and µ1 ∼ (δµ2)

1+γ .18

17Compare with λ(t) in Sec. 4.1.2, in the framework of aging urn models.
18This is the same behavior as the T = 0 dynamics of the strong glass case at T = 0. There
it was, furthermore, γ = 1 and therefore µ1 ∼ µ2

2, cf. Eq. (3.92).
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2. Aging regime below the Kauzmann temperature, enhanced separation
of timescales: T < T0, γ > 1:

µ1(t) =
JT̄ ⋆r∞Q̄

1 + Q̄D

1

Λ(t)
+ O(µ1+γ

2 ) (3.A.18)

with

T̄ ⋆ ≡ lim
t→∞

K̃(m1(t),m2(t))[m0 + µ2(t)] = K̃∞m0 (3.A.19)

K̃∞ ≡ lim
t→∞

K̃ (m1(t),m2(t)) (3.A.20)

r∞ =
T̄ ⋆ − T

2T̄ ⋆ − T
(3.A.21)

3. Model-dependent aging regimes below the Kauzmann temperature: T <
T0, γ = 1. In this case the adiabatic expansion is no longer consistent.
We have to solve equation (3.A.16) taking dµ1/dµ2 into account. Since
γ = 1 one has µ2 = 1/Λ. To the leading order the equation takes the
form

dµ1

dµ2
=
µ1Λ (1 + Q̄D) − JQ̄T̄ ⋆r∞

2r∞m0
+ O(µ1) + O(µ2) + O(Λµ2

1)

(3.A.22)

Defining the quantity ǫ ≡ (1+Q̄D)
2r∞m0

we identify another five, model-
dependent, sub-regimes in the case of γ = 1.

(a) ǫ > 1. The solution is

µ1(t) ≃
JQ̄T̄ ⋆r∞

2r∞m0(ǫ− 1)
µ2(t) − c1

1

ǫ− 1
µǫ2(t) (3.A.23)

The exponent ǫ is always positive, at least in cooling, because T̄ ⋆ >
T , making r∞ and Q̄ positive. c1 is also positive because it is the
exponential of the integration constant (the value of which depends
on the initial conditions). Since ǫ > 1, the second term in the right-
hand side can be neglected and µ1 ∼ µ2.

(b) ǫ = 1. We find

µ1(t) ≃ −JT̄
⋆r∞Q̄

1 + Q̄D

logµ2(t)

Λ(t)
+ c2 µ2(T ) (3.A.24)

where c2 is the integration constant and can take any value. In the
long time dynamics the logarithm term will take over and, inde-
pendently of the initial conditions, µ1 > µ2 and will be positive.

(c) 1/2 < ǫ < 1. The second term in Eqs. (3.A.22) is leading and
the solution is

µ1(t) ≃ c1
1

1 − ǫ
µǫ2(t) (3.A.25)

c1 is a positive constant and µ1 ≫ µ2 and positive.
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(d) ǫ = 1/2. When ǫ ≤ 1/2 the second term in the denominator
(O(µ2

1)), always neglected up to now, has to be taken into account.
In this case the leading term in the denominator goes to zero and
JT̄ ⋆r∞Q̄ can be neglected with respect to µ1Λ (1 + Q̄D) in the
numerator. We can, thus, solve the equation

dµ2

dµ1
=

2r∞m0 − 2µ2
1Λ

µ1Λ(1 + Q̄D)
(3.A.26)

For ǫ = 1/2 we obtain

µ2(t) = − 2

1 + Q̄D
µ2

1(t) logµ1(t) + c2 µ
2
1(t) (3.A.27)

which is not analytically invertible. It is clear anyway that in this
sub-regime µ1 ≫ µ2. c2 can take any value.

(e) ǫ < 1/2. The solution is

µ1(t) =

√

m0 r∞(1 − 2ǫ)

Λ(t)
(3.A.28)

×
(

1 +
c1
2

(
1 + Q̄D

2

)1/ǫ(
1 − 2ǫ

ǫ

)1/ǫ−1

µ2(t)
1/2ǫ−1

)

where c1 > 0. Again it holds that µ1 ≫ µ2.

4. Aging regime below the Kauzmann temperature: reduced separation of
timescales: T < T0, γ < 1. Considering also the term of O(µ2

1Λ) in the
denominator of Eq.(3.A.16), the solution is now

µ1(t) =
1

√

Λ(t)

√
r∞m0

[

1 − 1 + Q̄D

2m0r∞γ
µ2(t)Λ(t)

]

(3.A.29)

In this low temperature regime µ1 ≫ µ2 once again.

For γ = 1, ǫ ≤ 1/2 and for γ < 1 the solution to equation (3.A.22) involves
only the absolute value of µ1, thus giving two possible choices for the sign of
the function µ1(µ2). In order to guarantee continuity of µ1 at the parameter
values at which the dynamics changes regime, we require µ1 to have the same
sign in two contiguous regimes. That means that in Eqs. (3.A.27), (3.A.28),
and (3.A.29) we chose the plus sign. This choice will also bring an always
positive heat flux out of the relaxing glass (see Sec. 3.3.5).
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Long time expansions

We collect here the expansions to first order in δµ2(t) of the quantities m1, r
[defined in Eq. (3.114)], K̃ [Eq. (3.57)], P [Eq. (3.80)] and Q [Eq. (3.79)].

m1(t) = m̄1 −
P̄D

TJ(1 + Q̄D)
δµ2(t) (3.A.30)

r(t) =
1

m0 + µ̄2

(

1 +
P̄

1 + Q̄D

)

δµ2(t) (3.A.31)

K̃(t) = K̃∞ +
K̃∞P̄

(1 + Q̄D)(m0 + µ̄2)
δµ2(t) (3.A.32)

P (t) = P̄ + P1δµ2(t) (3.A.33)

Q(t) = Q̄+Q1δµ2(t) (3.A.34)

with

P1 ≡ P̄

(1 + Q̄D)(m0 + µ̄2)

[
J2(m0 + µ̄2)(3w̄ + T/2)

2w̄2(w̄ + T/2)
+ 1 + Q̄D − P̄

]

(3.A.35)

Q1 ≡ Q̄

(1 + Q̄D)(m0 + µ̄2)

[
J2(m0 + µ̄2)(3w̄ + T/2)

2w̄2(w̄ + T/2)
− 3P̄

]

(3.A.36)

and, from Eqs. (3.52, 3.76),

w̄ ≡
√

J2m̄2 + 2JLm̄1 + L2 +
T 2

4
=

√

J2
T

K̃∞

θ(T − T0) +

(
D

K̃∞

)2

+
T 2

4
(3.A.37)

As T ≤ T0, δµ2 → µ2.

3.A.3 Analytic expressions for the Kovacs effect

In Eq. (3.216) we have used the hypergeometric function, defined as:

2F1(a, b, c, z) =
Γ(c)

Γ(a)Γ(b)

∞∑

n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!

AQ = 1 +Q(m̄1(Tf), m̄2(Tf))D = 1 + Q̄(Tf)D

Introducing the abbreviation

BγQ = exp



AQ
2F1(γ, γ, γ + 1,− µ̄2

δµ+
2

)

γ(δµ+
2 )γ





we present here the µ1 behavior in the non-monotonic Kovacs effect, that is
the solution to Eq.(3.215), in two specific model cases: γ = 3/2, 2. For γ = 3

2
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one has:

µ1(δµ2) =




1 −

√

1 + δµ2

µ̄2

1 +
√

1 + δµ2

µ̄2





(1+Q̄D)

µ̄
3/2
2

e
2(1+Q̄D)

µ̄2
√
µ̄2+δµ2




µ

+
1 B

3
2

Q

−JQ̄K̃∞
2

∫ δµ2

δµ+
2

dz





1 +
√

1 + z
µ̄2

1 −
√

1 + z
µ̄2





1+Q̄D

µ̄
3/2
2

e
− 2(1+Q̄D)

µ̄2
√
µ̄2+z







and for γ = 2:

µ1(δµ2) =

(
δµ2

δµ2 + µ̄2

) 1+Q̄D

µ̄2
2

e

1+Q̄D

µ̄2
2(1+

δµ2
µ̄2

)

(

µ+
1 B

2
Q

−JQ̄K̃∞
2

∫ δµ2

δµ+
2

dz

(
z

z + µ̄2

)− 1+Q̄D

µ̄2
2

e
− 1+Q̄D

µ̄2
2(1+ z

µ̄2
)





3.B Monte Carlo integrals in one- and two-time

dynamics

First we will analyze the case above the Kauzmann temperature. In this case
the expansion shown in Eqs. (3.B.14)-(3.B.17) in powers of µ2(t) becomes
both an expansion in δµ2(t) and in µ̄2 [or, equivalently, in 1/Λ = (µ̄2/B)

γ
].

Indeed, we are interested in studying what happens for long times (but not
as long as the relaxation time to equilibrium: t0 ≪ t ≪ τeq) and near the
Kauzmann temperature T0, i.e., for small values of δµ2(t) and even smaller
values of µ̄2 (or large values of Λ̄).

The following exact relations hold:

∂m1
µ1 = −1 − LQK̃, ∂m2

µ1 = −J
2
QK̃ (3.B.1)

We stress that ∂m1
µ1 and ∂m2

µ1 are still functions of µ1 and µ2, through
K̃ and Q [see Eqs. (3.57) and (3.79)], and they can, thus, be expanded in
powers of δµ2. They will appear very often in two specific combinations that
we report here for convenience:

∂m1
µ1 + 2m1∂m2

µ1 = −(1 +QD) (3.B.2)

∂m1
µ1 − 2

L

J
∂m2

µ1 = −1 (3.B.3)
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In the following formulas, the derivatives of µ1, as well as µ1 itself, have to
be considered as general, regular functions of µ2. For the terms containing
Λµ1, from Eq. (3.121) we see that

Λµ1 =
JQ̄Tr1
1 + Q̄D

δµ2 + O
(
δµ2

2

)
(3.B.4)

in the dynamic regime above T0 (cf. Sec. 3.2.4, dynamics of µ1, case 1),
whereas in the second regime, T < T0, γ > 1, it holds

Λµ1 =
JQ̄K̃∞m0

1 + Q̄D
+ O (µ2(t)) (3.B.5)

that is, of O(1).

We recall that x, defined in Eq. (3.14), is the energy difference between
the current configuration of the system and the one proposed for the updat-
ing. The variable r [defined in Eq. (3.114)] is the distance of the effective
temperature Te from the heat-bath temperature (that is also the equilibrium
value of Te in the dynamic regime above the Kauzmann temperature). First
we define the abbreviation:

Υ ≡ e−Λ(1 − r)√
πΛ

(3.B.6)

that is the leading term of the acceptance ratio of the Monte Carlo dynamics:

A0 ≡
∫

dx W (βx) p(x|m1,m2) = (3.B.7)

Υ

[

1 − 1 − 2r + 4r2

Λ
+

3

4Λ2

(
1 − 4r + 16r2 − 24r3 + 16r4

)
+ O

(
1

Λ3

)]

We, then, give the behavior of the time derivative of the energy

A1 ≡
∫

dx W (βx) x p(x|m1,m2) = −4rT ⋆Υ

[

1 − 3(1 − 2r + 2r2)

Λ
(3.B.8)

+
15

4Λ2

(
3 − 12r + 28r2 − 32r3 + 16r4

)
+ O

(
1

Λ2

)]

and the integro-differential equation for m1 [obtained from Eq. (3.30) by
substituting K → K̃ and H → H̃]:

m1 =

∫

dx W (βx) y1(x) p(x|m1,m2) (3.B.9)

= 4µ1Υ

[

Λ − (1 − 3r + 4r2) + O
(

1

Λ

)]
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3.B.1 Coefficients of the two-time variables equations

In section 3.3.4 we compute the correlation and the response functions. In
order to find their time dependence we need the following derivatives with
respect to m1 and m2, taken as independent variables:

∂T ⋆

∂m1
= 2K̃

(

P
L

J
−m1

)

,
∂T ⋆

∂m2
= K̃ (P + 1) (3.B.10)

∂r

∂m1
= 2

1 − 3r + 2r2

m0 + µ2

(

P
L

J
−m1

)

,
∂r

∂m2
=

1 − 3r + 2r2

m0 + µ2
(P + 1)

(3.B.11)

and

∂Υ

∂m1
= −Υ

[
m1γ

µ2
(2Λ + 1) + 2

1 − 2r

m0 + µ2

(

P
L

J
−m1

)]

(3.B.12)

∂Υ

∂m2
= Υ

[
γ

2µ2
(2Λ + 1) − 1 − 2r

m0 + µ2
(P + 1)

]

(3.B.13)

We present, then, the expansion of the coefficients of Eqs. (3.166)-(3.168)
for the dynamics of the two-time observables. Intermediate objects that we
need are:

d
(1)
0 ≡ ∂

∂m1

∫

dx W (βx)p(x|m1,m2) ≃ −2m1d0 −
2L

J

P (1 − 2r)

m0 + µ2
Υ

(3.B.14)

d
(2)
0 ≡ ∂

∂m2

∫

dx W (βx)p(x|m1,m2) ≃ d0 −
P (1 − 2r)

m0 + µ2
Υ (3.B.15)

d0 = γ
Υ

µ2

[

Λ − 1 − 4r + 8r2

2
+

3

4Λ

(
13 − 56r + 136r2 − 160r3 + 80r4

)]

− 1 − 2r

m0 + µ2
Υ

We notice that the above approximation for long time is valid both in the aging
regimes for T & T0 (as far as µ̄2 ≪ δµ2, long times, but not infinite) and for
T < T0. The sub-leading corrections depend on γ being larger or smaller
than one. The first two terms in d0, instead, remain the most important
two, whatever the values of T and γ. They are of order Λ/µ2 and 1/µ2,
respectively. When T & T0 O(r) = O(µ2), whereas for T < T0 O(r) = O(1):

d
(1)
1 ≡ ∂m1

∫

dx W (βx) x p(x|m1,m2) (3.B.16)

≃ −2m1d1 − 8
L

J
K̃P (1 − 3r + 2r2)Υ +

{
O (Υ/Λ) if T & T0

O (Υ/(Λµ2)) if T < T0, γ > 1

d
(2)
1 ≡ ∂m2

∫

dx W (βx) x p(x|m1,m2) (3.B.17)

≃ d1 − 4K̃P (1 − 3r + 2r2)Υ +

{
O (Υ/Λ) if T & T0

O (Υ/(Λµ2)) if T < T0, γ > 1
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d1 ≡ Υ

{

−4γT ⋆
Λr

µ2
+ 2γT ⋆

r

µ2

(
5 − 12r + 12r2

)
− 4K̃

(
1 − 3r + 2r2

)
}

We stress that, as T < T0, in order to use the above expressions one has to
assume γ > 1 (see the discussion in Sec. 3.3.4).

Eventually, we come to the coefficients of the correlation and response func-
tions in Eqs. (3.172):

d(1)
y1 ≡ ∂m1

∫

dx W (βx) y1(x) p(x|m1,m2) (3.B.18)

≃ −2m1Υ
[

2γ
Λ2µ1

µ2
+ 4Λ∂m1

µ1 − 2γ(3 − 6r + 8r2)
Λµ1

µ2

−4∂m1
µ1(1 − 3r + 4r2) − 8

Λµ1

m0 + µ2

]

− 16
L

J
P

Λµ1

m0 + µ2
Υ + O(Υµ2)

d(2)
y1 ≡ ∂m2

∫

dx W (βx) y1(x) p(x|m1,m2) (3.B.19)

≃ Υ
[

2γ
Λ2µ1

µ2
+ 4Λ∂m2

µ1 − 2γ(3 − 6r + 8r2)
Λµ1

µ2

−4∂m2
µ1(1 − 3r + 4r2) − 8

Λµ1

m0 + µ2

]

− 8P
Λµ1

m0 + µ2
Υ + O(Υµ2)

d(1)
y2 ≡ ∂m1

∫

dx W (βx) y2(x) p(x|m1,m2) (3.B.20)

≃ 2m1d
(1)
y1 +

2

K̃
d
(1)
1 + 16Υr

L

J

P

1 +QD

d(2)
y2 ≡ ∂m2

∫

dx W (βx) y2(x) p(x|m1,m2) (3.B.21)

≃ 2m1d
(2)
y1 +

2

K̃
d
(2)
1 + 8Υr

P

1 +QD
(3.B.22)

All partial derivatives with respect tom1 have been initially computed keeping
m2 fixed and vice versa (before considering time explicitly). Once time is
inserted one knows the dynamic behavior of the coefficients and can expand
them in powers of µ2(t), as shown in Eqs. (3.B.14)-(3.B.17) We break the
expansion at O (Υ/(Λµ2)) that is more than sufficiently refined to derive the
dynamics of the correlation and response functions in all the regimes of our
interest (regimes 1 and 2, according to the list in Appendix 3.A).





4

Aging urn models

Urn models consist, in their generic definition, of one or more sets of balls
(particles, pawns, . . .) and a number of urns (boxes, cells, states, . . .) where
the balls can be placed or taken from, according to a given extraction law
regulating the evolution of the model.

They are a classical issue in probability theory [Feller, 1993; van Kampen,
1981], and have been used, as well, to build relational databases in learning
theory [Gardy & Louchard, 1995; Boucheron & Gardy, 1997; Drmota et al.,
2001], to determine the efficacy of vaccines [Hernandez-Suarez & Castillo-
Chavez, 2000], to study epidemic spreading [Daley & Gani, 2001; Gani, 2004],
population genetics [Hoppe, 1987] and to represent evolutionary processes
[Schreiber, 2001; Benäım et al., 2004], just to mention a few applications.
The urn models have, furthermore, played a very important role in formu-
lating fundamental concepts of statistical mechanics such as the approach to
equilibrium and fluctuations out of equilibrium [Kac & Logan, 1987].

The prototype of the dynamic urn models in statistical mechanics and one
of the most intensively studied ones has been the Ehrenfest model, otherwise
called the “dog-flea” model, introduced with the aim of (critically) analyzing
the H-theorem of Boltzmann [Ehrenfest & Ehrenfest, 1907]. In this model a
given number N of fleas are randomly distributed over two dogs. The dogs
stay near enough to each other so that the fleas can freely jump from one dog
to the other one. In a probabilistic language, we have N distinguishable balls
distributed between two urns. The dynamic rule of the model is elementary:
at each time step a randomly chosen flea is “called” and changes dog. All
fleas are equivalent. Even though extremely simple, the model has been a
stimulus for many decades in physics and mathematics, even after it was ex-
actly solved by Kac [1947], Siegert [1949] and Hess [1954] (see also [Kac, 1959;
Emch & Liu, 2002]). To solve the problem means finding the evolution law
for the number of fleas on each one of the two dogs. Since no interaction, nor
energetic cost, nor constraint is involved, the occupation numbers at equi-
librium are determined according to the requirement of maximum entropy.
The dog-flea model has been generalized in various ways in the course of its
century-long life. According to the classification of Godrèche & Luck [2001],
we can identify a whole class of models whose common origin is the dog-flea
model: the ”Ehrenfest class” of dynamic urn models.

More generally, one can define a dynamic urn model specifying
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1. the components (urns and balls)

2. their statistics

3. the cost function

4. the dynamic algorithm

5. the geometry

The base of the behavior of dynamic urn models fundamentally resides in
the way the starting and the ending point of each dynamic step are chosen (the
statistics, point 2.). In the case just considered, the ball-to-box choice of the
statistics, actually defines the Ehrenfest class of models. Further specifications
are the transition probability of ball-to-box moves and the energy function,
but the discriminating ingredient is the statistics. We will see in the specific
case of the backgammon model how this choice implies a Maxwell-Boltzmann
statistics for the occupation probabilities at equilibrium (Sec. 4.1).

A qualitatively different class of models can, for instance, be defined by a
box-to-box choice for the single move: we choose a box, we take any ball at
random from that box, we put it in another box, randomly chosen. The class
of models produced this way is called the monkey class [Godrèche & Luck,
2001]. The equilibrium statistics computed for monkey models turns out to
be Bose-Einstein, even though nothing quantum is involved in the box-to-box

update.

Example models belonging to this class are the “B-model” of Godrèche &
Mézard [1995] and the zeta urn model [Bialas et al., 1997]. The B-model is
identical to the backgammon model but for the statistics, that is, however,
crucial. The zeta urn model has a Hamiltonian H =

∑N
i=1 log ni + 1, where

ni are the occupation numbers. Apart from nontrivial dynamic properties
displaying aging and coarsening off-equilibrium behavior [Drouffe et al., 1998;
Godrèche & Luck, 2001], it also owns a static transition at finite temperature
to a condensed phase. The monkey models are, however, not good models for
glassy materials and we will not consider them any further.

Concentrating on Ehrenfest models, an important property that can be
encoded, introducing disorder, is the existence of collective modes, that is,
modes connected to the slowest processes evolving in a glassy system and
carrying on the structural α relaxation.

Take a liquid well above the glass temperature, where correlations decay
exponentially with time. One may consider the resultant behavior of the liq-
uid as the superposition of different and independent harmonic modes. Each
one of these energy modes corresponds to a normal mode of a system and de-
scribes a collective oscillation of the atoms around their local minimum. This
is the harmonic approximation, known to work quite well in liquids (cf. Sec.
6.1.5). Nevertheless, already as the temperature undergoes the dynamic glass
temperature (Sec. 1.1.1), other collective modes, different from the standard



Aging urn models 165

{configuration space}

E
n
er

g
y

o
f

co
ll
ec

ti
ve

m
o
d
es

FIGURE 4.1

An over-simplified one dimensional projection of an energy landscape of collective

modes: high energy collective modes are separated by low barriers while low energy

collective modes are separated by high barriers.

vibrational ones, become important. The nature of these modes is quite dif-
ferent from the usual harmonic normal modes because they do not represent
oscillations around a given configuration within a metastable well, but tran-
sitions among different wells.

As the characteristic energy of the collective modes depletes, the typical
barrier separating these modes increases, leading to the opposite behavior
with respect to the harmonic modes and to super-activation effects: while
high energy collective modes are separated by low barriers, low energy collec-
tive modes are separated by high barriers and relax more slowly. A simple
schematic representation of this scenario in a one dimensional configurational
space is shown in Fig. 4.1.

Below the dynamic transition, relaxation dynamics proceeds by activation
over the barriers characterizing the cooperativeness of the molecules over
largely extended regions (see Sec. 1.1.1). In the model that we will discuss in
Sec. 4.3, the size of these cooperative rearranging regions (CRR) cannot be
inferred, but they can be related to the collective modes. As the temperature
decreases, indeed, collective modes at low energy can be thought of as the
representation of collective rearrangements of large regions, requiring higher
activation energy and taking place at a lower rate.

We will tackle this problem at the end of the chapter by means of a gener-
alization of the backgammon model where each urn has a distinct, randomly
distributed, weight (or energy) [Leuzzi & Ritort, 2002]. Because of the differ-
ent random energy values that the holes acquire, an analysis of the behavior
of a material presenting several modes can be carried out in the situation in
which those modes at larger energy (in absolute value) have thermalized while
those at low energy relax too slowly to reach equilibrium on a given timescale
(in the first order approximation of uncorrelated modes). This is qualitatively
similar to the experimental results found, e.g., by Bellon et al. [2001] for the
relaxation at different frequencies, Sec. 2.8.
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4.1 The backgammon model

In the context of aging systems, we will be interested in a multistate Potts
model [Potts, 1952; Wu, 1982] without energy barriers and without phase
transitions that describes the typical dynamics encountered in glasses: the
backgammon model, introduced by Ritort [1995]. The statics is simple and
the dynamics displays a very slow relaxation at low temperature exclusively
because of ”entropic barriers.” The dynamics of this model is equivalent to
an urn model with M urns and N distinguishable balls, which, in turn, can
be mapped into a biased random walk [Godrèche & Luck, 1996]. It is a
generalization of the original Ehrenfest model in two ways: (i) the states are
M instead of 2 and (ii) an energy function is introduced, so that the system
can also be studied in temperature.

In this dynamic urn model, N balls are initially uniformly distributed
among M boxes (point 1 in the scheme in the chapter introduction). At each
time step a randomly chosen ball is moved to another nonempty randomly
chosen urn (ball-to-box statistics, point 2). An energy function is defined as
the number of occupied urns (point 3, cf. Eq. (4.1)) and a move of a ball into
a new box is allowed if the energy does not increase (point 4).

According to the dynamic prescription it is clear that, once a box becomes
empty, it remains as such forever and, thus, the number of nonempty boxes
decreases until all balls are placed in one box. It is also easy to realize that the
number of nonempty boxes decreases with a slower and slower rate as time
goes by. Indeed, emptying a box with a few balls and placing them exclusively
into boxes that are already occupied is an event that becomes more and more
unlikely as the filled-in boxes available in the system decrease. The relaxation
is hindered by the decrease of configurations available to decrease the energy,
that is, by entropic barriers. This intuition is at the basis of the development of
this model for slowly relaxing systems and this is the reason why, in the present
chapter, we will concentrate on it to get as much information as possible on
its glassy behavior. High entropic barriers means that there are only a few
directions in phase space along which the system can evolve as the energy
is decreased during the dynamics. As we will see, these unusual barriers are
the source of typical features of glasses, like aging, time-dependent hysteresis
effects and an Arrhenius-like relaxation time.

The backgammon model can be, as well, mapped into an asymmetric ran-
dom walk with an absorbing site at the origin [Godrèche & Mézard, 1995].
This analogy can be of help in understanding the source of entropic barriers
and the fact that the model evolves through rare events (Sec. 4.1.5 will be
dedicated to this analysis).

The geometrical arrangement of the boxes (point 5.) plays no role in the
backgammon model: any particle in any box can, indeed, move to any other
box with the same probability. This amounts to considering the system in
its mean-field approximation. The mean-field approximation in glass models
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induces a complete arrest in the dynamics because of the divergence of energy

barriers (see, e.g., the spherical p-spin model in Sec. 7.2). In the mean-field
case, indeed, the fluctuations leading to the formation of other glass phases
(cf. Sec. 7.5) are neglected and the activated processes yielding the structural
relaxation are inhibited. Nevertheless, the effect of entropic barriers is not
much influenced by the geometry and the range of the interaction. The results
obtained for the backgammon model are, indeed, a clear sign that entropic
barriers alone can be the source of glassy behavior at low temperatures.

In this section we are going to schematically recall some of the features of
this model and to connect them, when possible, to the idea of effective tem-
perature in the context of slowly relaxing (glass-like) systems. For a complete
study of the backgammon model the interested reader can refer to Ritort
[1995]; Franz & Ritort [1995, 1996]; Godrèche & Luck [1996]; Franz & Ritort
[1997]; Lipowsky [1997]; Arora et al. [1999]; Godrèche & Luck [1999, 2001]
and also to the Proceedings of the Barcelona meeting on Dynamically Facili-
tated Models [Workshop, 2002] and to the reviews of Ritort & Sollich [2003]
and Crisanti & Ritort [2003], respectively about facilitated models and the
fluctuation-dissipation ratio for systems out of equilibrium.

The model is composed by N distinguishable particles that can occupy M
different states, labeled by r. The energy of a given configuration is equal to
the number of unoccupied states. The Hamiltonian of the model is

H = −
M∑

r=1

δnr,0 (4.1)

where δn,0 is a Kronecker delta, nr = 0, . . . , N is the occupation number of
state r and the number of particles is

M∑

r=1

nr = N (4.2)

4.1.1 Equilibrium thermodynamics

The thermodynamic properties are easily computed, both using the canonical
or the grand canonical ensemble. The system does not undergo any phase
transition. The canonical partition function is

ZC =
∑

{nr}

(
N

n1 . . . nM

)

δ

(

N −
M∑

r=1

nr

)

e−βH (4.3)

=
∑

{nr}

N !
∏M
r=1 nr!

δ

(

N −
M∑

r=1

nr

)

exp

{

β
∑

r

δnr,0

}

The factor N !/
∏

r nr! (with 0! = 1) in the partition function ZC is introduced
to account for distinguishing particles. This factor leads to an overextensive
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entropy, S ∼ N logN that can be cured eliminating from ZC the overcounting
term N ! in the numerator.

Using the integral representation for the delta function, one has

ZC =

∫ 2πi

0

dλ

2πi
exp






−λN + log

[
∑

{nr}

M∏

r=1

exp (λnr + βδnr,0)

nr!

]





(4.4)

The partition function can be computed for large N and M in the saddle
point approximation taking the maximum of the integrand. The maximum
condition yields the self-consistency equation for λ⋆

N∑

n=0

n
exp [nλ⋆ + βδn,0]

n!
=

N∑

n=0

exp [nλ⋆ + βδn,0]

n!

→ zez = ρ
(
eβ + ez − 1

)
(4.5)

where we have defined the quantities z ≡ expλ⋆ and ρ ≡ N/M (number of
particles per state) and we used the fact that

∑

{nr}

M∏

r=1

g(nr) =

[
N∑

n=0

g(n)

]M

In the context of the grand canonical ensemble z is a fugacity, as we will see
in a while.

The partition function for large N,M is, thus,

ZC ≃
∑

{nr}

M∏

r=1

exp [nλ⋆ + βδn,0]

z1/ρ n!
≃
(
ezz1−1/ρ

ρ

)M

(4.6)

and the probability distribution of having different occupation numbers fac-
torizes. Imposing normalization,

∑

{nr}

M∏

r=1

Pnr (z, β) =
N∑

n=0

Pn(z, β) = 1 (4.7)

one finds the distributions

Pn(z, β) = ρ
zn−1eβδn,0

n!ez
; n = 0, . . . , N (4.8)

In terms of these probability distributions, the energy per state and the z
parameter come out to be

u =
U

M
= −P0 = −ρ e

β

zez
; z = − logP1 (4.9)
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The free energy per particle is

F

N
= −T

ρ

[

z +

(

1 − 1

ρ

)

log z − log ρ

]

(4.10)

We notice that, for low temperature, the entropy of the system is ill-defined,
as it happened for the HO models, cf. Sec. 3.1, diverging logarithmically
with T . This pathology derives from the fact that the statistics of the model
is Maxwell-Boltzmann [Kim et al., 1996] (cf. Sec. 4.1.2).1

The same results can be obtained in the grand canonical ensemble, with-
out making use of the saddle point approximation. In the grand canonical
ensemble, the partition function is

ZGC =
∞∑

N=0

ζNZC =

[ ∞∑

n=0

eβδn,0ζn

n!

]M

=
(
eβ + eζ − 1

)M
(4.11)

where ζ ≡ exp(βµ) is the fugacity (µ is the chemical potential). This contains
the sum over all possible occupation numbers of the relative weights of having
n particles in a state. The grand potential per particle is, thus,

Ω

N
= − 1

ρβ
log
(
eβ + eζ − 1

)
(4.12)

The canonical and the grand canonical thermodynamic potentials are Leg-
endre transforms of each other with respect to the number of particles and
the chemical potential: Ω = F − Nµ. This allows for the identification of
the previously defined z and the fugacity ζ. The self-consistency Eq. (4.5) is
obtained in this case from the condition

∂Ω

∂µ
= −N or, equivalently,

∂F

∂µ
= 0 (4.13)

i.e., by fixing the number of particles equal to N . In the following, we will set
the number of states equal to the number of particles (M = N , ρ = 1).

At low temperature, approximated relations can be used, reducing Eq. (4.5)
to zez ≃ eβ and the internal energy per state to u ≃ −1 + 1/z ≃ −1 + T −
T 2 log T . In Fig. 4.2 we plot the exact expression for u, together with these
approximations for low T . They practically coincide. On the same interval
also the linear approximation in T is shown, that, because of the logarithmic
corrections, only holds near zero temperature.

1The entropy behaves correctly, instead, in models belonging to the monkey class, displaying
a Bose-Einstein statistics [Godrèche & Mézard, 1995; Godrèche & Luck, 2001, 2005]. In
these models, though, the relaxation to equilibrium is faster even at zero temperature and
the effect of the presence of entropic barriers is smaller.
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FIGURE 4.2

Energy versus temperature at equilib-

rium for the backgammon model at low

T , in different approximations. The

three curves on top, superimposing, are,

respectively, the exact solution of Eqs.

(4.5, 4.9) and the functions −1+1/z(T )

and −1+T+T 2 log T . The bottom curve

is the linear approximation in T . Inset:

fugacity vs. T : as T → 0 z diverges.
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Difference between fugacity and inverse

temperature as T → 0. Together

with the exact curve, we also plot z −
β ∼ − log β, approximation obtained for

large z and β in Eq. (4.5). Inset: P0 and

P1 versus T . All probabilities for states

with more than one particle are practi-

cally zero in the T -range represented [cf.

Eq. (4.8)].

4.1.2 Dynamics

As in any other urn model, the dynamics is defined by the statistics procedure
by which balls are extracted from the boxes. The dynamics specifying the
backgammon model is the following.

1. A ball is chosen at random among N with a uniform probability, this
implies that a departure box d containing nd particles is extracted with
probability nd/N out of the N available states

2. An arrival box a is chosen with a uniform distribution (independent of
na)

3. The move is accepted according to the Monte Carlo algorithm (see Sec.
3.1.1), i.e., with probability 1 if the energy U decreases or is unchanged
and with probability W (∆U) = e−β∆U = e−β if the energy is increased
by that move.

Note that the departure box satisfies nd ≥ 1 and it is chosen with probability
nd/N (ball-to-box). This dynamics corresponds to Maxwell statistics where
particle are distinguishable and differs from the one corresponding to Bose
statistics [Godrèche & Mézard, 1995; Kim et al., 1996; Prados & Sanchez-Rey,
1997; Godrèche & Luck, 1996, 1999] where particles are indistinguishable and
departure boxes are chosen with uniform probability 1/N (box-to-box).



Aging urn models 171

Franz & Ritort [1996] derived the mean-field equations for the MC dynamics
of the backgammon model. They form a set of hierarchical equations. For a
generic occupation number n the evolution of Pn is described by an infinite
hierarchy of equations:

dPn(t)

dt
= (n+ 1) [Pn+1 − Pn] + Pn−1 (4.14)

+P0

(
e−β − 1

)
[δn,1 − δn,0 − nPn + (n+ 1)Pn+1]

n = 0, . . . , N

with P−1 = 0 and the initial condition Pn(0) = δn,1. Defining the shortcuts

λ ≡ 1

1 + P0(e−β − 1)
; ν ≡ e−β + P1(1 − e−β) (4.15)

this set can be formally written as a Markovian system of the form [Godrèche
& Luck, 1999]:

dPn(t)

dt
=

N∑

m=0

Mnm[P0(t), P1(t)]Pm(t) (4.16)

=







n+1
λ(t)Pn+1(t) − n+λ(t)

λ(t) Pn(t) + Pn−1(t), n ≥ 2

2
λ(t)P2(t) − 2P1(t) + ν(t)P0(t), n = 1

P1(t) − µ(t)P0, n = 0

where
∑

n≥0 Mnm[P0(t), P1(t)] = 0. We stress, however, that the dynamics
is actually non-Markovian because the λ and ν terms are functions of P0 and
P1 in their turn, making the set of equations nonlinear, cf. Eqs. (4.14) or
(4.16).

The derivation of the above equations is postponed to the later section
4.3 and to Appendix 4.A where they appear as a specific case of a general-
ized model. The solution for the distribution at equilibrium (dPn/dt = 0) is
provided by Eq. (4.8).

In particular, for n = 0, one obtains,

∂P0

∂t
= P1(1 − P0) − P0e

−β(1 − P1) (4.17)

yielding the energy relaxation u(t) = −P0(t), once P1(t) is known. Generally,
it is not possible to exactly solve even the above equation without solving the
whole hierarchy of equations, see Eq. (4.14). Not even at zero temperature,
where the equation simplifies in

∂P0

∂t
= P1(1 − P0) (4.18)
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For long times it is, however, possible to yield an approximate analytical
solution, within the context of different approximations, all relying on the
assumption that the relaxation to 1 of P0(t) is “slow.”

We now shortly report the resolution provided by Godrèche & Luck [1996]
and, in the next section, we will analyze another - somewhat simpler - ap-
proach: an adiabatic approximation connected to the introduction of an ef-
fective temperature.

Let us introduce a generating function of the probability distributions:

G(x, t) ≡
N∑

n=0

xnPn(t) (4.19)

The first term of the polynomial series is G(0, t) = P0(t) and the closure
condition on the probabilities reads now G(1, t) = 1. The function G(x, t)
satisfies the partial differential equation [cf. Eq. (4.14)]:

∂G(x, t)

∂t
= (x− 1)

[

G(x, t) − 1

λ

∂G(x, t)

∂x
− λ− 1

λ

]

(4.20)

with initial condition G(x, 0) =
∑

n x
nδn,1 = x, where we used the parameter

λ defined in Eq. (4.15). The equation can be formally solved by the method
of characteristics, i.e., defining the auxiliary variable

y(x, t) ≡ (1 − x) exp

{

−
∫ t

0

du

λ(u)

}

= (1 − x)e−τ(t); (4.21)

τ(t) ≡
∫ t

0

du

λ(u)

The differential equation for Ĝ(y, t) = G(x(y, t), t) is somewhat simpler than
Eq. (4.20):

∂Ĝ(y, t)

∂t
= −yeτ(t)

[

Ĝ(y, t) − P0(t)(1 − e−β)
]

(4.22)

and its implicit solution reads

Ĝ(y, t) = (1 − y) exp

{

−y
∫ t

0

du eτ(u)

}

(4.23)

+y

∫ t

0

du P0(u)(1 − e−β) exp

{

τ(u) − y

∫ t

u

dv eτ(v)
}

If computed at x = 0, i.e., y = e−τ(t), it reduces to the nonlinear integral
equation

P0(t) =
[

1 − e−τ(t)
]

exp

{

−
∫ t

0

du eτ(u)−τ(t)
}

(4.24)

+

∫ t

0

du P0(u)(1 − e−β)
d

du
exp

{

−
∫ t

u

dveτ(v)−τ(t)
}
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The above equation can be solved only numerically [Franz & Ritort, 1996], but,
at least for very low temperatures, a very good approximated solution can be
computed analytically. We move, therefore, to consider the zero temperature
case, where Eq. (4.24) simplifies: integrating by part and using Eq. (4.18) we
find

1 − e−τ(t) =

∫ t

0

du P1(u) [1 − P0(u)] exp

{∫ u

0

dv eτ(v)−τ(t)
}

(4.25)

For completeness, we report that the generating functional method was first
applied to the problem in the random walk formalism [Godrèche & Mézard,
1995] that we will consider later, see Sec. 4.1.5.

Eq. (4.25) cannot be analytically solved unless for long times. In the latter
case it can be approximated under the assumption that P0(t) evolves “slowly
enough” with respect to the evolution of all other quantities involved (this will
be checked a posteriori as the solution is computed, cf. Eq. (4.34)) [Godrèche
& Luck, 1996]. Neglecting e−τ(t) with respect to one, splitting the right-hand
side in two parts and using the zero temperature differential Eq. (4.18), Eq.
(4.25) becomes:

1 ≃
∫ t

0

du P1(u) [1 − P0(u)] (4.26)

+

∫ t

0

du P1(u) [1 − P0(u)]

[

exp

{∫ u

0

dv eτ(v)−τ(t)
}

− 1

]

= P0(t) +

∫ t

0

du P1(u) [1 − P0(u)]

×
[

exp

{∫ t

0

dv eτ(v)−τ(t) −
∫ t

u

dv eτ(v)−τ(t)
}

− 1

]

The integral in the right-hand side is dominated by values of u ∼ t. We,
therefore, use the following approximations:

τ(t) − τ(v) =

∫ t

v

ds [1 − P0(s)] ∼ ǫ[1 − P0(t)] (4.27)

∫ t

u

dv eτ(v)−τ(t) ∼ 1 − eǫ[1−P0(t)]

1 − P0(t)
(4.28)

where
ǫ ≡ t− v; ǫ≪ t (4.29)

We now use the abbreviation λ(t) ≡ (1 − P0(t))
−1, cf. Eq. (4.15), and we

change the integration variable from ǫ to η ≡ eǫ/λ(t). Inserting Eqs. (4.27)
and (4.28) into Eq. (4.26), we obtain

1 ≃ 1 − 1

λ(t)
+ P1(t)

∫ 1

0

dη

η
[exp {λη} − 1] (4.30)



174 Thermodynamics of the glassy state

that, together with Eq. (4.18) (rewritten as dλ/dt = λP1), leads to

dt

dλ
∼ I(λ) =

∫ 1

0

dη

η

(
eηλ − 1

)
=
∑

n≥1

λn

n n!
= Ei(λ) − log λ− C ∼ eλ

λ

∑

n≥0

n!

λn

(4.31)
where Ei is the exponential-integral function2 and C = 0.577215 . . ., the Euler
constant. The initial condition P0(0) = 0 reads now t(λ = 1) = 0. Integrating,
one has

t(λ) ∼
∫ 1

0

dη

η2

(
eηλ − 1 − λη

)
=
∑

n≥1

λn+1

n (n+ 1)!
∼ eλ

λ

∑

n≥0

(n+ 1)!

λn
(4.32)

The error performed in the above equation is of the order dλ/dt ∼ e−λ,
exponentially small. As a consequence, the asymptotic series in Eq. (4.32)
can be considered valid at all orders in 1/λ = 1−P0. At the first sub-leading
order, one has a dynamic relaxation qualitatively identical to the one found
for the harmonic oscillator models considered in the previous chapter [cf., e.g.,
Eqs. (3.89), (3.119) and Appendix 3.A]:

t ≃ eλ

λ

(

1 +
1

λ

)

(4.33)

implying

P0(t) ≃ 1 − 1

log t+ log log t
(4.34)

In Fig. 4.4 we reproduce the long time behavior of λ(t), comparing the
analytical approximated long time prediction with the numerical resolution
of the differential equations, see Eq. (4.14).

We conclude by mentioning that the presence of exponentially small correc-
tions (non-perturbative in the control parameter λ) is usually a by-product
of adiabatic approximations, such as the one that will be implemented in the
next section.

4.1.3 Adiabatic approximation and effective temperature

To solve Eq. (4.17), without solving the whole hierarchy, Eq. (4.14), for
any n, yet an alternative approach can be followed, assuming separation of

timescales between processes involving empty states and processes involving
occupied states. The relaxation dynamics is, thus, led by the processes of
emptying a box, whereas all exchanges of particles among boxes containing
already at least one particle occur on a shorter timescale and are practically at
equilibrium on the constant energy (or P0) surface. This is based on the fact

2The integral definition of this function is, for positive argument x, Ei(x) ≡
− limǫ→0+

h

R −ǫ
−x dt e−t/t +

R ∞
ǫ dt e−t/t

i

.
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that moves between nonempty states are energy and entropy costless, whereas
emptying completely a box becomes more and more difficult as the number
of filled-in boxes decreases. Indeed, as the dynamics goes on, all the balls will
be gathered in a few, very crowded boxes and to empty one of them, many
coordinated moves must occur at the same step in the evolution dynamics.
This adiabatic approximation is somewhat cruder than the one adopted in the
previous section to find the long time behavior of the probability distributions
of the occupancies of the urns, but it leads, nevertheless, to the same results at
the leading order (the difference will be of the order 1/ log t in the evaluation of
λ = 1−P0 ≃ log t+log log t). The basic point in both approaches, actually, is
the same (even though with different and differently refined implementations):
that the relaxation of P0 is slower than the one of any other distribution.

In order to implement the adiabatic approximation one can introduce an
effective temperature T ⋆(t) [and an effective fugacity z⋆(t) = z(T ⋆(t)), related
to T ⋆ by Eq. (4.5)] and express all the distributions Pn≥1(t) as if they were
at equilibrium at heat-bath temperature T ⋆(t) [cf. Eq. (4.8)], i.e.,

Pn≥1(z
⋆(t)) =

[z⋆(t)]
n−1

n!ez⋆(t)
(4.35)

This time-dependent effective temperature is defined by

u(t) = −P0(β
⋆(t), z⋆(t)) = − eβ

⋆

z⋆ez⋆
(4.36)

together with the condition

z⋆(t)ez
⋆(t) = eβ

⋆(t) + ez
⋆(t) − 1 (4.37)

If local equilibrium is attained on the hypersurface of constant energy, we
can relate P1 to P0 using Eq. (4.35). The simplest way of dealing with Eq.
(4.17) is to write both P1 and P0 in terms of the time-dependent fugacity z⋆

writing down a dynamical equation for z⋆. Plugging Eqs. (4.35)-(4.37) into
Eq. (4.17) and solving for z⋆(t), the equation of motion is

∂z⋆

∂t
=

z⋆[exp(z⋆) − 1]

exp(z⋆) − z⋆ − 1

(

e−z
⋆ − z⋆e−β

)

(4.38)

In the long time limit, at low temperature, z⋆ diverges (see inset of Fig. 4.2
for the equilibrium behavior) and the leading asymptotic behavior is given by
the solution of

∂z⋆

∂t
≃ z⋆ exp(−z⋆) − e−βz⋆(z⋆ − 1) (4.39)

that, in its implicit form, reads:

t = const +

∫ z⋆(t)

1

du

u

1

e−u − (u− 1)e−β
(4.40)
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FIGURE 4.4

Inverse density of filled-in boxes λ as

a logarithmic function of time. The

full curve represents the numerical solu-

tion of the exact differential Eq. (4.14),

the dashed curve represents the approxi-

mated analytical solution for long times,

Eq. (4.33). Reprinted figure with per-

mission from [Godrèche & Luck, 1996].

Copyright (1996) by the Institute of

Physics Publishing.

FIGURE 4.5

Energy vs. t at T = 0. Three curves are

compared: (i) numerical resolution of

Eq. (4.14) (random initial conditions at

t = 0), (ii) numerical resolution of adi-

abatic Eq. (4.38) (random initial con-

ditions), (iii) Monte Carlo simulations

for N = 105 particles/states. Reprinted

figure with permission from [Franz &

Ritort, 1996]. Copyright (1996) by

Springer.

At zero temperature this simply yields t ≃ exp(z⋆)/z⋆. Inverting it, one finds,
for long times,

z⋆(t) ≃ log t+ log log t (4.41)

u(t) ≃ −1 +
1

log t+ log log t
(4.42)

identical to Eq. (4.34).
We stress that these are approximated solutions, valid for long times, of

the already approximated adiabatic Eqs. (4.35), (4.37). However, one can
observe that the right-hand side of Eq. (4.39) coincides with the first term
in the 1/λ expansion, Eq. (4.31), and the solution (4.42) coincides with Eq.
(4.34).3 The inverse effective temperature can be computed as

β⋆(t) ≃ z⋆ + log z⋆ ≃ log t+ log log t+ log (log t+ log log t− 1) (4.43)

The validity of the approximation can be appreciated comparing the results
with the one obtained by exactly solving the adiabatic Eq. (4.38) or with the

3Even though the effective fugacity z⋆ and the inverse of the probability of nonempty boxes
λ = 1/(1 − P0) are different quantities, they turn out to coincide at the present level of
approximation, simply because, in the adiabatic approximation, the probability of having
an empty box relaxes as P0 ≃ 1 − 1/z⋆ as a function of z⋆.
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FIGURE 4.6

Hysteresis in heating and cooling. The cycles have been obtained by integrating

numerically the adiabatic Eq. (4.38) and using the adiabatic approximation, Eq.

