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Introduction

Dirac was a man who concentrated on the difficult
problems of his time. He was principally interested in
the basis of quantum mechanics and the elementary
particles. However, on one occasion, around 1938, he
did write a paper which went to the opposite extreme
and discussed the size of the cosmos and the age of
the universe in terms of very simple dimensional
analysis; such data is still alive and well and still food
for thought.

As the centuries have gone by, physicists have of
course tended always to move in those directions
where great problems remain, and I think if one looks
at the progress in physics until, shall we say, the
1940s, they have definitely concentrated on very small
things — atoms and small molecules. In the period, in
the fifties, then the sixties, it was realised that the
methods of physics could be applied to other regions
which lay above the atomic scale of, shall we say,
everyday life — and by that I mean below the scale of
what one normally thinks of as hydrodynamic
phenomena. There was a mesoscopic physcs, an inter-
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mediate scale where the ideas and the methods of
physics could work and make progress. One of the
leading workers in this area, one of the prophets, is
Pierre Gilles de Gennes. In the last few decades he has
produced an enormous number of ideas which have
been directly applicable to the experimental world,
and which indeed have come to dominate our study of
that world. It will be one of these areas that he will
talk about here.

He is a man who has received many great honours,
and perhaps to the outside world his Nobel Prize is the
summit of these honours. I'm very proud to say that
the University awarded him an honorary doctorate
before he got the Nobel Prize, because any university
can award one after someone gets the Nobel Prize. I
think it is clear there was a proper appreciation here of
his talents, and I am very pleased that the Dirac Lec-
ture of 1994 is now to be given to us by Pierre Gilles
de Gennes.

Professor Sir Sam Edwards



I
Geography and explorations

The borders between great empires are often popu-
lated by the most interesting ethnic groups. Similarly,
the interfaces between two forms of bulk matter are
responsible for some of the most unexpected actions.
Of course, the border is sometimes frozen (the great
Chinese wall). But in many areas, the overlap region
is mobile, diffuse, and active (the Middle East border
of the Roman empire; disputed states between Austria
and the Russians, or the Italians, ...).

At a certain naive level, these distinctions can be
transposed to physical interfaces between two differ-
ent forms of matter.

(1) The hard frozen surfaces of metals, of ionic
solids, or of semiconductors can be studied under
conditions of high vacuum: this allows us to probe
them — using electron beams, or other radiations
which extract electrons from the surfaces; or even
beams of neutral atoms. The net result is, in our days,
a highly sophisticated knowledge of these sharp
robust fortifications.
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(2) The soft interfaces built from liquids, from
polymers, from organic solids, or from detergents are
much harder to probe. High vacuum is usually not
acceptable. And even if it is, the probing beams can
damage the interface. For many centuries, the main
information on soft interfaces came from mechanical
studies: adhesion, slippage, wear, ... During the last
fifty years, electrical properties have also been helpful
— in particular for the electric ‘double layers’ at the
contact region between water and a solid.

More recently, a number of new tools became
available:

(@) Reflectance techniques, using short-wavelength
radiations such as X rays or neutrons.

(b) Atomic force microscopes, which can be used
even in the presence of a liquid.

(¢) ‘Environmental’ scanning electron micro-
scopes, which can operate under finite water pres-
sures, allowing us to retain the native structure of wet
surfaces. (I have just discovered this instrument here
at the Cavendish.)

From the point of view of soft interface physics,
the present times are fortunate: centuries of empirical
knowledge about ‘tribology’ (friction) or ‘colloids’
(ultradivided matter) can progressively be correlated
to detailed structural data at the 10 A level. It is espe-
cially pleasant for me to mention this in Cambridge,
where the major advances on tribology have been
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achieved — by F. P. Bowden, D. Tabor, and their co-
workers. Of course, I shall not try to redescribe this
sector, But I will insist on some general features of
soft interfaces which were mentioned at the start:
borders which can be mobile, diffuse, and active.






II
Mobile borders: the dynamics of
wetting (or dewetting)

Since the days of Thomas Young, we know that a lig-

uid (L), when deposited on a flat, impermeable, solid

surface (S), may show two types of equilibrium be-

haviour: partial wetting (figure 1a) or total wetting

(figure 1b). The choice is dictated by the interfacial

energies ¥, ¥ sq» ¥ 14 (Where A stands for the air®).
When the combination:

S=ysa~s +¥14) 1)

is positive, the energy of the solid/air interface is low-
ered by intercalation of a flat liquid film: this corre-
sponds to complete wetting. But when S is negative, a
liquid drop does not spread on the solid: it terminates
in the form of a wedge, with a well-defined contact
angle 6, (figure 1). We call this partial wetting.

* In the following text, we shall often usc the shorthand y =7

for the liquid surface tension.
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(a) ®)
Figure 1. (a) Partial wetting. (b) Total wetting.

Balancing the tensions y (projected along the solid
surface, which defines the allowed direction of mo-
tion), Young found the admirable relation:

Ysa—YsL =Y 14086, 2)

1 Dynamics of partial wetting

Equation (2) holds at equilibrium. What happens if we
move out of equilibrium, for instance, by forcing a
droplet on a surface, or by other experiments, dis-
played on figure 2? Let us discuss this for the case of
partial wetting [1].

If the contact line of figure 3 moves at a velocity ¥,
we expect a dissipation per unit length:

IS=FV (3)
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Figure 2. Schematics of two experiments to examine
partial wetting.
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Figure 3. A wedge of liquid moving with velocity V.
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where F is the non-compensated Young force:

F=yg—Yss—7Ywcosb,

=y,4(cos 6, —cosB,) @
6,being the dynamic contact angle. If we can find the
dissipation mechanism, we end up with a relation
between the driving force and the velocity.

The dissipation may have different origins: either
molecular processes very near the contact line; or vis-
cous processes in the whole moving fluid. The first
may be sensitive to the chemical details of the mole-
cules making the liquid and the solid. The second is
more universal. There is one limit, when viscous flows
must be dominant: namely when the dynamic contact
angle is small (8, <<1). We can understand this by
the following argument.

Inside the moving wedge of figure 3, the velocities
v range from v ~ V at the free surface and v ~ 0 at the
lower surface. Therefore the viscous dissipation is of
order:

. V 2
75=[dx n(;) y )

where y=0,x is the local thickness. Equation (5)
gives a logarithmic integral /= In(x,,,, / x.,;,). Putting
in the correct coefficients:

min
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r$=317 (6)
Gd

The logarithmic factor / is typically of order 12; it has
worried the experts in fluid mechanics for many years.
But it is not the dominant feature of equation (6): the
really important feature is the presence of 6, in the
denominator. At small wedge angles, the viscous dis-
sipation becomes very large, and dominates over all
molecular processes.

A careful reader may object to this simple discus-
sion, since it contains a hidden assumption: the mov-
ing liquid profile near L is taken to be still a simple
wedge (y=6,x). Could it, in fact, be more singular?
We know the answer from singular perturbation cal-
culations of Cox [2], or from simpler methods. There
are indeed corrections to the simple wedge, of the
form:

Vn.  x

y=6dx(1+k——ln—j (7
14 Xnin

(where k is a numerical constant, and x,;, depends on
molecular features or on the presence of long-range
forces [3]). The crucial parameter here is the capillary
number Ca=¥n/y=V/V". In practice, the veloci-
ties ¥ of interest turn out to be always of order:

V~V'el <<V’ (8)
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Figure 4. Dynamic contact angle 8 versus velocity V.

and the corrections to the profile are thus not very im-
portant for the discussion of F(¥). But they have been
seen in direct optical observations by E. Dussan and
coworkers [4].

Returning now to equations (3) and (6), we end up
with a basic dynamic formula (for partial wetting):

F=y(cosf, —cosf,)=3inV/6, ©)]

valid for 6, <<1. A vast number of experiments
(some of them depicted in figure 2) can be understood
simply in these terms [1].

Figure 4 shows the relation between V and 6, in
partial wetting. Of course, ¥ vanishes at the equi-

10
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librium angle ¥(6,)=0. But V also vanishes at small
8, where the dissipation is large.

2 Complete wetting

For complete wetting, the driving force is (always
from the Young argument):

F=S+y(1-cosb,) (10)

In the most interesting limit (8, <<1), this force is
nearly constant:

F=S+1y,0i=S )

Experimentally, a number of experiments on spread-
ing droplets, or on liquids pushed in wettable tubes,
show that the resulting velocity V is in fact independ-
ent of S! The observed spreading law is:

¥V =(const)V’6; (12)

The explanation for this anomalous behaviour [5]
is based on the existence of a precursor film (figure 5)
first observed in elegant experiments of Hardy (1919).
The free energy described by S is ‘burned’ via high
shear flow inside the precursor film: the macroscopic
wedge is driven only by the residual force F'— S =
+¥0;. Using this modified form, plus the dissipation
formula (6), one easily reaches equation (12).

11
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Figure 5. The precursor film first observed by Hardy (1919).

3 Molecular features

All the previous discussion was essentially macro-
scopic (except for the inner structure of the precursor
film, where long-range Van der Waals attractions
from the solid play a leading role). Molecular features
can, in fact, show up under various guises.

(a) At large dynamic angles 6,, the hydrodynamic
losses do not necessarily dominate. Molecular
processes, very near the contact line, can become
important. One of these is shown on figure 6, where a
molecule from the liquid hops through the vapour
phase, and hits the adjacent solid surface. The crucial
parameter here is clearly the energy of vaporisation
E,, a plausible relation between F and ¥ being now of
the form:

V:kFexp(_k?) (13)

We do not have, at the moment, a full estimate of the
prefactor k(6,).

12
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Figure 6. Molecular processes near the contact line.
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(b) When very thin droplets (or precursor films) are
observed, terraced structures often show up — es-
pecially with liquid molecules which are more-or-less
spherical [6]. The first terrace (one monolayer of lig-
uid on the solid surface) can exist in various forms: as
a two-dimensional gas, or as a two-dimensional liquid
(and a coexistence line separating the two forms can
also show up). Here, let us restrict attention to cases
where each layer behaves like an incompressible
liquid.

The two basic processes involved in the dynamics
of a terraced droplet are shown on figure 7.

The first, of course, is friction between adjacent
layers, which move at different velocities. The second
is permeation, where molecules move from one layer
to the next, the flow rate being proportional to the
local difference in chemical potential. When these two
ingredients are put in [7], one finds that permeation

13
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Figure 7. Dynamics of a terraced droplet.

occurs only in a thin ribbon, of microscopic width &,
near each step (figure 7). Ultimately, for terraces
which are much larger than &, one can replace the
detailed permeation process by a boundary condition:
near each step, the chemical potentials of the two
relevant layers are equal.

For a two-layer system (with radius R,R;) the
bottom layer spreads out (R1 > 0) while the top layer
shrinks (R, < 0) by permeation. The inner part of both
layers (#< R, —&) is predicted to be completely
static! We have no direct experimental proof of this.

14
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But some verifications of the growth laws have been
obtained on a short cyclic siloxane (‘tetrakis’) which
is a spheroidal molecule [8]. There is one complica-
tion, however: the density of tetrakis in the first layer
is not quite constant — we are really dealing with a
compressible two-dimensional fluid.

