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Preface

Nowadays, it is difficult to justify the writing of a new textbook on
statistical thermodynamics. A quick glance at the bibliography at
the end of this book shows an abundance of such textbooks. There
are also a few books on statistical thermodynamics that use infor-
mation theory such as those by Jaynes, Katz, and Tribus. These
books use the principle of maximum entropy to “guess” the “best”
or the least biased probability distributions of statistical mechanics.

The main purpose of this book is to go one step forward, not only
to use the principle of maximum entropy in predicting probability
distributions, but to replace altogether the concept of entropy with
the more suitable concept of information, or better yet, the missing
information (MI).

I believe that the time is ripe to acknowledge that the term
entropy, as originally coined by Clausius, is an unfortunate choice.
Moreover, it is also a misleading term both in its meaning in ancient
and in contemporary Greek.1 On this matter, I cannot do any better

1In the Merriam-Webster Collegiate Dictionary (2003), “Entropy is defined as:
“change,” literary “turn,” a measure of the “unavailable energy” in a closed
thermodynamic system. . . a measure of the system’s degree of order. . .”
From Merriam-Webster online:

1. A measure of the unavailable energy in a closed thermodynamic system.
2. A measure of the system’s disorder.
3. The degradation of matter and energy in the universe to an ultimate state

of inert uniformity. εν = in, τρoπη = trope = transformation εντρoπια =
entropy = transformation inwards in modern usage, entropy: turn into, or
turn to be or evolves into, the way something will turn out, will change;
could be evolves.

xv
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than Leon Cooper (1968). Cooper cites the original passage from
Clausius: in choosing the word “Entropy,” Clausius wrote:

“I prefer going to the ancient languages for the names of impor-
tant scientific quantities, so that they mean the same thing in all
living tongues. I propose, accordingly, to call S the entropy of a
body, after the Greek word “transformation.” I have designedly
coined the word entropy to be similar to energy, for these two
quantities are so analogous in their physical significance, that an
analogy of denominations seems to be helpful.”

Right after quoting Clausius’ explanation on his reasons for the
choice of the word “Entropy,” Cooper commented:

“By doing this, rather than extracting a name from the body of
the current language (say: lost heat), he succeeded in coining a
word that meant the same thing to everybody: nothing.”

I fully agree with Cooper’s comment; however, I have two addi-
tional comments, and contrary to Cooper, I venture into taking the
inevitable conclusion:

First, I agree that “entropy means the same thing to everybody:
nothing.” But more than that, entropy is also a misleading term.
The two quantities “energy” and “entropy” are not analogous in
their physical significance; hence, there is no reason for using anal-
ogous denominations.

Second, I do not believe that Cooper’s apparently casual sug-
gestion that “lost heat” might be a better choice, is a good idea,
as much as the more common “unavailable energy” interpretation
attached to “entropy” in most dictionaries.

As we shall discuss in Chapter 1, both the “heat loss” and
“unavailable energy” may be applied under certain conditions to
T∆S but not to entropy. The reason it is applied to S rather
than to T∆S, is that S, as presently defined, contains the units
of energy and temperature. This is unfortunate. If entropy had
been recognized from the outset as a measure of information,
or of uncertainty, then it would be dimensionless, and the bur-
den of carrying the units of energy would be transferred to the
temperature T .
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Finally, I believe that the time has come to reach the inevitable
conclusion that “entropy” is a misnomer and should be replaced by
either missing information or uncertainty. These are more appro-
priate terms for what is now referred to as “entropy.”

Unfortunately, there is a vigorous ongoing debate on the very
interpretation of entropy as information, let alone the replacement
of entropy by information. This aspect will be discussed at length
in Chapter 1. In Chapter 1, I shall also discuss the more common
interpretation of entropy as disorder, mixed-upness, disorganiza-
tion, chaos and the like. In my opinion all these terms are also
inappropriate interpretations of entropy.

Today, the concept of entropy is used in many fields far from, and
unrelated to, thermodynamics. Even in a superficial survey of the
applications of the term entropy in various fields, from communi-
cations to economics, sociology to psychology, linguistics, arts and
many more, one immediately realizes that the concept that is used
is information, and not entropy as defined by Clausius and as is
used in thermodynamics.

I can understand the continual application of the term “entropy”
by practitioners in thermodynamics and statistical mechanics. It is
a tradition that is hard to change.

I fail to understand why so many authors use the term entropy
where in fact what they really mean is information or uncertainty
(that includes Shannon himself who, as the story goes, renamed
his measure for information as entropy; see below). To me, the
usage of the term entropy is a corruption of the meaningful concept
of information. Entropy does not mean what it meant in ancient
Greek, does not mean what it presently means in modern Greek,
and does not mean what it was supposed to mean when Clausius
made this unfortunate choice. To use a concept that means “noth-
ing,” to replace a simple, familiar and meaningful concept such as
information, by entropy, is at best, a perversive practice. The origin
of this practice is found in Tribus’2 story:

“What’s in a name? In the case of Shannon’s measure the nam-
ing was not accidental. In 1961 one of us (Tribus) asked Shannon

2Tribus (1971).
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what he had thought about when he had finally confirmed his
famous measure. Shannon replied: “My greatest concern was what
to call it. I thought of calling it ‘information,’ but the word was
overly used, so I decided to call it ‘uncertainty.’ When I dis-
cussed it with John von Neumann, he had a better idea. Von
Neumann told me, ‘You should call it entropy, for two reasons. In
the first place your uncertainty function has been used in statis-
tical mechanics under that name. In the second place, and more
important, no one knows what entropy really is, so in a debate
you will always have the advantage.’”

On von Neumann’s suggestion, Denbigh (1981) comments:

“In my view von Neumann did science a disservice! ” adding
“there are, of course, good mathematical reasons why information
theory and statistical mechanics both require functions having the
same formal structure. They have a common origin in probability
theory, and they also need to satisfy certain common requirements
such as additivity. Yet, this formal similarity does not imply that
the functions necessarily signify or represent the same concepts.
The term ‘entropy’ had already been given a well-established phys-
ical meaning in thermodynamics, and it remains to be seen under
what conditions, if any, thermodynamic entropy and information
are mutually inconvertible.”

I agree with the first sentence by Denbigh and indeed: In my view
von Neumann did science a disservice.

My reason for embracing Denbigh’s statement is that information
(or choice, or uncertainty) is a simple, familiar, meaningful and
well-defined concept. Renaming it entropy merely corrupts the term
information. I shall delve into this more in Chapter 1.

The term “information” is indeed a far more general, and “overly
used,” concept than the quantity defined by Shannon. This is
probably the reason why Shannon sought the advice of von Neu-
mann for an appropriate term for the quantity he defined to
measure information (or choice, or uncertainty). It would have been
helpful if an appropriate term could have been found that had
retained the qualitative properties of information on the one hand,
yet was restricted to usage for that specific quantity as defined
by Shannon, on the other. Unfortunately, the choice of “entropy”
certainly does not fulfill this requirement, and in my opinion is an
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inadequate term. The choice made in this book is “missing informa-
tion,” or MI, or better yet, the amount of MI. This term captures
the meaning of the concept sought by Shannon as a measure of
the missing information, and therefore it is an appropriate term
to replace the traditional term entropy. Perhaps, in the future, a
term that combines the concepts of “measure” and of “information”
(or of “measure” and of “uncertainty”) should be coined. After all,
Shannon himself did not discuss the information itself, but some
measure of the size of a message that may or may not carry infor-
mation. Perhaps a term like “enformetry,” which has a part from
entropy, a part the root word of information, and metry that
indicates a measure of the size of the message, would serve better
than entropy. In Section 3.3, we shall see that the most appropriate
interpretation of “entropy” is the number of binary questions that
one needs to ask to acquire the missing information.

It seems to me that if the absolute temperature had been defined
after the development of the kinetic theory of gases, and recog-
nized as a measure of the average kinetic energy of the particles, it
would have been bestowed with the units of energy.3 These units
are more “natural” and more appropriate units for the temperature.
Having temperature in units of energy would automatically render
the Boltzmann constant superfluous and the Boltzmann entropy a
dimensionless quantity. Such a dimensionless quantity would still be
a state function. In this case, it would be easier to accept the inter-
pretation of entropy as information. Furthermore, it would ease the
acceptance of information as a cornerstone of the fabric of reality
among matter and energy. The replacement of “entropy” by “infor-
mation,” in itself, would not provide an explanation of the Second
Law of Thermodynamics. However, being an intangible quantity, it
would be easier to accept the fact that information, or rather the
MI increases in one direction only; it would also remove much of
the mystery associated with entropy.

The aim of this book is to develop statistical thermodynam-
ics from the cornerstone concept of information, as defined by

3This is true for ideal gases. See also Section 1.1. Note that “units of energy”,
is not the same as the energy of the system.



December 7, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in FM

xx Preface

Shannon, not only as a means of guessing the best (or the least
biased) probability distributions, but to replace entropy altogether.

To achieve that, I have allotted more space to present the ele-
ments of probability and information theory than to the founda-
tions of statistical mechanics.

In Chapter 1, I will present the pros and cons of the usage of infor-
mation in statistical mechanics. I will also discuss briefly the usage
of disorder and related concepts in connection with entropy. Chap-
ter 2 presents the elements of probability theory, enough to convince
the reader of its usefulness and its beauty, enough to understand
what information, as defined by Shannon, is. Probability theory is
a rich, fascinating and extremely useful branch of mathematics. I
have chosen some examples as exercises (most worked out in detail).
Some are simple and straightforward, while some are more difficult,
or “brain-teasers.” All are useful for understanding the rest of the
book. In Chapter 3, I will present the concept of information, the
definition, the meanings and the application of this concept in sta-
tistical mechanics. We shall not touch on the application of infor-
mation in communication theory, but only on those aspects that
are relevant and potentially useful to statistical thermodynamics.

Information as defined by Shannon is a real objective quantity as
much as mass and energy in physics, a point or a circle in geome-
try. In fact, I believe that the measure of information as defined by
Shannon is more “objective” than a “mass” in physics, or a “point”
in geometry. Different persons would measure different masses of
the same piece of matter; it is hard to claim an exact value of its
mass.4 Similarly, a point in geometry is conceived as an idealization,
or as a mathematical limit, but not a real physical object. However,
a coin hidden in one of eight identical boxes defines a Shannon
measure of the MI, which is log2 8 = 3. It is a real, objective and
exact quantity. It would be futile to argue that this measure is
“subjective,” or “all in the mind,” as claimed by some authors (see
also Chapter 1). Of course, information, as uncertainty, is always
about something. That “something” could be chosen in different

4Denbigh and Denbigh (1985).
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ways even for the same system. In information theory, that “some-
thing” is irrelevant to the theory. What matters is only the size of
the message carrying the information. (See also Chapter 3.)

If one accepts the probabilistic interpretation of the entropy, and
agrees on the meaning of Shannon’s information, then the interpre-
tation of the thermodynamic entropy as thermodynamic information
becomes inevitable.

It is sometimes argued that information is not uncertainty. Indeed
it is not. The information one has about an event is different from
the uncertainty about that event. However, both of these concepts
are valid and plausible interpretations of the quantity −∑

pi log pi,
which features in information theory. This, in itself, does not make
the two concepts identical, but it allows us to use the two inter-
changeably whenever we refer to the quantity −∑

pi log pi. Both
of these concepts subscribe to the same requirements originally put
forward by Shannon when constructing the measure of information,
or uncertainty. It should be noted however that order and disorder
do not subscribe to these requirements, and therefore should not
be used to describe the quantity −∑

pi log pi (for more details, see
Section 1.2).

