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Preface 

This book is the second of a series of four volumes devoted to the scattering of 
light by solids; the first one appeared as Vol. 8 of Topics in Applied Physics in 
1975. Since then so much progress has occurred that the editors have found it 
necessary to put together three new volumes in order to give a glimpse of the 
field. The volumes cover inelastic scattering, in its spontaneous and stimulated 
forms, by phonons, magnons, and electronic excitations in crystalline and 
amorphous solids. Molecular phenomena are sometimes included when they 
help to clarify or to contrast typical solid-state phenomena and for reference 
purposes in light scattering from adsorbates at surfaces. Several important 
topics, such as the rapidly developing field of light scattering by polymers, have 
been left out completely. The material covered ranges from instrumentation to 
theory touching also problems of specific materials. 

The range of information obtained with light scattering is very wide and 
pertains to many branches of the natural sciences, from biophysics to chemical 
engineering and ecology. While these books address mostly the interests of 
the solid-state physicists, a number of chapters, such as those concerned 
with instrumentation or with the general theory of light scattering, will 
find widespread interest among all practitioners of Raman and Brillouin 
spectroscopy. Most articles should also be of interest to light scattering 
specialists in other fields interested in looking beyond the narrow range of their 
immediate concerns. 

The present volume is devoted to the general principles and the main 
experimental techniques, both linear and nonlinear, of light scattering. The 

. Introduction describes the scope of this and the other volumes of the series. The 
second chapter provides an extensive discussion of the theory of light scattering 
with particular emphasis on resonant phenomena. An effort is made to unify the 
various ideas involved around the concept of differential susceptibilities. Simple 
rules are given to calculate scattering cross sections or efficiencies and the results 
are compared with experimental data. Chapter 3 discusses one of the most 
important recent developments in the field of instrumentation for light 
scattering spectroscopy, namely multichannel detectors. At the moment it is fair 
to say that this development, is "state of the art". Considerable amount of effort 
is still required in order to make these systems commercially available. It is our 
believe that they are the way of the future. The spectroscopist will find in this 
chapter valuable hints for design and purchase. The final chapter reviews 
nonlinear light scattering spectroscopy with special emphasis on hyper-Raman 



viii Preface 

techniques and coherent antistokes Raman scattering (CARS). These methods 
are, at present, the object of very intensive research effort. 

The editors would like to express their deep appreciation to a large number 
of scientists, graduate students and colleagues at the Max Planck Institute in 
Stuttgart, at Brown University, Rhode Island, at the IBM T.J.Watson Research 
Center, Yorktown Heights, and at various other institutions for their collabora- 
tion, help and contributions. The names of all those who helped to "push the 
frontiers" of the field of light scattering will be found throughout the references 
of the various chapters, releasing the editors from the cumbersome burden of 
mentioning them all here. It is a particular pleasure to thank all of the 
contributors for keeping their deadlines despite other commitments and for 
their cooperation in considering the editors' suggestions. 

Especial recognition is due to the manufactureres and suppliers of equip- 
ment for Raman and Brillouin spectroscopy, in particular monochromators, 
interferometers, detectors, lasers, and dyes. They have helped to free the scientist 
from the burden of instrumentation. Without them the progress this book is 
about to document would not have been possible. 

Finally, we would like to dedicate this book to the memory of S. P. S. Porto 
who so much contributed to the field of Raman spectroscopy. 

Stuttgart and KSln, Manuel Cardona 
December 1981 Gernot Gi~ntherodt 
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1. Introduction 

M. Cardona and G. Gfintherodt 
Piedras que se calientan y rebrotan la vida 
opacas, dolorosas y silenciosas piedras ... 
all~ dentro, muy dentro de vuestros huesos duros 
hay fitomos, hay m~sica, vibra un verdor extrafio 

Rafael Lorente 

Recent and significant advances in the pure and applied aspects of the 
scattering of light by bulk solids as well as by their surfaces and adsorbates 
generated the need for an extended treatment. The 1975 volume I-1.1] is 
concerned mainly with inelastic light scattering in semiconductors. During the 
past six years since the completion of that book, light scattering in the classical 
semiconductors, in particular, resonant Raman scattering, has reached a level 
of maturity and profound understanding. Regardless of this, the field of light 
scattering in solids has experienced a continuing and enhanced growth, mainly 
because of its applications to an enormous variety of different materials and 
new systems. These comprise, for instance, doped semiconductors and their 
surfaces, semiconductor superlattices and heterostructures, magnetic semicon- 
ductors, ionic conductors, layered charge density wave materials, graphite 
intercalation compounds, metals and their adsorbates, superconductors and 
mixed valence compounds. Another reason for the intense activity in the field 
arose from the commercial availability of efficient, highly reliable, low stray 
light and good signal-to-noise experimental set-ups for Raman scattering. 
On the other hand, multiple pass or synchronously scanned tandem Fabry- 
Perot interferometry, needed for Brillouin scattering from opaque materials and 
central modes, is just beginning to get out of the specialist's hands and 
becoming a widespread and easy-to-handle tool with commercially available 
instrumentation. 

The rapid developments on various frontiers of the field of light scattering 
have led us to the conclusion that a need exists for reviewing them at the 
present stage. This need has been reflected by the strong response to our request 
for contributions ; we actually had to allow for three volumes instead of the one 
originally planned. However, limitations to a practical size of even three 
volumes have forced us to select a certain number of topics which we hope are 
representative of the activities in the field to date and address a large 
readership. 

1.1 Survey of 1975 Volume 

The 1975 volume on "Light Scattering in Solids" [1.1] contains a rather brief 
general survey of light scattering by phonons (Chap. 1 by M.Cardona), 
including a historical survey, an introduction to the polarizability theory of 
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light scattering, in particular the principles of scattering by two phonons which 
have been so profusely developed during the past few years. It also contains a 
brief discussion of hot luminescence, as compared with resonant Raman 
scattering with intermediate states in the continuum, and appropriate references 
to this subject still of considerable current interest. 

Chapter 2, by A.Pinczuk and E. Burstein, discusses in detail the phenome- 
nological theory of light scattering by phonons and establishes the connection 
with the microscopic theory. Scattering by electronic excitations in doped 
semiconductors is also considered. The unifying feature of the treatment is the 
concept of Raman susceptibilities which is extended to cover morphic effects 
(effects of strains and/or electric fields on the Raman spectra). 

Chapter 3, by R.M.Martin and L.Falicov, discusses the phenomenon of 
resonant scattering with special emphasis on solids. The various types of 
resonant behavior are classified and discussed according to the nature of the 
intermediate and the final states (discrete or continua). Emphasis is placed on 
the types of singularities, i.e., poles of energy denominators, involved in the 
resonances. The theory of temporal dependence of the scattering process is also 
briefly touched upon. 

Chapter 4, by M.V.Klein, is devoted to electronic Raman scattering with 
emphasis on doped semiconductors. The discussion includes scattering by 
charge density fluctuations (leading to plasmons) and the various mechanisms 
involved: spin-flip single particle scattering, LO-phonon-plasmon coupled 
modes, scattering by bound electrons and by bound holes, coupling of 
nonpolar phonons to electronic excitations and scattering by multicomponent 
carrier systems (acoustic plasmons). 

Chapter 5, by M.H.Brodsky, deals with Raman scattering by amorphous 
semiconductors with emphasis on violation of wavevector conservation selec- 
tion rules and the analogy to scattering by homological single crystals and/or 
molecules. 

The theoretical and experimental aspects of Brillouin scattering by acoustic 
phonons in solids are treated by A.S.Pine in Chap. 6. Both classical Brillouin 
scattering and scattering by acousto-electric domains in polar materials are 
discussed. Resonant phenomena, including the prediction of resonances near 
excitonic polaritons, since then profusely confirmed in a number of beautiful 
experiments [Ref. 1.2, Chap. 7], is also touched upon. 

Finally, Chap. 7 by Y.R.Shen treats stimulated Raman scattering and a 
number of related phenomena with emphasis on the concept of third-order 
nonlinear susceptibilities. 

1.2 Contents of the Present Volume 

The present volume emphasizes the main principles and the instrumentation 
pertaining to light scattering. Chapter 2 will deal with aspects of all chapters of 
the 1975 book in an updated, comprehensive introductory contribution by 
M.Cardona. Emphasis is placed on unifying the various macroscopic and 
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microscopic treatments. This chapter will serve as a basis for the theoretical 
background and nomenclature used in the present edition. An effort is made to 
keep the treatment simple and self-contained, within the reach of the average 
experimental physicist. The chapter is divided into four sections. In Sect. 2.1, we 
treat the phenomenological polarizability theory of light scattering in a 
semiclassical fashion. Quantum-mechanical concepts are introduced, however, 
whenever a rounding-off of the classical discussion is required. Emphasis is 
placed on the concept of scattering cross sections (molecules) and efficiencies 
(solids) and in obtaining fornaulas which enable one to calculate these 
quantities in absolute units. Several sections are devoted to the determination of 
absolute scattering efficiencies in solids. Sections 2.1.15, 2.1.16 are devoted to 
light scattering in amorphous and disordered materials. This subject, treated in 
[Ref. 1.1, Chap. 51 by Brodsky, has received considerable interest in recent 
years. As no special chapter on it is planned for the current treatise, we have 
included in this section an extensive updating of this aspect of light scattering. 

Section 2.2 describes the quantum theory of light scattering, starting with 
molecules (Franck-Condon treatment) and going over to solids. A few aspects 
of scattering by electronic excitations not covered in [Ref. 1. i, Chap. 4] are also 
treated. Emphasis is placed on the calculation of absolute scattering efficiencies 
and of resonance phenomena. The resonance profiles are evaluated for typical 
interband critical points of solids and illustrated for specific cases which occur 
in the tetrahedral semiconductors. The treatment includes first-order scattering 
(by one phonon) and second-order scattering by two phonons. Forbidden 
scattering induced by Fr/Shlich interaction in the case of LO-phonons is also 
discussed. 

Finally, Sect. 2.3 gives experimental results of resonant scattering pheno- 
mena, including resonances near the E o, Eo + A o, E t and EI + A 1 gaps of 
tetrahedral semiconductors, the yellow excitonic series of Cu20 and the 
indirect gap of AgBr. Resonant multiphonon processes and their relationship 
to hot luminescence are also treated. 

The expressions in Sect. 2.1 are written in SI units unless otherwise 
indicated [we point out that the susceptibility in SI units includes a factor of 4rt, 
i.e., ()~sl = 4rC;gcas)"1. In Sect. 2.2, however, we use atomic units (e = m = h = 1) as is 
customary for microscopic calculations. We have kept, however, the factor of 
4n in the susceptibility, i.e., we define the dielectric constant of a medium as 
e-=~:o(1 +X), where eo is the permittivity of the vacuum. 

Chapter 3 is devoted to a novel technique in light scattering, the optical 
multichannel detection and its applications to time-resolved and spatially- 
resolved measurements, particularly in the applied research areas. The article 
addresses mainly nonspecialists and potential users in trying to make the 
manufacturers' "jargon" transparent and understandable. It will also help the 
potential user in making up his mind about what system and components to 
choose from. 

Chapter 4 reports on light scattering in solids due to nonlinear optical 
effects such as the hyper-Raman effect in its spontaneous, resonant, stimulated 
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and coherent forms, the coherent antistokes Raman scattering (CARS), the 
Raman-induced Kerr effect and multiwave mixing. The unified theoretical 
treatment of these phenomena is given with the concept of higher-order 
nonlinear susceptibilities. Experimental details and instrumentation for these 
new forms of spectroscopy are also discussed. The aspects dealt with bear basic 
scientific interests as well as new concepts for technological applications. 

1.3 Contents of the Following Volume 

The following volume I-1.2] will be devoted to specific examples of Raman and 
Brillouin scattering by phonons in several families of materials. The aim is to 
illustrate the various types of phenomena observed and investigated with 
specific examples. 

Chapters 2-5 are concerned with material oriented aspects in light scatter- 
ing. Chapter 2 describes light scattering in graphite intercalation compounds, a 
model-type class in the recently very active field of "synthetic metals". The 
substantial contributions of Raman scattering to an understanding of the 
lattice dynamics, the graphite-intercalant interactions, and the superlattice 
formation will be discussed. 

Chapter 3 reviews light scattering from electronic and magnetic excitations 
in transition metal halides comprising cubic fluoride perovskites, tetragonal 
fluoride rutiles and trigonal compounds. Besides magnon scattering in pure and 
mixed antiferromagnets, emphasis is placed on a summary of present-day 
knowledge of electronic Raman scattering from transition metal ions and of 
electron-phonon coupled modes. 

Chapter 4 summarizes the contributions of light scattering to an under- 
standing of disorder and dynamical processes in superionic conductors. For 
selected representatives of the different classes of superionic conductors the 
prominent features of light scattering will be demonstrated, such as vibrational 
excitations associated with oscillatory motion of ions at a lattice site and quasi- 
elastic scattering arising from the diffusive motion of the ions. 

Chapter 5 illustrates various aspects of Raman scattering in metals, includ- 
ing defect-induced first-order scattering and second-order scattering in the 
carbides and nitrides of transition metals. Also, scattering in the A15 com- 
pounds and the relationship to their low-temperature phase transition is 
treated. Experimental data are followed by a formal theory of light scattering in 
metals which includes in a unified way phonons and electronic excitations. This 
is followed by a discussion of light scattering in charge density wave materials 
(transition metal dichalcogenides) including recently observed phenomena in 
the superconducting phase of some of these materials. 

In Chapter 6, a long-time sought for review, combines expertise in most 
recent technological developments of Fabry-Perot interferometry with a de- 
scription of the physical background when applying this technique to opaque 
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materials, supported films and central modes. It is shown how the technological 
advances in high-contrast multipass and synchronously scanned tandem 
Fabry-Perot interferometers have opened new research areas such as the study 
of elastic waves near surfaces and interfaces, of surface spin waves, and the 
scattering from diffusive excitations. 

Chapter 7 treats resonant light scattering by excitonic polaritons. The 
emphasis is on the kinematics, scattering efficiencies, resonance behavior as 
observable in Brillouin as well as Raman scattering, and, in particular, the 
elusive role of the additional boundary conditions (ABC). A brief general 
review of the field of exciton polaritons is given. Multiphonon processes and 
their relationship to the resonant scattering - hot luminescence dichotomy are 
also treated. Finally, the phenomenon of exciton polariton mediated electronic 
scattering, of considerable current interest, is discussed. 

1.4 Contents of the Forthcoming Volume 

A forthcoming volume on Light Scattering in Solids [l.3] is being planned and 
should appear in the near future. It will cover light scattering by free carrier 
excitations in semiconductors (A.Pinczuk, M.Cardona, and G.Abstreiter), 
spin-dependent Raman scattering in magnetic semiconductors (G.Gfintherodt 
and R.Zeyher), Raman scattering in rare earth chalcogenides (G.Gtintherodt 
and R. Merlin), spin-flip Raman scattering in CdS (S. Geschwind and 
R. Romestain), enhanced Raman scattering by molecules on metals (mainly 
experimental by A. Otto, and theory by R. Zeyher and K. Arya) and, finally, 
pressure dependent effects in light scattering (B. A. Weinstein and R. Zallen). 
The complete and detailed contents of this forthcoming volume [1.3] will be 
given at the end of the present volume. 

1.5 Recent Topics and Highlights of Light Scattering 
in Solids 

In this section, we want to outline a number of selected developments in the 
pure and applied aspects of light scattering in solids which have caused a 
significant impact on the field during the past five years. We do not attempt a 
complete survey, but rather want to stress the versatility of the method and the 
diversity of the various phenomena that have been investigated. This brief 
overview is addressed to all those who want to glance at the progress in the field 
without going into details. Our apologies to all those whose work is not 
mentioned here. It may appear throughout the more detailed chapters of this 
volume and the forthcoming ones [-1.2, 3]. 
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1.5.1 Instrumentation, Techniques 

As will be described in detail in Chap. 2, resonant Raman scattering at various 
interband gaps of semiconductors has reached a high degree of sophistication 
in recent years. A great deal of this success has been due to the steady 
improvements in the field of dye lasers. The present-day state of the art of 
commercially available, stable dyes is shown in Fig. 2.7. 

There is an increasing need for laser excitation lines in the ultraviolet and 
vacuum ultraviolet spectral region for use in resonant Raman scattering at 
high-energy interband gaps [1.4] and for work on metallic systems which have 
high reflectivities in the visible spectral region and a plasma frequency in the 
near uv. For intense uv laser lines of wavelength shorter than 1200 ~, one has 
to await, for instance, the availability of a free-electron laser [1.5]. For longer 
wavelengths frequency multiplication of visible cw laser radiation appears to be 
a reasonable compromise for the time being. Temperature tuned (stability 
__0.01 K) intracavity second-harmonic generation (SHG) in ADP and KDP 
crystals with true-cw output power up to 300roW at 2572.5 A with a maximum 
32% power-conversion efficiency, has been reported [1.6]. More realistic, 
practical applications in light scattering experiments yielded typical cw output 
between 20 and 40 mW at 2572 A (4.82 eV) by intracavity - ADP-SHG of the 
Ar + 5145 ~ laser line and 5-10 mW at 2956/~ (4.19 eV) by intracavity - ADA- 
SHG of the rhodamine 6 G dye laser [1.4]. The power-conversion efficiency is 
usually severely limited by thermal instabilities (local heating) of the nonlinear 
material, absorption due to trace impurities and by damage to antireflection 
coatings of the crystal. 

For the same plasma tube, mode-locking seems to increase the SHG 
efficiency about 20 times and may be used for extra-cavity SHG [1.7]. 
Frequency doubling of synchronously pumped (cavity dumped) dye lasers is 
superior in uv output power to that of cw (cavity dumped) ones. SHG inside 
ring laser cavities has yielded several mW tunable uv power using 2.5 W pump 
power. Tunable uv radiation may also be obtained by frequency mixing of a 
dye laser output (or its SH) with that of a YAG laser (or its harmonics) using 
KDP crystals. 

Whether synchrotron radiation is going to be the "laser" of the 1980's [1.8] 
still depends on a detailed evaluation of the scientific case [1.9] for applying it 
to Raman scattering in solids. First attempts in this direction have been 
undertaken in x-ray resonant Raman studies in metals [1.8, 10]. The resonance 
enhancement near K-absorption edges may be useful for studying linewidths 
and other final state interaction effects. 

Several attempts have recently been undertaken to cut down measuring 
times in light scattering experiments and even to perform time-resolved 
measurements by replacing the single channel photomultiplier (PM) detection 
system by an optical multichannel analyzer (OMA) system, somewhat anal- 
ogous to the previously used photographic plates but with the advantage 
of electronic data processing. The method has so far not been widely 
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applied to light scattering in solids mainly because of the continuing lack of 
good signal-to-noise ratios and the somewhat cumbersome instrumentation 
problems. The basic design of the monochromators to be used with OMA 
systems for light scattering experiments is shown in Fig. 3.8. A two-grating 
assembly with subtractive dispersion serves for stray light rejection, whereas a 
third grating yields the dispersion, i.e., frequency resolution. Zoom lenses may 
be used for optimum focussing onto the two-dimensional detector array. 

The molecular-iodine filter [1.11] with a resonant absorption band coincid- 
ing with the 5145 A Ar + laser line, has been used successfully to remove light 
elastically scattered by sample imperfections (rejection greater than 107). Thus, 
it became feasible to study dynamic central peaks (width 6, 0.1 < 6 < 10 cm- 1) in 
the quasi-elastic light-scattering spectrum which arise from entropy and 
phonon density fluctuations [1.12]. However, as will be described in [l.2] by 
J.R.Sandercock, multiple-pass tandem Fabry-Perot interferometers with their 
large free spectral range represent the ultimate and most elegant way of 
studying central peaks. In particular, no computer-assisted data handling is 
required. 

A new technique, interference enhanced Raman scattering (IERS), has 
recently been introduced to observe Raman scattering from very thin evap- 
orated films of highly absorbing materials (~> 105 cm -1) [1.13]. The three- 
layer sandwich structure consists of a highly reflecting (bottom) layer and a 
nonabsorbing dielectric (middle) layer. Their thickness is adjusted so that no 
reflected light comes from the front side of the thin sample (top) layer because of 
destructive interference. On the other hand, the light scattered from the interior 
of the sample layer is enhanced via constructive interference with that coming 
from the reflector at the bottom. Depending on the optical constants of the 
material under investigation, one expects theoretically, a gain in scattering 
intensity of 10-103 over that obtained from a thick bulk sample using a 
conventional Raman backscattering configuration. A gain of a factor of 20 has 
been obtained for Te films. Applications of IERS to films of metallic and 
oxidized Ti are aimed at a study of their structural and vibrational properties, 
in particular, the amorphous versus crystalline state of the interface. 

Surface-enhanced Raman scattering (see below) at solid-electrolyte and 
more recently at solid-vacuum interfaces of special adsorbate-substrate systems 
has yielded enhancements of up to 105- 106 , as compared to the free molecule 
scattering cross section. Therefore, the more involved technique of surface- 
electromagnetic-wave-enhanced Raman scattering by overlayers on metals 
[1.14] has, so far, received little attention. The theoretical estimate of the 
scattering intensity by a thin overlayer on a Ag film using an attenuated total- 
reflection prism scattering configuration showed an enhancement by two 
orders of magnitude over that in a standard backscattering configuration. 

Pulsed laser annealing has become a widely used tool for repairing the 
damage introduced by ion-implantation doping of semiconductors. Raman 
scattering allows the direct determination of the lattice temperature within 
10 ns after a heating pulse by measuring the Stokes/antistokes ratio of phonon 
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Raman scattering of a probe laser pulse [ 1.15]. This technique allows the strict 
testing of thermal melting models versus nonthermal-equilibrium models of 
laser annealing in a ~tm-thick layer on a time scale of tens of ns. 

The modern picosecond laser pulse technology has recently been applied to 
time-resolved spontaneous Raman scattering from nonequilibrium 
LO-phonons [1.16]. The dynamics of nonthermal LO-phonons in GaAs has 
been studied by an excite-and-probe scheme using 2.5 ps pulses, resulting in a 
relaxation time of phonons populated at 77 K of 7_+ 1 ps. This information 
about phonon relaxation processes is obviously more direct than an analysis of 
the broadening of Raman or infrared spectra. 

While light scattering under uniaxial stress on large single crystals is rather 
straightforward [1.17], the application of hydrostatic pressure imposes more 
serious experimental difficulties, the use of the diamond-anvil-type pressure cell 
[1.18] being restricted to strong scatterers only (minimum about 103 counts per 
second for ~ 200 mW incident power). These aspects will be dealt with in more 
detail in [1.3] by Weinstein and Zallen. A comprehensive review concerning 
morphic effects in Raman scattering, including stress-induced and pressure- 
induced Raman scattering, has already been given by Anastassakis [1.19]. 

With the continuing development of high-power pulsed lasers, the develop- 
ment of coherent and nonlinear scattering techniques (such as coherent 
antistokes Raman scattering (CARS), hyper-Raman, etc.) has been quite 
impressive. The reader is referred to Chap. 4. 

1.5.2 Semiconductors 

Resonant Raman scattering in semiconductors is described at length in 
Chap. 2. The direct interrelationship between resonant Raman scattering and 
the electronic band structure has been demonstrated most clearly in resonant 
Raman scattering by overtones of TO-phonons (2 TO) in GaAs [1.20]. From 
the selective resonance enhancement near the indirect F~-L~6 and F~8-X~ 6 
valence (v)-conduction (c) band gaps, it follows directly that the L point 
conduction band minima lie below those at the X points. This experimentally 
determined ordering of the conduction band minima in GaAs is of importance 
for the understanding of the "Gunn effect". Of considerable interest is also the 
resonant two-phonon scattering as it yields reliable values for electron two- 
phonon interaction constants. 

Light scattering by free electrons and electron-phonon coupled modes in 
heavily doped semiconductors has been the subject of intense research during 
recent years [1.21, 22]. In these investigations, the wave vector and frequency- 
dependent dielectric function of the charge carriers could be studied via the 
wave vector dependence of the coupled plasmon-LO phonon modes in n-GaAs. 
Moreover, their resonance enhancement as well as spin-flip single particle 
excitations have been investigated. In nonpolar materials and for TO-phonons 
in polar materials, small self-energies result from the deformation potential- 
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type electron-phonon interaction [1.23]. Very recently, the self-energy of 
phonons due to holes in p-type Ge has been shown to be q-dependent by means 
of Raman scattering [1.24]. A comprehensive account of these results will be 
presented in more detail by Pinczuk et al. in [1.3]. 

Raman scattering by coupled plasmon-LO phonon modes has also been 
shown to be useful for determining the carrier concentration, for instance, in 
GaAs or AlxGa I _xAs without the need of applying electrical contacts [1.25]. 
This method may be used for routine-type in situ characterization of molecular 
beam epitaxy (MBE) layers. 

Raman scattering from plasmon-phonon coupled modes has also been used 
to study the electron-hole pair density of a pulse-photoexcited plasma in 
undoped GaP, prior to the formation of the electron-hole liquid [1.26a]. This 
method appears to be more sensitive than the conventional line-shape fitting of 
the electron-hole plasma radiative recombination spectrum. Of course, these 
investigations are actually aiming at studying plasmon modes of the electron- 
hole liquid and finding easier means of determining its density. We also 
mention the recent observation of acoustic plasmons in GaAs [2.26b]. 

The prediction that Brillouin scattering in semiconductors should undergo, 
like Raman scattering, a resonance enhancement when the incoming photon 
energy approaches an exciton energy, or in the case of strong exciton-photon 
interaction a polariton branch, has recently been verified in GaAs [1.27] and 
CdS [1.281. The resonant interaction of acoustic phonons with excitonic 
polaritons allows a determination of the dispersion and other parameters of the 
polaritons and of the phonon-polariton interaction. It is hoped that it will help 
to solve the delicate problem of additional boundary conditions (ABC) for 
polaritons at the sample-vacuum interface [Ref. 1.2, Chap. 7]. 

1.5.3 Semiconductor Surfaces 

Besides the above-mentioned inelastic light scattering by charge carriers in 
semiconductor surface layers with thicknesses of about 100 to 3000 A, there has 
been. strong interest in performing these experiments on quantized two- 
dimensional plasmas in inversion and accumulation surface space charge layers 
of semiconductors [1.29]. Recently, the resonance enhancement of inelastic 
light scattering from a quasi-two-dimensional electron gas confined to the 
interface of abruptly doped GaAs/n-AlxGa ~_xAs heterojunctions has been 
reported [1.30-1. These investigations constitute the first evidence for single- 
particle intersubband excitations in a two-dimensional electron system by 
means of Raman scattering. 

Oxidation of semiconductor surfaces as well as oxide-semiconductor in- 
terfaces can also be studied by Raman scattering. The two anomalous peaks in 
the Raman spectra of oxidized GaAs, InAs and GaSb, InSb [1.31] have been 
attributed to excess As and Sb, respectively, in the interface between the oxides 
and the underlying semiconductor. The reduction in scattering intensity of the 
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TO, LO-modes of the oxidized III-V semiconductors due to the crystalline, 
semimetallic As or Sb layers can be used to estimate the thickness of the 
interface layers. 

Resonantly excited bulk LO-phonon Raman spectroscopy on (ll0)-GaAs 
has recently been shown to be a sensitive technique for measuring the band 
bending and Fermi level position at the surface as a function of cleavage 
conditions, oxygen exposure and doping [1.32]. Differences in the LO scatter- 
ing intensity of UHV-cleaved and air-cleaved samples arise due to the surface 
electric field present in the latter. The minimum detectable surface electric field 
of 1.5 x 104 V/cm and the associated change in barrier height of 0.05 eV make 
this method comparable in sensitivity with that of photoemission spectroscopy 
and ellipsometry. 

1.5.4 Semiconductor Superlattices 

During the past five years, Raman scattering in multiple GaAs-Ga l_~AlxAs 
heterostructures has received much attention. One major issue has been the 
search for Brillouin zone folding effects in Raman scattering. The effect 
reported for the scattering by polar phonons in GaAs-Gal_~AlxAs super- 
lattices could not be confirmed recently [1.33]. Instead, the results are 
explained within a phenomenological theory based on optical anisotropy 
induced by layering [1.33]. 

On the other hand, however, Raman scattering from folded longitudinal 
acoustic phonons in GaAs-A1As superlattices has been observed [1.34]. In this 
case, the new periodicity of the superlattice along the direction perpendicular to 
the layers is considered as giving rise to Brillouin zone folding and to gaps in 
the phonon spectrum. 

1.5.5 Amorphous Semiconductors, Laser Annealing 

An updated account of the characterization of amorphous semiconductors and 
of the determination of their local order by means of Raman scattering is given 
in Chap. 2. Vibrational spectroscopy of amorphous semiconductors using 
Raman scattering has provided a broad scale of information ranging from 
vibrational excitations of large atomic clusters [1.35] and Si-H bonds in 
hydrogenated a-Si [1.36] to one-fold coordination in low-temperature de- 
posited thin-film a-I [1.37]. 

Laser annealing is nowadays in common use to "heal" either laser-induced 
or ion-implantation-induced damage to crystal lattices (see also Sect. 1.5.1). 
Raman scattering has been shown, among other techniques, to be a valuable 
tool in identifying microcrystallites in the annealed region or to examine the 
reordered state of the annealed material, like, for instance, in Si [1.38] or GaAs 
[1.39]. 
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1.5.6 Brillouin Scattering from Opaque Materials 

The study of opaque materials by means of Brillouin scattering has revealed, 
besides the usual elasto-optic contribution in transparent materials, a new 
dominant scattering mechanism - the acoustic surface ripple [1.40]. The latter 
basically acts as a "phase grating" and is produced in the surface by both bulk 
and surface phonons. In general, phonon modes in the presence of surfaces and 
interfaces, acting as mechanical boundaries, give rise to new excitations specific 
to the surface (Rayleigh, Lamb, Segawa, Love modes). These new excitations, 
localized typically within a wavelength from the surface, are only seen in 
opaque materials where the scattering volume is near the surface. A compre- 
hensive review on this subject is given by Sandercock in [1.2]. The in- 
vestigations of opaque materials have only been possible through multipass or 
even tandem-multipass Fabry-Perot interferometers. Highlights in this field 
have been the studies of solid metal surfaces [1.41], Rayleigh waves [1.42] and 
their lifetime in amorphous silicon [1.43], frequency shifts and linewidths in 
vitreous silica down to 0.3 K [1.44], layer compounds [1.45] and the metallic 
glass Feo.aoB0.ao [1.46]. The latter material also showed scattering by surface 
spin waves which had been first discovered in the magnetic semiconductor EuO 
[1.47]. Light scattering by thermal acoustic spin waves exhibits, besides 
modified bulk spin waves, a spin wave propagating along the surface of the 
crystal. The former exhibit the usual Stokes/antistokes anomaly [1.48] typical 
for magnons, whereas the surface spin wave is observed either in the Stokes or 
in the antistokes scattering, depending on the direction of the magnetic field 
(nonreciprocal propagation properties [1.49]). 

1.5.7 Layer Materials 

Since 1975, extensive studies of Raman scattering have been performed in the 
layered transition-metal dichalcogenides in which electronic instabilities give 
rise to charge density waves accompanied by periodic lattice distortions. Such 
distortions can be either commensurate or incommensurate with the un- 
distorted lattice. Raman scattering is an extremely valuable tool in identifying 
the amplitude and phase modes of commensurate or incommensurate charge 
density waves accompanying superlattice formation [1.50-54]. 

It has been shown that the strength of second-order Raman scattering in 
charge density wave materials is directly related to the magnitude of the Kohn 
anomaly because of the singularity of the q-dependent electron-phonon inter- 
action at q=2kF, where k F is the Fermi wave vector [1.55]. 

Studies of the Raman-active phonons in the highly anisotropic charge 
density wave material TaS 3 have provided insight into the anisotropy of the 
bonding, the temperature dependence of the order parameter of the charge 
density wave and the absolute magnitude of the electronic gap which opens up 
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at the Fermi energy due to the charge density wave [1.56]. The relaxation of 
phonons via the excitation of carriers across the electronic gap shows up in the 
temperature dependence of the phonon line widths. 

More details on Raman studies of phonon anomalies and particularly on 
two-phonon scattering in transition metal compounds will be given by Klein in 
[1.2]. 

The outstanding contributions of Raman scattering to the study of the 
lattice dynamics of graphite intercalation compounds will be reviewed by 
M.S.Dresselhaus and G.Dresselhaus in [1.2]. Of particular interest have been, 
and still are, the coupling between the intercalants and the graphite bounding 
layers and the dynamics of the charged intercalants [1.57]. The question of 
whether the superlattice formation leads to zone-folding effects or to a 
disorder-induced phonon density of states [1.58] in the Raman scattering is 
still of current interest. 

1.5.8 Superconductors 

The first observation of superconducting-gap excitations by means of Raman 
scattering has been reported recently [1.59]. The layered transition metal 
dichalcogenide 2H-NbSe 2 has been shown to exhibit in the superconducting 
state new Raman-active A and E modes close in energy to the BCS gap 2A. 
These modes have been attributed to a coupling of the superconducting-gap 
excitations to charge density waves [1.59] or, in turn, to a self-energy effect on 
Raman-active phonons of frequency co>2A, leading to bound excitations 
(oY< 2A) induced by the electron-phonon coupling [1.60]. The advantage of the 
method for studying superconducting phenomena obviously lies in the energy 
resolution, the symmetry dependence of the scattering and the possible 
determination of gap anisotropies from an A, E mode splitting. 

Raman studies of the superconducting A 15 compound V3Si exhibiting a 
strongly temperature-dependent asymmetric line shape of the E o optical 
phonon, have provided evidence for a direct Gorkov-type coupling between the 
q = 0 optic phonons and the electronic instability associated with the marten- 
sitic transformation [1.61]. 

For superconductors with NaC1 structure like TiN or YS, it has been shown 
recently that their phonon anomalies contribute dominantly to the first-order 
scattering intensity, which primarily is defect-induced [1.62]. The scattering 
intensity can be described quantitatively by a one-phonon density of states 
multiplied by electron-phonon matrix elements which can be expressed in 
terms of phonon-induced local intra-ionic charge deformabilities also describ- 
ing the phonon anomalies. The application of the concept of local cluster 
deformabilities to the calculation of Raman intensities will be described in more 
detail by Giintherodt and Merlin in [1.3]. 
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1.5.9 Spin-Dependent Effects 

Spin-flip Raman scattering has been extensively used to study electron 
dynamics and spin diffusion in n-CdS [1.63, 64]. The novel technique of 
"Raman echoes" (in analogy to spin echoes) has been applied to study the 
metal-insulator transition in CdS [,1.65]. The review by Geschwind and 
Romestain in [1.3] will give more detailed insight into this subject. 

New Raman scattering mechanisms corresponding to simultaneous spin- 
phonon excitations have been discovered recently in rare-earth and transition- 
metal compounds [-1.66,67]. In this case, the phonon Raman scattering 
contains information about the order and the dynamics of the spin system. In 
the model type class of rare-earth magnetic semiconductors, the europium 
chalcogenides, spin-phonon excitations occur in Raman scattering because of 
the large spin-orbit coupling in the excited, intermediate 4f-hole state [1.66]. 
This mechanism leads, in Raman scattering from phonons, to the observation 
of spin-disorder-induced scattering in the paramagnetic phase [1.66], phonon- 
magnon scattering in the ferromagnetic phase [1.68], and to "magnetic Bragg" 
scattering from spin superstructures in the antiferromagnetic phase [1.69]. On 
the other hand, in the layered, antiferromagnetic transition metal compound 
VI 2, the phonon modulation of the exchange interaction has been found to be 
responsible for the Raman scattering from zone-folded phonons induced by the 
spin superstructure ("magnetic Bragg" scattering) [1.67]. The interested reader 
is referred to the chapter by Giintherodt and Zeyher in [-1.3]. 

Besides the profuse literature on resonant Raman scattering in semicon- 
ductors, there have been only a few examples of resonant light scattering from 
magnetic excitations. However, resonant two-magnon Raman scattering as 
compared with resonant two-phonon Raman scattering in e-Fe20 3 [1.703 and 
NiO [1.71] has been shown to be a useful tool for identifying the localized 
magnetic (initial) states in these materials, providing information comparable 
to that from spin-polarized photoemission. The otherwise inaccessible excited- 
state exchange constants can be determined by comparing the two-magnon 
scattering cross sections with the theoretically predictable one-magnon cross 
sections. 

Raman scattering in paramagnetic rare-earth trifluorides and trichlorides 
with axial symmetry has revealed the interaction of phonons with localized 
electrons in unfilled 4 f  shells in terms of "magnetic phonon splitting" [1.72]. 
The latter is a splitting of doubly-degenerate (Eo) optical phonon states due to 
an external magnetic field (parallel to the crystal axis) and arises from the 
interaction between the lattice deformation due to optic phonons and the 
multipole moments of second and higher-order of the rare-earth charge 
distribution. The Raman scattering features have been interpreted theoretically 
in terms of magneto-elastic interactions [1.73]. 

Phonon frequency shifts observed by Raman scattering in heavily doped n- 
Si have been attributed to self-energy effects of the phonon-deformation- 
potential interaction [,-1.74]. Analogously, phonon self-energies due to the 4f- 
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electron-phonon interaction are made responsible for frequency shifts of optic 
phonons observed by Raman scattering in CexLa 1 _xF3 [l.75]. The data arc 
interpreted in terms of phonon-induced virtual quadrupole transitions to 
excited crystal-field states of Ce 3 ÷, i.e., as dynamic quadrupolar deformations 
of the 4 f  shell by phonons. We would like to point out that the very similar 
concept of phonon-induced local charge deformabilities mentioned in 
Sect. 1.5.8 for superconductors is also applicable to the description of lattice 
dynamics and Raman intensities in mixed valence rare-earth compounds (see 
Chap. 5 of [1.3]). 

1.5.10 Surface-Enhanced Raman Scattering 

The investigations of the enhancement mechanisms of Raman scattering from 
monolayers of adsorbed molecules (by a factor of 105- 10 6 o v e r  the same 
quantity of molecules in the gas or liquid phase) probably constitute the most 
active field in light scattering at present. A step forward from initial Raman 
experiments on pyridine monolayers adsorbed to a Ag-electrolyte interface 
[1.76] was undertaken by looking at cyanide molecules on a Ag-air interface 
[1.77]. Present-day studies are concerned with in situ surface preparation under 
ultrahigh vacuum conditions and characterization under controlled surface 
coverage [1.78, 79]. Surface roughness inherent in the evaporated Ag substrate 
films has been shown to play an essential role in the enhanced Raman 
scattering from CO on Ag [1.78] or pyridine on Ag [1.79], the latter exhibiting 
an enhancement factor of 104 . 

Solid-solid interfaces in the form of tunnel junction structures evaporated 
onto optical diffraction gratings permit not only the direct comparison of 
inelastic electron tunneling spectra with the surface-enhanced Raman spectra, 
but also the direct excitation of the surface plasmon modes of the Ag substrate 
[1.80]. The latter are considered as an intermediate state in the surface- 
enhanced Raman process on Ag. 

An updated review of the current experimental state of the field will be given 
by Otto in [1.3]. The various theoretical models that have appeared recently, 
going beyond earlier proposals [1.81], will be summarized by Zeyher and Arya 
in [1.3]. 

1.5.11 Miscellaneous 

In the investigations of homogeneously mixed valence compounds exhibiting 
valence fluctuations of the rare-earth ions, Raman scattering has provided 
information about the symmetry of the electron-phonon coupling [1.82] and of 
the charge fluctuations [1.83-85]. Furthermore, electronic Raman scattering 
by 4f  multiplets permitted a study of the configuration interaction between 
localised f electrons and conduction electrons [1.86]. A more detailed account 
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of this work will be given by Giintherodt and Merlin in [1.3]. Theoretical 
predictions concerning the power spectrum of temporal fluctuations in the 
occupation number of an ionic configuration hybridized with conduction- 
electron states [1.87] have not yet been confirmed by means of light scattering. 

Light scattering has also been applied to rather exotic solids, including one- 
dimensional organic conductors like TTF-TCNQ [1.88-91] or metallic po- 
lymers like (SN)x [1.92, 93]. The investigations in the TTF-TCNQ charge 
transfer salts have focused mainly on an identification of lattice and in- 
tramolecular modes [1.88, 90] and on the relationship between the Raman 
frequencies and the average charge transfer [1.88, 91_]. Questions still concern 
the frequency change of Raman modes associated with the Peierls distortion 
[1.89]. 

Light scattering by solitons, like, for instance, by spin fluctuations in quasi- 
one-dimensional ferromagnets in a regime of temperature and magnetic fields 
where solitons exist as thermal excitations [1.94], may become a challenging 
experimental task. The dispute [1.95] over the previously observed central 
peak in neutron scattering of CsNiF 3 [1.96], whether arising from scattering by 
solitons [1.96] or by spin-wave density fluctuations [1.95], calls for precise 
absolute intensity data normalized to single-spin-wave intensities. 

So far, not much attention has been paid to the effects predicted for 
scattering of electromagnetic radiation in the x-ray spectral range [1.97]. With 
the continuing boom in dedicated synchrotron radiation, interesting re- 
lationships between the x-ray Raman edge and the x-ray absorption edge 
[-1.98] have to be investigated in more detail. The possibility of obtaining 
structural information from the extended modulation of the x-ray Raman 
scattering edge, similar to that from extended x-ray absorption fine structure 
(EXAFS), appears to be very intriguing. 

For a review of recent developments in light scattering in the Soviet Union, 
we would like to refer the reader to the Proceedings of the Second Joint USA- 
USSR Symposium on Light Scattering in Solids [1.99]. Another review about 
Brillouin scattering from bulk magnons in CrBr3, FeBO3, and CoCO 3 by 
Borovik-Romanov and Kreines [1.100] should be mentioned here. 

A detailed account of the various light scattering activities in Japan cannot 
be given here. As an example, we would just like to mention the work on spin- 
dependent Raman scattering from phonons in magnetic semiconductors, 
especially the theoretical work based on that by Moriya [-1.101]. A detailed 
description by Giintherodt and Zeyher will be found in [1.3]. 
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2. Resonance Phenomena 

M. Cardona 

With 60 Figures 

The first volume of this series [2.1] was written in 1973-74. At that time, 
reliable cw dye lasers had become commercially available and their range of 
tunability was being rapidly extended. It was clear that these lasers were going 
to become the standard source for light scattering experiments and there was 
going to be increasing interest in this type of work. A few experiments involving 
first and second-order scattering had already been performed with dye lasers 
for simple solids, in particular, for germanium-zincblende-type semiconductors 
[2.2-41 and for Cu20 [2.5, 6]. With few exceptions, it was conventional to give 
the scattering efficiencies in relative units: the efficiencies for second-order 
scattering were compared with the first-order efficiencies. 

It had become clear at that time that the band structure and lattice 
dynamics of those semiconductors were sufficiently well known to allow the 
quantitative interpretation of resonance phenomena in light scattering. From 
such an interpretation, very detailed information on electron-phonon in- 
teraction should be obtained. The main ideas concerning the forbidden 
q-dependent and E-dependent scattering by LO-phonons [-2.7] were known 
although there was still considerable confusion concerning the interpretation of 
LO-multiphonon processes [2.8, 9-1. Brillouin scattering resonant with pola- 
ritons had been predicted [2.10] but not yet observed [2.11]. Stimulated 
Raman phenomena were beginning to be studied in solids and the potential of 
the CARS-technique (Coherent Antistokes Raman Scattering) had been 
recognized [Ref. 2.1, Chap. 7]. The main principles underlying scattering by 
electronic excitations were known [Ref. 2.1, Chap. 4] but experimental results, 
especially concerning resonance phenomena, were scarce. The potential of 
Raman scattering as a tool for the characterization of amorphous materials 
had become clear [-Ref. 2.1, Chap. 5] but the present boom in amorphous 
materials research had not yet started. Since that time, all of these fields have 
experienced an enormous development. 

For the past ten years, the editors of these volumes have been heavily 
engaged in research on light scattering in solids. In the course of this work, they 
have extensively used the theoretical underpinning given in [2. i]. While doing 
so, they have become aware of the shortcomings of that volume and they have 
accumulated a great deal of practical information for the theoretical analysis of 
experimental data. In particular, as resonant cross sections have become 
measurable in absolute units, the need for theoretical expressions relating them 
to electron-phonon coupling constants, with the correct numerical factors, has 
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become acute. These expressions are now scattered throughout the literature 
and the numerical constants entering in them are not always given correctly. 
The necessity to unify the various theoretical treatments, and to point out their 
equivalence or difference, also appeared. The concepts of cross section, 
efficiency, Raman tensor, susceptibility and polarizability had to be used 
consistently and with precision. 

This, and the fact that the introduction [Ref. 2.1, Chap. 11 had been kept to 
a minimum, induced us to write the present chapter and to make it as complete 
as possible within space limitations. In it, we treat mainly the theory of light 
scattering by phonons and by electronic excitations in crystalline and amor- 
phous solids and we illustra}e it with a number of typical experimental 
examples. In Sect. 2.1, we handle this theory within the macroscopic framework 
of the so-called polarizability theory, which is valid provided the laser 
frequency does not get "too close" to singularities in the electronic polariza- 
bility. This approximation, also referred to as quasistatic or adiabatic, is based 
on the assumption that while a solid is vibrating, we can define a susceptibility 
or polarizability with a time dependent component related to the vibration 
[Ref. 2.1, Chaps. l and 2]. Contact with this type of approach is kept 
throughout the chapter: most microscopic expressions are at some point 
transformed into others involving a susceptibility and, vice versa, it is shown, 
whenever possible, how to transform a susceptibility-type expression into the 
more general one in which the quasistatic restriction has been lifted. 

In Sect. 2.1.1, we start with a treatment appropriate to molecules and we 
then generalize it to solids (Sect. 2.1.3). We first treat elastic scattering and carry 
over the treatment to the inelastic case (Sect. 2.1.4). We give a description of the 
Raman and Brillouin selection rules and the methods of obtaining the type of 
activity (Raman, ir) of the phonons (Sects. 2.1.9 and 10). We also cover in detail 
the modifications in the cross section introduced by the electro-optic effect for 
LO ir-active phonons (Sect. 2.1.12). The macroscopic theory of Brillouin 
scattering is given in Sect. 2.1.14. 

A long section (2.1.15) is devoted to amorphous materials. This topic was 
covered in [Ref. 2.1, Chap. 5] and no additional chapter on it is planned for the 
rest of the series. Along with the enormous development in the field of 
amorphous semiconductors, in particular amorphous silicon, since 1975, 
Raman scattering has become a standard tool for the characterization of these 
materials. We have, therefore, felt compelled to include a great deal of recent 
experimental results together with the theory of light scattering by amorphous 
materials in Sect. 2.1.15. A related field, that of disorder-induced light scattering 
in crystals, is treated in Sect. 2.1.16. 

For the sake of completeness and in order to make contact between the 
third-order Raman susceptibility and the cross section for spontaneous scatter- 
ing, we briefly treat the phenomenon of stimulated Raman scattering in 
Sect. 2.1.17. We then devote some length to the various methods used for the 
determination of absolute scattering cross sections and the sign of the Raman 
susceptibility (Sect. 2.1.18). Although we try to keep these sections mainly 
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within the spirit of the "macroscopic" theories, we introduce here and there 
quantum concepts in an ad hoc way as they are needed to round off the 
discussion. In Sects. 2.2.1-12, we discuss various aspects of the quantum theory 
of light scattering, trying to unify the various points of view and keeping in 
mind all the time the connection with the macroscopic theory: we try in all 
cases to reduce the exact expressions to derivatives or finite differences of static 
susceptibilities. In Sect. 2.1 we used SI units. In Sect. 2.2 we write all expressions 
in atomic units (e=h=m= 1), unless otherwise indicated. We lump into the 
susceptibilities Z, however, the factor of 4~ characteristic of the susceptibility in 
rationalized (SI) units [a factor of (4~z)- ~ is usually written in front of Z so that 
the reader can remove it if he so desires, in order to obtain the usual cgs-type 
susceptibility]. Section 2.2.2 treats succinctly the electronic Raman scattering 
as a complement to [Ref. 2.1, Chap. 4]. Section 2.2.3 gives the Frank-Condon 
treatment of scattering efficiencies and establishes the connection with the 
polarizability theories. Sections 2.2.4-6 present perturbation theory treatments 
of scattering efficiencies using as intermediate states uncorrelated electron-hole 
pairs. Section 2.2.5 gives a review of the electronic contribution to the optical 
properties of germanium-zincblende materials and uses the resulting break-up 
into Eo, Eo+Ao, El, EI+A ~ critical points for the calculation of Raman 
efficiencies or Raman polarizabilities. The Fr~Shlich-interaction-induced for- 
bidden LO-scattering is treated in Sect. 2.2.8. Emphasis is placed on the 
simplicity of the treatment and in establishing contact with the polarizability 
theory (the latter is not usually done in the literature). The various theories 
which have been given for multi-phonon LO-scattering are discussed and 
compared in Sect. 2.2.11. Section 2.2.10 gives expressions for second-order 
scattering via standard deformation potential interaction and Sect. 2.2.12 treats 
the elasto-optic constants, i.e., Brillouin scattering. 

In the remaining sections we present experimental results (some had already 
been given as an illustration to the theoretical parts), Emphasis is on 
germanium and zincblende-type materials. We give examples of first-order 
allowed and forbidden scattering near E o and Eo+A o, and near E~ and 
E 1 + A 1. From these data, several deformation potentials are obtained. We also 
showexamples of resonances in the two-phonon scattering efficiencies and their 
application to the determination of electron two-photon coupling constants. 
Multiphonon LO-processes are also illustrated. 

Cu20 has almost become single handedly a laboratory for the study of a 
number of resonant Raman phenomena which are not found in the zincblende- 
type materials. This is mainly because of the forbidden nature of the n--1 
yellow exciton : this exciton is extremely sharp. Some examples of these resonant 
scattering phenomena are given in Sect. 2.3.6. Experimental data on elasto- 
optic constants are presented in Sect. 2.3.4. 

Before closing this section, we would like to mention a few general 
references which the reader will find useful. They are the proceedings of the 
conferences on light scattering in solids [-2.12-14] and of the Raman Scattering 
Conferences [-2.15, 16], the recent books authored by Hayes and Loudon [2.17], 
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that edited by Weber [2.18], and the two books edited by Anderson [2.19]. 
Information on lattice vibrations spectra will be found in a recent atlas by Bilz 
and Kress [2.20] and general information on the interaction of solids with 
electromagnetic radiation with emphasis on group-theoretical aspects, is given 
in a monumental treatise by Birman [2.21]. Considerable information will be 
also found in the proceedings of the recent International Conferences on the 
Physics of Semiconductors and on Amorphous and Liquid Semiconductors. 
They are listed in I-2.22]. Also of interest are the proceedings of the conference 
on lattice dynamics [2.23] and those of the Soviet-American symposia on the 
theory of light scattering [2.24, 25]. Part of the material presented here is 
discussed, from a somewhat different point of view, in [2.26a]. 

Last but not least, we mention the recent S.P.S.Porto commemorative issue 
of the Journal of Raman Spectroscopy which contains research articles by some 
of the most prominent practitioners of the field [2.26b]. 

2.1 Classical Theory: 
Elastic Scattering by Molecules, Liquids, and Solids 

2.1.1 Scattering Cross Section: Thompson Scattering 

In order to introduce the theory of light scattering and the various parameters 
involved as much as to get a feeling for the order of magnitude of scattering 
efficiencies, we discuss briefly the classical theory of elastic scattering of light. 
The basic formula is that for the radiation energy emitted per unit time by an 
electric dipole moment M vibrating at the frequency 0) [2.27]: 

d W s  _ 0) 4 

dO (4n)2~0c 3 I~s.M[ 2 , (2.1) 

where dg2 is the element of solid angle, e o the permittivity (dielectric constant) of 
the medium (considered isotropic and nonmagnetic; if vacuum, the permittivity 
of vacuum), c the speed of light in the medium and es the unit vector 
representing the polarization of the scattered light selected by the measuring 
system at the point of observation. If this detector is unpolarized, one must 
average (2.1) for all possible polarizations ~s perpendicular to the direction of 
propagation. The same thing applies to eL (see below) if the incident radiation is 
unpolarized. 

Let us assume that the radiating dipole is an atom, a molecule, or any other 
complex whose dimensions are small compared with the wavelength of light 
and let us call • the polarizability tensor of this complex: the dipole moment 
induced in the complex by an incident electric field E L = ~ L E L  is 

M = g. ~LEL. (2.2) 
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Replacing (2.2) into (2.1), we find 

dI, V~ 0)4 
- . e L l  E L. (2.3) dg2 (4/~)2e0 c3 [l~s'~ ~ 2 2 

The differential scattering cross section da/dO is obtained by dividing (2.3) by 
the energy incident per unit area and unit time W E = aocE~: 

d e  (_0 4 
dQ --  (4rCeo)Zc * [es "~" eLI 2" (2.4) 

Let us note that e2c * is independent of e o in an isotropic medium. The 
modifications of (2.4) necessary for an anisotropic medium (Co a tensor) can be 
found in [2.28a, b]. 

In general, the polarizability tensor ~ will not be isotropic. In this case, the 
plane of polarization of the scattered light will not be the same as that of the 
incident radiation : the scattering process changes the plane of polarization. If 
is isotropic, i.e., if ~=/[c~, where 11 is the unit matrix (such is the case for all 
atoms and also for isotropic spherical small macroscopic particles), (2.4) 
becomes : 

d~r 0)40{ 2 

dO (41Zt;0)2C 4 Ills' eL[ 2 (2.5) 

and the scattering is completely "polarized". Integrated over all directions of 
space, (2.5) yields 

4~0)4ot 2 4x 0.)4~ 2 
0"= (47~e0)2C4 (l~s .eLI 2)  = 3 (4Xe, o)2C 4" (2.6) 

In order to estimate the magnitude of ~, we must obtain a typical estimate 
of c~. In the visible, e is of electronic origin. Let us assume that e is produced by 
an electronic charge e tied to atomic cores by a restoring force k = 0)02m, where m 
is the electron mass and 0) 0 the vibrating frequency of the harmonic oscillator 
so defined. In this case, solving the appropriate equation of motion we find 

e2//,pl 

= 0)0 2 _ 0)2 _ i0)?' (2.7) 

where ? is the damping constant. Equation (2.7) can be easily modified to yield 
an anisotropic • by introducing different values of the parameters e2/m, 0)o and 
? for each of the principal directions. Confining ourselves to the isotropic case 
and replacing (2.7) into (2.5), we obtain 

do 2 4 re0) 
d ~  = ((/)2--0)2) 2 +(.02]) 2 ]~L 'esl 2,  (2.8) 
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where ro=eZ/47reomc 2 =2.8 x 10- i s  m is the so-called classical radius of the 
electron (the radius at which the Coulomb energy equals the relativistic rest 
energy). The square of ro gives the order of magnitude of the differential cross 
section at frequencies co of the order of, but not to close to, COo. This is a usual 
case in the visible since, for many atoms, co o lies in the blue or near ultraviolet. 
The scattering cross sections are thus in the region co < coo (but not too close to 
coo) of the order of r e -2~ 10-29 m 2 =0.1 barn. This cross section is quite small. It 
can be, however, substantially enhanced for co very close to the resonance 
frequency coo. If we assume a "quality factor" Q = COo/7 = 10" for the harmonic 
oscillator, rather modest for atomic and molecular cases, (2.8) yields a quite 
considerable cross section of 10 Mbarns for co = coo. The phenomenon is then 
referred to as "resonance fluorescence". 

At low frequencies co'coo, (2.8) becomes 

d~r _ 2 0)4 ~ eJ (2.9) 
dg2 - r~ co~ lee .~ 2. 

Equation (2.9) represents the famous co*-law which also applies to Raman  and 
Brillouin scattering at frequencies well below all resonance frequencies [-2.29]. 
In the opposite case, co > coo, we again encounter the classical scattering cross 
section of free electrons (Thompson scattering). The total Thompson cross 
section is : 

8re 2 (2 .10)  
0"T= 3-Ye  " 

2 . 1 . 2  D e p o l a r i z e d  S c a t t e r i n g  

The simplest case of an anisotropic polarizability is that of a body with axial 
symmetry. In this case, ~ has two independent components  % and :%: 

~ =  

with 

(1) 
=(~) l l+f l  - 1  = ( g ) + f l  

2 

(2.11) 

( ~ ) = ½ ( % + 2 ~ ± )  and f l = l  ~(~ll  - e±)" 

In (2.11) we have decomposed ~ into the sum of a diagonal tensor (~ )  and a 
traceless tensor/~. The isotropic tensor (~ )  produces polarized scattering while fl 

changes the polarization of the incident field. While cross terms proportional  to 
(c~)/J may in principle occur, they often vanish since (~ )  and/1, belonging to 
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different irreducible representations of the symmetry group, are usually 
connected by an arbitrarily fluctuating phase. 

Let us now consider fixed polarizations ~L and ~s and an anisotropic 
scattering complex which rotates rapidly and occupies with equal probability 
all possible positions. We assume, however, that the frequency of rotation is 
smaller than the line width of the incident radiation; otherwise, inelastic 
rotational structure results. The corresponding scattering efficiency is obtained 
by replacing (2.11) into (2.4) and averaging over all possible directions for the z- 
axis of the ~-tensor. The cross section has two components: a polarized one, 
given by (~t), and a partly depolarized one given by ~. The average of the 
depolarized component is most readily obtained if o~e considers that the 
traceless tensor fl transforms upon rotation into a linear combination of the 
following "ortho'gonal" components : 

) (  t ti°:) - - f l  , 3  -1 /2  - - f l  , 0 , 0 , 0 . 

o 2/~ o o b' 

(2.12) 

The five tensors (2.12) are basis functions of angular momentum J = 2 .  The 
depolarized scattering can be readily found by averaging the contributions of 
the five matrices (2.12) to (2.4). We obtain: 

. . dffp o9 4 

~ s / ~ L ;  dO'd 0.) 4 3 
dO (4r~eo)2C 4 fiE. 

(2.13) 

The ratio of the depolarized cross section cr d to the polarized one ap 
(depolarization ratio) thus becomes: 

"D = % - 3fl2 < 3 (2.14) 
trv 15(~2)+4fl  e = 4" 

Hence, the maximum value possible for the depolarization ratio in a medium in 
which the scattering centers are oriented at random is 3/4. This result also holds 
for Raman and Brillouin scattering (off resonance!) and is particularly useful 
for interpreting polarized spectra of amorphous materials [2.30]. We point out, 
however, that this result only holds true if ~ is a symmetric tensor. If 
antisymmetric components of • are allowed, such as if a magnetic field is 
present, D has, in principle, no upper boundary I-2.3, 31, 32]. 

We have explicitly assumed that the frequency of rotation which produces 
the averaging of the tensor fl is negligibly small. This is often not the case for 
molecules. Under these conditions, the 0-scattering changes the state of 
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rotation of the molecules and the scattering becomes inelastic: the so-called 
pure rotational bands result. As gaseous molecules condense to form a liquid, 
these rotational modes become hindered or heavily damped. The scattering 
becomes quasi-elastic [-Ref. 1.2, Chap. 6]. 

2.1.3 Elastic Scattering in Solids 

In the case of a solid with N scattering particles, we must add the N- 
contributions to the E~ field with the appropriate phase (Fig. 2.1): 

N 
E~ oc ~2 e i(kt- - k,)R,o~(Ri). (2.15) 

Ri 

At this point, we introduce the susceptibility Z(r) defined as the dipole moment 
per unit volume induced by a unit field 

N 
~:0Z(r) = ~ a(Ri) 6 (v -  Ri), (2.16) 

R~ 

where 6 represents the Dirac function. 
Multiplying the summands of (2.15) by 6 ( r - R i )  and integrating over the 

volume, we find 

E~ct: S eitk'- -ks)'z(r)dV, = VZ(kL-  k,), (2.17) 
v 

where V is the radiating volume and Z ( k L - k s )  the Fourier component of the 
susceptibility corresponding to the scatterin9 vector q = k L -  k S. Thus, scattering 
along a given direction k is only possible if there is a nonvanishing suscepti- 
bility for the corresponding q. In a perfect crystalline solid, the susceptibility 
x(k L, ks) vanishes unless k L -  ks= q equals either zero or a reciprocal lattice 
vector G (Bloch's theorem). Since tql-~2~/2 ~ I G} (IGI >2~/ao, ao = lattice con- 
stant), we find that q = G  is impossible and only forward scattering (q=0, 
geometrical optics) occurs. 

rector 

L kL '('dE ~ 17ig. 2.1. Experimental configuration for the in- 
V vestigation of light scattering 
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This result is an expression of the law of conservation of crystal momentum 
found in crystalline solids; crystal momentum (i.e., wave vector) must be 
conserved modulo a reciprocal lattice vector, hence for allowed scattering, either 
q = G i or q--0.  Because of the small magnitude of q in the case of light, the only 
possibility is q - -0  (forward scattering). In the case of x-rays, IGil 4=0 becomes 
possible (Bragg scattering). In an inhomogeneous or amorphous solid, how- 

2~ 
ever, 2(q) 4= 0 for [ql -~ = -  and scattering can take place. The corresponding cross 

A 

section is then 

da(q) ~4V2 
dO - (4rc)2c * les'_~(q)'eLf 2. (2.18) 

Note that this scattering "cross section" is proportional to the square of the 
scattering volume V, a result of having assumed that all atoms scatter 
coherently. This is not the case for inelastic (Raman and Brillouin) scattering: 
the various elements of volume scatter incoherently and the differential cross 
section is proportional to V. 

This result, however, should not be taken too seriously. For  forward elastic 
scattering, for instance, there is an uncertainty in the angle e that the scattered 
beam forms with the incident beam which is equal to Ao:oc}~a/Zv-1/2, where 2 is 
the wavelength of the light (the same phenomenon which produces the finite 
size of x-ray spots for finite samples). Hence, the radiation is confined to a solid 
angle Ooc2a/Vo . This fact, which cancels one of the factors of V in (2.18), leaves 
the total cross section a(q) simply proportional to V as in the case of Raman 
scattering. The only effect of coherence in the elastic scattering is to concentrate 
the radiation in a cone of solid angle faoc23/Vo around the scattering direction. 

The scattering cross section of (2.18) is proportional to the square of the 
magnitude of the fluctuations in Z of wave vector q : 

a c~ X*(to, q)- X(og, q), (2.19) 

a result, which, appropriately generalized, we shall find holds rather widely in 
light scattering. 