(4.36). The cooling-heating rates are 3.3 · 10−5 (MC step)−1 (continuous lines)

and 3.3 · 10−6 (MC step)−1 (dashed lines). The points (diamonds for fast cooling

and crosses for slow cooling) are from Monte Carlo data for N = 20, 000 particles.

Reprinted figure with permission from [Franz & Ritort, 1995]. Copyright (1995) by

the European Physical Society.

outcome of numerical simulations. The comparison of the time behavior of the
internal energy obtained as an exact numerical solution, by numerical Monte
Carlo simulations, and in the adiabatic approximation is shown in Fig. 4.5.

Arrhenius relaxation

Looking at the acceptance rate of the Monte Carlo dynamics, that is, the
frequency by which a box becomes empty, this is equal to P1 = e−z. Its
inverse is the relaxation time to equilibrium, following an Arrhenius law:

τeq = ez ≃ T e1/T (4.44)

as one can also verify looking, e.g., at Eq. (4.39).

Hysteresis

Numerically integrating Eq. (4.17) one can study the dependence of the en-
ergy from the cooling rate and see what happens to the system when it is
cooled down and reheated (at an equal rate, for instance). As one can see
from Fig. 4.6, where the energy behavior is plotted in temperature at two
different cooling (heating) rates, the effect of varying the rate is evident on
the thermalization process. Moreover hysteresis effects are present: u(T ) does
not follow the same path in cooling and heating because the system is out of
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equilibrium at a low temperature. As expected, the surface enclosed in the
energy loop in cooling-heating decreases as the rate decreases (at equilibrium,
i.e., for infinitely slow cooling, no hysteresis may be present).

4.1.4 Entropic barriers and a microcanonic derivation of the
equation of motion

The same relaxation behavior, as found in Eqs. (4.34), (4.42), can be other-
wise obtained constructing the equation of motion by means of purely con-
figurational arguments [Crisanti & Ritort, 2003]. After quenching to zero
temperature, the system starts to relax to its ground state. Since in this case
there is no thermal activation, relaxation is purely driven by entropic barriers,
i.e., flat directions in configurational space through which the system diffuses.
Entropic relaxation is energy costless and its rate is, thus, only determined
by the number of available configurations with energy smaller or equal to the
actual energy. Let us denote by Mocc the number of occupied boxes (out of
the total number M) and by ω(Mocc) the number of configurations with Mocc

occupied boxes. The typical time to increase, by one unit, the number of
empty boxes is given by,

τ ≃ ω(Mocc)

ω(Mocc − 1)
(4.45)

For distinguishable particles, assuming there are many in every occupied
urn, we have

ω(Mocc) =

(
N

n1 . . . nMocc

)

=
N !

∏Mocc

r=1 nr!
≃ NN

∏Mocc

r=1 nnrr
≃MN

occ

where we used the Stirling formula, the closure condition
∑

r nr = N and the
further assumption that every occupied box has more or less the same number
of particles ∼ N/Mocc = λ. For a very long characteristic emptying time τ ,
longer than the observation time of an experiment, the system is stuck in one
of the configurations with a given energy U = −N +Mocc.

In the large N,Mocc limit we, thus, obtain

τ ≃
(

Mocc

Mocc − 1

)N

≃ exp

(
N

Mocc

)

(4.46)

as was originally devised by Ritort [1995] from the observation of the results
of numerical simulations. The logarithm of ω(Mocc) is the configurational en-
tropy of all configurations of equal energy that might be visited by the system
(on longer time windows than the observation ones): Sc = N log(Mocc) =
N log(N +U). Using the relation Mocc = N +U = N(1−P0) and Eq. (4.45),
we find

dP0

dt
= −∆Mocc

N∆t
=

1

τeq
= exp

(

− 1

1 − P0

)

(4.47)
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where ∆Mocc = −1, because at zero temperature the number of occupied
boxes can only decrease by one unit.

This yields the result P0 ≃ 1− 1/(log t+ log(log t)) in agreement with Eqs.
(4.34), (4.42).

Transition rate effective temperature in the backgammon model

Following the definition of effective temperature given in Eq. (3.161) we see
that a T tr

e can be defined starting from the transition rate 1/τ (cf. Eq. (4.45)),
with sc = Sc/N = log(N + U). Hence, one has both

1

τ(t)
≃ e−N/Mocc(t) = e−λ(t) ≃ e−z

⋆(t)

(4.48)

and
1

τ(t)
= exp

(

−∂sc
∂u

)

= e−β
⋆

(4.49)

implying
βtr
e = z⋆ (4.50)

This has to be compared with Eq. (4.43) for the adiabatic effective tempera-
ture and they differ because of logarithmic corrections.

4.1.5 Backgammon random walker

An improved adiabatic approximation can be devised exploiting the mapping
of urn problems to random walkers. The outcome is basically coinciding with
the resolution presented in Sec. 4.1.2. We would like, however, to discuss
this other approach, because a different point of view can help clarify the
source of the entropic barriers and their role in the dynamics. For the case
of the backgammon model, the random walker approach was implemented by
Godrèche & Mézard [1995].

Let us start from the master equation

dPn
dτ

= µn+1Pn+1 + λn−1Pn−1 − (µn + λn)Pn (4.51)

describing a random walk with transition rates µn and λn. If we set µn = n
and λn = λ(τ) and we put an absorbing site at n = 0, we are considering an
asymmetric random walk. Rescaling, further, the time as dτ/dt = 1/λ(τ(t)),
the equation of motion coincides with that of the backgammon problem at
zero temperature, Eq. (4.14). The velocity vn and diffusion coefficient Dn for
the problem are

vn = λn − µn = λ(τ) − n; Dn = (λn + µn)/2 = (λ(τ) + n)/2 (4.52)

The bias is defined as vn/2Dn. The parameter n is the size of a box (i.e.,
the number of particles contained in a box) and λ(τ) represents the mean size
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of the boxes (i.e., the total number of particles N divided by the number of
filled-in boxes, λ = N/Mocc = 1/(1 − P0), cf. Eq. (4.15) at T = 0). If n is
larger or smaller than the mean λ, the bias is negative or positive, at difference
with a symmetric random walker, where both transition rates are equal (if n
dependent or not is not relevant) and the bias is always zero. This property
has fundamental consequences on the model behavior that we summarize in
the following.

1. The random walker is located around λ(t), because of a restoring poten-
tial ∼ 2n−4λ log(λ+n) (this will be evident in the continuous limit, see
the Fokker-Planck approach, Eqs. (4.53), (4.55)). This is the source of
the existence of entropic barriers (cf. Sec. 4.1.4): the probability for the
random walker to be near the origin is much less than the probability
of being in a position near λ, and if λ is far from the origin, the absorp-
tion phenomenon is strongly inhibited. Translated into the urn model
language this is equivalent to saying that, provided a small number of
filled-in boxes remains, the configurations with a completely empty box
are far less numerous than those for which all boxes are occupied.

2. The random walker absorption at the origin occurs with low frequency
and, therefore, its mean position, increases slowly. This also implies
that the minimum of the restoring potential increases slowly. In other
words, the relaxation of the energy u = −1 + 1/λ is very slow.

3. The first two properties justify the resolution of Eq. (4.51) within the
adiabatic approximation (cf. also Sec. 4.1.3), that consists in consid-
ering the system in a quasi-stationary state obtained by setting to zero
the time derivative of Pn and neglecting the absorption at the origin. In
the random walk language the two, separated, timescales at the basis of
such an approximation are the average time for the random walker to
be absorbed at the origin [long, of O

(
eλ/λ

)
], and the relaxation time

to equilibrium at a given fixed value of λ [short, of O(1)].

4. The time evolution is governed by rare events. Indeed, for long times
(large λ), Pn possesses a Gaussian scaling form of width

√
λ, centered

around λ, but the evolution of λ is driven by P1 = e−z
⋆ ∼ e−λ and lies

in the nonuniversal tail of the scaling distribution.

Fokker-Planck backgammon description

The gradient expansion of Eq. (4.51) to second order yields a continuous
Fokker-Planck equation:

∂P (h, τ)

∂τ
=

1

2

∂2

∂h2
[(h+ λ)P (h, τ)] − ∂

∂h
[(λ− h)P (h, τ)] (4.53)

=
∂2

∂h2
[D(h)P (h, τ)] − ∂

∂h
[v(h)P (h, τ)]
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In the adiabatic approximation, the rate at which boxes become empty can
be approximated by the equilibrium probability distribution in the origin,
Peq(0). The equilibrium distribution for Eq. (4.53) turns out to be

Peq(h) ≃
1

D(h)
exp

{
∫ h

0

dh′
v(h′)
D(h′)

}

=
exp {V(h) − V(0)}

D(h)
(4.54)

with

V(h) = 2h− 4λ log(λ+ h) (4.55)
∫ ∞

0

dh Peq(h) =
1

λ
= 1 − P0 (4.56)

The function V(h) is the effective restoring potential, heuristically formalizing
the concept of entropic barriers, and it is proportional to the integral of the
bias v(h)/(2D(h)).

The above form of Peq(h), computed in the origin, yields an average period
of time intercurrent between two events causing a box to become empty (i.e.,
an average absorption time) approximately proportional to τ ∼ eaλ, with
a ≃ 0.77. This must be compared with what we found in Sec. 4.1.4, cf.
Eq. (4.46): τ ∼ eλ (a = 1). Although both the continuum and the discrete
versions of the problem qualitatively lead to the same slow decay for the
energy, u(τ) ≃ −1 + a/ log τ , there is a discrepancy that is a consequence of
the nature of the rare events responsible for the relaxation dynamics of the
backgammon model. We said above that, even though the Pn have Gaussian
scaling forms, the dynamics of λ lies in the tails of the distribution, that are
nonuniversal. Far away from the scaling region n−λ≪

√
λ, then, no universal

property can be expected.
To conclude, the random walker moves along the n-axis, in a confining po-

tential centered around λ(t), itself evolving with time and increasing each time
that a box is emptied. Since the latter is a slow process at low temperature,
the dynamics of λ is also very slow. On the contrary, the equilibration inside
the potential V is fast. This defines two, well-separated, timescales, which are
connected to the slow α and fast β processes, respectively (cf. Sec. 1.1).

4.2 Two-time dynamics and FDR effective temperature

The two-time observables studied in the backgammon model have been the
energy-energy [Franz & Ritort, 1995, 1996; Godrèche & Luck, 1996, 1997] and
the density-density [Franz & Ritort, 1997; Godrèche & Luck, 1999] correlation
functions, as well as the relative response functions, energy-temperature and
density-chemical potential. In both cases a typical aging regime has been
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identified and analytic expressions approximated both for this slow relaxation
and the fast relaxation on short timescales have been computed.

To exemplify the computation we will use the density-chemical potential
couple of the conjugated variable-field, allowing for computing fluctuation and
dissipation at fixed temperature and, furthermore, providing a fast relaxation
over short times in the correlation function, on timescales where the energy-
energy correlation function is practically constant.

The density-density correlation function measures the correlation between
the number of particles in a given box at time tw (waiting time) and at time
t (observation time):

C(t, tw) = 〈ρi(t)ρi(tw)〉 − 〈ρi(t)〉 〈ρi(tw)〉 (4.57)

where

〈ρi(t)〉 = 〈ρ(t)〉 =
N∑

n=1

n Pn(t) = 1, ∀t, ∀i = 1, . . . , N (4.58)

〈ρi(t)ρi(tw)〉 =

1,N
∑

n,m

n m w(m)
n (t, tw)Pm(t), ∀i (4.59)

where w
(m)
n (t, tw) is the probability to have n particles in the box at time t

conditioned to have m particles in the same box at time tw.

The probability w
(m)
n (t, tw) satisfies the same nonlinear differential equa-

tions of motion, Eq. (4.16), of Pn and its solution, in an implicit integral
form, can, as well, be computed by the methods of generating functions (cf.
Sec. 4.1.2). An approximated analytic solution can, then, be obtained, at
long times.

The density response function measures the reaction of the density of a
given box i at time t to a perturbation in chemical potential at time tw. The
chemical potential enters the Hamiltonian of the perturbed system as

Hp = −
N∑

j=1

δnj ,0 − µ ni (4.60)

This makes the occupation probability of box i depend on µ: P
(µ)
ni = P

(µ)
n

(we drop the index i). The influence of the −µni on Pj 6=i vanishes in the
thermodynamic limit as 1/N .

One can, then, define the response function

G(t, tw) =
δ 〈ρi(t)〉
δµ(tw)

∣
∣
∣
µ→0

(4.61)

The perturbed probability distributions P
(µ)
n satisfy a system of differential

nonlinear equations that generalize Eq. (4.16). We will not report them here
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but their derivation is very clearly presented in [Godrèche & Luck, 1999] for
the density response and in [Godrèche & Luck, 1997] for the energy response.
We only stress that since the dynamics is based on the Metropolis acceptance
rate W (βδE) = min[1, e−βδE ] (cf. Appendix 4.A) and because of the fact
that W is not differentiable at δE = 0, we will have two different responses as
the chemical potential tends to zero from the left or from the right. Indeed,

in terms of P
(µ)
n the response function can be written as

G±(t, tw) =
N∑

n=1

n
δP

(µ)
n (t)

δµ(tw)

∣
∣
∣
µ→0±

(4.62)

where the observables δP
(µ)
n (t)/δµ(tw)

∣
∣
µ→0± satisfy the dynamic Eq. (4.16).

As usual, the equations of motion for P
(µ)
n can be solved (implicitly) by means

of the method of generating functions and an analytic expression can be ob-
tained for long times.

We report here the long time expressions for both correlation and response
and we look at their dependence on the age of the system. In the next section,
we will look at the FDR, that can be considered as a definition of effective
temperature (cf. Sec. 2.8).

For long times both the correlation and the response show aging and have
the following behavior:

C(t, tw) = C(tw, tw)
h(tw)

h(t)
(4.63)

G(t, tw) = G(tw, tw)
h(tw)

h(t)
(4.64)

The time sector function (cf. Secs. 2.8 and 3.3.4) is a function of time exclu-
sively through λ

h(λ) = exp

[

− log λ+

∫ λ

1

dλ′α(λ′, λ̄)

]

(4.65)

α(λ, λ̄) ≃ α(λ,∞) ≃ 1

2

(

1 +
1

λ

)

(4.66)

where λ̄ is the asymptotic (equilibrium) value of λ(t) = 1/(1 − P0(t)) →
z/(1 − e−z), cf. Eq. (4.8). As temperature decreases the fugacity becomes
very large (eventually infinite), cf. the inset of Fig. 4.2, and λ̄ ≃ z. In the
aging regime that we are considering one can, therefore, take λ(t)/λ̄ ≪ 1 if
T & 0 .

Eventually one obtains h(λ(t)) ≃ (eλ/λ)1/2 ≃ (t)1/2 implying for the cor-
relation function, and for the response as well,

C(t, tw) = C(tw, tw)

√

tw
t

(4.67)
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The equal time values of C and G are given, respectively, by4

C(tw, tw) ≃ λ(tw) − 1 (4.68)

G(tw, tw) ≃ λ(tw)2e−λ(tw) (4.69)

One can also consider the early times relaxation, for which the system
looks like it is thermalizing at equilibrium (stationary regime, cf. Sec 2.7).
Combining the two, separated, time regimes one obtains

C(t, tw) ≃ e(t−tw)/λ(tw) + (λ(tw) − 1)

√

tw
t

(4.70)

representing, respectively, β and α relaxation in glasses.

4.2.1 Effective temperature(s) in the backgammon model

The FDR analysis is mainly carried out at zero temperature, where off-
equilibrium properties are most evident and the analytical treatment easier
[Franz & Parisi, 1997; Godrèche & Luck, 1997, 1999; Godrèche & Luck, 2002].
In this case the chemical potential scales as T so that µ̃βµ is a finite quantity.
The response function is, then, defined, as (cf. Eq. (4.62))

G̃±(t, tw) =
δ 〈ρn(t)〉
δµ̃

∣
∣
∣
µ̃→0±

(4.71)

We notice that the two time functions all satisfy the scaling behavior in the
aging regime:

C(t, tw)

C(tw, tw)
≃ G̃(t, tw)

G̃(tw, tw)
≃ ∂C(t, tw)

∂tw

(
∂C(t, tw)

∂tw

∣
∣
∣
t=tw

)−1

≃ h(tw)

h(t)
(4.72)

This implies for the backgammon model the very often observed fact (cf. Sec.
2.8) that the FDR at any observation time t only depends on the waiting
time. Using Eq. (4.69) we obtain the FDR (in the form T/Te)

lim
T→0

T

Te
=
∂twC(t, tw)

∣
∣
t=tw

G̃(tw, tw)
≃







1 − 2
λ(tw)2 − 4

λ(tw)3 , energy,

1 − 2
λ(tw)2 − 2

λ(tw)3 , density µ̃→ 0+,

1 − 3
λ(tw)2 − 3

λ(tw)3 , density µ̃→ 0−

(4.73)

As equilibrium is lost, that is, as soon as the early stationary regime is
passed (t ≪ tw) the FDR computed on different conjugated variable-field

4They are computed in the aging regime as well, by this meaning that all fast processes
have already thermalized and that tw ≫ 1.
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couples differs (in the ρ− µ potential case they even depend on the sign of µ
and on the microscopic rules of the dynamics5).

The existence of an effective temperature is closely related to the validity of
some approximations used in the context of slowly relaxing systems such as,
e.g., the adiabatic approximation, implementing the assumption of separation
of timescales. Within the adiabatic approximation one obtains a Markovian
description for the dynamics. This Markovian approach encodes within a
single effective parameter (z⋆ or T ⋆) all the complicated previous past of the
system.

In the backgammon model, however, if one compares the “adiabatic” defi-
nition of effective temperature with the FDR definition, no unique long time
behavior is found. A Markovian description for glassy dynamics is evidently
too far from the realistic behavior.

To sum up, in the backgammon model the following definitions of effective
temperature have been adopted:

• adiabatic, in Sec. 4.1.3,

• transition rate, in Sec. 4.1.4,

• FDR, in Sec. 4.2.1.

However, we stress that those three definitions do not yield a unique long
time behavior (if not for extremely long times, for which the system is ther-
malized). In the harmonic oscillator spherical spin (HOSS) model for the case
γ ≥ 1, we found as well a similar situation in Chapter 3, Sec. 3.3. In the
present formulation of the backgammon model there is no free γ-like param-
eter but this is present in its generalization allowing for different collective
modes that we will present in the next section. We, hence, postpone the
comparison between the long time relaxation behaviors of the HOSS and the
backgammon models and the analysis of the source of the breaking down of
the two temperature thermodynamics (see Sec. 4.3.2).

4.3 A model for collective modes: the backgammon

model with quenched disorder

The purpose of this section is the study of an exactly solvable model where
the dynamical relaxation of the different energy modes can be made explic-
itly clear. It is called the disordered backgammon model (DB model), since

5In the density-density case, one has to define two different response functions because of
the choice of the Metropolis algorithm (dynamic dependence) and the two outcomes differ
as soon as they are off equilibrium. The details of the dynamic rules persist in the long
time, α relaxation.
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it consists in a generalization of the backgammon model to allow different
energies for different states [Leuzzi & Ritort, 2002]. Again, just like its prede-
cessor, the slow relaxation of this model is due to entropic barriers. For the
DB model we show the existence of an energy threshold ǫ⋆(t) which separates
equilibrated from nonequilibrated modes. With its associated threshold ǫ⋆(t),
the model provides a microscopic realization that is reminiscent of some phe-
nomenological models proposed in the past such as the trap model on a tree
considered by Bouchaud & Dean [1995]. The advantage in the DB model is
that now one can exhaustively investigate the distinct relaxation of each one
of the different energy modes.

Let us take N particles which can occupy N boxes, each one labeled by
an index r which runs from 1 to N . Suppose now that all particles are
distributed among the boxes. A given box r contributes to the Hamiltonian
with an energy −ǫr only when it is empty. In this case the total Hamiltonian
of the system reads

H = −
N∑

r=1

ǫrδnr,0 (4.74)

where δi,j is the Kronecker delta and nr denotes the occupancy or number of
particles in box r. The ǫr are quenched random variables extracted from a
distribution g(ǫ). We consider the Monte Carlo mean-field dynamics of Sec.
4.1.2 where a particle is randomly chosen in a departure box d and a move
to an arrival box a is proposed.6 The proposed change is accepted according
to the Metropolis rule with probability W (x) = Min(1, exp(−βx)) where the
energy variation is

x = ǫaδna,0 − ǫdδnd,1 (4.75)

In the dynamics, the total number of particles is conserved so that the occu-
pancies satisfy the condition

∑

r nr = N .
The interesting case corresponds to the situation where g(ǫ) is only defined

for ǫ ≥ 0. In this case, the dynamics turns out to be extremely slow at low
temperatures, similar to what happens for the original backgammon model.
The difference lies in the type of ground state. The ground state of Eq. (4.74)
corresponds to the case where all particles occupy a single box, the one with
the smallest value of ǫ (ǫm), labeled by rm. The ground state energy is given
by

UGS = −
N∑

r=1

ǫr + ǫm = −
∑

r 6=rm
ǫr (4.76)

In contrast to the backgammon model, this ground state is nondegenerate.
Since all the ǫ are positive, no other configuration can have a lower energy. If
g(ǫ) is a continuous distribution, instead, the ground state is also unique. It is

6Ball-to-box statistics, i.e., the model belongs to the Ehrenfest calls according to the clas-
sification reported in the chapter introduction.
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easy to understand that, during the dynamical evolution at zero temperature,
all boxes with high values of ǫ become empty quite soon and the dynamics
involves boxes with progressively lower values of ǫ. The asymptotic dynamics
is then determined by the behavior of the distribution g(ǫ) in the limit ǫ→ 0.
If g(ǫ) ∼ ǫν , for ǫ → 0, the asymptotic long time properties only depend
on ν, as we will show in Sec. 4.3.2. Note that the normalization of the g(ǫ)
imposes ν > −1. This classification includes also the original backgammon
model where there is no disorder at all. In that case g(ǫ) = δ(ǫ− 1) and the
distribution has a finite gap at ǫ = 0. The behavior corresponding to this
singular energy distribution can be eventually obtained from the one with a
regular g(ǫ) in the limit ν → ∞.

One important aspect of the model, cf. Eq. (4.74) is that, in the presence
of disorder, it is not invariant under an arbitrary constant shift of the energy
levels. Actually, by changing ǫr → ǫ′r = ǫr+c with c ≥ 0, the model turns out
to be a combination of the model characterized by the distribution g(ǫ) plus
the original backgammon model. After shifting, the new distribution g(ǫ′− c)
has a finite gap (equal to c plus the gap of the original distribution). The new
model corresponds again to the ν → ∞ case and the asymptotic dynamical
behavior coincides with that of the backgammon model without quenched
disorder. As we will see in Sec. 4.3.2, the present model is characterized
by an energy threshold ǫ⋆ which drives relaxation to the stationary state.
Only when the energy threshold can go to zero are we able to see a different
asymptotic behavior from the one already probed. For all models with a finite
gap, ǫ⋆ cannot be smaller than the gap, hence it asymptotically sticks to the
gap and the relaxation behavior of the DB model with a finite gap corresponds
to that presented in Sec. 4.1.

For what concerns the dynamics, the most relevant feature of this model is
that a description in the framework of an adiabatic approximation turns out
to be independent from the type of distribution g(ǫ) (and hence on ν) despite
the fact that the asymptotic long time behavior of the effective temperature
and of the internal energy depend on the value of ν.

4.3.1 Observables and equilibrium

Now we focus on the static solution of the model described by the Hamiltonian
Eq. (4.74). Like in the original backgammon model, we define the occupation
probabilities, Pn, that a box contains n particles,

Pn =
1

N

N∑

r=1

δnr,n (4.77)
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and the corresponding densities that a box of energy ǫ contains k particles

gn(ǫ) =
1

N

N∑

r=1

δ(ǫr − ǫ)δnr,n k ≥ 0 (4.78)

g(ǫ) =
1

N

N∑

r=1

δ(ǫr − ǫ) (4.79)

The Pn and the gn are related by

Pn =

∫ ∞

0

gn(ǫ) dǫ k ≥ 0 (4.80)

and the conservation of particles reads

∞∑

k=0

Pn = 1,
∞∑

k=0

gn(ǫ) = g(ǫ) (4.81)

The energy density can be expressed in terms of the density g0(ǫ) as

u = −
∫ ∞

0

dǫ ǫ g0(ǫ) (4.82)

This set of observables depends on time through the time evolution of the
occupancies nr of all boxes. We now analyze the main equilibrium properties
of the model.

The solution of the thermodynamics proceeds similarly as for the case of
the original backgammon model. The partition function can be computed in
the grand partition ensemble. It reads

ZGC =
∞∑

N=0

ZC(N)zN (4.83)

where z = exp(βµ) is the fugacity, µ is the chemical potential and ZC(N)
stands for the canonical partition function of a system with N particles. The
canonical partition function can be written as

ZC =
N∑

nr=0

N !
∏N
r=1 nr!

exp(β
N∑

r=1

ǫrδnr,0)δ

(

N,
N∑

r=1

nr

)

(4.84)

where δi,j and δ(i, j) are both the Kronecker delta. Introducing this expression
in Eq. (4.83) we can write down ZGC as an unrestricted sum over all the
occupancies nr

ZGC = N !
∞∑

nr=0

N∏

r=1

znr

nr!
exp(βǫrδnr,0) (4.85)
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The overcounting term N ! in the numerator is eliminated as in Eq. (4.4) and
the final result is

ZGC = exp

{
N∑

r=1

log

[ ∞∑

n=0

zn

n!
exp (βǫrδn,0)

]}

= exp
N∑

r=1

log
(
eβǫr + ez − 1

)

(4.86)
yielding the grand-canonical potential energy per box

Ω

N
= − T

N
log(ZGC)=−T

N∑

r=1

log
(
eβǫr + ez − 1

)
(4.87)

= −T
∫ ∞

0

g(ǫ) log
(
eβǫ + ez − 1

)
dǫ

The Helmholtz free energy is then F = Ω+Nµ. The fugacity z is determined
by the conservation condition (4.13) yielding, in the presence of disorder, the
closure condition ∫ ∞

0

g(ǫ)

eβǫ + ez − 1
dǫ =

1

zez
(4.88)

generalization of Eq. (4.5). This equation gives the fugacity z as a function
of β and, from Eq. (4.87) and its derivatives allow us to build the whole
thermodynamics. In particular, the equilibrium expressions for gn(ǫ) are

ḡn(ǫ) =
zng(ǫ) exp(βǫδn,0)

n!(eβǫ + ez − 1)
(4.89)

The corresponding Pn are obtained integrating Eq. (4.89) in ǫ [see Eq.(4.80)].
Using the closure relation Eq. (4.88), the integration leads to the expression

Pn(z) = δn,0(1 − ez − 1

zez
) + (1 − δn,0)

zn−1

n!ez
(4.90)

i.e., Eq. (4.8). Starting from Eq. (4.82) the equilibrium energy density is
obtained as

ū = −
∫ ∞

0

dǫ
ǫ g(ǫ)eβǫ

eβǫ + ez − 1
(4.91)

All these expressions can be evaluated at finite temperature. Note that, al-
though the value of Pn(z) in Eq. (4.90) is independent of the disorder distri-
bution g(ǫ), it directly depends on that distribution through the equilibrium
value of z [which obviously depends on the g(ǫ)].

Thermodynamics at low temperature

Of particular interest for the dynamical behavior of the model are the low-
temperature properties. A perturbative expansion can be carried out close to
T → 0 to find the leading behavior of different thermodynamic quantities. Let
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us start analyzing the closure condition (4.88). Imposing the transformation
s = βǫ, Eq. (4.88) can be rewritten as

T

∫ ∞

0

g(Ts)

es + ez − 1
ds =

1

zez
(4.92)

In the limit T → 0 the fugacity z depends on the behavior of g(Ts), i.e.,
on the behavior of g(ǫ) for ǫ → 0. Assuming g(ǫ) ∼ ǫν for ǫ ≪ 1 we define
the function c(ǫ) through the relation g(ǫ) = ǫνc(ǫ), where c(ǫ) is a smooth
function of ǫ with a finite c(0). The integral can be expanded around T = 0
by taking successive derivatives of the function c:

zezT ν+1

∫ ∞

0

sν

es + ez − 1

∞∑

n=0

c(n)(0)(Ts)n

n!
ds = 1 (4.93)

Using the asymptotic result z → ∞, as T → 0, everything reduces to estimate
the following integral in the large z limit:

∫ ∞

0

ds
sν+n

es + ez − 1
∼ zν+n+1e−z (4.94)

The term n = 0 in the series yields the leading behavior for z, which turns
out to be

z ∼ β
ν+1
ν+2 (4.95)

In a similar way the energy can be computed to leading order in T ,

u = uGS + aT + O(T 2) (4.96)

providing a finite specific heat at low temperatures. Notice that the above
expression does not depend on ν and, hence, on g(ǫ). In Sec. 4.3.4 we will
show explicitly such a behavior for two specific DB models, one with ν = 1
[defined in Eq. (4.115)] and the other with ν = 0 [Eq. (4.116)]. Solving
Eq. (4.88) numerically for z(T ) in each specific model and inserting z(T ) in
the expression (4.91) for the equilibrium energy density, we get the energy
dependence on the temperature. In all cases, at equilibrium, the energy is
linear for very low T as predicted in Eq. (4.96). It yields, therefore, a finite
specific heat as in any classical model with Maxwell-Boltzmann statistics (see
Figs. 4.7-4.8).

4.3.2 Dynamics of the disordered backgammon model

Here we consider the dynamical equations for the occupation probabilities
Pn and their associated densities gn(ǫ). The dynamical equations in this
model are derived in a similar way as for the standard backgammon model
(Sec. 4.1.2) [Franz & Ritort, 1996]. The main difference is that in the DB
model the equations for the occupancy probabilities Pn do not generate a
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FIGURE 4.7

Energy vs. T at equilibrium for two DB

models (ν = 1 and ν = 0), and for

the standard backgammon model, ”B”

(ν → ∞). Reprinted figure with permis-

sion from [Leuzzi & Ritort, 2002]. Copy-

right (2002) by the American Physical

Society.
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FIGURE 4.8

Specific heat for DB models with ν =

0, 1 and for the backgammon model

(”B”). For all cases (disordered or not)

the specific heat turns out to be finite at

T = 0. Reprinted figure with permission

from [Leuzzi & Ritort, 2002].

closed hierarchy of equations. Only for T = 0 is such a closed hierarchy
obtained. As we will see later, this has important consequences to probe the
zero temperature relaxation.

A hierarchy of equations can only be obtained at the level of the occupation
probability densities gn(ǫ). A detailed derivation of these equations is reported
in Appendix 4.A. Here we show the final outcome,

∂g0(ǫ)

∂t
= g1(ǫ)

[

1 +

∫ ∞

ǫ

dǫ′g0(ǫ
′)
(

e−β(ǫ′−ǫ) − 1
)]

(4.97)

− g0(ǫ)

[

e−βǫ + P1

(
1 − e−βǫ

)
+

∫ ǫ

0

dǫ′g1(ǫ
′)
(

e−β(ǫ−ǫ′) − 1
)]

n = 0

∂g1(ǫ)

∂t
= 2g2(ǫ)

(

1 +

∫ ∞

0

dǫg0(ǫ)e
−βǫ − P0

)

(4.98)

− g1(ǫ)

[

2 +

∫ ∞

ǫ

dǫ′g0(ǫ
′)
(

e−β(ǫ′−ǫ) − 1
)]

+ g0(ǫ)

[

e−βǫ + P1

(
1 − e−βǫ

)
+

∫ ǫ

0

dǫ′g1(ǫ
′)
(

e−β(ǫ−ǫ′) − 1
)]

n = 1

∂gn(ǫ)

∂t
= (n+ 1)gn+1(ǫ)

(

1 +

∫ ∞

0

dǫg0(ǫ)e
−βǫ − P0

)

(4.99)

− gn(ǫ)

[

1 + n+ n

(∫ ∞

0

dǫg0(ǫ)e
−βǫ − P0

)]

+ gn−1(ǫ) n > 1
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The equations for the Pn are directly obtained by integrating the gn(ǫ) ac-
cording to (4.80). They are

dPn(t)

dt
= (n+ 1) [Pn+1(t) − Pn(t)] + Pn−1 (4.100)

+

(∫ ∞

0

dǫg0(ǫ)e
−βǫ − P0

)

[δn,1 − δn,0 − nPn(t) + (n+ 1)Pn+1(t)] ∀n

with P−1 = 0. It is easy to check that the equilibrium solutions Eq. (4.89)
are indeed stationary solutions. As previously said, for T > 0, the equations
for the Pn do not generate a hierarchy by themselves but depend on the gn(ǫ)
through the distribution g0(ǫ) in Eq. (4.100).7 Nevertheless, a remarkable
aspect is that they generate a well-defined hierarchy at T = 0 which coincides
with the equations of the original backgammon model Eq. (4.14) with T = 0.

It is easy to understand why at T = 0 the dynamical equations are indepen-
dent of the density of states g(ǫ). For T = 0, all moves of particles between
departure and arrival boxes with different energies ǫd and ǫa depend on the
precise values of these energies only when the departure box contains a single
particle and the arrival box is empty, but such a move does not lead to any
change in any of the Pn. The dynamical equations for the Pn remain, there-
fore, independent of g(ǫ). Obviously, this does not hold for other observables
such as the energy u [cf. Eq. (4.91)] and higher moments of gn(ǫ).

The analysis of the dynamical equations at T = 0 decomposes into two
parts. On the one hand, the equations for the Pn coincide with those of
the original non-disordered backgammon model [Eq. (4.14) in the limit β →
∞]. Consequently, the same adiabatic approximation used for the Pn in the
original backgammon model is still valid for the DB model. On the other
hand, in order to analyze the behavior of the energy one must analyze the
behavior of the hierarchy of equations for the gn(ǫ) which is quite complicated.
We will then approach the analysis of these equations within the framework
of a generalized adiabatic approximation.

The key idea behind the adiabatic approximation is that, while P0 consti-
tutes a slow mode, the other Pn with n > 0 are fast modes. Hence, relying once
again on the separation of timescales assumption, they can be considered as
if they were in equilibrium at the hypersurface in phase space P0 = constant,
this constant being given by the actual value of P0 at time t. In the origi-
nal backgammon model P0 is related to the internal energy, P0 = −u, hence
thermalization of the fast modes Pn (n > 0) occurs on the hypersurface of
constant energy. For the DB model this is not true: the hypersurface where
equilibration of fast modes occurs does not coincide with the constant energy
hypersurface simply because the energy and P0 are different quantities (we
will see that even their asymptotic time behavior is different).

7Unless g(ǫ) = δ(ǫ − 1). In that case
R ∞
0 dǫg0(ǫ)e−βǫ = P0e−β and the backgammon

equations of motion are constructed.
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At T = 0 the equation for P0 [Eq. (4.100) for n = 0] is still Eq. (4.18)
∂P0/∂t = P1(1 − P0). Formally, the same manipulation can be carried out
in terms of the time-dependent fugacity z⋆ as in Eqs. (4.35, 4.38,4.41). The
occupation probabilities are, then, given by

Pn ≃ δn,0

(

1 − 1

z⋆

)

+ (1 − δn,0)
(z⋆)n−1

n! exp(z⋆)
(4.101)

as long as z⋆ ≫ 1. That is, for the energy density, u− uGS = 1/z⋆.
If local equilibrium is reached on the hypersurface of constant P0 we can

relate P1 to P0 using Eq. (4.101). The simplest way of dealing with Eq. (4.18)
is to write both P1 and P0 in terms of the time-dependent fugacity z⋆ writing
down a dynamical equation for z⋆, Eq. (4.38), whose solution is Eq. (4.41)

What is different now is the time behavior of the effective inverse temper-
ature that [cf. Eq. (4.95)], displays the following time dependency for very
long times:

β⋆ ∼ (z⋆)
ν+2
ν+1 ∼ (log t)

ν+2
ν+1 (4.102)

The effective temperature depends on the properties of the disorder distri-
bution g(ǫ) in the limit ǫ → 0 through the value of the exponent ν. Clearly,
when the density of levels decreases as we approach ǫ = 0, the relaxation turns
out to be slower; the limiting case being the original backgammon model for
which ν → ∞, cf. Eq. (4.43). In the other limit ν → −1, when disorder
becomes unnormalized, the inverse effective temperature diverges very fast.
Already from Eq. (4.96) one can anticipate that the same asymptotic behav-
ior holds for the energy [see Eq. (4.111)]. Hence, ν interpolates between fast
relaxation (ν = −1) and very slow relaxation (ν = ∞). A relaxation slower
than logarithmic is not possible in the present model.

A comparison can be made with the qualitatively similar effective temper-
ature time dependence in the HOSS model of Chapter 3. There, at T0 = 0,
8 the time behavior of the effective temperature obtained in a number of
different approaches, cf. Eqs. (3.130, 3.141, 3.146, 3.158), was

Te ≃ K̃µ2(t) ≃
KD

D + J2

1

(log t)1/γ

where we used Eq. (3.74) for the static value of the generalized spring constant
and Eq. (3.119) for the dynamic evolution of µ2 in the aging regime. The two
models have the same long time behavior provided the identification

γ =
ν + 1

ν + 2
(4.103)

8That is when the configurational constraint is absent, m0 = 0 and the HOSS model
represent a strong glass. The same argument holds, however, qualitatively also in the
fragile glass case, at T = T0.
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is put forward. We notice that the admissible interval of ν values goes from −1
(fast relaxation) to ∞ (i.e., a model equivalent to the original backgammon
model). The relative values of the HOSS γ exponent are then γ ∈ [0 : 1].
We stress that this is the interval of values of the exponent γ for which no
unique effective temperature can encode the off-equilibrium dynamics in the
aging regime of the HOSS model. In Sec. 4.2, we actually saw that in the
backgammon model (γ = 1) the differently defined effective temperatures did
not coincide, as well.

Generalized adiabatic solution for the gn(ǫ)

Equations (4.97)-(4.99) for the gn(ǫ) at T = 0 become

∂g0(ǫ)

∂t
= g1(ǫ)

[

1 −
∫ ∞

ǫ

dǫ′g0(ǫ
′)

]

− g0(ǫ)

∫ ∞

ǫ

dǫ′g1(ǫ
′) (4.104)

∂g1(ǫ)

∂t
= 2g2(ǫ) (1 − P0) − g1(ǫ)

[

2 −
∫ ∞

ǫ

dǫ′g0(ǫ
′)

]

+ g0(ǫ)

∫ ∞

ǫ

dǫ′g1(ǫ
′)

(4.105)

∂gn(ǫ)

∂t
= (n+ 1)gn+1(ǫ) (1 − P0) − gn(ǫ) [1 + n (1 − P0)] + gn−1(ǫ) n > 1

(4.106)

To solve the dynamical equations for the gn(ǫ) in the adiabatic approxi-
mation we note that, contrary to the global quantities Pn, they cannot be
equilibrated among all different modes. The reason is that, due to the en-
tropic character of the relaxation, very low energy modes are rarely involved,
because the time needed to empty one further box increases progressively with
time and therefore they cannot be considered effectively thermalized.

Note that in the original backgammon model all boxes have the same energy,
hence there is a unique class of modes. For the general disordered model we,
instead, expect the existence of a time-dependent energy scale ǫ⋆ separating
equilibrated from nonequilibrated modes. The mechanism of relaxation is the
one proceeding through collective modes (see the introduction of the chapter
and Fig. 4.1) of different energy: the lower the energy the longer the lifetime
of that mode and the slower the relaxation. At zero temperature there is no
thermal activation and the equilibrated modes are in the sector ǫ≫ ǫ⋆ while
the nonequilibrated modes are in the other sector ǫ≪ ǫ⋆. 9

The value of ǫ⋆ can be easily guessed making use of a simple microcanon-
ical argument for relaxation rate, following exactly the steps of Sec. 4.1.3,
with the difference that now, in the presence of modes of different energy,
the structural relaxation is led by the energy scale ǫ⋆. Indeed, if the thresh-
old ǫ⋆ plays the role of an energy barrier and T ⋆ accounts for the effective

9The same separation of modes, in thermalized and nonthermalized modes, has been im-
plemented in the disordered version of the HO model that we presented in Sec. 3.7, see the
work of Garriga & Ritort [2005].
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thermal activation due to entropic effects, we obtain, for the typical relax-
ation time, τeq ≃ exp(β⋆ǫ⋆). This expression is only valid to the leading
order. As we can see in Appendix 4.C [Eq. (4.C.9)], or later here, from Eq.
(4.112), there are sub-leading corrections to this expression arising for the
fact that the relaxation time is more properly described by the expression
τeq ≃ exp(β⋆ǫ⋆)/(β⋆ǫ⋆) [see Eq. (4.112)]. Hence, at a given timescale t (i.e.,
the time elapsed since the system was quenched) all modes where τeq ≪ t are
equilibrated at the temperature of the thermal bath, that in this case is zero,
and therefore are frozen. Modes with τeq ≫ t, although dynamically evolving,
are also blocked because the barriers (in this case entropic barriers) are too
high to allow for relaxation within the timescale t.

Only those modes whose characteristic time is τeq ∼ t are relaxing at a
given timescale t. We get for the time-dependent energy scale ǫ⋆ and the
effective temperature the relation ǫ⋆ ∼ T ⋆ log t and, using Eq. (4.102), this
yields the leading behavior

ǫ⋆ ∼ (log t)−
1
ν+1 (4.107)

According to this, one can impose the following Ansatz solution for the gn(ǫ).
If ḡn stands for the equilibrium density at T = 0 [i.e., according to Eq. (4.89),
ḡn = g(ǫ) δn,0] we have,

∆gn(ǫ) ≡ gn(ǫ) − ḡn(ǫ) =
∆Pn
ǫ⋆

ĝn

( ǫ

ǫ⋆

)

(4.108)

where ∆Pn ≡ Pn − P eq
n = Pn − δn,0 and ĝn(x) decays pretty fast to zero for

x > 1 and the condition
∫∞
0
dx ĝn(x) = 1 is imposed on the scaling function

ĝn. The prefactor ∆Pn/ǫ
⋆ is introduced to fulfill condition (4.80).

This expression tells us the following: above ǫ⋆ the gn(ǫ) have relaxed to
their corresponding equilibrium distributions at the temperature of the bath.
On the other hand, in the sector of the energy spectrum where ǫ < ǫ⋆, the
densities gn are still relaxing [especially in the region ǫ/ǫ⋆ ∼ O(1)]. Since
the relaxation is driven by the shift in time of the threshold energy ǫ⋆, the
proposed Ansatz scaling solution seems quite reasonable.

In Appendix 4.B we show how this Ansatz closes the set of equations (4.104)
reproducing also the leading asymptotic behavior for ǫ⋆ and z⋆:

ǫ⋆ ≃ 1

(log t)
1
ν+1

z⋆ ≃ 1

(ǫ⋆)1+ν
≃ log t (4.109)

For later use we define the following function

Gn(ǫ) ≡
∆gn(ǫ) ǫ

⋆

∆Pn
= ĝn

( ǫ

ǫ⋆

)

(4.110)

which scales as a function of ǫ/ǫ⋆. The scaling relation (4.108) yields the
leading asymptotic behavior of all observables different from the occupation
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probabilities Pn. For instance, the energy is given by u = −
∫∞
0
dǫ ǫ g0(ǫ);

using the scaling relation (4.108) and the asymptotic expression (4.108) we
get for the leading term

u− uGS ∼ −
∫ ∞

0

dǫ [g0(ǫ) − g(ǫ)] ǫ ∼ (ǫ⋆)ν+2 ∼ T ⋆ ≃ 1

log t
ν+2
ν+1

(4.111)

Note that the asymptotic scaling behavior of the energy is the same as for
the effective temperature T ⋆ [cf. Eq. (4.96)], in agreement with the quasi-
equilibrium hypothesis: u− uGS = aT ⋆.

An important result is that the threshold ǫ⋆ decays slower to zero than the
effective temperature. A case where this difference can be clearly appreciated
corresponds to the case where the density of states vanishes exponentially fast
g(ǫ) ∼ exp(−A/ǫ). In this case ǫ⋆ decays slower than logarithmically, namely
like 1/ log(log t) (see Appendix 4.B for details).

4.3.3 Relaxational spectrum in equilibrium

One of the crucial characteristics behind the applicability of the adiabatic
approximation is that the long time behavior at zero temperature has to
display a correspondence with the low temperature relaxational properties of
the equilibrium state.

To analyze the spectrum of relaxation times τeq(ǫ) to equilibrium we expand
up to the first order in the perturbation theory the dynamical equations for the
gn(ǫ) around their equilibrium solutions ḡn(ǫ). Using the expansion gn(ǫ) =
ḡn(ǫ) + δgn(ǫ) we get a set of equations for the variations δgn(ǫ). These are
shown in Appendix 4.C.

A complete derivation of the relaxation time τeq(ǫ) in equilibrium is com-
plicated. But it is easy to see that, as T → 0, the relaxation time is asymp-
totically strongly peaked around the threshold energy ǫ⋆. For ǫ ≫ ǫ⋆ the
relaxation time is small because the population of high energy boxes in equi-
librium is rather small. On the other hand, for ǫ/ǫ⋆ ≪ 1 the relaxation is
estimated to be finite and independent of T .10 Starting from Eqs. (4.C.1)-
(4.C.3) for δg0(ǫ) and δg1(ǫ) and making use of the adiabatic Ansatz Eq.
(4.108), for ǫ ≃ ǭ⋆ one has

τeq(ǭ⋆) ∼
eβǭ

⋆

βǭ⋆
(4.112)

where ǭ⋆(T ) ∼ T 1/(2+ν) is the asymptotic temperature dependence of the
threshold energy at low temperature. For the temperature dependence on the
relaxation time this yields

τeq(T ) ∼ T γ exp

[
1

T γ

]

(4.113)

10This result is derived in the aforementioned Appendix 4.C where we show that the max-
imum relaxation time occurs for ǫ around ǫ⋆.
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where γ(ν) is given by Eq. (4.103). The above formula shows that there
is activated behavior as a function of the temperature but with a relaxation
time increasing slower than Arrhenius as T → 0. Note that for the standard
backgammon model corresponding to γ = 1 we obtained an Arrhenius behav-
ior [cf. Eq. (4.44)] and in the opposite limit, γ → 0, the relaxation time is
finite at any temperature. This generalized Arrhenius law is the one that we
were finding in Chapter 3 for the HOSS model in the strong glass case.11 Given
the interval of possible ν values we are in the presence of sub-Arrhenius relax-
ation, that is, even though exponential, the increase of the relaxation time, as
temperature is increased, is slower than the typical increase for strong glasses
(γ = 1). We will analyze in the next section two models whose distribution
behavior at small energies is led, respectively, by ν = 0 (γ = 1/2) and ν = 1
(γ = 2/3).