Chapter 4 is a transition chapter. Instead of plunging directly into
statistical mechanics, I decided to gradually transform the concept
of the amount of missing information, denoted by H, as defined
by Shannon, and as is used in many fields, into the more specific
usage of information in thermodynamics. The transition from the
general concept of MI to the specific thermodynamic MI is carried
out along three (not necessarily independent) routes.

(i) From a small number of states (or events, or configuration) to
a very large number of states.

(ii) From one type of information to two types.
(iii) From discrete to continuous information.

This transitional chapter will culminate in the re-derivation of the
well known Sackur–Tetrode equation for the entropy. In contrast
to the traditional derivation, the new one is based on information–
theoretical arguments, and therefore deserves to be renamed the
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equivalent of the Sackur–Tetrode equation for the thermodynamic
amount of missing information of an ideal gas.

In Chapter 5, we present the fundamental structure of statistical
mechanics. This is a standard subject. Therefore, we shall refrain
from any details that can be found in any textbook on statisti-
cal mechanics. We shall be brief and almost sketchy. The general
framework of the structure of statistical thermodynamics, and some
standard applications for ideal gases, will be mentioned briefly only
if they shed new light on the entropy being replaced by MI.

Chapter 6 can be viewed either as a collection of simple appli-
cations of statistical thermodynamics to a few simple processes, or
as exercises for practicing the calculation of informational changes
in these elementary processes. Some of the processes are discussed
in most textbooks, such as expansion, mixing or heat transfer. In
this chapter, however, we shall emphasize the informational changes
accompanying these processes.

By doing that, we shall stumble upon two important findings;
the first is the illusion regarding the irreversibility of mixing ideal
gases. This has to do with the common and almost universally
accepted conclusion that mixing of ideal gases is an inherently irre-
versible process, and the interpretation of the quantity −∑

xi ln xi

as “entropy of mixing.” It will be shown that mixing, in an ideal gas
system can be reversible or irreversible, as can be demixing. The
association of the increase of entropy with mixing or with increase
of disorder is only an illusion.

The second is the illusion associated with the sense of loss of
information in the assimilation process. This is a deeper illusion
which has its roots in Maxwell’s and Gibbs’ writings regarding the
apparent loss of information due to the assimilation process. We
shall discuss this in Chapter 6. We shall show that both Maxwell’s
statement as well as Gibbs’ have originated from the intuitive feel-
ing that in an assimilation process, there is a sense of loss of infor-
mation due to the loss of identity of the particles. This illusion is
a result of “thinking classically” about identical particles; it can
be resolved by properly interpreting the role of indistinguishability
of the particles. Both of these illusions have misled many authors,
including Gibbs, to reach the wrong conclusions.
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Chapter 6 ends with a formulation of the Second Law of Ther-
modynamics in terms of probabilities and missing information. In
the over-a-hundred-years of the history of the Second Law, people
were puzzled by the apparent conflict between the reversibility of
the equations of motion, and the irreversibility associated with the
Second Law. Boltzmann was the first to attempt to derive the Sec-
ond Law from the dynamics of the particles. In my opinion, this,
as well as other attempts, will inevitably fail in principle. First,
because it is impractical to solve the equations of motion for some
1023 particles. Second, because one cannot get probabilities from
the deterministic equations of motion. Third, and perhaps most
important, because of the indistinguishability of the particles. It
is well known that whenever we write the equation of motions of
any number of particles, we must first label the particles. This is
true for classical as well as for the quantum mechanical equations
of motion. However, the very act of labeling the particles violates
the principle of ID of the particles. Therefore, one cannot derive the
second law of thermodynamics which applies to indistinguishable
(or unlabel-able in principle; see also appendices J & M) particles
from the equations of motion of labeled particles. To put it differ-
ently, if we are strictly forbidden from labeling the ID particles, not
even temporarily, then we have no equations of motion, hence there
exists no conflict.

I have pondered long and hard over the choice of notation. On
the one hand, I wanted to use a new notation for the “entropy” and
the “temperature,” to stress the difference in the meaning and the
units of these quantities. Yet, I did not want to change to a com-
pletely unfamiliar notation. During the time of writing the book,
I was considering a sort of compromise to use S̄ and T̄ instead of
S and T , but in different units. Finally, I came to the conclusion
that the best way is to keep the same notation for S and T , but to
emphasize, quite frequently that we mean S/k and kT for the new
quantities S and T . There is one modified notation however. We
use H, following Shannon, for the more general measure of informa-
tion in the sense of −∑

pi log pi, when applied to any distribution.
Whenever we discuss a thermodynamic system at equilibrium, H

becomes identical with S. This conserves the notations of S and T
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on the one hand, and makes the distinction between the more gen-
eral concept of information and the specific application of the same
concept for thermodynamic systems, on the other. For instance, in
Chapter 4, we shall discuss various problems of one or two parti-
cles (or coins) bound to M sites (or hidden in M boxes). These
are purely informational problems, and we use H in this context.
However, for N → ∞ and M → ∞, we get into the realm of a
thermodynamic system of N ligands absorbed on M sites. In this
case, we shall switch from the informational measure of information
H to the informational measure that previously was referred to as
entropy, and is denoted by S. Thus, the notation S is identical, both
formally and conceptually, with Shannon’s measure of information
H, whenever it applies to a thermodynamic system at equilibrium.

As for the justification of this book: there are a few books which
include in their titles both “statistical mechanics” and “informa-
tion theory.” In fact, all of these, including Jaynes’ pioneering
work use “information theory.” They use the maximum-entropy
principle to predict the most plausible distributions in statistical
mechanics. None of these base statistical mechanics on the concept
of information, which is the aim of this book. Moreover, all the
examples given in Chapter 6 are presented, discussed and analyzed
in terms of the changes in the amount of missing information in
spontaneous processes. I found this point of view very fruitful, illu-
minating and worth publishing.

The book is written in textbook style but it is not a textbook of
statistical thermodynamics.

If you are reading this preface and pondering whether or not to
read the rest of the book, I suggest that you take a simple “test,”
the result of which should help you in making the decision.

Consider the following chain of reasoning:

(i) Mixing is conceived as a process that increases disorder in the
system.

(ii) Increase in disorder is associated with increase in entropy.
Therefore, from (i) and (ii), it follows that:

(iii) Mixing increases the entropy.
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If you have no idea what I am talking about in this “test,” you
should first study one of the standard textbooks on statistical ther-
modynamics, then come back to read this book.

If you do not agree with conclusion (iii), i.e., if the result of the
“test” is negative, then I am sure you can read, understand and
hopefully enjoy the book.

If you agree with conclusion (iii), i.e., the result of the “test” is
positive, then you have a problem. You should take medication, and
read this book until you test negative! I hope that after reading the
book, you will understand why I suggest this test.
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Chapter 1

Introduction

As stated in the preface, the aim of this book is to show that sta-
tistical thermodynamics will benefit from the replacement of the
concept of entropy by “information” (or any of its equivalent terms;
see also Section 1.3 and Chapter 3). This will not only simplify the
interpretation of what entropy is, but will also bring an end to the
mystery that has befogged the concept of entropy for over a hundred
years. In the first section (1.1) of this chapter, we shall briefly survey
the historical milestones in the understanding of the key concept of
thermodynamics: temperature and entropy. I shall try to convince
the reader that had the molecular theory of gases (the so-called
kinetic theory of heat) preceded the definition of the absolute tem-
perature, the entropy would have been defined as a dimensionless
quantity which, in turn, would have eased the acceptance of the
informational interpretation of the entropy. In the following two
sections (1.2 and 1.3), we shall discuss the pros and cons of the two
main groups of interpretations of the entropy — one based on the
idea of order-disorder (or any related concept), and the second on
the concept of information or missing information (or any related
concept).

1.1 A Brief History of Temperature and Entropy

Temperature and entropy are the two fundamental quantities
that make the entire field of thermodynamics deviate from other

1



December 5, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch01

2 Statistical Thermodynamics Based on Information

branches of physics. Both of these are statistical quantities, crucially
dependent on the existence of atoms and their properties. Temper-
ature, like pressure, is an intensive quantity; both can be felt by our
senses. Entropy, like volume, is an extensive quantity depending on
the size of the system. Unlike pressure and volume, temperature
and entropy (as well as the Second Law), would not have existed
had matter not been made up of an immense number of atoms and
molecules. It is true that both temperature and entropy were defined
and measured without any reference to the atomic constituency of
matter. However, the understanding of these quantities and in fact,
their very existence, is dependent on the atomic constituency of
matter.

Perhaps, the first and the simplest quantity to be explained by
the dynamics of the particles is the pressure of a gas. The pressure
is defined as the force exerted on a unit area. This definition is valid
not only without reference to the atomic constituency of matter,
but also if matter were not atomistic at all, i.e., if matter were con-
tinuous. Not so for the temperature. Although temperature can be
sensed and measured without reference to atoms, its very existence
and certainly its explanation is intimately dependent on the atom-
istic constituency of matter. During the 19th century, it was widely
believed that heat was a kind of substance that flows from a hot
to a cold body. The association of the notion of temperature with
motions of particles was one of the most important achievements
of scientists of the late 19th century.

Robert Boyle (1660) found that at a given temperature of the
gas, the product of the volume and pressure is constant. This is
now known as the Boyle–Marriote law:

PV = constant . (1.1.1)

Pressure could easily be explained by the particles incessantly
bombarding the walls of the container. The pressure P is defined
as force F per unit area, i.e.,

F = P A. (1.1.2)

The force exerted by a moving particle of mass m and velocity
vx colliding with a wall perpendicular to the x-axis is equal to
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Figure 1.1. Volume as a function of pressure for a gas at different tempera-
tures. Temperature increases in the direction of the arrow.

the change in the momentum per unit of time. An elementary
argument1 leads to the expression for the pressure in terms of the
average square velocity of the particles2

P =
ρm〈v2〉

3
, (1.1.3)

where ρ is the number density of the gas (i.e., the number of par-
ticles per unit volume), P is the (scalar) pressure, and

〈v2〉 = 〈v2
x〉 + 〈v2

y〉 + 〈v2
z 〉 = 3〈v2

x〉. (1.1.4)

This explanation was first given by Daniel Bernoulli (1732), long
before the mechanical interpretation of the temperature.

Although the sense of hot and cold has been experienced since
time immemorial, its measurement started only in the 17th and 18th

centuries. Various thermometers were designed by Ole Christensen

1See, for example, Cooper (1968).
2We shall use both the notations 〈x〉 and x̄ for the average of the quantity x.
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Ro/mer (1702), Daniel Gabriel Fahrenheit (1714), Anders Celsius
(1742), and many others.

Following the invention of the thermometer, it became possible
to make precise measurements of the temperature. In the early 19th

century, Jacques Charles and Joseph Louis Gay-Lussac discovered
the experimental law that at constant pressure, the volume is linear
in the temperature t (in ◦C), i.e.,

V = C(t + 273), (1.1.5)

where C is a constant, proportional to the amount of gas.
From the graphs in Figure 1.2, it is clear that if we extrapolate

to lower temperature all the curves converge to a single point. This
led to the realization that there exists a minimal temperature, or
an absolute zero temperature.

