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Preface

When we started our research jobs on polymer thermodynamics at the Shell research laboratory in
Amsterdam we were both new in the areas of polymers as well as thermodynamics, having just
finished theses on respectively undercooled water and microemulsions. This allowed us to have a
fresh look at the subject. Another circumstance that gave us a non-traditional approach was that our
research group was housed in an environment of thermodynamic research. Our neighbors were not
synthesizing, blending, extruding or injection molding polymers; they were doing calculations on
gas-liquid equilibria in distillation columns, measuring vapor pressures and developing equations of
state for hydrocarbon mixtures.

We had to find our way in polymer thermodynamics through many books and articles. Many of these
literature sources were either written from a very practical point of view, taking existing theories for
granted or from a very theoretical point of view, ignoring the practicalities. It took us much time and
long philosophical discussions to understand the physical meaning of the concepts that were used
and their relation to "small molecules thermodynamics". We look back with great pleasure to these
discussions, often continued after work hours and with a good glass of "Trappist". During these
discussions we gradually obtained an understanding of the various fields and 'schools’ in this area
and their interrelationships. It was a fortunate circumstance that we had a first-class laser light
scattering set-up available at the laboratory. This greatly helped us to verify some of our concepts
directly on well defined model systems.

Writing this book was a great opportunity to express what we had learnt. In fact, we have set
ourselves the goal to write the book that we would have liked to have had before. No doubt we
would have found another good reason for the "Trappist". We sincerely hope that this book will
prove to be of value to many new or experienced workers in this area of research. If not for its
content then for the discussions it may provoke. When some pages may seem overloaded with
equations that is because we wished to show intermediate steps in a derivation rather then to confuse
or intimidate the reader. In several cases these intermediate steps are not trivial and imply additional
assumptions.

As we found out, writing a book is a big project which requires, in addition to a permission to
publish, good faith, critical pre-readers, general support, inspiration and patience. For this we
acknowledge with pleasure and true gratitude the following:



Permission to publish all this:
Good faith:

Critical reading of (parts of) the manuscript:

Very critical reading of part of the manuscript:

General support:

Inspiration:
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MENNO VAN DIJK

ANTDRE WAKKER
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Shell Research

our publisher

Peter Hilbers and Alan Batt
Eric Hendriks

many friends, relatives and colleagues who
kept reminding us of our duties asking
'how the book was going'.

All the foregoing and in particular
all members of 'Ceetje eXtra":
Christian Houghton-Larssen,
Ferry van Dijk,

Valentijn Hommels,

and Anthony Lucassen.
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Chapter 1

INTRODUCTION

A large and growing fraction of synthetic materials consists of mix-
tures of polymers"? and thermodynamics is an indispensable tool in
the development of these materials.

These materials are one, two, or multi phase systems. The basic
reason for this growing importance is the fact that the commercial
introduction of a chemically new polymer that is not very expensive
or only useful in a special application has become a rare event. It looks
as though we shall have to live with a basic set of polymers as the
standard building blocks of our future materials. Therefore, new
materials must be obtained by a suitable combination of these build-
ing blocks. Primarily, “suitable” means: with an appropriate morphol-
ogy. Thermodynamics play a key role in understanding why two
polymers are miscible or, if not, what morphology they form.

Thermodynamics is a broad subject. It has been developed for
the study of heat engines at the end of the nineteenth century. Its
framework: the fundamental laws, the definition of temperature and
the notion of entropy and free energy proved to be extremely useful to
many other branches of physics and chemistry, including the descrip-
tion of the phase behavior of mixtures. Thermodynamics provides the
most fundamental rules that must be obeyed by all systems, irrespec-
tive of their detailed atomic structure. This is the strength and also
the weakness of thermodynamics: its rules are fundamental but it
does not provide a method to allow for the effects of chemical detail.

This is where statistical mechanics enters the stage. Statistical
mechanics provides us with a means to link the microscopic behavior
at the level of atoms and molecules to the macroscopic world where
the laws of thermodynamics reign. Usually the whole field is included
in the term “thermodynamics”.

Only a few polymer pairs are miscible in the thermodynamic
sense as relevant to this book and very few have been commercialized.
Polystyrene/polyphenylene-ether is the classical example of a success-
ful miscible blend. As we shall see, it 1s well understandable on
polymer thermodynamic grounds that only few polymer pairs are
miscible. The entropic driving force towards miscibility (at a molecular
scale) is very much smaller in mixtures of polymers than in mixtures

1



2 Introduction

of small molecules. Therefore, some special conditions have to be met
for a polymer pair to be miscible. A temptation to conclude that the
relevance of polymer thermodynamics is that it perfectly explains why
one should not waste time studying it, must however be rejected.

Usually, when two chemically different polymers are blended in
some mixing equipment, the resulting material will have a coarse
morphology with poor interaction between the two phases and conse-
quently inferior mechanical properties. Here polymer thermodynam-
ics may play a role. It can be used to rank polymer pairs in order of
immiscibility, acknowledging that miscible pairs are rare. Materials
with a higher “thermodynamic immiscibility” have a coarser mor-
phology and more inferior mechanical properties. These coarse blends
are often “compatibilized” by adding a suitable third component that
acts much like a surfactant. It resides at the interface where it lowers
the interfacial tension which leads to a finer structure. Also, the
adhesion between both phases is enhanced. These compatibilizers are
often (block) copolymers. Thermodynamics may be used to search for
suitable chemical structures.

There is more. Morphology plays a key role in determining
properties. We have seen this in civil engineering construction where
the use of clever shapes (e.g., the H-beam) has enabled the lightweight
constructions of bridges and buildings of today compared to the heavy
solid constructions of centuries ago. Similarly, intelligent use of ap-
propriate morphologies will play a key role in material engineering.
This means that efforts will be needed to develop methods that create
the desired morphology.

For example, a technique of growing importance is reactive
processing. Here one or more of the constituents may be of low
molecular weight and liquid. Other polymeric constituents may be
dissolved in this liquid. During the subsequent conversion of the low
molecular weight species to polymers, the other components will
become immiscible and will form a separate phase. These phase
separation processes may be very complicated, even for systems with
two components. Thermodynamics is then an essential tool to help
understand the observed behavior and to design new materials. High
impact polystyrene (HIPS) is an example of a blend that is made by
reactive processing (polymerizing a solution of polybutadiene in sty-
rene monomer).

Originally, the interest in the phase behavior of polymeric sys-
tems was not geared to the development of new materials but rather
to a better understanding of polymers as such. Attention was focused
on the behavior of polymer solutions. Polymers have a negligible vapor
pressure. Therefore the only way to study more or less isolated
polymer molecules is to dissolve them in a liquid. As an additional
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advantage, polymer solutions are easier to handle than pure polymers
with their high viscosities and melting points.

The independent publications of the, later to become famous,
expression for the combinatorial entropy of mixing of a polymer
solution by Flory and Huggins in 1942 may be seen as a historical
starting point. Since then a large number of theories have been
developed by various workers with a growing interest in mixtures of
polymers. At the same time, a large body of experimental data has
been building up in the form of phase diagrams, interaction parame-
ters, scattering functions, etc.

Recently a new discipline has emerged. The advent of powerful
computers has led to a whole new branch of “experiments”. Molecular
modelling, molecular dynamics and Monte Carlo simulations are now
increasingly being applied to enhance our understanding of polymer
thermodynamic behavior.

In this vast amount of theories, experiments and computer
simulations one easily gets “mixed up”. It is the purpose of this book
to help the reader “demix” and get a feel for the scientific developments
in this area. Particular attention has been paid to clarify the relations
between the thermodynamics of polymeric mixtures and those of
“normal” liquids. Chapter 2 is fully devoted to he thermodynamic
description of the phase behavior of low molecular weight molecules.
This once served as the framework on which the theories for polymers
were build. Some of the concepts introduced in Chapter 2 are almost
exclusively applied in polymer science (e.g., solubility parameters). By
discussing these topics without reference to polymers we want to
emphasize that these notions are not particular to polymer science but
of a more general nature.

In Chapter 3 polymers will be introduced and we will discuss the
natural extension of the concepts of Chapter 2 to high molecular
weight molecules. The notions of Chapter 3, in particular the cele-
brated Flory-Huggins expression for the free energy of mixing of a
polymeric mixture, form the foundations of practically all detailed
theories that have been developed. Therefore, they will be rather
extensively discussed with particular emphasis on their precise physi-
cal meaning.

Many theories along various different lines have been developed
to improve the predictive and descriptive capabilities of the Flory-
Huggins model. These will be discussed in Chapter 4, again with
emphasis on physical meaning rather then mathematical detail and
comprehensiveness.

The computer is increasingly used to enhance our understanding
of material behavior. Polymer science is no exception. In Chapter 5,
the basic relevant computer simulation techniques are introduced. [t



4 Introduction

will be shown that simulation of polymeric systems with chemical
detail is not yet feasible. Computer simulations do, however, play a
significant role in a qualitative understanding of the often subtle
boundaries between miscibility, immiscibility and partial miscibility
of polymeric mixtures.

Last but not least, in Chapter 6 ample attention will be given to
experimental work. Emphasis will be on those techniques that directly
and quantitatively probe the free energy of mixing, particularly scat-
tering techniques. The relevant results from experiments on polymer
solutions and blends will be presented, discussed and compared to
various thermodynamic model descriptions.

Finally, it must be noted that it was not the ambition of the
authors to write a comprehensive overview of all theoretical and
experimental know-how. It is the intention of this book to elucidate
the physical meaning and practical usefulness of many important
developments and their relevance to attempt to predict polymeric
phase behavior.

REFERENCES

1. L. A. Utracki, Polym. Eng. Sci., 35, 2 (1995).
2. L. A Utracki, Polymer Alloys and Blends, Thermodynamics and
Rheology, Hanser Publishers, Munchen 1989.



Chapter 2

ELEMENTS OF
THERMODYNAMICS OF MIXTURES

2.1 FUNDAMENTALS

2.1.1 THE LAWS OF THERMODYNAMICS

This is not a textbook on thermodynamics,l'z’3 we thus give only
overview of fundamental principles. We will extensively use the tools
that thermodynamic and statistical mechanic theories provide. This
chapter serves as introduction to the basic framework of thermody-
namics and some important relations that will be used later.

The zeroth law is concerned with thermal equilibrium. It states
that if two systems are separately in thermal equilibrium with a third,
they must be in equilibrium with each other. As an example of the
practical consequence, consider a 2-phase polymer solution, consisting
of a solvent-rich and a polymer-rich phases in thermal equilibrium
with the solvent vapor phase. The zeroth law implies that the vapor
pressure will not change after complete removal of one of the coexist-
ing liquid phases. A more fundamental result of the concept of thermal
equilibrium as defined by the zeroth law is the definition of tempera-
ture (denoted T). The first law is the principle of conservation of
energy, where heat is also recognized as a form of energy (U).

The second law can be formulated in many ways. In terms of
practical consequences it always creates difficulties: inefficient en-
gines, high electricity bills for the refrigerator and a desk that is
always a mess. A more friendly formulation of the second law, due to
Kelvin, is that no process is possible whose sole result is the complete
conversion of heat into work. The transformation of another quantity
is also involved. This quantity was named entropy S (Greek ntponn =
turn, transformation) by Clausius.

2.1.2 THERMODYNAMIC FUNCTIONS AND RELATIONS

From the first and the second law one derives a relation between
changes of the internal energy U of a system and changes of its entropy
and volume:

dU = TdS - PaV [2.1]
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where T is the temperature and P is the pressure in the system. The
term PdV enters the equation as the work done by the system; that is
work done against hydrostatic pressure, P. This is the usual form of
the equation. One should however keep in mind that other contribu-
tions to the work done by the system exist. Examples are ydA for work
done by increasing the surface area by dA against the surface tension
y and FdL for strain against a tension F. With this general character
of P and V in mind, we conclude from Eq. (2.1) that the internal energy
of a system (with fixed composition) is a function of entropy and
volume only: U =U(S,V). If this functional relation is known explicitly,
we have complete (thermodynamic) information on the system. For
example, the pressure is given by:

ouU

It can be shown that the thermodynamic equilibrium state for a
given S and V corresponds to a minimum of the internal energy U.
The equilibrium state of a system with given values for U and V
corresponds to a maximum of entropy. By rearranging S, P, V, and T,
several other fundamental equations with different independent vari-
ables can be derived. For our purposes, entropy and volume as inde-
pendent variables are not very convenient. In liquid-liquid equilibria
one typically uses temperature and pressure as independent vari-
ables. In this case, the so-called Gibbs free energy G is the appropriate
thermodynamic potential:

G=GPT)=U+PV-TS=H-TS [2.3]

where H is called enthalpy. With Eq. (2.1) one derives for the total
differential of G:

dG = -SdT + VdP [2.4]

The thermodynamic equilibrium state at specified temperature and
pressure corresponds to the minimum of G.
From Egq. (2.4), one obtains:

oG oG
V=[5J S=—&ﬁJ [2.5]
T P

If T and V are independent variables, one should consider the
Helmholtz free energy F = F(T,V) with

F=U-TS [2.6]

and
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dF = -SdT - PdV [2.7]

From Eq. (2.7) and also from Eq. (2.4), one observes that the
temperature, pressure and volume of a system cannot be varied
independently (P = —-0F/dV). The functional relationship between P,T
and V can formally be expressed as:

fP,TV)=0 [2.8]
which is referred to as the equation of state of the system.

213 MIXTURES

In a mixture of different kinds of molecules, the number of molecules
n; of the individual species must also be specified: G = G(P,T,n,,...,n¢)
and:

C
dG = -SdT + VAP + ) pidny [2.9]

i=1

where C is the number of components (species). The so-called chemical
potential, or partial molar Gibbs free energy, p; of component i may
thus be defined as:

_|9G 2.10
Mi = on; [ . ]
P.T.nj,

The chemical potential of a molecule in a mixture is thus given by the
increase of the (Gibbs) free energy of the system when one molecule
is added to the system and P,T and the numbers of the other species
are kept constant under the condition that the system remains in
thermodynamic equilibrium. The chemical potential is a so-called
intensive property of the system, that is independent of the size of the
system. The free energy G(P,T,n;,...,nc) is an extensive property. G is
proportional to the total mass in the system: G(P,T,An,,...,.An¢) =
AG(P, T ny,...,ng). With a mathematical theorem by Euler, one may
write for such so-called homogeneous functions:

C Cc
G= n{—a—(}-J = Z nifdi [2.11]
n,; il
Differentiation of Eq. (2.11) yields:

dG = Y nidp; + 2 pidn; [2.12]
For constant T and P, Eq. (2.9) and Eq. (2.11) yield:



8 Elements of Thermodynamics of Mixtures

Y nidpi =0 [2.13]

This is a so-called Gibbs-Duhem relation. It states that the chemical
potential of all C components cannot vary independently. Basically
this is a result of the fact that the chemical potential p; is an intensive
quantity which implies that it depends only upon the composition of
the system and the composition is fully characterized by a set of C-1
mole fractions (at fixed P,T).

The chemaical potential has been introduced as the partial molar
Gibbs free energy here but could equally well have been defined on
the basisof U, Hor F:

_(ea) _(ov) _[eH) _(oF -
W= on; ~ | on; " on; “ | on; (2.14]
PT Y SP TV

For completeness another frequently used expression of the
chemical potential needs to be introduced. The chemical potential is
expressed in units of energy. It is often convenient to use a dimension-
less function, the absolute activity A;, defined by:

i = RT In A4 [2.15]
where R is the molar gas constant (R = 8.314 J K mol).

2.1.4 COMPOSITION VARIABLES

A mixture is any phase containing more than one component. Mix-
tures may be gas, dense fluid, liquid, or solid. Since this book focuses
on polymeric systems we will restrict ourselves to the liquid mixtures.
The first step is to characterize the mixture by specifying the compo-
sition. One way to do this is by means of the mole fraction, denoted x.
If the mixture consists of n, molecules labeled i, with i=1...C, then the
mole fraction of x; is given by:

Xi=T¢ [2.186]

It is often convenient to specify the mass fraction W; which is related
to the mole fraction by:

iMi
W= [2.17]

Z xiM;

1=1
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where M; denotes the molecular weight of molecule 1.

Another important composition variable is the volume fraction,
®. This is an experimentally less accessible variable as the total
volume of the mixture (at constant pressure) is a function of tempera-
ture and may not be constant for all mixing ratios. If one assumes zero
volume change on mixing then the following relation between volume
fraction and weight fraction can be derived:

Wi

>
®i=¢ [2.18]
1=

W<
>

1

where p; is the pure component mass density. The concentration c;,
expressed in mass per unit volume is given by:

¢ = Dipy [2.19]

The change of volume on mixing cannot always be neglected. For
example, if 100 cm® of water is mixed with 100 cm® of ethanol at 25°C,
the total volume of the mixture is not 200 cm®but about 190 cm?®. These
effects can be described by the partial molar volume V,:

= |dV
V- [%:] [2.20]
T.P.n,-1

In general V, depends on the composition. If there is no volume
change on mixing, V; is constant and equal to the molar volume V; of
pure molecule 1. For a C component system one has for the total
volume:

C
V= Z n;V; [2.21]

i=1

Partial molar quantities are defined as partial derivatives with
respect to the number of particles n at fixed P and T, (see Eqgs. (2.10)
and (2.20)), while the expressions for the extensive variable are often
given in mole fractions x, weight fractions W, or volume fractions ®.
It would therefore be convenient to have expressions for these partial
molar quantities in terms of derivatives with respect to composition
variables instead of numbers. We shall now give a derivation of the
relevant expressions for the chemical potential but the results apply
to any partial molar quantity.® In the derivation below we will use
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volume fractions and then later give the result for mole and weight
fractions. The volume fraction @y is given by:

\
Dy = % [2.22)

where the partial molar volumes V; were assumed to be constant and
equal to their pure component values V. Contrary to the numbers of
molecules, the volume fractions are not independent: they add up to
1. We (arbitrarily) take ®,,...,®c as independent variables and use
©,=1-2®j.;. In terms of these 1ndependent variables, the Gibbs free
energy per unit volume G is given by:

C
Z niyj

GVt =Z‘D\;‘f‘= 1- Zcpl i ZQ”‘ [2.23]
1 ‘_

A%

Differentiation of Eq. (2.23) with respect to ®;,; with all other inde-
pendent volume fractions fixed (indicated by @) yields:

aGV] T
[aq)i VW, [2.24]

The Egs. (2.23) and (2.24) can be solved for u; and p;:

\
Iy v [6(} ]
=G (D, 2.25
and:
\ \
B_ g Z [6"G ] (&]
G D; 2.26
VJ a(Dx o) 6(D, @ [ ]

1=2

for j=2,...,C. For two components (C=2) the equations read:

aGY
VG- O g 2271
and:
oGY
“;—";=GV+(1 -0 - [2.28]
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With ®; = 1 - @y and 8/6®, = ~6/8dy one may establish symmetry
between component 1 and 2 in Egs. (2.27-2.28), such that the effect of
the arbitrary choice of ®@;, as dependent composition variable, disap-
pears.

Similar relations can be derived for mole and mass fractions as
composition variables. For mole fractions, replace the V; by 1 and G
(=G/V) by G/N where N is the total number of molecules. For weight
fractions, replace the V; by M; and G¥ by G/W where W is the total
mass of the system.

2.2 PHASE EQUILIBRIA

2.21 PHASES

Up to this point, the 'system’ was seen as some black box characterized
by volume, pressure, temperature, energy, entropy, composition, etc.
We have seen that the thermodynamic equilibrium state of 'the
system’, when pressure and temperature are specified, corresponds to
aminimum ofthe Gibbs free energy. In the spirit of this chapter, which
deals with general thermodynamic concepts, we have not gone into
any detail of how such a state may look like. Now, we must introduce
an important experimental observation that needs to be incorporated
into the general thermodynamic framework. One observes that a
system may consist of two or more states of matter (phases) in thermal
and mechanical equilibrium. Many types of such equilibria exist.
Examples are: vapor-liquid, liquid-solid, liquid-liquid, liquid crystal-
line-isotropic and many others. Thermal equilibrium implies equal
temperature in both phases, mechanical equilibrium implies equal
pressure in both phases. Chemical equilibrium implies equal chemical
potentials in both phases as we will now show. We assume that
chemical reactions do not take place.

For a transfer of n; particles of a substance between two phases
(I) and (II) at the same temperature T and pressure P, the change in
Gibbs free energy is:

G = (] — i )on; [2.29]

At thermodynamic equilibrium G is at a minimum, so this variation
1S ZEero:

G =0 [2.30]

With Eq. (2.29), we then obtain for the equilibrium conditions:

w=p i=1,.C [2.31]
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where C is the number of different components. One may thus calcu-
late the thermodynamic equilibrium state of the two-phase system,
either by directly minimizing the free energy function G, or by solving
equation (2.31).

Note that we have ignored the role of the physical interface
between the phases. The above derivation is valid in the thermody-
namic limit of infinite volumes with negligible interfaces. In practice,
the interface plays a role in determining the time that is needed to
reach the thermodynamic equilibrium state. For example, super satu-
ration of vapor is a result of the fact that it takes energy to create the
vapor liquid interface for condensation, and may delay condensation
considerably. However, if one waits long enough, there will be some
fluctuation to overcome this barrier and condensation will occur.
Nevertheless, it is possible to create a system where the interface is
so large that it also plays a role in determining the thermodynamic
equilibrium state. In such cases, it should be taken into account (see
section 2.1.2). After this practical remark we will now return again to
basic thermodynamics and discuss some general rules of phase behav-
ior.

2.2.2 GIBBS PHASE RULE

The general equilibrium condition for a system consisting of an
arbitrary number of phases and substances is the equality of the
chemical potential of each substance in all phases:

WD = (@D = ... ni(Ph); I=1,....C [2.32]

where C is the number of components and Ph is the number of phases
in equilibrium. Eq. (2.32) constitutes a set of (Ph — 1)C equations. The
number of variables needed to characterize the system is 2 + Ph(C - 1)
(temperature, pressure and C - 1 mole fractions for each phase). The
difference between the number of condition variables and the number
of chemical potential restraints is the number of degrees of freedom
F of the system, i.e., the number of variables that may be inde-
pendently chosen:

F=2+Ph(C-1=C+2—Ph [2.33]

Equation (2.33) expresses the Gibbs phase rule. It states for
example that in a one component system (C=1), there can at most be
three phases (Ph=3) in equilibrium but only at one certain well defined
temperature and pressure (F=0). Such a state is called a triple point.
In a two component system there can at most be four phases in
equilibrium and at a given pressure, e.g. atmospheric pressure, at
most three. A P,T diagram is a graph with a pressure and temperature
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axis, indicating the thermodynamic equilibrium states at each point
P,T. The phase rule tells us that a state of two coexisting phases may
exist in a region of the P,T diagram (2 degrees of freedom). Three
coexisting phases can only exist on a line (one degree of freedom) and
four coexisting phases can only exist at one particular P,T point.

2.2.3 FREE ENERGY OF MIXING
The Gibbs free energy of a mixture of two components is given by:

G =njp1 + nagpe [2.34]

The absolute values of thermodynamic functions such as the
entropy and the free energy are irrelevant for the sort of problems
discussed in this book. Processes are driven by differences of thermo-
dynamic functions between different states. Thermodynamic equilib-
rium corresponds to the minimum of free energy, the value of the
minimum is immaterial. For mixtures, when the relevant problems
are associated with the miscibility of the molecules, it 1s most conven-
ient to define the pure substances as reference state. We then have
for the Gibbs free energy of mixing AGy = Guixture — Gpure:

AGM = niApg +ngAp2 [2.35]

where Ay; is the chemical potential difference of a molecule of compo-
nent i between the mixture and the reference state:

Api = pi(mixture) - pi(pure) [2.36]

In a similar way, the entropy of mixing ASy and the enthalpy of
mixing AHy can be defined. The Gibbs free energy of mixing can thus
be expressed as:

AGMm = AHm - TASM [2.37]

This book deals with the subject of miscibility in polymeric
(liquid) systems. The thermodynamic states that will be considered
are usually liquid mixtures. The compositions of the mixtures and the
conditions under which one or more phases co-exist are the sort of
quantities to be calculated. Such problems can be solved completely
from a knowledge of the Gibbs free energy of mixing. Therefore,
theories focus on developing expressions for AGy(P,T,®).

For the calculation of liquid-liquid phase behavior, all references
to G and p in the previous discussions may therefore be replaced by
AGy and Ap.

The enthalpy of mixing AHy is the heat that is consumed as a
result of the mixing of the components at constant pressure. If heat is
liberated, the enthalpy of mixing is negative. Exothermic mixing thus
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gives a negative contribution to the Gibbs free energy of mixing.
Negative contributions to AGy drive the system to miscibility as the
thermodynamic equilibrium state corresponds to the minimum of
AGy. The enthalpy of mixing can be split into two contributions: the
change of the internal energy AU of the system and the work done by
the pressure if there is a volume change AVy of mixing :

AHy = AUy + PAVy [2.38]

The work done by the pressure constitutes the difference be-
tween the Gibbs free energy of mixing AGy and de Helmholtz free
energy of mixing AF);. If there are no volume changes, the Gibbs and
Helmholtz free energies of mixing are identical.

224 PHASE STABILITY

Consider a binary mixture of n, molecules of type 1 and n; molecules
of type 2, N = n; + ng. Let us describe the composition by the volume
fraction @ of, say, component 1. For ease of notation and because the
choice of component 1 is arbitrary, the subscript 1 will be omitted.
Whether these molecules will form one homogeneous, thermodynami-
cally stable phase at a certain temperature T and pressure P is
determined by the free energy difference between the pure phases and
the mixture. If this free energy of mixing AGy(P,T,®) is positive then
the molecules will certainly not form a thermodynamically stable
mixture because the two pure phases constitute a state with a lower
free energy (at this particular P,T and ®).

If AGu(P,T,®) < 0, this does not necessarily imply that a homo-
geneous mixture with composition @ is the thermodynamic equilib-
rium state. A phase equilibrium of two phases with different
compositions may have an even lower free energy (the phase rule
excludes more than two phases in equilibrium at arbitrary P and T).
As the free energy of mixing is known for all compositions, these
compositions can be found by minimization of the total Gibbs free
energy of mixing as will now be shown.

Let GY(P,T,®) be the Gibbs free energy of mixing per unit
volume: GV=AGp/V (or the total Gibbs free energy per unit volume,
the choice is irrelevant for this problem). For a system of two phases
with different compositions (denoted @' and ®") one has:

GY =vGY(@YH) + (1 - v)GY(@M) [2.39]

where v denotes the phase volume fraction of phase I, i.e., the fraction
of the total volume V that is filled with phase 1. Again, we assume zero
volume change on mixing. Conservation of volume is expressed by:

OF = v + (1 — v)dl! [2.40]
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where @F is the fixed overall volume fraction (F from “Feed”). This
leads directly to the lever rule which expresses the relative phase
volumes in terms of phase volume fractions:

_ (I)H

v =—I_EIT [2.41]

By eliminating v from Eq. (2.39) and Eq. (2.40), we derive for the free
energy of the two phases:

GV((DI) GV((DH) F (DIGV((DH) (DH GV((DI)
(I)I (I)H N (DI (DH

GY= [2.42]

The meaning of Eq. (2.42) can best be illustrated by a graphical
representation of G(®) as shown in Fi igure 2.1. Eq. (2.42) expresses
that the free energy of two coexisting phases w1th compositions of
respectively ®' and ®'! and overall composition ®! can be found by
drawmg a line between the corresponding pomts in a graph G(®@) (P!
and P! in Figure 2. 1) and taking the value of GY on this line at the
overall composmon ®F R in Figure 2.1). It follows 1mmed1ate1y that
the minimum of G" for a given overall compos1t10n of 1% obtained in
a system with two phases with compositions ®5 and @ that follow
from drawing the common tangent ST in Figure 2.1.

If such a common tangent with ®5 < ® < @Y cannot be found,
systems with overall composition ® are thermodynamically stable
(e.g., point U).

According to Eq. (2.31), the thermodynamic equilibrium compo-
sitions can also be found from the condition of equal chemical poten-
tials. With Eqgs. (2.27) and (2.28) for the chemical potential in terms
of volume fraction derivatives, one then obtains:

aGV]

Vel I aGV Vel 11
GV(@Y) - @ 'y =GY@YH - o o [2.43]

Vv A\
GV@hH + (1 -w‘)[%] =GV@hH+ - co“)[aG]

It can easily be shown by adding and subtracting that these
equations are equivalent to the above common tangent construction.

The above analysis implies that a homogeneous mixture with
composition ®g < @ < Qg is not thermodynamically stable. The analy-
sis yields the thermodynamic equilibrium coexisting phase composi-
tions ®' and ®" but gives no information on how this state will be
reached. As discussed before, we may not expect information on the
dynamics from equilibrium thermodynamics. Nevertheless, there is
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Figure 2.1 Graph of GV versus composition ® illustrating how the coexisting
phase compositions & and @ can be found graphically.

some more information to be obtained from the expression for AGy
regarding the stability against small composition fluctuations. The
equilibrium compositions ®' and @ may be very different and may
not be probed by small Brownian motion induced composition fluctua-
tions around ®. A small composition fluctuation can be described by
a local phase separation into two phases with compositions @ and @”
both close to @.

As illustrated in Figure 2.2, the free energy of such a composition
fluctuation increases if the curvature of GV(d) is positive and de-
creases if the curvature is negative (neglecting interface effects). In
the latter case, the composition fluctuation is thermodynamically
more favorable and phase separation will proceed. In the first case of
a positive curvature, small composition fluctuation have a higher free
energy and there will be a thermodynamic driving force back to the
original composition ®. We conclude that the sign of the second
derivative of G with respect to the composition ® (the curvature)
determines the thermodynamic stability of the system:

<0 unstable
*GY

aq)z

(®,P,T) =0 spinodal [2.44]

>0 (meta)stable
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UNSTABLE

METASTABLE

Figure 2.2. Free energy curve showing composition fluctuations in the
metastable and unstable regions.

Note that a negative second derivative definitely implies that the
mixture is thermodynamically unstable whereas a positive sign may
imply a stable or a metastable system.

The special points P,T,® where 8°GY/0®? is zero are called
spinodal points. If the system is on a spinodal point there is no
thermodynamic driving force to either oppose composition fluctua-
tions or drive them to a macroscopic phase separation. Consequently,
large and long range composition fluctuations are possible. This fact
makes spinodal points experimentally accessible as these large com-
position fluctuations cause a large increase in the scattering power of
the system. This will be discussed in more detail in Chapter 6.

Here we note that the above derivation was based on the Gibbs
free energy per unit volume and compositions expressed in volume
fractions. The same reasoning may be applied to the free energy per
unit mass and compositions expressed in weight fractions or the free
energy per mole of molecules and the composition expressed in mole
fractions. The original result, due to Gibbs,*° some 120 years ago, for
a two component system is expressed as:

%C; =0 [2.45]

P,T,nz

In the above derivation, volume fractions were used because the Gibbs
free energy of mixing of polymeric mixtures is often expressed in
volume fractions. If volume changes on mixing are involved, volume
fractions are rather inconvenient quantities and mole fractions are
preferred. In terms of mole fractions x, the spinodal criterion reads:
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&
P.T

ax2

If pressure and temperature are specified, G is only a function
of the composition x. The volume V of the mixture is also fully
determined by the composition. However, the free energy may contain
contributions which explicitly depend on the volume. Therefore, it is
interesting to separate the left hand side of Eq. (2.46) into incompress-
ible (fixed volume) and compressible contributions. By formally writ-
ing GNP, T,x) = GNP, T,V(x),x), the following expression can be
derived after some manipulation of derivatives:

2

[aZGN]

2gN | 326N oxoV
dGZ = 7| - [2.47]

dx ox v &GN

ov?

Since G is at a minimum, the second derivative of G with respect to V
in the above equation is positive. This then leads to the important
conclusion that the compressibility term in Eq. (2.47), i.e., the second
term, always tends to destabilize the mixture (its contribution to the
second derivative is always negative). In fact, the following thermo-
dynamic relation exists for the second derivative:

azGJ 1
el - [2.48]
[a\ﬂ b BV

where = —-(dlnV/8P)r, is the isothermal compressibility. Usually the
compressibility increases with increasing temperature and this
means that the destabilizing effect of the compressibility term in-
creases with increasing temperature which may lead to phase sepa-
ration at higher temperatures (occurrence of a lower critical solution
temperature, LCST, see section 2.2.5).

2.2.5 PHASE DIAGRAMS

A phase diagram is a graphic representation of the thermodynamic
equilibrium state of a system as a function of a number of relevant
parameters (pressure, temperature, volume, composition, electric
field, ...). Since graphical representations are limited to three dimen-
sions at the most, one has to keep all these parameters constant except
for two or three. Well known phase diagrams are PT and PV diagrams
of a single component where regions of vapor, liquid, or vapor-liquid
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Figure 2.3. Example of T — x phase diagram.

coexistence are indicated. In this book we will mainly be dealing with
liquid-liquid equilibria of mixtures with two or more components. The
phase behavior of systems that do not involve gas phases is most
sensitive to temperature and composition and less sensitive to pres-
sure. Therefore, we shall assume a constant pressure in this section.

The phase behavior of a binary system is then fully described by
a temperature - composition diagram. In the previous section, it was
shown that such a phase diagram should indicate regions of thermo-
dynamic stability, metastability and instability. An example of such
a phase diagram is shown in Figure 2.3. The dashed line is formed by
the mathematical solutions ®,T of the spinodal condition, Eq. (2.46)
and is called the spinodal. The full drawn line consists of the solutions
®'and @ at temperature T of Eq. (2.43). This line is called the binodal.
The word binodal reflects the common tangent construction, discussed
in Section 2.2.4, while the word spinodal is derived from the mathe-
matical term for a point of inflection (spinode).

From the graphical construction one observes that the spinodal
compositions will always be within the binodal. One also sees the
following. If the binodal and spinodal compositions come closer (in the
above example with increasing temperature), there is inevitably, a
temperature where all four compositions are identical. This is the top
of the phase diagram in Figure 2.2. This important point is called a
critical point (®., T,) of the phase diagram. For T — T, the second
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derivatives of AGy with respect to the composition, for ® T @, and @
| @, are equal (to zero). Therefore, the third derivative also vanishes.
The mathematical condition for the liquid-liquid critical point of a
binary mixture is thus:

EAGH
=0 [2.49]
PAGH
53 =0

Similar expressions exist for mole fractions or numbers as com-
position variables. Just like on the spinodal, the system shows infi-
nitely large composition fluctuations at the critical point. Unlike the
spinodal points however, the critical point can be approached infi-
nitely close from within the thermodynamically stable region. Fur-
thermore, systems behave similar in many respects close to the critical
point, where the second and third free energy derivatives vanish.
Their behavior can be described by universal scaling laws. Hence the
large theoretical and experimental interest in the critical point.

The existence of critical points depends on the specific properties
of the Gibbs free energy of mixing function AGy(®,T). There is no
thermodynamic argument that phase diagrams should have critical
points.

Figure 2.4a 1s a phase diagram which shows the so-called upper
critical solution behavior. The temperature T, is called the upper
critical solution temperature (UCST). It is the highest temperature at
which two phases may be observed under suitable conditions. The
phrase 'upper critical solution temperature’ causes confusion because
one could rightfully argue that it is also the lowest temperature at
which the system is still miscible at all concentrations and that a term
like lower critical solution is more appropriate. However, custom has
it the other way. Lower critical solution behavior with a lower critical
solution temperature (LCST) corresponds to phase diagrams like the
one shown in Figure 2.4b. Here phase separation will be observed on
raising the temperature. As we will see, LCST phase behavior is quite
common in polymeric mixtures, particularly in polymer blends.

Many systems exhibit both LCST and UCST behavior. An ex-
ample is shown in Figure 2.4c. For temperatures between the UCST
and the LCST, the system is miscible in all proportions. At higher and
lower temperatures, compositions exist that are not thermodynami-
cally stable. The other extreme, a closed phased diagram as shown in
Figure 2.4d is also observed. Another type of phase diagram is shown
in Figure 2.4e. Such phase diagrams are often referred to as hour glass
phase diagrams. They are the most boring and the most common
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C d
Figure 2.4. Various types of phase diagrams.

phase diagram. They describe systems that are only miscible when
one of the components is dilute.

The above discussion covers the basic principles of phase dia-
grams of binary mixtures. For the treatment of polymeric mixtures in
chapter 3, some additional remarks have to be made concerning
multicomponent mixtures and the presence of a solid (crystalline)
phase. These topics will now be discussed.

2.2.6 MULTICOMPONENT MIXTURES

If more than two components are involved, one quickly runs out
of axes for a graphical representation of the phase diagram. One has
to plot cross sections or projections of the multidimensional phase
diagram at conditions of constancy of some of the independent vari-
ables.

Compositions in ternary systems are conveniently represented
in a triangular diagram? (Figure 2.5). From geometry one learns that
the sum of the distances AX+BX+CX = H in Figure 2.5. In a triangle
of unit height (H=1) these distances can be used to represent the
composition variables X;, xo and x3 with x; + x2 + x3 = 1 as shown in
Figure 2.5.

Figure 2.6 shows a sample phase diagram with a binodal curve
of a ternary mixture with the so-called tie lines (or connodals). Along
a tie line, all relative proportions of both phases can be found, from
zero (i.e., infinitesimally small) at one end to 1 (infinitesimally close
to 1) at the other. Contrary to the binary case, the composition of the
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Figure 2.5. Composition triangle.

® ©)

Figure 2.6. Liquid-liquid phase diagram of a ternary mixture at constant
pressure and temperature.

incipient phase cannot be read directly from a phase diagram (without
tie lines) but should be calculated. Figure 2.6 is the phase diagram at
constant pressure and temperature. A third axis may be added to
show, for example, the temperature dependence. This is illustrated in
Figure 2.7.
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Figure 2.7. Liquid-liquid phase diagram of a ternary mixture at constant
pressure.

2.2.7 CRYSTALLIZABLE COMPONENTS

A liquid mixture may not only phase separate by liquid-liquid demix-
ing but also by the crystallization of a component. Crystallization is a
first order phase transition and is accompanied by the release of heat,
the so-called heat of fusion H;. On the other hand, crystallization
implies an increase of order, that is a decrease of entropy S; The
melting point Ty, is the temperature where both counteracting contri-
butions to the Gibbs free energy G = H ~ TS are equal (hence AG of
the phase transition = 0):

Hy

Tmz Sf

[2.50]

If the crystalline solid is brought into contact with a liquid it may
or may not dissolve. If it dissolves (partly), there is additional entropy
of mixing. So the entropy loss associated with crystallization increases
and the melting point is lowered with respect to that of the pure
crystalline material. The entropy of mixing ASy is the main contribu-
tion to this so-called melting point depression effect. If there is
negative (favorable) heat of mixing AHy, the melting point may be
lowered even more. If there is a positive heat of mixing the melting
point is less depressed then on the basis of the entropy alone. If
AHp > T, ASy, there is no thermodynamic driving force for the disso-
lution of the crystalline material and the melting point will not be
depressed.
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Figure 2.8. Phase diagram of a mixture of two crystalline components.

The general phase diagram of a liquid mixture of two compo-
nents with two different melting points looks as shown in Figure 2.8.
The lowest point of the phase diagram is called the eutectic point. At
this unique point there are 3 phases in equilibrium: solid A, solid B,
and the liquid mixture of A and B. According to the phase rule, this is
indeed the maximum number of phases for a binary system at arbi-
trary pressure. Consider the mixture with composition X and tem-
perature T, as illustrated in Figure 2.8. If the solution is cooled,
precipitation of solid B material will start to occur at T = T,. The
composition of the mixture will follow the melting line (also called
solubility curve) until the eutectic temperature T, is reached. Further
cooling results in simultaneous precipitation of A and B, such that the
composition of the liquid mixture remains the same, the eutectic
composition X.. The eutectic composition is analogous to the azeot-
ropic composition in distillation.