When there are more than two terraces, many dy-
namical behaviours are possible, depending on the
initial conditions, and also on the detailed form of the
long-range energies W, between the solid and the nth
layer. This represents an expanding, amusing domain,
both for experiments and simulations.






I
Decorated borders: slippage between a
solid and a polymer melt

I like to work more with examples than with general
statements. Typical borders of interest are depicted on
figure 8 overleaf:

(a) a polymer melt facing a simple solid;

(b) a solid decorated by grafted chains;

(c) the bare interface between two polymer melts,
A and B, which is also somewhat diffuse if A and B
are similar chemically;

(d) the intelligent animal which we call a block co-
polymer, intercalated between two polymer melts.

Figure 9 shows another interesting situation, with
two networks, or rubbers, facing each other. Added to
this are some mobile chains, which wander around. At
some moment, they may provide a transient bridge
between the two sides. This is sometimes of interest in
the rubber industry, when you want to glue two pieces
together (free chains are naturally present in weakly
vulcanised rubber). It is also useful at a much smaller
scale, when you have latex particles and want them to
fuse, generating a protective coating.

17
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Figure 8. Borders: (a) between a polymer melt and a simple solid;
(b) a solid decorated by grafted chains; (c) a bare interface between
two polymer melts; (4) a block copolymer intercalated
between two polymer melts.
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Figure 9. Two networks, or rubbers, facing each other.

Let me return to the stupid solid facing a polymer
melt (figure 10) and discuss slippage. This would
seem to be a simple situation, but it is not really. In
our youth, we studied classical mechanics (in the
rather strong and firm language which this community
uses), and we have been taught that velocity fields are
continuous at a boundary. If the solid is at zero veloc-
ity and if we impose some flow in the fluid above, the
velocity of the fluid should vanish at the interface.

Now, of course, we should take this with a grain of
salt. If we think of simple liquids at the molecular
level, we realise that this boundary is not really sharp:
it is fuzzy, at least at the scale of the atoms or mole-
cules which make up the liquid. We therefore suspect

19
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Figure 10. A stupid solid facing a polymer melt.

that there could exist a small extrapolation length. In-
deed, you can argue, as shown on figure 10, that the
extrapolation length b is a ratio of the viscosity of the
liquid 7 to the friction coefficient of the surface 4:

b:

|

(14)
where £ is defined by the relation o = kV(0) between

stress and surface velocity. For a simple liquid, the
length b will be comparable to a molecular size a (a

20
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few angstroms) and we will not be able to see it in
most experiments.

However, if you turn to the polymer case, and as-
sume that the polymer melt is facing a passive surface,
you realise that things could be very different. What 1
mean by a passive surface is one with certain proper-
ties: no chemical bonds with the surface; a smooth
interface; no strong Van der Waals interactions which
could create a glassy layer of the liquid near the sur-
face.

The polymer liquid has an enormous viscosity
(because it is an entangled system), but it need not
have a large friction coefficient: the wall friction act-
ing on any unit in a polymer chain is still exactly the
same as it would be in the corresponding simple liquid
of monomers. If a is the size of a monomer unit, then:

k = r]mono

a (15)

Thus, you finish up with an extrapolation length
involving a and the ratio of the viscosities of the en-
tangled melt and the monomer liquid:

b=a Mmelt (16)

Tlmono

In the classic reptation model (in terms of polymer

21
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length N and entanglement distance N,measured as
multiples of the basic monomer), the ratio is of the
form:

3
:meh ~ _1]% (17)

The viscosity ratio is enormous: you can tune it by
choosing the polymer length, and it can be in the
range of 106 to 10°. You are therefore tempted to think
that these ideal passive surfaces should show an
enormous slippage.

When 1 first stated this at a rheology meeting in
Naples [9], it was received with mixed feelings — and
for obvious reasons. Many in that audience had
measured viscosities of polymer melts in capillaries
for a long time, and my statement was casting doubt
on these measurements. However, after some time, it
became clear that in weak flows, under most practical
conditions, when you use an arbitrary capillary (made
of steel, or glass, or something similar) it is so dirty
that the ideal surface property 1 invoked above does
not apply. There are, nevertheless, a few cases where
you do see slipping, and I have depicted three of the
relevant experiments in figures 11 to 13 below. I like
these from the point of view of the history of science,
especially the first one.

22
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Figure 11. A schematic of Bryce
Maxwell’s slippage experiment.

Bryce Maxwell, the famous professor at Princeton,
was one of the founders of the science of plastics in
the USA in the post-war years. He was interested in
the way a polymer melt is ‘extruded’ (by a heavy
mechanical system, pushing the molten polymer with
a screw, under high pressure), and wanted to see what
happened during this process. He was talented enough
to build a transparent extruder, made out of glass but
nevertheless resisting the pressures (400 atmospheres)
that an extruder must produce. Once he had built this,
he could look at the flows by adding little particules to
label the trajectories. He found that in his transparent
dye he very often had a finite slippage velocity (figure
11). Now Princeton is a rather well-known place for
mechanics, so Bryce invited a number of his col-
leagues to observe the phenomenon. They refused to
believe it. In fact, Bryce had great difficulty in pub-
lishing his paper. Ultimately, it came out in some .

23
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Figure 12. Slippage experiment using polymer drops.

obscure plastics journal, but it is an important piece of
history.

The second type of experiment showing slippage is
related to the spreading of drops. Certain polymer
drops, when they spread on a solid surface, show an
anomalous ‘foot” (figure 12). Frangoise Brochard has
interpreted this foot as a consequence of slippage.
These experiments are interesting because they are
concerned with very low velocities (the drop spreads
in about one week).

Similar (but more precise) information can be ob-
tained in dewetting on very clean (silanised) surfaces
(figure 13). In a typical dewetting experiment, a dry
patch grows on the solid surface, and the liquid col-
lects into a rim. If the height /4 of the rim is much
larger than the length b, one expects the classical form
of dewetting (described in the previous chapter) con-

24
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rim

Figure 13. A dewetting experiment.

trolled by the losses at both edges of the rim, which
are independent of the rim size. This leads to a con-
stant growth velocity for the dry patch. On the other
hand, if 2 < b, the flow in the rim is a plug flow, the
total friction of this plug onto the solid is proportional
to the width of the rim, and this increases with the
amount of water collected: here, the dewetting veloc-
ity is not constant, but is a decreasing function of
time. This has been observed recently by C. Redon
and F. Brochard-Wyart [10], using high molecular
weight silicones and very good surfaces, to reach a
high b.

Finally, one example where plate rheometry was
used, we owe to the British school (figure 14). You
have polystyrene between two blocks of copper and
you find that the apparent viscosity of the system de-
creases when the gap decreases. This greatly surprised
Andrew Keller, who began doing this experiment for

25
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Figure 14. Slippage experiment using polystyrene between
two blocks of copper.

a completely different reason related to gelation in
polymer melts [11]. He thought that gels would build
up near the surfaces, and that if you pushed the plates
together, these gels would link together and there
would be an enormous viscosity. But no, it was
exactly the opposite! In fact, from this sort of experi-
ment, you can deduce that for this particular system —
copper, polystyrene, with certain surface conditions —
you have a slippage length of 50 microns, which is
huge at the atomic scalet.

These were the early days, but we now have a tool
which can tell us much more. It is based on an optical
technique. Suppose you have a polymer melt flowing
horizontally over a surface, as shown in figure 15a. In

T The surface velocities involved in this experiment are not small:
we may be dealing here with non-linear regimes, where the length
b is rapidly increasing with velocity (as we shall see later).

26
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Figure 15. A schematic of a modern slippage experiment
based on an optical technique.
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this melt, you print a lattice, or grid, by optically
bleaching some dye which is in the melt. But you cre-
ate this grid not, as usual, in the form of an extended
interference pattern — rather, you base it on evanescent
waves, sending in rays that form the pattern through
total reflections. The scale, the length A of the lines,
is then something like 500 angstroms, or more pre-
cisely A/4x where A is the optical wavelength. So you
have a small grid, and you let the flow carry this grid
along. If the flow is a slippage flow, it will just push it
at constant velocity to the right, as shown in figure
15b. On the other hand, if the flow is a shear flow with
no velocity at the wall, it will rotate the grid as shown
in figure 15¢.

And how do you compare these two situations?
Well, you bring in a probing grid of the same period-
icity, and move it over the grid in the melt. In case (b),
you will find strong maxima and minima in your sig-
nal; while in case (c), as soon as the tilt angle has a
reasonable value, you will essentially have a constant
signal. Thus you discriminate well between slippage
and non-slippage.

This optical technique allows you to do anemo-
metry very close to a surface. Although classical laser
anemometry works at 30 microns from a surface, this
method works at a tenth of a micron from the surface.
So it is a completely different ball park, and it has
been very useful.

28
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Figure 16. A solid surface against a polymer fluid.

The system that L. Léger and her coworkers [12]
looked at, using this tool, is depicted in figure 16.
Here we have a solid surface against a polymer fluid
(polydimethylsiloxane, or PDMS).

The surface is grafted and passive at most points,
but there are a few holes. Some PDMS chains will
attach permanently to these holes: we know from
other experiments that siloxane binds to a silica
surface, so you build up a surface which contains a
few fixed chains, but not very many. In the jargon I
introduced some time ago, we have a ‘mushroom’
regime, where there are only a few mushrooms
scattered at different places — as opposed to a dense
system, which we call a ‘brush’.

This is the starting point of the investigation. Of
course, when I say this, this is a typical theorist’s
statement — the preparation of these surfaces is not so
simple, and the little drawing in figure 16 represents

29
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Figure 17. The extrapolation length, b, for
horizontal flows on the surface at various
velocities.

three years of work. However, once you have this, you
can look at the extrapolation length b for horizontal
flows on the surface at various velocities; an example
is shown on figure 17.

At very low velocities the extrapolation length is
small, which means no slippage. But when you go
beyond a certain threshold (which for this particular
example would be something like a tenth of a micron
per second) you find a progressive increase (by up to
four orders of magnitude) of the slippage length.
Thus, there is a slippage transition, but it is not an
abrupt jump; instead it is governed by a power law,
with an exponent of the order of 0.86 — possibly equal
to unity.

30
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Figure 18. Possible interpretations of the slippage transition.

At first sight, there could be many interpretations
of this observation. For instance, you might think of a
simple tear-out of fixed chains (figure 18a). However,
the tear-out explanation is not satisfactory because it
would not give you the progressive increase. So, you
are left with another explanation: at low velocities the
chains involved are undisturbed mushrooms, and at
high velocities they bend in the flow as in figure 185.

When I was a child, I was taught some English, in
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tube length L

s

ID.

N monomers ~

Figure 19. A chain in the melt behaves as if it were
trapped in a tube.

a book called The Wind in the Willows™. Thus I like to
describe the situation by saying that if the wind is
mild, the willows are not too perturbed, but if the
wind is strong, the willows bend.