Combining the two empirical laws, one can write the equation of
state of the ideal gas as:

PV = C × T = nRT, (1.1.6)

-250 -200 -150 -100 -50 0 50 100

t˚C

50

100

150

200

250

V

Charle's Law

Figure 1.2. Volume as a function of temperature at different pressures. The
pressure decreases in the direction of the arrow.
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where T is the absolute temperature, n the number of moles, and
the “constant,” R, for one mole of gas is

R = 8.31 × 107 erg/mol K. (1.1.7)

Having a statistical mechanical theory of pressure, i.e., an inter-
pretation of the pressure in terms of the average kinetic energy of
the particles, on the one hand, and the equation of state of the gas
on the other, one could derive the expression for the temperature
in terms of the average kinetic energy of the particles. Thus, from
(1.1.3) and (1.1.6), one can derive the equation

kBT =
2
3
N

m〈v2〉
2

, (1.1.8)

where kB = 1.380× 10−23 J/K is now referred to as the Boltzmann
constant, and N is the number of particles of the gas. In 1811,
Amedeo Avogadro published his hypothesis that the average num-
ber of molecules in a given volume of any gas is the same (at a
fixed temperature and pressure). With this finding, one can relate
the Boltzmann constant kB to the gas constant R by the relation

R = NAVkB (1.1.9)

where NAV = 6.023×1023 (particles/mol) is the Avogadro number.
Sadi Carnot published a seminal work on the ideal heat engine in

1824.3 Carnot’s prosaic style of writing was reformulated in math-
ematical terms by Clapeyron (1834). The latter laid the basis for
the formulation of the Second Law by Clausius and by Kelvin.

William Thomson, later known as Lord Kelvin, established the
existence of the absolute temperature (1854) and showed that by
extrapolating from Charles’ and Gay-Lussac’s law (see Figure 1.2),
there exists an absolute zero temperature at about −273◦C (today
the Kelvin scale is defined in such a way that its value at the triple
point of water is, by definition, 273.16 K).

During that period, the First Law of Thermodynamics was estab-
lished by many workers, notably by Julius Robert Mayer, William
Thomsom, James Prescott Joule, and John James Waterston.

3Sadi Carnot (1824).
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The Second Law was first formulated by Clausius in 1849. A
second formulation by William Thomson (Lord Kelvin) followed in
1850. In 1854, Clausius studied the quantity dQ/T in connection
with heat engines, where dQ is a small amount of heat transferred
and T , the absolute temperature. However, the concept of entropy
was introduced only in 1863.

James Clerk Maxwell published the dynamical theory of gases
in 1860. This was extended by Ludwig Boltzmann in 1867. These
works established both the existence and the form of the equilib-
rium velocity distribution of the molecules in the gas, known today
as the Maxwell–Boltzmann distribution. This distribution estab-
lished the connection between the average kinetic energy of the
molecules with the absolute temperature.

During the late 19th and the early 20th centuries, the molecular
interpretation of the entropy was developed by Ludwig Boltzmann
and by Josiah Willard Gibbs. At that time, the molecular theory
of matter was far from being universally accepted. A turning point
in the acceptance of the atomistic theory of matter was the publi-
cation of the theory of Brownian motion by Albert Einstein (1905)
followed by the experimental corroboration by Jean Perrin (1910).

As we have seen in this brief history of temperature and entropy,
the concept of temperature, the various thermometers and the vari-
ous scales came before the establishment of the Maxwell–Boltzmann
(MB) distribution of velocities. The acceptance of the Maxwell–
Boltzmann distribution as well as Boltzmann’s expression for the
entropy came later. It is clear from this sequence of events that the
units of temperature were determined at least two decades before
the recognition and acceptance of the molecular interpretation of
the temperature.

When Clausius formulated the Second Law in terms of dQ/T , it
was only natural to define the entropy in units of energy divided by
temperature. From that, it followed that Boltzmann’s entropy had
to be defined with the constant kB (later known as Boltzmann’s
constant) having the same units as Clausius’ entropy, i.e., energy
divided by temperature or Joule/Kelvin, or J/K.

Events could have unfolded differently had the identification of
temperature with the average velocity of the atoms come earlier, in
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which case it would have been more natural to define temperature
in units of energy,4 i.e., one would have arrived at the identity

m〈v2〉
2

=
3
2
T (1.1.10)

(instead of 3kB T/2 on the right-hand side). Having this identifi-
cation of the temperature would not have any effect on the formal
expression of either the efficiency of Carnot’s engine,

η =
T2 − T1

T1
, (1.1.11)

or on the definition of Clausius’ entropy,

dS =
dQ

T
. (1.1.12)

The only difference would have been that the entropy S would
now be a dimensionless quantity. It would still be a state function,
and it would still make no reference to the molecular constituency
of matter. Clausius could have called this quantity entropy or what-
ever. It would not have changed anything in the formulation of the
Second Law, in either the Clausius or in the Kelvin versions. The
molecular interpretation of the entropy would have to wait how-
ever, until the close of the 19th century, when the foundations of
statistical mechanics were laid down by Maxwell, Boltzmann and
Gibbs.

What would have changed is the formal relationship between the
entropy S and the number of states W . To relate the two, there
will be no need to introduce a constant bearing the units of energy
divided by the temperature. Boltzmann would have made the corre-
spondence between the Clausius’ thermodynamic entropy and the
statistical entropy simply by choosing a dimensionless constant, or
better, leaving the base of the logarithm in the relation S = log W

unspecified (it will be shown in Chapter 3 that the choice of

4As actually is the practice in many branches of physics and in statistical
mechanics. It should be noted that the relation between the temperature and
the average kinetic energy of the particles is true for classical ideal gases. It is
not true in general. For instance, ideal Fermi gas at T=0K, has non-zero energy,
see also Leff (1999) and Hill (1960).
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base 2 has some advantages in connection with the interpretation
of entropy in terms of missing information; see Section 3.5).

The removal of the units from Clausius’ entropy would not have
any effect on the interpretation of the entropy within the classical
(or the non-atomistic) formulation of the Second Law. It would have
a tremendous effect on the interpretation of Boltzmann’s entropy, in
terms of probability, and later in terms of the missing information.

The units of Clausius’ entropy were, for a long time, the stum-
bling blocks that hindered the acceptance of Boltzmann’s entropy.
In one, we have a quantity that is defined by the ratio of energy
and temperature; in the other, we have a quantity representing
the number of states of the system. The two quantities seem to
be totally unrelated. Had entropy been defined as a dimensionless
quantity, the identification between the two entropies and eventu-
ally the interpretation of entropy as a measure of information would
have become much easier.

The redefinition of the temperature in units of energy will also
render the (erroneous) interpretation of the entropy as either “heat
loss” or “unavailable energy” as superfluous. Consider for simplicity
that we have an ideal mono-atomic gas so that all the internal
energy consists of only the kinetic energy. We write the Helmholtz
energy in the traditional forms as5

A = E − TS =
3N
2

kBT − TS. (1.1.13)

In this form, and under certain conditions, TS may be referred
to as “heat loss” or “unavailable energy.” In the conventional defi-
nition of the temperature, it is the entropy that bears the “energy”
part of the units. Therefore, it is almost natural to ascribe the
energy, associated with TS, to the entropy S. This leads to the com-
mon interpretation of the entropy as either “heat loss” or “unavail-
able energy” as it features in many dictionaries. If, on the other
hand, one defines T in units of energy and S as a dimensionless
quantity, this erroneous assignment to S can be avoided. In the
example of an ideal gas, we would have written, instead of (1.1.13),

5See, for example, Denbigh (1966).
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the equivalent relation

A =
3
2
NT − TS, (1.1.14)

where T itself is related to the average kinetic energy of the parti-
cles by

3
2
NT = N

m〈v2〉
2

(1.1.15)

or equivalently

T =
m〈v2〉

3
. (1.1.16)

Hence

A = N
m〈v2〉

2
− N

m〈v2〉
3

S/N

= N
m〈v2〉

2

[
1 − 2S

3N

]
. (1.1.17)

In this form, the squared brackets on the right-hand side of
(1.1.17) includes the entropy, or rather the missing information
(MI). Since S is an extensive quantity, S/N is the MI per par-
ticle in this system. The Helmholtz energy A is viewed as the total
kinetic energy, which when multiplied by the factor in the squared
brackets in Equation 1.1.17, is converted to the “free energy.”

1.2 The Association of Entropy with Disorder

During over a hundred years of the history of entropy, there have
been many attempts to interpret and understand entropy. We shall
discuss the two main groups of such interpretations of entropy.

The earliest, and nowadays, the most common interpretation of
the entropy is in terms of disorder, or any of the related concepts
such as “disorganization,” “mixed-upness,” “spread of energy,”
“randomness,” “chaos” and the like.

Perhaps, the earliest association of changes in entropy in spon-
taneous processes with increase of disorder is already implied in
Boltzmann’s writings. It is commonly believed that Bridgman
(1953) was the first to spell out the association of entropy with
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disorder. Leff (1996, 2007) has recently advocated in favor of the
idea of “spread of energy”.

The association of entropy with disorder is at best a vague qual-
itative, and highly subjective one. It rests on observations that in
some simple spontaneous processes, when viewed on a molecular
level may be conceived as a disordering that takes place in the
system. This is indeed true for many processes, but not for all.6

Consider the following processes.

Expansion of an ideal gas

Figure 1.3 shows schematically three stages in a process of expand-
ing of an ideal gas.

On the left-hand side, we have N atoms in volume V . In the
middle, some of the N atoms have moved to occupy a larger volume
2V, and on the right-hand side, the atoms are spread evenly in the
entire volume 2V. Take a look. Can you tell which of the three
systems is the more ordered? Well, one can argue that the system on
the left, where the N atoms are gathered in one half of the volume,
is more ordered than N atoms spread in the entire volume. That is
plausible when we associate entropy with missing information (see
below), but as for order, I personally do not see either of the systems
in the figures to be more ordered, or disordered than the other.7

The mixing of two different gases

Consider the two systems (Figure 1.4). In the left system, we have
NA blue, and NB red particles. In the right, we have all the particles

I

2 V, NV, N

II

2 V, N

Figure 1.3. Three stages in the process of an expanding ideal gas.

6It is interesting to note that Landsberg (1978) not only contended that disorder
is an ill-defined concept, but actually made the assertion that “it is reasonable
to expect ‘disorder’ to be an intensive variable.”
7This is certainly true if you ask people, who have never heard of the concept
of entropy, to rate the degree of order in the three systems in Figure 1.3, as the
author did.
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II

V, NA ,NBV, NA V, NB

Figure 1.4. Mixing of two different gases.

mixed up in the same volume V . Now, which is more ordered? In my
view, the left side is more ordered — all the blues and all the reds
are separated in different boxes. On the right-hand side, they are
mixed up. “Mixed-up” is certainly a disordered state, colloquially
speaking. In fact, even Gibbs himself used the word “mix-upness”
to describe entropy (see Sections 6.4–6.7). Yet, one can prove that
the two systems have equal entropy. The association of mixing, with
increase in disorder, and hence increase in entropy, is therefore only
an illusion. The trouble with the concept of order and disorder is
that they are not well-defined quantities — “order” as much as
“structure” and “beauty” are in the eyes of the beholder!