Another possibility, which is relevant to polymer solutions is the
simultaneous occurrence of liquid-liquid demixing and melting point
depression phenomena. Such a phase diagram may look like Figure
2.9. If the homogenous liquid solution at composition X, and tempera-
ture T, is cooled, one will observe the occurrence of two liquid phases
when the temperature drops below T = Ty. On further cooling the
compositions of the coexisting phases follow the binodal until the
temperature T.; is reached and component B is on the verge of
precipitation. This is again an invariant point with three coexisting
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Figure 2.9. Phase diagram of a mixture of two crystalline components that
also show liquid-liquid immiscibility.

phases: solid B and 2 liquid solutions with compositions X2 and X,;.
On further cooling, the concentrated B phase of the liquid liquid
equilibrium precipitates until the composition of the dilute B phase is
reached and we have an equilibrium of solid B and liquid with
composition Xg. Finally another invariant point is reached at tempera-
ture Tes. For T < T, one has two solid phases.

2.3 IDEAL MIXTURES

The starting point of the development of thermodynamic theories for
gases and vapors was the concept of the ideal gas. In an ideal gas,
there are no interactions between the particles. The equation of state
of an ideal gas is the well known law of Boyle-Gay Lussac:!?

PV = NRT [2.51]

where N is the number of moles and R is the molar gas constant. Since
there are no interactions between the gas molecules, the total energy
U of the system is independent of the inter particle distances, hence:

ou
[W]T =0 [2.52]

The entropy S(V,T) of an ideal gas can be derived from its equation of
state and is given by:

%lenV+CvlnT+Rlna [2.53]
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for not too low temperature. For extremely low values of the tempera-
ture, quantum effects become important, Cy is no longer constant and
Eq. (2.53) is no longer valid. Nernst theorem, also referred to as the
third law of thermodynamics states that the entropy of any system
vanishes at T = 0. This essentially means that at T = 0, there is only
one state of the system, namely the state with the lowest possible
energy. With this theorem and using quantum mechanics one may
calculate the constant a in Eq. (2.53). For the simplest case of a
monoatomic gas (Cy = 3R/2) one finds:’

[ansz
a= [2.54]

hZ

where m is the mass of a gas atom, h is Planck’s constant and k is
Boltzmann’s constant (R = kNj,). Since there are no interactions
between the particles, a mixture of ideal gases obeys the same equa-
tion of state, where N now is the total number of molecules. Another
way to put this is by means of Daltons law which states that the
pressure is the sum of the partial pressures P; of the different species:

P=2.P, [2.55]

and the partial pressures are given by:

NiRT

P = v [2.56]

Consider a vessel divided by a separation into a volume V, with
N, ideal gas molecules and a volume Vy with Nj ideal gas molecules,
both at a pressure P and temperature T. After removal of the separa-
tion, the gas molecules will diffuse and form a homogeneous mixture
of N =N, + Ny molecules at pressure P and temperature T. Using Eq.
(2.53), the entropy of mixing ASy is given by:

ASM=R(N1+Ng)In (Vi +V2) - RN1 In Vi -RNz2In V; [2.57]

which can alternatively be writter as:

ASy=-R|N;ln y\% + Nz ln y\%} [2.58]

As expected the entropy of mixing is always positive. Similar
concept has been introduced as a starting point for the theory of liquid
mixtures. In terms of interactions, an ideal gas was characterized by
a complete absence of repulsive and attractive forces between the
molecules. In anideal mixture, interactions are by definition identical.
The intermolecular forces between A and A, A and B, and B and B are
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Figure 2.10. Succession of transitions to derive the entropy of mixing of an
ideal mixture at constant temperature.

all the same. The free energy of mixing of an ideal mixture can be
calculated from the succession of steps shown in Figure 2.10. This is
done by comparison of two routes: direct mixing in the gas phase
(1 - 4) and mixing in the dense liquid phase (1 > 2 —» 3 > 4). We
start with a vessel with two compartments at a pressure P and
temperature T, with respectively N; and N, molecules. The volumes
V, and V; are so large that the systems can be treated as ideal gases.
If the separation is removed (1 — 4), the particles mix with an entropy
of mixing, given by Eq. (2.58). Another way of reaching this state is
by first condensing both separated compartments to liquid density
(1 > 2). Since both types of molecules have identical mutual interac-
tions, this state is obtained with the same pressure Py. The corre-
sponding change of free energy AG depends on the equation of state
of the molecules and is given by (constant T):

Pi. Py,
AG =N JVdP + Na IVdP [2.59]
P P

The next step is the removal of the separation and subsequent mixing
of the molecules. Since all interactions are the same, this only involves
the entropy of mixing ASy. Finally, the mixture is expanded to the
volume V = V; + Vj,. Since the molecules have identical interactions,
the equation of state of the mixture is the same as of the pure
components and the change of the Gibbs free energy is given by:
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P

AG = (N + Np) | VdP [2.60]
Py,

Clearly, the net value of the integrals over VdP (Eq. (2.59) + Eq.
(2.60)) vanishes. The total change of the Gibbs free energy of the
system, over the second route is thus entirely entropic. The entropy
of mixing is given by the corresponding expression for ideal gases, Eq.
(2.58). Since volumes are proportional to the number of particles
(N,<V)), the entropy of mixing of an ideal mixture can be expressed
as:

ideal

ASM
NR

= [X,In X, + X In Xo] [2.61]

and the Gibbs free energy of mixing of an ideal mixture is simply given
by:

ideal ideal

AGm  =-TASMm (2.62]

In this sense, there is no difference with an ideal gas. From the Gibbs
free energy of mixing, the chemical potential Ap; of molecule A (index
1) in the mixture relative to the pure liquid A can be derived:

App = [aAGM] =RTInX, [2.63]
ONy
PT.N;

Eq. (2.63) is used as an alternative definition of an ideal mixture.

We will now derive an expression for the vapor pressure of an
ideal mixture, given the vapor pressures of each pure component,
assuming that the vapor behaves as an ideal gas. With Eq. (2.53) and
G = -TS, one obtains for the chemical potential An"®® of a molecule in
an ideal gas relative to a state at a reference (partial) pressure P

P,
Pref

AP =RT In [2.64]

where P, is the partial pressure of component A. Consider a pure
liquid A in equilibrium with its vapor at temperature T. The pressure
is the vapor pressure P}**(T) of molecule A. This will be the reference
state. Now consider also a mixture of A and B at the same temperature
T in equilibrium. The partial pressure of component A is given by
P Imagine we transfer (isothermally) a molecule A from the liquid
mixture to a pure liquid A. This involves a change in the chemical
potential, given by Eq. (2.63). Transferring a molecule A from the
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vapor phase of the mixture to the vapor phase of pure A involves a
change in the chemical potential, given by Eq. (2.64) with P = P}*".
As both systems are in equilibrium both chemical potential changes

should be equal. One thus obtains:
PP = X, P [2.65]

In other words: for an ideal mixture, the partial pressure of each
component is equal to the mole fraction in the mixture times the vapor
pressure of the pure material at that temperature, provided the vapors
behave as an ideal gas. Eq. (2.65) is known as Raoult’s law!*® and was
experimentally verified for a number of systems by F. M. Raoult in
1886.

For non ideal mixtures where the interactions between the
molecules are non-uniform, there is still some form of ideality when
the mixtures are so dilute in one component, say A, that each A
molecule is in a uniform environment (of B molecules). Then, the
partial pressure of A is also proportional to its mole fraction in the
mixture. Due to the interactions, the proportionality constant is no
longer 1 as in ideal mixtures:

mix
Pi

vap
P 1

= HX, [2.66]

This relation for dilute mixtures (X; << 1) is known as Henry’s law!3®

and dates back to the beginning of the 19th century.

Deviations from ideality are a measure for the interactions
between A and B molecules or more precisely: the deviations from the
equality of A-A, B-B and A-B interactions. Therefore, vapor pressure
measurements can be used to study these interactions. A more fre-
quently used technique to measure polymer-solvent interactions in
particular is osmometry, which is from a thermodynamic point of view
fully equivalent to vapor pressure measurements as we will now show.

Consider a pure solvent A which is separated from a mixture of
B in A by a semi-permeable membrane that only allows solvent
molecules to pass. If B is a high molecular weight polymer, this can
be achieved by a membrane with very small pinholes. Both systems
are in equilibrium with their respective vapor phases, see Figure 2.11.
For convenience, we assume B to be non-volatile. As we have seen
above, the vapor pressure of the mixture will be lower than that of the
pure solvent, which means that initially there will be a pressure
difference across the membrane. This will result in a net flow of A
molecules from the pure solvent into the mixture, so that the level of
the liquid at the mixture side will increase until the excess hydrostatic
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T

excess
<———
— - pressure

B B+A

Figure 2.11. Experimental setup for osmometry.

pressure compensates for the lowered vapor pressure and thermody-
namic equilibrium is reached. This excess hydrostatic pressure can be
measured and is called the osmotic pressure IT of the mixture. A better
way to do the experiment is to apply excess pressure at the mixture
side so as to keep the levels equal. In the latter set-up the composition
of the mixture does not alter during the experiment. Concluding: the
osmotic pressure of a mixture against the solvent is equal to the
lowering of the vapor pressure of the solvent in the mixture.

In terms of chemical potentials, the equilibrium is reached when
the lowering of x, due to the addition of B (Eq. (2.63) is compensated by
the increase of g, as a result of the applied pressure I1, Eq. (2.9)). This
implies:

n

~RT In X; = J-VldP [2.67]

0

We now assume that the partial molar volume of A is independent of
pressure, which implies that the compressibility of the mixture is
negligible. We also assume that it is independent of composition,
which implies that one may take the molar volume of the pure solvent
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for Vi. Eq. (2.67) can then be transformed into an explicit expression
for the osmotic pressure IT of an ideal mixture:

M=- RT In X, [2.68]
Vi

This can be further simplified by replacing X; by (1 — X;) and expand-
ing the logarithm to the first term for sufficiently dilute mixtures:

=X [2.69]

One last approximation for dilute mixtures, namely X2/V, = ¢, where
c is the molar concentration of B leads to Van't Hoff's law:

I=cRT [2.70]

With ¢ = Ny/V, Eq. (2.70) is similar to the ideal gas law and may be
referred to as the ideal mixture osmotic equation of state:

O N2RT

v [2.71]

Written with ¢ = Wo/M, (c << 1), where W is the weight concentration
and Mj; is the molecular weight of the solute B one obtains:

1
IT= 3, WeRT [2.72]

which shows that osmotic pressure measurements with dilute solu-
tions can be used to determine the molecular weight of the solute.

2.4 REGULAR MIXTURES

2.4.1 DEVIATIONS FROM IDEALITY

It will be no big surprise that ideal mixtures are hard to find. Never-
theless the concept has proven to be, just like the ideal gas, a useful
tool in building the theoretical framework for the description of more
realistic mixtures. The physical picture of an ideal mixture is one in
which the constituent molecules have entirely symmetrical interac-
tions. A-A, B-B and A-B interactions are identical. The A and B
molecules are mixed randomly and the entropy of mixing is given by
Eq. (2.61), which is essentially the ideal gas entropy of mixing.
Molecules in real mixtures do not show identical interactions. As a
result, mixing not only involves entropy changes but also energy
changes, manifested by heat effects on mixing. The Gibbs free energy
of mixing becomes:
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AGw = AHy - TASy [2.73]

where AHy is the heat that is consumed on mixing (at constant
temperature and pressure). A positive AHy means endothermic mix-
ing and a positive contribution to AGy. If not compensated by a
sufficiently large entropy of mixing, such a combination of molecules
will not mix into a homogeneous mixture. For such cases, the heat of
mixing is of course an entirely theoretical concept: It is the heat that
would be consumed if the molecules were to form a uniform mixture.

2.42 REGULAR MIXTURES

In order to describe these effects mathematically, the concept of the
so-called regular mixture has been introduced by Hildebrand in 1929.
A regular mixture is, by definition, a mixture with an ideal entropy of
mixing, given by Eq. (2.61) but a non-zero heat of mixing. The physical
picture is a mixture that still mixes randomly although the net effect
of breaking A-A and B-B interactions for A-B interactions is a change
in the energy of the system. In a mean field approximation, we will
derive an explicit expression for AHyy. Define the following quantities:

Ni number of molecules A

N2 number of molecules B

N=N; +Ng total number of molecules

z number of neighbors of each molecule
En energy of an A-A contact

Ei2 energy of an A-B contact

E22 energy of a B-B contact

Let X; and X, be the mole fractions of A and B molecules in the
mixture. The energy contents H, and H; of the pure liquids are given
by:

H, =——;'ZN1E11 [2.74]
1
Ho=- EZN2EZZ

because each of the N; molecules is surrounded by z neighbors with a
total interaction energy zE; per pair and hence zE;j/2 per molecule.

In the random mixture each molecule is on average surrounded
by zX; molecules of A and zX; molecules of B. The total energy H,s of
the mixture is therefore given by:

1 1
Hiz=- EZNI[XIEU + XoE 2] - EZN2[X1E21 +X2E22] [2.75]
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Note that with this choice of signs, the attractive energies E that hold
the liquid together are counted positive. For the heat of mixing
AHy=H,; — H; - H,, one thus obtains:

AHM = zZNWX ;1 X2 [2.76]

with the exchange energy W given by:
1
W= E(E“ + E22) -E2 [2.77]

where we also used that E,; = E3;. One thus arrives at the following
expression for the Gibbs free energy of mixing of a regular mixture:

% =X1InX;+X2 InXz + XX1X2 [2.78]

It is common practice to write AGy/NRT, which is dimensionless,
instead of AGy. We also introduced the so-called interaction parame-
ter x in anticipation of the extension of this theory to polymeric
mixtures in the next section. The concept is somewhat confusing
because the interaction parameter of the above discussed model mean
field regular mixture is not constant but temperature dependent:

zW
L=RT [2.79]

2.5 SOLUBILITY PARAMETERS

Molecular interaction energies E in the above derivation can be
related to some pure component properties. The method is particu-
larly employed in polymer science but since it is in no way particular
to polymers it will be discussed here. Interaction energies E;; related
to dispersion forces, such as London-Van der Waals interactions often
depend as I'\[; on some molecular property I' (e.g., the molecular
polarizability). In such a case, the E;; can be calculated from the pure
component values E;; and Ej; according to the geometric mean rule:

Ey = (EsE;)" [2.80]
For the exchange energy, W, one then obtains the simple expression:
1 1 v
W= E(En +Eg2) - (E11Eg)* = E(Elle — Egp)? [2.81]
with the important conclusion that the heat of mixing of such mixtures

is always positive (endothermic mixing) or, in the special case, that
Ell = E22, Zero.
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The internal interaction energy E;; is related to the energy of
vaporization E'?P of the material. Within the above concept, the
removal of one molecule from the liquid to infinity has the net effect
of breaking z/2 interactions and thus requires an amount of energy
zE;/2. If V;, is the molar volume of the material then the energy of
vaporization per unit volume is given by:

1a
U 2=
Mvap _
\Y Vi [2.82]

The left hand side of Eq. (2.82) is the cohesive energy density (often
denoted CED) of the material. For reasons that will become clear
below, the square root of the CED is called the solubility parameter
(denoted 8). One thus has:

of = v [2.83]

Substitution into Eq. (2.79) and Eq. (2.81) yields the following
simple expression for the interaction parameter in terms of solubility
parameters:

% .
X =qp @1 82)° [2.84]

Eq. (2.84) explains the origin of the 'like dissolves like’ principle. If the
solubility parameter difference is too large, the positive heat of mixing
contribution to the Gibbs free energy of mixing is larger than the
negative entropy of mixing contribution. The resulting positive AGy
implies that the two liquids will not mix. More generally: the smaller
the difference of the solubility parameters, the more likely a homoge-
neous mixture will be formed, hence: like dissolves like.

According to Eq. (2.82), solubility parameters can be calculated
from the energy of vaporization (internal energy) U,,, (per mole). This
should not be confused with the latent heat of vaporization (enthalpy)
Hy,p which is the energy that is required to bring a mole of liquid to
the vapor phase at constant temperature and pressure. The difference
between Uy,p and Hy,p is the energy of the vapor phase. Assuming that
the vapor can be represented by an ideal gas one has:

Uvap = Hvap - RTref [285]

where T\ is the temperature at which H,,, has been measured. One
thus finds the following relation between the solubility parameter &
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of a liquid with density p and molecular weight M (N/V = p/M) and the
experimental heat of vaporization H,p:

vy
5= [—Q(H“" I\:IRT“f )j 2.86]

This method of measuring is only suitable for low molecular weight
substances that can be evaporated. Polymers need very high tempera-
tures to evaporate and will rather disintegrate due to their limited
thermal stability.

Empirical relations exist between the solubility parameter and
other physical properties, related to energy densities, that can be
measured without evaporating the material. Examples are:

oT
8% = ~ [2.87]
Y
52=135 V—;?

where o is the thermal expansion coefficient, x is the isothermal
compressibility and y is the surface tension.

2.5.1 GROUP CONTRIBUTION METHODS

There ts a very useful method to calculate the solubility parameter of
amolecule on the basis of its chemical structure. The basic assumption
is that each fragment (such as a CHj group) in a molecule has an
interaction with the other fragments which is independent of the
location of the fragment in the particular molecule. In the previous
derivation, the molar volumes of each constituent were assumed to be
equal (denoted V). Then it is reasonable to assume that “the amount
of interactions” of molecule i with other molecules is weighted by their
respective mole fractions. The molar volumes of different molecular
fragments will generally not be identical and the above derivation
should be adjusted.

In order to keep the argument transparent, let us consider a
mixture of two different groups. We will now assume that the amount
of cohesive interaction energy of one molecule 1 with molecules 2 is
proportional to the volume fraction @, instead of the mole fraction x,
as used above. The parameter z will be abandoned and incorporated
in the cohesive energy parameter E;;. The total cohesive energy of the
mixture is now given by:

E =ni®1E11 + n2®2E22 + nj®2E 12 + ne®;E2 [2.88]
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Note that we haven’t put E;s = Ey,. There is another symmetry rule
as can be seen from the following argument. n;®;E;s is the total
cohesive energy associated with 1 — 2 interactions as seen from the n;
molecules 1. On the other hand, ny®,E,, is the total cohesive energy
associated with 2 — 1 interactions as seen from the n, molecules 2.
Both expressions should give the same answer: the total intermolecu-
lar cohesive energy. Therefore:

niPzE1z = np®@ 1Kz [2.89]

Substituting the expressions for the volume fractions:

n;V;
o= 2.90
Vtot [ ]
where:
Viot = m1V1 + n2Vs [2.91]

is the total volume of the mixture, yields the symmetry rule for the
intermolecular cohesive energy:

Eiz _Ez

VTV [2.92]

which basically states that the symmetrical variable is not the molar
cohesive energy but rather the cohesive energy density. In terms of
cohesive energy densities ﬁij =Ey/Viand U=E/Viy, Eq. (2.88) can now
be written as:

U = @10, + ®3U,, + 2010204, [2.93]

Following Scatchard'® we assume that {J;; is the geometric mean of
Un and Usze:

Ute = (U U™ [2.94]

with the same arguments as used for Eq. (2.80). Eq. (2.93) can then
be written as:

U= (‘Dlﬁﬁ + ¢2[~J;§)2 [2.95]

This expression is the basis of several important results. First, the
heat of mixing per unit volume AHw/V = ®;(J1; + ®2(J22 - U follows
after some rearrangement:

AH
—VM = d)]d)z(ﬁl - 52)2 [296]
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where we used the definition of the solubility parameter as the square
root of the cohesive energy density, i.e. 8% = Uii- A direct result of Eq.
(2.95) is an expression for the solubility parameter of the mixture:

8 =d161 + ©262 [2.97]

For an arbitrary number of components, one derives the general
expression:

5= O, [2.98]

This shows that the solubility parameter of a mixture of molecules
with different solubility parameters is just the volume average of the
individual solubility parameters.

However, volume fractions as composition variables are not
practical. P. A. Small noted!! in 1953 that Eq. (2.95) may also be
written in terms of total cohesive energies E (using Eq. 2.90) as:

(EV)V2 = 1'11(]'311\71)Vz + (E22V2)V2 [2.99]

This shows that (E;V)!? is an additive property which means that it
can be calculated as a sum of contributions of the various groups. More
specifically, we may write for the solubility parameter & = (E/V)'?
(=[EV)/V1¥?) of a molecular soup of an arbitrary number of groups:

ZFs

A%

5= [2.100]

where F; represents (EiiVi)I/2 and V is the (number averaged) molar
volume of the molecular soup. If our soup represents different groups
on a single molecule, V is just the molar volume of that molecule. By
correlating experimental cohesive energy densities (at 25°C) of a large
number of molecules, Small was able to compile a table of the so-called
molar attraction constants F of various molecular fragments. Later,
new tables have been proposed by others, notably Hoy'?, van Krev-
elen,' and Fedors,' but Small’s tables are still frequently used in
polymer science. Table 2.1 is a list of molar attraction constants
according to Small, Hoy and van Krevelen. Fedors employed a slightly
different approach than depicted by Eq. (2.100). Instead, he used
group contributions e; and v; to respectively the cohesive energy and
molar volume, such that:
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Table 2.1. Molar attraction constants of molecular fragments accord-
ing to various group contribution schemes.

Group Comment Small Hoy van Krevelen
-CHz3 methyl 214.00 147.30 205 00
-CHa- carbon with 2 protons 133.00 131.50 137.00
>CH- carbon with 1 proton 28.00 85.99 68.00
>C< carbon without protons -93.00 32.03

=CHa double bonded 190.00 126.54

=CH- double bonded 111.00 121.53 109.00
>C= double bonded 19.00 84.51 40.00
CH#C. triple bonded 285.00

-C#C- triple bonded 222.00

=CH- ar connected to aromatic group 117 12

=C. ar connected to aromatic group 98.12

>C=0 ketone 275.00 262.96 335.00
-CHO aldehyde 292.64

-0- eth as in ether or OH 70.00 114,98 125.00
-Q. epoxy as 1n epoxy group 176.20

-COO- ester 310.00 326.96 250.00
-CO;- carbonate 375.00
-C#N nitril 410.00 354.56 480.00
-OH hydroxy 226.00 369.00
-OH ar hydroxy at aromatic group 170.99

-N- tertiary amine 61.08

-NH- secondary amine 180.03

-NH, primary amine 226.56

N=C=0 isocyanate 358.66

-ONO2 nitrate 440.00

-NO2 aliphatic nitro compound 440.00

-F fluoro 41.33 80.00
-Cl sg only 1 chlorine 270.00 205.06 230.00
-Cl; dn 2 chlorines as in CClz 520.00 342.67

-Cly tr 3 chlorines as in CCl3 750.00

-Br bromine 340.00 257.80 300.00
-Br ar bromine at aromatic group 205.60

-1 10dine 425.00

-S- sulfide 225.00 209.00 225.00
-SH thiols 315.00

-H hydrogen 90.00

-<=>. ph phenyl 735.00 741.00
«<=>- ph phenylene (o,p,m) 685.00 673.00
Conjug. additional contribution 25.00 23.26

Ring 5 additional contribution 110.00 20.90

Ring 6 additional contribution 100.00 -23.44

Cis additional contribution -7.13

Trans additional contribution 13.50

Ortho additional contribution 9.69

Para additional contribution 40.33

Meta additional contribution 6.60
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5= Z;x [2.101]

With this tool, one has an entirely predictive method to calculate the
interaction parameter y in Eq. (2.84). One may thus predict the
thermodynamic phase behavior of a mixture on the basis of the
chemical structure of the constituents. Of course, nature is not that
easy on us and quantitative agreement with experiments is too much
to hope for. There are many other factors that contribute to AGu.
Nevertheless, the dispersion forces that are described by the solubility
parameter concept are always present and can be seen as to form a
sort of background interaction to the heat of mixing on top of which
the other effects contribute. Indeed, the concept has proven to be
useful in predicting whether a certain mixture will form a homogene-
ous phase, especially in the paint industry where complex mixtures
of solvents and polymers occur. In Chapter 4 we will show that also
for polymer blends the concept is valid. In polymer science, the
solubility parameter concept with the corresponding group contribu-
tion method still is the only truly predictive method for the thermo-
dynamic miscibility. That is why there is still active research going on
to improve the capabilities of calculating solubility parameters.

A limitation of the group contribution approach is that only those
molecular structures can be handled that only contain groups that are
covered by the scheme. Recently, a novel approach has been worked
out to tackle this problem by J. Bicerano. His topological method will
now briefly be discussed.

2.5.2 TOPOLOGICAL CONTRIBUTIONS

Group contribution methods for the prediction of physical properties
may be used for those properties that increase linearly with the
number of groups involved. Examples of such properties are molecular
weight, molar volume, and the quantity (EV)"* as discussed in the
previous section. These are extensive properties.

Group contribution methods are empirical methods. They build
on a large set of experimental data in the form of chemical structures
and corresponding properties. For the application of group contribu-
tion methods, a (limited) number (Ng) of structural groups is defined,
such that each chemical structure from the data set can be seen as
being built up from these groups. Let n;; be the number of groups with
index j G=1...Ng) in molecule i and let P; be the experimental value of
the desired property of molecule i. Then one writes:
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Ng

P;i=2, nyFj i=1..Np [2.102]
=1

where Np is the number of experimental data and F; is the empirical
group additive contribution of group i to the property P. Equation
(2.102) constitutes a set of Np equations with Ng unknowns (F;). The
statistically best values of IF; can be determined from a linear regres-
sion analysis.

With an established set Fj, the property P of a novel structure
may be predicted, provided it can be constructed from elements that
are contained in the set of Ng structural groups. This latter require-
ment is an important limitation of group contribution schemes. For a
statistically sound incorporation of a structural group in the scheme,
a large number of experimental data of molecules containing that
particular group is needed. Novel structures have of course a tendency
not to be covered by existing schemes.

One way to overcome this difficulty has been developed by
Seitz.'® He observed that many physical properties can be correlated
to a limited number of fundamental properties’: molecular weight of
the repeat unit, polymer backbone length, Van der Waals volume of
repeat unit, cohesive energy, and a parameter related to the rotational
degrees of freedom of the backbone chain. The toughest parameter to
estimate is the cohesive energy which also happens to be the most
relevant parameter for the thermodynamic miscibility. The problem
of the limited number of groups was overcome by Bicerano'® with a
topological technique.

The procedure is as follows. First, the molecule (or polymer
repeat unit) is simplified by ignoring all protons. The molecular
structure becomes a hydrogen suppressed graph with each remaining
(non-hydrogen) atom acting as a vertex and each bond as an edge.
Figure 2.12 shows a polymethylmethacrylate (PMMA) repeat unit and
its corresponding hydrogen suppressed graph.

The next step is to assign two indices 8 and &' to each vertex.
The so-called connectivity index 8 is simply the number of edges
emanating from the vertex (i.e., the number of non-hydrogen atoms
connected to the atom). The valence connectivity index &' is defined
by:

_ Number of non-hydrogen coupled outer shell electrons

& = [2.103]

Number of inner shell electrones - 1

This index is a somewhat arbitrary measure of the electron accepting
power of the vertex. Many electrons in the outer shell give an atom
strong electron accepting power but this effect is tempered if there are
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Figure 2.12. PMMA repeat unit, its hydrogen suppressed graph and assign-
ment of atomic and bond indices.

many electrons in the inner shell(s). Also, 8" is inversely related to the
size of the atom.

Two bond indices § and B* are defined for each edge as the
product of the two connectivity indices of the 2 vertices i and j at each
side of the edge:

B = 8:5; [2.104]

B = 51y

The assignment of atomic and bond indices to the PMMA repeat
unit is also shown in Figure 2.12. All these indices are used to define
the so-called zeroth order atomic connectivity indices of the entire
molecule or repeat unit:

1
%=% o [2.105]

vertices
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Oxv __:z: 1

vertices (5V)I/z

Similarly, the first order (bond) connectivity indices are defined as:

1
=2 =5 [2.106]

edges

X G
edges
For the calculation of the bond indices B of a polymeric repeat
unit, one of the two bonds connecting the repeat unit with the rest of
the molecule is taken into account. One easily sees that the choice of
this bond is arbitrary as both bonds will have the same values. For
the sample PMMA repeat unit in Figure 2.12 one obtains:

% =5.4916
9" = 4.5236
'y =3.1885
yv=22736

Following the above procedure, an arbitrary polymer repeat unit
can be characterized with such a set of 4 indices. Linear correlations
between a property P and these indices may now be sought:

P =a% + b%" +cly +dly” [2.107]

by linear regression fits of a, b, ¢, and d. Preferably these fits should
be made to experimental values. Unfortunately, experimental data
are not always available and show scattering. Alternatively, the
parameters may be fit to group contribution predictions from existing
tables. The current method would then offer the advantage of a much
greater generality.

For the calculation of solubility parameters, the molar volume
and cohesive energy are the relevant parameters. The experimental
room temperature molar volumes V, of a set of 152 polymers were
fitted to Eq. (2.107). A strong correlation (correlation coefficient
0.9888) of V,,, with the !x¥ was found:

Vi = 33.585960"'y¥ [2.108]

In order to incorporate silicon containing polymers in the corre-
lations it appeared to be necessary to make some special provisions.
For the calculation of the bond indices, all Si atoms must be replaced
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by carbon atoms and a correction term for the number Ng, of silicon
atoms must be made. The expression:

Vi = 33.585960!y" + 26.518075Ns; [2.109]

has a 8.6 cc/mole standard deviation and a correlation coefficient of
0.9931. Part of the deviations are of course related to experimental
error margins. By searching for systematic deviations in the correla-
tion related to the presence of specific groups, an even more precise
correlation was found:

Vi = 3.642770% + 9.798697%" - 8.542819'y +

+21.693912'y" + 0.978655 Nmv [2.110]

where Nyry follows from the numbers Ny of particular groups X in the
repeat unit according to:

Nmv = 24Ng, — 18N _s- - 5Nsulfone — 7Nc1 — 16Npr +
+ 2Nbackbone ester + 3Nether + 5Ncarbonate + BNc=c —
- 11Ncyc - 7(Nfused - ]-) [2-111]

where N, is the number of rings with no double bonds along the edges
and Ngseq 18 the number of ring structures that share a side. Eq.
(2.110) has a standard deviation of 3.2 cc/mol and a correlation
coefficient of 0.9989.

Experimental data of cohesive energy densities show much more
scatter than those of the molar volumes. This hinders the fit to the
data. This problem was circumvented by fitting the coefficients of the
respective connectivity indices to the group contribution predictions.
This limits the input data set to those structures that are covered by
existing group contribution schemes. By nature of the topological
method, predictions are not limited to these structures anymore. This
enhanced generality is the main advantage of this method. Fits of the
coheswe energy Econ were pubhshed using the methods of Fedors'*
(Ecoh) and van Krevelen!® (EY, h) as well as to the dispersion component
F4 of the molar attraction constant (see Eq.(2.100)). Where a simple
correlation of the molar volume V,, with 'y ¥ already had a correlation
coefficient of 0.988, coheswe energies turned out to be quite a lot more
difficult to fit. For EES the strongest correlation was found with X
with a correlation coefficient of “only” 0.9487. A significant improve-
ment was obtained by using a correction term (ust like in Eq. (2.110)):

EFed = 9882 5'y + 358.7(6Natomic + 5Ngroup ) [2.112]
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with:
Natome = 4N_g_ + 12Nquitone ~ Nk + 3Nc1 + 5Npr + TNoyanide [2.113]
and:
Ngroup = 12Nhydroxyt + 12Namide + 12Nnon-amide -NH)- — Nalkyl ether -0- —
— Nc-¢ + 4Nron-amide C-0)- next to N +
+ TN_(C=0)- in carboxylic acid, ketone or aldebyde +
+ 2Nother -(C=0)- + 4NN atoms in six-membered aromatic rings [2.114]

This expression has a correlation coefficient of 0.9974 and a standard
deviation of 3.9% of the average E o, of 59192 J/mol.

Similarly, a correlation is given for the van Krevelen/Hoftyzer
group contribution predictions:

E = 10570.9C% - %) + 9072.8(2% — 'x") + 1018.2Nvku [2.115]

where all Silicon atoms must be replaced by carbon for the evaluation
of Eq. (2.115). The correction term is given by:

Nvku = Nsi + 3N_s- + 36Nsuifone + 4Ny + 2Npr + 12Neyanide + 8Nketone +
+ 16Npon-amide C=0 next toN + 33NuB — 4Ncyc + 19Nanhyd.nde +
+ 2NN with §=2, but not adjacent C=0, and not in six-membered aromatic ang +
+ 7I\IN in six-membered aromatic ring + ZONcarboxylic acid +
+ Z (4 - Nrcw)substxtuents with 8=1 attached to aromatic nng in backbone [2 1 16]

Npow 18 the row in the periodic table in which the atom represented by
the vertex with 8 = 1 is located (e.g., methyl and fluorine substituents
contribute Ny, = 1, chlorine contributes N = 2). For more details
we refer to the book.'® The above correlation has a correlation coeffi-
cient of 0.9988 and a standard deviation of 3% of the average E o, value
of 55384 J/mol.

Finally, a correlation was given for the dispersion component Fy4
of the molar attraction constant F (units: J°° cm'® mole™!) using the
group contribution scheme of van Krevelen. A very good fit (correlation
coefficient: 0.9997, standard deviation: 30 J*° cm!® mole?) is obtained
by:

Fa=97.95[-% + 2% + 'x + 'x*)] + 134.61Np, [2.117]

with:
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Table 2.2: Solubility parameters calculated using the three topologi-
cal methods and the group contribution schemes of Small and Hoy.
For the calculation of densities and molar volumes, Eq. (2.110) has
been employed.

EfN B Fa  Small Hoy
Polyethene 17.5 16.8 16.5 16.9 16.7
Polypropene 16.8 16.1 15.7 15.7 15.2
Polyisobutene 16.0 15.4 15.0 146 14.3
Poly(1,4-butadiene) 17.4 17.7 15.9 16.9 175
Polyisoprene 16.9 17.2 15.6 16.3 16.5
Polystyrene 20.1 19.5 18.1 189
Polyvinylchloride 21.2 19.6 17.9 19.5 19.1
NF, = Ns; - Np; - Ncyc [2.118]
Solubility parameters can be calculated according to:
vy
Ecoh
d= [— 2.119
o [2.119]
or:
Fq
da=—" 2.120
Vi [ 1

Table 2.2 gives a comparison of the calculated solubility parame-
ters of a number of (not too polar) polymers using the three topological
correlations and the group contribution schemes of Small'! and Hoy'?.

The variation in the predictions gives an idea of the absolute
accuracy of the method.

2.6 LATTICE THEORIES

The derivations in the above discussions were made without reference
to any specific structure of the mixture. The only parameter that was
related to the liquid structure is the number of neighbors z. This
parameter usually enters the discussion as the so-called lattice coor-
dination number. The introduction of a hypothetical lattice on which
the molecules are placed enables explicit counting the number of
configurations or contact points as the total number of lattice points,
i.e., possible positions, is finite. Often, this finite number of possibili-
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ties is the only motive for using a lattice. The specific structure of the
lattice, for example that turning left 3 times on a cubic lattice means
coming back to the starting point, is not used. In the next chapter, we
will discuss counting polymer configurations and here the specific
lattice structure does play a significant role.

We will now derive some of the previous results, using a lattice
model, or phrased better: using a finite number of possible locations,
illustrated by configurations on a lattice.

2.6.1 ENTROPY OF MIXING
Imagine a system with n, particles that can be placed on any of N,
possible locations. We shall first consider an ideal gas which means
that there is no interaction between the particles and each location
can be occupied by any number of particles. The total number of
configurations € is given by:

Q=N" [2.121]

since each location has n; possible occupation levels. According to the
results of statistical mechanics the entropy S, is given by:

%:an=n1 In N [2.122]

A similar expression holds for an additional system with ny different
particles on N locations. The total entropy of these two (separated)
systems is:

Si+Se
R

=n;ln N;+n2ln Ng [2.123]

Now we mix the two systems to form one system with n; + n; particles
on N = N; + Ny possible locations. The entropy Sy of the mixture is
given by:

% =(m+nz)ln N [2.124]
and the entropy of mixing ASy = Sy - (S; + Sg) follows:
ASw _ { NN
R ™ In N o In N [2.125]

With the additional assumption that the number of available locations
is proportional to the number of particles the arguments of the
logarithmic terms may be replaced by mole fractions and we obtain:
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Figure 2.13. Configuration of the mixture on a two-dimensional cubic
lattice.

AS
—R—M =-[n; In Xi + nz In Xs] [2.126]

which is indeed the expression for the entropy of mixing of an ideal
mixture.

Now consider the physically more realistic representation of a
liquid as a system with N particles that may occupy N locations with
exactly 1 particle per location. The pure liquids are just fully occupied
systems and contain no additional entropy: S; = Sg = 0. The mixture,
however, consist of n; particles of label 1 and n, particles of label 2
which form distinctive configurations (fill patterns) on the N=n; +n,
locations. Figure 2.13 shows one such particular configuration on a
cubic lattice. The total number of distinctive configurations can be
found as follows: Start filling the lattice with particles labeled 1. The
first particle has N possible locations, the second, one location now
being occupied, has N-1 possibilities. Particle number n; has N-n;+1
possibilities. The total number of configurations thus appears to be
given by N(N-1)(N--2). .. N-n;+1) = NY/(N-n;)! = N!/n,!. This, however,
is overcounting. The label 1 particles are indistinguishable and one
should count particle 1 on position X, particle 2 on position Y and
particle 1 on position Y, particle 2 on position X as one. So we have to
divide by the total number of ways to divide the n, particles over the
n; positions which is given by n;!. Once the label 1 particles have been
placed, the positions of the label 2 particles are fixed and filling up the
lattice does not contribute any more to the total number of configura-
tions Q which is thus given by:

N!

= [2.127]
n1!n2!
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As S; =S, = 0, the entropy of mixing ASy is given by:

AS
—Rﬂﬂngzln N! - In ny! - In ng! [2.128]

This may be worked out using Stirling’s expression for large M:
InM'~MInM-M [2.129]

and leads again to the expression for the entropy of mixing of an ideal
mixture;

AS
TM = —[n; In X +nz In X3 [2.130]

The last derivation clearly shows the advantages of a lattice
theory, or rather a finite number of sites, in the use of the rules of
combinatorial statistics and such fine tools as Stirling’s approxima-
tion for In M!. All sorts of refinements can now easily be incorporated.

2.6.2 HEAT OF MIXING

The derivation of the heat of mixing AHy of a regular mixture in a
lattice model is not different from the one discussed in section 2.4. The
parameter z is now the lattice coordination number. As such it also is
the number of neighbor molecules as in the previous derivation.
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Chapter 3

BASIC THERMODYNAMICS OF
POLYMERIC MIXTURES

3.1 POLYMERS

3.1.1 INTRODUCTION

Polymers are made up of a large number (Greek: poly) of monomers
reacted together by some sort of repetitive chemical reaction into a
long chain of covalently bonded chemical groups. Polymers are char-
acterized within the more general concept of macromolecules by the
presence of a clear repetitive element. Although, natural polymers do
exist (e.g., natural rubber), most polymers are synthesized by polym-
erization of monomers from the petrochemical industry. Several types
of polymers can be distinguished,” depending on the structure of the
repetitive element. Figure 3.1 illustrates some important types of
polymer.

A-A-A-A-A-A-A-A-A-A-A-A-A-.... : Homopolymer A
A-B-A-B-A-B-A-B-A-B-A-B-A-.... : Alternating AB Copolymer
A-A-B-A-B-B-A-B-B-B-A-A-B-.... : Random AB Copolymer
A-A-A-A-...-A-B-...-B-B-B-B-B : (Di) Block Copolymer AB
A-A-A-A-.A-B-B-..-B-A..-A-A-A  : (Trl) Block Copolymer ABA
A-A-A-A-A-A-A-A-A-A-A-A-A-.... : Grafted Copolymer (B to A)

B B

B B

Figure 3.1. Various types of polymer structure.