4.3.4 Specific examples of continuous energy distribution

Here we report a numerical test of the main results obtained in the previous
sections. In particular, we show the existence of the threshold energy ǫ⋆

separating equilibrated from nonequilibrated energy modes. We show the
comparison among two models each characterized by a different distribution of
the disorder [Fig. 4.9] and the original backgammon model. The temperature
is zero in all cases. All three distributions were chosen to satisfy the conditions

∫ ∞

0

dǫ g(ǫ) =

∫ ∞

0

dǫ ǫ g(ǫ) = 1 (4.114)

so that that the ground state has energy uGS = −1 in the limit N → ∞ for
all three cases. The models are the following ones:

• Case A: Non-disordered model with a gap [Fig. 4.9 (left)]. This is
the original backgammon model (cf. Sec. 4.1) where g(ǫ) = δ(ǫ − 1).
Therefore ǫ⋆ = 1 and the threshold energy is time independent; this case
corresponds to ν → ∞. For very large times the energy is expected to
decay like u+ 1 ∼ T ⋆ ∼ 1/ log t. The same behavior is expected for any
disorder distribution g(ǫ) with a finite gap.

• Case B: Disordered model without gap and g(0) = 0 [Fig. 4.9 (center)].
We consider the distribution

g(ǫ) =
π

2
ǫ exp

(

−π
4
ǫ2
)

(4.115)

This case corresponds to ν = 1. The energy threshold ǫ⋆ scales like
1/
√

log t and the effective temperature and the energy scale like u+1 ∼
T ⋆ ∼ 1/(log t)

3
2 .

11That is, assuming that the configurational constraint was absent: m0 = T0 = 0, cf. Eq.
(3.124)
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FIGURE 4.9

Probability distribution of the energy weights of the model. (left) The standard

backgammon model has no disordered distribution, all boxes have the same weight.

(center) The probability distribution function of a DB with ν = 1: at low energy the

density goes to zero. (right) DB model with ν = 0: the probability of having boxes

with energies arbitrarily close to zero is finite. Reprinted figure with permission

from [Leuzzi & Ritort, 2002].

• Case C: Disordered model without gap and finite g(0) [Fig. 4.9 (right)].
We consider the distribution

g(ǫ) =
2

π
exp

(

−ǫ
2

π

)

(4.116)

This case corresponds to ν = 0. The energy threshold ǫ⋆ scales like
1/ log t and the effective temperature and the energy scale like u+ 1 ∼
T ⋆ ∼ 1/(log t)2.

In Fig. 4.10 the decay of the energy for all three models is plotted. The
reproduced data come from simulations performed for N = 104, 105, 106 parti-
cles [Leuzzi & Ritort, 2002] (the number of particles is identical to the number
of states) showing that finite-size effects are not big in the asymptotic regime.
We show data for one sample and N = 106. We plot the energy as function of
time starting from a random initial condition [particles randomly distributed
among states: u(t = 0) = −1/e]. Relaxation is faster for Case C and slower
for the standard backgammon model (Case A).

The different asymptotic behaviors are shown in Fig. 4.11. There we plot
[u(t) − uGS ](log t)1/γ with γ defined in Eq. (4.103). To avoid finite-size cor-
rections when the energy is close to its ground state the quantity computed
is, cf. Eq. (4.76), uGS = 1

N (−∑N
r=1 ǫr + ǫm) where ǫm is the minimum value

among the randomly extracted ǫs. The different curves saturate at finite
values, corresponding to their asymptotic leading constant. Note that con-
vergence is slow, showing the presence of sub-leading logarithmic corrections
to the leading behavior.12

12The distribution probabilities were numerically computed by binning the ǫ axis from
ǫ = 0 up to ǫ = ǫmax where ǫmax is the maximum value of ǫr among all the N boxes.
One hundred bins are enough to see the behavior of the time evolution of the different
distributions [Leuzzi & Ritort, 2002].
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FIGURE 4.10

Energy as a function of time for cases

A, B and C (see text). The lower

curve represents the ν = 0 DB model

(C), the middle curve the ν = 1 DB

model (B) and the upper curve the stan-

dard backgammon model (A). Reprinted

figure with permission from [Leuzzi &

Ritort, 2002].

FIGURE 4.11

Rescaled energy (u − uGS)(log t)1/γ vs.

time, with γ ≡ ν+1
ν+2

, for the three dif-

ferent model cases of Fig. 4.9. The up-

per curve refers to Case C, the middle

one to Case B and the lower one to the

standard backgammon model (Case A).

The slowest relaxation is the one of the

model with ν = 0. Reprinted figure with

permission from [Leuzzi & Ritort, 2002].
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FIGURE 4.12

Distribution g0(ǫ) for Case B at times

2k with k = 4, 6, 8, 10, 12, 14, 16, 18, 20

(from bottom to top). The continuous

line represents g(ǫ) given by Eq. (4.115).

Reprinted figure with permission from

[Leuzzi & Ritort, 2002].
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FIGURE 4.13

Distribution g0(ǫ) for Case C for times

2k with k = 4, 6, 8, 10, 12, 14, 16, 18, 20

(bottom to top). The continuous line

represents g(ǫ), given in Eq. (4.116).

Reprinted figure with permission from

[Leuzzi & Ritort, 2002].

In Figs. 4.12 and 4.13 we show the g0(ǫ) for cases B and C, respectively.
Note that the g0(ǫ) converge to the asymptotic result g(ǫ) for ǫ > ǫ⋆, in
agreement with the adiabatic solution (4.108) while they are clearly different
for ǫ < ǫ⋆. The value of ǫ⋆ where g0(ǫ) deviates from the asymptotic curve g(ǫ)
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FIGURE 4.14

Distribution G0(ǫ) vs. ǫ
√

log t for Case

B (peaked datasets) and vs. ǫ log t for

Case C (smooth datasets). Times are

t = 2k with k = 6, 8, 10, 12, 14, 16. The

different curves superimpose, verifying

Eq. (4.118). Reprinted figure with per-

mission from [Leuzzi & Ritort, 2002].
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FIGURE 4.15

Distribution G1(ǫ) as a function of

ǫ
√

log t for Case B (peaked datasets)

and as a function of ǫ log t for Case

C (smooth datasets). Times are t =

2k with k = 6, 8, 10, 12, 14. Reprinted

figure with permission from [Leuzzi &

Ritort, 2002].

shifts slowly to zero [like 1/(log t)
1
2 or 1/ log t for Cases B and C, respectively],

as can be seen in Figs. 4.12, 4.13. Other probability densities (for instance
g1) decay very fast to zero (already for t = 217 there are no occupied boxes
with more than one particle).

In Figs. 4.14 and 4.15 one can observe how the adiabatic Ansatz, Eqs.
(4.108), (4.110), for the densities g0 and g1 in the two model cases B and C,
is verified. Fig. 4.14 plots G0(ǫ) for both models. Fig. 4.15 plots G1(ǫ) for
both models. Using Eq. (4.107) together with z⋆ = log t+ log(log t) yields

G0(ǫ) = ∆g0(ǫ)
log t+ log(log t)

log t
1
ν+1

= ĝ0

( ǫ

ǫ⋆

)

(4.117)

G1(ǫ) = ∆g1(ǫ)
t

(log t)
ν
ν+1

= ĝ1

( ǫ

ǫ⋆

)

(4.118)

where the scaling functions ĝn(x) are defined in Eq. (4.108). Looking at Figs.
4.14, 4.15 one can observe that the scaling is pretty well satisfied and that the
ĝn(x) indeed vanishes for x ≃ 1 yielding an estimate for ǫ⋆ in both cases. The
threshold is ǫ⋆ ≃ 6/

√
log t for Case B and ǫ⋆ ≃ 12/ log t for Case C. Note also

that the quality of the collapse of the G0 is slightly worse for Case B than for
Case C (see Fig. 4.14). This is due to the stronger sub-leading corrections to
the shift of ǫ⋆ which decays slower to zero for case B. Hence, the asymptotic
regime is reached only for later times. Indeed, as Fig. 4.12 shows, the value of
ǫ⋆ obtained within the timescales considered has not yet reached the maximum
of the distribution g(ǫ), so that the asymptotic behavior g(ǫ⋆) ∼ ǫ⋆ is still far
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FIGURE 4.16

The rate of accepted changes r(x) ver-

sus the energy variation x for different

times t = 102, 103, 104, 105 (from top to

bottom) computed as explained in the

text. Reprinted figure with permission

from [Leuzzi & Ritort, 2002].

FIGURE 4.17

Scaling plot for r(x)/
√

log t ver-

sus x
√

log t for different times

t = 102, 103, 104, 105. Reprinted

figure with permission from [Leuzzi &

Ritort, 2002].

away. Yet, it is remarkable how well the scaling Ansatz of Eqs. (4.108, 4.110)
makes the numerical data of Figs. 4.14-4.15 collapse.

4.3.5 A method to determine the threshold energy scale

Is there a general method to determine the energy scale ǫ⋆ without having
any precise information about the adiabatic modes present in the system?

In the previous sections we addressed this question by proposing an adia-
batic scaling Ansatz to the dynamical equations. Here we propose a general
method to determine the energy scale ǫ⋆ from first principles without the
necessity of knowing the nature of the slow modes present in the system. Ob-
viously for models such as the standard backgammon model this energy scale
plays no role since we know from the beginning that relaxation takes place on
a single energy scale.

Consider the following quantity r(x) defined as the rate with which a first
accepted energy change x occurs at time t. Let us consider the case of zero
temperature where this probability density is defined only for x ≤ 0. For the
T > 0 case, the interested reader can look at Appendix 4.D. The distribution
p(x) denotes the probability of proposing an energy change at time t (the
move is not necessarily accepted), and it is proportional to r:

r(x) =
p(x)

A0
if x ≤ 0 (4.119)

where A0 =
∫ 0

−∞ p(x) dx is the acceptance rate, i.e., the inverse of the charac-
teristic relaxation time to equilibrium. The expression for p(x) [and therefore
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r(x)] can be exactly computed. Note that computing p(x) yields all informa-
tion about the statistics of energy changes, in particular the evolution equation
for the energy.13 On the contrary, the time evolution for the energy does not
necessarily yield the distribution p(x). For the DB it can be exactly derived
(cf. Appendix 4.D). Here we quote the result,

p(x) = (1 − P0)θ(−x)g1(−x) (4.120)

A0 = 1 − P0 (4.121)

Using the scaling Ansatz of Eq. (4.108) for g1 we obtain the simple scaling
relation,

r(x) =
P1

ǫ⋆
ĝ1
(−x
ǫ⋆
)

=
1

ǫ⋆
P̂
( x

ǫ⋆
)
, with x < 0 (4.122)

A collapse of different r(x) for different times can be used to determine the
time evolution of ǫ⋆. In Fig. 4.16 we show the scaling of r(x) for the model
B for N = 104 and different times t = 102, 103, 104, 105. Starting from a
random initial configuration, statistics has been collected over approximately
30, 000 jumps for every time. In Fig. 4.17 we check the scaling relation (4.122)
plotting r(x)ǫ⋆ as a function of x/ǫ⋆ where we have taken ǫ⋆ ∼ 1/

√
log t. Note

also that the range where r(x) is finite corresponds to the region where ǫ ∼ ǫ⋆.
In Fig. 4.17 this corresponds to ǫ⋆ ≃ 6/

√
log t in agreement with what was

observed in Figs. 4.14, 4.15.
The scaling works pretty well, showing how this method could be used to

guess the time evolution of the energy threshold ǫ⋆ in general glass models in
those cases where different normal modes take place.

13Actually, in equilibrium at finite temperature p(x) satisfies detailed balance p(x) =
p(−x) exp(−βx).
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4.A Occupation probability density equations

In this appendix we derive the equations of motion for the occupation prob-
ability densities for box-energy between ǫ and ǫ+ dǫ. First we start from the
densities of having zero particles in a box of energy ǫ.

In Table 4.1 we list the processes contributing to the evolution of the oc-
cupation probability density of boxes containing zero particles. In the left
column we show the processes involved in terms of occupation numbers of the
departure box and of the arrival box. In the right column we write the cor-
responding contribution of a given process to the variation of the occupation
density, ∆g0(ǫ).

The particle for which a jump is proposed is chosen in box d with probability
nd/N . The arrival box is chosen with uniform probability 1/N . The total
difference per particle in the probability density of empty boxes of energy ǫ is
then

∆g0(ǫ) =
1

N

N∑

p=0

N∑

a=0

np
N

1

N

{
δnd,1δna,0 [δ(ǫ− ǫd) − δ(ǫ− ǫa)] (4.A.1)

×
[

1 +
(

e−β(ǫa−ǫd) − 1
)

θ(ǫa − ǫd)
]

+δnd,1(1 − δna,0)δ(ǫ− ǫd) − (1 − δnd,1)δna,0e
−βǫaδ(ǫ− ǫa)

}

Using Eqs. (4.77-4.80) and the following identities,

1

N

N∑

a=0

δna,0θ(ǫa − ǫ)
[

e−β(ǫa−ǫ) − 1
]

=

∫ ∞

ǫ

dǫ′ g0(ǫ
′)
[

e−β(ǫ′−ǫ) − 1
]

(4.A.2)

1

N

N∑

d=0

ndδnd,1θ(ǫ− ǫd)
[

e−β(ǫ−ǫd) − 1
]

=

∫ ǫ

0

dǫ′ g1(ǫ
′)
[

e−β(ǫ−ǫ′) − 1
]

(4.A.3)

1

N

N∑

a=0

δna,0δ(ǫ− ǫa)e
−βǫa = g0(ǫ)e

−βǫ (4.A.4)

we get the equation of motion for g0(ǫ) [namely Eq. (4.97)]:

∂g0(ǫ)

∂t
= lim

N→∞
∆g0(ǫ)

1/N
= g1(ǫ)

[

1 +

∫ ∞

ǫ

dǫ′g0(ǫ
′)
(

e−β(ǫ′−ǫ) − 1
)]

− g0(ǫ)

[

e−βǫ + P1

(
1 − e−βǫ

)
+

∫ ǫ

0

dǫ′g1(ǫ
′)
(

e−β(ǫ−ǫ′) − 1
)]

We then consider the evolution of the probability density for boxes con-
taining one particle. In Table 4.2 we list the processes contributing to the
evolution of such occupation probability densities.
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TABLE 4.1

Processes involved in the dynamics of probability density g0(ǫ) of empty boxes at
energy ǫ.

occupation contribution to ∆g0(ǫ)

nd = 1 na = 0 δnd,1δna,0 [δ(ǫ − ǫd) − δ(ǫ − ǫa)]
ˆ

1 +
`

e−β(ǫa−ǫd) − 1
´

θ(ǫa − ǫd)
˜

na > 0 δnd,1(1 − δna,0)δ(ǫ − ǫd)

nd > 1 na = 0 −(1 − δnd,1)δna,0e−βǫaδ(ǫ − ǫa)

TABLE 4.2

Processes contributing to the dynamics of g1(ǫ).
occupation contribution to ∆g1(ǫ)

nd = 1 na = 0 δnd,1δna,0 [δ(ǫ − ǫd) − δ(ǫ − ǫa)]
ˆ

1 +
`

e−β(ǫa−ǫd) − 1
´

θ(ǫa − ǫd)
˜

na = 1 −δnd,1δna,1 [δ(ǫ − ǫd) + δ(ǫ − ǫa)]
na > 1 −δnd,1(1 − δna,1 − δna,0)δ(ǫ − ǫd)

nd = 2 na = 0 δnd,2δna,0 [δ(ǫ − ǫd) + δ(ǫ − ǫa)] e−βǫa

na = 1 δnd,2δna,1 [δ(ǫ − ǫd) − δ(ǫ − ǫa)]
na > 1 δnd,2(1 − δna,1 − δna,0)δ(ǫ − ǫd)

nd > 2 na = 0 (1 − δnd,2 − δnd,1)δna,0δ(ǫ − ǫa)e−βǫa

na = 1 −(1 − δnd,2 − δnd,1)δna,1δ(ǫ − ǫa)

Departure boxes are chosen with probability nd/N . Arrival boxes are chosen
with uniform probability 1/N .

Using again Eqs. (4.77-4.80) and Eqs. (4.A.2-4.A.4) we are able to derive
the equation of motion for the probability density of boxes with one particle
and energy equal to ǫ:

∂g1(ǫ)

∂t
(4.A.5)

= 2g2(ǫ)

(

1 +

∫ ∞

0

dǫg0(ǫ)e
−βǫ − P0

)

− g1(ǫ)

[

2 +

∫ ∞

ǫ

dǫ′g0(ǫ
′)
(

e−β(ǫ′−ǫ) − 1
)]

+ g0(ǫ)

[

e−βǫ + P1

(
1 − e−βǫ

)
+

∫ ǫ

0

dǫ′g1(ǫ
′)
(

e−β(ǫ−ǫ′) − 1
)]

For densities of boxes with k > 1 particles the scheme of the contributions
is presented in Table 4.3:

Combining all the contributions we obtain for gk(ǫ) Eq. (4.99)

∂gk(ǫ)

∂t
= (k + 1)gk+1(ǫ)

(

1 +

∫ ∞

0

dǫ g0(ǫ) e
−βǫ − P0

)

− gk(ǫ)

[

1 + k + k

(∫ ∞

0

dǫ g0(ǫ) e
−βǫ − P0

)]

+ gk−1(ǫ)
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TABLE 4.3

List of the processes involved in the dynamics of the probability density
gk(ǫ), for k > 1.

occupation contribution to ∆gk(ǫ)
nd = h < k na = k − 1 δnd,hδna,k−1δ(ǫ − ǫa)

na = k −δnd,hδna,kδ(ǫ − ǫa)

nd = k na = 0 −δnd,kδna,0δ(ǫ − ǫa)e−βǫa

0 < na = h < k − 1 −δnd,kδna,hδ(ǫ − ǫa)
na = k − 1 −δnd,kδna,k−1 [δ(ǫ − ǫd) − δ(ǫ − ǫa)]
na = k −δnd,kδna,k [δ(ǫ − ǫd) + δ(ǫ − ǫa)]

na > k −δnd,k

“

1 −
Pk

h=0 δna,h

”

δ(ǫ − ǫd)

nd = k + 1 na = 0 −δnd,k+1δna,0δ(ǫ − ǫd)e−βǫa

0 < na < k − 1 δnd,k+1δna,hδ(ǫ − ǫd)
na = k − 1 δnd,k+1δna,k−1 [δ(ǫ − ǫd) + δ(ǫ − ǫa)]
na = k δnd,k+1δna,k [δ(ǫ − ǫd) − δ(ǫ − ǫa)]

na > k δnd,k+1

“

1 −
Pk

h=0 δna,h

”

δ(ǫ − ǫd)

nd > k na = k − 1
“

1 −
Pk+1

h=1 δnd,h

”

δna,k−1δ(ǫ − ǫa)

na = k −
“

1 − Pk+1
h=1 δnd,h

”

δna,kyδ(ǫ − ǫa)

4.B Ansatz for the adiabatic approximation

In this appendix we show that the Ansatz solution (4.108) is asymptotically
a solution of the Eqs. (4.97)-(4.99) at T = 0 yielding the leading behavior of
ǫ⋆. We start by rewriting Eq. (4.108) in the following way

∆gk(ǫ) =
∆Pk
ǫ

rk

( ǫ

ǫ⋆

)

(4.B.1)

where ∆Pk ≡ Pk − δk,0, ∆gk(ǫ) ≡ gk(ǫ) − δk,0 g(ǫ), rk(x) = x ĝk(x) and
∫∞
0
dx ĝk(x) =

∫∞
0
dx rk(x)/x = 1. Here we will perform the analysis for

the case k = 0. The equations for k > 0 can be done in a similar fashion.
Substituting this expression into Eq. (4.104) we get

∂g0(ǫ)

∂t
=
∂∆P0

∂t

1

ǫ
r0

( ǫ

ǫ⋆

)

− ∆P0

(ǫ⋆)2
r′0(

ǫ

ǫ⋆
)
dǫ⋆(t)

dt
= (4.B.2)

−∆P1

ǫ
r1(

ǫ

ǫ⋆
)

[∫ ǫ

0

dǫ′g(ǫ′) − ∆P0

∫ ∞

ǫ

dǫ′
1

ǫ′
r0(

ǫ

ǫ⋆
)

]

+∆P1

[

g(ǫ) +
∆P0

ǫ
r0(

ǫ

ǫ⋆
)

∫ ∞

ǫ

dǫ′
1

ǫ′
r1

( ǫ

ǫ⋆

)]

.

where r′0(x) stands for the first derivative of r0(x). Note that the scaling
function r0 does not depend on time, hence there is no time derivative of it
in that expression. Introducing Eq. (4.18) in the first term of the left-hand
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side of (4.B.2), we multiply the whole equation by ǫ/∆P0 to obtain,

∆P1 r0(x) + x r′0(x)
∂ log(ǫ⋆)

∂t
(4.B.3)

= ∆P1

{
r1(x)

∆P0

∫ ǫ

0

dǫ′g(ǫ′) − r1(x)

∫ ∞

x

dx′ĝ0(x) −
[
ǫg(ǫ)

∆P0
+ r0(x)

] ∫ ∞

x

dx′ĝ1(x)

}

where ĝk(x) = (rk(x)/x). From this equation we can guess the scaling behav-
ior of all quantities in the asymptotic long time limit ǫ⋆ → 0. In the sector
ǫ ≤ ǫ⋆, we use g(ǫ) ∼ ǫν obtaining

∫ ǫ

0
dǫ′g(ǫ′) ∼ ǫν+1. Assuming all terms of

the same order, we get for ǫ ∼ ǫ⋆

∆P0 ∼ (ǫ⋆)ν+1 (4.B.4)

∆P1 ∼ −∂ log(ǫ⋆)

∂t
(4.B.5)

Using the standard adiabatic approximation P0 = 1 − 1/z⋆, P1 = 1/ez
⋆

,
cf. Eq. (4.101), we obtain Eq. (4.109). Note that the set of equations for
hk is still impossible to solve. Only in certain regimes such as ǫ ≪ ǫ⋆ it
may be possible to obtain results. There is a set of equations which couples
the different hk. But this set of equations is time-independent and should
yield all the scaling functions ĝk(x) once appropriate treatment is taken of
the amplitude constant which fixes the leading behavior of ǫ⋆.

We also consider, as an example, the case in which the probability distri-
bution of the quenched disorder becomes exponentially high at high values of
ǫ and zero for low values, namely we choose

g(ǫ) = exp

(

−A
ǫ

)

(4.B.6)

For this choice
∫ ǫ

0
dǫ′g(ǫ′) ∼ −ǫ exp

(
−A
ǫ

)
−A Γ

(
0, Aǫ

)
, where the generalized

Euler function Γ(0, x) goes to zero as x → ∞. In order to estimate ǫ⋆ from
Eq. (4.B.3) we notice now that for P1 Eq. (4.B.5) is still valid, while for ∆P0

we obtain

∆P0 ∼ −ǫ⋆ exp

(

−A

ǫ⋆

)

(4.B.7)

eventually yielding

ǫ⋆(t) ∼ A

log (log t)
(4.B.8)
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4.C Approach to equilibrium of occupation densities

We present the equations of motion for the occupation densities in the asymp-
totic regime. The values of the densities are expanded to the first order around
their equilibrium values: gn = geq

n + δgn:

∂δg0(ǫ)

∂t
= δg1(ǫ)

{

1 +

∫ ∞

ǫ

dǫ′ḡ0(ǫ
′)
[

e−β(ǫ′−ǫ) − 1
]}

(4.C.1)

−δg0(ǫ)
[

e−βǫ + P eq
1

(
1 − e−βǫ

)
+ z

∫ ǫ

0

dǫ′ ḡ0(ǫ
′)
(

e−βǫ − e−βǫ
′)
)]

+ḡ0(ǫ)

{

z

∫ ∞

ǫ

dǫ′ δg0(ǫ
′)
(

e−βǫ
′ − e−βǫ

)

−
(
1 − e−βǫ

)
∫ ∞

0

dǫ′δg1(ǫ
′) −

∫ ǫ

0

dǫ′ δg1(ǫ
′)
[

e−β(ǫ−ǫ′) − 1
]}

∂δg1(ǫ)

∂t
=

2

z
δg2(ǫ) − δg1(ǫ)

[

2 +

∫ ∞

ǫ

dǫ′g0(ǫ
′)
[

e−β(ǫ′−ǫ) − 1
]]

(4.C.2)

+δg0(ǫ)

[

e−βǫ + P eq
1

(
1 − e−βǫ

)
+ z

∫ ǫ

0

dǫ‘g0(ǫ
′)
(
e−βǫ − e−βǫ

)
]

−ḡ0(ǫ)
{

z2e−βǫ
∫ ∞

0

dǫ′ δg0(ǫ
′)
(

1 − e−βǫ
′
)

+ z

∫ ∞

ǫ

dǫ′ δg0(ǫ
′)
(

e−βǫ
′ − e−βǫ

)

−
(
1 − e−βǫ

)
∫ ∞

0

dǫ′ δg1(ǫ
′) −

∫ ǫ

0

dǫ′ δg1(ǫ
′)
[

e−β(ǫ−ǫ′) − 1
]}

∂δgn(ǫ)

∂t
= δgn+1(ǫ)

k + 1

n
− δgn(ǫ)

(

1 +
n

z

)

+ δgn−1(ǫ) (4.C.3)

−geq
0 (ǫ)

zn+1

n!
e−βǫ

(

1 − n

z

)∫ ∞

0

dǫ′ δg0(ǫ
′)
(
1 − e−βǫ

)
, n > 1

In the above equations, β is the inverse thermal bath temperature and z is
the equilibrium fugacity at that temperature.

As T goes to zero (β → ∞, z(β) → ∞) the equations for the first order
perturbation to equilibrium can be closed:

∂δg0(ǫ)

∂t
= δg1(ǫ) −

∫ ∞

ǫ

dǫ′ [δg1(ǫ) g(ǫ
′) + g(ǫ) δg1(ǫ

′)] (4.C.4)

∂δg1(ǫ)

∂t
= −2 δg1(ǫ) +

∫ ∞

ǫ

dǫ′ [δg1(ǫ) g(ǫ
′) + g(ǫ) δg1(ǫ

′)] (4.C.5)

∂δgn(ǫ)

∂t
= −δgn(ǫ) + δgn−1(ǫ) n > 1 (4.C.6)

In order to estimate the relaxation characteristic time to equilibrium at
low temperature, we can expand Eqs. (4.C.1)-(4.C.3). First we introduce
the asymptotic threshold energy ǫ⋆(T ) as the energy discriminating between
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thermalized and nonthermalized collective modes at temperature T . If we
define it through the relation ǫ⋆(T ) = Tz(T ) and we use the relation (4.95)
obtained by doing a low T expansion then we get,

ǫ⋆(T ) = z0T
1

2+ν (4.C.7)

where z0 is the coefficient of the leading term of z(T ) at low T [see Eq. (4.95)]:

z(T ) = z0T
1+ν
2+ν.

Then we expand Eqs. (4.C.1), take ǫ ≃ ǫ⋆ and introduce the following
adiabatic Ansatz,

δgn(ǫ) ≡ gn(ǫ) − geq
n (ǫ) =

∆Pn(T, t)

ǫ⋆(T )
ĝn

(
ǫ

ǫ⋆(T )

)

(4.C.8)

Note that this solution is equivalent to the Ansatz Eq. (4.108) introduced
for the asymptotic dynamics at zero temperature but with a static ǫ⋆(T )
now replacing the dynamical threshold. Let us now consider Eq. (4.C.1) for
δg0(ǫ). Because δPk =

∫
dǫ δgk(ǫ), it can be shown that the slowest mode

corresponds to k = 0, i.e., δg0(ǫ) ≫ δgk(ǫ) for k > 0. Therefore, the second
term in the right-hand side of Eq. (4.C.1) dominates the first and the second
terms. Introducing Eq. (4.C.8) into Eq. (4.C.1) we find that the relaxation
time behaves like,

τeq(ǫ
⋆) ∝ eβǫ

⋆

βǫ⋆
(4.C.9)

For ǫ ≫ ǫ⋆ the relaxation time is much smaller, since those are the modes
with lower energy barriers.

4.D Probability distribution of proposed energy updates

In this appendix the probability distribution of proposed energy updates is
built. In Table 4.4 we summarize all the processes contribuiting to it, together
with their probabilities.

The probability distribution p(x) of proposed energy updates is the average
of all possible changes, each computed with its probability:

p(x) ≡ δ (E′ − E − x) (4.D.1)

where x is the proposed update, E is the energy of the system before the



Aging urn models 209

TABLE 4.4

Contributions to the probability distribution p(x) of proposed energy updates.
occupation contrib. to E′ − E probability

nd = 1 na = 0 −ǫd + ǫa g1(ǫd) g0(ǫa)
na > 0 −ǫd g1(ǫd) [g(ǫa) − g0(ǫa)]

nd > 1 na = 0 ǫa g0(ǫa) 1
N

P

p np[g(ǫd) − g1(ǫd)]

na > 0 0 [g(ǫa) − g0(ǫa)] 1
N

P

p np[g(ǫd) − g1(ǫd)]

updating and E′ the energy afterwards. This means

p(x) =

∫ ∞

0

dǫ

∫ ∞

0

dǫ′ g1(ǫ) g0(ǫ
′) δ(x+ ǫ− ǫ′)

+

∫ ∞

0

dǫ

∫ ∞

0

dǫ′ g1(ǫ) [g(ǫ′) − g0(ǫ
′)] δ(x+ ǫ)

+

∫ ∞

0

dǫ

∫ ∞

0

dǫ′ g0(ǫ
′)

1

N

∑

p

np [g(ǫ) − g1(ǫ)] δ(x− ǫ′)

+

∫ ∞

0

dǫ

∫ ∞

0

dǫ′ [g(ǫ′) − g0(ǫ
′)]

1

N

∑

p

np [g(ǫ) − g1(ǫ)]δ(x)

=

∫ ∞

x

dǫ g1(ǫ− x) g0(ǫ) + (1 − P0) g1(−x) θ(−x) (4.D.2)

+(1 − P1) g0(x) θ(x) + (1 − P0)(1 − P1) δ(x)

where the θ(x) function includes x = 0. The term with δ(x) is the term
responsible for diffusive motion of particles. Such a contribution does not
actually give any contribution to the relaxation of the system and therefore
we will not consider it from now on.

The normalized distribution of accepted changes of energy difference x is
given by

r(x) =
p(x)W (βx)

A0
(4.D.3)

where W (βx) is the Metropolis function

W (βx) =

{
e−βx if x > 0
1 if x ≤ 0

(4.D.4)

The normalization factor A0 is the acceptance rate of the Monte Carlo dy-
namics:

A0 =

∫ ∞

−∞
dx W (βx) p(x) (4.D.5)

as it was defined in Sec. 3.1.1, Eq. (3.34), now yielding

A0 =

∫ ∞

0

dǫ g0(ǫ)

∫ ǫ

0

dǫ′ g1(ǫ
′) + (1 − P0)P1 +

1 − P1

zez
(4.D.6)
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where we used the identity

g0(ǫ
′) g1(ǫ)e

−β(ǫ′−ǫ) = g0(ǫ)g1(ǫ
′) (4.D.7)

and the closure Eq. (4.88), otherwise written as

∫ ∞

0

dǫ g0(ǫ) e
−βǫ =

1

zez
(4.D.8)

The first term in Eqs. (4.D.6, 4.D.2) is nonzero only if x = ǫa−ǫd = ǫ−ǫ′ >
0, and does not contribute at zero temperature where only negative or null
changes in energy are accepted.

As T ∼ 0, indeed, the distribution r(x) of accepted changes, contributing
to the relaxation, tends to

r(x) ≃ θ(−x)(1 − P0) g1(−x)
A0

= θ(−x) g1(−x) (4.D.9)

where A0 = 1 − P0 ≃ 1/z.
Using the same notation we can write the energy evolution as

∂E

∂t
=

∫ ∞

−∞
dx x W (βx) p(x) (4.D.10)

= −P1 E −
∫ ∞

0

dǫ g1(ǫ) ǫ+ (1 − P1)

∫ ∞

0

dǫ g0(ǫ)e
−βǫǫ

+

∫ ∞

0

dǫ′
∫ ∞

ǫ′
dǫg1(ǫ

′)g0(ǫ)
[

e−β(ǫ−ǫ′) − 1
]

(ǫ− ǫ′)

The right-hand side of this equation can be equivalently obtained following
the procedure presented in Appendix 4.A. Indeed, by definition of energy
density, it is

∂E

∂t
= −

∫ ∞

0

dǫ ǫ
∂g0(ǫ)

∂t
(4.D.11)

Inserting Eq. (4.97) in Eq. (4.D.11) we get Eq. (4.D.10) back.
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Glassiness in a directed polymer model

A content person owns half the world

Dutch proverb

Polymer physics is a mature branch of chemistry and industry (e.g., plastics,
nylon, rubber), and of biochemistry (DNA, RNA, microtubules). The theoret-
ical description of polymers is a major branch in theoretical physics, to which
many excellent books and reviews have been devoted, see, e.g., de Gennes
[1979]; Doi & Edwards [1986]. There are many forms of polymers: linear
polymers, cross-linking polymers, and, of particular interest in biophysics,
heterogeneous polymers.

The first aging experiments were performed on polymers [Struik, 1978], but
mostly the phenomenon of aging has been investigated in different systems.
Solvable models for aging in heteropolymer systems exist, see, e.g., Montanari
et al. [2004]; Müller et al. [2004] and references therein.

The glass transition is caused by the appearance of a multitude of long-lived
states, which prevents exploration of the whole phase space. These effects are
so strong that, in practice, one can only observe precursor effects. Experimen-
tally, one observes a dynamical freezing around the tunable glass temperature
Tg, see Sec. 1.1, set by the cooling rate.

The ergodic theorem says that time-averages may be replaced by ensemble
averages. It is widely believed that the inherent dynamical nature of the glass
transition implies that there is neither need nor chance for a thermodynamic
explanation. However, since so many decades in time are involved, this is an
unsatisfactory point of view. In previous chapters we have discussed exactly
solvable models with glassy behavior. Here we discuss this picture of the
glassy transition in a polymer model, introduced by Nieuwenhuizen [1997b].
We consider a linear monomeric polymer, in an idealized geometry and in the
presence of a disordered substrate. This setup induces important simplifica-
tions in the statics and dynamics. As in the two previous chapters, the model
is designed with a simple statics and a glassy dynamics and can be solved
analytically.
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5.1 The directed polymer model

Consider a directed polymer (or an interface without overhangs) in d = 1 +
1 dimensions, described by a height function z(x). The x-coordinates are
discrete and lie in the region 1 ≤ x ≤ L, and the discrete z-coordinates lie in
1 ≤ z ≤W .

The directed polymer can locally be flat (z(x+ 1) = z(x); no energy cost)
or make a single step (z(x+1)−z(x) = ±1) at an energy cost J . We consider
the restricted solid-on-solid approximation, where larger steps are assumed
to cost infinite energy. For an introduction, see Forgacs et al. [1991]. The
partition sum of this system, subject to periodic boundary conditions, can be
expressed in the W ×W matrix T that transfers the system from x to x+ 1

Z = Tr e−βH = Tr T L (5.1)

with transfer matrix

(T )z′,z = δz′,z + (δz′,z+1 + δz′,z−1)e
−βJ (5.2)

We may write the partition sum as

Z =
W∑

w=1

ΛLw (5.3)

where Λw are the eigenvalues of T .
For this pure system, at temperature T = 1/β, Fourier analysis allows us

to use the Fourier index k as the label w, and it gives the eigenvalues

Λ(k) = 1 + 2e−βJ cos k (5.4)

Imposing, for simplicity, periodic boundary conditions, gives the allowed k-
values

kn =
2π

W
n, n = 1, 2, · · ·W. (5.5)

The partition sum thus is

Z =
W∑

n=1

ΛL(kn) ≈
W

2π

∫ π

−π
dkΛL(k) (5.6)

where we asssumed that W is large, and we shifted the integration interval.
We clearly need the largest eigenvalues, which occur at small momentum,

Λ(k) ≈ exp

[

−βfB − Γk2

2π2

]

(5.7)

The term of order k0 is

fB(T ) = −T ln(1 + 2e−βJ) (5.8)
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while Γ is the stiffness coefficient,

Γ(T ) =
2π2e−βJ

1 + 2e−βJ
(5.9)

This brings us to

Z =
W√
2πΓL

e−LβfB (5.10)

The free energy, thus, reads

F = −T lnZ = LfB + T ln

√
2πΓL

W
(5.11)

The limit L → ∞, at fixed W , allows us to interpret fB of Eq. (5.8) as the
bulk free energy density.

The internal energy density is

uB =
∂βfB
∂β

=
2Je−βJ

1 + 2e−βJ
(5.12)

the entropy density is

sB = −∂fB
∂T

=
2βJe−βJ

1 + 2e−βJ
+ ln(1 + 2e−βJ) (5.13)

and the specific heat per monomer reads

cB =
∂uB
∂T

=
2β2J2e−3βJ

(1 + 2e−βJ)2
(5.14)

5.1.1 Disordered situation and Lifshitz-Griffiths singularities

For the rest of the chapter we shall consider the situation of randomly located
potential barriers parallel to the x-axis, so that the random potential is cor-
related, viz., V (x, z) = V (z). Hereto we assume binary disorder: V (z) = 0
with probability p or V (z) = V1 > 0 with probability 1 − p. We shall denote

p = exp(−µ) (5.15)

The transfer matrix now reads

(T )z′,z = δz′,ze
−βV (z) + (δz′,z+1 + δz′,z−1)e

−βJ (5.16)

As before, Eq. (5.1) is dominated by the largest eigenvalues. In this disor-
dered setup, they can be identified explicitly, since they occur due to Lifshitz-
Griffiths singularities [Lifshitz, 1964; Griffiths, 1964; Nieuwenhuizen & Luck,
1989; Nieuwenhuizen, 1989a,b, 1998a]. These singularities are lanes of width
ℓ ≫ 1 in which all V (z) = 0, bordered by regions with V (z) 6= 0. These
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FIGURE 5.1

A directed polymer can move on a substrate with parallel potential barriers. For

entropic reasons, it prefers to lie in wide lanes between the barriers.

dominant configurations are the “states” or “components” of our system. In
spin-glass theory such states are called “TAP-states” [Thouless et al., 1977],
while in the next chapter they will be identified with the “inherent struc-
tures.” The interest of the model lies, among others, in the fact that these
dominant states can be identified explicitly. The situation is depicted in Fig.
5.1.

In disordered one dimensional media the eigenfunctions are exponentially
localized. The ones with a large eigenvalue are related to a large pure region
with V (z) = 0. These are the so-called Lifshitz, or Griffiths, singularities. Let
such a disorder-free lane have width ℓa ≫ 1 and be located at za ≤ z ≤ za+ℓa.
These states can, thus, be labeled by a = (za, ℓa). Outside this region, the
eigenfunction will decay exponentially over a fixed length, the localization
length; so it will be small both at z = za and z = za + ℓa. This eigenfunction
will, therefore, have the approximate form sin[π(z − za)/ℓa] inside the lane.

Since k → π/ℓa, the free energy of a lane follows as Fa = Fℓa , where

βFℓ ≡ −L lnΛ
(π

ℓ

)

≈ βfBL+
ΓL

2ℓ2
(5.17)

The number of regions with ℓ successive sites with V (z) = 0, surrounded
by sites with V (z) = V1, can be estimated by its ensemble average,

Nℓ = W (1 − p)2pℓ = W (1 − p)2e−µℓ (5.18)

where we used the relation between p and µ, Eq. (5.15). For large L, we
may restrict the partition sum to these dominant states. We, thus, evaluate,
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instead of Eq. (5.1), the “TAP” partition sum

Z =
∑

ℓ

Nℓe
−βFℓ = (1 − p)2W

∑

ℓ

e−βFℓ−µℓ (5.19)

Since the optimal ℓ is large, the total free energy can be read off,

βF = − lnZ = LβfB +
ΓL

2ℓ2
+ µℓ− ln[(1 − p)2W ] (5.20)

which has to be optimized in ℓ (as usual, we may neglect algebraic prefactors
of Z that arise from the saddle point integrations). This brings us to

ℓ∗(T ) =

(
Γ(T )L

µ

)1/3

. (5.21)

Since the relevant ℓ is of order L1/3, an interesting scenario occurs when we
consider the width W of the system to scale as a stretched exponential in the
height of the system, viz.,

(1 − p)2W = exp(λL1/3) (5.22)

When L is known, λ sets the width W . For large L, and λ = O(1), the
geometry is then very asymmetric, much, much wider than long, thus quasi
one dimensional. For moderate L, however, this need not be the case, e.g.,
for L = 106 and λ = 0.13815, or for L = 109 and λ = 0.02072, one would even
have W = L.

The states with width ℓ thus have a configurational entropy

Sc(ℓ) ≡ lnNℓ = λL1/3 − µℓ (5.23)

The largest ℓ which occurs in the system can be estimated by setting Sc(ℓ) = 0
or Nℓ ≈ 1, yielding

ℓmax =
λL1/3

µ
(5.24)

It is a geometrical length, defined by the aspect of the model, and independent
of T . Its effect is that Eq. (5.21) holds if ℓ∗ ≤ ℓmax, or else it is replaced by
ℓmax. We may now write Eq. (5.23) as

Sc(ℓ) = µ(ℓmax − ℓ) (5.25)

Let us introduce a scaled stiffness coefficient γ by setting Γ = λ3γ3/µ2, viz.,

γ(T ) =
1

λ

[
Γ(T )µ2

]1/3
=

(2π2µ2)1/3

λ

e−βJ/3

(1 + 2e−βJ)1/3
(5.26)

The free energy of the widest state then reads

βF = LβfB +
1

2
λL1/3γ3(T ) (5.27)
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It follows from Eq. (5.21) that at low enough T the optimal width is smaller
than ℓmax, with a ratio set by γ,

ℓ∗ = γ(T )ℓmax (5.28)

The free energy of this phase is

βF = LβfB + λL1/3[
3

2
γ(T ) − 1] (5.29)

In general, one has the optimal length

ℓ∗ = min(γ(T ), 1)ℓmax (5.30)

In contrast to realistic glasses, our model has no equivalent of a crystal state.
Let us recall that this neither occurs for some binary model glasses in a certain
parameter regime, e.g., [Kob & Andersen, 1994; Parisi, 1997b], see also Secs.
1.1, 7.3 and Appendix 6.A.

5.1.2 Static phase diagram

In the temperature interval where γ(T ) > 1, the polymer lies in the non-
degenerate widest lane present in the large but finite system. When γ(T ) < 1,
it lies in one of the Nℓ∗ ≫ 1 optimal states, each of which has a higher free
energy than the widest lane; this free energy loss is more than compensated
for by their configurational entropy. The system, thus, undergoes a static
glass transition at the “Kauzmann” temperature where γ = 1,

TK =
J

ln(2π2µ2λ−3 − 2)
(5.31)

i.e., where the thermally optimal lane width is the largest lane width available
in the system. Clearly, for this to happen, we have to demand that γ(T =
∞) > 1, so that the argument of the logarithm in Eq. (5.31) exceeds unity.
For not-too-small and not-too-large temperatures (see later), our model has
unfamiliar properties. The condition γ(T = ∞) > 1 is the key condition
which ensures that there is a high temperature ideal glass phase where the
widest state of the system dominates. Otherwise, there would only be the
regime of many relevant states with a finite configurational entropy. With
our setup of having a high temperature phase with a dominant single state,
we are in an “inverse temperature world” as compared to usual glasses.

For a reason that will become clear below, we shall demand that

π2µ2 > 2λ3 (5.32)

which is equivalent to TK < J/ ln 2.
For any finite L, there is also a very low temperature regime T < 1/ lnL,

where the interface is essentialy straight and can lie anywhere in the system,
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and a high temperature regime T > lnL, where the potential barriers are
ineffective, and the interface shape is truly random. These two regimes are of
no interest for us and will be disregarded.

From Eq. (5.17), the internal energy of a state of width ℓ follows as

Uℓ =
∂βFℓ
∂β

∣
∣
∣
ℓ
= uBL+

L

2ℓ2
∂Γ

∂β
= uBL− 3λ3γ2LT 2

2µ2ℓ2
∂γ

∂T
(5.33)

Its entropy is

Sℓ = −∂Fℓ
∂T

∣
∣
∣
ℓ
= sBL− L

2ℓ2
∂TΓ

∂T
= sBL− λ3γ2L

2µ2ℓ2
(γ + 3T

∂γ

∂T
) (5.34)

To obtain the thermodynamic values, for T < TK these results are to be
taken at ℓ∗ = γ(T )ℓmax, while for T > TK they apply to the largest lane in
the system, ℓ∗ = ℓmax. The internal energy of the whole system is, thus,

U =

{

uBL− 3
2λL

1/3T 2 ∂γ
∂T T < TK

uBL− 3
2λL

1/3γ2T 2 ∂γ
∂T T > TK

(5.35)

and the total thermodynamic entropy is

S = Sℓ∗ + Sc(ℓ∗) =

{

sBL+ λL1/3(1 − 3
2γ − 3

2T
∂γ
∂T ) T < TK

sBL− λL1/3( 1
2γ

3 + 3
2γ

2T ∂γ
∂T ) T > TK

(5.36)

At the transition point (γ = 1), the function γ(T ) has a finite derivative,
and both the energy and the entropy are, thus, continuous, a general property
of glassy systems. The free energy, Eq. (5.27) above TK , or Eq. (5.29)
below, is a thermodynamic potential, and reproduces these results by direct
differentiation.