“Mixing” of the same gas

Consider the following two processes. In the first (Figure 1.5a), we
start with one atom of type A in each compartment of volume V ,

a

2 V, 2AV, 1A V, 1A

b

2 V, 2 NA V, NA V, NA

Figure 1.5. Assimilation, or “mixing” of two gases of the same kind.
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separated by a partition. In the second, we have N atoms of the
same kind in the two compartments. We now remove the partition.
Something certainly happens. Can we claim that disorder increases
or decreases? Clearly, in Figure 1.5a, the system is initially more
“ordered,” each particle is in a different box, and in the final stage,
the two particles are mixed up. The same holds true for the case of
N particles in each box, Figure 1.5b. Therefore, using the concept of
“disorder,” we should interpret the changes that take place in this
process as increase in disorder. Yet in terms of thermodynamics,
the entropy, in this process, should not be noticeably changed. As
we shall see in Chapters 4 and 6, both processes involve an increase
in MI; it is only in the macroscopic limit of very large N that the
change in the MI in the process in Figure 1.5b becomes negligibly
small and hence unmeasurable.

Extensivity of disorder?

Consider the two systems in Figure 1.6. We have two boxes of equal
volume V and the same number of particles N in each box. Each of
the boxes looks disordered. But can we claim that the “disorder”
of the combined system (i.e., the two boxes in Figure 1.6) is twice
the disorder of a single box? It is difficult to make a convincing
argument for such an assertion since disorder is not well defined.
But even as a qualitative concept, there is no reason to claim that
the amount of disorder in the combined system is the sum of the
disorder of each system. In other words, it is difficult to argue that
disorder should have an additive property, as the entropy and the
MI have.

V, N V, N

Figure 1.6. Is the extent of the disorder of the combined systems the sum of
the disorder of each system?
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V, 2 NAV, NA V, NA

Figure 1.7. A pure assimilation process.

The assimilation process

Consider the process depicted in Figure 1.7. We start with two
boxes of the same volume V and the same number of N particles
in each. We bring all the particles into one box. In Section 6.3, we
shall refer to this process as a pure assimilation process. Here, we
are only interested in the question: Is the final state less or more
disordered than the initial state? Again, one can argue either way.
For instance, one can argue that having N particles in each different
box is a more ordered state than having all the 2N particles mixed
up in one box. However, it can be shown that, in fact, the entropy as
well as the MI decreases in this process. Therefore, if we associate
decrease in entropy with decrease in disorder, we should conclude
that the final state is more ordered.

Heat transfer from a hot to a cold gas

As a final example, we discuss here an experiment involving change
of temperatures. This experiment is important for several reasons.
First, it is one of the classical processes in which entropy increases:
in fact, this was the process for which the Second Law was first
formulated. Second, it is a good example that demonstrates how
difficult it is to argue that disorder is associated with entropy.
The process is shown in Figure 1.8. Initially, we have two isolated

T=400 K      T=50 K T=225 K

Figure 1.8. Heat transfer from a hot to a cold gas.
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systems, each having the same volume, the same number of par-
ticles, say Argon, but with two different temperatures T1 = 50 K
and T2 = 400 K. We bring them into contact. Experimentally, we
observe that the temperature of the hot gas will get lower, and the
temperature of the cold gas will get higher. At equilibrium, we shall
have a uniform temperature of T = 225 K throughout the system.

Clearly, heat or thermal energy is transferred from the hot to
the cold gas. But can we understand the changes that occur in the
system in terms of disorder?

We know that temperature is associated with the distribution of
molecular velocities. In Figure 1.9, we illustrate the distribution of
velocities for the two gases in the initial state (the left-hand side
of Figure 1.9). The distribution is sharper for the lower temper-
ature gas, and is more dispersed for the higher temperature gas.
At thermal equilibrium, the distribution is somewhat intermedi-
ate between the two extremes, and is shown as a dashed curve in
Figure 1.9.

The heat transfer that we observed experimentally is interpreted
on a molecular level as the change in the distribution of molecular
velocities. Some of the kinetic energies of the hotter gas is trans-
ferred to the colder gas so that a new, intermediary distribution is
attained at equilibrium.

Now look at the two curves on the right-hand side of Figure 1.9,
where we plotted the velocity distribution of the entire sys-
tem before and after the thermal contact. Can you tell which
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Figure 1.9. Velocity distributions for a gas at different temperatures. (a) The
distributions corresponding to the left-hand side of Fig. 1.8. (b) The overall
distribution of velocities, before and after the process of heat transfer.
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distribution is more ordered or disordered? Can you tell in which
distribution the spread of kinetic energy is more even, or over a
larger range of velocities? To me, the final distribution (the dashed
curve) looks more ordered, and the distribution looks less spread
out over the range of velocities. Clearly, this is a highly subjective
view. For this reason and some others discussed in Chapters 3 and 6,
I believe that neither “disorder,” nor “spread of energy” are ade-
quate descriptions of entropy. On the other hand, information or MI
is adequate. As we shall see in Chapter 6, the increase in the entropy
in this process can be interpreted as an increase in the MI. It will be
shown that the final distribution of velocities is that with the mini-
mum Shannon’s information or maximum MI. Although this result
cannot be seen by looking directly at the system, nor by looking at
the velocity distribution curves, it can be proven mathematically.

Order and disorder are vague and highly subjective concepts. It
is true that in many cases, increase in entropy can be qualitatively
correlated with increase in disorder, but that kind of correlation is
not always valid. Furthermore, the commonly encountered state-
ment that “nature’s way is to go from order to disorder,” is to say
the same as “nature’s way is to go from low to high entropy.” It does
not explain why disorder should increase in a spontaneous process.
My objection to the association of entropy with disorder is mainly
due to the fact that order and disorder are not well-defined and
fuzzy concepts. They are very subjective, sometimes ambiguous,
and at times totally misleading.

Ever since Shannon introduced the definition of the measure of
information, it was found very useful in interpreting entropy (more
on this in Section 1.3 and Chapter 3). In my opinion, the concept
of missing information not only contributes to our understanding
of what is the thing that changes and which is called entropy, but
it also brings us closer to the last and final step in understand-
ing entropy’s behavior (more on this in Section 6.12). This view
however is not universal.

On this matter, referring to the informational approach to sta-
tistical mechanics, Callen (1984), on page 384 writes:

“There is a school of thermodynamics who view thermodynamics
as a subjective science of prediction.”



December 5, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch01

16 Statistical Thermodynamics Based on Information

In a paragraph preceding the discussion of entropy as disorder,
Callen explains the origin of this subjectivity and writes:

“The concept of probability has two distinct interpretations in
common usage. ‘Objective probability’ refers to a frequency , or
a fractional occurrence; the assertion that ‘the probability of
newborn infants being male is slightly less than one half ’ is a
statement about census data. ‘Subjective probability’ is a measure
of expectation based on less than optimum information .
The (subjective) probability of a particular yet unborn child
being male, as assessed by a physician , depends upon that
physician’s knowledge of the parents’ family histories, upon accu-
mulating data on maternal hormone levels, upon the increasing
clarity of ultrasound images, and finally upon an educated, but
still subjective, guess.”

I have quoted Callen’s paragraph above to show that his argu-
ment in favoring “disorder” is essentially fallacious. I believe Callen
has mis-applied a probabilistic argument to deem information as
“subjective” and to advocate in favor of “disorder,” which in his
view is “objective” (more on this in Chapter 2).

I am not aware of any precise definition of order and disorder
that can be used to validate the interpretation of the entropy in
terms of the extent of disorder. There is one exception however.
Callen (1985) writes on page 380:

“In fact, the conceptual framework of ‘information theory’ erected
by Claude Shannon, in the late 1940, provides a basis for
interpretation of the entropy in terms of Shannon’s measure of
disorder .”

And further, on page 381, Callen concludes:

“For closed systems the entropy corresponds to Shannon’s quan-
titative measure of the maximum possible disorder in the distri-
bution of the system over its permissible microstates.”

I have taught thermodynamics for many years and used Callen’s
book as a textbook. It is an excellent book. However, with all
due respect to Callen and to his book, I must say that Callen
misleads the reader with these statements. Shannon never defined
nor referred to “disorder” in his writings. In my opinion, Callen is
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fudging with the definition of disorder in the quoted statement and
in the rest of that chapter. What for? To “legitimize” the usage
of disorder in interpreting entropy. That clearly does not jibe with
Shannon’s writings. What Callen refers to as Shannon’s definition
of disorder is, in fact, Shannon’s definition of information. As we
shall see in Chapter 3, the measure of “information” as defined by
Shannon also retains some of the flavor of the meaning of informa-
tion as we use in everyday life. This is not the case for disorder. Of
course, one can define disorder as Callen does, precisely by using
Shannon’s definition of information. Unfortunately, this definition
of “disorder” does not have, in general, the meaning of disorder
as we use the word in our daily lives, as was demonstrated in the
examples above.8

As we have seen above, even mixing, under certain conditions can-
not be associated with an increase in disorder nor with the increase
in entropy. In fact, we shall show in Chapter 6 that if mixing can
be associated with increase in entropy, then also demixing should
be associated with increase in entropy. However, mixing by itself
has nothing to do with the increase in entropy.

Callen defined “Shannon’s disorder” by (for more details, see
Chapters 2 and 3)

disorder = −
∑

pi log pi. (1.2.1)

This is clearly a distortion of Shannon’s definition of information.
Shannon never defined nor discussed disorder in connection with
his work on information theory. I would make this statement even
stronger by claiming that neither Shannon, nor anyone else could
have arrived at such a definition of “disorder.”

As we shall see in Chapter 3, Shannon did not start by defining
information (or choice or uncertainty, certainly not disorder). What
Shannon did was to start with the general concept of “information”

8McGlashan (1979) has also expressed reservations regarding the association of
entropy with disorder. He excluded two cases however: “When, if ever, has the
(number of states) anything to do with any of these words like mixed-upness.”
He then continues: “It does, but only for two very special cases. These are
mixtures of perfect gases, and crystals at temperatures close to zero.”
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or rather the quantity of information transmitted along communica-
tion lines. Shannon then asked himself: if a quantitative measure of
information exists, what properties must it have? After pronounc-
ing several plausible properties of such a measure, he found that
such a quantity must have the form −∑

pi ln pi (see Chapter 3).
Had he set his aim to construct a measure of disorder, it is hard to
believe that he, or anyone else, would have reached the same defi-
nition for disorder. In fact, it is not clear at all what requirement
should a measure of disorder fulfill. It is not clear that the property
of additivity required from information would also be required for
disorder9; it might also be meaningless to require the “consistency
property” (or the “independence on grouping” — see Chapter 3)
from a quantity such as disorder.

Thus, even if Shannon would have pondered the plausible require-
ments for “disorder” to make it a quantitative measure, it is unlikely
that he would have arrived at the definition (1.2.1), as claimed by
Callen. Moreover, as we shall see in Chapter 3, many of the derived
properties of information, such as conditional information, mutual
information and the like would not and could not be assigned to
disorder.

It is unfortunate and perhaps even ironic that Callen dismisses
“information” as subjective, while at the same time embracing
Shannon’s definition of information, but renaming it as disorder.
By doing that, he actually replaces a well-defined, quantitative and
objective quantity by a more subjective concept of disorder. Had
Callen not used Shannon’s definition of information, the concept of
disorder would have remained an undefined, qualitative and highly
subjective quantity.