49
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ethene CH,=CH, -CH-CH- polyethene
propene CH=CH -CH-CH- polypropene
H, CH,
vinylchloride CH2=('2H -CH:-(':H- polyvinylchloride
Ci Cl
styrene CH=CH -C Hﬁi- polystyrene
butadiene CH;=CH-CH=CH; -CH,-CH=CH-CH,- polybutadiene

Figure 3.2. Chemical structure of monomers and corresponding repeat units
in some well known polymers.

Figure 3.2 shows some well-known monomers with correspond-
ing repeat units. The distinction between homopolymer and alternat-
ing copolymer reflects the chemical synthesis (from monomers A and
B) rather than the physical structure. For example, polystyrene can
just as well be seen as a homopolymer of CH,-CH- as an alternating
copolymer of CH; and CH-@.

The most important characteristics of a polymer are the chemi-
cal structure and the degree of polymerization (number of monomers)
D,. The degree of polymerization is usually expressed in the molecular
weight M of the polymer:

M

Dp=—1\4—r

[3.1]

where M, is the molecular weight of the repeat unit. For polyethene
(the name polyethylene is obsolete) M, = 28 g/mol (the actual smallest
repeat unit of polyethene is CH,, therefore polythene 1s sometimes
also referred to as polymethene (polymethylene), taking CoHy as the
repeat unit reflects the type of the monomer used. A polyethene
molecule with a molecular weight of 10° g/mol thus requires about
36,000 consecutive addition reactions of ethene and consists of 72,000
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CH; groups. Such a molecular chain would be 0.01 mm long when fully
stretched! With the CH; groups scaled to the size of a pearl one would
have a 300 meter long necklace!

As discussed below polymer chains are usually coiled up. The
M = 10° polyethene molecule from the above example forms coils in
the melt or in solution with a typical radius of 50 nm. Let us, for a
moment, replace the coil by a sphere with R, = 50 nm radius and filled
with the 72,000 CH; groups. One finds that only about 0.2% of the
sphere volume is filled with polymer segments. The rest is occupied
by solvent molecules or, in a melt, with other polymers. Polyethene is
an extreme case because it is such a “thin” molecule and M = 10° g/mol
is also rather extreme, though certainly not unrealistic. Polystyrene
with M = 10° g/mol has R, = 9 nm and 5% polymer occupancy.

The conclusion remains that a high molecular weight polymer
coil forms a rarefied structure. Single chain statistics will be discussed
in some more detail in Section 3.2.

3.1.2 MOLECULAR WEIGHT DISTRIBUTIONS

It is important to realize that it is virtually impossible to synthesize
a high molecular weight polymer with an exactly determined molecu-
lar weight. One always will have a distribution of molecular weights.
Some polymerization processes (such as anionic polymerization) pro-
duce by nature a narrow molecular weight distribution. Others (such
as radical polymerization) always produce broad distributions. We
will now discuss these distributions in some more detail.

Consider a total of N polymer molecules, characterized by a
distribution function X(M) where X; is the mole fraction of polymers
with molecular weight M;. The number average molecular weight M,,
is given by:

M. =2, MX; [3.2]

1

The weight fraction W; of polymer with molecular weight M; is given
Wi=sre = X 13.3]

And therefore, the weight averaged molecular weight My, of the
distribution is given by:
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IMX EMX

My =2 MW: = 5 =",

[3.4]

Higher moments of the distribution can also be defined. Particularly
the so-called z-averaged molecular weight M, is frequently encoun-
tered:

MW, I MW,

M, = izMiwi = M [3.5]

With experimental techniques that are sensitive to the number of
molecules, such as osmometry, vapor pressure, and melting point
depression measurements, one determines the number average mo-
lecular weight M,. With techniques that are sensitive to the size of
the molecule, such as all scattering techniques (light, neutrons,
x-rays) one determines the weight average molecular weight M,,. The
entire distribution can be obtained from ultracentrifugation and gel
permeation chromatography (GPC).!?

The width of the molecular weight distribution is often charac-
terized by the so-called heterogeneity index M,/M,. For well prepared
anionic polymerization processes My/M, may be less than 1.05. Step-
growth polymerization!? would give M,,/M,, = 2, but in practice larger
values are found.!?

3.2 SINGLE CHAIN STATISTICS

3.21 THE IDEAL CHAIN

Synthetic polymers are made by polymerizing relatively small mono-
mer molecules into a long chain of connected monomeric groups. We
will restrict ourselves to chains with a high degree of flexibility and
thus exclude polymers with a backbone or side groups that are so stiff
that liquid crystalline mesophases can be formed.? The classical
example of a flexible polymer chain is polyethene, which is schemati-
cally shown in Figure 3.3. Each covalent C-C bond is free to rotate but
the steric hindrances of the H groups lead to three preferred torsion
angles (0 and +120° where the potential energy is minimal). The
corresponding chain conformations are respectively called trans,
gauche+ and gauche-. This inherent chain flexibility leads to an
enormous number of possible configurations, which can only be
treated by statistical techniques.
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Figure 3.3. Polyethene chain.

Having seen the concept of an ideal solution as a starting point
for the theory of mixtures, it is not surprising that the ideal chain has
been invented as a starting point for the theory of chain statistics. An
ideal chain of segments is a chain with zero interaction between
segments that are sufficiently far apart. “Sufficiently far” sets the
scale. The chain is ideal, provided it is “sufficiently long”. As a
consequence of this definition the chain conformations of an ideal
chain can be described as random walks, where each step is associated
with one (or more) bonds, see Figure 3.4. The fact that these suffi-
ciently far apart chain segments do not interact is equivalent to a
limited memory of the random walker, allowing him to return to
locations that were visited previously but “sufficiently” long time ago.
An important characteristic of a chain is the average end-to-end
distance Rg.. For a random walk with N steps of length L. The root
mean square (RMS) averaged <RZ> of R, can easily be calculated:'?

<RZ>Y%= (NL2)wz = N¥%L, [3.6]

In the chain model, referred to as the “freely jointed chain”, the
chain configuration is modeled as the trajectory of a Brownian particle
(with equal steps of, e.g., one carbon-carbon bond). The RMS end-to-
end distance of such a chain is given by Eq. (3.6). Even if there are
preferred angles, the chain dimensions scale with the square root of
the number of bonds. Taking the polyethene chain again, one may take
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Figure 3.4. Random walk.

the4 fixed carbon-carbon valence angle (109.5°) into account to arrive
at:

1-cos®
<R2.> = NL2 ————
1+cos®

[3.7]
For ® = 109.5° this implies an expansion of the coil's end-to-end
distance by a factor of about 1.4 with respect to the freely jointed chain.
The effect of the three preferred torsion angles is similar.!? Side
groups will have an effect on the ease of bond rotations and therefore
on the dimension of the chain. These effects of local steric hindrances
on chain backbone bond rotations are difficult to calculate, although
modern molecular modelling software makes such calculations feasi-
ble. The steric hindrances are described by the empirical parameter
o, defined by":

1-

1 + cos® [3.8]
or alternatively by the characteristic ratio C,, defined by:
<r?>y = C,NI2? [3.9]
By nature ¢ > 1. Equation 3.9 can also be written as:
<r?>; = Nbf [3.10]

where by is the so-called Kuhn statistical length of the polymer. The
polymer chain with local steric hindrances can effectively be replaced
by an N step fully random walk chain with bond length by = LC2.
The quantity <r®>; is known as the unperturbed dimension
(=end-to-end distance) of the chain. Unperturbed in the sense that it
is a characteristic of the chemical structure of the chain bonds.
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Interactions with other molecules are neglected. Also, the effect of long
range steric interactions are not taken into account: the chain is ideal.
The polymer chain can form a large number of different configu-
rations and there is significant entropy associated with this configu-
rational freedom. The probabilitwer unit volume of finding the end
segment at a point at the vector r, from the origin is given by:

P(r‘e’)z[ L ]BeHz (3.11]

n¥erp,

with:
2 "
I'm= [5 <r2>0J [3 12]

The probability per unit length of finding the end segment at a
distance r, from the first segment is found by integrating Eq. (3.11)
over a shell with radius r,:

3 2
To
] 47tr§e{;] [3.13]

m,

mm=&é

This probability distribution has a maximum at r, = ry, while the root
mean square average distance is (3rm/2)1/2, in agreement with Eq.
(3.12). Eq. (3.13) also shows another important characteristic of an
ideal chain: it has a gaussian segment density distribution.

Experimentally, polymer end-to-end distances cannot directly
be measured. The most appropriate technique to measure the size of
a polymer coil is light or neutron scattering. These techniques yield
the so-called radius of gyration, which is the root mean square average
distance of the polymer segments from the center of gravity <s>,. For
gaussian distributions, there is a simple relation between the two
measures:

<r?>g = 6<s®>y [3.14]

If Qr is the total number of possible chain configurations then
QTP(F:) is the total number of configurations of a chain with end-to-end
vector r.. The entropy of such a chain is thus given by:

2
S(d) = k In QrP(rd) = Const - k “ [3.15]
I'm
Assuming that the enthalpic energy H is constant, the free

energy is given by G(r.) = H — TS(r.). This implies that the force F
needed to increase r, is given by:
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oG 1
F=-op= —2kTr?n Te [3.16]

per chain. Apparently such a chain satisfies Hooke’s law: the force is
proportional to the elongation. An elastic band is made of a crosslinked
network of such entropic springs. Experimentally one finds that the
total volume change of a rubber as a result of strain is extremely small
(Poisson’s ratio! ~ 0.5): strain in one direction is compensated by
contraction in other directions. This implies that the average intermo-
lecular distances are constant (contrary to e.g. metals) which justifies
the above assumption of constant enthalpy. Indeed, one observes
experimentally5 that the spring constant of an elastic band is propor-
tional to T as in Eq. (3.16). Another property of a material consisting
of entropic springs is that it will increase in temperature when it is
adiabatically stretched and cooled down when adiabatically relaxed.
This is a result of the second law of thermodynamics and entirely
similar to what happens in adiabatic compression and expansion of
an ideal gas. In an ideal gas, enthalpic interactions are also constant
{zero). Anyone in the possession of two hands, a household elastic
band, and a temperature sensitive upper lip may verify.

It is often desirable to be able to count the number of configura-
tions and here is where the lattice model is useful again. Anideal chain
is represented as an n step random walk on a lattice. Each lattice point
has z neighbors, where z is the coordination number of the lattice. For
a two-dimensional cubic lattice z = 4, for a three-dimensional close
packed lattice z = 12. After placement of the first segment, each of the
remaining n-1 segments has z possibilities. The total number of
configurations Qns, available to the ideal lattice chain is thus given
by:

Qconf = Zn_1 [3. 1 7]

As an easy refinement, one may exclude immediate self-reversal
of the chain: segment i+2 cannot be placed on segment i. This leaves
z possibilities for the second segment and z-1 for each of the n-2
subsequent segments and thus:

Qconf = Z(Z - 1)1’1—‘2 [3. 18]

3.22 REAL CHAINS

The most important shortcoming of the concept of an ideal chain is
the neglect of long range interactions. Apart from the local constraints
which basically only affect the statistical length, there are no restric-
tions on the ideal chain configuration. In particular, chain segments
are allowed to overlap. Real chains have a finite molecular volume and
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Figure 3.5. Random walk and self-avoiding walk on a two-dimensional
lattice.

will exclude overlapping configurations. On a lattice, this can easily
be implemented by allowing empty sites for each subsequent segment
only. Such configurations are known as Self Avoiding Walks (SAWs).
Figure 3.5 shows a random walk and a self avoiding walk on a
two-dimensional cubic lattice. This intramolecular excluded volume
effect leads to an expansion of the chain with respect to the corre-
sponding ideal chain, since the excluded volume effect is proportional
to the segment density which is highest at the center of the chain.

Calculations of chain dimensions and number of configurations
were rather trivial for an ideal chain but are much more complex for
SAWs. In fact, there is no analytic solution to the problem. Scaling
theories provide some answers.®’ For example, the total number Qgaw
of SAWs of n steps has the asymptotic form:

Qsaw o« z"n'"! [3.19]

where z’' is somewhat smaller than the coordination number of the
lattice (for a 3D cubic lattice z = 6 and z’ ~ 4.68). The attractiveness of
scaling theories is that exponents such as y are universal and depend
on the dimension of space only. For all lattices y ~ 4/3 in two dimen-
sions and y ~ 7/6 in three dimensions. The end-to-end distance of a
SAW also scales:

Ree oc ¥ [3.20]

where v is another universal exponent (v= 3/4 for D =2 and v~ 3/5
for D = 3).



58 Basic Thermodynamics of Polymeric Mixtures

The numerical values of the exponents can be calculated from
exact enumeration (on a lattice) or Monte Carlo methods. Exact
enumeration methods only work for small chains. One easily verifies
with a simple PC computer program that the number of SAWs on a
2D cubic lattice for 1 to 6 steps amount to respectively 1, 4, 12, 36, 100,
284, and 780. For 24 steps one finds with some patience
46,146,397,316 and then the numbers explode and one soon has to
resort to Monte Carlo or other sampling techniques.

There is an elegant derivation, due to Flory,? of the approximate
value of the exponent. The polymer coil is represented by a D-dimen-
sional sphere (line, circle, sphere for D = 1,2,3) with radius R filled
with n polymer segments with mutual repulsive interaction. The
concentration of segments ¢ o n/RP and the number of (repulsive) pair
interactions « c?. Integrating over the total volume of the sphere, one
obtains for the total repulsive energy Grep:

2

Girep % [3.21]

The scaling behavior of the elastic free energy G, (entropy) is
derived from the ideal chain results; Eqs (3.15), (3.12), and (3.9):

Gepoc — [3.22]

The total free energy Gy is the sum of repulsive and elastic energy
and has the following functional dependence on n and R:

n? R?
Giot = AIRD + Az n

(3.23]
with A; and Ay constants. The equilibrium radius corresponds to
minimum total free energy, which can be found from dGy,/dR =0. This
leads to:

3
R « npy2 [3.24]
and thus:
3
V=D12 (3.25]

This crudely derived expression for v turned out to be remark-
ably accurate. Values for v that were obtained from computer experi-
ments agree with Eq. (3.25) to within less than a percent. For D = 1,
one obtains v = 1, which is correct: a one-dimensional self-avoiding
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walk is just a straight line with length n. In two dimensions v = 0.75
while in three dimensions v = 0.6. As expected, the effect of excluded
volume is less in three dimensions. In fact, for d = 4 we obtain v=0.5
which is equal to the result of a random walk. We conclude that in
four dimensions, “real” polymer chains behave as if they were ideal.
This is a rigorous result:® in four dimensions, the local concentration
of segments in an ideal chain is so low that excluded volume effects
become negligible. If we had just lived in one more dimension, than
many scaling theoreticians would be unemployed! The accuracy of Eq.
(8.25) for D < 5 is believed (by scaling theoreticians!) to be a result of
a fortuitous cancellation of errors in the derivation.

3.23 A REAL CHAIN IN A SOLVENT

In the above section we have considered one polymer chain in isolation
and also neglected attractive forces between segments (apart from the
covalent bonds that keep the segments together). Whatever the chemi-
cal structure of the polymer, there will always be attractive London
type forces between the segments. In this case, configurations with
many segment-segment contacts will be energetically more favorable
than configurations with fewer contacts. Consequently, the polymer
coil will attain a more condensed configuration than in the absence of
such attractive interactions. Of course, this goes at the expense of
entropy. At equilibrium, the free energy is at a minimum.

Now let’s assume that the chainis not in a vacuum but immersed
in a solvent, which serves as a background of small molecules with
London type dispersive interactions between themselves and with
polymer segments. The effect of the solvent on the polymer chain
configuration depends on the difference between polymer-polymer,
polymer-solvent and solvent-solvent interactions. In the simplest case
that all interactions are identical, the coil will not have a preference
for more or fewer segment-segment contacts and it will behave as a
regular self avoiding walk. Such a solvent is called an athermal
solvent as there will be no heat of mixing.

If, on the other hand, polymer-solvent contacts are energetically
more favorable than polymer-polymer contacts, the coil will tend to
promote such contacts by expanding. Again this goes at the expense
of configurational entropy until equilibrium is reached. In the opposite
case that polymer-solvent contacts are less favorable (which includes
the chain in vacuo), the polymer coil will contract to a more dense
configuration. A situation may occur where the repulsive intra-chain
excluded volume interactions are exactly compensated by these effec-
tively attractive segment-segment interactions. Since this involves
cancellation of enthalpic and entropic contributions to the free energy
this will generally only be possible at one particular temperature. This
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particular state (combination of solvent and temperature) is called the
theta (®) state. In such a case the “real” chain will show ideal chain
behavior. Of course, the chain cannot take “true” random walk con-
figurations just like gas molecules at the Boyle temperature will not
truly overlap. However, in many aspects, the chain will behave as an
ideal chain. An important consequence is that the chain size will scale
with the square root of the molecular weight instead of the power 0.6
(for D = 3) of a SAW.

3.24 A REAL CHAIN IN THE MELT

Now we address the question of the configurations of a chain in its
own melt. In first instance, one is tempted to state that this is
equivalent to an athermal solvent and the polymer chains will behave
as SAWs. In particular, their size will scale with M%€. This turns out
to be wrong. Already in 1949, Flory stated that chains in a melt are
gaussian and ideal.®’ This notion remained debated until neutron
scattering experiments'®!! definitely showed that indeed, chain sizes
in the melt scale with M®%. The reason is that an individual polymer
coil expands because of the intra-molecular interactions. In the melt
there is no difference between intra and inter molecular interactions:
a chain segment does not “know” whether it is interacting with a
remote segment of the same molecule or with another molecule. This
goes for all chains and hence there is no net swelling force.®

The implications of the concept can be illustrated by the follow-
ing example. We depict the polymer as a very long and thin coiled
balloon. If uninflated, the balloon is infinitely thin. If inflated, it
occupies a certain volume. A melt is represented by a volume filled
with a random mixture of balloons, much like a plate of spaghetti,
such that the inflated balloons would densely pack in the volume.
Empty balloons have no volume of their own and will thus behave
ideal and their coil size will scale with the square root of their length.
A dilute athermal solution corresponds with an isolated balloon in
some inert medium, say air or water. Also, this balloon will behave
ideal when uninflated.

Now, we turn on excluded volume interactions by inflating the
balloons. An isolated balloon will expand as a result of this and will
behave as a self avoiding walk. On the other hand, a balloon in the
“melt” cannot expand because the other balloons, also inflated, will
prevent it from doing so. They will just pack more densely as they are
being inflated without changing their configuration. In other words,
they will still behave as ideal balloons. If one would suddenly remove
(or puncture) all balloons except for one, that last remaining balloon
will expand (after a bit of shaking) and behave as a SAW. Even if all
balloons, except one, would fall apart in many small balloons, the one
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remaining would expand. To the best of our knowledge, these experi-
ments, though much less expensive then neutron scattering experi-
ments have never been actually performed. See also Chapter 5.

3.3 IDEAL POLYMER MIXTURES

3.3.1 INTRODUCTION

We wish to describe the miscibility of polymeric mixtures. As dis-
cussed in Chapter 2, this is equivalent to finding an expression for the
Gibbs free energy of mixing AGy. The notion of an ideal mixture has
proven to be a cornerstone of the theory of “small molecule” mixtures
so it is worthwhile to explore the same notion for polymeric mixtures.

3.3.2 IDEAL POLYMERIC MIXTURES

Consider a mixture of n; and n,; molecules of different type. The Gibbs
free energy of mixing of an ideal mixture is entirely entropic with the
entropy of mixing ASy given by:

ASM
'NR

where X are mole fractions (X; + Xy = 1) and N = n; + nj is the total
number of moles of molecules. The main difference between polymers
and “normal” molecules is that polymer molecules occupy a volume
which is orders of magnitude larger. However, the molecular volume
does not show up in Eq. (3.26), so Eq. (3.26) is in principle applicable
to polymer mixtures too. However, Eq. (3.26) gives the free energy of
mixing per mole of molecules and a unit volume contains orders of
magnitude more “small” molecules than polymers. Therefore, the
entropy of mixing per unit volume (or unit weight) is orders of
magnitude smaller for mixtures of polymers.

In a polymer solution, that is a mixture of polymers and small
molecules, there is a huge size difference between the constituents
and the derivation that leads to Eq. (3.26) no longer applies. One may
also wonder whether the chain character of polymers plays any role.

These issues were addressed, independently by Flory'*'® and
Huggins,'*15 in the 1940s. An expression for the entropy of mixing of
polymers with different degrees of polymerization (number of seg-
ments) ry and ro was derived:

AS
M {— In @, + -2 ln sz [3.27]

[X] InX; +Xs1n Xz] [3.26]

where ® represents volume fractions and N is the total number of
segments (assumed equal in size). Eq. (3.27) is the usual formulation
of the Flory-Huggins entropy of mixing. For a mixture of polymers
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that are equal in size one obtains the ideal solution entropy of mixing,
Eq. (3.26). This can be verified by substituting r;, = ry = r in the
expressions for ® and N:

nri

d; = N

[3.28]

N = njry + nary

The significance of the Flory-Huggins entropy of mixing lies in
mixtures of molecules with large size differences. Indeed, the relation
was originally derived for polymer solutions (ro = 1).

Although the Flory-Huggins entropy of mixing is the cornerstone
of most theories on polymer thermodynamics, its connotation is not
always recognized. Therefore, it is important to consider its origin in
some more detail. In the next section, we will reproduce the derivation
of Flory, which makes explicit use of the chain character of the
polymer. Subsequently, we show that the same equation can be
derived without any reference to a chain.

3.3.3 DERIVATION OF THE FLORY-HUGGINS ENTROPY OF MIXING

The calculations are based on a lattice model with N lattice points
(coordination number z) on which n; linear polymers consisting of r
segments (i.e. lattice points) are to be placed with ny solvent molecules
(1 per lattice point), N = n;r + ny. The n, polymers are placed on the
lattice and the number of ways this can be done is counted. When m
polymers have been added to the lattice, mr sites are occupied. Then
the {mean field) assumption is made that these mr polymer segments
are evenly distributed over the volume so that the probability P™ for
an arbitrary site to be empty is given by:

N -mr
free _
Pfree _ [3.29]

The assumption of a uniform segment density is clearly incorrect
for polymers. Especially for dilute solutions when the segments are
distributed as isolated islands of chains, this approximation fails. The
probability of finding an arbitrary site to be empty is correctly given
by Eq. (3.29), only the probabilities for nearby sites are highly corre-
lated. Huggins proposed a correction for this correlation which we
shall discuss later.

The reasoning proceeds as follows. The number of possible sites
for the first segment of the polymer number (m+1) to be placed on the
lattice (N-mr). The (average) number of possible sites for the second
segment is zP™® The remaining segments all have (z—1)P™ possi-
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bilities. In this way we find for the total number of ways vy to
accommodate the (m+1)th polymer:

N - mr]r‘1
N

The left hand side of Eq. (3.30) should actually be multiplied by
/5 to correct for the fact that each configuration is counted twice:
starting from one end and starting from the other end. This does,
however, not affect the final result (Eq. (3.34)) and was also not
considered in the original derivation.

The most important approximations in Eq. (3.30) are the above
mentioned assumption of a uniform segment density and the model-
ling of the chain configurations by a random walk without immediate
self-reversal. The latter is a result of allowing the chain to intersect
itself (no long range intra chain interactions, i.e., a random walk) and
taking z—1 for the number of potential sites for the i > 1th segment
(no immediate self-reversals). The total number of different ways Q
to fill the lattice with the mixture is given by:

vm+1 = (N —mr)z(z - 1)”_2[ [3.30]

ped}
1
=TT v (3.31]
.
m=0

The entropy of the mixture S = R In Q can then be calculated

with minor mathematical approximations and is given by:
-1

%= —[m Iny;+nelnys-ni(r— 1) In [z " H [3.32]
where y; = ny/N and z(z-1)" has been replaced by (z-1)"! in Eq. (3.30).
In order to obtain the entropy of mixing, the entropies of the pure
phases should be subtracted. The entropy of the pure solvent can be
found by taking n;=0, N=n; in Eq. (3.31) to be zero. However, the

entropy of the polymer phase does not vanish. Substitution of ny=0,
N=n,r yields:

SIZOI = - m[ln r+(-1in [z ; IH [3.33]

The first term is the combinatorial entropy of the head segments
and the second term is the configurational entropy in the polymer
chain. The latter is identical to the corresponding term in Eq. (3.32).
This is a consequence of the mean field approximations that the
configurational freedom of a polymer chain is independent of the
environment. This causes the chain character of the polymer and the
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lattice coordination number to drop out of the entropy of mixing
expression that is obtained by subtracting S* from S in Eq. (3.32):

ASm

R = [n11n @) + n3 In @3] [3.34]

where ®; = n;r/N and ®;=ny/N are the volume fractions of respectively
polymer and solvent. Eq. (3.34) can alternatively be written as:

ASMm D,

NR - —l: " In®; + O2In d)z] [3.35]
which is the most frequently used formulation for the Flory-Huggins
entropy of mixing (cf Eq. (3.27)).

3.3.4 ALTERNATIVE DERIVATIONS

The Flory-Huggins entropy of mixing does not contain parameters
that originate from the lattice model. Therefore, one might expect that
Eq. (3.35) can also be derived without reference to a lattice. Such a
derivation has indeed been given by Hildebrand,*'® based on the
following expression for the entropy of n; particles:

% =n; In [ni(vi — v)] [3.36]
where v;=V/n, is the available volume per particle and v;* is the actual
geometric volume of the particle. Assuming additivity of the v''s in the
mixture, a fixed ratio vi/v;* and, just as in the above derivation, no
volume change on mixing, one obtains Eq. (3.35) again for the entropy
of mixing. This derivation does not use a lattice and does not assume
any particular shape (e.g., flexible chain) of the particles.

Yet another derivation can be given using a lattice but without
reference to a chain. To this end we fill N sites with n; fixed objects
where each object occupies r sites and count the number of possible
configurations. The first object has a choice out of N sites (we only
need to define the location of the first segment since the object is fixed).
The first segment of the second object has N-r possible sites. However,
all the other r~1 segments should also fall on an empty site. Each site
has a probability of (N-r)/N to be empty. Hence the total number of
possibilities v, for the second object is given by:

r-1
vg=(N - r)(l - ﬁ) [3.37]

In general, after placing m objects, the number of possibilities
Vi+1 t0 accommodate object m+1 is given by:
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r-1
vans1 = (N = mr){l - i—] [3.38]

One then proceeds along the same lines as from Eq. (3.31) downward
and obtains again the Flory-Huggins entropy of mixing expression.

The above considerations lead to the conclusion that the Flory-
Huggins entropy of mixing expression is not specific for chain mole-
cules. It is the combinatorial entropy of the centers of gravity of the
components taking into account the different sizes of the constituents.
It is essential that the intramolecular configurational freedom of the
components does not change in going from the pure phase to the
mixture so that no contribution to the mixing entropy is made. In
Hildebrand’s and the last derivation this assumption is made explic-
itly while in the Flory-Huggins theory it is a consequence of modelling
the polymer configurations by a random walk.

3.3.5 HUGGINS CORRECTION

Huggins proposed a correction for the correlation of the probabilities
to find empty sites due to the chain-like character of the polymer. The
probability that the site for the first segment of a chain is empty is
given by the fraction P of empty sites. In the construction, followed
above, the next segment is chosen in one of the z potential directions
and the probability that this site is empty is also taken as P& This,
however, is an underestimation. The correlation between occupied
sites in a chain also implies a correlation between empty sites. The
fact that the previous site in a polymer chain was apparently empty
increases the probability that the next site is also empty.

It can be shown that the probability PF%(S,S-1) that site S is
empty, given the fact that the neighboring site S-1 is also empty is
given by:

N —
P 8 )= — 3.39]

N - 2(r - 1)%

The resultant contribution ASY of this effect to the expression for the
entropy of mixing is rather involved. However, the expression may be
developed into powers of 1/z. The zero order term vanishes: for infinite
z one retains the mean field Flory-Huggins result. This can already
be seen from Eq. (3.39). The first order term yields:

ASH ’
e toel
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The Huggins correction thus provides a negative (unfavorable)
contribution to the entropy of mixing which decreases asymptotically
to a value of —1/z for infinite molecular weight. Contrary to the
Flory-Huggins expression, Eq. (3.39) shows the use of a lattice model
through the lattice coordination number z. We stress however, that
the topological connectivity of the lattice plays no role. Basically these
are “fixed number of sites, fixed number of neighbor” models.

The Huggins correction is maximal for a symmetric mixture,
increases with increasing chain length and vanishes for infinite coor-
dination number z since an infinite coordination space has no effect
anymore on configurational entropy, because the number of realiza-
tions for a chain is also infinite, irrespective of its environment. On
the other hand, the smaller the coordination number and hence, the
smaller the number of realizations for a chain, the larger the correc-
tion.

3.4 REGULAR POLYMER MIXTURES

In the previous sections it is shown that the Flory-Huggins entropy of
mixing, Eq. (3.27), is very general, does not require any specific model
assumptions, does not even require the polymers to be chains. In the
spirit of ideal solution theory, discussed in Section 2.3, we defined an
ideal polymer mixture as one that has a free energy of mixing which
is entirely entropic, with the entropy of mixing given by:

ASM {——lnd)l + —lntbz] [3.41]

[ntroduction of a regular polymer mixture would be the next logical
step. Indeed, the concept has been introduced and is the starting point
of almost all subsequent theories. One could safely state that the
resulting expression, known as the Flory-Huggins free energy of
mixing still is the cornerstone of polymer thermodynamic theories.

The heat of mixing of a regular mixture was discussed in Section
2.4 and is given by:

AHwm

NRT =xX1X2o [3.42]

where X; are the mole fractions of molecules 1 and 2 which were
assumed to be approximately equal in size. The interaction parameter
¥ 1s given by (Eq. (2.79)):

zW

X =D [3.43]
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where W describes the differences in interaction energies of the
segments (see Eq. (2.77)). If the molecules are not equal in size, as is
obviously the case in polymer solutions, one could either follow the
arguments in Section 2.5 or use a lattice model and interpret X; as the
mole fraction of sites (equal in size) occupied by (a segment of)
molecule i. The latter approach was followed by Flory and Huggins.
Both approaches lead to the same result: that mole fractions X should
be replaced by volume fractions ®. This brings us at the Flory-Hug-
ging’s expression for the Gibbs free energy of mixing:

AGMm (] ()]
NRT ~|i . Ind; + T ln®2i| + P 1Dz [3.44]

where the interaction parameter y has an inverse temperature de-
pendence:

_Xn
-5 [3.45]

with y;, a constant with unit Kelvin. Eq. (3.44) defines what one could
call a regular polymer mixture. Indeed, for ry = ry, mole fractions and
volume fractions are identical and Eq. (3.44) is equivalent to the
definition, Eq. (2.78), of a regular solution.

In contrast to the expression for the entropy of mixing, the
chain-like character of a polymer does play a role here. We took a
lattice point as a basic segment and assumed that each segment was
free to interact with z neighboring segments (Eq. (3.43)). This would
clearly be incorrect, particularly for polymer solutions, if polymers
would be dense solid objects of many segments. Let the solvent
molecule be the basic segment with z interaction sites. If the polymer
would be a dense object with ozr instead of zr interaction sites with
0<1, one may again follow the route leading to Eq. (3.43), counting the
number of interactions, to arrive at:

AHwm (o]

N M T d- oo

@y [3.46]

Eq. (3.46) is more generally valid for mixtures of molecules with
different interaction surfaces s; and s, (0=s;/sy) as first noted by
Staverman.'” Interaction surfaces may be estimated, using the group
contribution scheme of Bondi.'® Note that N is the total number of
segments (lattice sites). It is convenient to eliminate the rather
arbitrary notion of a segment by dividing both sides of Eq. (3.44) by
the molar volume V,, of a segment and using the relation between the
interaction parameter and solubility parameters, Eq. (2.84). One then
obtains:
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AG
M ~|:-— In ®, + —_ ln (Dg] + (81 - 82)2CD1(I>2 [3.47]

where V; =V, is the molar volume of molecule i and V = NV, is the
total volume. The solubility parameters can be estimated with group
contribution methods. Eq. (3.47) thus enables calculation of the ther-
modynamic phase behavior of two molecules on the basis of their
chemical structures and molar volumes.

3.4.1 GENERALIZED REGULAR POLYMER MIXTURES
The Flory-Huggins equation for the free energy of mixing, Eq. (3.44)
with Eq. (3.45) for y soon proved to be inadequate for a quantitative
or even qualitative description of polymeric phase equilibria. The most
obvious step to take to give the equation more flexibility is to treat yT
as a free energy rather than an enthalpy parameter. This implies that
¥ may have an arbitrary temperature dependence. As a more general
extension of the meaning of the interaction parameter, we may write:

_ Xh
x=1s+ 2 [3.48]

The Huggins correction, Eq. (3.40), can then be incorporated as an
entropic correction y; to x:

2
Xs = 1 [1 - l} [3.49]

zZ r

Since the composition dependence of the free energy of mixing is not
altered by this generalization, the thermodynamic analysis is also
basically the same with modified temperature scales. We could call
such models generalized regular polymer mixtures.

3.5 PHASE DIAGRAMS

We are now in the position to calculate phase diagrams of polymer
blends and solutions. One may calculate the chemical potential Ap, of
polymer 1in a mixture of composition ®,, ®; relative to its pure phase
according to Eq. (2.10):

App = [aAGM] [3.50)
ny

dny
Using Eqs (2.27-2.28) and Eq. (3.44) one then obtains:

el ad I 1In®, + [1 - %J ds + rnub% [3.51]
2
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and:

Apz _ ( ] 2

RT =ln @z + |1 - —| Dy + rox®; [3.52]
If two ghases denoted I and II, with different compositions (@}, <Dz)
and ((Dl, CI>2) are in thermodynamic equilibrium then the chemical
potentials of each component should be equal in both phases:

Ap = Apf [3.53]
Apl = Apl
With Eqgs. (3.51) and (3.52) one obtains:
In @} + [1 - % @) + riy(dL)? = In O + \1 - % Ol + riy(@h?
[3.54]
In ®} + (1 - ﬁ @} + rox (@) =In @F + |1 - -‘;—21- @I + roy(@]h)?

Eq. (3.54) constitutes a set of coupled equations that must be solved
numerically because of the combination of logarithmic and non-loga-
rithmic terms. A suitable approach to calculate the binodal curve is
the eliminate y from E qs- 3.5 3 This yields one equatmn with two
independent variables CDI and @} (@, =1 - @,). Then take @} fixed and
solve numerically, e.g., by using a Newton-Raphson scheme, for ol
Subsequently, ¥ can be found by substituting the values for o} (as
taken) and (I>1 (as calculated) in either one of the two equations in Eq.
(3.54). From the temperature dependence of i, e.g., Eq. (3.48) but any
temperature function may be used, one obtains the binodal (cloud
point) temperature of a mixture with composition @} and the compo-
sition @Y of the incipient phase. The spinodal, i.e., the boundary
between thermodynamically metastable and unstable composmons is
more easy to calculate as it is given by the solution of (see Eq. (2.44):

2AGM

~0 [3.55]
o]

Substitution of Eq. (3.44) yields:

1 + 1
rid; rede

=2y [3.56]

In addition, the critical point of the mixture should obey the condition:
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PPAG
LB 13.57]
o3

which yields an expression for the critical concentration (®;)¢:

(P1)c = -TlT [3.58]
I
1+|—

ra

Equation (3.58) represents one of the more eminent successes of the
FH model, namely the correct description of the shape of the phase
diagram which is skewed towards the solvent-rich side (¢, = 0) for
polymer solutions (r, >> r3). The physical implication is that a phase
separated polymer solution will generally consist of almost pure
solvent in equilibrium with a solvent swollen polymer phase.

Since the critical point is located on the spinodal we may substi-
tute Eq. (3.58) into Eq. (3.56) to obtain a critical value y¢ of the
interaction parameter:

1f1 1)
Xcz'z‘[—“ra‘-} o)

ri*

If y < yc the mixture is always miscible, if ¥ > xc the mixture may
phase separate into two coexisting phases as defined by the binodal.

Let us investigate the influence of chain lengths ry, ry on phase
stability in somewhat more detail. We will assume that the interaction
parameter ¥ is independent of chain length and has a simple 1/T
temperature dependence, Eq. (3.45) with y, > 0; for y, < 0, the
constituents are always mascible. Binodals and spinodals of low mo-
lecular weight mixtures (ry = ry = 1), polymer solutions (r; large, r.=1)
and polymer mixtures (r;, ro large) are shown in Figure 3.6. Note that
all phase diagrams describe phase separation upon cooling, upper
critical demixing. The critical points are located at the maxima of the
binodals. These are the upper critical solution temperatures (UCST).
Low molecular weight mixtures (r; = ro = 1) have a relatively large
temperature region of complete miscibility; UCST = x,/2. Polymeric
mixtures (r;, rs — ®) show hardly any miscibility in a relevant
temperature region; UCST — «. Polymer solutions (r; - =, ry = 1) are
in-between cases UCST = 2y, and the larger the polymer chain
length, the more the phase diagram is skewed towards the solvent-
rich phase.

For polymer solutions, in the limit r; — « we have (®))¢c — 0 and
x¢ —> 1/2. This special value for y marks the point in the phase diagram
where a polymer solution with infinite polymer molecular weight will
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Figure 3.6. Typical UCST phase diagrams of liquid mixtures (r1 = rz = 1),
polymer solutions (r1 = 100, r2 = 1), and polymer blends (r1 = rz = 100).

start to phase separate. This is true, irrespective of the particular
temperature dependence of . For a decreasing function y(T) as in
¥ = x/T, x = 1/2 marks an UCST and for an increasing function x(T),
y = 1/2 indicates an LCST. For y > 1/2 dilute soluttons will demix into
a swollen polymer and a solution with (infinitely) low polymer concen-
tration.

The case y = 1/2 is also special because a dilute polymer solution
behaves as an ideal solution under this condition. This can be seen as
follows. Consider the chemical potential A, of the solvent (r; = 1) in
a polymer solution, Eq. (3.52):

L2 nws + [1 - rl}bl + @} [3.60]
1

For x = 0 and r; = 1 one obtains Auy/RT = In®y = InX, which is
the result for an ideal mixture, see Eq. (2.63). For r; > 1 one finds from
numerical evaluation that the chemical potential is less then ideal.
Osmotic and vapor pressures will also be less than those of an ideal
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mixture. Using Eq. (3.28), with r, = 1, we may write the chemical
potential in Eq. (3.60) as the sum of the ideal term and an excess term:

Az

_ L _1 2
RT—lan+ln{1 [1 ]@1}4-[1 r1]®l+x¢l [3.61]

T

For small @, the logarithm may be expanded. The first order term
vanishes against the third term in Eq. (3.61) and up to second order
in @, we obtain:

2
Apz _ 1, 1] | g2
RT - In X3 + l:x - 2[1 - rJ Jfbl [3.62]

Eq. (3.62) shows that a high molecular weight (r; — «) polymer
solution behaves as an ideal solution at infinite dilution, as it should,
and also at finite concentrations under the condition y = 1/2. The
special temperature where y = 1/2 is called the theta (®) temperature.

Note that the considerations above follow from the Flory-Hug-
gins free energy of mixing which, as we know, does not need polymers
to be chains. A single polymer chain of infinite length can itself be
regarded as a dilute solution of segments. At the theta point, defined
by x = 1/2, this solution is ideal. This implies that solvent-solvent,
solvent-segment and segment-segment interactions are identical (the
energetic interactions are not as x > 0, but at the particular tempera-
ture defined by y= 1/2, these interactions are compensated by the
excess entropic interactions). This means that the polymer segments
are effectively only constrained by their connectivity and the chain
thus behaves as an ideal chain, see also Chapter 5.