It is also of interest to discuss the resonance of the scattering cross section in 
a solid near a characteristic transition frequency ~o0, where ZOo) can have a 
Lorentzian structure such as that of (2.7) or a somewhat weaker singularity at 
the so-called Van Hove critical points [2.48]. Let us assume, for instance, that 
the fluctuations in Z(co) are produced by fluctuations 0(q) in the particle density 

and that these fluctuations, in turn, produce fluctuations in the critical energy 
OJo according to 

A~oo_ do) o A Q _  DAQ 
dln.o 0o 0o ' 
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where D is the so-called "deformation potential". The cross section becomes 

dg 2 
a(o~,q)oc ~ .]Og(q)l 2, (2.19a) 

where Q(q) represents the q-component of the spectrum of spatial fluctuations 
in the density. Thus, in principle, a measurement of a(co, q) should yield the 
spectrum of Idz/deJol 2 as a function of co. Structure in the susceptibility should 
appear in [dz/doJo[ 2 much more sharply than in X(oJ), thus enabling us to 
uncover weak Van Hove singularities or critical points. This method, which has 
hardly been used, is similar to the so-called modulation spectroscopy tech- 
niques [2.48] where the modulation in Z(co) produced by an external parameter 
(temperature, electric field, pressure...) is measured. 

We have discussed above the elastic scattering by fluctuations in Z. Time- 
dependent fluctuations in 7. produce, as will be seen in Sect. 2.1.8, inelastic 
scattering. The time dependence of the fluctuations, however, may be non- 
sinusoidal or overdamped. In this case, a more or less broad quasi-elastic line 
appears, centered around the incident frequency oJ L. Such is the case of 
scattering by "entropy density fluctuations" first treated by Einstein [2.33a]. 
In this case, the z(q) of (2.18) is obtained from (for cubic solids) 

z(q)= (~5-~)([6S],~ )1'2' (2.19b) 
p 

where [6S]~, the average entropy density fluctuation, is given by [2.34] 

(DZ) = T(~---~) C ;  1V-1 (2.19c) 

where Cp is the specific heat per unit volume at constant pressure. Using (2.19c), 
(2.19b) can be rewritten as: 

z(q)-- 1/2 1/2 V1/2C1/2 ~-T v q- (2.19d) 
V Cp ~ p  _ _~ a - v r  

[In 2.19d the units of C v are those of a (volume)-J.] Hence, the quasi-elastic 
scattering due to entropy density fluctuations is determined by the "thermo- 
optic" constant (OZ/(~T)p. In (2.19d), we have split the x(q) for entropy density 
fluctuations into two terms, one depending on (Oz/6T) v and the other one 
(az/OV) r, an elasto-optic constant. We shall see in Sect. 2.1.14 that the elasto- 
optic constants determine the Brillouin cross section. If we neglect (~z/OT)v, the 
total cross section produced by (2.19d) is simply proportional to the Brillouin 
cross section. For a gas, the proportionality constant, the so-called Landau 
Placzek [2.33b] relation, becomes 

ae,,ropy __Cp _ 1, (2.19e) 
O'Brilloui n C v 
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where aBrutouin includes Stokes and antistokes components. The approximation 
(OZ/~T)v=O is valid for gases but not for solids. The quasi-elastic scattering by 
entropy density fluctuations in solids has been treated by Wehner and Klein 
E2.35-1. 

2.1.4 Inelastic Scattering by Molecules 

Let us first discuss briefly (and dispose of) the scattering by rotational modes of 
molecules. The symmetric part of the polarizability tensor (~)  is invariant 
under rotations of the molecule and thus, as seen in Sect. 2.1.2, only produces 
elastic scattering. The asymmetric part #, however, when referred to coor- 
dinates at rest is changed profoundly by r~otations, oscillating between various 
linear combinations of the basis tensors (2.12). Each one of the elements of # 
averages to zero as time elapses. Its time dependence is exp (i(~J)+ exp(-io)rt),  
where o) r is the rotational frequency. When multiplying these elements by the 
incident field E oexp(-ic0Lt), components of the polarization proportional to 
exp[- i (co  L + o)r)t ] appear. Hence a scattered field at frequencies co s = co L +_co r 
results (inelastic scattering). The frequencies m r , approximately proportional to 
the angular momentum J, are actually quantized (O)r~nJ, n =  1, 2, 3 ...). Hence 
the rotational structure consists of series of equally spaced lines below co L 
(Stokes) and other series above co L (antistokes). The total scattered intensity (all 
lines) will, of course, be equal to that calculated in Sect. 2.1.2 under the 
assumption co r = 0. For a detailed treatment of pure rotational scattering, the 
reader is referred to [2.18] (see also Fig. 2.2). 

We shall now treat vibrational scattering under the assumption that the 
rotational state of the molecule does not change (m r =0). In general, actually, 
rotational-vibrational bands are observed in which the rotational, as much as 
the vibrational state of the molecule, changes in the scattering process. The 
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Fig. 2.2. Rotational Raman spectrum of nitrogen molecules obtained with a photographic plate 
as detector (response nonlinear in intensity) [Ref. 18, Fig. 3.5] 
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cross section obtained under the assumption % = 0 will apply to the sum of the 
cross sections of all rotational structures associated with one given vibrational 
jump. 

Let us consider a vibrational mode of the molecule of frequency co v. This 
mode is characterized by displacements of the N atoms with time dependences 
exp( _+ icovt) and amplitudes u i (i = 1, 2...N). The amplitudes u i are related to the 
normal mode coordinate ~ through the normal mode transformation [2.36] : 

Mli:2tti( + okvt ) = (ei~ e-i,.v' + e,  ~,ei~,v,), (2.20) 

where 
N 

levi2= I and M~ is the mass of atom i. The set of vectors e~ represents the 
i = l  

eigenvector of the vibrational mode. 
We shall now discuss the so-called quasistatic, adiabatic or polarizability 

theory of Raman scattering [2.31]. This "classical" theory is based on (2.1) 
(dipole radiation) and the assumption that co~ is small compared with the 
"electronic energies" which determine the polarizability c~. The latter condition 
can be expressed for an c~ of the form given in (2.7): 

2 1~o~_o~2 ogv ~ -koTI • (2.21) 

Equation (2.21) simply expresses the fact that the laser is many ~o~'s away from 
the resonance. Under these conditions, we can treat the phonon as a static 
deformation of the molecule and define at each instant of time a polarizability 
~(co L,~) which depends on the normal mode coordinate ¢. By expanding 
~((n~, ~) in powers of ~, we find 

• (o~, ~)=~(%)+ ~ ~e-i~v'+ ~ d  

1 g2~ ~ 2e-2ic°~ 1 02~ ~,2e2i~ z 

1 02~ 
+ 2 ~ (¢~*+¢*¢)+ .... (2.21a) 

By replacing (2.21a) into (2.2), we obtain scattered radiation at the frequencies 
col + co~, co L_+2co~ (overtone scattering) and the Rayleigh scattering (bilinear 
term in ¢¢*)% = coL. The latter is produced by excitation and subsequent de- 
excitation of a vibrational state. It is thus Rayleigh (elastic) scattering, but 
contrary to some of the cases discussed in Sect. 2.1, the various molecules will 
scatter incoherently [Ref. 1.2, Chap. 6]. If we consider more than one vibration- 
al mode, e.g., two frequencies coy and 09¢, there will be a bilinear term of the 
form : 

1 c~2~ 
2 0~c~,* ({~{~* + ~*{¢)" (2.22) 
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This term will give rise to scattered light at the frequencies £o L -~-(.o v -  (D v, and 
mL -- m, + m,. (d([.Jerence scattering). In this case, we shall also obtain combination 
scattering at the frequencies m L - ¢o, - m,.. (St okes) and co L + m,. + m,, (antistokes). 
The higher-order terms omitted in (2.21a) will yield scattering by three phonons, 
four phonons, etc. 

Let us first discuss the one-phonon scattering cross section which ensues 
from replacing (2.21a) into (2.4): 

4 e s '  (~a eL 2 das _ COs 
dO (4rc%)2c 4 ~ - "  ( ~ * >  (Stokes) 

4 es" t~o~ eL 2 dr7 a m s ~ 
dr2 - ( 4 g e o ) 2 C  '* ~ '  <~*~> (antistokes), 

(2.23) 

where ( > represents the thermodynamical average over the ground state o f  
the molecule. 

We have so far assumed that the frequency c% is infinitely sharp. Under 
these conditions, the observed Raman line will be a b-function 6(m R-  m~) as a 
function of the "Raman shift" m R. Hence, (2.23) can also be written as (we only 
give the Stokes component) 

4 ~ ~tZ (~L 2 ~3o cO s 

0at?mR = (4r~%)2c , e ~ . ~ .  
<~*>6(m.-mO. (2.24) 

In general, m v will be broadened; this fact can be taken into account by 
replacing 6(o) R - COy) by a Lorentzian or another appropriate lineshape function. 

It is easy to estimate semiclassically the average phonon amplitude 
(~ ,~+~,>1/2 .  In terms of the normal mode coordinate ~, the potential energy at 
the point of maximum displacement ~ is simply [~+~*12m2/2=2~amo 2. By 
equating this to the total vibrational energy when in the nth harmonic 
oscillator level hmv(n + 1/2), we find 

;(¢*~ + ¢¢*>. = ~h--~-(2n+ 1); n =  
Z(D v exp (hmv/k T) - 1 

(2.25) 

(n is the Bose-Einstein statistical factor). Equation (2.25) yields, when replaced 
into (2.23), the sum of Stokes and antistokes cross sections. In order to separate 
the Stokes from the antistokes contribution, we second-quantize the displace- 
ments ~ and ~*, i.e., we replace them by the operators ~ and ~*, respectively. 
The Stokes and antistokes contributions to (2.25) are then [2.37]: 

h 
Stokes: <~*>=<nl~ ln+l> <n+ l[~*ln>= ~-~ (n+ 1) 

h 
antistokes: <~*~> = <nl~*ln - 1 > < n -  l l~ln> = ~--- n. 

ztov 

(2.26) 
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The standard phonon creation and annihilation operators b + and b are related 
t o ~ t a n d ~ b y  

b= ~Oh~ ~, bt= ~ @  ~ * . (2.26') 

In order to further discuss the cross sections (2.24) we must consider the 
structure of the "Raman polarizability" 8~/8~. The normal coordinate 
corresponds to an ensemble of static atomic displacements given by (2.20) with 
t =  0. Hence c~/O~ can be written as 

3~ ~ c ~  gui ~ #  6 ~  M -  1/2~ - ~ x ~ =  8u ~ i, (2.27) 

and likewise, 

X" 1 ~2 , 
- _ ~ ~ w 2 - M F ' ~ .  

~g* cu i - i = 1  

We note, in passing, that (2.26) when replaced into (2.23) leads to the 
conclusion that 

das _ n + 1 da, _ da, exp(hcov/kT)" (2.28) 
dr2 n d~ dg? 

As we shall see below, (2.28) breaks down near a resonance. It is also not valid 
for scattering by magnetic excitations ([2.38], see also [Ref. 1.2, Chap. 61). For  
phonons away from resonance, (2.28) can be used to determine the temperature 
of the scattering volume of the sample from the ratio (das/d~)/(daa/dO). In spite 
of the widespread use of cylindrical lenses to focus the laser on the sample, the 
temperature of the focussed spot is usually higher than that of the rest of the 
sample and thus difficult to determine in any other way. 

Equation (2.27) enables us to calculate 6~/d~ if the effect on ~ of all 
independent atomic displacements u i is known. These 6~/c?u~ can, in principle, 
be obtained by performing calculations of the polarizability of the molecule 
with all possible small deformations ui. Such a first principles calculation is 
difficult and not very accurate. Hence, a number of semi-empirical methods 
have been developed to estimate ~/~?u~. Among them we mention Wolkenstein's 
bond polarizability method [2.39, 40] which assigns to each molecular bond a 
polarizability which is a function of the bond length I only. We thus have two 
differential polarizabilities, one parallel to the bond direction O:fll/Sl and a 
perpendicular one ~?~x/~l. Attempts have been made to use in this connection 
the concept of translkrability, i.e., to use the bond polarizabilities obtained 
by fitting Raman data of one or several molecules to interpret the Raman 
spectra of other molecules containing the same bonds [2.41]. 
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2.1.5 Resonant First-Order Raman Scattering 

We shall now discuss the phenomenon of resonant Raman scattering. For  this 
purpose, we shall replace the polarizability .~ by a sum of terms of the form of 
(2.7), where the various co 0 will be the electronic excitation energies. In order to 
preserve the tensorial character of ~, we multiply (2.7) by the "oscillator 
strength tensor" .F. Thus, for co near a given coo, we approximate  • by 

(eZ/m)F 
-~ = o)2 ° _ co2 _ ico7 + constant.  (2.29) 

Contributions of (2.29) to 0~/0{ arise in two different ways: through the 
dependence of the electronic energy coo on { and through that of F. We can thus 
write by differentiating (2.29): 

d~ 2coo(e2/m)F deo o (e2/m) d F 
+ (2.30) 

d~ [CO2--CO2--ico)']2 d~ (o)~-co2-icoT) d~ 

If one so desires, one can add several contributions of the form of (2.30) for 
different transition energies co o . For  simplicity, we discuss in what follows only 
one of these terms. 

Equation (2.30), together with (2.24), determines the shape of the resonance 
in ¢r if one replaces co by (coL + co=)/2 = coL---+ coy/2" Although we have assumed 
COv-~0, and thus either coL or co s can be used for co in (2.30), the use of their 
average yields a somewhat  better approximat ion to the resonance behavior (it 
may, otherwise, be shifted from coo by +_cov/2). Equation (2.30) contains two 
contributions: that of the change in excitation energy coo with 4, a diagonal 
matrix element of the electron-phonon interaction, and that of the change in 
oscillator strength with 4. The former is more strongly resonant than the latter 
since it contains an additional power of o)2_ co2 _ ico7 in the denominator.  The 
resonance due to this term is also expected to be stronger than that of pure 
rotational spectra which is simply oclzl 2. Thus, for co L close to co o, the former 
term will be dominant  unless dcoo/d{ vanishes, possibly as a result of a 
symmetry selection rule (a situation which often arises as symmetry restrictions 
on dcoo/d ~ are stronger than those on d F/d{). So as to discuss the second 
term in (2.30), we recall the quantum-mechanical  expression for F :  

F = --2co°n~- (o1~'1 i>'(ilJ'l o>, (2.31) 
h 

where the "dipole" matrix elements (ilr[o) are taken between the initial (o) and 
the final (i) states of the electronic transitions under consideration. The dot in 
(2.31) represents the diadic product  of the two vectors. The derivative of F 
with respect to ~ contains two contributions, a trivial one related to dcoo/'d~ 
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and another one related to the changes in matrix elements with 4. Quantum 
mechanically, such changes arise from a mixture of Io) and Ii) with other wave 
functions through the perturbation Hamiltonian c3H/~?¢. Using perturbation 
theory we can write 

< ildH/d~[1> ~lrlo> 
(ilrlo)= J*,~' h(co,-coj) (2.32) 

Hence, these terms referred to sometimes as three-band terms because of the 
presence of the three states o,j, and i, are determined by the off-diagonal matrix 
elements of the electron-phonon interaction. The terms containing dcoo/dd are 
then called two-band terms. From a fit of the cross section measured as a 
function of COL with (2.30), we can obtain information about diagonal and 
nondiagonal matrix elements of the electron-phonon interaction. It should now 
be clear why symmetry restrictions are stiffer on the diagonal (il~H/(3~li) than 
on the nondiagonal elements (ilOH/a¢li) of the electron-phonon interaction: 
the product of states (il, [j) generates many more symmetry types than simply 
(if, li). The contribution (2.32) is particularly large whenever small frequency 
differences coi-cot are involved. Such is often the case for states separated by 
spin-orbit coupling (e.g., p-like atomic states). 

Most simple molecules have their electronic excitations in the violet and 
near uv. Hence, their Raman cross sections do not show much of a resonance in 
the visible, a region to which most Raman measurements have been confined 
(because of the availability of cw laser lines). As an example of incipient 
resonant behaviour, we show in Fig. 2.3 the relative cross sections of vibration- 
al Raman lines of CCI, and CzH3C1 in the visible [Ref. 2.18, p. 155]. The 
absorption edge co o of these gases lies around 6.4 eV [2.42]. 

The scattering cross section corresponding to the second term of (2.30) has 
the form : 

da 1 
d---O oc ((D2 0~2)2_~_ (D2~2 a i m  {~x}. (2.33) 

The imaginary part of the polarizability c~ is, to a good approximation within 
the resonance region, proportional to the absorption coefficient of the mo- 
lecules in gaseous form or in solution. As an example, we show in Fig. 2.4 the 
resonant behavior of the stretching mode (211 cm - 1) of 12 molecules dissolved in 
hexane as compared with the corresponding optical density (proportional to 
the absorption coefficient) [2.43]. The shapes of both "resonance" spectra are 
very similar although a shift between them of about 400 cm-  1, larger than COy/2, 
exists. These shifts, not totally understood, are common in resonance Raman 
spectroscopy [2.44a]. 

We would also like to point out that as a result of an interference of a 
resonant (2.30) and a nonresonant (-,~constant) contribution to d~/d~ of 
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opposite signs, a decrease in a when approaching co o may result. The cross 
section thus goes through zero before o) o and increases above this point. This 
behavior is sometimes referred to as an antiresonance. Such antiresonances, if 
they arise from the first term in (2.30), can usually be fitted with an expression of 
the type 

B 2 
~ = ( A  (co~:co2)2) " (2.33a) 

where A and B are adjustable constants. 

2.1.6 Resonant Second-Order Raman Scattering 

The cross section for scattering by two phonons is also obtained by replacing 
(2.21a) into (2.4) and keeping only quadratic and bilinear terms in ~ and ~*. The 
cross section is then proportional to the second derivative of ~ with respect to ~. 
One must distinguish between scattering by two of the same phonons 
(overtones) and by two different phonons (combinations), In the latter case, 
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sum and difference processes are possible. The corresponding statistical factors 
are : 

Stokes. 

Antistokes 

Difference 

overtones 

combinations 

h 2 
Kn + 21{*In + 1> <n + ll~*b>l z = :7~-.2 (n + 1)(n + 2) 

,:t-co v 

h 2 
l<n' + l Wtln'> <n + 1]~l[n>j : -  (n+ l ) (n '+  I) 

4covco v, 

h 2 
overtones I < n - 2 1 4 b -  1> <n- limb>/2 = ~7~..2 n ( n -  1) 

4o9 v 
h2 (2.34) 

combinations I<n ' -  ll~'ld> < n -  l l~ln>[ 2 -  - - n n '  
4(Ov(O v, 

h 2 
< n ' -  l [~[n'> <n+ l[~*[n) - - ( n +  1)n'. 

4o&c%, 

It is possible, in principle, to elucidate the type of processes involved by 
measuring the temperature dependence of the cross section and comparing it 
with the predictions of (2.34). We should mention here that in solids, the 
number of phonons N is so large that combinations ( ~  N 2) overwhelm the t rue  

over tones  ( ~ N ) .  The latter are never observed. Nevertheless, one talks about 
"overtones" when two phonons of the same branch  are involved in the process 
[2.44a, c]. 

Let us now focus on the cross section for combination Stokes scattering (the 
treatment of all other cases is similar): 

a20"((DR , O3L) 

&gROf2 

- -  4 I}s 0 2 ~  CO s ~ 

(4R:g0)2C 4 C'~ .~ C~ ' 

"~[o~R-(co~ + co,.,)], 

eL 2 h 2 
• - - .  ~(n+ l)(n'+1) 

( 2 . 3 5 )  

where, as already mentioned, the 6-function can be replaced by a Lorentzian or 
another line-shape function. 

The shape of the resonance spectrum d o ( c o j / d f 2  as a function of co L is 
determined by the second-order Raman polarizability 02~/6{0~ ' which can be 
obtained and discussed in a manner similar to its first-order counterpart.  We 
can thus write 

02g 32x &o o ~?(% 0or (?2co o 02a c~F OF cox OaF 
3@~ ' =  &Oo z 0~ g T  + ~ + - -  + " ~ . (2.36) . Oo)o a~O~' a F  2 ~ ~' ~ '  . 

The first term in the rhs of (2.36) is the most strongly resonant one. It involves 
the diagonal matrix elements &Oo/3~ of the first-order electron-phonon in- 
teraction taken to second order (bilinear terms). However, because of the 
symmetry restrictions on c?coo/~? ~, this term will often vanish. Symmetry re- 
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strictions are weaker for ? 2 e ) o / ~ '  and this term often dominates. It has the 
same resonant behavior as the first-order scattering (2.30). Whenever this is the 
case, one can obtain from the ratio of second to first-order cross sections the 
ratio of second to first-order diagonal elements of the electron-phonon 
interaction. Thus, taking only the first term in (2.30) and the second in (2.36), 

da~) ~o  ° 2 2O~v~O~, 

dO ~"  

(n '+ 1)(n+ 1) 

(n"+ 1) 
(2.37) 

for Stokes scattering. The terms involving derivatives of F in (2.36) contain 
information about the off-diagonal matrix elements of the first and second- 
order electron-phonon interaction. 

2.1.7 Absolute Raman Scattering Cross Sections for Molecules 

We should point out at the start that the cross sections given above are power 
cross sections. They give the ratio of scattered to incident power. In photon 
counting systems, quantum cross sections are usually measured. The power 
cross sections are converted into quantum ones by multiplication by COL/CO ~; 

4 instead of cos, a factor c0~o~ L appears in the quantum cross sections. 
A compilation of work on absolute Raman cross sections of molecules has 

recently appeared [Ref. 2.18, p. 144]. These cross sections are not easy to 
determine, the literature containing a number of erroneous results. 

The most successful method to date seems to be the comparison of the area 
under the vibrational Raman line with that of the Rayleigh line [2.44b] or the 
pure rotational Raman bands [2.45]. The latter correspond to cross sections 
which can be exactly calculated from the rather well-known static polarizability 
tensor of the molecule. With these methods, the cross section of the (2 branch 
(no rotational excitation) stretching mode of the N 2 molecule (co v = 2331 cm-  1) 
has been determined rather accurately to be [2.46al 

~-~ = (5.05 __ O. 1) x 1 O- 48 o)4 cm 6 s r -  1, (2.38) 

where co s is given in wave numbers [-cm- t-]. This cross section is six orders of 
magnitude smaller than the one for elastic scattering given in Sect. 2.1.1. 

It is easy to perform an approximate calculation of this cross section with 
the theory discussed above. In fact, for ~o,~o) 0 and Stokes scattering, (2.23) 
becomes for the N 2 molecule [we use for d~/d~ (2.30) with F=0 .5 ]  

d. 2 41do oJ h 
(2.39) 
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where M is the atomic mass and u the atomic displacement. Replacing into 
(2.39) COo=8 eV (64,500 cm-~,  the average electronic transition energy of Nz) 
and do)o/du = 20 eV//~, a typical value of the electron-phonon coupling constant, 
we find for the stretching vibration of N 2 

da 
d-O = 6.4 x 10- 4s co4(n + 1) cm 6 sr-  1 (2.40) 

which, since at room temperature n-~0, represents the measured value (2.38) 
rather well. 

It is also possible to use the same method to estimate the second-order cross 
section which, for the stretching modes of N 2 is 

do" _ 2 to~ d2o)o 2 h 2 
d O - r e  o9---~o clu 2 16MZco 2(n+1)2" (2.41) 

Typical values of d2c%/du 2 are between 102 and 103 eV/~ 2 (Sect. 2.3.3). These 
numbers yield for the two-phonon cross sections a value one to two orders of 
magnitude smaller than that of the one-phonon case [2.44a]. 

2.1.8 First-Order Raman Scattering in Crystals 

The classical theory of Raman scattering in solids can be obtained from the 
corresponding one for molecules in the same manner as done in Sect. 2.1.3 for 
the elastic scattering. The solid possessing within a scattering volume V a 
number N of unit cells, can be considered as one big molecule. The vibrational 
eigenvectors of a given mode are particularly simple as a result of the transla- 
tional invariance. Using Bloch's theorem, the eigenvectors of the /th unit cell, 
labelled by the position vector R~, can be related to those of the unit cell at the 
origin e i through 

eu(q) = e i  e iq 'R1  , (2.42) 

where q is the so-called crystal momentum, pseudomomentum, or wave vector 
of the mode. Instead of normalizing e, to the whole crystal [as done in (2.20) for 
the molecule], it is convenient to normalize it to the unit cell: 

unit cell 

~, }e,(q)l 2 = 1 .  (2.43) 

The vibrational amplitude of a given atom of mass M i of cell R t in the mode of 
frequency ~ov(q), thus becomes (2.20) 

M/-1/2 
uu(q)- 1 / ~  [e~(q)~i(q)eltq'R'-°'v(q~'l 

+ e*(q)~*(q)e-itq.R,- O,v(q~tl]. (2.44) 
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The scattered field contains the phase factors 

e -  i[¢oL ~ t~v(q )]t e i (kL  + q)'r, (2.45) 

where the + sign holds for antistokes and the - sign for Stokes scattering. 
Equation (2.45) embodies the laws of conservation of energy and wave vector : 

(D s : (2) L "1- (D v 

ks = kL _ q. (2.46) 

For the same reasons as discussed in Sect. 2.1.2, (2.46) implies that only 
scattering for q ~ 0  is possible, the magnitude of the allowed q's ranging 
between 0 (forward scattering) and 4n/2 (back scattering). The scattering cross 
section can be obtained from (2.23) by introducing the susceptibility Z(COL) in 
the same manner as done for elastic scattering (Sect. 2.1.3). We find for the 
Stokes component 

da~ (Ds4V 2 d ~  e L  2 
d--~ - (4-~j% -4 es . ~ .  ( ~  ' 5 ,  (2.47) 

and likewise for the antistokes component  with the statistical factor ( ~ t )  
replaced by (~*~). The normal coordinates ~ are, of course, only those of 
optical modes with q - -0  (for acoustical modes see below under Brillouin 
scattering, Sect. 2.1.14). These statistical factors have the values given in (2.26). 
The expression equivalent to (2.27) for the "Raman susceptibility" is 

d• uni~en C~Z M~-1/2 
d ~ -  i Ou i N1/2 eg. (2.48) 

Note the presence of the factor N-1/2 in (2.48)! When replacing (2.48) into 
(2.47), this factor cancels a power of V in the numerator of (2.47) (the number of 
unit cells N is proportional to the volume). It is, of course, somewhat awkward 
to use a Raman susceptibility which depends on the volume, as shown in (2.48). 
Hence, we redefine it to be independent of the volume: 

unit  cell 
d• '=Vl /zdX=v1/2  E °ZMf-1/2ei , (2.49) 
d~ d~ -c ~ c~ui 

where V c is the volume of the primitive cell. In terms of this renormalized, 
volume independent Raman susceptibility, (2.47) becomes 

do s co~V d~' 12 h (2.50) es  eLI ("+ 1) 
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or, equivalently, introducing the lineshape function A(o)v-cna) (usually 
Lorentzian) : 

0~3~ R 

094 V d~' gL 2 h 
- ~ [ G ' ~ "  (n+l)A(°~v--O)R)2oJv (2.51) 

with 

~A(co v -  c%)dc% = 1. 
0 

The cross sections (2.50, 51) are proportional to the scattering volume V 
(keep in mind that the incident beam has been assumed to cover all of V and its 
power flux to be independent of V). For the purpose of comparison with 
molecular cross sections, it is convenient to refer this cross section to the 
volume of either the unit cell, a formula unit, or an atom. Thus, different values 
for the cross section of a solid may be given by different authors and the reader 
has to find at the outset what the volume of the sample is for which the cross 
section has been defined. This problem is circumvented by using, instead of u, 
the scattering efficiency S defined by dropping V in (2.50, 51). This quantity, 
with dimensions of an inverse length, represents the ratio between scattered and 
incident power for a unit path length within the solid. 

The scattering efficiency S just defined, multiplied by the scattering length 
and corrected for reflection losses in entering and leaving the sample, gives the 
total observable scattered intensity. The scattering length may be limited by 
absorption in the solid. This happens particularly near resonances (co L - O5o). In 
this case, it is customary to use the backscattering geometry. The measured 
effective scattering efficiency S* (dimensionless) is then given by [2.46b] 

S*=S 1 - exp[--  (S + c~e + G)L ] ( 1 -  RL)(1-R~), 
S -~- ~ZL -}- ~ s 

(2.52) 

where L is the plane parallel sample thickness (assumed large so that no back- 
reflection occurs), c% and % the absorption coefficients and R L and R~ the 
reflectivities of the incident and the scattered radiation, respectively. Since we 
have made in (2.52) a distinction between incident and scattered radiation, it 
may be worth pointing out that all expressions above also require a factor ndnL, 
where n~ and n L are the refractive indices of scattered and incident radiation, 
respectively. These factors dropped out consistently when it was assumed that 
oJ L -cos and that R L -~ Rs. While this is not true near sharp absorption lines (e.g., 
excitons), the semiclassical theory just presented breaks down anyhow in such 
cases. Another experimental consideration concerns the fact that the scattered 
light is focussed onto the entrance slit of the spectrometer by a collecting lens. 
The angle of collection f2 is constant outside the sample (g?0). The solid angle 
inside the sample, that to which the differential cross sections given above 
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applies, is given by 

f2 i = 27:(1 - cos Oi) (2.53) 

and 

O o = 2n(1 - cos Oo), 

where the angle O~ is related to that of the refracted ray outside through Snell's 
law. In the usual experiments, the f-number of the collecting lens is between 1.5 
and 2. Hence the maximum values of the angles O o lie around 15 °. The 
corresponding angles O i are much smaller because of the usually large 
refractive indices (for Ge n=4).  Hence, we can expand (2.53) in power series of 
the angles and find 

f2--L = (no t 2 (2.54) 
£2 o \ n~ / " 

The cross sections and efficiencies given above must be multiplied by this factor 
to relate theory to the experimental data. Because of the fi'equency dependence 
of n~, this factor can significantly modify the dependence of S on co L when 
measured over a wide frequency range. 

For the sake of completeness we introduce another useful notation for 
representing scattering efficiencies and cross sections. The formulas given so far 
contain squares of second rank tensors contracted with vectors. They can, 
therefore, be written as fourth rank tensors contracted with four vectors so as to 
form a scalar (e.g., the scattering efficiency). The scattering efficiency 
obtained from (2.51) can thus be written [2.17] 

3~O°)R eL~eLye~#e~aI~.a , (2.55) 

where 

' 0 ' *  h 
l~tJ~a- (4n) 2 0~ , (n+ 1)A(cG-co R) 2o0~ ' 

Equation (2.55) can also be rewritten in terms of a time-dependent polariza- 
bility operator P fluctuating at the frequency co v [2.46c]: 

1 +oo 

I'#~a - (4neo)22n V _~ (P'p(t) P~a(O)) e i°'"' dt (2.56) 

with 

P~z(t) = V1/2~ o ~ ~*(t), 
co  v 
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where the operator 

~t(t) = e x p ( -  igt)  ~(0) exp(iHt) 

has been written in the Heisenberg representation. The Raman susceptibility 
(c3)~'~/0~) is treated as a number. The angular brackets ( . . . )  represent a 
thermodynamical average over the equilibrium configuration at temperature T. 

Equation (2.56) describes the efficiency as the frequency spectrum of the 
average fluctuations of the polarizability P. This result is, of course, not 
confined to scattering by phonons. Any other elementary excitations which 
produce a fluctuation in P, i.e., whose amplitude parameter (equivalent to ~) 
affects P, will also lead to inelastic light scattering through the equivalent 
equation (2.56). Among these excitations, we mention here scattering by 
magnons (through the dependence of X on the magnetization) and by plasmons 
(X depends on the electric field which accompanies the plasma waves). 

It is interesting to discuss the symmetry properties of the fourth rank tensor 
I,p~a. Since S is invariant upon the group of symmetry operations of the crystal, 
I,p~.a must also be invariant, i.e., it must belong to the identity representation of 
the group. From the symmetry of dz'~o/d~, which only applies within the 
framework of the theory so far developed, I~,,~ is invariant upon the substi- 
tutions c~[~, ?-*6. More generally, only the sums (l~lj;,~+l~,t~+l~,l~+l,.~lj) 
appear as independent components. There can thus be no more than 36 
independent components of I (corresponding to the 6 x 6 independent com- 
ponents of (~Lp~L~) X ( ~ ) .  This would include antisymmetric components of 
dg/d~. If these are ruled out, the maximum number of independent components 
of I,e;,~ becomes 21, also the maximum possible number of elastic constants 
[2.47]! Hence, in a cubic material, 1~,~ has the same symmetry properties as 
the elastic constants. It has, therefore, three independent components equiva- 
lent to the three elastic constants (if we rule out antisymmetric components of 
dx'~Jd~). These are I ..... l~,pp, and I~p~p. 

The theory of resonant Raman scattering in solids parallels that given in 
Sect. 2.1.5 for molecules. The only distinction is that the discrete electronic states 
of the molecules must be replaced by electronic energy bands and excitons. The 
resonance then follows a behavior similar to that given by (2.30) but integrated 
over a continuum of coo frequencies. The corresponding results for simple and 
useful cases will be given in Sects. 2.2.4-7. The measurement of resonances in 
Raman scattering cross sections of simple solids near absorption edges or other 
critical points of the interband transitions (Van Hove singularities [2.49]) has 
occupied the attention of many workers within the past ten years. Such 
measurements yield information about diagonal and nondiagonal components 
of the electron-phonon interaction (deformation potentials in solids). They may 
also yield information about the electronic states producing the resonance. The 
experimental results usually obtained in back scattering must always be 
corrected for absorption and reflection in the manner indicated in (2.52). As an 
example, we show in Fig. 2.5 the resonance observed for the TO Raman 
phonons of ZnTe [2.49] near the fundamental absorption edge co 0--2.25 eV. 
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vertical scale was obtained by comparison with Brillouin scattering [2.50] (Sect. 2.2.i8 c) 
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Fig. 2.6. Antiresonance observed for TO 
Raman phonons below the fundamental 
edge of Wurtzite-typc ZnS, The solid 
line is a thcoretical fit [2.513 

The data were measured by comparison with CaF2, a material for which 
4 in co o = 12 eV ~ co L and thus its scattering efficiency is simply proportional  to cos 

the region of measurement  [2.50]. Hence, the factor co4 which appears in all 
expressions for S given so far is eliminated ; one obtains a curve proport ional  to 
[dx'/du] 2. The fitted curve has been calculated in this manner  (Sect. 2.2.6). A 
recent determination [2.49] has enabled us to give absolute values of the cross 
section in Fig. 2.5. Absolute cross sections and scattering efficiencies of solids 
will be discussed in Sect. 2.1.18. 

It is also possible to find in solids antiresonant behaviour of the type 
predicted by (2.33a). As an example, we show in Fig. 2.6 the antiresonance 
observed for TO-phonons  in wurtzite-type ZnS [2.51]. It was fitted with an 
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expression of the type of (2.33a). The antiresonant behavior does not occur 
for the corresponding phonons of zincblende-type ZnS [2.52]. 

The measurements of resonant Raman scattering require a continuously 
tunable laser or a series of closely-spaced discrete laser lines. Considerable 
progress has been made in extending the range of cw tunable dye lasers into the 
uv and near infrared in the past five years. Figure 1.1 of [-2.1] shows the state of 
the art in 1975. The present state of the art is shown in Fig. 2.7. 

Another problem in the study of resonant Raman scattering is the variation 
of the spectrometer throughput and detector sensitivity with photon energy. 
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This is particularly serious when the measurements are performed over a wide 
frequency range (see, for instance, Fig. 2.8 for the resonance scattering by 
optical phonons in GaAs between 1.35 and 3.1 eV). We have mentioned one 
possible way to circumvent the problem : the use of CaF 2 (optical phonons at 
320 cm- ~) as a comparison standard for which Sco~7 ¢ is constant below ~ 5 eV. 
Another possibility is to calibrate the spectral response of the spectrometer 
with a tungsten source [2.54]. Accuracies of the relative calibration are seldom 
better than 20 % over the whole calibration range. 

2.1.9 The Raman Tensor 

We have defined above a fourth rank tensor I~e~.~ which transforms like the 
identity representation (F 1 in Bethe's notation, A or A o in Mulliken's). The 
possible independent components of this tensor (three in the case of a cubic 
material) can be obtained by inspection of the corresponding table for the 
elastic constants while keeping in mind the ~ 7 ,  [f--,6 invariance. They are 
given in Table 2.1 for the 32 crystallographic point groups. Once these com- 
ponents are known it is possible to obtain selection rules for light scattering 
in crystals. 

It is more convenient, however, to use instead of I,e~ the so-called second 
rank Raman tensor Ro., an entity proportional to (81.~J8~) which is defined in 
the literature usually to within a numerical constant [i.e., it may or may not 
include co~, c 2, (n+1)1,'2,.. and all other numerical factors of (2.50)]. This 
tensor is usually used to calculate selection rules and there is no need to set 
these factors straight unless we want to use it to obtain absolute values of S 
(Sect. 2,1.8). 

The symmetry properties of R~j are derived simply from the fact that the 
scattering efficiency for polarizations ~L and ~ is given by 

dSoc I~" R. eLI 2 . (2.57) 

The polar vectors ~, ~L will belong to one (or more) irreducible representations 
of the point group of the crystal. Let us label these representations F v. In order 
to make dS invariant, R must contain components which vary like irreducible 
components FR~ of the product representations: 

- * G L =  G ,  + r . ~ +  (2.58) F R-  Eva x .... 

Each one of the components F~, will determine one set of reduced tensors which 
will represent scattering by phonons of a given symmetry. The irreducible 
symmetry of a given set of Raman active phonon Fp must be contained in the 
product (F*~ x FvL ) as it is produced by the annihilation of the photon FVL and 
creation of/'Vs. Hence the scattering by a Fp phonon can be represented by 

dSoc J~ .Rrp. ~L[ 2 , (2.59) 
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where Rrp is a component of R which belongs to the same irreducible 
representation as the phonon p. These principles are not confined to phonons ; 
they can be used for scattering by other types of elementary excitations (e.g., 
magnons, plasmons...), whereby one has to keep in mind that in some'cases, 
(e.g. magnons) the Raman tensor can have antisymmetric components. 

We should point out that the discussion above is based on having assumed 
that the scattering vector is exactly zero (q = 0) or conversely, that it does not 
depend on q (dipole approximation). This may not be true near resonances (see, 
e.g., the F25 phonon of Cu20, Sect. 2.3.6), in particular, for polar phonons 
involving the Fr6hlich interaction (Sect. 2.2.8). It is also obviously not true for 
Brillouin scattering; q = 0  implies a rigid translation of the system for which 
d)~/d¢ =0. In this case, S is determined by a third (or higher) rank tensor: 

d S ~  les,kRkzmeL, lq,,J 2 . (2.60) 

Table 2.1. Raman tensors and their symmetries (labellcd in Mulliken's and Bethe's notations) 
for the 32 crystallographic point groups (both Schoenflies and Hermann-Maughin notation 
given). The corresponding 1~t1:,,~ tensors 12.55) are also given for the uniaxial and cubic crystals. 
The Raman tensors include a possible antisymmetric component which cancels for phonon 
scattering away from resonancc. See [2.17] 

Biaxial crystals 

Triclinic b 

i 

1 C1 A F 1 
"f C i A o F'[ 

I: IE :1 Monoclinic b 7 

c ,q i 

2 C 2 A F 1 B /" 2 

tit C s A' l t A" l" 2 

2/m C2~ , Ag I'~ B o F + 

222 D 2 A /'j B I 1" a B 2 

ram2 C2,, A~ I'~ A 2 F a B~ 

mmm D2h A o 1"~( Bf~ 1"~ B2u 

llli l 
1~2 B 3 F,, 

I"2 B2 if4 
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Table 2.1 (continued) 

Tetragonal 

4 c4} 
$4 

4/m C4 h 

ltltj=a2 +d2; 

I--: : b3 I ~ -~ ] I ,q i ' :3I  i g -]lit 

A Fl B F 2 E I" 3 + F  4 

A# 1,? Bo 1,; G r~ + r ;  

Isaaa=b2; ll122=½(a2+e2-c2-d 2) 
ll j33=½(ab+ fg+hi); I1212=c2 +e2; 13232 =h2 + f2; I2323=g2+i 2 

422 } 
D4 AI I'l A2 1,2 B1 1"3 B2 1.'4 4ram C4,, 

Iltlt=a2+d2; I3333 =b2; lit22=½(a2-d2-c2+e 2 ) 
It133 =12(ab+fg); 11212 =C2 +e2 ; •3232 =f2  ; 12323 =g2 

E 1,5 
/ 

Trigonal 

 ]E_c c IE"-  jEff]I, 
422 D 4 [ 
4mm C4c A I F 1 A 2 F 2 B l 1." 3 B 2 I" 4 
~,2m" D2a 1 
4/nlmn1 0411 AI# 1,+ A2O F~ Big 1" 3 B2g [ ' :  

llltt =a2 +d2; I3333 =b2; ll122=½(a2-c2 +e2-d 2 ) 
ltlaa=½(ab+fg); 11212=eZ+cZ; 13232=f2; I23~3=g 2 

I  l[i -:t - a - d  /7 - - e  

i - '  g 

3 C3 A Ft E F2+F 3 
c3, A. r f  G 1,;+r;  

l l l , l = a 2 + d 2 + e 2  I3333=b 2 11122=a2--c 2 
ll133=ab+/g+hi;l~212=e2+d2-c 2 /3232=/2+h 2 I2323=g2+i 2 

E F 5 

Eg F~ 

:] 
/ 
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Table 2.1 (continued) 

Trigonal 

I' c li ,.i  I_.i 
D3 

3m C3,, A l 1" I A 2 F 2 E 1" 3 

~,m Daa A,# I"( A2. I ' ;  E. I'~ 

11111 =32+d2; 13333 =b2; 11122=½(32--c 2) 
llt33~-½(ab+ef); I1212=c2+d2; I3232=e2; I2323=f 2 

- d  - e  l 

/ 

Hexagonal 

E IE ]E"-' - a . /  ~ - i - i - h  

b g - 9  e 

6 C 6 A l'l El 1"5 +1"6 E2 1"2 +1"3 

C3h A' I'1 E" I" s + F  6 E' 1" 2 +I" 3 

6/,,, C6h A o 1"~ E,. I '~+I'~ E2o F f + I ' ;  

11111 =32+i2+h2; 13333=b'; I~t22=½(a2-c 2) 
I, ,33 =½(ab +de+fo); 1,212 =h2 + i2 +c2 ; 13232 =d 2 +f2 ; i2323 =e 2 +02 

v 

6mm622 D 6C6~ } A 1 I 1 A 2 F. Ej I'5 E2 F6 

6m2 D3, I ,41 1"1 A2 12 E" I 5 E' /6 
6/mmm D6h A,.  1 "+ A2. I ;  E,u I~  E2o F + 

11111=02+,[2; 13333-b2; 11122=½(a2-c 2) 
1~ 33 =~(ab +de); 11212 =f2  + C 2 ; •2323 =e2 ; 13232 =d2 
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Table 2.1 {continued) 
- -4 - - ' - - .  

Cubic 
. . . - . ._ .  

23 T A F 1 E .F 2 +1" 3 T F 4 
.,3 7;,, As r ;  G r ;  + r ;  r. r+ 

l i l l t = a Z + 4 b 2 : l l 1 2 2 = ½ ( a 2 - 2 b 2 + d c ) ; l a t 2 t = c  2 
I1212~d 2 

432 
43n~ 

~n3m 

o} 
Ta A I l'~ E F 3 E l i  T I F 4 F2s 7-2 F4 1"~5 

O~ A,g F~- Eg F ;  F,2, T,o F2 F,s ,  T:a F~ F2s, 

latll=a2+4b2; llt22=~(a2-2b2+d2-c2); lt2t2=d2+c2 
. . - . . . . . _  

Table 2.2. Selection rules for Raman scattering by Fa~ ., (I1~) phonons  in ge rmanium and zinc- 
blende-type materials for the three principal surfaces [001], [111], and [110] in backscattering. 
The efficiencies are given in terms of the irreducible components  a, b, c, d of Table 2.1 

Surface Incident Scattered Raman 
polarization polarization efficiency 
eL es 

[1To] [11o3 Dlo] 
[17o3 [oo13 [oo13 
[ITo] [oo13 Olo] 
[ITO] [I113 [1113 
[IOO] [O1i] [oIT] 
Doo] [o11] [oi i ]  
[1oo] [OLO3 [oo13 
[1oo] [OLO3 [OLO3 
[1113 [ITO] [ITO] 
[111] [ITO] [112) 
[111] [112] [ll~] 

a 2 + b  2 + d  2 (TO) 
a 2 + 4b 2 
d 2 [T O)+c  2 
a 2 +~d 2 (TO) 

a2 +b2 +d 2 {LO) 
3b 2 + c 2 
d 2 (LO) + c 2 
a 2 +4b 2 
a 2 +½d 2 (LO)+~d 2 (TO) 
a 2 +2d2 (TO) 
a 2 +½d 2 [LO)+~d 2 (TO) 
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The symmetry properties of the tensor Rk~ m (2.60) are discussed in [2.17, 55]. 
They are equivalent to the properties of the electric field induced Raman tensor 
[2.56a]. 

In Table 2.1, we present the possible Raman tensors and their symmetries 
for the 32 crystallographic point groups including possible antisymmetric 
components. We also include the relationship between the possible R;j and the 
tensor components I~o~b (to an arbitrary coefficient) symmetrized with respect 
to the four possible equivalent combinations of indices. The antisymmetric 
components may be easily eliminated from the table for scattering by phonons 
whenever the assumption (2.21) of the quasistatic treatment applies. The 
selection rules for Raman scattering are obtained by contracting the tensors 
corresponding to the phonons under consideration and given in Table 2.1 with 
possible incident and scattered polarization vectors ~L and ~s- As an example, 
we present in Table 2.2 the selection rules calculated for scattering by the F25, 
(i.e., T2, ) phonons of materials with the O h point group (e.g., diamond, CaFa) on 
the three principal faces ([001], [110], [111]). These rules also apply to the F15 
(i.e., T~) phonons of the zincblende structure. 

2.1.10 Factor Group Analysis of Phonon Symmetries 

The decomposition of the Raman tensor (a second rank tensor) into irreducible 
symmetry components for the various crystallographic point groups is found in 
any standard group theory textbook. If that group contains the inversion, the 
representations are either odd or even while the second rank Raman tensor 
yields only even representations. Likewise, the vector-like dipole operator 
relevant to ir-absorption is odd. Hence, the well-known selection rule ir- 
allowed - Raman-forbidden and vice versa which, however, is only correct in 
the presence of inversion symmetry. In this case, the usually forbidden Raman 
lines can become allowed through the mechanism of (2.60); the third rank 
tensor Rk~ m decomposes into odd representations. 

We discuss next the determination of the irreducible representations which 
correspond to the various phonons of a given crystal. We first define the factor 
group as a group of crystal transformations which leave the crystal invariant 
(belong to the space group) and map the primitive cell onto itself, i.e., a given 
atom within this cell is not taken out of it. To the factor group belong the 
following operations: all rotations and reflections of the point group plus the 
basis operations of a screw axis and glide planes accompanied by a lattice 
translation so as to leave the primitive cell atoms within the primitive cell (PC). 
The operations of glide planes and screw axis, since they contain translations, 
move atoms from the inside to the outside of the PC. In this case, a lattice 
translation is added to return the atom to the PC. This translation will depend 
on the atom under consideration. 

It is easy to see that the transformations so defined form a group which is 
isomorphic to the crystal point group (the group obtained by removing all 
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translations from the factor group). Its irreducible representations can be found 
by assigning to each element of the factor group P a matrix of the form 

A B C ... M ... 

A 

B 

C 

D ( ~ ) =  

M i 
O 1 0 ... 0 ... 

0 0 0 ... 1 ... 

1 0 0 . . . . . .  

!! i!! iii i!i !!! !!i (2.61) 

where A B C . . . M  .. represent all atoms in the PC. The element DMN(PI) is set 
equal to 1 if atom N is transformed into M by Ps" In this manner, a set of 
matrices is constructed which constitute a representation of the factor group. A 
first and important reduction of this representation is easily effected by 
grouping together all equal atoms in the sequence A B C . . . M . . .  which then 
becomes A1A2. . .B1Bz. . .M1M 2 .... Since Ps cannot transform an atom into a 
different one, a reduction of the representation has occurred. We must now 
reduce each one of the block representations corresponding to atoms 
A ~B1...M1... [labelled DM(pI)]. The reduction of each DM(pf) into irreducible 
components is then performed in the standard way by calculating the traces 
(i.e., characters) of DM(pj) [labelled zM(PI)] and projecting them onto those of 
the irreducible representations of the point group zi(P) with the use of standard 
character tables 

z*( P) zM( P I) = gs~ t , (2.62) 
P 

where g is the number of elements of the point group and s~ the number of 
times ")~ is contained in Z M. We thus write 

DM(p I) = ~ sMDi(p). (2.63) 
i 

The factor group analysis is facilitated by using the tables in [2.56b, c, 65, 
66a]. We are now in a position to obtain the symmetries of the phonons 
at the F-point (q = 0) of the Brillouin zone. We consider a set of equal atoms 
A~ and attach to each atom a displacement vector u. Let Dr(P) be the 
representation of the point group defined by the vector u. The corresponding 
"phonons" will transform under the factor group like the representation 

D~(P z) x Dr(P). (2.64) 
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1able 2.3. Representation of the factor group of the d iamond structure corresponding to atomic 
permutations.  The notat ion for the operations of the point group is that of I-2.66 b]. We list for each 
class only one representative matrix. Below the matrices we give the corresponding character 

E 8C 3 3C 2 6C 4 6C 2, 1 8S 6 3% 6S 4 6% 

Z 2 2 2 0 0 0 0 0 2 2 

The irreducible symmetries of the corresponding phonons are obtained by 
reducing the vector representation D v and multiplying its components by the 
various D*(P) for which sff+0. If, after exhausting all basis atoms a given 
representation appears only once, the corresponding phonon eigenvectors are 
determined exclusively by symmetry. If it appears more than once, the eigen- 
vectors must be determined by solving the dynamical matrix. 

We proceed now to discuss several examples of increasing degree of 
difficulty of the algorithm presented above. We treat here the diamond, 
zincblende, CaF z, wurtzite, and chalcopyrite structures. 

The diamond structure has only two equal atoms per unit cell while the 
point group (Oh) has 48 symmetry operations, all proper and improper 
rotations which bring a cube onto itself. The corresponding matrices Da(Ps.) are 
given in Table 2.3. 

Using (2.62), we find from the characters in Table 2.3 

DM(P f )  = F 1 + F2, . (2.65) 

The vector representation is, in the 0 n group, F is [2.65]. Hence, the F-phonons 
of diamond have symmetries 

F 1 x F15 =F15 (acoustic phonons) 

/"2 '×/'15 -=F25' (optic phonons). 
(2.66) 

The corresponding eigenvectors are thus determined by symmetry. They are 
shown in Fig. 2.9. The optic phonon F25, is even with respect to the center of 
inversion midway between the two atoms of the PC while the acoustic one 
(actually a uniform translation for q s t r ic t ly  equal to zero) is odd. Hence, the 
optic phonon is Raman active and the corresponding Raman tensors have only 
one off-diagonal independent component d (Table 2.1). It is customary in the 
literature [2.40] to give the numerical value of this component in terms of the 
parameter a, [/~2] : 

4rta, = V~ dx1z (2.67) 
2du 3 ' 
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Fig. 2.9. Sylnnaetry deter- 
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V25, optic I]15 optic []'5 acoustic CaF 2 suucture 

where V~ = a3/4 and 2u 3 represents the relative displacement of one sublattice 
with respect to the other. The factor of 4rt has been included in (2.67) so as to 
obtain numerical values of ~ in accordance with those in the literature, usually 
quoted in cgs units. Let us recall that Zs~ = 4~Z~gs. The parameter ,~ can be called 
a "Raman polarizability". The definition of a just given can also be applied to 
the F2s, phonons of the fluorite structure and the /'t5 of zincblende. For  
diamond, a is nondispersive in the visible and has the value ~ - 4 ~  2 (probably 
positive according to theoretical calculations. The sign, however, is irrelevant to 
the Raman cross section, see Sect. 2.1.18). 

The zincblende structure (e.g., GaAs) is similar to that of diamond but the 
two basis atoms are different. DA(Py) contains only one-dimensional repre- 
sentations which, of course, must be the identity representation F 1 of the point 
group (Td). Hence, the two sets of phonons will both simply have the symmetry 
of a vector in this group, i.e., F15. Although this symmetry occurs twice, the 
eigenvectors are determined independent of force constants by the requirement 
that the center of mass does not move for the optic phonon (MAU A = --MBUR, 
see Fig. 2.9). The F 15 optic phonons are Raman allowed with a Raman tensor 
isomorphic to that of diamond. Next in difficulty we discuss the CaF 2 (fluorite) 
structure, fcc with three atoms per unit cell: Ca at the origin and F at 
+ao/ ) l ( l l l ) .  The point group is again O h. A vector motion of the Ca atom 
generates the F 15 representation. 

The transformation properties of the two fluorine atoms under the oper- 
ations of the factor group are the same as for diamond (Table 2.3). We thus find 
from these atoms the phonons F2s, and F 15. The two Fa5 phonons combine to 
give an optical Raman inactive, ir active mode (eigenvectors determined from 
center of mass condition 2UFM F= -- ucaMca) and an acoustical one (Fig. 2.9). 
The Fzs, optical phonon is Raman active ; its Raman tensor has the same form 
as for diamond. 

The hexagonal wurtzite structure (e.g. CdS) is closely related to zincblende. 
There are four atoms per unit cell at positions 

IO00 0 2 1 
~53~ (2.68) Cd (00u S/± z (± - u)' 
k3 3 ',2 
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Table 2.4. Representation of the factor group of the wurtzite structure corresponding to atomic 
permutations.  The notation for thc operations of the point group is that of [2.66 b]. We list for 
each class only one representative matrix. Below the matrices we give the corresponding character 

E C 2 2C 3 2C 6 30" 3% 

D (0 ?) (? 0) (0 ?) (? (? ;) (0 ?) 
;( 2 0 2 0 0 2 

where u-0 .375 .  The point group is C6v. The representation of the factor group 
corresponding to atomic permutations is given in Table 2.4. Using the charac- 
ter tables for C6~, of [2.66a], we find 

DA(p f) = D~(P I) = F1 + i f3 

and for the representations of the vector displacement, we find F 1 (z polariza- 
tion) and F 5 (x, y polarization). Hence the representations of the phonons at 
k = 0 are 

2(G x r , )  + 2(r, x F3) + 2(G x Vt) + 2(F5 x/ '3)  = 2G + 2G + 2F5 + 2/'6 
(2.69) 

The equivalence between the F- and the Mulliken notations can be seen in 
Table 2.1 ( F 6 - E  2, F s = E  1, F3=B, F t =A1). 

Of the phonons in (2.69), one set of F 5 and one F 1 correspond to acoustic 
phonons (uniform translation). All others are optical phonons, F 5 and F 1 are ir 
allowed and F5, F6, and F t Raman allowed. Note that because of the absence of 
inversion symmetry a phonon can be simultaneously Raman and ir active. The 
Raman tensors for E 1, E 2, and A1 phonons are given in Table 2.1. The F 3 
modes are both ir and Raman silent. 

We discuss next a tetrahedral structure with a slightly higher degree of 
complication, that of chalcopyrite (CuFeS z, generally ABCz). This structure is 
characteristic of germanium-derived semiconductors such as CuGaS 2 and 
ZnGeAs 2 I-2.57a]. There are two formula units (eight atoms) per PC. The 
atomic positions in the PC are : ABC z : 

2 A (000), (0 ½ ¼) 

2B 11 1 1 (g2 0), (~- 0 ~) (2.70) 

11 - 3 1  3 4C (u g g), (u ~ g)(~ u-~), (¼fi - 4), 

where u-~ 1/4. 
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Table 2.5. Representations of the factor group of the chalcopyrite structure which is defined by 
permutations of the A- or B-atoms and by the C atoms 

E C 2 2S 4 2C~ 2a a 

D A (10 01) (10 ~) (10 ~) (~ 10) (~ 10) 

;(a 2 2 2 0 0 

( ) ( i  l° i ) ( i  °' °° °° i) D c 1 0 0 0 0 1 0 0 1 
1 0 0 l 0 0 1 1 0 

1 0 1 , 0 0 0 0 0 0 

Z c 4 0 0 4 0 

The point group of the chalcopyrite is D2a. We present in Table 2.5 the 2 x 2 
representation of the factor group defined by permutations of the A (or B) 
atoms and the representation defined by the C atoms. 

The representations of Table 2.5 can be decomposed into the following 
irreducible representations of the point group D2e : 

DA=F1 + F 2 = D  n 

DC=F1 + / " 3 + / " 5 .  (2.71) 

Multiplying these representations by the representations of the polar vector (F 4 
and F~)we obtain the phonon symmetries listed in (2.72) together with their 
activities : 

ir and Raman active : 4F 4 + 7F s 

Raman active, ir inactive : /"1 -k- 3/" 3 

~ilent 2F 2 ; 

(2.72) 

one pair of F 5 modes and a F 4 mode are acoustic phonons. 
We note that the wurtzite structure has one fully symmetric optical mode F 1 

and the same holds true for the chalcopyrite structure. These phonons represent 
a distortion of the crystal which does not change its symmetry. Such distortions 
correspond to a free parameter of the unit cell, namely, the parameter u of 
(2.68, 70). This conclusion is quite general; in order to determine unam- 
biguously the positions of all atoms in the PC, a number of parameters equal to 
the number of optical phonons of F 1 symmetry is required [2.57b]. 

The acoustic phonons of some of the structures just discussed are "Raman 
forbidden" (e.g., diamond, CaF2). Nevertheless, light scattering with their 
participation, the so-called Brillouin scattering, is observed (Sect. 2.1.14). As we 
shall see, this scattering is related to third rank tensors of the form (2.60). 
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2.1.11 Fluctuation-Dissipation Analysis 

We saw in (2.56) that the scattering efficiency at the frequency shift m R is related 
to the fluctuations of the polarizability operator .P. By expanding this operator 
in terms of the normal coordinates of elementary excitations, it is possible to 
relate the scattering cross section to the fluctuations of these normal coor- 
dinates. The frequency spectrum of these fluctuations is easily evaluated with 
the help of the fluctuation-dissipation theorem [2.58]. 

Let us consider a variable X(r,t) representing the amplitude of some 
elementary excitation (e. g., the atomic displacement in the case of phonons). To 
this variable there will, in general, correspond a generalized force F(t) such that 
the interaction Hamiltonian of this force with the elementary excitation is 

fiH= -X(r,  t) F(t). (2.73) 

We consider the Fourier component of F(t), F(co). It will produce a change in X 
of the same frequency given by 

6X(co) = T(o) F(co), (2.74) 

where T(co) is a complex linear response function. The fluctuation dissipa- 
tion theorem relates the fluctuations in X induced by a temperature T 
to the imaginary part of the response function [2.58] : 

<X*X>o~ = ~ ( n +  ~-)~ Im { T(co)} (2.75) 

with 

n = [exp(hco/kT)- 1] - 1 

Equation (2.75) represents the classical version of the fluctuation- 
dissipation theorem. Its quantum-mechanical version, obtained by replacing X 
and X* by the corresponding operators X and X t, is 

(XX¢)o,= h (n+ 1)Im {T(o)} 

(X*X)o,= fi- n Im{T(o)}. (2.76) 

As an example, let us consider a phonon normal coordinate ~ and the 
corresponding generalized force F. The equation of motion for ~ is 

3( - <~2 + o~ - iyc0) = F ,  (2.77) 
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and hence the response function becomes 

1 
T(0)) 

0)20- 69 2 -  i~;0) (2,78) 

The fluctuation-dissipation theorem (2.76) then yields 

270) 
<~t~>~ = ~_ n (0)o~_ 0)~)~ +7~0) :  . 

(2.79) 

An integration of (2.79) for co from 0 to oo reproduces the results of (2.26). 
Replacement of (2.79) into (2.23) yields the Raman cross section including the 
Lorentzian line shape of the Raman spectrum [instead of the simplified 
&function of (2.24)]. 

As another example, we consider a system capable of propagating fluc- 
tuations of the electric charge. Associated with such fluctuations there are 
longitudinal fields related to the charge fluctuations by Poisson's equation: 

eol 7. E = - 0. (2.80) 

These fluctuations can be excited with an external field (generalized force) Eex t 
perpendicular to a sample surface which is pcrpendicular to the q of the fluctua- 
tion. This external field equals the electric displacement vector inside the sample. 
The "generalized force" corresponding to E can be considered to be the electric 
displacement D since 6 H =  VE. D, where V is the volume of the sample. The 
response function relating a longitudinal field E to D is the inverse longitudinal 
dielectric constant of the medium e(0))-1. Using (2.76), we find for the 
fluctuations of the electric field E 

V ( E E t ) ¢ o , ~  - (n+ 1)Ira 

V ( E  t E ) c o . q  = _ _ n Im 
IX 

(2.81) 

Equation (2.81) can be used to calculate the line shape and the efficiency of 
scattering by excitations involving longitudinal electric fields, such as longitu- 
dinal ir-active phonons, plasmons and phonon-plasmon coupled modes 
[Ref. 2.1, p. 147]. A detailed description of the use of the fluctuation-dissipation 
theorem in light scattering can be found in [-2.59]. 
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2.1.12 Scattering by Longitudinal Ir-Active Phonons: 
Faust-Henry Coefficient 

We saw in Sect. 2.1.10 that i fa  solid does not have inversion symmetry, some of 
its q = 0 phonons can be both ir and Raman-active. Such was the case of the F 1 s 
optical phonons of zincblende, F 1 and F 5 of wurtzite and F 4 and F 5 of 
chalcopyrite. Their infrared activity implies that these phonons contribute to 
the low frequency polarizability, and hence to the dielectric constant, a term 
given by [2.60] 

1 ~(~ie%MT'/2ei"~)(~i e*'Mi-llzoi''lj) 
(2.82) 

where the sums arc extended to all atoms in the PC, of volume V c, and to all 
ir-active vibrational modes N~r. The effective dynamical charges e*, must 
fulfill the charge neutrality condition 

~e*o=O, 
i 

where the sum is extended to all atoms in the PC. These charges are different for 
each ir mode. 