In my view, it does not make any difference if you refer to infor-
mation or to disorder, as subjective or objective. What matters is
that order and disorder are not well-defined scientific concepts. On
the other hand, information is a well-defined scientific quantity, as

9See examples above. Note also that Callen in his 1987 edition, had made a
list of requirements similar to those made by Shannon that “disorder” should
subscribe to. In my opinion these requirements, although valid for information,
are not even plausible for disorder. Similar reference to “Shannon’s measure of
disorder” may be found in Lee (2002).
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much as a point or a line are scientific in geometry, or mass or
charge of a particle are scientific in physics.

In concluding, we can say that increase in disorder (or any of
the equivalent terms) can sometimes, but not always, be associ-
ated qualitatively with increase in entropy. On the other hand,
“information” or rather MI can always be associated with entropy,
and therefore it is superior to disorder.

1.3 The Association of Entropy with Missing
Information

As in the case of order and disorder, the involvement of the notion
of information is already implied in Boltzmann’s expression for the
entropy. It is also implicit in the writings of Maxwell. Maxwell was
probably the first to use probabilistic ideas in the theory of heat.
As we shall see in Chapter 3, probability is only a short step from
information.

More explicitly, although not stated as such, the idea of Maxwell’s
demon, a being that can defy the Second Law, contains elements
of the notion of information.

The demon was introduced by James Clerk Maxwell in the 1871
book, “Theory of Heat”10:

“Starting with a uniform temperature, let us suppose that such
a vessel is divided into two portions or by a division in which
there is a small hole, and that a being, who can see the individ-
ual molecules, opens and closes this hole so as to allow only the
swifter molecules to pass from A to B, and only the slower ones
pass from B to A. He will thus, without expenditure of work raise
the temperature of B and lower that of A in contradiction to the
second law of thermodynamics.”11

10From Leff and Rex (1990), Maxwell’s Demon, Entropy, Information, Com-
puting, Adam-Hilger, Bristol, UK.
11It should be noted that in this statement Maxwell recognized the relation
between the temperature and the average kinetic energies of the particles. Note
also that intuitively, Maxwell felt that if such a Demon could have existed, he
could use his information to achieve a process that violates the Second Law of
Thermodynamics.
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William Thomson (1874) referred to this imaginary being as
“Maxwell’s intelligent demon.” Although Maxwell himself did not
discuss the connection between the Second Law and information,
this is implicitly implied by his description of what the demon is
capable of doing, i.e., using information to lower the entropy.

Szilard (1929) in analyzing the implications of Maxwell’s demon
to the Second Law, referred to the “intervention of an intelligent
being who uses information to defy the Second Law.” Many articles
have been written on Maxwell’s demon and entropy.12 However, the
association of Maxwell’s demon with information and with entropy
was quite loose. The association of entropy with information was
firmed up and quantified only after Shannon introduced the quan-
titative measure of information in 1948.

Previous to 1948, perhaps the most eloquent and explicit iden-
tification of entropy with information (albeit not the quantitative
Shannon’s measure) is the statement of G. N. Lewis in 1930:

“Gain in entropy always means loss of information, and nothing
more. It is a subjective concept, but we can express it in a least
subjective form, as follows. If, on a page, we read the description
of a physico-chemical system, together with certain data which
help to specify the system, the entropy of the system is determined
by these specifications. If any of the essential data are erased,
the entropy becomes greater; if any essential data are added, the
entropy becomes less. Nothing further is needed to show that the
irreversible process neither implies one-way time, nor has any
other temporal implications. Time is not one of the variables of
pure thermodynamics.”

This is an almost prophetic statement made eighteen years before
information theory was born. Lewis’ statement left no doubt that he
considered entropy as conceptually identical with information. Note
however that Lewis claims that entropy is a subjective concept.
This is probably a result of his usage of the general concept of
information and not the specific measure of information as defined
by Shannon.

12See Leff and Rex (1990).
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The first to capitalize on Shannon’s concept of information was
Brillouin. In his book “Science and Information” (1956), Brillouin
expressed the view that Clausius’ entropy and Shannon’s entropy
are identical. Brillouin (1962) also suggested referring to informa-
tion as neg-entropy. In my view, this amounts to replacing a sim-
ple, familiar and informative term with a vague and essentially
misleading term. Instead, I would have suggested replacing entropy
with either neg-information, missing information, or uncertainty.

Ilya Prigogine (1997) in his recent book “End of Certainty”
quotes Murray Gell–Mann (1994) saying:

“Entropy and information are very closely related. In fact,
entropy can be regarded as a measure of ignorance. When it is
known only that a system is in a given macrostate, the entropy of
the macrostate measures the degree of ignorance the microstate
is in by counting the number of bits of additional information
needed to specify it, with all the microstates treated as equally
probable.”13

I fully agree with the content of this quotation by Gell–Mann,
yet Ilya Progogine, commenting on this very paragraph writes:

“We believe that these arguments are untenable. They imply that
it is our own ignorance, our coarse graining, that leads to the
second law.”

Untenable? Why?
The reason for these two diametrically contradictory views by

two great scientists has its sources in the confusion of the general
concept of information, with the specific measure of information as
defined by Shannon. I shall discuss this issue in greater detail below
and in Chapter 3.

In my opinion, Gell–Mann is not only right in his statement, he
is also careful to say “entropy can be regarded as a measure of
ignorance . . . Entropy . . . measures the degree of ignorance.” He
does not say “our own ignorance,” as misinterpreted by Prigogine.

Indeed information, as we shall see in Chapter 3, is a measure
that is there in the system. Within information theory, the term

13Gell–Mann (1994).
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“information” is not a subjective quantity. Gell–Mann uses the term
“ignorance” as a synonym to “lack of information.” As such, igno-
rance is also an objective quantity that belongs to the system and
is not the same as “our own ignorance,” which might or might not
be an objective quantity.

The misinterpretation of the information-theoretical entropy as a
subjective information is quite common. Here is a paragraph from
Atkins’ preface from the book “The Second Law.”14

“I have deliberately omitted reference to the relation between
information theory and entropy. There is the danger, it seems
to me, of giving the impression that entropy requires the exis-
tence of some cognizant entity capable of possessing ‘information’
or of being to some degree ‘ignorant.’ It is then only a small step
to the presumption that entropy is all in the mind, and hence is
an aspect of the observer. I have no time for this kind of mud-
dleheadedness and intend to keep such metaphysical accretions at
bay. For this reason I omit any discussion of the analogies between
information theory and thermodynamics.”

Atkins’ comment and his rejection of the informational interpre-
tation of entropy on the grounds that this “relation” might lead to
the “presumption that entropy is all in the mind” is ironic. Instead,
he uses the terms “disorder” and “disorganized,” etc., which in my
view are concepts that are far more “in the mind.”

The fact is that there is not only an analogy between entropy and
information, but an identity between the thermodynamic entropy
and Shannon’s measure of information.

The reason for the confusion is that the term information itself
has numerous interpretations. We can identify at least three “levels”
in which we can interpret the term “information.” At the most gen-
eral level, information is any knowledge that we can obtain by our
senses. It is an abstract concept which may or may not be sub-
jective. The information on “the weather conditions in New York
state” might have different significance, meaning or value to dif-
ferent persons. This information is not the subject of interest of
information theory. When Shannon sought a quantity to measure

14Atkins (1984).
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information transmitted across communication lines, he was not
interested in the content or the meaning of information, but in a
quantity that measures the amount of information that is being
transmitted.

Leaving aside the content or the meaning of information and
focusing only on the size or the amount of information, we are still
far from Shannon’s measure of information. One can speak of dif-
ferent amounts of information, or information on different amounts
of something. Consider the following two messages:

A: Each of the ten houses in the street costs one million dollars.
B: The first house in this street costs one million dollars, the second

house costs one million dollars,. . . and the tenth house costs one
million dollars.

Clearly, the two messages A and B carry the same information. The
size of A is however much smaller than the size of B. Consider the
next message:

C: Each of the houses in this town costs one million dollars.

Clearly, C contains more information than B. The message C tells
us the price of more houses than the message B, yet it is much
shorter than B (shorter in some sense that will be discussed in
Chapter 3).
Consider the next message:

D: Each of the houses in this country costs one billion dollars.

This message conveys information on more houses and on more
money, yet it is roughly of the same size as the messages C or A.

Information theory is neither concerned with the content of the
message, nor with the amount of information that the message con-
veys. The only subject of interest is the size of the message itself.
The message can carry small or large amounts of information, it can
convey important or superfluous information; it may have different
meanings or values to different persons or it can even be meaning-
less; it can be exact and reliable information or approximate and
dubious information. All that matters is some measure of the size of
the message. In Chapter 3, we shall make the last statement more



December 5, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch01

24 Statistical Thermodynamics Based on Information

quantitative. We shall also see that the size of the message can be
expressed as the number of binary questions one needs to ask in
order to retrieve the message. We shall be interested in the infor-
mation on the message and not on the information carried by the
message. We shall also see that entropy is nothing but the amount
of missing information (MI).

Thus, neither the entropy, nor the Shannon measure of MI, are
subjective quantities. In fact, no one has claimed that either of these
is subjective. The subjectivity of information enters only when we
apply the concept of information in its broader sense.

Jaynes pioneered the application of information theory to sta-
tistical mechanics. In this approach, the fundamental probabilities
of statistical mechanics (see Chapter 5) are obtained by using the
principle of maximum entropy. This principle states that the equi-
librium distributions are obtained by maximizing the entropy (or
the MI) with respect to all other distributions. The same principle
can be applied to derive the most non-commital, or the least biased,
distribution that is consistent with all the given information. This
is a very general principle that has a far more general applicability.
See also Chapters 4–6.

In his first paper on this subject, Jaynes wrote (1957)15:

“Information theory provides a constructive criterion for set-
ting up probability distributions on the basis of partial knowledge
and leads to a type of statistical inference which is called the
maximum-entropy estimate.”

And he added:

“Henceforth, we will consider the terms ‘entropy’ and ‘uncer-
tainty’ as synonyms.” “The thermodynamic entropy is identical
with information theory — entropy of the probability distribution
except for the presence of Boltzmann’s constant.”

“. . . we accept the von-Neumann–Shannon expression for
entropy, very literally as a measure of the amount of uncertainty
represented by the probability distribution; thus entropy becomes
the primitive concept. . . more fundamental than energy.”

15It should be noted that Jaynes’ approach was criticized by several authors,
e.g., Friedman and Shimony (1971) and Diaz and Shimony (1981).
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Regarding the question of the subjectivity of “information,”
Jaynes writes:

“In Euclidean geometry the coordinates of a point are ‘subjec-
tive’ in the sense that they depend on the orientation of the
observer’s coordinate system; while the distance between two
points is ‘objective’ in the sense that it is independent of the
observer’s orientation.”

In 1983 Jaynes writes16:

“The function H is called entropy, or better, information entropy
of the distribution {pi}. This is an unfortunate terminology which
now seems impossible to correct. We must warn at the outset
that the major occupational disease of this field is a persistent
failure to distinguish between information entropy, which is a
property of any probability distribution, and experimental entropy
of thermodynamics, which is instead a property of a thermody-
namics state as defined, for example, by such observed quan-
tities as pressure volume, temperature, magnetization of some
physical system. They should never have been called by the same
name; the experimental entropy makes no reference to any prob-
ability distribution, and the information entropy makes no refer-
ence to thermodynamics. Many textbooks and research papers are
fatally flawed by the author’s failure to distinguish between these
entirely different things, and in consequence proving nonsense
theorems.”