Another way of putting this is to write the virial expansion of
the osmotic pressure IT:

I1=RTc [Ml; + Agc + ] [3.63]

With Eq. (3.60) for the chemical potential we obtain:
IT1=RTc —1—+X%&1[l- ]c+—v&’l—+ [3.64]
Mn VSOI 2 X 6Vsol o )
where c is the concentration of polymer, vy, is the specific volume of

the polymer and Vg, is the molar volume of the solvent. Comparison
of Eq.(3.63) and Eq.(3.64) yields:

Vzol 1
Ag = [;,Ll] (5 - ] [3.65]
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which shows that at the theta point the second virial coefficient Ag is
Zero.

In the previous sections we saw that y = 1/2 also defined the
critical solution temperature of an infinite molecular weight polymer
solution. For x > 1/2, T < © temperature for a USCT. The polymer
solution will demix into a swollen polymer and almost pure solvent.
Again, this may be translated to the behavior of one infinite molecular
weight polymer coil. Such a coil will shrink to a collapsed state for
x> 1/2, driving out solvent, see Chapter 6.

3.6 THE EFFECT OF MOLECULAR WEIGHT DISTRIBUTIONS

3.6.1 INTRODUCTION

The vast majority of practical polymers are a mixture of polymers of
different molecular weights. In the foregoing we were assuming infi-
nitely small molecular weight distributions (MWDs). In this section,
we discuss the effects of a finite MWD on the phase equilibria.
Polymers with a significantly finite MWD are often also referred to as
polydisperse polymers. Strictly speaking, each chain length (molecu-
lar weight) represents one component. A high molecular weight poly-
disperse polymer thus consists of a very large, virtually infinite,
number of components. We designate the volume fraction of compo-
nent i by the symbol y;. The generalization of the Flory-Huggins free
energy of mixing for a mixture of N such components is:

AGMm _
RT

Wi
—Inyi + T(y1, vz, oyn, T) [3.66]
i=1 !

Equation (3.41) is regained for N=2 and I'(y,y2,T) = yyi1vs. In
thermodynamic equilibrium, when two phases I and Il are present,
the following equations must be satisfied:

e equality of chemical potentials:

W=l G= 1,8 (3.67)

. compos1t10ns in both phases must add up to the total com-
position W, (F denotes “feed”):

v\pJ +(1- v)\pJ = \pJ G=1,...N) [3.68]

where v is the volume fraction occupied by phase 1.

Finally, we must demand that the volume fractions \p and the
volume fractlons \yJ both add up to one. Assuming that the feed
composition \u is normalized properly we see with Eq. (3.65) that it
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suffices to demand that the sums of the volume fractions in both
phases be equal:

N
2 (W -yhH=0 [3.69]
j=1

Eqs (3.67+3.69) constitute a set of 2N + 1 equations with 2N + 2
unknowns (2N volume fractions, T and v). In order to define a unique
thermodynamic state, one must therefore add one extra equation,
usually the specification of one of the unknown variables. For isother-
mal “flash” calculations one specifies the temperature T. If this tem-
perature is in the two phase region for a composition y*, a solution
exists for 0 <v < 1. At the cloud point (or binodal) one of the phases,
say 1I, is present in an infinitesimal amount. In this case one specifies
v = 1. The composition of phase II is known as the shadow point.

The expression for the spinodal of an N component system has
been formulated by Gibbs'” and can be written as:

O*AGKs
Oyidy;

=0 [3.70]

which states that the determinant of the (N~1)x(N-1) matrix with
elements i,) as given by Eq. (3.70) is zero. One of the N volume
fractions, say y) must be treated as dependent variable: y; =1-Z;=9 N
y,. Calculation of spinodals thus involves the evaluation of N-1xN-1
determinants.

For most practical systems, N will be extremely large and exact
direct solution of the phase equilibria equations becomes unfeasible.
However, for a certain broad class of functions the equations can be
reduced to a much smaller set of equations which can readily be
solved.'81?

The method works for all functions that can be written as:

T(y1, y2,..,wN, T) = T(Q1, Qq,..., Qx, T) [3.71]
where the set of K functions Q depend linearly on the y,:

Qs = Z Qs [3.72]

In order to apply this method to polymers with MWDs we
introduce the concept of a polymer family. A polymer family roughly
means a group of polymers that consist of the same monomers, such
that the interaction function I' in Eq. (3.63) is a function of K family
volume fractions ®; only:
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C(y1, we,..., yN, T) = T(Dy, Oz,.., g, T) [3.73]
with:

D=2y, [3.74]
)=

where ; denotes the collection of labels {j}, for which component j is
a member of family i. As an example, consider a blend of PVC and
PMMA, both polymers having a MWD. Such a blend may be consid-
ered to consist of two chemically different families (PVC and PMMA
chains) with a segmental Flory-Huggins interaction parameter x. We
then have:

C(yt,.., YN, T) = xD1P2 [3.75]

where @; and @, are the overall volume fractions of respectively PVC
and PMMA.

3.6.2 SPINODAL AND CRITICAL POINT

From the more general mathematical treatment,'® the following
results may be derived for a blend of two polydisperse polymer
families. The equation for the spinodal is:

1 1
+ =
rwi®1  rwed:

2y [3.76]

where r,,; is the weight averaged molecular weight of the molecules in
family i. The location of the spinodal thus only depends on the weight
averaged molecular weights of the components. The form of the
spinodal equation is identical to Eq. (3.56) for a strictly binary mixture
with chain lengths replaced by weight averaged chain lengths. The
expression for the critical point is given by:

Izl 72
- 3.77
a0 xiadE [3.77]

This can be written as:

(D1)e = }Az vy
e
Tw2 szl

where Q,«, is the heterogeneity index r,/r,;. This expression reduces
to Eq. (3.58) for the monodisperse case (Q,wi = 1). A polydisperse
polymer mixture thus has a spinodal determined by the weight
averaged molecular weights only. The top of the spinodal is given by

[3.78]
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Eq. (3.58) with chain lengths replaced by weight averages. Eq. (3.78)
shows that the critical point is shifted in the direction of the composi-
tion axis corresponding to the component with the highest Q.
Similar expressions can be derived for mixtures with more than two
“families”. For three families:

I = x1201@2 + 11301 P3 + Y23P2P3 [3.79]
the spinodal equation is given by:

rwi®: + ro2®s2 +
1+ (23— 12— x3)re1®1 1+ (s — 12 — x23)rwede

+ Fws P - 3.80]
1+ (12 = X13 — X23)rws D3 '
and the critical point follows from eq. (3.78) and:
rwirz1® . rw2rz2®z .
1+ (x23 — 12 — x3)rwi1®@1 1+ (13 - X12 — (23)rwad2
()
rw3rzg @3 [381]

+ =0
1+ (12 — 13 - X23)rwa D3

Again, the spinodal only depends on the weight averaged molecular
weights and the critical point(s) on weight and z-averages.

3.6.2 BINODAL AND FLASH CALCULATIONS

With a free energy of mixing, given by Eq. (3.66), the chemical
potential of component j (with volume fraction relative to the pure
phase Ay, is given by (see Eq. (2.26)):

N N
Ap; . or Pk or
RT ~ 1+Iny +5]T+ i -E _— g YkZue [3.82]

We now introduce the distribution factor k;, defined as the ratio of the
component volume fractions between the two phases:

1
I = [3.83]
Vi
With the equilibrium condition Eq. (3.67), Eq. (3.82) for the chemical
potential, and Eq. (3.73) for I', one obtains:

k= oo - hl') + (b - ho) [3.84]
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with:
K
ol
ho=T-2, QD%E — QK41 [3.85]
i=1
or
hi= 30,
and:
N v
Dgir = 2 [3.86]

=1

With the material balance condition, Eq. (3.68), we can now express
the compositions of the two coexisting phases as:

F
1 Wi
YiTys (1 - v)k; [3.87]
F
n__ v

Vi Ty ra - vk

It can be shown that the set of 2N+1 equations Eq. (3.67+3.69) can be
reduced to the set of K+2 equations:

Wi (kJ Ki) o
Z Sk =0 i=0,. K+l (3.88]

where kg = 1 and the other x; are the family distribution factors:

!

Note that ®x. is not a family volume fraction but a formal parameter
in the theory. We thus need to solve only K+2 equations (3.88) in K+3
unknowns (v, T and ®;, i=1...K+1) instead of 2N+1 equations without
any mathematical approximation. The simplification comes entirely
from the mathematical construction of the problem. Koningsveld®
showed for a particular choice of T that such a reduction could be
achieved. The theory shows that this can be done for a much more
general class of interaction functions. The analysis also holds for
continuous distributions (continuous thermodynamics) where inte-
grals replace summations.
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Figure 3.7. Phase diagram of a polymer blend of polymer 1 with Shultz-
Flory MWD and polymer 2 with a narrow MWD.

3.6.4 EXAMPLE

As an example we shall discuss the phase diagram of a polymer blend
of two polymers with a Shulz-Flory® chain length distribution:

w(r) =r(1 - p)’p™! [3.90]

Such a distribution 1s obtained for “ideal” condensation polym-
erization.'” The parameter p is the fraction of bonds that is not at the
end of a chain. The average chain lengths are given by:

1 1+p 1+ 4p + p?
rn:]——p I‘w=1_p ;= 1_pz

[3.91]

For polymer 1, we take p = 0.99. This yields: r,,; = 100, ry,, = 200
and r,; = 300.

For the calculations we took 100 components with chain lengths
r=1,11,21,..991. As aresult the actual cut off and lumped distribution
had r,; = 100, r,; = 200 and r,; = 300, which is very close to the
theoretical values. For polymer 2 we take r = 100. Figure 3.7 shows
the corresponding phase diagram (for x = 10/T). The full drawn line is
the binodal or cloud point curve. The roughly dashed line is the
corresponding shadow curve and the finely dashed line is the spinodal.
All curves intersect at the critical point, indicated by a dot. One should
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Figure 3.8. Chain length distribution in the feed and in both coexisting
phases [ and II.

always take the shadow point on the curve at the other side of the
critical point.

Figure 3.8 shows the result of a flash calculation at T = 500 K
and @ = 0.2. Phase [ occupies 87.2% of the total phase volume and
contains most of the lower molecular weight material. Phase Il con-
tains relatively much of the high molecular weight tail of the distri-
bution. However, the two different fractions do not differ
spectacularly: r{v, =124 and r{vll = 260.
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Chapter 4

POLYMER
THERMODYNAMIC MODELS

4.1 INTRODUCTION

Nowadays, some fifty years after the first papers of Flory and Hug-
gins, a sizable amount of thermodynamic models that describe the
phase behavior of more or less complicated polymeric mixtures, has
been developed. The more traditional models can be categorized into
two classes, namely lattice models and Equation-of-State models. The
Flory-Huggins model is the oldest lattice model. In its original form,
it is only capable of predicting phase separation phenomena upon
cooling (UCST demixing). Many polymeric mixtures as well as poly-
mer solutions show phase separation phenomena upon heating (LCST
demixing) as well. It will be discussed in this chapter that such
demixing is caused by the compressible nature of polymeric mixtures,
by specific energetic interactions between unlike components (such as
hydrogen bonds), or by combinations of both.

In Equation-of-State (EoS) models, compressibility effects are
modeled by introduction of the “cell” concept: a cell is a lattice site of
which the volume depends on relevant model parameters. Such vol-
ume represents the free volume available for each site, i.e., polymer
segment. The cell concept was successfully introduced first by
Prigogine, and was further developed by Flory and several coworkers.
In modified versions of EoS models, empty sites on the lattice were
introduced. Such models include concepts originally developed by
Sanchez and Lacombe. In the so called “Holes and Huggins” model,
recently developed by Nies and coworkers, both empty lattice sites and
variable cell volume are allowed for.

LCST phase separation phenomena can also be brought about
by specific interactions between unlike polymer (or, polymer - solvent)
segments. A robust lattice-type description of such effects was devel-
oped by Ten Brinke. In this context, Coleman and Painter came up
with some practical guidelines to predict (im)miscibility. A general-
ized model in which both compressibility effects and specific interac-
tions are taken into account was developed by Sanchez and Balasz.

81
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Two important new developments in polymer thermodynamics,
that have more recently come into play thanks to interest from
theoretical physics — side on the one hand, and ever increasing
computer power on the other hand, will be briefly discussed. These
are the lattice cluster theory of Freed, which provides an exact lattice
solution of the combinatorial entropy of mixing problem, and the novel
off-lattice approach developed by Curro and Schweizer.

It is the aim of this chapter not to arrive at a complete overview
of all models currently available, but rather to discuss the main
features of the most commonly used models, without going extensively
into mathematical detail. Emphasis will be on the basic physics
employed and on some characteristics behind model parameters en-
countered.

4.2 FLORY-HUGGINS MODELS

As discussed in the previous chapter, the most elementary Flory-Hug-
gins (FH) model' for the free energy of mixing of two polymeric
species with chain lengths r; and r; is:

=—————lnCD1+—ln(D2+xCD1(D2 [4.1]

Note it is customary, as in Eq. (4.1), to express a free energy of mixing
per mole of molecules. The Flory-Huggins interaction parameter y
originates form dispersive interactions exclusively and is defined as:

= %(51 - 8)? [4.2]

where V|, is the lattice site volume and §; are the solubility parameters
of the respective constituents.

The basic characteristics of the FH model, in particular the
influence of chain lengths r; on the phase behavior, were discussed in
the previous chapter. We will here investigate some practical aspects
of the FH model in more detail. We start with a simple, symmetric
polymer mixture (r; =ry). From Eq. (3.59) we obtain:

2
=2 4.3
He=" [4.3]

It follows from Eq. (4.2) that the maximum limit in solubility
parameter difference in order to have complete miscibility at a tem-
perature T is given by:

w (B
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With a typical value for V, of 100 cm®mol, the value for the constant
K amounts to 0.2. Hence, to have a miscible two component polymeric
melt of chain lengths 400 (number average molecular weight 40,000)
above 400K (not an unrealistic processing temperature), the solubility
parameter difference should not exceed 0.2 Vcal/cc. This difference is
approximately equal to the uncertainty limit of calculating pure
component solubility parameters. The practical implication is that the
solubility parameters of the two components should be matched.

This example clarifies why so few polymeric mixtures are mis-
cible: the molecular weights are too large and the chemical structure
of the constituents too distinct to keep the interaction parameter x
sufficiently small. Sometimes, simple polymeric mixtures of suffi-
ciently low molecular weight do reveal an UCST. For example, an
UCST of 450K is reported for a symmetric polyisoprene-polystyrene
(PIP/PS) blend with M, = 2700.” In order to predict the phase behavior,
one is forced to make a choice for the basic lattice segment molecular
weight, as well as for the value for Vi,. Unfortunately, volumes and
weights of the repeat units of PIP and PS have a sizable difference (76
and 120 gram/mol, respectively), which does not fit into the lattice
model philosophy. If we take the smallest repeat unit (PIP) as the
basic segment, we arrive at a solubility parameter difference of 0.7
Vcal/ecc. From Small’s group contribution scheme we indeed obtain
Splp =8.2 and Sps =9.1.

Polymer solutions are somewhat more complicated. One of the
most investigated polymer solutions is polystyrene (PS) in cyclohex-
ane (CH) with an experimentally determined ®-temperature of
303K.8 Using a value for V|, equal to the molar volume of CH, which
is 108 cc/mol, and a value for the solubility parameter of CH of 8.2
Jeal/ce, a ®-temperature (at y = 1/2) of only 80K is predicted using Eq.
(4.2).

®-temperatures in polymer solutions are always largely under-
estimated when the FH model is used. It implies that y is predicted
too low. For a relevant description of the phase behavior of polymer
solutions at least the Huggins correction should be included. Including
this correction, Eq. (3.49), into the free energy of mixing expression
Eq. (4.1), according to the convention AG = —TAS + AH, we obtain:

2
AGm _®1 @ 1 1]
RT ~ 1 In @, + T In @y +{{1 3 + x}fbl(bz [4.5]

which can be rewritten as:

AGM (o] 0y
RT ~ o In ®; + s In ®; + (XS T](qu)z [4.6]
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and where

2
1 1
As =;{1 —";J [4.7]

v
Xh = %(61 - 89)*

Hence, a phenomenological repair of the underestimation of interac-
tion parameters is obtained by assuming that the interaction parame-
ter ¥ can be written as the sum of an entropic contribution x and an
enthalpic contribution y,/T. The entropic contribution bears in prin-
ciple relevance to the Huggins correction, but is in practice often taken
as an adjustable parameter.

Besides the fact that ®-temperatures are predicted incorrectly
by the FH model, the predicted critical concentration and coexisting
phase concentrations are usually somewhat in error as well. A possible
way to improve upon this aspect in an empirical way is to make the
interaction parameter y a function of concentration ®, as well. Such
concentration dependence is often used by Kongingsveld and Kleintjes
(KK).>! A rationale often used behind such concentration dependence
is that in general lattice coordination numbers of both polymeric
species are not equal: z| # z,. [t is assumed that the lattice coordination
number reflects the number of contacts that polymeric segments can
make with neighboring segments. In this context, the lattice coordi-
nation number is proportional to the molecular surface area o:
Z1/zg = 61/03. Defining the non-ideality factor y as 1 — o9/oy, the inter-
action parameter y can be written as:

=y 4 4.8
X=Xs 1 - Y2 [4.8]
where the term P is given an appropriate temperature dependence to
predict UCST demixing:

B= o+ o [4.9]

It was shown that such introduction of more empirical parame-
ters leads to a better matching of model and experiment.!? It is also
claimed that the factor y (difference in segmental surface areas) bears
relevance to molecular surface areas as predicted independently by
group contribution schemes, such as that of Bondi.!?

Summarizing, the FH model is capable of predicting (im)misci-
bility of simple polymeric mixtures. More precisely, it is capable of
predicting basic features of upper critical demixing in polymer blends
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and polymer solutions. The FH model, as presented in its form
described above, cannot predict lower critical demixing. How the
model should be modified to include this phenomenon as well, will be
the subject of the next paragraphs.

Finally, as discussed in detail in Chapter 3.6, polymer mixtures
and polymer solutions cannot be in general treated as true two
component systems. In practice, a polymer sample will always consist
of a mixture of different chain lengths. Assuming that energetic
interactions are independent of chain length (no end-group effects),
this affects the combinatorial entropy of mixing only. The most impor-
tant effects of polydispersity on phase behavior can be briefly summa-
rized as:'?

e The location of the binodal depends on the full molecular

weight distribution (Mn, Mw, Mz) of the constituents.

e The location of the spinodal depends on Mw exclusively.

e The location of the critical point depends on both Mz and Mw,

but not on My,.
The consequence of polydispersity is that a critical point no longer
coincides with the top (or bottom) of the phase diagram, but will in
general be shifted towards higher polymer concentrations. The effect
of polydispersity can in general be neglected when well defined model
polymers, typically with M,/M,,<1.1, are used.

4.3 EQUATION-OF-STATE MODELS

4.3.1 KEY CONCEPTS

Up to this point the problem of mixing two polymeric species was
treated as a combinatorial problem concerned with the positions of
segments on a fixed lattice, assuming a certain simple form for the
interactions between them. We did not consider yet the fact that in
reality polymer segments are not fixed to one discrete position, but
have some freedom to move around. Polymer segments (actually every
molecular component in a liquid) have some “free volume” to wander
around their equilibrium positions without being hindered by neigh-
boring segments.

In pure components, such free volume can be regarded as the
molecular driving force behind the phenomenon called thermal expan-
sion: a polymeric liquid expands when heated. Although such expan-
sion is usually smaller than for low molecular weight liquids, its
absolute value is sizable, see Table 4.1. Thermal expansivity is di-
rectly related to the Equation-of-State (EoS) behavior. An EoS is a
relation between pressure (p), volume (V) and temperature (T) inside
a liquid (or solid). See also Eq. (2.8). It is related to the free volume
and, more fundamentally, to the free energy of the liquid. There is a
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Table 4.1. Thermal expansivities of some polymers and solvents (from
Patterson et al.21)

T °C Thern;f,alle(z){(tf)?{pflv1ty,

Polymer

Polystyrene 135 5.8

Polybutadiene 25 6.9

Polyisobutylene 25 5.6

Polymethylmethacrylate 120 5.8

Polyvinylmethylether 135 7.2
Solvent

Heptane 25 12.4

Butyl acetate 55 12.1

Carbon tetrachloride 20 12.7

Benzene 25 13.8

thermodynamic driving force for volume (or pressure) change upon
temperature change at constant pressure (or constant volume).

Two polymeric melts will in general have different free volumes
or thermal expansion coefficients (Table 4.1). Since a polymer chain
in the melt i1s much more restricted in its degrees of freedom than a
solvent, a polymeric liquid will have less free volume than a typical
solvent and hence, the free volume difference between a polymer and
its solvent will be large. A much smaller, but still significant, free
volume difference between two polymeric liquids will in general exist
because of differences in chain architecture and chain flexibility.
Irrespective of constituent, two liquids of differing free volume will
experience a net volume contraction upon mixing. Such contraction
leads to an additional negative contribution to AH (favorable for
mixing), and an additional positive contribution to -TAS (unfavorable
for mixing). Recalling that AGy = AH -~ TAS, it follows that this
additional contribution becomes more unfavorable with increasing
temperature and ultimately leads to LCST demixing.

4.3.1.1 Helmholtz free energy

To understand the influence of free volume effects on the free energy
of mixing more quantitatively, we need to use the Helmholtz free
energy F. This is convenient, because F is coupled to the set of
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variables T, V, n;, which is useful set when volume changes are to be
taken into account. In addition, F is related to the partition function
of the liquid. If we know one of the thermodynamic potentials as a
function of the variables to which it corresponds, we can express all
the other thermodynamic variables as a function of this potential and
its derivatives. Hence, if we know AF, we also know AG, the latter
remaining the thermodynamic potential relevant for describing the
phase behavior. Recalling Eq. (2.6), the Helmholtz free energy F is
defined by:

F=U-TS [4.10]
It 1s related to the Gibbs free energy G by

F=G-_pV [4.11)
and the total differentials are related by:

dF =dG - pdV - Vdp [4.12]
F is related to the partition function Z by

F = —kTInZ [4.13]

1f the partition function Z is known, all the thermodynamic properties
of the system are known. This is what all EoS models do: to find
(approximate) expressions for Z for the mixture and the components,
hence to derive expressions for F and AF and, ultimately for AG to
predict the phase behavior. The EoS is defined by:

olnZ
T kT[ oV L

The tendency of a system to expand is governed by the partition
function. In practice, it is impossible to derive an exact expression for
this function for realistic systems. One works with approximate ex-
pressions (such as the FH combinatorial entropy of mixing) with some
more or less empirical parameters (such as the interaction parameter
1). Hence, the concept “EoS model” bears relevance to the following:

e Some working expression for Z is derived or assumed.

e Pure component model parameters in Z are adjusted by
fitting the experimentally determined EoS (pVT data, ther-
mal expansion coefficients) of the pure components.

®* The same expression for Z is applied in a relevant way to the
mixture. Mixture model parameters are calculated from the
pure components by applying simple mixing rules, o.a. based
on the principle of corresponding states. In this way, an

[4.14]
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expression for AG can be derived and the phase behavior can
be predicted, in general by adjusting interaction parameters.
Flory* and Prigogine'® have created the foundation to derive an
analytical approximation for Z and hence, relevant expressions for AG,
for mixing of polymeric species with non-negligible free-volume ef-
fects. It is assumed that the partition function can be separated into
a part Z, representing the translational positions of the centers of
mass of polymer segments and a part Z; representing all other degrees
of freedom, such as rotations and vibrations associated with the
covalent bonds between polymer segments. These other degrees of
freedom are generalized as “internal” degrees of freedom. We may
write:

Z = ZoZi [4.15]

It is shown'® that Eq. (4.15) is a good approximation as long as
interaction forces are of the simple dispersive type. The important
assumption is made that the free energy of mixing is determined by
Z.. exclusively, just as the intramolecular configurational entropy
term cancels in the derivation of the FH entropy of mixing expression.
Hence, it is implicitly assumed that there is no intramolecular con-
figurational change upon mixing.
The classical expression for Z,, for a system of N molecules is

fdn fde fdr, fdrne BH [4.16]

Due to the working of the Hamiltonian H (H = £p%2m + U), Z,, splits
up into the kinetic and the potential energy terms. The kinetic energy
term depends on temperature exclusively and it is absorbed in Z; (no
influence on the free energy of mixing). The potential energy term is
defined by the configurational partition function Q:

= % _(dri... fdrne-BU [4.17)

t[‘

N|h3N

which may be extended to mixtures:

fdr sdrfePU [4.18]

‘N‘

where dr!¥ is an abbreviated notation for the coordinates of the centers
of mass of the N; molecules i.
Given the fact that Egs. (4.15) and (4.16) hold, the EoS depends

on Q exclusively:
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p= kT[a In Q] [4.19]
T

ov

We can define the configurational free energy Feons:
Feont=-kT1n Q [4.20]

Only Fonrappears in the free energy of mixing. Hence, without taking
volume change upon mixing into account, we would have
pdV = Vdp = 0, so that AF = AF s = AGyy. In such case, the Helmholtz
free energy of mixing equals the Gibbs free energy of mixing. Evalu-
ation of the configurational partition function for athermal mixing of
polymers would lead exactly to the same expression as the FH combi-
natorial entropy of mixing expression, along the same lattice approach
outlined in detail in Chapter 3.

4.3.1.2 Corresponding states

Let us assume that the potential energy U is a sum of binary interac-
tions only, and that such interactions can be rePresenfed by a univer-
sal function ¢ together with two scale factors r and ¢ :

*

gr)=¢ [4.21]

5,

For one of the most used forms for dispersive forces, namely the 6-12
Lennard-Jones potential:

J\6 L\12
g) = —8'[%] + 28{%] [4.22]

the scale factors represent the coordinates of the minimum of €(r). The
configurational integral, Eq. (4.17) can now be written in terms of
reduced coordinates:

Q - I‘~3N J-d( r'la

NG ] L{:NS] exp "BS‘Z “’[’?ﬂ [4.23]
i<

Apal’:t fr01*n the factor r °N, Q depends only on the reduced quantities
kT/e", V/r'® (integration) and N. We may write:

Q= r‘BNQ‘[kT v Nj [4.24]

8* ’r‘3v

Since the configurational free energy Feo ¢ (Eq. (4.20)) is an extensive
variable, it must be of the form:
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Feont = NE(T,v) [4.25)

where f depends only on the intensive variables T and v = V/IN. We
thus obtain

N
Q= r‘”{q[l?,r\fa]] [4.26]

where q depends on intensive variables only. Defining the reduced
variables

kT - p=E— [4.27]
€ r*3

T=

the EoS, Eq. (4.19) takes the universal form:
p =p(T.v) [4.28]

Eq. (4.28) expresses the theorem of corresponding states. It implies
that the pVT behavior of simple liquids is basically the same, when
normalized on the molecular scale factors ¢ and r". The precise form
of this function depends on the potential &(r) only. Exact expressions
for the EoS of Lennard-Jones liquids or more simple hard sphere
liquids can be found e.g. in Reference 15.

4.3.1.3 Cell partition function

In any liquid, also a polymeric liquid, a regularity in the spacing
between neighboring molecules (segments) exists. This regularity is
not as perfect as in a solid where long range translational order exists.
The order in a liquid is rather short-range, with a sizable correlation
between the positions of two neighboring molecules (segments), and
hardly any correlation between molecules some 10 interatomic dis-
tances apart. Each molecule (segment) is confined to a “cell”: a virtual
cage in which the molecule can move freely. The size of this cage is
determined by the relevant intermolecular interactions.

The cell concept was already introduced in the expression for the
configurational partition function Q (Eq. (4.23)) and the corresponding
universal EoS (Eq. (4.28)), because the molecules interacted via a
Lennard-Jones potential. However, the contribution of the “cells” as
such has not yet been identified explicitly. It is useful to define a cell
partition function ‘¥ of a molecule (segment) in its cell referred to the
energy of the particle at the center of the cell. The mean energy of
interaction with neighboring particles o(r) depends only on the dis-
tance r of the molecule (segment) from the center of the cell. We can
write:
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Y =4n I exp[-P(o(r) - o(0)]r¥dr [4.29]

cell

where @(0) is the value of a(r) at the center of the cell. The configura-
tional partition function of a system of N molecules (segments) may
now be written in the form

Q = ¥YNexp(-BNw(0)) [4.30]

where No(0) is the energy of the system when all particles are at the
centers of their cells. The EoS, Eq. (4.19), can now be written as:

| 8w(0) dlog¥
p= —[——av J +kT [—av ]T [4.31]

The pressure p arises from two contributions: a potential pressure
generated by all molecules placed at the center of their cells and a
thermal pressure resulting from the motions of the molecules in the
cells. The volume v accessible to a molecule is a complicated function
of the neighboring molecules and the exact intermolecular potential.
Let v, be the hard core volume of the molecule. An exact expression
for the cell partition function ¥ can be derived when a hard sphere
interaction potential is assumed:'®

Y= i,;“y(vv-‘ - vih3 [4.32]

where y is a numerical factor which depends on the geometrical
arrangement of the molecules. For a face centered cubic lattice, y = V2.
It can be shown that if the interaction potential is of the 6-12
Lennard-Jones form, the cell partition function is of the same form as
Eq. (4.26). The hard core volume v, is related to the minimum volume
v at the minimum of the Lennard-Jones potential by:'®

*

Yo=57; [4.33]

4.3.1.4 Chain flexibility parameter

A relevant criterion for the existence of a lattice is that the mean
distance between neighboring segments is approximately the same,
whether such segments belong to the same polymer or not. Each
polymer of chain length r has 3r degrees of freedom. [ts Hamiltonian
contains contributions from intramolecular as well as intermolecular
interactions. Prigogine'® assumed that these interactions are inde-
pendent and separable. The lattice frequencies associated with inter-
molecular interactions are of the order 20 c¢cm’!, whereas the
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intramolecular frequencies (rotations, vibrations) are of the order of
several 100 cm’!. Hence, it is assumed that the 3r degrees of freedom
of an r-mer can be separated into two groups:
o The internal degrees of freedom which depend only on intra-
molecular interactions.
¢ The external degrees of freedom which depend only on
intermolecular interactions.
Again, it is assumed that only the external degrees of freedom con-
tribute to the configurational partition function and therefore to the
EoS and the free energy of mixing. For the total number of degrees of
freedom, 3r, we have:

3r =ne +n [4.34]

where n, and n; are the number of external and internal degrees of
freedom, respectively.
The number of external degrees of freedom is given by

ne = 3cr [4.35]

Equation (4.35) defines the chain flexibility parameter c (or
Prigogine ¢ parameter; 0 < ¢ < 1). It expresses the connectivity of an
r-mer:

o ¢ =0: The situation where ne = 0 and all degrees of freedom

are internal: the fully rigid chain.

e c=1: Noconnectivity at all. The behavior is identical to that

of r separate monomers: the fully flexible chain.

¢ (0 <c < 1: Realistic chain with more (c—1) or minor (¢ — 0)

degree of flexibility.

4.3.2 THE FLORY EoS THEORY

The key concepts outlined above are the foundations of EoS thermo-
dynamics. Such theory is historically associated with the names of
Flory,'* Prigogine,'® and of Flory together with various coworkers, in
particular Orwoll and Vrij. '8! Let us again consider the mixing of N;
polymers of species i (i = 1,2 for binary mixtures) with chain lengths
r;. The configurational partition function Q can be written in terms of
the cell partition function \V of the respective segments and the lattice
energy of all segments at their equilibrium positions. In the pure
components, the total number of cells amounts to Nir;. If the segments
were to be considered as uncoupled molecules rather than as con-
nected into a chain, the configurational partition function would read:

4
Q= “3£Y1(V1‘“ — vif)*Nn exp(-BEi(0)) [4.36]
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where y; is the numerical constant of component 1 that depends on the
coordination of the lattice. E;(0) is the lattice energy of all segments
at their equilibrium positions. The cell partition function in eq. 4.36
is raised to the power 3Njr;, which may be interpreted as bearing
relevance to the 3r; degrees of freedom of N; large molecules. Due to
the fact that we need to consider N; polymers with a certain chain
connectivity, rather than N; large molecules, Flory proposed that the
number of degrees of freedom becomes 3c;r; rather than 3r;. The
configurational partition function of a system of N; polymers with
chain flexibility parameter c; thus becomes:

47
Q = yi(v!" - vi) N exp(-BEi(0)) [4.37]
For a binary mixture, the configurational partition function reads:

4 . .
Q = (N1, N2 S 14t - Vi)™ exp(-BEM(0) [4.38]

Q(N,N,) is the normal FH combinatorial factor of mixing two poly-
mers on a lattice, Eq. (3.31). In the evaluation of the free energy of
mixing, AF, this term leads to the FH entropy of mixing. It is also
evaluated under the assumption that there is no intramolecular
configurational entropy change upon mixing. The yy, v, N(N; + No),
e, 'm, and Ey represent the relevant average values for the respective
parameters in the mixture. They are either predicted from appropri-
ate averaging rules or fitted by adjusting experimental phase dia-
grams or pVT data of the mixture. It is mainly in the theoretical
treatment of these parameters that various "generalized" versions of
the original Flory model differ.

The Flory model, and generalizations of it, have been reviewed
by McMaster.? Instead of deriving the lattice energy from an assumed
interaction energy, it is more simple to take a phenomenological
dependence on cell volume:

Ei(0) ~ % [4.39]

where n is an adjustable parameter, expected within a range between
1 and 1.5, based on energy of vaporization data of small molecular
weight analogues, in correspondence with the definition of the solu-
bility parameter (Chapter 2.5). The following pure component EoS is
obtained:

Pvi v 1
T v-1 Tw

[4.40]
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where
j If [4.41]
T = q;r [4.42]
vi= ;V— [4.43]

The starred quantities are parameters to be fitted from the pure
component pVT behavior. They are defined by Eq. (4.27). The EoS for
the mixture can be written in a form identical to Eq. (4.40), if the
reduction parameters P* and T" are defined as relevant averages of
the pure component parameters, and if a cross-interactional energy
parameter y, similar to the FH interaction parameter, is added.

For the most primitive Flory model, the remaining mixture pa-
rameters follow straightforwardly from the pure components:

M = Picr + Dacg [4.44]
rm = %rl + %rg [4.45]
YM =Y1=7Ye [4.46]

McMaster showed that relevant expressions for the free energy
of mixing, and the chemical potentials of each component can be
obtained so that binodals and spinodals can be computed. Using EoS
parameters of polystyrene and polyethylene, and setting the interac-
tion parameter y to zero, the EoS effects could be studied separately.
It 1s shown that in this way LCST demixing is obtained. Due to the
normal working of the FH combinatorial entropy of mixing term, the
binodal curve shifts to higher temperatures as the molecular weight
of either of the two components decreases (increasing miscibility), and
the binodal curve becomes more skewed as the difference in chain
lengths between the two components increases. It is also shown that
the free volume vy of the homogeneous mixture is always less than
that of the demixed system when the free volumes of the pure compo-
nents are different (v; # vo). In other words, LCST demixing goes
together with volume contraction.

If, in addition, a finite value for the interaction parameter y is
taken, simultaneous UCST and LCST behavior is obtained. In gen-
eral, a homogeneous one-phase region between UCST and LCST is
shown to exist. If either the free volume difference between the pure



M. van Dijk and A. Wakker 95

components, or the value of the interaction parameter, is increased,
an hour-glass shaped phase diagram appears, at the expense of a
vanishing one-phase region.

Although the approach of McMaster does show the general
LCST behavior, the relevant equations for the binodals and spinodals
are rather complicated. Alternatively, the order of magnitude of free
volume effects can be estimated using a simplified version of Flory’s
model, proposed by Patterson et al.2! All free volume contributions to
the free energy of mixing are lumped together in the the FH interac-
tion parameter y. The interaction parameter is split-up into two terms:

X = Adisp + A free [4~47]

where Xq,p 1S the purely dispersive part of the interaction parameter
(Eq. (4.2)). Ytree 18 defined by:

cv ?‘ 2

Afree = —4_'— T
2[5 - W‘]

[4.48]

where ¢ is the chain flexibility parameter, taken equal for pure
components and mixture. The reduced volume of the pure components
is simply related to their thermal expansivity o:

S . L
' 1 +[3(1 +aiT)] [449]

The characteristic free volume difference 1 is defined by
T
1=1-=2 [4.50]
T,
The reduced temperatures of component 1 and 2, respectively, are

related to the reduced volumes by the EoS:

- v%-1
T= oV

v

[4.51]

which was derived from the Flory EoS, Eq. (4.40), under the condition
n = 1 and reduced pressure P = 0 (no influence of pressure). The
temperature dependence of the free volume term ysee can now easily
be calculated from the difference in thermal expansivities of the pure
components. Using o; =5.10* K' and o, =6.10* K'! (already a sizable
difference for polymers, see Table 4.1), ¥fwe is predicted as shown in
Figure 4.1. It is positive (unfavorable for mixing) at any temperature,
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Figure 4.1. xfree as a function of temperature. (Adapted, by permission, from
A. Wakker and M. A. van Dijk, Polym. Networks & Blends, 2, 123 (1992)).

increasing smoothly with temperature. LCST demixing occurs when
Yfree €Xceeds the critical value y. defined by Eq. (3.59).

It should be emphasized that although Flory EoS theory does
predict the LCST behavior, together with UCST demixing when a
finite value for the dispersive interaction parameter is taken, none of
the existing models is fully satisfactory in describing experimental
phase diagrams. EoS models need the same approximations for the
combinatorial entropy of mixing as originally employed by Flory and
Huggins. Such entropy of mixing still makes a sizable contribution to
the free energy of mixing, although it is a very small term as such for
polymeric mixtures. In addition, so many subtle physical contribu-
tions from interaction energies and free volume effects contribute to
the free energy of mixing. Last but not least, actual compressibility
effects in mixtures are extremely sensitive to differences in pure
component EoS parameters, e.g., thermal expansion coefficients. EoS
models describing the phase behavior of mixtures could benefit from
a more accurate description of the EoS behavior of pure components.
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Such attempt was made by Walsh and Dee.???3 Based on theory
developed by Flory and Eichinger,'® an extra phenomenological term
Q is added to the cell partition function, Eq. (4.32):

4
[\ __3£Y (Vl/:x _ QV(%)3 [452]

In cell models, the cell partition function strongly depends on
the interaction potential coupled with the particular geometry em-
ployed. Therefore, the identification of a putative hard-core cell vol-
ume v, is not trivial. The introduction of an extra adjustable
parameter Q generates somewhat more flexibility to describe the local
geometry of a closed-packed polymeric liquid. The drawback is that if
this modification is physically meaningful, a unique value for Q should
be found irrespective of the particular EoS behavior of various poly-
meric liquids.

This has been investigated, again by assuming an FCC lattice
(y = ¥2). It was found that the EoS behavior of various polymers can
be described more accurately with the modified cell model than with
traditional cell models. A unique value of Q = 1.07 £ 0.02, which
provides the optimum fit irrespective of polymer, was obtained. Such
value corresponds with an approximately 25% increase in the effective
hard-core volume of the cell model. In other words, in reality there
appeared to be less free volume available for polymer segments than
expected from the potentials used.

4.3.3 HOLE MODELS

4.3.3.1 Key concepts

A special class of EoS models, of which the results are comparable
with those obtained from Flory EoS models, are the so-called hole
models. Such models are historically associated with the names of
Sanchez and Lacombe (SL),>**® and Koningsveld and Kleintjes
(KK).>' Methodology employed by both schools is basically equal. The
difference mainly comes from the fact that for the description of the
interaction parameter 3, KK employ the phenomenological approach,
in particular with regard to the concentration dependence of the
interaction parameter, as outlined in Chapter 4.2.

In hole models, compressibility is modeled by allowing empty
sites (holes) on a lattice filled with r-mers, of which every mer has a
fixed volume v". There is no cell free volume. The available free volume
is exclusively determined by the fraction of empty sites. Such theories
are also known as lattice fluid (LF) theories. Interaction energies
between holes and holes or holes and segments are set to zero. Both
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Flory and hole theories require three EoS parameters for each pure
component.