How does this work in more detail? Our starting
point will be again a Cambridge idea, which is very
important for the description of these entangled melts.
The idea (which comes from Sam Edwards) is that
each chain in the melt behaves very much as if it were

*Iam deeply grateful to Prof. Barenblatt for providing me with a
copy of this charming book just after the talk.
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trapped in a certain tube (figure 19). The diameter of
the tube is related to what we call the entanglement
distance, the distance between knots in the structure; it
may be something like 50 A in typical examples. Each
chain is trapped in its own tube. Usually, a chain can
escape by moving along the tube; however, this does
not apply to the grafted chain, which is attached at one
end. In fact, the only way for the grafted chain to es-
cape is via a neighbouring chain moving out of its
own tube in the same region: this will allow the neces-
sary jump to take place (figure 20).

Thus, when the grafted chain (with N monomers)
has moved relative to the melt by an amount D" (the
tube diameter), the melt chain (with P monomers)
must have moved by a length comparable to its total
tube length L, (figure 19). This implies the tube ve-
locity V, of the (P) chain must be much larger than V:

|4

f A—
- *

v D N,

I, P

The dissipation (associated with one (P) chain which
is entangled with our grafted chain) is:

. 3
TS, =¢, PV =¢, I%VZ =naV?

€

where ¢, is a monomer friction coefficient, and 7 is
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Figure 20. A grafted chain can only escape via a
neighbouring free chain.

the bulk viscosity of the melt (proportional to P>/ N>
in the reptation model).

The main problem is to find the ‘drag number’ X:
that is, how many mobile chains have to move out for
the willow to move. We essentially assumed in earlier
publications that all the chains which enter the wil-
low’s space participate. If N is the number of mono-
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Figure 21. Strong deviation of a
polymer chain.

mers in the tethered chain, the region concerned has a
size R=N'"2q, and a volume N>'?a>. Let us assume
P > N. Then each mobile chain entering the region
brings in a number of monomers ~ R? / a* = N. Thus:

X=N3/2 /N = N]/Z

The overall friction coefficient of the willow X ~ n
and is proportional to X, or to R. This is very similar
to Stoke’s law for a sphere:

f=6xnRV (18)

[However, this estimate of X may not be correct.
Other possibilities have been discussed recently by A.
Ajdari, F. Brochard-Wyart, C. Gay and J. L. Viovy:
see the Appendix. Here I shall stick to the simple
guess of equation (18).]

Given equation (18), it is easy to ascertain at which
moment the willow will begin to suffer (figure 21). In
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polymer science, we know that if a chain is pulled
with a certain force f, the chain begins to suffer
strongly — to deviate from its original equilibrium con-
formation — when the force is something like &7, the
thermal unit, divided by the unperturbed size; or in
other words:

f:? (19)

This is a pretty general theorem, independent of the
detailed statistics of this chain — it may be an ideal
object, or it may be a complicated interacting object.
Plugging this into the friction formula at low veloci-
ties gives an estimate of the threshold velocity for the
problem:

3~ kT

Vv -
nR’

(20)

This is the velocity at which the willow will begin to
suffer. The numbers one obtains are very small
(because of the melt viscosity in the denominator);
they are in the range seen by Miegler, Léger and
Hervet [12]. Recently, this group found that ¥* ~ N~'
as expected from equation (20) [G. Massey, PhD,
1995].
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The more amusing point is to understand what
happens beyond the distortion threshold [13,14]. Here,
there is a very remarkable effect. The more you pull,
the more the willow stretches horizontally: as shown
in figure 21, it is confined to a region of diameter D
that becomes thinner and thinner. The force and the
diameter are always related by a relation which was
first derived by P. Pincus:

D=kT

Ultimately, the stretching stops and a special regime is
generated. When the diameter D becomes as small as
the diameter of one tube, D*, there are no knots left,
and we lose most of the friction. Then immediately
the willow is less tormented, and so it begins to spring
back. As it springs back it opens more, and the friction
is restored. Thus there is a so-called marginal state to
which the system adjusts, and where it remains, with
D~ D’. This marginal state has a constant force asso-
ciated with it. The force per chain in this state, f*, is
related to 47 and to the diameter D~ D" through:

* kT
=7 2D

A constant force per chain means a constant stress per
unit area:
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o =y (22)

where v is the number density of chains. So, what we
are describing here is a system that, above a certain
critical velocity, evolves to produce a constant shear
stress. It is a very non-linear system — there is no
longer a linear relation between velocity and stress —
but if instead of the stress you consider the extrapola-
tion length, you find that the extrapolation length
should increase linearly with velocity:

b=n-L. (23)
(e}

or in other words, according to a power law with ex-
ponent equal to unity. You may remember from the
graph in figure 17 that the experimental exponent was
originally something like 0.86. Actually, Léger et al.
found that if they incorporate shear thinning in the
viscosity 7, they return to an exponent unity in their
plot b(¥) —as expected from equation (23).

The relation between stress and velocity is shown
in the graph in figure 22. Essentially, the stress in-
creases with velocity and then saturates at the critical
value 7*. Of course, if you go to very high velocities,
then even with the straight tube without any entan-
glement there is some friction, and this corresponds to
a higher branch above V,, though this branch is proba-
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Figure 22. Shear stress versus velocity for
a polymer chain.

bly unobservable. The main practical feature is the
long straight line of constant stress in between ¥* and
V,.

One reason you might be worried about this analy-
sis is that the length of the chains is not fixed — there
is a distribution of chain lengths, as is clear from fig-
ure 23. Indeed, this has the result that the sharp turn in
the curve at the critical velocity is broadened. Never-
theless, in practice ¥ is so small compared with ¥,
that we keep a very large plateau.

Will this plateau be important for practical pur-
poses? Frankly, we don’t know yet. There are all sorts
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Figure 23. Distribution of chain lengths.

of remarkable instabilities which occur in dye flows of
polymers, some of which generate very poor materials
— for instance, the ‘sharkskin’ instability, which really
makes a mess out of a plastic sheet or plastic tube. We
don’t know yet whether the slippage transition will be
relevant or not. But I am pretty sure that the tool —
anemometry near walls — will be very useful for the
future.

French students are inclined to think that theory is
the thing, and experiments are some sort of lousy
cookbook operation which you do hastily at the end of
your work. But look at the numbers. For the wind in
the willows, theory represented maybe three months’
work for four or five people; the experiments repre-
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sented something like four years of work on the opti-
cal side, and four years of work on the surface side,
done by different people. So experiments are really
the stumbling block.
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IV
Principles of adhesion

The wind in the willows was an example of soft inter-
faces in slippage. 1 would like to proceed now to a
different situation, where the two partners are sepa-
rated — that is, the problem of adhesion (figure 24).

+ + + +

microscopic separation

+ + + +

macroscopic peeling
Figure 24. Adhesion of two separated interfaces.
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Adhesion is an old science (table 1). I am particu-
larly impressed by the Phoenicians who first invented
a material that was both a glue and a seal. This appar-
ently was the basis of the Phoenician navy’s success.

Although adhesion has a brillant past, to a new-
comer it may appear to be cookbook science. It is hard
to teach a course on adhesion because it is a mixture:
inventive chemistry, mechanics, physics, and other
things as well. The unity probably lies in polymer
science, because all adhesives are made of polymers.

Also striking are the orders of magnitude involved.
If I take a typically non-adhering system, something
like my two hands, then (fortunately) I can separate
them after putting them together. This means that the
energy per unit area G involved when I separate them
is a pure Van der Waals energy of order 50 mJ/m2. If
you are a chemist and want to improve on adhesion,
you have the naive view that you will automatically
succeed by putting in strong chemical bonds. Now do
the counting. Suppose you have chemical bonds be-
tween two blocks and that there is one bond for every
3 A)Z, and that this bond is one electron-volt in en-
ergy. Working out how much you need to break that,
you come up with something which is of the order of
1 J/m2, That’s much bigger than before, but still
smallish, because if you look at what the experts in
cookbook adhesion have produced over the years, you
find that nowadays they easily produce 1000 J/m?.
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Table 1. Glues through the ages.

~4500BC sickles (Judea)
wood/tar/silex
~1300BC molten adhesives
arrow/sulfur/arrowhead  (Egypt)
adhesive sealants
wood/turpentine (Phoenicians)
wax
tar
cloth/latex (Olmecs)
AD1040 printing characters (China)
wood/resin/clay
~1900 nitrocelluloses— shoes
rubber and solvent
1912 bakelites wood
(formol-phenol
{ urea-phenol)

1940 polyurethanes—
metal/metal
epoxy
silicones — metal/glass
1950 ‘hot melts’ — books
— shoes
1960 polyimides — high
temperatures
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1 The electrostatic model of adhesion

What is the source of these strong energies? The Rus-
sian school of Derjagin proposed one idea, based on
observations using dissymmetric contacts. For in-
stance, they would peel off a film of cellulose nitrate
from a silicon wafer. This gives adhesion energies
G ~ 100 J/m?2. They observed that inside the gap be-
tween the peeled film and the solid, sparks would
show up. They concluded that electrostatic effects are
important. If the redox potentials of the two sides are
different, some electrons may be transferred at the
moment of separation. The net result is then one sheet
with a charge density o,, the other sheet carrying the
opposite density —o,. In between, we have a large
electric field:

E=4rnc, (24)
and thus a large attractive force F between the two
sides:

F=2r0’ (25)
If this process persists up to a certain final thickness of
the air gap (h,,,,), it leads to a separation energy:

G = Fhmax (26)

which can become large. The crux of the matter is to
find 7,5
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Derjagin then returned to the classic literature on
electron avalanches in gases under electric fields. If
one electron is free and accelerated by the field, after a
certain mean free path / it hits a gas molecule and cre-
ates more electrons (this mean free path is itself in-
versely proportional to the gas pressure). Avalanches
show up when / is smaller than the gap thickness 4.
But if # << [, they are largely suppressed. Thus one
arrives at A, ~ /. In air under atmospheric pressure
this leads to values of 4,,,, which are large on the
atomic scale: a few thousand angstroms. The conclu-
sion is that this process can lead to large values of G,
at least if the system is strongly dissymmetric (large
c,).

This Russian model has not been well accepted in
the rest of the world: (@) there is no systematic differ-
ence between symmetric junctions (where ¢ = 0 by
symmetry) and asymmetric junctions; (b) the model
predicts huge G values at low gas pressures, and this
is not really observed.

Where is the flaw? I suspect the crucial (hidden)
assumption was that the peeled surface remained pla-
nar. We all know that Scotch tape, just after separation
from a solid, displays fibrils. This probably occurs
also at microscales: the final surface is very rough,
and we may expect that the charges migrate (by hop-
ping processes) to the tips of the profile. Ultimately,
there is a large concentration of electric fields near
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Figure 25. Electrical discharge from a fibril
may be the cause of the difference between
experimental observations and the
predictions of the Russian model.

these tips, and a discharge can start from these points,
at values of the gap 4 which are still very small (figure
25). So 1 tend to think that the electrostatic contribu-
tion has been overestimated by the Russian school.
But this should not stop us. I am convinced that
electrostatic effects can play a leading role, if we plan
for careful experiments with two main requirements:
(a) select dissymmetric systems with strong charge
transfer abilities, i.e. with suitable electron donors and

acceptors grafted on each side;
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(b) prevent roughness on the fracture profile, by
choosing adhesives which are not too deformable.