On the side γ < 1 the free energy (5.29) deviates quadratically from Eq.
(5.27), leading to a higher specific heat. It reads

C =
dU

dT
=







cBL− 3λL1/3(T ∂γ
∂T + 1

2T
2 ∂

2γ
∂T 2 ) T < TK

cBL− 3λL1/3γ2(T ∂γ
∂T + 1

2T
2 ∂

2γ
∂T 2 + 1

γ

(

T ∂γ
∂T

)2

T > TK

(5.37)
The result for T > TK is the “field cooled” or thermodynamic value. There
is a discontinuity

∆C = C(TK − 0) − C(TK + 0) = 3λL1/3

(

T
∂γ

∂T

)2

. (5.38)

The “zero field cooled” or component averaged specific heat of this phase
is a short time value, taken at fixed ℓ. It reads

C =
∑

a

paCℓa = cBL− 3λL1/3 γ
2ℓ2max
ℓ2

[

T
∂γ

∂T
+

1

2
T 2 ∂

2γ

∂T 2
+

1

γ
(T

∂γ

∂T
)2
]

(5.39)
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For T > TK one has ℓ = ℓmax, so the component average indeed coincides
with the thermodynamic average, there being only one component. But for
T < TK this value continues smoothly, since ℓ∗ = γℓmax there. Thus, there is
no jump in this quantity, ∆C = 0. The general relation |∆C| ≥ |∆C|, based
on the smaller timescale involved in C, is obeyed.

When considered as a function β = 1/T , the specific heat makes a downward
jump on cooling through βK = 1/TK , as it occurs in realistic glasses.

5.1.3 Dual view in temperature

In our directed polymer model, the moderately high temperature interval
TK < T ≪ lnL is dominated by the widest lane present in the system, and
the moderately low temperature interval 1/ lnL ≪ T < TK by a large set
of narrower, thermodynamically optimal states. This situation, due to the
directedness of the polymers and the geometry of the model, is the reverse
of what happens usually in glasses: finite configurational entropy above the
Kauzmann transition, and vanishing below.

Such an “inverse temperature world” is not completely unexpected, as it
is known to occur in real polymer systems, where a true inverse transition
occurs, and is called inverse freezing [Rastogi et al., 1999; Greer, 2000; van
Ruth & Rastogi, 2004].1

When considered as a function of β = 1/T the situation is reminiscent of
the p-spin interaction spin-glass and of the random energy model [Derrida,
1980, 1981] (also refer to Sec. 7.2). The very-high β regime extends up to
β ∼ lnL, in which a gradual freezing takes place in ”TAP” states of width
ℓ∗ much larger than unity. This smeared transition is related to the sharp
dynamical transition at some temperature Td > TK of mean-field spin-glass
models, as we mentioned in Sec. 1.1 and we will analyze again in Secs. 7.2-7.3.
In the regime βK < β . lnL the system is frozen in TAP states of appropriate
degeneracy; a similar static phenomenon was found [Kirkpatrick & Wolynes,
1987b; Thirumalai & Kirkpatrick, 1988] for spin-glass models in the regime
TK < T < Td. Like in these models, below the “Kauzmann” temperature βK
there is only an essentially nondegenerate state. This is a manifestation of
the “entropy crisis” of glasses and glassy systems, cf. Sec. 1.4.

1Inverse transitions were already hypothesized by [Tammann, 1903], even though almost a
century has passed before experimental evidence for such an intuition was obtained. Glassy
models displaying inverse transitions have been studied recently by Schupper & Shnerb
[2004]; Crisanti & Leuzzi [2005]; Sellitto [2006]; Leuzzi [2007].
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5.2 Directed polymer dynamics

The internal energy of one polymer can, in principle, be monitored as a func-
tion of time in a numerical experiment. One then obtains essentially a noisy
telegraph signal. Each plateau describes trapping of the polymer in one lane
for some definite time. The variance of the noise in the internal energy on this
plateau is equal to T 2C, implying fluctuations of the order L1/2. From time
to time the polymer moves to another lane, causing additional noise. The
variance of the total noise equals T 2C, and it indeed exceeds C by an amount
of order L1/3.

We now consider moderately long time dynamics. On appropriate timescales,
our system can be viewed as a one dimensional set of deep states (traps) la-
beled by a, located in lanes of width ℓa around the location za of the center
of gravity, with associated free energies Fa ≡ Fℓa given by Eq. (5.17).

These minima are separated by very wide regions (separation ∼ expL1/3)
with a fully random potential that builds a barrier. Between traps a and a+1
there is a free energy barrier determined by the intermediate state of highest
free energy. Let us call its free energy Ba: it will typically lie at a distance
L1/3 below the maximal free energy2

Lfmax = −LT lnΛmin = −LT ln(1 − 2e−βJ) (5.40)

The free energy barrier for the polymer to move from state a to state a+ 1
is, thus, Ba − Fℓa , while the barrier for moving to the left is Ba−1 − Fℓa .

For a statistical description of dynamics, we consider a statistical ensemble
of many independent polymers, of which the units make random thermally
activated moves. On appropriate timescales one then gets a master equation
for the probability pa(t) that the center of a polymer is inside the ath state:

t0
dpa(t)

dt
= eβ(Fℓa−1

−Ba−1)pa−1 + eβ(Fℓa+1
−Ba)pa+1

− eβ(Fℓa−Ba−1)pa − eβ(Fℓa−Ba)pa (5.41)

Here t0 is the attempt time for a move of one polymer to another deep state.
This model is a combination of the random jump-rate model and the random
bond models studied by Haus et al. [1982] and Nieuwenhuizen & Ernst [1985].
For a review see Haus & Kehr [1987]. The stationary state is independent of
the barriers Ba:

peq
a =

e−βFℓa

Zeq
(5.42)

2For T > T ∗ ≡ J/ ln 2 things get more complicated since Λmin < 0. Under the condition
(5.32) it holds that T ∗ > TK , implying that this issue only shows up in the phase where
the interface is located in the widest lane.
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The denominator Zeq is equal to the thermal TAP partition sum, Eq. (5.19).
So the master equation (5.41) exactly reproduces the Gibbs distribution dis-
cussed before.

Let us now consider the motion of polymers in an equilibrium ensemble,
after making some nonessential simplifications of the system. First we slightly
modify the actual height of the barriers by settingBa = Lfmax, thus neglecting
their L1/3 deviations. Next we assume, for some fixed ℓ0 (1 ≪ ℓ0 ≪ L1/3),
that all relevant deep traps (and, further, a lot of shallow traps) are located
at positions that are multiples of Wℓ0 = expµℓ0, and we only consider those
states. Their number is Nℓ0 = exp(λL1/3 − µℓ0). After these simplifications
we have arrived at the random jump-rate model,

dpa
dt

= Γa−1pa−1 + Γa+1pa+1 − 2Γapa (5.43)

in one dimension, with a lattice distance Wℓ0 . The jump rates are set by an
attempt time t0 and a suppression rate due to the barrier,

Γa =
1

t0
e−Lβfmax+βFa (5.44)

In such models a result of Haus et al. [1982] says that in the stationary en-
semble the linear diffusion law holds exactly at all times,

1

2
〈δz(t)2〉 ≡ 〈(z(t) − z(0))2〉 = Dt (5.45)

Moreover, the diffusion coefficient is explicitly known,

1

D
=

1

W 2
ℓ0

〈
1

Γ

〉

=
1

W 2
ℓ0

∑

a

peqa
1

Γa
(5.46)

In our situation we have

〈
1

Γ

〉

= t0e
Lβfmax

∑

a e
−2βFℓa

∑

a e
−βFℓa

= t0e
Lβfmax

∫ ℓmax

0
dℓNℓe

−2βFℓ

∫ ℓmax

0
dℓNℓe−βFℓ

(5.47)

where Fℓa is expressed by Eq. (5.17) and Eq. (5.26).

Both integrals are dominated by a similar optimum, the one in the denom-
inator by ℓ∗ from (5.30) and the one in the numerator by

ℓ′∗ = min(21/3γ, 1) ℓmax. (5.48)

The diffusion coefficient can, thus, be expressed as

D =
W 2
ℓ0

t0
eLβ[fB(T )−fmax(T )] × eλL

1/3σ(T ) (5.49)
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(we again neglect algebraic prefactors that arise from the integrations). There
occur three regimes

σ(T ) =







3
2 (21/3 − 1)γ(T ), 0 < γ(T ) < 2−1/3

1 − 3
2γ(T ) + γ3(T ), 2−1/3 < γ(T ) < 1

1
2γ

3(T ), γ(T ) > 1
(5.50)

Since the barriers have a height that deviates by the order L1/3 from a fixed
value L(fmax − fB), we introduce the logarithmic time variable θ by

t(θ) = t0e
βL(fmax−fB) × eλL

1/3θ (5.51)

where θ ranges from ∼ −L2/3, where t ∼ t0, up to O(1), where t ∼ t0 exp(L+
L1/3) and the interesting physics occurs.

To get an impression of the dynamics, we now make an intuitive step:
we assume that the dynamics of individual polymers can be related to the
ℓ-dependence of the numerator of Eq. (5.47), which shows up as a denomi-
nator in D, Eq. (5.49), due to the relation (5.46) (in doing so, we consider
the denominator of (5.47), and, thus, the numerator of D, merely as a nor-
malization). This view on the dynamics differs somewhat from the one by
Nieuwenhuizen [1997b].

Let us consider the regime T < TK . At given θ, the polymers have a time
t(θ) to make moves. The typical deviation follows from Eqs. (5.45) and (5.49)
as

ln
|δz|
W0

∼ 1

2
λL1/3(θ + σ − ℓ′∗

ℓmax
− γ3ℓ2max

ℓ′∗2
+

ℓ

ℓmax
+
γ3ℓ2max

ℓ2
) (5.52)

Given the fact that, viewed statistically, the polymer will start from a rather
narrow lane, it will, in the course of time, cover wider and wider lanes. Thus
we can relate Eq. (5.52) to the distance between optimal states Wℓ = expµℓ
already reached at time t(θ), and their number, ∼ expSinterc (ℓ, θ), which
follows by setting |δz| ∼ Wℓ expSinterc . It thus defines the intercluster con-

figurational entropy, i.e., the configurational entropy of the states of width ℓ
already reached at time t(θ):

Sinter
c (ℓ, θ) =

1

2
λL1/3(θ + σ − ℓ′∗

ℓmax
− γ3ℓ2max

ℓ′∗2
− ℓ

ℓmax
+
γ3ℓ2max

ℓ2
) (5.53)

For short times, that is, for large negative θ, indeed, only small ℓ ≤ ℓmax

√

γ3/|θ|
will bring a nonnegative value, as only these states can be reached. The largest
ℓ reached at time θ, ℓdyn(θ), is found from Sinter

c = 0, i.e., from the cubic equa-
tion

ℓdyn

ℓmax
− γ3ℓ2max

ℓ2dyn

= θ + σ − ℓ′∗
ℓmax

− γ3ℓ2max

ℓ′∗2
(5.54)

The equilibrium relation ℓdyn = ℓ′∗ tells us that, for a time set by

θ∗ = −σ + 2
ℓ′∗
ℓmax

(5.55)
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that is, for

θ∗(T ) =







( 3
2 + 2−2/3)γ, 0 < γ(T ) < 2−1/3

1 + 3
2γ − γ3, 2−1/3 < γ(T ) < 1

2 − 1
2γ

3(T ), γ(T ) > 1
(5.56)

the next thermodynamically optimal state will typically have been reached, so
that, then, each of the polymers has swept a region of phase space in accord
with the equilibrium prediction, and has achieved thermodynamic equilibrium
by itself.

We consider the states with ℓ up to ℓdyn(θ) as one cluster. The configu-
rational entropy of these clusters is Sdyn

c (θ) = lnNdyn = µ[ℓmax − ℓdyn(θ)].
Since ℓdyn grows in time, the configurational entropy decreases. At θ = θ∗,
where ℓdyn(θ∗) = ℓ∗(T ), it equals the equilibrium value Sc(ℓ∗(T )), defined by
Eq. (5.23).

This supports the view presented in Chapter 1, Sec. 1.4 that, in the course
of time, states with lower free energy and lower configurational entropy be-
come relevant. Let us recall that our system has a mean-field nature because
we take L large. Moreover, we look at time scales that depend exponentially
on L, see Eq. (5.51). Because of this, the system visits deep states separated
by very large energy barriers, that allow a description in terms of configura-
tional entropy.3

This dynamical behavior of individual polymers may be expressed in terms
of their dynamical partition sum at timescale t(θ), where the system is split
up in independent clusters c = 1, · · · ,Nℓdyn(θ) of width Wℓdyn(θ) and fixed
common length L:

Z(θ) =

Nℓdyn(θ)
∑

c=1

Zc[Wℓdyn(θ)] (5.57)

where each of the Zc(W )s is as in Eq. (5.1), with a running value for W but
fixed L. This approach results in the dynamical free energy

βFdyn(θ) = LβfB + λL1/3

[

γ3ℓ2max

2ℓ2dyn(θ)
− 1 +

ℓdyn(θ)

ℓmax

]

(5.58)

Let us consider T < TK . The dynamical free energy has a minimum, which
is approached in the limit θ → θ∗(T ). The value of the minimum coincides
with the static value, Eq. (5.29). At that timescale a polymer will typically
have found a state of thermodynamically optimal width ℓdyn(θ∗) = γ(T )ℓmax.
For T > TK , at time t(θ∗), it will have found the widest lane and, thus, be in
equilibrium.

3For the p-spin spin-glass model, such a scenario was anticipated in [Nieuwenhuizen, 1998a].
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5.3 Cooling and heating setups

Contrary to most glassy systems, our model has a regime with many thermo-
dynamic states below TK , and a single one above TK . In order to compare
with cooling experiments in realistic glasses, we must consider a heating exper-
iment (which is a cooling experiment in the variable β). Let the temperature
change slowly with time, T = T (θ). It defines the inverse function θ(T ), that
characterizes the heating trajectory. Due to the L-dependence in Eq. (5.51),
θ will start at ∼ −L2/3 for small t, but when θ = O(1), it need not be a
monotonically increasing function of T . Approaching TK from below under
appropriate conditions, a thermal glass transition (cf. Sec. 1.1.1) will occur
at some temperature Tg < TK (it is a freezing transition in terms of β). This
temperature is set by ℓdyn(θ(Tg)) = γ(Tg)ℓmax, where, starting from small
widths, the dynamically achieved width equals the thermodynamically opti-
mal width. At Tg the internal energy is continuous, as it is at TK . For T < Tg

the specific heat takes the equilibrium value from Eq. (5.37),

C = cBL− 3λL1/3

(

T
∂γ

∂T
+

1

2
T 2 ∂

2γ

∂T 2

)

(5.59)

Having fallen out of equilibrium, for T > Tg it will take the component average
value from Eq. (5.39),

C = cBL− 3λL1/3 γ
2ℓ2max

ℓ2dyn(θ)

[

T
∂γ

∂T
+

1

2
T 2 ∂

2γ

∂T 2
+

1

γ

(

T
∂γ

∂T

)2
]

(5.60)

Around the thermal glass transition one has ℓdyn(θ) = γℓmax. There is a
jump in the specific heat

∆C = 3λL1/3 1

γ

(

T
∂γ

∂T

)2

(5.61)

which differs from Eq. (5.38) by the fact that 1/γ(Tg) > 1 whenever Tg < TK .
There is no symmetry between cooling and heating experiments. In order

to have a decreasing T (t), Eq. (5.51) tells us that θ must be of the order
−L2/3, whereas it is typically of the order of unity for heating. Equating Eq.
(5.53) to zero, then leads to widths ℓ ∼ O(L0), thus completely reinitializing
the relaxation. Such a phenomenon was observed upon heating in spin glasses
and explained in terms of hierarchy of phase space [Lefloch et al., 1992].

5.3.1 Poincaré recurrence time

One may still consider the Poincaré time, where, statistically, an individual
polymer has had enough time to visit the whole system. It basically suffices



224 Thermodynamics of the glassy state

that it finds the widest lane, so we have to consider Eq. (5.54) for ℓdyn = ℓmax,
yielding

θPoincare = 1 − γ3(T ) − σ(T ) +
ℓ′∗(T )

ℓmax
+ γ3(T )

ℓ2max

ℓ′∗(T )2
(5.62)

that becomes

θPoincare(T ) =

{
1 + 3

2γ − γ3, 0 < γ(T ) < 2−1/3

2 − 1
2γ

3 γ(T ) > 2−1/3 (5.63)

Comparing with the parameter for achieving thermodynamic equilibrium,
θ∗, from Eq. (5.56), we see that the time a given polymer needs to visit
the whole system, after having found its thermodynamically optimal state, is
characterized by

θPoincare − θ∗ = 1 − ℓ′∗(T )

ℓmax
− γ3

(

1 − ℓ2max

ℓ′∗(T )2

)

(5.64)

Obviously, this vanishes when ℓ′∗ = ℓmax, that is, for γ > 2−1/3, while other-
wise it equals

θPoincare − θ∗ = 1 − 2−2/3γ − γ3 = (2−1/3 − γ)(γ2 + 2−1/3γ + 21/3) (5.65)

Conclusion

Our dynamical analysis puts forward the picture that the hierarchical struc-
ture of phase space, here having the structure of a one level tree and rem-
iniscent of one step replica symmetry breaking, is a dynamical effect. At
a given timescale t(θ), only nearby states can be reached, having widths
up to ℓdyn determined by Eq. (5.54). The degeneracy of these regions
leads to a configurational entropy Sc(θ) = µ[ℓmax − ℓdyn(θ)]. At the value
θ∗(T ) = −σ(T ) + 2ℓ′∗(T )/ℓmax, where σ(T ) is defined in Eq. (5.50) and ℓ′∗(T )
in Eq. (5.48), the thermodynamically optimal width ℓ∗(T ) has been reached:
many states for T < TK and the widest state for T ≥ TK .



6

Potential energy landscape approach

In just the same way the thousands of succes-
sive positions of a runner are contracted into one
sole symbolic attitude, which our eye perceives,
which art reproduces, and which becomes for
everyone the image of a man who runs.

Henri-Luis Bergson

In the previous chapters we have been analyzing how phenomena occurring
in glassy materials can be reproduced by means of very simple models start-
ing from a couple of basic ingredients, such as the separation of timescales
between fast and slow processes and some kind of collective process for the
relaxation of the slow modes. The previous description, however, is limited
to the search for the fundamental mechanisms behind the slowing down of
the relaxation and the fall out of equilibrium of the slow degrees of free-
dom inducing the glass transition. Those models are very helpful because,
since they are simple, a lot of computation can be carried out and a rather
straightforward connection between basic mechanisms and glass behavior can
be obtained. They cannot, however, explain how these mechanisms arise in
real systems. To get this information one should try to devise models that
are direct representations of the intermolecular forces and chemical properties
of the components of glass formers in nature. Unfortunately, moving to the
level of a more faithful microscopic description implies a substantial loss in the
power of theoretical predictability, unless further assumptions are introduced
and numerical simulations are carried out to guide our intuition of physical
phenomena.

In this chapter we will, indeed, show and discuss a very broadly diffused
method to approach the study of the glassy behavior of models that are more
realistic with respect to those met in previous chapters. These are systems
whose space of states is complicated, both diversified and highly degenerate,
and whose dynamics becomes slower and slower as temperature decreases,
eventually leading to an arrest, right because of the complexity in the organi-
zation of the states. The price to pay to implement this “rugged landscape”
description, as we will see in detail, will be to assume the existence of a ficti-
tious space of the states, somehow related to the original one, and study the
dynamics and the related glassy properties in this substitutive ensemble. We
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will, thus, deal with a symbolic dynamics, whose equivalence to the original
one is the fundamental assumption of the whole approach.

The characteristics of a glassy system arise from the complex topography
of the multidimensional function representing the collective potential energy
yielding a nontrivial partition function and thermodynamic potential. The
spatial atomic patterns in crystals and in amorphous systems share the com-
mon basic attribute that both represent minima in the free energy. At low
enough temperature, where vibrations are minimal, one can try to assume
that they are approximately represented by the minima of the potential en-
ergy function describing the interactions. The presence of distinct processes
acting on two different timescales would mean that the deep and wide (i.e.,
wider than the crystal ones) local minima are geometrically organized to cre-
ate a two length-scale potential energy pattern. Lowering the temperature
of the liquid glass former, the bifurcation takes place as soon as it becomes
“viscous.” By definition the temperature at which it occurs is the dynamic
glass transition temperature Td (Sec. 1.1). The viscosity above which the de-
coupling of timescales occurs is usually estimated of the order of 10−2 Poise.
This has to be compared with the order of magnitude, η ∼ 1013 Poise, at
which the glass transition temperature, Tg, is operatively defined, allowing
for a probe range for theories for the glass formation of about fifteen orders

In the general case, decreasing the temperature, the free energy local min-
ima can, in principle, be split into smaller local minima or disappear. However,
if we can assume that the possible birth/death of minima is not so dramatic
that they lose their identity almost everywhere in the configurational space,
we can set a one-to-one correspondence between metastable states and in-

herent structures (IS) [Stillinger & Weber, 1982, 1984; Stillinger, 1995; Sastry
et al., 1998], i.e., between the minima of the free energy and the minima of the
potential energy (see Fig. 6.1). Upon such an assumption one can, therefore,
study the dynamical evolution of a glass former in its equilibrium and aging
regime by means of a symbolic dynamics through ISs, rather than the true
dynamics through metastable states at finite temperature.

In this point of view an approximate approach to the problem is to divide
the complicated multidimensional landscape in structures formed by large
deep basins and to describe the dynamics of the processes taking places as
intra-basin and inter-basin. The potential energy landscape derived this way
is, indeed, a description viewpoint. It helps to classify some static and kinetic
phenomena associated with the glass transition according to a topographic
analysis of the potential energy function. It was initially devised by Goldstein
[1969] as an alternative approach to the study of the glassy state, that was po-
tentially able to overcome the problems and inconsistencies of the free volume

theory [Williams et al., 1955; Ferry, 1961],1 and the descriptive limitations of

1We do not consider the free volume theory in the present book. The interested reader can
consult the papers of Turnbull & Cohen [1961, 1970] or the recent books of Wales [2003]

of magnitude (see Chapter 1, in particular Secs. 1.1, 1.2).
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FIGURE 6.1

The figure illustrates, in a rather simplified one dimensional projection in the gen-

eralized coordinates, the free energy landscape of a glassy system (left) and its PEL

basin decomposition (right). In going from the FEL to the potential energy basins

(labeled by the values of their minima) the assumption is made that the basins of

the true free energy landscape do not split (or disappear) as the temperature is

lowered, e.g., from T2 to T1 in the plot, so that the same basin decomposition holds

for all temperatures. What changes with the temperature is only the probability of

visiting a basin with a given minimal energy (cf. Eq. (6.12)). Even though in reality

upon changing T , minima can split, merge, appear, or disappear, the assumption of

robustness of the basin decomposition turns out to be quite reliable, at least for the

classes of models reported in the present chapter.

Adam-Gibbs-Di Marzio “entropic” theory (see Chapter 1, Sec. 1.5 and also
Chapter 7) employed in the 1960s to study the amorphous materials and the
viscous liquids.

In order for the dynamics in the potential energy landscape to significantly
represent the actual dynamics of the system at finite temperature, not only
should there be a one-to-one correspondence between ISs and real minima

and Binder & Kob [2005].
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of the free energy landscape (FEL) at finite temperature, but also these ISs
should be visited with the same frequency with which the corresponding FEL
minima are visited.

In this chapter we will present the potential energy landscape theory, mainly
constructed by Stillinger and Weber after the above-reported intuition. We
will look at the quality of such a scheme in representing finite temperature
systems and we will consider some applications to model systems and the con-
nections with the out-of-equilibrium thermodynamics introduced in Chapter
2 and extensively investigated in Chapter 3. For a widening of the subject we
might suggest that the reader start from the recent reviews of Debendetti &
Stillinger [2001] and Sciortino [2005], as well as from the dedicated monograph
by Wales [2003].

6.1 Potential energy landscape

In a D-dimensional system of N particles, each displaying n inner degrees of
freedom the potential energy landscape (PEL) (or surface or hypersurface)
is a function of M = D × N × n variables embedded in a DNn + 1 dimen-
sional space. The state of the system is represented as a state-point r ∈ ℜM
moving on the surface with a M -dimensional velocity whose average value is
temperature dependent. However, the potential energy Φ(r) is not a function
of temperature. Minima correspond to mechanically stable arrangements of
N particles in the D-dimensional real space (no force or torque). Any small
displacement from such an arrangement gives rise to restoring forces. Lowest
lying minima are those whose neighborhoods would be selected for occupation
by the system if it were cooled slowly enough to maintain the thermal equi-
librium at any temperature (adiabatic cooling). These are not the minima
representing a glass, that are, by definition, stuck out of equilibrium. The
only exception might be the case of an ideal glassy phase, the transition to
which is (would be) a true thermodynamic one (see Secs. 1.4 and 6.1.4)

One can make a configurational mapping of sets of molecular positions to
minima of the PEL and separate the statistical mechanics description of the
many-body problem in two distinct parts: one taking care of mechanically sta-
ble packings (in the absence of thermal excitation) and the other one dealing
with the vibrational thermal excitations around those packings. In Fig. 6.2
we show a schematic representation of the PEL decomposition in IS energies
and shapes.
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FIGURE 6.2

One dimensional reduction of the PEL description of the system. The configuration

of a system of N particles (and their n inner degrees of freedom) moving in a D-

dimensional space, is represented by the M = DNn dimensional vector r. Different

r can be grouped together according to the basin of the PEL to which they belong.

Basins whose minimal energy (the inherent structure energy φ) is the same, con-

tribute in the same way to the thermodynamic description, they display the same

vibrational free energy. In other words, the shape of the basin, for given values

of, e.g., temperature and volume, is assumed to depend only on φ. The potential

energy level corresponding to the crystal state is not drawn.

6.1.1 Steepest descent

The potential energy function is supposed to be bounded and differentiable
whenever there is no overlap of particles. It can include contributions from
electrostatic multipoles and polarization effects, covalent and hydrogen bond-
ing, intermolecular force fields, short-range electron-cloud-overlap repulsions
and longer range dispersion attractions. It is, indeed, a very complicated ob-
ject to devise and draw.

Not knowing the PEL, Φ, nor the FEL, a priori, in order to establish
the mapping between configurational space of the real system and inherent
structures one has, then, to define an operative procedure: the steepest de-

scent method. Calling r the M -dimensional vector of the coordinates of the
N molecules’ configuration of the glass former, the steepest descent paths are
solutions of the dissipative equation (in unitary mass and damping coefficient)

r̈ + ṙ = −∇Φ (r) (6.1)

in the limit case where r̈ → 0. This highly dissipative motion represents a very
effective and rapid quench, such that the system is never able to overcome
any barrier in the process and it can only go to the underlying minimum of
the PEL. In practice, this operative procedure establishes a mapping between
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FIGURE 6.3

Steepest descent procedure: any point in the basin is connected to the minimum φ if

the dynamics expressed by Eq. (6.2) is applied. The basin is composed by the set of

points in configurational space connected to the configuration of minimal potential

energy without overcoming any energy barrier. On the right a temperature axis is

displayed. The system point representing the system at the temperature of the heat

bath is connected by steepest descent to the minimum of its basin, as if performing

an instantaneous quench to zero temperature: no energy barrier can be overcome

and the system description is, thus, decomposed by sets of points connected to the

same minimum in potential energy.

the continuous coordinates space to the discrete set of minima of the PEL.
See Fig. 6.3.

One can define an inherent structure as that minimum below an actual
configuration of the system evolving in time at some temperature T , that
is, the minimum of the potential energy reached by steepest descent. In
this respect we must stress that by “instantaneous quenching”, i.e., cooling
with an infinite rate, we mean to decrease the kinetic energy in a continuous
way as the evolution time is stopped. The purely mechanical dynamics that
defines operatively an IS, is performed, even conceptually, “out of the real
time”, on an auxiliary time variable s keeping track of the iteration step. The
configurations are mapped onto IS by solving the multidimensional equation

∂r

∂s
= −∇Φ(r) (6.2)

If we take a given r, describing the real system at time t, as the initial condition
(s = 0) for the above dynamics, the solution r(s) identifies the corresponding
IS in the asymptotic limit in s.

The introduction of ISs allows, at low enough temperature, a decomposition
of the partition function into an IS part, connected to the potential energy
levels corresponding to the configurations of the system at temperature T , and
a part connected to the thermal excitation of the configurations in a single
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minimum. This decomposition holds both for undercooled liquids and for solid
glasses. Actually, we might turn this around and say that an undercooled, or
viscous, liquid is defined as a liquid whose thermodynamic description can be
decomposed as above.

6.1.2 Features of the PEL description borrowed from vitre-
ous properties

The first basic assumption behind the FEL-PEL correspondence is that the
existence of large energy barriers between minima, much larger than the ther-
mal excitation, is intrinsic in glasses. Moreover, as we will see in detail later
on, the mechanical stability of a glass at low temperature is also taken for
granted: a glass state point is always considered as near to a potential en-
ergy minimum. This property is translated also to undercooled liquids, even
though no mechanically stable structure can be identified in real space. The
thermodynamic properties can be approximately described in terms of a spec-
trum of harmonic vibrational frequencies (see Sec. 6.1.5). In this approxi-
mation, the flow description is consistent with the PEL description only at
low temperature and only when the (undercooled) liquid is very viscous and
can its flow be represented by means of movements through PEL minima.
At higher temperatures the whole description becomes inconsistent but can
be cured by introducing anharmonic corrections (cf., e.g., [Büchner & Heuer,
1999; La Nave et al., 2003a; Keyes & Chowdhary, 2004]).

The PEL region representing a glass former displays a large number of min-
ima, unlike the region representing crystals. The decrease of entropy recorded
in undercooled liquids is associated with the progressive ordering of the system
in configuration space, i.e., in the progressive population of basins with lower
energy and lower degeneracy. When the characteristic time of this population
evolution towards the bottom of the PEL is long, the system properties turn
out to depend on its history.

The function Φ depends on all degrees of freedom of all molecules. How-
ever, in a transition over a barrier only a certain number of molecules co-
operatively rearrange their positions to move the system point to a nearby
minimum. Molecules in a small region of the real space rearrange their posi-
tions and this is described as a transition between two “connected” minima in
the M -dimensional PEL. Unless the temperature is very low, rearrangements
can occur in different real space regions at the same moment. In this case
the system point in the PEL is no more near a minimum most of the time.
Anyway, a correspondence can be set with the PEL minimum “lying below”
the state point. This means that the system would reach a minimum in a
steepest descent procedure taking place with relatively small changes of most
of the coordinates. The points connected in this way to a minimum, belong
to its basin of attraction, i.e., to its inherent structure. A transition between
two configurations pertaining to the same IS - an inter-basin transition - is
due to a local change.
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6.1.3 Inter- and intra-basins transitions: scales separation

In a real glass, the presence of distinct processes, acting on different timescales,
can be obtained from a careful analysis of the relaxation response function
above Tg. We limit ourselves to a two timescale approach. This means that
the deep and wide local minima below Td are geometrically organized into
a two length-scales potential energy pattern. As a consequence, the system
shows α and β processes. The α processes represent the escape from one deep
minimum within a large scale valley to another valley. This escape requires
a lengthy directed sequence of elementary transitions producing a very large
activation energy, much higher than for β processes. Moreover, the high-lying
minima between any two valleys, among which the system is making a transi-
tion, are many and degenerate. This implies a large activation entropy for the
inter-basin transition between two deep (amorphous state-related) minima.
The β processes are instead related to elementary relaxations between neigh-
boring minima (intra-basin dynamics). Usually one puts together all kinds of
β processes in the short timescale, since they are in any case much shorter
than the observation time considered.2

Processes are characterized by their vibrational frequencies, or characteris-
tic times, and by their length-scales. Vibrations can take place also in mate-
rials with no regular lattice, but when the relaxation time for the structure
is such that vibrations are damped in a time equal to a cycle or less, then
the idea of vibration itself loses its meaning. In viscous liquids, a decoupling
takes place in vibrations of low frequencies, damped, and vibrations of high
frequencies, active. A threshold between the two regimes is given by frequen-
cies of the order of magnitude of the inverse relaxation time. The modification
in a cooperative rearranging region (CRR) takes some time to occur. This
time must be less than the relaxation time, for the description in terms of
the PEL to hold, and this is exactly the case for highly viscous undercooled
liquids and glasses.

A separation of length-scales also takes place. Processes with short-length
scales (“rattling in the cage”, i.e., high frequency vibrations) are decoupled
from processes with long length scales (diffusive motion, with low frequency,
highly damped in the amorphous phase). These different length-scales go
hand-in-hand with different timescales.

From old neutron scattering experiments [Sjölander, 1965] it was possible
already for Goldstein [1969] to estimate that the separation of timescales can

2In many amorphous materials, besides the relatively fast “rattling-in-the-cage” β processes
(sometimes called βfast), also the so-called Johari-Goldstein β processes [Johari & Goldstein,
1971] are detected. Even if considered fast with respect to the almost frozen α processes,
their relaxation times to equilibrium usually display an Arrhenius behavior in temperature.
They are, indeed, experimentally clearly identified only at low temperature and can be
related to activated processes, though of a local nature and, thus, not truly contributing to
the structural relaxation. See also Fig. 1.1.
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appear for viscosity values above the order 10−2 Poise in normal liquids, this
way defining Td (cf. Sec. 1.1).

6.1.4 Inherent structures distribution: formal treatment

We now derive the expression of the thermodynamic potential for viscous
liquid based on the PEL approach. We stress that decoupling of timescales
is assumed even though the equilibrium for both scales is still supposed. The
out-of-equilibrium case, valid (possibly) for the glass state description will be
discussed in Sec. 6.3.

Let us call R(I) the ensemble of r configurations related, through steepest
descent, to the inherent structure I. R(I) is connected but not necessarily
convex. Indeed, a saddle point can occur within it and, in this case, the
quench paths bifurcate.

The partition function of N particles in a D dimensional space (we set the
number n of degrees of freedom per particle equal to one) is

ZN =

∫

dr exp[−βΦ(r)]
1

λDNN !
=
∑

I

∫

R(I)

dr exp[−βΦ(r)]
1

λDNN !
(6.3)

The parameter λ is the thermal wavelength coming from the integration over
the momenta of the molecules. In a monoatomic system of just one type of
particles with a massm it is, e.g., λ =

√

2πβ~2/m. We notice, however, that it
plays no role in the PEL formulation. Instead of single inherent structures, it
is more meaningful to consider equivalence classes, i.e., to group all the basins
with the same minima together. Generically, there will be N !/σ minima in
each class, where σ is a model parameter depending on the kind of potential.3

Moreover, one can write Φ(r) = ΦI + ∆I(r) and

ZN =
∑

I

′e−βΦI

∫

R(I)

dr

λDN
exp[−β∆I(r)] (6.4)

where the prime on the sum means that possible global (crystal) minima are
not counted (we are not describing the crystallization process). The minimum
of the potential energy is ΦI , whereas ∆I(r) is the difference between the
potential energy of a generic configuration r belonging to a basin R(I), and
the relative IS energy ΦI . We now introduce the potential energy per particle,
φ = Φ/N and the density of distinct packing mechanically stable states

Ω(φ) ≡
∑

I

′δ(φ− ΦI/N)/σ(I) (6.5)

3Limiting case values are σ = 1 for wall forces and σ = N for periodic boundary conditions
(otherwise 1 < σ < N). The factorial N ! is due to permutation of identical particles
[Stillinger & Weber, 1982].
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with φm ≤ φ ≤ φth, where φm is the crystal minimum and φth is the value of
the “threshold” states above which no minima occur anymore.

The density Ω grows exponentially with N . If we take a system of N
particles with short-range interactions it is likely that the move from one state
to another one in the PEL can be caused by sequences of local rearrangements
in the real space. If we take a large system we can divide it in cells large enough
that any local set of rearrangements in one cell will not interfere with others.
The total number of configurations explored this way can then be considered
as multiplicative over the cells (at leading order) and this observation leads to
an exponential behavior in N for the total number of distinguishable potential
energy minima:

Ω(φ) ∼ esc(φ)N/kB (6.6)

where sc(φ) takes into account all the minima of the PEL at a given φ level.
The vibrational part, at a given, narrow, interval of values of φ, can be

averaged over all possible packings displaying the same energy. This leads to
the definition of the vibrational contribution of the free energy:

fvib(φ, β) ≡ − lim
N→∞

1

Nβ
log

〈
∫

R(I)

dr exp[−β∆I(r)

〉

(6.7)

This assumption is equivalent to stating that the value of potential energy
uniquely characterizes the properties (i.e., the shape) of the basin in the PEL
(cf. Fig. 6.2).

Eventually, using the definitions of Eqs. (6.5) and (6.7) we obtain

ZN ∼ λ−DN
∫ φth

φm

dφ exp {N [−βφ+ sc(φ)/kB − βfvib(φ, β)]} (6.8)

and, approximating further the integrand by its maximum as N → ∞ (saddle
point approximation), the free energy per particle of the undercooled liquid is

f
(
β, φ̄

)
= lim
N→∞

− 1

βN
logZN = φ̄+ fvib(β, φ̄) − Tsc(φ̄) (6.9)

where φ̄ is the solution of the saddle point equation

T
∂sc(φ)

∂φ
= 1 +

∂fvib(β, φ)

∂φ
(6.10)

with
∂2
φsc(φ) < β∂2

φfvib(β, φ) (6.11)

The value φ̄ is the average potential energy per particle obtained by quenching
to zero temperature a collection of system configurations randomly selected
from the equilibrium state at temperature T = 1/β. The free energy f , Eq.
(6.9), can, thus, be derived if the depth (φ̄), the shape (∼ fvib) and the num-
ber (eNsc/kB ) of the basins of the PEL are known. We should stress that, even
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though Eq. (6.9) is already a guess, based on the assumption that the PEL
minima are in a one-to-one correspondence with the real - unknown - FEL
minima (cf. Fig. 6.1), further approximation will be necessary to actually
compute it, especially for what concerns the shape, that is, the expression for
fvib, Eq. (6.7) (cf. Sec. 6.1.5). We also notice that sc(φ) is independent of
the temperature as a function of the potential energy and that it acquires a
temperature dependence exclusively through the insertion of the saddle point
value φ̄(T ) in Eq. (6.9).

For monoatomic substances in the fluid phase, e.g., liquified noble gases and
molten alkali metals, the distribution of distinguishable minima (equivalence
classes) in φ shows a high peak at the amorphous packing value of potential
energy. The dominating amorphous minima are narrowly distributed in φ.
The liquid phase displays the free energy Eq. (6.9) plus some additional T -
dependent terms [Stillinger & Weber, 1982].

In glasses, however, this cannot hold, since no thermalization takes place.
It becomes infeasible even among the distribution of φ values limited to the
amorphous interval. On the contrary, the glass transition (unlike the melting
transition) turns out to be “nonuniversal,” the sharpness of the changes in
thermodynamic observables (such as the specific heat, cf. Figs. 1.4, 1.5) is
smeared out and, depending on the different histories of the material, the
degree of sharpness can be different. As we underlined from the very begin-
ning (Chapter 1, Sec. 1.1) the glass transition, indeed, is a purely kinetic,
off-equilibrium transition.

The configurational entropy of the inherent structures might, in principle,
be obtained from the molecular structure and from the interactions. In prac-
tice, one needs to numerically simulate the dynamics of glass former models
on a computer to get such information.

In cooling, the (temperature-dependent) inherent structure energy φ̄(T )
tends to the minimum value of the potential energy, φm. Furthermore, we
observe that Eq. (6.10) is consistent at any temperature only if the slope
of the configurational entropy at the minimum φm tends to infinity right as
T → 0 (the right-hand side does not diverge). Instead, if ∂sc(φ)/∂φ|φ=φm

is finite, this implies that φ̄ → φm at some finite temperature “Tis,” below
which Eq. (6.10) becomes meaningless. In the latter case, below that tem-
perature, the system would be stuck in an amorphous packing belonging to
one of the sub-extensively many low-lying minima of the PEL. Consistent
with previous definitions, and provided that the excess entropy is identified
with the configurational entropy (consult again the discussion in Sec. 1.4),
the temperature in question coincides with the Kauzmann temperature TK
and the lack of analyticity occurring in Eq. (6.10) signals a thermodynamic
transition to an “ideal glass” phase. We stress, however, that this is true un-
der the assumptions that (i) in the metastable undercooled liquid below the
melting temperature (but above the glass transition) the vibrational modes
yield the same entropic contribution as the vibrational modes in the underly-
ing stable crystal, and (ii) the liquid-crystal excess entropy can be correctly
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extrapolated even far below the glass temperature Tg, down to temperatures
at which it vanishes. These assumptions cannot be experimentally verified
and, furthermore, they are not always satisfied in numerical simulations. As
a counterexample the reader can refer to a soft spheres model with a mean-
field attraction studied by Shell et al. [2003] where it is explicitly shown that
the ideal glass transition point and the Kauzmann locus (at which the excess
entropy vanishes) are distinct items.

From Eqs. (6.9)-(6.10) one can define the IS probability distribution

p(φ, T ) =
1

ZN (T )
Ω(φ) exp {−Nβ [φ+ fvib(φ, T )]} (6.12)

where ZN (T ) is the partition function. Eq. (6.12) represents the probability
that an equilibrium configuration at T = 1/β belongs to a basin associated
with an IS structure with an energy density in the interval [φ, φ+dφ] [Stillinger
& Weber, 1982; Sciortino et al., 1999]. The quantity kB log Ω(φ) = Nsc(φ)
is the configurational entropy of the states at energy φ. Integrating over all
energy levels, the temperature-dependent configurational entropy counting all
basins involved in the zero temperature symbolic representation of the FEL
minima at finite temperature, is defined as

stotc (T ) =

∫

dφ p(φ, T ) sc(φ) (6.13)

We recall that, in order to write down p(φ, T ), the basin information must
depend only on the potential energy level: minima of equal φ all contribute
with the same fvib to the system. At very low temperatures, even below
Tg, a further approximation is sometimes made, namely that fvib(φ, T ) ∼
fvib(T ), because fluctuations inside one IS are small [Sciortino et al., 1999;
Kob et al., 2000]. In that case the shape of the basin depends exclusively
on the temperature: the internal (vibrational) states of every IS produce the
same (vibrational) free energy fv at given T . We will consider this very
special case in the following, when the out-of-equilibrium framework will be
considered, but we remark for now that this hypothesis is already violated in
very standard models for glass formers such as, e.g., the Lennard-Jones binary
mixture [Sciortino & Tartaglia, 2001]. See also [Starr et al., 2001; Mossa et al.,
2002; Giovambattista et al., 2003; Sciortino et al., 2003].

6.1.5 Harmonic approximation

The vibrational contribution to the free energy can be approximated by con-
sidering the quadratic approximation of the potential energy around an in-
herent structure configuration of energy φ. In the base of normal mode eigen-
vectors, the dynamics of the system can be described as a set of M harmonic
oscillators and the partition function of a basin, averaged over all degenerate
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basins, can be written as

Zbasin(φ;T ) = e−βΦ

〈
M∏

i=1

1

β~ωi(φ)

〉

(6.14)

Its logarithm yields the free energy contribution of the single Φ-basin: Φ +
Fvib(φ, T ). The vibrational part, Eq. (6.7) turns out, thus, to be

Fvib = Nfvib(φ;T ) = −kBT logZbasin(φ;T ) − Φ (6.15)

= −kBT log

〈

exp

[

−
M∑

i=1

log β~ωi(φ)

]〉

≃ kBT

〈
M∑

i=1

log β~ωi(φ)

〉

Apart from constants and temperature factors, Fvib contains the information
of the shape of the mean basin at φ:

S(φ) ≡
〈

M∑

i=1

log
ωi(φ)

ω0

〉

= +βFvib −M log β~ω0 (6.16)

where ω0 is the frequency unit (making the argument of the logarithm dimen-
sionless). This quantity is usually found to be linear or almost linear in φ
in numerical simulations of viscous liquid models, e.g., in Lennard-Jones (LJ)
binary mixtures [Sciortino et al., 1999; Sastry, 2001], in the Lewis-Wahnström
(LW) orthoterphenyl model [Mossa et al., 2002], and in the simple point charge
extended (SPC/E) water model [Starr et al., 2001; Giovambattista et al., 2003;
Sciortino et al., 2003]:

S(φ) = a+ b φ (6.17)

where the coefficients are volume dependent. Following this observation, then,
in the harmonic approximation fvib turns out to be linear in φ, to a very good
approximation, in a large number of significant cases.

6.2 Thermodynamics in supercooled liquids

We consider in this section how the IS-vibrational separation of the PEL
theory is implemented in thermodynamics quantities and, in particular, how
an equation of state can be constructed, displaying some universal features
common to the vast majority of undercooled liquids. We, thus, start looking
at the pressure and its relationship with temperature and volume (or density).

6.2.1 Inherent structure pressure

As any other observable, in the PEL formalism, the pressure can be considered
as the sum of contributions due both to the vibrational displacements around
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some minimal energy packing and to the configurational contribution due
to the separation of the space of metastable states into inherent structures.
The inherent structure pressure contribution Pis is, therefore, an interesting
parameter that can be directly measured in numerical simulations [Roberts
et al., 1999; Utz et al., 2001; La Nave et al., 2002; Shell et al., 2003]. Indeed, a
typical behavior has emerged, common to several glass former models, such as
the extended simple point charge (SPC/E) effective pair water model [Roberts
et al., 1999], models for ethan, n-pentene and cyclopentene [Utz et al., 2001],
a monoatomic Lennard-Jones (LJ) model with a cutoff [Sastry et al., 1997]
and the Lewis-Wahnström (LW) model for orthoterphenyl [La Nave et al.,
2002], to mention a few. To calculate Pis, at fixed values of temperature and
density/volume, after having sampled a large number of inherent structures
by steepest descent in molecular dynamics, the standard virial expression can
be used. Even though an inherent structure is defined as a mechanically stable
configuration of molecules and, thus, the latter do not experience any force,
a virial function and a corresponding pressure can still be computed [Sastry
et al., 1997]. In all cases, the density dependence of the IS pressure displays
a qualitatively similar behavior (see Fig. 6.4):

1. It is positive for large density.

2. As the density decreases it becomes negative: the system moves from a
state of positive pressure to a state of tension.

3. Decreasing ρ further, the IS pressure reaches a minimum at a given value
(usually referred to as the “Sastry density,” ρS) that describes the situa-
tion of maximum feasible tension. Below this point the system fractures
and the PEL is no more homogeneous, presenting empty regions. Below
ρs the system is mechanically unstable.