The concept behind hole models is that pressure and tempera-
ture changes cause variations in the concentrations of holes, whilst
the volume per lattice site is constant. Unlike Flory models, neither
sophisticated expressions for cell partition functions, nor chain flexi-
bility parameters, are needed. One can straightforwardly derive ex-
pressions for the Helmholtz free energy using normal FH
combinatorics for placing N molecules of chain length r and N, empty
sites on a lattice with N, + rN sites in total. The same approximations
as in the derivation of the FH combinatorial entropy of mixing are
used. The relevant expressions for the entropy of mixing ASy reads:

ASM = AScomb + ASholes [4.53]

where AS .y, i1s the usual Flory-Huggins combinatorial entropy of
mixing term (per mole of molecules)
AScomb ASFH (Dl

R =T—Tl (I>1+-r—ln(l>2 [454]

and ASj1es is the entropy of mixing holes with the two (1) polymers:

Asholes (1 —)
"R

In(1-7p)+ —p [4.55]

where p is the reduced density of the mixture, which equals the
fraction of occupied sites, and 1 — p is the fraction of vacant sites
(holes). The average chain length ry is defined by:

For the pure components, the free energy F is at a minimum and
satisfies the following EoS (p = -0F/dv):

o o
1 D ™ [4.56]
rMm I rz
%+5+T[ln{ —i]+(1-l]i}—o [4.57]
e v r)v
where the reduced volume v is defined as
-1
v== 4.58
5 [4.58]

EoS parameters p’, V" and T can be determined from a fit to experi-

mental density data.
The power of hole models is that polymeric mixtures are treated
as three component systems (two polymeric species and holes). This



M. van Dijk and A. Wakker 99

leads to relatively simple expressxons for the free energy of mixing. In
addition, relatively simple mixing rules forp’, V', and T" can be used.
The mixing rules all refer to the pure component properties of the
corresponding closed packed system (reduced density p = 1). In the SL
model, the interaction parameter can in principle be predicted from
such pure component properties, whereas in the KK model an adjust-
able phenomenological form is taken.

The general result of hole theories is that differences in EoS
properties of the pure components make a thermodynamically unfa-
vorable contribution to the free energy of mixing. This is most appar-
ent from the spinodal condition, Eq. (3.56), when it is derived when
allowance is made for empty sites on the lattice:*’

1
rid, rz(Dz

>2p {x + lPZTp B} [4.59]

where the left hand side of Eq. (4.59) comes from the FH combinatorial
entropy of mixing, py is the interaction parameter contribution and
pW2Tp B is an entropic contribution from compressibility effects. It is
a positive term, making an unfavorable contribution to the spinodal
and hence, its presence does not favor miscibility. Its working is
similar to the term yge. obtained with Patterson’s adaptation of the
Flory model (Eq. (4.48)), and LCST demixing is obtained. In addition,
the term py has the usual T! dependence and leads to UCST demixng.
It makes a positive (unfavorable) contribution to the enthalpy of
mixing.

A schematic representation of the three terms in the spinodal
condition, Eq. (4.59), is given in Figure 4.2. The parameter B repre-
sents the isothermal compressibility of the mixture, p is the charac-
teristic pressure of the mixture, T is the reduced temperature of the
mixture, and ¥ is a function of the pure component parameter differ-
ences, especially T" values, and is in general non-zero. Like in the
Flory theory, it is the difference in pure component EoS parameters
that leads to LCST demixing. Such difference leads to volume contrac-
tion, and contributes favorably to the enthalpy of mixing.

In Flory-type models, LCST demixing is modeled by cell free
volume, in hole models by empty sites. The effective result is the same.
Possibly, hole models bear less actual relevance to real polymeric
systems, due to the fact that a minimum of statistical mechanics is
used to take chain connectivity into account. There is no chain flexi-
bility parameter in hole models. The quantitative fit to experimental
phase diagrams is in general not so good. Both hole and Flory models
employ approximate EoS descriptions of the pure components. Better
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Figure 4.2. Schematic behavior of the three terms in the spinodal condition,
Eq. (4.59), as a function of temperature. Dashed curve is the sum of the two
terms on the rhs. (Adapted, by permission, from I. C. Sanchez and R. H. La-
combe, Macromolecules, 6, 1145 (1978)).

EoS descriptions of the components could produce better descriptions
of the phase behavior of actual mixtures.

4.3.3.2 Holes and Huggins

The most general EoS models are those that allow for both cell free
volume and lattice vacancies. This results in a cell free volume that
depends on environment, which is a mixture of occupied cells (seg-
ments) and holes. This has originally been done in the Simha-Som-
cynsky (S&S) theory.?*3° A modification of this model, the “Holes and
Huggins” (HH) model, was developed by Nies and coworkers.3!"3® HH
differs from S&S mainly in the sense that for the calculation of the
combinatorial entropy of mixing the Huggins correction has been
added, which should in principle raise the predictive power.

The drawback however is that the cell partition function,
through the interaction potential, now becomes a relatively complex
function of the specific lattice used and the fraction of empty sites.
Therefore, in the HH model, it is assumed that segments interact via
the 6-12 Lennard-Jones potential on a lattice with a fixed coordina-
tion number z of 12. This corresponds with a face centered cubic (FCC)
lattice, resembling a close packing of spheres. Such packing, together
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Figure 4.3. HH solid (A) and gas (B) like cells. Adapted, by permission from
E. Nies and A. Stroeks, Macromolecules, 28, 4088 (1990).

with the possibility of creating holes in it and of relaxing the cell
volume, is assumed to represent something like a disordered liquid.

Exact expressions for the cell partition function can be derived
assuming that either all adjacent sites are occupied (“solid-like”,
Figure 4.3 A) or all adjacent sites are empty (“gas like”, Figure 4.3 B).
The actual partition function can be fitted by taking a relevant
average over the two extreme conditions. Again, by defining simple
mixing rules, the number of adjustable parameters in the model can
be minimized.

The attractiveness of the HH model is that due to fact that all
possible physical features are incorporated in the theory, more com-
plicated experimental data, such as pressure dependence of binodals,
volume contraction, and enthalpy of mixing, can be predicted qualita-
tively.

4.4 SPECIFIC INTERACTION MODELS

4.4.1 KEY CONCEPTS

LCST phase separation can be caused by specific interactions as well.
In polymer blends where specific interactions play a role, LCST
demixing is expected to be dominated by such interactions rather than
by compressibility effects, because of the relatively small difference in
thermal expansivity between polymers. Unlike for compressibility
effects, specific interactions can cause interaction parameters to be-
come negative.

In contrast to dispersive interactions, where heat is consumed
upon mixing, specific interactions give rise to a heat release upon
mixing and hence, a negative (favorable) contribution to the free
energy of mixing. Specific interactions are caused by synergistic
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interaction forces between unlike polymer segments such that the
resulting interaction is stronger than the average of like-like interac-
tions. Such interactions include hydrogen bonding and Lewis acid-
base interactions.’® Although specific interactions are favored
enthalpically, they are entropically unfavorable because degrees of
freedom are “frozen in” in one specific interaction channel. This leads
to an additional entropy loss term in the free energy of mixing, which
is positive. This unfavorable entropy loss becomes more important
with increasing temperature and leads to LCST demixing.

The difficulty in incorporating the effect of specific interactions
in the free energy of mixing lies in how to quantify the local ordering
effects associated with the formation of such interactions. On a mo-
lecular level, the basis for such quantification of non-random mixing
effects has been developed by Guggenheim, the so-called quasi-chemi-
cal theory.?® The relevant expressions for the net effect on the free
energy of mixing are complicated and it is a tough task to associate
them with the phase behavior of realistic molecular liquids, let alone
polymeric liquids. The relevant theory behind the prediction of the
phase behavior of polymeric mixtures in which specific interactions
play a role is therefore relatively less mature than that behind EoS
phenomena.

We will discuss here a version of the Guggenheim quasi-chemi-
cal theory, adapted for polymeric mixtures, developed by Ten Brinke
et al.%® This model contains the essential physical ingredients to
understand why specific interactions lead to LCST demixing.

Two different monomers A and B can form a specific interaction
with energy U; <0, or a dispersive interaction with energy Uy > 0. It
is assumed that a specific interaction is formed only if the monomers
are in the same state in configuration space (for instance, a certain
orientation). If there are q different states available for each monomer,
then a specific interaction can only be formed in q ways, whereas a
dispersive interaction can be formed in q(q — 1) ways: the more degrees
of freedom a monomer has, the higher the price that has to paid for
forming a specific interaction.

Within the framework of the original FH formulation, the usual
combinatorial entropy of mixing expression is retained, and all other
contributions to the free energy of mixing (both enthalpic and en-
tropic) are lumped together in the interaction parameter. The expres-
sion for the total interaction parameter, y, excluding possible
compressibility effects, becomes:

X(T) = Xdisp(T) + Xspee(T) = %(2,q,U1,Uz,T) =
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—z [—RI—TUZ +In(-M)+1n [q; lﬂ [4.60]

where z is a lattice coordination number and A is the fraction of
directional specific interactions, defined by

1
A= [1 +q exp[g%%}] [4.61]

Note that ¥ has the property that

lim ¢(T) =0 [4.62]
T-.0

We can separate the interaction parameter y into an enthalpic com-
ponent yy and an entropic component ¥, according to:

-

xb=""37 [4.63]
_(Ty)

=757

For this model, the two components are given by

xh = (—RZ—T](}LUl + (1 = M) Uz2) = (Xh)spec + (Xh)disp [4.64]
_ q+ 1] 7»(U1—U2)}

xs = z|:ln (1 —l)+ln[ wh RT [4.65]

We defined in Eq. (4.64) a specific enthalpic interaction part
(Xn)spec = @/RT)AU, (proportional to A, the fraction specific interac-
tions) and a dispersive enthalpic interaction part (xn)aisp = @/RT)(1 -
MUg (proportional to 1 — A). The working of the model is illustrated in
Figure 4.4, where y, x5, and y; are calculated as a function of tempera-
ture for the set of parameters (U;,U,,q,z) = (-0.75 kcal/mol, 0.1
kcal/mol, 15, 4). Using the solubility parameter concept for dispersive
forces:

Uz = Via(A8)? [4.66]

and a typical value for V,: of 100 em®/mol, the value for U, corresponds
to a solubility parameter difference A5 of 1 V(cal/em®).

For this set of parameters, y is negative for T < 335K, so that a
high molecular weight polymer blend will be completely immiscible
for T < 335K. Above this temperature, LCST demixing into two phases
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Figure 4.4. The %, xs and xn as a function of temperature. (Adapted, by
permission, from A. Wakker and M. A. van Dijk, Polym. Networks & Blends,
2, 123 (1992)).

with different compositions will occur. Because the shape of the
coexistence curve of polymer blends is usually rather flat, the mixture
will still be partially miscible just above 335K, but immiscible at
higher temperatures.

Figure 4.4 also shows the entropically driven character of lower
critical demixing: At low temperature, y;, is negative and in absolute
value larger than y,, so that a stable, miscible mixture results. At
higher temperatures however, the larger entropy penalty drives the
mixture towards immiscibility.

Typical compressibility effects (Figure 4.1) are much smaller
than effects of specific interactions. Moreover, unlike specific interac-
tions, such effects do not lead to negative interaction parameters.
From such first, rough comparison, it is expected that if a polymer
mixture shows LCST demixing, there is good chance that specific
interactions dominate the phase behavior. This is even more likely
when UCST demixing is not observed.
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The implication for predicting polymer—-polymer miscibility is
that the temperature T., where 3. = x(T.) =0, is determined by the
competition between dispersive forces and specific interactions: The
larger U, (and hence, the larger x4isp), the lower T; the larger q (and
hence, the larger y,), the lower T; the larger U, (and hence, the larger
Xspec), the higher T..

In order to get quantitative insight into how U,;, U, and g
influence the location of the critical condition y. = x(T.) = 0, the
problem x(q,U;,U;,T.) = 0, which is independent of z, needs to be
solved. Such result is presented in Figure 4.5, where Ad is shown as a
function of U,, at fixed values T, = 500K and q = 15.

The x = 0 curve approaches asymptotically a certain value of
| U, 1. Beyond this value, the system is always miscible, irrespective
of A8. This “phase transition” can be understood as follows: If | U, |
increases, the fraction of specific interactions A increases, until all
interaction channels are occupied: A = 1. In the limit A—1, we have
q.exp((U; - Ug)/RT) << 1, so that

A : =1-qex (—U‘_Uz]
_1 Up-Uz) "~ 9eXP{ TRy
+ q exp RT

[4.67]

Hence

A Ui-Uy) [‘”1] U,
ilj’xix/z +ln(q) RT In p RT+1n(q+1)[468]

which is independent of U,! There is a limiting value
U; <-RT. In (q+1) (for our model mixture, -2.74 kcal/mol, Figure 4.5,
dashed line), for which there is complete miscibility independent of
Uy, because all specific interaction channels are occupied.

The dot in Figure 4.5 denotes the position of our model mixture
in “interaction space”. Evidently, the mixture can be made miscible
either by increasing | U, |, decreasing A$, or decreasing q (not shown).

In practice, both U, and g will be fixed by the chemical nature
of the specific interaction between two polymers: A hydrogen bond
may be strong or weak, more or less directional specific, etc. The
solubility parameter difference however, is in general not fixed: it can
be influenced easily by adding simple groups (-CHsy-, -CHj, -O-) to
either polymer. Consequently, polymer-polymer miscibility can be
brought about by:

* Ensuring that specific interactions between polymer A and

B segments are present.
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Figure 4.5. The AS as a function of U1 under the conditionx =0 and q = 15
(the dot denotes the corresponding location of the model mixture. (Adapted,
by permission, from A. Wakker and M. A. van Dijk, Polym. Networks &
Blends, 2, 123 (1992)).

¢ Limiting the solubility parameter difference by means of the
non-specific interaction groups, such that miscibility at a
certain processing temperature is ensured.

The influence of the choice of the critical temperature T, on the
competition between dispersive and specific interactions is shown in
Figure 4.6. The model mixture starts to become miscible between 300
and 500K, which is evident from a comparison with Figure 4.4. The
larger (-U,,A8), the stronger the temperature difference. At low values
of (-U;,A8), the temperature dependence vanishes, and dy/6T—0.
This is the same effect as the flattening of the y(T) curve in Figure 4.4.
It shifts towards lower temperatures when (~U;,A8) decreases. Hence,
in miscible mixtures in which | U;| is small, A8 must also be small,
and no correlation between solubility parameter difference and the
demixing temperature T, exists: The mixture is either completely
miscible, or not.
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Figure 4.6. Temperature dependence of the critical y = 0 curve, for q = 15.
(Adapted, by permission, from A. Wakker and M. A. van Dijk, Polym.
Networks & Blends, 2, 123 (1992)).

4.4.2 INTERACTION STRENGTHS

From the preceding section it has become clear that basically polymer-
polymer miscibility is a matter of competition between simple disper-
sion forces and specific interactions. EoS effects may further
complicate matters, but will always have a destabilizing effect and
never lead to negative interaction parameters. Although the most
general thermodynamic models will need to take into account disper-
sion forces, specific interactions, and compressibility effects as well,
let us assume here that the influence on LCST behavior of specific
interactions dominates the influence of compressibility effects.

In such case, a useful description of the phase behavior of
polymeric systems in which specific interactions play a role depends
on the ability to separate simple dispersive forces from specific inter-
action forces. In other words, what is needed is a useful prediction of
the pure dispersive part of interaction energies of model chemical
groups involved in a directional specific interaction. Some guidelines
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Table 4.2. Allowed solubility parameter difference A5 given a certain
specific interaction strength (from Coleman et al.as).

Specific interactions involved (AB)ent, V(caliem®)
Dispersive forces only 0.1
Dipole-dipole 0.5
Weak N 1.0
Moderate 1.5
Moderate to strong 2.0
Strong 2.5
Very strong 3.0

are given by Coleman, Painter and coworkers.? For purely dispersive
interactions, it is confirmed that Small’s group contribution scheme
is still the most consistent one, provided that not only molar interac-
tion energies, but also group contributions to the molar volumes based
on the same set of model compounds, are employed. In this way, when
compared to relevant experimental data, the standard error involved
in the prediction of solubility parameters of non-polar polymers
amounts to 0.2 V(cal/cm?).

It is argued that the dispersive solubility parameter of specific
interacting groups can be predicted to a reasonable extent as long as
molar group contributions from non- or weakly specific interacting
model compounds are available. For instance, the dispersive solubility
parameter of an amine group, -(C=0)-(N-H)-, should be considered as
the combination of separate C=0 and N-H contributions, derived from
non-specific interacting model compounds. The same arguments hold
for polyurethanes. In case of stronger specific interactions, in particu-
lar hydrogen bonds, the less worse strategy appears to be to com-
pletely eliminate the delocalized hydrogen atom in the hydroxyl (O-H)
group, and to employ the ether (-O-) group contribution exclusively.
In this way, a consistent solubility parameter data set of almost all
polymers, based on dispersive interactions exclusively, was estab-
lished. The interested reader is encouraged to read the book of Cole-
man, Graf and Painter 3 for more specific details.

Based upon some quantitative insight into specific interaction
strengths and actual phase diagrams of miscible polymeric systems,
a qualitative, empirical categorization of the miscibility of high mo-
lecular weight polymer mixtures was obtained, see Table 4.2. In this
table, the allowed solubility parameter difference, given a certain
interaction strength, in order to obtain a miscible system, is shown.
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It should be noted that the error in estimating solubility parameters
increases with increasing interaction strength, because of increasing
difficulty in separating both forces.

In order to make more quantitative progress in this area, it will
be necessary to predict specific interaction strengths as well as the
inevitable ordering effects associated with it, by independent means.
Spectroscopic methods are available to determine interactions
strengths. It is desirable to measure such interactions in the actual
polymer melt. Reason for this is that due to the covalent bonding of
functional groups in polymers, such groups are more restricted in their
degrees of freedom than their low molecular weight analogues. Hence,
interaction strengths, as well as associated ordering effects, are not
expected to be the same a priori.

4.4.3 GENERALIZATIONS

The most general model that one needs is a model able to predict the
phase behavior of any polymeric mixture, that is a mixture in which
simple dispersive interactions, compressibility effects as well as spe-
cific interactions are allowed to play a role. Both Flory type EoS
models and hole models can in principle be modified to allow for
specific interactions as well. To date, the most successful approach
appears to be the one of Ten Brinke, because the game is played on a
lattice, there is no complicated cell partition function, and all essential
specific interaction contributions are lumped together into the inter-
action parameter. Sanchez and Balasz®® have thus generalized the
original Sanchez-Lacombe hole model in a consistent way, which
resulted essentially in a compressible version of the Ten Brinke model.
The free energy of mixing expression reads:

_A_E _ AScomb ASholes

RT- R ' R
where AS; 1, and AS;,ges are defined by Egs. (4.54) and (4.55), respec-
tively, and p is the reduced density of the mixture. The interaction
parameter x equals the Ten Brinke specific interaction parameter
defined in Eq. (4.60). Note that if p is set to unity (no holes on the
lattice), we have AS} s = 0 and the Ten Brinke free energy of mixing
expression is recovered.

The generalized model thus obtained has been compared with
neutron scattering data from the model mixture polystyrene (PS) -
poly vinyl methyl ether (PVME), in which negative interaction pa-
rameters have been observed. The mixture has weakly polar interac-
tions, and it shows LCST demixing in a relevant temperature region.
It is shown that thanks to the introduction of the specific interaction
parameters U, and q, a relatively accurate description of the tempera-

+ px 1P [4.69]
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ture dependence of the interaction parameter is obtained. On the other
hand, the actual concentration dependence of the spinodal is deter-
mined exclusively by the chain lengths (combinatorial entropy of
mixing) and by compressibility effects. The actual fit is especially
sensitive to the choice of pure component parameters T;*. It does not
depend on specific interaction parameters whatsoever. In addition, at
the LCST critical point, the absolute contribution to the interaction
parameter of compressibility effects is sizable. The results show how
various subtle effects govern the phase behavior of this mixture. Model
results will discussed in more detail in Chapter 6.

4.5 THE (n=0) VECTOR MODEL

The Flory-Huggins theory is often referred to as a lattice theory. This
is only partly true. Strictly speaking, the only use of a lattice that is
made is in designating a fixed number of neighbors z to each polymer
or solvent segment and in prescribing a fixed amount of possible
segment positions. The longer range lattice topology does not play a
role. For example, the fact that turning left 3 times on a 2 dimensional
simple cubic lattice brings one back to the origin is not included in FH
theory. In fact, one could say that the Flory-Huggins lattice is the very
special type of lattice where no return to previous positions is possible.
Such a lattice is known as a Bethe lattice alias Caley tree. Figure 4.7
shows the 2 dimensional simple cubic equivalent Bethe lattice. It is
known that calculations on Bethe lattices reproduce the results of
mean field theory which indeed the FH theory is. Calculations on
“normal” connected lattices are much more difficult due to the long
range connectivity.

One could argue that calculations on lattices are not very inter-
esting for practical problems because 1: different lattices produce
different results and 2: the real world is a continuum anyway. Such
an argument cannot be nullified but may be weakened by noting that
for many problems the exact choice of the lattice or the use of a
continuum is irrelevant. For example, the end-to-end distance of a
random walk will always scale with the square root of the number of
steps irrespective of lattice choice or use of a continuum. The behavior
of many parameters near a critical point is independent of the choice
of the particular lattice and is described by universal critical expo-
nents that only depend on the dimensionality of the problem.

Nevertheless, for exact numerical calculations far away from
critical points and other extremities, where all the nitty gritty of the
model plays its role, the choice of the lattice is reflected in the results.
Usually it i1s manifested by one or more lattice parameters that are
used as empirical fit parameters for the comparison with experimen-
tal results.
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Figure 4.7. Two-dimensional “simple cubic” Bethe lattice.

A Flory-Huggins type model of a polymer solution on a ’true’
lattice requires chains to be treated as self-avoiding walks which is an
extremely difficult problem, not only because of the long range con-
nectivity of the lattice, but also because one has to keep track of
individual chain configurations. It has been shown that the latter
aspect of the problem may be cured by an ingenious trick. The problem
of calculating the partition function of self-avoiding walks on a lattice
is mathematically equivalent to the seemingly unrelated problem of
n-dimensional magnetic spins on a lattice in the seemingly absurd
limit of n=0. The spin problem does not inherently contain the task of
keeping track of individual chains.

We will now briefly outline the principles of the theory, which is
rather involved in its details, in order to understand the basic trick
and appreciate the building of theoretical developments that has been
constructed to exploit this idea in the area of polymer thermodynam-
ics. The theory has been introduced by de Gennes*®*' and extended
by Freed*? and coworkers.

Consider a lattice with a magnetic spins S})on each lattice site.
S}) 1s a vector with n components S;;, a=1,...,n. This is the so-called
n-vector model. The length of each spin vector is fixed:
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2 SL=n [4.70]

The spins interact with an external field R’and with spins on connected
lattice sites (nearest neighbors). The total energy of the whole system
of spins {§f} is then given by the Hamiltonian H:

H{SY) = K2, 5 - 2. B [4.71]

)] 1

K is a positive constant and [i,j] denotes nearest neighbor pairs. The
thermodynamic behavior of this model follows from the partition
function Z:

2 figpond - a7

where |di?represents integration over all possible orientations of all
spins ST The average over all possible spin orientations, with equal
weights is denoted by <>;. Thermal averages are indicated by <>
without subscript. The relationship between both averages, for any
function f({S;}) is:

<f(SHh eXp[ {g’})]
()

<f({ST})> = [4.73]

<exp

The partition function Z of Eq. 4.72 can now be expressed as:
H(Si
Z=Q <exp{— gi)})}o [4.74]

where Q is the total volume of the phase space of the spins and
irrelevant for the succeeding calculations.

The exponential in Eq. (4.74) may be expanded, using Eq. (4.71)
for the hamiltonian. This then leads to a mountain of terms containing
averages such as:

<SiaSip>0  <SiaSjpSkc>o0 [4.75]

Since the averaging is over all possible orientations and each
spin has an identical phase space, these averages may be replaced by
similar averages over one particular spin, say S. The conclusion is that
the partition function Z in Eq. (4.74) can be calculated if all averages
of the type:
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<Ba>p <SaSp>0 <SaSpSc>o [4. 76]

are known. A standard procedure to evaluate such spin averages is
the introduction of the so-called characteristic function f(k), with

=(k1,...,kn)2
fik) = <exp(i]?><s >0 [4.77]

The spin averages can be found from the coefficients of a Taylor
expansion of (k). Note that f is a function of the length k of k only,
since the averaging over all orientations cannot leave an orientation
dependence of f. So the problem of calculating Z is replaced by the
problem of calculating f(k) which is, as yet, no fundamental improve-
ment. One readily shows that the following differential equation for

f(k) applies:

&*f [n-1]of

with boundary conditions:

of
fk=0)=1 —Ak=0)=0 [4.79]

The important point here is that n lost its meaning as the number of
vector components. Eq. (4.79) may be solved for any value of n and the
solution for n = 0 turns out to be particularly simple:

fk)=1- %k? [4.80]

This result implies that all averages involving products of 3 and more
spins must vanish in the n = 0 vector model.

Now return to the expression for Z, Eq. (4.74), with R=0fora
slightly different evaluation using the above results. First we note
that:

ﬁ— <exp[ {g’b])r <H [ ’x ] >0 [4.81]

RT

The exponential is expanded and the vector product written out:

2

<l_[ l:l +5Sm RT Z SiaSip + ‘[RT] Z SlaSleJaSJb +. 0

[ij] ab
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Then the product over nearest neighbor terms [i,j] is expanded but
now we know that only those terms will survive the subsequent
averaging (<>g) process in which every S;, occurs exactly twice. The
surviving terms are thus produced from non-intersecting closed loops
of nearest neighbor bonds [i; ig] [iy i3] [ix.1 ik] [ix 1;]. Every such loop of
length N generates by the averaging process a contribution of (K/RT)N
for each of the n components. This implies that the partition function
may be written as:

Z K Nx+..,+Nk
G=1+2 2 A(Nl,-.,Nk)‘{ﬁJ [4.83]
k Ny...Ni

where A(Nj,...,Ny) is the number of ways to put k closed loops of
Ni,...,Ni bonds on the lattice without intersections. Now, the link with
polymers is slowly becoming clear as InA is the configurational en-
tropy of k closed loop self-avoiding walks of specified lengths. How-
ever, for the n = 0 vector model, Eq. (4.83) becomes:

a=1 [4.84]

which is not a very useful result. It is more interesting to consider
spin-spin correlation functions:

<SiaSip> = <SiaSibexp[— %]>o [4.85]

This may be worked out for the n = 0 model in exactly the same way
as Z was worked out. The consequence of the extra factors S, and S,
that now appear is that the surviving terms correspond to self-avoid-
ing walks from site 1 to site j (instead of closed loops). The following
basic result is derived:

N
<SiaSib> | ne0 = 2. AN(iéj)[%J [4.86]
N

where Ayn(1—)) is the total number of self-avoiding walks on the lattice
oflength N from site i tositej. Eq. (4.86) was developed by de Gennes.*!

Note that Ay refers to a single chain on the lattice. A polymer
solution or blend consists of a concentrated mixture of self-avoiding
and mutually avoiding walks. By a trick, introduced by Des
Cloizeaux,*® the latter system can also be represented by a spin
problem. If an external field R’is introduced which is directed along
one of the spin components one derives along the same ways as above:
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K

N
[ﬁj A@P.N) [4.87]

LONIES) Z[R—}}Tp

Z(O) ) pzl N20

where A(p,N) is the total number of ways to put p chains of all together
N bonds on the lattice.

Eqs. (4.86+4.87) are central results. They show that the problem
of calculation of configurational entropies of self-avoiding chains on a
lattice is mathematically equivalent to calculating spin-spin correla-
tion functions on the same lattice. The latter problem, where the
aspect of chain connectivity is lost, is much easier (but not necessarily
easy ') to solve. Furthermore this type of spin models have already
been rather intensively investigated and the above derivation allows
translation of the results to polymer thermodynamic theory.

This approach has been heavily investigated by Freed and
coworkers.***® The basic exercise is to develop variations of the above
lattice spin model that correspond to certain polymer configurational
problems. For example, Eq. (4.87) describes a polydisperse system
with uncontrolled chain length distribution. Freed noticed that it is
possible to fix the distribution by using complex valued spins (2n
components, but again in the limit n—0). Other features such as
branching, specific monomer or solvent shapes***® (all defined on the
lattice) and even interactions®® can be described by other variations
of the spin model. A diagrammatic technique has been presented to
facilitate the evaluations. Voids, giving the system compressibility,
have also been introduced.*® The quoted result for ASy in Reference
48 appears to be incorrect. A detailed discussion of these complicated
field theoretical analyses is beyond the scope of this book. Here we
shall give the main results.

1. By adequate grouping of terms in the expansions, the configu-
rational entropy can be expressed as a systematic expansion in the
reciprocal lattice coordination number z'!. The results are, in princi-
ple, exact. However, the analysis becomes extremely involved for
higher order terms so one has to rely on the assumption that the first
2 or 3 terms form a sufficient approximation.

2. The zero order term corresponds to the mean field theory and
reproduces the Flory-Huggins entropy of mixing.

3. For a polymer mixture of two polymers with respectively r,
and ro segments (lattice sites) per chain, the correction to the Flory-
Huggins entropy of mixing to first order in z* reads:

2
S = - L@ g e [4.88]
z  rfrg

For a polymer solution (r; = 1), Eq. (4.88) becomes:
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2
ASy = - 1(1 - i} D19, [4.89]
Z ry

It is interesting to note that this is exactly the Huggins correction,
Equation 3.40, which was derived 50 years ago as a rather ad hoc
correction to the mean field result.

4.6 PRISM THEORY

Another alternative to modelling the thermodynamic behavior of
polymeric mixtures by means of lattice models is to start from an
atomistic level. This is done in the Polymer Reference [nteraction Site
Model (PRISM), a very recent approach to the thermodynamics of
polymer mixtures, which in principle extends beyond the limitations
of more traditional lattice models.

PRISM theory, developed over the past years by Schweizer and
Curro,*?%8 is an off-lattice continuum theory of polymeric liquids, both
as pure phase and as mixtures. [t is based on the small molecule RISM
theory developed by Chandler and Andersen.’®%® In brief, given a
knowledge of the intramolecular structure of a single chain, PRISM
describes the packing of either like or unlike chains in the melt and
the corresponding thermodynamic behavior.

PRISM theory is based on the statistical mechanical theories of
liquids, the basis of which provide enough material to fill an entire
book %! The basis of such theory is centered around the interatomic
pair distribution function g(r,r"). It specifies the relative probability
of finding an atom at position r, given that another atom is at position
r'. In an isotropic liquid, g(r, r") is a function of the magnitude r ~ r’
only; that is, it has no angular dependence or dependence on the
absolute location in the liquid, and is generally written as g(r). At short
distances, due to the hard core repulsions between pairs of atoms, the
probability that chains overlap is zero, and g(r) vanishes. At interme-
diate distances, g(r) has a roughly oscillatory shape corresponding to
the packing of layers immediately surrounding an atom in a liquid.
At long distances, all correlations between atomic positions are lost,
so that g(r) approaches unity.

All modern liquid state theories are based on the Ornstein-
Zernike (OZ) equation:

hr)=c(®)+p J.c(r')h(r —r)dr [4.90]

In this equation, p is the number density of particles, h(r) is defined
as g(r) - 1, and c(r) is the direct correlation function. By itself, this
equation is exact but trivial in that c(r) is defined to be the function
that makes the OZ equation true. To give the equation more content,
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a closure relation must be used. The OZ equation may be expressed
more simply as follows:

h(r) = c(r) +e(®)*h(r) + c(r)*c(r) + c(r)*c(r)*c(r) + ... [4.91]

where the asterisks denote convolution integrals as in Eq. (4.90). The
first convolution on the right hand side of Eq. (4.91) represents the
direct correlation between two atoms, without interference of other
atoms. The second is the first indirect correlation, in which two atoms
interact via a third atom. The contribution of higher order indirect
correlations (hopefully) vanishes with increasing number of atoms.
The OZ equations contains two unknown functions: c(r) and h(r). To
solve it requires another equation, a closure, relating h(r) and c(r). A
closure is an approximation that allows the OZ equation to be solved.
Several closures exist,’! but the most common one is the one known
as the Mean Spherical Approximation (MSA):

h(r)=-1 r<o [4.92]
c(r) = %(B%) >a

where o is the hard core diameter of the atoms and u(r) is the potential
energy outside the hard core.

The structure made up of rigid molecules is more complicated
than that of atomic liquids, due to the loss of spherical symmetry when
two or more atoms combine to form a molecule. This loss of symmetry
implies that the pair correlation function takes on an angular distri-
bution, i.e., g(r) becomes g(r,Q,r' '), where Q and Q' are the orienta-
tional coordinates of the molecules whose centers of mass lie at r and
r', respectively. Explicit treatment of this angular dependence can be
extremely difficult.

An alternative to explicit treatment of molecular orientations is
to regard each molecule in a liquid as consisting of a number of sites,
which may be, but do not have to be, atomic centers. This simplifica-
tion comes from the assumption that interactions between sites on
different molecules are spherically symmetric in form. The liquid
structure is than described, not by means of a complicated orientation
dependent molecular pair distribution function, but by a set of site-site
pair distribution functions gup(r), where the subscripts a and p label
the type of site. This general formalism is known as Interaction Site
Model (ISM). Although the number of sites in a molecule may corre-
spond to the number of atoms, this is not essential. Depending on the
nature of the molecule, it is often useful to have fewer sites than atoms.
Forinstance, the CHz group in the polyethylene chain could be treated
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as one site. The model does than depend upon availability of suitable
united atom potentials. An ISM representation should capture enough
of the molecule’s structure and represent its interactions with other
molecules sufficiently well for the application of interest.

An ISM is called a Reference ISM, or RISM, when the sites are
treated as hard spheres, possibly with the hard sphere diameters as
adjustable parameters. Here the term, “reference” indicates that the
hard sphere system may form a mathematical reference system for a
relevant perturbation expansion. Chandler and Andersen,*®®® formu-
lated an approximate RISM integral equation theory for RISM mole-
cules. It is based on a molecular generalization of the OZ equation and
on an MSA-like closure relation. This RISM theory has proven very
successful in calculating the structures of molecular liquids. In its
overall structure, RISM theory is the same for both small molecule
and polymeric liquids. The details of the Polymer Reference Interac-
tion Site Model are discussed below.

PRISM is somewhat more difficult than RISM because both
intra and inter site-site pair correlation functions need to be treated.
The generalized OZ equation of PRISM is:

H() = J'dr' _[dr"Q(r - r)Cr' - r')[Q(r") + Hx")] [4.93]

where H(r) is the matrix of intermolecular site-site pair correlation
functions for all possible pairs of site types, C(r) is the corresponding
matrix of direct pair correlation functions, and Q(r) is the matrix of
intramolecular site-site distribution functions. The principle differ-
ence between Eq. (4.93), for polymers, and Eq. (4.90), for molecules,
is that the complete chain of direct and indirect correlations is convo-
luted with the intramolecular site-site distribution function. The
physical picture behind this is that the intramolecular arrangement
has an effect on the intermolecular arrangements and vice versa. In
other words, the chain stiffness and persistence determines the local
structure of surrounding polymers, just as unlike polymer site-site
interactions determine the actual arrangement of the individual
chain: it is a matter of competition. In this way, the complete interac-
tion balance, hence the local structure and free energy, can be calcu-
lated on a molecular scale. Precise knowledge of site-site interaction
potentials is a prerequisite here.

Because the elements in the generalized OZ Eq. (4.93) are
matrices, this “equation” is really a set of coupled equations. The
number of distinct equations is m(m+1)/2, where m is the rank of the
matrices. This rank is equal to the number of distinct site types in the
system. In this context, two sites on a chain are considered distinct if
their direct correlation functions with sites on other chains differ from
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each other. That is, sites j and k are distinct if C;(r) and Cy(r) differ,
where 1 is the index of a third site. Two sites are equivalent if these
direct correlation functions (for all 1) are the same. For example, in a
monodisperse melt of simple ring polymers, all sites are equivalent;
m is equal to 1, and the generalized OZ equation reduces to only a
single integral equation, which is easily solvable.

In a melt of linear simple chains, the situation is in principle
more complex in that sites near the chain ends are chemically different
from those in the chain interior. Treatment of such end-effects would
render the OZ equation unsolvable for practical purposes. Curro and
Schweizer make the approximation to neglect end effects, and to treat
all sites equivalent. This makes RISM theory tractable when applied
to long linear polymers. Together with the closure relation, Eq. (4.92),
now applied to the relevant site-site interactions, the set of PRISM
equations can be solved. However, a useful description of the structure
of polymeric liguids and hence, the thermodynamic behavior of mix-
tures, is only obtained when reliable site-site intra- and interatomic
interaction potentials are available.

A sizable amount of effort has been put in the prediction of the
local structure, and correlated properties, of simple polyethylene %64
Predictions can be compared with Molecular Dynamics simulations,
in which the actual potentials used are known. Most critical is a
correct description of the intramolecular structure factor Q(r). At a
large enough length scale, all chains behave gaussian, because there
is no correlation anymore between sites (unless the chain is infinitely
stiff). On shorter length scales however, actual chain stiffness, or
semi-flexibility, plays definitely a role, so that the relatively short
range local structure around segments is in principle different from
the overall structure of the liquid. Hence, in order to describe the
actual structure of already simple polymers like polyethylene cor-
rectly, such semi-flexibility has to be taken into account. Possible
methods here are for example interbpolation between the Q(r) of
rigid-rod chains and gaussian chains,®® or to employ more sophisti-
cated methods in which a limited number of torsional rotations is
allowed (such as trans-gauche conformations). The former method
leads to an adjustable parameter, namely the persistence length or
flexibility parameter, that needs to be fitted to data points, the latter
method is in principle more exact, but very time-consuming. By
employing such techniques, PRISM has been successful in predicting
the structure of polyethylene melts, when compared to molecular
dynamics simulations,% see Figure 4.8. Melting points of PE and
PTFE were predicted successfully as well.®3

Given sufficient knowledge about site-site potentials, one is in
the position to calculate various properties of melts and mixtures. In
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Figure 4.8. PRISM prediction of the radial distribution function of a
polyethylene chain with 150 units. Points are MD results®. (Adapted, by
permission, from K. G. Honnell, J. G. Curro and K. S. Schweizer, Macro-
molecules, 23, 3496 (1990)).

scattering experiments, one measures the structure factor S(k) of a
liquid, where k is the wavevector (see also Chapter 6). In the context
of PRISM theory, given the intra- and intermolecular site-site corre-
lation functions, S(k) is defined by:

S(k) = Q(k) + H(k) [4.94]
where
H(k) = J;ir exp(-ikr)H(r) [4.95]

with similar expressions for Q(k) and S(k). The attractive aspect to
work via the structure factor S(k) is that, just like for the partition
function Z, if this function is known, everything about the liquid (be
it pure component or mixture) is known as well. For instance, the
Isothermal Compressibility kr, is defined as:

1[ov
KT=- [ GPJT [4.96]

which characterizes, o0.a., the dependence of the free energy on volume
and hence, the EoS behavior of the liquid. Thermodynamically, Sck)
and Kt are related:®’

S(k) = RTpkr [4.97]

lim k-0
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Hence, extrapolation of S(k) to k=0 gives the isothermal compressibil-
ity, or equivalently, the EoS behavior, of the liquid. Along these lines,
the EoS behavior of alkanes and polyethylene could be correctly
predicted. 586

The simplest approach to liquid-liquid phase separation is to
identify it with the point of mechanical instability. This corresponds
to the spinodal point at which the scattering intensity diverges, or
equivalently, where S(k) becomes infinite at small k values. Although,
such calculations are not straightforward and the translation from
PRISM theory to actual thermodynamics of mixtures is not unambi-
guous, exact results can be obtained for certain special cases. The
"symmetric blend" (equal chain lengths N and simple dispersive
interactions) is such a case. A striking result from PRISM theory 7 is
that the UCST of such blend is found to be proportional to VN (or
critical x parameter, ¥ proportional to 1/YN) rather than the linear N
dependence predicted by FH theory, see Eq. (4.3). This result is
obtained for weakly asymmetric blends as well.