With these provisos, I am willing to bet that elec-
trostatic effects can, and will, be displayed unambigu-
ously in the future. But let me now return to more
classical sources of adhesion.

2 Fracture energy of glassy polymers

Dissipation at the fracture tip is the dominant source
of adhesion energy. Let me make this more precise by
choosing one particular example: namely glassy poly-
mers which craze under tension. (Typical examples
are polystyrene and polymethyl methacrylate.) These
materials are known to be relatively tough, that is they
have large fracture energies G. But the detailed
mechanism has been understood only recently —by a
former Cambridge student, Hugh Brown.

When we bend a slab of polystyrene, it becomes
white, because of crazes: this process has been studied
intensively over the past twenty years, especially by
Kambour and Kramer. The microstructure of a craze
is represented as shown on figure 26. Fibrils (diameter
D ~ 300 A) are pulled out from the glassy matrix.
Near the end of each fibril, we have a high tension,
comparable to the yield stress o,; thus the polymer is
locally fiuidised and flows into the fibril. The length 4
of the fibril can reach very high values (microns).
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tum

Figure 26. Craze in a random copolymer methyl methacrylate-
glutarimide.

Ultimately, if we pull hard enough, the fibril will
break at some critical length 4. Following Brown, we
can find a scaling law for 4, by a simple argument:

(i) Far from the fracture tip, the stress stabilises to
a constant value ~o, (required to pull out the fibrils).

(ii) Near the tip we have a stress concentration,
ruled by the standard law for elastic media [15]: at a
distance x from the tip, the stress diverges like x~'/2.

(iii) This divergence is cut off at the first fibril (x
— 0) by the minimal x available (x ~ D).

(iv) At this last fibril, the stress reaches the critical
value for rupture o, ~U, / a® where U, is a bond en-
ergy, Uy/a a chemical force for rupturing one bond
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Figure 27. Stress on fibrils at a fracture.

(~1 nanonewton) and a? the average area per bond.
Thus the stress scales like:

o(x)= o;(?)m 27)

(v) The stress concentration, for fibrils of length 4.
extends only up to distances x ~ A, This expresses a
general feature of elastic fields, ruled by Laplacian
equations, where modulations of wavelength A along
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the horizontal axis penetrate only up to lengths ~A in
the vertical direction.

Thus, at x ~ k., we must cross-over to the yield
stress ¢,. This imposes the condition:

D 1/2
o= c(.(;;J 8)

This allows us to determine h,, and finally to esti-
mate the fracture energy G. One given fibril is ex-
tended (from its birth up to its final length k) under a
stress o, (except for the minor region of stress con-
centration near the tip). Thus the work done in pulling
fibrils is (per unit area):

2
G~oh, = ("—f]p (29)
) o,
The ratio o,/ o, is roughly the ratio of chemical en-
ergies to Van der Waals energies (of order 50). But
the presence of o7 in the formula for G is striking: it
makes G very high. Equation (29) is the key to under-
standing both the toughness of simple plastics like
polystyrene, and the adhesive performances of many
glassy polymers. It is a good example of irreversible
work performed near the fracture tip.
There are other examples. We shall describe one of
them now [16], in connection with rubbers.
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Figure 28. Mixing of grafted chains from a positive solid mixing
with facing rubber.

3 Dissipation enhanced by flexible connectors

A typical situation is shown on figure 20, where we
have a rubber facing a passive solid (e.g. glass). If we
do nothing more, the adhesion energy is frightfully
weak — dominated by Van der Waals forces. The trick
is then to graft some chains to the solid, and ensure
that they do penetrate into the rubber, generating what
I call ‘mushrooms’. Of course, we must have grafted
chains which are chemically identical to the rubber, so
that they will indeed mix. The resulting situation is
represented in figure 28, where the rubber is shown on
top, the glass at the bottom, and a fracture is advanc-
ing through the interface between them. We would
like to know the energy of this fracture, at least at low
speeds.

The mushrooms shown are initially at rest. As the
fracture advances, each mushroom is stretched until it
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reaches its maximum length; it is then pulled out of
the rubber, and it snaps back to the surface and col-
lapses. To describe this situation, you need to know
the maximum length (which is proportional to the
number of units, N, in a grafted chain) and the force
that is required to convince the chain to leave its nice
rubber environment and to go into thin air. To deter-
mine the latter, one notes that there are two sources of
unhappiness for a chain: one is Van der Waals energy
(when it is pulled out, it has lost all its Van der Waals
attraction to many neighbours); and the other is en-
tropy (it has deformed and it has lost entropy). Now,
in everyday life, Van der Waals energies and kT are
about the same size, and their contributions to the
force are comparable, so 1 will ignore the difference.
The scaling form of the force is then simply a Van der
Waals energy U divided by a monomer size a:

S == (30)

This is the threshold force. Once you know it, you can
compute the energy involved in the fracture process.
One of the few things which we have learnt at school
is that work is a product of force by displacement. In
our case, the force, if you are just at threshold (at low
velocities), is f*, and the displacement is Na. This
gives you the energy G that you have to spend. To get
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it per unit area, you multiply by the number v of con-
necting units:

G(V — 0)= f Nav = vNU 31

You can see in equation (31) that the separation
energy is proportional to a Van der Waals factor and
to the length of the connecting chains; that is why you
gain a big factor. On the other hand, it is also propor-
tional in this dilute regime to the number of connec-
tors, and if you don’t have very many connectors you
do not gain much.

The description I have just given, which is mainly
due to Elie Raphaél, applies provided you have few
connectors, so that they all go nicely into the rubber
and don’t create problems by crowding. But clearly,
you are tempted to go further, because the industrial
interest in this problem is not to check a nice formula
for a weak v, but rather to find the optimal value of v
that will provide you with good adhesion.

So, what is the optimal value? For something like
two or three years, we had a completely naive idea
about this: namely that the best thing to do was to
match the distance between two connector chains and
the mesh size of the network. However, this is not
quite correct, and I hope to show you why.

The case which turned out to be the simplest to dis-
cuss is that of a rubber/rubber contact with connector
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Figure 29. Finding the maximum concentration of free chains
possible in rubber.

chains which are free to move and to bridge the inter-
face (figure 9).

The first problem here is to find the maximum
concentration of free chains which I can incorporate
into my rubber. The starting point is the following
experiment, depicted in figure 29.

I start with a melt of chains and I expose it to a
rubber of the same chemistry (they are the same, so
that there is no danger of segregation). I ask whether
the chains migrate into the rubber or not, and to what
extent. There were long disputes about this, and as is
usual in such disputes, the conclusion was that the
problem was ill-posed. It is not enough to say that you
have a certain network here and now: you have to
specify the history of the network with great care. If a
network was cross-linked, for instance, in the pres-
ence of solvent, it has a certain natural relaxed state,
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or reference state, which is a swollen state. If I dry it
up and later expose it to a reservoir of free chains, the
chains will enter very naturally because this will allow
the rubber to reconstruct its relaxed state. On the other
hand, if the rubber was built by cross-linking from a
dry state, i.e. with no solvent, then it is much more
difficult for the chains to get in. I will focus on this
latter case.

What you have, if you force chains in, is an elastic
energy, because the network must swell. This elastic
energy was first computed by Paul Flory. There are
disputes about the exact numbers, but the structure of
the theory is simple. The elastic modulus, E, is pro-
portional to kT (because it describes an entropic elas-
ticity) divided by the number N, of monomer units per
mesh length, and also by a3, the volume of one
monomer unit:

_ kT
Nya*

E 32)

Thus, the‘longer N,, the weaker the mesh, as you
would expect. The elastic energy we are talking about
in this dry case is just a ¢? energy:

F=1E¢ (33)

where ¢ is the dilation produced by the chains that are
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forced in. Once you know this, you can calculate the
energy each chain has to suffer when it enters, due to
this dilation. In more sophisticated language, this is
the shift in chemical potential of the chains:

N

F
p= @ = kTEff’ (34
Na®

This is the energy you have to overcome: if it is larger
than kT, the chain will never get in; if it is smaller
than k7, the chain will be accepted. Thus, the maxi-
mum dilation at which the chains will be accepted is
of order:

NO

¢max = 7\/_

(3%)

I like equation (35) because it short-circuits a
rather painful and detailed discussion on swelling of
gels by polymers; the physics really is all here in this
very simple formula (except for minor logarithmic
factors).

Now, let me return to my rubber problem (figure
30). I know the adhesion energy when I know how
many chains I have in the skin region. This in turn is
simple counting, once I know the maximum concen-
tration a¢,,, which is allowed in the bulk. So I
multiply this maximum concentration by the thickness

58



Principles of adhesion

Ro

Figure 30. Calculating density of connecting
chains in the skin region.

of the skin region R, = N'"?a (i.e. a coil size, propor-
tional to the square root of N), and when I do this, I
find the maximum density of connecting chains v,
that I can achieve:

v, = o g, (36)

or changing to dimensionless units, va?:

2 NO

vV, a4 =—x5
N3/2

m

37

v,, 18 proportional to the distance between cross-links,
Ny, and it goes like the inverse of a power of the mo-
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lecular weight. Whenever we are below this grafting
density, the chains can indeed build up the connecting
links we are talking about.

This tells us what is the maximum adhesion energy
we can hope to collect from the mobile chains: insert-
ing v = v,, into equation (31), we arrive at:

R 39)
Here, surprisingly, it is better to use rather small con-
nectors (small ). However, the whole discussion is
meaningful only for N > N,. Thus, the utmost value of
G..x which we can hope to get in this case is of order
‘Ua™Ny?. Typically Ny’> ~10 and G,p,, is not very
much enhanced over its Van der Waals value.

A couple of remarks should be made at this point:

First, the interaction energy due to elastic deforma-
tions in the network is given by equations (33) and
(34). 1t is inversely proportional to N,. The structure
of this energy is very similar to what we have when
we dissolve the N chains not in a rubber, but in a melt
of shorter chains — the shorter chains being in fact of
length N,. As first shown by Sam Edwards, the short
chains screen out the repulsive interactions between
the long chains, and this reduces the effective ex-
cluded volume interaction by a factor 1 / Ny The simi-
larity between a rubber matrix and a melt matrix is
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very striking. In the melt case, long-range screening
proceeds by translation motions of the short chains,
and the translational entropy per monomer is ~1 / N,
In the rubber case, screening proceeds by deformation
of network segments, and this gives an entropy which
is also proportional to 1 / N, (equation 32). Rubbers
are screeners.

Secondly, our values of v,, and G« hold only
when the rubber was cross-linked in the dry state. But,
if we want to have more free chains inside a network,
there is a natural route: cross-link the network in the
presence of the mobile chains, which then fit in
naturally. This is indeed what happens with rubber
bands for tyres, which contain a significant fraction of
free chains, and stick together rather naturally.

Let us now return to the grafted chain problem of
figure 28. When the grafting density v is small (va?N
< 1), the mushrooms do not overlap and we can add
up their contribution (equation 31) safely. What hap-
pens at higher v? At some moment, the grafted chains
will repel each other, and elongate normal to the sur-
face, creating a ‘brush’ of thickness L.