4. As the density goes to zero, Pis → 0−.

In terms of the PEL formalism the IS pressure can be reasonably defined
as minus the volume derivative of the average IS energy φ̄ [Shell et al., 2003].
We can verify this definition identifying the IS pressure contribution to the
total pressure, that is, differentiating Eq. (6.9) with respect to the volume:

P = −∂f
∂v

= ρ2 ∂f

∂ρ
= ρ2

[
∂fvib

∂ρ
− T

∂sc
∂ρ

]

(6.18)

where v is the specific volume V/N and ρ = 1/v. We have used Eq. (6.10),
where now the vibrational free energy and the configurational entropy also
depend on the specific volume (or the density). The above expression can be
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FIGURE 6.4

Inherent structure pressure as a function of density: typical behavior for glass form-

ing undercooled liquids. The horizontal dashed line indicates the zero pressure level.

The numbers refer to the description in the text.

rewritten as P = Pvib + Pis, with

Pvib = ρ2




∂fvib

∂ρ
− T

∂sc
∂ρ

∂fvib

∂φ

∣
∣
∣
∣
ρ

(

1 +
∂fvib

∂φ

∣
∣
∣
∣
ρ

)−1


 (6.19)

= −∂fvib

∂v
− ∂fvib

∂φ

∣
∣
∣
∣
v

∂φ̄

∂v

∣
∣
∣
∣
sc

Pis = −ρ2 ∂sc
∂ρ

(

∂sc
∂φ

∣
∣
∣
∣
ρ

)−1

= − ∂φ̄

∂v

∣
∣
∣
∣
sc

(6.20)

From the last line of Eq. (6.19) we see that, indeed, Pis coincides with the
definition of the (negative) derivative of the mean potential energy value of
the wells visited at temperature T with respect to the volume.

6.2.2 Random energy model and Gaussian approximation

A very popular and pioneering model in the study of the slowly relaxing
amorphous systems, that comes from the spin-glass theory, is the random
energy model (REM) of Derrida [1980].4 We report some of its features in
Sec. 7.2 but, for present purposes, we recall the three basic ingredients of the
model:

4This model is a simplification of the p-spin spin-glass model [Derrida, 1981; Gross &
Mézard, 1984] in the limit of the number of p simultaneously interacting bodies going to
infinity. The variance is σ ∼

√
N .
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1. A system of N particles has 2N energy levels Ei.

2. The energy levels are distributed according to the Gaussian probability

prem(E) =
1√

2πσ2
exp

{

− (E − E0)
2

2σ2

}

(6.21)

where E0 is an (arbitrary) energy scale.

3. The energy levels are independent identically distributed (IID) random
variables.

The first two requirements are the common features of many spin-glass
models, including the p-spin model that works quite well as a mean-field model
for structural glasses, despite the lack of microscopic similarity with a glass
former.5 The third property is specific of the present model and simplifies
things so much that it can be solved exactly. It leans on the rather strong
hypothesis of lack of correlations among energy levels, that are independent,
identically distributed (IID), variables.

The REM description can be applied to the PEL formalism (see, e.g.,
[Keyes, 2000; Sciortino, 2005]) by writing the number of basins at potential
energy φ as

Ω(φ) dφ = eαNprem(φ)dφ (6.22)

The parameter α is the logarithm of the total number of basins of the PEL
(divided by the number of particles). It would be the total complexity in an
all-temperatures survey of the space of states. The configurational entropy
sc(T ), Eq. (6.13), counts the total number of basins available at temperature
T , according to (and weighted by) the φ-distribution p(φ;T ), Eq. (6.12). The
partition function Eq. (6.8) can, then, be exactly computed as

Z =

∫ φth

φm

dφ exp

{

N

[

α− (φ− φ0)
2

2σ2
− βφ− βfvib(φ)

]}

(6.23)

The REM, or Gaussian, approximation in the PEL formalism has been checked
in numerical simulations of several different glass former models, e.g., for bi-
nary LJ mixtures [Heuer & Büchner, 2000; Sastry, 2001], for the LW model
of orthophenyl [La Nave et al., 2002; Mossa et al., 2002], as well as for the
SPC/E water model [Starr et al., 2001]. In all these cases one can find a
REM-like behavior for the density of states Ω(φ), such that

sc(φ)

kB
= α− (φ− φ0)

2

2σ2
(6.24)

5In the model, groups of p spins (usually spherical [Kirkpatrick & Thirumalai, 1987b;
Crisanti & Sommers, 1992] but also Ising [Gross & Mézard, 1984; Gardner, 1985]) interact
collectively with a contribution that is a random variable with a Gaussian distribution,
quenched with respect to the motion of the spins.
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Furthermore, the vibrational entropy (linearly related to the “shape factor”
S, Eq. (6.16)) in the harmonic approximation, turns out to be linear in φ:

Svib(φ)

kB
= M −

M∑

i=1

log β~ωi(φ) ≃ Svib(φ0)

kB
−Nb(φ− φ0) (6.25)

and so is the vibrational free energy Fvib = Uvib − TSvib (the internal energy
Uvib contribution amounts to an energy term kBT for every degree of freedom).

6.2.3 Equation of state

The possibility of working out a universal equation of state for undercooled
liquids allows, among other things, for a comparison of numerical simulations,
much more easily performed at a fixed volume, and true experiments, more
easily carried out at a fixed temperature. The relationship between pressure,
volume and temperature has been computed in different models for viscous
liquids assuming

1. the REM nature of potential energy levels, Eqs. (6.21) or (6.24)

2. the linearity in φ of the vibrational contribution to the free energy (that
is numerically established in the case of harmonic vibrations, see above),
cf. Eqs. (6.15) and (6.17)

As we already said, these hypotheses turn out to be verified in a number glass
former models.

The IS energy in the supercooled state in LJ binary mixtures, and in models
for water and orthoterphenyl (OTP), turns out to significantly decrease on
cooling, thus strongly hinting that low-lying minima become more and more
important. In numerical simulations, though, experiments are performed at
constant volume.6 In order to get more in contact with reality, it becomes
rather fundamental to find the relation between pressure and volume.

In Sec. 6.2.1 the formal thermodynamic expression of the pressure in the
PEL formalism has been derived, and the so-called inherent structure pressure
contribution has been identified. Here, following the case study of La Nave
et al. [2002] on the LW model for orthoterphenyl, we show how the equation
of state looks for the class of models satisfying conditions 1 and 2 above.

Combining Eqs. (6.15) and (6.17) the vibrational free energy is:

fvib(φ;T, V ) = T
∑

i

log β~ωi(φ) = T [a(V ) +M log β~ω0 + b(V )φ]

= fvib(φ0;T, V ) + Tb(V )(φ− φ0) (6.26)

6With some exceptions, e.g., the molecular dynamics simulations of undercooled water of
Tanaka [1996].
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FIGURE 6.5

(a) Equation of state for the LW orthoterphenyl model. The comparison is shown

between the molecular dynamic pressure obtained using the virial function (symbols)

and the PEL equation of state, Eq. (6.33) (lines). Solid symbols stand for equi-

librium values (only reachable at higher T ). Open symbols are instead calculated

from molecular dynamics data recorded during a constant heating procedure starting

from the IS configuration marked by the asterisk. The dashed lines (superimposed

to open symbols) are those obtained from Eq. (6.31) for the heating procedure.

(b) Inherent structure equation of state: Pis versus inverse (effective) temperature.

Reprinted figures with permission from [La Nave et al., 2002]. Copyright (2002) by

the American Physical Society.

Inserting Eqs. (6.26) and (6.24) into Eq. (6.10) for the mean inherent struc-
ture energy, allows for a simple solution in this case:

φ̄(T, V ) = φ0 − b(V )σ2(V ) − βσ2(V ) (6.27)

In this way, one can perform an exact evaluation of the free energy, Eq. (6.9).

Using the free energy, Eq. (6.9), for systems with decoupled IS/vibrational
landscape structure, the mechanical definition of pressure can be divided in
three contributions, yielding

P = −∂F
∂V

= T
∂sc
∂V

− ∂φ̄

∂V
− ∂fvib

∂V
= Pconf + Pφ̄ + Pvib (6.28)

where the first two contributions combine in what we have called inherent
structure pressure, cf. Eqs. (6.18) and (6.20). In the present subclass of su-
percooled liquids (random energies, harmonic vibrations and “linear shapes”),
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one finds the expressions:

Pconf = T
∂S∞
∂V

− ∂bσ2

∂V
− 1

2T

∂σ2

∂V
(6.29)

Pφ̄ = − ∂φ∞
∂V

+
1

T

∂σ2

∂V
(6.30)

Pvib = −T ∂(a+ bφ∞)

∂V
+
∂bσ2

∂V
(6.31)

−−−−−−−−−−−−−−−−−−−−−− +

P = TPT + Pconst +
1

T
P1/T (6.32)

where S∞ = αN−b2σ2/2 and φ∞ = φ0−bσ2. The last line enhances the kind
of temperature dependence of the various contributions to the pressure. One
can further recombine the above terms, eventually obtaining the equation of
state:

P = T

(
∂S∞
∂V

− ∂(a+ bφ∞)

∂V

)

− ∂φ∞
∂V

+
1

2T

∂σ2

∂V
(6.33)

The volume dependence passes through the parameters S∞, φ∞, a, b and σ.
Indeed, their behavior specifies the model [provided Eqs. (6.24)-(6.26) are
valid, otherwise the whole formalism has no theoretical support] and has to
be deduced each time.

6.2.4 IS equation of state

If we perform the steepest descent procedure at constant volume, starting
from equilibrium configurations, the vibrational contribution to the pressure
is suppressed and only the IS part, Pis, remains, i.e., the sum of the config-
urational and the mean potential energy contributions. During the descent,
the inherent structure pressure keeps the value that it has in the equilibrium
configuration at temperature T . Indeed, by definition, the configurational con-
tribution derives from the configurational entropy that counts all the available
minima of the PEL, once the steepest descent procedure has been carried out,
and the IS energy φ̄ is the average value of all reachable minima starting from
equilibrium at a certain T (i.e., starting from the minima of the FEL).

Moving to such a purely IS description, another equation of state can be
derived:

Pis(T, V ) = −∂φ0

∂V
+ T

∂S∞
∂V

+
β

2

∂σ2

∂V
(6.34)

where β = 1/(kBT ).

Starting from the purely inherent structure contribution, the total pressure
can be seen as Pis plus the vibrational contribution arising when the system
is “heated” from the bottom of a PEL minimum (that is symbolically at
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T = 0), at constant volume, performing some kind of “steepest ascent.” The
vibrational contribution is, cf. Eqs. (6.15), (6.17), and (6.28),

Pvib = kBT
∂S
∂V

(6.35)

In Fig. 6.5 we reproduce the inherent structure equation of state where the
prediction of Eq. (6.34) is compared to the data of numerical simulations on
the LW model [La Nave et al., 2002].

If dealing with a glass instead of an undercooled liquid, one can try to keep
the same formal theoretical structure built up to now, substituting T → T ⋆ in
Eq. (6.34). The temperature T ⋆ is an effective temperature that we introduce
now for the first time in the PEL formalism. It is the temperature conjugated
to the φ derivative of the configurational entropy in the out-of-equilibrium
analogue of Eq. (6.10):

1 +
∂fvib(β, φ)

∂φ
− T ⋆

∂sc(φ)

∂φ
= 0 (6.36)

If we are dealing with a substance in its viscous liquid regime, T ⋆ = T and
the IS identified by steepest descent are those at equilibrium. Dealing with a
vitrified substance, instead, would yield a different effective temperature, as
we discussed in the general framework of out-of-equilibrium thermodynamics
in Sec. 2.4. We will apply this idea to the PEL theory in the next section.
We stress, however, that the effective temperature appearing in Eq. (6.36) is
not a uniquely defined expression.

6.3 The solid amorphous phase: thermodynamics out of

equilibrium

In a viscous, supercooled liquid the timescale separation between intra-basin
and inter-basin dynamics is assumed and expressed in the free energy Eq.
(6.9). The equilibration process is complete when the IS energy φ̄(T ), solution
of Eq. (6.10), is equal to the mean of all potential energy minima visited by
the system in the dynamics (the minima identified by steepest descent).

Lowering the temperature, the kinetic arrest of many degrees of freedom
leads to the amorphous phase, and the system falls out of equilibrium. Eq.
(6.10) no longer yields anything meaningful, in principle. In an attempt to
generalize thermodynamics to include the glass phase in its descriptive frame-
work, however, one can define a further temperature-like parameter in the
spirit of the effective temperatures widely discussed in the previous chapters.
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6.3.1 PEL effective temperature from direct comparison to
the aging dynamics

A first way to relate aging dynamic properties of an off-equilibrium system
at a given temperature T into a thermodynamic framework is to devise the
existence of an equilibrium ensemble at an effective temperature different from
T (usually larger, since the glass former relaxation slows down in cooling).
This hypothesis has been tested with some success in numerical simulations
of, e.g., LJ binary mixture [Kob et al., 2000] and random orthogonal model
(ROM) [Crisanti & Ritort, 2000b]. We will refer to it as the “PEL equilibrium
matching” effective temperature: T em

e . The operative procedure to define it
is the following, as depicted in Fig. 6.6:

1. The average inherent structure φ̄ is computed at different temperatures
in systems for which thermalization has occurred (left plot in Fig. 6.6).

2. The value of φ̄ is computed in off-equilibrium systems 7 and is a function
of t (right plot in Fig. 6.6). A system that has been quenched from high
temperature to a certain low temperature Tf , and has further relaxed
towards equilibrium for a time t, displays a time-dependent inherent
structure energy φ̄(Tf ; t).

3. If the equivalence between the equilibrium ensemble at T and the off-
equilibrium set of states visited at Tf in a time window around t holds,
one can connect, through the value of the mean potential energy, the
aging system at Tf with an equilibrium system at T em

e (t):

φ̄(T em
e (t)) = φ̄(Tf , t) (6.37)

Even though some numerical evidence has been provided for the reliabil-
ity of the definition Eq. (6.37), e.g., in [Kob et al., 2000; Crisanti & Ritort,
2000b], we expect that the thermodynamic behavior of an off-equilibrium ob-
servable can be properly described by adding, at least, an extra parameter,
containing the information relative to the aging dynamic regime, to those
used at equilibrium (temperature, pressure, volume, ...). See Chapter 2, Secs.
2.3, 2.4). In the present case, instead, one tries to express the off-equilibrium
mean potential energy by the equilibrium φ̄ function of only one temperature.
Indeed, instead of considering a further dependence of φ̄ on a time-dependent
effective temperature Te (besides the heat-bath temperature T ), one substi-
tutes T with Te. We will come back to a simple counterexample in Sec. 6.6.
We now explore the possibility of other, theoretically more careful, definitions
of effective temperatures.

7In numerical simulations this is obtained, e.g., by considering systems of a larger size than
those considered for the equilibrium analysis, or the same size but at lower temperature, or
for a shorter time. The average is now taken over different trajectories, starting each time
a new simulated dynamics from different initial conditions.
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FIGURE 6.6

Pictorial definition of T em
e . The IS energy, φ̄(T ) at equilibrium (left) is compared

to the time-dependent φ̄ off equilibrium at three different temperatures Tf . The

dynamic glass transition temperature Td (corresponding to the critical mode cou-

pling temperature, e.g., in [Kob et al., 2000]) is also indicated in the left plot as a

reference. The arrow links aging dynamics and equilibrium thermodynamics. Such

a connection is encoded in the equilibrium effective temperature T em
e .

6.3.2 PEL effective temperature and pressure in the two
temperature thermodynamic framework

As it was presented in Sec. 2.4 (and applied in Sec. 3.3.2) to a specific class
of models), one can devise that the entropic contribution of the degrees of
freedom that have fallen out of equilibrium (i.e., the configurational entropy
sc), enters the thermodynamic potential with a conjugated temperature field
different from the one of the thermal bath. In the latter, the fast, vibrational,
degrees of freedom are in equilibrium. What is Tsc for the undercooled liquid
(i.e., a liquid below Td), now becomes Tesc for the glass (i.e., for T < Tg).

Following the approach of Sciortino & Tartaglia [2001], one starts from the
off-equilibrium thermodynamic potential, function of T and of a given φ value,

f (φ;T, v) = φ+ fvib(φ;T, v) − T em
e sc(φ) (6.38)

Then one looks at the solutions of ∂f/∂φ = 0, but, at variance with Eq. (6.10),
one solves for T em

e at fixed φ, rather than for φ at fixed T . The expression
eventually obtained for the effective “internal” temperature is:

T int
e (φ, T ) =

(

1 +
∂fvib

∂φ

)(
∂sc
∂φ

)−1

(6.39)

To evaluate the T dependence of the configurational entropy derivative at the
denominator, one defines another effective temperature T em

e (t), that is the
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temperature at which the ensemble of potential energy minima visited in the
glassy dynamics on the timescale t, corresponds to the equilibrium ensemble.
To be more precise, one supposes that the average value of the set of φ-
values out of equilibrium is the equilibrium average at a higher temperature:
φ̄ = φ̄(T em

e ). The latter can be simply computed from Eq. (6.10) as if at
equilibrium, only as a function of a different temperature. The “equilibrium”-
like effective temperature is, eventually, the inverse of this solution: T em

e (φ̄)
(see Fig. 6.6 and the previous section).

The vibrational free energy is evaluated at the heat-bath temperature T .
For T not too large, the vibrational average contribution to the free energy
can be written in the harmonic approximation (Sec. 6.1.5):

Fvib = kBT
M∑

i=1

log β~ωi(φ)

Namely, one neglects any anharmonic contribution to the shape of the
minimum of the potential energy and any temperature dependence of the
frequencies of the normal modes involved. This implies:

∂Fvib

∂φ
= kBT

M∑

i=1

∂

∂φ
logωi(φ) (6.40)

N
∂sc(φ)

∂φ
=

1

kBT em
e (φ)

[

1 + kBT
em
e (φ)

M∑

i=1

∂

∂φ
logωi(φ)

]

(6.41)

The temperature T em
e is a temperature-like parameter reflecting the slow flow

of heat from the system to the thermostat. The quantity defined in Eq.
(6.39) should be compared with T em

e but also with an independent definition,
e.g., with the fluctuation-dissipation ratio (cf. Sec. 2.8) in order to verify
whether such a generalized description can actually hold and incorporate the
features of the aging dynamics taking place in amorphous systems. If fvib

does not depend on the φ level, i.e., if all minima yield the same inter-basin
contribution to the free energy disregarding their height in the PEL, from
Eqs. (6.39)-(6.41) one obtains that T em

e (φ) = T em
e (φ). In this case the phase

space volume of the basins is independent of their depth and one can use a
two temperature thermodynamics to describe the off-equilibrium system.8

The validity of this theoretical framework has been verified in a binary
LJ binary mixture [Sciortino & Tartaglia, 2001] where this last hypothesis
of a φ-independent vibrational free energy is rejected. Nevertheless, the ef-
fective temperature TFD

e measured by the amplitude of the response of the
aging system to the external perturbation and the T em

e predicted using the

8This is a stronger approximation than the harmonic one and is not verified in most of
the numerically mentioned models for glass formers addressed in the preceding sections. In
particular it is different from what is shown in Fig. 6.2.
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PEL formalism are in very good agreement even if this assumption is re-
laxed. Therefore, T int

e appears to be a definition more consistent than T em
e

for the implementation of a two temperature thermodynamics. This observa-
tion supports the generalized thermodynamic approach developed in chapter
2 and studied in various models in Chapters 3, 4 and 5.

Following the approach of Sec. 2.8, where TFD
e is defined, the fluctuating

variable is now the Fourier transform of the density of the α particles (i.e.,
those belonging to the A type, cf. Appendix 6.A.2): ρk. The time correlation
function is, then, the dynamical structure factor

Sk(t, tw) ≡ 〈ρk(t)ρ⋆
k
(tw)〉 (6.42)

where the brackets refer to the ensemble average. The time t is longer than
the waiting time tw at which measurements begin. The perturbative field,
switched on at t = tw, conjugated to the Fourier density is the chemical
potential V0. The integrated response function [cf. Eq. (2.108)] takes, here,
the form

χρk
(t, tw) = 〈ρk(t)〉tw (6.43)

where the average is now over the perturbed ensemble. The fluctuation-
dissipation ratio, Eq. (2.106), eventually reads:

TFD
e = V0

Sk(tw, tw) − Sk(t, tw)

χρk
(t, tw)

(6.44)

See Fig. 6.7 for the plot of the effective temperatures (internal and FDR) and
their comparison.

The same approach has been applied to a binary mixture of soft spheres,
by means of Monte Carlo simulations (with different algorithms) confirming
the coincidence of TFD

e and T int
e even at low temperature and for long times,

in the late aging regime. See Fig. 6.8.
Practically, in the PEL approach, the out-of-equilibrium condition is imple-

mented by imposing the constraint that the inter-basin processes, that allow
the system to explore the space of states in the aging regime, are thermaliz-
ing in a thermostat different from the one at the heat-bath temperature (at
which the intra-basin processes are at equilibrium). One can implement the
following generalization of Eq. (6.9) [compare with Eq. (2.50) in Sec. 2.4]

f(V, T, Te) = −Tesc(V, φ) + φ+ fvib(V, T, φ) (6.45)

where the condition of minimum free energy is yielded by φ = φ̄, solution of

1 +
∂fvib

∂φ
− Te

∂sc
∂φ

= 0 (6.46)

The free energy contribution fvib is still calculated at the thermostat tem-
perature, whereas the configurational part is weighted by another temperature-
like parameter. This separation is based on the freezing in of the slow processes
taking place in the, however equilibrated, viscous liquid before it becomes a
glass.
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FIGURE 6.7

Fluctuation-dissipation ratio and effec-

tive internal temperature (cf. Eq.

(6.39)) in a LJBM. Response-correlation

plot of χρ(S) for two very different wait-

ing times: tw = 1024 (circles) and

tw = 16384 (squares). Symbols are

from direct computation of Eqs. (6.42)

and (6.43). Full lines have a slope

V0/(kBT int
e ), where the value of T int

e is

derived from Eq. (6.39). Dashed lines

have the equilibrium slope V0/(kBT ).

The wave vector magnitude is set equal

to k = 6.7, the location of the first min-

imum of SAA
k . Reprinted figure with

permission from Sciortino & Tartaglia

[2001]. Copyright (2001) by the Ameri-

can Physical Society.

FIGURE 6.8

FDR and T int
e /T as a function of φ̄(tw)

in a soft sphere binary mixture. The

empty squares refer to T int
e , Eq. (6.39),

the black squares with error bars to

TFD
e of Eq. (2.107). The two sets

of data appear to overlap and deviate

nontrivially from the value Te/T = 1

indicated by the lower line. In the

inset: χ(C) for tw = 5 · 103, 5 · 105

MC steps. On the left side, data de-

viate from the equilibrium prediction

(straight line), but they weakly depend

on tw, indentifying a constant effec-

tive temperature for the time interval

considered. Reprinted with permission

from Grigera et al. [2004]. Copyright

(2004) by American Physical Society.

6.3.3 The pressure in glasses

Generalizing Eq. (6.33) to the two temperature thermodynamic framework,
one gets for the pressure in the glassy phase the following expression:

P = −∂f
∂v

∣
∣
∣
T,Te

= Te
∂sc
∂v

∣
∣
∣
φ
− ∂fvib

∂v

∣
∣
∣
T,φ

(6.47)

where v = V/N is the specific volume. The condition Eq. (6.46) has been
employed and, therefore, φ = φ̄(T, Te, v). This would be the equation of
state in a generalized parameter space where Te plays the same role as bath
temperature, volume and pressure.
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Starting from the above equation, a second expression for the inherent
structure pressure, the sum of Eqs. (6.30) and (6.29), can be derived setting
T = 0 (the quenching equivalent to the steepest descent procedure), Te =
Te(T = 0, v), φ = φ̄(0, Te(0, v), v) and fvib = 0:

Pis(v, φ̄) ≡ P (0, Te(v, 0), v) = Te
∂sc
∂v

∣
∣
∣
φ

(6.48)

Using the chain relation

∂v

∂sc

∣
∣
∣
φ

∂sc
∂φ

∣
∣
∣
v

∂φ

∂v

∣
∣
∣
sc

= −1 (6.49)

and Eq. (6.46) evaluated at zero temperature, Pis becomes [cf. Eq. (6.20)]

Pis(v, φ̄) = −∂φ̄
∂v

∣
∣
∣
sc

(6.50)

What is the physical meaning of such an effective pressure? The mechanical
definition of pressure refers to the free energy potential difference due to a dif-
ferential scaling of configurational coordinates with the volume. The response
of the IS energy due to an infinitesimal change of volume does not correspond
to such a continuous configurational deformation but, rather, to a change
inside the (number-conserving) ensemble of minima considered. In the par-
ticular case of a soft sphere model [La Nave et al., 2003b] (see Appendix 6.A)
the change in energy associated with the compression of an inherent structure
configuration is equal to the change in φ. Furthermore, it can be proven that
the configurational entropy stays invariant under volume variations. Indeed,
the soft sphere potential energy is self-similar, namely

V (λr) = λ−MV (r) (6.51)

where M is the total number of degrees of freedom of the N -particle system,
and this scaling property implies that the number of IS basins is invariant
under any change of real space volume (see Fig. 6.9).

From Eq. (6.51) two main consequences derive:

1. In an isotropic compression a minimum of the potential energy stays a
minimum and

2. the IS pressure can be written as

PIS(v, φ) = −∂φ
∂v

∣
∣
∣
sc

that is Eq. (6.50) as derived earlier from first principle assumptions on
the nonequilibrium behavior. The above formula is obtained by realizing
that (i) an isotropic change of volume moves the soft sphere system along
a path of constant sc (the number of basins do not change in changing
φ→ φ+∆φ and V → V +∆V ) and (ii) the IS pressure is, mechanically
speaking, the measure of the potential energy change under compression
of an IS configuration.
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r rλr λr
∆φ ∆φ∆u ∆u

IS(1) IS(1)IS(λ) IS(λ)

r : state point in M -dimensional
: state point in energy

configurational space

a. Self-similar potential b. Generic potential

FIGURE 6.9

The change induced in the energy of a system undergoing homogeneous expansion

(or contraction) in configurational space (r → λr, where r is the M -dimensional

system point, M = DNn). In the left figure, the special case of the soft sphere

model [La Nave et al., 2003b] is shown. In this case the potential energy is self-

similar under homogeneous expansion in the configurational space, cf. Eq. (6.51),

and the shifts in potential energy (∆φ) and in internal energy (∆u) coincide. In

the picture on the right, the case of an arbitrary interaction is displayed, where

∆φ 6= ∆u.

Provided that the PEL description holds (see discussion in Sec. 6.1.3 and
cf. Fig. 6.1) and that the features of the models with a self-similar interac-
tion potential can be exported to more complicated materials, the effective
temperature T em

e and the inherent pressure Pis allow for an implementation
of the out-of-equilibrium thermodynamics in terms of an extra temperature
and an extra effective field, as considered in Chapters 2 (Sec. 2.3) and 3 (Sec.
3.3.1).

6.4 Fragility in the PEL

The “fragility” of a glass-forming liquid is a quantity introduced by Angell
[1985, 1991] to measure the rapidity with which the properties of a liquid
change as the glassy state is approached in cooling. The mainly measured
property is the viscosity and looking at its variation around the (thermal)
glass transition, a fragility index can be defined (Sec. 1.6). Its origin has been
discussed in Secs. 1.2 and 1.6 and we are now interested in understanding
how the fragility is related to the properties of the PEL.

The connection between the degree of fragility of a glass former and the
properties of the PEL has been first established by Sastry [2001] on a LJ
binary mixture model and later confirmed by other studies, e.g., [Martinez
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& Angell, 2001; Ruocco et al., 2004]. Fragility depends both on changes
of the vibrational properties of individual potential energy minima, on their
total number (i.e., the total configurational entropy) and, furthermore, on the
distribution of the number of distinct minima in potential energy.

We recall two of the definitions for a fragility index, introduced in Sec. 1.6
(global definitions). The first one comes from the assumption of a functional
Vogel-Fulcher dependence for η(T ):

Kη ≡ 1

T/T0 − 1

1

log[η(T )/η0]
(6.52)

Notice that this definition involves the logarithm with base 10. The second
definition is based on the linearity of Tsc(T ) near the Kauzmann temperature
(that is the key assumption connecting the Adam-Gibbs relation to the VF
phenomenological law, cf. Sec. 1.5):

Kag ≡ TSc(T )

T − TK
(6.53)

The Adam-Gibbs relation seems to hold for LJ binary mixtures (see, e.g., the
recent simulations at varying density by Sastry [2001]). The configurational
entropy at a certain temperature, in the PEL formalism, is determined by the
number of potential energy minima sampled by the liquid at that tempera-
ture [according to Eq. (6.12)] and it is equal to the difference between the
total entropy and the entropy of the typical basin (due to the T -dependent
vibrational contribution): Sc = Stot − Svib.

When the harmonic approximation is assumed to hold and the density of
states at given φ level is assumed to be Gaussian (i.e., when Eqs. (6.24)-(6.26)
properly describe the rugged landscape representing the many-molecules glass
former), the vibrational entropy is [Eq. (6.25)]

Svib(φ) ≡
M∑

i=1

[1 − log β~ωi(φ)]

and the difference between the basin entropy at the generic φ and the one at
φ = φ0 is

∆Svib

N
=
Svib(φ) − Svib(φ0)

N
= −b(φ− φ0) (6.54)

One can, thus, derive for the fragility parameter the following expression
[Sastry, 2001]:

KPEL
ag (T ) =

(
σ
√
α

2
− σ2b

4Nkb

)(

1 +
TK
T

)

+
σ2b

2NkB
=

σ2

4NkB

(
1

TK
+

1

T
+ 2b

)

(6.55)
where

TK =
σ

2NkB
√
α− σb

(6.56)
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In this, apparently simple, case, Kag is not constant in T and, therefore,
the Adam-Gibbs relation does not exactly lead to a VF-like relaxation law.
However, since in viscous liquids it always holds that T > Tg > TK , the
1/T term in Eq. (6.55) yields a second order contribution that seems to
decrease rapidly in the LJ case study. This explains why numerically the two
definitions, VF and AG, almost always coincide.

Eq. (6.55) is an explicit example of the connection between the parameter
expressing the rapidity of increase of the viscosity as temperature is decreased
(as well as the sharpness of the jump in specific heat at Tg) and the parameters
describing the main features of the PEL: the total number of minima (α), the
spread of the distribution of potential energy minima (σ), and the slope of the
vibrational entropy decrease in φ (the parameter b). In particular, it shows
that the fragility grows as the square root of the total number of minima of
the PEL at any temperature (α = maxφsc(φ)), yielding theoretical support
to the heuristic belief that fragile systems have a large number of basins,
in comparison with strong glass formers [Angell, 1995, 1997; Debendetti &
Stillinger, 2001].9

6.5 PEL approach to the random orthogonal model

We present the PEL analysis of the random orthogonal model (ROM) [Mari-
nari et al., 1994a,b], i.e., a mean-field glassy model belonging to the class of
“one step of replica symmetry breaking” spin-glass models with quenched, ran-
dom, infinite range interactions (cf., e.g., [Kirkpatrick & Thirumalai, 1987b;
Crisanti & Sommers, 1992]). These are models reproducing all the basic
properties of a glass, although with some prescription due to their mean-field
nature.

The model Hamiltonian is

H = −2

1,N
∑

i,j

Jijsisj (6.57)

where si = ±1 are N Ising spins and Jij is a random symmetric orthogonal
matrix whose diagonal elements are equal to zero. In the thermodynamic
limit, the dynamic glass transition occurs at Td = 0.536, at which the highest

9In the example brought about by Sastry [2001] the volume (or the density) is kept con-
stant, different from experiments usually performed at constant pressure. This generates a
counterintuitive artifact. Indeed, it makes the vibrational entropy contribution of a basin,
Svib(φ), decrease and the normal mode frequencies ωi(φ) increase as φ increases, implying
that the basins at higher potential energy, that are those visited by the system at higher
temperature, are narrower than those visited at low temperatures.
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configurational entropy is found at energy φth = −1.87. The Kauzmann
temperature is TK = 0.25, for which the lowest energy value is reached, at
φm = −1.936.10 The study of the FEL exhibits a very large number of basins,
growing exponentially with N [Parisi & Potters, 1995].

In the PEL formalism, φm and φth are the lowest and the highest values be-
tween which the many minima are found. As N → ∞, no activated processes
are allowed in the ROM dynamics, since the barriers among metastable glassy
states are infinite. Cooling down the temperature from T > Td to T = 0,
therefore, traps the system in one of the most probable basins, that is those
whose configurational entropy is maximal, those at φth.

Performing numerical simulations at finite N , though, allows for the explo-
ration of minima below the threshold value. Actually, for finite size systems,
stationary points with φ > φth also can be visited. Though they should be
saddles instead of minima [Cavagna et al., 1998], the finiteness of the degrees
of freedom when N is not too large can stabilize some of them [Crisanti &
Ritort, 2000b]. Indeed, finite size effects can help to introduce activated pro-
cesses, and, therefore the slow structural relaxation, in otherwise dynamically
stuck mean-field models, retaining, however, the solubility and the cleaner
physical description of the latter.

6.5.1 Effective temperature in the ROM

Crisanti & Ritort [2000c,a,b] study the relaxational dynamics out of equi-
librium of the ROM by means of Monte Carlo numerical simulations. The
thermal glass temperature is not defined analytically in mean-field systems
(dynamics is stuck as soon as T < Td because thermodynamic fluctuations
are neglected), however, at finite size N it will depend both on N and on the
largest timescale obtainable for which equilibrium is reached, mimicking in
this way the experimental timescale (cf. Sec. 1.1). For N = 300 Crisanti &
Ritort [2000c] find a Tg ≃ 0.5. They, then, perform a fast cooling from high
temperature down to T < Tg and look for one- and two-time dynamics.

Considering an inherent structure spin configuration {sisi (t)} at time t and
the external small perturbing local field h = {hi}, one can define correlation
and response functions:

C(t, tw) =
1

N

N∑

i=1

sisi (t)sisi (tw) (6.58)

G(t, tw) =
1

N

N∑

i=1

δsisi (t)

δhi(tw)
, t > tw (6.59)

χ(t, tw) =

∫ t

tw

dt′G(t, t′) (6.60)

10These are the same properties of the p-spin spherical model [Crisanti & Sommers, 1992].
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χ

C

ROM
N = 300

FIGURE 6.10

Susceptibility versus correlation. The slope of the dashed line is the inverse of the

heat-bath temperature (T = 0.2). The points derive from Monte Carlo simulation

data, plotting parametrically χ and C at fixed waiting times. The full lines are

the prediction 1/T em
e , Eq. (6.39). The dashed line has a slope 1/T . The dot-

dashed line has a slope 1/TFD
e , obtained from Eq. (6.61) at tw = 211. It appears to

underestimate the data points. Reprinted figure with permission from [Crisanti &

Ritort, 2000a]. Copyright (2000) by the European Physical Society.

As the quench is performed to low temperature, both functions display the
aging phenomenon and the χ(C) parametric plot, Fig. 6.10 is qualitatively
similar to the one for LJ binary mixture (Fig. 6.7).

The FDR effective temperature has been computed using definition Eq.
(2.107) that can be rewritten as

TFD
e =

∂twC(t, tw)

G(t, tw)
= −

(
∂χ

∂C

)−1

(6.61)

The PEL internal effective temperature, Eq. (6.39) has been computed
as well. Practically no φ dependence has been detected for the vibrational
free energy contribution (∂fvib/∂φ = 0) implying a coincidence of T em

e with
the rougher T em

e defined in Sec. 6.3.1. We recall that numerical agreement
between the internal effective temperature and the FDR one was also found in
the LJ binary mixture (see Sec. 6.3 and [Sciortino & Tartaglia, 2001]), even
though in that case ∂fvib/∂φ 6= 0.

The outcome is shown in Fig. 6.10 where the different effective temperatures
are compared. At given tw the system is in the stationary regime for larger
C (i.e., shorter times), where it satisfies the FDT, and then it falls out of
equilibrium as the correlation decreases.
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6.6 The PEL approach to the harmonic oscillator models

In Chapter 3 we introduced a class of kinetic models, the HOSS models, and
we gave the description of their statics and of their Monte Carlo dynamics.
Here we present how the PEL approach can be applied to the dynamic and
thermodynamic analysis of such models [Leuzzi & Nieuwenhuizen, 2001b].

The characteristics of a glassy system can be represented by means of a
multidimensional potential energy function with a complex topography. The
spatial patterns of atoms in crystals and in amorphous systems, at low tem-
perature, represent minima in the potential energy function describing the
interactions. In the case of the HOSS model (3.50) all the complex chemical
properties of real glass formers are not represented, nevertheless the system
exhibits several aspects of their complex features, indicating that the model is
complicated enough for what concerns the description and the comprehension
of the basic long time properties of a glass.

We have seen that, in the PEL approach, cf. Sec. 6.1, α processes are
represented by escape processes from one deep minimum within a large scale
valley to another valley, whereas β processes are related to simpler relaxations
between neighboring minima. Note that in our HOSS models we allow all
kinds of β processes in our short timescale, since their timescales are in any
case much shorter than the observation time considered, so they are just
thermally equilibrated.

As we will see, the HOSS model is built in such a way that every {xi} con-
figuration is an inherent structure. Indeed, at a given {xi} configuration at
finite T , the {Si} are fast variables and they contribute to the energy and to
the other observables as a noise depending on temperature. If we take away
this contribution we do not actually change the configurations of the minima
of the slow variables. In the case of the system without constraint on the
configuration space, nor contrived dynamics [see Sec. (3.2.3)], any {xi} con-
figuration is an inherent structure. For what concerns the constrained model
(where (1/N)

∑
x2
i − [(1/N)

∑
xi]

2 ≥ m0), instead, certain configurations
are not allowed (Sec. 3.2.4). Moreover, the presence of the constraint (3.65)
produces (entropic) barriers higher than in the case without it to get from a
certain IS to a different one. This just models the well-known fact that the
dynamics through the inherent structures is even slower in the fragile glass
case than in the strong glass case.

First of all, we have to define the steepest descent procedure for the model.
For that purpose we will minimize the Hamiltonian, Eq. (3.50),

H[{xi}, {Si}] =
N∑

i=1

(
1

2
Kx2

i −H xi − J xiSi − L Si

)

with respect to the spins. Indeed, that corresponds to the zero temperature
limit of the thermodynamic potential F given by Eq. (3.53). Such a corre-
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spondence boils down to looking for the minimum of

Φ ≡ min
{Si}

[

H + λ
N∑

i=1

S2
i − λN

]

(6.62)

with respect to the spins, in order to get rid of their contribution, i.e., to get
rid of the fast modes (we implemented the spherical constraint

∑

i S
2
i = N

by using the Lagrange multiplier λ). We get S
(min)
i = (Jxi + L)/(2λ), ∀i.

Solving the spherical condition
∑N
i=1

(

S
(min)
i

)2

= N for λ, we find λ = wis/2,

where

wis ≡
√

J2m2 + 2JLm1 + L2 (6.63)

This has to be compared with w from Eq. (3.52) as T → 0. The variables
m1,2 are equal to

∑

i x
1,2
i /N . The minimum {Si} configuration for a given

set of {xi} is, thus, given by

S
(min)
i =

Jxi + L

wis
, ∀i (6.64)

Eventually, Eq. (6.62) becomes

Φ = N

[
K

2
m2 −Hm1 − wis

]

(6.65)

that is the energy function of the inherent structures. Consequently, the
partition sum over inherent structures is defined by

Zis =

∫

Dx exp [−βΦ({xi})] =

∫

dm1dm2 exp [Sc(m1,2) − βΦ(m1,2)] (6.66)

Due to the minimization, any explicit dependence on T in the effective Hamil-
tonian disappears [compare Eq. (3.53) and Eq. (6.65)]: the minimization with
respect to the spherical “fast” {Si} variables is equivalent to taking the T → 0
limit for them.11

The configurational entropy for ISs comes from the Jacobian of the trans-
formation of variables Dx = eScdm1 dm2, where

sc =
Sc
N

=
1

2

[
1 + log

(
m2 −m2

1

)]

11In Eq. (3.59), we integrated over the spins, instead of minimizing with respect to them,
and therefore we also had an entropic term TSep for the fast processes, with Sep given by
Eq. (3.56), and a slightly different internal energy [Nw instead of Nwis, with w given in
Eq. (3.52) and wis in Eq. (6.63)]. In the inherent structure approach, instead, carrying out
steepest descent makes the entropic term vanish (only the minimal configuration is taken
into account) and the effective Hamiltonian, given in Eq. (6.65), has no explicit dependence
on the temperature.
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It is the same as in the finite T case, since any allowed configuration {xi} is
also an IS. The static average of Φ/N is given by

φ̄(T ) =
1

N
Φ(m̄is

1,2(T )) (6.67)

where m̄is
1,2(T ) are the solutions of the saddle point equations relative to Eq.

(6.66):

m̄is
1 =

H̃is

K̃is

; m̄is
2 − (m̄is

1 )2 =
T

K̃is

(6.68)

and we have defined

H̃is ≡ H +
JL

wis
; K̃is ≡ K − J2

wis
(6.69)

with wis from Eq. (6.63). The combination H̃isJ + K̃isL = HJ +KL = D is
simply a constant, as in Eq. (3.58).

In the case at finite T the full static partition function (3.59) was

Z =

∫

dm1dm2 exp (Sc − βHeff)

with Heff defined in Eq. (3.53) and sc in Eq. (3.60). The saddle point
equations (6.68) are different from Eqs. (3.62) and (3.63) valid in the realistic
case, thus yielding different results: m̄is

1,2 6= m̄1,2. We stress, however, that

m̄is
1,2 depend on T also in the IS case.
The HOSS free energy, Eq. (3.61), has to be compared in the PEL formalism

[cf. Eq. (6.9)] with the IS contribution to the free energy deriving from Eq.
(6.66) plus the vibrational contribution Fvib:

F = Heff (m1,2) − TSc(m1,2) = Φ (m1,2) + Fvib (m1,2) − TSc(m1,2) (6.70)

As we mentioned above, the configurational entropy of the inherent structures
is the same as for the finite temperature case, Eq. (3.60), implying

fvib =
Fvib

N
=
T

2
log

(
w + T/2

T

)

− w + wis (6.71)

where w is defined in Eq. (3.52) and wis in Eq. (6.63). Notice that fvib

explicitly depends on the parameters m1 and m2 of the IS and is thus not a
constant (cf. Secs. 6.3.1, 6.5 and [Stillinger & Weber, 1982, 1984; Sciortino
et al., 1999; Kob et al., 2000; Crisanti & Ritort, 2000b]).12

12Notice that for the HO model of Sec. 3.1, where no spins (that is to say, no fast processes)
are present, Φ is trivially equal to the Hamiltonian (3.1), that is the potential energy of a
set of N uncoupled harmonic oscillators linearly coupled to an external field.
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6.6.1 PEL effective temperature in the HOSS model

In Chapter 2 we presented different ways in which the effective (or fictive)
temperature can be defined. All those definitions should be equivalent if the
quantity called effective temperature were actually a temperature. In Chapter
3 we tested, therefore, those (and other) definitions on the HOSS model in
order to verify whether, at least in this solvable dynamically facilitated model,
the thermodynamic picture with two temperatures (T and Te) can consistently
describe the behavior of (a class of) slow relaxing, aging, glassy systems.

Further possible ways of defining an effective temperature exist in the PEL
formalism, e.g., the one described in Sec. 6.3.1 obtained by comparing the
time-dependent out-of-equilibrium IS energy at temperature T with the equi-
librium IS energy expression at a temperature Te 6= T . The out of equilibrium
average of φ is built up in practice by taking the dynamics of a system out-
of-equilibrium at temperature T and repeating it many times starting from
different initial conditions. A statistical ensemble of trajectories is constructed
in this way. The configurations that each sample is visiting are determined at
any given time t.

In the HOSS model, the energy φ, averaged over the ensemble of different
trajectories, reads

φ̄(T, t) =
K

2
m2(t) −Hm1(t) −

√

J2m2(t) + 2JLm1(t) + L2

≃ K

2
m̄is

2 −Hm̄is
1 −

√

J2m̄is
2 + 2JLm̄is

1 + L2

+K̃is(m̄
is
1 , m̄

is
2 )δµ2(t) + c(m̄is

1 , m̄
is
2 )δµ2(t)

2

where δµ2(t) ≡ µ2(t)− µ̄2(T ) is reported in Eq. (3.89) for the Arrhenius case
and in Eq. (3.119) for the Vogel-Fulcher case. The asymptotic value µ̄2 is
obtained by Eq. (3.67). The static counterpart of the IS energy is expressed
by

φ̄(T ) =
K

2
m̄is

2 −Hm̄is
1 −

√

J2m̄is
2 + 2JLm̄is

1 + L2 (6.72)

The equilibrium IS energy φ̄(T ) will be a different function of temperature in
the strong and in the fragile versions of the model. Furthermore, the second
order expansion for long times of the off-equilibrium φ̄ will be needed only for
the strong glass case, where

c(m̄is
1 , m̄

is
2 ) =

DJ4K2

8(D + J2)4
(6.73)

Fixing the time t, we define the effective temperature as the temperature at
which the system at equilibrium would visit the same configurations visited
by the system out of equilibrium at temperature T , with the same frequency
(cf. Fig. 6.6): the one such that

φ̄ (T em
e (t)) = φ̄(T, t) (6.74)
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For the HOSS model it is possible to work out an analytic expression for such
a temperature-like parameter, both in the strong and in the fragile glass case.

T em
e in the fragile HOSS model

In the version of the HOSS model representing fragile glasses, linearizing in
T − T0, we get a time dependence for the effective parameter that is different
from the thermodynamic effective temperature Te, that we obtained from
several different approaches (including the fluctuation-dissipation ratio) in
Sec. 3.3, cf. Eqs. (3.130, 3.141, 3.158, 3.188).

Away from the Kauzmann temperature we are not able to derive any simple
expression of the IS energy (6.72), but, in any case, we can numerically solve
Eq. (6.74) exactly. The results are shown in Figs. 6.11-6.12 for a given choice
of the values of the interaction parameters and of the Vogel-Fulcher exponent
γ of the model. As one can see, T em

e (t) turns out to be different from Te(t) at
any time decade. As a matter of fact, what we are comparing now with the off-
equilibrium φ̄(T, t) is a function φ̄ (T em

e (t)) of the effective temperature alone,
while we know that out of equilibrium any proper thermodynamic function
cannot simply depend on just one temperature as the thermodynamic function
of equilibrium systems does (see Sec. 2.4). It is not surprising, thus, that the
two effective temperatures do not coincide.