Let us consider, for the sake of simplicity, a cubic material with ir-active 
modes (e.g., ZnS). A~ is then isotropic, i.e., equal to /i.Ae. If a transverse 
electromagnetic field is applied, it polarizes the medium. The speed of 
propagation of the mixed excitation which consists of an electric field plus a 
mechanical oscillation becomes 

g~/2C 
v = (2.83) 

where e~ is the frequency-dependent background electronic dielectric constant 
of the medium (assumed to be nonmetallic). The dispersion relation of the 
mixed elementary excitations (the so-called polaritons) is found by solving 

,f 1~2 c 

co = q v  = Veo~ + Ae(co) q" (2.84) 

We rewrite e~ + A~,(co) using (2.82) and taking 7---0 in the form 

Nit 2 2 
l~v (.OvLO - -  CO 

~ + A~(co) = ~ 2 co2' 
O)vT 0 - -  

(2.85) 
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Fig. 2.10. Phonon polaritons in zincblende- 
type ZnS [2.61]. The points are experimental, 
the dashed-dotted line calculated 

At the frequencies 0)=%LO, the dielectric constant (2.85) vanishes, i.e., 1//; 
blows up. According to (2.81), the longitudinal fluctuations in E also blow up. 
These fluctuations correspond to longitudinal phonons (vibrations along the 
direction of q) whose frequency has been renormalized from 0)~vo to C%I~O by 
the long range longitudinal polarization associated with them. The transverse 
modes are also renormalized by the coupling to the electromagnetic field ; their 
renormalized frequencies, strongly q-dependent, are obtained by solving (2.84). 
Let us consider the simplest case, that of the zincblende structure with only one 
set of Ft5 optical modes, both ir and Raman-active. The dispersion relation for 
these so-called "phonon polaritons" is, in the case of only one Jr-active mode: 

q 2  (D2 /;co 0 0 2 0 -  (I)2 

C2 /;0 6020 - -  0)2 ' 
(2.86) 

where 

e . 2  
2 2 

f~OLO - -  O.)TO - -  Vc/~/; m " (2.86a) 

In (2.86a), e* is the dynamical charge on one of the atoms, V~ the volume of the 
PC and /~ its reduced mass (/~-1=M~,1 +M~a) .  The dispersion relation of 
(2.86) is plotted in Fig. 2.10 for ZnS with 0)co = 351 cm- 1, 0)to = 279 cm - 1 and 
/;~o=5.2, together with the dispersionless longitudinal modes (0)=O)LO) and 
experimental data for the "lower polariton" branch obtained in the forward 
Raman scattering configuration [-2.61]. In large angle or backscattering 
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experiments q"~2(0Lg~2/C>(0TO . For these large values of q, (2.86) yields a 
nearly nondispersive frequency co"~COxo (TO-phonon) and a renormalized 
photon with the dispersion relation q=(0e~2/c .  In the strongly dispersive 
region for -~~1:20~ /c the polaritons are a mixture of photons (transverse " / -  ao T O /  

electric fields) and mechanical vibrations (phonons). In order to calculate the 
scattering cross section in this region, we must know the amplitude of each one 
of these components separately, an evaluation which can be performed with a 
generalized form of the fluctuation-dissipation theorem [2.59]. The mechanical 
vibration contributes to the scattering efficiencies through a dynamical suscep- 
tibility of the type (2.67). The accompanying electric fields contribute an electro- 
optical term given by the first-order electro-optic tensor which has, in 
zincblende, only one independent element aXl 2/OEB (the form of this tensor for 
other point group symmetries is shown in Table 4.2 of [2.17]. We shall not give 
the detailed expressions for the scattering efficiencies of these polaritons here; 
they can be found in [-2.59]. 

The electro-optic effect just mentioned also influences the scattering by LO- 
phonons since they have an electrostatic component. The fluctuations of this 
field are given in (2.81), the corresponding fluctuations of the sublattice 
displacement u A -  u B are related to the electrostatic field E through 

E = - ~:~ 1Nee , (u  A _ uB ) ; (2.87) 

No=number  of PC's per unit volume. The scattering efficiency for Stokes 
scattering by LO-phonons can thus be written, see (2.51), 

~S~ ~ ' V ( o  4 ^ ^ 

(~_-2~4~jLjc les'~RL(q)'eLIZ<EE "t >,,,R, 
Of~Oo) R 

(2.88) 

where <EE t >o,R is given in (2.81) as a function of Im{g(co) -1} and the Raman 
tensor R L for longitudinal phonons is obtained from the F 15 tensors of Table 
2.1 by rotation of the axis so as to obtain the linear combination of phonons 
which vibrate longitudinally along q: 

RL _ ~ 2  ~ 2  * 2  

where 0 is the unit vector along q and 

Rx= 0 

d 

with 

d = ( O? 12 
\ o E 3  

;Ry= 0 ;Rz= 0 0 ; 

0 , , 0 0  

Nee* O(u A-  uB)3]' 

(2.89) 

(2.90) 
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Equation (2.88) can be rewritten in terms of the fluctuations of UA--U B using 
(2.87) to yield 

df2do) a - (4n--~ lea' R•(q). eLI 2 (/~ + 1)6(C0 a -- O)LO ) , (2.91) 

where the tensor .R' is isomorphic to the R of (2.90) with d replaced by 

d'= ( Nee* t~X12 0212- 

_ f dz12 1 (2.92) 

where C is the so-ca[led Faust-Henry coefficient which we rewrite as [Re/'. 2.1, 
Eq. (4.27)] 

C= e*(~Z/gu) 
uCO~o(c~z/O/~). (2.93) 

The dimensionless Faust-Henry coefficient is a measure of the relative strength 
of "mechanical" (deformation potential, as it will be called later) to electro-optic 
coupling in the electron-phonon interaction. It can be either negative (GAP) or 
positive (SIC, CdS) and has often absolute values around 0.5 (see Table 2.6). 
The ratio of the Raman tensor components for LO and TO-scattering is given 
by 

(   o-O4o  
dT° = 1 -~TZO ].  (2.94) 

According to (2.94), the Raman efficiency for LO-scattering is enhanced or 
quenched with respect to the TO-scattering depending on the sign and 
magnitude of C (C < 0, always enhancement). The values of the enhancement 
factor (dLo/dTo) 2 ((DTo/(.OLo) obtained with (2.94) for a few typical semicon- 
ductors are listed in Table 2.6 (the additional factor OOvO/COLO is included so as 
to take into account differences in the vibrational amplitudes of LO and TO- 
phonons). 

We point out that if local field corrections are included, even TO-phonons 
can be accompanied by a longitudinal (local) field and thus have an electro- 
optic contribution to the scattering cross section. These contributions, expected 
to be small, have been calculated by Ovander and Tyn [2.62]. 

Besides the possible enhancement of SLO just discussed, a strong enhance- 
ment can occur near resonance for polarized scattering. This enhancement, 
attributed to the so-called intraband Fr6hlich interaction, is represented by a 
q-dependent tensor (2.60) ; it is, therefore, "dipole forbidden". The correspond- 
ing resonances, however, can be even stronger than those of dipole allowed 
effects. These phenomena will be discussed in Sect. 2.2.8. 
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Table 2.6. Faust-Henry coefficients of several typical semiconductors  and corresponding enhance- 
ment factor for LO-phonon scattering (dLo/d.m) 2 (o0.ro/OJLO) obtained with {2.94) 

2 2 2 (dL°) 20)TO ~ 1 -  ( OJ~O-(o~OI] (DTO 

C (theory)" C (exp) \~To} toL~O \ Ca)~o Jl ~OLO 

AISb - 1.97 
GaP  - 0 . 3 7  
GaAs - 0.83 
GaSb -0 .28  
InP - 0 . 1 4  
lnAs -0 .28  
InSb - 0 . 6 6  
ZnS 
ZnSe 

ZnTe 
CuCI 

CuBr 
Cul 

- 0.64 2.5 
- 0 . 5 9  1.5 

-0 .18  h 30 b 
- 0 . 7  b 2.1 b 
--0.21 c 8.5 c 
-0 .11  b 7.2 u 
- 1.05 a 2.50 
--2.7 ~ 1.1 ° 
- -  1 . 2  o 1 . 7  d 

+ I .  I a 0.5 a 

" [2.156]. 
b [2.49]. 

S. Ushioda, A. Pinczuk, E. Burstein, D.L. Mills: [Ref. 2.[2, p. 347]. 
a A. 13en-Amar, E. Wiener-Avnear:  Appl. Phys. Lett. 27, 410 (1975). 

Like a, but assuming that the two peaks, at 147 and 159cm i belong to the TO phonons,  See 
Z. Vardeny, O. Brafman : Phys. Rev. B19, 3276 (1979). Note that this choice improves the systematic 
variation of C from CuCl to CuI. Note also that a reversal of the sign of z~ from CuCI to CuI is 
likely [see S. Ves, M. Cardona:  Solid State Commun.  3 8 ,  1109 (1981)]. 

2.1.13 Second-Order Raman Scattering in Crystals 

The expression for the efficiency of second-order Stokes Raman scattering in a 
crystal is obtained from (2.35) 

~Ss 0)4 Z es" ~2Z'  eL[2 

a~o.oo (4~)2c ¢ ,,j,q ~(q)O~j ( -  q) I 
h2 

"4%.qcoj,q (ni'~ + 1) (njq + 1)3(%. + ~ojq -eOlO, (2.95) 

where the second-order Raman susceptibility 

~2 Z' t~2;~ 
~¢i~j = V o~i~j (2.96) 

is independent of the scattering volume K The corresponding expressions for 
antistokes and for difference scattering can be obtained from (2.95) with the 
help of (2.34). 
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While for first-order scattering only phonons with q~-0 are allowed, the 
selection rule for q conservation now implies that the sum of the q vectors of the 
two phonons involved be approximately zero, i.e., q~"~-qj  for Stokes and 
antistokes scattering and q~-~ qj for difference scattering. Hence, in principle, all 
phonons can be observed. If the Raman susceptibility t?zz'/O~/t?~j is assumed to 
be independent of q for a given pair of phonon bands i and j, (2.95) reduces to 

- ~ , ~ j  

M 
4~o~a~jq (niq + 1) (njg + 1)Na,q(c%), (2.97) 

where Nd, u is the combined density ofphonon states for the phonon branches i 
and j. Actually, a2g'/a~z3~j is not constant for a given pair of bands. A 
reasonable approximation may be to assume 02X'/O~O~oco) as the suscepti- 
bility must vanish for ~OR~0 as a result of translational invariance (a uniform 
translation does not change g). For overtones, Nd,U(COR)=Nd.~(~OR/2) and the 
second-order Raman spectrum contains information about the density of one- 
phonon states Nd. i [-2.40, 63, 64]. 

One may actually consider decomposing Ne.~j(COl~ ) into components of the 
various irreducible symmetries corresponding to the Raman tensor (the 
experimental spectra are easily decomposed in the various irreducible com- 
ponents using, for instance for cubic materials, Table 2.2. The results obtained 
for Si are given in Fig. 2.11). Such a procedure is, in principle, not very fruitful. 
The density of states is dominated by general points of the Brillouin zone (BZ) 
with no special symmetry. Let us consider a combination pair of phonons i,j at a 
given 9eneral q at which each of the phonons i and j cannot be fundamentally 
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Fig. 2.11. Irreducible components of the 
second-order Raman spectrum of silicon ob- 
tained at 305 K for ,iL=5145A. The histo- 
gram was calculated in [2.40] with the bond 
polarizability model and the bond charge 
model lattice dynamics [2.64] 
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degenerate. When applying all operations of the point group to q, the star of q 
is generated. This star defines the so-called regular representation of the point 
group [2.65], a representation with a dimensionality equal to the number of 
elements 9 of the point group. All elements of the star of q appear with equal 
weight in the sum which gives Nd,ij. By reducing the regular representation we 
can thus find the irreducible components of Nd.ij. Actually, it is well known that 
the regular representation contains all irreducible representations Di(P), each a 
number of times equal to their dimensionality S~. Hence, one may expect that 
the second-order Raman spectrum of a given combination band contains all 
Raman tensor components given in Table 2.1 for each point group, with a 
weight equal to their dimensionality. This is actually not the case; the tensors 
belonging to the identity representation F 1 produce scattering efficiencies 
considerably stronger than all others, at least for overtone scattering (for 
overtone scattering in materials with inversion symmetry, the argument given 
above yields only even representations of the point group; in these materials 
phonon overtones are approximately Raman allowed but ir-forbidden). This 
means that the susceptibility ~ ' / ~  cannot be independent of q and o R. 
That this must be so can be easily seen by considering high symmetry directions 
such as [100], [-111], and [110] in cubic materials. Along these directions, the 
argument given above for a general q breaks down and the pairs of phonons do 
not contain all (even) irreducible representations. The irreducible repre- 
sentations of a pair of phonons and all their equivalents must be obtained by 
performing the appropriate products of space group representations [2.21]. If 
the two members of the phonon pair belong to different irreducible repre- 
sentations, their product cannot contain the identity representation F1, i.e., 
cannot contribute to completely polarized scattering. 

This will be the case for a pair composed of a longitudinal and a transverse 
phonon in a cubic crystal along the high symmetry directions. Hence in this 
case, the corresponding ~2Z'/O~ia~j must vanish. Since this happens along a 
large number of high symmetry directions, continuity arguments force 
c72~'/~:3~ to be small also at a general q. We thus conclude that such 
combinations should not contribute to the polarized F 1 spectrum. Overtones, 
on the contrary, should strongly contribute to it while they may or may not 
participate in the depolarized spectra (F25,, F 12 for the O h group). It is difficult 
to obtain more information using only general symmetry arguments. 

The second-order Raman spectra have been measured and decomposed 
into irreducible components for a number of cubic materials such as alkali 
halides [-2.67], alkaline earth chalcogenides [2.68], Ge [2.63], Si [2.69], 
diamond I-2.70], fluorites [2.71] and antifluorites [2.72] and most of the III-V 
and II-VI semiconductors with zincblende structure [2.73-80]. We show as an 
example in Fig. 2.11 the F 1, F25,, and F12 components of these spectra for 
crystalline silicon. The F25, component also contains the first-order phonon at 
520 cm- 1. The weak line observed at this frequency in the F1 and F12 spectra is 
a residual effect due to either sample misorientation or to a symmetry-breaking 
mechanism. The sharp features in the experimental spectra of Fig. 2.11 are 
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usually interpreted in terms of Van Hove singularities or critical points which 
occur along high symmetry directions usually near the boundaries of the BZ. 

In agreement with the arguments given above, the F 1 spectrum of Fig. 2.11 
is mainly an overtone spectrum. In order to help its understanding, we show in 
Fig. 2.12 the phonon dispersion of Si as calculated with Weber's bond charge 
model [2.65] and the corresponding Ne(co). The main features of the F~ spec- 
trum of Fig. 2.11 correspond to 2TA and 2TO overtones, and within these 
bands sharp structure is found related to the flat dispersion relations along the 
X -  K and K -  W lines and the L-critical point. We note that the F12 spectrum 
is very weak, probably negligible within the accuracy of the required polarizer 
and analyser settings and depolarization by surface roughness. The F25, 
spectrum, although small, is certainly above this error. It is dominated by the 
2TO peak and it does not contain any 2TA structure. 

The second-order spectrum of Ge [-2.63] is very similar to the one just 
discussed when measured at small laser frequencies ((%<2 eV) [2.44a]. For 
co L > 2.2 eV, a resonant structure appears at the 2TO(F) frequency. The second- 
order spectrum of diamond [2.70] has a similar 2TO(F) peak but of nonre- 
sonant character. It has been interpreted alternatively as a feature in the 
phonon density of states due to an anomaly of the dispersion relation near q = 0 
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[2.81], as an anomaly in the Raman susceptibility [2.40] and as a two-phonon 
bound state [2.82a]. 

The histograms of Fig. 2.11 have been calculated [2.40] by using the 
vibrational eigenvectors of the bond charge model and the bond polarizability 
hypothesis; it is assumed that each Si-Si bond has a polarizability whose 
magnitude is a function of the bond length but not of the bond angle. Changes 
in the bond angle, however, change the orientation of the static bond 
polarizability tensor and thus also modulate the polarizability when referred to 
fixed coordinate axes. Six parameters are required by such a model : the parallel 
(aLl) and the perpendicular (~±) bond polarizabilities and their first (~') and 
second (e") derivatives with respect to the bond length. These parameters are 
written in the form [2.40] 

% = 4(Cql + 2~z)/3 V¢ 

~q = 4(~11 - ~±) /3  V¢ 

~1 ~ I~00(v 

- -  r o ~  v 

~ 2 5' = r oaq(lnlaq/ R 21)' 

r00(95, , 

(2.98) 

where the prime represents the derivative with respect to the bond length R and 
r o is the equilibrium bond length. The static "susceptibility" a,, is related to the 
dielectric constant e L through 

e L = eo(1 + 4rc~,,). (2.99) 

In (2.98, 99), we have kept the designation "@' for susceptibi l i t ies  in cgs units so 
as to follow the notation of [2.40]. Hence, of the six parameters in (2.98), one 
(%) is determined by the static dielectric constant. The first-order scattering by 
F2s. phonons is determined by the susceptibility aq (this susceptibility has 
indeed F25, symmetry, as can be seen by rotating the F2s, tensors of Table 2.1 to 
bring one axis onto the [1113 direction). The F 1 second-order scattering is 
determined by e'l (second-order bond elongations) and by a 1 (first-order 
elongation and first-order rotation). 

The susceptibilities ~1 and c( 1 determine the F 1 component of the Raman 
tensor, while aq, c~2s,, a~5 determine F25, and eq and e25, determine F12. In 
[2.40], a numerical fit to the spectra observed for Ge, Si, and diamond was 
made. Only relative Raman efficiencies were available at that time hence cq/q,  
e'l/q, ~25"/q and c(2y/q were used as fitting parameters. It is obvious that the 
spectra of Fig. 2.11 are sufficiently structured to permit a reasonably accurate 
determination of these parameters. The fitting curves are also shown in 
Fig. 2.11 and the resulting values of the parameters listed in Table 2.7. The 
parameter a v was determined absolutely by fitting the dependence of the 
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Table 2.7. Parameters obtained by fitting the second-order Raman spectra of diamond, Si, and 
Ge with the bond polarizability model. Also, values of the elasto-optic constants p~ Pt2 and 
P,~,t and of the first-order Raman tensor ~ calculated with this model. Experimental wdues of the 
latter and of the Raman polarizability a, are given in brackets. From [2.40"1 

C Si Ge 

% (5.86) (11.7) 
~1/% 4.13 - 46.16 
~/% 284.65 - 180.02 
%s,/~q 2.13 - 23.08 
~ s ' / %  255.6 0.0 
pl~+2p~ 2 -- 0.16 -- 0.058 

( -  0.16) ~ -  0.058) 
Pll --Pl2 -- 0.283 0.013 

( -  0,293) ( -  0.167) 

P,~ 4 - 0.172 - 0.0076 
( -  0.172) ( -  0.082 

7-, 0.387 0.851 
% 0.387 - 0.069 
%(A3) 3.293 6.006 

~(As) 0,0 7.749 
*z(A z) + 3.5 + 13.95 

{ +  4.3) ( +  60) 

(16,3) 
- 57.45 
-288.22 
- 24.39 
- 248.78 
- 0.28 
- 0.281 

0.016 
- 0.0095) 

0.011 
0.019 

- 0.074) 
(0.012} 
1.218 

- 0.167 
9.89 

t 5.49 
+ 43.1 

d i e l ec t r i c  c o n s t a n t  o n  v o l u m e  m e a s u r e d  b y  a p p l i c a t i o n  o f  a h y d r o s t a t i c  

p r e s su re .  I n t r o d u c i n g  t he  e l a s t o - o p t i c  coef f i c ien t s  Pijk~ d e f i n e d  as  [2 .64]  

-- (gO/gL)Z Agij = gO 2 Pijklegt (2.1 00) 
kI 

(ekl a r e  t he  c o m p o n e n t s  o f  t he  s t r a i n  t e n s o r )  a n d  t he  a d d i t i o n a l  d e f i n i t i o n  for  

t h e  i n d e p e n d e n t  c o m p o n e n t s  o f  ff:/)l  1 = P i t t  1, P I 2 = P ,  t22, P 4 4 = P I 2 1 2 ,  we c a n  
eas i ly  o b t a i n  w i t h  t he  b o n d  p o l a r i z a b i l i t y  m o d e l  

P,1 + 2p12 = ( % / 2 ( 3 e v - c q )  • (2.101) 
\ rL /  

S ince  % c a n  b e  f o u n d  f r o m  gL w i t h  (2.99), (2.101) def ines  cq i f  Plx + 2 p 1 2  is 

k n o w n .  T h e  v a l u e  o f  % so  o b t a i n e d  e n a b l e d  t he  a u t h o r s  o f  [-2.40] to  n o r m a l i z e  

t h e i r  r e l a t i v e  ¢ds. T h e y  were  t h e n  a b l e  to  c o m p u t e  f r o m  t h e s e  a ' s  t h e  t w o  

r e m a i n i n g  e l a s t o - o p t i c  coef f ic ien t s  

82 
o 

P l l - - P I 2 = - -  p~LtX q 

4 
P44 = - ~ {(1 - ~)~25' + 3%} 

(2.102) 
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[in (2.102) ~ is the bond rigidity parameter, see Sect. 2.2.6a] and the first-order 
Raman tensor component a [defined in (2.67)]: 

= V (r0 1 /5) -  (2.103) 

Several comments about the results of Table 2.7 are in order. For  diamond, 
the Raman measurements and the measurements of the pifs have been 
performed in the visible, well below any electronic absorption (co L,~ coo). The 
data are nondispersive and hence one of the implicit assumptions of the bond 
polarizability model is fulfilled. Correspondingly, calculated values of p~ ~ - Pl z 
and P44 agree very well with experiment. The calculated magnitude of c~ also 
agrees with experimental results although theoretical evidence concerning the 
sign of ~ is contradictory for diamond (not for silicon); we are inclined to 
believe the signs of Table 2.7 (Sect. 2.1.18g). We point out, however, that the 
sign of a in Table 2.7 is obtained from a fit of the F 12 component which is small 
and inaccurately defined. 

We should also point out that recently the linear differential polarizabilities 
of diamond have been related to those of saturated hydrocarbons [2.82b]. For 
this purpose, local field corrections are essential. 

An interesting feature is the fact that ~ _~0 for diamond, while for Si 
~ll~-~± and for Ge ~± is even larger than c~ll. This is related to the increasing 
degree of metallization from diamond to Ge. In diamond, the polarizability is 
determined mainly by transitions between bonding and antibonding sp 3 hybrid 
orbitals [2.40]. These transitions are polarized parallel to the bonds. In Si, and 
even more so in Ge, a number of dehybridized p3 bonding to p3 antibonding 
transitions take place. The lowest of these transitions in the solid are polarized 
perpendicular to the corresponding orbital. 

While the values of :c obtained in Table 2.7 for Si and Ge agree reasonably 
well with microscopically calculated ones and also, in the case of Si, with 
experimental ones (Sect. 2.1.18), this agreement is lacking for p, 1 - P l  2 and P44. 
This results from the fact that the gaps or dispersion mechanisms responsible 
for the Raman susceptibility are not the same as those responsible for the 
elasto-optic constants [2.40]. We shall come back to this point in Sect. 2.3.4. 

The bond polarizability model just described breaks down as one goes from 
Ge to more ionic tetrahedral semiconductors such as the II-VI compounds. A 
detailed analysis has been performed [2.73] for the sequence ZnS, ZnSe, ZnTe 
using the overlap shell model of Bruce and Cowley [2.83] to describe the 
lattice dynamics. The nonlinear polarizabilities are represented, within this 
model, by nonlinear spring constants linking the electronic shell to the atomic 
cores. Two such constants are required, one for the cation and one for the 
anion. With such a model, the fits to experiments shown in Fig. 2.13 were 
obtained. The anharmonicity of the anion contributes strongly to the spectrum 
of ZnS but its contribution decreases throughout the sequence 
Z n S ~ Z n S e ~ Z n T e .  Strong nonlinear polarizabilities have been invoked to 
explain a number of effects observed for chalcogenides, especially oxides [2.84]. 
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The anharmonic polarizability of the Zn ion contributes considerably to the 
spectra. In the case of ZnTe (Fig. 2.13), the observed spectra can be accounted 
for solely in terms of this polarizability. 

2.1.14 Brillouin Scattering 

There has been a great amount of activity in the past 10 years in the field of 
Brillouin scattering, especially for opaque materials such as semiconductors, 
metals and metallic glasses, thanks to the instrumentation developed mainly by 
Sandercock. These advances will be described in [Ref. 1.2, Chap. 6]. Earlier 
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work was reviewed by Pine in [Ref. 2.1, Chap. 6]. We confine ourselves here to 
presenting the underlying general principles in the light of the theory developed 
above. 

By Brillouin effect we understand the scattering of light by excitations with 
a linear dispersion relation cob = v .q where, in the case of acoustic phonons, v is 
the appropriate speed of sound. Acoustic plasmons, not yet observed in 
Brillouin scattering, should also belong to this category. The concept can also 
be applied to very low frequency excitations which, however, may not vanish for 
q = O. To this category belongs the scattering by spin waves in ferromagnetic, 
ferrimagnetic and antiferromagnetic materials. 

The kinematics of the first-order Brillouin effect for cob = v. q is given by 

"~- q = kL -- ks J + for Stokes 

+_ v. q = co B = m L -  co s ~L- for antistokes. 
(2.104) 

From (2.104) we obtain 

4 g v n  L . 0 2(_OLVn L . (9 
COB = + 2kLV sin 2 °-- = _+ ~ sin ~- = -I- c sm ~-, (2.104a) 

where O is the angle between the incident and the scattered beam, 2 L is the 
laser wavelength in vacuum and n L the refractive index of the medium, assumed 
to be isotropic. The case of anisotropic media was discussed in [2.28b]. The 
maximum Brillouin shift e) B is obtained for backscattering : ]o)B[ = 47~nLV/2 L. We 
should mention at this point that in an anomalous dispersion region (electronic 
resonance), n L can reach very high values and the frequency shift can become 
rather large. This phenomenon leads to the so-called resonant polariton 
Brillouin scattering near sharp excitonic resonances. Near these resonances, the 
excitons combine with photons to yield several branches of exciton-polaritons 
(Sect. 2.1.12). Several large Brillouin shifts and several Brillouin lines are 
observed. This phenomenon was discussed in connection with [Ref. 2.1, 
Fig. 6.8] prior to its observation. Since then it has been observed for a number 
of materials (e.g. GaAs, CdS, CuBr, etc.). It is discussed in detail in [Ref. 1.2, 
Chap. 6]. 

For  opaque materials, k L is "smeared out" as a result of the nonvanishing 
imaginary part of the refractive index hi, in other words, k z possesses within the 
material an imaginary part kLi = (e)/c)n i. Because of the linear dependence of co B 
on kLi, the "broadening" kL~ of k L is translated into a broadening of co B : 

Aco a -~ 4COLVni sin O (2.105) 
c 2-" 

This broadening, which is usually asymmetric, was observed by Sandercock  in 
his original measurements for Ge and Si and used to obtain the absorption 
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coefficient at the wavelength )'L [2'851" Several attempts have been made to 
calculate the exact Brillouin line shape associated with this broadening by 
decomposing the electromagnetic fields into Fourier components with k real. 
This decomposition must be performed carefully, taking into account the 
correct boundary conditions for the electromagnetic field and the phonons at 
the vacuum-medium interface. For  this reason, [Ref. 2.1, Eq. (6.20)] seems to be 
incorrect I-2.86]. The correct expression is [2.861, see also [Ref. 1.2, Eq. (5.42)1, 

q2 
S(q)oc [ ( k L +  , 2 . . . .  2 2 z , , 2 . . . .  2 ,  (2.106) 

ks) - ( k L + k ~ )  - q  ] + 4 ( k L + k s )  ( k L + k ~ )  

where k's, L + ik~'.L = cos.Lns, L/C are the complex wave vectors of the incident and 
scattered radiation. The difference between (2.106) and (6.20) of [2.11 , however, 
is small if k L + k~ ,~ k[ + k'~. 

A similar phenomenon is obtained when observing Brillouin scattering in 
thin films. In this case and for backscattering perpendicular to the film, the q 
does not have to be conserved (no translational symmetry in this direction). 
The size-quantized elementary excitations have q vectors of magnitude 

7~ 
q =  31c, ~ = 1 , 2 , 3  ... 

and frequencies 

7~ 
co B = ~- toy, (2.107) 

where d is the film thickness. Hence, a series of lines at the frequencies of (2.107) 
should be observed. For  2L~>d , the even excitations of (2.107) should only 
couple weakly to the light. Results obtained with a five-pass Fabry-Perot 
interferometer for magnons in amorphous FesoB2o are shown in Fig. 2.14 

30O 

20( S2 

A sl AI 

S311A .A2 
z 100 U 
ILl 
z 

0 i i f 
0 I0 20 30 
I I I I 

• 36.7 30 20 10 
w 8 (OHz) 

36,7 
I 

o 

Fig. 2.14. Brillouin spectrum of mag- 
nons in an amorphous Fe~oB20 
sample 106 nm thick. S• and A K label 
Slokes and antistokes peaks of order 
K [see (2.107)] and SM is a Stokes 
surface magnon. Note the absence of 
antistokes surfaces magnon [2.87] 
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[2.87]. These results are rather similar to those found for polymetric chains, 
the so-called longitudinal acoustic modes (LAM) of, for instance, polyethylene 
[2.88a]. 

When attempting to calculate the Brillouin scattering cross section or 
efficiency with (2.47) and its antistokes counterpart, one realizes that for 
excitations with q = 0, d~,/d~ = 0, as acoustic phonons with q = 0 correspond to 
uniform translations which do not change X- In crystals with full cubic 
symmetry, correspondingly, the q = 0  acoustic phonons have F 15 symmetry and 
are thus Raman forbidden (Table 2.1). Hence, the Brillouin efficiency must 
come from terms of first order in q in the expansion of dx/d~ in the power series 
of q, see (2.60). Let us consider an acoustic vibrat ion 'of  wave vector q. The 
displacement of an atom of position vector R is 

1 
u = l / ~ e  '~q R ,oB0 (2.108) 

The eigenvectors e~(q), defined in (2.43, 44), give the direction of the vibration u. 
They have the magnitude 

Jell z -  Mi (2.109) Y~m, 
i 

so that the amplitude of the displacement calculated with (2.44) is the same for 
all atoms. For each q there are three orthogonal directions of e which can be 
obtained by solving the corresponding equations for the propagation of elastic 
waves [2.47]. The fluctuation amplitude of u is given by (for each mode) 

h 
(UU t )~,B= 2(~  M,)o~BN (n+ 1) 

(2.110) 
h 

(u ' u)°"= 2 ( ~  M,)c%N~ n 

To the wave (2.108) corresponds a strain wave ej k=qjekuo N-I/2 
exp[i(qR-o~t~t)] , where e k is the kth component  of the phonon polarization 
vector• It is this strain which produces via the elasto-optic effect the 
fluctuations in Z responsible for the Brillouin scattering. The Stokes cross 
section thus becomes in analogy to (2.47): 

das e~co~Vq 2 h I(n + 1) Stokes 
dQ -e,'~(4n)Zc '* les'(-p:qe)'eLIz 2(~Mi)oo.N ~ In antistokes 

-- 2e4(4rOZc4 evE les'(P. :Oe)eLI2 { ~  + (2.111) 
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In (2.111), p is the fourth rank photoelastic tensor defined in (2.100) which must 
be contracted with the unit vector along q (•) and the phonon polarization 
vector e. 0 is the density of the crystal. We point out that for Brillouin scattering, 
except at the lowest temperatures, t~COB~kT and n~-kT/hcon~-n+l; Stokes 
and antistokes intensities are equal (but only for phonons, not for magnons, 
see Fig. 2.14). We also note that although (2.1tl) arises from a susceptibility of 
the type (2.60), the magnitude ofq does not appear explicitly as it is compensated 
by the factor eJ~ ~ which enters in the fluctuations of the vibrational amplitude 
and the factor ofoo~ ~ which arises from n for hcoB~kT. 

The evaluation of (2.111) for an arbitrary direction of 0 requires the solution 
of the wave propagation problem. The second rank tensors (p:Oe) and the 
corresponding velocities for the three principal directions of propagation in 
cubic crystals have been listed in [2.17]. Similar results have been tabulated 
also for a number of lower symmetry crystal classes [2.88b, c]. In anisotropic 
crystals, not only p contributes to the scattering but also the anisotropic ~, 
namely, through rotations in the coordinate axis produced by the non- 
symmetric components of the strain tensor. Replacement in (2.111) of the 
dynamic susceptibility (~L/e0) 2 (p:qe)k J by Zke(gl~ej-gljee)/2 yields the contri- 
bution of local rotations to the Brillouin scattering. This effect has been 
discussed in detail by Nelson and Lax (2.28a, b]. 

We treat here as an example of the discussion above the Brillouin scattering 
efficiencies for propagation along 0 = [100] in a cubic crystal. The eigenvectors 
in this case are given by symmetry. They are e=[100] for LA modes and 
e=  [010], [001] for TA modes. The corresponding velocities of sound [2.47] 
and the tensor (p:0e) are, as a function of the elastic constants c~ 1, c12, and c44 
and the elasto-optic coefficients, 

LA: v= ;(p:0e)= P12 

P~2 

0 P44 0) 
TA(010): v=] c/-~'(p:gle)= p 4 0 

V o ' -  o o 

(°o TA(001): v= ; (p:0e)= 0 . 

P44 0 

(2.112) 

Equations (2.112) indicate that for backscattering on a [1001 surface, the LA 
phonons produce polarized scattering while the TA phonons do not couple; 
they can be observed in 90 ° scattering with the light incident along [011] and 
scattered along [01T]. 

Materials without inversion sylmnetry exhibit the so-called piezoelectric 
effect; a strain produces an electric polarization which is accompanied by an 
electric field. This field produces, in turn, a change in the susceptibility through 
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the first-order electro-optic effect in a manner similar to that discussed in 
Sect. 2.1.12, and also a slight renormalization of the speed of sound similar to 
the T O ~ L O  renormalization. Hence, an electro-optic contribution to the 
scattering cross section results for piezoelectric acoustic phonons. The explicit 
expression for this contribution is given in [Ref. 2.17, Eq. (8.45)]. The piezoelec- 
tric effect also plays an important role in resonant polariton scattering. It can 
induce scattering by piezoelectric phonons in forbidden configurations. Such 
scattering, which is usually polarized, has been recently observed in CdS [2.89] 
and other materials. In highly ionic materials such as CuBr, it is stronger than 
that related to the elasto-optic tensor [2.90]. 

Brillouin scattering usually becomes resonant as the frequency of the laser 
light approaches that of critical points in electronic interband transitions in a 
manner similar to that discussed in Sects. 2.1.5, 8. In fact, the theoretical 
considerations given in those sections for the Raman susceptibility can be 
applied to the resonant behavior of .p. Of particular interest is the behavior of 
the elasto-optic tensor p when approaching the lowest energy gap. Such 
behavior can be investigffted with static piezobirefringence experiments. From 
such work, the dispersion of the elasto-optic parameters of a large number of 
tetrahedral semiconductors has been measured [2.91]. With the exception of 
very small band gap materials (InSb, InAs) and of diamond, (P~I - P l  2) and Pg4 
have an antiresonant behavior with a zero and a change of sign slightly below 
the gap [see (2.33a) and Fig. 2.56]. At this point, the corresponding Brillouin 
cross section goes through a minimum close to zero. These effects can be 
studied particularly well for Brillouin scattering by phonons generated with the 
acoustoelectric effect [2.92]. We show in Fig. 2.15 such measurements per- 
formed on ZnSe together with a fit of the observed antiresonance with 
(2.33a) [2.933. 

As Brillouin spectrometers have become more sensitive, measurements for 
strongly absorbing samples have become possible. Under these conditions, one 
must question the role of the surface proximity in the scattering process. For 
scattering by acoustic phonons, the surface must be viewed as corrugated as a 
result of the phonon excitation. For a static corrugation (=  ripple), the surface 
acts as a diffraction grating and the reflected beam does not obey Snell's law. 
The direction of the reflected beam is determined by k-conservation only paral- 
lel to the surJace (ktl; k± need not be conserved as there is no translational 
symmetry perpendicular to the surface). 

We thus must have 

k~,ll = kL,ii 4- qrt, (2.113) 

where qll is the wave vector of the ripple. In most experiments k~,ll and kL, if are 
coplanar ; most calculations and the discussion here are restricted to this case. 
The formulas for the reflectivity of a static corrugated surface can be also 
applied to a dynamic ripple. The only difference is that in the latter case a 
Brillouin frequency shift results. In a cubic material, symmetry requires that 
incident and scattered fields be both either in the scattering plane or perpendic- 
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ular to it for scattering by surface ripple. This is not the case, in general, for the 
elasto-optic mechanism discussed above. Also, for incident polarization in the 
plane of incidence, the scattered light must vanish whenever the scattering 
geometry is near Brewster-angle conditions (OL-------O~--~arctann) [2.94]. 
Around this O L backscattering (@ 2 0 L )  has a maximum for that polarization 
[2.94, 95]. With these facts, one can test whether a given type of Brillouin 
scattering is due to surface ripple or to a direct modulation in the susceptibility 
(elasto-optic mechanism). Perhaps a more spectacular test is provided by the 
fact that the elasto-optic coefficients Puk; are strongly resonant near a direct ab- 
sorption edge, leading to the resonant behavior of the corresponding Brillouin 
cross sections shown, for instance, in Fig. 2.15. The ripple mechanism depends 
on the reflection coefficients which have the same type of singularity as Z, con- 
siderably weaker than that of Puk; [2.94]. Another striking characteristic 
feature of surface ripple scattering is the fact that it persists when the material 
is covered by a very thin evaporated metallic film of reflectivity --- 1 (e.g. A1) 
[2.953. 

The differential cross sections for scattering by surface ripple can be written 
as [2.961 

_ cos  cos  o ,  ] k i -  
O~'~(O ~2C4 ]k z _ ~z ] 

(2.114) 
~°-[I . . . . .  COL4A2 COS20L COS20s I (gzxs~t{-kzsk~(~/g°- 1)] 2 (1U z (0)] 2 )q . . . .  

~2C4 ] ( ~ L  -~ 'k~) (~s  z - k  z) ] 
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where A is the illuminated area and u=(0) the normal amplitude of vibration at 
the surface. The angular brackets ( )q~.,~ signify the Fourier component of 
the temporal frequency o) and of spatial frequency along the direction of surface 
propagation x. The k's and ,('s are defined by [2.96] (see also Fig. 6.8 of [1.2]) 

~¢LX _-- kLX = ( 02L/ C ) sin O L 

,~[ = --  (ooL/c) cOS OL 

k [  = - (02L/C) (eL/g 0 -- sin 20L) 1/2 

,(~ = k~ = - ( % / c )  sin O, 

~ = (oos/c) cos Os 

k~ = (coJc)  (e,L/e~ o -- sin 20~) 1/2 . 

(2.115) 

The corresponding expression for surface elasto-optic scattering can be found 
in [2.97]. The calculation of the cross sections for surface scattering with (2.114) 
requires the evaluation of the ripple amplitude (lu~(O)f2)q~,o,. This can be done 
by using the fluctuation-dissipation theorem after evaluation of the appropriate 
response function. Explicit expressions can be found in [2.97]. We should point 
out that the ripple and the elasto-optic mechanisms are coherent and their 
scattering a m p l i t u d e s  must be added before squaring them to obtain the cross 
section. In metals, the surface ripple mechanism turns out to be dominant. In 
semiconductors, the Rayleigh surface waves produce scattering which contains 
a mixture of surface ripple and elasto-optic mechanisms [-2.97]. 

2.1.15 Light Scattering in Amorphous and Disordered Materials 

The general principles of light scattering in amorphous materials were dis- 
cussed by B r o d s k y  [Ref. 2.1, Chap. 5] in 1975. We summarize here some of the 
advances which have occurred in this field since then. Considerable material on 
this subject can also be found in the Proceedings of the International 
Conferences on Amorphous and Liquid Semiconductors, in particular, those of 
the years 1977 [-2.98], 1979 [2.99], and 1981 [2.100]. 

Since the demonstration by S p e a r  and L e C o m b e r  in 1975 [2.101] of the 
possibility of doping n- and p-type amorphous Si (a-Si), this material and its 
analog a-Ge have received a great amount of attention. Because of its economy 
of preparation, a-Si has found applications as an optoelectric material for the 
production of photovoltaic solar cells [2.102], xerographic receptors [2.103], 
and display devices [2.104]. Raman scattering, together with ir spectroscopy, 
has played a prominent role in the characterization of the material [2.105]. 

Amorphous Si is nowadays prepared mainly by cathode sputtering [2.106] 
or by glow discharge decomposition of Sill 4 [2.101] and, more recently, of SiF 4 
[2.107]. Similar methods can be used to prepare a-Ge. The material prepared 
with SiH~ contains a certain amount of hydrogen known now to be essential 
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eOR >300 cm ~. The iqsert corresponds to the Si-H bond stretching modes of samples (3) and (5) 
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for the electrically active doping process. This hydrogen saturates randomly 
distributed open bonds (dangling bonds) which would otherwise inhibit the 
electrical activity of the dopants. For this purpose, hydrogen can also be 
replaced by fluorine I-2.107] which offers the advantage of the higher stability 
of the Si-F bond. 

The Si-H bond exhibits a few interesting vibrational modes, among them 
the bond stretching mode at 2000-2100 cm-1 [2.105] (these bands occur at 
1900-2000 cm- 1 for a-Ge :H as shown in Fig. 2.16 [-2.108]). The 2000 cm- t 
component of this mode (1900 cm- i for Ge-H) is usually attributed to single Si- 
l l  bonds while that at 2100cm -1 (~2000 for GeHz) is attributed to Si-H 2 
groups I-2.105]. 

While these vibrations can be seen in Raman spectra, ir spectroscopy is a 
more sensitive tool for their investigation. Moreover, the strength of the ir 
bands due to Si-H bonds can be used to estimate the hydrogen concentration of 
the sample in a nondestructive way [-2.109]. In this manner it has been found 
that the best material for optoelectronic applications contains 5-10 at. % of 
hydrogen. Raman spectroscopic studies of the Si-H vibrations are, nevertheless, 
of importance for samples deposited on opaque (e.g. metallic) substrates. 

We show in Fig. 2.16 a portion of the Raman spectrum of four a-Ge 
samples with different amounts of H (or D). The hydrogenated samples exhibit 
the bond stretching structure S 1 - S  2 discussed above for a-Si. They also show 
the "bond wagging" bands at 565 cm-1. These bands shift approximately by 
the factor 2-1/2 (the square root of the mass ratio) for the deuterated samples, 
thus confirming their assignment. The other structure shown in Fig. 2.16 arises 



78 M. Cardona 

from two-phonon overtones of the host Ge-Ge lattice; it occurs at approxi- 
mately the same frequencies as in the crystalline materials and its strength can 
be interpreted with the bond polarizability model [2.40] in a manner similar to 
that discussed in Sect. 2.1.13. 

Perhaps the most interesting feature of the Raman spectrum of amorphous 
materials and glasses is the disorder induced first-order Raman spectrum of the 
fundamental vibrations of the network. These spectra were discussed exten- 
sively in [Ref. 2.1, Chap. 5]. The drastic loss of long-range order (translational 
symmetry) implies the complete lifting of the q-conservation selection rule. All 
modes become allowed and the spectra are roughly proportional to the density 
of vibrational states Na(COR). For a-Si, we can write [see (2.51)], 

~?S~ _ o94 6 s . / d x ' \  Na(o9R) 2~R (n + (2.116) 0Q69O9 R (4g)2C 4 \ ~ - /  " eL 2 I), 

d z ' \  
where \ ~ / r e p r e s e n t s  an average Raman susceptibility. This Raman suscepti- 

bility must vanish for o)--*0 as a result of translational invariance. A simple 
proportionality of the Raman susceptibility to mR [an extra factor of co~ in 
(2.116)] represents the experimental data rather well [2.110]. 

Two mechanisms responsible for the lifting of q-conservation have been 
identified [2.111]. One of them is of mechanical origin, due to the fact that the 
eigenvectors of the vibrations in the translationally disordered solid are not 
plane waves of definite q. The other is "electrical" in nature ; even if there were 
no mechanical disorder fluctuations in dg/d~, due, for instance, to fluctuations 
in density, one should find (a) elastic scattering of the type discussed in 
Sect. 2.1.3, and (b) a combination of this elastic scattering of wave vector q and 
scattering by phonons of an arbitrary wave vector - q .  Hence all q vectors 
become allowed through the good offices of the susceptibility fluctuations. In 
vitreous silica, the contribution of this electrical disorder to the low frequency 
Raman spectra is one order of magnitude larger than that of the mechanical 
disorder [2.111]. This type of analysis should be extended to other systems. 
Existing theories for a-Ge and a-Si [Ref. 2.1, Chap. 5] consider only the 
mechanical disorder explicitly. 

We show in Fig. 2.17 the polarized and depolarized spectra of pure a-Si in 
the region of scattering by one-phonon and two-phonon overtones. The one- 
phonon spectrum has four bands corresponding to the TA, LA, LO, and TO- 
bands of Fig. 2.12. The average D=aJap ratio [see (2.14)] is 0.53, nearly 
constant throughout the whole spectrum and smaller than previously reported 
values ( --, 0.8, see [2.1 ], Chap. 5). This ratio fulfills (2.14), as required by symmetry 
considerations. For an isotropic solid, such as a-Si, the symmetries of the Raman 
tensor can be I] (a multiple of the unit matrix =a)  and J = 2 ,  see (2.12). The 
depolarized spectrum represents the/32 component of the J = 2 Raman tensor 
of (2.12) (actually 3/~2/15). The polarized spectrum represents (a 2 +4//z/15). 
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Fig. 2.18. Resonance in the integrated Raman cross section ofa-Si (points, see Fig. 2.17) and fit with 
Idz/do.~[ 2 (solid line) obtained from the optical constants of [2.112]. From [2.108] 

Amorphous Si has a strong, although broad, dielectric resonance in the 
visible with a peak in Zi at co o ~ 3 eV. This behavior leads to a resonance in the 
Raman scattering efficiency near coo as shown in Fig. 2.18. The broad 
resonance observed can be fitted rather well with the expression [dz/dco[ 2, 
numerically evaluated from the Z(CO) spectra of [2.112]. This expression 
represents a good approximation to the first term in (2.30). 

Figure 2.19 shows the first-order Raman spectra of these a-Si samples, 
including two hydrogenated ones [2.108]. Hydrogenation changes these spec- 
tra relatively little, the main change being possibly a decrease in the LA and 
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LO-bands. This fact has been attributed to a breaking of the six-fold rings 
characteristic of the tetrahedral materials [2.113] but a quantitative under- 
standing of this matter is still lacking. A very weak feature appears in Fig. 2.19 
at 2.2 eV for the hydrogenated samples. This feature appears very strong in the 
corresponding ir absorption spectra [2.114]. It has been interpreted as due to a 
"quasilocar' mode of the Si-H bond involving mainly angular motions and 
affecting a large number of Si atoms (~50)a round  the Si-H bond. A similar 
feature appears in a-Ge : H. The reason why it is so strong in the ir spectra is the 
fact that the basic vibrations of the Si-Si bond are ir-forbidden (Sect. 2.1.10) 
while those of the Si-H bond are ir-allowed. 

The Raman spectra of Figs. 2.16, 17, 19 disappear as the material is 
crystallized through thermal or laser annealing. Instead, the sharp TO(F) line at 
520 cm- 1 for c-Si and 300 can-1 for c-Ge appears. Conversely, the crystalline 
line gives way to the amorphous spectrum as disorder is introduced through 
ion bombardment in a single crystal [Ref. 2.1, Fig. 5.6]. This feature has 
recently been used profusely for the characterization of a-Si and for studying 
amorphization-crystallization processes [2.115]. In this manner, it has been 
found that n-doped fluorinated Si, prepared at relatively low temperatures and 
believed hitherto to be amorphous, is actually microcrystalline. In the same 
manner, thin Si films prepared by the plasma transport method [2.116] have 
also turned out to be microcrystalline [2.116, 117]. 

The 1"25, TO-phonon peak of recrys ta l l i zed  a-Si does usually exhibit some 
broadening with respect to its single crystal counterpart (the comparison is best 
performed at low temperatures [2.117]). This additional broadening is related 
to the crystallite size d which produces an uncertainty in the q-vector ~ 2rt/d. 
This uncertainty can be easily converted into an uncertainty in m~t by using the 
dispersion relation of Fig. 2.12 which we represent near q = 0 approximately by 

A o  R = _ Aq  2 

with (2.117) 

A 2 200 cm- 1A2. 

Hence, an additional disorder-induced broadening of 5 cm- 1 corresponds to an 
uncertainty in q, A q - - - 0 . 1 5 A  -1 which corresponds to a grain size 
d = 2 T c / A q = 4 O A .  This broadening is asymmetric [Ref. 2.118, Fig. 4], with a 
broader wing towards lower q's. 

As already mentioned, a-Si:F is also receiving attention as a potential 
optoelectronic material. We show in Fig. 2.20 the one-phonon ir-absorption 
spectrum of a fluorinated and a pure a-Si sample compared with the Raman 
spectrum of the fluorinated sample. We notice in this figure that the fluorin- 
ation substantially enhances the ir absorption, a fact which is not surprising as 
the Si-Si bond is infrared forbidden and becomes infrared allowed when F, 
strongly electronegative, is attached to one of the Si atoms. Fluorination 
produces a shift of the TO-peak in the ir-spectrum of + 30 cm- 1. This is also a 
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typical induction effect [2.119] produced by the attachment of the fluorine: 
because of the Jr-enhancement, the ir spectrum is mostly produced by Si-Si : F 
groups. The basic stretching vibration of these groups is up-shifted by the 
presence of the strongly electronegative fluorine. This explanation is confirmed 
by the fact that the TO-peak in the Raman spectrum of a-Si:F is indeed 
unshifted (Fig. 2.20). 

Raman scattering has also recently contributed to the clarification of the 
structure of amorphous carbon (a-C). Depending on the deposition conditions 
(especially onto substrates at 77K), this material exhibits a hardness and 
transparency which reminds of diamond [2.120]. Hence, the presence of 
four-fold coordinated atoms in these films has been suggested [2.120]. Their 
Raman spectra (Fig. 2.21) have a shoulder at 1350 cln- 1 which sharpens up and 
increases upon annealing. These spectra, however, do not show any traces of 
the Raman spectrum of diamond. Although the 1350ran - t  peak may be 
related to the 1332 cm- t peak of diamond, this hypothesis must be discarded as 
the peak of a-C is too strong to be that of diamond [2.121]. The 1500 peak of 
Fig. 2.21 corresponds rather well to a peak in the density of states of graphite 
and so does the peak at 1350 [2.121]. The results for the unannealed films of 
Fig. 2.21 have therefore been interpreted as due to randomly oriented planar 
graphitic elements of about 20 A in size. Annealing produces the appearance of 
microcrystalline graphitic islands which result in the sharpening up of the 
Raman structure. The authors of [2.121] thus conclude the lack of fourfold 
coordination in these films in spite of their hardness and transparency. 
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Raman scattering has remained an important tool for the characterization 
of glasses. A recent fit to the spectra of vitreous Se has yielded the relative 
composition of chains and rings. By this method the proportion of chains has 
been shown to increase above the glass transition temperature (Tg-~ 31 °C) with 
respect to that of Se s rings [2.122]. 

In 1976, Galeener and Lucovsky pointed out that the existence of LO-TO 
splittings in the vibrational spectra was not limited to crystalline solids. 
Equation (2.86a) for the splitting does not imply translational symmetry and 
remains valid for a glass, provided one includes a damping term. LO-TO 
splittings should be observable if e*Z/#Veo~ is large (large oscillator strength) 
and if the damping frequency 7 < (DLO-- (/)TO" The frequencies coxo and 6%o are 
quite generally defined as the frequencies at which Im{e(co)} and - I r a{e -  1(co)} 
have maxima, respectively. For many glasses and amorphous semiconductors, 
7>COLO--COvO and the LO-TO splittings are hard to observe. They become 
observable in glasses composed of well-defined molecular units with relatively 
sharp quasi-molecular vibrations. Such is the case for B203 [2.123] whose 
Raman spectrum is shown in Fig. 2.22 together with Im {~(co)} and - I m { C  1(~o)}, 
the latter obtained from i r measurements. The LO(1550 cm - ~)- TO(1260 cm - ~ ) 
splitting of the high frequency mode can be easily seen in the Raman spectra. A 
force constant analysis of these spectra suggests a dominance of B30 3 ("bor- 
oxyl') rings interconnected at the boron sites by oxygen (see insert in 
Fig. 2.22). 

Another interesting structural problem whose solution is greatly aided by 
Raman spectroscopy concerns glasses of the type (GeSe2)x(As/Se3)~-x [2.124, 
125]. For the compositions x>l/2 ,  these glassy materials have a structure 
consisting mainly of edge-sharing or corner-sharing GeSe 4 tetrahedra. The 
symmetric stretching mode of these tetrahedra is seen as a very sharp line at 
202 cm-1. This line has a sharp companion at 219 cm-1 which escapes simple 
interpretation in terms of vibrations of the tetrahedra [2.124]. Phillips et al. 
[2.125] have suggested that this "companion" line is due to vibrations of 
"outrigger" elements formed by two chalcogen atoms. Outriggers related to the 
AsSe a units also exist. 

In order to derive from (2.116) the relationship between the scattering 
efficiency and the density of vibrational states, we have assumed that (dz'/d~) 
is a smooth function of co. This implies that the vibrational modes are strongly 
localized; if vibrational modes extend over many atoms (long-range cor- 
relation), coherence effects produce rapid variations and cancellations of 
(d~'/d~) similar to those implied by the k-selection rule in crystals. It has 
recently been suggested that long-range correlations exist, in particular, for the 
symmetric stretching modes of oxygen in SiO2-type glass [2.126]. This leads to 
a narrow line, similar to that of the corresponding crystal, which can be seen 
especially well in GeO 2 (Fig. 2.24) [2.127]. As in the case of Si, where for 
crystalline material the Raman mode occurs at a frequency for which the 
density of states vanishes, Fig. 2.24 indicates that the strongest Raman band 
occurs at the lower flank of the density of states curve for polarized scattering. 
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Fig. 2.24. Polarized and depolarized 
Raman spectra of a -GeO,  together 
with corresponding experimental 
(neutron scattering) and theoretical 
density of phonon states N d [2.127] 

The depolarized scattering, however, reproduces the density of phonon states 
well, similar effects are observed in a-GeTe resulting from long-range correlation 
of the symmetric stretching mode. In [2.127-1, this result is attributed to long 
range correlations in the spacing of the SiO 2 units. Under these conditions the 
symmetric components of the polarizability tensors interfere with each other in 
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a manner similar to that in the crystalline state. The non-symmetric com- 
ponents, however, do not interfere constructively as the building blocks are 
oriented at random. The degree of generality of this result, however, is not clear 
at present. 

We have so far discussed the Raman spectra of the intrinsic vibrations of 
amorphous materials and glasses and also of high frequency local modes due to 
impurities (e.g. a-Si:H). There is another phenomenon in Raman scattering 
which seems to be characteristic of the amorphous or glassy state, namely, the 
quasi-elastic scattering at low frequencies ((D R ~ a few cm- 1). This phenomenon 
(see Fig. 2.25) was first reported by Winterlin9 [2.128] for vitreous silica. In 
recent measurements, Fleury and Lyons have been able to resolve quasi-elastic 
peaks to about 1 GHz of the Rayleigh line [2.129]. This "excess" scattering, 
which is not seen in the corresponding crystalline materials, decreases rapidly 
with decreasing temperature. Hence the conjecture that it may be related to 
two-phonon difference processes. As it does not appear in the corresponding 
crystalline material (quartz), this conjecture must be quickly abandoned; the 
effect seems to be indeed characteristic of glasses. It is, therefore, reasonable to 
try to relate this "quasi-elastic" scattering, which has recently been observed for 
a large number of glasses such as a-AszS3, a-GeS 2 [2.132] and the Schott glass 
LaSF-7 [2.129], to the characteristic low frequency excitations which appear in 
the ultrasonic attenuation of glasses [2.111] (we do not have in mind here the 
very low frequency excitations or tunneling modes which are responsible for the 
linear term in the specific heat [2.131a, b]). As shown in (2.56), the Raman 
scattering efficiency is given by the correlation function of the polarizability or 
susceptibility : 

SR(q, o))oZ ( P~¢(r, t)P~6(O, O) )q,.,. (2.118) 

Correspondingly, the loss for ultrasonic propagation is determined to be by 
virtue of the fluctuation-dissipation theorem: 

S.(q, o~)oc (e(r, t)et(O, 0))~,~o , (2.119) 

where ,e is the strain tensor for the ultrasonic mode under consideration. If we 
extend the continuous elastic model into the region of the quasi-elastic Raman 
scattering and assume that the fluctuations in P are actually related (to first 
order) to fluctuations in e, we conclude from (2.118, 119) that SR(q, Co ) is 
proportional to Su( q, o3). 

In order to test this result, we show in Fig. 2.26 the temperature dependence 
of the quasi-elastic Raman scattering in vitreous silica as compared with that of 
the ultrasonic attenuation measured by the width of the Brillouin line. Below 

200 K, a reasonable correlation exists but not at higher temperatures. The 
reason for this discrepancy is not known [2.111]. 

Another characteristic feature of light scattering by glasses is the presence of 
a very strong elastic line. The Brillouin line, basically similar to that of the 
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Fig. 2.26. Temperature dependence of the quasi-elastic Raman efficiency in vitreous silica 
(suprasil WI) at COa=5 cm- ~ compared with that of the Brillouin line width {dotted line) [2.111] 

crystalline material except for the possible additional width of Fig. 2.26, has a 
strength typically only a few percent of that of the elastic line [2.132]. It can be 
either polarized (e.g., in SiO 2 glasses [2.133]), probably related to the density 
fluctuations of (2.19a), or depolarized (e.g., in a-BzOa), thus reflecting anisotropy 
in the basic building blocks [2.134]. The strength of the elastic scattering is 
largely responsible for the difficulties in investigating quasi-elastic phenomena. 
In particular, no observations of scattering by the very low frequency "tunnel- 
ing modes" responsible for the specific heat anomaly [2.131a, b] have been 
published (for negative results see [2.13 lc]). 

2.1.16 Defect-Induced Raman Spectra in Crystalline Materials 

The effect of defects on the Raman spectra of crystals parallels those discussed 
above for amorphous solids. Two types of phenomena are observed: local 
modes due to the defects and defect-induced Raman-forbidden modes, in 
particular, those due to the violation of the k-conservation selection rule. The 
latter can be used advantageously to observe the whole density of phonon 
states in the first-order Raman spectra. 

There is extensive literature discussing the Raman spectra due to vibration- 
al local modes of defects in alkali halides (color centers) [2.135]. It will not be 
reviewed here. In the case of semiconductors, relatively large concentrations of 
defects are needed (~ 10 ~8) to see vibrational local modes as a result of the 
opacity of the materials in the visible and of the competition of second-order 
host spectra. The case of boron in Si has been studied in great detail [2.136]. Of 
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particular interest is the fact that the cross section per atom is much larger for 
the local mode than for the basic Raman F2s, mode of the Si lattice. The cross 
section increases as the impurity concentration decreases and reaches ~200 
times the F25, cross section at a B-concentration of 1018 cm-3. This large cross 
section has been attributed to the electrostatic charge of the B-impurities 
(acceptors) which couples very strongly with the electronic states and thus 
produces large values of the corresponding Raman susceptibility [2.136]. The 
effect appears to bear a strong relationship to the enhancement of Raman 
scattering in molecules adsorbed on metal surfaces [Ref. 1.3, Chaps. 6 and 7]. 
As the B concentration N B increases, the increasing density of free holes screens 
the Coulomb potential of the vibrating B atoms and the cross section (per 
impurity atom) decreases like N-113 [2.136]. 

Defect-induced forbidden Raman modes have been observed in a large 
number of crystals. The defects can be either impurities (in particular mass 
defects) or vacancies. As examples, we mention here the work on alkali halides, 
in particular, NaCI-KCI [-2.137"], semiconductor alloys (e.g., Inl_xGaxP 
[2.138"]), rare-earth chalcogenides (GdS [Ref. 1.3, Chaps. 3 and 4"]), intercalated 
layer compounds [Ref. 1.2, Chap. 2], and a number of metals such as the A15 
compounds (V3Si, Nb3Sn [2.139] and TiC [2.140]). The scattering induced 
by spin disorder in rare-earth chalcogenides, [Ref. 1.3, Chaps. 3 and 4], can 
also be considered as being in this category. 

As an example of disorder-induced Raman scattering, we show in Fig. 2.27 
the symmetric scattering spectra of several TiC x samples reported recently by 
Klein et al. [2.140] compared with the density of one-phonon states. The 
agreement between both types of results is rather striking. 

On the theoretical side, we should mention a general formulation of the 
problem of Raman scattering in disordered systems which has appeared in the 
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literature I-2.141]. The disorder affects both the electronic states responsible for 
the polarizability and the phonons. In the formulation of [2.141], both types of 
effects can be treated separately. The effect of disorder on the electronic states 
simply blurs resonances [roughly equivalent to increasing 7 in (2.30)]. The 
phonon disorder transforms the sharp Raman phonons, resulting from k- 
conservation in crystals, into phonon densities of states. An explicit calculation 
of the latter type of effect has been performed for the case of mass defects (e. g., 
Ge in Si) [-2.142]. Resonance effects can introduce serious distortions of the 
densities of phonon states in the observed Raman spectra if one assumes that 
the electronic states are not affected by the disorder [e.g., if dg'/d~ in (2.116) is 
not a smooth function of co L but contains resonances]. 

The defect-induced first-order Raman phonon spectrum can, sometimes, be 
related to the second-order spectra [2.143] through a phenomenological 
argument. This happens whenever the defects produce a random fluctuation in 
the regular position of the atoms, such as in the case of substitutional 
isoelectronic impurities of an atomic size much smaller than that of the 
replaced host atom. In this case, we can compare the scattering process to that 
of second-order Raman scattering. The latter is produced by fluctuations in the 
product ~'~ as the crystal is thermally agitated (2.34). The former also results 
from bilinear fluctuations ~d  where ~ fluctuates due to the thermal agitation 
and 43 is disorder-induced. The corresponding Stokes scattering efficiency for 
disorder-induced first-order scattering can be easily obtained from (2.95) by 
means of the replacement 

h 
2co j, (n j,  + 1)~ (~2(j, q)),  (2.120) 

where (~2(j,q)) represents the disorder-induced fluctuation in the normal 
coordinate, related to atomic displacements by (2.44). After the substitu- 
tion (2.120), (2.95) must be summed over j and q. The mechanism just 
discussed is similar to the "electrical disorder" of Sect. 2.1.15: ~d produces an 
"electrical disorder" (d~,/d~d). In the electrically-disordered material, any pho- 
non is in principle Raman active. 

2.1.17 Stimulated Raman Scattering and Third-Order Susceptibilities 

We have so far discussed the phenomenon of spontaneous Raman scattering. 
The scattering process can also be driven by an electromagnetic field at the 
frequency c% The phenomenon, called stimulated Raman scattering, bears the 
same relationship to the spontaneous effect as the stimulated to the spontaneous 
emission of radiation (Einstein relations, [2.144]). The spontaneous effect is 
equivalent to a stimulated one, stimulated by the zero-point fluctuations in the 
electromagnetic field. 
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The stimulated Raman effect is readily described in terms of the third-order 
susceptibility X ~3) [2.145]: 

P~(os) = ~'oZ~a(09 1,092, °°3)Efl(°o1)Ey(°o2)E~((°3), (2.121) 

with 09s = °91 + 092 + 093. In (2.121) we have assumed summation with respect to 
repeated indices. The frequencies 091, 09 2, o9 3 are, for stimulated Raman 
scattering, a permutation of the frequencies 09L, -- COL, and 09~ : the frequency co L 
is then "annihilated" and the frequency 09s is generated, driven (i. e., stimulated) 
by one of the three fields on the rhs of (2.121). 