The standard approach to these brushes [17] is
based on a mean field calculation of the Flory type:
the free energy F per grafted chain is of the form
(ignoring coefficients):
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F_[* N
B e o e 39

kT Na* N, ¢ 5%
where the first term is an elastic energy, while the
second term is the chain—chain repulsion screened out
by the rubber. Here, the volume fraction ¢ of grafted
chains inside the brush is:

vNa®
L

¢= (40)

Equation (39) holds if L > N"?a, i.e. when there is a
significant stretching. Then, optimising F* with respect
to L, we get:

L=(va®>)"*N;"*Na (41
0

Thus, stretching begins when:

vev, —a” % (42)

Note that the corresponding value of ¢ is just equal
to the limiting ¢ discussed in equation (35) for mobile

chains. It is also interesting to observe that there is an
interval of grafting densities:

#< v< v, (43)
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where the mushrooms overlap, but do not stretch be-
cause of the Edwards screening.

Increasing v beyond v = v,, we do get a brush, with
L increasing and ¢ increasing. Ultimately, at some
moment, we reach an important limiting point: ¢ is of
order unity. This, in the usual jargon, is called the dry
brush limit. Returning to equation (40) for ¢, we see
that it occurs when v = v,,,,, where v, .a* = N;'%.

Beyond this point, the brush decouples from the
rubber matrix, and we lose most of the adhesion. This
tells us the maximum adhesion energy we can hope to
get from a brush: inserting v = v,,,, into equation (31),
we arrive at:

U N

Grax =7 N7 (44)

So, we can expect a significant enhancement of adhe-
sion if N'>> N;''?; a rather mild requirement.

At this point I must make three remarks:

First, the dynamics of interdigitation is very slow
for tethered chains exposed to a network. Thus, the
adhesive situation which we discussed occurs only if
the rubber and the grafted surface have been incubated
together for a long time.

Secondly, our discussion was restricted to ‘un-
bound’ systems: for instance, in the case of figure 30,
the connectors are not chemically attached to the rub-
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ber. The opposite situation is also of interest: we can
arrange that the terminal group of the connector car-
ries a vinyl group, which can be permanently linked to
some double bond in the rubber.

The adhesion energy for the ‘bound’ case is very
similar to equation (31): all we need to do is to replace
the Van der Waals energy U by a chemical bond en-
ergy U, in equation (30) for the force or equation (31)
for the energy. In practice, U, / U ~ 40, and this repre-
sents a significant increase in adhesion. This gain by
bonding was verified experimentally by Gent and co-
workers on very short grafts. It is very much to be
hoped that it will be tested for larger grafts in the near
future.

Thirdly, equation (31) holds only when the fracture
takes place at the interface, rather than in the form of
cohesive fracture inside bulk rubber, The parameters
which decide upon this choice are quite complex. But
a first, naive hint is obtained by comparing the corre-
sponding fracture energies.

The bulk fracture energy can be obtained by a for-
mula similar to equation (31), where we look at the
strands which must be cut by one dividing plane in the
bulk. The strands have N, monomers. They involve a
thickness & ~ Ny'?a around the cutting plane. The
number of monomers per unit area in this region is
a8=N}?a. The number of strands vy, is Np
times smaller:
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Vour = Ng'?a” (45)
Thus:

U
Gruk = VoukUpsNp = a_gN(I)/Z (46)

With free connectors, we find that G < Gy, in
most cases. Thus we expect that equation (31) holds
systematically. But with bound connectors, G be-
comes higher than G, beyond a rather low grafting
density:

Vim =Ny ?N7'a™ (47)

It is often true (although not rigorously required) that
fracture takes place by the scenario associated with
the lowest G. If we accept this prescription for adhe-
sion purposes, with bound connectors, we see that
there is no interest in grafting densities higher than
Viim-

4 Far field contributions to the
adhesive energy

Here we shall be concerned with adhesives which are
poorly cross-linked rubbers. This means that inside
the network we have many chains which are free; and
many chains which are tied at one end only. In cases
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Figure 31. Peel force P versus peel rate R for an un-cross-linked
butadiene-styrene rubber adhering to a PET polyester film. The
symbols C and / denote cohesive failure and interfacial failure,

respectively. (A. Gent, R. Petrich, PRS London A310 433, 1969)

like this, the low frequency modulus p, (related to the
network) is small. But the high frequency modulus pz,.
(which contains the effects of the entangled free
chains and of the dangling ends) is high. Typically,
we can achieve:

2 =HE= <100 (48)
Ho

It was shown by Gent and Petrich that poorly cross-

linked systems of this type have a very anomalous
curve G(V) (adhesive energy / velocity) as shown on
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figure 31. The anomaly disappears upon further
‘curing’ (when the network is more cross-linked, and
L raises to become comparable to p).

Here we shall try to give a simple interpretation of
this effect. The major idealisation which we do is to
assume that mechanical relaxation inside the network
is described by a single relaxation time 7. Of course,
this is very crude: the dangling ends have a wide dis-
tribution of length, etc. But the one time approxima-
tion allows to understand what happens rather easily.

The simplest formula for the complex modulus
() as a function of frequency () is the following:

10T
1+iwt

p(®) = g+t — o) 49)

Usually, with one relaxation time 7, we (think that
we have to cope with two regimes, 7> 1 ahd o7 < 1.
Here, in fact, we have three regimes:

(i) At very low o, u = o, we expect a soft solid.

(ii) When 1> ot > A", we can approximate:

(@)~ (p, — Ho)ioT=10n (50)

The modulus is purally imaginary: we are dealing
with a liguid of viscosity:

N=(Hy— Ho)T ™~ HeT (51
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hard solid liquid soft solid
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Figure 32. A fracture profile spanning three regions:
hard solid, liquid, soft solid.

(iii) At high frequencies (wt > 1) we recover a
strong solid (1= Uy,).

What are the consequences of this on a moving
fracture? When the fracture velocity ¥V is not too
small, so that ¥z is larger than the size of the fracture
tip, we can think in terms of a continuum, and we find
three regions in our rubber (figure 32):

— Near the fracture tip, we are discussing small
spatial scales, or short times, and we have a strong
solid.
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— At intermediate distances, V1 < r < AV, we have
a liquid, giving a large dissipation.

— At higher distances » > AV, we have a soft solid.

You might think that the effects in the liquid zone
are not very important, because the stresses here are
relatively small — we are far from the fracture tip. On
the other hand, because r is large, we have a huge vol-
ume of fluid-like behaviour and the overall dissipation
is increased. It will turn out that this volume factor
dominates.

Although we are talking about a complex visco-
elastic medium, the scaling law for the stress as a
function of distance is still simple, and equivalent to
what we have in a simple elastic medium:

o(r)~ K, /2 (52)

where the factor K, is associated with the adhesion
energy G, due to loca] processes near the tip. Again
ignoring all coefficients, we have the standard relation
from fracture mechanics:

2
~ Ko

Go= (53)
He

I shall make three remarks concerning the stress
distribution:
First, equation (52) is simply a scaling law, ignor-
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ing all specific details for different components of the
stress: for instance, on the fracture tip, the normal
stress component o, must vanish identically — but the
other components still follow the scaling form (52).
Secondly, why does this simple form remain valid
in a viscoelastic medium? The equations of motion, in
terms of density p and local velocity v, reduce to:

Dv
p D Vo =0 (54)
where we set Dv/ Dz = 0, because we are dealing with
velocities much smaller than the sound velocity: the
inertial terms are negligible. Thus the equations are
simply Vo = 0, and are the same for any viscoelastic
medium. The stress components must also satisfy
compatibility conditions (because they derive from a
displacement field). But these geometric conditions,
again, are the same for any viscoelastic medium.
Thirdly, in an elastic medium of modulus 4, with a
stress field described by equation (52), the displace-
ment field u is simply related to the stress by the
scaling law:

c=uVu (55)
and this imposes:
u=Ro 2 (56)
u
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If we take the scaling structure of the product (ou)
along the fracture (where u now measures the opening
of the fracture), we find it is independent of distance:

2
0'u=§°—=G0 (57)
u

where G, is the corresponding adhesion energy. For
our more complex problem, we shall again find the
separation energy G from the product (ou), calculated
at larger r (in the soft medium): measuring at large
distances we incorporate all dissipation effects.

Let us now return to figure 24 and find out the
overall shape of the fracture profile u(x). In the strong
solid region, we have a classical parabolic shape:

u= K x"? (58)

He

and ou = G,,.
In the liquid zone, ou is not constant. The scaling
law relating u to o is based on a viscous stress:

d (du d’u
=n—/|— |{=n¥V— 59
(e} ndx(dtj n a2 (39)

and with ¢ ~ x~!2 (equation 52) this gives u ~ x*?2.
Thus the product ou increases linearly with x:

x
=G — 60
ou ° e (60)
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When we reach the soft solid region (x = AV'71), we
find:

ou=2AG, 61)
and this gives us the overall adhesion energy G:

=A== (62)

A more rigorous derivation of equation (62) has
been given by Hui.

The result deserves a number of comments. Note
first that the viscoelastic corrections give a multiplica-
tive effect: they do not add up a constant term to Gy.
Secondly, we see that the ratio G/ G, can be very
large if the material is very poorly cross-linked (1, —
0). This explains why the enhancement in G dis-
appears upon further curing.

All this discussion holds for a thick glue (bulk
fracture). But very often the glue is in the form of a
thin slab (thickness W) as shown on figure 33. The
opening process is then cut off at distances x ~ W.
Thus when AV > W, the dissipation zone is restricted
in size and we have:

G= (63)
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Figure 33. A thin slab of glue with thickness .

In this regime, G(V) is a decreasing function: the
pulling force drops if the velocity increases. This of-
ten generates mechanical instabilities in the fracture
process. We believe that this instability is the source
of the peak in the experimental G(¥) curve observed
by Gent and Petrich.

What happens when we have not a single relaxa-
tion time 7, but a broad distribution of relaxation
times, giving a complex form to the dissipative mod-
ulus p(@)? A natural attempt, proposed long ago by
many authors, amounts to assuming that G(¥) is pro-
portional to the modulus p'(w) measured at a fre-
quency @ = V/ [, where [ is some characteristic length
of the rubber network. However, this is not correct in
general, as pointed out, by Langer and Barber in par-
ticular, on simple examples. It does hold in one case:
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namely when the network is just at its gelation point:
at the transition between isolated clusters and one
infinite cluster plus finite molecules. At this point, the
elastic modulus p(w) is given by a power law:

p(w)=p"(0)=o" (64)

where a is a certain critical exponent. In this case, a
simple extension of the above argument (with a distri-
bution of relaxation times which is fixed by «) does
show that G ~ V= This appears to be an exceptional
situation; however, this region near the connectivity
threshold is that of long 7 and large G: many practical
materials may be in the region.

5 Extension to ‘tack’

Certain polymer melts (un-cross-linked) are sticky.
This is called tack and is an important feature for cer-
tain adhesion purposes. For instance, if we establish
contact between a fluid elastomer and a metal, we find
that to separate them we need energies G which are
high — much higher than the Van der Waals energy.