“The mere fact that the same mathematical expression
−∑

pi log pi occurs both in statistical mechanics and information
theory does not in itself establish any connection between these
fields. This can be done only by finding new viewpoints from which
thermodynamic entropy and information theory entropy appear as
the same concept.”

And later, Jaynes writes:

“It perhaps takes a moment of thought to see that the mere fact
that a mathematical expression like

−
∑

pi log pi

shows up in two different fields, and that the same inequalities
are used in two different fields does not in itself establish any

16Jaynes (1983).
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connection at all between the fields. Because, after all ex, cos θ,
J0(z) are expressions that show up in every part of physics and
engineering. Every place they show up. . . nobody interprets this
as showing that there is some deep profound connection between,
say, bridge building and meson theory.”

I generally agree with the aforementioned statements by Jaynes.
Indeed, the fact that cos θ appears in two different fields, say in
the propagation of an electromagnetic wave, and in the swinging
of a pendulum, does not imply a deep and profound connection
between the two fields. However, in both fields, the appearance of
cos θ indicates that the phenomena are periodic.

Likewise, the appearance of −∑
pi log pi in two different fields

does not indicate that there exists a deep profound connection
between the two fields. This is true not only between communi-
cation theory and thermodynamics. The measure of information
−∑

pi log pi in linguistics makes no reference to the distribution
of coins in boxes, or electrons in energy levels, and the measure of
information −∑

pi log pi in thermodynamics makes no reference to
the frequencies of the alphabet letters in a specific language; the
two fields, or even the two subfields (say, in two different languages)
are indeed different. The information is about different things, but
all are measures of information nonetheless!

Thus, although it is clear that the types of information discussed
in thermodynamics and in communication theory are different, they
are all measures of information. Moreover, even in the same field,
say in analyzing the information in two languages in linguistics,
or even the locational and the momenta information of a thermo-
dynamics system, the types of information are different. But in
all cases that the expression −∑

pi log pi appears, it conveys the
meaning of a measure of information. The information is about dif-
ferent things in each case, but conceptually they are measures of
information in all cases.

To conclude, the concept of information is very general: it can
be applied to many different fields, and in many subfields. The
same is true of periodic phenomena which are very general and
can occur in many fields. However, the significance of the concept
of information and the significance of the periodic phenomena are
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the same in whatever fields they happen to appear. Specifically, the
entropy, or better the thermodynamic entropy, or even better the
thermodynamic missing information, is one particular example of
the general notion of information.

There is of course a conceptual difficulty in identifying the Boltz-
mann entropy with the Clausius entropy. However, it has been
shown in numerous examples that changes in one concept are
equivalent to changes in the other, provided that the constant k is
chosen as the Boltzmann constant, with the dimensions of energy
over absolute temperature (K). Once one accepts the identifica-
tion of the Clausius entropy with the Boltzmann entropy, then the
interpretation of the entropy as uncertainty, information or MI is
inevitable.

It is now about 100 years since Gibbs and Boltzmann developed
statistical mechanics based on probability. It is over fifty years since
Shannon laid down the foundation of information theory based on
probability. Jaynes used the measure of information as defined by
Shannon to develop statistical mechanics from the principle of max-
imum entropy.

I have already mentioned von Neumann’s “disservice” to science
in suggesting the term entropy.17 My reason for agreeing with this
statement is different to the ones expressed by Denbigh. I would
simply say that I shall go back to Clausius’ choice of the term, and
suggest that he should have not used the term entropy in the first
place. This term was coined at the time of the pre-atomistic view
of thermodynamics. However, once the foundations of statistical
mechanics were firmly established on probability and once informa-
tion theory was established, von Neumann should have suggested
to the scientific community replacing entropy by information (or by
uncertainty or unlikelihood; see Chapter 3). In my view, the sugges-
tion of the term entropy, is not only a disservice, but a corruption of
a well-defined, well-interpreted, intuitively appealing and extremely
useful and general concept of information with a term that means
nothing.18

17See preface, page xviii
18See preface, page xvi
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In an article entitled “How subjective is entropy?”, Denbigh dis-
cussed the extent of subjectivity of information and the objectivity
of entropy.19

Indeed there is a valid question regarding the two types of
probabilities, subjective and objective. However, once we restrict
ourselves to discussing only scientific probabilities, we regard these
as objective quantities in the sense that everyone given the same
information, i.e., the same conditions, will necessarily reach the
same conclusion regarding the probabilities. See more on this in
Chapter 2.

Information is defined in terms of probability distribution. Once
we agree to deal only with scientific and objective probabilities, the
corresponding measure of information becomes objective too.

The best example one can use to define Shannon’s measure of
information is the game of hiding a coin in M boxes (see Chapter 3).
I hide a coin in one of the M boxes and you have to ask binary
questions to be able to locate the coin. The missing information
is: “Where is the coin?” Clearly, since I know where the coin is
while you do not know where it is, I have more information on
the location of the coin than you have. This information is clearly
subjective — your ignorance is larger than mine. However, that kind
of information is not the subject matter of information theory. To
define the missing information, we have to formulate the problem
as follows: “Given that a coin is hidden in one of the M boxes, how
many questions does one need to ask to be able to find out where
the coin is?” In this formulation, the MI is built-in in the problem.
It is as objective as the given number of boxes, and it is indifferent
to the person who hid the coin in the box.

Denbigh and Denbigh (1985), who thoroughly discussed the ques-
tion of the subjectivity of information, asked:

“Whose information or uncertainty is being referred to? Where
does the entropy reside?”

19Denbigh, K. (1981), “How subjective is entropy,” Chemistry in Britain 17,
168–185.
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And their conclusion was:

“The problem about whose information is measured by H remains
obscure.”

In my view, the question of “whose information is being referred
to” is not relevant to the quantity H, as defined by Shannon.
Regarding the second question: Wherever the number of boxes (or
the number of states of a thermodynamic system) “resides,” there
resides also the quantity H. Again, this question of the residency
of H is irrelevant to the meaning of H.

Before ending this section on entropy and information, I should
mention a nagging problem that has hindered the acceptance of the
interpretation of entropy as information. We recall that entropy was
defined as a quantity of heat divided by temperature. As such, it
bears the units of energy divided by the absolute temperature (K)
(i.e., Joules over K or J/K, K being the unit of the absolute tem-
perature on the Kelvin scale). These are two tangible, measurable
and well-defined concepts. How come “information,” which is a
dimensionless quantity, a number that has nothing to do with either
energy or temperature, could be associated with entropy, a quantity
that has been defined in terms of energy and temperature? I believe
that this is a very valid point of concern which deserves some fur-
ther pondering. In fact, even Shannon himself recognized that his
measure of information becomes identical with entropy only when
it is multiplied by the constant k (now known as the Boltzmann
constant), which has the units of energy divided by temperature.
This, in itself, does not help much in identifying the two appar-
ently very different concepts. I believe there is a deeper reason for
the difficulty of identifying entropy with information.

First, note that in the process depicted in Figure 1.8, the change
in entropy does involve some quantity of heat (energy) transferred
and temperature. But this is only one example of a spontaneous
process. Consider the expansion of an ideal gas in Figure 1.3 or
the mixing of two ideal gases in Figure 6.6. In both cases, entropy
increases. However, in both cases, there is no change in energy, no
heat transfer, and no dependence on temperature. If we carry out
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these two processes for an ideal gas as in an isolated system, then
the entropy change will be fixed, independent of the temperature of
the system, and obviously no heat is transferred from one body to
another. These examples are only indicative that changes in entropy
do not necessarily involve units of energy and temperature.

Second, the units of entropy (J/K) are not only unnecessary for
entropy, but they should not be used to express entropy at all. The
involvement of energy and temperature in the original definition of
the entropy is a historical accident, a relic of the pre-atomistic era
of thermodynamics.

Recall that temperature was defined earlier than entropy and ear-
lier than the kinetic theory of heat. Kelvin introduced the absolute
scale of temperature in 1854. Maxwell published the molecular dis-
tribution of velocities in 1859. This has led to the identification of
temperature with the mean kinetic energy of the atoms or molecules
in the gas. Once the identification of the temperature as a measure
of the average kinetic energy of the atoms had been confirmed and
accepted,20 there was no reason to keep the old units of K. One
should redefine a new absolute temperature, denote it tentatively
as T , to replace kT . The new temperature T would have the units
of energy and there should be no need for the Boltzmann constant.
The equation for the entropy would be simply S = lnW ,21 and
entropy would be rendered dimensionless!

Had the kinetic theory of gases preceded Carnot, Clausius and
Kelvin, Clausius would have defined changes of entropy as energy
divided by temperature. But now this ratio would have been dimen-
sionless. This will not only simplify Boltzmann’s formula for the
entropy, but will also facilitate the identification of the thermody-
namic entropy with Shannon’s measure of information.

Thus, without entering into the controversy about the ques-
tion of the subjectivity or objectivity of information, whatever it
is, I believe that the entropy is identical, both conceptually and
formally, with Shannon’s measure of information. This identifi-
cation is rendered possible by redefining temperature in units of

20see footnote 4 on page 7.
21see cover design.
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energy.22 This will automatically expunge the Boltzmann constant
kB from the vocabulary of physics. It will simplify the Boltzmann
formula for the entropy, and it will remove the stumbling block
that has hindered the acceptance of entropy as information for over
a hundred years. It is also time to change not only the units of
entropy to make it dimensionless,23 but the term “entropy” alto-
gether. Entropy, as it is now recognized does not convey “transfor-
mation,” nor “change,” nor “turn.” It does convey some measure
of information. Why not replace the term that means “nothing” as
Cooper noted, and does not even convey the meaning it was meant
to convey when selected by Clausius? Why not replace it with a
simple, familiar, meaningful, and precisely defined term?” This will
not only remove much of the mystery associated with the unfamiliar
word entropy, but will also ease the acceptance of John Wheeler’s
view of regarding “the physical world as made of information, with
energy and matter as incidentals.”24

Finally, it should be said that even when we identify entropy with
information, there is one very important difference between the
thermodynamic information (entropy) and Shannon’s information,
which is used in communications or in any other branch of science.
There is a huge difference of the order of magnitudes between the
two. The concept of information is, however, the same in whatever
field it is being used. We shall discuss in Chapter 4 the passage
from a system with a small number of degrees of freedom to ther-
modynamic systems having a huge number of degrees of freedom.

22As is effectively done in many fields of physics.
23Note that the entropy would still be an extensive quantity, i.e., the entropy
of the system would be proportional to the size of the system.
24Quoted by Jacob Bekenstein (2003).
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Chapter 2

Elements of Probability Theory

2.1 Introduction

Probability theory is a branch of mathematics. Its uses are in all
fields of sciences, from physics and chemistry, to biology and soci-
ology, to economics and psychology; in short, it is used everywhere
and anytime in our lives.

It is an experimental fact that in many seemingly random events,
high regularities are observed. For instance, in throwing a die once
one cannot predict the occurrence of any single outcome. However,
if one throws the die many times, then one can observe that the
relative frequency of occurrence, of say, the outcome 3 is about 1

6 .
Probability theory is a relatively new branch of mathemat-

ics. It was developed in the 16th and 17th centuries. The theory
emerged mainly from questions about games of chances addressed
to mathematicians.