Apparently, the dependence of y. on N is reduced by a factor VN,
a factor proportional to the radius of gyration R,. In close analogy with
the correlation hole effect described by de Gennes 4 Curro and
Schweizer suggest that the effect is caused by spatial correlations
between segments within an R, distance. Consequently, the effective
interaction parameter becomes a function of R,.

It is hard to judge in how far PRISM theory will prove useful in
the more daily practice of predicting phase behavior of realistic poly-
mer mixtures. The full implications of PRISM theory and its range of
applicability are simply not known at this time, nor is the extent to
which its predictions are quantitatively reliable in general. This is to
a certain extent due to the general lack of reliable united atom
potentials and the difficulty of routinely calculating the intramolacu-
lar structure of polymer chains. Which brings us, indirectly, back to
the “good-old” lattice model: pretty smart after all?
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Chapter 5

COMPUTER SIMULATIONS

5.1 INTRODUCTION

The traditional way of progress in modern science has been through
the interplay between experimental results and analytical theories. A
physical model of the system was translated into a set of mathematical
equations and from then on the solution of the problem was basically
a matter of mathematical skills. The development of new theories and
better models was restricted by what could mathematically be solved.
Originally the mathematics were done with pencil and paper and
cunning manipulation of equations. The advent of computers gave rise
to a very much increased capability to solve complex equations by
numerical algorithms. In principle, any problem that can be trans-
lated into a set of mathematical equations can be solved numerically.
This brought the translation of nature in a model and a model into a
set of equations back into focus. Particularly for those systems in
nature that are so complex that a translation into a finite set of
equations involves large approximations.

The development of fast computers gave rise to a whole new area
of science: computer simulations. The idea now is to translate the
complex system of nature into a simplified, well-defined but still
complex model system. The behavior of this model system is then
simulated with a computer program. From the vast amount of data
generated by the simulations, several, usually averaged, properties
are extracted. These properties mimic the corresponding experimen-
tally measurable properties of the original system in nature. Experi-
ments test the validity of our simplified (solvable) models and the
approximations involved. Computer simulations allow us to go one
step further and to test the validity of the complex (unsolvable) model
from which the simplified model was derived by comparing experi-
mental and simulated properties. Computer simulations also allow
testing the validity of the approximations involved in deriving the
simplified model by comparing simulated and calculated properties.'
This is illustrated in Figure 5.1.

As an example, consider a polymeric melt. The melt is pictured
as a mixture of chains on a 3 dimensional cubic lattice. This is already
a large approximation but still constitutes a very complex model. By
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Figure 5.1. Relations between theoretical models, computer simulations,
and experiment.

making suitable further approximations (such as treating the chains
as ideal random walks), we may derive a model which can be solved
and from which properties (e.g., diffusion constants, densities) may be
calculated. The lattice model of the polymer melt can also be studied
with computer simulations. In this way one finds the properties of the
lattice model. By comparing experimental data with simulated and
calculated values it is possible to assess which part of the deviations
is due to the use of a lattice model and which part is due to the
approximations involved in deriving the simplified model.

Another possible use of computer simulations is in what one
could call hybrid theories. These are analytical theories that use some
quantities that can only be calculated by means of computer simula-
tions (e.g., the number of self-avoiding walks of length 50). This
quantity plays the role of an empirical parameter in the final theoreti-
cal expressions.

This chapter has been arranged as follows. First some basic
statistical mechanics results will be discussed. Statistical mechanics
play a crucial role in the interpretation of computer simulations. Then
the two most important types of computer simulations: molecular
dynamics and Monte Carlo simulations are discussed. Finally, in the
Section 5.6, the simulation of the thermodynamic behavior of poly-
meric systems is surveyed.
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5.2 COMPUTER SIMULATIONS
AND STATISTICAL MECHANICS

5.2.1 INTRODUCTION

Statistical mechanics®® provides tools to relate detailed information
on the microscopic states of a system to macroscopic properties.
Computer simulations can be used to generate the microscopic data.

The thermodynamic state of a system is defined by a small
number of quantities such as the number of particles N, pressure P,
and temperature T. The microscopic state of the system is defined by
a very large number of quantities; for example the 6N numbers that
describe position and momentum of each particle. These 6N numbers
form a 6N dimensional space where each microscopic state corre-
sponds to one point X in this so-called phase space.

The instantaneous value of some property C is a function of the
phase space coordinate X: C(X). As the system evolves in time, X
changes and hence also the value of P. If C(X) is known (from
statistical mechanics) and X(t) is obtained from a computer simulation
of the system over a certain time interval ) then the time averaged
value <C> can be calculated.

A practical system (N ~ 10%%) will always be much larger than
the relatively small system that one is able to simulate (N ~ 10%%). In
a sense one could say that the practical system consists of a very large
number of these small systems where each sub-system may be on a
different phase space coordinate. An average property of the large
system can therefore be seen as the average of the property over a
large number of sub-systems. A collection of sub-systems is called an
ensemble. The collection of points that form the ensemble wanders
through phase space with time. If one observes the trajectory of an
ensemble long enough one will see that some points are visited more
often than other points. The points are distributed according to a
probability density P(X). This function is determined by the choice of
fixed thermodynamic parameters (e.g., N,V,T or N,P,T). This proce-
dure of following the time evolution of one particular ensemble to
obtain P(X) is only valid if all points in phase space that are compatible
with the thermodynamic (N,P,T,V) constraints will indeed be visited
by the wandering ensemble. Such a system is called ergodic. It is very
difficult to prove that a system is ergodic but one generally believes
that most systems are. Non-ergodic systems may be constructed but
they are usually pathological.

If the ergodic condition is fulfilled, one could also construct the
phase space probability density by considering a large number of
(randomly chosen) sub-systems as suggested by Gibbs. One may then
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replace time averages by ensemble averages which is often more
convenient from a computational point of view.

The purpose of computer simulations is to generate a repre-
sentative number of phase space ensembles so that the probability
distribution P(X) can be determined. The usual strategy is to generate
an initial state of the system which is hopefully not too far from
equilibrium. The system is then allowed to evolve over a succession of
states. In molecular dynamics simulations, this succession of states is
generated by the true equations of motion and creates a true time
trajectory in phase space. Other techniques, such as Monte Carlo
simulations use entirely different recipes which may not have any
physical interpretation at all but are compatible with the thermody-
namic constraints. Whatever the algorithm, there are always two
(related) questions to be asked: 1. what is the effect of the choice of
initial conditions on the results and 2. has a sufficiently large and
representative part of phase space been explored in the limited num-
ber of steps of the simulation. It is extremely difficult to prove that
this is the case. One generally creates confidence in the results by
doing several simulations with different initial conditions and show-
ing that the relevant properties are constant.

As discussed above, the phase space probability density P(X)
depends on the choice of fixed thermodynamic parameters. The most
used choices are:

1. fixed N,V, and E (the so-called microcanonical ensemble)

2. fixed N,V, and T (the canonical ensemble)

3. fixed N,P, and T (the isobaric isothermal ensemble) and

4. fixed chemical potential u, V, and T (the grand canonical

ensemble)

Before discussing these ensembles and their relation to thermo-
dynamic quantities in some more detail we will first derive the
so-called Boltzmann distribution law. First, because it is an important
result and second because it gives an idea of the sort of mathematics
that is involved in the derivation of the subsequent results which we
shall give without proof.

5.2.2 THE BOLTZMANN DISTRIBUTION

Consider a system of N non-interacting particles in contact with
a heat bath at temperature T. The volume V is fixed. In fact, this
corresponds to the canonical ensemble of an ideal gas. The tempera-
ture T defines the total energy E of the system. Each particle has
energy levels E|, E,,... etc. As the particles are non-interacting, these
energy levels are unaffected by the presence of other particles. Let the
particles be distributed over these energy levels, such that N; particles
are at energy level E;. The notion of energy levels is natural to
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quantum mechanics, where the volume V would typically determine
the spacing of the energy levels. In classical mechanics, there are no
discrete energy levels. One may however set up a similar reasoning
by subdividing the energy scale in (infinitesimally small) energy band
dE;. For clarity, we will consider discrete energy levels here. Constant
number of particles N and energy E implies:

> Ni=N 2 NE=E [5.1]

Since everything has been conveniently discretized now, we may
use combinatorial algebra to calculate the number of ways in which
the N particles can be divided over the energy levels. A particular
distribution with N; particles at energy level E; can be realized in W,
different ways:

N! N!
T NiINgL.Nit.. H Nj!
i

W, [5.2]

The most probable distribution (assuming equal weight for each
state) corresponds to the maximum of W, under the constraints of Eq.
(5.1). This maximum can be worked out, using Lagrange multipliers.®
The result is the Boltzmann distribution law:

N e E
i e kT
N~ q [5.3]
where q, given by:
El
q= Z e kT [56.4]

is called the particle partition function. The temperature originally
entered the derivation as an undefined constant which could be
associated with temperature by comparison of the computed average
energy with the average kinetic energy of an ideal gas.

It can be shown® that the probability distribution around this
most probable distribution is extremely small so that the average and
most probable distributions may be considered identical.

The Boltzmann distribution describes how the particles will
divide among the energy levels if the system is left alone and the
particles are able to access all available levels. The distribution is the
result of the trade off between maximum entropy, which would imply
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uniform distribution over the energy levels and the requirement of
constant energy.

The particle partition function q plays an important role. Knowl-
edge of q(N,T,E) enables calculation of all relevant thermodynamic
properties. For example, the average energy per particle <E> is given

by:

<E> [5.5]

) 2 NiE; ) kTZ[a In q]
2N, ;

aT
This example also shows that the absolute value of q is irrele-
vant. The thermodynamics of the system is determined by how q
depends on the thermodynamic parameters.

5.2.3 ENSEMBLES

The microcanonical ensemble is the set of systems with fixed number
of particles N, volume V, and total energy E. The principle of equal a
priori probabilities implies that each realization of the system is
equally probable. This in turn implies that the probability of finding
one particular realization X is given by:

1

P& = QNVE

[5.6]

where Qnvy is the so-called partition function of the microcanonical
ensemble. Qnvg is the total number of possible states of the system
with total energy H(X) = E. H is the hamiltonian of the system and
includes kinetic as well as potential energies. The logarithm of Q is
proportional to the entropy S of the system:

S = k In Qnve [56.7]

The canonical ensemble is the set of systems with fixed N, V,
and temperature T and is more closely related to experimental sys-
tems. It can be regarded as a large number of subsystems which are
connected by walls that allow passage of (thermal) energy but not of
particles. The whole (infinite) system has a constant energy E. The
value of E determines the temperature T. All sub systems are identical
and thus have the same set of allowed values of total energy E;. The
problem of calculating the most probable realization of the system is
mathematically similar to that treated in the derivation of the
Boltzmann distribution. Hence, the probability of finding a realization
X; with total energy H(X)) is given by:
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HX)

N o & kT
PXi = Quvt [5.8]

where Qnvr 1s the partition function of the canonical ensemble:

Qavr =2, e‘% [5.9]

X,

The corresponding thermodynamic function is the Helmholtz free
energy F:

F = -kTIn Q nvT [6.10]

In the isothermal-isobaric ensemble, the volume V is not fixed and
enters the list of quantities (in addition to the momenta and positions
of the particles) describing the state of the system. The partition
function Qnpr is now given by:

Qupr = 2, 2 e HPVAT %" o PVAT Qo [5.11]
X Vv v

The corresponding thermodynamic function is the Gibbs free energy
G:

G = kT In Qupr [5.12]

Finally, in the grand canonical ensemble the number of particles N is
variable. The grand canonical partition function Qv is given by:

QuVT = Z Z e (H-pN)/kT _ Z epN/kT QNVT [5.13]
X N N

and the corresponding thermodynamic function is given by:

PV
k—T =In Quvr [5.14]

The summations in the above equations are assumed to take due note
of the indistinguishability of the particles: n; particles on position A,
ny particles on position B on the one hand and ny particles on position
A, n, particles on position B on the other, are considered identical
states and are counted only once. The summations also suggest that
the amount of possible states is finite. According to quantum mechan-
ics, the system has discrete energy levels and the allowed states are
countable. In the quasi classical expression for Q, the summation is
replaced by an integral over all 6N positions r and momenta p:
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Jdrdp [5.15]

Q=2-

N
” N'h

The integration is over all 6N coordinates, the indistinguishability of
the N particles is explicitly taken into account by the factor N!, which
i1s the number of (indistinguishable) ways to distribute N particles
over N coordinates. The somewhat mysterious presence of Planck’s
constant h is to allow a correct treatment of the ideal gas, which serves
as a calibration point between classical and quantum mechanics.

The total energy H(X) of a classical system can always be
expressed as a sum of kinetic (p-dependent) and potential (r-depend-
ent) contributions. This allows the partition function integrals of Qv
and Qnpr to be written as a product of kinetic (K) and potential (Up)
terms. For example:

Qnvr = N‘ N ,[dp e kT ,[dr e~ Un/kT [5.186]
For a system without interactions (U, = 0) one obtains:

Qnvr = [dp e R [5.17]

NthN
On the other hand, such a system is by definition an ideal gas. The
partition function Qi of an ideal gas can be obtained from quantum
mechanics:

3N/,
2nmkT| * VN
n ] N [5.18]

Indeed, with K = (p? + p3 + p3)/2m per particle with mass m, Eq. (5.17)
gives the ideal gas result Eq. (2.18).

The partition function may thus be written as the product of an
ideal gas contribution Q'ﬁVT and an excess part QR

Qnvr = Qifvr + Qv [5.19]
with:

QRvr = ox I dr e” UrkT [5.20]

Instead of Q°%, one often uses the so-called configurational integral
ZNVT3

ZNVT = Idr e~ VOVkT [5.21]
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5.3 MOLECULAR DYNAMICS

Molecular dynamics (MD) finds its inspiration in the spirit of Laplace
who stated that if shape, position, and velocity of all atoms of a system
were known, the development of the system with time can be calcu-
lated. From the full description of the behavior of the system, macro-
scopic properties, such as density, cohesive energy, and specific heat
may be extracted. A molecular dynamics simulation thus provides the
link between a microscopic picture of the system (atoms and force
fields) and its macroscopic physical properties.

Unfortunately, full scale molecular dynamics simulations of
polymeric materials are still far beyond the horizon of computational
possibilities. To illustrate this, consider a polyethylene chain with a
very modest molecular weight of 60 kg/mole. Such a chain has an
unperturbed radius of gyration of about 10 nm. Por a reasonable
simulation we would at least need a volume of 10° nm®. Such a volume
element contains about 40,000 CH, groups and hence about
N = 120,000 atoms. This tiny little volume element thus contains
about 10" (N(N - 1)/2) atom-atom pair interactions. So even if we me
assume that the effects of the electrons are averaged out (Born-Op-
penheimer approximation) and that only pair interactions contnbute
to the net force on any atom, we would need to calculate 10" force
components per time step.

This brings us to the next complication: the time scale. Our
polymer chain of about 4,300 segments has a reptation diffusion
coefficient which is of the order’ of 50 nm?%s. This means that the
polymer will take about 2 seconds to reptate over a distance of its own
size (10 nm). On the other hand, a polymer liquid is a dense system
and one needs to repeat the force calculation after a very short period
of time. An indication of the maximum time integration step can be
obtained from typical phonon vibration frequencies which are of the
order® of 10'2 Hz. We would thus need time steps less than 1013

So, in order to simulate a system with the size of a 60 kg/mol PE
coil (10 nm) over a period of time which is relevant for macroscopic
relaxation processes (1 sec) one would need to calculate about 10%
interactions. A hyper computer with a rating of 100 GFlops (10"
floating point operations per second) would need hundreds of centu-
ries to do this.

So much for full scale molecular dynamics of polymeric systems.
Itis clear that polymers, being large and slow are the most unsuitable
molecules for MD simulations on earth. For MD simulations to become
feasible, one or more additional approximations must be made. Exam-
ples are: use smaller chains (N of the order of 10%), short range
interactions (e.g., only nearest neighbors) and lumped groups (e.g.,
treat -CHs- as one particle). Furthermore, some problems do not need
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simulations over macroscopic time intervals. Examples are: the diffu-
sion of a small molecule through a polymer, local chain dynamics and
melting and crystallization behavior.

For polymer thermodynamic problems, MD simulations are
rarely used. Again, because of the relatively small part of phase space
that is sampled during a simulation.

5.4 MONTE CARLO SIMULATIONS

Monte Carlo methods provide a way to estimate partition functions
without having to perform the full integration. This may be illustrated
by the classical example of estimating .

The area of one quadrant of a circle with radius 1 is #/4. Which
can be calculated by numerical integration:

1
n/4= f (1 - x*"dx [5.22]
0

using Simpson’s rule. Alternatively, one could generate a large num-
ber of randomly chosen values x; and y;between 0 and 1 and calculate
the fraction of values for which (1 - x%)'? < y,. This is the fraction of
points that fall under the circle, see Figure 5.2.

The power of the latter method is that after a relatively small
number of function evaluations one already has a crude estimate of
7 while brute force integration requires sequential evaluation of the
entire function. For a simple one dimensional integration as in Eq.
(5.1) this is not a problem but for the multi-dimensional partition
function integrals brute force integration is unfeasible. In such a case,
the Monte Carlo method is a very useful approach.

The configurational partition function of the canonical ensemble
Znvt could be estimated by generating a large number K of randomly
chosen configurations X. For each configuration the potential energy
Up(X) is calculated and Zyyr follows from:

K
N
ZNvt = Vf 2. e Us®/T [5.23]
-1

For dense systems such as liquids, this method requires an extremely
large number of configurations to be generated. This is because the
overwhelming majority of configurations will contain overlapping
molecules. These configurations contribute virtually nothing to the
partition sum (overlap of electron clouds means very high U,(X) and
thus very small Boltzmann factor in Eq. (5.23)).
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0

0 1

Figure 5.2. Monte Carlo approach to measuring the value of n/4 as the
fraction of randomly chosen points that fall within the circle.

This complication can be circumvented by a ’less random’ choice
of configurations. In these so-called importance sampling techniques,
only those “random” configurations are constructed that contribute
significantly to the partition function. The principle of the method
(also known as the Metropolis® algorithm) is as follows.

First a starting configuration is constructed. Then the following
sequence of steps is executed:

1. A random departure of the configuration is chosen, for exam-
ple by moving one or more particles.

2. The energy difference AU, between the new and the old
configuration is calculated: AU, = Us*™ — U9

3. If AU, <0, the new configuration is 'accepted’. If AU}, > 0, the
new configuration is accepted with a probability exp(-AU/kT).

4. The procedure starts again at step 1 with the new configura-
tion if it was accepted or the old configuration if the new one was not
accepted in the step 3.

These sequence of trials is repeated many times until equilib-
rium is reached. The criterion could be that the total energy of the
system becomes constant, apart from fluctuations. Then step 1 to 4
are repeated again many times and each accepted configuration is
counted as one contribution to the configurational partition sum.

The trick is that this method generates a chain of configurations
that automatically have a Boltzmann distribution of energies. Stated
differently: instead of choosing configurations randomly and weight-
ing them with the Boltzmann factor, configurations are chosen with
a probability given by the Boltzmann factor and weighted equally. The
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two most important (related) concerns of the method are: is the system
ergodic such that all configurations are potentially sampled and what
is the influence of the particular choice of the initial configuration?
These concerns are usually tackled by repeating the Monte Carlo
simulations with different initial configurations and showing that the
results are the same.

Molecular dynamics simulations also generate a chain of con-
figurations which have a Boltzmann distribution of energies. The
main advantage of Monte Carlo methods is that the successive con-
figurations may be much “further apart”. Phase space is sampled with
seven-leagers which diminishes the danger of sampling too small a
phase space volume. The price that is paid is that time has no meaning
anymore.

The above discussion was dealing with the canonical ensemble.
Similar methods can be formulated for other ensembles. For systems
involving phase equilibria, there is the complication of the interface
between the two phases. This is circumvented by the so-called Gibbs
Monte Carlo method.'® The method uses two separate simulation
boxes with a total fixed volumes V = V| + V; and fixed total number
of particles N = N; + N,. Standard Monte Carlo simulations are
executed simultaneously in both boxes. In addition there are combined
attempted volume changes in which one box changes with a volume
AV while the other box changes in the opposite direction (-AV) so as
to keep the total volume constant. There are also attempted moves of
an arbitrary particle from one box, where it is distracted to a random
point in the other box. Both volume changes and particle transitions
are accepted or rejected according to the standard Metropolis algo-
rithm.

The volume and number of particles in each box change during
this process from the arbitrary initial configuration to one that is
characteristic of the two coexisting phases. In equilibrium, the pres-
sure and chemical potentials are equal in both simulation boxes.

5.5 SIMULATION OF SMALL SYSTEMS

Computer simulations are always limited to a finite number N of
interacting species (atoms, groups of atoms, molecules). The storage
capacity of the computer may impose limits on N. Also, a simulation
requires the calculation of the ~N? interaction energies and forces for
each time step. The speed of the computer thus also imposes limits on
the size N of the system. Many ingenious tricks have been developed
to reduce the number of explicit calculations. Nevertheless, the speed
of the computer is usually the limiting factor for the size N that can
be managed.
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Figure 5.3. Periodic boundary conditions imposed on the central simulation
box.

Two important complications of using finite size systems are: 1.
surface effects of the boundaries and 2. interaction potentials that
extend over the entire system. These problems are usually tackled by
1. applying periodic boundary conditions and 2. cutting off the poten-
tials.

5.5.1 PERIODIC BOUNDARY CONDITIONS

Imposing periodic boundary conditions implies that the simulation
box, say a square, containing the particles is replicated to form a small
lattice of 9 identical boxes, see Figure 5.3. Imagine a molecule leaves
the simulation box through, say, the right edge. Then its image in the
box at the left edge of the simulation box, also leaves its box and enters
the simulation box through the left edge. In this way a quasi contin-
uum is simulated.

Usually, a spherical cut-off of the potential is applied where the
maximum interaction distance is halfthe physical size L of the system.

Other tricks must be used when dealing with long range forces
such as electrostatic interactions. Although some unwanted effects of
periodic boundary conditions have been observed, particularly mani-
festation of anisotropy in isotropic systems,11 the common experience
is that periodic boundary conditions have little effect on the equilib-
rium thermodynamic properties.! For high molecular weight poly-
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mers that may leave and re-enter the simulation box, complications
may occur.

5.6 SIMULATIONS OF POLYMERIC SYSTEMS

Computer simulations of polymeric systems with a focus on the typical
sorts of problems covered in this book are almost exclusively Monte
Carlo simulations. A broad distinction can be made between simula-
tions of a single chain (in a solvent) and simulations of a more or less
dense system of many chains. Another broad distinction can be made
between simulations on a lattice and simulations in a continuum.

5.6.1 SINGLE CHAIN SIMULATIONS

The computationally most simple simulations are single chain simu-
lations on a lattice. The total number of configurations on a lattice 1s
a finite number which greatly facilitates the statistics.

One of the first Monte Carlo studies of the configurations of a
'restricted random walk’ (the term self-avoiding walk (SAW) still had
to be invented, the notion is the same: no crossing or doubling back)
on a lattice is due to Rosenbluth and Rosenbluth'? in 1955. Their
procedure of generating and weighting SAWs is still used today. The
method will be illustrated on a 2 dimensional cubic lattice but can
straightforwardly be applied to any lattice. A self-avoiding walk of N
segments is build as follows: 1. the first link is placed from the origin
to (x,y) = (1,0) and the chain is given a weight W = 1. For the second
link there are 3 possibilities and one is chosen at random. This process
continues until a situation occurs where one of the three options is
occupied by a previously filled-in position. Then one of the n (0<n<2)
remaining possibilities is picked at random and the weight of the
polymer chain is multiplied by n/3. This process is repeated until N
segments have been placed. The resulting chain with characteristics
such as the end-to-end distance, number of interchain contacts, per-
sistence length, ete. is counted with its calculated weight in the final
statistical averaging of a large number of chains. A chain that ends-up
in a situation where all options are occupied is terminated and ignored
(W = 0). Figure 5.4 shows an example of 13 segment SAW with its
corresponding weight and also of a chain that is trapped.

Rosenbluth and Rosenbluth calculated end-to-end distances R,
and the total number of possible SAW configurations, using this
method. They found the scaling relations R, = A NY and Qgaw = B zN
with:

A=0988 v=0.725 B=0.713 z' =2.661 in 2 dimensions and

A=1 v=061 B=0.292 7z =4.705 in 3 dimensions.
These values are very close to modern estimates. Half a year earlier,
Wall, Hiller, and Wheeler'? published a similar study, though using
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Figure 5.4. Example of the weighing of a 13 segment self-avoiding walk
configuration (left) and a trapped configuration with zero weight (right).

a somewhat different technique for generating the chains. Another
difference was that in the latter study bond angles on the cubic lattice
were always 90°. They found an exponent v =0.61 for both a cubic and
a tetrahedral lattice, in perfect agreement with the results of Rosen-
bluth and Rosenbluth.

Since then, a large number of Monte Carlo type computer simu-
lation studies of the behavior of a single chain have been published.

5.6.2 SIMULATIONS OF MANY CHAINS

Many authors have used Monte Carlo simulations to asses the validity
of the Flory-Huggins theory and its corrections. The Flory-Huggins
expression for the free energy of mixing has been derived on a lattice
though the role of the lattice is very limited as discussed in Chapter
3. For this reason and ease of computation most Monte Carlo studies
in this field have also been conducted on a lattice. Particular attention
has been paid to the combinatorial entropy term of an athermal
polymer solution. Such a solution is modeled as a collection of self and
mutually avoiding chains. The volume fraction of the polymer deter-
mines the fraction of sites occupied by polymer segments. The remain-
ing sites may be seen as solvent molecules but equally well as
vacancies or free volume. In this sense there is a correspondence
between the critical solution temperature of the polymer solution and
the critical (liquid-vapor) point of the polymer.

One of the first studies of this kind was conducted by Bellemans
and de Vos!® in 1973. A 3 dimensional simple cubic lattice was filled
with N self and mutually avoiding chains of r segments until a fraction
@ of the lattice sites was occupied by chain segments. Then the system
was subjected to random Brownian motion for a certain period. The
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system configuration at the end of this process was sampled by
random trials to insert another (randomly generated) chain into the
system (removing 'solvent’ segments). A successful trial is one in
which none of the new segments overlap with existing chain segments.
Clearly, the number of trials needed to obtain a successful trial
increases horrendously for ®—1. These methods turn out to be only
practical for ®© < 0.8. One thus obtains a Monte Carlo estimate for the
insertion probability Pj,s of an extra chain which may be compared
with theoretical expressions.

In the mean field model the insertion probability of r segments
is simply the product of the insertion probabilities of 1 segment which
in turn is simply given by the fraction (1 — ®) of unoccupied sites:

Pur=(1-®) [5.24]

In Chapter 3, the so-called Huggins correction was discussed

(see Eq. (3.41)) which, to a certain extent, accounts for the correlation

in site occupancies due to the connected character of the polymer

chains. The “Huggins corrected” insertion probability Py is given by:
r-1

r

Pac=(1- @) [5.25]

r—;(r—l)d)

which is always larger than Pyp.

Bellemans and de Vos found that for their systems of 6, 10, 20,
and 30-mers, Pyc is a good approximation and significantly better
than Pyr. As a by-product these authors also evaluated the mean
square end-to-end distance <RZ> of the r-mers as a function of ®. They
found that the quantity <RZ,(®)>/<R%,(0)> decreases almost linearly
with @, steeper with larger n. They made the rough fit:

<RZ(D)>

~1-0.04n""® + ... 5.26
<RL(0)> [5.26]

As discussed in Chapter 3, one would expect that for ®—0, the
chains behave as self avoiding random walks, i.e, Ree ~ n’¢, while for
®—>1, the chains should behave as random walks, i.e, Ree ~ n°%.

Consequently:

<R&(1)> |
s xn

<R%(0)> (5.27]

with a = 0.2. Lack of data at @ close to 1 prohibits testing of this
prediction but the right trend is indeed observed. In a later paper, the
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same authors!® reported on a more detailed Monte Carlo study of the
scaling behavior of <r®> with the number of bonds n, using a more
efficient algorithm. They found for the extrapolation ®—1:

<l'2> - (1.20i0.03)n1'07510'010 [528]

Admitting that the chains considered may be too short (n < 30), this
result was seen as an indication that the chains are not ideal and the
intra- and intermolecular interactions do not exactly balance each
other.

Later, Wall and Seitz'® found that bulk (®->1) polymer dimen-
sions were very well described by what was called second order
random walks. These are random walks without immediate self-re-
versal (loops of two bonds). They argue that indeed chain lengths n<30
are insufficient to observe n—»o behavior.

A rotational isomeric state model of a polymer chain was used
by Curro!” in an early Monte Carlo study of the chain configuration
as a function of chain density. The chain segments interacted via hard
sphere potentials. At low concentrations, the chains are isolated. Since
there are only hard sphere potentials this is equivalent to an athermal
solvent. It was shown that when the chains start to overlap, the
average chain dimension drops sharply to what Curro refers to as the
random flight result.

Even in 1982, the issue of the Flory theorem about the ideality
of chains in the bulk is still alive. Olaj and Lantschbauer'® developed
a novel technique that enabled Monte Carlo simulations of systems
with ® = 1 (without extrapolation). This was achieved by allowing
relaxation processes that involve breaking and combining chains. The
price to pay is that a monodisperse (single chain length) system cannot
be used. This need not be a serious problem as practical polymeric
systems are always polydisperse and the polydispersity is relatively
small. The simulations (n = 50) gave a quite convincing demonstration
that indeed bulk polymer chains behave as random walks.

Okamoto'® made an interesting comparison between insertion
probabilities found in lattice systems as compared to continuum
systems. It was found that Pyc performed better than Pyr in lattice
systems. Interestingly, the reverse was true for continuum systems.
Here the mean field expression was better. It must be noted that the
study was restricted to 4, 5, and 6 mers in dilute and semi dilute
concentrations.

Cifra et al.?’ studied the distribution of interactions in 2 dimen-
sional binary polymer mixtures. The authors observed from their
Monte Carlo simulations that even in athermal blends, the mean field
theory overestimates the number of unlike contacts. This is attributed
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to the chain connectivities with effectively lead to screening of the
interactions. This effect is particularly strong in 2 dimensional sys-
tems. As expected, the number of unlike contacts increases in case of
favorable A-B interactions and decreases in case of unfavorable A-B
interactions, i.¢., respectively negative and positive exchange energy.

An extensive comparison of lattice theories with Monte Carlo
simulations have been made by Madden et al.?! The standard Flory
theory was found to give good results at high volume fractions but a
poor prediction of the critical temperature. Good agreement was found
with extended mean field theories related to the n = 0 vector model*
(see Chapter 4).

Sariban and Binder?® made a study of the critical properties of
lattice polymer fluids. They used a symmetric system (both polymers
equally long) which allows transformation of a chain into a chain of
the other type as potential Monte Carlo moves (in a grand canonical
ensemble). An intriguing observation in this study is that the radii of
the minority component chains were systematically smaller than the
radii of the majority component along the coexistence curve.

Many interesting results have already been obtained from simu-
lations of polymeric systems. A few of them have been discussed above.
Nevertheless we believe it is save to say that the simulation tech-
niques of realistic (chemically detailed and high molecular weight)
polymeric systems have not yet reached a mature status. A major
obstacle still is that realistic polymer liquids contain very large chains
with a high density. Both aspects make Monte Carlo moves difficult.
A large portion of the efforts in this area is therefore focused on
developing better sampling techniques. Recent examples are the
configurational bias technique®* and extensions® and the calculation
of 'segmental’ chemical potentials.*® As these methods develop and
computers become faster, we will see a growing number of valuable
contributions to polymer science from computer simulations.
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Chapter 6

EXPERIMENTAL FINDINGS

6.1 INTRODUCTION

In this section we will discuss experimental techniques and results as
well as the validation of thermodynamic model descriptions related to
the molecular miscibility of polymer solutions and high molecular
weight polymer mixtures. The so-called compatible mixtures, which
are actually immiscible or (semi-) crystalline but macroscopically
homogenized using appropriate processing or compatibilization tech-
niques, will not be discussed, because we want to keep the arguments
limited to the thermodynamic miscibility on a molecular scale. Hence,
we will present and discuss mainly those experimental techniques
that are quantitatively related to the thermodynamic phase behavior
of polymeric mixtures, in particular scattering techniques. For a more
complete overview on compatible mixtures and related experimental
techniques the interested reader may want to study Olabisi et al.!

In everyday practice of polymer blending, immiscibility or par-
tial miscibility is perhaps of more relevance than miscibility. This is
because the relevant mechanical properties of blends are enhanced
mainly through phase separated domains which, with the aid of
appropriate processing technologies, may transform into molecularly
aligned and reinforced structures. On the other hand, molecular
miscibility is relevant with regard to the control of translucency of
films or the control of glass transition temperatures when impact is
an issue. A basic understanding of thermodynamics as well as dynam-
ics of phase-separation is a prerequisite to control of relevant parame-
ters that determine the ultimate domain size and morphology of
partially miscible or even immiscible blends. Such understanding is
undoubtfully useful as well for the control of polymerization processes
in solution. Hence, we trust that the more fundamental thermody-
namic approach fits a purpose.

6.2 EXPERIMENTAL TECHNIQUES

6.2.1 SCATTERING TECHNIQUES

The most direct way to measure the thermodynamic miscibility of
polymer solutions or mixtures is via scattering techniques, namely

145
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light, neutron, or X-ray scattering. The underlying reason is that such
scattering is caused by microscopic concentration fluctuations in a
mixture. Let us assume that we have a microscope with a sufficiently
large magnification to actually “see” polymer chains moving in a
mixture of, for example, red and yellow chains. At low magnification,
the mixture will look orange: there is a homogeneous distribution of
the chains, and an average, “orange” concentration <c> is seen. At
sufficiently large magnifications however, we will observe red and
vellow spots that are continuously moving around, thereby changing
in size and shape. We will observe that spots of one color grow, shrink,
and even disappear in favor of the other color: there appears to be a
well defined equilibrium. This equilibrium is a thermodynamic equi-
librium. In a thermodynamically miscible mixture, concentration
fluctuations grow because of random thermal motion of the polymers.
But the free energy of mixing, favoring molecular miscibility of the
red and yellow species, acts as a restoring force, preventing the
fluctuations from growing too large. This equilibrium is described in
a quantitative way in the fluctuation theory of Einstein and
Smoluchowski.>* This theory links the probability distribution of
concentration fluctuations dc to the free energy curvature:

1

<5¢?> = kpT —————
B 2AGw/ac?

[6.1]

This equation states that the smaller the free energy curvature (with
respect to concentration), the smaller the restoring force, the larger
the (mean square average of) concentration fluctuations, and vice
versa.

Note that Eq. (6.1) has a solution only if the free energy curva-
ture with respect to concentration is positive. In other words, the
mixture should be either in the stable or the metastable state. As
discussed in detail in Chapter 2, if the thermodynamic state of a
mixture is stable, not only the free energy curvature around the
average concentration <c> is positive, but the free energy itself is at
a minimum at <c¢>. In the stable state, the mixture is thermodynami-
cally miscible and in the homogeneous one-phase region. In this
region, the free energy curvature can be measured directly via scat-
tering techniques, allowing comparison with theoretical model predic-
tions. It will be shown below that in the special case of a stable dilute
polymer solution, scattering allows determination of radii of gyration,
molecular weights, and osmotic second virial coefficients, via which
the Flory-Huggins interaction parameter x can be determined.

Eq. (6.1) is also valid if the thermodynamic state of the mixture
is metastable, that is, if the concentration <c¢> and/or pressure p or
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temperature T are such that the mixture is in between the binodal
and the spinodal curve. In the case of mixtures, this state is perhaps
best characterized as “supersaturated”. For example, a tube filled with
a metastable dilute polymer solution would loock quite homogeneous,
transparent and therefore thermodynamically miscible. A bit of shak-
ing would render the mixture completely “cloudy” and after a few
seconds, a cloudy polymer-rich phase would appear at the bottom and
a transparent solvent-rich phase would appear at the top of the tube.
This example illustrates the essence of metastability: although the
free energy curvature is positive around <c>, the free energy itself is
not at a minimum at <c>. Coexisting phases with compositions ' and
¢ exist such that the total free energy is lower than the free energy
at <c>, see also Figure 2.1.

Although, the principle of metastability states that a more stable
thermodynamic state exists, it does not specify how this situation will
be reached. This is a matter of mechanics rather than thermodynam-
ics. The actual mechanism is that of nucleation and growth, which is
the process of generating within the metastable phase the initial
nuclei of the more stable coexisting phase. In principle, these nuclei
can be formed in two ways. In the homogeneous way, there is a small,
but finite, possibility that a random concentration fluctuation around
<c> has sufficient amplitude to activate the mixture over the free
energy barrier separating the coexisting phases with concentrations
' and c!!, see Figure 2.1. Note that the probability of nucleation
increases strongly with the degree of supersaturation, because the
free energy curvature evaluates to zero when the spinodal curve is
approached, thereby causing an enormous increase (even a divergence
at the spinodal) of concentration fluctuations.

In the heterogeneous way, the necessary activation energy is
brought about by external factors such as inhomogeneities, contami-
nations, surface structure of walls, external energy input (shaking),
etc. Once one or more nuclei are formed, irrespective of whether these
are homo- or heterogeneous, free energy is lowered locally and phase
separation phenomena will proceed until macroscopic phase separa-
tion 1s reached and the mixture is in thermodynamic equilibrium.
Phase separation in the metastable region via the nucleation and
growth mechanism forms the basis of cloud point measurements, to
be discussed below.

Some special consideration should be given to the loci of points
where the second derivative of the free energy evaluates to zero, the
spinodal. As discussed above, when the spinodal is approached from
the metastable phase, concentration fluctuations increase until phase
separation sets in via the nucleation and growth mechanism. These
enhanced concentration fluctuations lead to an enormous increase of
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the scattering intensity close to the spinodal, the so-called critical
opalescence,’ a phenomenon that is common to all types of mixtures,
not necessarily polymeric mixtures. Critical opalescence makes spi-
nodals experimentally accessible. This increase (and ultimately, di-
vergence) of scattering intensity can already be a sizable effect even
in the miscible stable state if binodal and spinodal are not too far
removed. The effect is strongest under critical conditions, that is,
when the spinodal is approached in that area of the phase diagram
where binodal and spinodal come together, the critical point.

Note that at the point where binodal and spinodal come together
(see also Figure 2.1) there is no metastable region. Phase stability
directly swaps from stable (positive free energy curvature) to unstable
(negative free energy curvature). Hence, the critical point is the only
point in the phase diagram via which the unstable region is experi-
mentally accessible without interference of the nucleation and growth
mechanism of the metastable region. In the unstable region there is
no restoring force for concentration fluctuations: they continue to grow
throughout the mixture without any free energy penalty interfering.
Most interesting is the early stage of this growth mechanism, called
spinodal decomposition. It will be shown below that mechanical laws
prescribe that in the unstable phase concentration fluctuations in-
itially develop as sinusoidal modulations with a well-defined wave-
length. In other words, in a binary mixture a very regular and
interwoven two-phase structure develops. In polymeric mixtures, the
time scale of such development is relatively slow and experimentally
accessible. The regularity of the structure depends on the exact
location in the unstable phase, i.e., the distance from the spinodal.
Hence, spinodal decomposition is in principle another method to
determine the location of the critical point and, under well defined
quenching conditions, the spinodal curve, as will be discussed in more
detail below. In the later stage of spinodal decomposition, the modu-
lated structure coarsens to a more dispersed structure. Obviously, the
final stage is the stable equilibrium stage, where full macroscopic
phase separation has developed.