The third-order susceptibility Z~)ra(091,092, co3) fulfills some rather straight- 
forward invariance relations with respect to the permutation of the three 
frequencies. In a cubic material it has only f o u r  independent elements [2.145]: 

~ 1 1 1 1 '  X l 1 2 2 '  ) ~ 1 2 1 2 '  Z 1 2 2 1  ' (2.122) 

If the material is isotropic (liquids, amorphous materials), the components of 
(2.122) must also fulfill the isotropy condition: 

Z l l l l  = X l 1 2 2 - ~ - Z 1 2 1 2 - [ - , ~ 1 2 2 1  • (2.123) 

It is then customary to rewrite (2.121), the constitutive relation for the case of 
stimulated Raman scattering, as 

p(%) = %Z~MIE(09L) LzE(%). (2.124) 

For  the isotropic case we have [2.145] 

Z(3) _Ni-v(3) ~ .a_~.¢(31 2 . .~_Z(32)Z l )~L(~E .~s ) ]  (2.124a) R A M - -  ~ 1 - A l 1 2 2  s - -  ' ,L121  

In (2.124) we have not bothered to write the frequencies as arguments of Z. For  
polarized scattering (~L II ~s), (2.124) yields 

Z(3) _ 6(Z~22 + , ~  12 + ;((~21) (2.125) RAM - -  

= 6 z ~ 1 ,  

and for depolarized scattering (~LZ~) 

Zc3) _ t;~,(3) (2.126) 
RAM - -  ~ ,  1 1 2 2  • 

Equation (2.124) can be rewritten as a correction to the linear susceptibility Zs 
and the refractive index n~ : 

e.~(Er) = e~(0) (3) 2 + eOZRAM[E(09g)[ 

n~(EL)=n~(O)[1 i ~3) z 2 + 2ZRAMIE(09L)I /n~] .  (2.127) 
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From (2.127) we derive the propagation equation for E~: 

Es(x)=E~(O)exp i n~ x [1 + ~XRAMIE(~%)I /n~] , (2.128) 
c 

where x is the distance along the direction of propagation. We assume that G(0) 
is real and derive from (2.128) the following law for the intensity I s as a function 
of x: 

I~(x) = I~(0)e-°Rx, (2.129) 

where the Raman gain OR (power gain for unit length) is given by 

#R = ( -  Im {Z~3A)M}) 09JE(¢OL)I2" (2.130) 
C//s 

The gain 9R for stimulated Raman scattering will be positive whenever 
i__. (a> mZRAM is negative. This gain can be related to the cross section for spontaneous 
Raman scattering in a manner similar to that used in the derivation of 
Einstein's relationship [2.144]. We consider the field Es as having thermal 
fluctuations which can be calculated with the fluctuation-dissipation theorem 
(Sect. 2.1.11). E~ is related to the relevant polarization P~ through the 
polarizability Z~ : 

P~=%x~(EL)Es (2.131) 
V 

6HE,I, = ~ P~E~. 

Equations (2.131) permit the application of the fluctuation-dissipation theorem 
(2.75) in order to calculate the fluctuations in P~ (for photons, the occupation 
number n"~0 at usual temperatures). Using (2.127), we find 

2e°hqm/,,(3) ~ E  j2 (PsPst>,o, - ~--~, t ~ . R A M ' / I  L '  ' 

Substituting this equation into (2.1), we find 

~32S _ °9~hns (_Im{Z~R~n}) 
8QSa~ R 4~ZEOC*nL 

and using (2.130), 

~2 S _ z 2 COs ~ s  
t3 (2t3C0 R 4rt3%C3nL (gR/IEL 12)" 

(2.131a) 

(2.132) 

(2.133) 
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In handling the above equations one has to keep in mind that the Raman 
efficiencies, as much as the gain and ~(3) depend on the polarization chosen /~RAM~ 
for incident and scattered fields. For  isotropic materials this dependence is 
given by (2.124a). Equation (2.132)expresses the fact that the imaginary part of 

v(3) ~,,, cos) is related, to a proportionality constant, to the the tensor / ,apy6~,~L, - -  COL, 

tensor I~#r~ defined in (2.55). 
v(3) l:,~ The tensor ~ ,a~a~ ,  CO2, co3) can also be used to describe a number of other 

nonlinear optical phenomena such as frequency tripling, two-photon absorp- 
tion and coherent antistokes Raman scattering (CARS). The phenomenon of 
CARS has been reviewed in [Ref. 2.1, Chap. 7], in [2.145], and in Chap. 4 of 
this volume. It is obtained from (2.121) for co~ =co2 =C°L, CO3 = --COst, where CO~t 
is a Stokes-Raman frequency. In this case, one finds from (2.121) the polarization 
P, at the frequency co~ = COL + COL -- CO.~t = COL + COR, where COR is the Raman shift of 
the Stokes frequency co~t. Hence, the outgoing beam will be at the a n t i s t o k e s  

frequency. 
The CARS polarization is given by a constitutive equation similar to (2.124) 

,/3) [the result of performing with x3) replaced by the CARS susceptibility ~CARS /~RAM 
the required frequency permutations in ~,(3) i For  plane waves, the intensity Ias Aap?aJ .  

of the CARS wave as a function of the intensity of the two pump beams, the 
laser beam I L and the Stokes beam I~, [2.145], is found to be 

- 2  2 
gO COas  .,,(3) 2 1 2 i  12 

/ a s - -  n2nasnstc 4 Z.CARS "tLJst~ , 
(2.133a) 

where I is the path length and the k-conservation condition k,s = 2k -ks t  has 
been assumed to be fulfilled exactly. We notice that while the Raman cross 
section depends on the imaginary part of Z (3), the CARS intensity depends on 
the square of its magnitude. In the Raman process, energy is dissipated in the 
form of phonons, while in the CARS process, this is not the case (see Fig. 2.28). 

We show the diagrams of the photon transitions responsible for ,~gAM"(3) and 
(3) in Fig. 2.28. We note that both processes are rather similar, the only CARS 

difference being the fact that in CARS, there are two different intermediate 

3) v(3) X(~ARS 
^ R A M  

virtua[ s ta te  • - - - - '  

i ,  

~L I~s 

~R 

WQ5 

Fig. 2.28. Diagrams of the transitions 
. (31 v(3) responsible for ZRAM and ~CARS 
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states while in Raman, both intermediate states are the same. Hence, if this 
~,(3~ and X~C~RS intermediate state is far away from electronic resonances, ~RAM 

should be basically the same (except for differences in the permutations of the 
frequencies arising from the fact that for CARS, two frequencies are equal). 

The Raman contribution to the 2COL--CO ~ three-wave mixing, while do- 
minant for co~t-~o L -  COR, is not the only possible mechanism for the mixing. 
There will be, for instance, a number of excitations involving instead of the 
Raman excited states of Fig. 2.28, other nonresonant excited states. The total 
nonresonant contribution to the mixing is usually lumped together into a term 
Z ~3)~, mostly of electronic origin. This term will interfere with the Raman term 
for O)L--(Dst=(DR . For the case of diamond, the total nonlinear CARS 
susceptibility becomes [2.146] 

, -  ,~ijkl- 6h O)R--(Ogl--(O2)q-i~, '  [ a l Z ( 4 ~ g O ) '  
(2.133b) 

where M is the atomic mass, a the "Raman tensor component" or polariza- 
bility defined in (2.67) and 6ij,,,=0 if two or more indices are equal, =1 
otherwise. The direction a is the direction of polarization of one of the three 
degenerate F25, phonons ( a=  1, 2, 3) and y is their line-width parameter. 
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If 7"~COR and if ,,(a),. is approximately real, interference effects between the I~i. i t ,  I 

Raman term and the nonresonant electronic term in (2.133b) appear. The 
resulting resonance and antiresonance in the CARS intensity have been 
observed, among other materials, for diamond [2.146]. We show typical results 
in Fig. 2.29. Since ,~ is known experimentally (see next section), a fit to the 
CARS spectra results in the determination of all independent components of 
X (3)e [2.146]. As seen in Fig. 2.29, X (3)~ (the nonresonant background) is rather 
isotropic. By these methods, the following values were determined for 
diamond: 

' v3(e) =2.56 x 10 -22 SI. X~3)~l = 6 . 4 x  10-22SI ,  A1221v(3)e = 2 . 4 x  10-22SI ,  /~1122 

These susceptibilities, in SI units, have been obtained by multiplying the cgs 
data of [2.146] by the conversion factor 1.4 x 10 -8. The isotropy condition 

2Z??~2 + ~221"(3)e = Z]3]~ 1 (2.134) 

is rather well satisfied, as expected from the results of Fig. 2.29. 

2.1.18 Absolute Scattering Cross Sections 

a) General Principles 

Experimental measurements of absolute Raman cross sections for solids are 
rare in the literature. As already mentioned in Sect. 2.1.7, these measurements 
are delicate and most authors seem to be only interested in Raman shifts and in 
resonant behavior (i.e., in c%-dependence of cross sections in arbitrary units). 
Recently, however, a number of theoretical calculations of Raman cross 
sections for solids have appeared (Sects. 2.2.6, 7). This has stimulated experi- 
mental work on absolute cross sections. A number of the cross sections 
determined earlier have turned out to be wrong [see, for instance, GaP in 
[2.26a]: the cross section is 30 x what it is now believed to be (Table 2.8)]. 
Absolute determinations of scattering efficiencies involve a measurement of the 
incident intensity and the intensity scattered in a given solid angle dr2 (that 
subtended by the entrance slit of the spectrometer), correction for the through- 
put of the spectrometer and evaluation of the scattering length so as to 
convert S* into S (2.52). This has been performed mostly for liquids, in 
particular, benzene (dS/d(2= 7.2+0.6 x 10 .6  m-~ sterad-1 at 4880 A for the 
992 cm-1 phonon [2.147, 148]). A few truly absolute measurements have been 
published for solids (diamond, CaCO3, NaNO3, quartz) in [2.149]. But, as we 
have already mentioned, these data for diamond are nearly a factor of two 
smaller than those generally accepted nowadays. 

We shall next discuss the relative techniques in which the Raman efficiency 
is measured by comparison with a standard scatterer (benzene; recently 
diamond which is more convenient for solid state work) or with another 
scattering phenomenon whose efficiency is known. 
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Table 2.8. Stokes scattering efficiencies and tensor components  a~ (2.67) measured for a number  of 
crystals and for benzene 

Material co L dS/df2 Scattering a [~.2] Comment s  Raman 
[eV] [10-SSr  - i m -  i] configuration fre- 

eL, e~ quency 
[ c m - i ]  

Benzene" 2.54 0.72-+0.06 Polarized 

Nitro- 1.79 0.8 +0.2 Polarizied 
benzene t' 

Diamond ~ 2.41 6.5 +0.8 [I00], [010] + 4 . 3 + 0 . 6  

Silicon d 1.9 1.68+__50 [100], [010] + 6 0 + 2 0  

German ium e 2.18 28,000 [100],[010] 

[11o], [llO] 
GaAs f 1 13-+3 {TO) 

I-1103, [110] 
GaAs g 1.2 18 [TO]  

I-1 10], [-110] 
GaP  f 1 4 (TO) 

[110], [1103 
G a P  h 1.92 30-+5 [TO) 

[ 10()]. [010] 
GaP  h 1.92 39_+4 ILO) 

[110], [110"1 
InP r 1 6.4 (TO) 

D10],  [tl0] 
AISb r 1 20 (TO) 

[1oo], [OlO] 
ZnS h 1.92 0.384-0.1 (LO) 

[100], [010] 
ZnSe h 1.83 2.2 4- 0.2 (LO) 

ElOO], [OLO] 
ZnTe h 1.83 22-+4 (LO) 

[001], [001] 
ZnO i 2.54 0.32 (TO) 

[00I], [001] 
BeO ~ 2.54 0.51 (TO) 

[001], [(301] 
CdS 1 2,54 O, 18 (TO) 

Se j 1.17 200 [-001], [001] 
Mg2Si e 2.60 . 115,000 [110], [110] 

Mg2Gc c 2.60 143,000 [110], [110] 

640 

Right angle 992 
scattering 

Inverse 1345 
Raman 
effect 

Recom- 1332 
mended 
value 

Recom- 520 
mended 
value 

Relative to 300 
Si 2.2.18.2 

63 -+ 10 2.2.18.6 269 

50 2.2.18.2 269 

35-+6 2.2.18.6 367 

23_+5 2.2.18.3 367 

26-/-2 2.2.18.3 403 

41 Calculated 304 

77 Calculated 318 

2.46___0.4 2.2.18.3 353 

7.1+0.6 2.2.18.3 254 

2 4 + 5  2.2.18.3 206 

24_+5 

Relative 380 
benzene 

Relative to 678 
benzene 

2 4 + 5  Relative to 234 
benzene 

Trigonal 237 
680 Relative 258 

to Si 
760 Relative 258 

toSi  
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Table 2.8. (continued) 

Material oJ L dS/d~ Scattering a [A z] Comments Raman 
leVI [10 SSr ~m -1] configuration fre- 

~L, ~ quency 
Lem ' ]  

MgzSn ~ 2.18 7000 [11t3],[110] 240 Relative 221 
to Si 

CaCO3 k 2.41 1.2+_0.3 [100], [100] + [010] - Absolute 1086 
measure- 
ment 

NaNO3 k 2.41 4.9-t-I [100], [100] + [010] - Absolute 1051 
measure- 
ment 

Quartz k 2.41 0.2___0.05 [100], [100]+[010] - Absolute 466 
measure- 
ment 

CaF2 h 2.41 0.084+__0.04 [1T0], [ITO] 0.47+_0.09 2.2.18.3 322 
SrFz h 2.41 0.14+__0.03 [110], [ITO] 0.61 _+0.05 2.218.3 285 
BaF2 h 2.41 0.28+-0.05 (IT0], [11"0] 0.84+-0.08 2.2.18.3 240 
MgF,_] 
M n F , !  ' Relative to FeFf| See ~ benzene 

CoF 2 J 
SrTiO3 m 2.41 172_+9 [100], [100] + [010] 2.2.18.3 Second 

order 
KI '~ 2.41 0.21±0.03 [100], [100] + [010] 2.2.18.3 Second 

order 
KBr m 2.41 0.88___0.09 [100], [100] + [010] 2.2,18.3 Second 

order 

'~ J. G. Skinner, W.G. Nielson: J. Opt. Soc. Am. 58, 113 (1968). 
b L.J. Hughes, L.K. Steenhoek, E.S. Young: Chem. Phys. Lett. 58, 413 (1978). 

See Fig. 2.30. 
d M.H. Grimsditch, M. Cardona: Phys. Stat. Sol. (b) 102, 155 (1980) 
e S. Onari, R. Trommer, M. Cardona: Solid State Commun. 19, 1145 (1976). 
f C. Flytzanis: Phys. Rev. B6, 1278 (1972). 

M. Cardona, M.H. Grimsditch, D. Olego: In Light Scattering in Solids, ed by J.L. Birman, 
H.Z. Cummins, and K.K. Rebane (Plenum Press, New York 1979) p. 249. 
h J.M. Calleja, H. Vogt, M. Cardona: Phil. Mag. {to be published). 

C.A. Arguello, D.L. Rousseau, S.P.S. Porto: Phys. Rev. 181, 1351 (1969). 
For the efficiencies of other ZnO Raman active modes and their dispersion see J.M. Calleja, 
M. Cardona: Phys. Rev. BI6, 3753 (1977). 

A. Mooradian: In Laser Handbook, ed. by T, Arecchi, E.O. Schulz-Dubois (North-Holland, 
Amsterdam 1972)p. 1409. 
k V.S. Gorelik, M.M. Sushchinskii: Soy. Phys., Solid State 12, 1157 (1970). 
i J . l .  Sanvajol, A.M. Bon, C. Benoit, R. Almairac: J. Phys. C I I, 1685 (19781. 
m M.H. Grimsditch: Solid State Commun. 25, 389 (1978). 
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b) Relative Methods for Determining Scattering Efficiencies: 
Sample Substitution 

This method has two versions. In one of them, the sample is simply replaced by 
the standard by means of a lateral displacement [2.54]. As a standard one may 
use diamond, calcite, or fluorite. The Stokes efficiency of diamond is 
dSJdf2=(6.5+0.8) × 10 -5 m-  ~ sterad-  ~ at 5145/~ for polarisations ~L[I[100], 
~s]l[010] in backscattering (see Table 2.8 for other scattering efficiencies). We 
show in Fig. 2.30 the polarizability measured by many authors for diamond 
and the results of a theoretical calculation (Sect. 2.2.6d). From the values of 6, 
the scattering efficiency can be obtained with 

aSs _ (og~14 Nh 
~D \ c ) 2pco~ ~'7" I~s'R~j'~L[2(l +n)' (2.134a) 

where Rj are the F25, tensors of Table 2.1 for d = a .  As seen in Fig. 2.30, 
diamond should constitute an excellent scattering standard. The data must, as 
usual, be corrected for collection angle and scattering length (2.52-54). In the 
second method, a sandwich is made with the sample and the transparent 
standard in front [2.146, 150]. Both the vibration line of interest and the 
standard are observed simultaneously without changes in the geometric 
configuration, thus eliminating sources of error. As a standard one can use, in 
principle, an evaporated CaF 2 film for which the scattering efficiency has been 
recently determined (see Table 2.8). In all cases, one has to be careful to avoid 
errors due to vignetting and to the depth of focus of the spectrometer + collect- 
ing lens. 

6 

ff-- 
~ 4  

i I I 
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d¢ Xx x x llxxX x 

x, • [2.5/.] 
0 [2.146] 
t2 [2.155] 
-I- [2.15/.] 
[] [2.1/.9] 

0 I , , I i , , , I i , 
2.0 2,5 3.0 

(d L { e V )  

Fig. 2.30. C o m p i l a t i o n  of measu remen t s  of the R a m a u  tensor  and  its d i spers ion  for d i amond .  
The  solid line represents  the equa t ion  c , ( , ~ ) : = - 6 . 5 g  (OgL/5.6eV) discussed in I-2.54] and  in 
Sect. 2.2.6d. Accord ing  to this  equa t ion ,  a shou ld  be positive a l t h o u g h  accord ing  to [2.157], 
a shou ld  be negat ive  
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c) Brillouin-Raman Efficiency Comparison 

We mentioned in Sect. 2.1.7 that the Raman scattering efficiency for liquids and 
gases can be determined by comparison with that of either the Rayleigh or the 
rotational lines. The latter is found from parameters (i.e., the static polariza- 
bility tensor) which are available from other measurements. A similar technique 
has proven to be very powerful for solids, namely, the comparison of the 
Raman with the Brillouin efficiencies [2.151]. The latter can be calculated with 
(2.111) provided the appropriate elasto-optic constants are known. These 
constants have been measured in separate experiments (piezobirefringence, 
refractive index versus hydrostatic pressure, scattering by ultrasonic standing 
waves). The method yields additional dividends : there are (in cubic materials) 3 
independent elasto-optic constants and only one (or one linear combination) is 
needed to determine the Raman efficiency which, for a given phonon, depends 
only on one Raman tensor component. Once this is done, the other elasto-optic 
constants can be found by looking at other Brillouin configurations. If they 
were previously known this can be used as a consistency check. It actually 
happens often that p l a -p12  and P44 are known rather accurately through 
piezobirefringence experiments. Through the manipulations described above, 
one can then obtain the "hydrostatic" parameter P l x + 2px 2 as has been done 
recently for Si [2.152] in the region from 1.9 to 2.7 eV in which, because of the 
opacity of the material, it was previously unavailable. The Raman-Brillouin 
technique has been recently used for CaFz, SrF2, BaF/, GaP, ZnS, ZnSe, ZnTe, 
Si, SrTiO 2 and the second-order spectra of the alkali halides (Table 2.8). 

We should mention, in closing this section, a novel technique used for 
determining elasto-optic constants based on the uniaxial stress-induced Raman 
effect for a forbidden configuration. The main contribution to this effect arises, 
away from resonances, from the polarization scrambling induced by the stress 
via the elasto-optic effect [2.153]. 

d) Stimulated Raman Scattering 

As discussed in Sect. 2.1.17, the gain for stimulated Raman scattering is a func- 
tion of the spontaneous scattering cross section, see (2.133). Hence, the latter can 
be obtained if the former is measured. Intensity measurements may be easier for 
the stimulated than for the spontaneous Raman effect because of the col- 
limation of the scattered beam. The gain can also be determined, without 
changing the geometry, by changing the scattering path in a wedge-shaped 
sample. 

In [2.154], such measurements have been performed for diamond and the 
value of the efficiency S=2.7 x 10 -5 m - l s r  - 1 was obtained at 6940A, some- 
what larger than that obtained with other determinations at comparable COL'S. 
Also, in such stimulated experiments for low laser power IL, only the 
spontaneous effect is seen. As I L increases, and provided there is some feedback 
mechanism such as the reflection of polished faces perpendicular to the I L 
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beam, the material breaks up into optical oscillations (Raman laser, see 
[Ref. 2.1, Chap. 7]). This occurs whenever [2.154] 

F e ~°-')l = 1, (2.134b) 

where c~ is the absorption coefficient, I the sample thickness and F the feedback 
coefficient -~ to the reflectivity (for diamond F-~ 0.17). Hence, (2.134b) enables us 
to determine g from the threshold for oscillations observed for propagation 
along [11 I] in diamond at IL~ 1100 MW/cm z. From (2.134b) and the value of 
c~-~0, the authors of [2.154] found g=8 .2c ln  -a. From this value and 
I L = l l O O M W / c m  z, one evaluates with (2.130) the scattering efficiency 
S = 2 . 5 x l 0 - S m - ~ s r  -~ at 2=6940A., in good agreement with other de- 
terminations. Nevertheless [2.149] yields for the same configuration 
2.8 x 10 -s  m-~ sr-1 at 5145 A, which corresponds after correcting for ~o 4, to 
8.5 × 10 - 6  m -  1 sr-  1 at 6940A- ! We believe this value to be incorrect. McQuil lan 
et al. [2.154] obtained [a.I = 4.6 A 2 from their value o f S in agreement with other 
measurements (Fig. 2.30) and with the average value recommended in Table 2.8 
(a =4.3+0.6/~2). 

e) Electric-Field-Induced Infrared Absorption 

A rather ingenious method was used by Anastassakis  and Burstein [2.155] to 
determine ~ for diamond by measuring the electric-field-induced forbidden 
infrared absorption produced by/'25, phonons. If we use (2.85, 86) to describe 
this absorption, we must set e* = 0  for diamond when the applied electric field is 
zero. For a finite field along [ i00] we have 

(?e* ~M,, V cZr= (2.134c) 
OE x - OEx~u. - =eo c c3u. = a '  

where M is the electric dipole moment per primitive cell. Hence, by measuring 
the field-induced absorption, for the configuration under consideration pro- 
portional to 1~3e*/OE,.12E~ (i.e., to z 2 • . . , E,), we Call determine a. In this manner, 
values of a between 3.4 and 4.4 A 2 were found in [2.155]. 

f) LO/TO Intensity Ratio in Zincblende 

In polar materials, ir active Raman phonons split into an LO and a TO 
component as discussed in Sect. 2.1.12. Let us consider the simplest possible 
case, namely, that of a zincblende-type crystal. The LO and the TO Raman 
intensities are not determined exclusively by the polarizability ~. An additional 
parameter, namely, the Faust-Henry coefficient C of (2.93) is needed. The ratio 
of the LO to the TO intensity is given by the square of (2.94) multiplied by a 
factor which takes care of the scattering geometry. For a (100) face (see 
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Table 2.2) only LO-phonons are allowed, while for a (110) face only TO- 
phonons are allowed. Hence, these faces are not good to determine, without 
changing the scattering geometry, the ratio dLo/dxo (we assume back scatter- 
ing). For the (111) surface, however, we see simultaneously both LO and TO- 
phonons and therefore C can be easily determined from the ratio of their 
intensities. Once this is done, dz/du, and hence ~ (2.67) can be found with (2.93), 
provided the effective charge e* and the electro-optic coefficient Oxide is 
known. The effective charge is related to the LO-TO splitting through (2.86a). In 
this manner, Flytzanis obtained for the polarizability ~ in the limit of co L <~ the 
E 0 energy gap, 63+_ 10A z for GaAs and 30+7  for GaP [2.156]. 

g) Sign of the Raman Polarizability a 

The measurement of the Raman efficiency yields, according to (2.51,134a), only 
the magnitude of the Raman susceptibility or equivalently, in the case of 
diamond, zincblende, or fluorite, the magnitude of the polarizability a. Its sign, 
however, also has a clear physical meaning. The sign of a. represents whether 
the polarizability along (111) increases (a.>O) or decreases (a <0) when the 
separation between the two atoms at (000) and ,~/4(111) is increased along 
(111). A first principles calculation, such as that carried out in [2.157] (also 
described in Sect. 2.2.6) yields, if reliable, the sign of a~. The sign of ~ acquires 
experimental relevance whenever the associated Raman line interferes co- 
herently with a Raman continuum. In this case, the line shape becomes 
asymmetric and the direction of the asymmetry is determined, in part, by the 
sign of ~. These types of phenomena are discussed in Chap. 2 of [1.3]. By these 
experimental means it has been established that for Si, ~ > 0, in agreement with 
calculations [2.157, 158]. The theoretical expression for diamond 

,~(A z) = - 6.5 G(c0L/o~), (2.135) 

with ¢~ = 5.6 eV and G the function given below in (2.174), also yield s a > 0 as G is 
negative for co L < ~o 8 [2.54] (note, however, that according to the calculation in 
[2.157], the sign of a should be negative for diamond). The magnitude of (2.135) 
has been plotted in Fig. 2.30 together with all experimental determinations of[::.l 
available for diamond. Theory, as much as the analysis of the ratio of LO to TO 
intensities in terms of (2.94), also yield for most III-V and II-VI compounds a 
positive a. Similarly a recent simple-minded theoretical calculation for CaF 2, 
SrF z, and BaF 2 yields for these materials ~ > 0 [2.49] (Sect. 2.2.7). We note that 
the differential polarizability of the stretching mode of most linear molecules 
(H a, N 2, CS2) has also been calculated to be positive [2.158a] ; in view of our 
results we suspect this to be a rather general fact. The problem of the sign of the 
"Brillouin" tensor components is much easier. While the Brillouin intensities 
yield only the magnitudes of elasto-optic constants, direct piezobirefringence 
(i.e. interferometric) experiments also yield their sign. For  a recent compilation 
of elasto-optic constants, their signs, and their dispersion, see [2.91]. 
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2.2 Quantum Theory  

In Sect. 2.1 we treated the phenomenon of light scattering by matter from a 
classical point of view, introducing here and there some quantum mechanical 
concepts which were needed for rounding off the discussion. Various aspects of 
the quantum theory of light scattering have been treated in many standard 
works [2.21, 159] including Chaps. 1, 3, 4 in [2.1]. We discuss here the main 
quantum theoretical concepts needed for an understanding of light scattering in 
simple solids, in particular, semiconductors. This includes a number of facts 
which are only found scattered through the recent literature. Emphasis is 
placed on unifying the various approaches and in showing their mutual 
relationship and, when appropriate, their equivalence. The equivalence to the 
dielectric formulation of Sect. 2.1 is also emphasized. A more formal, Green's 
functions formulation of the theory of light scattering will be found in [-Ref. 1.2, 
Chap. 5]. 

2.2.1 Hamiltonian for Molecules and Solids in Interaction 
with an Electromagnetic Field 

This Hamiltonian can be written as 

J,# = ~vg~ + ~ + ~ ,  ol + ~p + ~,uf~ o + Jt~ p , (2.136) 

where ~e  is the Hamiltonian of the electrons, ~ that of the ions, Jfo that of the 
photons, ~f~ei representing the electron-ion interaction, ~ev that of electrons 
and photons and dt~p the ion-photon interaction. It is customary to treat part of 
(2.136) exactly and the rest by perturbation theory. Depending on what part is 
treated exactly, the various possible approximations arise. 

In one type of treatment oW e is renormalized into ~ff'e by using the adiabatic 
approximation for ~{~e+~i+~Vg~ei. ~e '+~p+Jgep  is then solved exactly to 
obtain the so-called exciton-polariton states, analogous to the phonon- 
polariton states described in Sect. 2.1.12. The phonons and the electron-phonon 
interactions arising from the adiabatic approximation are then treated by 
perturbation theory. This treatment becomes necessary whenever the optical 
absorption spectrum contains sharp and strong lines (excitons, strong couplin9 
to photons). The entities which scatter within the solid are no longer the 
photons but the corresponding polaritons (mixed photon-excitons). The scat- 
tering phenomenon depends then in a very explicit way on the boundary 
conditions at the solid-vacuum interface which affect the transformation of the 
observable incident and scattered photons into the polaritons. These boundary 
conditions are still the object of considerable controversy [2.160]. 

The polariton picture, as a strong coupling description, becomes necessary 
to treat light scattering for co L or co s near strong excitonic resonances (resonant 
polariton scattering). Its theory has been reviewed by Bendow [2.161]. Because 
of the difficulties involved in the boundary conditions, it is not easy to identify 
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resonant polariton phenomena in Raman scattering. In Brillouin scattering, 
however, resonant polariton effects are seen as strong deviations of (2.105) 
which involve only the kinematic conservation laws (independent of boundary 
conditions). This type of phenomena are described in Chap. 7 of I-1.2] and 
will not be discussed here any further. 

Another type of approximation, particularly useful for simple molecules, is 
to treat Y:e + ~ + 3f/,i exactly within the adiabatic (or the harmonic) approxi- 
mation [-2.162]. The photon hamiltonian Yt~p is treated exactly and the electron- 
photon interaction between mixed electronic vibrational states by perturbation 
theory. The ion-photon interaction, or its renormalized version the phonon- 
photon interaction, which produces the so-called ionic Raman effect [2.163] is 
usually negligible except at very low laser frequencies. At these frequencies, 

4 law and however, the phenomenon becomes inobservable on account of the co S 
of problems associated with sources and detectors. At visible frequencies 
((o>>c%), the ionic polarizabilities (2.82) have relaxed away and thus their 
contribution to the Raman tensors are negligible except for the effect on LO- 
phonon intensities discussed in Sect. 2.1.12. 

The third type of treatment [2.164] consists of solving '~,'~+~'~+,~i 
and calculating electron and phonon eigenstates and eigenvectors with the 
adiabatic approximation. The ground and the excited electronic states are then 
taken to be those of the ground state equilibrium positions of the ions R 0 and 
the electron-phonon interaction (i.e., the changes of these states and their 
energies with R) is treated by perturbation theory. This approximation is 
generally appropriate for solids and large molecules. In these cases, the 
interaction of each of the large number of delocalized phonons with the partly 
delocalized electronic states is small and the use of perturbation theory is 
justified. 

In order to simultaneously describe spontaneous and stimulated light 
scattering phenomena, it is convenient to treat the photons in second- 
quantized notation. The photons are bosons with creation and annihilation 
operators a~ and a k, respectively. Their Hamiltonian o~ becomes 

;grip = 2 ½°J(k)(a*kak + aka*k) . (2.137) 
k 

Equation (2.137), like all subsequent equations, has been written in atomic units, 
i.e., for h=lel = m =  1. In these units the speed of light is the reciprocal of the fine 
structure constant hc/eZ= 137. The unit of energy is the double-Rydberg or 
Hartree (27.2 eV) and the unit of length the Bohr (0.53 ,~). The permittivity of 
vacuum equals, in this case, (4n)- 1 ("rationalized" atomic units). For simplicity 
we have omitted from (2.137) the photon polarization index (for each k there 
are two orthogonal polarization modes). 

By taking the thermodynamic expectation value of (2.137), we find 

(0~)~ =,.(k)(n. + ½) = Wo(E~)~ 

= V~22(A2)k,  (2 .138)  
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where n k is, in thermal equilibrium, the statistical factor of (2.25) with co, 
replaced by co(k) and V the volume under consideration. Equations (2.138) 
enable us to calculate the average value (fluctuations) of the electric field and 
the vector potential (E2)k and (AZ)k either in thermal equilibrium or for a 
given laser excitation. For co(k) in the visible or near infrared and without high 
laser excitation, n k ~- 0 except at unusually high temperatures. For spontaneous 
scattering experiments the scattered photons fulfill these conditions. If a strong 
laser beam of wave vector k is present, n k deviates from the thermal equilibrium 
value. Its value is then the average number of photons pumped by the laser in 
the mode k [given as a function of the average field by (2.138)]. If this laser has 
a frequency equal to that of a scattered beam, stimulated scattering results. The 
electric field operator at the point r, /~(r) and correspondingly, A(r), can be 
obtained by inspection of(2.137, 138) and using Maxwell's equations: 

1 11/2 A(r)= ~\-2g, of/co(k)/ ek(akeik'r~a~ e-ik'r) 

/~(r)--i Z (co(k)]'/2(aue,,.._a;e_~k..). 
k \2%V1 

(2.139) 

where ~k represents the polarization vectors of the electric fields and the equa- 
tions apply to photons propagating in free space. For a medium with a nondis- 
persive and real dielectric constant (or with a relatively small imaginary part), 
this dielectric constant, actually resulting from the term ~ p  in (2.136), can be 
taken into account through renormalization of (2.139) simply by replacing ro 
by e. Any strongly dispersive contribution to ~ must be treated, in principle, 
in the polariton picture mentioned above. 

The term ~op in (2.136) is easily obtained from the kinetic energy 
contribution to ~ff~: 

Hence, 

= + 

= } %" J(O) + J(r). p) 
J 

 o"p = ½ Z EJ(r)] 2. 
J 

(2.140) 

In (2.140) the summation index j runs over all electrons. The electron-photon 
Hamiltonian Yd~p has two terms : ~ff~'p, linear in the electromagnetic field, and a 
quadratic term ~"p. The expressions of ~ep in terms of a k and ak* are easily 
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obtained by replacing (2.139) into (2.140). We find for Stokes scattering 

~ {  1 / 1/2 
' [ - , , , -  1/2.. .  v p i k L ' r j 9  . (pj  q_ ½kL) 

+ co: :/2a~e-ik, . , j~.  t • (pj -: k~)] 

I tt j~ 
~ e P =  ")|/ . . . .  l/2r.,1/2 es" eLe'(kL-- k~)'vJ ' 

• ~ • ° O ~ s  ~ L  

(2.141) 

2.2.2 Electronic Raman Scattering 

Let us first consider the case of a free-electron-like metal and neglect the 
presence of phonons. The electronic part of the Hamiltonian and its wave 
functions are: 

 eo= Zkcoc( ,)tc2 c,+c,c2) 
k 

1 ik . . . .  k2 
q~(k) = ~ e , coo(k)- ~- ,  

(2.142) 

where c~, c k represent creation and annihilation operators for electrons. The 
state of the system is determined by the temperature and the Fermi "energy" 
cop We shall perform a calculation of the scattering efficiency due to electronic 
excitations in the case T ~  0. A generalization to finite temperatures requires the 
multiplication of the result by [1 +n(coR) ], where n(c%) is the Bose-Einstein 
factor which corresponds to the scattering energy coR [Ref. 2.1, Eq. 4.10)]. 

The term ocg'p of (2.141) produces electronic scattering of light in second- 
order perturbation theory while out~"p does it in first-order. A straightforward 
calculation of the corresponding scattering probabilities yields a ratio of the 
first-order to the second-order term: 

I" co L 2. (2.143) 
I' s co v 

For standard heavily doped semiconductors, COF--~0.1 eV, while COL"~2eV in 
it ordinary experiments. Hence the O~p first-order perturbation term dominates 

the scattering efficiency i[" interband processes are neglected (we shall consider 
them below). 

Let us treat the simplest case of one single electron at the bot tom of the 
conduction band (2.142). The spontaneous scattering probability per unit time 
is obtained by applying the "golden rule" to the Hamiltonian ~"p (27t 
multiplied by the square of the matrix element between initial and final state) and 
multiplying by the density of final states, i.e., the density of photons of frequency 
co~ which equals (87t3)-lk~dk~dO. In this manner, we again find the result 
of (2.9). This result, obtained for the case of one electron, only remains valid for 
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a finite free electron density if this density is small. If the density becomes large, 
the longitudinal perturbation represented by ~(f~"p in (2.141) is strongly altered by 
the collective polarization of the free electrons in a manner similar to that 
described in Sect. 2.2.12 for LO-phonons. The result of(2.9) must be modified as 
shown in [Ref. 2.1, p. 150]. The scattering efficiency becomes [Ref. 2.1, 
Eq. (4.10b)] 

2 ,  

' '  m (2.144) 

where e(OJR,qR ) represents the dielectric constant of the free electron gas plus any 
possible background. The longitudinal nature of the free electron excitations 
produced is clearly revealed by the appearance of Im{e -1} in (2.144) 
(Sect. 2.1.12). This function has a maximum at the plasma frequency of the free 
electron system. The scattering is polarized (eL[[~?~)" 

AS we have shown in (2.143), the term ~ 'p  is usually negligible for scattering 
by free electrons. However, in real solids, in particular semiconductors, there 
are strong interband matrix elements of p. In this case, the second-order 
perturbation terms must be included in the scattering amplitude (before 
squaring it to get the efficiency). The result is, in the dipole approximation 
ke, s--- 0, similar to (2.9) with eL'es replaced by 

+ . ~L'~+ ~.c ~ (Cl~,'pli)(il~L'plc) ~;_COc_COL ~O~--C~c+O)~• (2.145) 

Equation (2.145) exhibits resonances for COL~--~i--~O c. If e) L is much smaller 
than all gaps ~ - o ~  c contributing to the sum of (2.145), this expression 
becomes, by setting o) L-~ ~o~---0, 

eL" -~e- 1. ~ ,  

where 

m2 1 =11 + ~ 2(clpli)(ilplc) (2.146) 
i * c ( D  i - -  ( D c  

The above relationship between the electron effective mass tensor m e and the 
matrix elements of p is the well-known k .p  relation for the effective mass 
[2.48]. In cubic tetrahedral semiconductors with a conduction band minimum 
at k =0, the effective mass tensor becomes isotropic and the scattering remains 
polarized (for an anisotropic m,, ~, unpolarized scattering is possible). Usually 
one single term dominates in the sum over i. For GaAs, InSb and other tetra- 
hedral semiconductors with minima at k=0 ,  one has 

2p 2 
m~-~ 1 + - - ,  (2.147) 

CO o 

where co o is the k = 0  gap in eV and 2P2-~25 eV. 
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We would like to discuss, before closing this section, the extremely resonant 
case col-o)c---e)e in (2.145) and use as an example for o)i-c % the so-called 
E 0 + A o gap of GaAs, i.e., for o~, the spin-orbit-split F 7 valence band state of 
this material. The wave functions of this state have J = 1/2, J~ = + 1/2 symmetry 
I-2.48]: 

(½,½)= ~ 3 ( X  +iY)$ + ~ZT 
~/3 (2.148) 

(½,-½)= ~ 3 ( X - i Y ) T -  l~-:Z$. 
V3 

Since the wave functions of (2.148) are a mixture of spin-up and spin-down they 
can, when used as intermediate state i in (2.145), connect states of spin-up with 
states of spin-down in the conduction band, i.e., produce spin-flip scattering. In 
order to do this we must have ~c_L~s, that is, for instance, ~s along z and ~c 
along x [the conduction band is s-like and hence ~ or ~c must be along x to 
couple to the X part of (2.148)]. Near resonance, (2.145) is proportional to 

2P2/3 
(eL X e s ) ,  (2.149) 

('OEo + Ao - -  O)L 

where, as mentioned earlier, 2PZ-~25eV. The scattering efficiency is pro- 
portional to the square of (2.149). Note that the Raman tensor which 
corresponds to (2.149) is completely antisymmetric, a vector product being 
equivalent to an antisymmetric tensor. 

Resonant spin-flip scattering near E o + A o for n-type GaAs is discussed in 
1,,2.165] and 1,Ref. 1.3, Chap. 2]. In Fig. 2.31, we illustrate the discussion above 
with the resonant behavior observed for a sample with n = 7  x 1017 electrons 
× cm-3. Note that the depolarized scattering of (2.149) is only possible in this 
case of isotropic effective mass because the resonance condition singles out only 
one term in the sum of (2.145). 

25F l .,,.---" 1.897eV 
~ IEo+Ao r~ GnAs 

; 2oL f~ n =TxlO17cm'3 

1.85 1.90 1.95 
wL(eV) 

Fig. 2.31. Resonant  spin-flip scattering ob- 
served for w L near the Eo+A o gap of GaAs 
[2.165-1 
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2.2.3 Scattering by Phonons: Frank-Condon Formulation 

Let us consider light scattering bringing a solid or a molecule from a ground 
state ~u 0 to an excited state ~j. and treat these states in the adiabatic 
approximation, i.e., let us write 7/as a product of an electronic wave function 
~p(r, R) times a vibrational function ¢~(R): 

~U(r, R) = ~p(r, R)~(R), (2.~5o) 

where v denotes the vibrational state under consideration. We shall treat here 
scattering by phonons from a vibrational state n o to a state n s. In this case, the 
electronic wave functions of the initial and the final state are the same and the 
Hamiltonian ~"p does not contribute to the scattering. The corresponding 
matrix element is zero because of the orthogonality of 4~o and q~. Hence, the 
sole contribution to the scattering arises from ~(g~'p. Using the golden rule in the 
same manner as in Sect. 2.2.2 (second-order perturbation theory), the Stokes 
cross section becomes 

~t~oRb~'2 - ~ te \ [  ,,~n, (0, nf le- ik"re .s ' (P--½ks) l i ,  n l )  

1 
"(i, nil elk~'~ eL" (P -j- lkL)lO, no) 

col ,I l l  - -  (J)O,no - -  ( D L  

+ nonresonant term (NRT)[2 6(~%,,,s- coo,,,o- ~0R~ ~ -- , 
j / I I I o , l l f  

(2.151) 

where the angular brackets represent the thermodynamic average over n o and 
n s. In (2.151) we have written only the so-called resonant terms explicitly. The 
nonresonant terms (NRT) are obtained from the resonant terms by permuting 
eL, kL with ~, k~ and changing - o )  L into + co~. 

Equation (2.151) can be simplified somewhat by making the dipole approxi- 
mation, i.e., by assuming ks~-kL~-O. It is then possible to transform the 
scattering efficiency expression into one containing matrix elements of the 
electronic coordinate r instead of the operator p. This involves a simple gauge 
transformation which consists of adding to the vector potential A~ the term 
- g r a d O  with O =(~. r)A exp[i(k, r -cot ) ] .  The transformed Hamiltonian con- 
tains no vector potential and, in its stead, the scalar potential 
(3/Ot) (~. r)A exp [i(k. r -  cot)]. The scattering cross section thus becomes 

O20-s _ 2  4 ( (  
-- retDs 2 (O,~f[es 'P[i ,  rli) x (i, nil~L.rlO, no) 

0COROQ , , i . , ,  

1 + N R T )  2 5(coo.,,_ C°o,,,o-COR) ~ . 
('l')i,ni -- ('t)O,no -- O)L tno,n f 

(2.152) 
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4. By comparing (2.152) with (2.151), we note that while (2.152) contains the ~o~ 
factor required by the polarizability theory for small (DL (2.24), (2.151) does not. 
This apparently paradoxical results leads us to conclude that if one expands 
(2.151) in a power series of co L, all terms up to that of third order in O)L must 
vanish. This point, which leads to the so-called ./:sum rule for the terms of zero 
order in O)L and to another similar sum rule for the terms of second order, has 
been discussed in [2.50]. One must be particularly careful when truncating the 
sums in (2.151), i.e., when using a finite number of intermediate states as then 
these sum rules need not be fulfilled and the (D~ dependence may not be found. 

Equations (2.152) is particularly useful for the calculation of O2S/SOgR80 in a 
localized system such as a molecule: in nonlocalized systems one runs into 
difficulties as r diverges. Hence, for periodic solids it is more convenient to 
express the scattering efficiency in terms of the matrix elements of p as done in 
(2.151). A comparison of(2.151,152) with (2.24, 51) enables us to write explicit 
expressions for the Stokes "transition polarizability" ~ and the "transition 
susceptibility" L defined as: 

~ 

(2.153) 

We find 

/ _  
~ " :  ~i~i (0 'n°  + llr]i, n;> × (i, nilr[O, no> 

1 + N R T )  
O.~i,ni - -  (DO,no - -  (2) L 

~ o)~ L (O'no + llpli'ni) × (i, nilPlO, no) 

1 + NRT~. 
(Di,ni - -  ( D O , n o - -  (2) L / 

(2.154) 

In (2.154) we have expressed the transition polarizability ~ (usually utilized for 
molecules) as a function of matrix elements of r, and g~ (used for solids) as a 
function of matrix elements of p. A sum over all electrons is implicit in both 
equations. Also, an imaginary frequency should be added to the denominators 
of (2.154) in order to take into account the finite lifetime of the intermediate 
state (we have omitted this "damping term" throughout most of the equations. 
It is implicitly understood). 

Let us consider the expression for ~ in (2.154) and use the wavefunction of 
the Born-Oppenheimer approximation (2.150) for the eigenstates. We define the 
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R-dependent dipole matrix elements Mio(R) as 

mio(R)= Sip*(r, R)rPo(r,R)dr. (2.155) 

By expanding M~o(R ) in a power series of R around the equilibrium position Ro, 
we find 

(OM~°I R~+.. (2.156) M~°(R) = Mi°(R°) + \ ORe ]ao " 

where R e can be chosen to be a normal coordinate, see (2.20). By replacing 
(2.156) into (2.154), we find [2.162, 166] 

~ =  ( d )  +(~B) + N R T  
1 

d = ~ M,o(Ro) x M~o(Ro) 2 (nfln~> (niln o) , (2.157a) 
i ni (Oi ,n i  - -  ¢J)O,no - -  O')L 

(aM,ol (nylni)(nilRelno) 
B =  ~ Mio(Ro) x 
" i,., \ OR~ /So c o / . . , -  ( O O . . o -  o~ L 

× Mio(Ro) - - - -  . (2.157b) 
+ \ ORe ]ao w~.,,,- COO.,o - ~o L J 

The term A in (2.157a) contains scalar products of vibrational functions in the 
initial and the intermediate electronic states. For n o = n s, (2.157) represents the 
standard polarizability of the system including mixed vibronic-electronic 
excitations. For  n~4:nr, it represents the so-called Frank-Condon Raman 
polarizability. Away from resonance the energy denominators in (2.157a) can 
be taken out of the sum over n i. This sum then becomes, using the complete- 
ness relation for vibrational eigenstates, 

(nslni) ( n ~ l n o )  = <nslno> = Oo.s (2.158) 
i 

and the A-term only contributes to elastic scattering. This situation is no longer 
true very close to resonance. For  small molecules, the centers R o of the 
vibrational functions are shifted considerably from the initial state to an excited 
state and the overlap does not vanish [even without shift, a nonvanishing 
overlap can result in (2.158) if the vibrational frequencies of initial and 
intermediate states are different]. Multiphonon processes can thus result from 
the ,A-terms near resonance. For  solids and large molecules, however, R o is 
nearly the same in ground and excited states and so is the corresponding 
vibrational frequency. In this case, the vibrational functions of initial and 
intermediate states are orthonormal and no Raman scattering usually results 
from the A-terms. In any case, since the wave function of the ground vibrational 
state is completely symmetric, that of the intermediate vibrational state (n~l and 
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also that of (nil must be completely symmetric if h is not to vanish. Hence, only 
symmetric vibrations can be excited with the A-term. It rarely contributes to 
Raman scattering in solids, except may be, for strongly localized vibrations (see 
[2.166a] and Sect. 2.3.5). 

In order to evaluate the B-term (the so-called Herzberg-Teller term), we 
must examine (OM~o/c3R~)Ro. This derivative arises through a mixture of the 
intermediate state i with other states j produced by the potential change 
induced by the phonon displacement, i.e., by the electron-phonon interaction 
Hamiltonian Hey. Using first-order perturbation theory, we can write 

(eM,o 1 
cqR~ ]Ro = ~ Mj°(R°)hiJ' (2.159) 

where 

h l J  - -  
(1) i - -  ( D j  

Replacing (2.159) into the expression for B in (2.157) and symmetrizing with 
respect to i and j, we find 

B = ~ {Mio x M~o (nylni) (nilR~ln°) (i[Ofev~) 
i , j . . ,  (co~ - c%) (co~,,,, - coO,.o - co l )  

+ Mjo x Mio (nflRelni)(niln°)(jl~li) 
( c o i -  c%)(coi..,- coo,.o- c%)/" 

(2.160) 

Away from strict resonance, the sums over n i can be performed by using the 
completeness relation for vibrational eigenstates. The matrix element 
(@Relno) = ~  then appears in (2.160) and the B-term yields the standard 
one-phonon ~ o ( ~  (n f= no + l ) and antistokes (ny=no-1)scattering. No 
strong deviations from this selection rule are expected near resonance, es- 
pecially if the lifetime broadening of the intermediate state is > c%. 

Equations (2.160) can be written in a more compact form if we assume that 
the eigenstates Inl) and Ln.r) are the same as [no), i.e., that the potential energy 
curves for the vibrational eigenstates are the same in the initial as in the excited 
electronic states (i.e., no shift and no vibrational frequency change. For a 
clarification of this point, the so-called static approximation, see [2.166b]). 
We must then have in (2.160) ni=no and nf=no+l for Stokes scattering. 
Replacing i~-j in the second term of the rhs of (2.160), we find for Stokes 
scattering 

B = Z Mio × Mjo (no + llReln°) (il~:~vlJ) 
" i,~ (%, ,o-  COO,,o- col) (coi.,o- c%.,o- cos)' 

(2.161) 
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If we make the approximation C0L=CO s , (2.161) can be easily related to the 
derivative of the linear polarizability with respect to the phonon amplitude, 
obtained from the _A-term of (2.157a) for n f=no.  In this manner,  we finally 
recover the "classical" expression (2.23). However, near a resonance (co L = coj or 
cos"~oi) we cannot assume O)L=COs; the tensor B thus possesses an anti- 
symmetric component.  Hence, we encounter for the first time the antisymmetric 
Raman tensors for scattering by phonons mentioned in Sect. 2.1.9. 

The treatment of the Frank-Condon terms d and the Herzberg-Teller terms 
/i given above is basically that of Albrecht [2.162]. It does not include 
nonadiabatic terms such as those in which Re connects two vibrational excited 
states. These terms, which also include coupling by phonons between the 
ground state and an excited state, have been discussed by a number of authors 
I-2.167]. They introduce corrections of the order of cov/(coi- co j) which, in some 
special cases, can be appreciable : their effect is to shift scattering efficiency from 
the COL (in-going) to the co~ (out-going) resonance of (2.161) or vice versa, 
depending on the sign of the relevant energy difference co j - co ;  [2.166a]. Such 
effects have been identified in the Raman spectra of metal loporphyrins [2.166a]. 

For coj-~co i, (2.161) yields a result equivalent to the first term in the rhs of 
(2.30) provided one assumes COL -~ co~, i.e., the requirement for the validity of the 
"classical" treatment. Very near resonance the condition co L=cO~ will not be 
valid. In this case, according to (2.161) two separate resonances appear, one for 
coL = CO j--  090 =COl--COO (in-9oing resonance) and another  of the same strength 
for co~ = co j -  coo = c o i -  coo (out-goin9 resonance). Both of these resonances occur 
together at the average frequency COL -~ co~-- coO + CO~/2 in most experiments with 
solids. Sometimes, however, both resonances can be seen separately. An 
example, observed for GaSe at 80 K [2.168], is shown in Fig. 2.32 together with 
a fit based on (2.161) with coj=co~ and with a broadening parameter  for the 
intermediate state F = 7  meV. Please note the contrast between this behavior 
and that encountered for pure electronic scattering (Fig. 2.31) in which only an 
in-going resonance is observed. 
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Fig. 2.32. In-going and out-going resonances observed 
for the 31.4meV LO-phonon of GaSe at 80K.  The 
dashed curve is a fit with (2.161) including an imaginary 
part of (1 h [2.168] 



l l 0  M. Cardona 

2.2.4 Perturbation Theory for Electron-Phonon Interaction: 
First-Order Raman Effect 

The treatment of Sect. 2.2.3 yields, within the adiabatic approximation, mul- 
tiphonon scattering near resonance. For the A-processes, for instance, the 
scattering efficiency is determined by the overlap in the vibrational wave 
functions (Laguerre polynomials) of the ground and the excited electronic 
states. It is expected that these effects will be severely modified by B-terms and 
by nonadiabatic terms, especially in the multiphonon case. Under the assump- 
tion of equal potential energy curves for the ground and the excited state (static 
approximation [2.166b]), the A-terms yield only elastic scattering and the B- 
terms only one-phonon scattering. This case can be easily handled by treating 
the electron-phonon interaction completely by perturbation theory. This 
amounts to the evaluation of the probability for the processes of Fig. 2.33. The 
resulting six terms are given in (2.36) of [-2.1]. These s ix  terms amount to all 
possible third-order perturbation processes in which a photon is destroyed 
creating an electron-hole pair, a phonon is created (Stokes) while scattering 
the electron-hole pair, and a photon is created while annihilating the electron- 
hole pair. 

Equation (2.36) of [2.1] is expressed in terms of the matrix elements of p and 
hence, as already mentioned, does not immediately lead to the co~ dependence 
of the scattering efficiency [2.50]. This dependence is easily recovered if each 
matrix element of p is replaced by [250] : 

2 

o~, ( j lPl i ) .  (2.161a) ( j lp l i )  -+ (o~,_ co~)2 

, r  " ' ~ "  ~ r - -  

to L J W S [ 
(a) (d) 

t 
i t 

i i  

) 
(b) (e) 

- -  . . l l ~  ~ - i w . - m  - -  

I 
(cl (f) 

Fig. 2.33a-f. Diagrams which contribute to the Stokes scattering by one phonon in third-order 
perturbation theory. The corresponding expressions for thc Raman susceptibility are given in 
(2.36) of [2.1]. The thick line represents the electronic excitation {exciton), the thin solid lines 
the photons and the dashed line the phonon 
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The first order Hamiltonian for the electron-phonon interaction (°~EL in [Ref. 
2.1, Eq. (2.36)]) can be written as, in second-quantized notation, 

,feC~ev - -  - i" ? ~lk.,,(b~ + bo)a t ak , (2.162) 

where ak*, ak represent creation and annihilation operators for electrons, 
respectively, and b~*, b~ the corresponding operators for the phonons v. The 
deformation potential ~lk.v can also be written as, see (2.26, 27), 

,ll at .... / 1 (2.163) ~,*,v = Z, ( l lOH/~u , lk )  M [  - ~t2 ~, -2L~ " 

The electron-phonon deformation potentials are found in the literature either 
in units of energy (like g~k,v) or in energy per unit displacement (like 
(l lOH/Ou~lk)).  For materials with the zincblende structure, ~k., is often 
renormalized and given as gtk.o such that 

2•N--•d ° + 
oVgev = aft 1 ik, v(bv +bv)ai~ak (2.164) 

where # is the reduced mass of the unit cell and a o the lattice constant. 
Sometimes the deformation potentials are defined with numerical factors of the 
order of one, other than those given in (2.164). The worker should identify them 
before making use of them to obtain absolute values of scattering efficiencies. 

Figures 2.33a-c represent resonant processes, the most strongly resonant 
one being that of(a) for i=j .  Figures 2.33d-f are nonresonant processes: we see 
that the characteristic of the latter is that the scattered photon is emitted before 
co u is absorbed. The most resonant form (a) with i = j  can be easily rewritten 
near resonance as (compare with [Ref. 2.1, Eq. (2.94)]) 

~ ( ( O L )  - -  ~ ( ( O s )  do) v iTS-  
(n+ 1) 1/2 1/~_2__ ~s = co v d~ 1/ zcov + constant,  (2.165) 

where g represents the standard linear susceptibility. The constant in (2.165) is 
the sum of less resonant and nonresonant contributions. Far away from the 
resonance we can make (Ova0 in (2.165). In this case, the finite difference ratio 
of (2.165) becomes the derivative of Z(co) with respect to co for (O=e)L--(~)v/2. 
These are so-called two-band terms of Sect. 1.5. The formulation then becomes 
equivalent to the "classical" one of Sect. 1.2 in which the Raman susceptibility 
is the derivative of the linear susceptibility with respect to the normal 
coordinates (2.24, 47). The latter formulation is advantegeous as it automati- 
cally yields all of the six contributions of Fig. 2.33 without having to do any 
tedious bookkeeping. 
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a) Parabolic Bands 

Let us consider the case of intermediate states which correspond to transitions 
between a set of parabolic valence and conduction bands in a solid : 

coo-  1,.o).k 
= c o o -  = coo k (2.166) 

where (l/m*) is the reduced mass tensor for interband transitions and coo the 
energy gap. The corresponding linear susceptibility tensor is obtained from 
(2.154) by neglecting the vibrational structure, taking for the intermediate states 
v---,c excitations and replacing in the prefactor (co,COL)-~ by co~2 [2.50]. By 
transforming the sum over i in (2.154) into an integral over co~v, we find 

(4n)- lZ(co)_ o ~7~-~2~ Nd(co~v) co~ + i F -  co 
1) 

+ cocv+iF+co de)or' (2.167) 

We have included in (2.167) the factor (4n)-1 so as to conform to the standard 
expressions given in the literature in  cgs u n i t s  for the susceptibility. We first 
treat the case of an M o c r i t i c a l  p o i n t  in which m is positive definite. The 
combined density of states Nd(co~v ) is then given by (including spin degeneracy) 

21/2 
Na(cocv) = - -  m a / E t c o  - COO) 1/2 for co > coo ,K2 d I cv 

= 0  for co<co o . (2.168) 

_ * * , 1/3 In (2.168), m d is the reduced density of states effective mass m d -  (m lmEm3) , 
where m* are the three principal components of the reduced mass tensor. The 
vector P in (2.167) represents an average matrix element of p over a surface 
co~v = constant and the × represents the tensor product. If assumed independent 
of ~ocv, P x P can be taken out of the integral in (2.167). Equation (2.167) is 
then usually evaluated f o r / ~ 0  using the "golden rule" 

g(x) d x -  ~ g(x) dx + zig(a), 
o x - a - e l l  o x - a  

F ~ O  

(2.169) 

where ~ represents the Cauchy principal part of the integral. We obtain for the 
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imaginary part of Z(co) 

21/2 
(4n)- l~Zi( @ =  n m3/2p×pco-2(o)-coo) -1/2 for co>co0 

= 0  for co<co 0 . (2.170) 

The corresponding real part of (2.170) is easily found by noting that Z must be 
an analytic function of co which tends to zero for co--* oo and is well behaved for 
co~0. Its imaginary part must be (2.170). We can easily construct this function 
by inspection [2.48, 169]: 

21/2 
(4n)- '~(co) = n mS/ZP x Pco- 2[2coot/2 - (coo - co)l/2 _ (COo + co)1/2]. (2.171) 

The signs of the square roots of (2.171) are determined by introducing a cut in 
the complex co-plane from co = 0 to - oo and adding to coo a small imaginary 
part iF with £ > 0 (always implicit). 

Equation (2.171) can be rewritten in reduced frequency units x=co/co o in 
terms of the complex function F(x) : 

(4n)-l~(co) = C F(x) (2.172) 

with 

F(x) = x -  2[2 - (1 - x) 1/2 - (1 + x) 1/2] 

2112 
C =  - -  mS/2 e x PCOo 3/2. 

The real part of Z can thus be written 

(4n)- I~(CO) = C f ( x )  x < 1 

=Cx-2[x1/2-(1-4-x) 1/2] x > l  

f ( x ) = x - 2 [ 2 - ( 1  - x) L'2-- (1 + X)1/2]. 

(2.173) 

The function f (x ) ,  and its analytic continuation for x > 1, is shown in Fig. 2.34 
together with the corresponding imaginary part of F(x). On account of the 
assumptions made (constancy of P and parabolicity extending to infinity), 
(2.172, 173) is only expected to be accurate for co in the neighborhood of co o. 

The two-band term in the Raman susceptibility can be easily evaluated 
from (2.171) with (2.165). We find, in the limit of cor---co~, 

C dco o ( 4X ) -  1Zs(co ) = . " G(x )~ f_ (n+l ) l / 2 (2cov ) - l / z  
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Fig, 2.34, Real and imaginary part of 
F(x) representing lhe dependence of 
the susceptibility on reduced fre- 
quency near a 3-dimensional allowed 
critical point, see (2.172, 173) 

with (2.174) 

G(x)  = x -  2 [2 - (1 - x)-  1/a _ (1 + x)-  '/2-1. 

The real and the imaginary parts of G(x)  are shown in Fig. 2.35. 
We note that, strictly speaking, (2.174) is only meaningful for the most 

dispersive term (1 - x ) - l f z .  The other terms are of the same order as three-band 
terms and therefore they are not to be taken too seriously unless three band 
terms are included. As seen in Sect. 2.2.3, three-band terms represent the change 
in P produced by the phonon distortion 4. Even if we assume P to be 
independent of ¢, m d in (2.172) can be a function of co o, see (2.146). If the mass 
m d is determined by the gap coo according to a relationship of the type (2.146), C 
becomes independent of ~o o and (2.174) must then be modified to be [2.169]. 

(4rt)- lg~(co) = 2 @  0 [G(x) + 3F(x)] dco°"  ' --~- tn-r 1)1/2(2co~) - 1/2. (2.175) 

The main difference between (2.175) and (2.174) is that (2.175) gives gs(0)=0, 
while a finite value for /s(0) is obtained from (2.174) as G ( 0 ) = - 3 / 4  and 
F(0) = 1/4. However, as already mentioned, these constant "backgrounds" are 
not always meaningful. We show in Fig. 2.36 the function JG(x)J z which 
represents the two band resonance in the Raman efficiency according to (2.174) 
and the corresponding effect obtained without assuming COs=COL, i.e., the 
function [see (2.165)] 

+ A -3/2F x for A -  coy =0.04.  
2co o 

(2.176) 

Figure 2.36 clearly indicates the types of errors which may be committed by 
using the "classical" theory. These errors disappear whenever a broadening of 
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ginary part 
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4F ig .  2.35. Real and imaginary 
parts of the function G(.\) of 
(2.174) 

Fig. 2.36. Funct ion IG(x)l 2 which 
represents, according to 12,174), 
the two-band resonance in the 
Raman scattering for a three- 
dimensional  allowed direct gap 
in the case ~O~<~IcoL--~OOI. Also, 
lhe result of the more accurate 
expression (2.176) without this 
simplification for A = o~v/~o L = 0.04 
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Fig. 2.36. 

the electronic states F>~o v is included. We note that very near resonance 
( x ~ l )  IG(x)J2~ll-xl - t  

The above treatment was performed for an M o critical point, i.e., around a 
minimum in mcv. For  the other types of critical points (Mm) the treatment is 
basically the same except that the resulting F and G must be multiplied by (i) m 
I-2.48]. Hence, the shape of the resulting Raman resonance, proport ional  to 
IGI ~, is the same regardless of the index m of the critical point. Also, weak 
excitonic interaction can be included by replacing m by m + c~ where 0 < e < 1 
[2.48]. While this interaction strongly alters the absorption and reflection 
spectra, it does not change the two-band Raman resonance very near the 
critical point. 