A typical question that is said to have been addressed to Galileo
Galilei (1564–1642) was the following:

Suppose that we play with three dice and we are asked to bet on
the sum of the outcomes of tossing the three dice simultaneously.
Clearly, we feel that it would not be wise to bet our chances on
the outcome 3, nor on 18; our feeling is correct (in a sense dis-
cussed below). The reason is that both 3 and 18 have only one way
of occurring; 1:1:1 and 6:6:6 respectively, and we intuitively judge
that these events are relatively rare. Clearly, choosing the sum 7 is

33
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better. Why? Because there are more partitions of the number 7
into three numbers (between 1 and 6), i.e., 7 can be obtained as a
result of four possible partitions: 1:1:5, 1:2:4, 1:3:3, 2:2:3. We also
feel that the larger the sum, the larger the number of partitions, up
to a point, roughly in the center between the minimum of 3 to the
maximum of 18. But how can we choose between 9 to 10? A simple
count shows that both 9 and 10 have the same number of parti-
tions, i.e., the same number of combinations of integers (between
1 and 6), the sum of which is 9 or 10. Here are all the possible
partitions:

For 9: 1:2:6, 1:3:5, 1:4:4, 2:2:5, 2:3:4, 3:3:3

For 10: 1:3:6, 1:4:5, 2:2:6, 2:3:5, 2:4:4, 3:3:4

At first glance, we might conclude that since 9 and 10 have the
same number of partitions, they must have the same chances of
winning the game. That conclusion is wrong, however. The correct
answer is that 10 has better chances of winning than 9. The reason
is that, though the number of partitions is the same for 9 and 10,
the total number of outcomes of the three dice that sum up to 9
is a little bit smaller than the total number of outcomes that sum
up to 10. In other words, the number of partitions is the same, but
each partition has different “weight,” e.g., the outcome 1:4:4 can be
realized in three different ways:

1:4:4, 4:1:4, 4:4:1

Since the dice are distinguishable, these three outcomes are
different events. Therefore, they contribute the weight 3 to the
partition 1:4:4.

This is easily understood if we use three dice having different
colors, say blue, red and white, the three possibilities for 1:4:4 are:

blue 1, red 4 and white 4

blue 4, red 1 and white 4

blue 4, red 4 and white 1

When we count all possible partitions and all possible weights,
we get the following results:
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For 9: 1:2:6, 1:3:5, 1:4:4, 2:2:5, 2:3:4, 3:3:3
Weights: 6 6 3 3 6 1 (total 25)

For 10: 1:3:6, 1:4:5, 2:2:6, 2:3:5, 2:4:4, 3:3:4,
Weights: 6 6 3 6 3 3 (total 27)

Thus, the total distinguishable outcome is 25 for the sum of 9, and
is 27 for the sum of 10. Therefore, the relative chances of winning
with 9 and 10, is 25:27, i.e., favoring the choice of 10. Note that 10
and 11 have the same chances of winning.

But what does it mean that 10 is the best choice and that this is
the “correct,” winning number? Clearly, I could choose 10 and you
could choose 3 and you might win the game. Does our calculation
guarantee that if I choose 10, I will always win? Obviously not. So
what does the ratio 25:27 mean?

The theory of probability gives us an answer. It does not predict
the winning number, and it does not guarantee winning; it only
says that if we play this game many times, the probability that the
choice of 9 wins is 25/216, whereas the probability of the choice of
10 wins is slightly larger at 27/216 (216 being the total number of
possible outcomes, 63 = 216). How many times do we have to play
in order to guarantee my winning? On this question, the theory is
mute. It only says that in the limit of infinite number of games,
the frequency of occurrence of 9 is 25/216, and the frequency of
occurrence of 10 is 27/216. But an infinite number of games cannot
be realized. So what is the meaning of these probabilities? At this
moment, we cannot say anything more than that the ratio 27:25
reflects our degree of belief or our degree of confidence that the
number 10 is more likely to win than the number 9.1

In the aforementioned discussion, we have used the term proba-
bility without defining it. In fact, there have been several attempts

1The usage of the word “belief” in the context of the definition of probability
has led many to deem probability as a subjective concept. This is partially
true if we use the term probability colloquially. However, it is not true when
probability is used in the sciences. It should be stressed that the probability
of an event does not depend on the number of trials; exactly as a mass of a
piece of matter does not depend on the number of measurements caried out to
determine it.
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to define the term probability. As it turns out, each definition has its
limitations. But more importantly, each definition uses the concept
of probability in the very definition, i.e., all definitions are circular.
Nowadays, the mathematical theory of probability is founded on an
axiomatic basis, much as Eucledean geometry or any other branch
of mathematics.

The concept of probability is considered to be a primitive concept
that cannot be defined in terms of more primitive concepts, much
like a point or a line in geometry are considered to be primitive
concepts. Thus, even without having a proper definition of the term,
probability is a fascinating and extremely useful concept.

Probability theory was developed mainly in the 17th century by
Fermat (1601–1665), Pascal (1623–1705), Huyghens (1629–1695)
and by J. Bernoulli (1654–1705). The main motivation for develop-
ing the mathematical theory of probability was to answer various
questions regarding games of chance. A classical example is the
problem of how to divide the stakes when the game of dice must
be stopped (we shall discuss this problem in Section 2.6). In this
chapter, we shall start with the axiomatic approach to probability
theory. We shall discuss a few methods of calculating probabilities
and a few theorems that are useful in statistical mechanics.

2.2 The Axiomatic Approach

The axiomatic approach to probability was developed mainly by
Kolmogorov in the 1930s. It consists of the three elements denoted
as {Ω, F, P}, which together define the probability space. The three
elements of the probability space are the following.

2.2.1 The sample space, denoted Ω

This is the set of all possible outcomes of a specific experiment
(sometimes referred to as a trial).

Examples: The sample space of all possible outcomes of tossing a
coin consists of two elements Ω = {H,T}, where H stands for head
and T stands for tail. The sample space of throwing a die consists
of the six possible outcomes Ω = {1, 2, 3, 4, 5, 6}. These are called
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simple events or “points” in the sample space. In most cases, simple
events are equally probable, in which case they are referred to as
elementary events.

Clearly, we cannot write down the sample space for every experi-
ment. Some consist of an infinite number of elements (e.g., shooting
an arrow on a circular board), some cannot even be described (e.g.,
how the world will look like next year). We shall be interested only
in simple spaces where the counting of the outcomes referred to as
elementary events is straightforward.

2.2.2 The field of events, denoted F

A compound event, or simply an event, is defined as a union, or a
sum of elementary events. Examples of events are:

(a) The result of tossing a die is “even”; consists of the elementary
events {2, 4, 6}, i.e., either 2 or 4 or 6 have occurred, or will occur
in the experiment of tossing a die.

(b) The result of tossing a die is “larger than or equal to 5”; con-
sists of the elementary events {5, 6}, i.e., either 5 or 6 have occurred.

In mathematical terms, F consists of all partial sets of the sample
space Ω. Note that the event Ω itself belongs to F . Also, the empty
event denoted φ also belongs to F .

We shall mainly discuss finite sample spaces. We shall also apply
some of the results to infinite or even continuous spaces by using
arguments of analogy. More rigorous treatment requires the tools
of measure theory.

For finite sample space, each partial set of Ω is an event. If there
are n elementary events in Ω, then the total number of events in F

is 2n.
This can be seen by straightforward counting2:(

n

0

)
, one event denoted by φ (the impossible or the empty

event)

2The symbol
`

m
n

´
means m!

(m−n)!n!
. By definition 0! = 1, hence

`
m
0

´
= 1.



December 7, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch02

38 Statistical Thermodynamics Based on Information

n =
(

n

1

)
simple (or elementary) events(

n

2

)
events consisting of two simple events(

n

3

)
events consisting of three simple events

...(
n

n

)
one event, consists of all the space Ω (the certain event).

(2.2.1)

Altogether, we have 2n events, i.e.,(
n

0

)
+
(

n

1

)
+
(

n

2

)
+ · · · +

(
n

n

)
= (1 + 1)n = 2n. (2.2.2)

We have used the Newton Binomial theorem in perform-
ing the summation. A more general form of the theorem is
(see Appendix A)

(x + y)n =
n∑

i=0

(
n

i

)
xiyn−i. (2.2.3)

An alternative method of calculating the total number of events is
as follows.

We denote the simple events of Ω by the numbers (1, 2, 3, . . . , n).
This is a vector of n dimensions. Each compound event can also be
described as a vector of n dimensions. For instance, the event that
consists of the three elementary events (3,5,7) can be written as an
n-dimensional vector of the form

(No,No, Y es,No, Y es,No, Y es,No,No, . . . ,No),

i.e., components one and two are not included, the component three
is included, four is not included, five is included, and so on.

A compound event is a partial set of Ω. Therefore, we can describe
the compound event simply by referring to the list of simple events
that are included in that event. The components of the compound
events are Yes or No according to whether or not a specific simple
event is included or not. Thus, each event can be uniquely written
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as an n-dimensional vector consisting of Yes’s and No’s or “1” and
“0.” Clearly, since the length of the vector is n, and each component
can be either “Yes” or “No,” altogether we have 2n such vectors
corresponding to all the possible compound events. In this notation,
the impossible event is written as

(No,No, . . . ,No)

and the certain event as

(Y es, Y es, . . . , Y es).

At this stage, we introduce some notation regarding operations
between events.

The event A ∪ B (or A + B) is called the union (or the sum) of
the two events. This is the event: “either A or B has occurred.”

The event A ∩ B (or A · B) is called the intersection (or the
product) of the two events. This is the event: “ both A and B have
occurred.”

The complementary event, denoted Ā (or Ω − A), is the event:
“A did not occur.”

The notation A ⊂ B means: A is partial to B, or A is included in
the event B, i.e., the occurrence of A implies the occurrence of B.

These relations between events are described in Figure 2.1.

2.2.3 The probability function, denoted P

For each event A belonging to F , we assign a number P called
the probability of the event A. This number fulfills the following

_

AA BA AB

(a) (c) (e)(b) (d)

Figure 2.1. Some relations between events (sets): (a) event A and its comple-
mentary event Ā, (b) disjoint events A∩B = φ, (c) union of overlapping events
A∪B, (d) intersection of overlapping events A∩B, and (e) event A is included
in the event B, A ⊂ B.
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properties:

a : P (Ω) = 1, (2.2.4)

b : 0 ≤ P (A) ≤ 1, (2.2.5)

c : If A and B are disjoint events (or mutually

exclusive), then

P (A ∪ B) = P (A) + P (B). (2.2.6)

The first two conditions define the range of numbers for the prob-
ability function. The first condition simply means that the event Ω
has the largest value of the probability. By definition, we assume
that some result has occurred, or will occur, hence, the event Ω is
also referred to as the certain event, and is assigned the value of
one. The impossible event, denoted φ, is assigned the number zero,
i.e., P (φ) = 0.

The third condition is intuitively clear. Two events A and B are
said to be disjoint, or mutually exclusive, when the occurrence of
one event excludes the possibility of the occurrence of the other. In
mathematical terms, we say that the intersection of the two events
(A ∩ B) is empty, i.e., there is no simple event that is common to
both A and B. As a simple example, consider the two events

A = {the outcome of throwing a die is even},
B = {the outcome of throwing a die is odd}.