T em
e in the strong HOSS model

For the strong glass case the analytic treatment is by far easier and, expanding
Eqs. (6.72) and (6.72) near zero temperature up to second order in T , we
can work out a simple analytic expression for the equilibrium-like effective
temperature:

T em
e ≃ T+

KD

D + J2
δµ2(t)+

J4K2

2(D + J2)3
Tδµ2(t)+O(T 3)+O

(
δµ2(t)

3
)

(6.75)

Here above terms of O(T 2) and O(δµ2(t)
2) cancel out. This effective temper-

ature is obtained from Eq. (6.74) with

φ̄(T, t) = − (H + J)2

2K
− L+

T

2
− J4K

8D(D + J2)2
T 2 +

KD

2(D + J2)
δµ2(t)

+
J4K2

8D(D + J2)2
Tδµ2(t) +

DJ4K3

8(D + J2)4
δµ2(t)

2 (6.76)

+O
(
T 3
)

+ O
(
T 2δµ2(t)

)
+ O

(
Tδµ2(t)

2
)

+ O
(
δµ2(t)

3
)

Comparing with the effective temperature of the HOSS model obtained
considering the finite temperature states, if we expand Eq. (3.130) at the
same order as above we find:

Te = K̃(m2 −m2
1) = T + K̃δµ2(t) (6.77)

≃ T +
KD

D + J2
δµ2(t) +

T

2

(
JK

D + J2

)2

δµ2(t) +
DJ4K3

2(D + J2)4
δµ2(t)

2
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FIGURE 6.11

Effective temperatures vs. t at T =

TK = 4.00248. In Eq. (3.50) parame-

ters are set as K = J = 1, H = L = 0.1.

The constraint constant is m0 = 5 and

γ = 2. The upper curve shows the ef-

fective temperature obtained by match-

ing out of equilibrium and equilibrium φ̄.

The one in the middle is the behavior of

Eq. (3.130), for systems at finite T , and

the lowest one is the IS quasi-static effec-

tive temperature, Eq. (6.81). The inset

exposes the difference between the lower

two curves. Reprinted figure with per-

mission from [Leuzzi & Nieuwenhuizen,

2001b]. Copyright (2001) by the Ameri-

can Physical Society.
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The same effective temperatures, for the

same choice of parameters as before, are

plotted at a heat-bath temperature T =

4.1, above the Kauzmann temperature.

Reprinted figure with permission from

[Leuzzi & Nieuwenhuizen, 2001b].

As we see from the formulas above and from Figs. 6.13 and 6.14, in the
case with Arrhenius relaxation, Te and T em

e are very similar. Their difference
is one order of magnitude less than in the model with contrived dynamics (cf.
Figs. 6.11, 6.12).

6.6.2 Quasi-static definition of IS effective temperature

Here we propose an alternative way to identify an effective temperature that
maps the dynamics between inherent structures into a thermodynamic quan-
tity. We follow a quasi-static approach using a partition sum, just as we
did in the finite T case, in Sec. 3.3. Following exactly the same approach
we used in Sec. 3.3.1, including the substitution of the real external field H
with an effective one, His, we compute the partition function counting all the
macroscopically equivalent ISs, through which the system is evolving in this



262 Thermodynamics of the glassy state

0

0.002

0.004

0.006

0.008

0.01

102 104 106 108 1010 1012 1014

Te

Te1,2

is

T=0.0005
H=L=0.1
J=K=1

T
t0

0.002

0.004

0.006

0.008

0.01

102 104 106 108 1010 1012 1014

Te

Te1,2

is

T=0.0005
H=L=0.1
J=K=1

T
t

0.00208
0.0021

0.00212
0.00214
0.00216
0.00218
0.0022

0.00222
0.00224

10000 15000 20000

Te

Te1,2

is

t
0.00208
0.0021

0.00212
0.00214
0.00216
0.00218
0.0022

0.00222
0.00224

10000 15000 20000

Te

Te1,2

is

t

Tis = T
em

e

Tis

Te

Te

FIGURE 6.13

Time evolution of the effective tempera-

tures at the heat-bath temperature T =

0.0005 in the model with Arrhenius re-

laxation. Constants in Eq. (3.50) are

set to: K = J = 1, H = L = 0.1,

while m0 = 0. The lower curve shows

T em
e , Eq. (6.75), obtained by matching

the out-of-equilibrium and equilibrium

IS internal energies. To order δµ2 it co-

incides analytically with the IS effective

temperature, Eq. (6.86). Second order

differences are too small to appear in the

plot. The upper curve is the behavior

of Eq. (3.130), at finite T . The inset

magnifies a part of the plot. Reprinted

figure with permission from [Leuzzi &

Nieuwenhuizen, 2001b].
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The same effective temperatures, for

the same choice of parameters as be-

fore are plotted for a different heat-

bath temperature: T = 0.001. Com-

paring the timescales of the two plots,

we can clearly observe the decrease of

the Arrhenius relaxation time τem that

takes places upon rising of temperature.

Reprinted figure with permission from

[Leuzzi & Nieuwenhuizen, 2001b].

symbolic dynamics, at a given time t:

Z is
e (m1,m2) =

∫

Dx exp [−Φ ({xi};T,His) /Tis]

×δ
(

Nm1 −
∑

i

xi

)

δ

(

Nm2 −
∑

i

x2
i

)

= exp

{

−N
[
K

2
m2 −Hism1 − w̄is −

Tis

2
log
(
m2 −m2

1

)
]

/Tis

}

≃ exp {− [Φ (m1,m2;T,His) − TisSc (m1,m2)] /Tis} (6.78)

The parameters Tis and His describe the behavior of the system evolving
exclusively through ISs. Minimizing the free energy F is

e ≡ −Tis logZ is
e with

respect to m1,2 we obtain:

Tis = K̃is (m1,m2)
[
m2 −m2

1

]
(6.79)

His = H − K̃is (m1,m2)µ1 (6.80)
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where K̃is was defined in Eq. (6.69). By inserting the time-dependent values
of m1 and m2 we now look at the time evolution of the effective temperature
(6.79) for long times, in the aging regime, and we compare it with the behavior
of the thermodynamic effective temperature (3.130).

Fragile HOSS Tis

For the dynamically constrained model, as time goes to infinity, Tis → T (if
T > T0). When t0 ≪ t < ∞, however, the way the effective temperature
approaches the heat-bath temperature is different from the behavior of Te

found in Sec. 3.3. For a comparison, their first order expansions are:

Tis ≃ T +

(

1 +
P is

∞

1 +Qis
∞
D

)

K̃ is
∞

(T ) δµ2(t) (6.81)

Te ≃ T +

(

1 +
P∞

1 +Q∞D

)

K̃∞(T ) δµ2(t) (6.82)

with

K̃ is
∞

(T ) = lim
t→∞

K̃is (m1(t),m2(t);T ) (6.83)

Qis
∞

= lim
t→∞

J2D

K̃3
isw

3
is

(6.84)

P is
∞

= lim
t→∞

J4(m2 −m2
1)

2K̃2
isw

3
is

(6.85)

The functions K̃, Q∞ and P∞ defined in Eqs. (3.57), (3.79) and (3.80), respec-
tively. The dynamic variable δµ2(t) is the same in both cases (apart from the
parameter t0 influencing only the short times) while the coefficients in front
of it are different at any temperature, including T0.

In the fragile case this second IS effective temperature does not coincide
with T em

e and it is much more similar to Eq. (6.82), at any time. How-
ever, even if this Tis is conceptually more properly chosen, we still do not get
exactly the same parameter describing the finite T dynamics in a thermody-
namic frame. The inherent structure approach yields an actually very good
approximation but is, nevertheless - and not surprisingly - never analytically
correct in describing the real temperature dynamics, not even in the extremely
simplified description provided by the present model. To show how good this
approximation is, we can take, as an instance, a certain realization of the
model with given values of the “fields” and “coupling constants.” We plot
in Figs. 6.11 and 6.12 the behavior of T em

e (t), Tis(t) and Te(t) at heat-bath
temperatures equal to and just above the Kauzmann temperature.
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Strong HOSS Tis

For the strong glass case we also expand for temperatures near to zero and
for long times, up to second order, in T and δµ2(t), yielding:

Tis(t) = T + K̃isδµ2(t) = T +
KD

D + J2
δµ2(t) (6.86)

+
T

2

J4K2

(D + J2)
3 δµ2(t) +

DJ4K3

2(D + J2)4
δµ2(t)

2

= Te(t) −
DJ2K2

2(D + J2)3
Tδµ2(t)

= T em
e (t) +

DJ4K3

2(D + J2)4
δµ2(t)

2

where terms of O(T 3),O(T 2δµ2(t)),O(Tδµ2(t)
2) and O

(
δµ2(t)

3
)

have been
neglected. The effective temperature Te mapping the dynamics of the system
evolving at finite temperature T have the same behavior of Tis in approaching
the heat-bath temperature up to the order Tδµ2(t) where they start deviating
one from the other. For a quenching to zero temperature the two effective
temperatures coincide. Moreover, in this case the IS effective temperature Tis

is equal to T em
e given in Eq. (6.75) up to the order δµ2(t) in time and up to

order T 2 in temperature. See Figs. 6.13, 6.14 for a plot of their behavior at
two different temperatures near zero.

Though not exact, the practical match between the IS and the thermody-
namic effective temperatures obtained with the quasi-static approach works
rather well, confirming the validity of the approximated PEL description.

6.A Many-body glassy models

We report, very shortly, some of the computer models of simple liquids un-
dergoing a glass transition, when cooled down or compressed, that have been
studied starting from the 1970s. We do not pretend, by any means, to give
a comprehensive list, but we only refer to those models mentioned in the
book, mainly in the present chapter, as a guide for the reader. We give a
sketch of the soft sphere model [Cape & Woodcock, 1980], of the soft sphere
binary mixture [Bernu et al., 1985], of the monoatomic Lennard-Jones (LJ)
model [Angell et al., 1977], of the Lennard-Jones binary mixture [Kob & An-
dersen, 1994], and of the LJ-based models for water [the simple point charge
extended (SPC/E) model [Berendsen et al., 1987]] and for orthoterphenyl [the
Lewis-Wahnström model (LW) [Lewis & Wahnström, 1993]].
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6.A.1 Soft spheres

Monoatomic system

The model consists of idealized, spherically symmetric particles interacting in
pairs through repulsive forces that are not strong enough to prevent the partial
overlap of two spheres, therefore they are called soft [Cape & Woodcock, 1980].
The soft sphere potential is:

Φ(r) = ǫ
∑

i,j

(
σ

|ri − rj |

)n

(6.A.1)

where ǫ and σ fix the energy and length-scales respectively. The M = DN
dimensional vector r represents the configuration of all the particles of the
system. We will call rij = |ri − rj | the inter-particle distance. The only
independent parameter is ǫσn, where the exponent n is usually taken equal to
12, making the potential quite short ranged. The reason for its introduction
was, mainly, that the short range nature of the interaction allowed for accu-
rate molecular dynamics simulations of systems larger with respect to those
with longer range. Moreover, a unique scale is present, allowing for clearer
comparison with experiments.

Besides the repulsive term, a background potential field can be added, to
describe attractive interactions, as, e.g., in [Shell et al., 2003]. Further ap-
plications and analysis based on soft-sphere monoatomic compounds can be
found, among others, in [Hansen & McDonald, 2006; Debenedetti et al., 1999;
Stillinger et al., 2001; Hall & Wolynes, 2003]

Binary mixture

The binary mixture of spheres interacting via a soft potential (SSBM) was
introduced by Bernu et al. [1985, 1987] in order to more easily prevent the
nucleation of the crystal state in cooling. The softsphere binary mixture has
been a very useful benchmark for the study of the glass transition and of
the aging, off-equilibrium properties of amorphous systems (cf., e.g., [Barrat
et al., 1990; Hansen & Yip, 1995; Parisi, 1997b,a,c; Coluzzi & Parisi, 1998;
Coluzzi et al., 1999]).

Two kinds of spherical particles are involved, distinguished by having differ-
ent diameters, with a prescribed ratio, as shown in Table 6.1 (the parameter
for type B is chosen equal to unity, without loss of generality).

TABLE 6.1

Soft sphere potential excluded volume parameters σ in units of σBB .

σ A B

A 1.2 1.1

B 1.1 1
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For these values and concentrations 50%-50%, the crystallization is strongly
inhibited and clear and interesting signs both of off-equilibrium dynamics
[Parisi, 1997b,c] and a possible thermodynamic glass transition (to the ideal
glass state) have been found at about TK ≃ (ρ/1.65)4 [Coluzzi et al., 1999].
The dynamical transition temperature depends on the density as Td = (ρ/1.45)4

[Barrat et al., 1990].

6.A.2 Lennard-Jones many-body interaction potential

Monoatomic system

An argon-like model of monoatomic molecules interacting via a Lennard-Jones
(LJ) potential has the potential energy [Angell et al., 1977; Stillinger & Weber,
1982, 1983]:

v(rij) = 4ǫ

[(
σ

rij

)12

−
(
σ

rij

)6
]

(6.A.2)

Here σ is the excluded volume and ǫ the energy scale.
It is sometimes approximated by the auxiliary (finite range) interaction

potential:

vp(rij) = A

[(
σ

rij

)12

−
(
σ

rij

)6
]

exp

{
σ

rij − a

}

(6.A.3)

Numerically, one sees that the vast majority of inherent structures are amor-
phous packings. An example of a study of a monoatomic LJ system under-
going a glass transition under pressure variation and displaying an effective
temperature for the off-equilibrium state is the one of di Leonardo et al. [2000]
and an example of a PEL analysis of the aging dynamics can be found in [An-
gelani et al., 2001].

Binary mixture

The LJ binary mixture model was originally proposed by Weber & Stillinger
[1985] as a model for Ni80P20 and then applied to glass physics by Kob &
Andersen [1994]. Besides the references mentioned in the chapter, LJ binary
mixtures in the context of glass-forming liquids have been widely studied in
the last years, e.g., by Kob & Andersen [1995a,b]; Vollmayr et al. [1996];
Sastry et al. [1998]; Sciortino et al. [1999]; Coluzzi et al. [2000a,b]; Kob et al.

[2000]; Broderix et al. [2000]; Angelani et al. [2000]; Sastry [2000], to mention
a few.

The mixture consists of two kinds of particles having the same mass but
different diameters. Type A particles are larger and type B are smaller. They
interact via a Lennard-Jones potential of the form

Vαβ(rij) = 4ǫαβ

[(
σαβ
rij

)12

−
(
σαβ
rij

)6
]

α, β = A,B (6.A.4)
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TABLE 6.2

Values of the LJ parameters. σAA is the length unit and ǫAA/kB the
temperature unit.

σ A B ǫ A B

A 1 0.8 1 1.5

B 0.8 0.88 1.5 0.5

where ri denotes the position of particles i = 1, . . . , N and rij ≡ |ri − rj |.
The parameters are reported in Table 6.2.

The binary mixture is usually composed by 80% of A particles and 20%
B particles. At these concentrations and with the values of the interaction
parameters reported in Table 6.2 crystallization is prevented, as well as phase
separation. Sometimes a cutoff for the potential is used at some interparticle
distance rcut (e.g., in [Sastry et al., 1998; Kob et al., 2000; Broderix et al.,
2000]).

A very much used model is the 80:20 LJ mixture with the NVT (Nose-
Hoover) thermostat at the density of ρ = 1.2. (This thermostat is a specific
modeling of the bath). In this case the dynamical glass transition occurs
for T = Tmc = Td = 0.435, whereas the Kauzmann point is TK = 0.32
[Coluzzi et al., 2000a]. In the PEL formalism, for T < 0.8, it turns out that
fvib(T, φ) = fvib(T ) is independent of φ, and the system can be considered
as composed of two independent subsystems, respectively described by the IS
and by the vibrational part. For T < 0.5 the average potential energy φ̄ turns
out to be very near to the value (3/2)kBT supporting the hypothesis that the
system mainly probes a harmonic potential landscape.

6.A.3 Lewis-Wahnström model for orthoterphenyl

With respect to the central pair potentials considered so far, [Lewis & Wahn-
ström, 1993] improved the model description of physical interaction including
rotational degrees of freedom (see also [Wahnström & Lewis, 1993; Lewis &
Wahnström, 1994a,b]). The model they introduced consists of a three site LJ
potential that is able, provided the parameter values are tuned appropriately,
to mimic the behavior of OTP, a nonpolar organic liquid consisting of three
molecular units (three connected benzene rings). The intermolecular interac-
tions are short range, van der Waals-like and the model shows little tendency
to enucleate a crystal phase. It is one of the most studied fragile glasses in
the last forty years.

In the LW model, the OTP molecule is represented by three sites (one for
each benzene ring). The molecule is supposed rigid, neglecting internal de-
grees of freedom, and planar: an isosceles triangle with two short sides. To
each molecule a fixed bond length is assigned, equal to the length of a short
side and corresponding to an exluded volume σ of a LJ potential. Also the
angle θ between short sides is fixed, at 75o. The interaction between two sites
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on different molecules is of the LJ type (reproducing in molecular dynamics
simulations the van der Waals forces), cf. 6.A.2. Nine site-to-site interactions
have, thus, to be evaluated for each pair of molecules, of the form:

V (riajb) = 4ǫ

[(
σ

riajb

)12(

− σ

riajb

)6
]

+ λ1 + λ2riajb (6.A.5)

where riajb is the distance between the site a = 1, 2, 3 of the molecule i =
1, . . . , N and the site b of the molecule j. The LJ parameters are σ = 0.483
nm and ǫ = 5.276 KJ/mol. The values of the extra parameters are λ1 = 0.461
kJ/mol and λ2 = −0.313 kJ/(mol nm) and are chosen in such a way that
V (r) and V ′(r) are both zero at r = 1.2616 nm. The PEL anaylis of the LW
model has been carried out by Mossa et al. [2002]; La Nave et al. [2002].

6.A.4 Simple point charge extended model for water

The SPC/E potential has been introduced to model the behavior of under-
cooled liquid and amorphous solid water [Berendsen et al., 1987]. In partic-
ular, it reproduces the experimentally measured property that the diffusion
constant, as a function of the pressure or the density at constant temperature,
displays a maximum, that becomes more and more evident as temperature is
decreased. The model involves orienting electrostatic effects (on the plane),
cf. Fig. 6.15, and Lennard-Jones interactions, cf. Eq. (6.A.2), whose σ
parameter accounts for the size of the molecules.

At short distances repulsion occurs, ensuring that the structure cannot col-
lapse due to the electrostatic interactions. At intermediate distances, instead,
the interaction is significantly attractive but nondirectional and it competes
with the directional attractive electrostatic interactions.

Examples related to the PEL approach can be found in [Roberts et al.,
1999; Scala et al., 2000].

l1

q1

q2

σ

q1

θ

ε = 0.65 kJ mol
−1

σ = 3.166 Å

Lennard-Jones parameters

SPC/E

q2(e) = −0.8476

q1(e) = 0.4238l1 = 1 Å

θ = 109.47o

FIGURE 6.15

Parameters for the water molecule H2O are represented in the SPC/E model. The

LJ parameters for the molecule-molecule interaction are also reported.
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Theories of the glassy state

When the moon is not full,

the stars shine more brightly

Bahamian proverb

Thermodynamics acts as a law of large numbers in constraining the energy
exchange in macroscopic systems. In previous chapters we have developed
a scenario for its application to the glassy state and discussed its limits. A
different fundamental question is which mechanism lies at the origin of the
slow dynamics that leads to glassy behavior. Obviously, this has a strong
system-dependent component, though certain types of universality are ex-
pected. A number of scenarios that are known in literature will be discussed
in the present chapter. In particular, we will give a short presentation of the
mode-coupling theory and of the mean-field replica theory applied to models
related to structural glasses, both with and without ad hoc quenched disorder.
We will, then, dedicate some more space to the state of the art for what con-
cerns the avoided critical point theory and the random first order transition
theory for the mosaic state. Some theories have been widely referred to in
the previous chapters and we report them for self-consistency and to provide
up-to-date bibliography for interested readers. Some other theories are, in
our opinion, interesting recent developments, whose properties we critically
analyze and discuss, trying, as well, to compare different points of view in the
literature. Many other approaches, among which we mention those of Schulz
[1998] and Franz [2005, 2006], fall outside the scope of this book.

7.1 Mode-coupling theory

Mode-coupling theory (MCT) is a mean field-type approach valid above and
near the onset of glassy behavior, that is to say, in the region where the
α and β relaxation times start to deviate from each other. This occurs at
a “mode-coupling” temperature Tmc, corresponding to what we called the
dynamical transition temperature Td [Götze, 1984; Bengtzelius et al., 1984;

269
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Leutheusser, 1984]. This temperature lies far above the glass temperature
with its typical timescale of hours. For glass-forming liquids, the relevant
dynamics is typically in the 100 nanosecond regime, so the theory can be
tested by spectroscopic tools [Götze, 1985, 1991; Götze & Sjögren, 1992] .
A modern application is soft systems, such as Laponite solutions in water,
where the intrinsic timescale is much larger, of the order of hours or more,
so that the mode-coupling regime is the only relevant regime for laboratory
experiments [Kroon et al., 1996].

One of the most important features of MCT is that just knowing the static
structure factor, one can derive the whole dynamics. In its simplest form, one
starts with the density fluctuations of the N molecules of the fluid at wave
vector q,

δρ(q, t) =
N∑

j=1

eiq·rj(t) (7.1)

The coherent intermediate scattering function is

F (q, t) =
1

N
〈δρ(q, t)δρ∗(q, t)〉 (7.2)

and the static structure factor is

S(q) = F (q, 0) (7.3)

where q = |q|. Normalizing Eq. (7.2)

Φ(q, t) =
F (q, t)

F (q, 0)
, (7.4)

one may write down the evolution equation in the form

Φ̈(q, t) + Ω2
qΦ(q, t) + Ω2

q

∫ t

0

dt′M(q, t− t′)Φ̇(q, t′) (7.5)

where

Ω2
q =

q2kT

mS(q)
(7.6)

with m the mass of the particle of the fluid. All the difficulty of the problem
has now been hidden in the memory kernel M(q, t). It has a regular fast part
M reg, the short time memory kernel, related to the short time behavior of
the liquid, which is a difficult kernel, but unrelated to glassiness. The rest,
M −M reg, is slow. Within the Mori-Zwanzig projection operator technique,
which itself is exact, a leading order truncation has been made, which yields

M(q, t)−M reg(q, t) =
1

2(2π)3

∫

d3k V (2)(q, k, |q−k|)Φ(k, t)Φ(|q−k|, t) (7.7)
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The approximated vertex function can be expressed as

V (2)(q, k, |q− k|) =
n

q2
S(q)S(k)S(|q− k|)

(
q

q
· [kc(k) + (q − k)c(|q − k|)]

)2

(7.8)
Here n = N/V is the density and c(k) = n/[1− 1/S(k)] the direct correlation
function. The whole theory is, thus, determined by the static structure factor
S(q).

Another approach, called “fluctuating hydrodynamics,” leads to the very
same equations [Das et al., 1985; Das & Mazenko, 1986; Schmitz, 1988]. After
the proper identifications have been made, these equations also coincide with
the dynamic equation of a subclass of spin-glass models in their paramagnetic
phase [Bouchaud et al., 1996]. So they appear to bear some universality and,
as a consequence, have some universal scope of application.

The above equations are still very complicated. In a numerical approach,
Bengtzelius et al. [1984] noticed that the main contribution comes from wave
vectors near the peak q0 of the static structure factor S(q). A not unreasonable
simplification is then to assume that only the peak is relevant, viz., S(q) ∼
δ(q − q0). This leads to the so-called schematic theory, in our situation the
Leutheusser [1984] model. The mode-coupling equations reduce to

φ̈(t) + Ω2φ(t) = −c2Ω2

∫ t

0

dt′φ2(t− t′)φ̇(t′) (7.9)

where φ(t) = Φ(q0, t), c2 results from the weight of the peak and the regular
part of M has been dropped since it does not enter the long time dynamics.
This simplification is not crucial for the rest of our discussion.

To get a feel for the structure of the theory, let us analyze this schematic
equation in some detail. Neglecting the second derivative, we write it as

φ(t) + c2
d

dt

∫ t

0

dt′φ2(t′)φ(t− t′) = c2φ
2(t) (7.10)

We set, then,
φ(t) = f +G(t) (7.11)

where f , called the non-ergodicity parameter, is a plateau value of φ, where
the system will stay some while (for T > Tmc) or will relax for long times (for
T < Tmc). It holds that G(0) = 1 − f . Expanding up to order G2 we have

1

2

(
1

c2f
− 2 + 3f

)

G(t) +
d

dt

∫ t

0

ds G(s)G(t− s) = σ +
1 − f

2f
G2(t) (7.12)

The linear term in G vanishes if we choose

f =
1

3

(

1 +

√

1 − 3

c2

)

. (7.13)
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The constant term

σ ≡ f

2

(

1 − f − 1

c2f

)

=
1

6 − c2 + c2
√

1 − 3/c2

c2 − 4

2c2
(7.14)

clearly vanishes for c2 ց c∗2 = 4. At that point, f = f∗ ≡ 1
2 . As c2 will

be temperature dependent, the point c2 = c∗2 will correspond to the mode-
coupling temperature Tmc, and σ is proportional to the deviation from it,

σ = C
T − Tmc

Tmc
(7.15)

where C is a system parameter. After these steps, Eq. (7.12) reads

d

dt

∫ t

0

ds G(s)G(t− s) = σ + λG2(t) (7.16)

with, in our case, λ = f∗/[2(1 − f∗)] = 1
2 . In general, however, f∗ and λ can

take model dependent values, f∗ > 0, λ < 1.
For times in the β-regime, τ0 ≪ t ≪ τβ , we will have a decay towards the

plateau of the form

G(t) = A

(
t

τβ

)−a
(7.17)

Taking Laplace transforms, one finds the condition

Γ2(1 − a)

Γ(1 − 2a)
= λ (7.18)

for the exponent a, while, generally, the amplitude A is of the order of unity,
provided we match in the non-asymptotic regime with the σ term, thus choos-
ing

τβ ∼ τ0σ
−1/(2a) (7.19)

where τ0 is the microscopic attempt time. In the ergodic phase (σ > 0) this
decay will go to the long time value set by Eq. (7.16),

G(∞) =

√
σ

1 − λ
(7.20)

The total non-ergodicity parameter f +G(∞) thus exhibits a square root sig-
nature on the approach to the mode-coupling transition, which is well visible
on top of linear terms in σ.

Above the mode-coupling transition, the system is ergodic and the corre-
lator will decay from the plateau on longer times, for τβ ≪ t ≪ τα. We may
set

g = −B
(
t

τα

)b

(7.21)
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which is called “von Schweidler’s law” [Götze, 1985]. This will bring us to an
exponent relation similar to Eq. (7.18),

Γ2(1 + b)

Γ(1 + 2b)
= λ (7.22)

The matching of the amplitudes for t ∼ τβ implies τβ/τα ∼ σ1/(2b). The α
processes are, thus, predicted to have a power law divergent relaxation time,

τα = Cττ0σ
−γ = C ′

ττ0

(
Tmc

|T − Tmc|

)γ

(7.23)

where γ reads

γ =
1

2a
+

1

2b
(7.24)

Both a and b are set by λ, cf. Eqs. (7.18), (7.22), so also γ may vary from
system to system. In practice, λ can be derived from a, b or γ.

In general, beyond the schematic approximation, every correlator can be
decomposed according to the “factorization property”

φ(t) = f + hG(t) (7.25)

where f and h are constants that depend on the considered dynamical variable
of which φ is the correlation function (for instance, when considering ρq(t),
they may depend on q), but G is a universal function:

G(t) =
√

|σ| g±
(
t

tβ

)

(7.26)

Here g+ is a scaling function applying to T > Tmc while g− applies to T < Tmc.
The functions g±(s) satisfy the equations

d

ds

∫ s

0

ds′ g±(s− s′)g±(s′) = ±1 + λg2
±(s) (7.27)

and G =
√

|σ| g± has the above-discussed asymptotics. Notice also that, for a
given observable, time enters in a scaling form t/τβ , which allows us to present
data at different T in a master curve after determining τβ .

An impressive confirmation of MCT has been achieved in the temperature-
frequency plane [Götze, 1991]. When one comes closer to Tmc, the theory,
however, fails [Schmitz et al., 1993]. This is because it assumes a divergence
of the α timescale, which is not present in reality. Though some improvements
of the approach can be made, it has remained difficult to capture the relevant
physics below Tmc, that is the domain of hopping dynamics, or intermittency,
due to trapping in mildly long-lived states, or, equivalently, of a timescale
separation related to mildly metastable states.

More recent applications of MCT include aging dynamics of soft systems
such as Laponite solutions in water. Here the intrinsic timescale is much
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longer, and experimental timescales can, for Laponite concentrations of the
order of a few percent, range up to 200 hours [Kroon et al., 1996]. Probably
just for this reason, dynamics will mostly stick in the initial time regime, where
mode-coupling applies. In agreement with this, microrheology experiments
show that the FDT is satisfied [Jabbari-Farouji et al., 2007].

The reason for the success of MCT may have been uncovered recently. It
was pointed out by Biroli et al. [2006] that in MCT a divergent length-scale
occurs, not in the two point correlation function, as happens in standard phase
transitions, but in a four-point correlation function, in a manner in which it
typically happens in spin-glasses. The presence of the underlying cooperative
mechanism explains why this theory has ubiquitous applications, even if the
cooperation is an effect of the initial stage, that gets leveled off beyond a
certain scale, and no true divergence happens at Tmc (and, in fact, not even
at Tg).

For recent overviews treating extensively the MCT, the reader can consult,
e.g., the reviews of Götze [1999]; Cummins [1999]; Das [2004] and the book of
Binder & Kob [2005].

7.2 Replica theory for glasses with quenched disorder

Many spin-glass models have been studied sharing features similar to those
occurring in real glass formers. Most of them are built with a disordered
interaction between the dynamic variables that is quenched, by this meaning
that, once prepared, couplings never change during the rest of the system’s
history. In the majority of cases, the dynamic variables are magnetic spins and
the interaction is magnetic (mixing both ferro- and antiferromagnetic bounds).
The liquid phase is, thus, represented by a paramagnet, whereas the glass
phase is represented by a particular spin-glass phase, computed by means of
the so-called one step replica symmetry breaking (1RSB) Parisi Ansatz.1 The
quenched randomness is a rather good tool to ad hoc implementation of the
feature of spatial disorder of the molecules in the glass, and it turns out that
models with built-in disorder do not yield different behaviors from those with
self-induced disorder (like in real systems). The subject is widespread and here
we just want to briefly recall the main results and link them to the actual
behavior observed in real glasses. Also, we will pay attention to the order
parameters arising in the description of the frozen phase. Many reviews, books
and lectures have been dedicated to mean-field spin-glass models yielding the
behavior of structural glasses. We mention, e.g., the review of Bouchaud

1This is not the spin-glass phase actually reproducing the behavior of true amorphous
magnets, where the replica symmetry must be broken infinite times in order to yield a
thermodynamically stable phase [Mézard et al., 1987].
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et al. [1998] and the Les Houches lectures of Parisi [2003] for a comprehensive
survey of the static and dynamic properties, the pedagogic review of Cavagna
& Castellani [2005], dedicated to the special case of the spherical p-spin model,
and the recent books of Binder & Kob [2005] and De Dominicis & Giardina
[2006].

7.2.1 The random energy model

The simplest model for glassy systems, the REM [Derrida, 1980, 1981], has
been already introduced in Sec. 6.2.2, where it was applied to the PEL for-
malism. We now analyze its properties a little bit further.

The REM was initially devised as a limit case of a set of N Ising spins
si = ±1 exchanging disordered interaction. The model consists of 2N IID
energy levels, whose probability distribution is

p(E) =
1√

2πNJ2
exp

(

− E2

2πNJ2

)

(7.28)

Computing the thermodynamics, one observes that, coming from high tem-
perature, the energy per spin changes behavior in T at a critical temperature
Ts: from e = −1/T at high temperature, it becomes constant at e = −1/Ts.
At that temperature, the entropy goes to zero, with a discontinuous first
derivative. At high temperature the relevant configurations are, therefore, in-
finite (as N → ∞) and we have the usual paramagnetic (fluid) phase, whereas
at low temperature only a subextensive number of configurations dominate.
To represent this, an order parameter can be defined in terms of the original
Ising spin variables, the overlap

qab ≡
1

N

∑

i

sai s
b
i (7.29)

where a and b label two configurations of spins, sa,b = {sa,bi }. The overlap qab
is equal to one if the two configurations a and b are equal (sai = sbi ), it is zero
if the two configurations are orthogonal (sa · sb = 0), and it is −1 if they are
opposed (sai = −sbi ).

For T > Ts it turns out to be qab = 0, ∀(a, b), whereas for T ≤ Ts the overlap
can take value zero with probability m and one with probability 1−m, where

m = T/Ts (7.30)

As T < Ts the latter parameter is smaller than one and the probability of find-
ing two equal configurations is finite. Formally, the probability distribution
of the overlap for the REM is

P (q) = (1 −m) δ(q − 1) +m δ(q) (7.31)

In the transition at Ts, no latent heat is involved and the specific heat has a
discontinuity. The specific heat, contrary to standard continuous transitions
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but similar to the (thermal) glass transition, cf. Sec. 1.1, jumps from a larger
value at high temperature to a lower value (zero) below Ts, i.e., some part of
the phase space is hidden. This corresponds to the fact that the free energy of
the paramagnetic phase extrapolated at low temperature is lower than the free
energy of the frozen phase, contrary to what happens in standard statistical
mechanics. Apart from the inversion displayed by the specific heat, accord-
ing to these elements, the REM transition would seem a second order phase
transition. However, no diverging susceptibility is found and, furthermore,
the order parameter q jumps discontinuously from zero to one as the system
undergoes the critical temperature. This kind of transition is also found in
other, more complicated, mean-field models, that we will consider below. It is
called either discontinuous phase transition [Bouchaud et al., 1998] or random
first order transition (RFOT) [Kirkpatrick et al., 1989] to distinguish it from
the standard first order phase transition between liquid and crystalline solid.
It might be argued that it is of order “one and half,” sharing some properties
both of first and second order phase transitions [Parisi, 2003].

7.2.2 The p-spin model

The model of which the REM is a limiting case is the many-body interact-
ing, known as the Ising p-spin model [Derrida, 1980; Gross & Mézard, 1984;
Gardner, 1985], whose Hamiltonian is

H = −
∑

i1<i2<...<ip

Ji1i2...ipsi1 . . . sip (7.32)

The couplings Ji1i2...ip are quenched random variables with Gaussian distri-
bution

P (Ji1i2...ip) =

√

Np−1

p!πJ2
exp

{

−J
2
i N

p−1

p!J2

}

(7.33)

In this model, the energies of different configurations are no more uncorrelated.
If one takes the limit p → ∞, however, the correlation vanishes and one
finds the REM model back. The p-spin model displays a dynamic transition
at some temperature Td, below which the thermodynamic solution is still
paramagnetic, but the free energy landscape becomes so corrugated and its
valleys so numerous and deep that the dynamics gets stuck in one of them
without being able to ever escape. This is an artifact of the mean-field nature
of the model causing the barriers to grow like N . At a lower temperature, Ts,
a thermodynamic phase transition occurs to a frozen glassy phase that is a
mean-field description for the possible ideal glass phase. Indeed, the transition
temperature is identified with the Kauzmann temperature (see Sec. 1.4),
Ts = TK . At a still lower temperature, the Ising p-spin undergoes a second
thermodynamic phase transition to a proper spin-glass phase.

Since, in this book, we are focusing on the glass transition, we will now
shortly report the features of a simplified version of the model where the
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spins are spherical (
∑

i s
2
i = N) instead of Ising and where only a dynamic

and a static random first order transition occur, between a fluid (paramag-
net) and a phase sharing many properties of the glass phase. Because of its
simplicity and because of the similarities with glasses (in the behavior, not
in the microscopic description) the spherical p-spin model has been widely
studied in literature since its introduction [Crisanti & Sommers, 1992], see,
e.g., [Crisanti et al., 1993; Kurchan et al., 1993; Cugliandolo & Kurchan, 1993,
1994; Nieuwenhuizen, 1995; Cavagna et al., 1998, 1999; Crisanti et al., 2003],
just to mention a few.2

Looking at the Hamiltonian, Eq. (7.32), it can be seen that there is no
spatial structure in the model, since every spin can interact with any other:
the model is mean-field.

The thermodynamic of the glassy phase can be computed by averaging
over the quenched disorder the logarithm of the sample dependent partition
function

ZJ =
∑

{si1 ...sip}
e−βH[{s}] (7.34)

This is performed by means of the replica trick, that is, by making n identical
copies of the original model, whose collective partition function reads

ZnJ =
∑

sai1
...saip

e−β
Pn
a=1 H[{sa}] (7.35)

The replicated, or total, free energy is, then, computed considering the analytic
continuation of the above function of n for non-integer values and taking the
limit for n→ 0:

−βFtot = logZJ = lim
n→0

ZnJ − 1

n
(7.36)

The total free energy per spin of the spherical p-spin model is

βftot = − lim
n→0

[

β2

4

∑

ab

qpab + log det q̂

]

(7.37)

where q̂ is the overlap matrix,3 i.e., the order parameter. In the paramagnetic
phase all elements are zero. Below the static phase transition the stable phase
is obtained by breaking the original symmetry of the replicas and imposing
that the elements qab of q̂ are not all equal to each other, as one would expect

2The similarity between the p-spin model and the glass was initially put forward by Kirk-
patrick & Thirumalai [1987b,a]. They studied yet another version of the model, with
continuous spins and Hsoft = H+

P

i(λs2
i +us4

i ). Another model with random interaction,
the Potts glass with Q > 4, also displays a discontinuous dynamic transition, as well as an
underlying static random first order transition and similar glassy properties [Gross et al.,
1985; Kirkpatrick & Wolynes, 1987b].
3Not to be confused with the wave vector q of the mode-coupling theory, see Sec. 7.1.
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FIGURE 7.1

The n×n matrix q̂ in the generic 1RSB Ansatz. The diagonal elements are irrelevant

constants (c in the figure). The diagonal block elements (in grey, m × (m − 1) in

each block) are equal to the self-overlap q1, the Edwards-Anderson order parameter.

The n/m(n/m − 1) elements of the off-diagonal blocks are equal to the minimum

overlap q0. In absence of an external magnetic field q0 = 0.

if all replicas were equivalent. The 1RSB Ansatz put forward in the matrix
shown in Fig. 7.1 [Parisi, 1980], turns out to yield the stable, consistent, low
temperature phase [Crisanti & Sommers, 1992]. The elements can take two
values, q1 and q0 < q1, and the matrix is organized in diagonal and off-diagonal
blocks. Formally, this can be written as

qab = (1 − q1) δab + (q1 − q0) ǫab + q0 (7.38)

where ǫab = 1 if a and b belong to a diagonal block, zero otherwise.

The 1RSB free energy reads

ftot = −β
4

[1 − (1 −m)qp1 −mqp0 ] − 1 −m

m
log χ̃(q1) +

1

m
log χ̃(q0) +

q0
χ̃(q0)
(7.39)

where χ̃(q) ≡ 1− q1 +m(q1 − q). The self-consistency equations for the order
parameters q0, q1 and m are (in the zero external field)

q0 = 0 (7.40)

(1 −m)

[
β2p

2
qp−1
1 − q1

χ̃(q1)χ̃(0)

]

= 0 (7.41)

β

2
qp1 +

1

m2
log

(
χ̃(q1)

χ̃(0)

)

+
q1

mχ̃(0)
= 0 (7.42)
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At a high temperature, the stable solution is q1 = 0 and one has the para-
magnetic phase (m is undetermined and irrelevant). As T equals some critical
value, Eqs. (7.41)-(7.42) are solved for m = 1 and q1 6= 0.

Introducing the universal Crisanti-Sommers [1992] function

z(y) ≡ −2y
1 − y + log y

(1 − y)2
(7.43)

where

y ≡ χ̃(q1)

χ̃(0)
(7.44)

the static transition temperature can be written as [Kurchan et al., 1993]

TK =

√

py⋆

2
(1 − y⋆)(p−2)/p (7.45)

where y⋆ is the solution of z(y) = 2/p. For p = 3, e.g., y⋆ = 0.35499 and
TK = 0.58605. Eq. (7.44), computed at y = y⋆ and m = 1, yields the value
of q1 = 1 − y⋆, that discontinuously takes a nonzero value at the transition,
hinting that the states constituting the frozen phase are already formed.

In terms of probability distribution of the overlap values, the framework is
the same as for the REM model, cf. Eq. (7.31), i.e., P (q) = m δ(q) + (1 −
m)δ(q−q1). At T = TK , m = 1 and the probability of states with overlap q−1
is zero: even though they are there, they have no thermodynamic weight. As
T < TK , m decreases from 1 and they progressively acquire a nonzero weight.

Even though at higher temperature the stable phase is paramagnetic, from
the study of the dynamics, in particular of the equation of motion of the
time correlation functions, one sees that, at some temperature, the correlation
functions starts developing a plateau (see, e.g., Fig. 1.2) that, further lowering
the temperature, becomes persistent to infinite times at

Td =

√

p(p− 2)p−2

2(p− 1)p−1
(7.46)

that is larger than TK . The plateau sets in at the value of the correlation
equal to

qd = (p− 2)/(p− 1) (7.47)

At p = 3, for instance, Td = 0.61237 and qd = 0.5 < q1 = 0.645.

7.2.3 Complexity

The entropy is the logarithm of the number of configurations of the system,
S = logN .4 In standard statistical mechanics it can be regarded, e.g., in

4We set the Boltzmann constant equal to one.



280 Thermodynamics of the glassy state

the canonical ensemble at constant volume, as the Legendre transform of the
free energy, F = U − TS, where the inverse temperature β and the internal
energy U are conjugated variables related by β = ∂S/∂U (a Maxwell relation,
cf. Sec 2.1.3). In systems displaying a huge number of metastable states,
organized in such a way that some kind of ergodicity breaking occurs (weak
ergodicity breaking, cf. Sec. 1.1.1), the lost part of the phase space is coded
into the configurational entropy (Sec. 1.4), called the complexity function in
the framework of spin-glasses. It is computed as the average logarithm of
the number of the minima of the free energy landscape for a given realization
of the disorder: Sc = logNJ . The function whose minima are counted, is
generally the one devised following the approach of Thouless et al. [1977]
(TAP), that is, the free energy functional reproducing the right mean-field
equations for average magnetizations in the frozen phase.

Crisanti & Sommers [1995] first applied the TAP approach to the spheri-
cal p-spin model and the complexity of the spherical p-spin reads (see, e.g.,
[Crisanti et al., 2003])

Sc(z) =
1

2

[
2 − p

p
− log

pẑ2

2

p− 1

p
ẑ2 − 2

p2ẑ2

]

(7.48)

where ẑ turns out to be a function of the potential energy values in the minima
of the TAP free energy, that is, of the values of the Hamiltonian function
computed at its minimal configurations {smin

i }, e = H({smin
i })/N :

ẑ =
p

2

(

e+
√

e2 − e2th

)

; eth = −
√

2(p− 1)

2
(7.49)

The complexity is defined as long as ẑ is real, i.e., e < eth and for e > e0 where
it becomes negative, that is, where the number of states becomes exponentially
small with the size of the system. The energy e0 is the ground state of the
p-spin model. This comes about because the TAP mean-field equations for
the average site magnetizations of the spherical p-spin model do not depend
on temperature and they formally coincide with the equation of minimization
of the Hamiltonian (see [Crisanti & Sommers, 1995; Cavagna & Castellani,
2005]). In other words, in this very special case, there is an exact one-to-one
correspondence between minima of the FEL and minima of the PEL (cf. the
discussion in Sec. 6.1).

The overlap, as well as the internal energy u = U/N and free energy f =
F/N per particle do, instead, depend on the temperature (and u(e, T = 0) =
e). In particular, the Edwards-Anderson parameter q1 at the threshold is
obtained by solving

(p− 1)2qp−2
1 (1 − q1)

2 = T 2e2th (7.50)

At the dynamic transition temperature, the threshold overlap coincides with
qd [cf. Eq. (7.47)], signaling that the states visited at the dynamic transition
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are the threshold ones (i.e., the most numerous ones and those at the highest
potential energy): there the dynamics is trapped and the divergence of the
height of the barriers in the thermodynamic limit prevents the system from
reaching the (paramagnetic) equilibrium state.

Knowing that many states are present in an energy domain between e0 and
eth, the partition function can be written as

Z ≡
∑

γ

e−βNfγ =

∫

de eSce−βNf(e,T ) =

∫

de e−βNftot(e,T ) (7.51)

where

ftot(e, T ) ≡ f(e, T ) − Tsc(e, T ) (7.52)

The above function can be regarded as a Legendre transform of the complexity
with conjugated variables f and

T =
∂sc
∂f

(7.53)

Its minimum value is displayed at the average equilibrium value of the energy
at temperature T , ē(T ) [compare with φ̄ in Eq. (6.9)] and allows us to evaluate
the integral in Eq. (7.51) by the saddle point method. Eventually,

−βFtot(ē(T ), T ) = −βNftot(ē(T ), T ) = log
∑

γ

e−βNfγ

7.2.4 Mean-field scenario

Summarizing, the single state free energy per particle is f = u− Ts (s is the
entropy of a state), whereas the total free energy per particle is

ftot = f − Tsc = u− T (s+ sc) (7.54)

This is the same decomposition carried out in Sec. 2.5, cf. the free energy
expressed by Eq. (2.66), where, however, equilibrium is supposed to hold and,
therefore Te = T .5

The temperature at which ē(T ) equals the ground state is, not surprisingly,
the thermodynamic transition temperature TK , for which sc(ē(TK)) = 0 and
ftot(TK) = f(TK). Below TK , equilibrium is dominated by stable states (with
sub-extensive complexity).

Lowering the temperature of a liquid system, at some point Td, dynamic

5This depends on the fact that the breaking parameter m is equal to one above Ts = TK .
In other words, the statics is the one of the liquid phase and we are adopting a static, equi-
librium mean-field description. As one goes below TK , or the dynamics is considered, the
factor in front of the complexity can become Te = T/m, with m < 1, see, e.g., [Kirkpatrick
et al., 1989; Cugliandolo & Kurchan, 1993; Nieuwenhuizen, 1998a; Mézard & Parisi, 1999a].
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arrest occurs. The ergodicity of the liquid phase is broken and the system is
stuck into one metastable vitreous state. The liquid phase is still the stable
thermodynamic phase but the barriers to overcome in order to end up in this
state are infinite in the thermodynamic limit, so that the equilibration time
is infinite.