It is tempting to relate this remarkable effect to the
viscoelastic properties of the elastomer. The proposed
mode of separation is shown on figure 34. A fracture
propagates along the solid, with velocity V ~ L&',
where L is the contact size and 6 the separation time.
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Figure 34. A fracture propagates along the solid, with
velocity ¥ ~ L6, where L is the contact size and 6 the
separation time.

We again have a liquid zone, ranging fromx=x, = 't
up to L. The adhesion energy is:
L

6
G= O'u].ﬂl_:Go;‘:GO? (65)
1

Thus if 8 >> 7, we expect a large enhancement.” A
number of comments should be made here:

First, another presentation of the result (equation
65) is:

(66)

(o)

where u(w) is the analog of equation (49) for a visco-
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elastic liquid (yo = 0):

inw
l+iot

ww)= rino (or<<l1) 67)

and o = 6! is the separation frequency. In the form
(66) this tack property is a natural generalisation of
equation (62).

Secondly, it is important to observe that the en-
hancement factor 8/ 7 is large if the elastomer has a
rather low molecular weight (low 7). Of course, there
is a limitation to this: if we choose chains which are
so short that they do not entangle, p, drops down, and
we lose the enhancement factor u. / gy in equation
(62).

Thirdly, our material is liquid: at very large times a
liquid collapses under its own weight. The collapse
time ¢, may be estimated as follows. The shear rates
are of order 1/ ¢, and the shear stresses are 1 / t.. They
must balance the gravitational pressure, which for a
sample of size L is of order pgl (p = density, g =
gravitational acceleration). This gives a maximum
value for the enhancement factor:

— =<tx2x10 (68)
It may be, however, that the accelerations involved in
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Figure 35. A contact zone breaking up into a bundle of elastomer
fibrils.

separation process are g.; >> g, and that g.; should be
used in this estimate. Note on equation (68) that if 1,
becomes small (with chains smaller than the entan-
glement length) the enhancement disappears.

Fourthly, a nice feature of equation (65) is that it is
independent of the size L of the sample: thus the result
may hold even if the contact zone breaks up into a
bundle of elastomer fibrils (figure 35).

On the whole, we have an attractive (but tentative)
picture of tack based on viscoelastic effects: this
should be compared to careful experiments at variable
6.

The main practical use of tack is in rapid adhesion:
when we must bind objects very fast (e.g. assembling
books on a production line). The materials used are
commonly known as ‘pressure-sensitive adhesives’.
They are based on (nearly) un-cross-linked chains
(plus some additives). The adhesive joint is prepared
by applying the glue under a certain weak pressure.
What is the role of this pressure? It improves the con-
tact on a rough solid surface, as shown in figure 36.
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Figure 36. Pressure improves contact on a rough surface.

There are some ‘hollow’ regions where contact is
not initially realised, and must be encouraged by the
pressure p. Early descriptions of this filling process
were based on a purely viscous model, where the
adhesive flows towards the hollow regions like a lig-
uid. Recently (1995), C. Creton and L. Leibler have
pointed out that the viscoelastic features are essential,
and that the length of time required for good contact
can be better understood on that basis.
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Polymer/polymer welding

We have seen that the toughness of bulk (glassy)
polymers, which craze under tension, begins to be
understood through an original idea of H. Brown [18].
We shall now try to extend the Brown ideas to various
systems of ‘weak junctions’. The junction may be a
partly healed contact between two identical polymer
blocks A/A, as in the experiments of the Lausanne
group [19,20]. Alternatively, it could be a contact
between two different polymers A and B.

In all our discussions, we shall assume these
junctions to be perfect, with full contact between the
two partners, and no gaps. Experimental arguments
for the existence of these good contacts have been
presented by Kausch and coworkers [19].

Our aim here is:

(a) to give a brief reminder of the theoretical
description of the weak junctions;

(b) to show how some basic mechanical properties
can be related to the structure.

One of the major conclusions, for the A/A case, is
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that chain ends play a crucial role. Thus, any
attraction between a chain end and the free surface of
one A block will react significantly on the A/A
mechanical properties after welding.

This type of attraction was first suggested by
systematic experiments on melts by D. Legrand and
G. Gaines [21], showing that the surface tension y of
oligomers was often lower than the surface tension ¥
of a high polymer, and that the correction has the
form:

Yo —¥(N)~ N7 (69)

where N is the degree of polymerisation, and x an
exponent of order 2/3. The fact that x < 1 shows that
we are not dealing with a simple uniform dilution of
chains ends (which would give a correction ~N-!).
The most natural way of understanding the Legrand—
Gaines result amounts to assuming that the chain ends
are attracted to the surface. The IBM group [22] has
argued that a typical monomer along the chain suffers
an entropy loss of order unity when it is located near
the free surface, because the chain is ‘reflected’ here,
while the chain ends do not have this loss: thus one
expects, on purely entropic grounds, a gain of free
energy ~kT for each chain end brought to the surface.
There are also enthalpic effects which may increase or
decrease the surface attraction. But if on the whole the
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attraction is of order 4T per chain end, we reach a
simple regime [23], where all chains within one radius
of gyration R, = N'"2a of the surface put their ends on
the surface, and the deeper chains are unperturbed.
This leads to a surface fraction of chain ends ¢, of
order:

2R
N a
(where a is a monomer size), and thus:

¢ — ~N71/2

(or x = 1/2) in this regime. We shall call this the
normal attractive regime. (The value x = 2/3,
observed by Legrand and Gaines, may be the result of
a cross-over between zero attraction and normal
attraction.)

This interpretation of the Legrand—Gaines results is
still controversial. For instance, Dee and Sauer inter-
pret ¥(N) not as an effect of chain ends, but from the
empirical N dependence of the (P,V,T) equation of
state for oligomers (the main feature here being the
change of the equilibrium density p(N)). They use a
standard mean field analysis of the interfacial energy,
as related to the equation of state and to the range of
the intermolecular forces (the magnitude and the range
being assumed independent of N). Dee and Sauer get
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remarkable fits to the Legrand—Gaines data, without
involving any special localisation of chain ends! Here,
however, we shall keep in mind constantly the possi-
bility of chain-end segregation near the free surface:
indeed, we shall see that some of the neutron data on
partial healing of A/A interfaces are more easily un-
derstood in the normal attractive regime than in zero
attraction.

1 Healing of an A/A interface

The basic healing experiment is idealised in figure 37.
We start with two blocks of the same polymer, which
we call H and D. [For certain experiments, D may be a
deuterated polymer, while H is the usual proton-
carrying species.] The two blocks are put into close
contact under a mild pressure, at a temperature close
to the glass point T,, during a time z. The polymer
chains from H and D begin to intertwine, and build up
a diffuse profile for the D concentration ¢ (figure 38).
We are interested here primarily in this interdigitation
process, at times ¢ smaller than the reptation time of
the chains Trep. This corresponds to spatial widths of
the profile e(#) which are smaller than the coil radius
R,. '
Most experiments have been performed with poly-
styrene, and with H and D chains of comparable
length: Ny = Ny = N. The choice of N is non-trivial:
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ey|---£

Figure 37. An idealisation of the basic healing exper
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¢p(2)

1/2 +

¢.()

e(t) z
Figure 38. Profile for the D concentration ¢p.

(a) We want N >> N, (the distance between
entanglements).

(b) We want Nyyp < 1, where yyp is the (small)
Flory parameter describing a weak trend for
segregation between the H and D species. When this
condition is satisfied, there is no significant
segregation of the D species.

Typically N will be of order 20006000, while N,
~ 300. The thickness e(f) of the partly healed zone is
in the range of 100 A — too small to be studied by
forward scattering of charged particles. The main
experimental tools used to measure the healing profile
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have been SIMS and neutron reflectance.
Most data do show that the overall thickness e(z)
grows like £1/4:

e(t)~ RO[TL

1/4
j (t<T,p)
rep
This is the natural law for spatial motions of one
labelled monomer in an entangled melt [24]. After a
time ¢, the chain carrying this monomer has moved
along its own tube by a curvilinear length:

S(t) = (l)tubet)l/2

where D,,. (~ N7') is the tube diffusion coefficient.
The corresponding distance as the crow flies is:

en=(ds@)"?  (s>d) (70)

where d = N!"a is the tube diameter, and (70) co-
incides with the empirical law for e(?).

However, this simple agreement ignores the impor-
tant fact that near the contact surface the chains were
originally reflected, and thus most of the tube motions
do not give any intertwining. A theoretical reflection
on the problem was performed long ago by various
authors [25,26,27], and will be summarised here.
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(a) (®)
Figure 39. ‘Hairpin’ processes in adhesion.

(a) For N >> N,, it is reasonable to assume that the
‘hairpin’ processes of figure 39 are negligible. The
entropy of a hairpin on a lattice model is one half of
the entropy of a free chain more generally: hairpins
are disfavoured by a factor of order exp(-n/2N,),
where 7 is the contour length of the hairpin.

(b) Then, at the time of interest (where e(¢) > d), all
the interdigitation is due to the motion of chain ends;
one of them will start from some initial position
(within e(#) of the interface), and may cross the inter-
face one or more times. The number of monomers
which it brings to the other side is a fraction of s(?).
Therefore, the total number v of monomers D going
through the interface (per unit area) is of the form:

ves(t) jo 6,(2)dz 71)

where ¢,(z) is the initial distribution of chain ends. In
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the original discussions [25,26,27], it was assumed
that ¢,(z) is uniform ¢.(z) = 2/N. But nowadays we
know that chain ends may have been attracted to the
original free surface of the block: as explained above,
in normal attractive conditions, this will bring another
(dominant) contribution to the integral, proportional to
b0 = N-12, Thus we have two cases:

v~s(t)e(t)yN™" (no attraction) 72)
v~s(t)aN™"?  (normal attraction)

(¢) Because of the reflection of chains at the
original interface, the profile is discontinuous (for
spatial intervals larger than the tube diameter d). The
general aspect is shown on figure 38. Of major interest
is the concentration ¢,(¢) of D monomers, on the H
side, for z — 0. We may write:

v~ ¢, (e (73)

Comparing (72) and (73), using the normalisation
factors, and inserting @y, ~ N2, we then arrive at:

12
o, ~ [LJ (no attraction)
(74

1/4
@, ~ [T—] (normal attraction)

87



Polymer/polymer welding

Thus, when chain ends were originally numerous at
the surface, ¢.(¢) rises more rapidly.

On the experimental side, recent data on the profile
comes from the neutron reflectance experiments of
Reiter and Steiner [28]. They found that their profiles
could not be described by simple diffusion (giving an
error function); but they could be described by the
superposition of two error functions Eg, and Ep,q:

z

¢D(z) = 2¢+(t)Eslow(e(t)) + (l - 2¢+ )Efasl (-OTZEJ
(75)

where the error functions E(z) are normalised by E(0)
=1/2, E(-o0) = 1, E(+0) = 0.

For the ‘fast’ component (describing what we
called the discontinuity), they found o.(¢) very weakly
dependent on time, increasing from ~20 A to 30 A in
the time interval 0 < T,,. For the ‘slow’ component,
the result is e(z) ~ 17— not too far from equation
(70).