We have treated above the case of a parabolic three-dimensional interband 
critical point. Nonparabolici ty can also be easily included in the treatment by 
means of the k .p  method I-2.169-1. We shall also find occasion to use the results 
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for the parabolic two-dimensional case. In the case of a two-dimensional 
minimum, equivalent to the three dimensional situation with m r = oe over a 
length of k-space Ak, the density of states is [2.169] 

Ak 
N a(o~cv ) = -~- maH(oJ ¢v-  ~Oo) , (2.177) 

where H represents the step function. 
By replacing (2.177) into (2.167), we obtain 

(4n)- 1 ~((3.)) = D x F~2)(x), 

where 

Ak 
D = - -  rnd~o o 2p x P 

n 

U2)(x) = - x -  z In(1 - x z) (2.178) 

and, correspondingly, for two-band terms in the "classical" approximation 

(4n)- 1Zs = D G~Z)~x ~ do9 o (n + 1)1/2(2O~v)- x/z 
- e )  o " " d ~  " 

- 2  (2.178') 

G(2)(x) = 1 - x 2" 

In this case, the Raman efficiency very near resonance x~- 1 is proport ional  to 
I1 - x l -  2, independent of the type of critical point and of the presence of weak 
excitonic interaction. We have to bear in mind, however, that in two (and one) 
dimensions, contrary to the three-dimensional case, excitonic interaction 
always produces bound states [2.48] and that the simple replacement of m by 
m + c~ mentioned above does not take into account the presence of this bound 
state properly. Broadening of the intermediate state may, nevertheless, wash 
out this bound state and restore the approximate validity of (2.178'). 

We should briefly treat, for completeness, the one-dimensional parabolic 
case applicable to organic one-dimensional solids and also to the Penn model 
of tetrahedral semiconductors [2.170]. In this case, 

N d = - - -  ( e ) -  COo)- 1/2 
7~ 

(4n)- iX = P x Pm o 2G(x) 

(2.179) 
1(m*11/2 3 dc°o (4rt)-lX~= ~ \ ~  -] P x P o J o  J ( x ) - ~ - ( n +  l)l/2(2Ogv) -1/2 

J ( x ) = x - 2 [ 2 - ( 1 -  x) -  3/2- (1 +x)-3/2] .  



Resonance Phenomena 117 

2.2.5 Review of the Optical Properties of Tetrahedral Semiconductors 

The lowest absorption edge of tetrahedral semiconductors can be either direct 
(GaAs, InSb, InP, CuCI...) or indirect (Ge, Si, GaP, A1Sb, diamond). Indirect 
edges result in weak, phonon-aided (strongly temperature-dependent) absorp- 
tion. This absorption edge is only relevant to Raman scattering in which the 
phonons aiding it also participate as emitted or absorbed phonons. It therefore 
contributes to scattering by two phonons near X in G aP  and Si [2.171]. How- 
ever, it does not seem to contribute to one-phonon scattering. The first direct gap 
is at the center of the Brillouin zone and, with the exception of Si, diamond and 
SiC (and possibly some large gap lII-V's), it corresponds to transitions from 
a p-like valence s ta te  (1"25, in Ge, I'~5 in GaAs) to an s-like conduction state 
(1"2, in Ge, F t in GaAs) (Fig. 2.37). This is the so-called Eo gap which can be 
handled in detail analytically [-2.169]. Within pseudopotential theory, the 
two states forming the E 0 gap of germanium are obtained by diagonalizing 
2 x 2 matrices [2.169]. The threefold degenerate 1"25, valence states have xy, 
yz,  z x  symmetry. They are connected to the conduction states by the following 
matrix o f p  [2.169]: 

2r~ 
P = ( x y [ p J c )  = (yz[px[C) = (zx[pr[c)  ~- - - .  (2.180) 

a o 

The F2s, state splits into two as a result of spin-orbit interaction : F~- and F 7. 
We thus obtain two absorption edges separated by the spin-orbit splitting A 0. 
The F~ state is fourfold degenerate. Its symmetry properties under the 
operations of the cubic group are the same as those of J = 3/2 states (Jz = 4-- 3/2, 
_1/2). F¢ is twofold degenerate and symmetrywise equivalent to 
J =  1/2(J~ = + 1/2), see (2.148). The average matrix elements of p connecting 
each of the J = 3/2 and J = 1/2 states with the corresponding F 2, state are equal 
to P/V '3 .  By using the results of Sect. 2.35, we obtain for the E o edge [-2.169] 

cO F(x)  ; x = oJ/w o (4n)- lZ(Eo)~- ~ -  

(4~)-~Z(Eo+Ao)--- Co F(x')" x'=cn/Coo + A o (2.181) ~-~ , 

where C 0 -~ P -  ~ -~ ~ . For most materials of the family, P -  1 ~ 1.8 in atomic 

units. An attempt to fit the real part o fz  with (2.181) plus a constant (to account 
for other polarization mechanisms) yields values of C o between 2 and 5. The 
enhancement has been attributed to excitonic interaction [2.172]. 

The E o, E o + A  o absorption edges are relatively weak. They reach within 
0.1 eV of the edge absorption coefficients of the order of 104 cm-  1. The next 
higher gaps are the so-called E 1 - E ~ + A  ~ gaps (absorption coefficients 
-~ 105 cm-  ~) which occur between the two highest, spin-orbit-split bands along 
the A = {111 } directions and the lowest conduction band. These valence band 
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Fig. 2.37. Band structure of germanium showing the indirect transit ions t~, the lowest direct 
gaps Eo-Eo+Ao,  the El--E~ +A I gaps and some contribution to the E: gap [2.48"] 
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Fig. 2.38. Imaginary part of X((~) for InAs showing E o, E~, and E 2 critical points. The long- 
dashed curve is theoretical and was obtained from a complete band structure calculation and BZ 
inlegration [2.173]. The short-dashed curve results fiom simplified parabolic density of states 
models [-Ref. 2.169, Fig. 8]. The solid line is experimental 



Resonance Phenomena  119 

states have A 3 single group and A4. s - A  6 double group symmetries. The 
conduction band is AI(A6). They are nearly parallel throughout most of the BZ 
and hence produce quasi-two-dimensional critical points. An example is shown 
in Fig. 2.38 for InAs including the experimental Zi spectrum, the fit with simple 
parabolic bands such as (2.181) for E o - E o + A  o, the relation (2.185) below 
for E 1 - E ~ + A 1 ,  and the results of a more elaborate full band structure 

• calculation [2.173]. 
The treatment of the parameters of the E 1 - E ~ + A  ~ gap [note that 

A 1 ~--(2/3)A0] can be found in [2.169]. We shall reproduce the principal facts 
and results here. For  a given_J1..11] direction the valence bands have, for A 1 =0,  
symmetries X and Y,, where X, Y are perpendicular to [111], and the conduction 
bands are completely symmetric under the Cav operations. We thus have the 
nonzero matrix elements of P" 

I(XlPxlc>l = I( ~'l PrlC)l = P ~- P . (2.182) 

The spin-orbit interaction splits A 3 and yields the wave functions 

A'*'s : ~22 (X + i ' )T ; ~22 ( ) ( -  i Y)'L (2.183) 

A 6 : ~22 (3(+ i ~ ; -~22 ( R -  i le)~ "- 

Hence, the matrix elements of px,y between each of the A4, 5 - A  6 bands and the 
allowed conduction bands now become P/V2 .  The contribution of the 
E a - E  1 +A 1 gaps to Z(og) can be calculated with (2.178), taking into account 
that there are eight equivalent { 1 11 } directions. Choosing the polarization of the 
light parallel to I-IT0], we find that the total contribution to ~ is 8/3 times the 
contribution of the [111] direction. 

The reduced effective masses for the E a - E  1 +A 1 edge can also be easily 
calculated with the k . p  method (2.146). We find [2.169] 

1 3P 1 3P 
md(E1) 605 +A1/3 '  rod(E1 + A1) o~1 +2A1/3 (2.184) 

where ~o~ is the energy of the E~ critical point. Using these results and 
A k = r t l / ~ / a  o (i.e., the bands are parallel along [111] almost throughout the 
whole BZ), (2.178) yields 

(4re)- lz(E1) = 4 ]//3(60~ + A~/3) 
- 9nao60 ~ F(2)(1 - x 2) 

4 1//3(~o~ + 2d 1/3) F(2)(1 _ x,Z) (2.185) 
(4n)- 1z(E 1 + A 1) = - 9nao602 

60 60 
x ~-- - - ,  x ' - -  

o9 1 60x + dl  
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The results obtained with (2.185) for the imaginary part of Z in InAs are shown 
in Fig. 2.38. We note that the strength of the transitions, which is explained well 
by (2.185), has not been used as an adjustable parameter. 

In order to interpret the gross features of Fig. 2.38, the Penn gap E 2 should 
now be discussed [2.170]. This gap corresponds to the strongest absorption 
peak in Fig. 2.38 at ~4.2 eV. An analysis of the full band structure calculation 
indicates that these transitions spread over a wide area of the Brillouin zone, in 
particular over most of the square faces ( W -  K - X  points) and their surround- 
ings [,,2.169]. They are thus difficult to describe with simple models but the fact 
that the bands are nearly parallel over the surface of the BZ (actually, more 
correctly, over the surface of the Jones zone JZ [,-2.174]) suggests an in- 
terpretation based on a one-dimensional dependence in k perpendicular to the 
boundary of the JZ. This is the so-called Penn model which is discussed in 
detail in [,,2.169, 174]. The corresponding Z(co) is described by a function of the 
form (2.179). These transitions determine the (real) value of g(0) and are closely 
related to most average thermodynamic or chemical properties [-2.175]. The 
corresponding X(0) is given by 

2 2 g(O) ~- cop~cog, (2.186) 

where cop = (4rcNv) 1/2 is the plasma frequency of the valence electrons and cog the 
"Penn" gap. The contribution of the Penn model to )~(co) in InAs is also shown 
in Fig. 2.38. 

We should mention before closing this section that the lowest direct gap of 
diamond (E~) is F2s,--*F~s. The small spin-orbit splitting can be neglected in 
this case. The selection rules for transitions between Fzs,(k-y, yz, ~-2) and 
F15 (x, y, z) are 

(~YlPxIY) -= <~lpylz> = < ~~]p=lx> 
2~ 

= (2-Ylprlx) = (YgIp=Iy) = (~-2[pxlz) = P' - - - .  
ao 

A detailed treatment of X(co) for this edge can be found in [-2.176]. 

2.2.6 Contributions to the Raman Tensor for First-Order 
Raman Scattering by Phonons 

The calculations below are performed in the classical or "quasistatic" approxi- 
mation (cov'~lc°o--c°L+iF[). The symmetry of the Raman phonon of ger- 
manium is Fzs, (equivalently, F15 in zincblende) and is the same as that of a 
[111] strain. Hence, the treatment of the Raman tensor is the same as that of 
the elasto-optic constant P44 which contributes to the Brillouin scattering 
efficiency of all phonons whose velocities contain the elastic constant c44. The 
other elasto-optic constants p '=  p~t -p~  2 and Pn =Pl 1 + 2p~ 2 have nonequiva- 
lent treatments [-2.169] (see Sect. 2.2.12). 
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a) Eo, Eo+Ao-Edge 

We first discuss the case Ao-~0 or, more accurately, I~OL--Ogol >>A 0. This case 
can be treated by using purely orbital wave functions X = y z ,  Y =  x z ,  Z = y x  (for 
F25,). The Z = x y  phonon couples the wave functions X with Y In order to 

1 
diagonalize the corresponding ~ev, we use as wave functions - ~  (X_+ Y) and Z. 

The matrix elements of ~ev thus become 

+ Y)I,~?I (x + Y) = + ~ - ( ,  + 2 ~  2(X , 8COo 1)t~ z 

( l  ~ 1 ) (~0) 0 )I /2V 1 
~ _ _ ( X - Y ) I Y g ; ~ - ' I ~ _ _ ( x - Y )  - 84  ( n + l  2~ov' 

(2.187) 

For historical reasons the electron-phonon interaction constant 80)o/8 ~ is 
usually written in terms of the "deformation potential" d o [eV] : 

8o90_ do ]//3 
(2.188) 

O~ 2a o V/~ ' 

where # is the r e d u c e d  m a s s  of the PC. 
In order to calculate ,~ we must now determine the effective masses and the 

corresponding matrix elements of p taking into account the degeneracy of F25,. 
Let us consider for the purpose of calculating the only independent matrix 
element of ,~ (see Table 2.1) the case eL = [100], ~ = [010] for which we couple 
to the X Y  phonon of (2.187) and examine the valence bands along the cubic 
axes. The reduced masses are, see (2.147), 

m *  p 2  . m * ( X )  = m * ( X )  " m *  " 2 P 2  
- - ~  - - e  - -  

m*(x) ~- Z -  ~- o9o o9o 

, . . . .  ,~ m *  p 2  m * ( Y ) = m * ( Y )  "~ , ~  2 p 2  
, " . ~ - - ;  _ m  e - -  03 ° m y  ( I )  - -  - ~ -  °-)o 

m . ( Z ) ~ _  m - P 2  , • ~ • 2 P  2 
; m x ( Z )  = m s, ( Z )  _ m e ~- , 

2 o9o o% 

(2.189) 

where the subscript indicates the direction of k-space and the letter in brackets 
* is the mass of the F 2, electrons. The Hamiltonian ,~,ev is not labels the band. m e 

diagonal with respect to X Y Z ,  hence the bands along the directions of (2.189) 
should yield three-band terms [the phonon mixes X with Y according to 
(2.187)]. For k~H(110) and k~Jl(1T0), Hey is diagonal. In the latter case the masses 
are the same as those of(2.189), replacing x, y, z by ~, y, z. Hence, the density of 
states mass for each band is m , ~ = m * / 2 1 / 3 .  The corresponding matrix elements 
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of p are : 

(RlPxlFz,) = _ _  

(~lprIFz,) . . . .  

P 
1/~ = (Y'Ip~IF2') 

P 
]//~-- ( YlPyl/'2 ')" 

(2.190) 

Hence, if we only take into account in our calculation the k.~, k.~, and k;, directions 
of k-space, we exclusively find two-band terms. We then encounter again 
(2.174) with the nonzero element of gs: 

C G ( x ) d o ~ ( n + l )  (2.191) 
(4n)-lZs.xy(Eo)- 4C°o ao 

with C = 1 m,3/2p2coo 3/2. Equation (2.191) yields for the Raman polarizability 
7~ 

,-z of (2.67) and Table 2.8 

m*3/2p2A ,.12 
e - - o - o .  G(x) ( 2 , 1 9 2 )  

= _ 16n09~/2 

where m* "~ 09o/2P 2. 
We note that (2.192) suffers from the fact that we have only included in it the 

directions of k-space for which two-band terms appear. This does not happen, 
for instance, for k along x or along y. In this case, the function COo 5/2G(x), obtain- 
ed as a derivative of 090 3/2F(x) with respect to e~o, must be replaced by a finite 
difference involving the average difference in valence band energies 

09o3/1 \ 090 ] \ 090 / 
6 

(2.193) 

where ~ is approximately the difference between the light and the heavy 
hole bands at the k-vector for which o9cv-09o ~- le)e-O901. The function (2.193) 
approximately equals 090 5/ZG(x) near resonance and, even if this approxima- 
tion is not too good, since it must be averaged with the function G(x) cor- 
responding to the [1, + 1, 0] directions, it should not significantly alter the 
result of (2.192). Possible corrections can be lumped into numerical factors 
of the order of unity. These factors should be the same for a, as for the elasto- 
optic constant P44 (Sect. 2.2.12). 

From the reasoning above we conclude that the Raman susceptibility is 
obtained, to a good accuracy, by assuming that the x + y  valence bands are 
rigidly shifted by the phonon perturbation, the amount +&Oo/0~ given in 
(2.188), while the band Z does not change. 
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The result in (2.191) is valid provided 1(2) L -  (2)01 ~ Ao. We shall now treat the 
case of a finite A o in which two resonances occur, one at E o and another at 
E o + A  o. The F~" valence state is split by the F25, phonon while F~- is not. 
Hence, E o contributes strongly dispersive two-band terms to Zs while E o + A o 
only contributes less dispersive three-band terms. The latter are due mainly to 
the coupling by the phonon of Fv + with F~-. The calculation of the two-band 
and three-band contributions to )~s near E o and E o + A o can be found in [2.169] 
and will not be repeated here. This calculation is also based on the approxima- 
tion of rigid splittings and shifts for the F~ valence bands under the phonon 
perturbation, an approximation which is justified by a treatment similar to that 
given above. In terms of a the result is [2.169] 

--,,, 2 { [ / ( . 0 \ 3 / 2 1 1  
a(Eo, E 0 + Ac) = c °a°  ]//3 d o - G(x) + 409o o F x' 

(2.194) 
o) ¢o 1 

where x = - - ,  x ' = - - ,  " 
coo COo +Ao Co---~.  

For  Ao--+0, the term in curly brackets in (2.194) tends to - 3G(x) and, except 
for a small difference in the numerical coefficients due to the different ways 
of averaging the effective masses, (2.194) becomes equivalent to (2.192). The G- 
term in (2.194) represents the two-band terms associated with Eo(F~) while the 
F-terms represent the three-band terms associated with the F~ -F~-  coupling 
by the phonon. 

Using (2.181), (2.194) can be rewritten in terms of the separate contributions 
of E o and E o + A  o to the susceptibility )~(o9) [under some assumptions these 
contributions can be extracted from the experimental l:(co)]. We find 

0 .Eo + Ao(fD'L[ 2 [XEo(o~) - 2 / o) \3/2 1 

8XE(co) 8)~(a)) 2 E 
where 0coo - &o + ~ X  (co). 

Equation (2.195) expresses a in terms of the experimental spectrum of X(co) 
and the deformation potential d o and thus it may liberate us to some extent, of 
the limitations in the approximations which went into deriving (2.194). A fit 
with (2.194) to the E o - E  o + A o resonances of GaAs is shown in Fig. 2.8. 

The deformation potential do can be easily calculated by using pseudo- 
potential theory. In the case of germanium and silicon (also diamond [2.176]), 
it can be written in closed form as [2.169] 

47T 2 
do = v,2)+ 1/2( 3- 

VJ 
(2.196) 



124 M. Cardona 

where v~ are the pseudopotential form factors and fl and y represent the 
admixture of [111] and [200] plane waves which appears in the F25, 
wavefunction (fl-~0.835, y-~0.55 for Ge and Si). Equation (2.196) yields 
d o -  + 33 eV for Ge and Si. For the III-V and II-VI zincblende materials, the 
theory is slightly more complicated as it involves antisymmetric form factors 
but the resulting values of d o are nearly the same [2.73]. Recent calculations by 
Vogl and PStz [2.177] using both the pseudopotential and the tight binding 
method also yield similar results for a large number of materials of this family. 
It is interesting to note that the corresponding deformation potential d for a 
strain along [111] can be written as 

d = d ' -  ¼~d o , (2.197) 

where d' is the strain deformation potential which one would have in the 
absence of internal strains (~ = 0). For ~ = 1 there are internal strains produced 
by the fact that the bonds are completely incompressible. For Ge and Si, (~0.7, 
while for diamond, ~ 0 . 2  [2.178]. 

b) El--E1 +d l -Edge  

This treatment is also similar to that for the p,4 elasto-optic coefficient given in 
[2.169]. We must include all equivalent [111] directions and two contributions 
arise, one due to the "intervalley" splitting by the phonon of the equivalent 
{111} directions (two-band terms) determined by the deformation potential 
d~. 0 [2.179], and another due to the "intravalley" coupling by the phonon of 
the spin-orbit-split A,. 5 and A 6 valence bands (three-band terms) determined 
by d 5 For a phonon XY, the splitting of the {111} directions due to d 5 is 3,0" 1,0 

1,0 
[ l l l ] , [1T1]  ; Ao~, = --~- v (2.198) 

d 5 / 2  1 1,0 
[1T1], [Tl l]  ; & o a -  6 ~cov' 

clio represents the difference between conduction and valence deformation 
potentials. As mentioned above, the (X + i Y)/2 (i. e., A< s - A6) valence states are 
coupled by the deformation potential d 5 This coupling can be obtained from 3,0' 
the matrix elements 

(Xtt'ulJf~(XY)P~t*'*~)=- d~'° 2#c% 

()~[1 11][')~aev(X Y)[ Y[l111) = 0 (2.199) 

( ~ , , , ~J~,( X Y )l~ , , u> = 3~o d~.o /21O)v 

and the corresponding matrix elements for the [Tl l ]  direction. 
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We represent the contribution of E 1 and E~ + A~ to the linear susceptibility 
X(co) by (2.185). We note that the deformation potentials d 5 and d 5 ~,o 3.o are to be 
regarded as averages over the whole [111] direction of the Brillouin zone. 
Typical dependences ofd~. o and d~.o along the [111] direction can be found in 
[,2.44a]. We point out that for k ~ 0  the following compatibility relations exist : 

d s ] /2do,  (2.200a) 3,0 

(d~,o)~, 1 . . . .  = - d o . (2.200b) 

We must keep in mind, however, that (2.200a, b) are only valid for k - 0 .  
Equation (2.200a) remains approximately valid throughout A while (2.200b) 
decreases by a factor of two between F and L. 

A straightforward calculation yields for the case A ~ ~ 0  (which applies to Si 
as in this material, A, = 0.03 eV ~ F - 0.1 eV) : 

~(Ea,Ea+A,)- 4 ~ 1  3.o+ 2 ]/~ 1,0) [ ~g-@~ "~ 

In (2.201), we have used the relationship 

dz co dz 
- X, (2.202) 

dm~ cog dco o) 

where c~ depends on the model used to calculate the variation of the transverse 
reduced mass #* with phonon deformation. The case in which the phonon does 
not affect #*, corresponds to c~=2. If the phonon changes /t* in a way 
proportional to co a, we obtain c~ = 1. Actually, the most reasonable model yields 
~=5/3  as ~l=m~±'+me-hl~--~m~l [2.169]. Within k .p  theory, me± is not 
affected by the phonon perturbation while me, is, in the same manner as ~),. 
This yields c~ = 5/3. 

A fit to the E, - E1 + A, resonance in the first-order efficiency of GaAs is 
shown in Fig. 2.8 [--2.53]. Equation (2.201) is written in terms of the experimen- 
tal g(e)). It can be written equally well in terms of the analytical function 
F(2)= - x - 2 1 n ( 1 - - x  2) by using (2.185). In (2.201), d s is usually much larger 3,0 

1 
than - -  d s [-2.44a]. 

21/~ ,,o 
If the spin-orbit splitting A, cannot be neglected, we can derive the 

expression 

a~= A, - ( 4 n )  -~, (2.203) 

where Z (e') and Z (e' +A,) represent the separate contributions of E,  and E, + A a 
to )5 Equation (2.203) can be transformed into one containing dz/do~, which is 



126 M. Cardona 

determined from experiment, instead of dz/do3t by using (2.202). In the limit 
At--*0, (2.203) tends to (2.201). 

c) E2-Edge 

As already mentioned in Sect. 2.2.6, the E 2 edge or Penn gap, while in principle 
simple (one-dimensional), is difficult to handle in many respects, for instance, 
for the calculation of its contribution to ~. A method has been suggested by 
Aslaksen [2.180] based on (2.186). Let us assume a phonon with ~ along [111] 
with displacement u. Using (2.186) for ~o=0, we find [-see (2.67)] 

a,(O) = a°3 V'~ dxll (4re) -1 
8 2 du 

ag .,,. d lne)g . . . .  
(2.204) 

where r represents the bond length and )~lt the susceptibility parallel to the 
bond. Equation (7) of [2.180] incorrectly includes the change in plasma 
frequency with r (the phonon does not alter the volume!). Using 
d l n m J d l n r = - 2 . 5  [2.169], (2.204) yields for silicon ~ = + 3 2 / ~  2 in excellent 
agreement with the values extrapolated to co~0 from 6 =  +60/~ 2 listed in 
Table 2.8 for 1.9 eV. Although this result may be somewhat fortuitous, it is 
remarkable that one can at least predict with this argument the elusive sign of 
(Sect. 2.1.18). 

d) E~-Edge of Diamond 

The lowest direct edge of diamond also takes place at F but the corresponding 
conduction state is F is (p-like) instead of the F 2, (s-like) state of germanium. 
This edge is labeled E~. In Si, a similar situation arises but Eb is nearly 
degenerate with E 1 - E1 + A r Because of the larger volume of k-space associat- 
ed with the latter, E o is negligible in Si. The contribution of the E~ edge of 
diamond to e has been discussed in [2.176]. The following expression was 
calculated : 

@ Z ~(Eo) = (d~ s - do) (4~)- x (2.205) 

The deformation potentials di s (for the Ft5 conduction state) and d o can be 
calculated by pseudopotential theory (although the use of pseudopotential 
theory for diamond is questionable); do is given by (2.196) while the corre- 
sponding expression for d~ 5 is 

d~ s = 4~ --~ (v~-  v 121. (2.205a) 
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Using these expressions and values of v i found in the literature, one obtains 
do=90 and d ~ 5 = - 4 3  eV. With these values and the measured Z(og) [2.181], 
one finds for diamond 

, z ( E o ) = - 6 . 5 O ( ~ ) = + 4 . 9 A  2 for 09--,0. (2.206) 

This contribution suffices to explain the experimental value and the sign of ,~ 
for diamond (Table 2.8) [2.54,1. 

2.2.7 Fluorite-Type Materials: CaF2, SrF 2, and BaF 2 

The phonons at the F point of these materials have been discussed in 
Sect. 2.2.10 and their eigenvectors shown in Fig. 2.9. There are two sets of 
optical phonons: /'15 ir-atlowed (split into LO and TO) and /'25, Raman 
allowed (three-fold degenerate). The latter are rather important in Raman 
scattering as they are often used as standards in resonance Raman measure- 
ments: because of their large E o gap (~  10 eV) the Raman polarizabilities ~ are 
nondispersive in the visible. These polarizabilities, and the corresponding 
efficiencies, have been determined rather accurately [2.49,1. They are listed in 
Table 2.8. 

The Raman polarizabilities mentioned above seem due mainly to the effect 
of the electron-phonon coupling on the edge exciton at the frequency E o. We 
represent the contribution to Z of this exciton, related to transitions between the 
/-'15 valence band and the F 1 conduction band [2.182], by the Lorentzian 

(4n)- 1Z = N e f f  2 2 , (2.207) 
E o - o~ L 

where the "effective valence electron density Neff" is obtained from the 
absorption spectrum [or rather from the spectrum of Im {~(co)},1 with 

1 ~ o[im{z(co)},1do)" Neff--" ~ 0 (2.208) 

In order to evaluate ,z it is also convenient to consider a longitudinal phonon 
propagating along [111-1. In this case, because of the symmetry, the tensor 
0l.'/83 is diagonal. We label u 3 as the relative displacement of the two fluorine 
atoms in the 125' phonon (see Fig. 2.9). We can easily write for two-band terms 

ao a 0Zll ( _ ~ )  (4~)- 

V3aEdo N~ffEo a2doN~ff 
= 4Eo ~ 1/3 (for , oL~Eo) .  (2.209) 4 z 22  (E o - COL) 
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Table 2.9. Deformation potentials do for optical phonons interacting with the I'~ ~ valence state 
of CaF 2, SrF 2, and BaF 2. Also, corresponding values of the Raman polarizability a 

do [eV] d,~ EeV] o, EA 2] ,~ [A z] 
pseudopot. LCAO pseudopot. LCAO 

CaF 2 45.1 38.8 0.46 0.40 
SrF 2 37.8 37.8 0.46 0.46 
gaF 2 30.0 34.2 0.38 0.44 

The deformation potential of the I'~ 5 valence state do = -ao(dEo/du3)ll can be 
evaluated either with pseudopotential theory or with the LCAO method. From 
pseudopotential theory we find [2.72] 

16 VF v 
(2.210) 

where e and fl represent the admixture of {111} and {200} waves in F15, 
respectively, V F and V~, n are the volumes of the F ion and that of the CaF 2 
primitive cell, and v F a, v~Vl represent pseudopotential form factors for the 
fluorine ion. It is also possible to evaluate d o using atomic functions for the 2p 
states of fluorine [-2.49]. The values of d o obtained with these methods are given 
in Table 2.9 together with the corresponding values of a~ obtained with (2.209), 
using for Im{x(o~)} the spectra found in the literature [2.183]. The agreement 
with the experimental data of Table 2.8 is rather good, a fact which lends 
credibility to the signs of c~ and do derived from the theory. It is to be hoped 
that the dispersion of ~(COL) given in (2.209) will be tested in the future as 
measurements with vacuum uv lasers or with synchrotron radiation become 
possible. 

2.2.8 Forbidden LO-Scattering 

In Sect. 2.1.12, we treated some peculiarities of scattering by Raman active kO- 
phonons in materials without a center of inversion. These effects consist of a 
modification of the scattering efficiency due to electro-optic coupling : the LO- 
phonons are accompanied by a longitudinal field which modulates )~ through 
the first-order electro-optic effect. Similar effects are, in principle, also en- 
countered in Brillouin scattering by piezoelectric acoustic phonons [2.17]. 

We shall indicate here the quantum-mechanical formulation of this effect 
and, at the same time, introduce another type of effect which cannot be treated 
within the macroscopic context of Sect. 2.1.12, i.e., the Fr6hlich-interaction- 
induced forbidden scattering by LO-phonons (and also, correspondingly, 
Brillouin scattering by piezoelectric acoustic phonons). Let us consider the it- 
active phonons of a zincblende-type material (extension to ir-active phonons of 
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other materials such as fluorite is straightforward). The longitudinal polariza- 
tion can be easily written in terms of the normal coordinate ~ of (2.44): 

p _ eoe* [¢ei(q.n - ,o~ot) + ¢ * e -  ( iq .~-  ,~o,)]. (2.211) 

This polarization produces a longitudinal field of magnitude d' which, in turn, 
produces a potential - id /q .  This potential is actually the electron-phonon 
interaction Hamiltonian ~f'~v. The exponential factors in (2.111) take care of 
momentum and energy conservation in the scattering process. The 
Hamiltonian ~ v  can be easily written in second-quantized notation by making 
the substitutions, see (2.26), 

' V 2tOLO 

and introducing the electron creation and annihilation operators c* and c: 

~ v  = CF (bt +b-q)C~-qCkV- 1/2 (2.212) 
Iql" q 

We shall treat only Stokes scattering here, i.e., the b * term in (2.212). The 
Fr/Shlich constant C F is given by 

± )  ' 
\2Vc ] \eoo ~rf] 

(2.213) 

where err is the dielectric constant for co=0. In order to obtain (2.213) from 
(2.111), one has to perform straightforward algebraic manipulations with 
(2.86a), including the use of the Lyddane-Sachs-Teller relation 
O  o/ 4o = 

The divergent nature of (2.212) for q ~ 0  is the source of the anomalies we 
want to discuss. The matrix elements of (2.212) between the electronic states l 
and j such that k j= k t - q  (so as to conserve q) are: 

<(n + 1),jl~vln, l> = CF [Iql[JJl + ~jl ~ -  I I > ( l q  "p - 5j,)) . (2.214) 

In (2.214), 6jl is zero if j and 1 belong to different energy bands (interband 
scattering), one otherwise. The singular first term in the rhs of (2.214) stems 
from the orthonormality of Bloch periodic functions within a given band 
(intraband scattering). The second term, zero for intraband scattering, is 
obtained through a k. p expansion of the wave function. It is not singular and it 
can be shown that it leads to the electro-optic terms of Sect. 2.1.12. In this 
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manner, an explicit expression for the first-order electro-optic tensor involving 
three matrix elements of p [2.184] can be obtained. 

The intraband term of (2.214), when replaced into the perturbation 
theoretical expressions which correspond to Fig. 2.33a, leads to an expression 
which diverges for q--*0. One has to consider, however, two such terms : one in 
which Cv/Iq I couples two conduction states (electrons) and one in which it 
couples two valence states (holes). Because of the different charge of electrons 
( - 1 )  and holes (+  1), these two terms cancel and the singularity is lifted. A 
more careful analysis, carried out to higher order in q, leaves as the balance 
between the conduction and valence intraband terms a term in ~s proportional 
to q which, of course, would be zero by definition in the dipole approximation 
(q = 0) and thus "forbidden". This term, which is responsible for the so-called 
forbidden LO-scattering, is strongly resonant near critical points and can, 
under these conditions, produce higher scattering efficiencies than the allowed 
deformation potential terms discussed above (but only near resonance !). It can 
even lead to Raman scattering in the case of LO-phonons for materials with 
inversion symmetry [2.185]. We evaluate these terms in the following three 
sections. 

a) Heuristic Approach 

The calculation of the forbidden LO-scattering requires the evaluation of the 
terms of Fig. 2.33a to second order in q : the first-order terms must vanish as the 
Fr6hlich Hami|tonian only depends on I@ For  this calculation, straightfor- 
ward but tedious k-space integrals must be evaluated in 3 dimensions and, in 
this process, one runs the risk of losing the physical insight. Hence, we give here 
a heuristic calculation of this effect which yields, in the limit I~o L -  ~o o - iFI >> co v, 
the same result as the correct calculation to a numerical factor of the order of 
one. This calculation is the closest we have been able to come to the 
"polarizability" calculations of the allowed effects discussed in Sect. 2.1. Its 
physical meaning is quite transparent. 

The essence of this method is shown in Fig. 2.39. We assume ~os-~ ~o L and a 
f inite scattering vector q. The finite nature of this vector raises the minimum 
gap for valence conduction transitions to 

~Oo(q) ~ o o + ~ (2.215) 

for the diagram in Fig. 2.39a, and the same expression with m e replaced by the 
hole mass m h for Fig. 2.39b. It is this difference in effective q-dependent gaps 
which leads to the forbidden LO-effect. The Stokes Raman susceptibility can 
thus be written for the parabolic 3-dimensional bands of (2.166) [see (2.49)] 

~£-- Iq~- &o) l/c3q 2 ]e / Oq 2 ]v]: qq '  
(2.215a) 
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q 

= = o *  Wo(q)= too ÷ 72 h 

Fig. 2.39. Schematic diagram of the 
two FriShlich interaction processes 
involved in the heuristic calculation 
of forbidden Raman scattering by 
LO-phonons 

where the subscripts c and v denote the gap shifts of Figs. 2.39a, 2.39b, 
respectively, i.e., 

?2°9°/ = (2.216) 1 

6~q 2 icy 2meh" 

By replacing (2.216) into (2.215a), we find 

-~ - --if-Iql 'q ~ 2 .  
(2.217) 

The second form of (2.217) has been obtained from (2.215a) by dropping terms 
proportional to 0Z/~e) and Z, negligible near resonance. Equation (2.217) 
represents the Raman susceptibility for forbidden Raman scattering. This 
susceptibility is linear in Iql and arises as a result of differences between the 
electron and the hole effective masses. For q along one of the principal 
directions of the tensor (m[l)-(m~), this forbidden scattering is polarized. 
Otherwise, depolarized scattering is possible (although weak). For isotropic 
masses the tensor (2.217) is isotropic and can be written as 

CFme--mh{OzZ] 
-~£(rql)= 8 M*~t* \~co2] Iql' (2.218) 

where we recall ~*-1= m~-~+ m~-i and M * =  m e + m h. The scattering is com- 
pletely polarized and isotropic (independent of the direction of q). An ideal 
configuration to observe this effect for zincblende is for a (100) face with 
~Lll~sll(010); in this configuration, no allowed scattering is possible (Table 2.2). 
We point out that (2.2.18) is equal to three times the correct gs given in 
Sect. 2.3.8b in the limit C0L"m ~. It can also be applied, to a numerical factor of 
the order of unity, to the two-dimensional case of Sect. 2.2.8c. Equation (2.218) 
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leads to "dipole forbidden" scattering only for a perfect crystal. Impurities can 
contribute a finite q to the scattering process, unrelated to the change in q 
between the incident and the scattered photon. Such effects have been observed 
[2.186] and theoretically calculated in detail [2.187]. For an isolated charged 
impurity, the effect is basically obtained by convoluting (2.218) with the density 
of phonons and the square of the impurity potential [caution : (2.218) is only 
valid for small q !, see (2.232)] : 

j'z~(ql) ~ + ~ v v  dq. (2.219) 

A more detailed treatment of this effect is given in [2.187]. 
Likewise, the exact cancellation of the conduction and valence terms for 

q =0  can be lifted if the vibrations are localized, provided the corresponding 
localization lengths of valence and conduction bands are not the same. Such 
has been found to be the case for superlattices in which the phonons are 
localized on each layer [2.188]. The valence and conduction wave functions can 
also be localized but the amount of localization depends on the effective masses 
and barrier heights. Consequently, within each layer the Frtihlich interactions 
for electrons and holes do not cancel even for q--0  and the LO-scattering 
becomes allowed. The resonance is then proportional to the first derivative of 
instead of the second. The same thing is found for a resonance near a discrete 
exciton state (Sect. 2.2.9). 

b) 3-d Crit ical  Po in t s  (E o and E o + A  o-Edges)  

Let us treat the isotropic case. The perturbation theoretical expression for the 
Raman susceptibility is [2.189] 

(4n)_lZ, = lq~Tp2 ~ 1 
1.~_.k 2 

( D  L - -  ( D  O - -  

2#* 

. (  1 1 

(DL- (Do- O)Lo- ~ ( k -  Soq) 2 

1 - -  £) (2.220) 

- o90 - (DLO-- ~ ,  (k + S.q) COL 

where S,,h=m~h/M* and the matrix elements of p have been assumed to be 
independent of k and equal to P. Transforming the sum over q into an integral, 
we obtain I-2.189] 

4Cvp2p .2 
(4n) -1Z~.~ = [~(q S¢) - ~(q Sh) ] , (2.221 a) Iql(D~(DL 
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where 

1 
- -  CO~o [ ( % -  *.o) -(~Os-COo) ] } .  z '_  7 , ,  arc tan {iq(2#*)- 1/2 - 1 1,12 1/Z 

~nlql 
(2.221b) 

By expanding the arctan in (2.221b) to third order in the argument, we find 

(4n)- 1Z~., ~ CFP2[qI(m¢ - -  mh) (.00) 1/2 O.)0)1/2] 3 
= 12XmLm~OOtaoM, (2/a*)l/2[-(a)L - --(09 s -  . (2.222) 

Equation (2.222) is only valid for ]q]'~(2].I*)I/2(.OLo[(OOL--(DO) 1/2 
_(%_0.%)~/2]-1.  For larger Iql's, (2.221b) goes through a maximum when the 
magnitude of the argument ~-1 [compare with (2.231,244)]. 

In order to compare (2.222) with (2.218), we first use (2.170) and obtain 

m~ - m h Cvlqlx 2 
" '  % z ( % ) 3  • Z .... _ M*U .4 24P4tOLm£OaLO(4n)2 [-(.OL2Z(O)L)__ 2 3 (2.223) 

In the limit O)LO"=)'O, w e  can rewrite the term in brackets in (2.223) as a function 
of OX/Oo) : 

Z"~== M*~*'* 24Pg(4x) 2 \C~-~/,oL_~,LO/2 

C F m e - m  . (~2Z) 
- 24 M*#*  ~ "lql. \~ )o,~-,o~ol~ 

(2.224) 

We thus recover (2.218) except for a factor of 1/3 which steins from the angular 
integrations which have not been correctly performed in (2.218). Note that 
whenever Z(c%) is real (2.224) is pure imaginary as CF is pure imaginary [-see 
(2.213)]. This means that this type of forbidden scattering does not interfere 
with allowed scattering. 

c) 2-d Critical Points (E l ,  E I + A 0 - E d g e s  

The case of a two-dimensional critical point is treated in detail in I-2.74, 1901 
with particular application to the E 1, E 1 +A 1 gaps of germanium and GaAs. 
We give here the result for a single critical point (there are four E 1 gaps along 
the equivalent { 111} directions but their contributions to the Raman suscepti- 
bility are not equivalent 9. For q along one of the "two-dimensional" directions 

(the other being y), we have 

1 , 2CFlql (Se-Sh) j(cqfl)l(clP~lv>12, 
(4n)- Z.~.~= a°°9 ff CO2o (2.225) 
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where 

(a +/~ 3ff~2) I/~ln/~-ln~. 
J(~'/~)= ~ 8~ ~ - ~ '  

= (~OL-- o ~ ) / ~ o ,  

fl = (co, - ~ ) / ~OLO • 

For other directions of the ellipsoid, the contribution to %~ can be obtained 
by means of a rotation of the axes [2.190]. Note that, because of the q- 
dependence, g~ transforms upon rotation like a fourth rank tensor. 

By transfc~rming the finite differences in (2.225) into a derivative with respect 
to co L (valid for coLO < [09L -- 090 -- iFI), we find 

(4n)- 1Z~,~; = ]/~ CF(So -- Sh)l<clP~lv>] 2 q 
4aon~Og~ (09L-- o91) 2 . (2.225a) 

For the case of the E 1 critical points, we can rewrite (2.225a) by using (2.185) as: 

3C v m e - m  h [a2Xl 
Z~'~= 16 #*M* q/0---~Y" ' (2.226) 

"" \ ~ ]~O=¢DL-~-CdJLO/2 

In (2.226), Z~. ~ represents the contribution of electrons with k along the [111] 
direction for Yllll0. The susceptibility Z which enters in the second derivative 
of (2.226) has been chosen to be that of all the {111} directions, equal to 8/3 
that of [111]. Except for a numerical factor of the order of unity, (2.226) is 
basically the same result as obtained in Sect. 2.2.8a (2.218). We should point 
out that for this case of an anisotropic mass tensor (roll >> m±), forbidden scat- 
tering can be observed even for ~ e / ~ ,  provided f'e and ~ do not coincide 
with the principal axes of the mass tensor. The scattering efficiency for this 
effect, however, has been estimated to be at most 1/50 of that for ~L}[~s [2.74]. 

d) Electric-Field-Induced Effect 
Forbidden LO-scattering can also be induced by a dc electric field Edc. In this 
case, the effect does not depend on q. A simple estimation of this effect for 
interband transitions can be made by noting that an electric field E introduces a 
change in the linear Z by the amount [2.191] 

2 lz4-o9 E / 1 \ a 3 Azu(~o) • ~-g). E ~ [o92 Z,i(o~)]. (2.227) 

The field E responsible for the effect under discussion is the sum of the FriShlich 
field ICvl(q/Iql)b ~ V-1/z [see (2.212), we omit the electron operators as irrele- 
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Fig. 2.40. Illustration of surface-field-induced LO- 
scattering in GaAs; for the cleaved samples no 
surface field is present and only q-dependent effects 
(including those induced by impurity scattering) are 
seen [2.192] 

vant for this discussion] and the dc applied field. Hence, we find 

[Cvl E 1 q 0 3 
(2.228) 

Note that (2.228), in contrast to (2.224), is real for Z(OJL) real. 
A complete calculation of this effect, without the restriction 
~0LO<I~0L--~00+iFI, has been performed in I-2.190]. The result agrees with 
(2.228) except for an unimportant replacement of 12 by 3ft. 

Equation (2.228) reveals a few interesting selection rules for the field- 
induced effect. If p* is isotropic (e.g., near the E o + A  o gap), the effect only 
occurs for Edcf[ q. Surface electric fields in back-scattering are thus ideal 
candidates for its production. The case of GaAs is particularly interesting 
(Fig. 2.40). If this material is cleaved well in vacuum, there is no pinning of the 
Fermi energy at the surface and hence no surface field. If cleaved in air, surface 
states pin the Fermi energy and, for electron concentrations ~10tVcm -3, 
surface fields sufficient to enhance the q-induced forbidden LO-scattering 
result. Note that the selection rules for OL,s are the same as in the case of q- 
induced scattering: for isotropic critical points, the scattering is polarized (~ I1 es). 

2.2.9 Resonant Raman Scattering: Effect of Exciton Interaction 

We have limited ourselves in the discussion of the quantum theory of resonance 
Raman scattering to the case of intermediate states which are uncorrelated 
electron-hole excitations (except for the phenomenological treatment of the 
fluorites in Sect. 2.2.7). The simplest form of correlation between these two 
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Fig. 2.41a, b, Allowed (a) and forbidden (b) resonance Raman efficiencies calculated with param- 
etcrs appropriate to CdS and GaP  and also experimental points. The lines are theoretical. The 
solid lines includc exciton interaction; the dashed ones do not [2.195] 

particles is the screened Coulomb interaction; it produces bound states 
(excitons) and modifications of the interband continua [2.48, 193]. As already 
mentioned, the latter do not modify the behavior of S near resonance in as far 
as their effect can be taken care of by multiplying the static Z(co) by a phase 
factor (Sect. 2.2.5). 

A number of calculations of allowed and forbidden resonant Raman 
efficiencies, including discrete excitons, have been published [2.189, 194-1. These 
works involve numerical integrations of gamma-functions whose physical 
meaning is not very transparent. In order to simplify the treatment, the exciton 
is often added in ad hoc manner based on the susceptibility expressions such as 
(2.174, 224). One or more Lorentzian excitonic dispersions are added to the 
interband terms or, equivalently, experimental spectra including all exciton 
effects are used for X(og) in the expression which contains this function I-2.52]. A 
qualitative examination of the published full calculations indicates that this 
method works well for allowed scattering. For  forbidden scattering, however, 
there is a large cancellation below the lowest exciton of the contributions of this 
exciton and those of the continuum. In spite of this cancellation, a net 
enhancement of the scattering efficiency near the n =  1 exciton by about one 
order of magnitude results in cases such as GaP and CdS [2.189] (Fig. 2.41). 
Above co o some destructive interference between discrete exciton and con- 
tinuum occurs and the calculated efficiency is lower than for uncorrelated pairs. 
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The comparison of the experiments with these predictions is not too 
satisfactory at the moment : the experimental results (see Fig. 2.41) do not lend 
support to the asymmetry in the resonance predicted by the theory. Lifetime 
effects in the continuum probably lift the destructive interference predicted by 
the theory. Calculations of this effect using a polaron picture for the in- 
termediate state continuum have been performed by Ferrari and Luzzi [2.195]. 
These calculations restore, at least qualitatively, the good agreement between 
theory and experiment which existed before introducing the exciton interaction. 

Excitonic effects are observed most clearly in the phenomenon of resonant 
polariton scattering [Ref. 1.2, Chap. 7]. We present, therefore, before closing 
this section, the Hamiltonian for the exciton-polariton interaction and discuss 
some of its features [2.196]. The Hamiltonian for Fr6hlich interaction is 
obtained by taking matrix elements of (2.212) between two excitonic states 1 
and 2 of total k equal to k L and k~, respectively. Their wave functions are : 

IPl = ~ V  eikI"/14)l(~) 

~2 = ~VV eik~'R4~2(Q)' 

(2.229) 

where qSi(0) represent the "envelope function" with respect to the relative co- 
ordinate Q= r , - r  h and R =  (M)- l(mj" e +mhrh) the center-of-mass coordinate. 
The part of ~e~ (2.212) which acts on conduction electrons can thus be written 
as (phonon emission) 

(21~dl>~  = 1-~SSe-ir°"~a~(#)4al(o)ei('L-q')'RdgdR. 

mh 
By replacing into (2.230) r e = R + M--g #, we find 

Cv ~,,o.~ , 
(21a~ovll>o=TsSe ~b2(0Rbl(e)de for q=qL-qs, Iql 

(2.230) 

(2.231) 

zero otherwise. 
The Hamiltonian (2.212) yields the same expression (2.231) for interaction 

with the hole component of the exciton, except for a ( - )  sign and the 
replacement mh--*-m~. We thus obtain for the total Stokes interaction 

CF [e'-~-. Q' ._ e,~O'.]  q~(g)q5 l(Q)dg. (2.232} (2la~e~vll)v = 1~5  

A nonvanishing Frtihlich interaction with the exciton thus results only if 
m,=l=m~, a fact which we had already encountered in Sect. 2.2.8. Equation 
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(2.232) can be integrated if we take for ~b~(g)= q~z(#) the envelope function of the 
ground state of the exciton, which anyhow has the largest contribution to the 
optical oscillator strength: 

1 
~bl(Q) = - - e  - °/"°" (2.232a) 

We find [2.196] 

cF[1 1] 
( l [~=vl l )F= ~ -  il  +fl~q2)2 (1 +~-Zq2)2, (2.232b) 

where/3eh = aex. 

The same derivation would apply to deformation potential interaction 
except that the prefactor Cv[q[- 1 should be removed and each one of the two 
terms in (2.232b) must be multiplied by ~ and ~7 v, the deformation potential 
constants (properly normalized) of conduction and valence band, respectively 
(2.162) : 

(ll~evll)~-- (1 +/3~q2) 2 (1 +/72q2)2- (2.232c) 

For q ~ 0  (dipole approximation), the interaction of (2.232c) depends only on 
the difference between o~c- ~v, i.e., on do)o/d~. This is the result we have used so 
far for uncorrelated electrons. For q finite, however (beyond the dipole 
approximation), the effect depends on the separate values of ge and ~v if m e ~e mv. 
This rather surprising result suggests the possibility of determining absolute 
deformation potentials (and not only their differences) by measuring resonant 
Raman or Brillouin effects I-2.90]. We note that the modulation of )~(co) by the 
phonon which results in g.~ takes place, in the present case, through a modulation 
of the matrix element and not of the energy denominator. Hence, the Raman 
susceptibility in this case is proportional to 0X/&o instead of Ozg/Oo)2, see 
(2.254). 

2.2.10 Second Order Raman Scattering by Two Phonons 

Some of the basic facts about second-order scattering are discussed in [Ref. 2.1, 
Chaps. 1 and 3]. The relevant diagrams are given in Fig. lb-d  of that reference. 
Diagram ld, a "cascade" process using a photon as intermediate state, is 
negligible (at least for c%<O)o): the efficiency should be of the order of the 
square of the efficiency for first-order scattering, too small to be observed. We 
are thus left with processes lb and lc: lb is produced by the first-order 
electron-phonon Hamiltonian discussed so far [oWev here called o'4¢~)], iterated 
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to second-order perturbation theory. Figure lc of [-2.1] is related to the second- 
order electron-phonon Hamiltonian ~(z)  in first-order perturbation theory. 
The theory for the ~ff~(~) effect is thus usually isomorphic to that of the first- 
order scattering discussed above [2.197]. 

Away from resonances, and strictly speaking for o) L below all continua, the 
iterated ~ effect and that of ~ )  can be lumped together into a re- 
normalized Jf'~) and a theory isomorphic to that of the scattering by one 
phonon can be used. A few remarks concerning ~ '  and aff~ z) are in order. The 
diagonal matrix elements of ~ff~2) are (a similar expression holds for non- 
diagonal ones): 

(iloug~2)li) = ( ilo~t°¢(~)]i) + ~ ( i[9f'~)~) ('J[Of'~)[i) (2.233) 
) co i -- o)j 

For Stokes scattering, the two phonons involved in ~ ( ~  must have wave 
vectors q~ and q2 such that qx+qE=q, where q is the scattering vector 
(Sect. 2.1.13). While q~ and q2 can extend to the whole BZ, q~0 .  For acoustic 
phonons, (ils~cg~)[i)~0 for q--*0 as a uniform translation cannot produce 
energy shifts. The corresponding matrix elements of Jg~), however, are not 
zero. In fact, it is easy to see that within the rigid ion model, o~'~(~ ) is related to the 
crystal potential U through [2.197] 

/Pc 1 O2U ) ~f4 1 
(2.234) 

where m are the atoms of the PC and ~,, the corresponding phonon eigenvec- 
tots. For the diamond structure both eigenvectors are equal and, using the 
orthonormality of the eigenvectors of different phonon bands, 

b* /4  1 oW~'=M- ~0--~12] ,,2 zbl  o~v 2ov2v 2, (2.234a) 

where •1,2 is zero if both phonons belong to different bands, one otherwise. 
Hence, the unrenormalized ~]ff) only contributes to overtone, not to com- 
bination scattering. Using for U the unscreened Coulomb potential of the 
atomic nucleus (atomic number Z), we find 

O20R 2U = -31 V2 U ~- ~ 4~Z 6(R). (2.235) 

By replacing (2.235) into (2.234a), we obtain (for T ~ 0 K )  

1 4x Z 1 
( i 1 ~ ) [ i )  =Dl"'3a2C°v ~ -3- [gti(0)[24covMV . (2.236) 
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Equation (2.236) contains the definition of the electron-two-phonon defor- 
mation potential D 1 with the normalizing factors with which it is usually given 
in the literature [2.198]. It shows that Da,~ is zero except when [i) is an s-like 
state (e.g. the conduction band F 2, of Ge. For the F2~, valence band, D o 
(F25,)=0. With the value of 5ui(0) obtained from Herman and Skillman's tables 
[2.199], one finds for the 4s levels ofGe ( - F  2, conduction band) D 1 -~ - 10 6 e g ,  
independent of the phonon under consideration. Since the renormalized /31 
must be zero for acoustical phonons of q--*0, we conclude that, at least in this 
case, a strong cancellation between the ~g(2) and the j~,~(t) terms takes place. 
Such a cancellation is not limited to acoustic phonons with q~0 .  For optical 
phonons, / )  1 "-- 103 eV [2.197] and a strong cancellation must also take place. 

It is instructive to evaluate D l using pseudopotentials and pseudowave 
functions. We obtain ([2.169], see also (2.196)) 

DI(F2,)=2~218(3 +72)Vs + 2fly ~/6(3v 3 + 1 lv 11)] 

Dl(Fzs,)=2rc2[8fl2Vs + 2fly V~(3v3 - 1 lv I a)]. 

(2.237) 

For Ge (v3= -3.1 eV, Vs=0, 1)11 = +0.82 eV), we find DI(F2,)= - 1 2  Dl(F25, ) 
= - 4 6 8 ,  Dl(Fz,)-Dx(F25,)=456 eV, a factor of five smaller than typical 
experimental values of D~ for the F25, phonon ( ~ 2  x 103 eV [2.74]). Hence, the 
cancellation between ~ }  and ~j2) terms is not as drastic in the pseudopotential 
calculation as it is when full wave functions are used. Since (2.237) is independent 
of the phonons under consideration, a cancellation must take place for TA- 
phonons of q ~0.  This cancellation can be seen explicitly in a recent calculation 
of the separate ,~jz) and d¢~ ~ terms performed with pseudopotentials for Ge 
[-2.199]. 

We note that pseudopotential calculations should give for .~,ff~12) the same 
results as a calculation using correct wave functions and potentials, as ~j2) 
corresponds to an observable energy shift. There is, however, no reason why 
both types of calculations should give the same values for the separate 
contributions to ~j2), ~jv 2) andS', (,krt°, (1))2/AE, In the pseudopotential calcu- 
lation,/3 for optical phonons is determined mainly by ~vt~J~) terms [2.199]. 

The Hamiltonian ~}2j which results from (2.234, 235) has the full symmetry 
of the space group of the crystal (F 0. It must, therefore, lead to second-order 
spectra of F 1 symmetry in which the pairs of phonons involved have this 
symmetry. Second-order spectra of F25, and F12 symmetry (for Ge) must thus 
arise from ~,JJ) terms, at least within the context of the rigid-ion model. The 
scattering efficiency for a perturbation of F 1 symmetry is obtained by differen- 
tiating the susceptibility with respect to the gap. For the case of the Eo, Eo + Ao 
gaps (Sects. 2.2.5 and 6a), one must pay attention to the fact that the density-of- 
states mass is affected by the change in 09 o induced by a F~ perturbation 
according to mS ~ p2/oj o. This is automatically taken into account by differen- 
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tiating (2.181) with C£ =constant.  We find for E o or Eo+A o 

dz /)1 | ][(I+n')(I+n2)V~Nd'2(COR)]'/2V-'/2' 
~"= d~  o 3a~-~M t a~ o~v~ 

(2.238) 

where Na, 12 is the density of two-phonon states with qv, +qv~ = q  per PC./31 is 
to be regarded as an average electron-two-phonon deformation potential 
including )ff~v ~ and ~ 2 )  terms. The differential scattering efficiency is obtained, 
as usual, by replacing (2.238) into 

( / 
(?O)R~30 } -- (4~)ZC 4 - 

(2.239) 

[compare with (2.18)]. In terms of the functions F and G of (2.172, 174), (2.239) 
can be evaluated by introducing the Raman susceptibility 

(4rt)- ~z~- Co b 24~ a2--~o {G(x) + 3F(x) + ½ [G(x') + 3F(x')]} 

.[! l + nl)( l + nz) VcN d, lZ(o~))'/Z V-  '/2 
co v, cov2M2 

C°e+C°v'/2+c°vJ2 x ' =  C°L+C°v'/2+°)vJ2 
X ~ 

~o COo + Ao ' 

(2.240) 

where (2.175) has been used. We note that (2.240) has the same form as (2.175) 
and thus vanishes for COL~O. One should not attach much significance to this 
fact as a constant can always be added to (2.240). 

For the component of the second-order spectrum of/ '25, symmetry, the 
~,~z) mechanism yields a susceptibility isomorphic to that of (2.191, 194). 
It is obtained by means of the replacement [2.197] 

do(n+ 1) 2(nl + 1)(n2 + 1) 
(2.241) 

and multiplying the resulting expression by the square root of the density of 
two-phonon states. Equation (2.241) is actually the definition of the defor- 
mation potential D25,. 

The contribution of E o and E 0 + A o to the F 12 component of the second- 
order Raman spectrum is isomorphic with the F25, component. To obtain its 
expression, it suffices to replace D2y by D12. This isomorphism does not hold 
for the contribution of the El, E 1 +A 1 edges. 

Resonant second-order scattering near the E 1, E I + A  1 edges has been 
observed for Ge, Si and a number of III-V compounds. The corresponding 
expressions can be found in the literature [2.44a]. They depend, for the /'1 
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component of the spectrum, on a deformation potential b 1 analogous to that 
defined in (2.236) for the E o edge. The F25, component is isomorphic to (2.201) 
and depends on two deformation potentials D~ o and D 5 The F12 component , 1 ,0"  

is isomorphic to the DS,0 intraband contribution to the F25, component. It is 
determined by the deformation potential D~, o [2.44a]. 

We would like to discuss an interesting relationship between the resonant 
F 1 component of the Raman spectrum and the temperature coefficient of the 
corresponding gap. Let us consider a gap (no. In the overtone Raman process, 
two phonons of wave vector q, and - ~ - q ,  are emitted. The Raman effect 
results from the modulation by the phonons of the ~o o gap, as given in (2.236). 
The temperature coefficient of the gap results from the emission of a phonon of 
wave vector q followed by its absorption. The coupling constants for these 
processes are the same and hence we conclude that the total efficiency for 
second-order overtone scattering and the temperature coefficient of the gap are 
related. Following this argument, the shift in the gap with temperature can be 
written as 

6 
Ao~ o - 3a2. ; 6  lvj ((2n + 1)co~- 1/31), (2.242) 

where the angular brackets represent an average over the whole phonon 
spectrum and the factor of 6 in the numerator is the number of phonons per 
unit cell. In the high temperature limit, 2n+ 1 ~-2kT/c9 v and the shift Ao) 0 is 
linear in temperature. Taking for Ge an average phonon frequency equal to half 
that of the Raman phonon (COv)~-20 meV, we find for the linear temperature 
coefficient of the gap 

do) 0 4 
d(kT) - a~M(og~) (/31) ~ 5 (from experiment). (2.243) 

Equation (2.243) yields (/31)=250 eV, in reasonable agreement with the results 
obtained from second-order Raman scattering for TA-phonons [2.44a, 74] [the 
TA phonons give, around room temperature, the main contribution to 
&oo/d(kT) ]. We should point out that a pseudopotential calculation seems to 
overestimate /51 for the acoustic modes and underestimate it for the optic 
modes [2.200]. A more recent erratum to [2.199], however, corrects this 
insufficiency [2.200]. 

We have so far discussed two-phonon scattering in the case in which the 
renormalization of ~u¢,(2) is possible. As resonance is approached, one must add 
ogi. to the denominator of the oge(ll term in (2.233) and this term can become 
more strongly resonant than a f  ~2). This effect, however, only occurs for certain 
phonons, namely, those whose q equals that of the resonant excitation. Thus, a 
deformation of the two-phonon spectrum from the density of two-phonon 
states expected in the ~oc2) case is observed. Near an indirect gap, the phonons 
which contribute to the gap absorption are enhanced in the two-phonon 
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Fig. 2.42. Resonance of the second-order 2TO Raman 
spectrum of silicon showing the preferential enhancement 
of the 2TO(I')  phonons as the E~ gap (~3.4eV) is 
approached I-2.218] 

Raman scattering spectrum. Such effects have been observed for Si, GaP 
I-2.171], GaAs [2.201], and the silver halides [-2.202] (Sect. 2.3.7). For direct 
gaps, the phonons with q =0 are enhanced in the two-phonon spectrum as the 
resonance is approached. For these phonons, the fourth-order perturbation 
term has three equally resonant energy denominators. An example of this effect 
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is shown in Fig. 2.42 for Si: as the lowest direct absorption edge at 3.4 eV is 
approached, the top of the two-phonon spectrum becomes deformed and one 
peak at the frequency of two Fzs, phonons appears. At this frequency the density 
of states is zero and hence shows no peak. The effect takes place either for 
deformation potential coupling (nonpolar modes, Fig. 2.42) or for Fr~Shlich 
interaction (Fig. 2.50 below). The latter, when allowed, is usually stronger than 
the deformation potential effects. At a frequency ¢o L somewhat off-resonance, 
the q for which the scattering efficiency has its maximum should be that at 
which, see (2.221), 

2 

qmax _____ ICOL-- C°ol- (2.244) 
2M* 

If the phonon dispersion relation is of the form (2.117), the position of the peak 
shifts as resonance is approached. We have so far implicitly assumed that 
2o3 v < F  so that in-going and out-going resonances coincide. If this condition 
does not hold, the resonance splits into three: 

in-going for COL = COO 

intermediate for COL=COO+COv 

out-going for COo=coo+2co~, i.e. cos=coo. 

(2.245) 

Explicit calculations showing these three resonant peaks can be found in 
[2.203]. 