6.2.1.1 Cloud point methods

The nucleation and growth mechanism is the basis of a simple scat-
tering technique employed in the study of polymeric phase behavior,
namely the cloud point technique. A stable homogeneous mixture,
either a polymer solution or a polymer mixture, is transparent. Ther-
modynamic mixing implies that polymers and/or solvent are mixed on
a molecular scale, so that the refractive index for visible light is
homogeneous on a microscopic level. Given a homogeneous mixture,
the metastable region can be entered by changing temperature, pres-
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sure, or composition of the mixture. Then there is a finite probability
that the nucleation and growth mechanism sets and a two phase
structure develops. [f the mixture is asymmetric (low concentration of
component A and high concentration of component B), droplets of
A-rich phase will grow in a matrix of B-rich phase. Once these droplets
have grown to the same order of magnitude as the wavelength of
visible light (400 = 800 nm), the refractive index difference between
the two phases becomes important and the mixture becomes turbid,
less transparent or “cloudy”. In the case of a more symmetric mixture,
a more interwoven structure develops, but a cloudy state develops in
a similar manner. The cloud point corresponds to the transition from
the transparent to the cloudy state. It depends on experimental
conditions. In general, a higher degree of metastability (supersatura-
tion) can be obtained at relatively high cooling’/heating rate. There-
fore, if the cloud point is to represent the real binodal in the case of
binary mixtures, experiments at various temperature-pressure-com-
position variation rates need to be done and extrapolation to the state
of zero rate is to be preferred. Disappearance of the cloud point upon
reversal of the temperature-pressure-composition variation should be
observed as well. If appearance and disappearance of the cloud point
coincide upon a full cycle, one is certain that a thermodynamically
relevant binodal point is determined.

Due to the relatively low viscosity of dilute polymer solutions,
cloud point measurements on such systems are fairly easy and there-
fore often reported. Binodals of what is probably the most studied
model polymer solution, polystyrene (PS) in cyclohexane (CH) are
shown in Figure 6.1, after Saeki et al.® To obtain such results, several
solutions were prepared in the concentration range from 1% to 25%
PS and flame sealed under dry nitrogen gas in cylindrical glass
cuvettes. A glass sphere was inserted in each cuvette to stir the
solution with the aim of inducing heterogeneous nucleation. With the
aid of a simple He-Ne laser beam (see below) and by extremely slow
variation of temperature cloud points could be determined with an
accuracy of 0.05 degrees. Note that both phase separation upon cooling
(Upper Critical Solution Temperature, UCST) and phase separation
upon heating (Lower Critical Solution Temperature, LCST) are ob-
served. Note also that the phase diagrams are skewed towards the
polymer poor phase and that this skewness increases with molecular
weight, as predicted by Flory-Huggins theory, see also Eq. 3.58.

The critical reader may wonder which factors determine the
actual concentration range investigated. Although, the ranges may
differ from mixture to mixture, there are some general comments to
be made. There is virtually no limitation on the low concentration side.
If one has a sufficiently strong laser beam, one is able to detect even
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Figure 6.1. Phase diagrams (cloud point curves) of polystyrene in cyclohex-
ane for polystyrene of indicated molecular weight. Adapted, by permission
from S. Saeki, N. Kuwahara, S. Konno, and M. Kaneko, Macromolecules,
6, 246 (1973)).

the slightest change in refractive index even in an extremely dilute
polymer solution. There is however a limitation on the high concen-
tration side. One has to realize that already at relatively low polymer
concentrations, polymers start to “overlap” each other. Physics behind
such overlap is described by de Gennes.” For the present purpose it is
sufficient to know that the concentration at which chains overlap is a
function of molecular weight and interaction parameter, and is in
magnitude similar (but not necessarily equal) to the critical concen-
tration of the solution. Hence, in the high concentration range (larger
than typically 10% for relatively low molecular weights and 1% for
high molecular weights), mixtures are far above their respective
overlap concentrations. They are in the “gel” state. Due to the connec-
tivity of polymer chains, the viscosity becomes very large and the
mixture becomes less transparent due to the refractive index contrast
between the large polymeric network and the solvent. Due to the high
viscosity of the mixture the nucleation and growth mechanism be-
comes extremely slow and difficult to distinguish from already turbid
stable phase. The lower the viscosity (and hence, molecular weight),
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Figure 6.2. Cloud point curves of polypropylacrylate (A), polybutylacrylate
(B), and polypentylacrylate (C) with PVC. (Adapted, by permission, from
C.K. Sham and D. Walsh, Polymer, 28, 957 (1987)).

the larger the concentration range that can be investigated, see Figure
6.1.

In the rare case that high molecular weight polymeric mixtures
have a relevant region of thermodynamic miscibility, their high vis-
cosity makes it difficult to determine the location of cloud point curves.
Actually, the relatively slow kinetics in these mixtures makes it
difficult to assess whether the mixture is in a thermodynamic equilib-
rium state at all. Hence, the preparation route of high molecular
weight model polymer mixtures is essential. A reliable route, often
used, is to cast a thin film of mixture from a common good solvent.
The film is put in a hot-stage oven allowing observation of phase
separation phenomena with the aid of a microscope or a laser beam.
Various temperature cycles are carried out and cloud points are
recorded. A result of such an experiment is given in Figure 6.2.
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6.2.1.2 Spinodal decomposition

In the case of phase separation in the unstable phase there is no
restoring force for concentration fluctuations. This is associated with
the peculiar phase separating mechanism called spinodal decomposi-
tion (SD). It is a consequence of the mechanical laws behind micro-
scopic concentration fluctuations of a certain amplitude and length
scale around an average value <c>. The relevant microscopic diffusion
equations were solved by Cahn.? The linearized solution describes the
time and wavevector dependence of concentration fluctuations 8c(q,t)
in terms of a general local free energy expansion around <c>:

dc(q,t) = 6c(q,t=0) exp (Re(@)t) (6.2]

where the relaxation rate of concentration fluctuations R, is given by:

\"
R«(q) = —-Mapq?® a;f: + 2kq? [6.3]

Mg is the mobility between polymers A and B, q = 2n/A is the
wavevector of the spatial composition fluctuations with wavelength
A. The term 2kq® (with k an unknown positive constant) can be
regarded as the free energy penalty that has to be paid for microscopic
concentration fluctuations around the average value <c> anywhere,
but locally in the mixture. GV is the free energy per unit volume. Note
that in the thermodynamic limit q—0 local contributions to the free
energy should disappear. This is indeed the case, because in this limit
the term 2xq” can be neglected compared to &*G"/3¢? and the macro-
scopic diffusion equation

Re(q) = -Dagq® [6.4]

isrecovered. The phenomenological diffusion coefficient Dp is defined

by:

FGY
ac?

Dar = Mag [6.5]

In the stable or metastable region of phase diagram, °G"/ac? is
positive. Consequently, R.(q) is always negative and infinitesimal
fluctuations cannot grow, but rather decay on a time scale given by
R(q)". In the unstable region, FGVIoctis negative and hence there will
be always a positive R(q) for some value of q smaller than a critical
value q.. Therefore, any infinitesimal fluctuation with wavevector
q<q.can grow at a rate R,(q), which will lead to a decay into the phase
separated state via a special topological configuration. By setting Eq.
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Figure 6.3. Typical shape of R(q) versus q.

(6.3) equal to zero it followed that any fluctuation with wavevector
q%<q? = (1/2x)3*GV/5¢? can grow. By differentiating Eq. (6.3) with
respect to q it follows that R.(q) has a maximum at
p__ 1 &G

4x e

[6.6]

Qmax 18 the wavevector for which R.(q) grows most rapidly. The value
of R; at Qmax is:

2
ZGV
R(qmaw = Maz [a J [6.7]

8 | dc?

Note that qmax is controlled by thermodynamics only whereas
R(qmax) also depends on mobility Mag. A typical shape of the func-
tion R(q) versus q is shown in Figure 6.3

The crucial point in SD is that the diffusion coefficient Dyp 1is
negative (and thus, R(q) positive) in the unstable region of the phase
diagram, which causes the amplification of long wavelength fluctua-
tions (Cahn characterized SD as “uphill diffusion”). At shorter wave-
lengths (larger q values) the amplification is increasingly more
compensated for by the gradient term —2kMgq®, which gives rise to
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the distinct maximum R(qya,). Thus, the existence of a specific wave-
length qunay, at which concentration fluctuations increase most rap-
idly, can be interpreted as a wavevector dependent competition
between a thermodynamic driving force, by which particles A and B
move against their respective concentration gradients, and a restoring
force resulting from these gradients as in “ordinary” diffusion.

Preferential amplification of concentration fluctuations at qpay
leads to a topological structure which is typical for SD, namely a
three-dimensional cocontinuous interpenetrating network of an
A-rich and an A-poor phase separated by typical distances of Agax,
provided that volume fractions of A and or B phase are not lower than
some 15%.

The linearized theory of SD is only valid at short times. At larger
time scales, more higher order effects become important and the
description given above fails. The so called “late stage growth” of SD
is not yet fully understood. Nevertheless, also in case of SD the final
stage is macroscopic phase separation into the thermodynamic equi-
librium state. Hence, the growing cocontinuous structure will gradu-
ally change into a more coarse coalescing droplet type structure and
in the end two macroscopic phases will be left.

Dynamics of SD can be studied by rapidly quenching a sample,
e.g., a polymer blend prepared as a thin film, from a temperature in
the stable state to a temperature in the unstable state and measuring
the time development of the scattered intensity directly from the start
of the quench. It is expected that after a certain period of time a
distinct scattering maximum will appear and grow at a rate propor-
tional to R(q). This process can be measured by continuously probing
the angular dependence (and therefore the q dependence, see also
below) of the scattered intensity as the SD mechanism proceeds. For
example, from a study of Hashimoto et al.,'® it was found that in a
PS/PVME blend a maximum may grow without changes its position
for about 1 hour, see Figure 6.4.

The interesting consequence of the SD technique is that thermo-
dynamic quantities defined in Eq. 6.7 can be determined directly using
a set of relatively simple quenching experiments.

6.2.1.3 Light scattering

In the quantitative study of the thermodynamics of polymeric mix-
tures scattering techniques are essential. As indicated above, the
scattering mechanism directly probes concentration fluctuations and
therefore free energy curvature. We will present the general mecha-
nisms behind light scattering here. Most of these will also be applica-
ble to neutron- and X-ray scattering. In a typical light scattering
experiment, a monochromatic laser beam passes through a medium
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Figure 6.4. Change of the scattered intensity profiles with time during a
course of SD in a PS/PVME blend. (Adapted, by permission, from T. Hashi-
moto, J. Kumaki, and H. Kawai, Macromolecules, 16, 641 (1983)).

with dielectric constant €, This medium can be any substance that can
be polarized. The physical idea is that the laser light induces an
oscillating dipole field in the medium so that radiation will be emitted,
which causes a (usually small) attenuation of the primary beam. By
looking at the average scattering intensity as a function of the direc-
tion in which the light is scattered, information on spatial interference
effects between the local dipoles induced in the medium is obtained.
In other words, one can look at spatial correlations which have
dimensions in the order of the wavelength of the laser light, which is
typically in the order of 500 nm. In the special case of a dilute polymer
solution for instance, the scattering pattern is related to the size of
single polymer coils.

The scattering intensity will fluctuate very rapidly due to the
thermal motion of the molecules. If detection is fast enough the time
dependence of such fluctuation can be studied. In particular, by
measuring the so-called autocorrelation function of the scattercd
intensity, one can determine in how far the light scattering pattern is
correlated in time, which means that one can measure the probability
of a particle (or polymer segment) to be at a certain place at time zero,
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it will still be at the same place a certain time later. For mixtures this
is actually a method to measure diffusion coefficients.!!

To become more quantitative, we have to study the electromag-
netic Maxwell equations that govern the physics behind the scattering
process. We consider the usual geometry for the light scattered from
a cylindrical cuvette, where the incident beam is vertically polarized
and the light is detected in the horizontal plane perpendicular to the
polarization vector of the incident beam. In this geometry, light is
scattered from a macroscopic volume V which is the intersection of the
primary laser beam and the opening angle of a detector. Light is
scattered from this volume in all directions (in a full solid angle 4).
The general formula for the angle and time dependent scattering
intensity 1(q(®),t) is given by:!213

I(q(®) = % <3e(q)*>1o [6.8]

where K is defined by:

4
1 ([2n i)
K= Tex? (TJ T 16.9]

I, is the intensity of the primary laser beam and R is the distance from
the macroscopic scattering volume to the detector. Formally, V is the
volume element associated with the fluctuation in the dielectric con-
stant 8¢. The A* term in Eq. (6.9), A denoting the wavelength of the
light, e.g., 514 nm, is peculiar for light scattering and comes from the
nature of the Maxwell equations. It specifies that blue light is scat-
tered much more intensely than red light: it causes the blue colors of
the skies and oceans. In polymer mixtures, it causes the initial
"bluish" haziness that can be observed in case of phase separation in
the very early stage when the nuclei are still very small. In the later
stage of nucleation and growth, when the amount and size of phase
separating domains has grown, the so-called multiple scattering ef-
fects become important and generate a more wavelength independent
scattering pattern: the mixture becomes white and turbid.

In Eq. (6.8), q(®) denotes the wavevector change in the scattering
event:

q= 2qisil{g} = 2% sin(%] [6.10]

where q; = 2n/A; is the wavevector of the incident beam. This is the
Bragg condition for scattering, which is valid for all scattering mecha-
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nisms (light, neutron, X-ray). It exactly specifies the wavevector q that
gives rise to scattering at an angle ©.

A practical quantity used in light scattering is the Rayleigh ratio
R(g), which is defined as the ratio of the scattered intensity to the
primary beam intensity multiplied by R¥/V:

2
R = O - Kv<te(@® 6.11)

R(q) denotes the scattering intensity per unit volume, scattered in a
unit solid angle in the direction ® and its dimension is meter!. It is
directly related to the turbidity 1, which is the total scattering inten-
sity taken over the complete solid angle Q:

v = ] 400, $)R(a(©))sin’@) [6.12]

where the sin®(¢) term comes form the symmetry of the dipole radia-
tion tensor.'*!3 If the molecular weight of the solution is low (simple
solutions, no polymers) and in the stable phase of the phase diagram
(no long range correlations), the spatial correlation length of fluctua-
tions is negligibly small compared to the wavelength of the laser light
and the Rayleigh ratio has no angular dependence. It is isotropic with
a value R,. In this case it can be shown that Eq. (6.12) simplifies to:

(8m)
=80

3 R, [6.13]

If the turbidity t is sufficiently large, a sizable attenuation of
both incident and scattered light may result. Let’s take the typical
experimental set-up in which scattering takes place at the center of a
cylindrical cuvette with diameter d. Before entering the scattering
volume, the scattering intensity will be attenuated by a factor
exp(-1d/2). On leaving the cuvette, the now scattered light will be
attenuated by the same factor. Hence, a measured Rayleigh ratio R,
is related to the real Rayleigh ratio R by:

Rm =R exp(-—d) [6.14]

For cxample, the “scattering length” 1! amounts to 3 km for pure
benzene and 10 m for a 1% polymer solution in benzene.!* With a
typical diameter of about 10 mm, such attenuation is negligibly small,
so that “true” Rayleigh ratios can be measured. However, when the
metastable region or even unstable region of phase diagram sd is
approached, turbidity effects become important, as will be shown in
more detail in Section 6.3.
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In a mixture, fluctuations in the dielectric constant € are coupled
to fluctuations in concentration ¢ and density p:

<6g(q)2> = -aﬁ 2<6cz> + [&:J2<8 >4 @ [agj<5 dc> [6.15]
e p. P dc 9P )

In polymeric mixtures and solutions the contribution from den-
sity fluctuations is usually much smaller than that from concentration
fluctuations. In addition, the contrast factor de/dc is orders of magni-
tude larger than 0e/0p because of the large difference in dielectric
constant between the consituents. Therefore, in practice the contribu-
tion from density fluctuations can be neglected or corrected for as a
small background term. The expression for the Rayleigh ratio now
becomes:

88 2
R(q) KV( j <dc(q)*> [6.16]
The dielectric constant € is related to the refractive index n:

. . e 0
g=n’% o¢=256n%=2ndn, [—6;] = 21\[52] [6.17]

The expression for the Rayleigh ratio thus becomes:
o 01 2
R(q) = KV4n e <Sc(q)“> [6.18]

This equation is connected to Eq. (6.1), which relates the mean-square
value of concentration fluctuations <8¢?> with the free energy curva-
ture. The following thermodynamic limit is obtained:

lim <8c(q)?> = <6c®> = kBT[azAG] [6.19]
g->0 ac

which gives:
lim R(q) = R(0) = KV4n? kB 62A2G' [6.20]
q-0 ac

Since the free energy curvature is associated with the volume element
V, Eq. (6.20) can be rewritten as:

2 24V
R(0) = Kdn' [an] kBT[a GAS’ J [6.21]
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where AG" is the free energy per unit volume. Hence, by extrapolating
the scattered intensity to zero scattering angle (zero wavevector), the
free energy curvature is determined quantitatively, allowing for com-
parison with theoretical model predictions.

Eq. (6.21) is generally valid, irrespective of the concentration or
phase stability of the mixture. However, a useful extrapolation to zero
scattering angle is needed. To describe the angular dependence the
static structure factor S(q) is defined:

R(a®))
R(q(0))

Obviously, S(q=0)=1.

For dilute polymer solutions all angular dependence of S(q)
comes from the interference within single polymer chains, and in that
case S(q) reduces to the single particle structure factor (sometimes
also referred to as form factor) P(q):!*

S(q) = [6.22]

S(@=P@=1- §<R§>zq2 + [6.23]

where R, is the radius of gyration of a single polymer chain. This
description is not valid for more concentrated solutions where polymer
coils overlap and interact.

It can be seen form Eq. (6.21) that the zero-angle Rayleigh ratio
diverges when the curvature of the free energy surface becomes zero
(which defines the spinodal). In the case the spinodal is approached
from the metastable phase of the phase diagram, this phenomenon is
well-known as critical opalescence.’® It is accompanied by long range
concentration fluctuations with wavelength &, because the thermody-
namic restoring force for these fluctuations vanishes close to the
spinodal. Hence, close to spinodals the structure factor must be
described in terms of long range correlations rather than as a single
particle form factor. An analytical expression for the structure factor
S(q) close to spinodals has been derived by Ornstein and Zernike:®

1

Tﬁqu [6.24]

S(q) =

Note that in expanded form Egs. (6.24) and (6.23) have the same
q-dependence provided that q is not too large. This implies that in the
relevant q-range any S(q), either single particle or more long range in
nature, can be written in the Lorentzian profile of Eq. (6.24).
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6.2.1.4 Dilute polymer solutions
In the special case of dilute polymer solutions, Eq. (6.21) can be written
in a simplified analytical form allowing direct comparison with Flory-
Huggins type thermodynamic models. At low concentrations, the free
energy curvature can be expanded:*®
1 PAGY Na ( 1

T o =" M—w + 2Agc + J [6.25]

where A, is the osmotic second virial coefficient. Substitution of Eq.
(6.25) into (6.21) gives the following relation:

K*C 1
R(O) = M—w + 2A2c [6.26]
where K’ is defined as:
2
. 4n? on
K’ = T n? [a—c] [6.27]

Hence, from a relevant extrapolation to zero scattering angle weight-
average molecular weight M,, and virial coefficient A, in dilute poly-
mer solutions can be determined. Refractive index n and refractive
index increment on/oc can be determined independently using differ-
ential refractometry.!® The extrapolation to zero scattering angle is
obtained by introducing the single particle form factor P(q) (Eq. (6.23))
into Eq. (6.21):
K'C 1 2 2
R@ = ROP@ =" [1 - 5<RE>a ] [6.28]
— + 2AqcC
W

The relevant q range is chosen in such a way that quz << 1 and the
higher moments in the form factor can be neglected. In this particular
case, Eq. (6.26) obtains the following g-dependence:

K‘C 1 <R2>z 2
__1 oo 4+ —— B2 6.2
R(0) - My + 2Agc + M., q [6.29]
which can also be written as:
K'¢ 1 <R&>,| , 6AMy
— = —_— 6.30
RO) My ' 3My [ TR, © [6.30]

It is a useful procedure to make a plot of K'c¢/R(q) versus ¢*+ (con-
stant) x ¢, the so called Zimm-plot, where (constant) can be chosen
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Figure 6.5. Zimm plot of polytetrahydrofuran in iso-propanol. (Adapted, by
permission, from M.B. Huglin, Light scattering from polymer solu-
tions, Academic, NY, 1972).

equal to the coefficient in Eq. (6.30), but can also be chosen arbitrary.
As a matter of fact, (constant) will in practice be chosen such that the
plot gives a grid of straight lines, both at constant ¢ and q2. It is the
experimental task to measure the scattering intensity at various low
concentrations and scattering angles, such that extrapolations to
q = 0 and ¢ = 0 are possible. The following parameters can be deter-
mined from a standard Zimm-analysis:

My, = intercept (q = 0,c = 0), <RZ>, = 3M,, slope (c=0) [6.31]

A= % slope (q = 0)

A typical example of a Zimm-plot is shown in Figure 6.5. In this
particular case, data were obtained under ® conditions, so that Ay = 0.

6.2.1.5 Neutron scattering
Although the light scattering technique appeared useful in the inves-
tigation of polymer solutions, draw-back is that it requires a dust-free
sample preparation procedure to allow for an accurate and quantita-
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tive extraction procedure from scattered intensity to free energy
curvature. Such procedure is difficult to employ in the preparation of
relatively high viscosity polymer blend samples. The neutron labeling
technique (see below) proved a useful alternative here and hence
SANS, although more intricate (and expensive ') than light scattering,
is commonly used to study the thermodynamic behavior of high
molecular weight polymeric mixtures.

There is no fundamental difference between light- and neutron
scattering. When properly used, both methods give quantitative infor-
mation on free energy curvature through the zero-angle scattering
intensity. A relation similar to Eq. (6.21) is also obtained with neutron
scattering. Main difference between both methods is basically in the
proportionality constants in Eq. (6.21). In light scattering the electro-
magnetic field is coupled with concentration fluctuations via the
dielectric constant of the medium or, in other words, the polarizability
of polymer segments. In the case of neutron scattering, the relevant
interaction is of the neutron-nucleus type. This leads to some technical
differences.

The source for light scattering is normally a (relatively simple)
laser, with a typical (monochromatic) wavelength in the range of
500-600 nm. Neutrons however come from a more complicated source
such as a nuclear reactor or a particle accelerator. Such neutrons are
thermal in nature and have a wavelength in the range 0.5-5 nm, orders
of magnitude shorter than laser light. In the investigation of high
molecular weight polymeric mixtures the full angular scattering
range between 20° and, e.g., 160° from the forward direction is used
in light scattering in order to obtain a useful wavevector range (see
Eq. (6.10)) and hence an extrapolation to zero scattering angle. Since
the neutron wavevector is orders of magnitude larger than that of
light, the angular scattering range investigated in neutron scattering
needs to be orders of magnitude smaller to cover the same scattering
vector range, relevant for polymeric systems, as in light scattering.
Hence, scattered neutrons are normally detected in a small scattering
range between a few tenths of degrees to a few degrees from the
forward direction only. Such technique is referred to as Small Angle
Neutron Scattering (SANS).

The magnitude of the relevant neutron-nucleus interaction is
characterized by a so-called coherent scattering cross-section o (di-
mension m?), which is related to a coherent scattering length b:

o = 4nb? [6.32]

To a first approximation this scattering process may be regarded as a
collision between two billiard balls, and the cross-section may be
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regarded as the effective area that the target nucleus presents to the
incident beam of neutrons for the — essentially elastic — scattering
process. The coherent scattering cross-section arises from interference
effects between nuclei over relatively large distances. In other words,
it reflects the structure factor S(q), unlike the so-called incoherent
scattering cross-section, which depends on uncorrelated motion of
individual nuclei only. Similar to light scattering, coherent neutron
scattering is peaked around q = 0, whereas the incoherent scattering
contribution is approximately g-independent. It can be shown that in
the g-range relevant for SANS the incoherent scattering contribution
is usually orders of magnitude smaller than the coherent contribu-
tion.'” However, to some extent this depends on the type of nuclei
investigated, because the value of the scattering cross sections varies
in an unpredictable manner from nucleus to nucleus. In particular,
the hydrogen atom has a coherent scattering length by =-0.374 1012
cm (b is in principle a complex number, the - sign here has no influence
on the actual cross-section), and the deuterium atom has by = 0.670
102 cm. On the other hand, the incoherent scattering length of
hydrogen is an order of magnitude larger than that of deuterium, but
still negligibly small when compared to the coherent scattering cross-
section in the relevant q-range. The difference between the scattering
lengths of hydrogen and deuterium is by far the largest amongst all
nuclei, and it forms the basis for the so-called labeling method.

A marked difference in scattering contrast is obtained when
polymers are synthesized with deuterium atoms rather than hydrogen
atoms along the chain. In a polymer blend for instance, deuteration of
one of the two components results in the relevant scattering contrast.
The coherent scattering intensity I(q) is given by:

I(q) = AK*S(q) [6.33]

where A is an apparatus constant that can be determined inde-
pendently by appropriate calibration of the instrument. The contrast
factor K is a function of the difference in scattering lengths and the
concentration of labeled (deuterated chains). It can be predicted inde-
pendently as well. In this way, expressions for the free energy curva-
ture similar to Eq. (6.21) (for light scattering) are obtained.
Consequently, SANS and light scattering may be regarded as similar
and useful techniques for determination of free energy curvatures or,
more specifically, dilute solution properties such as interaction pa-
rameters and radii of gyration.

6.2.2 HEATS OF MIXING

At constant pressure, the heat released by a mixing process is propor-
tional to the enthalpy of mixing AHy. Such heats of mixing can be
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measured in very precise calorimeters.! In the case of simple disper-
sive interactions, AHy, is positive, i.e., heat is consumed upon mixing.
Specific interactions as well as compressibility effects cause negative
contributions to AHy,, i.e., heat is released. Because the viscosities are
too large, calorimetric measurements involving direct mixing of pure
polymers have not been reported. One rather uses low-molecular
weight analogues in the form of chemically similar oligomers. In case
of polymer solutions, measurements of the heat of dilution (dilution
of a stock solution with the solvent) proved a useful method to
determine the enthalpy of mixing.!

6.2.3 GLLASS TRANSITION TEMPERATURE

A practical tool, often used to determine whether a polymer mixture
1s miscible or not, is to compare the glass transition temperature(s) of
the mixture with those of the constituents. Thanks to the spaghetti-
type nature of polymer melts and the various types of chain entangle-
ments involved, all polymers have glass transitions, where the
rubbery melt is transformed into a hard, amorphous material upon
passing through this transition (glass transition temperature, Tg) via
cooling. In semi-crystalline materials, and even in highly erystalline
materials in which crystallinity is never perfect, a glass transition
exists below the crystalline melting point. On a microscopic scale, the
actual transformation takes place in the amorphous material in
between the crystalline spherulitic zones.'® The precise nature of the
glass transition in polymers is still subject to scientific debate, %2
details of which we feel are beyond the scope of this book. For all
practical purposes, the glass transition in polymers is similar to a
second order phase transition, as in supercooled liquids (in contrast
to melting or crystallization, which are first order transitions). This
implies that relevant thermodynamic variables that are related to
second derivatives of the free energy, in particular the heat capacity
Cp, the isothermal compressibility kr, and the coefficient of thermal
expansion o, have a discontinuity at T,. This discontinuity can be
observed experimentally via Dynamic Mechanical Analysis (DMA)
and Differential Scanning Calorimetry (DSC),?! in general in the form
of a peak at the T,.

Polymeric mixtures that are thermodynamically miscible are
miscible on a molecular scale. The miscible blend will exhibit a single
glass transition temperature between the Tg's of the constituents with
a sharpness of the transition similar to that of the respective constitu-
ents. The practical suitability of the method depends on the extent to
which the blend proves to be really thermodynamically miscible. A
broadening of the transition or the merging together of the two
individual transitions makes interpretation ambiguous. A good check
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on miscibility is that the (single) glass transition should show a
systematic shift with varying composition. This relationship is not
universally similar but has many variations. A typical empirical
description often used is the Fox equation, which assumes composition
averaged inversed additivity of the T,’s of the constituents:*?

1 w1 we
1 _wi w 6.34

where w; is the relevant composition fraction.
6.3 EXPERIMENTAL RESULTS AND MODEL VALIDATIONS
6.3.1 POLYMER SOLUTIONS

6.3.1.1 Polystyrene in cyclohexane

A well investigated model polymer solution is polystyrene (PS) in
cyclohexane (CH). From an academic point of view, one would be
inclined to'state that systems in which the polymeric repeat unit and
the solvent molecule are chemically similar, e.g., PS in toluene or ethyl
benzene, should be investigated. This presumably allows assessment
of thermodynamic effects originating mainly from entropy of mixing
effects rather than energetic interactions. Problem however is that
toluene is (indeed) a very good solvent for PS, so that phase separation
phenomena are not easily observed in an accessible temperature
range. An UCST has never been observed in a PS/toluene solution. In
addition, specific interactions between still somewhat unsimilar
chemical building blocks of PS and toluene cannot be ruled out a priori.

PS/CH apparently is the most simple model polymer solution
with an experimentally accessible UCST and LCST demixing range,
see Figure 6.1. [t is likely that enthalpic interactions are of dispersive
origin exclusively. It is widely accepted that this is a system of which
the phase behavior should be predicted using entropy of mixing
contributions, dispersive interactions and compressibility effects ex-
clusively.

Depending on the purities of the respective components and the
technique employed, a ®-temperature of PS in CH around 30°C is
reported.?*?6 With Small’s group contribution scheme, solubility pa-
rameters of 9.1 and 8.2 V(callec) for PS and CH respectively, are
predicted. This leads to a predicted ®-temperature of 80K only, see
also Section 4.2.3. Before we go into details of thermodynamic models
investigated, it is interesting to discuss an experimental peculiarity
of the ®-temperature. First of all, the second virial coefficient A, is
zero at this temperature. This has been confirmed with light scatter-
ing from dilute PS/CH solutions.?® It is assumed that polymer chains
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in a dilute solution apparently behave gaussian and ideal at the
O-temperature, due to compensation of self-avoiding expansion effects
of the isolated chain and shrinkage effects due to unfavorable disper-
sive interactions between polymer and solvent. Indeed, it was shown
o.a. by Chu et al.%® that in dilute solutions of essentially monodisperse
PS in CH the radius of gyration scales with VM, at the ©-temperature.
It was observed also that the coils appear to be in a swollen state above
and in a collapsed state below the ®-temperature, with a diffuse
transition range in between, centered around the ®-temperature. This
is again indicative for the balance of interactions at this temperature.
The actual temperature and molecular weight dependence of the
radius of gyration of the isolated chains could be described by master
curves appropriately normalized to ®. Although FH-type models ap-
peared to describe certain trends in the observed transition behavior
qualitatively, these master curves could not (yet) be predicted satis-
factory.

Several attempts have been made to predict the complete phase
behavior of PS in CH, as determined with cloud point curves (CPCs),
spinodals, light scattering data etc. Saeki et al.® described the UCST
and LCST CPCs of PS/CH mixtures, as shown in Figure 6.1, using the
Patterson modified Flory-Prico%ine EoS model (Section 4.3.2). Whilst
a value of T" = 7205 K for PS*’ was used, values of T" for CH (and
hence, the free volume difference parameter t), the chain flexibility
parameter ¢ and the cohesive energy density difference between PS
and CH were fitted to describe the observed phase behavior. With
these fit parameters, a temperature dependence of the interaction
parameter y as defined in Eq. (4.64) was predicted. This prediction
could be tested against experimental UCST and LCST critical tem-
peratures as a function of the chain length r. These critical tempera-
tures correspond to a critical value of the interaction parameter:

2
1 1

Hence, one can chose to compare prediction and experiment on a y-axis
or on a temperature axis. Saeki et al. presented a temperature axis,
where UCST and LCST critical temperatures were normalized to the
reduced temperature T  of PS.® Results are shown in Figure 6.6.

The fitting procedure resulted in a consistent description of the
chain length dependence of both UCST and LCST critical tempera-
tures. Such description was obtained with the fit parameters shown
in Table 6.1. The value found for the chain flexibility parameter ¢
represents that of a fully flexible chain. This could bare relevance to
the fact that the phase diagram and the relevant temperature range
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Figure 6.6. Comparison of experimental UCST and LCST (reduced) critical
temperatures with the Flory-Pricogine EoS prediction. (Adapted, by per-
mission from S. Saeki, N. Kuwahara, S. Konno, and M. Kaneko, Macro-

molecules, 6, 246 (1973)).

Table 6.1: EoS parameters of PS solutions.

Mixture T K c s 10% 2
PS-CH 4720 1.01 0.119 15.9
PS-MCH 4870 1.14 0.105 15.8
PS-Toluene 4979 1.57 0.095 0®

a: assumed values

investigated is relatively close to the © state and hence, the chain
would indeed behave quasi ideal. On the other hand, it is incompatible
with the observation as such that phase separation occurs and that
the isolated chains swell and shrink around the ®-condition. The
latter effect was not incorporated in the EoS model as such. The value
of the characteristic dispersive energy parameter v is related to the
solubility parameter difference between PS and CH:
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The value found for v corresponds to a solubility parameter difference
of 1.03 V(cal/cc), close to the predicted difference of 0.9 V(cal/cc) using
Small’s scheme. The value found for the characteristic free volume
difference parameter 12 would translate into a typical difference in
thermal expansion coefficient between PS and CH of about 5.10* K,
which is expected for typical polymer solutions, see also Table 4.1.
Saeki et al. also investigated the pressure dependence of the
UCST of PS/CH over the pressure range 1 to 50 bar.?® The changes
are small, but CPCs could be detected with sufficient precision with
the aid of a He-Ne laser. Results for various molecular weights are
shown in Figures 6.7. Interestingly, with increasing pressure, UCSTs
tend to shift to higher temperatures at the lowest molecular weight

[6.36]
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Table 6.2: Pressure dependence of UCST temperatures in PS/CH.

(dT/dp)e, 10" K/bar

My, 10* g/mol UCST, 1 bar (K)

Experimental Flory
3.7 285.41 3.14 -25.6
11.0 294.38 -0.52 -31.8
67.0 300.97 -4.40 -34.1
145.0 303.26 -5.64 -35.3
-
£ 400 ~
82 L
o 300
200

CH / PS 600000
.,:" 6.0 wt-%

b

276 279 28.2 28.5 28.8

T/°C

Figure 6.8. Demixing curve of a solution of 6% PS in CH; the pressure-tem-
perature region of the two phase system is indicated by hatching. The filled
circle gives the cloud point curve of the solution at rest. The parallel line
shifted towards lower temperatures is taken from Saeki et al. 8 (Adapted,
by permission, from B.A. Wolf and H. Gaerisen, Coll. & Polym. Sci., 259,
1214 (1981)).

and to lower temperatures at higher molecular weights. The magni-
tude of the pressure dependence increases with increasing molecular
weight.

Flory-Pricogine EoS predictions of the pressure dependence of
UCST critical temperatures are shown in Table 6.2. The theory shows
an UCST decrease with increasing pressure. The effect increases with
molecular weight. However, the size is one order of magnitude too
large and the UCST increase at low molecular weight is not predicted.

Wolf and Geerissen®® measured the pressure dependence of the
UCST of a monodisperse PS (M=600.000) in CH solution at 6% weight
fraction of PS in the range 1-300 bar. At low pressures, a drop in UCST
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Figure 6.9. Experimental spinodal*! and critical®? data for the systems PS,
Mi1w=51,000; M2y = 166,000; M3w = 520,000 in CH. Predicted critical points
(solid squares) and spinodal curves according to S&S (dotted line) and HH
(solid line) models. (Adapted, by permission, from A. Stroeks and E. Nies,
Macromolecules, 23, 4092 (1990)).

was observed as well. However, the corresponding increase in solubil-
ity appeared to be optimal around 120 bar: at higher pressures the
UCST increased again, such that at 300 bar a decrease in solubility
was obtained when compared to atmospheric conditions, see Figure
6.8.

A sizable amount of spinodal data in the UCST range is avail-
able. These were determined using a special light scattering tech-
nique, the so-called Pulse Induced Critical Scattering (PICS).3%31 The
divergence of scattered intensity in the metastable region of the phase
diagram is monitored via rapid and repetitive quenching of a thin
capillary filled and sealed with polymer solution. Normally, a simple
plot of the inverse of the scattered intensity versus quench tempera-
ture allows determination of spinodal temperatures via extrapolation.
Thermodynamic models can be fitted relatively easy to spinodals.
Fitting binodals over an extended concentration range is more difficult
because it involves numeric solution of non-linear equations for the
chemical potentials. Experimental UCST spinodal®! and critical®
data for monodisperse PS/CH solutions of indicated molecular weight
are shown in Figure 6.9.

Binodal and also spinodal data were used by Nies at al.***! to
describe the phase behavior of PS/CH solutions. This was done using
the most general form of the EoS method, in which both cell free
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volume and lattice vacancies are allowed for (Section 4.3.3). Both the
Simha-Somcynsky (S&S) and the Holes and Huggins (HH) models
were tested. The most important features of these models can be
summarized as follows: For the calculation of the combinatorial en-
tropy of mixing of holes and segments and of different segments S&S
use the original FH assumptions. In the HH mode] this combinatorial
term is modified to include the Huggins correction. Hence, a lattice
coordination number z enters explicitly into the HH model.

For the calculation of the energetic contributions to the free
energy of mixing both models assume Lennard-Jones type interac-
tions. Hence, such interactions are characterized in the relevant free
energy expressions with the maximum attractlon energy parameter
¢ and the segmental repulsive volume v . In the corresponding cell
partition function the occupied lattice site fraction is the most impor-
tant structure parameter. In the HH model a more detailed structure
parameter is used, namely the intersegmental contact fraction. Itis a
topologically more precise parameter and was already introduced by
Huggins.?® Depending on the lattice coordination number and the
actual site fraction, the contact fraction is a measure for the number
of intersegmental contacts the chain segments can make.

It was shown that the modifications of the S&S model produce
relatively minor effects on the EoS of the pure components,® but lead
to improved predictions of the miscibility behavior, especially with
regard to pressure dependence.?! Since the lattice coordination num-
ber explicitly enters into the relevant partition functions in the HH
model, the value of this parameter was fixed in order not to introduce
yvet (another) adjustable parameter. A value of z=12 was chosen,
corresponding to a closest packing of spheres. Together with the free
volume degrees of freedom, this may represent a more or less a
disordered liquid.

To confront theory with experiment the molecular parameters
in the models were fitted. The pure component parameters e, v and
¢ were determined from experimental EoS data. 3637 Only two fit
parameters are needed for the mixture, namely ¢ pgcn and V' PS/CH.
These two parameters were obtained by fitting the UCST critical point
of the high molecular weight M3 mixture in Figure 6.9. The complete
set of parameters thus obtained is presented in Table 6.3. One cannot
conclude very much from these parameters as such, because it are
basically fit parameters. Nevertheless, the fact that for both models
values of both mixing parameters are in between those of the pure
components and do not change significantly upon mixing may be
physically sound if one considers the simple dispersive interactions
involved. On the other hand, a flexibility parameter value of 1.8
needed to fit the EoS of CH seems in contrast with the fact that PS is
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Table 6.3. Molecular parameters for PS and CH according to the S&S
and HH models (from Stroeks and Niess4).

&*, JAmol v, 10" m%mol c
PS
S&S 6968.8 9.95 0.77
HH 66909 9.84 0.85
CH 6543.3 9.36 1.80
PS/CH
S&S 6727.8 9.71
HH 6559.5 9.67
s20 s10 8
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Figure 6.10. Experimental LCST cloud point data (from Figure 6.1) and
predicted spinodal curves according to the (A) S&S and (B) HH models.
(Adapted, by permission, from A. Stroeks and E. Nies, Macromolecules, 23,

4092 (1990)).

considered a monomer in both models. Moreover, in the original theory
of Flory a theoretical value of ¢ larger than 1 is not expected.