But their most interesting result is related to ¢.(?).
They found ¢.(¢) ~ ©22, very close to the prediction of
equation (74) for normal attraction between chain
ends and the free surface. What is nice is that they
obtained this without being biased by any theoretical
prediction!
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Thus the Reiter—Steiner experiment does suggest
that (in their conditions of sample separation) chain
ends were originally attracted to the surface.

Kausch and coworkers [19,20] have measured the
fracture energy G of partly healed A/A contacts: after
healing over a time ¢, the sample is brought back to
room temperature, where it is glassy, and then frac-
tured along the junction. Experimentally, in most
cases, the fracture energy G increases with healing
time: G ~ 112 (t < Ti).

We have seen earlier (equation 29) how the tough-
ness of glassy polymers in bulk can be explained
following the ideas of H. Brown. Let us now
transpose this to partly healed interfaces.

Here the number of bridging chains per unit area is
expected to be proportional to ¢,(¢): any D monomer
which has just crossed the border has a finite proba-
bility of being directly linked to the D side. Thus, to
describe chemical rupture of the fibrils, we should
perform the replacement:

o, —2¢.(t)o, (76)
where the factor (2) is fixed by the condition that o,
returns to its bulk value at t > T, (¢.—> 1/2).
Equation (29) then gives:

G(1) = Gy -42(1) )
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LT T

Figure 40. Separation of two blocks
by fibril rupture.

If, and only if, chain ends were originally
numerous at the surface, we can return to equation
(74) and write @,(¢r) ~ ¢'/4, giving the experimental
form G ~ ¢'2. Thus the Kausch law, combined with
the Brown model, does suggest that a large number of
chain ends were available at the interface when heal-
ing started.

Some of you may be worried by the following
point: in the Kausch experiments, the original blocks
H and D were in fact obtained by rupture of one single
sample. Could it be that chain ends were very numer-
ous (¢, > N2, possibly ¢, ~ 1) on the interface at ¢ =
0? We do not believe this to be the case, as explained
on figure 40.

The separation of the two blocks took place via
fibril rupture, but after this, the half fibrils on both
sides have probably retracted to build again a compact
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layer of polymer on each lip of the fracture (around
point F): in this retraction process, chain ends may be
buried in each layer. Most of the chains in this layer
belonged to portions of the fibrils which were not
disrupted chemically. Thus, if the retraction led to an
equilibrium, we again expect ¢, ~ N-12.

2 A/B interfaces

The qualitative aspect of an A/B interface is shown on
figure 41. A simple understanding of the structure can
be obtained, starting from an abrupt interface, and
allowing one A chain to protrude in the B side (figure
41). If m monomers are exposed in this process, the
enthalpy required is:

AH, ~my kT (78)
where y is the Flory parameter [21] describing AB
mixtures. The average value of m corresponds to AH,,
~ kT, and is thus:

(m=x" (x<D) (79)
(We constantly assume that 7 is much smaller than

the overall chain length N.)
Since the protruding chain is a random walk, the
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Figure 41. One chain on the A side is protruding
into the B side.

width e of the interface is the size of this random
walk:

exam'’? =ay™"? (80)

and e is much larger than a, if y is small: we shall
constantly focus on this limit. Of course, the result
(equation 80) can be derived by more rigorous means,
but the present approach is often illuminating.
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The distribution of m values is the Boltzmann
exponential:

1 -AH 1 -m
=— nol=— — 81
P po= exp( T ) pes CXP( — ) (81)

Of major interest for mechanical properties, is the
probability that the protruding chain entangles with
the surrounding matrix. If we define an average
chemical distance between entanglements N,, we may
write for the probability f of entanglements:

f=Y pn=exp(-N,x) (82)
N,

Of course, this formula is very approximate, because
N, need not be the same for the two partners A and B,
nor for the mixtures: a certain weighted average
would then be required. But equation (82) is still a
reasonable starting point for discussing the mechanics
of A/B contacts.

Long ago a remarkable series of experiments was
performed by Iyengar and Erickson [29]. They
measured the adhesion energy G of various polymers,
on PET, by a 90° peeling test (at a fixed velocity of 5
cm/s). The results were plotted as a function of the
Hildebrand solubility parameter &. They show a
dramatic drop of Gas soon as the & parameters
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differed by more than one unit.

Can we establish contact between these data and
equation (81) for the probability of entanglements?
Let us assume that:

(a) G is associated to the post-craze fracture of a
glassy A/B junction;

(b) the entangled A or B chains in the junction
must break.

Then we may apply Brown’s equation (29),
provided that the chemical rupture stress o, is suitably
reduced: only the entangled chains at the junction
contribute. This could give:

o,—>o,f

and:
G=Gyf* = Gyexp(-2N,7)

The result is an exponential drop in a G,(y) plot:
from the data, Iyengar and Erickson had proposed a
different law: G,, expl_ L ” (Remember for
simple Van der Waals interactions, x ~ (8, —8;)>.)

However, these differences are probably not very
significant:

(a) As already explained, N, need not be the same
for all AB pairs: there need not be a universal plot

Glc(6)~
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(b) PET is always partly crystallised, and this
complicates the picture.

The essential point is the rapid drop of G;, when A
and B become very different.

A useful way of strengthening the AB interface, if
A and B are strongly incompatible, amounts to bring-
ing an AB diblock copolymer at the interface: many
studies have been carried out on these decorated
systems.
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Conclusions

1 Open problems

Long lectures like these tend to be over-optimistic,
giving the impression that most physical questions are
under control. The reality is different: soft interfaces
are far from a happy end. Let me give a few examples:

On the dynamics of wetting: the role of molecular
processes is not fully appreciated.

(a) Following Blake’s ideas, they may sometimes
be dominant (at large dynamic contact angles). The
difficulty is that they are critically dependent on the
atomic structure of the surface.

(b) When the liquid induces a real chemical reac-
tion on the supporting solid (e.g. a silanation on the
OH groups of a silica surface), the exact nature of the
driving force is subtle: what fraction of the reaction
enthalpy is directly transformed into heat, and what
fraction pulls the contact line?*

* Note added in proof: We now have a much clearer picture of

reactive wetting, based on experiments by T. Ondarguhu and
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(¢) In the case of Aztec pyramids, for instance with
one molecular layer spreading out from a thicker re-
gion, the description of this layer as a two-dimen-
sional liquid is open to some doubt: we may, in some
cases, be dealing with a two-dimensional gas rather
than a two-dimensional liquid.

(d) The role of surface rugosity is important for
these thin layers. It may be that the spreading mole-
cules follow preferentially certain channels (or steps)
on the surface: the percolation properties of the chan-
nel network may be essential.

(e) The action of surfactants is important and not
fully understood (although J. F. Joanny did look at
some basic features): the transfer of amphiphiles at the
contact line from the liquid/air interface to the solid
surface may be an important feature (figure 42) and
we know very little about it — in particular how do the
rates of transfer change when we go from a static line
to a moving line?

Even the hydrodynamics of wetting and dewetting
raises many unsolved questions: for instance, when
we observe the growth of a dry patch (a hole) in a lig-
uid film, what is the exact shape of the rim? The sim-
ple picture of ref. [1] (with a portion of a circle as the

Dominguez dos Santos (Phys. Rev. Lett., 75, p. 2976 (1995)). A
theory can be found in F. Brochard-Wyart and P. G. de Gennes, C.
R. Acad. Sci. (Paris), 321 II, pp. 2858 (1995).
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ARR

+ +

Figure 42. The transfer of amphiphiles at
the contact line from a liquid/air interface
to the solid surface.

profile) is naive, and certainly not valid for large con-
tact angles. (Also the logarithmic cut-offs at both ends
of the rim are not the same, as pointed out by F. Bro-
chard-Wyart; this has to be incorporated to get good
numerical predictions, even for small angles.)

More dramatically, there are cases where no rim is
present! This has been observed by Debregeas et al.t
on a slightly different problem: opening a hole in a
freely suspended film of a very viscous polymer. But
similar features seem to occur also when the polymer
film is floating on a non-viscous liquid (figure 43
overleaf).

Y Phys. Rev. Lert., 75, pp. 38869 (1995).
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Figure 43. In contrast to soap films (@), norim
formation is seen when a polymer film (b) is
floating on a non-viscous liquid.
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We find even more uncertainty if we go to slippage
of a polymer melt against a solid wall. For walls
which have trapped permanently some polymer
chains, we do expect a low velocity regime with
negligible slip, and a higher velocity regime with a
certain critical stress ¢”, and increasing slippage
lengths b. But if we go beyond this, we might find
other dramatic events, such as complete decohesion
between the flowing melt and the fixed chains; or tear-
out of the fixed chains.

Also, the surface density of fixed chains plays a
non-trivial role. Recently C. Gay and F. Brochard-
Wyart have investigated regimes where the fixed
chains do not simply add up their contributions, but
work in a cooperative fashion. Here, the transition
from no slip to slip should require higher velocities:
this will hopefully be checked by further experiments.
But ultimately, to attack wall effects in extrusion, we
must also incorporate both the roughness of the sur-
face and the viscoelasticity of the melt phase. This
may take a long time.

Adhesion science is also somewhat immature:

(a) For glassy polymers, we can use the Brown
model when the material deforms by crazing (like
polystyrene or polymethyl metacrylate). But when it
responds differently to strong stresses, we are in un-
known territory. What happens if fracture is an-
nounced by deformation bands? What happens in
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cross-linked systems? What happens in partly crys-
talline materials?

(b) For soft materials such as rubbers, or liquid
tackifiers, I have the (bold) feeling that we understand
some of the basic viscoelastic processes (see equation
62). But we are still far from predicting the complete
curve G(¥) for peeling at a velocity ¥, when our adhe-
sive has a realistic distribution of relaxation times.
And the often proposed proportionality between G(V)
and the loss modulus u"”(w) cannot, in general, be
justified by theory.

(c) We discussed the theoretical role of connector
molecules (between a rubber and a solid surface, or
between two rubber pieces). But we must mention
recent experiments by L. Léger, M. Deruelle and co-
workers, where a silica surface is decorated with
PDMS connectors, and exposed to a PDMS rubber.
These experiments show only a very weak adhesion
when the silica is grafted in a (supposedly) clean way:
this is in strong disagreement with our model! It may
be that the grafted chains do not manage to inter-
digitate with the rubber network, when we prepare the
adhesion junction: either because of some unexplained
incompatibility (both partners are PDMS) or because
of very long time constants for penetration. But, as of
now, we do not understand these experiments.

(d) Concerning the tackiness of linear polymers,
we are in great need of fundamental experiments:
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where the adhesion energy would be measured on
really flat surfaces (avoiding the complications due to
roughness which Creton and Leibler discuss). We es-
pecially need data where incubation time and separa-
tion time are controlled separately.

The welding problem (between two blocks of the
same polymer) also suffers from many difficulties:

(@) The preparation of the interface is delicate. The
Lausanne group spent a lot of effort to achieve good
contact between the partners at the initial stage. But
we have seen that the original distribution of chain
ends near the contact plane may be critical: and we
have, up to now, no independent probe of this distri-
bution.