Below Td, metastable glassy states are very many. Their number increases
exponentially with the number of particles of the system, ∼ eNsc . The liquid
states are of a negligible number in comparison (their entropic contribution
is subextensive). Therefore, e.g., in a cooling experiment, it is statistically
impossible to reach a liquid phase: the system cooled down from an arbitrary
high temperature will almost certainly find itself in a glassy metastable state
and will be forever unable to leave it.

A glassy state will appear basically as a liquid phase for what concerns the
topological ordering but will display a nonzero Debye-Waller factor (solid-
like). In the MCT language this amounts to saying that, below Td, the non-
ergodicity parameter is finite. The dynamic temperature Td is, indeed, the
mode-coupling temperature Tmc. The transition out of a glassy state is a
non-perturbative phenomenon, thus inexistent in the mean-field approxima-
tion. From the point of view of the disordered systems description by means
of the overlap order parameter [Mézard et al., 1987], the self-overlap q1 of
each metastable state is finite, but the overlap q0 between two different states
is zero: the metastable glassy states are incongruent, or completely decorre-
lated. The liquid state underlying has, instead, also a zero q1.

Given this picture of ergodically disconnected sectors (i.e., metastable states
with infinite lifetimes) we have defined two free energy functions: the loga-
rithm of the partition functions of the states ftot, Eqs. (7.51)-(7.52), and the
average state free energy:

f = f ≡ 1

N

∑

γ

Pγfγ ; Pγ ≡ e−βNfγ

Z
(7.55)

where fγ = −1/(βN) log
∑

c∈γ exp (−βH[c]). The entropic contribution of all
states γ is in all respects the configurational entropy

Sc ≡ −
∑

γ

Pγ logPγ (7.56)

In the mean-field case here considered, the configurational entropy is mathe-
matically well defined even for infinite timescales but physically a bit weird.
Indeed, it counts the entropic contribution of all the states that will never be
reached by the system.

When TK < T < Td, the configurational entropy TSc = F − Ftot is exten-
sive. The total free energy in the presence of exponentially many metastable
states is equal to the free energy of the underlying liquid. It would be the free
energy of the liquid phase if the dynamic arrest would not prevent the system
from exploring the whole phase space.
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As the configurational entropy goes to zero decreasing the temperature
we can define the zero point as the Kauzmann temperature of a hypothetic
thermodynamic phase transition to a stable glassy phase. At that point the
average free energy becomes equal to the liquid one: the glassy phase becomes
the stable one. This kind of transition is signaled by the jump of the order
parameter of the stable phase (the global minimum of the thermodynamic
potential) from 0 (liquid, T = T+

K ) to a finite q1 (ideal glass, T = T−
K ).

7.3 Glass models without quenched disorder:

clone theory

If ordinary phase transition theory would hold, to study the equilibrium ther-
modynamics of the ideal glass state below TK one should apply an external
weak field, selecting one particular state across the transition point and even-
tually send it to zero (working in the thermodynamic limit). Unfortunately,
due to the intrinsic frustration of the system, that is, to the inability of single
particles to contemporarily minimize each of their couplings, to build such
a pinning field would already require the knowledge of all states, clearly an
unfeasible task.

A way to overcome the problem is to consider two (or more) copies of
the same glassy system coupled in such a way that they are constrained to
be in the same state [Franz & Parisi, 1995]. The coupling must be weak
(proportional to ǫ → 0) and short range in order not to modify the FEL,
and has to be sent to zero at the end of the selection procedure, just like
the pinning field in ordinary phase transitions. By replicating the system,
an order parameter can be devised for the glass state, with the property of
jumping discontinuously from zero as the transition occurs, like the overlap of
mean-field models with quenched disorder. An example is a sort of replicated

pair correlation function of the distance r between the position r
(1)
i of the

molecule i in the (real) replica 1 and the position r
(2)
j of the molecule j in the

(real) replica 2:

g12(r) = lim
ǫ→0

lim
N→∞

1

ρN

∑

ij

〈

δ(r
(1)
i − r

(2)
j − r)

〉

(7.57)

where ρ is the density of the particles.

7.3.1 Equilibrium thermodynamics of the cloned m-liquid

To study the ideal solid glass phase at T < TK , it is necessary to use an arbi-
trary number m of replicas [Mézard & Parisi, 1996; Mézard & Parisi, 1999b;
Mézard, 1999; Mézard & Parisi, 1999a, 2000; Parisi, 2003]. The replicated
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partition sum is

Zm =

∫ fth

f0

df eSc(f,T )e−βmNf ≡ e−βmFtot (7.58)

where the total free energy per particle of the m replicas,

m
Ftot

N
= mftot = mf − Tsc(f, T ) (7.59)

is the Legendre transform of the configurational entropy. This also means
that, allowing, as was done in Sec. 7.2.2 for the parameter n, for analytic
continuation of mftot to non integer values of m, the dependence of f from
m, and vice versa, can be obtained from the relations βm = ∂sc/∂f or f =
∂(mφ)/∂m. The latter, together with Eq. (7.58), yields the useful formula
for the configurational entropy,6

sc(m) = βm2 ∂ftot(m)

∂m
(7.60)

The derivative of the configurational entropy as a function of the free en-
ergy f , computed at the lowest value, f0(T ), for which scց0, describes how
the system approaches the Kauzmann transition (the total configurational
entropy, counting contributions from all f -levels, is zero at the transition, by
definition). In the non-replicated system (m = 1), TK is yielded by

1 = TK
∂sc
∂f

∣
∣
∣
f0(TK)

(7.61)

In the replicated system, instead, the temperature T
(m)
K at which sc → 0 can

be obtained solving

m = T
(m)
K

∂sc
∂f

∣
∣
∣
f0(T

(m)
K )

(7.62)

If one carries out the analytic continuation of Eq. (7.59) for continuousm < 1,
one can, thus, explore the region T < TK employing a liquid made of molecules
containing m particles bounded together.7

The ideal glass phase cannot be probed coming from the fluid phase as
T → TK and extrapolating the thermodynamic properties below it, because of

6The m replicas introduced in this section play a different role than those introduced in
the replica approach of Sec. 7.2 for the computation of the average of the free energy of a
system with a quenched disorder, where, beyond the analytic continuation, the zero limit
was taken. Here, replicas are introduced to describe the (ideal) amorphous state as an
equilibrium state in statistical physics. To stigmatize this difference, we often use the word
clone instead of replica.
7The small attractive coupling of strength ǫ is, actually, not sufficient to yield a molecular
liquid at any m, but, depending on the temperature, this only holds in a particular interval
of m values for which the total free energy is minimized.
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the phase transition. However, one can still probe the glass phase by means of
the cloned molecular liquid just defined. Indeed, we first observe that, in such

a fluid, for T < T
(m)
K the configurational entropy is zero. That is, ftot = f ,

independently of m. In particular, below TK , ftot(1, T ) = ftot(m
⋆, T ) = f .

At a given temperature, the total free energy grows with m, starting from
small values, up to the value ftot(m

⋆, T ) = f , where m⋆ is determined solving
Eq. (7.62).

Before showing explicit applications of the cloned liquid method we observe
that at T < TK , for m ≥ m⋆(T ), ftot(m) = f is larger than the contin-
uation of ftot(m) of the liquid. In the latter case, indeed, ∂ftot/∂m < 0
and, therefore, sc < 0. The fact that ftot(m

⋆) (stable solid) is larger than
ftot(m > m⋆) (metastable liquid) is the source of the inverted jump in specific
heat that decreases at the thermodynamic glass transition as temperature is
decreased. Indeed, this is the opposite of what happens in ordinary second
order phase transitions, but it is the right static counterpart of what happens
in off-equilibrium real glasses at the calorimetric glass transition temperature
Tg > TK (Sec. 1.1).

7.3.2 Analytic tools and specific behaviors in cloned glasses

We now consider a generic glass former of N particles interacting by pair
potential V(r) in d-dimensional space, whose Hamiltonian is

H[r] =

1,N
∑

i<j

V(ri − rj) (7.63)

where ri is the position vector of the atom i. The partition function is, then,

Z =
1

N !

∫ N∏

i=1

drie
−βH[r] (7.64)

Replicating m times the system and introducing a weak coupling among
replicas, the total Hamiltonian reads

Hm =
m∑

a=1

H[ra] + ǫ

1,N
∑

i,j

1,m
∑

a<b

W
(
rai − rbj

)
(7.65)

where the replica coupling potential can be of any shape provided it is short
range, e.g., one can take W (r) ∼ 1/(1 + (r/c)2)6, where c ≃ 0.2a (a is the
intermolecular distance).

The partition function of the “cloned” glass former is

Zm =
1

N !m

∫ N∏

i=1

m∏

a=1

drai e
−βHm [{ra}] (7.66)
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As an order parameter, the inter-clone cross correlation is defined:

ρ({ra0}) =
1

N

∑

{ia}

〈
m∏

a=1

δ(raia − ra0)

〉

(7.67)

At low temperatures, where thermal fluctuations are relatively small with
respect to the typical distance a between atoms and where diffusion processes
can be neglected, one can identify the single molecule positions in the amor-
phous phase, as is usually possible in a crystal lattice. The W coupling takes
care of the fact that where a system exhibits a particle, any other of its clones
also displays a particle very nearby. It is, then, possible to relabel the par-
ticles in every clone, so that nearby particles are labeled by the same index
(raj ≃ rbj , ∀(a, b)). All labeling permutations yield a factor N !m−1. We are,
then, left with a system of N molecules (indices i, j), each of them formed by
m atoms (indices a, b). In terms of centers of mass R and relative coordinates
u, we can write rai = Ri + uai (

∑

a uai = 0) and the partition function reads

Zm =
1

N !

∫ N∏

i=1

dRi

N∏

i=1

m∏

a=1

duai

N∏

i=1

(

mdδ(d)

(
m∑

a=1

uai

))

(7.68)

exp






−β

1,N
∑

i<j

m∑

a=1

V(Ri − Rj + uai − ubi ) − βǫ
N∑

i=1

1,m
∑

a<b

W (uai − ubi )







In order to perform explicit computation, different approaches, yielding
differently refined approximations, have been developed in the literature.

Harmonic resummation (HR). One approach consists in expanding
V(∆R+∆u) in the exponent of Eq. (7.68) up to the second order in ∆u and
performing the Gaussian integrations in uai building an effective potential for
the center of mass variables.

Small cage expansion (SCE). A complementary approach is to expand
the exponential of Eq. (7.68) in powers of u, keeping only the quadratic term
in W . Integrating in u yields, in this case, an expansion of the free energy
in powers of 1/ǫ, whose Legendre transform is a generalized thermodynamic
potential function of the “cage radius” A = 1/[2dm(m−1)]

∑

ab

〈
|uai − ubi |2

〉
,

conjugated to 1/ǫ. Since at low T the cages are small, one eventually performs
an expansion in A.

Molecular HNC free energy. Yet another computational scheme con-
sists in defining the functional Legendre transform of the free energy functional

Ftot[W ] = − T

m
logZm[W ]

cf. Eqs. (7.65)-(7.66), with respect to the generalized inter-clone correlation
ρ(r1, . . . , rm), cf. Eq. (7.67), whose conjugated function is the clone-clone
interaction W . The Hyper-netted chain (HNC) approximation [Hansen &
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TABLE 7.1

Kauzmann temperature TK as obtained by analytic approaches in the framework
of the cloned molecular liquid theory in the literature for different glass models and
techniques. HR stays for harmonic resummation and SCE for small cage expansion.
For binary mixtures also the dynamic temperatures are reported.

Model (technique) TK Td

Soft Spheres, ρ = 1 (HR) 0.182
[Coluzzi et al., 1999]

Soft Spheres, ρ = 1 (SCE) 0.203
[Coluzzi et al., 1999]

SSBM, ρ = 1 (HR and SCE) 0.135 0.226
[Coluzzi et al., 1999] [Hansen & Yip, 1995]

LJBM, ρ = 1.2 0.32 0.435
[Coluzzi et al., 2000a] [Kob & Andersen, 1994]

McDonald, 2006] is then applied to the cloned free energy, taking into account
only the molecular density ρ(r) and the two point correlation g(2)(r, r′). The
trial molecular density is, then, expressed as a function of a single variational
parameter, the cage size A. In this framework, an expansion for small cage
sizes is, eventually, once again performed to yield thermodynamic results.

These methods are complementary and they have been applied to models
for soft spheres (SS) [Mézard & Parisi, 1999b,a; Coluzzi et al., 1999], to soft
spheres binary mixtures (SSBM) [Coluzzi et al., 1999] and to Lennard-Jones
binary mixtures (LJBM) [Coluzzi et al., 2000a,b] (for a description of the mod-
els see Appendix 6.A). In Table 7.1 the obtained values of TK are reported,
as well as the known values for Td of those models. In Fig. 7.2 the behavior
of the specific heat is compared for SS, SSBM and LJBM models. The jump
occurs at TK and it is downward lowering the temperature. The (ideal) glass
specific heat C = 3/2 in each case, is nothing other than the Dulong-Petit
law: the specific heat of the glass is equal to the one of the crystal, in good
agreement with experimental data.

7.3.3 Effective temperature for the cloned molecular liquid

Finally, a short remark on the ratio T/m⋆: it stays relatively constant as T
varies below TK , being almost always close to the latter, independently of T .
It is, therefore, m⋆ ≃ T/TK . In Fig. 7.3 we show, for the models and the
techniques considered in literature, the behavior of m⋆ versus temperature.
This linear behavior is similar to the one found for the statics of many dis-
continuous spin-glass models below TK (e.g., in the REM, Eq. (7.30), or the
Ising p-spin model [Gross & Mézard, 1984; Crisanti et al., 2005]), as well as
for dynamics below Td in the spherical p-spin model, where T/m⋆ turns out
to be the FDR and m⋆ ≃ T/Td.

Interpreting the ratio T/m⋆ as an effective temperature Te, Eq. (7.59) can
be rewritten as

Ftot = F − TeSc (7.69)
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FIGURE 7.2

Specific heat across the thermodynamic glass transition for (left) the soft

spheres (Appendix 6.A.1), (center) the 50%-50% soft spheres binary mixture with

σAA/σBB = 1.2 (Appendix 6.A.1) and (right) the 80%-20% Lennard-Jones binary

mixture (Appendix 6.A.2). Reprinted figures with permission from [Mézard & Parisi,

1999a; Coluzzi et al., 1999, 2000a], left to right respectively. Copyright (1999,2000)

by the American Institute of Physics.

FIGURE 7.3

The temperature behavior of m⋆: (left) T/m⋆(T ) for the soft spheres model, (center)

βm⋆(T ) in the soft spheres binary mixture, (right) m⋆(T ) for the Lennard-Jones

binary mixture. Reprinted figures with permission from [Mézard & Parisi, 1999a;

Coluzzi et al., 1999, 2000a], left to right respectively. Copyright (1999, 2000) by the

American Institute of Physics.

Considering that the single state free energy is F = U − TS, where U is the
internal energy and S is the entropy of the single state, this is identical to the
generalized Helmholtz free energy introduced in Sec. 2.5 in the framework of
the two temperature thermodynamics, cf. Eq. (2.66) (where Ftot was called
F ). By analogy with statistical mechanics of non-frustrated systems (and by
direct computation), one realizes that the entropy counting the minima of the
free energy landscape can be expressed as the Legendre transform of the total
free energy, Eq. (7.39), as

Sc = −βeFtot + βeF (7.70)

where the inverse effective temperature βe = 1/Te = m/T and the free energy
of the single state f are conjugated by

βe =
∂Sc

∂F
(7.71)
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We notice that this is equivalent to Eq. (3.143), (where the typical state free
energy F was called F̄ ) and, indeed, the parameter βe is precisely the inverse
of the effective temperature in a generalized two temperature thermodynamic
description of the glass state.

7.4 Frustration limited domain theory

Though MCT works reasonably well near the mode-coupling temperature
and in soft matter systems like Laponite solutions, the crucial property of
a glass is the enormous enhancement of the viscosity or of the equilibration
timescale. Indeed, an enhancement of 15 orders of magnitude may occur
over a reasonably small temperature interval, say some 50K. Such a huge
amplification of timescales is very atypical for other solids, but more usual in
geology and astronomy where, indeed, glassy behavior occurs.

The dynamical arrest occurring in glass-forming liquids may have a common
cause. Indeed, in many systems one observes that the viscosity increase is
enhanced with respect to a simple Arrhenius law, Eq. (1.2), η = η0e

A0/kT . In
realistic cases, this enhancement will apply to the infinite frequency limit of
the frequency-dependent viscosity. One may define the effective free energy
barrier as

A(T ) = kT log
η

η0
(7.72)

Fig. 7.4 shows that, for moderately high temperatures, A is constant (on the
left in the figure), while it presents a rapid increase below some crossover tem-
perature T∗. The ubiquity of such an enhancement in various glass-forming
liquids and polymer mixtures suggests that some universal mechanism is un-
derlying here. If a Vogel-Fulcher (VF) law η = η0 exp[B/(T − T0)] were
present, one would have the effective barrier

A(T ) =
BT

T − T0
(7.73)

The aim of the theory presented in this section is to derive an enhancement
like this, probably having a different analytical shape, from a microscopic
theory.

7.4.1 Geometric frustration

In crystalline structures, local order can be extended as far as one wishes:
more material leads to a larger crystal. Subtle cases are quasicrystals, where
it is still possible to tile the entire space, but only in a manner without transla-
tional symmetry [Steinhardt & Ostlund, 1987]. Geometric frustration applies
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FIGURE 7.4

Crossover from Arrhenius to enhanced Arrhenius behavior for three glass-forming

liquids. Both effective Arrhenius free energy A and temperature T are scaled with

respect to the crossover temperature T∗, where A starts to deviate from a con-

stant. Reprinted figure with permission from [Tarjus et al., 2005]. Copyright (2005)

Institute of Physics Publishing.

to situations where a local tendency to order is not completely fitting.8 It
can, then, be extended only up to a certain finite length-scale, beyond which
the collective mismatch effects hinder further ordering. In that situation, one
expects a mosaic pattern of locally ordered “droplets.”

In metallic spin-glasses a related phenomenon exists, known as mictomag-
netism. Consider, for example, the gold-iron mixture Au1−cFec, at concen-
tration c = 30%. Local Fe regions can contain as much as 1000 atoms, and,
thus, 1000 ferromagnetically ordered spins [Mydosh, 1993]. These regions,
sometimes called “fat spins”, are easily recordable in magnetic experiments.
Basically, the system behaves as a set of weakly coupled fat spins. A similar
pattern of locally ordered regions may underlie the glass state. Whereas in
metallic spin-glasses the cause of the domains is the substitutional disorder,
which in combination with the oscillating Rudermann-Kittel-Kasuya-Yosida
(RKKY) interaction cannot build large ferromagnetic regions, in glass-forming
liquids the finiteness of the domains may be supposed to originate from a geo-
metric reason, namely the impossibility to tile space beyond a certain length-
scale. Likewise, this frustration will lead to finite droplets of the ordered
phase, that together make up a mosaic structure.

In solid state physics it is often possible to go to a field theoretic description

8Frustration, a concept introduced by Toulouse [1977] in the field of spin-glasses, expresses
that different contributions to the Hamiltonian cannot be simultaneously optimal. This
leads to the field of complex systems, where the system may for some time have benefit
from some part of the interaction couplings, at the cost of other ones, and change these
parts in time.
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of the system, the so-called Ginzburg-Landau approach. The focus is on the
slow modes of the system, that must be properly identified, and the fast modes
are integrated out. This approach, then, many times allows us to perform a
renormalization group approach in the neighborhood of a critical point, where
the slow modes become very slow. For the glass transition, various scenarios
for such an approach have been attempted with varying levels of success, see
the recent overview of Tarjus et al. [2005].

7.4.2 Avoided critical point

The notion of an avoided critical point is widespread. If in an Ising magnet,
for some reason, there exists a small external field, then the zero field phase
transition gets smeared, it is “avoided.” This holds, in particular, when the
field is random in sign. More generally, a modest amount of frustration can
wipe out phase transitions, such that on lowering the temperature the be-
havior first looks like a phase transition, but on approaching the presumed
transition more and more, it drifts off from a real transition. This scenario
is known, for instance, for transitions that would exist in the mean-field, but
do not occur in reality, since the dimension of the system is below the lower
critical dimension. That case, where thermal fluctuations themselves pose a
large frustration, will not be considered here.

An interesting approach is the one founded on the concept of the avoided
critical point [Chayes et al., 1996; Kivelson et al., 1997; Tarjus et al., 1997]
and brought on in the late 1990s. In this theory the frustration, i.e., the prin-
cipal cause of glass formation, is said to act as a source of strain free energy
opposing the spatial expansion of locally preferred structures. As the system
size increases, this strain intensifies, causing the breaking up of the liquid into
domains. As the temperature decreases, the size and growth of these domains
are limited by the frustration, preventing any stable, globally ordered organi-
zation of the molecules. This is called the frustration-limited domain theory

[Kivelson et al., 1995; Tarjus & Kivelson, 1995] and provides an explanation
for the onset of super-Arrhenius behavior of the structural relaxation time
and the viscosity.

The question whether glasses are connected with avoided critical points,
finds motivation in the presumed existence of a Kauzmann transition where
the configurational entropy would vanish. Though, by construction, this does
happen in the HOSS model discussed in Chapter 3, in practice, this transi-
tion has never been confirmed in real glasses. Likewise, the VF law for the
relaxation time τ = τ0 exp[B/(T −T0)] exposes a blocking of dynamics below
T0, but practical fits to this shape will always remain stuck at the level of a
“reasonable fit,” never becoming a “convincing fit.” This could all be related
to avoidance of a true critical point.

Several contributions have been made to a frustration-based field theoretic
approach of supercooled liquids and the glass transition. Here we wish to
mention one scaling approach, which presents an alternative for the VF law



292 Thermodynamics of the glassy state

[Kivelson et al., 1995, 1996]. Let us consider a critical theory, to which small
frustration is added. At temperatures somewhat below T∗, the critical tem-
perature of the theory without frustration, two length-scales appear. The first
one is the correlation length of the would-be ordered low temperature phase,

ξ0 ∼ aǫ−ν , ǫ =
T∗ − T

T∗
(7.74)

where a is the lattice spacing and ν a critical exponent.
The effect of weak, long range frustration is to destabilize this ordering at

a larger scale RD ≫ ξ. In some models (one of which we discuss in the next
subsection), a scaling approach brings the form

RD ∼ a2

ξ0
√
K

(7.75)

where K is the strength of frustration and a is the lattice constant.
In the correlation functions of some order parameter O of the would-be

solid, these two scales would show up as [Kivelson et al., 1995, 1996]

〈O(r)O(0)〉 =

{

m2 + c1
a
r e

−r/ξ, ξ ≪ r ≪ RD

c2m2RD
r e

−r/RD , r ≫ RD
(7.76)

wherem = 〈O〉, vanishing at the critical point ε→ 0, is the order parameter in
the absence of frustration, and we have assumed the Ornstein-Zernicke decay
for the connected correlation functions. At the scale RD, fragmentation then
leads to a mosaic structure of ordered “droplets” of typical size RD.

From finite size studies of ordinary systems below their critical tempera-
tures, Kivelson et al. [1995] recall that there is a timescale τ associated with
the relaxation of the order parameter, which proceeds via nucleation and mo-
tion of a domain wall and that the divergence of τ in the thermodynamic
limit is the signal of a broken symmetry state. For system size L ≫ ξ0 one
expects log τ to be proportional to σL2/T , where the domain wall surface
tension scales as

σ ∼ T∗
ξ20

(7.77)

It is next assumed that this may be applied to domain wall sizes up to RD,
leading to

log
τ

τ0 exp(A0/T )
∼ ∆F

T
, ∆F ∼ σR2

D ∼ T∗
R2
D

ξ20
(7.78)

where τ0 is the microscopic collision timescale of the order of 10−15 s and A0

is the energy barrier for local changes of the conformation. Combining this
with Eqs. (7.75) and (7.74) brings a free energy cost

∆F =
T∗
K

a4

ξ40
=
T∗
K

(
T∗

T∗ − T

)4ν

= BT∗

(
T∗

T∗ − T

)ψ

(7.79)
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FIGURE 7.5

Reduced activation free energy, y = {T log[X(T )/X0]−A0}/(BT∗), versus reduced

temperature x = 1 − T/T∗, where X = η or τ , for 14 liquids listed in the inset.

The parameters A0, X0, B and T∗ are fitted for each liquid. The solid line presents

the theoretical curve, the pure Arrhenius shape y = 0 for x ≤ 0 and the avoided

criticality shape y = x8/3 for x > 0. Reprint with permission from [Kivelson et al.,

1996]. Copyright (1996) by the American Physical Society.

where B is a system parameter and ψ = 4ν is an exponent that lies between
7/3 and 3. For ordinary three dimensional critical phenomena in the absence
of disorder, one has ν ≈ 2/3, which brings the best fit

ψ =
8

3
(7.80)

This free energy barrier will modify the energy barrier A0 in the Arrhenius
law, leading to the modified shape

τ = τ0e
βA(T ), A(T ) = A0 + ∆F = A0 +BT∗(1 − T/T∗)

ψ (7.81)

Notice that ∆F sets in below some crossover temperature T∗. Empirical evi-
dence for such a scenario was presented in Fig. 7.4. As shown in Fig. 7.5, for
a variety of undercooled liquids this modification of the Arrhenius law below
T∗, appears to present a good fit to the data for all these liquids in the whole
temperature regime.
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Thus one may conclude that the VF law is not the only realistic description
of the glass physics, moreover its gradual onset from high temperatures is
challenged by the present approach, where the onset occurs below some T∗.

7.4.3 Critical assessment of the approach

Let us reconsider the model employed by Kivelson et al. [1995], a spin model
with short range ferromagnetic interactions and long range, Coulomb anti-
ferromagnetic interactions, that we put on a simple cubic lattice with lattice
parameter a. The Hamiltonian reads

H = −J
∑

〈i,j〉
Si · Sj +

KJa

8π

∑

i6=j

Si · Sj

|Ri − Rj |
(7.82)

where the Si are Heisenberg spins and where the first sum is over nearest
neighbor pairs only. The interaction parameters J and K ≪ 1 are both
chosen to be positive.

For simplicity, we use classical spins and consider the model in the spherical
approximation, where we relax the constraint on the length of the individual
spins, and instead require

N∑

i=1

S2
i =

N∑

i=1

(S2
i,x + S2

i,y + S2
i,z) = Nσ (7.83)

The partition sum now becomes

Z =

∫ N∏

i=1

dSi e
−βHδ

(
N∑

i=1

S2
i −Nσ

)

= β

∫ i∞

−i∞

dµ

2πi

∫ N∏

i=1

dSi e
−βHe−

1
2βµ(

PN
i=1 S2

i−Nσ) (7.84)

where we inserted a plane wave representation of the δ-function. The integrals
are now Gaussian, and yield

βF =
3N

2

a3

(2π)3

∫

d3q log

{

β

[

µ− J(q) +
KJ

q2a2

]}

− 1

2
Nβµσ (7.85)

As in Bose-Einstein condensation, the parameter µ should be taken at its
saddle point, which is real, and set by the “gap equation”

3a3

2(2π)3

∫
d3q

µ− J(q) +KJ(qa)−2
=

1

2
βσ (7.86)

It appears that the problem can be solved in the low wavelength limit. For a
simple cubic lattice with lattice constant a one has

J(q) = J
∑

ρ

eiqρ = 2J(cos qxa+ cos qya+ cos qza) ≈ 6J − Jq2a2 (7.87)
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Decomposing µ as
µ = (6 − 2

√
K + 4ν2a2

0)J (7.88)

we may write the gap equation in the form

3a

2(2π)3

∫
d3q

4ν2 + (q −
√
Ka−2q−1)2

=
1

2
βJσ (7.89)

Since for nonzero K the integral diverges as 1/ν for small ν, it is seen that the
ferromagnetic phase transition is suppressed by the Coulomb-type long range
antiferromagnetic interaction. But the spin density wave at wave vector

q∗ =
K1/4

a
(7.90)

only orders itself at zero temperature.
The spin-spin correlator in the long wavelength limit reads

C(r) = 〈S(0) · S(r)〉 =
3aT

2(2π)3J

∫

d3q
eiq·r

4ν2 + (q − q2∗/q)2
(7.91)

=
3aT

(2π)2J

∫ ∞

0

dq
q2 sin qr

qr[4ν2 + (q − q2∗/q)2]

This can be solved explicitly. First one takes the integral as half the one from
−∞ to ∞, and next one separates the poles,

C(r) =
3aT

4(2π)2Jνr
ℑ
∫ ∞

−∞
dq

q2 sin qr

q2 − q2∗ − 2iνq

=
3aT

4(2π)2Jνr
ℑ
∫ ∞

−∞
dq

q2

(q − iκ+)(q − iκ−)

eiqr − e−iqr

2i

(7.92)

where
κ± = ν ±

√

ν2 − q2∗ (7.93)

both have a positive real part. Therefore, we obtain

C(r) =
3aT

16πJν
ℜ
(

κ2
+

κ+ − κ−

e−κ+r

r
− κ2

−
κ+ − κ−

e−κ−r

r

)

(7.94)

We are interested in the region not far below the would-be ferromagnetic
ordering temperature and weak long range interaction, i.e., where ν ≫ q∗ and
κ± are real. Let us define the correlation length of the would-be ferromagnetic
phase,

ξ =
1

κ+
=

1

ν +
√

ν2 − q2∗
(7.95)

It deviates from the pure value

ξ0 ≡ 1

2ν
(7.96)
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but the difference is small because we assume a weak disordering interaction,
leading to q∗ ≪ ν. The second length-scale in Eq. (7.94) is the disorder length

RD =
1

κ−
=
ν +

√

ν2 − q2∗
q2∗

=
1

q2∗ξ
=

a2

√
K ξ

(7.97)

In terms of these variables the correlator, Eq. (7.94), reads

C(r) =
3aT

16πJνξ(1 − ξ/RD)

(
e−r/ξ

r
− ξ2

R2
D

e−r/RD

r

)

(7.98)

From this we may deduce a few aspects:

• There is no steady (r = ∞) term, since the spins are not condensed
globally. Locally, there would be ferromagnetic ordering up to a length
ξ, but, due to directional randomness, this averages out globally.

• The first term describes ferromagnetic clustering up to the length ξ∗ ≃
2ξ log(RD/ξ), beyond which the second term takes over and makes C
negative.

• The second term describes antiferromagnetic clustering, as expressed by
its negative value. It is much weaker, since ξ ≪ RD, but extends up to
the much larger scale RD.

• Our Eq. (7.97) for the disorder length coincides with the scaling Eq.
(7.75).

• Most aspects of the present analysis agree with conclusions drawn from
dimensional analysis of the first and second order contributions to the
free energy in powers of K [Kivelson et al., 1995].

Let us recall an important point: the ferromagnetic clustering expressed by
Eq. (7.98) extends up to a size ξ∗ where C(ξ∗) = 0, that is, up to

ξ∗ ≃ 2ξ log
RD
ξ

(7.99)

This size, a logarithmic enhancement of ξ0, is far less than the supposed
droplet size RD of the previous section, proving that the domain of validity
of the behaviors stated in Eq. (7.76) is incorrect.9 The positive part of
the correlator brings a size ξ∗ for the maximal ferromagnetic droplets, which
would not bring RD but ξ∗ as the relevant scale in Eq. (7.78). This would

9Also other points are in conflict with our exact result, Eq. (7.98): we find that though
m = 0 in the first domain, the decay in the second domain does not vanish, but has a
negative sign, reflecting the antiferromagnetic ordering tendency.
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end up in a barrier ∆F from which powers of ξ drop out, leaving only the
square of a logarithm,

∆F ∼ σξ2∗ ∼ T∗
ξ20
ξ2∗ ∼ T∗ ln2 RD

ξ
(7.100)

This could in no way describe the strong enhancement exposed in Fig 7.5.
As a technical remark, let us notice that the limitRD → ∞ in our Eq. (7.98)

does not reproduce the m2 term of the pure system’s correlation function, as
it is denoted in the first line of Eq. (7.76). This happens because we have
taken the thermodynamic limit first, when we replaced sums over momenta
by integrals. To accommodate the steady magnetization, one should split off
the k = 0 term as in Bose-Einstein condensation. The m2 term would then
reappear when RD becomes of the order of the system size.

The argument above exposed seems fairly general and probably applies be-
yond the employed spherical approximation. Inspecting the crossover between
the short and long distance behaviors in Eq. (7.76), however, one can, then
argue that the range of the first behavior of Eq. (7.76) must be of the or-
der ξ rather than RD, because when the two behaviors have the same order
of magnitude, due to the exponentials and the inequality RD ≫ ξ, this can
only happen for some not-too-large value of r/ξ. This analysis, therefore, ap-
pears to invalidate the picture of a long range disordering field as a cause of
slow glassy behavior, undermining the derivation of the avoided critical point
theory prediction for the relaxation time, Eq. (7.81).

If one replaces the long range disordering field by a short range random field,
one arrives at the random field Heisenberg model. This leads to a different
mechanism to disorder the ferromagnetic state, though, which goes beyond
the philosophy of Kivelson et al. [1997]; Tarjus et al. [1997].

7.4.4 Heuristic scaling arguments

In their recent review paper, Tarjus et al. [2005] present a heuristic scaling
argument. As a first step towards a scaling analysis, one can include the
effect of aborted nucleation of the ideal ordered phase in the liquid phase. At
temperatures sufficiently below some ordering temperature T∗, the free energy
of the ideal phase in a disordered liquid surrounding can be written

F = −φ(T )L3 + σ(T )Lθ + s(T )L5 (7.101)

As usual, the first term is the gain in bulk free energy, the second the interface
free energy cost, and one takes θ = 2. The last term represents strain free
energy due to frustration, that grows as Ld+2 in d-dimensions. We may,
indeed, expect that the Coulomb propagator 1/q2 of the Hamiltonian (7.82)
brings an extra factor L2 to the volume factor Ld for an excitation of size L.

Tarjus et al. [2005] consider the free energy density Φ = F/L3, having the
form

Φ = −φ(T ) +
σ(T )

L
+ s(T )L2 (7.102)
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This expression is then optimized in L, bringing L∗ = (σ/s)1/3 and then an
interface free energy ∆F ∼ σL2

∗ ∼ σ5/3s−2/3 ∼ ξ−10/3s−2/3 ∼ τ10ν/3s−2/3.
For ν = 2/3 this argument leads to ∆F ∼ τψ with ψ = 20/9 = 2.222, not
very far from the previous estimate ψ = 8/3 = 2.666.

However, the free energy density should not be optimized, but rather the
free energy itself. Then, the surface term and the Coulomb term add up,
rather than compensate for each other, and together compensate for the bulk
term, which leads to different results.

7.5 Random first order transition theory

In the mean-field case it is quite clear what the glass state is (see Sec. 7.2),
but the mean-field scenario is, in many respects, different from the actual
phenomenological behavior of the glass. One fundamental feature lacking is,
e.g., the existence of the calorimetric temperature Tg at which the undercooled
liquid falls out of equilibrium and vitrifies into an amorphous solid.

To move on in the quest for a comprehensive microscopic theory of glasses,
one has, then, to relax the mean-field hypothesis, allowing for thermodynamic
fluctuation and considering the case where interactions are finite ranged. In
doing so, it is very important to clearly understand what will remain of the
mean-field scenario and, bearing the latter in mind, how its properties will
be related to the physics of real glassy systems. First of all, referring to Secs.

in the mean-field approximation and in the real world.

• What does Td become?

The temperature Td, in the mean-field theory, is defined as the temper-
ature at which the free energy landscape develops high energy minima
whose barriers grow likeN , i.e., they go to infinite in the thermodynamic
limit. Since these higher lying excited amorphous states are more nu-
merous than any less excited state, the dynamics will get stuck there.
These states are metastable, because they are not at the lowest avail-
able free energy for the system, but their lifetime is infinite because of
the lack of fluctuations and activated processes. Td corresponds to the
mode-coupling temperature at which the relaxation time of liquids al-
gebraically diverges and the time-dependent structure factor develops a
persistent plateau.

In real systems, cf. Sec. 1.1.1, we know that Td is a crossover temper-
ature between two different behaviors of the slowest possible processes
taking place in the liquid. Cooling down a liquid glass former, at some
temperature higher than Td (we called it Tcage in Fig. 1.1), some of

7.2, 7.3 and to Chapter 1, we set a correspondence between transition points
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the molecules will start to hinder each other’s way, creating “cages”
among themselves with the effect of obliging small groups of particles
to stay close together for times longer than the simple collisional time.
The eventual diffusion across a cage is called an activated process and
takes longer to occur than standard collisions. As T → Td, the acti-
vated processes become dominant with respect to the collisional ones
and a bifurcation of timescales of slower (α) and faster (β) processes oc-
curs upon further lowering the temperature. A structural step in relax-
ation will, now, be feasible only if a relatively large number of particles
are contemporarily rearranging themselves, and this kind of rearrange-
ment corresponds to an α process. Other, smaller rearrangements of the
molecule packings are, however, possible and they correspond to the β
processes.10

• What does the static transition at T = TK become?

The temperature TK ≃ T0 is out of experimental reach. Therefore,
it is not defined operatively in a strict way. It can be interpreted
as the fitting temperature in the Vogel-Fulcher (VF) relaxation law
τ ∼ exp (A/(T − T0)), cf. Sec. 1.2, or as the point at which the ex-
cess entropy can be extrapolated to zero, cf. Sec. 1.4.1. One can, thus,
infer, that at that temperature, where the relaxation time diverges and
the entropy of the amorphous phase undergoes the one of the crystal,
a phase transition to an ideal glass phase takes place. If, at TK , a
thermodynamic phase transition is taking place, some growing correla-
tion distance is also expected. Other effects could, however, take place
in the actual experiment preventing the realization of the ideal glass
phase. The subject is still controversial. We notice, however, that, even
if a true thermodynamic phase transition would not occur, the results
borrowed from mean-field theory might still adequately describe the
behavior of real glass formers at higher temperatures, above and around
vitrification.

Assuming that a discontinuous (otherwise named random first order) tran-
sition occurs also in short range systems, we have, then, to tackle other,
verifiable, issues.

What will a mean-field state become in the presence of fluctuations?
Will the viscous glass former be in a homogeneous phase or will it be in a

spatially heterogeneous phase?
Will the standard theory of critical phenomena also be applicable in the

case of amorphous solids?

10Notice that the latter, even though so fast to be able to reach equilibrium inside a solid
glass, are yet slower than the cage rattling occurring by thermal oscillations. A comple-
mentary classification of rearranging processes between α and β has been described in
the context of the PEL approach, in Chapter 6, as inter-basin and intra-basin transitions,
respectively.
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Before attempting to present a theory that can, at least partially, answer
these questions, for the time being, we notice that a metastable state will now
be truly metastable, i.e., its mean lifetime will be finite, though potentially
amazingly long in good glassy materials at low temperatures. Its definition
depends, indeed, on setting a timescale for the observation of the system
(our texp). We can, then, call a glass state whatever construction survives on
the timescale of our experiment. Therefore, the configurational entropy, that
counts the metastable states, also will now become a purely dynamic observ-
able at a given temperature. It still decreases on lowering the temperature,
but - at fixed T - also decreases on increasing the observation time. See Sec.
1.4 for a detailed discussion on the definition(s) of configurational entropy.

The configurational entropy will play the key role in the theory we are go-
ing to expose. To warm up, let us start with a critical revisiting of the first
entropic approach that we ran into, in Sec. 1.5.

7.5.1 Adam-Gibbs theory, revisited

One of the first formulations of a microscopic theory leading to physical pre-
dictions such as the VF law for the viscosity and the relaxation time was
provided by Adam & Gibbs [1965] (AG), cf. Sec. 1.5. We shortly recall their
argument, explicitly introducing the linear length-scale ξ of a droplet C(n)
of n particles (dynamically speaking, a CRR). Let us call ω the number of
preferred configurations in which the n particles inside a droplet can arrange
themselves. The configurations counted by ω correspond to different minima
of a landscape, separated by energy barriers. Its logarithm yields the droplet
configurational entropy of the supercooled glass former:

s⋆c(n, T ) = kB logω (7.103)

The total configurational entropy of the whole macroscopic system can be
written as, cf. Eq. (1.13), Sc ≃ N (n)s⋆c(n) = V s̃c, where s̃c is the entropy
per unit of volume, s⋆c the entropy per rearranging droplet and N (n) is the
number of droplets containing n particles. In the AG theory, ω = es

⋆
c/kB is

not supposed to depend on n, provided that n ≥ n⋆, and, hence, on the linear
size ξ of the droplet [assumption I], defined as ξ = (V n/N)1/3. Adam and
Gibbs took ω = 2. Eventually, one has

V s̃c =
V

ξ3
kB logω (7.104)

We look, then, at the barrier that a CRR must overcome in order to rear-
range itself into a different packing. According to Eq. (1.12), the free energy
barrier scales like

∆F ≃ n⋆∆µ ≃ ∆µ

(
ξ

a

)3

(7.105)

where a is the average particle distance in the amorphous packing. That is,
the barrier is assumed to scale with the volume [assumption II].
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Eqs. (7.104)-(7.105) imply, for the relaxation time (i.e., the characteristic
time needed to escape a metastable state),

τeq
τ0

≡ exp (β∆F ) = exp

(
V s⋆c∆µ

a3kBTSc(T )

)

= exp

(
C

TSc(T )

)

(7.106)

i.e., the AG Eq. (1.14) that accounts very well for fitting and comparing
experimental data.

The two assumptions behind this prediction are, however, not very intuitive.
First, it is unlikely that a finite number of “preferred configurations” (each rep-
resenting some kind of pure metastable state) in a volume ξ3 is enough to let
the system relax. It seems, actually, rather odd that the number of metastable
states does not increase as the size of the region increases. The work of Johari
[2000], indeed, shows that hypothesizing the value of s⋆c = kB log 2, the typical
size n⋆ of a CRR is even less than one for many materials (including glucose
and glycerol), according to the data table provided by Adam & Gibbs [1965]
themselves at Tg. Even relaxing that hypothesis, though, and estimating s⋆c
by independent experimental data, a survey of 33 glass formers further shows
that n⋆ . O(10).

Furthermore, the fact that the barrier grows like the volume of C(ξ) implies
that, in order to have a cooperative rearranging process, a finite fraction of
the total number of molecules must be involved. This is clearly unfeasible at
large ξ, besides being incompatible with a small, finite n⋆.

We, then, have to switch to a theory that reproduces the AG relation (and
the related VF law) starting from physically sound hypotheses.

7.5.2 Entropic driven “nucleation” and mosaic state

In the real world, a glassy system can leave a metastable state (however de-
fined) in a finite time. Where to? Possibly to another one of the exponentially
many states that are statistically equivalent (i.e., having more or less the same
free energy) and incongruent (i.e., with no similarity in shape with the initial
one). As we already said, the transition occurs when, by fluctuation, a CRR
of molecules succeeds in transforming itself into a configuration belonging to
a different metastable state.

Let us take a droplet of typical length-scale ξ: C(ξ). Contrary to the nu-
cleation of the crystal in a liquid, the driving force pushing the change is
not the free energy gain, since all metastable states have the same free en-
ergy. Instead, the transition can start right because of the huge amount of
equivalent alternatives available. The driving is, then, said to be entropic.
Inspired by mean-field theory, Kirkpatrick, Thirumalai and Wolynes [Kirk-
patrick et al., 1989] hypothesized a driving force equal to −Tsc(T )ξd in a
d-dimensional droplet, contrasted by the energy increase due to the mismatch
of bounds on the boundary of C(ξ) between the generating droplet of the new
state and the rest of the system still in the initial uniform metastable state.
The latter interaction can be generically written as a surface tension-like term
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Υξθ, where the exponent θ has to be determined according to the microscopic
mechanisms accompanying the rearrangement of C. Generally speaking, we
can only expect that, being connected at most with a surface effect, it cannot
be larger than d − 1. We can finally define a droplet activation free energy
expression as a function of the radius of the droplet, much as in conventional
crystal nucleation:11

F ‡(ξ) ∼ −Tscξd + Υξθ (7.107)

We can observe that, for small lengths, the restoring force dominates,
whereas for large ξ the CRR escapes the metastable state. In order to over-
come the opposing force, the CRR must be larger than the distance maximiz-
ing Eq. (7.107):

ξ‡ ∼
(

Υ

Tsc(T )

) 1
d−θ

(7.108)

In other words, it has to overcome the barrier around the metastable state,
consequently scaling as

∆F ‡ ∼ Υ

(
Υ

Tsc(T )

) θ
d−θ

(7.109)

Accordingly, the characteristic time to leave the state is related to the config-
urational entropy by a generalized AG relation

τ(ξ‡)
τ0

= exp

{(
Υ

Tsc(T )

) θ
d−θ

}

(7.110)

At low enough temperatures, deep in the viscous regime (T ≪ Td) and near
to TK , the configurational entropy can be linearly expanded as

sc(T ) ∼ T − TK
TK

≡ t̄ (7.111)

Substituting this into Eq. (7.110), we find the VF law with an exponent
γ = θ/(d− θ).

To determine θ, one has to make some crucial assumptions. Kirkpatrick
et al. [1989] initially used the theory of critical phenomena, conjecturing that

1. the droplet is large enough to be considered a thermodynamically inde-
pendent system

2. the ideal glass transition exists at TK

11If we consider transitions between the amorphous and uniform liquid the same prescription
holds. Indeed, from the mean-field theory we know that the difference between the free
energy averaged over the metastable states and the free energy of the uniform liquid is
F − Funif = TSc.
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3. scaling laws hold around such a transition, as in ordinary critical phe-
nomena

Under these assumptions, the correlation length ξ of the new phase scales,
in reduced temperature, as t̄−ν . Therefore, the droplet free energy scales
as F (t̄) ∼ −t̄1−dν + t̄−θν . In order for the CRR to expand and drive the
transition out of the state, the first term must scale faster than the second
one: 1 − dν ≤ −θν, or

θ ≤ dν − 1

ν
(7.112)

To estimate ν, the fluctuation formula is used

(δT )2 =
kBT

2

nC
(7.113)

where C is the specific heat (at this point the difference between constant pres-
sure and volume is not influent). Notice that here equilibrium is assumed to
hold since we are considering the case in which the thermodynamic transition
at TK is reachable, avoiding the purely kinetic, off-equilibrium vitrification
that occurs in real systems (the thermal glass transition at Tg). The number
n of molecules is proportional to the volume ξd and, according to critical scal-
ing formulation, C ∼ t̄−α. Setting T near enough to TK in order to expand
the configurational entropy, but not too close, so that the thermal fluctuations
do not lead below TK (δT . T − TK = t̄TK), Eq. (7.113) implies

α+ dν ≥ 2 (7.114)

If the equality holds we have the usual hyper-scaling relation.
Assuming, further, that the ideal glass transition is qualitatively similar to

the thermal one (cf. Figs. 1.4 and 7.2), one sets for the discontinuous specific
heat α = 0. In this way 1/ν & d/2. If the limiting values are employed,
θ ∼ d/2 ∼ 1/ν and γ ∼ 1, a VF exponent equal to one is obtained. This
is just a choice, with no preferential motivation, apart from the fact that it
yields back the VF law.