Note that differences between HH and S&S remain relatively
small with regard to the UCST phase behavior, see Figure 6.9. For
both models the calculated change of critical temperature and compo-
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Figure 6.11. Pressure coefficient (dT/dP). versus the logarithm of the molar
mass. Experimental data of Saeki et al. 8 (circles) and Wolf and Geerissen?’
(squares). Predictions according to S&S (dotted line) and HH (solid line)
models. (Adapted, by permission, from A. Stroeks and E. Nies, Macromole-
cules, 23, 4092 (1990)).

sition with molar mass is too small. The curvature of the calculated
spinodals appears to be somewhat too big. With the same set of
molecular parameters, LCST spinodals were predicted as well. These
spinodals were compared with the LCST binodals as measured by
Saeki et al. (Figure 6.1.). Results are presented in Figure 6.10. Pre-
dicted HH spinodals are more close to the real critical points than the
S&S spinodals. Also here the predicted change of critical coordinates
is somewhat too small. Grosso modi, the agreement between theory
and experiment is perhaps not bad, if it is realized that LCST demix-
ing is predicted from a fit to one UCST critical point some 180K lower.

Differences between HH and S&S models become more pro-
nounced when the pressure dependence of the phase behavior is
predicted, using again the same molecular parameters fitted to the
UCST critical point. In Figure 6.11, predictions of the initial slope
dTy/dp of the critical temperature is compared with the experimental
data of Saeki et al. (Figure 6.7) and the data of Wolf and Geerissen
(Figure 6.8). The S&S model predicts the slope an order of magnitude
too large and positive. The HH model does predict the change of sign
versus molecular weight. Computed and measured values of the
slopes differ by approximately a constant amount irrespective of
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Figure 6.12. Difference between critical temperatures at elevated and
atmospheric pressure versus pressure. Predictions according to S&S (dot-
ted line) and HH (solid line) models. (Adapted, by permission, from
A. Stroeks and E. Nies, Macromolecules, 23, 4092 (1990)).

molecular weight, but the molar mass dependence is predicted quite
well by the HH model.

Model predictions of the pressure dependence of the UCST
critical point as such (at constant molecular weight) were also com-
pared with the data of Wolf and Gaerisen. Results are shown in Figure
6.12. The S&S model predicts a simple increase with pressure, and
the slope is about 10 times too large and has wrong sign. The HH
model gives a correct prediction of the observed effect, i.e., the initial
slope, the maximum UCST drop around 120 bar and a decrease in
miscibility above this pressure.

Nies et al.* also predicted the so-called negative excess volumes
upon mixing, i.e., the (expected) volume contraction due to the free
volume effects. It was also suggested that the peculiar behavior of the
pressure dependence of the UCST ecritical point is correlated to a
change in curvature in the concentration dependence of this excess
volume.?* This needs however verification. In any case, the HH model
appears to be capable of predicting relatively subtle pressure effects
and sets it apart from other EoS models.
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6.3.1.2 Other polymer solutions

Saeki et al.® also measured CPCs of two other PS mixtures, namely in
methylcyclohexane (MCH) and toluene. PS in MCH shows UCST and
LCST behavior and the corresponding critical points are similar to
those of the PS/CH solution. Hence, the corresponding molecular
parameters as predicted by the Patterson EoS model are also similar,
see Table 6.1. In the toluene solution an LCST is observed only, some
60K higher than in the (M)CH solutions. Indeed, the solubility pa-
rameter difference appears to be relatively small so that an UCST is
lacking (or occurs at subzero temperatures close to or even below the
vitrification temperatures). Assuming a characteristic dispersive in-
teraction parameter of zero (Table 6.1), the LCST demixing can be
predicted which results in a characteristic free volume difference
parameter somewhat smaller than in (M)CH solutions, see Table 6.1.
This is consistent with the higher LCST and corresponding increased
miscibility. Note that the flexibility parameter c appears to vary in an
impredictible manner from solution to solution.

In mixtures where miscibility is rather poor, UCST and LCST
may merge together to form and hour-glass shaped phase diagram. In
Figure 6.13 the phase diagrams of mixtures of PS in acetone®® are
shown. At relatively low molecular weights of PS separate UCSTs and
LCSTs can be observed but merge together until at a molecular weight
around 20,000 an hour-glass shaped phase diagram is obtained.

Sanchez and Lacombe used the Lattice Fluid (LF) theory to
describe the phase behavior of several polyisobutylene (PIB) solu-
tions.* These solutions were chosen because, according to the LF
theory (Section 4.3.3), a polymer solution in equilibrium with its own
vapor is capable of reaching an LCST critical point prior to the
liquid-vapor critical point T,. For several PIB/solvent mixtures a range
0.7 < LCST/T, < 0.9 was observed.*

Pure component EoS parameters were obtained by fitting vapor
pressure data of the solvents (the complete series pentane to decane,
cyclohexane and benzene) and liquid density data of PIB. Heats of
mixing at infinite dilution AH,(«) were used to determine the ener-
getic interaction parameter ¥ (Eq. (4.76)) between PIB and the seven
hydrocarbon solvents. The energetic interaction parameter could be
expressed 0.a. in two equivalent forms y and AP". They are shown in
Table 6.4. The parameter AP" represents the change in cohesive
energy density upon mixing at the absolute zero of temperature. As
expected for the non-polar solutions, the calculated values are all
positive. Thus, at absolute zero the heats of mixing would all be
positive. However, only PIB/benzene has a positive AH () at 298K,
whilst the heat of mixing of all other solutions is negative. In terms
of the LF theory, such negative heats appear to be caused by the
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Figure 6.13. Phase diagram of the PS-acetone mixture for fractions of
indicated molecular weight showing UCST and LCST for low molecular
weights and the “hour-glass” CPC for the 19,800 fraction. (Adapted, by
permission, from K.S. Siow, G. Delmas, and D. Patterson, Macromolecules,
6, 29 (1972)).

Table 6.4. Interaction parameters and experimental and theoretical
volumes of mixing and LCST for polyisobutylene solutions (from
Sanchez and Lacombe 9)

AH(0) X AP AVm/Vo, 107 LCST, K

J/mol 10 MJ/m? exp. calc. exp. cale.
pentane -201 4.98 10.4 -1.27 -1.83 344 <298
hexane -159 3.24 6.04 -0.86 -1.25 402 <298
heptane -100 2.59 4.91 -0.62 -0.92 442 303
octane -67 213 3.89 -0.48 -0.73 477 375
decane -31 1.44 2.46 -0.29 -0.48 535 470
cyclohexane -38 2.44 5.61 -0.14 -0.44 516 440

benzene 1090 8.18 20.7 0.34 0.20 534 487
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Figure 6.14. Comparison of experimental (circles) and theoretical (line)
heats of mixing fir dilute PIB/benzene solutions. (Adapted, by permission,
from I.C. Sanchez and R.H. Lacombe, Macromolecules, 11, 1145 (1978)).

tendency of the solvent to contract when a small amount of polymer
is added. The magnitude of the contraction is proportional to the
compressibility of the solvent. It is an energetically favored process,
compensating against the unfavored energetic cross-interaction term
X, because it results in more intermolecular interactions of lower
potential energy amongst the solvent molecules exclusively. On the
other hand, such contraction also has its draw-back on (unfavorable)
entropic contributions to the free energy of mixing, which will lead to
LCST demixing.

Solutions with a negative room-temperature heat of mixing also
show negative volume changes, whilst the PIB/benzene solution
shows both a positive heat of mixing and a volume expansion. The
values of AV, are the maximum observed volume changes at the 50/50
composition. The calculated values have the correct sign but the
quantitative agreement is not very good.

Although benzene has a large and positive heat of mixing with
PIB at room temperature, a decrease with increasing temperature
was found. Heats of mixing also become negative above 435K, see
Figure 6.14. The predicted curve from the LF model was calculated
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using the pure component EoS parameter and the room temperature
interaction parameter determined from AH(x). Apparently, com-
pared to the other mixtures, compressibility effects in PIB/benzene
become important at somewhat higher temperatures.

LCST critical temperatures were calculated as well and com-
pared with experiment, see Table 6.4. Again, pure component parame-
ters and room-temperature heats of mixing data were used
exclusively. For pentane and hexane the calculated value of the
effective FH interaction parameter (a free energy parameter in the LF
model) was greater than 0.5 and LF theory incorrectly predicted
immiscibility of these two systems at 298K. For the remaining sol-
vents the calculated LCSTs are substantially lower than observed.
Hence, from this relatively severe mismatch (e.g., when compared to
predictions of the HH model) it may be concluded that entropic
contributions to the free energy of mixing, that are associated with
the compressibility effect, are not adequately incorporated in the LF
model.

Since the light scattering technique is in particular suited to
study the thermodynamics of dilute polymer solutions via Zimm
analysis, a relatively large amount of data on virial coefficients and
FH interaction parameters is available.?**!*3 A large number of
experimental FH interaction parameters of dilute polymer solutions
were collected by the present authors and analyzed in terms of
temperature and molecular weight dependence.** In an attempt to
find explanations behind the systematic underestimation of interac-
tion parameters (see Section 4.2), it was assumed in analogy that the
interaction parameter % could be written as a sum of an enthalpic
contribution y, and an entropic contribution y,:

VN .
X=%st T [6.37]

Solutions investigated included PS/CH, PS/toluene, PS/decalin,
PS/MEK, PMMA/butyl chloride and PS/benzene. Experimental ¢-pa-
rameters covered a range between 0.43 and 0.52 around the ®-tem-
peratures. From the experimental data a strong correlation between
¥s and y, values was observed, see Figure 6.15. Higher y, values
correspond to lower y, values in a seemingly linear manner. In fact
all data, except for PS/toluene, fall on the same line.

The strong correlation is partly trivial because all solutions were
investigated around their respective ®@-temperatures, in all cases
approximately around ambient. Therefore, in all cases, Eq. (6.37)
adds-up to a total, almost constant x value of 0.5 so that 3, and y, must
be correlated in the (limited) temperature region investigated. The
question “Why do these totally different systems have almost identical
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Figure 6.15. Entropic parameter ys versus enthalpic parameter xn.
(Adapted, by permission, from M.A. van Dijk and A. Wakker, Polymer, 34,
132 (1993)).

©-temperatures”is thus identical to “Why are the 3, and y,, parameters
linearly related”.

Another interesting observation can be made on the molecular
weight dependence of the y, and xy of a given solution. Figure 6.16
shows the molecular weight dependence of y; of three different solu-
tions. A steep increase with molecular weight at low values and a
leveling off at higher values is observed. Comparing these results with
Figure 6.15, it can be concluded that with increasing molecular
weight, the y, increases and the y, decreases in such a way that both
are linearly related.

It is tempting to conclude that there is a universal type of
behavior of the interaction parameter in dilute polymer solutions. The
value of y; increases with molecular weight and apparently also to a
sort of limiting value at infinite molecular weight that depends on the
particular polymer- solvent mixture. The resemblance with the Hug-
gins correction, Eq. (3.41), is striking. Unfortunately there is as yet
no clear a correlation between molecular structure and the lattice
coordination number z.

An alternative to light scattering from dilute polymer solutions
is to determine directly the free energy curvature from the measured
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Figure 6.16. Molecular weight dependence of the entropic parameter xa of
three different polymer solutions. Curves serve as a guide to the eye.
(Adapted, by permission, from M.A. van Dijk and A. Wakker, Polymer, 34,
132 (1993)).

Rayleigh ratios, see Eq. (6.21). Advantage is that this can be done
irrespective of concentration. The present authors investigated the
phase behavior of PS in methyl acetate in this way.?® Free energy
curvatures were determined in the homogeneous one-phase region, in
between the UCST and LCST of this mixture, over a broad range of
temperatures (300-400 K) and concentrations (0.5%-10.3%). Results
are shown in Figure 6.17. Cloud point curves were determined as well,
and are shown in Figure 6.18.

The free energy curvature is smallest for sample III (3.25 wt%)
and it is also nearly zero at both the high- and low-temperature side.
This indicates that the concentration of sample III is very close to
critical, which is also in agreement with the CPCs shown in Figure
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Figure 6.17. Values of the free energy curvatures for samples I (0.5 wt%),
11 (1.6 wt%), 111 (3.25 wt%), IV (6.5 wt%), and V (10.3 wt%). (Adapted, by
permission, from A. Wakker, F. van Dijk, and M.A. van Dijk, Macromole-
cules, 26, 5088 (1993)).

6.18. Extrapolation towards zero curvature results in a UCST critical
temperature of 301.5K and an LCST critical point of 402.5K. Free
energy curvature and hence, thermodynamic miscibility, increases
both at lower and at higher concentrations. Optimum miscibility is
also observed approximately halfway between UCST and LCST. The
complete dataset is suitable to test model predictions, but no truly
predictive theory could as yet thus be tested.

6.3.2 POLYMER BLENDS

6.3.2.1 Polystyrene in polyvinyl methyl ether

A useful model mixture often used to study the thermodynamics of
high molecular weight polymer mixtures (where immiscibility is the
rule, and miscibility the exception) is PS in polyvinyl methyl ether
(PVME; (-CH,-CHOCHj3;-),,). Both polymers are fully amorphous and
have an experimentally accessible range of miscibility in between the
(single) glass transition temperature and the LCST. An UCST was
never observed.

The neutron labeling technique proved to be useful to study the
phase behavior of PS/PVME mixtures using SANS, Deuterated PS
(PSD) and PVME can be relatively easy made (and molecular weights
controlled) on a laboratory scale. Excellent SANS studies on
PSD/PVME mixtures have been rep01"ced.46'48 Of course, binodals of
this mixture could be determined easily as well on thin samples using
hot stage microscopy or simple laser light attenuation. Actually, CPCs
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Figure 6.18. CPCs of PS in methyl acetate. (Adapted, by permission, from
A. Wakker, F. van Dijk, and M.A. van Dijk, Macromolecules, 26, 5088
(1993)).

of PS/PVME mixtures were already determined by McMaster*? and
were also reported by Han”® on the deuterated mixture.

In the basic understanding of thermodynamics as well as dy-
namics of phase-separation, PS/PVME proved a useful model system
because dynamics of phase separation could be studied as well by
means of quenching-type light scattering experiments.!®%65% The
main results of SANS and light scattering experiments on
PS(D)/PVME mixtures are presented below.

A typical phase diagram of PSD in PVME is shown in Figure
6.19. CPCs were determined from light scattering and spinodals were
determined from extrapolation of SANS data. Note that the LCST is
skewed towards the higher molecular weight PSD-poor side of the
phase diagram.

Similar to the quantitative analysis of light scattering data, the
relevant free energy curvatures can in principle be extracted from
SANS intensities extrapolated to zero scattering angle. However, it
has been shown, o.a. by de Gennes’ that a more straightforward
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Figure 6.19. Phase diagram of PSD/PVME with molecular weights
4.35x10%/1.88x10°, Solid and dotted lines are cpcand spinodal, respectively.
(Adapted, by permission, from C.C. Han, M. Okada, Y. Muroga, B.J. Bauer,
and Q. Tran-Cong, Polym. Eng. Sci., 26, 1208 (1986)).

procedure exists to obtain the relevant binary interaction parameter
x. This procedure, also known as the Random Phase Approximation,®’
is based on the principle that in polymer melts the coils have a
gaussian and ideal conformation so that the structure factor S(q) can
be expressed in terms of the single chain form factors of the respective
constituents plus a binary interaction term in which the interaction
parameter x appears. This interaction parameter is equivalent to the
interaction parameter as defined in the original Flory-Huggins model,
provided that it is given an (arbitrary) concentration dependence. The
relevant expression for the structure factor S(q) reads:

kn _ 1 . 1 2
S(q@ ¢$aravaSp(A)  ¢preveSpB) v

[6.38]
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Table 6.5. Molecular weight and polgdlspersxty of three series of
PSD/PVME mixtures (from Han et al.*

PSD PVME
My, Myw/Mn Mw Mw/Mp
L series 230,000 1.14 389,000 1.25
M series 402,000 1.42 210,000 1.32
H series 593,000 1.48 1,100,000 1.26

where ky is a (coherent) scattering contrast factor, ¢;, r;, v; are the
volume fraction, chain length, and molar volume of component 1; Sp(i)
is the single chain form factor (Debye function) of component i, and v,
is the molar volume of a reference segment (to be taken equal to that
of one of the components or a part of it). The single chain form factor
Sp(q) may be represented analytically:

6 -q°R§ *Rg
SD(Q) = qug [exp{ 3 ] -1+ %EJ [639]

where Ry is the radius of gyration of the coils of constituent i. It can
be shown that by expansion of the Debye function in powers not higher
than q” the Ornstein-Zernike form (Eq. (6.24)) is retained. In that case,
the relevant correlation length & has become a function of the interac-
tion parameter.

Hence, by fitting the experimentally determined structure fac-
tors S(q) of PSD/PVME mixtures to Eq. (6.38), the interaction parame-
ter ¥ can be obtained as a function of mixture composition and
temperature. Correlation lengths £ can be obtained as well. Spinodal
temperatures of the blend can be obtained at various compositions
equivalently by extrapolation of £Z or S(0)"! versus temperature.

Han et al. thus studied three series of mixtures with varying
molecular weights, polydispersities, and skewness, see Table 6.5. In
Figure 6.20 the scattering structure factor S(g) is shown versus g for
the 30/70 sample of the M series at various temperatures. The full
curves are best fits according to Eq. (6.38). Note the strong increase
of scattering intensity S(q=0) and the decrease of the width of S(q)
(increase of the correlation length £) with increasing temperature (and
decreasing distance from LCST spinodal temperature).

In Figure 6.21, reciprocal square correlation lengths £? are
shown versus temperature for various compositions of the H series
results. The £2 values can be represented by a straight line near the
spinodal temperature which is at £2=0. A similar plot of S(q=0)"
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Figure 6.20. Scattering intensity S(q) from SANS experiment for M series
PSD/PVME sample of 30 wt% PSD versus q for 100, 120, and 130°C.
Experiments with several other temperatures are displayed at reduced
scale in the insert. (Adapted, by permission, from C.C. Han, B.J. Bauer,
J.C. Clark, Y. Muroga, Y. Matsushita, M. Okada, Q. Tran-Cong, T. Chang,
and I. Sanchez, Polymer, 29, 2002 (1988)).

versus temperature is shown in Figure 6.22. Again, a good linear
relation is obtained near the spinodal. Spinodal temperatures could
thus be obtained consistently from the intercepts of both £Z and
S(q=0)" going to zero. A complete dataset of spinodal temperatures as
a function of molecular weights and composition can be found in ref.
48, Appendix 2.

In Figure 6.23, /v, values are plotted versus 1/T for the H series
sample at various compositions as indicated in the figure. Within the
(limited) temperature range investigated the interaction parameters
are negative and follow a 1/T - dependence. The interaction parame-
ters strongly depend on composition: the higher the PSD concentra-
tion, the more negative the interaction parameters become at a given
temperature. Such concentration dependence is shown again in Fig-
ure 6.24 for all three series. It seems that y/v, varies linearly with
composition except that there may be a very small curvature at
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Figure 6.21. Reciprocal square correlation length i'z plotted versus T for
various compositions for H series sample. (Adapted, by permission, from
C.C. Han, B.J. Bauer, J.C. Clark, Y. Muroga, Y. Matsushita, M. Okada,
Q. Tran-Cong, T. Chang, and 1. Sanchez, Polymer, 29, 2002 (1988)).

¢psp<0.3. Note that the interaction parameters hardly depend on the
molecular weight of the mixture.

Before we will discuss the above results in terms of thermody-
namic models that were fitted to it, it is useful to mention the results
that Hashimoto et al.'® obtained from phase separation kinetics stud-
ies via spinodal decomposition (SD) of a 30/70 PS/PVME blend. In
Figure 6.4, an example is given of the growing light scattering inten-
sity versus time after quenching of a thin PS/PVME film into the
unstable region (above the LCST spinodal, quench depth 1.8 K). As
predicted by the theory of SD, a distinct scattering maximum ap-
peared with an exponential growth rate with time proportional to
R(qmay), see Eq. (6.7). The position of this peak did not change during
a definite time span (in this experiment typically half to one hour),
depending on the quench depth, i.e., the distance from actual quench
temperature to the spinodal temperature. In the later stage of SD, the
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Figure 6.22. S plotted versus T for H series sample. (Adapted, by
permission, from C.C. Han, B.J. Bauer, J.C. Clark, Y. Muroga, Y. Mat-
sushita, M. Okada, Q. Tran-Cong, T. Chang, and I. Sanchez, Polymer, 29,
2002 (1988)).

intensity increase with time started to deviate from exponential
behavior and the scattering maximum shifted towards smaller q
values, corresponding to the onset of macroscopic phase separation in
the form of coarsening of the phase separating domains. The higher
the superheating, the earlier the stage where this coarsening started.

In the early stage of SD, the relaxation rate R(q) could thus be
determined from the exponential increase of the scattered intensity.
Once these relaxation rates were derived, “apparent” diffusion coeffi-
cients Dy, could be determined from the intercepts of plots of R(g@)/q®
versus q°, see also Eq. (6.3). Results are shown in Figure 6.25 (a). A
linear relation is obtained for the various quenching temperatures,
indicative of the suitability of SD theory in the early stage. Figure 6.25
(b) shows a plot of D,y as a function of temperature. The larger the
quench depth, the faster the diffusion, i.e. the faster the kinetics of SD



188 Experimental Findings

]
F-3

° 20/80
a 30/70
+ 40/60
x 45/55
* 50/50
42l =555
e 60/40
« 70130 ¢
+ 80120 |

° 10/90
(

(X, Vo) x 10°

-18 . . . N R . )
2.2 23 24 25 26

10°mM(K™)

Figure 6.23. Reciprocal temperature dependence of y/ve for various compo-
sitions of the H series sample. (Adapted, by permission, from C.C. Han,
B.J. Bauer, J.C. Clark, Y. Muroga, Y. Matsushita, M. Okada, Q. Tran-Cong,
T. Chang, and 1. Sanchez, Polymer, 29, 2002 (1988)).

(and, ultimately, the phase separation). The intercept D,, = O re-
sulted in an extrapolated spinodal temperature of 99.2°C at this
particular composition.

The negative interaction parameters observed in the homogene-
ous one-phase temperature region below the LCST, as extracted from
from the SANS experiments of Han et al. indicate that specific inter-
actions definitely play a role in the phase behavior of PS(D)/PVME
mixtures. Compressibility can however not be ruled out a priori,
although its influence on the phase behavior is expected to be signifi-
cantly smaller than in polymer solutions. In any case, solubility
parameters of PS (9.1 V(cal/cc)) and PVME (8.5 V(cal/cc)) appear to be
too far apart to bring about miscibility in the high molecular mixtures.
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Figure 6.24. Interaction parameter y/vo for all three series of samples at
130°C. (Adapted, by permission, from C.C. Han, B.J. Bauer, J.C. Clark,
Y. Muroga, Y. Matsushita, M. Okada, Q. Tran-Cong, T. Chang, and
1. Sanchez, Polymer, 29, 2002 (1988)).

CPCs of PS/PVME mixtures were unsuccessfully predicted by
McMaster using the Flory EoS theory.*® McMaster came to the con-
clusion that specific interactions should be included. It is therefore
instructive to predict the temperature dependence of the (negative)
interaction parameters using ten Brinke's model®? (Section 4.4.1),
which does take into account specific (and dispersive) interactions, but
not the compressibility of the mixture. This we have done for the
interaction parameters determined by Han ef al. on a 50/50
PSD/PVME mixture, see Figure 6.26. The repeat unit of PVME was
chosen as the unit lattice cell (v, = 53 cm3/mol). Using the solubility
parameter difference A8 = 0.6 V(cal/cc), a dispersive interaction energy
Uz = 0.0191 kcal/mol is obtained. Using this value as an input
parameter, the ten Brinke model was fitted to the data points. From
this fit, a specific interaction energy U, =-0.24 kcal/mol, a degrees of
freedom parameter q = 14.7 and a lattice coordination number z=14.8
were obtained. The latter parameters should be regarded as pheno-
menological. The (small) value U, could be regarded as characteristic
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Figure 6.25. (a) R(q)/q2 versus q2 at three different isothermal phase
separation temperatures, the arrows indicating the position of gmax; (b) the
temperature dependence of Dapp from which the spinodal temperature
Ts=99.2°C is deduced. (Adapted, by permission, from T. Hashimoto, J. Ku-
maki, and H. Kawai, Macromolecules, 16, 641 (1983)).

for a weak dipole interaction, sufficient to compensate for the solubil-
ity parameter difference and hence to bring about miscibility, see also
Section 4.4.2.

The possibility of a combined effect of specific interactions and
compressibility on the LCST phase behavior was investigated by
Sanchez and Balasz using their LF model modified to allow for specific
interactions.>® The incompressible version of this model is essentially
ten Brinke’s model. Spinodal data extracted from the SANS data of
Han were compared with model predictions. Pure component EoS
parameters were taken from the literature. In Figure 6.27 (a), the
experimental spinodal of the L-series sample is shown together with
the predicted spinodal of the LF model in which the specific interaction
energy U, was set to zero. The calculated LCST critical temperature
was matched to the experimental one only by adjusting a non-specific
interaction energy parameter £,2. In the context of the LF model, the
heat of mixing Ae is given by:

Ae = g1 + €92 — 2(e12 + Uy) [6.40]

In this particular case, where U, = 0, the value of ;2 was such
that the heat of mixing was slightly negative. Hence, compressibility
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Figure 6.26. The y as a function of temperature in PS/PVME according to
the ten Brinke model. (Adapted, by permission, A. Wakker and M.A. van
Dijk, Polym. Networks Blends, 2, 123 (1992)).

caused miscibility at lower temperatures and LCST demixing (be-
cause of the entropy penalty associated with compressibility) at higher
temperatures. Interestingly, the calculated critical composition ¢,
appears to be independent of the choice of g;5 and is correctly pre-
dicted. In the classical theory, ¢, is rich in the component with the
smallest chain length, in this case PS. However, the observed ¢ is rich
in PVME, correctly predicted by the LF model. The LF model appears
to qualitatively predict that due to compressibility the ¢. for an LCST
is rich in the component which has the smallest pure component g;;,
which is in this case PVME.

The actual predicted spinodal is too narrow. It was shown that
the spinodal can be broadened by “switching on” the specific interac-
tions. The calculated curves shown in Figures 6.27 (b) and (c) were
obtained by putting g = 10 and increasing the value of U, relative to
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Figure 6.27. Comparison of experimental spinodal data and calculated
spinodals for PVME/PS mixture. (Adapted, by permission from I.C. Sanchez
and A.C. Balasz, Macromolecules, 22, 2325 (1989)).

€12 whilst decreasing the absolute value of £15. In (b), the ratio U,/eqy
18 0.3, in (c) it is 0.5. It was found that the exact value of q is not
important in establishing the ability of the model to predict the
spinodal. In Figure 6.27 (d) another “best-fit” is shown at different
parameter settings.

In Figure 6.28 experimental spinodal data of the much higher
molecular weight H series sample are shown. In Figure 6.28 (a) the
calculated spinodal was determined by using the same energy pa-
rameters as in Figure 6.27 (a), hence without specific interactions. The
predicted effect of increase of molecular weight is clearly too large. An
excellent prediction was obtained when the parameters used in Fig-
ures 6.27 (c) or (d) were used, hence including the effect of specific
interactions. Specific interactions tend to stabilize the mixture and
hence to reduce the effect of decrease of the LCST upon increase of
molecular weight. The typical parameter setting of ~Uy/k around 300K
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Figure 6.28. Comparison of experimental spinodal data of the H-series
sample with predictions of the generalized LF model. (a) parameters as in
Figure 6.27 (a). (b) parameters as in Figure 6.27 (c) or (d). (Adapted, by
permission, form I.C. Sanchez and A.C. Balasz, Macromolecules, 22, 2325
(1989)).

is equivalent to a specific interaction strength U; = -0.6 kcal/mol, still
a relatively modest value when compared to the -5 keal/mol typical
for hydrogen bonds in low molecular weight liquids.®

Summarizing, analysis of the various models shows that the
LCST demixing of PS/PVME mixtures can best be described and
predicted using a model in which both compressibility and specific
interactions are taken into account. It ig difficult to judge in how far
the one contribution is more important than the other. Irrespective of
the model tested, the strength of the specific interaction was found to
relatively weak, making the effect of compressibility more tangible.
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6.3.2.2 Some typical polymeric mixtures

An example of a completely miscible blend with actual commercial
importance is PS in polyphenyleneoxide (PPO).% Both materials are
fully amorphous and the blends have single glass transition tempera-
tures at all compositions. PS/PPO blends have a better balance of
mechanical and processing properties than the constituents and are
also known under the trade name Noryl. Neither an LCST, nor an
UCST was ever observed. The fact that the solubility parameters of
PS (9.1) and PPO (8.9) are closely matched is most likely the deter-
mining factor that brings about miscibility.

Another example of miscibility thanks to solubility parameter
matching is polyisoprene (PIP) and polybutadiene (PBD).*" It is a fully
non-polar mixture and the solubility parameter difference (PIP: 8.2;
PBD: 8.1) is within experimental error. An UCST was (evidently)
never observed but an LCST was observed at a relatively low tempera-
ture of 338K. No model descriptions of the phase behavior are re-
ported, but a mismatch in thermal expansivities between the
constituents due to the CH; side group in PIP is most likely the driving
force behind LCST demixing.

A special group of miscible blends is mixtures in which specific
C=0...H-C-Cl Lewis acid-base interactions®® are formed. Polyvinyl-
chloride (PVC) was found to be miscible with polymethylmethacrylate
(PMMA)® and with the series polypropylacrylate (PPrA), polybuty-
lacrylate (PBA), and polypentylacrylate (PPeA).2 LCSTs were ob-
served at 463K, 403K, 398K, and 378K respectively. CPCs of high
molecular weight and symmetric PVC - polyacrylics mixtures, as
determined by turbidity measurements on cast films, were shown
earlier, in Figure 6.2. Phase separation occurred in the order PPrA,
PBA, PPeA. Low molecular weight oligomeric analogues of the same
polymers were prepared as well. Experimental heats of mixing of
these mixtures are shown in Figure 6.29. Interestingly, the same order
of miscibilities is observed.

Solubility parameter differences between PVC and the
polyacrylics investigated is almost similar for all three blends, namely
0.5 V(cal/cc). Hence, the consistency of decrease in LCST together with
decrease in heats of mixing with a lower concentration of interacting
groups points in the direction of domination of the phase behavior by
specific interactions. Using a procedure similar to the generalization
of the LF model for specific interactions by Sanchez et al., Walsh et
al.%%5! also modified the Flory EoS theory in order to simulate spinodal
curves for mixtures with specific interactions. It was proposed to
calculate an effective (negative) interaction parameter x from heats of
mixing data of low molecular weight analogues. The specific interac-
tion entropy parameter Q should than be adjusted to fit the calculated
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Figure 6.29. Experimental heats of mixing at 90.5°C of oligomeric analogue
of PPrA (A), PBA (B), and PPeA (C) with oligo-PVC. (Adapted, by permis-
sion, from C.K. Sham and D. Walsh, Polymer, 28, 957 (1987)).

spinodal to the minimum of the CPCs. It was found that such was
possible for the PVC/polyacrylics mixtures and that the fit was rela-
tively insensitive to the choice of pure component EoS parameters as
well as to their differences. However, it was found that when the
negative interaction parameters determined from heats of mixing
were used the calculated spinodals were far too flat-bottomed and
located even outside the binodal curve, see Figure 6.30. It was found
that a much smaller negative value of y (smaller by almost two orders
of magnitude) generated a spinodal with much more curvature,
thereby much better describing the experimental phase boundaries.
The smaller value of x needed also to be compensated for by a smaller
value of Q. Hence, the phase behavior of the polymeric mixture could
only be described satisfactory with a set of ¥,Q parameters much
smaller than those determined from oligomeric analogues. The rele-
vance is that the specific interactions in the polymers tend to be less
strong and less directional specific than in the chemically similar
oligomers. Apparently, the polymeric building blocks involved in
specific interactions tend to be more hindered in their degrees of
freedom.

Another example of a miscible PVC blend is a mixture of PVC
with polycaprolactone (PCL).%2 No cloud points were observed at all.
The mixture is completely miscible over the whole temperature and
composition range. The solubility parameter difference is not small
(0.7). Apparently, specific interactions must be stronger than in the
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Figure 6.30. Simulated spinodal curves of PPaR/PVC blend. (A): experimen-
tal cloud point curve; (B) simulation using y =-0.14 Jem® and Q=-2.2x10*
Jem3K'; (C) simulation using x = -15.11 Jem™ and Q= -3x10°2 Jem KL,
(Adapted, by permission, from C.K. Sham and D. Walsh, Polymer, 28, 957
(1987)).

PVC/polyacrylics mixtures. A likely, but not proven reason for this is
that in the polyacrylic side chains the -O-C=0- functional group is
geometrically screened by the methyl group, whereas the carboxyl
group in PCL is not.

A Lewis acid-base complex is formed in mixtures of PMMA and
styrene-acrylonitrile (SAN) copolymer.® In this case, C=0..H-C-C=N
interaction is formed. The solubility parameter difference between
PMMA, with 9.4 V(cal/cc) and SAN can be varied by means of the AN
co-monomer content in the SAN copolymer. Complete miscibility over
the full range of temperatures and compositions was observed at an
AN-level of 13%. At this loading level solubility parameters are
matched. The difference increases both when AN-loading is raised or
lowered. In both cases, PMMA/SAN mixtures become less miscible.
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LCSTs are observed and corresponding critical temperatures decrease
with increasing solubility parameter difference. Complete immiscibil-
ity was observed at AN-levels lower than 9% and higher than 35%.

The above examples illustrate that in general the presence of
specific interactions is a necessary, but not sufficient condition to
bring about miscibility in high molecular weight polymeric mixtures.
Simple dispersive interactions appear to be relatively important and
in some cases the compressible nature of the mixture should be taken
into account as well. Combination of these subtle effects makes
quantitative description of the phase behavior extremely difficult. In
order to raise the predictive power to a more quantitative level, it will
above all be necessary to be able to predict strength and ordering
effects of specific interactions in actual polymeric mixtures. With the
aid of computer-added molecular modelling, classes of specific inter-
acting groups and corresponding limiting solubility parameter differ-
ences may be identified.
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— distribution, 128
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— valence angle, 54
Born-Oppenheimer Approximation, 133
Boyle temperature, 60
Boyle-Gay-Lussac Law, 25
Bragg condition, 156
Brownian motion, 16
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Cell partition function, 90, 97, 101
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—configuration, 53, 55, 63
— configurational freedom, 63
— conformation, 52, 53

— deuterated, 163

— dimension, 53
—end-to-end distance, 138
—_entropy, 55

— flexibility, 52, 91

— flexible, 64

— gaussian, 119
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— model, 53
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— structure, 39, 50



Cloud point, 74, 148, 151, 172, 180, 196

Compatibilizer, 2
Compatibilizing, 2
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~ metastable, 69

— triangle, 22
Compressibility

— effect, 104
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Computer simulation, 3, 125, 127, 136

‘Concentration fluctuation, 148, 154
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Contribution
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de Gennes Theory, 111
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Density

— reduced, 99
Destabilizing effect, 18
Diffusion coefficient, 153, 156
DMA, 164

Driving force, 1, 17

DSC, 164
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Einstein-Smoluchowski Theory, 146
Electron clouds, 134

Energy
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— density, 34

— exchange, 33

— free, 1,17, 55, 181
— function, 12
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" kinetic, 129
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— total free, 58
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Enthalpy, 6

~ mixing, 13
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temperature, 24
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Flash calculations, 76
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Flory-Huggins Expression, 3, 65
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Fluctuation, 12
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Gibbs Phase Rule, 12
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— segment, 83
T site, 111
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— theories, 45, 142

two-dimensional, 57

Lattice Fluid Theory, 175

Lennard-Jones potential, 90, 91
Light scattering, 154

Liquid phase, 5

London forces, 59

London-Van der Waals interaction, 33
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Mass

— density, 9

— fraction, 11

Maxwell Equation, 156
Mean spherical approximation, 117
Melting point, 119

— depression, 23
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— behavior, 171

— molecular scale, 145
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— endothermic, 33
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~— function, 20
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—_entropy, 63
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— lattice, 83
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— thermodynamic, 81

— validation, 165
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— volume, 9
Mole fraction, 8
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dynamics simulation, 119
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Multiphase system, 1
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Nernst Theorem, 26
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Number of molecules, 11
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Ornstein-Zernike Equation, 116
Ornstein-Zernike Expression, 159
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Periodic boundary, 137
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~equilibrium, 74
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—liquid-liquid, 13, 22
~_macroscopic, 154

~ metastable, 159

— polymer-rich, 5

— rule, 14

— separation, 70, 121, 190
~ separation, 17

— stability, 14, 148

— thermodynamic stability, 14
~ transition, 105

Phase equilibrium, 11
PICS, 170

Planck constant, 26
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Polyacrylics, 194

Polybutadiene, 2



Polybutylacrylate, 151
Polydispersity, 85, 184
Polyisobutylene, 175

Polymer

— blend, 71,78, 104, 114, 145, 155, 164, 181, 196

— chain, 51

— coil, 58, 59, 155
~_concentration, 72, 85
— 1deal mixture, 61

— melt, 125

~ mixture, 1, 49, 66, 164
~ mixtures, 194

— pairs, 1

— phase, 63

— polydisperse, 73, 75
— segment, 84

~— solution, 149, 160, 165, 180

— structure, 49
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~_anionic, 52
— degree, 50
— radical, 51

— step-growth, 52



Polypentylacrylate, 151
Polyphenylene ether, 1

Polypropylacrylate, 151
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Polytetrafluoroethylene, 119
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Polyvinylchloride, 75, 151, 194
Polyvinylmethylether, 109, 181

Pressure, 174

— coefficient, 173

" hydrostatic, 6

Principle of energy conservation, 5
PRISM prediction, 120

PRISM Theory, 116

Probability distribution, 55

Q

‘Quantum mechanics, 26, 132
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Rayleigh Ratio, 157

Refractive index, 158
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~ unstable, 17

Reptation, 133

RISM Theory, 116 Page 209
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SAN, 196

SANS, 162, 181

Scaling laws, 20

Scattering

— angle, 159

~intensity, 163, 185

—light, 182

~ neutron, 161

— techniques, 145

Self-avoiding walk, 57, 60, 114, 139

Shulz-Flory chain length, 78

Sphere, close-packing, 100
Spin

— average, 113
—orientation, 112

vector, 111




Statistical mechanics, 1, 99, 126, 127
Steric hindrance, 52, 54

Stirling Approximation, 48

Strain, 56

Structure

— atomic, 1
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— fine, 2

~— molecular, 40
Supersaturation, 149
Surfactant, 2
Symmetry rule, 36
System

~ binary, 19

— non-ergodic, 127
T

Temperature, 96, 100, 104, 107, 188

— critical, 166

—glass transition, 145, 164
Thermal

— equilibrium, 5
~expansivity, 86

— stability, 35



Thermodynamic

— driving force, 23
— equilibrium, 6, 7, 12, 15
— framework, 11

— functions, 5

— stability, 15, 16, 20
Thermodynamics, 5

— laws, 5

Tie lines, 21

Torsion angle, 54
Triple point, 12

Turbidity, 157

U

Unperturbed dimension, 54

\Y%

Van't Hoff Law, 31
Vapor

— phase, 5, 34

— pressure, 2
~_super saturation, 12

Viscosity, 3, 149



Volume

conservation, 14

— free, 97
—incompressible, 18
~— molar, 30, 34, 37
~ molecular, 56

Van der Waals, 40

Z

Zeroth law, 5

Zimm plot, 161