Before closing this section, we want to briefly discuss the case of second- 
order ~(~)-type scattering involving the discrete excitonic state (with its center- 
of-mass kinetic energy) as an intermediate state. A particularly striking example 
of this type is the scattering by two F 12, phonons which resonates near the n = 1 
dipole-forbidden yellow exciton in Cu20 (see [Ref. 2.1, Chap. 3] and 
Sect. 2.3.6). In this case there is, for each q, only one intermediate state 
determined by q-conservation. The o~1) scattering mechanism contains three 
energy denominators. Two of them, those involving the absorption and the 
emission of photons, are nonresonant as in this case direct transitions to 
the resonating exciton band are dipole-forbidden. For the third energy 
denominator, there is only one intermediate state determined by k- 
conservation for each phonon q. Hence, this process diverges when COL--co~ is 
within the continuum unless we take F :~ 0. The scattering is given as a sum of 
the square of Raman susceptibilities over final, i.e., equivalently, over in- 
termediate states [Ref. 2.1, Eq. (3.86)] 

( o2Ss t ocl 0' for COL--%<COex(0) (2.245a) 

s - |   L-cov-co°X(0)]l/2 for c%-co >c0ox(0). 
F t 
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This process can actually be viewed as light absorption by indirect transitions, 
aided by the absorption of a phonon, followed by re-emission of a photon and 
emission of a second F~2, phonon. In this spirit, (2.245a)can be rewritten as 

(0 s / 
O('DO~r~]s 0(20{((.OL) ~R, (2.246) 

where e is the absorption coefficient for indirect transitions, F~ 1 the radiative 
recombination time and F-1  the total longitudinal recombination time of the 
intermediate state (indirect exciton). Equation (2.246) represents a situation 
which could be partially labeled as hot luminescence [Ref. 2.1, Chap. 1]. For 
F R < F, the real excitation to the intermediate state is only partially re-emitted 
as light. If the phase relationship of the emitted photons to the absorbed ones is 
determined simply by the two emitted phonons, the phenomenon is labeled 
Raman scattering. If there are other unspecified or unspecifiable processes 
determining this relationship, we may partly speak of hot luminescence 
[Ref. 2.1, Chap. 1]: F R has two components, one which corresponds to 
"coherent" two-phonon Raman scattering and another due to "incoherent" hot 
luminescence. 

In a two-phonon process of the ,3f~)-type, one can produce first the phonon 
of the wave vector qa and then q2 or vice versa. The two processes are not 
equivalent although the final states are the same. The scattering amplitudes for 
these two distinct processes must be added and then squared in order to obtain 
the scattering efficiency [2.204]; quantum interference can then result if the 
energies of the intermediate state of these processes are close. It is shown in 
[2.204] that these quantum interferences are negligible except in a narrow solid 
angle around the exact back scattering configuration. 

2.2.11 Multiphonon Scattering 

We have already mentioned that the coupling via the Fr6hlich interaction can 
produce, near resonance, very strong scattering. This is true for forbidden 
scattering by one LO-phonon and for scattering by 2 LO-phonons near F. 
Electron-phonon coupling via the Fr6hlich interaction can actually produce 
multiphonon scattering near resonance (up to about 10 LO-phonons are 
observed, see [Ref. 2.1, Fig. 3.20]). Several theories of this scattering have been 
proposed (for a review see [2.205]). They fall into two categories : those based 
on Frank-Condon mechanisms [2.185, 206] and those based on some form of 
perturbation calculation. The latter can actually be subdivided into two 
categories: those using real [2.8] and those using virtual intermediate states 
[2.9]. 

Although they share some aspects in common, these theories lead to partly 
contradictory results. Their authors claim in all cases partial success when 
comparing with particular experiments. Actually, the experimental data are not 
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very detailed as no absolute cross sections are usually measured or calculated. 
The difference between the various theories stems from a partial breakdown of 
perturbation theory. This is remedied in some of the theories by introducing a 
broadening of the intermediate states F which is produced, in part, by the 
Fr6hlich interaction itself. The results change drastically depending on what 
fraction of F is determined by the FrShlich interaction. This fraction will 
usually be a function of o) L. 

In order to illustrate this problem, we can consider the expressions 
(2.245, 246) for two-phonon scattering. If F does not depend on the coupling 
constant CF, the scattering efficiency is proportional to ]CF] 4, as expected from 
straightforward perturbation theory. As co L becomes much larger than 
C%o+COex, the Fri3hlich interaction becomes the main scattering mechanism 
which determines F and FoclCrl 2. Thus, the scattering efficiency becomes 
proportional to the square of the coupling constant or perturbation parameter, 
a rather unusual result in second-order time-dependent perturbation theory. 
Although it is often stated that this happens independent of the magnitude of 
the coupling constant, one has to take this with a grain of salt : as this coupling 
constant becomes small, F is no longer determined by LO-scattering. This 
proportionality to fCv[ 2 also holds in one-phonon processes within the limit of 
perturbation theory independent of coupling strength [2.205,207]. 

This feature is encountered again in the cascade models of multiphonon 
scattering [2.8]. In [2.8], for instance, real electron intermediate states and 
uncorrelated virtual hole states appear as intermediate levels. These electron 
states decay by the emission of one, two, or more LO-phonons. After the 
emission of m such phonons, the probability of emission of a photon is the 
"branching ratio" 

zR l(m) "CL°(m) (2.247) 
S =  Z?ol(m ) - ~.(m) ' 

where zR(m) is the radiative recombination time for this electronic state and 
rLo(m ) the scattering time for the emission of one phonon. This process 
corresponds to the emission ofm + 1 LO-phonons as, in order to conserve k, the 
holes must also emit one LO-phonon before recombination. The observation of 
sharp multiphonon lines at frequencies mCOLO( q --~0) depends on the existence of 
a flat dispersion relation near q = 0. 

The time z R which appears in (2.247) has been evaluated in [2.8] for CdS 
with co L = 09 o + 6COLO. The resulting relative scattering efficiencies reproduce the 
experimental results well. This treatment also explains the polarized scattering 
usually observed in the multiphonon case although this depends on the absence 
of a dephasing scattering mechanism, other than LO-phonon scattering, in the 
intermediate state. Even for LO-phonon scattering, some depolarization can 
occur in anisotropic materials such as CdS [2.208a]. In this case, one can 
calculate a linear polarization ratio for the m-LO process Q,,-  (0.85)" [2.208a]. 



Resonance Phenomena 147 

This ratio may be even smaller if other dephasing scattering mechanisms are 
present (such as impurity scattering). It may be decreased by the presence of a 
magnetic field B perpendicular to the polarization of the light (Hanle effect). In 
this case one obtains [2.208b] 

1 
O,,(H 4= O) = O,.(H = 0) 1 + c°2z2 ' H ,  (2.248) 

where co u = I~ngexB , gex is the exciton g-factor, and z~ the total lifetime of the real  
intermediate states. Equation (2.248) can be used to determine r; from the 
measured dependence of Q on H [2.208b]. 

The models of multiphonon scattering based on real intermediate states (of 
electrons only or of excitons) are designated as "cascade models". It has been 
pointed out by K o c h i k h i n  et al. [2.208b] that there may be an easy way of 
distinguishing between real and virtual intermediate states in multiphonon 
processes. For real  intermediate states, the ratio of the scattering efficiency for 
the m-LO process S m to S m_ 1 should be nearly independent of m, as obtained 
from (2.247) if we assume that the times involved are independent of m. For 
virtual processes of the m-LO type, however, one has m! topologically 
equivalent diagrams as one can permute the phonons in all possible ways (this 
is equivalent to the quantum interference discussed in the previous chapter for 
m = 2). Consequently, SIn~S,,_ ~ = m. This dependence of Sm/S m_ ~ on m has been 
observed for ZnTe [2.208b]. 

A calculation for the case of uncorrelated virtual intermediate states has 
been given by Z e y h e r  [2.9]. It has the drawback of assuming a q-independent 
coupling constant (thus it strictly applies to deformation potential but not to 
Frtihlich-type scattering). It illustrates very clearly, however, the effect of the 
coupling constant C on the lifetime of the intermediate states. For  m <  2, the 
integrals involved are well behaved in the limit F--*0 and S,, is proportional to 
[C[ 2" as expected from standard perturbation theory. For m>3,  the integrals 
diverge when F ~ 0  [see (2.245a)] and a weaker dependence on m results from 
the dependence of F on C. In fact, for m>4,  SmoclCl 6 independent of m. We 
note that on the basis of (2.247), S,,  would be independent of ICI provided the 
lifetime of the intermediate state is determined by LO-scattering exclusively 
(this, of course, will not be true for small ICI). 

We show in Fig. 2.43 the scattering efficiency S,, calculated in [2.9] for 
~o c = 09 o + 10O9co with a non-LO-related broadening F o = 0.01~OLO and for three 
values of the coupling parameter D defined as 

D = ICI2(1 + n)/8~o~LZo, (2.249) 

where n is the Bose-Einstein factor for the phonons under consideration. The 
behavior of S,, shown in this figure reproduces qualitatively the experimental 
results; see Fig. 3.20 in [2.1]. S~ is very strong and Sm first decreases with 
increasing m, to increase again strongly for e9 L -  mc%o ~-co w It should become 
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clear by now where the difficulties in the theoretical treatment lie: the results 
critically depend on the broadening parameter F and the detailed mechanisms 
which contribute to it. Different theories often differ only in the assumptions 
implicitly made for these mechanisms. A generalization of the calculation of 
[2.9] to the Frbhlich-type of q dependence of igor, including finite temperature 
effects, has been recently performed I-2.209]. 

We mentioned in Sect. 2.2.3 that the Frank-Condon terms are not usually 
relevant to Raman scattering whenever the intermediate states are extended 
states such as is usually the case for solids and for large molecules. In solids, one 
may actually have "localized" excitations if the electron and the hole are 
strongly correlated. Through the Fr6hlich interaction, such excitations can 
couple strongly to the lattice and produce a static displacement of the normal 
coordinate of the phonons of q ~-0 (polarons). Such displacement gives rise to 
Frank-Condon terms, as shown in Sect. 2.2.3. Near resonance, these terms can 
produce multiphonon scattering which must vanish away from resonance. It is 
therefore attractive to interpret the observed multiphonon phenomena as the 
result of Frank-Condon terms. The first such attempt was that of W~lliams and 
Smit [2.206]. These authors fitted the dependence of S,, on m observed for CdS 
for m > 3 with a phonon coordinate shift A approximately equal to the zero- 
point vibrational amplitude. A qualitative attempt was made to relate this 
value of A to the e~ and e,r of CdS. A more detailed treatment has been given in 
[-2.185] with particular application to the multimodes observed in YbS for 
m < 5. In this treatment, one diagonalizes exactly the phonon Hamiltonian plus 
the Fr6hlich interaction to obtain the so-called polaron states by means of the 
transformation 

bq~bq + --'Q~C* = bq + Aq, (2.250) 
qOOLO 
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where Q~(0) is the charge density of the exciton (Sect. 2.2.9). Hence, according to 
(2.250), the phonon coordinates are "displaced" in the excited state by an 
amount A~ which can be easily calculated, as done in Sect. 2.2.9 for the matrix 
elements of the exciton-phonon interaction in the case of ls excitons (note that 
in [2.185-1, it is implicitly assumed that mh~>me). The shift Aq is simply the 
exciton-phonon interaction term (2.231) divided by colo. 

The linear susceptibility X(co) can be obtained from (2.157a) for n t = n  o. In 
the cubic (isotropic) case and at T-~0 it is 

~, d 2t 

(4~) - 1Z(co) = I Po[ 2 V- 1 ,=o (co 0 + tcoLO -- co + i F) '  (2.251) 

where 

A 2 = y '  IA,I 2 . (2.251a) 
q 

Equation (2.251) explicitly contains multiphonon sidebands (phonon emission 
only, as we assumed T~0). Using (2.251) and standard expressions for the 
overlap integrals of shifted Laguerre polynomials, we find the Raman suscepti- 
bility for the nth multiphonon process [-2.185]: 

Z~)(coL)=[q....~ld,~12...lA,,126(qx + ... +q,)]i/2 

p = 0  

Expression (2.252) enables us to obtain R s as a function of the experimental 
linear susceptibility X, see (2.223). In the limit C%o~lcoL-coo-iFI, it can be 
simply transformed into 

m 
{m) __ + + ,  ° 

m I 
n! 

( D L O  • 

(2.253) 

The expected ruth derivative of X(co) thus appears in the expression for the 
Raman susceptibility for multiphonon processes [compare with (2.218)]. The 
resulting scattering is polarized for any order m as a result of our having 
assumed Z(co) to be isotropic. The coefficient in front of the derivative is 
obtained through a 3 x ( m -  1)-dimensional integration of a product of factors 
of the form (2.231). This integral is rapidly convergent while the integral which 
determines A in (2.251a) depends strongly on the maximum ofq  chosen for the 
integration (-~size of Brillouin zone). 

We note that (2.253) also gives the susceptibility for forbidden scattering by 
one LO-phonon provided one keeps the scattering vector in the argument of 
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the Kronecker-fi [fi(q 1 - q ) ] .  The result is the same as that found by treating the 
exciton-phonon Hamiltonian (2.232b) in perturbation theory: 

me--tnh2 ( 6~Z ) 
Z.~ 2M a~xCv ~ q" (2.254) 

In the discussion above, we have solved exactly the sum of the exciton, 
phonon and exciton-phonon Hamiltonians under the assumption of only a ls 
exciton state. When excited exciton states are included, quasibound exciton 
LO-phonon states may result [2.210]. In a more accurate treatment, these 
states must be included as intermediate states for mult iphonon LO-scattering. 
This has been done recently by Jain and Jayanthi [2.211]. 

2 . 2 . 1 2  B r i l l o u i n  S c a t t e r i n g  

As discussed in Sect. 2.1.14, the cross section for Brillouin scattering with (DE 
not tOO close to an excitonic resonance is obtained from the elasto-optic 
constants, see (2.100). In germanium-zincblende and fluorite-type materials, 
there are three independent elasto-optic constants Ply, P~2, and P44. For  the 
purpose of their theoretical evaluation, one considers the "irreducible com- 
ponents" of the elasto-optic tensor p~ 1 + 2p t 2 (the effect of a hydrostatic strain), 
P l l - -P I2  ([100] shear) and P44 ([111] shear). 

As already mentioned, the theory of P44 in the neighborhood of a given 
critical point is, to a numerical constant, basically the same as that of the 
Raman polarizability a,. Near  E o, Eo+A o, for instance, one obtains an 
expression similar to (2.194) [2.169]: 

= _ ,, o f x '  (p4,)Eo 8 \ ~ / C0 ~ o  

(2.255) 

where the deformation potential d is defined in (2.197). We mentioned in 
Sect. 2.2.6a that there is some uncertainty concerning the value of the constant 
C o - 2. Regardless of this uncertainty, this constant should have the same value 
for P44 as for a since the theories of the two parameters are completely 
isomorphic. It is thus possible to determine C o from the experimental 
dispersion of P44 and the value of d found in independent experiments and to 
use this C~ to calculate ~ with (2.194). 

Near E o, E o + Ao, the elasto-optic constant p~ t - Pt 2 also has the same form 
as (2.253) [2.169]: 

3 /%\2  ,, b 4(Do [ (D o ]3/2 

(2.256) 
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where b is the deformation potential (in energy units) for the splitting of the F 8 
valence band by a [100] shear. Now, however, C'~ need not be exactly the same 
as in (2.255) because the angular integrations to be performed are not the same. 
Nevertheless the ratio of the two C o , is usually close to unity. The hydrostatic 
constant p11+ 2pl 2 is obtained from an expression isomorphic to (2.240). It is 
[2.169] 

3a Co{G(x) + 3F(x) + }[G(x') + 3F(x'] } (2.257) (P l l+2P t2 )eo -  2(Oo 

where a = &oo/d In 3a o is the hydrostatic deformation potential of the ~o o gap. 
These expressions must be suitably modified to apply then to the E o gap of 
diamond (Fzs,--*F 15 instead of F 25,--*F2,). The resulting expressions are given in 
[2.1763. 

For  the E 1, E 1 +A 1 gaps, a similar situation obtains. The contribution to 
P¢4 is given by (see (2.203), [2.1693) 

(P44)EI-- 41/~ \ e j [ 1 d~ol + 4  1 

and similarly for P l l - P t 2  and Pll +2p12, 

( p l l - p 1 2 ) = - ~  d~ [ A1 ] (2.258a) 

(Pl l + 2p12)EL = - 3  gideon, 

where dl,5 d3 ,5 d 3a, and gl are the appropriate strain deformation potentials, all in 
units of energy or frequency. We have given here the contributions of the Eo, 
E o + A o gaps in terms of the functions F and G and those of El, E 1 + A 1 in terms 
of Z (El) and Z (E'+m). Following the method of Sect. 2.2.5, it poses no problems 
to go from one type of expression to the other. 

2.3 Resonant Scattering by Phonons: Experimental Results 

For the quantitative interpretation of resonant light scattering in solids, it is 
necessary to have some fairly detailed prior knowledge of their band structure 
and lattice dynamics. Only then can one meaningfully proceed to the next step, 
i.e., to relate quantitatively the measured scattering intensity to electron- 
phonon interaction mechanisms. Perhaps the best understood nonmetallic 
materials are the tetrahedral semiconductors, i.e., those with diamond, 
zincblende, and wurtzite structure. Examples of resonant Raman and Brillouin 
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scattering have been given in previous sections to illustrate specific points of the 
general theory [see, for instance, Figs. 2.5 (ZnTe), 2.6 (wurtzite-type ZnS), 2.8 
(GaAs), 2.10 (zincblende-type ZnS), 2.11 (Si), 2.13 (ZnTe), 2.18 (a-Si), 2.30 
(diamond), 2.31 (GaAs), 2.40 (GaAs), 2.41 (GaP and CdS), 2.42 (Si)]. Other 
somewhat related families of materials have also been studied in detail ; among 
them we mention the antifluorites Mg2Si, Mg2Ge, and Mg2Sn [2.72] and the 
layer compounds GaS, GaSe [2.168] (see Fig. 2.32). The rocksalt-type silver 
halides AgC1 and AgBr are also very interesting as they possess an indirect gap 
which gives rise to an enhancement of two-phonon Raman scattering near 
resonance [2.202]. Of interest is also the case of Cu20, in particular the 
resonances observed near the dipole-forbidden yellow ls exciton [Ref. 2.1, 
Chap. 3], the two-phonon resonances related to indirect transitions and al- 
ready described in (2.245a) and the well-resolved in- out-going resonances of 
the F~2,-phonons around the Is exciton [2.212]. In this case, the ls exciton, 
dipole forbidden, is extremely sharp ( F t ~ 0 . 2  c m - i  at 6 K [2.212]) and so are 
the corresponding resonances. An interesting fact results: the width of out- 
going resonances is determined by the width of the phonon (0.24 cm-1 at low 
temperature) [2.212]. This material also shows Fr6hlich-interaction-induced 
forbidden scattering for polar F~ s-phonons. 

Finally, we will discuss the case of AgC1 and AgBr where perhaps the most 
striking two-phonon resonances at indirect gaps have been observed [2.202]. 

2.3.1 First-Order Raman Scattering in Germanium-Zincblende: 
Eo, Eo + A o Gaps 

a) Allowed Scattering by Phonons 

The scattering by free electrons and also by free holes can resonate near the E o 
gap whenever this gap is the lowest. Such is the case for GaAs, InAs, InSb, 
GaSb, InP. In these materials, the scattering by f ree  electrons can also resonate 
at the E o +A o gap. This effect is easier to observe than the corresponding E o 
resonance as it is free from the strong luminescence associated with the E o gap. 
We have shown in Fig. 2.31 the corresponding resonance of the spin-flip 
scattering (depolarized!) of n-GaAs. The solid line is a fit with the square 
of (2.149). Other examples of resonances of free particle scattering and of 
plasmon-LO-phonon coupled modes will be given in the contributions by 
Abstreiter and Cardona, Pinczuk, and by Geschwind and Romestain in 
[1.3]. The resonance near E o of the scattering by free holes in ZnTe, a standard 
material for observing this type of phenomena [2.213, 214], is shown in [Ref. 
2.214, Fig. 5]. The resonance of spin-flip scattering near E o in InSb is displayed 
in [Ref. 2.1, Fig. 7.16]. 

We show in Fig. 2.44 the resonance in the scattering by LO-and  TO- 
phonons measured for GaP near E o and E 0 + A 0. These gaps are not the lowest 
in this material, a fact which is rather welcome as it eliminates strong 
luminescence (which occurs at the lowest gap) and also makes the absorption 



Resonance Phenomena 153 

10-5 _ 

:>, 
® 

3 l0 " s -  

T 
E 
u 

u') 

10 -7 

i I I I I I 

GaP ,EO= + ^ 
• ~0 "'0 - -  TO theory / ~ ,~  

-* [°}  ~b'°''''e "°'°'' /~1 
Z ~ t -  1 

2." T o _ I ,.t,,ti,,o ,,,,tu.s , I  '%\ u ,o,  ++ 

• o i +  +' 

I I I I I I 
1.8 2.0 2.2 2./, 2.6 2.8 30 3.2 

~deV] 

Fig. 2.44. Resonance in the 
one-phonon Raman scatter- 
ing of GaP near Eo, Eo+Ao 
and fit with (2.194). From 
[2.49] 

correction easier. The agreement between the calculated and the measured 
curve is rather good although in this case, the spin-orbit splitting A o is too small 
to permit an unambiguous determination of the resulting structure. The fit of 
(2.194) to the observed absolute scattering efficiencies yields the deformation 
potential d o [defined in (2.188)]=27eV, in rather good agreement with 
predictions from pseudopotential (do-~ 26 eV) and LCAO theory (do-+ 29 eV) 
[2.177]. 

Similar resonances have been studied for AISb [2.215], GaAs [2.74] and 
ZnS, ZnSe, and ZnTe I-2.52]. We have already shown the results for ZnTe in 
Fig. 2.6, where the theoretical fit takes into account some exciton interaction in 
the phenomenological manner discussed in Sect. 2.2.9. The deformation poten- 
tial obtained from the fit is do=37 eV, also in reasonable agreement with 
calculations [2.73, 177]. Below Eo, one sees the difference in LO- and TO- 
efficiencies (SLo > Sro) as required by the Faust-Henry coefficient (Sect. 2.1.12). 

In Fig. 2.8 we showed the dispersion of the Raman polarizability a~ of GaAs 
obtained from the efficiency S with the expression 

dS Ecm-1 s t e r a d - 1 ]  = 4 .4  x 1 0 - 4  ( ° ) ~ [ e V ] ) + ( ~ E A Z ] )  2 
d~ (ao [/~.]) 3 #[at] ~oj[cm - ~]" (2.260) 

Equation (2.260) is written in hybrid units: these units are those most 
commonly used for each one of the quantities involved ;/+, for instance, is the 
reduced mass of the primitive cell in atomic units. In Fig. 2.44 we notice quite 
clearly the different character of the Eo and the Eo + Ao resonances. The former 
is sharp, corresponding to a two-band type of phenomenon ()~s ~ 8X/0c0). The 
weak E 0 +A o resonance stems from three-band terms: the electron-phonon 
Hamiltonian couples the F 7 with the F s states but has no expectation value for 
F v (Fig. 2.37). These facts are also evident in (2.194). 
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The solid line in Fig. 2.8 is a fit to the experimental data using (2.194, 201) 
with two deformation potentials, d o and d~. o (the latter will be discussed later). 
The value of d o =48 eV is obtained from the fit, also in agreement with typical 
values of this deformation potential [2.177]. 

We note that the fits to the data of Figs. 2.5, 2.8, 2.44 were made simply with 
(2.194, 195, 201), without having had to add any additional constants. Thus, 
antiresonances of the type described by (2.33a) do not occur (they occur, how- 
ever, in Brillouin efficiencies for the same materials (Fig. 2.15) and also for the 
Raman efficiencies of wurtzite-type materials (Fig. 2.6) [-Fig. 2.7 of Ref. 2.1]. As 
we have already mentioned, only the most resonant term of expressions such as 
(2.194) is, in principle, meaningful;lesser resonant and constant terms strongly 
depend on how the bands are cut off and on how P depends on co s . The 
empirical realization that (2.194) represents a well without any additional 
constant is, however, quite interesting and should be kept in mind. The 
deformation potentials d o , so obtained, are basically calculated with (2.196) 
provided one takes for v~ only the symmetric component of the pseudopotential 
if the structure is zincblende. 

The E o gap splits into A and B in a wurtzite-type material while E 0 + A o, 
unsplit, is normally labeled C. Resonances of scattering by Raman active 
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phonons in allowed configurations have been observed in ZnS (wurtzite) 
(Fig. 2.6), CdS [2.2163 and ZnO [2.216, 80]. The latter work is particularly 
detailed: absolute efficiencies are given (Table 2.8) and electron-phonon defor- 
mation potentials derived. 

b) Forbidden Scattering by Phonon 

Forbidden scattering appears in polar materials (-zincblende, wurtzite) for ir- 
active phonons and is always polarized, corresponding to the theory given in 
Sect. 2.2.8. It strongly resonates both near E o and near E0+Ao;  it can be 
stronger than the allowed deformation potential or electro-optic scattering very 
near resonance, especially very near the Eo+A o edge (the deformation 
potential scattering is barely resonant in this case). 

A quantitative evaluation of S in absolute units for forbidden scattering by 
LO-phonons is seldom found in the literature although it can, in principle, be 
performed as shown in Sect. 2.2.8. We present data in Fig. 45 for the Eo+A o 
edge of GaAs. These experimental results have been fitted with two alternative 
theoretical expressions : that of (2.222) based on parabolic bands, and that of 
(2.223) based on the experimental susceptibility. A quantitative evaluation of 
the efficiency for forbidden scattering at the peak of the latter (one of such rare 
evaluations!) [2.74] gives for the ratio SLO (forbidden)/SLo (allowed) 1.7_+ 1, 
in good agreement with the data of Fig. 2.45. A similar quantitative analysis 
of the E 0 resonance in GaP is given in [2.217]. 

2.3.2 First-Order Raman Scattering in Germanium-Zincblende: 
El, El q-A l Gaps 

a) Allowed Scattering 

The corresponding theoretical expression for the scattering by one phonon via 
the deformation potential mechanism is given in (2.203). Experiments have 
been performed for Ge [2.44a], Si [2.218], InSb [2.77], GaSb [2.219], InAs 
[2.220], GaAs [2.74], InP [2.221] and gray tin [2.222]. All the fits performed to 
the experimental data with (2.203) show that d~ o > d~ ot and therefore the 
three-band term involving the finite difference ratio (Z ~e')- X (EI +d'))A-{ 1 often 
dominates, especially in materials with small spin-orbit splitting A 1 (e.g., Si, Ge, 
etc.). In materials with large A 1 (e.g., InSb, GaSb), there is a noticeable 
contribution of the two-band terms represented in (2.203) by OZ/&ol, especially 
at low temperatures [Ref. 2.1, Fig. 3.16]. 

The resonant behavior of first-order Raman scattering by phonons in 
germanium near E 1 (2.1) eV and E 1 + A 1 (2.3 eV) is shown in [Ref. 2.1, Fig. 2.9]. 
If the two-band terms were dominant, one would expect sharp peaks at 
COL--~EI+O)TO/2 and COL~-El+dl+OSro/2. Instead, one sees a broad hump 
peaking between E 1 and E~+Ax. This is the characteristic result of 3-band 
terms: the two-band terms are completely negligible and one can set dS,o-0 in 
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(2.203). A m o r e  de ta i led  fit of  d a t a  o b t a i n e d  u n d e r  un iax ia l  stress (see be low 
d i scuss ion  for I nSb )  yields for Ge,  d 5 ~ - 0 . 7  d 5 1 , 0  - -  3 , 0 "  

F i g u r e  2.8 also c o n t a i n s  d a t a  for the  E t r e s o n a n c e  of  G a A s .  T h e  fit to these 
d a t a  can  also be pe r fo rme d  wi th  d 5 - 0 .  W e  o b t a i n  f rom this fit to the absolute l ,O  

efficiencies d s - 3 7 e V .  As we have  seen, the t h r e e - b a n d  t e rms  of  (2.203) 
3 , o -  

usua l ly  d o m i n a t e  the  sca t te r ing  process.  T h e  t w o - b a n d  te rms  a re  smal l  as a 
resul t  of  a c a n c e l l a t i o n  I-2.190]: a p h o n o n  p r o p a g a t i n g  a l o n g  [111]  lifts the 
ene rgy  of  the  E~ gap  a l o n g  [111]  (singlet) a n d  lowers  tha t  o f  the [1TT], [ ]11 ] ,  
[ ] 1 1 ]  t r iple t  while  keep ing  the  c e n t r o i d  i n v a r i a n t .  A deta i led  c a l c u l a t i o n  
[2 .190]  shows tha t  the c o n t r i b u t i o n  of  s ingle t  a n d  t r iple t  gaps  to Z~ nea r ly  
cancel  each o the r  [2.190].  If a stress a l o n g  [111]  is appl ied ,  the s ingle t - t r ip le t  
gap  d e g e n e r a c y  is lifted a n d  wi th  it the cance l l a t i on  j u s t  m e n t i o n e d .  The  
r e s o n a n c e  spli ts  in to  two (singlet  a n d  tr iplet)  whi le  g a i n i n g  c o n s i d e r a b l y  in 
s t rength .  The  expe r imen ta l l y  obse rved  effect is i l l u s t r a t ea  in Fig. 2.46a. 
F i g u r e  2.46b represen ts  a ca l cu l a t i on  p e r fo rme d  by  l if t ing the  s ing le t - t r ip le t  
degene racy  ou t  sp l i t t ing  the  s ingle t  a n d  t r iple t  c o n t r i b u t i o n s  to ~. F i g u r e  2.46b 
r ep roduces  the  increase  in s t r eng th  f o u n d  e x p e r i m e n t a l l y  qu i t e  well. As a f i t t ing 
pa rame te r ,  the  r a t io  d 5 o/d~, 0 -~ - 7  was d e t e r m i n e d  for l nSb .  3,  

The  va lues  of  dS3,0 a n d  dS~.o o b t a i n e d  f rom this  type  of  e x p e r i m e n t  are  listed 
in  T a b l e  2.10 a n d  c o m p a r e d  wi th  the resul ts  o f  several  ca lcu la t ions .  In  the case 
of  si l icon,  A 1 > F ( =  b r o a d e n i n g  of  the i n t e r m e d i a t e  state) a n d  (2.203) reduces  

Table 2.10. Deformation potentials d], 0 and d 5 ~.0 obtained from resonant Ruman experiments 
near E I and E~ +A I, compared with the results of several calculations [2.177] at the L point. 
The experimental data represent an average over the A direction of the BZ 

5 1 5 5 ' 5 
d~.o ,1~.o '/3'° + 21f2 d,.o d3. u/d,.o 

Theory ~ Experi- Theory a Experi- Theory ~ Experi- Theory ~ Experi- 
ment ment ment ment 

- 10.7 -30  ~ 48.3 45 e 44.5 34 d -2.8 - 1.5 b 
- 16.4 44.8 39.0 40 c -7.5 
- 8.8 37.6 34.5 - 1.7 -3.5 h 
-11.8 -22.5 ~ 40.3 45 ° 36.1 37 ¢ -3.8 - 2  b 
- 14.5 43.3 38.2 37 a -4.0 
-11.5 38.2 34.1 -2.1 - 7  b 
- 11.9 - 16 ~ 40.3 37 ~ 36.1 3V - 1.8 - - 2  f 

G e  

Si 
Sn 
GaAs 
InP 
lnSb 
lnAs 

" I-2.177], calculated at the L point with an LCAO method. 
b [2.190]. 

[2.53]. 
a S. Onari, R. Trommer, M. Cardona: Solid State Commun. 19, 1145 (1976), comparison with 
GaAs. 

derived from dS.o/a~.o and d~. o +(2V2 )- 'd~. 0 . 
r E. Anastassakis, F.H. Pollak: Solid State Commun. 13, 1755 (1973). 

[2.220]. 
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Fig. 2.47. Resonance in the 
first-order Raman scattering 
by phonons  observed in crys- 
talline Si. The points are ex- 
perimental, the crosses deter- 
mined by the Raman-Bril-  
louin method. The solid line 
fit was made with (2.201) for 
c~=l. The dashed line repre- 
sents the results of full band 
structure calculations I-2.152] 

to (2.201) and only the sum d~ 0+(2[ /2)- ldS , ~,o can be determined from the 
resonance data (Fig. 2.47). The fit to the experimental results obtained, in 
absolute efficiency units using the methods of Sects. 2.1.18b, 2.1.18c, is 
shown in Fig. 2.47. The fit with (2.201) using for Z(Og) the data of [2.223], yields 
a combined deformation potential d~, o + (2 ~/2)- ~ d~,o = 27 eV. 

b) Forbidden LO-Scattering 

Forbidden LO-scattering, resonant near E~-E~  +A1, has been observed for 
most III-V semiconductors. For GaAs, a quantitative estimate of the scattering 
efficiency was made using the expressions of Sect. 2.2.8. This estimate agrees 
with experimental results I-2.74]. For InSb, strong changes in S~ were observed 
for the forbidden scattering upon application of uniaxial stress along [111] (see 
Fig. 2.48). In this case, the contributions of singlet and triplet gaps to the 
Raman polarizability is additive and the sum must be squared to obtain the 
efficiency. When the singlet gap is split from the triplet upon application of 
stress, the square of Z~ decreases approximately by a factor of 4, in agreement 
with Fig. 2.48 [2.190]. 

2.3.3 Second-Order Raman Scattering in Germanium-Zincblende 

The macroscopic theory of scattering by two phonons has been discussed in 
Sect. 2.1.13 and the microscopic treatment is given in Sect. 2.2.10. Examples of 
second-order spectra are given in Figs. 2.11, 2.42 (Si) and 2.13 (ZnTe). The F 1 
component of the two-phonon spectra is usually dominant and corresponds 
mainly to overtone scattering. The F 12 component is negligible. The Raman 
susceptibility z ,  0 Z/0~ia~j of (2.97) does indeed tend to zero for o)v--*0 and can 
be usually approximated by (02Z'/O~ia~j)~v,~zo)v,, at least for small mv,'s. 

As we have seen in Sect. 2.2.10, away from resonances the second-order 
scattering is produced by a renormalized second-order electron-phonon 
Hamiltonian ~ ) .  When resonances are approached, terms due to J t ~  ) taken 
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Fig. 2.48. Forbidden kO-resonance measured for 
~LII~I[ 1 T0 in lnSb under a uniaxial stress along [111]. 
[2.190] 

Fig. 2.49. Indirect 2 TO-resonance near the L and X 
gaps of GaAs [2.201] 
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in second order may become dominant;  their contribution to Zs appears in 
fourth-order perturbation theory and can be strongly resonant. We distinguish 
two types of ~,vtf,~)) terms: 

i) co L near an indirect gap E i such that  at the gap k c -  k v = K 

In this case, the pairs of phonons with qa = - q 2 " ~ K  appear in the expressions 
of %.~ with an energy denominator which vanishes for COL = CO~ + o~v(K ) (Stokes). 
Hence, the second-order spectrum becomes deformed, deviating from the 
density of states. Such effects can be used to identify the K's involved if the band 
structure is not well known but the phonon dispersion is, and vice versa to 
identify ql -~ - q 2  if the phonon dispersion is not well known but the band 
structure is. An example, which helped to identify the relative position of 
the X and L conduction band minima in GaAs, is shown in Fig. 2.49 [2.201]. 

ii) co L near an al lowed direct  gap 

The W(t) terms have three resonant energy denominators (2.245). The maxi- 
mum enhancement takes place whenever all denominators are nearly zero. This 
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is only possible if the q-vector of the phonon is approximately zero. Hence, in 
this case, the two-phonon spectrum deviates from the density of states near 
resonance in the sense that for the phonons with q---0, a peak appears. The 
maximum of this peak shifts slightly as coL sweeps through the resonant gap ; it 
corresponds to a phonon q-vector approximately equal to 

Iqll ~ I -  q 21---12M*(coL-- co0)l 1/2 , (2.261) 

see (2.244). The mass M* in (2.261) is that of the center of mass of the excitations, 
i.e., the sum of electron and hole masses. An example of the appearance of the 
q l ---0 phonon peak near resonance is shown in Fig. 2.42. The dependence of 
the peak position on co L according to (2.61) has been demonstrated experimen- 
tally for CdS [2.224] and for GaAs [2.225]. 

Peaks in the two-phonon spectra at q "-~0 have been observed for diamond 
[2.70-1, silicon ([2.218], see also Fig. 2.11), germanium [2.44a], and gray tin 
[2.222]. In silicon and germanium, the peaks disappear (Fig. 2.42) as one moves 
away from the resonance and the spectra again become isomorphic to the 
density of phonon states. In diamond, however, one is always far off resonance 
(the lowest direct gap is at 5.4 eV). Nevertheless, a peak which corresponds to 
phonons with q---0 appears. Three different explanations have been advanced 
for this peak (which otherwise looks very similar to that of Ge and Si near 
resonance!): (a) one based on a two-phonon bound state [2.82a] ; (b) another 
based on a true singularity in the density of states with a dispersion relation 
which has a maximum for q slightly away from q = 0 [2.81]; (c) a combination 
of (b) and an enhancement of the coupling constant near q = 0  [2.40]. 

We have discussed above the enhancement of the scattering by two 
phonons near q = 0  in the homopolar  materials with diamond structure. For 
the zincblende-type materials, this enhancement is much larger, as a result of 
the Fr6hlich interaction 

a) Eo, Eo-t-A o Gaps 

The most dramatic effect is perhaps the resonant scattering by 2LO-phonons in 
polar materials. It has been observed for GaAs [2.74], GaP [2.197], ZnS, ZnSe, 
ZnTe, [2.52], CdTe [2.226] and the wurtzite-type materials [2.216]. In the case 
of GaP, Zeyher [2.217] made a quantitative estimate of the scattering efficiency 
and showed that it agrees with experiment [2.197]. In this case, also a mixed 
TO-LO (Fr6hlich) process is observed [Ref. 2.1, Fig. 3.19]. 

As an illustration of the 2LO-FriShlich process, we show in Fig. 2.50 the 
resonance observed near E o + A o for GaAs [2.74]. The resonance of the rest of 
the two-phonon spectrum (that is, for phonons with q +0)  has been observed 
near E o (and/or Eo+Ao) for some lII-V's (GAP, GaAs), for the Zn- 
chalcogenides and for the wurtzite-type II-VI's. A peculiarity of the II-VI (both 
zincblende and wurtzite-type) is that such resonance is observed for co L ~< co o, 
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Fig. 2.50. Resonance in the Raman scattering by 2 L O ( l } - p h o n o n s  near tile Eo+do gap in 
GaAs [2.74]. Plotted is the ratio of 2 T O  to TO-scat tered intensities versus Raman shift 

but above co o, the second-order spectrum disappears except for the m-LO(F) 
peaks. The detailed reason for this is unknown to the author. 

The resonances of the two-phonon spectra with ql "" - q 2  2 0  can, in most 
cases, be measured and treated as due to ~.~v z) terms. Thus they are isomorphic 
or nearly isomorphic to the resonances of the scattering by one TO-phonon 
near E o. Near  E 0 + A o, the latter is weakly resonant (only three-band terms, see 
Sect. 2.3.1a) while the Fl-component  of two-phonon spectra can have two-band 
terms near E o + A 0 and therefore be more strongly resonant. This is illustrated 
in Fig. 2.51 for GaAs:  a peak in the ratio I(2TO)/I(TO) appears near E o +  A 0. 

From the ratio of the second-order scattering intensities or efficiencies to 
the efficiency for first-order scattering, the renormalized electron-two phonon 
deformation potentials /)  can be obtained provided do is known. A compilation 
of existing data is given in Table 2.11. We point out that throughout  most of the 
literature, the density of two-phonon states Nd.t2 of (2.238) in the case of 
overtones appears to be simply the density of the one-phonon states (with the 
energy scale expanded by a factor of 2) multiplied by the factor ~//2. The 2 in the 
denominator  was meant to represent the fact that the pairs ql, q2 and q2, qt are 
actually the same and should be counted only once (this, of course, can be taken 
care of in the definition of D). The constant i/is taken to be equal to one for 
longitudinal phonons and to 2 for transverse phonons in order to take their 
degeneracy into account. 
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Table2 .11 .  Tab le  of 2 -phonon  deformation potentials of gcrmanium and zincblende-type 
matcrials [cV] 

Eo Eo Eo E1 Et E1 

Dt Di Dls or Dz.s Dt DI s D3. o 

Ge 

Si 

Diamond 

GaP 
G a A s  

[nSb 

InAs 

2 TA 2 T O  2 TA 2 T O  
170 ~ 2534 ~ 

4800 ~ 
(Eo) 

675 a 1670 a 
170 ~ 2600 ~ 

620 r 15,000 f 

80 h 1220 b 

450 ' 
670(2 L A f  2070 c 
230 r 2200 f 

350 ~ 2500 g 
ZnS 1600 h 2470" 

(2 TO)  
5700 
(2 LO) 

ZnSe 545 h 510" 250 h 260 ~ 
(2 LO) (TA + LO) (TO + LO) 

ZnTe  575" 100 h 340 h 100 h 
(2 TO)  (TA + LO) (TO + LO) 

543" 
(2 TO)  
350 b 

(2 TO)  

140 e 
(TO + TA) 

390 ~ 
(LO + LA) 
4300 t 
(2 TO)  

" [2.44a]. ~ [2.74]. 
b [2.21g]. ' [2.77]. 

E2A76]. ~ E2.220]. 
d [2.197]. h [2.73]. 

b) E l , E l + A I G a p s  

Measurements of resonant second-order scattering near E 1, El + A~ have been 
performed for Ge, [2.44a], Si [2.218] and a large number of III-V compounds 
[2.74, 220, 221]. In the latter, strongly resonant 2LO(F) peaks are seen, no 
doubt induced by Fr6hlich interaction. 

The deformation-potential-induced resonance of the renormalized ~ v  2) in 
germanium is particularly interesting. We saw for the corresponding first-order 
effect of F2s, symmetry, that the two-band terms were negligible when 
compared to the three-band terms. This fact is not a requirement of symmetry 
but results simply from the specific values of the deformation potentials d~, o 
(responsible for two-band terms) and d~, o (three-band terms). Surprisingly, the 
same result is found for the F2s. component of the two-phonon spectrum : the 
typical three-band resonance with a broad maximum between E 1 and E 1 + A 
appears (see Fig. 2.52). 

The Ft components, however, should not produce three-band terms as 
shown in Sect. 2.2.10. Consequently, two sharp peaks are expected, one at E 1 
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Fig. 2.53. Resonance of the 2 TO (L) peak in 
the component of the second-order Raman 
spectrum of germanium near E],  E ~ +  d ~. The 
resonant shape is characteristic of two-band 
terms [2.44a]. Dashed curve: theory. Solid 
curve : experiment 
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Fig. 2.54. Resonance of the 2 TA (X) peak in 
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spectrum of germanium near E~, E t + A t . The 
resonant shape is characteristic of two-band 
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and the other at E 1 + / 1 1 .  This prediction is confirmed in Fig. 2.53 for TO- 
phonons near L and in Fig. 2.54 for TA-phonons near X. 

2.3.4 Elasto-Optic Constants 

As mentioned in Sect. 2.1.14, the Brillouin scattering efficiency in cubic 
materials is determined by the elasto-optic constants Pu" In anisotropic 
materials, a contribution can also result from the "antisymmetric" elasto-optic 
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Fig. 2.55. Piezo-optic constants  n44 and nl~ - n ~ 2  
of GaP  measured at room lemperature by means 
of birefringence induced by a static stress (crosses) 
and by stress-induced forbidden Raman scattering 
(dots with error flags). The solid lines are theoreti- 
cal fits (see text) [2.229] 

tensors which correspond simply to rigid rotations of the standard anisotropic 
polarizability tensor [2.28a]. We discuss here the standard elasto-optic con- 
stants (symmetric tensor) which can be measured directly either by the applica- 
tion of a static stress [-2.227, 228] or by setting up acoustic standing waves 
and measuring the elastic light scattering produced by the resulting phase 
grating [2.229]. These methods usually work well in the region below the 
absorption edge. In the region of strong absorption, near a critical point, the 
technique of piezoreflectance can be used [2.48]. In the intermediate region, 
such as the region above an indirect or a weak absorption edge, one can use a 
recently developed method based on the stress-induced first-order Raman 
scattering in a forbidden configuration [2.152, 153]. We show in Fig. 2.55 the 
"piezo-optic" constants nl~-rc12 and n44 measured for GaP with the static 
piezobirefringence (below the indirect gap ~oi~-2.2eV) and with stress- 
induced Raman scattering (above 2.2 eV) [-2.227]. These piezo-optic constants 
are related to the elasto-optic constants Pij used so far (2.100) through 

ZII - Z± = - 794.gS = - P4~4X 
c44 

Z I I - Z ± - - -  ~ (rq , - r q 2 ) X =  - ( ~: ] 2pl-~I - p12 cl 1 - c t 2  

where X is the magnitude of the applied unaxial stress and (e/%) = n 2. Hence, 

(for [1113 stress) 

(2.262) 

(for [100] stress), 

P44=c44n44 (2.263) 
Pll - -Pl2=(Cll - -Cl2)(nl l - -=t2)"  

The stiffness constants are, 
cll - c12=7 .9  x 101° Pa [2.230]. 

for GaP, C44 =7 .0  X 101° Pa and 
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Both spectra of Fig. 2.55 contain only the real part of rtu: in the photon 
energy region of these figures (below the direct gap), the imaginary part is 
negligible. Very little experimental information is available on the imaginary 
parts of elasto-optic constants which, according to (2.111), must also be used for 
the calculation of Brillouin efficiencies. Recent measurements for sili6on in the 
region 2.4 to 2.7eV yield rc44i _~ ~1i i - 7r'1" 2 3 x 10-14Pa -1 [2.228]. The corre- 
sponding values of the real parts are, in this region, one to two orders of 
magnitude larger [2.91]. Around the strong direct gap of Si at me"~3.3 eV, 
however, real and imaginary parts of 7~ become comparable (see Fig. 72 of 
[2.48]). 

For  the theoretical analysis of Fig. 2.55, we use a model composed of the 
E o - E o + A  o edges (2.255, 256), the E l - E l + A 1  edges (2.258, 258a) and an 
additive constant to take into account any other dispersion mechanisms such 
as the strong E 2 critical points (at 5.3 eV). The need for this constant, labeled C 2 
for [100] and C~ for [111] stress, appears clearly in Fig. 2.55 since the effect of 
the E 0 gap has an opposite sign to the background 7tu(CO=0). Such sign reversal 
of 7~is , which corresponds to an antiresonance in the Brillouin efficiency slightly 
below Eo, can only be obtained with the interference of two dispersion 
mechanisms. These are related, in our case, to E 0 -  E 0 + A o and either E 2 or E l, 
E 1 + A r We remind the reader that in order to fit the Raman polarizability c~ of 
zincblende-type materials below E 0, usually no E 1 and E 2 contribution is 
necessary and hence no antiresonance exists below E o. The E z contribution, in 
the units of Fig. 2.55 ( -  n4/~44 in 10- lo P a -  1), amounts to C 2 = 1.71 for [100] 
stress and C ~ = - 1 . 3 6  for [111] stress. The contribution of E o, Eo+A o is 
determined by the deformation potentials b {(2.256), [100] stress} and d 
{(2.255), [111] stress}. For GaP, b=  - 1 . 8 e V  and d =  -4 .6eV.  Hence, accord- 
ing to (2.255,256), the contributions of E o - E o + A  o to --n47~44. and 
-ng(/ l : l l - / r12)  are negative below E o. The positive C2=1.71 suffices to 
produce the observed antiresonance, but this is not the case for C z = - 1.36. In 
this case ([111]-stress), the antiresonance is produced within our model by 

interference with the E~ - E 1 + A 1 contribution to n44 (2.258) : d~ + 2 ]/~d~ is 
positive and large. Thus, E ~ - E x  +A x yield a large positive contribution to 

- -  n47,c44" 
The antiresonance in P44 and P11-P12 below E o is characteristic of most 

zincblende-type materials [GaAs, GaSb, Ge, ZnS, ZnSe (Fig. 2.15), ZnTe, CdTe, 
Inp, GaP (Fig. 2.55)]. For the materials of the family with a very small E 0 gap 
(lnSb, InAs), the Eo contribution to P44 and Pll  - P a  z increases enormously as 
a result of the o)0-denominator under d and b in (2.255, 256); all other 
parameters do not depend much upon the material under consideration. Also, 
the E1 and E2 contributions vary much less than the E0 contribution from 
material to material since these gaps also vary less than E 0 in relative terms 
(e.g., Ge:  E 2 = 4.5 eV, Eo =0.8 eV, InSb: E 2 =4.1 eV, Eo = 0.2 eV ). Consequently, 
for InAs and InSb, the sign of the E o contribution dominates even at co = 0 and 
no antiresonance takes place [2.48]. 
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elasto-optic constants  -n4p44 (solid l ines )and  
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The interference of two or three dispersion mechanisms in the theory of 7['44 
and ~11-~1z can give rise to a variety of qualitatively different spectral 
dependences of -n4~44 on photon energy. Several typical dependences 
observed, grouped into similar types, are shown schematically in Fig. 2.56. A 
compilation of spectral dependences of ~j  and/or Pu for zincblende- 
germanium-type materials is given in [-2.91]. 
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The experimental information on the hydrostatic piezo-optical (7E11 -~-2/Z 12) 
or elasto-optical constant (2pl 1 + 2pl 2) is more scarce. We show in Fig. 2.57, as 
an example, the hydrostatic pressure coefficient of the refractive index of GaAs 
which is related to ~11 + 2n2 through 

l d n  1 z 
(2.263a) 

The data in Fig. 2.57 were fitted with (2.257) using the well-known hydrostatic 
deformation potential a of the E 0 gap and adding a constant to represent the E 2 
and E~ backgrounds. Both the E o contribution and the background have the 
same sign and hence no antiresonance results below E o. 

2 . 3 . 5  M u l t i p h o n o n  S c a t t e r i n g  

As mentioned in Sect. 2.2.11, scattering by phonon overtones in crystals is 
characteristic of strongly ir-active phonons : they are not seen in Ge, Si, and the 
IIl-V's for m > 3 (in the III-V's, multimodes up to m =  3 have been observed 
only for GaP and possibly for InAs [2.233]). They are, within this family, 
typical for II-VI compounds of either wurtzite or zincblende structure. They 
have been observed near E 0 for CdS (to m = 9 I-2.231]), CdSe (to m = 4 [2.232]), 
ZnSe (to m = 5 [2.233]), ZnTe (up to m = 8 [2.234]), ZnO (to m = 5 [2.44c, 234]). 
Unfortunately, few quantitative experiments with efficiencies in absolute units 
are available, so that a comparison with the theory can be at best only 
qualitative. It has been conjectured [2.233], however, that the number of 
overtones seen (m) is roughly proportional to the square of the polaron 
coupling constant "c~" related to JCF[ 2 through 

"c~",h = [CvI2~(2/ZehCOLO) II2 • (2.263b) 

Also, as we have seen in Sect. 2.2.11, the relative intensities depend, for m > 3, 
rather critically on the details of the lifetime of the intermediate state. 
Systematic studies of such dependence are not available. Klochikhin et al. 
[2.208b] have, however, reported multiphonon results for CdS of different 
intermediate state lifetimes varying from zi ~ 3.5 x 10-1 z to  1.3 x I 0 -  l 2 s. A 
slight decrease in the efficiency for 3LO-scattering with decreasing ~ was 
reported which could be interpreted with (2.247). 

Overtone scattering is also observed for local modes of defects in crystals 
under resonant conditions. Particularly striking are the results obtained by 
Martin [2.235] for additively colored CsI, which seem due to local modes of 13 
complexes. These linear complexes have a symmetric stretch vibration at 
111 cm-  1. A symmetric vibration is known to produce overtone scattering for 
e)i~ near resonance via Frank-Condon terms (Sect. 2.2.3). As shown in Fig. 2.58, 
each one of these overtones is accompanied by a side band of lattice modes 
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Fig. 2.58. Raman multimode spectra of 13 in Csl measured at 8 K for coL=Z7 eV. Overtones of 
~o~=lllcm-~ up to m=17 are observed. Each overtone has a sideband of standard lattice 
phonons [2.237] 

roughly equal in shape to the density of one-phonon states, the q-selection rule 
being broken by the presence of the impurity (Sect. 2.1.16). 

Martin [-2.235] showed that the line width of the sharp overtones of 
Fig. 2.58 was determined by anharmonic decay into two lattice modes. Under 
these conditions, one has to ask whether the observed overtones are really true 
Raman lines with a final state corresponding to an mo9 v vibrational excitation 
of the local mode, or rather, correspond to a final state of the impurity in the 
vibrational ground state, the mm v vibrational energy being lost in the in- 
termediate state through anharmonic interaction with lattice modes. In the 
latter case, the phenomenon could be referred to as hot luminescence, the 
various phonons involved in the anharmonic process not being specified. An 
operational criterion for distinguishing between true Raman scattering and the 
type of hot luminescence just mentioned was also advanced by Martin: in the 
former case, the line width should be roughly proportional to m while in the 
latter it should decrease with increasing m being proportional to (mma X-m), 
where mma x is the highest overtone observed. Application of this criterion shows 
that, in the case of Fig. 2.58, one is dealing with true Raman scattering and not 
with hot luminescence. 

2.3.6 Cuprous Oxide (Cu20) 

Cu20 is a rather interesting material with very sharp edge excitons. The crystal 
structure, with 2 formula units per unit cell, has the full cubic point group (Oh). 
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There are, therefore, 15 optical phonons at the F-point. Using the method of 
Sect. 2.1.10, one finds their symmetries to be [2.236] : 2 x F~5 (it-active), Fzy 
(the only Raman-active modes), F25, F12,, F 2, (silent). The electronic band 
structure has also been investigated [2.237]. The valence bands correspond to 
an admixture of the 3d wave functions of copper and the 2p of oxygen. The top 
of the valence band has F25, orbital symmetry and possesses both Cu(3d) and 
O(2p) character. It splits under spin-orbit coupling into F 7 and F~-, the former 
being the uppermost valence band state. Thus, the spin-orbit splitting is 
neqative (inverted spin multiplet), a result of the negative spin-orbit splitting of 
Fz. ~, d-like states [-2.238] which is dominant (a similar result obtains for 
zincblende structure CuCI) [2.239]. The lowest conduction band is Cu (4s)-like 
and has F~ orbital symmetry at the center of the BZ. Hence, the lowest direct 
gap F2s,-oF1 occurs between states of the same parity and is thus dipole- 
forbidden (quadrupole allowed), in sharp contrast with most materials dis- 
cussed so far. It is this unusual feature which makes Cu/O such an interesting 
material. 

The so-called yellow exciton series is derived from the F¢ ~ F ,  energy gap. 
The binding energy of the n=  1 exciton is large, approximately 0.1 eV. This 
series is a classical example of the direct forbidden exciton [2.240]: the 
admixture of states with k ~ = - k h 4 : 0  makes the excitons weakly dipole 
allowed. The allowed exciton states must have a p-like envelope function and, 
therefore, only the s-like n = 1 state remains dipole forbidden (but quadrupole 
allowed). A second "forbidden" exciton series (the green series) is associated 
with the Fs + ~ F t  edge. The first allowed edge is /'25, (split into F7 + and Fs +) 
~F12, : it gives rise to the dipole allowed blue and violet exciton series (see, for 
instance, [2.241]). 

a) First-Order Raman Spectrum 

As discussed in [Ref. 2.1, Chap. 3], some of the Raman-forbidden F-phonons 
of Cu20 , namely those of odd parity (Fls,, F25, F12,, Fz,), produce resonant 
scattering at the forbidden ls yellow exciton. This resonance has been 
attributed to a dipole-quadrupole mechanism: the incident photon virtually 
excites the even parity ls exciton through quadrupole interaction, the phonon 
scatters it into another odd parity state from which it decays into the even 
ground state through emission of a photon. In this case, the phenomenon 
would show an in-going resonance. An out-going resonance is obtained by 
permuting the first and the last of those steps. The phonons involved in such 
processes must obviously be odd. Such resonant scattering has been observed 
for all odd phonons at 86cm -1 (F25), 109cm -1 (FI2,), 153cm -1 (F15), 
350 cm- 1 (F2,), and 640-660 cm- 1 (F 1 s TO and LO) [2.242, 246, 247]. 

Quadrupole transitions are known to be anisotropic with respect to the 
polarization direction even for cubic materials. Hence, the D-Q (dipole- 
quadrupole) resonances just mentioned should have rather complex polariza- 
tion properties represented, near resonances, by nonsymmetric tensors. These 
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tensors are given in [2.243] where it is shown that they give good explanations 
for the observed polarization properties of the F 15, Fzs, F12, and F 2, phonons. 
An interesting point is also the contribution of the Fr6hlich interaction to the 
D-Q scattering by the polar F~5 phonons. In Sect. 2.1.12, we saw that the 
interband Fr6hlich interaction (also Sect. 2.3.1a) adds an electro-optic contri- 
bution to the Raman susceptibility for LO-phonons. This contribution van- 
ishes, in the dipole-dipole case treated in Sect. 2.1.12, for materials with 
inversion symmetry since the first-order electro-optic tensor is zero. In the 
dipole quadrupole case we must consider, however, a susceptibility of the form 

c~2X 
c~q~E : qE, (2.264) 

where the q is introduced by the quadrupole operator and E is the field 
produced by the longitudinal phonon. The differential susceptibility ~2g/~qOE, 
a fourth rank tensor, need not vanish for a material with inversion symmetry. 
Consequently, we obtain for LO-phonons a "FrBhlich" contribution to the 
scattering efficiency in the DQ-case which has the same form as the defor- 
mation potential contribution: the tensor coefficients for the TO-components 
of F~5 phonons differ from those of the LO-phonons. For the upper F 15 
phonons, the ratio of the corresponding LO to TO efficiencies is -~ 5 [2.55] (it 
would be one if the effect of (2.264) were not there). 

Habinger and Compaan have recently reported an interesting phenomenon 
whose observation is only possible because of the very small width of the ls 
quadrupole line of the yellow series (~0.1cm -1) [2.243]. These authors 
observed the in-going and the out-going DQ resonances of the F~ 2' phonon and 
found them to have different widths, the second being wider by ~v ~ 0.11 cm- 
(halfwidth), precisely the width of the phonon. The explanation is easily found 
by looking at the standard expression for such a resonance, isomorphic with 
that of (2.161). In order to introduce damping in (2.161), we must replace the 
energy of the electronic intermediate state by ~oj + iFo, where F~ is the damping 
of the electronic excitation o~, in our case the ls exciton. For the in-going 
resonance, the halfwidth is precisely F e. For the out-going resonance, however, 
ms = mL -- ~Ov and ~Ov should also be replaced by ~ + i~,  where ~ is the damping 
of the phonon. We thus see that the halfwidth of the out-going resonance is 
Fo+Tv, as shown by the results in [Ref. 2.243, Fig. 13. 

We conclude by mentioning that the observation of DQ resonances has 
proved to be a powerful method for performing "quadrupole spectroscopy", 
i.e., to observe quadrupole allowed, dipole forbidden excitons [2.244]. By this 
method, the effect of stress on the ls, 3s, 4s, and 3d yellow excitons of Cu20 has 
recently been investigated [2.245]. 

b) Higher-Order Raman Spectrum 

We have already mentioned in Sect. 2.2.10, see (2.245a, 246), the scattering by 
2F12' phonons resonant above the ls yellow exciton. The effect can be seen in 
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Fig. 3.14 of [2.1], [2.246]. Another type of two-phonon resonance was reported 
by Yu and Shen [2.247]. It involves at least one polar phonon F~ 5 and a second 
phonon of either F 15 or F 12. symmetry. While the 2F 12' resonance of [2.246] 
involves only a resonance with the intermediate state in which one phonon of 
wave vector q l has been emitted, the present one involves, besides the 
intermediate state resonance, a resonance with either the initial or the final state 
(co L = e)ox or co, = ogex). The resonant excitonic states are now those for which the 
optical transitions are dipole allowed (2p, 3p... up to 6p have been observed). In 
these processes like in the 2F~ 2. process, the wave vector of the emitted phonons 
ql ~- - q z  is determined by the resonance condition in the intermediate state: 

OgL ~--"=-- (Dex "1- ~ "~ O)vL ' (2.265) 

where ogex is the energy of one of the exciton levels for K = 0 and M* the mass of 
its center of mass (M* = m e + mh). A characteristic of these types of phenomena 
is the fact that the q vector of the phonons is determined by the laser frequency 
through the mass M* (not/~* !). If the dispersion of the phonons is neglected, 
(2.265) leads to a nondispersive two-phonon peak in spite of the fact that ql 
changes with ogL-co~. The phonon dispersion near q = 0  can be taken into 
account through an "effective mass" Mp [see (2.117)] : 

q2 

co,,,(q) = o9,,,(0) + 2Mr,. (2.266) 

Combining (2.266) with (2.265), we find 

M • 
o9~, = o9.,(0) + (o9L - coo.) ~ - .  (2.267) 

Equation (2.267) can, in principle, also be applied to calculate the shift of the 
ql ~-0 two-phonon peak in the case of uncorrelated interband transitions (e.g., 
Eo+A o edge of GaAs [2.225], E o edge of CdS [2.224]). 

For  Cu20, the F12, phonons are nondispersive near q = 0  (Mp~-co) and 
hence no dispersion is seen in the 2F 12' peak [2.246]. The same thing applies to 
the / '12,+/ '25 peak. The peaks involving F15 phonons (e.g., Flz ,+Fx5  , 
2F12,+F15 I-2.247]) split into two: the splitting is linearly proportional to 
(OgL--COox), as predicted by (2.267). This splitting is related to a finite Mp, of 
opposite sign for the LO- and TO-components of the F~5 phonons. 

Perhaps the most spectacular effect is the scattering by 2F~2, optical 
phonons plus one or two acoustic phonons. This scattering, observed for LA, 
TA, and 2LA acoustic phonons, is strongly dispersive, as expected in view of the 
linear dispersion of the acoustic phonons for q- ,0 .  The observed dispersion 
can be fitted well with the known elastic constants of Cu20 [2.247]. 
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2.3.7 AgCI, AgBr 
These materials crystallize in the rocksalt structure. They have indirect 
absorption edges, from the L 3, valence band maximum (mixed p of halogen and 
4d of silver) to the silver 6s-like F t conduction band minimum [Ref. 2.248, 
Fig. 2.7]. This edge displays well-defined indirect excitons which are excited 
optically with the help of L-phonons ([2.202] and references therein). 
Correspondingly, the peaks in the second-order Raman spectrum which are 
assigned to two phonons at the L point of the BZ resonate strongly near the 
indirect excitons. The phenomenon is basically the same as the 2F12, two- 
phonon resonance of the ls yellow exciton of CuzO (Sect. 2.3.6a), except that 
the phonons are now at L instead of - F .  As shown in Fig. 2.59, 2TO(L), 
2TO(L) + Acoustic (X) and 2TO(L) + 2 Acoustic (X) phonons are observed. The 
X-phonons produce "intervalley" scattering between the different {111 } exciton 
branches. Above the 2TO(L) branch, a sideband involving intravalley scatter- 
ing by LA(F)-phonons [2TO(L)+LA(F)] is seen. This is shown in Fig. 2.60. 
The shape of the sideband is determined by the exciton mass of the center of 
mass M* [see (2.265), where ql is now the q of the intermediate exciton state 
before acoustic phonon emission, measured from the L point]. Figure 2.60 
shows three fits to this sideband for three different values of M*. From the best 
one, the value of M*= 1.4+0.2 I-2.202] for the lowest indirect exciton in AgBr 
is determined. 