About this derivation of the scaling laws, Eqs. (7.108)-(7.111) and of the
exponents, Eqs. (7.112)-(7.114), we comment that none of the above assump-
tions 1-3 has been proved true. Experimentally, one cannot know the size
of the CRR around TK , because the material is vitrified at Tg and there,
as we will see, the correlation length turns out to be only of the order of 5
molecular interspacing distance units, too small to consider those regions as
independent systems. Furthermore, no experimental evidence exists for the
Kauzmann transition and no explanation is provided for the weird mixing of
ordinary algebraic divergences at the candidate critical point (as in standard
critical phenomena) and exponential divergences in viscosity and relaxation
time. Moreover, equilibrium can only be assumed in an idealized experiment
for which the Kauzmann transition is actually reachable.
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In order to clarify, or constructively criticize, the idea of nucleation of a truly
metastable glass state, as well as to yield experimentally verifiable predictions
and put forward reasonable values for the exponent of the mismatch energy
scaling, the above presented theory, called RFOT theory has been recently
revised. We are going to analyze the improvements in the following.

Before that, we summarize the features of the proposed state for the viscous
liquid: the mosaic state. If a CRR of critical length larger than ξ‡ is created,
then the system leaves the metastable state in which it was initially prepared.
This is not, however, a true nucleation of a new supercooled liquid state.
Indeed the droplet, once it has grown beyond a typical volume (ξ⋆)d [only
slightly larger than (ξ‡)d],12 does not immediately expand over the whole
system as in the liquid-crystal phase transition. Once the observation time is
longer than τ(ξ‡), the kind of entropically driven transition we are speaking
about can occur continuously on this timescale because there will always be a
huge number of metastable states reachable by fluctuation. Different regions
of the space can start to rearrange next to each other and/or a new “minimal”
packing can start growing inside an already expanded droplet. All of them
are energetically degenerate, so that none of them will be preferred. The idea
is that the system, after a transient time τ(ξ‡), cf. Eqs. (7.106), (7.110), ends
up relaxing into a mosaic state composed by dynamically heterogeneous tiles,
corresponding to finite subsets of different metastable states. This is called a
viscous liquid - different from a (warm) uniform liquid, that is in a unique,
homogeneous, phase. The length ξ‡(T ) grows, as the temperature decreases
towards TK , as a power law, cf. Eqs. (7.108) and (7.111). The dynamics
for times longer than τ(ξ‡) is characterized by entropically driven activated
processes, i.e., by creation (and destruction) of droplets of a size larger than
ξ‡. To compare with mean-field models, the viscous liquid free energy is what
is called the total free energy [cf. Eqs. (7.51)-(7.52)]

Ftot ≃ − 1

β
log
∑

γ̃

e−βFγ̃ (7.115)

where we are summing over subsets γ̃, conceptually related to metastable
states but finite in space, and not over ergodically separated metastable states
as in the mean-field case.

Eventually, we can schematize the dynamics leading to the viscous, hetero-
geneous liquid phase, in terms of the typical size of the mosaic constituents:

1. ξ < ξ⋆. The system stays in the initial uniform glassy state, like in the
mean-field scenario.

2. ξ = ξ⋆. The uniform glassy state is fragmented.

3. ξ > ξ⋆. The viscous liquid is in a mosaic state.

12The difference between ξ‡ and ξ⋆ will be clarified later, but it will turn out to be irrelevant
as far as qualitative scaling laws are involved.
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7.5.3 Density functional for the RFOT theory

Assuming a harmonic behavior for the individual oscillations of the particles
in the cages formed as the temperature of the liquid decreases below Tcage, the
emergence of amorphous packings, or aperiodic crystals, can be expressed by
adopting a functional density theory constituted by an entropic localization
term for ideal gas plus an interaction term expanded to the second order
around a uniform liquid state: the Ramakrishnan & Yussouff [1979] density
functional [Oxtoby, 1991],

βF [ρ(r)] =

∫

d3r ρ(r) [log ρ(r) − 1] (7.116)

+
1

2

∫

d3r

∫

d3r′ [ρ(r) − ρ0] c(r, r
′; ρ0) [ρ(r′) − ρ0] + βFunif

where ρ(r) is a nonuniform density distribution, ρ0 its mean value and c(r, r′; ρ0)
is the correlation function of the fluid evaluated at the mean density ρ0, i.e.,
a renormalized form of the bare two body interaction potential. Funif is the
free energy of the uniform liquid.

Singh et al. [1985], looked at the approximately harmonic motion in the
cages centered around the particles pinned at ri, choosing as a trial density
function the sum of Gaussian distributions:

ρ(r) = ρ(r, {ri}) =
N∑

i=1

(α

π

)3/2

e−α(r−ri)
2

(7.117)

where the inverse variance α is a variational parameter that works as a mea-
sure of the localization degree yielded by the cages. If it is zero, we are in
the completely delocalized case of the uniform liquid. On the contrary, α > 0
characterizes a localized environment of quasi-harmonic processes. Indeed, α
can be used as an order parameter to signal a discontinuous phase transition
to the viscous liquid, see Fig. 7.6.

In mean-field models we have seen, in Sec. 7.2, that F − Ftot = TSc, cf.
Eqs. (7.51), (7.52), (7.56), for temperatures below the dynamic transition
(and above the static one). In the present case, for TK < T < Td, Ftot is
equal to the uniform fluid free energy Funif , whereas the role of F is played
by the heterogeneous free energy functional, Eq. (7.116), yielding, together
with Eq. (7.117), F [ρ(α)] − Funif = TSc.

For large α and in the assumption that the interfaces between a local-
ized packing and the uniform liquid are thin, from Eqs. (7.116)-(7.117), the
localization term can be expressed as a surface tension energy contribution
σ(r)× surface [Xia & Wolynes, 2000], and, for low enough temperature, far
below Td, the surface tension can be approximated by

σ(r) ≃ σ0 =
3

4βa2
log

αloca
2

π e
(7.118)
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Tsc

F
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ααloc

FIGURE 7.6

Free energy density functional of the (amorphous) undercooled liquid versus the

inverse of the mean square displacement α of the particles around the aperiodic

lattice site. This is also to be considered as the effective spring constant of the

quasi-harmonic motion of the particles inside the cages. α = 0 represents the uniform

liquid. At T = Td, F (α) develops a spinodal point leading to a secondary minimum

for T < Td. This corresponds to the presence of metastable localized nonuniform

amorphous packings. Reprinted figure with permission from [Xia & Wolynes, 2000].

Copyright (2000) by the American Physical Society.

where a is the average inter-particle distance in the amorphous lattice and
αloc is the local spring constant for the localized, heterogeneous, liquid phase.
The latter also represents the inverse of the mean square displacement of a
localized particle from its lattice site ri. If the lattice would be regular and
we had a crystal, 1/

√
αloc would be the Lindemann length dL, measuring

the vibrational motion extent at the edge of mechanical stability. In the
amorphous case, it plays a similar role, even though we are not, exclusively,
considering amorphous solids but we are also dealing with undercooled liquids
and for “mechanical stability” we have to understand “cages dominance,” a
far less precise concept. In any case, as a/dL ≃ 10 for all crystals, also in the
amorphous case such a constant value appears to be approximately verified
(since it enters in a log expression, corrections will be quite likely negligible,
anyway), implying βσ0a

2 ≃ 1.8453.

If we assume that the region considered, belonging to a minimum of the
FEL, is a spherical droplet of radius r, its activation free energy will, then,
be written as

F ‡(r) = −4

3
π
( r

a

)3

Tsc + 4πr2σ(r) (7.119)

where sc is the configurational entropy per “mobile unit”, Sc/N , and F ‡(r)
is the free energy variation above the minimum value of the packing of the
droplet. The typical radius will, therefore, be given by equating F ‡(r) = 0,
that is when the region, in spite of the mismatch at the boundary, coopera-
tively rearranges itself into a configuration corresponding to a new local min-
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imum of the FEL. The above expression resembles conventional nucleation,
but the driving force is substituted by an entropic term.

We spoke about entropy per mobile unit of the molecules forming the liq-
uid [Schulz, 1998], also called “beads” [Angell & Smith, 1982], implying thatN
here counts those, instead of the molecules directly. Indeed, molecular liquids,
above all polymers, will display more mobile units per molecule, depending
on their chemical composition. Typical beads can be side chains in polymers,
benzene rings, chemical groups generically oscillating independently from the
rest of the molecule. A systematic treatment of the identification of beads
in specific compounds, both strong and fragile, can be found in the works of
Lubchenko & Wolynes [2003] and Stevenson & Wolynes [2005].

In order for a CRR to move from one amorphous minimum to another one,
it has to overcome an energy barrier, in other words, to increase beyond a
given critical radius r‡. This is computed by looking at the maximum of Eq.
(7.119) and strongly depends on the behavior of the surface tension. Naively
taking σ(r) = σ0 one obtains

r‡

a
=

2σ0a
2

Tsc
(7.120)

∆F ‡ =
16

3
π

(σ0a
2)3

(Tsc)2
(7.121)

Can this be correct? We know that the structural relaxation time is the
time needed for a CRR to overcome the barrier dividing the initial packing
from analogous, energetically degenerate, amorphous packings belonging to
different “states,” τeq = τ0 expβ∆F ‡, implying the AG-like relation

log
τeq
τ0

∼ (Tsc)
−2 (7.122)

that is qualitatively different from the original AG relation, cf. Eq. (1.14),
usually recognized as a very good phenomenological law for data fit. It cannot
be excluded a priori that a quadratic law would do the job as well (only ex-
perimental probes might confirm or rule it out) but it is, anyway, worth seeing
whether the present argument can be improved considering a more realistic
surface tension term and how predictions change. Xia & Wolynes [2000] take
into account the fact that, since the amorphous optimal packings are many
and degenerate, a very large set of packings with any kind of surface mis-
match is available. When a CRR tries to move into another state, growing in
size, inside a given initial state, it has to compete with other CRRs develop-
ing around the interface and wetting it. Applying the wetting argument first
developed for the random field Ising model13 by Villain [1985], the surface

13For the interested reader we mention the very recent textbook of De Dominicis & Giardina
[2006] about the random field Ising model.
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tension at low temperature (& TK) is estimated as

σ(r) = σ0

√
a

r
(7.123)

With this correction one obtains, in place of Eqs. (7.120), (7.121),

r‡

a
=

(
3

2

σ0a
2

Tsc

)2/3

(7.124)

∆F ‡ = 3π
(σ0a

2)2

(Tsc)
(7.125)

i.e., the original AG relation, Eq. (1.14), is reproduced with C = 3π(σ0a
2)2N .

The typical radius of the droplet is, instead, the one for which the activation
F ‡(r⋆) is zero (i.e., the free energy is minimal),

r⋆

a
= 22/3 r

‡

a
(7.126)

and the typical number of molecules composing the rearranged region is, thus,
n⋆ = 4π/3(r⋆/a)3. Relaxing the spherical constraint, one can define a typical
length-scale for the CRR, (ξ⋆/a)3 ≃ n⋆, such that

ξ⋆

a
=

(
16π

3

)1/3
r‡

a
(7.127)

Universal laws can be constructed by means of the following relationships
and checked by comparison with available experimental data. For instance,
from Eqs. (7.118), (7.125), the configurational entropy turns out to depend
exclusively on the timescales over which the glass former is analyzed:

sc
kB

≃ 32

log τeq/τ0
(7.128)

where we recall that sc is the configurational entropy per bead (not per
molecule) [Xia & Wolynes, 2000]. By definition, at the glass temperature
Tg, τeq/τ0 ≃ 1017, cf. Fig. 1.1, and the configurational entropy per bead turns
out to be sc ≃ 0.82kB for all substances.

The typical length, Eq. (7.127), of the mosaic components is computed,
using Eq. (7.124), as

ξ⋆

a
≃ 4




log τeq/τ0

3
√

3π log (a/dL)2

π e





2/3

≃ 0.4995

(

log
τeq
τ0

)2/3

(7.129)

implying, always at Tg, ξ
⋆ ≃ 5.1a and n⋆ ≃ 140 beads. A “state portion”

is, thus, composed by a relatively small number of molecules, even though
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this estimate is far larger than the one based on the (already a bit improved)
AG theory, for which n⋆ . 10 [Johari, 2000]. Looking at the whole system,
this turns out to be heterogeneous: a mosaic built by similar tridimensional
tiles belonging to different local minima of the FEL, whose interfaces display
surface tension.

Looking at experiments, detecting heterogeneity in glass formers and mea-
suring the size of the heterogeneous regions, the estimate above seems to be
approximately confirmed. Experimental observation on polyvinylacetate, in-
deed, report a typical correlation length of 2-4nm, corresponding to n⋆ ≃ 25-
180 beads (the inter-particle distance is a = 0.7nm) at a temperature ten
degrees above Tg [Tracht et al., 1998], confirmed by probes slightly below Tg,
for which n⋆ ≃ 30 − 90. In colloids, Weeks et al. [2000] estimated, for high
critical densities, a number of beads n⋆ ≃ 60.

Other predictions can be devised, that can be experimentally tested. For
instance, assuming the usual linear behavior for the configurational entropy,
sc = ∆c̃p(1−TK/T ), where ∆c̃p is the specific heat jump at the glass transition
computed per bead, Xia & Wolynes [2000], using Eqs. (7.118) and (7.128),
determine the fragility expression14

1

K
≃ 32kB

∆c̃p
(7.130)

where the global fragility is defined in Eq. (1.20).
Another expression can be derived adopting the local, or kinetic, definition

of the fragility, Eq. (1.21). Using Eq. (7.128) Lubchenko & Wolynes [2003]
derive

Kloc ≃ 34.7
Tm

∆Hm
∆cp (7.131)

where the fusion latent heat ∆Hm and the specific heat are now computed
per mole of molecules and not per mole of beads.15 This has to be compared
with the empirical law devised by Wang & Angell [2003]:

Kloc = 56
Tg∆cp
∆Hm

(7.132)

In Fig. 7.7 the two local fragilities are compared for 44 glass formers analyzed
by Wang & Angell [2003]. Finally, we mention that other general, quantita-
tive relationships can be constructed, as well, e.g., for the dependence of the
fragility from the exponent of the stretched relaxation for viscous liquids [Xia
& Wolynes, 2001].

We want to stress that all these quantitative predictions, however, rely
on strong (sometimes somewhat arbitrary) and not verified assumptions, so

14Xia & Wolynes [2000] considered D = 1/K. We will keep the label D for the diffusion
coefficient.
15To determine the number of beads Lubchenko & Wolynes [2003] compared the entropy
of fusion per mole ∆Hm/Tm and the entropy of fusion in a Lennard-Jones system.
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FIGURE 7.7

Local fragility as computed in the framework of the RFOT, Eq. (7.131), versus

the local fragility obtained by the phenomenological law inferred from experimental

data by Wang & Angell [2003], Eq. (7.132). Reprinted figure with permission from

[Stevenson & Wolynes, 2005]. Copyright (2005) American Chemical Society.

that the strength of the whole approach eventually resides a posteriori in the
promising comparison with experimental data.

The approximations adopted in the density functional approach to the
RFOT theory for undercooled liquids can be summarized as follows.

1. Surface tension. The form of σ(r) suffers from various inaccuracies. It
has been derived in the assumption of large α and thin interfaces. More-
over, it has been computed at T = TK , applying the theory of wetting to
the interface formation between the rising new local amorphous region
and the uniform state in which it is embedded and not the interface
between two amorphous states [Xia & Wolynes, 2000].

2. Beads. The number of mobile units is uncertain, the different estimates
(chemical counting, data fit, comparison between “per molecule” and
“per bead” observables) yield compatible but usually different results
[Lubchenko & Wolynes, 2003]. It is a serious problem, above all, for
polymers.

3. Configurational entropy. The available experimental configurational en-
tropy is, actually, the excess entropy, that coincides with the first one
only assuming that the vibrational modes of the crystal and the glass
are the same, cf. the dedicated Sec. 1.4.3.
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4. Barrier softening. As T is not far below Td, the interface tension goes to
zero (indeed, above Td, by definition, the motion is collision dominated
and the liquid is uniform and not very viscous). The barriers, therefore,
soften, the interfaces between mosaic tiles become thicker and less clear-
cut and the surface tension vanishes approaching Td from below. The
low viscosity case has been analyzed by Lubchenko & Wolynes [2003],
but a theory connecting the low temperature mosaic scenario with the
high temperature uniform liquid state is still lacking and the limit of va-
lidity of the mosaic description is far from being established as assessed,
e.g., recently by Cavagna et al. [2007] in a soft sphere binary mixture
analyzed below Td.16

This situation is somewhat similar to what has been happening for about
40 years after the AG relation, that appears to be right and widely verified,
though constructed on physically counterintuitive assumptions. In the present
case, the assumptions behind the quantitative formulation of the RFOT the-
ory are, actually, feasible, but, nevertheless, not justified a priori in a rigorous
way. Moreover, the theory is based on the analogy with crystal nucleation,
but the driving is related to a conceptually mysterious entropic term.

In order to be sure that the mosaic one is the proper description of the
viscous liquid (as, presumably, of the amorphous solid), the microscopic hy-
pothesis should be tested, or, otherwise, nothing can prevent us from thinking
that the same predictions [e.g., besides the AG relation and the VF law, Eqs.
(7.128)-(7.131)] might be built by alternative arguments. Moreover, an expla-
nation of the generation of the mosaic state alternative to the entropic driven
nucleation, would clarify the issue to the noninitiated. Two almost, but not
completely, alternative ways of improving the comprehension of the physics
hidden beyond the label of “entropic driving force” have been recently devel-
oped. We briefly report in the following the main lines of the reformulations
of the RFOT theory according to the approach of Bouchaud & Biroli [2004]
and the one of Lubchenko & Wolynes [2004].

7.5.4 Beyond entropic driving I: droplet partition function

The total configurational entropy of a system composed by different indepen-

dent relaxing dominions of typical linear size ξ is

Sc ≃ N (ξ)s⋆(ξ) ≃ V

ξd
· ξds̃c = V s̃c (7.133)

where s⋆c(ξ) is the configurational entropy per tile of length ξ, and s̃c is the
configurational entropy per unit volume. The total entropy of the “mosaic
state” does not depend on the tile size and is rather puzzling to understand
the convenience of having a heterogeneous mosaic instead of a homogeneous

16The same SSBM considered in Appendix 6.A.1 and in Secs. 2.8 and 7.3.
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state, for which no surface tension would be paid. Moreover, even assuming
the existence of a mosaic, it is not clear what physical condition would fix
the length over which cooperative processes would occur. What is the precise
nature of the “entropic force”?

We take the usual bubble of radius ξ. If s̃c ξ
d ≫ O(1), the molecules

inside the region C(ξ) can arrange into NC configurations, each related to a
metastable state of free energy F :

NC(F ) ∼ exp

[

ξd
s̃c(F, T )

kB

]

(7.134)

where s̃c(F, T ) is the droplet configurational entropy per unit volume counting
all the subsets of configurations of C corresponding to local minima of the FEL
at free energy F .

We start from a space-homogeneous metastable state “I” and we look what
happens when a region of particles cooperatively rearranges itself in a con-
figuration belonging to a different state, “b.” On the boundary of C(ξ) the
mismatch between I and b will cause an increase of the total free energy, thus
the boundary acts as a random field on any configuration belonging to b 6= I
inside C(ξ). We denote by fb/Iξ

d the activation free energy density of the
b state of C, embedded in the macroscopically extended state I. We recall,
furthermore, cf. Eq. (7.107), that Υb/Iξ

θ is the surface free energy gain gen-
erated by the mismatch of b with the fixed boundary conditions belonging to
I. If ξ is not too small, the surface coefficients Υb/I are typically equal to each
other, implying fb/I = fb, independent of the uniform state.

According to Bouchaud & Biroli [2004], the partition function of the do-
minion C(ξ) embedded in the metastable state I is, then, written as

Z(ξ, T ) ∼
∑

b6=I
e−βfbξ

d

+ e−βfIξ
d+βΥξθ (7.135)

∼
∫ ∞

0

dfNC(f) exp
{
−βfξd

}
+ exp

{
−βξdfI + βΥξθ

}

∼
∫ ∞

0

df exp
{
−βξd [f − Tsc(f, T )]

}
+ exp

{
−βξdfI + βΥξθ

}

where we have used Eq. (7.134) and we have subtracted from the fI contri-
bution the surface term Υξθ (no mismatch). We have dropped the ground
state free energy term yielding an irrelevant proportionality factor.

How stable is the homogeneous state I against fragmentation? We first
consider the case in which it is a state with typical free energy excess, i.e.,
fI = f⋆, where f⋆ is computed by the saddle point approximation of the
integral of Eq. (7.135):

∂sc(f, T )

∂f

∣
∣
∣
f⋆

=
1

T
(7.136)

The metastable states at f⋆ are the most numerous states and, hence, those at
which the liquid glass former is most probably stuck when cooled down from
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high temperature. They are also called “threshold” states, for this reason, cf.
Eq. (7.53) in Sec. 7.2.

The partition function is, in this case, approximated as

Z(ξ, T ) ∼ e−βf
⋆ξd
[

esc(f
⋆,T )ξd/kB + eβΥξθ

]

(7.137)

We recall that θ ≤ d − 1, and, if wetting is assumed, θ = d/2. If ξ is small
enough, the uniform state remains as it is (the second term dominates). This
is the same situation as in mean-field. If, otherwise, ξ is large enough, the
matched state is destroyed [the first term, the superposition of all metastable
states, dominates, cf. Eq. (7.115)]. The crossover length ξ⋆ scales with

temperature as ξ⋆ ∼ (Tsc)
− 1
d−θ ∼ (T − TK)−

1
d−θ , in agreement with Eqs.

(7.108), (7.111).17

We can reasonably assume that the free energy barrier scales as ∆F ‡ ∼
(ξ⋆)ψ, without imposing any relation with the scaling of the surface term in
the activation free energy and without taking for granted the equality ∆F ‡ =
F ‡(r‡ ∼ ξ⋆), employed in the previous section. We have, as a consequence, a
generalized AG relation. In mean-field models, sc(f, T ) goes to zero linearly in
f , as f → 0 (f is the excess entropy above the ground state), with ∂2sc/∂f

2 <
0. At low enough temperatures, this implies, for the saddle point values, that
Tsc(f

⋆, T ) ∼ f⋆ ∼ T − TK = t̄ TK , yielding the VF law, with a generalized
exponent different from one:

τ(ξ⋆)

τ0
∼ exp

(
Υ

T − Tk

)ψ/(d−θ)
(7.138)

In the previous sections, cf. Eqs. (7.109), (7.125), assuming the existence of a
RFOT, the thermodynamic independence of the droplet subsystems, and the
wetting of the interfaces of the tiles, we had, in d = 3, ψ = θ = 3/2.

Regarding the determination of the exponents we have, once again, to notice
that it cannot be other than sloppy, since

• the typical length for C(ξ⋆) at Tg is smaller than O(10) in units of the
average inter-particle distance a

• the surface term Υ also depends on temperature, and, more precisely,
goes to zero near Td (the mentioned barrier softening effect)

• a fit by the VF law is relatively insensitive to the precise value of the
exponent

Anyway, the latter formulation allows for the explanation of the phenomenon
of diffusion-viscosity decoupling detected in the viscous liquid, see, e.g., [Chang

17In this approach there is no difference between critical (ξ‡) and typical (ξ⋆) length-scales.
This is not a big issue since, already in the approach of Sec. 7.5.3, they scale in the same
way.
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et al., 1994; Swallon et al., 2003], for which diffusion and viscosity are no more
inversely proportional to each other as formulated by the Stokes-Einstein re-
lation, Eq. (1.19), cf. Sec. 1.6.

The diffusion coefficient D depends on the shortest timescale at which re-
laxation out of a state can occur, therefore it is

D ∼ (ξ⋆)2

τ(ξ⋆)
(7.139)

The viscosity, instead, is connected to the average relaxation time, where
the average is performed over all activated processes on all timescales above
τ(ξ⋆). The processes activated on timescales longer than τ(ξ⋆) are linked to
free energies lower than the typical ones. In order to probe free energies lower
than the threshold one, Bouchaud & Biroli [2004] consider the fragmentation
of the state I, whose free energy is fI = uf⋆, with u < 1. Taking the saddle
point of Eq. (7.135) one has, now,

Z(ξ, T ) ∼ exp
[
−βf⋆ξd + sc(f

⋆, T )ξd/kB
]
+ exp

[
−βuf⋆ξd + βΥξθ

]
(7.140)

The correlation length of a region cooperatively rearranging itself inside a
metastable state of free energy uf⋆ must now be at least

ξu ∼
(

Υ

Tsc(f⋆, T ) − f⋆ + uf⋆

) 1
d−θ

(7.141)

As said above, for T & TK , one has Tsc(f
⋆, T ) ∼ T − TK = t̄ TK , implying

Tsc(f
⋆, T ) − f⋆ ∼ (t̄)2. This leads to

ξu ∼
(

Υ

t2 + ut

) 1
d−θ

∼ ξ⋆
(

1

t+ u

) 1
d−θ

(7.142)

Going towards the ground state, the excess free energy goes to zero (u →
0) and the scaling with temperature of the correlation length of the CRR
necessary to destroy the uniform state increases as

ξ0 ≈ (ξ⋆)2 (7.143)

As a consequence, the escape process from the lowest states has a character-
istic time exponentially much longer than the timescale of activated processes
out of a threshold state:

τ(ξ0)

τ0
= exp

{(
1

T − TK

) 2ψ
d−θ

}

(7.144)

Since the range of relaxation times is so broad, even though most of the pro-
cesses occur on the minimum timescale available, the average relaxation time
- and the viscosity - will be dominated by the longest processes. In this way
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this approach accounts for the experimental observation that the viscosity and
the diffusion coefficient decouple.18 We stress that the VF phenomenological
law reproduces the temperature behavior of the viscosity and, therefore, of
the average relaxation time, Eq. (7.144), rather than the shortest relaxation
time, Eq. (7.138). If a strict estimate of the VF exponent would be possible
in viscosity measurements, this should be compared to 2ψ/(d− θ) and not to
ψ/(d− θ).

After these last considerations we are able to clarify that, in the mosaic
scenario, the relaxation is not due to any nucleation and that there is no need
to introduce any weird entropic driving force. What happens is that domains
of length-scale ξ⋆ remain basically unchanged for about τ(ξ⋆) and then, by
fluctuation, rearrange themselves in a cooperative way. The system does not
modify itself to lower the free energy (no nucleation then) but only by ran-
dom fluctuations. Most of the times the fluctuation is between energetically
(and statistically) equivalent states that are at the threshold level and have a
scaling correlation length ξ⋆. Indeed, when a CRR appears of smaller linear
dimension, the processes are faster but they lead nowhere, whereas, when a
CRR has ξ > ξ⋆, it leads to a broader activated process but slower than those
initiated by CRRs of linear dimension ξ⋆. Larger domains - even though
rearranging more - will take much longer times to evolve, therefore, “large
enough” domains are the fastest to relax and let the molecules diffuse to find
their thermodynamically most convenient configurations. The activated pro-
cesses involving the creation/destruction of threshold states (of free energy
f⋆) carry out the relaxation (aging) dynamics.

7.5.5 Beyond entropic driving II: library of local states

To reformulate the mosaic scenario, avoiding explicitly basing it on the con-
cept of entropic driving, Lubchenko & Wolynes [2004, 2007] follow yet another
way.

Let I be one of the very many states (in the mean-field sense), or basins
(in the PEL sense of Chapter 6), in which the uniform liquid can find itself,
with free energy F lib

I = uI −Tsvib. The free energies of all basins available to
the system form a global library. If the system is large enough, the spectrum
of the F lib distribution will be more and more dense as the size increases.

The further step is to construct a local library. One takes a system in a
basin of free energy F lib

I from the global library and cuts out a region C(r, n)
centered around the point r in space and consisting in n ≪ N mobile units.
Then, one blocks all external beads (practically imposing fixed boundary con-

18Moreover, since the width of the distribution of the logarithm of the relaxation times
increases as temperature is lowered, log τ(ξ0) ∼ t̄γ log τ(ξ⋆), the relaxation functions of
thermodynamic observables - generically depending on a superposition of different processes
- become more and more stretched, as actually happens in real glass formers [Kohlrausch,
1847].
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ditions for the motion inside C). Eventually, new minima are looked for,
changing the configuration of the n beads inside C. The set of the new struc-
tures possibly found corresponds to a set of free energies similar to a subset
of the global library.

Since n ≪ N , structures different from the initial ones will correspond to
higher lying local minima in free energy (in the average). This takes place
because of the constraint imposed by the fixed boundary conditions and also
because, according to the distribution of the free energy, the (far) larger num-
ber of alternative states is available at higher values.

If n increases, the free energy increases in the average, but also the density
of its spectrum and the spread of its distribution. This implies that, sooner
or later, for some n⋆, the lowest local level available will be reachable from
the initial configuration by thermal fluctuation and a transition to a different
basin becomes feasible. The time needed will be long, since the mismatch at
the interface will generate a barrier. Too small regions will not be able to
overcome the barrier. As we have seen previously, a critical size exists, above
which the system is able to expand in the packing configurations belonging
to a new basin, cf. Eqs. (7.108) or (7.127).

To estimate the critical size, the barrier height and the relaxation time,
or, at least, their scaling with temperature, Lubchenko & Wolynes [2004]
introduce a “bulk” free energy Φ(r, n) for the isolated C region. The bonds
with the interface are not included in the definition of Φ.

The difference between the free energy of a new state b and the initial,
uniform, state I is

F lib
b − F lib

I = Φb(r, n) − ΦI(r, n) + Γb/I (7.145)

where, quite likely, F lib
b > F lib

I so that Γ > 0. Since Γ is due to the mismatch
of the interactions at the interface, it will grow, at most, as the surface of
C itself. Generically, it will scale as nx with the size of the droplet. It is
now possible to reproduce previous results in terms of free energy differences,
without evoking entropically driven nucleation.

If ω(Φ) is the number of minimal packings of bulk free energy Φ feasible in
the region C, ignoring the rest of the system, the rate of flow to a localized
state of size n can be written as

k(n) =
1

τ0

∫

dF ω(Φ)e−β(F−F lib
I ) ≃ 1

τ0
eSc(Φ̄)/kBe−β(F̄−F lib

I ) (7.146)

where Sc(Φ) is the configurational entropy of the isolated droplet. It depends
on the average bulk free energy Φ̄, that depends on T and n: Sc(T, n). The
variable F is the non-mean-field generalization of the free energy of pure states
(cf. Sec. 7.2).

We meet again the activation energy F ‡ = F̄ − F lib
I − TSc(T, n), that can

now be rewritten as

F ‡ = Φ̄ − ΦI + Γ − TSc(T, n) = Fbulk − ΦI + Γ (7.147)
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Both Fbulk ≡ Φ̄ − TSc(T, n) = n fbulk and ΦI = n φI are extensive in the
droplet size. The activation free energy, then, scales like

F ‡ = n(fbulk − φI) + γ0n
x + δF (7.148)

where the fluctuation δF scales as
√
n and is neglected.

The minimum of k(n) yields the size at which the activation barrier is
crossed

n‡ ≃
(
φI − fbulk

x γ0

)1/(x−1)

(7.149)

and, eventually, the barrier scales as

∆F ‡ ≃ γ0(1 − x)

(
φI − fbulk

xγ0

)x/(x−1)

(7.150)

The wetting argument put forward in Sec. 7.5.3 would lead to an exponent
x = 1/2 (instead of 2/3 for a purely surface scaling of the mismatch term).
We notice that, actually, the neglected fluctuations δF also were supposed
to scale as

√
n, but they are neglected in the derivation of the critical size

and the barrier. We notice also that the number n of beads involved turns
out to be of the order of 102 (according to the estimates presented and to
the experiments mentioned above, see, e.g., the review of Ediger [2000]) and,
therefore, also in this approach, all scalings are somewhat arbitrary.

To reconnect with the entropic driving, one has to consider that fbulk is the
local equivalent of the mean-field total free energy computed summing over
all metastable states, whereas φI is the state free energy f , therefore yielding
[cf. Eq. (7.54)]

fbulk − φI = −Tsc (7.151)

This equation, inserted in Eq. (7.150), leads to a generalized AG relation for
τeq ≃ 1/k(n⋆). If x = 1/2, the original AG relation, Eq. (1.14), is obtained.
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Barrat, A., Burioni, R., & Mézard, M. 1996. Ageing classification in glassy dynamics. J.
Phys. A: Math. Gen., 29, 1311–1330.

Barrat, A., Loreto, V., & Puglisi, A. 2004. Temperature probes in binary granular gases.
Physica A, 334, 513.

Barrat, J.-L., Roux, J.-N., & Hansen, J.-P. 1990. Diffusion, viscosity and structural slowing
down in soft sphere alloys near the kinetic glass transition. Chem. Phys., 149, 197.

Barrat, J.L., & Kob, W. 1999. Fluctuation-dissipation ratio in an aging Lennard-Jones
glass. Europhys. Lett., 46, 637–642.
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Mézard, M., & Parisi, G. 1999b. Thermodynamics of glasses: A first principles computa-
tion. Phys. Rev. Lett., 82, 747.



332 Thermodynamics of the glassy state
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complexity, 30, 225, 240, 279–281
compressibility, 12, 20, 48, 49, 57, 61–64,

72
configurational state, 31
configurational constraint, 106
configurational coordinates, 250
configurational entropy, 30–34, 36, 37, 39,

52, 57, 59, 63, 82, 84, 89, 101,
103, 115, 117, 120, 178, 215,
216, 218, 221, 222, 224, 235,
236, 238, 240, 243, 244, 246,
250, 252, 254, 257, 258, 279,
282–284, 291, 300, 302, 303,
306, 308–312, 316

configurational mode , 11
configurational partition sum, 32

configurational space, 22, 25, 38, 39, 98,
113, 120, 165, 178, 226, 229,
230

configurational state, 33
cooling

experiment, 70, 72
linear, 65
nonlinear, 65, 68
protocol, 63, 70
rate, 45, 65
timescale, 66

cooling experiment, 131, 223, 281
cooling rate, 19, 23, 177, 211
cooling-heating, 65

experiment, 52
history, 51
timescale, 66

cooling-heating setup, 131
cooperative

mechanism, 274
process, 312
rearrangement, 25, 35
rearranging process, 301
rearranging region (CRR), 16, 35–

37, 116, 165, 232
cooperativeness, 17, 36, 165
correlation function, 22, 27, 28, 72, 74,

85, 86, 90, 124, 126, 128, 129,
143, 149, 181, 183, 254, 271,
273, 279, 292, 297, 305

density-density, 182
energy-energy, 182
four-point, 274

correlation length, 12, 48, 291, 303, 309,
314, 315

correlator, see correlation function
Coulomb interactions, 25, 293, 295
Coulomb propagator, 297
critical exponent, 291
critical phenomena, 299
critical temperature, 275, 276, 292
crizzling, 10
cross-linking polymers, 211
crossover region, 17, 18, 35
crossover temperature, 289, 293
crown glass, 5, 6
crystal, 7, 16, 22, 30, 226, 231, 233, 235,

256, 310
crystal glass, 4
crystal lattice, 285
crystal phase, 16, 267
crystal state, 16, 134, 216, 265

diffusion-viscosity decoupling, 313
directed polymer, 90, 218, 219
disorder
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quenched, 13, 149, 185, 187, 269,
274, 277, 283, 284

self-induced, 13, 274
disordered backgammon (DB) model, 79,

185
dynamic temperature, 31, 282
dynamically facilitated model, 81, 89, 167,

259

effective field, 56
effective temperature, 2, 13, 28, 40, 45,

53, 55–57, 66, 70, 71, 75–85,
89, 90, 103, 116, 117, 119–121,
128, 129, 132–135, 141, 142,
144–146, 148, 150, 172

adiabatic, 179, 185
FDR, 255
fluctuation, 132
transition rate, 123

electrical conductivity, 51
ergodicity breaking, 22, 34, 281

weak, 22, 27, 279
excess entropy, 30, 31, 33, 37, 39, 235,

236, 299, 310, 313

fictive pressure, 63
fictive temperature, 46, 50–53, 58, 63, 70
fluctuation, 16, 28, 34, 55, 56, 70–72, 74,

75, 80, 83, 85, 86, 143, 144,
163, 167, 182, 219, 236, 298,
299, 301, 304, 315, 317

density, 79, 270
energy, 67
equilibrium, 51
formula, 55, 131, 303
random, 315
reversible, 72
susceptibility, 131, 132
thermal, 23, 27, 285, 291, 303, 316
thermodynamic, 123, 124, 254, 298
voltage, 78

fluctuation-dissipation ratio (FDR), 89,
126, 149, 167, 183, 247, 248

fluctuation-dissipation relation, 78
fluctuation-dissipation theorem (FDT), 50,

52, 63, 72
Fokker-Planck, 180

equation, 180
fragile glass, 9, 24, 25, 31, 34, 40, 91,

102, 103, 105, 123, 126, 128,
131, 135, 193, 256, 260, 267

fragility, 25, 38–40, 251–253, 309
global, 309
index, 38, 251, 252
kinetic, 38
mobility, 39
viscosity, 39

free energy landscape (FEL), 19, 23, 25,
34, 146, 228, 229, 231, 235,
236, 243, 254, 276, 280, 288,
298

frustration, 283, 290–292, 297
geometric, 289

frustration limited domain theory, 289,
291

Gibbs-Di Marzio polymer model, 32
glass transition, 52, 61, 63, 276, 290, 309

calorimetric, see thermal
dynamic, 19, 226, 253
ideal, 287, 302, 303
line, 60, 63, 64
thermal, 39, 52, 61, 65, 223, 303
thermodynamic, see ideal

glycerol, 27, 77, 79, 82, 301

harmonic oscillator (HO)
disordered model, 92, 194
model, 65, 67, 91, 96–99, 104, 117,

120, 121, 123, 124, 142, 146,
169, 258

system, 146
variables, 91, 92

harmonic oscillator spherical spin (HOSS)
model, 40, 56, 99, 104, 114,
115, 117, 118, 120–122, 124,
135, 138, 140, 148, 185, 193,
194, 197, 256, 259, 260

exponent, 194
fragile, 99, 115, 118, 123, 124, 127,

135, 260, 263
free energy, 258
strong, 99, 118, 260, 264

heating experiment, 223
heating rate, 23
heterogeneous polymers, 211
hypernetted chain (HNC)

approximation, 286
free energy, 286

hysteresis, 178

inherent structure (IS), 83, 214, 226, 229–
231, 233, 235, 236, 238, 243,
245, 256–258, 261, 263, 266

configuration, 250
energy, 229, 242, 245
equation of state, 242, 244
pressure, 237, 241–243, 250
probability distribution, 233
spin configuration, 254

Kauzmann
locus, 236
paradox, 30
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point, 34, 267
temperature, 29–31, 34, 39, 99, 103,

110, 112, 114, 115, 125, 126,
129, 133–138, 216, 218, 235,
252, 254, 260, 263, 276, 282

transition, 26, 31, 90, 99, 103, 111,
130, 137, 218, 284, 291, 303

Keesom-Ehrenfest, 48
calorimetric relation, 13, 49, 62, 64
first relation, 49
magnetic relation, 64
mechanical relation, 13, 49, 61, 62
relations, 57, 61, 63

Kovacs
curve, 140
effect, 40, 90, 118, 135, 136, 138,

141, 142, 157
experiment, 40
hump, 137, 138
protocol, 40, 137, 141, 142
reversed hump, 136
setup, 141

Langevin dynamics, 96
Langevin equation, 97
Laponite, 78–80, 82, 270, 273, 289
lead glass, 4, 5
Lennard-Jones (LJ)

binary mixture, 237, 245, 247, 255,
264

monoatomic, 238, 264
Lewis-Wahnström (LW) model, 237, 238,

241, 244, 264, 267
linear polymers, 211
linear monomeric polymer, 211
liquid-crystal phase transition, 20, 304
lower critical dimension, 81, 291

Makrofol DE 1-1C, 79
Markovian, 185

approximation, 81
dynamics, 81
non-, 171
system, 171

Maxwell relation, 48, 49, 57, 58, 62
modified, 59, 64

Metropolis algorithm, 96
Mode-coupling

equation, 271
temperature, 272, 282, 298
transition, 272

Mode-coupling theory (MCT), 269, 270,
273, 274, 282, 289

mode-coupling theory (MCT), 13
Monte Carlo (MC), 96, 98, 177

algorithm, 170
collective move, 144

dynamics, 92, 97–99, 106, 124, 147,
150, 159, 171, 177, 186, 209

energy shift, 147
equation, 95–97, 108, 124
integral, 125, 158
parallel dynamics, 89, 96, 98, 103,

104, 124, 126
parallel update, 98
simulation, 149
step, 92–94, 109, 122
update, 94, 111, 121, 123, 144

mosaic state, 269, 301, 304, 311

neutron scattering, 232
non-ergodicity parameter, 271, 272, 282
nonequilibrium, 51, 56, 63

state, 56
statistical physics, 70

nucleation, 7, 265, 292, 303, 307, 315
aborted, 297
crystal, 16, 301, 302, 311
entropic driven, 301, 311, 316
time, 16

off-equilibrium, see nonequilibrium
orthoterphenyl (OTP), 16, 25, 241, 267
out-of-equilibrium, see nonequilibrium

Parisi Ansatz, 274
polymer glass, 29, 79

carbon-based, 6, 16
polymer melt, 32
potential energy hypersurface, 24
potential energy landscape (PEL), 13, 142,

226–229, 231–235, 237, 238, 240,
241, 243–246, 248, 251–256, 258,
259, 264, 266–268, 275, 280,
299, 315

Prigogine-Defay ratio, 12, 48, 49, 57, 63,
64

pseudo-critical temperature, 30

quasi-equilibrium, 56

random energy model (REM), 218, 239–
241, 275, 276, 279, 288

random energy model (ROM), 254
random first order transition (RFOT), 276,

313
theory, 13, 26, 304, 305, 310, 311

random orthogonal model (ROM), 245,
253

random walk, 173, 179, 180
asymmetric, 166
biased, 166

refractive index, 51
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relaxation, 19, 22–24, 28, 39, 45, 51, 63,
65, 67, 78, 90, 104, 105, 115,
120, 122, 131, 134, 144, 225,
232, 245, 256

dynamical, 37, 90
dynamics, 28, 36, 98, 99, 115
excess enthalpy, 78
exponential, 98
glass, 50, 103, 116
process, 7, 110
slow, 37, 89, 90, 96, 97, 110, 137
structural, 7, 16, 17, 50–52, 74, 84,

115, 122, 232, 254
time, 7–9, 15–19, 23, 24, 26, 30–32,

35–38, 51, 54, 56, 65, 74, 89,
95, 97, 103, 109, 111, 114, 115,
125, 134, 145, 177, 180, 195–
197, 201, 232

replica symmetry breaking (RSB), 75, 274,
277, 278

replica theory, 13
response function, 27, 28, 72–75, 81, 82,

85, 123, 124, 126–128, 130, 143,
149, 181–184, 232, 254

density, 182
dielectric, 79

RKKY interaction, 290

Schwarz identity, 48, 58
Sherrington-Kirkpatrick (SK) model, 98
silica (SiO2), 2, 4, 8, 10, 59

-based, 6, 8, 10, 23, 84
-rich, 7, 13
based, 19

simple point charge extended (SPC/E)
model, 237, 238, 264, 268

small cage expansion (SCE), 286
soft sphere model, 250, 264

binary mixture, 264
sound waves, 61
specific heat, 12, 20, 23–25, 30, 31, 37,

38, 40, 48, 49, 52, 57, 134, 190
spectral density, 73, 74, 77

voltage noise, 78
speed of sound, 63
spin-glass, 75, 76, 80, 97, 218, 271, 274,

276, 280, 288, 289
metallic, 290
phase, 274, 276

strong glass, 9, 24–26, 29, 31, 106, 111,
122, 123, 131, 253, 256, 259,
260, 264

thermal activation, 178, 194, 195
thermal conductivity, 84, 142, 145, 146
thermal expansivity, 20, 40, 48, 49, 61,

62, 64, 134

thermodynamics, 1, 11, 13, 44, 45, 48, 50,
61, 62, 70, 90, 147, 188, 189,
237, 244, 269, 275

chemical, 43
equilibrium, 11–13, 46, 90, 116, 167,

246, 283
first law of, 46, 118
laws of, 56, 57, 64
nonequilibrium, 43, 44, 114, 116,

129, 228, 244, 251
of glass, 52, 82
out-of-equilibrium, see nonequilib-

rium
second law of, 72, 118
two temperature, 53, 55, 82, 84, 119,

135, 247, 248, 288
two-temperature, 13, 185
zeroth law of, 84, 142, 144, 146

time translational invariant (TTI), 27, 28,
72, 74, 124

timescale, 15–19, 54, 74, 82, 84, 86, 99,
129, 142, 144, 145, 182, 195,
200, 226, 232, 256, 299, 304,
314

bifurcation, 17, 299
decoupling, 226
experimental, 15, 19, 21
geological, 21
microscopic collision, 292
observation, see experimental
separation, 18, 57, 99

urn model, 90, 163, 166, 170, 180
dynamic, 163, 166

van der Waals interactions, 25
vibrational mode, 11, 235, 310
viscosity, 1, 7–9, 16, 23, 24, 26, 30, 31,

37–39, 226, 233, 251, 253, 289,
291, 300, 303, 311, 314, 315

definition, 38
equilibrium, 37
measurement, 38, 315
shear, 51

viscous liquid, 146, 227, 232, 233, 237,
241, 244, 248, 253, 304, 311

Vogel-Fulcher (VF), 89, 103, 134, 253
exponent, 29, 134, 303, 315
generalized law, 26, 115, 129
law, 8, 9, 24, 30, 31, 38, 39, 51, 115,

135, 139, 252, 253, 289, 291,
293, 299–303, 311, 313, 315

relaxation time, 114
Vogel-Fulcher-Tammann-Hess law, 8

zeta urn model, 164
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