(b) In the present talk, we discussed only the sym-
metrical case, where the chain lengths are the same in
both blocks Ny = Ny = N. The dissymmetric case N,
>> Ny is quite subtle. E. Kramer and coworkers
showed the first basic feature, namely that the short
chains migrate relatively fast into the long ones. But
there are further complications, because at short times
the long portion behaves like a gel, and is able to
swell only up to a certain limit. In the extreme case
where the short chains are simply monomers (Ng = 1)
we are still facing interesting questions. When the
glass transition of A is high, while B is liquid, if we
operate at an intermediate temperature, we often find
that the penetration front is not diffusion, but moves at
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constant velocity. This type II diffusion has been the
source of various interpretations. Sarti emphasised the
possible role of crazes while A. Kramer and Hui think
in terms of viscous flows, with a viscosity which is
dramatically dependent on the concentration of the B
species. Recently, Rossi, Pincus and I proposed an-
other approach, based on the maximum jump velocity
of one B molecule in the A matrix. All these ideas
may play a role in favourable conditions, but as of
now, we are far from any consensus.

2 Two remarks on style

(a) Compared with the giants of quantum physics, we
soft-matter theorists look like the dwarfs of German
folk tales. These dwarfs were often miners or craft-
workers: we, also, are strongly motivated by industrial
purposes. We see fundamental problems emerging
from practical questions — aquaplaning leads to a new
form of dewetting, etc. But there is another, equally
important motivation: the challenges of everyday life.
Let me take an example, which I owe to the director
of the Tefal company. These days, a lot of time is still
spent on ironing: in a country the size of England,
something like ten million people ironing for one hour
a week. If, by some intelligent reflection, we can gain,
say, six minutes on this hour, a 10% effect, we are
saving 10° man-hours per day — we are providing a
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non-negligible improvement for many individuals
who come back exhausted from their work. Personally
I would feel more proud to achieve this than to solve
an elegant formal problem in statistical physics.
(Unfortunately, I fail on both counts.)

(b) Science is clearly a form of art, with the same
invention and the same doubts. There are major dif-
ferences however: one is the difficulty of communica-
tion. An Indian playing his flute in the streets of
Bogota invents a new tune: within ten seconds, any
passer-by may be stuck by it — possibly for their
whole life. But in our trades, a beautiful discovery can
be transmitted only to people who have been through
a long, specialised education. We must do our best to
keep in contact with our fellow citizens, but we often
fail.

Incidentally, the artistic professions suffer from
many parasites: among others, the art critics or com-
mentators. Fortunately, we do not have the counter-
part of art critics in our sciences (although some refe-
rees tend to mimic this style ...).

But the analogy between, say, chemists and sculp-
tors, or physicists and printers, is, on the whole, rather
close. The great scientists of the early quantum period
were producing heroic pictures of the whole universe.
After this, there is a natural trend towards a certain
form of baroque; or towards artists of small details (I
am fond of both). Then, there is the time when the
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competition of black-and-white photography with
painting catalyses a deep change. Exact reproductions
of nature become a standard operation. What is dis-
covered, at this stage, is the interest (and difficulty) of
extracting a simple vision from a scene, ‘an impres-
sion’. 1 contend that we have similar trends in soft-
matter physics. Simulations and other numerical exer-
cises are the analogue of photography. But what we
need most is a simple impressionist vision of complex
phenomena, ignoring many details — actually, in many
cases, operating only at the level of scaling laws.

Thus, I tend to compare our community of soft-
matter theorists to the amateur painters of a hundred
years ago — spending their Sunday afternoons in the
park, and capturing a few simple scenes — involving
their friends, their children, and those they love. I see
no better style.
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Drag on a tethered chain moving in a
polymer melt

A chain of N monomers is attached to a small
colloidal particle, and is pulled (at a velocity ¥) inside
a polymer melt (chemically identical, with P
monomers per chain). The main parameter for this
problem is the number X(¥) of P chains entangled
with the N chain. Earlier estimates of X are criticised
in this appendix, which is based on work by A. Ajdari,
F. Brochard-Wyart, C. Gay, and J. L. Viovy (1995),
and a new form is proposed: at large N (N > N2), we
are led to a ‘Stokes’ regime, X = N'2, while at smaller
N (N < N?), we find a ‘Rouse’ regime, X = N/N,
(where N, is the number of monomers per
entanglement).

The motion of a long tethered chain (N monomers)
inside a polymer melt (P) is special: the N chain
cannot reptate inside the P matrix. This occurs in star
polymers, and also in two recent experimental
situations (figure 2):

(a) The N chain is grafted to a colloidal particle (of
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size smaller than the coil radius Ry of the N chain).
The particle can be driven by sedimentation or by
optical tweezers.

(b) The N chain is grafted on a flat wall, and the P
melt flows tangentially to the wall (figure 15). (In all
that follows, we assume that the grafting density is
very small: no coupling between different N chains.)

Problem () was first considered theoretically (for
the low ¥ limit) in reference [30]. The starting point is
that a certain number X(V) of P chains are entangled
with the N chain. The resulting friction is estimated as
follows:

Assume that the N chain has moved by a distance
D equal to the diameter of an Edwards tube [4]. D* =
N!?a, where N, is the number of monomers per
entanglement, and a the monomer size. (We take N, <
N £ P.) To allow for this motion of the N chain, each
P chain entangled with N must move along its own
tube (of length L,) by something like L, Thus the
sliding velocity V; of this P chain is not the trans-
lational velocity ¥, but is much larger:

L, P

V,=V-t=V— (A1)
D" N

e

The dissipation 7S due to the motion of the tethered
chain corresponds to X(P) chains moving at velocity
V in the ambient melt:
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TS=X¢,PV:=fV (A2)

where P is the tube friction coefficient of one P
chain, and fthe drag force. Comparing the two
expressions of 7S we gef:

f=VX(Van, (A3)

where n,={a”'P’N,” is the reptation viscosity of
the (P) melt.

The crucial question is thus to find X(¥). Even in
the simplest (V' — 0) limit, where the N chain is an
unperturbed coil, this problem is difficult, and differ-
ent answers have been proposed at different times
[14]. We reanalyse the problem here, using what we
call the binary entanglement model. We also compare
this with a ‘collective’ entanglement model. Finally,
we extend our ideas to higher velocities.

At low velocities, the N chain is an unperturbed
coil, of size Ry = N"?a and volume R}. It experi-
ences on average an entanglement every N, mono-
mers. Each P chain intersecting this volume uses ~N
monomers in this region. Thus the number of P chains
which overlap with the N coil is Ry / Na® = N2,

In reference [30] we simply assumed that all the P
chains are entangled with the N chain, that is,
X(V—0)=N"2

The Edwards tube surrounding the N chain (figure
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19) is a sequence of N / N, blobs with diameter D* and
total volume:

Q=N/N,(D") (A4)

One of the P chains intersecting the volume R} has
NQ/ R}, monomers inside the tube. The number of
blobs visited by the P chain is thus:

MG

Inside one blob, Ne”2 chains coexist (including the N
chain). In our binary entanglement model, we assume
that a constraint is associated with a pair of chains
inside the blob. The total number of pairs is
$(N)?)* ~ N,. Thus, the probability that any given
pair of chains inside the volume do entangle, is only
N.'"2. The number c of constraints between one (P)
chain and the () chain is then:

172
c=bN;"? = NTV- (A6)

We are thus led to distinguish two very different
regimes:

(1) N> Nf. In this case c¢ is larger than unity: all
the N'”? (P) chains which intersect the coil do entangle
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with the (N). Thus the simple guess of ref. [30] is
confirmed:

X=N"? (A7)

We call this the Stokes regime, because the friction
force (equation A3) has the scaling form correspond-
ing to a Stokes sphere (radius N/2g) inside a liquid of
viscosity 1),,.

(2) N <N’. Inthis case c is smaller than unity, and
we cannot use equation (A5). When ¢ << |, we may
say that the probability of entanglement between one
(P) chain (intersecting the coil) and the (N) chain is c.
Thus:

X=N"c= —;i (A8)

e

The friction experienced by the tethered chain is then
linear in N. Although we deal with an entangled
system, the (N) chain is thus described by the so-
called Rouse model [31], but the Rouse friction
coefficient is proportional to the melt viscosity.

We now describe an opposite limit, where one
entanglement site (a blob of diameter D*) is pictured
as a very complex knot, involving N/’? chains; the
knot is such that eliminating one chain from it is
enough to remove the constraint. Then the number of
constraints released if one P chain moves out of the
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volume Ry is b, and is larger than unity. All the N2
‘P chains’ are thus coupled to the N chain.

In this model, it would be enough to select a subset
of (N/ Ne)” 2 <P chains’ and move them out, to relax
the N chain: since (N/ N,)"*b=N/N, is the total
number of constraints to be removed. This remark
leads to the prediction of reference [14]. However, we
do not think that this approach is realistic. The N
chain, when it moves, has no way of selecting a subset
of releasing chains: it drags all of them.

Thus we are led to say that, in the collective
entanglement model, X = N2, and the Stokes model
holds for all values of N.

Under strong flows, and in the simplest picture
[13], the N chains become elongated into a cigar
shape, with diameter D and length L=R2/D. A
more sophisticated description has been constructed
[14], but is essentially equivalent in practice. In the
binary entanglement model, we have to distinguish
two regimes:

(a) Partial striction: Ry > D > D". Here, a simple
repetition of our discussion in section II gives:

D
= A9
= (A9)

If N<NZ?, we always stay in the Rouse regime (X =
N/N,).
If N>N?, we find a crossover from strong
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coupling to Rouse upon increasing the velocity
(decreasing D).

(b) Marginal regime: Here the cigar diameter D
becomes comparable to D, and the number of
entanglements realised by the N chain can become
smaller than N/ N,. The marginal value of X (X = X*)
is in fact fixed by the force balance: the stretching
force required to reach D" is:

’;7: = X' (V)an,V (A10)

and thus X is inversely proportional to the velocity. It
may be checked that for V= V* (the onset velocity for
the marginal regime) X* = N / N, as expected in the
Rouse regime and:

. kIN!?

Vo= 3
Nn,a

(Al1)

Remarks

(@) The results of the binary entanglement model can
be summarised as follows (for the low velocity limit):
the number of entangled chains is either N2 (the
number of ambient chains intersecting the mushroom)
or N/ N, (the number of constraints acting on the N
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chain). Each of them is an upper bound for X, and thus
X is the smallest of the two.

() In the collective entanglement model, we are
led to X = N2, But we do not think that the collective
model is fully realistic: complex knots may play a
role, but may not dominate the behaviour. Thus we
tend to stick to the binary model.

(¢) It is instructive to discuss the whole distribution
function p(n) for the number of entanglements be-
tween one given P chain (intersecting the mushroom)
and the N chain. Using mean field arguments, one
arrives at a Poisson distribution. This gives:

X=N'"[1-p(0)]

N2 - exp| N (A12)
P,

Equation (A12) is a useful interpolation between
equations (A7) and (A8).
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