Resonances of the two-phonon scattering near the indirect edge of AgC1 
have been recently reported I-2.249]. 
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Fig. 2.60, Resonant 2 TO (L) peak and 2 TO (L)+ LA(F) 
sideband observed in AgBr for We=2.695 cV (crosses). 
The solid lines are theoretical fits for M* = 1.2 (A), 1.4 (B), 
and 1.6 (C), respectively 12.202] 

Fig. 2.59. Resonant Raman spectra of AgBr at 1.8 K 
for different laser energies COL labeled by the difference 
ogt -o)c~ ({o,s is the energy of the ground state of the 
indirect exciton), The following structures have been 
identified I-2.202]: 2 TO(L); 2TO(L)+TA and LA(X); 
2 TO (L)+2 acoustic phonons at X 
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3. Optical Multichannel Detection 

R. K. Chang and M. B. Long 

With 9 Figures 

Many practical spectroscopic applications require a combination of low-light 
sensitivity and high stray-light rejection. To accomplish this, the conventional 
technique (hereafter referred to as single-channel detection) has made use of a 
multistage spectrometer for high stray-light rejection and a photomultiplier 
which is a quantum-noise-limited detector. The system has proven to be very 
effective when coupled with the associated photon-counting electronics and a 
multichannel analyzer for accumulating repeated scans across the spectral 
region of interest. However, while one particular wavelength is being monitored 
with the single-channel detection system, the spectral information at all other 
wavelengths is totally ignored, causing a considerable waste of time in 
obtaining the same signal-to-noise ratio. To avoid this, schemes have been 
devised for simultaneous detection over a wide spectral region. The first 
detectors for simultaneous multichannel spectroscopy were photographic 
plates. These simple-to-use, affordable photographic detectors provided spec- 
tral resolution which was limited only by the spectrograph. Unfortunately, 
photographic plates could not compete with the photomultiplier in terms of 
sensitivity, dynamic range, and real-time response, with the result that this 
approach remained unused for many years. However, the introduction of low- 
light-level television cameras and linear array solid-state detectors along with 
multistage spectrographs and minicomputers has led to the development of a 
new generation of optical multichannel analyzers (OMA) with drastically 
improved sensitivity, dynamic range, and real-time response. 

Although the impact of the modern OMA system on optical spectroscopy is 
not comparable to that of the laser, most investigators are increasingly aware of 
the potentials and merits of the OMA in this field. However, many experimen- 
talists are reluctant to change from the existing single-channel system to the 
OMA because of the difficulties encountered in deciphering the OMA termi- 
nology, gathering information on the physical principles of the television and 
linear array detectors and raising the necessary funds to purchase the OMA 
system. Therefore, this chapter emphasizes the physical mechanisms of several 
nearly quantum-noise-limited OMA detectors as seen from the point of view of 
the spectroscopist. The pros and cons of cost reduction by interfacing an 
existing computer with the OMA detector are also discussed. Less emphasis is 
placed on multistage spectrographs needed for large elastic light rejection and 
broad-band OMA detection. Excellent papers on the historical development of 
the OMA, analysis of the signal-to-noise ratio advantages of the OMA in 
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comparison to the single-channel detector and reviews of experiments which 
use modern OMA systems can be found in [3.1-9] and will, therefore, not be 
included here. However, a few examples of the unique applications of the OMA 
approach will be briefly described, and a glossary of terminology and abbre- 
viations related to OMA detectors and used throughout the text is presented at 
the end of the chapter. 

3.1 Image Intensifiers and Detectors 

Multichannel detectors currently most commonly used for spectroscopic 
applications can be divided into two classes, depending on the method by 
which the stored charge pattern is read out. One group (SEC, SIT, and ISIT) 
uses the vidicon TV camera technology where the charge pattern on the target 
of the camera is read out by a scanning electron beam, while another group 
(ISPD) makes use of a solid-state array of photodiodes and CCD shift registers. 
These recently developed detectors (SEC, SIT, ISIT, and ISPD) which have 
been shown to have quantum-noise-limited detection capability will be dis- 
cussed. Some of the older low-light-level television cameras (e.g., image isocon 
and image orthicon) will be omitted as they are no longer competitive in 
sensitivity and overall performance. Since both the ISIT and ISPD detectors 
make use of image intensifiers, the microchannel plate and the single-stage 
electrostatic image intensifiers will be briefly reviewed. 

3.1.1 Microchannel Plate (MCP) Image Intensifiers 

Figure 3.1 is a schematic diagram of the MCP intensifier consisting of a 
photocathode (e.g., S-20 or ERMA, typically 25 mm in diameter) coated on a 
fiber-optics faceplate, which is mounted in close proximity to a mosaic of 
electron channel multipliers. These channels are hollow glass fibers 10-40 gm in 
diameter that have an internal resistive coating. They are arranged in a regular 
array and are electrically connected in parallel by metal electrodes on each end 
of the tubes. The front (facing the photocathode) is maintained at a positive 
potential relative to the photocathode. Because of the small distance between 
the photocathode and the glass tubes, photoelectrons emerging from the 
photocathode are accelerated into the channels with little lateral motion, thus 
preserving the image integrity. The other end of the mosaic faces the phosphor 
(e.g., P-11 or P-20) and is held positive (-~1000V) relative to the front end, 
setting up a quasi-uniform voltage gradient along each channel. The accele- 
rated photoelectrons striking the walls of the channel cause secondary emission 
(6---1.4). These secondary electrons, in turn, travel down the channel with an 
energy typically of about 100 eV and liberate more secondary electrons where 
they hit the walls of the channels, eventually creating an avalanche of electrons 
in each tube. The electron transit time from one end to the other is about 1 ns. 
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Fig. 3.1. Schematic diagram of the MCP image intensifier. The bottom figure shows one of the 
many channels where secondary electron emission takes place upon every collision with the inner 
wall of the tube (from Varian Associates) 

The electron gain is about 103 to 10 ¢ and varies, depending on the applied 
voltage. After leaving the channels and upon striking the phosphor, these 
electrons produce cathodoluminescence, yielding many output photons in the 
green. The overall light gain of the MCP intensifier is about 25,000. 
Registration between the input and output fiber-optics faceplates is reasonably 
good and is determined by the center-to-center spacing of channels. A spatial 
resolution of 25 lp/mm at high-light levels and 10 lp/mm at low-light levels is 
typical. The MCP intensifier can be electronically gated (as fast as 5 ns) by 
switching the low voltage (---300 V) between the photocathode and the front 
end of the channels. At present, there appears to be some degradation of the 
MCP over its lifetime (thousands of hours). An MCP is used as the intensifier 
section in the ISPD. A review of the MCP can be found in [3.101. 

3.1.2 Single-Stage Electrostatic Intensifiers 

This device consists of a photocathode (S-20, S-25, or ERMA, typically 25 mm 
in diameter), an electrostatic lens with radially symmetric and longitudinal 
electric fields, and a phosphor (P-11 or P-20). If the voltage difference between 
the photocathode and phosphor is a few thousand volts, the high-energy 
photoelectrons impinging on the phosphor will produce a maximum light gain 
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of approximately 10-15. Voltages above 15 kV result in excessive dark current, 
while at the lowest voltages (1-3 kV), the image may rotate and become 
defocused. Even at the optimum operating voltage, the electrostatic lens is 
subject to severe aberrations including astigmatism, curvature of the image 
field, and radial distortion. The latter two distortions can be reduced by coating 
the photocathode on a curved fiber-optics faceplate which becomes the 
entrance window. Typical spatial resolution of better than 501p/mm can be 
expected at low-light levels. This device can also be gated by switching off the 
high electric field between the photocathode and the anode near the phosphor. 
Magnetically focused electron lenses have much higher resolution even with a 
flat photocathode. However, magnetic lenses are generally bulky and the fringe 
magnetic fields can introduce distortion in television cameras which use an 
electron beam to read out the charge pattern. An electrostatic lens is therefore 
used for the ISIT. A review of electrostatic image intensifiers can be found in 
[3.11]. 

3.1.3 Secondary Electron Conduction (SEC) Cameras 

A schematic diagram of the SEC TV camera is shown in Fig. 3.2. A photo- 
cathode (S-20, typically 25-40 mm in diameter) is deposited on the inner surface 
of a piano-concave fiber-optics faceplate. Photoelectrons are accelerated 
toward the target and focused by an electrostatic or magnetic lens. A unique 
feature of this camera is its target, which consists of a 500A. thick A120 3 
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Fig. 3.2. Schematic diagram of the SIT or SEC camera which uses a silicon or KCI storage target, 
respectively. The photoelectrons are accelerated and impinge on the target, causing a large amount  
of  secondary electron emission. The positive charge distribution stored on the target is brought 
back to the electron gun potential by the scanning electron beam 
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membrane followed by a 500A layer of A1 forming the signal electrode. 
Deposited on this AI electrode film and facing the reading electron gun is a 
highly porous layer of KCI with a density of about 0.02 g/cm 3. Photoelectrons 
with an energy of approximately 8 keV penetrate the A120 3 and AI layers and 
generate about 100 secondary electrons in the KC1 layer. Because of the electric 
field within the target, these electrons move to the A1 signal electrode through 
the vacuum interstices between the KC1 particles, thus the name, Secondary 
Electron Conduction. Persistence effects are avoided since the electrons do not 
move in the KCI conduction band. The resultant positive charge pattern on the 
KC1 layer corresponds both spatially and in intensity to the optical image 
focused onto the faceplate. The scanning electron beam returns the KC1 gun 
cathode potential by depositing electrons on the positively charged areas. This 
changing current is capacitively coupled to the A1 signal plate and consitutes 
the video signal. Alignment and deflection of the electron beam are accom- 
plished by transverse magnetic fields produced by external coils. 

Because of the high resistivity of KC1 and its low thermionic emission rate 
(less than 0.008 electrons/pixel/s), the charge image can be integrated and 
stored at room temperature for more than five hours without degradation of 
the image fidelity, provided that the photocathode is turned off or does not 
saturate the target by photocathode dark emission. The overall gain (typically 
15 : 1) can be varied by the photocathode voltage (3-8 kV) with no perceptible 
loss in resolution or image rotation. Gating of the SEC detector is possible by 
rapidly changing its photocathode voltage. This camera has a fast response to 
optical changes because it does not use a phosphor, which is known to have a 
luminescence persistence time. Furthermore, the secondary electron conduction 
takes place in the vacuum and not within the highly resistive KC1. The small 
amount of lag observed is believed to be caused by the stored charge residing 
within the KCI layer rather than on its surface. Therefore, in the first scan, more 
than 90 % of the signal is read out, leaving less than 10 % for the second scan. 
About five scans are needed to read out the charge pattern completely and 
insure linear response. The real-time dynamic range is about 50. For single- 
pulse spectroscopy, a single or multistage intensifier can be conveniently 
coupled to the fiber-optics faceplate of the SEC camera, and single photoelec- 
tron events can thereby provide sufficient video signal if a properly designed 
preamp is used. The SEC camera itself is nearly an ideal quantum-noise-limited 
multichannel detector, although the preamp associated with this camera is 
quite noisy. Unfortunately, an SEC based OMA system is not commercially 
available at present, even though Westinghouse developed the SEC tube well 
over ten years ago. A review of the SEC camera can be found in [3.12]. 

3.1.4 Silicon Intensified Target (SIT) Detectors 

In the SIT detector, the fiber-optics faceplate and the photocathode (which is 
coated on the concave side of the faceplate) are identical to those in the SEC 
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Fig. 3.3. Target structure of the SIT and ISIT cameras. The photoelectrons create electron-hole 
pairs in the Si wafer which diffuse into the reversed biased p n diodes and decrease the charge 
stored by the diode. The electron scan beam restores each diode back to Q.at 

camera. However, the target of the SIT (also called the EBS) camera is totally 
different. It consists of a dense matrix (about 6 x 10 4 elements) of p-type Si 
islands (see Fig. 3.3) with a typical center-to-center diode spacing of 8 gm. 
These diodes are diffused onto one side of an n-type Si wafer 5-50 gm thick. As 
in the SEC camera, a scanning electron beam is used to read out the signal. The 
p-type islands facing the electron gun are charged to a negative potential (i.e., 
the gun potential which is typically - 1 0  to - 1 5  V), making them reverse 
biased with respect to the n-type wafer which is maintained at ground potential. 
The SiO 2 film surrounding the p-type islands isolates the n-type wafer from the 
electron read beam and, because of the high resistivity of the SiO 2, this surface 
accumulates an electronic charge, causing it to be at a voltage nearly equal to 
the gun potential. The electron scan beam diameter (typically about 25 lam) is 
generally larger than the diode spacing which eliminates any need for 
registration between the beam and the p-n junction diode matrix (Fig. 3.3). 

The reverse biased p-n junction will have a depletion width of approximate- 
ly 5 gin, giving a junction capacitance of approximately 2000pF/cm 2. The 
charges stored in these individual storage capacitors can be discharged in two 
ways: (a) electron-hole pairs may be thermally generated within the depletion 
region and (b) holes can diffuse into the depletion region from the n-type wafer. 
Electron-hole pairs can be generated in the n-type wafer either thermally or by 
the accelerated photoelectrons emitted from the photocathode. The video 
output signal from each diode is created when the electron read beam returns to 
a diode and restores the original charge by re-establishing the full value of 
reverse bias. Since the number of electron-hole pairs produced is proportional 
to the number of incident photoelectrons, the extent to which the diodes are 
discharged is proportional to the incoming photoelectron flux. 

The photoelectrons striking the nondiode side of the n-type wafer have 
energies between 3 and 9 keV. Since 3.4 eV of electron kinetic energy are needed 
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to create an electron-hole pair in Si, the 9 keV photoelectrons will produce 
about 2600 electron-hole pairs. If the target is sufficiently thin, about 70 % of the 
holes will survive recombination in the n-type region and will diffuse to the 
depletion region of the p-n junction. Therefore, the target gain for photoelec- 
trons is approximately 1820 for a 9 keV photocathode voltage. Assuming a 
quantum efficiency of 10% for the photocathode, the overall gain (holes 
produced per photon) is about 182. 

There are several inherent features of the SIT detector which limit its 
performance. For example, the variation among the p-n junction diodes leads 
to a fixed-pattern charge image even though the illumination is uniform across 
the input faceplate. In addition, the sensitivity is greatest near the center of the 
tube. This roll-off of sensitivity near the perimeter of the SIT camera is 
introduced by the electrostatic lens, causing the photoelectrons near the 
perimeter of the target to possess less kinetic energy than those near the center. 
The ultimate resolution of the SIT is limited by the combination of the discrete 
nature of the p-type islands and the lateral diffusion of the holes in the n-type 
wafer before entering the depletion region. 

The problem of lag is an important consideration in attempting to achieve 
quantum-noise-limited detection. Unlike the SEC camera, where one scan of 
the electron beam erases about 90 % of the positive charge pattern stored on the 
KC1 target, the lag for the Si target is considerable. For example, as much as 
40 % of the charge pattern may still be stored on the target after one electron 
beam scan. To completely recharge the p-type regions, the target must be 
scanned many times. This charge retention affects the minimum detectable 
signal because of the preamplifier noise introduced by multiple read frames and 
is particularly limiting for single-pulse spectroscopy. The preamp noise of the 
PAR OMA-2 is equivalent to 2500 electron-hole pairs per channel on the Si 
target or up to two photoelectrons, depending on the accelerating voltage set 
by the photocathode potential. In practice, we have found that at least ten 
frames are necessary to read off 97 % of the charge signal stored on the target. 
Therefore, the total noise introduced by the ten successive read frames is 

equivalent to about ~ or 4-5 photoelectron counts. 
The causes of lag in the Si target are not fully understood. However, the 

most important parameters affecting lag are the following: (a) the effective 
junction capacitance of the target ; (b) the secondary emission characteristics of 
the target for the low energy read beam; (c) the electron beam current and its 
electron energy distribution, and (d) the amount of illumination which affects 
the reverse bias voltage on each diode. The junction capacitance as well as the 
capacitance of the depletion region under the SiO 2 are functions of the reverse 
bias voltage on the target. Increasing this voltage reduces the junction 
capacitance which decreases the ratio of peak video current to the permissible 
voltage swing of the individual diodes. Furthermore, this limits the dynamic 
voltage range of the diodes before electron beam bending will result from the 
transverse (i.e., parallel to the target surface) electric fields. However, since 
increasing the reverse bias voltage does substantially decrease the capacitance, 
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the charging ability of the electron beam is improved, and the lag is, therefore, 
decreased for a fixed electron beam current. Consequently, the usable values of 
the junction capacitance are restricted to a narrow range. The lag caused by the 
depletion layer in the Si under the SiO z is neither negligible nor well 
understood. 

The incomplete erasure of images on the first readout scan also affects the 
linearity (gamma value) of the detector. In particular, the acceptance of the scan 
beam electrons by the p-type islands is a function of their discharge level. For 
example, in one study, two target charge patterns at 100% and 10% of the 
maximum discharge level were considered I-3.13]. For  the particular scan used, 
the 100% signal was reduced to about 10 % after the first readout, while the 
original 10 % signal was reduced to only about 8 %. The video current levels for 
these two signals were not anywhere near the proper ratio of 10:1. 
Consequently, to insure linearity (gamma of unity), many scans have been 
found to be necessary for all single-pulse work. The scan rate of approximately 
30 ms for the entire target is more or less optimal. Faster scan rates cause more 
lag and decrease the video output. Slower scan rates improve lag but can 
decrease the video output because of the capacitive coupling of the video 
output through the n-type conducting layer (Fig. 3.3) I-3.14]. 

Upon cooling the SIT tube to - 4 0  °C, the lag is so large that, for a high 
illumination level, several minutes of continuous scanning may be necessary to 
completely erase the scene to an acceptably low level. We believe this increased 
lag is caused by the uncontrollable charging of the SiO z film by the read beam, 
which becomes more likely at lower temperatures. The film can accumulate 
enough negative charge to repel the electron beam and prevent it from 
impinging on the p-type islands, analogous to the control grid in a triode. 
Modifications of the basic diode array structure can prevent this charging 
behavior [3.14]. For example, Westinghouse manufactures a target in which 
electrically isolated conducting islands are placed over each p-type region. This 
so-called "deep etch metal cap" (DEMC) structure greatly reduces the area of 
SiO 2 that is exposed to the read beam [3.15]. Therefore, the uncontrollable 
over-charging of the SiO z is decreased. Furthermore, the acceptance of the scan 
beam by the p-type islands is increased as a result of the larger beam landing 
area and the porous nature of the metal caps. For  this arrangement, the 
blooming characteristics are also greatly improved. 

Cooling the SIT (EBS) to - 4 0  °C has been proven to greatly increase the 
signal-to-noise ratio for cw spectroscopy. The thermionic emission of the 
photocathode decreases as in the case of photomultipliers. Furthermore, the 
thermal generation of electron-hole pairs within the p-n junctions and the Si 
wafer is decreased. Consequently, the target can integrate photoelectron- 
produced charges for more than two hours without any read beam scanning, 
provided that the integrated charge does not reach a level that would cause 
saturation of the preamplifier. For  such a long integration period, the read 
beam should not be scanned and, in addition, the filament of the electron gun 
should be shut off until about 30 s before the beam readout is to be initiated. 
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The red glow of the filament can be optically guided into the photocathode by 
the glass envelope of the camera tube and thereby cause noise beyond 
photocathode thermionic emission. 

For cw operation, a selective scan format can be used to increase the upper 
limit of intense signal that can be detected, i.e., to improve the real-time 
dynamic range which is set by the preamp saturation level. The read beam can 
be made to scan those portions of the target where the intensities are known to 
be large more often than those portions where intensities are weak. Scanning 
re-establishes the p-type island potential, enabling that portion to receive more 
holes from the wafer without saturating the preamp. Accumulation is accom- 
plished in the computer memory which, in general, has an upper limit of about 
109 (i.e., memory dynamic range). 

For selective scanning, the computer does the following: (a) heats up the 
filament for 30 s before scanning, (b) restricts the scan format to the previously 
determined "bright" region of the target while the number of scans is 
determined by the lag considerations, (c) A/D converts these video signals and 
accumulates them in the appropriate memory locations corresponding to that 
portion of the target, (d) shuts down the filament for target integration, and (e) 
repeats (a)-(c), depending on whether or not the "weak" regions of the spectrum 
need to be scanned. During this time, the computer must keep track of the 
number of times each portion of the detector has been read out. In this way, the 
overall dynamic range for cw spectroscopy can be significantly enhanced. 

For pulsed operation, the SIT or EBS tubes can be gated by applying a 
voltage pulse to the intensifier focus grid. A 10 4 gating ratio can be achieved. 
Signals acquired when the gate is on (as short as 10-8 s duration) are retained 
by the target until the read scan, which can be after the integration of many 
pulses. We have experienced a substantial increase in the amount of back- 
ground noise as a result of gating when the PAR OMA-2 detector is integrating 
in the cooled mode. The origin of this increased background is not well 
understood. 

3.1.5 Intensified Silicon Intensified Target (ISIT) Detectors 

Most of the ISIT cameras have an ERMA photocathode allowing the detection 
of wavelengths up to about 910 nm. The main difference between the ISIT and 
the SIT is the addition of a single-stage electrostatic image intensifier discussed 
in Sect. 3.1.2. The output fiber-optics plate of the image intensifier is coupled to 
the input fiber-optics plate of the SIT with index matching oil. The loss of 
intensity for such coupling is typically 30 N and, thus, much less than the loss 
with lens coupling. With the additional gain provided by the image intensifier 
(about 10 to 40 x), the ISIT definitely has single photoelectron sensitivity 
(about 5 x above the preamp noise level). The ISIT is therefore more suitable 
than the SIT for real-time or pulsed spectroscopy of extremely low intensity 
where integration on the target is not desirable. 
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The ISIT can be electronically gated for durations as short as 10 ns by 
applying a voltage on the image focus grid of the intensifier. The ISIT detector 
is ideal for single-pulsed spectroscopy in the presence of a cw luminous 
background or long duration luminescence. The nonsynchronous signal can be 
gated out by a ratio of 104 : 1 while the synchronous signal can be detected by 
the preamp with good signal-to-noise ratio since each photoelectron cor- 
responds to about 5 x the preamp noise. The single shot dynamic range is still 
about 750. 

The ISIT is generally not cooled. At low temperatures, the phosphor 
persistence becomes extremely long, causing long retention of the optical image 
on the phosphor. Since cooling the photocathode also causes cooling of the 
phosphors in the same image intensifier, the option of lowering the photo- 
cathode dark emission rate is not available. For cw work where integration on 
the target is possible, we believe that integration on the target of the cooled SIT 
is equal to, if not superior to, the accumulation of single scans in the computer 
with the uncooled ISIT. At low signal levels and long accumulation times, the 
ISlT signal-to-noise ratio switches from photoelectron statistics to preamplifier 
statistics. 

3.1.6 Intensified Silicon Photodiode (ISPD) Array Detectors 

EG&G-PAR and Tracor Northern have introduced OMA systems designed 
specifically as multichannel detectors that utilize an intensified self-scanning 
linear photodiode array (ISPD). Unlike the SEC, SIT, and ISIT detectors 
discussed earlier, the ISPD does not use a scanning electron beam for readout 
but instead uses a multiplex switching scheme for periodic readout with an 
integrated shift register scanning circuit. The ISPD is currently available only 
as a one-dimensional detector while the SEC, SIT, and ISIT are inherently two- 
dimensional detectors (the photomultiplier is a zero-dimensional detector). 
However, the integrated circuit technology presently being used in the one- 
dimensional ISPD could be used to make a two-dimensional array detector. 
Future availability of such solid-state detectors will finally provide the 
spectroscopist with an excellent variety of quantum-noise-limited detectors 
from which to choose. 

The ISPD from EG&G-PAR consists of an MCP which is optically coupled 
to a self-scanned photodiode array (SPD from Reticon, S-series with 1024 
individual diodes). Each diode is 2.5 mm high, 13 lam wide, and separated by 
25 gm (Fig. 3.4). This 100 : 1 aspect ratio is convenient for typical applications 
where a spectrograph is used. Unlike the Digicon I-3.16] where the photoelec- 
trons emitted from the photocathode of the image intensifier are directly 
bombarded into the Si diode array (with a secondary gain of several thousand), 
in the ISPD, the photoelectrons from the photocathode (e.g., S-20, ERMA, or 
S-25) impinge on a phosphor at the end of the MCP intensifier. The resultant 
cathodoluminescence travels through a fiber-optics endplate which is optically 
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Fig. 3.4. Top and side views of the 
diode structure forming the ISPD. The 
bottom figure shows the relative diode 
sensitivity for an equal number of 
photoelectrons impinging on different 
portions of the ISPD ['3.17] 

coupled to the Si photodiode array. The MCP has sufficient electron gain 
( > 2 x 104) to allow the preamp of the SPD to produce one or several counts for 
one photoelectron. For maximum dynamic range (about 16,000 set by the A/D 
converter), the MCP gain is best set at one A/D count per photoelectron, which 
is equal to the rms readout noise of the SPD. 

The most unique part of the ISPD is the SPD, its construction, and 
operation. Each photodiode consists of a diffused p-type Si bar in an n-type Si 
substrate (Fig. 3.4), and a SiO 2 overlayer covers and protects the entire 
detector. The electronically driven shift register (see Fig. 3.5) sequentially closes 
the MOS switches which are associated with each photodiode, completing the 
circuit from the + 5 V  power supply (common bus in Fig. 3.5) through the 
reverse biased diode to the input of the charge-sensitive preamplifier (video line 
in Fig. 3.5). The actual equivalent circuit is more complicated but the essential 
points are shown in Fig. 3.5. The saturation charge, Q=,,, is restored on the 
junction capacitance when the MOS switch is closed, and the amount of charge 
needed depends on the discharge state of the diode. The recharging current for 
a given diode is presented to a common preamplifier, peak detector and A/D 
converter (14 bit). The output signal obtained from each scan of an N element 
array is therefore a train of N digital values, each proportional to the amount of 
charge necessary to recharge the corresponding photodiodes. A 5 MHz clock 
regulates the shift register and thus the sampling rate. Periodic start pulses from 
the shift register initiate each complete scan of the N diodes. The time duration 
between successive start pulses is the integration time of each photodiode 
(about 16 ms for one scan of a 1024 element array). 
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Fig. 3.5. Simplified schematic diagram of ISPD consisting of p-n diodes, MOS switches, and shift 
registers [3.17] 

Two mechanisms are responsible for the production of the electron-hole 
pairs which discharge the reverse biased photodiodes: (a) thermal generation 
within the depletion region, and (b) optical generation within the p-n diode, as 
well as at the space between the two p-type strips. The electron-hole pairs 
generated between strips will diffuse into the adjacent diodes to produce the 
response function shown in Fig. 3.4. The dark current per diode at room 
temperature is about 5600 electron-hole pairs rms after 1 s of integration. This 
value drops by a factor of 2 for about every 6.7°C. During the integration 
interval, the photo-induced electron-hole pairs and the thermally-induced 
electron-hole pairs remove a proportionate number of charges from the reverse 
biased diodes. If the thermal electron-hole generation rate is small compared to 
the optical generation rate, the spatial distribution of the charge deviation from 
Qsat on  the N diode array will mimic the one-dimensional intensity distribution 
on the phosphor of the MCP intensifier. 

The SPD is practically lag free. Less than 0.1% of the signal remained after 
the initial readout even when the light level was raised to 5 x the A/D converter 
saturation level [3.17]. The recharging of each diode lasts for less than 1 gs and 
does not depend on an electron beam as with the direct beam readout television 
cameras. In contrast to the latter detectors, the ISPD, because of its very low 
lag, has linear response (unity gamma) even after one readout scan. 
Furthermore, the well-separated distance between the photodiodes causes the 
blooming characteristics of the SPD to be exceptionally good. For a test signal 
with 1000:1 intensity ratio, even where the more intense beam produced a 
charge signal 20 x above the A/D converter saturation level, the cross talk was 
less than 1% for a spatial separation of 15 diodes [3.17]. In addition, because of 
the precise location of each photodiode within the SPD, the corresponding 
wavelength accuracy is excellent, giving an overall wavelength accuracy of 
0.025mm (the diode spacing) multiplied by the linear dispersion of the 
spectrograph. However, for high resolution spectroscopy, aliasing introduced 
by the discrete nature of these photodiodes can result which may falsely 
increase the apparent wavelength separation between peaks and decrease the 
intensity should the spectral line fall between the p-type strips [3.17]. 
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There are several sources of noise in the SPD system: (a) noise is introduced 
by thermally-generated electron-hole pairs which will completely discharge the 
diodes in 10 s at room temperature. This thermal shot noise can be greatly 
reduced by cooling the ISPD to a lower temperature. For example, at - 25 °C, 
less than 550 electron-hole pairs rms are thermally generated during 1 s of 
integration. Because of this reduced thermal noise upon cooling, the integration 
time of the diodes can be extended (e.g., 15 s at - 2 5  °C) [3.18]. Upon cooling 
an SPD to temperatures below - 3 0 ° C ,  a decrease in sensitivity to near IR 
wavelengths has been noted [3.18]. However, in an ISPD system, the spectral 
response is determined by the photocathode of the intensifier so that cooling 
the SPD array will not cause a decreased sensitivity in the red. Even longer 
integration times (severa I hours) are possible by cooling to lower temperatures 
( - 1 3 0 ° C )  [3.18]. However, at lower temperatures, the persistence of the 
phosphor in the MCP intensifier of an ISPD system becomes significantly 
longer and must be considered in pulsed spectroscopy. (b) Noise from the fixed 
pattern signal, arising from capacitive coupling of the transients from the clock 
driver signals onto the video line, is always present even in the absence of any 
photons or thermal leakage. The fixed pattern signal typically corresponds to 
about 1% of the full scale range. Although this signal is more a zero offset than 
a random noise component, any instability or noise in the clock waveform 
cannot be accurately subtracted in successive frames. Furthermore, the tem- 
perature of the array needs to be held constant, as temperature can change the 
MOS capacitance and in turn the fixed pattern signal. The fixed pattern noise 
appears to have a I / f  dependence (flicker noise) and is suspected to be related to 
the 1If noise in the MOS multiplex switches [3.17]. (c) Readout noise 
constitutes a random noise source arising from the pickup of the clock and start 
pulses, power supply noise, preamplifier noise, and resetting noise associated 
with restoring the charge in a given diode. Resetting noise which sets the lower 
limit to the noise is proportional to the square root of the diode capacitance 
and temperature and is independent of bandwidth [3.19]. At 25 °C, the rms 
resetting noise per diode is about 1000 electron-hole pairs for the Reticon S- 
series diode array [3.17]. The preamplifier noise is directly proportional to the 
capacitance of the array as presented to the preamp. This output capacitance 
can be fairly high (about 1000pF) since it is a parallel sum of all MOS 
switches connected to the video line (Fig. 3.5). The overall noise from all the 
various sources associated with the SPD is equivalent to about one photoelec- 
tron from the photocathode of the MCP. However, the ISPD is not a true single 
photoelectron detector because of two effects: (a) the secondary emission 
process in the MCP intensifier is statistical in nature, and (b) it is possible that 
photoelectrons may be incident between two p-type strips, thus causing about 
50% less electron-hole pairs to be generated than if the photoelectrons hit 
directly on one strip. 

The optoelectronic dynamic range of a single diode is the ratio of the largest 
signal before diode or preamp saturation to the system rms readout noise. This 
has been determined to be above 104 at - 140 °C (i.e., from about 800 electron- 
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hole pairs rms to about 4.1 x 106 electron-hole pairs per diode, which is about 
20 % of the diode saturation) [3.18]. However, the single diode dynamic range is 
not necessarily the OMA detector dynamic range (i.e., the intrascenic dynamic 
range), which is generally lower because of the veiling glare phenomenon 
introduced by the internally reflected light from glass, the Si wafer, and the 
metallic components. The intrascenic dynamic range of the ISPD, consisting of 
the MCP and SPD, is reported to be 16,000 : 1 for one readout scan. This ratio 
is vastly superior to the SIT and ISIT, especially with one readout scan [-3.16]. 
The memory dynamic range is of course much greater, since the computer 
memory can store up to 23~ or 2.1 x 109 counts. However, the 1If noise 
associated with the fixed pattern signal limits the signal-to-noise ratio improve- 
ment that can be realized with the memory accumulation mode to about a 
factor of 10 [3.16]. 

Many of the characteristics described earlier for the EG&G-PAR ISPD 
Model 1420 are also applicable to the Tracor Northern TN-1710 DARSS 
system. The major difference is in the SPD diode size (50 gm wide by 0.4 mm 
long for the DARSS system). The computer software of the two companies is 
somewhat different and needs to be taken into account if one is interested in 
purchasing an entire OMA system. 

3.2 Multistage Spectrographs 

Double and triple-stage scanning spectrometers have proven to be ideal for 
single-channel Raman and fluorescence spectroscopy since their stray-light 
rejection is many orders of magnitude higher than that of single-stage scanning 
spectrometers. For these instruments, higher stray-light rejection can be 
achieved by decreasing the width of the intermediate slits. In doing this, 
however, the total bandpass of the entire system is reduced, making these 
spectrometers unsuitable for OMA systems. 

When stray-light rejection is not a problem or can be accomplished with the 
aid of optical filters, it is tempting to convert an existing spectrometer into a 
spectrograph suitable for OMA detection by opening wide the intermediate 
slits and removing the exit slit entirely. However, the resulting spectrograph 
remains less than ideal. In general, spectrometers are less corrected for 
chromatic aberrations than are spectrographs. The dimension of the flat field 
region in the focal plane of spectrometers is often quite limited, which limits the 
spectral coverage having uniform resolution. A specially made fiber-optics 
plate, concave on one side to match the aberrations and flat on the other for 
coupling with the flat fiber-optics faceplate of an OMA detector, can extend the 
spectral coverage with less decrease in resolution to the blue and red side of the 
central wavelength at which the spectrometer is set. However, the design, 
fabrication, and finally the alignment of such plates are quite difficult, causing 
this approach to be unsatisfactory. 
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We have designed and constructed a spectrograph (0.98 m focal length, f/8, 
with linear dispersion of 0.5nm/mm) containing a single Jobin-Yvon 
110 x 110 mm 2 concave holographic grating with 2000 g/ram designed for a 
single-stage spectrometer [3.20]. The overall chromatic aberration was found 
to be tolerable when the 12.5 mm diameter SIT detector was placed at the exit 
plane. The stray-light rejection for such a mirrorless spectrograph was about 
109 for shifts beyond 500 cm-  1. The main advantage of this spectrograph was 
its low cost, which was essentially that of the off-the-shelf holographic grating. 
However, an aberration corrected grating (type III) is available from Jobin- 
Yvon, which instead of focusing on the Rowland circle, is designed to be 
stigmatic at three wavelengths. The amount  of aberration is about 10 x lower 
than that of classical concave gratings. 

Triple-stage spectrographs are now commercially available. Figure 3.6 is a 
schematic diagram of the Triplemate spectrograph from Spex Industries. The 
filter stage is a 0.22m subtractive double monochromator  containing two 
gratings. The first grating disperses the input radiation and the second, which is 
coupled to the first grating in a subtractive dispersion mode, collapses the 
dispersed radiation. The net result is zero dispersion at the entrance slit of the 
third monochromator.  The bandpass slit within the filter stage blocks the 
incident laser radiation but passes a band of the inelastic radiation. The 
bandpass of the filter stage is dependent on the dispersion of the two 
64 x 64 mm 2 gratings, as well as the slit width (0.5, 1.0, 2.0, and 5.0 ram). The 
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Table 3.1 a. Multistage spectrograph coverage and bandpass  

Grat ing Spectrograph b Filter Stage ~ 
[g /mm]  spectral coverage [ c m -  ' ]  nominal  bandpass  [ cm-  1] 

l n t e r m e d i a t e s l i t [ m m ]  
0.5 1.0 2.0 5.0 

150 5257 470 940 1890 4700 
300 5257 230 460 930 2300 
600 2646 110 230 450 l l00  

1200 1320 50 100 200 500 
1800 870 30 60 120 300 

From Spex Industries Preliminary Specifications for 1877 Triple- 
mate. 
b At 514.5 nm, 25 mm wide focal plane. 
c At 514.5 nm. 

linear dispersion of the instrument is determined by the third 0.5 m monochro- 
mator  which is equipped with three gratings mounted on a turret assembly. The 
unvignetted focal plane of the third monochromator  (25 mm wide by 10 mm 
high) is located outside the spectrograph, making it convenient to place the 
OMA detector so that the front face is precisely located at the focal plane. The 
spectral coverage of the triple spectrograph and the nominal bandpass of the 
filter stages are listed in Table 3.1. The overall stray-light rejection is specified 
to be 1014 at 10 bandpass units from the laser wavelength. 

Multistage spectrographs from other manufacturers work on essentially the 
same principle, incorporating a zero dispersion filter stage and a high disper- 
sion spectrograph which is well corrected for aberrations and vignetting. The 
stray-light rejection from a triple spectrograph can never equal that from a 
triple spectrometer. However, the broader bandpass of the former allows OMA 
systems to be used. 

3.3 Computer Control 

The volume of data produced by multichannel detectors is potentially very 
large. In most systems, each pixel is digitized in a format of 8-14 bits and the 
pixel scan rate can exceed 50 kHz. Consequently, a data rate of 0.7 x 106 data 
bits/s is not uncommon. This high data rate and the resulting volume of data 
make it desirable to have multichannel detector systems interfaced to a 
computer. In addition to collecting the data, the OMA system can be designed 
in such a way that the computer controls the format in which the data is read 
out. For  example, parameters such as the scan rate, the number of channels 
scanned and the location of scanned channels must be specified. With computer 
control, these parameters can be easily changed and complex scanning patterns 
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can be specified. Another important function of the on-line computer system is 
the analysis and correction of the data. Since the cost of computers with the 
required performance characteristics has continued to decrease, the computer 
to control the system may be considerably less expensive than the detector 
itself. 

3.3.1 Computer System Selection 

Currently, several commercially available OMA detection systems include a 
built-in microcomputer for data acquisition and control. Typically, these 
systems consist of a microprocessor, a memory for parameter and data storage 
and a read only memory (ROM) which stores the program to control the 
detector. In addition, various displays, input/output devices and expansion 
options may be available. The clear advantage of these systems with a built-in 
computer is their ease of operation. No programming or interfacing is needed 
and the system can be used immediately. However, the same features that 
provide ease of operation can lead to limitations. Expansion is often limited to 
those options offered by the manufacturer. Also, since the sales volume of these 
specialized computers is relatively low, they tend to be considerably more 
expensive than general-purpose computers with similar capabilities. In ad- 
dition, the microprocessor is often isolated from the user in the sense that it is 
not possible to develop programs and perform specialized analysis on the data 
obtained within the controlling computer. Therefore, it may be necessary to 
transfer the data to another computer for analysis. 

In some commercial OMA detection systems, the detector and detector 
controller can be purchased without a built-in computer. The controller, which 
has the analog electronics to control the detector as well as the A/D converter 
to digitize the data, can be interfaced to a general-purpose computer by means 
of a parallel input/output port. This approach has several potential advantages. 
Since many low cost processors are currently available, a somewhat lower 
system price may be realized. In addition, expandability is not as limited since a 
large number of compatible computer peripherals are available from different 
companies. With a general-purpose processor, specialized analysis programs 
can be developed and the computer can be used to control aspects of the 
experiment other than those associated with the detector or to perform general 
computational tasks. The main disadvantage of this approach is the interfacing 
and programming required. For  experiments where the flexibility inherent in a 
more general processor is not required and where the capabilities provided by 
the manufacturer are sufficient, the overhead involved in interfacing and 
programming may not be justified. 

Several factors must be considered in choosing a general-purpose computer 
system to control an OMA detector or in determining whether or not an 
existing system is appropriate. The most stringent requirement is that the 
computer must be able to accept the data at the rate the detector supplies it. As 
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Fig. 3.7. Block diagram of a computer- 
controlled OMA system. (The LSI-ll com- 
puter is a 16-bit microprocessor manufac- 
tured by the Digital Equipment Corp.) 

mentioned earlier, this rate can be quitehigh.  Therefore, the number of data 
bits per pixel and the maximum scan rate must be considered when choosing a 
computer. Both 8-bit and 16-bit processors are currently available that are 
capable of satisfying the data rate requirements. While the 16-bit processors are 
somewhat more expensive, the larger data word is helpful in meeting the timing 
requirements. Another consideration is the amount  of memory that the 
processor can address. For most 8-bit and 16-bit microprocessors, roughly 
64,000 8-bit bytes can be addressed. While this is sufficient for many appli- 
cations, a larger addressing space may be desirable if a large amount  of two- 
dimensional data is being obtained or if the time development of spectral 
features is to be monitored. A schematic representation of a typical computer 
configuration used to control a multichannel detector is shown in Fig. 3.7. 

3.3.2 Data Analysis and Accumulation 

Because of the nature of OMA detectors, certain types of data corrections and 
analysis are needed. For example, a point-by-point background subtraction is 
generally required to compensate for the fixed pattern features of the OMA 
detectors. These features may be due to blemishes on the target in television 
camera based systems or to the differences in individual diodes in solid-state 
array detectors. In addition to removing the fixed pattern features, a back- 
ground subtraction is often useful for reducing the optically generated un- 
wanted signal from the desired spectrum and the thermally generated back- 
ground. If the scattered background remains constant, a single background run 
can be subtracted from many different spectra. However, each time the 
background varies or the detector parameters are changed, a new background 
must be taken and stored for subsequent subtraction. 
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Another type of necessary data correction is a detector/optical system 
response .correction. There are often slight spatial differences in the gain of 
television cameras and intensifier systems. Typically, the gain is greatest at the 
center of the device and tends to fall off toward the edges. This can give 
anomalous line shapes and incorrect relative signal intensities. In addition, the 
throughput of the optical system may not be constant over the entire field of 
view of the detector (e.g., due to vignetting). To correct for these effects, the 
signal spectrum can be divided by a "constant signal" spectrum. To obtain this, 
a broad-band source of radiation can be focused onto the slit of the 
spectrograph. If the detector response and the optical throughput of the entire 
system were perfectly uniform, the detected signal in each channel would be the 
same. If it is not, however, dividing the signal spectrum by this response 
spectrum will be necessary to correct the data. Note that the background signal 
should be subtracted from both the data and response signals before the 
division is done. 

3.4 Selected Applications 

The applications of OMA systems to optical spectroscopy are extensive and 
too numerous to cite here individually. A good sampling of applications in 
different fields can be found in [3.1, 21, 22]. For conventional cw Raman 
spectroscopy, where the sample is homogeneous, time invariant and unharmed 
by the incident laser energy, the OMA system simply has the advantage that the 
spectrum can be obtained N times faster, where N is the number of spectral 
channels the OMA can monitor simultaneously. With equal monitoring time 
for the single-channel and multichannel detection schemes, the latter technique 
is expected to improve the signal-to-noise ratio by N 1/2. However, we have 
found that in some cases, this ratio can actually be improved if proper 
optimization is made in the operation of the SIT based OMA system [-3.20]. 
Laser fluctuation or drift and mechanical vibration or relaxation in the optical 
system can give rise to time variations in the Raman intensity. In a single- 
channel system, these variations can cause spurious noise in the detected 
spectrum as the spectrometer is slowly scanned. On the other hand, when an 
OMA is used, the entire spectrum is affected equally, and noise is not 
introduced by time variations in laser intensity or in the optical system. 

The unique characteristics of OMA systems become particularly important 
for experiments in which (a) the sample is spatially inhomogeneous, (b) the 
signal is temporally evolving, or (c) the laser is pulsed at a low repetition rate. 
Specific examples of the use of an OMA in each of these cases will be 
summarized below. Because of limited space, the historical development and a 
complete list of related publications will not be given. 
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3.4.1 Spatial Resolution 

An in s i tu  and nondestructive microanalytical technique based on Raman 
scattering has been developed for determining the composition within micro- 
samples which can have spatially inhomogeneous distributions. This technique 
has proven to be useful in the fields of biology, geology and materials science. 
The spatial distribution of each chemical component within a heterogeneous 
sample can be deduced by monitoring the spatial intensity distribution of the 
Raman radiation uniquely characteristic of each component [-3.4, 23-26]. The 
microprobe was first reported in 1973 [-3.8] and by 1975, two groups had 
independently designed and constructed sensitive and stable detection systems 
capable of obtaining the Raman signature from micron-sized particles [-3.4, 23]. 
One of these systems made use of a two-dimensional OMA detector [3.27]. A 
schematic diagram of such a two-dimensional Raman system is shown in 
Fig. 3.8. A circular area 150-300~tm in diameter is illuminated by directing a 
laser into the objective annular illuminator (a dark-field illumination device) 
which surrounds the main objective. To avoid noise associated with laser 
speckle, the laser beam is continually rotated, and the scattered radiation is 
collected by the main objective. The image of the sample is first focused onto 
the concave gratings of the double spectrometer and then onto the front 

Fig. 3.8. Block diagram for the laser-Raman molecular microprobe. Compositional inhomogeneity 
of the sample can be detected and displayed on the TV monitor [3.27] 
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faceplate of the image intensifier of the OMA detector. The spatial resolution is 
about 1 gm. This system therefore makes full use of the two-dimensional 
capabilities of the OMA detector. The microprobe system shown in Fig. 3.8 has 
the capability of changing the microscope objective to a "point illumination" 
mode in which the double spectrometer is scanned and a photomultiplier is 
used as the detector. In this mode, the unique Raman signature at any one 
portion within the sample can be determined by scanning the double 
spectrometer. 

Another way to obtain a two-dimensional Raman distribution, commonly 
referred to as Ramanography [-3.28], is to use an interference filter instead of a 
spectrometer to isolate the Raman radiation at one wavelength. The sample is 
uniformly illuminated and the Raman scattered light (selected by the narrow- 
band interference filter) is imaged onto the face of a two-dimensional OMA 
detector, such as the SIT [3.29]. To examine Raman radiation at a different 
wavelength, a different interference filter must be used. 

3.4.2 Temporal Evolution 

Variations within the sample as a result of externally applied perturbations or 
naturally occurring changes often make single-channel spectroscopy impracti- 
cal. This is especially true when the temporal changes are faster than the time 
necessary to sequentially scan the spectrometer over the entire wavelength 
region of interest. For  example, if the signal-to-noise ratio requires that the 
counting duration in each wavelength interval be 0.1 s, then the total time to 
scan over 250 wavelength intervals will be 25 s. However, if an OMA detector is 
used, the entire 250 wavelength interval can be detected in 0.1 s. 

In OMA systems, any temporal evolution within the sample that is shorter 
than the time required to scan all the desired channels will not be faithfully 
resolved. For the SEC, SIT, and ISIT, one-dimensional scans of 500 channels 
can be taken at speeds up to 0.01 s/scan. However, for these fast scanning 
speeds, the effects of increased lag must be considered when trying to track the 
temporal evolution. For the ISPD, the shift register sets the rate at which each 
channel is read out. For  a 1024 element linear array, a typical readout rate is 
16 gs/channel. For  all of these detectors, shorter scan times can be achieved if 
the wavelength region of interest does not extend across the entire detector (i.e., 
by scanning fewer channels). The actual size of the image depends on the linear 
dispersion of the spectrograph. It can be varied, in principle, by using a zoom 
lens. 

We have applied a SIT based OMA system to the study of surface enhanced 
Raman scattering of molecules adsorbed on electrodes undergoing elec- 
trochemical oxidation and reduction cycles [3.30, 31]. Figure 3.9 shows the 
Raman signal from Ag(CN)2 (x=  1, 2, 3, 4) over a 300 cm-1 interval as the 
voltage of the electrode is ramped at 50 mV/s over the range from -0 .88  to 
+ 0.5 to -0 .88  V. The associated voltammogram is shown in the bottom half of 
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Fig. 3.9. Surface enhanced 
Raman spectra of silver- 
cyanide complexes during the 
electrochemical oxidation- 
reduction cycle. The corre- 
sponding cyclic voltammo- 
gram is shown in the lower 
portion [3.31] 

Fig. 3.9 [-3.31]. Since the Raman shifts of the various cyanide complexes are 
different, there is no way to set a single-channel detection system at one specific 
wavelength and then vary the voltage. Furthermore, the Raman signal is 
dependent on the voltage scan rate and on the history of the electrode (i.e., 
whether this is the first electrochemical cycle or a subsequent one), so that it 
would not have been possible to repeat the voltage cycle at another spectro- 
meter setting within the 300 cm-1 interval. As this example illustrates, the 
OMA system has a unique place in optical spectroscopy for temporal 
evolutions in samples which have built-in hysteresis or in which the spectrum is 
dependent on the history of the sample. 

3.4.3 Pulsed Spectroscopy 

The OMA system is particularly useful for studying short-lived species, 
investigating nonlinear optical phenomena that require high laser intensity, or 
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monitoring the discrete Raman signals in the presence of a broad-band 
fluorescence. The whole spectrum can be monitored after one laser pulse, 
regardless of its pulse duration (e.g., ps to gs). The spectral information can be 
stored in the computer for each pulse, many single-pulse spectra can be 
accumulated in the computer, or many spectra can be integrated on the camera 
target and then read out after a large number of laser pulses. 

Pulsed multichannel spontaneous Raman spectroscopy was first applied in 
1970 [3.5]. Since then, ultrashort light spectroscopy [-3.20] has been used in 
many fields. In the ps and p.s range, the pulse duration is set by the laser, and the 
spectral information is read out from the camera after the laser pulse but before 
the next laser pulse, should target integration not be desirable. The rate at 
which the camera is ready to receive a new spectrum is dependent on the lag of 
the camera, which determines how many readout scans are necessary to totally 
recharge the target of the camera. For  the ISPD at low temperatures, the upper 
limit of the laser pulse rate can be set by the persistence time of the image 
intensifier phosphor and not by the total time necessary to cycle through N 
channels. For  two-dimensional cameras (SEC, SIT, and ISIT), the laser pulse 
rate can be speeded up if a rotating mirror is used in conjunction with the 
spectrograph. The entire spectrum from one laser pulse will be stored on one 
horizontal strip of the target and the subsequent pulses will be stored on 
different horizontal strips which are successively displaced in the vertical 
direction by the rotating mirror which moves the image along the vertical 
spectrograph entrance slit. The one-dimensional detector (ISPD) does not have 
such versatility compared to its two-dimensional counterparts. 

The OMA detectors cannot follow the temporal development of the optical 
signal during the short laser pulse as in the case of a fast response photo- 
multiplier. However, all the OMA detectors can be gated on for durations as 
short as 10-50 ns either synchronously with the laser pulse or at a preset delay 
after the laser pulse. Consequently, a luminescence background could be 
discriminated from the Raman signal by using a "boxcar" approach, i.e., 
measuring the entire spectrum coincident with the laser pulse and soon after the 
laser pulse, which would then be appropriately subtracted from the first 
spectrum in the computer. Another background discrimination technique that 
can be used with a gated two-dimensional OMA detector is to measure the 
entire spectrum at the same time (gated synchronously with the laser pulse) but 
from two different portions of the sample, one portion with laser illumination 
and another outside the laser focal volume. By imaging the two spectra on two 
different areas on the OMA detector, the radiation from the nonilluminated 
part of the sample can be appropriately subtracted from the laser illuminated 
part of the sample. Placing two spectra onto different areas on the OMA 
detector is also very useful for wavelength calibration purposes in either a 
pulsed or cw mode. For  example, in CARS spectroscopy, the multiwavelength 
(broad-band) CARS spectra from the sample gas and from a reference gas have 
been imaged onto different portions of the SIT detector for the purpose of 
wavelength calibration [3.32]. 
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3.5 Conclusions 

Optical spectroscopists now have multichannel detectors available that are 
nearly equivalent to having 103-104 photomultipliers working in parallel. The 
availability of such detectors, along with high stray-light rejection multistage 
spectrographs and inexpensive computers, has opened up new capabilities for 
all types of optical spectroscopy. 

New detectors are currently being developed which may prove to be 
superior to the existing detectors discussed here. Because of their unique 
capabilities and increased availability, we feel that OMA systems will become 
even more widely used and will continue to enrich the field of optical 
spectroscopy. 
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3.6 Glossary 

Accumulation: Summing of several scans, channel by channel in mem- 
ory. Accumulation and integration can be used together for optimal low-light- 
level sensitivity. 

Aliasing : When the spatial frequency of the image is greater than that of the 
pixels, a Moir6 pattern is produced which reduces the monitoring accuracy. 
The Nyquist criterion requires that the pixel's spatial frequency should be at 
least twice that of the image to eliminate aliasing. 

Blooming: Cross talk between channels caused by charge spreading to 
adjacent pixels. 

Dynamic Range: The limits of this range represent the lowest and highest 
intensity features that can be monitored in one frame. The upper limit is set by 
the saturation of the electronics (about 750 counts for the SIT). The noise limit 

per channel is ]SNcd,rk, where N is the number of scans accumulated and Ce,rk 
is the dark counts per channel per scan. 

EBS: Acronym, Electron Bombardment Silicon (tradename used by 
Westinghouse). Functionally equivalent to the SIT. 

EDN: Equivalent Dark _Noise, light intensity [photons/s or W] which 
produces a signal equal to the dark noise. 

ERMA: Acronym, Extended _Red Multialkaline Photocathode. 
Fixed Pattern Noise: Nonrandom noise produced by pixel-to-pixel va- 

riations and dark current. 

Frame: One scan of the entire target of a detector. 
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Gain : Ratio of the change in the optical signal to the change in electronic 
output. The gain of the vidicon target is 1. 

Integration: Lengthening of exposure time to allow signal to build up 
before the target is read. Integration and accumulation can be used together for 
optimal low-light-level sensitivity. 

Intrascenic Dynamic Range: Ratio of the most intense and least intense 
spectral features that can be simultaneously detected within a single readout 
regardless of the integration time between consecutive readouts. The difference 
between the individual diode dynamic range and that of the linear array is a 
result of "veiling gIare." 

ISIT: Acronym, Intensified Silicon intensified Target television camera 
(trademark of RCA). 

ISPD : Acronym, Intensified Silicon Photodiode Detector. 
Lag: Phenomenon associated with electron readout beam image devices 

(vacuum devices), in which a complete readout of the signal stored on the target 
is not achieved in a single scan. 

Light Gain : Photon output from the phosphors divided by photon input at 
the photocathode. 

lp/mm: Linepairs/mm. A white line and an adjacent black line are 
designated a line pair. 

MCP : Acronym, M icrochannel Plate. 
Memory Dynamic Range : Number of counts that can be stored in a given 

channel of memory. 
Nonflatness: Pixel-to-pixel variations in the dark current and wavelength 

response. Nonflatness can be computer corrected by comparison with a 
prestored flat field exposure (from a uniform illumination of the images). 

Pixel : Each individual sensing element of an image detector. 
Resolution : Ip/mm at a given Modulation Transfer Function. Defines how 

well the detector preserves the image details. 
Scan Rate : Rate at which the charge image stored on the target is read out. 

This is determined by the electronic bandwidth and the efficiency of the readout 
mechanism. If the readout rate is too fast, signals that should have been picked 
off in previous scans are left on the target because of target lag. A typical 
readout rate or scan time for the OMA is 32.8 x 10-3s per frame. 

SEC: Acronym, Secondary Electron C_onduction television camera (trade- 
mark used by RCA). 

Sensitivity : A measure of the smallest optical signal (number of photons) 
that can be usefully detected. The amplifier sets the sensitivity level, about 2500 
photoelectrons/count from the A/D converter in the SIT. 

Single Shot Dynamic Range: The range of the largest signal the detector 
can acquire for a single input pulse divided by the noise associated with the 
readout noise in the absence of signal input. 

SIT: Acronym, Silicon Intensified Target television camera (trademark of 
RCA). 
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SPD: Acronym, Self-scanned linear P_hotodiode array. A large scale 
integrated circuit fabricated on a single monolithic silicon crystal. It contains a 
row of photodiode sensors (2.5 mm long), typically on 25 p,m centers (aspect 
ratio of 100 : 1), along with a scanning circuitry for sequential readout. 

Veiling Glare: Stray light in the detector enclosure due to internal 
reflections. This is particularly bad for image intensified detectors because of 
the optical reflections from glass and metallic components. 

Vidicon : An image detector consisting of a photo-sensitive target and an 
electron beam assembly to read the charge image on the target. The silicon 
vidicon has a silicon target with a diode array as its photo-sensitive element. 

Tracking Dynamic Range : The range of signals that the detector can follow 
linearly, without overloading, divided by the rms noise for a single readout in 
the absence of signal input. 
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4. Coherent and Hyper-Raman Techniques 

H. Vogt 

With 19 Figures 

The invention of the laser has allowed the extension of the concept of Raman 
scattering in two ways termed coherent and hyper-Raman spectroscopy (CRS 
and HRS) 1. CRS utilizes laser-like Raman signals generated by the coherent 
interaction between the input beams and Raman-active modes. HRS exploits 
the symmetry selection rules for a three-photon process and provides an access 
to modes not observable by normal two-photon Raman scattering. 

Pioneering works in both fields were published around 1965 [4.1-4]. 
Bloembergen and his associates introduced the general framework for describ- 
ing the phenomena of nonlinear optics in terms of higher-order susceptibility 
tensors [4.1]. They also invented methods for measuring Raman gain or loss 
which are often referred to as stimulated Raman spectroscopy (SRS) [4.2]. 
Maker and Terhune initiated the development of coherent antistokes Raman 
spectroscopy (CARS) as well as Raman induced Kerr effect spectroscopy 
(RIKES) [4.3]. The same group also reported the first observation of hyper- 
Raman scattering [4.4]. 

Since tunable laser sources became available, the field of CRS has expanded 
very rapidly. On the other hand, the number of studies on HRS has remained 
comparatively small, essentially because the cross sections or efficiencies of the 
underlying multiphoton processes are extremely weak, except under special 
resonance conditions. 

The present chapter reviews successful applications of CRS and HRS to 
solids. We concentrate on results obtained with nanosecond laser pulses in the 
power range up to several MW. Our description is confined to the (o),k)- 
domain. Transient phenomena and time-resolved spectroscopy [4.5] are 
excluded. 

After an introductory survey we discuss the structure of the nonlinear 
susceptibilities in Sect. 4.1. The emphasis is on the multiphoton resonances 
exploited by the new Raman techniques. Section 4.2 is devoted to CARS which 
has become the most popular CRS method. SRS and RIKES are briefly 
illustrated in Sect. 4.3. In Sect. 4.4, we describe double resonance experiments 
revealing the interference of different two-photon processes and allowing a 
quantitative comparison between them. Finally, in Sect. 4.5 we demonstrate the 
merits of spontaneous H RS in the study of infrared and "silent" modes. We also 
include some results obtained by resonant and stimulated versions of HRS. 

1 See Table 4.1 for an explanation of the acronyms used in this chapter. 
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4.1 Basic Principles 

4.1.1 Elementary Description of Coherent and Hyper-Raman Effects 

The new feature of coherent Raman spectroscopy (CRS) is the phase re- 
lationship between the incident and scattered light as well as the elementary 
excitation or mode involved. In a classical model, the laser radiation coherently 
drives the Raman mode and imposes a regular forced vibration on the 
statistical thermal motion. The driving force F arises from the well-known 
electron-phonon or electron-mode coupling usually described by the derivative 
(~c~/?Q) o of the electronic polarizability ~ with respect to the normal coordinate 
12 of the mode. An illustrative expression for F can be derived from the Q- 
dependent potential energy V of the scattering system within the electric field E 
of the laser light [4.6, 7]. We have 

1 2 1 (.o+ (~)o12 + ..]E2 v =  - ~ ~(12)~ = - ~ (4.1) 

and 

F =  OV_l[Occ]/\ E2 + .. . .  (4.2) 
OQ 2 ~ o  \ / 

Since the frequencies of E are generally much higher than the mode frequency 
o)o, only the difference frequency part  of E 2 or F can resonantly pump or 
"phase" the Raman mode. For this purpose the incident laser radiation has to 
contain two spectral components of frequencies co t and 0) 2 with Io)1-°)21 
approaching o)o. To avoid confusion in later discussions, let us define co t > 0) 2 
so that o )o~o) l -o )2 .  

The coherent excitation of the mode by F can be probed by various 
methods. In the most general case, a third beam of frequency cop is used as a 
probe and Raman signals are detected at the antistokes and Stokes frequencies : 

o)s = cop + (~01 - o)2). (4.3) 

The Raman light emerges from the sample as a laser-like beam. It propagates 
along a direction determined by the wave vector condition 

k~ = kp + (k 1 - kz), (4.4) 

where k s, k v, k 1, k z denote the wave vectors of the signal, the probe, and the two 
pump waves, respectively. There are only special applications of this general 
scheme of four-wave mixing (4WM). On the other hand, almost every 
experiment in CRS can be interpreted as a degenerate form of 4WM, where at 
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least two of the four frequencies 0)s, cop, ~o 1, 0)2 coincide. To give some examples, 
let us consider the cases 0)p = ~o~ and cop = cos, assuming either of the two pump 
waves as also being the probe. 

Now (4.3) simplifies to 

0)s = 0) 1 " [ - ( 0 ) 1 - - 0 ) 2 )  = ( ~ 2c°1 
+0) 0 

[ 0 ) 2  
(4.5) 

o r  

co = 0)2 +(0)1- 0)~)= {0)1 
z -- 20) 2 - - 0 ) 1  "~' L02 - -  0)0 " 

(4.6) 

The Raman signals of frequencies 20) 1 -0)2 and 20) 2 -  601 travel as new and 
separate beams along directions given by 2k 1 - k  2 and 2k 2 - k l ,  respectively. If 
(0)1 -0)2) is tuned through 0)o, a Raman resonance occurs in the intensities of 
both beams. The Raman signal at 20)2-0) 1 ~0)2-0)o  falls into the Stokes 
region of the lower frequency pump wave and may be obscured by lumines- 
cence. Therefore, most attention is given to the antistokes Raman signal at 
20)1-0)2~0)1+0)  o. The method of measuring its intensity as function of 
(0)1-0)2) has been labeled by the acronym CARS [4.8]. 

In the Stokes case of (4.5) and in the antistokes case of (4.6), the mixing 
process reduces to an energy transfer between the two pump waves. One pump 
wave is collinear with the signal while the other is collinear with the probe. A 
more detailed analysis shows that the lower frequency intensity 1(0)2) is 
amplified at the expense of the higher frequency intensity I(col). If (0)1- °)2) is 
swept over 0)o, a Raman resonance appears in the gain of I(0)2) , as well as in the 
loss of 1(o)1) [-4.2]. 

As illustrated by (4.2), the coherent interaction underlying all techniques of 
CRS depends on the same electron-mode coupling parameter (3e/OQ) o as the 
standard spontaneous Raman scattering. Hence, CRS does not open a 
principally new access to modes and their coupling to electrons. Nevertheless, 
for many applications, CRS has been found superior to spontaneous Raman 
scattering. The outstanding merits result from the high intensity and from the 
beam-like propagation of the Raman signals. Both properties permit extensive 
spatial filtering for eliminating any background of luminescence and parasitic 
light. Thus, Raman spectra of combustions, plasmas, and all kinds of highly 
fluorescent materials become observable. Under favorable circumstances, 
modes can be studied with a spectral resolution limited by the linewidths of the 
laser sources and not by the instrumental profile of spectrometers. We should 
also stress that CRS can be used for a quantitative comparison of various 
multiphoton processes. For  instance, two-photon absorption coefficients can 
be measured relative to Raman cross sections. 

Unlike CRS, hyper-Raman spectroscopy (HRS) is based on a new electron- 
mode coupling parameter. We have to replace (&~/(3Q) o by (Ofl/~?Q)o, where fl is 
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the nonlinear or hyper-polarizability relating the second-order electronic 
dipole moment p~2) to the square of the laser field E. We may write 

pC2) = fiE 2 (4.7) 

and 

<) ~=~o+ ~ Q+ .... 
0 

(4.8) 

If only one input wave of frequency col is used, flo describes the generation of 
second harmonic light of frequency 2co r As a tensor of third rank, flo vanishes 
in the presence of inversion symmetry. Therefore, the phenomenon of frequency 
doubling is confined to noncentrosymmetric systems, at least in the dipole 
approximation. In the second term of the expansion (4.8), however, the odd 
parity of fl can be compensated for by that of the normal coordinate Q, so that 
(~fl/OQ) o ~ 0 even if [t o = 0. Hence, in every material, elementary excitations or 
modes of an appropriate symmetry are expected to modulate fl and give rise to 
scattered light. The resulting hyper-Raman lines are found at 2001 +-coo, where 
co o is the mode frequency. In the quantum picture, hyper-Raman scattering is 
described as a three-photon process by which two photons of frequency col are 
simultaneously annihilated to create one scattered photon of frequency 
2col +coo. 

The symmetry selection rules determined by the form of (~fl/~Q)o represent 
the most important new feature of HRS. In as far as parity is concerned they 
are complementary to those of normal two-photon Raman scattering and 
similar to those of one-photon infrared absorption. Generally speaking, all 
infrared-active modes are also hyper-Raman-active. Moreover, HRS permits 
the observation of "silent" modes which are both Raman and infrared 
forbidden [-4.9]. 

In principle, HRS includes both spontaneous and coherent scattering 
techniques. Analogously to CRS, we also have CHRS (coherent hyper-Raman 
spectroscopy). However, the extremely weak efficiencies encountered in nonre- 
sonant FIRS have prevented a rapid development of this field. 

It has become customary to coin abbreviations for the various Raman 
methods. The most common ones are listed and explained in Table 4.1. 

In the last few years, a considerable number of reviews on CRS [4.10-18] 
and HRS [-4.19-21] have been published. Flytzanis [4.10] and Hellwarth [4.11] 
have described in detail the theoretical background of C RS, while Maier [4.12], 
Shen [4.13], and Akhmanov and Koroteev [4.14] have given general accounts 
with emphasis on experiments. The utility of CARS in chemistry and molecular 
physics has been discussed by Tolles et al. [4.15], Druet and Taran [-4.16], as 
well as Nibler and Kniohten [4.17]. Most recently, Levenson and Son9 [4.18] 
have comprehensively covered theory and practice of CRS. Reviews on 
spontaneous HRS have been published by Lon9 and his associates [,4.19-21]. 
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Table 4.1. Acronyms of coherent and hyper Raman techniques 
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Acronym Explanation 

CRS 
SRS 
CARS 
CSRS 
ASCS 

4 WM 
BOXCARS 
ARCS 
RIKES 
OHD RIKES 
PARS 
HRS 
CHRS 

Coherent Raman spectroscopy 
Stimulated Raman spectroscopy 
Coherent antistokes Raman spectroscopy 
Coherent Stokes Raman spectroscopy 
Active spectroscopy of combinatorial scattering 

(used in Russian literature) 
Four-wave mixing 
CARS with box-shaped beam configuration 
Angular resolved coherent Raman spectroscopy 
Raman induced Kerr effect spectroscopy 
Optical heterodyne detected RI KES 
Photoacoustic Raman spectroscopy 
Hyper-Raman spectroscopy 
Coherent HRS 

The present article does not aim at completeness in any sense, but 
concentrates on the basic ideas and the major  advantages for solid state 
spectroscopy. Throughout  this chapter cgs units are used. 

4.1.2 Definition and General Structure of the Nonlinear Susceptibilities 

Nearly all nonlinear optical effects in solids are described by an expansion of 
the dielectric polarization P in terms of the electric field E of the incident laser 
radiation. One writes (Sect. 2.1.17) 

p = Z(~)E + zt2)E 2 q- Z(3)E 3 q- Z(4)E 4 + ZtS)E 5 + .... (4.9) 

where Z (") represents the dielectric susceptibility tensor of rank (n + 1) associated 
with the nth power of E. Nonlinear phenomena beyond this dipole approxima-  
tion involve spatial derivatives of E and have been studied rather rarely [-4.22] 
(see also Sect. 2.2.8). 

In the absence of any resonance enhancement, the ratio of succeeding terms 
in (4.9) can be estimated by 

p(n+ i) z(n+ hEn+ x E 

p ( ~  - Z(.)E. EM (4.10) 

where E M is the microscopic electric field binding the electrons responsible for 
the optical effects [4.1]. In insulators, E M is in the range of 108 V/cm whereas 
the threshold of dielectric breakdown is reached at an electric field strength E of 
about  106 V/cm corresponding to a laser intensity of several GW/cm 2 [4.231. 
Thus, the ratio in (4.10) has an upper limit around 10-2 and the expansion (4.9) 
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converges so rapidly that nonlinear optical effects beyond the )(s) term become 
barely detectable. 

In the Raman experiments under consideration, the input electric field is 
composed of only a few nearly harmonic waves. We write 

E(r, t) = ~ Ej(r, t) (4.11) 
J 

with 

Ej(r, t) = ½ [E(o)j, kj)e-i¢~oj,-kj,) + E*(coj, kj)e i~oJt- kjr)], (4.12) 

where the amplitude E(o)j, k j) is allowed to vary slowly with r and t, i.e., over 
distances which are large compared to 2rc/fkj[ and 2re~co j, respectively. For 
pump waves, the index j is either 1 or 2, while the probe wave is indicated by 
j = p .  Note that the factor of ½ in the rhs of (4.12) is not always used in the 
literature. 

Strictly speaking, it is not correct to insert (4.11, 12) directly into (4.9). The 
power series (4.9) refers to the (co, k)-domain and hence constitutes a re- 
lationship between the Fourier amplitudes E(coj, k j) and P(coj, kj) rather than 
between E(r, t) and P(r,t). Otherwise, (4.9) has to be replaced by a series of 
intricate convolution integrals [4.11]. 

To illustrate the meaning of (4.9) with an example, let us consider 
nondegenerate antistokes 4WM. In this case, (4.9) states that the Raman signal 
arises from a nearly harmonic third-order polarization wave with an amplitude 
of the form 

3 

.(3) , (  __ 0 . ) ,  kp) E~(co 1, k 1) E*(c°z, kz) Pt~3)(~s, ks)=D Y~, ,~¢~°. ~ (/)p,(O l, --O)2)E#(o) p, 
11,~,,6= 1 

(4.13) 

The frequencies and wave vectors appearing in this expression have already 
been defined in Sect. 4.1.1 and are related by the plus sign versions of (4.3, 4). 
The indices c~, fl, 7, 6 refer to the three cartesian coordinate axes. The factor D 
takes into account degeneracies and is equal to the number of distinguishable 
permutations of the input amplitudes [4.3]. As the two pump waves and the 
probe differ from one another, we have D = 3 ! =  6. 

In order to calculate the electric field Es(r, t) of the Raman signal, we have to 
incorporate the nonlinear source term (4.13) into Maxwell's equations. We 
obtain [4.1] 

~(¢0 s) 02Es(r,t) _ 4~ 02pt3)(r,t) 
V x V x E~(r, t) q C2 Ot 2 C2 Ot 2 

_ 4re ,,,2 rla(3)[,,, b ~r~- i (c°s t -ksr ) - l -o  C " ] ,  
- -  ~ T ~  L- -  ~ ,  "~J . . . . . .  -, ( 4 . 1 4 )  

where ~(cos) is the dielectric constant at frequency co~ and c the velocity of light 
in vacuum. The abbreviation c,c. stands for complex conjugate. Running wave 
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solutions of (4.14) may be written in the form shown by (4.12), the amplitudes 
again being slowly varying functions of r and t. While the frequency of E~(v, t) is 
identical with COs, the wave vector may deviate from k, by an amount  Ak. This 
phase mismatch results from dispersion leading to a phase velocity of P(3I(v, t), 
different from that determined by e(09s). The Raman intensity critically depends 
on Ak and reaches a pronounced maximum for Ak = 0. Practitioners of the field 
always try to meet the phase matching condition Ak = 0  as perfectly as possible. 

The introduction of complex Fourier amplitudes implies complex suscepti- 
bilities, i.e., 

Z ~") = [X~")] ' + i [Z ~"~] ". (4.15) 

As follows from elementary electromagnetic theory, only the imaginary parts of 
the even rank tensors Z (~), Z (3), Z (s), etc., are associated with loss or gain. We 
have [4.24-] 

/ ~P(r, 
< w> = <E(v, t) 

\ 
(4.16) 

where W represents the absorbed or released power per unit volume and the 
bracket indicates the average over time. A nonzero contribution can only be 
obtained if the bracket encloses the product of an even number of electric field 
components. This requirement is met by the odd-order terms in the expansion 
of P which involve Z (1), Z (3), Z (5), etc. 

It is important to realize the impact of inversion symmetry on (4.9). 
Centrosymmetric systems do not reveal any odd rank tensor properties so that 
(4.9) reduces to 

p =Zt~)E + Z(3)E 3 + ztS)E 5 + .... (4.17) 

Z ~3) and X ~5) are left for describing all multiphoton effects. As will be outlined in 
the following section, Raman scattering, including all variants of CRS, may be 
referred to as Z(3)-phenomena, whereas HRS is controlled by X (5~. 

In noncentrosymmetric systems, we have to take cascade processes into 
account. They consist of at least two distinct and subsequent steps and may 
result in the same signal frequencies as the one-step Raman processes described 
by X C3) and Z(s). For  instance, the CARS intensity at 2091-o9 2 may be 
superimposed to signals arising from two-wave mixing due to Z t2) [4.25]. In 
a first step the frequency 091 is doubled, while in a second step the second 
harmonic at 2o9 a mixes with 09 2 to produce a difference frequency wave at 
2co I - c o  2. Moreover, Z t2) allows the generation of a real polariton at o9~-092 
which may beat with co 1 to again give (~o~ -mz)+a~  1 =2o9 1-092. In the case of 
HRS it is possible that the hyper-Raman signal at 2091 -o9  o is obscured by a 
combination of second harmonic generation and normal Raman scattering of 
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the frequency doubled light 1-4.26]. We shall always neglect such cascade 
processes and assume either inversion symmetry or scattering configurations 
where g ~2) or Z ~'~) cannot become operative. 

As tensors of fourth and sixth rank, Z ~3) and Z (5) consist of 81 and 729 
elements, respectively. Point group symmetry reduces these numbers considera- 
bly. Tables listing the form of Z ~a) for the 32 crystal classes and isotropic media 
can be found in [4.10, 18]. Similar tables for Z ~5) are not yet available to the 
authors knowledge. 

Additional symmetry relations can be exploited if the mixing process is 
nonresonant and does not induce any real excitation of the medium under 
study. Then thermodynamic arguments [4.1] show that the susceptibilities 
remain invariant when the tensor indices and the corresponding frequency 
arguments are interchanged simultaneously, e.g., 

(3) (3) __ 0 ) 2 )  • ~(~t/l ?~( - -  COs, COp, CO 1., - -  CO2) = Z~y/]6(  - -  COs, CO 1,  COp, (4.18) 

If the medium is not only lossless with respect to the interacting waves, but also 
lacks dispersion, we may freely permute the indices while preserving the order 
of the frequencies. The identities thus obtained are commonly referred to as 
Kleinman's symmetry relations 1-4.27]. They do not hold in particular for the 
Raman terms in Z ~3) and Z~5) because of the energy transfer during the Raman 
process. However, they generally apply to the nonresonant background 
contributions which have to be taken into account in many mixing experiments 
and represent a severe problem in CARS. 

Perturbation theory provides the general scheme for calculating Z ~3~ and Z~5) 
from the dipole matrix elements of the material. A formula for Z ~3) derived by 
the conventional time-dependent perturbation technique was published about 
twenty years ago by Armstrong et al. [-4.28]. Their result may be recast into the 
form 

(3)  Z ~ ( -  CO~, COp, col, - c°2) 

LN ( ( ilM~,ln> < n[M ¢ln'> ( n'lM~.ln"> (n"[M a[i> 
- E E 3 ! h  3 . \ . . . , , , , , ,  [~.,- ( %  + co, - o~2)] [CO., , -  (CO, - CO~)] [o~.,,, + ~ )~ "  

(4.19) 

Written in full length this expression consists of 4 ! =  24 terms differing in the 
order of ~, fl, 7, 6 in the numerator and the corresponding frequencies 
cos = eg p + co, -coz, O~p, 091, 092 in the denominator. A convenient abbreviation is 
obtained by introducing the sum over all permutations ~ of the pairs (~, - cos), 
(fl, COp), (7, COt) and (8, -o~ 2) I-4.10]. Each term in (4.19) contains a product of 
four dipole matrix elements linking the initial state li> to the intermediate ones 
denoted by In), In'), and In"). We interpret M as the dipole moment operator of 
a single molecule or unit cell. Then N stands for the number of molecules or 
unit cells per unit volume. The factor L incorporates local field corrections. 
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The denominators of (4.19) display two types of resonances. On the one 
hand, there is a variety of one-photon resonances occurring when the frequency 
of an input or output wave approaches a transition frequency, e.g., 

1 
o;,,, = ~ (~, - g,).  (4.20) 

On the other hand, the second factor in the denominators of (4.19) indicates 
two-photon resonances characterized by 

(.t)l -- (2)2] 

coy- 0)2 ~ ~ °),i (4.21) 
/ 

COl "}- COpJ 

with a different co,; for each row. While the first and second resonance 
conditions refer to Raman processes, the third one applies to two-photon 
absorption (TPA). In a nondegenerate 4WM experiment, it is possible to 
choose COl, coz, and cop in accordance with (4.21) so that two different Raman 
resonances and one TPA resonance may simultaneously contribute to the 
intensity of the signal wave [4.29]. 

We do not gain much new insight in writing down an expression for X ~s) 
analogous to (4.19). Now the sum over the permutations ~ consists of 6 ! =  720 
terms. Products of six dipole matrix elements appear in the numerators, 
whereas the denominators indicate one, two and three-photon resonances. 

Formulas like (4.19) have to be improved in two ways. Firstly, we must 
introduce statistical factors describing the thermal averaging over the initial 
state [/). Secondly, we have to include the effect of damping. Both improve- 
ments can be achieved if the scheme of perturbation theory is applied to the 
density matrix in place of the wave functions [4.1]. General expressions for X (a) 
calculated on the basis of the density matrix procedure have been published by 
Fly t zan i s  [4.10] as well as Bloemberoen  et al. [4.30]. As a result of damping, the 
linewidths in the imaginary part of 2 (3) become finite. Moreover, the number of 
terms in X (a) with different resonance denominators may double from 24 to 48. 
Additional two-photon resonances may occur, characterized by 

031 --(-02l ~O)nm, 
(.O p-- CO2J 

where both n and m label exc i ted  states [4.31]. 

(4.22) 

4 .1 .3  R a m a n  R e s o n a n c e s  in 2 ~3) and 2 Cs) 

In this section we concentrate on the four experimental techniques summarized 
in Fig. 4.1, i.e., SRS, CARS, RIKES and spontaneous HRS. We relate the 
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Fig. 4.1. Schematic description of SRS, CARS, RIKES, and spontaneous HRS 

measured signal quantities to )(3) or X (5) and finally to the spontaneous Raman 
or hyper-Raman scattering cross section. For the sake of simplicity, we always 
assume the samples to be cubic crystals. 

a) SRS 

This technique uses two collinear beams of frequencies co~ and co 2 <col. While 
traversing the sample, each beam is amplified or attenuated by the other one. 
Let us consider only the change of I(coz) induced by I(~o~). We may write 

~I(co2) 
Oz -9I(c°1)I(c°2)' (4.23) 

where z indicates the direction of beam propagation and g represents the gain 
coefficient to be measured [note that 9I(~ox), as defined in (4.23), equals the 
gR defined in (2.129)]. 

Relation (4.23) can be rigorously derived from (4.13, 14) if we use the ideas 
of Sect. 4.1.1 and interpret the change of I(o92) as a result of degenerate Stokes 
4WM. With rap=CO 1 and (n~=col-(co 1 -co2)=e %, the amplitude of the third- 
order polarization may be written in the form 

• E~(c02, k 2 ) .  (4.24) 
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Being linear in the electric field at (D2, P(3)(0)2, k2) looks like a small intensity 
induced correction to the first-order polarization amplitude P(1)(0)2, k2). Hence, 
the expression in the square bracket of (4.24) may be understood as in incre- 
ment of the linear susceptibility ..tl)t_ Act6 ~ 0)2, 0)2), i.e., 

8n 
A~' (1 ) / - -0 )  , 0 )  ~ - -  D '~"~ v(3) ( - - O ) 2 ,  O91, - -  0)1, 0)2)10~(0)1) (4.25) 

l.~6 ~, 2 21 - -  Cn((DI ) Z.~ Letfl~Ok 

where we have introduced the refractive index n(0)a) and the intensity tensor 

cn(0) l) 
Iar(0)x)= 8zt EP(0)I'kl)E*(0)I'kO" (4.26) 

It is straightforward to transform the imaginary part of (4.25) into an 
absorption constant or into a gain coefficient in accordance with (4.23). 
Assuming the waves at 0)1 and 0)2 to be polarized parallel to the fl- and ct-axis, 
respectively, we obtain [-4.11, 18] 

327Z20)2 (3) 
g = c 2 n ( 0 ) l ) n ( 0 ) 2 )  [ 6 I m  {Zatflfl~t(0)2, - -  (D1, (J)l, - -  (02)}]  • (4 .27)  

Here we have used D = 6  and Zt3)(-0)2, 0)~, -0)1, c°2)=Z~3)*(0)2, -0)1, 0)1, 
-0)2) [4.10]. Equation (4.27) is equivalent to (2.130) except for a change in sign 
which is related to a different choice of the sign of the three frequencies in Z t3). 

Much insight is gained by inserting the perturbation theory result (4.19) into 
(4.27). Near a Raman resonance, (4.19) reduces to 

~(3) ((D NR R 
~fl/3~t', 2, - -  O)1,0)1, - -  092) = ~tfl.O~t 2c- Z~flI3o~ (4.28) 

with 

R _(LN)  1 ~ (i,M.,n~(n,M,[f~ + (i[M~,n~(n,M~,f~ 2 
X , ~ p , -  ~ [0)0 - (°J1 - 0)2)]  0),,~ + 0)2 0) , ,~-  0)1 ' 

(4.29) 

The Raman part K s combines all terms with a resonance denominator of the 
form [0)o- (0)1- c°2)], while the non-Raman part ~(NR contains the remaining 
contributions. I f )  denotes the final state of the Raman transition so that 
0.) 0 = (,O f i .  

According to (4.29), Z a turns out to be proportional to the absolute square 
of the Raman transition polarizability Af~(0)~) [4.32, 33] if we correct the 
denominator slightly, i.e., co.~ + 0)2 to c0.~ +0)1. Taking into account the factor 
of 1/2 in our definition of complex amplitudes [see (4.12)], we obtain 

LN R __ 
Z,ap, - 24h [co o - (0)1 - 0)2)] IAfP(0)I)[ 2. (4.30) 

Equation (4.30), in egs units, is equivalent to (2.133b), which was given in SI 
units. 
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A familiar expression for the Raman transition polarizability is provided by 
Placzek's approximation [4.32]. We have 

A:~(O)I)= ( O~Q) (flQli) , (4.31) 
o 

where a is the electronic polarizability and Q the normal coordinate of the 
Raman mode. (~a/OQ) o may be referred to as an electron-mode coupling 
parameter as has been done in Sect. 4.1.1. 

At this point we are ready to introduce the spontaneous Raman scattering 
efficiency S R defined as a differential cross section per unit volume (see 
Sect. 2.2.8). S R is related to A:i(o)l) by [4.33] 

1 d~r LN[Af¢(O)I)I2 (4.32) S R =  p ~ - -  

where c~ and fl are the polarization directions of the incident and the scattered 
light. Insertion of (4.32) into (4.30) yields 

R 1 ( e l 4  SR (4.33) 
g,~#~ = 24h \o)2] o)o - (o)a - °)2)-  iF '  

where we have complemented the resonance denominator by an appropriate 
damping constant. More or less the same result is achieved if (4.19) is replaced 
by the more elaborate expression based on density matrix calculations. 

In most SRS experiments, the non-Raman background does not contrib- 
ute to loss or gain. Then X NR may be taken as real and (4.27, 33) lead to [4.11, 
12, 34] 

81r3c 2 
g = hn(o)l)n(o)2)o)a2 SR~(O)I - o)2), (4.34) 

where o~-(o)) is the normalized line-shape function with ~(o) )dw = 1 [See also 
(2.130, 133)]. According to (4.33) we have 

F 
°~(o)) = ~[(o)o - 0)) 2 + F2] " (4.35) 

In applying (4.34), we are not restricted to Lorentzian profiles because (4.35) is 
only a consequence of the ad hoc method by which damping is introduced into 
Z ta). We can determine any Raman line shape by measuring g as function of 
(ml  - o)2). 

We have taken the route via Z ta) in order to illustrate the general scheme for 
describing the techniques of CRS and HRS. As a first step we have related the 
measured quantity to the underlying susceptibility, [see (4.27)]. As a second step 
we have simplified the lengthy expression for the susceptibility by extracting the 
essential resonances, [see (4.33)-]. We shall not repeat these steps in the discussion 
of CARS, RIKES, etc., but only quote the results. 
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Of course, formula (4.34) can be derived in a much easier way by applying 
Fermi's golden rule. Spontaneous and stimulated Raman scattering only differ 
in the initial signal photon number and in the density • /of  final photon states. 
For  the spontaneous process, 0I becomes identical with the well-known 
spectral density of electromagnetic vacuum oscillators. In the stimulated 
process, on the other hand, the emission of signal photons is confined to those 
few modes which are already occupied. Then Q/is determined by the line-shape 
function o ~.  In fact, the ratio 9/S R can be directly deduced from this difference 
in Q.r [4.2, 33]. 

As suggested by (4.34), an absolute measurement of g can yield an absolute 
value of the scattering efficiency S R ([4.35], see also Sect. 2.1.18d). As far as 
pulsed lasers are used, the accuracy of such a method is rather limited because 
the result depends on often unknown laser parameters. In particular, it is 
influenced by the mode structures and the overlap of the two interacting beams. 
Both conditions are difficult to control and may even fluctuate within a series of 
laser shots [4.34]. 

Nevertheless, formula (4.34) opens an access to extremely narrow Raman 
lines which can hardly be resolved by conventional Raman spectroscopy 
because their linewidth is less than about 0.1 cm -1 [4.36, 37]. As has been 
demonstrated by Owyoun9 et al. [4.38], the situation is much improved if cw 
instead of pulsed lasers can be used. In general, however, the comparatively low 
power of cw lasers requires a multipass arrangement with more than 50 passes 
through the sample. Such a technique can be handled in the case of gases 
confined to appropriate cells, but does not seem to be readily applicable to 
solids. 

b) CARS 

This method utilizes the generation of a new and separate beam of frequency 
~s=2~°1- (°2  and wave vector k ~ = 2 k l - k  2. In order to derive an expression 
for the signal intensity, we have to solve the inhomogeneous wave equation 
(4.14) and adapt the solution to the boundary conditions of the experiment. We 
obtain [-4.14, 18] 

2 
I~,(oo.) ~ COs ~,~3) t - -  --092)I2I~Ij(~I)I~(o~2)GZ(Ak), 

ca.n2(col)n(c.o2)n(C.Os) ~'~P~ ~,~l ,¢Ot ,  
(4.36) 

where the intensities are defined according to (4.26). The function G(Ak) 
describes the effect of the phase-mismatch Ak on the signal intensity. It has the 
form 

sinllAkl 
G(Ak),,~ IAkl (4.37) 

and becomes identical with the sample length l if Ak = 0. 
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As in the section on SRS, we have assumed the incident waves at co~ and 0) 2 
to be polarized parallel to the fl and c~-axis, respectively. Hence, their electric 
fields are only allowed to be parallel (a=fl) or perpendicular (e:~fl) to one 
another. More complex configurations are considered in "polarization active 
spectroscopy", an ellipsometric variant of CARS [4.14]. 

In analogy to (4.28, 29), we can decompose ~,(a) t - c o ,  cox, col, -co2) into a 
Raman and a background part f f  and fiR, respectively. Approximating co~ and 
co2 in the one-photon resonance denominators by col, we can again express ;~R 
in terms of the Raman scattering efficiency S a. According to (4.21), however, we 
have to take into account two degenerate Raman resonances characterized by 
co~-co2~coo and cop-CO2=~-co2~co  o. Therefore, ;~R turns OUt to be just 
twice as large as (4.33) [4.18, 39]. On the other hand, we should mention that 
the factor D in front of ;~(3~ [see (4.13)] reduces from 6 to 3 because there are 
only three distinguishable permutations of the input field amplitudes. 

As will be discussed in Sect. 4.2.1, the intensity I~(co~), measured as a 
function of (co~-co2) , does not follow the Raman lineshape ~(col-co2). The 
squaring of ;~<3~ in (4.36) introduces a crossterm which has a characteristic 
dispersion shape and deforms the profile of the Raman resonance considerably. 

c) RIKES 

This technique is similar to SRS and also based on (4.25). It exploits the 
intensity induced birefringence and dichroism or a mixture of both [4.40]. For 
the sake of simplicity, let us assume collinear beams with initial amplitudes of 
the form 

1 
kl) = [E(1), e(1), 0] 

E(co 2, k2) = [e(2), 0, 03. (4.38) 

Then, (4.25) yields diagonal and nondiagonal increments of the linear suscepti- 
bility at o92. The most important one is 

24n 
o 2, ° ,2)= cn(col---) Ez'  h 1( -  o 2, col, - col, 0,2) 

+ .v(3) ~2211(- c°2, col, - c°1, c°2)] I(co 1), (4.39) 

where I(col) = 111(c01) + I22(col). 
The real and imaginary parts of AZ(211)(-co 2, co 2) describe the Kerr effect 

birefringence and dichroism (here: anisotropy of the gain coefficient), re- 
spectively. As well known from crystal optics, either of these phenomena 
rotates the direction of E(co 2, k2) whereas the presence of both leads to elliptical 
polarization. In any case, we can observe an intensity I22(co2) polarized 
perpendicular to the incident one 111(co2). We have 

47~2co2 12 A,,(t)t o9 ,co ~12I ECO 
1 2 2 ( c o 2 ) ~ - c ~  )_r/_tc02 g,21~,-- 2 2,1 11~ 2/, (4.40) 
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where I is again the crystal length. We can rather easily detect 122(602) by 
placing the sample between crossed polarizers as indicated in the third row of 
Fig. 4.1. Since the signal intensity depends on the absolute square of Z (3), we 
expect a similar lineshape as in CARS [-4.41]. 

Finally, let us mention a technique which also belongs to RIKES, but 
exclusively reveals the real part of )g(3) o r  Z R. Using a Jamin-type two-beam 
interferometer, Owyoun9 and Peercy [4.42] have been able to measure the 
change An(o)2) of the refractive index n(60z) induced by 1(601). Returning to 
configurations where the two interacting beams are polarized parallel to the c~ 
and//-axis, we may write 

96~ 2 
An(602) = cn(601)n(c°2) 1(601)Re{)~(602, - COx, o)1, -602)}. (4.41) 

Inserting (4.28, 33), we obtain 

N. s__. (& l" [60o-(60,-60  ] 2 
An(co2)'-~ Re {Z,a¢~} + 24h \ (D2]  [0)  0 --(601 --(-02)] 2 + F  2 " (4.42) 

Hence, An(602) , measured as function of (09t-602), shows a dispersion-type 
profile which in general may be interpreted as a Kramers-Kronig transform of 
~-(601- c°2) superimposed on a constant background. 

d) H R S  

Combining (4.27, 34), we can relate the spontaneous Raman scattering ef- 
ficiency SR to X ¢3). We have 

4h ( ~ ) 4  DIm (X~a/~,(602, - 601,60~, - 602)}, S R ~ ( ( O  1 - -  (2)2) = _ _  (3) (4.43) 

where we have assumed the incident and the scattered waves to be polarized 
along ~ and fl, respectively. The product on the left hand side is usually called 
spectral efficiency and defined by (see Sect. 2.2) 

1 d 2 o  " 

SR~(601 -- 092) = V df2d(co 1 - 092)" (4.44) 

In the case of HRS, the analogue to (4.43) becomes 

SnR~(260~- 602)= 32h (~-L) 2 
cn(ol)  /(cox) 

.Dim ~5~ { z , 0 p ~ , ( 6 0 2 ,  - 60~, c°1,  - co l ,  co~, - c % ) } .  (4.45) 
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As before, co2 is the frequency of the scattered light on the Stokes side, i.e., 
2co~-coz ~coo. To keep the geometrical factors simple, we have assumed the 
incident beam of frequency col to be linearly polarized parallel to the//-axis, 
although the four indices of X ~5) associated with the exciting light allow a large 
variety of scattering configurations. 

Akhmanov and his coworkers [4.14] also used the term hyper-Raman effect 
to specify a one-photon resonant 4WM process depending on the hyper- 
Raman efficiency SHe. While scanning a tunable source of frequency co2 
through an infrared-active transition at COo, they detected the intensity at 
cos=2col-co2 generated by the coherent interaction of the beam at co2 and 
another pump of frequency coa. In accordance with (4.36), the signal intensity is 
given by 

/(COs) ~ ~,(3) t -  co, col, col, - ° 9 2 ) 1 2  (4.46) • ",.~1111~ ~, s 

Nevertheless, the method is quite different from CARS because it exploits a 
one-photon instead of a two-photon resonance. Referring to (4.19), we may 
extract all terms from Z (3) which have a resonance denominator of the form 
(Do- CO2 = O ) f i -  (/)2' If COl is small compared to electronic transition frequencies, 
we obtain 

He 4LN (flM~li) [Bf~#(co0],. (4.47) 
X~##~- 3h (coo-co2) 

Here B:i(col) denotes the hyper-Raman transition polarizability [4.43-45]. It is 
determined by products of three dipole matrix elements relating li> to If> via 
two intermediate states. In perfect analogy to (4.31), Placzek's approximation 
yields 

B:i(col)=(cO~Q fl-) <f,Q,i>, (4.48) 
0 

where Q is the normal coordinate of the mode and (Ofl/~Q)o the electron-mode 
coupling parameter already introduced by (4.8). We also have 

S H R  = LNIB{~o(COI)I21E(COp k l ) l  2 . (4.49) 

Due to the definition of SHe, the intensity is left as a factor on the right hand 
side, just as in (4.45). 

According to (4.47, 49), the absolute square of Z HR is indeed proportional to 
the hyper-Raman scattering efficiency. It would follow the profile of the 
infrared absorption if it could be measured independently. In general, however, 
the presence of a pedestal term to be added to Z HR spoils this feature. Moreover, 
the single dipole matrix element in (4.47) confines the method to infrared-active 
transitions and, in contrast to spontaneous HRS, does not allow the study of 
"silent" modes. 
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4.2 Coherent Antistokes Raman Spectroscopy (CARS) 

4.2.1 Line Shapes 

Figure 4.2 shows the energy level scheme usually adopted for describing the 
CARS process. The dashed lines indicate virtual states while the solid lines 
denote the initial and final state of the Raman transition. It is clear from the 
foregoing section that the scheme illustrates a one-step process and should 
never be interpreted as the time-ordered sequence of Stokes and antistokes 
Raman scattering. 

A typical CARS spectrum is reproduced in Fig. 4.3 I-4.39, 46]. It refers to 
the totally symmetric Alo mode of the CO3-ion in calcite (CaCO3) at 
O9o= 1088cm -1. The logarithm of the signal intensity has been plotted as a 
function of 090 -(o~ 1 -(02). The observed contour drastically deviates from the 
Lorentzian line shape measured by spontaneous Raman spectroscopy. In 
particular, an additional minimum or antiresonance appears on either side of 
the maximum. Moreover, the signal intensity does not vanish far from 
resonance, but forms a constant background usually normalized to unity. All 
these features can be easily explained by the structure of Z c3) and its squaring in 
(4.36). Omitting tensor indices, we may write 

I (O)s )  ~., IX(3)l 2 ~_ IxNR _.}._ xRI2 = ]zNRI 2 .q_ IzRI2 + 2Re {XR(xNR)* }. (4.50) 
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If Z NR is real and independent of frequency, we can divide I(cos) into three terms 
describing the background, the resonance and the interference between both, 
respectively. We obtain 

I(cos) = I1 + 1 2 + 1 1 2  (4 .51)  

with 

I t -,~ (zNR) 2 

12 ~ [xRI 2 ~ S~o~(co t - o92) (4 .52)  

112 ~ X NR Re {X R} ~ xNRsR X [Kramers-Kronig transform of ~'(col -- coz)] • 

We have given an example of this decomposition in Fig. 4.4 assuming 
~(oo I -co2) to be Lorentzian with F/co o =0.05 and ]ZR]max/XNR = 2. We note that 
the cross term I t z slightly shifts the maximum and locates the minimum where 
its positive slope compensates the negative one of 12 . 

For a Lorentzian line-shape function and arbitrary parameters X NR, SR, coO, 
and F, the positions of the extrema can be easily calculated [-4.39-1. We find 

((D 1 -- O)2)min t FI~RIm x (1 _.~_ ll + { 2)~NR 12]1/2 ~ 
(COt --  CO2)m.x, =CO0+  2Z R _ j j 

(4 .53)  
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Fig. 4.5. CARS spectrum of dia- 
mond. The numbers in paren- 
theses refer to different polariza- 
tion conditions, o9 o = 1332 cm- 1. 
2~ =545 nm [4.39] 

with 

ir'[Zalmax---- 12h ~ SR>0" (4.54) 

Accordingly, the sign of Z r~a decides on which side of the maximum the 
antiresonance is observed. The value of Z NR follows immediately from the 
distance [(091-coz)ml.-(e)l --CO2)mJ between minimum and maximum, pro- 
vided the damping constant F and the spontaneous Raman scattering efficiency 
S a are known.  

Figure 4.5 demonstrates the influence of X NR on the extrema of I(o)s). Several 
CARS spectra of diamond (COo= 1332 cm-~)  have been plotted referring to 
different polarizations of the incident fields and hence to different tensor 
elements of  Z Na I-4.39]. While the maximum remains nearly stationary at coo, 
the mimimum shifts considerably. Such behavior is in accordance with (4.53) if 
IxRl.,ax is large compared to Z NR. As shown by curve (1), the CARS intensity 
reduces to the constant background as soon as both input beams are polarized 
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parallel to the same cubic axis. The absence of the Raman resonance in this case 
results from the special form of the Raman tensor or transition polarizability. 
The F20 symmetry of the phonon under consideration requires all diagonal 
elements ~i A,,(col) to vanish so that a Z , , , , =0  [see (4.31) and Sect. 2.1.9]. 

If CARS is used to detect small concentrations of gases or impurities, it is 
essential to know the relationship between I(e)s) and the number N of molecules 
or unit cells per unit volume [4.15]. As 112 is an odd function ofo9 o -(co 1 - 6o2), 
the integrated CARS intensity, after subtraction of the pedestal, is only 
determined by I z and becomes proportional to the square of S R or N as follows 
from the second row of(4.52). The difference (1,,, X- lmi,) between the maximum 
and minimum CARS intensity shows the same dependence only for large 
values of N, whereas for small values of N, it varies linearly with this quantity 
because the line shape is dominated by I~2. A more useful relationship is 

( I m a x ) l / 2 - ( l m i n ) l / 2 , , - N  (4.55) 

which holds for all N with a constant of proportionality independent of Z NR 
[-4.15]. 

Rather complicated spectra can result from the interference between 
neighboring Raman resonances. Some of the possible features are described in 
[4.15, 47]. The case where )~NR also includes an imaginary part will be discussed 
in Sect. 4.4. 

4.2.2 Experimental Problems 

The classical CARS setup is shown in Fig. 4.6 [4.48]. A nitrogen laser 
(wavelength: 337.1 nm, peak power: ~ 1 MW, pulse length: ~ 5 ns, repetition 
rate: ~ 10 Hz) simultaneously pumps two dye lasers. These tunable sources 
(peak power: 1 0 -  100 kW, linewidth : < 1 cm-  1) provide the two interacting 
beams of frequencies e)~ and o92. The nitrogen laser can be replaced by the 
second harmonic of a Q-switched Nd-YAG laser [4.8]. The better beam quality 
and more convenient wavelength of 532.4 nm permit the use of this radiation 
also as a col-beam, so that a dye laser is only needed for tuning o~ z. 

Figure 4.7 lists some wave vector configurations which satisfy the phase- 
matching condition Ak=0.  Small dispersion often prevents the signal beam 
from being clearly separated from the input ones, so that the wave vector 
triangle almost collapses to a straight line and spatial filtering or angular 
resolution cannot be realized. The situation is much improved by splitting 
the COl-beam into portions of wave vectors k' 1 and k~ having the same length 
but different directions. Then the phase-matching condition is generalized to 

k~ = k' 1 + k'[ - k 2 (4.56) 

and can be fulfilled with more degrees of freedom than the original one. Three 
of the new possibilities are shown in Fig. 4.7. They utilize counter-propagating 
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I 
beam splitter; M~, M 2, and M 3 are 
mirrors; L~, Lz, and L 3 are lenses. 
The Foucault knife-edge test is used 
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beams [4.49, 50], a box-shaped wave vector configuration [4.51] or even a 
nonplanar scheme, where the pairs k'~, k'~ and k2, k s lie in different planes. 
Inventors have labeled them ARCS (angular resolved CARS spectroscopy), 
BOXCARS, and folded BOXCARS, respectively. 

In order to increase the intensity, the input beams are usually focused into 
the sample. Special care has to be taken to achieve the optimum overlap of the 
beam waists [4.18, 39, 48]. In the equipment of Fig. 4.6, a lens with a focal 
length of about 20 cm simultaneously focuses the radiation of both dye lasers 
and also provides an angle 2~ between k 1 and k 2. 

Although the CARS signal emerges from the sample as a well defined 
coherent beam, the presence of stray light often requires the spectral filtering by 
a single or double monocbromator. If co2 is tuned twice as fast as o91, the 
gratings of this instrument can be kept at a fixed position because the signal 
frequency co~ = 2031 -o32 remains constant [4.39]. Otherwise, they have to be 
scanned synchronously with the dye lasers in such a manner that 1(cos) is 
monitored as function of (091 -coz) [4.54]. 

The CARS intensity is normalized by comparison with a reference signal. In 
the spectrometer of Fig. 4.6, l(cos) is electronically divided by the cube of/(COl) 
because the simultaneous pumping of the dye lasers suggests 1(o92),-~ I(co 0 and 
hence, I(~os),-~12(col)I(co2),,~I3(col). A better averaging over the laser fluc- 
tuations is obtained by referring I(co,) to the nonresonant CARS emission of a 
material like NaCI having no Raman spectrum of first order [4.39]. 

In studying liquids and solids, one can easily achieve signal peak powers up 
to 1 W. Therefore, photodiodes and boxcar integrators are appropriate means 
for detecting/(COs). 

Defining the CARS efficiency SCARS in analogy to Ss, we can estimate the 
ratio SCARs/SR on the basis of (4.36, 54). In solids, Sg is typically 10- 7 cm- 1 sr- 
(see Sect. 2.1.18). With F = 1 cm- 1, this value leads to 
IXRlma~ = 2 X 10- 13 cm 2 dyn-  1. Assuming the same order of magnitude for }Z(3)], 
we find [4.14, 15, 18] 

SCARs/S R ~, 106 -- 109 ' (4.57) 

provided the peak powers of all input beams are around 50 kW. The enormous 
increase in efficiency mainly results from the cubic dependence on laser power 
and from the concentration of the CARS emission in an extremely small solid 
angle d£2. We note, however, that pulsed high-power lasers are rarely used in 
spontaneous steady-state Raman spectroscopy because the merits of ew lasers 
outweigh any advantage of large, but pulsed Raman signals. Therefore, (4.57) 
seems rather meaningless, except in cases where S R is indeed so small that the 
spectroscopist has to resort to high peak powers. 

The utility of CARS as a spectroscopic tool is limited by the distortion of 
the spectrum described in the foregoing section. This disadvantage can be 
partly eliminated in a double resonance experiment demonstrated by Lynch et 
al. [4.29, 55]. Their method exploits the superposition of two different Raman 
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contributions Z RI and Z R2 to Z ¢3) in a nondegenerate 4 WM process. As follows 
from (4.21), no less than three independently tunable dye lasers of frequencies 
~op=1:091:1:o9 2 are required. As a first step, (09p-092) is scanned across the 
Raman resonance R 1 and fixed at a position where Z NR is cancelled by the real 
part o f z  R1. At this position, only a small imaginary amount  o fx  R~ is left and ~(3) 
reduces to ir 1 +zR~. AS a second step, (m~-co 2) is tuned through the Raman 
resonance R 2 by varying co 1. Then the signal intensity at 09s=Ogp+(09~-092), 
measured as function of (091-°92), shows the undistorted Raman line shape 
with only a small pedestal due to r 1. Improved versions of this method have 
been developed by Song et al. [4.18, 56]. 

4.2.3 CARS Spectra of Solids 

a) Early Work 

Before the introduction of tunable lasers, CARS-type spectra of solids had been 
obtained by scanning the material resonance instead of the laser frequencies ~o~ 
and co 2. Yablonovitch et al. [4.57] have exploited the tunability of Raman 
transitions between the Landau levels of the conduction electrons in n-InSb. In 
this case, the Raman frequency 090 is identical with the cyclotron frequency 09c 
(or with 209c) and thus can be varied with the applied magnetic field. When 09c 
(or 209c) is swept through the difference (091-092) of two input CO 2 laser 
frequencies, the CARS or CSRS intensity shows a resonance entirely domi- 
nated by the background contribution 11 and by the cross term 112. This 
observation is in accordance with (4.52) if zNR is large compared to IzRb. The 
difference in magnitude can be quantitatively explained by a semiclassical 
model relating the existence of both parts of Z (3) to the nonparabolicity of the 
conduction band [4.58]. 

The spin-flip process presents another tunable Raman transition and has 
been studied in a similar manner I-4.593. 

b) Centrosymmetric Crystals 

The CARS spectra of centrosymmetric crystals have been used to determine 
;~NR relative to known Raman scattering efficiencies S R I-4.39, 60-62]. By 
application of (4.53,54), the ratio SR/Z NR can be easily obtained from the 
distance between maximum and minimum. The coherence of the interacting 
beams also allows two different materials to be combined in a "sandwich" and 
ratios of the form SR1/(zNR' + zNR2) or SR2/(:~ NR' + X NR2) to be measured, where 
the contributions of the two components are distinguished by indices. In this 
way, unknown Raman efficiencies can be calibrated by comparison to a 
standard [4.39, 61]. Although the necessity of placing two different samples 
consecutively in the same position is avoided, special care must be taken to 
provide an identical beam overlap throughout the "sandwich" (see also 
Sect. 2.1.18). 



230 H. Vogt 

For insulators, the order of magnitude of Z NR turns out to be 
10- 15 _ 10-13 cm 2 dyn - 1. A knowledge of X r~R is very helpful in evaluating the 
degree of self-focusing. This effect results from the change An of the refractive 
index induced by a single laser beam. As shown by (4.41), An is determined by 
the real part of )(3)(o91, - co l ,  col, - co l )  which is nearly identical with Z NR in 
regions of small dispersion. Self-focusing seriously complicates the construction 
of large high-power laser systems and has to be taken into account in the 
interpretation of many studies on nonlinear optical phenomena [4.63]. 

c) Noncentrosymmetric Crystals 

As already mentioned in Sect. 9.1.2, the second-order susceptibility Z (2) of 
noncentrosymmetric crystals gives rise to cascade processes resulting in the 
same signal frequency as the one-step process described by Z (3) [4.25, 64, 65]. 
Figure 4.8 shows the CARS spectrum of LiNbO 3 (point group symmetry C3v ) 
at room temperature I-4.64'1. The observed line shapes cannot be interpreted in 
terms of the foregoing formulas. The maxima appear at positions where 
( k l - k 2 )  and (oJ~-oJ2) coincide with the wave vectors and frequencies of 
polaritons. Such matching conditions, however, clearly indicate that the 
polaritons are mainly driven by an infrared electric field generated by the input 
beams in a second-order mixing process. Hence, the nonlinear force of (4.2) 
involving the Raman transition polarizability no longer plays the dominant 
role, but is outweighed by the forces directly acting on the effective charges. 

d) D4WM 

In recent literature, the term Degenerate Four-Wave Mixing (D4WM) has been 
used to specify a method which in a sense may be regarded as a borderline case 
of CARS. The input beams and the signal have equal frequencies and the wave 
vectors are usually arranged in a cross-like configuration with k' 1 = -k'~ and 
k s = -- k 2 [-see (4.56)1. The underlying susceptibility is that of CARS in the limit 
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Fig. 4.8. CARS-type spectrum of LiNbO 3. Both curves are normalized to unity at their maxima. 
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of co2-~col, i.e., Z(3)(--COl, O)1, O)1, --(DI). D4WM has attracted much tech- 
nological interest because it allows the generation of time-reversed or phase- 
conjugated wave fronts [4.66]. 

Of course, no Raman resonances can be studied by tuning co 1. Refferring to 
(4.21), however, we note that Z(3)(-co~, 091, 091, --t~01) still includes contri- 
butions from TPA resonances characterized by 2co 1 ~ co:i. Maruani et al. [4.67] 
have applied D4WM to study the biexciton two-photon transition in CuCl. As 
the energy of the biexciton is nearly twice the energy of the single exciton, the 
signal is enhanced not only by a two-photon, but also by a one-photon 
resonance. It becomes so strong that it can already be detected with moderate 
laser powers in a nonphase matching configuration with k' l=k'~. Moreover, 
higher-order scattering beams can be observed resulting from cascades via g (3~ 
or from one-step processes involving higher-order susceptibilities up to about 
)(9). The measured spectrum is somewhat similar to the line shape encountered 
in CARS. It also shows an antiresonance caused by a background contribution. 
The background is interpreted as a continuum formed by the pairs of unrelated 
elementary excitations into which the biexciton can decay [4.68]. 

4.3 Raman-Induced Kerr Effect Spectroscopy (RIKES) 
and Related Techniques 

In contrast to CARS, RIKES-type methods do not utilize the generation of 
new beams but exploit the intensity induced changes of the linear optical 
constants. Interpreting the gain coefficient as a negative absorption constant 
per unit power, we may also subsume the technique of SRS under this section. 

As already outlined before, SRS has been successfully applied in the 
analysis of extremely narrow Raman lines. An example is given in Fig. 4.9 
showing the line shape of the spin-flip Raman transition in InSb [4.37]. The 
gain coefficient has been plotted as a function of the magnetic field which tunes 
the Raman frequency o) o through the fixed frequency difference 
co t -092 = 4.17 cm-~ of two CO lasers. The relative stability of the two lasers is 
better than 1 M H z  so that the spin-flip linewidth of about 200MHz 
(0.007 cm-1) can be easily resolved. 

It is also promising to use SRS in the study of low frequency modes. Due to 
the directional nature of the laser beams, the interference of the elastic 
scattering can be reduced to a greater degree than in conventional Raman 
spectroscopy [4.69, 70]. 

Figure 4.10 demonstrates the present state of the art in RIKES [4.71]. The 
spectrum reveals the sharp peak near the two-phonon cutoff in diamond. This 
structure is well known from spontaneous Raman spectroscopy [4.72]. The 
background has been suppressed by a heterodyne technique based on the 
superposition of the signal field E2(co2) and a "local oscillator" field Ero with 
IELol>>lEz(co2)l (concerning the signal field, see Fig. 4.1 and Sect. 4.1.3). In 
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Fig. 4.10. Two-phonon cut off in dia- 
mond  as revealed by RIKES. The back- 
ground is suppressed by an optical hete- 
rodyne (OHD) technique I-4.18, 71] 

combination with electrical filtering, such a superposition leads to a signal 
which is proportional to the real part of the product [E*oE2(co2)] and hence to 
Z (3). Depending on the phase relationship between ELO and E2(c02), the 
observed spectrum displays either the real or the imaginary part of X (3) without 
any distortion by cross terms I-4.18, 71]. 

4.4 Double Resonance Interferences in Four-Wave Mixing 

We have stated in (4.21) that ;(3) includes both Raman and TPA resonance 
contributions. If the TPA transition can be characterized by a Lorentzian line- 
shape function with a well-defined transition frequency co/~ and damping 
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cons tan t  Fs~, the T P A  term m a y  be wri t ten  in ana logy  to (4.30) as [4.29, 73, 74] 

~TPA t' __ (D2) ,  ~ .TPA ," 0) 0.) ./~fl~xl. - -  f2)s~ O')p, O91~ ~afl,6a ~,- I '  1' (DI ,  --091) 
= L N  : i  , [ T~,(co,)] Tf~(~,)  (4.58) 

24h (-Ofi- 20) 1 -- il-'fi 

W e  have as sumed  the differences between Os, ~%, cox, co2 to be negl igibly small  
c o m p a r e d  to the electronic t rans i t ion  frequencies o9,,~, so tha t  the T P A  
con t r ibu t ions  to C A R S  and  D 4 W M  become identical .  Tf~(~ol) represents  the 
T P A  t rans i t ion  po la r izab i l i ty  referred to a single molecule  or  unit  cell. I t  is 
given by 

: i  2 ( i l M . l n ) ( n l M , ] f )  

T~'~(°91) = -h ~, o9,~- 01 (4.59) 

where  d a m p i n g  has been omit ted.  
Due  to Z xeA, the n o n r a m a n  b a c k g r o u n d  Z NR can become a complex  quan t i t y  

and  add i t iona l  cross terms have to be cons idered  in the in te rp re ta t ion  of  C A R S  
spec t ra  [4.47]. A var ie ty  of  poss ible  d i s tor t ions  is shown in Fig. 4.11 present ing 
the results  of  a double  resonance  s tudy  on CuCI [4.55, 75]. On  the one hand,  
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O-)1--O.) 2 is scanned through the Raman line of the phonon-polariton at 
208 cm-  1. On the other hand, 2091 is tuned in steps across the sharp TPA line of 
the Z 3 exciton-polariton at 25,880 cm-1 (3.2087 eV). Curves I and V refer to 
values of 2091 far from resonance and thus reveal the CARS spectrum 
undisturbed by TPA. In case III, however, X TPA adds a considerable imaginary 
amount to X NR which, according to (4.50, 52), enhances the resonance-type 
intensity portion 12 . 

The interference of X R and Z ~'PA in a double resonance experiment can be 
utilized to determine the ratio of ITfi(091)[ and [Afi(091)[ and to calibrate one of 
these quantities by comparison with the other [4.55, 76]. If the line shape of the 
TPA resonance is completely unknown, it seems to be more convenient to 
perform a double resonance experiment in the SRS instead of the CARS 
configuration. Then only the imaginary part of X TPA is measured and the 
Raman gain due to the imaginary part of Z a is linearly superimposed by a TPA 
background. Hence, the relative magnitude of both can be easily deduced. 

In Fig. 4.12 we show an experimental arrangement designed to measure 
TPA coefficients in the near uv relative to known Raman cross sections [4.34, 
73, 74]. A typical result is reproduced in Fig. 4.13 [4.34]. Part (a) presents the 
profile of the 3062 cm-  1 Raman line of liquid benzene. The absolute spectral 
differential cross section obtained from spontaneous Raman scattering has 
been plotted as a function of the Raman shift 09R- Part (b) shows the relative 
change of the intensity 12=1((o2) due to the interaction with 1(090. As the 
frequency sum (091 + 092) already lies in the TPA region of benzene, the Raman 
gain is shifted down by a TPA background. The TPA coefficient follows from 
the known Raman cross section and from the ratio of Raman and TPA 
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contributions to the integral attenuation or amplification, respectively. As 
illustrated by part (c), the Raman profile is shifted still more if a crystal is 
immersed in the liquid. The TPA coefficient of this additional sample can be 
derived from the increase of the background relative to the Raman gain. 

Such calibrations of TPA coefficients seem to be more accurate than direct 
measurements. They are not sensitively influenced by the beam structure and 
overlap because Raman gain and TPA attenuation depend on these factors in 
exactly the same way. 

4.5 Hyper-Raman Spectroscopy (HRS) 

4.5.1 Selection Rules 

The process of hyper-Raman scattering (here also abbreviated as HRS) is 
usually illustrated by the level scheme shown in Fig. 4.14a. If the elementary 
excitation is a phonon, we can extract the electron-lattice interaction JC'EI. from 
the Hamiltonian of the unperturbed system and combine it with the dipole 
electron-radiation interaction ~f'ER to the perturbation energy. Then HRS is 
described by four-vertex diagrams as presented in Fig. 4.14b. The wavy and the 
broken lines indicate the photons and the phonon, respectively. The bubble 
denotes the intermediate states. These are virtual electron-hole pairs coupling 
to the photons via "~'ER and to the phonon via ~°,rL. We note that the input 
photons do not generate two different electron-hole pairs, but that either of 
them acts on the electron-hole pair generated by the other. The hyper-Raman 
efficiency SHR is determined by products of four matrix elements, three 
involving .~t°,ER and one involving ~f'EL I-4.771. 

If the crystal under investigation has a centre of inversion, the matrix 
elements of both "JfER and Jr°EL must relate states of opposite parity in order to 
yield nonvanishing products contributing to SHR. Therefore, the parity of the 
phonon linearly involved in Jd'EL has to be odd. This is only another version of 
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Fig. 4.14. Level scheme and diagram of the hyper-Raman effect 
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Fig. 4.15. The "silent" mode of BaTiO 3 or SrTiO~. 
Full circle : t i tanium ; empty circles : oxygen ; hatched 
circles: barium or strontium 

our earlier statement, that the parity selection rules of HRS are identical with 
those of one-photon infrared absorption. 

As far as phonons are concerned, detailed calculations of SnR have not yet 
come to the knowledge of the present author. Jha and Woo [4.77] have deduced 
general expressions for nonpolar phonons without applying them to a specific 
material. Zavorotnev and Ovander [4.78] have developed a theoretical de- 
scription interpreting HRS as a four-polariton process by which two input 
polaritons are transformed into two scattered ones. As will be illustrated in 
Sect. 4.5.4, a similar concept has been successfully used for describing HRS via 
biexcitons in copper halides [4.79]. 

The symmetry selection rules of HRS were first published by Cyvin et al. 
[4.80]. They extended Placzek's polarizability theory of the Raman effect and 
considered the transformation properties of the hyper-Raman polarizability 

f i  B,o~(col) we introduced in Sect. 4.1.3. Their tables confirm the two attractive 
features of HRS : 
1) all infrared-active modes are also hyper-Raman-active and thus can be 

studied by the light scattering technique; 
2) HRS allows the observation of "silent" modes which do not carry a dipole 

moment but only an octupole one. 
An example of a "silent" mode is given in Fig. 4.15. The oscillation pattern 
presented there refers to the F2u mode of cubic perovskites like BaTiO 3 or 
SrTiO 3. The oxygen atoms move in such a manner that no dipole moment can 
arise and only an octupole moment is left [4.45]. 

4.5.2 Experimental Problems 

The order of magnitude of Sng may be roughly estimated by combining (4.10, 
43, 45). We find 

SHRE2Z (s'P(5) ( E )  2 
SR ~ 7 - - ~ - ( 5 7 ~  ~ , (4.60) 

where we have adopted the notation used in (4.10). Thus, SnR is expected to be 
several orders of magnitude smaller than a typical value of S R, even if the 
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incident laser intensity approaches the threshold of dielectric breakdown. This 
unfavorable situation almost excludes a general applicability of spontaneous 
HRS. The samples to be studied must be transparent in order to withstand high 
laser powers. Preferably, they should be highly polarizable (small EM) or should 
allow the study of HRS under resonance conditions. 

In the pioneering work on HRS [4.4, 81, 82], Q-switched ruby lasers with 
peak powers in the range of several MW were used. The detected signal in 
materials like fused quartz was about 1 photon count per laser shot and 
spectral resolution element. With pulse repetition rates around 1 Hz, the 
measurement of a hyper-Raman spectrum became a rather time consuming 
effort, in particular, if done in a single channel scan. Conditions are improved 
when the ruby laser is replaced by an acousto-optically Q-switched Nd-YAG 
laser [4.26, 45]. The peak power of this source is lower by a factor of 30. 
However, the pulse repetition rate up to 10 kHz overcompensates this lack of 
power and allows a better averaging over laser fluctuations. 

Since the hyper-Raman lines are observed in the spectral neighborhood of 
the second harmonic at 347 or 532 nm, the scattered photons can be detected 
by the photon counting devices used in standard Raman spectroscopy. The 
upper limit of the dynamical range is given by the pulse repetition rate of the 
laser because only a few photon counts can be clearly resolved within a laser 
pulse width between 5 and 100 ns. The lower limit is determined by the dark 
noise of the photomultiplier. For a pulse repetition rate of 10 kHz, the effective 
dark noise can be reduced to about 0.01 counts per second by properly gating 
the counting electronics synchronously to the laser Q-switch. 

A major breakthrough in HRS is expected when optical multichannel 
systems become generally available and the photon counts of all spectral 
elements can be simultaneously accumulated (see Chap. 3 of this volume). 
Concerning quantum efficiency, dark noise and gating facilities, these systems 
should be comparable with the single-channel photon counting devices. Savaoe 
and Maker [4.83], French and Long [-4.84], as well as Denisov et al. [4.85], have 
already described hyper-Raman spectrometers which allow multichannel de- 
tection. The spectral resolution of their instruments, however, seems to be 
rather low with spectral slitwidths around 20 cm-1 and more. 

4.5.3 Spontaneous HRS of Phonons and Polaritons 

Due to the extremely small cross section, hyper-Raman studies are still rare and 
concentrate mostly on the effect as such. The following solids have been under 
investigation : CsBr, CsI, RbI [--4.45], CdS [--4.87], TiO 2 [-4.85], SrTiO 3 [4.45, 85, 
86], LiNbO 3 [4.85], CaCO a [4.87], NaNO 3 [4.20, 88], NH4CI [4.19, 20, 83], 
NH4Br [4.20], fused quartz [4.4, 85], TiOz-SiO z glass [4.89]. 

Figure 4.16 shows the rather simple hyper-Raman spectrum of CsI at room 
temperature [4.45]. The scattering intensity in counts per second has been 
plotted as a function of the wave number shift from the second harmonic. The 
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two observed hyper-Raman lines correspond to the TO and LO-phonon near 
the F-point of the Brillouin zone. The ratio of antistokes and Stokes intensity is 
given by the Boltzmann factor at room temperature and thus indicates that the 
sample is not being heated up although peak and average laser power are about 
20 kW and 3 W, respectively. 

Since the sample is centrosymmetric, the hyper-Rayleigh line at 2~ 1 is very 
weak, in particular, if compared with the Rayleigh line encountered in normal 
Raman spectroscopy. For a perfect crystal, the intensity at 2co 1 should actually 
vanish completely, because quasi-elastic scattering by acoustic phonons (hyper- 
Brillouin scattering) or entropy fluctuations is forbidden by symmetry. 
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Fig. 4.18. The imaginary part of the dielectric function of SrTiO 3 at room temperature in the 
spectral region of the ferroelectric soft mode. Crosses: HRS; all other symbols: far infrared 
reflection spectroscopy [4.90] 

The slightly more complex spectrum of SrTiO 3 is presented in Fig. 4.17 
[-4.45]. A scattering configuration has been chosen allowing the detection of all 
F-phonons. The weakest line at 266cm -1 belongs to the "silent" mode of 
symmetry type F2, already referred to in Sect. 4.5.1. The strongest line at 
88 cm- 1 corresponds to the ferroelectric mode. As all lines are comparatively 
broad, they can be well resolved with a spectral slit width around 5 cm- 1. Thus, 
HRS yields mode frequencies and damping constants of SrTiO 3 with a 
precision superior to that of all spectroscopic methods used so far (neutron 
scattering, infrared reflection, electric field induced Raman scattering). 

By application of the fluctuation-dissipation theorem, it is possible to 
deduce accurate values of the far infrared dielectric function s = s' + E' from the 
hyper-Raman spectrum. Figure 4.18 compares the imaginary part E' as obtain- 
ed by HRS with the results of various far-infrared reflectivity studies [4.90]. 
Because of the unusually high reflectivity and small penetration depth of 
SrTiO 3 in the spectral region of the ferroelectric mode, the accuracy of infrared 
spectroscopy is rather poor, so that considerable discrepancies exist between 
the data of different authors. As demonstrated by Fig. 4.18, HRS can help in 
eliminating such uncertainties. 
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Most of the hyper-Raman works quoted above deal with Raman forbidden 
or "silent" F-phonons. Recently, however, HRS has also been applied to 
observe the polariton dispersion in SrTiO 3 [4.85, 86], TiO/ and fused quartz 
[4.85]. The enormous difference between the frequencies of the exciting and the 
scattered light allows the use of a scattering angle of exactly 0 °. On the other 
hand, the relatively large dispersion [n(2col)-n(col) ] confines the observation 
mainly to the upper or photon-like polariton branches. 

Two-phonon structures in a hyper-Raman spectrum were first reported by 
Denisov et al. [4.85]. Polivanov and Sayakhov [4.87] have found a resonance 
enhancement of HRS from CdS when tuning the band gap thermally. 

4.5.4 Resonant and Stimulated HRS 

The first observations of stimulated hyper-Raman transitions refer to alkali 
vapours [4.91]. Here, the process can be strongly enhanced by a twofold 
resonance characterized by o9~ ~ o~,, i and 2e) 1 ~ co,.i. In sodium, for instance, the 
4d levels have almost twice the energy of 3p levels, so that 3p and 4d can be 
utilized as intermediate states In> and In'). Then strong resonant and stimu- 
lated HRS is observed [4.91]. In contrast to HRS by phonons, however, the 
final state (4p) is far away from the initial one (3s), so that the scattered light has 
frequencies in the near infrared, whereas co I is in the yellow region of the visible 
spectrum. 

Comparably fortunate conditions are provided by the exciton and biexciton 
energy levels in copper halides. A schematic picture of the doubly resonance 
enhanced HRS in these materials is given in Fig. 4.19 [4.79]. Inside the crystal, 
the incident laser photons become polaritons of frequency e) z and wave vector 
qv Two of them virtually, but almost resonantly excite a biexciton. The 
biexciton decays into two polaritons. One of them (wave vector q) belongs to 
the lower branch and thus can escape from the sample as a photon. The other 
(wave vector k) is on the upper branch and cannot be directly detected. 

This type of hyper-Raman emission has been extensively studied by Grun 
and his associates (see [4.79] and references therein). The experimental 
information can be used for constructing the exciton and polariton branches in 
copper halides. 
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