Clearly, the events A and B are disjoint; the occurrence of one
excludes the occurrence of the other. Now, define the event

C = {the outcome of throwing a die is larger than or equal to 5}.
Clearly, A and C, or B and C are not disjoint. A and C contain

the elementary event 6. B and C contain the elementary event 5.
The events, “greater than or equal than 4,” and “smaller than

or equal to 2,” are clearly disjoint or mutually exclusive events. In
anticipating the discussion below, we can calculate the probability
of the first event {4, 5, 6} being 3/6, and the probability of the
second event {1, 2} being 2/6; hence, the combined (or the union)
event {1, 2, 4, 5, 6} has the probability 5/6, which is the sum of 2/6
and 3/6.



December 7, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch02

Elements of Probability Theory 41

(a)

A1 A2

A3(d)

(c)

(b)

Figure 2.2. Venn diagrams.

If the two events are not disjoint, say “greater than or equal to
4” and “even,” then the rule (c) should be modified [this can be
proven from the properties listed in (2.2.4) and (2.2.5)]:

d : P (A ∪ B) = P (A) + P (B) − P (A ∩ B). (2.2.6a)

A very useful way of visualizing the concept of probability and
the sum rule is the Venn diagram (Figures 2.1 and 2.2).

Suppose we throw a dart on a rectangular board having a total
area of Ω. We assume that the dart must hit some point within
the area of the board. We now draw a circle within the board
(Figure 2.2a), and ask what the probability of hitting the area
within this circle is. We assume, by plain common sense, that the
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probability of the event “hitting inside the circle,” is equal to the
ratio of the area of the circle to the area of the entire board.3

Two regions drawn on the board are said to be disjoint if there
is no overlapping between the two regions (Figure 2.2b). It is clear
that the probability of hitting either region or the other is the ratio
of the area of the two regions and the area of the whole board.

This leads directly to the sum rules stated in the axioms above.
The probability of hitting either one of the regions is the sum of
the probabilities of hitting each of the regions.

This sum rule (2.2.6) does not hold when the two regions overlap,
i.e., when there are points on the board that belong to both regions,
like the case shown in Figure 2.2c.

It is quite clear that the probability of hitting either of the regions
A or B is, in this case, the sum of the probabilities of hitting each of
the regions, minus the probability of hitting the overlapping region.

Exercise: Show that if each pair of the three events A1, A2 and A3

are mutually exclusive, then the three events are mutually exclusive.
Show an example that the reverse of this statement is not true.

Solution: Given that A1 · A2 = φ, A1 · A3 = φ and A2 · A3 = φ, it
follows directly from the definition that A1 ·A2 ·A3 = φ. If, however,
it is known that A1 ·A2 ·A3 = φ, it does not necessarily follow that
the events are mutually exclusive in pairs. An example is shown in
Figure 2.2d.

On this relatively simple axiomatic foundation, the whole edifice
of the mathematical theory of probability has been erected. It is
not only extremely useful but is also an essential tool in all the
sciences and beyond.

In the axiomatic structure of the theory of probability, the prob-
abilities are said to be assigned to each event. These probabilities
must subscribe to the three conditions a, b and c. The theory does
not define probability, nor provide a method of calculating or mea-
suring these probabilities. In fact, there is no way of calculating

3We exclude the possibility of hitting a specific point or a line — these have
zero probability. We also assume that we throw the dart at random, not aiming
at any particular area.
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probabilities for any general event. It is still a quantity that mea-
sures our degree or extent of belief of the occurrence of certain
events. As such, it is a highly subjective quantity. However, for
some simple experiments, say tossing a coin or throwing a die, we
have some very useful methods of calculating probabilities. They
have their limitations and they apply to “ideal” cases, yet these
probabilities turn out to be extremely useful. What is more impor-
tant, since these are based on common sense reasoning, we should
all agree that these are the “correct” probabilities, i.e., these prob-
abilities turn from subjective quantities into objective quantities.4

They “belong” to the events as much as mass belongs to a piece of
matter. We shall describe two very useful “definitions” that have
been suggested and commonly used for this concept.

2.3 The Classical Definition

This is sometimes referred to as the a priori definition.5 Let
N(total ) be the total number of outcomes of a specified experiment,
e.g., for throwing a die N(total ) is six, i.e., the six outcomes (or six
elementary events) of this experiment. We denote by N(event), the
number of outcomes (i.e., elementary events) that are included in
the event in which we are interested. Thus, the probability of the
“event,” in which we are interested, is defined as the ratio

P (event) =
N(event)
N(total )

. (2.3.7)

4There exists a voluminous literature discussing the definition and the meaning
of the concept of probability. In this book we shall assume that the reader has
an intuitive understanding of the meaning of probability. Denbigh and Denbigh
(1985) make a distinction between a weak and a strong sense of objectivity. The
former refers to objects that “can be publically agreed”; the latter refers to an
object that has “a reality quite independent of man’s presence in the world.”
Personally, I believe that even a weaker sense is sufficient for objectivity of
probability. It suffices that all those who use the theory agree upon the values
of probability assigned to the events.
5A priori here is only in the sense of contrasting the a posteriori sense of prob-
ability. The former refers to the case that no experiment should be carried out
to determine the probability.
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We have actually used this intuitively appealing definition when
calculating the probability of the event “greater than or equal to 4.”
The total number of elementary events (outcomes) of tossing a die
is N(total ) = 6. The number of elementary events included in
the event “greater than or equal to 4” is N(event) = 3, hence,
the probability of this event is 3/6 or 1/2, which we all agree is the
“correct” probability.

However, care must be used in applying (2.2.7) as a definition of
probability. First, not every event can be “decomposed” into ele-
mentary events, e.g., the event “tomorrow it will start raining at
ten o’clock.” But more importantly, the above formula presumes
that each elementary event has the same likelihood of occurrence.
In other words, each elementary event is presumed to have the
same probability; 1/6 in the case of a die. But how do we know
that? We have given a formula for calculating the probability of
an event based on the knowledge of the probabilities of each of the
elementary events. This is the reason why the classical definition
cannot be used as a bona fide definition of the concept of probabil-
ity; it is a circular definition. In spite of this, the “definition” (or
rather the method of calculating probabilities) is extremely useful.
Clearly, it is based on our belief that each elementary event has
equal probability: 1/6. Why do we believe in that assertion? The
best we can do is to invoke the argument of symmetry. Since all
faces of a die are presumed equivalent, their probabilities must be
equal. This conclusion should be universally agreed upon, as much
as the axiomatic assertion that two straight lines will intersect at,
at most, a single point. Thus, though the probability of the event
“it will rain tomorrow” is highly subjective, the probability that
the outcome of the event “even” in throwing a die is 1/2, should
be agreed on by anyone who intends to use probabilistic reasoning,
as much as anyone who adopts the axioms of geometry, if he or she
intends to use geometrical reasoning.

Feller (1957), in his classical text book on probability writes:

“Probabilities play for us the same role as masses in mechan-
ics. The motion of the planetary system can be discussed with-
out knowledge of the individual mass and without contemplating
methods for their actual measurement.”



December 7, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch02

Elements of Probability Theory 45

Feller also refrained from discussing probabilities that one deemed
to be a matter of “judgments,” and limited himself to discussing
what he calls “physical,” or “statistical probability.”

“In a rough way we may characterize this concept by saying that
our probabilities do not refer to judgments, but to possible out-
comes of a conceptual concept” — “There is no place in our sys-
tem for speculations concerning the probability that the sun will
rise tomorrow.”

Similarly, Gnedenko (1962) asserts that probability expresses a cer-
tain objective property of the phenomenon that is studied, and
adds: “It should be perfectly clear that a purely subjective defini-
tion of mathematical probability is quite untenable.”

As in geometry, all of the probabilities as well as all theorems
derived from the axioms strictly apply to ideal cases: a “fair” die,
or a “fair” coin. There is no definition of what a fair die is. It is
as “ideal” a concept as an ideal or Platonic circle or cube. All real
dice, as all cubes or spheres, are only approximate replicas of ideal
Platonic objects. In practice, if we do not have any reason to suspect
that a die is not homogenous or symmetrical, we can assume that
it is ideal.

In spite of this limitation, this procedure of calculating probabil-
ities is very useful in applications. One of the basic postulates of
statistical mechanics is that each of the microstates constituting a
macrostate of a thermodynamic system has the same probability.
Again, one cannot prove that postulate much less than one can
“prove” the assertion that each outcome of throwing a die is 1/6.
We shall further discuss this postulate in Chapter 5. This brings
us to the second “definition,” or better, the second procedure of
calculating probabilities.

2.4 The Relative Frequency Definition

This definition is referred to as the “a posteriori” or the “experi-
mental” definition, since it is based on actual counting of the rela-
tive frequency of occurrence of events.

The simplest example would be tossing a coin. There are two
possible outcomes; head (H) or tail (T ). We exclude the rare events
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that the coin will fall exactly perpendicular to the floor, or break
into pieces during the experiment, or even disappear from sight so
that the outcome is undeterminable.

We proceed to toss N times. The frequency of occurrence of heads
is recorded. This is a well-defined and feasible experiment. If n(H)
is the number of heads that occurred in N(total ) trials, then the fre-
quency of occurrence of a head is n(H)/N(total ). The probability of
occurrence of the event “H” is defined as the limit of the frequency
n(H)/N(total ) when N(total ) tends to infinity. The frequency def-
inition is thus

Pr(H) = lim
N(total)→∞

n(H)
N(total )

. (2.2.8)

This limit may be interpreted in two different ways. Either one
performs a sequence of experiments in time, and measures the limit
of the relative frequency when the number of experiments is infinity,
or throws infinite coins at once and counts the fraction of coins
which turned out to be H.

Clearly, such a definition is not practical. First, because we can-
not perform infinite trials. Second, even if we could, who could
guarantee that such a limit exists at all? Hence, we only have to
imagine what this limit will be. We believe that such a limit exists,
and that it is unique, but, in fact, we cannot prove it.

In practice, we use this definition for very large N . Why? Because
we believe that if N is large enough and if the coin is fair, then
there is a high probability that the relative frequency of occurrence
of head will be 1/2. We see that we have used again the concept of
probability in the very definition of probability.

This method could be used to “prove” that the probability of
each outcome of throwing a die is 1/6. Simply repeat the experiment
many times and count how many times the outcome 4 (or any other
outcome) has occurred. The relative frequency can serve as “proof”
of the probability of that event. This is not a mathematical proof.
As in any other branch of science, this reasoning rests on the our
experience that if N is large enough, we should get the frequency of
one out of six experiments. We cannot tell how many experiments
are sufficient to determine the probability of an event. So, how do
we estimate the probability of any event? The only answer we can
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give is that we believe in our common sense. We use common sense
to judge that because of the symmetry of the die (i.e., all faces
are equivalent), there must be equal probability for the outcome
of any specific face. Likewise, when we record the number of times
an H (or a T ) occurs in many throws of a coin and see that the
frequency of occurrence tends to some constant, we conclude that
that constant is the probability of the event H.

It should be noted, however, that the actual decision of which
events are the elementary events is not always simple or possible.
We present one famous example to demonstrate this. Suppose
we have N particles (say electrons) and M boxes (say energy
levels). There are different ways of distributing the N particles in
the M boxes. If we have no other information, we might assume
that all possible configurations have equal likelihood. Figure 2.3
shows all the configurations for two particles (N = 2) and four
boxes (M = 4).

We can assign equal probabilities to all of these 16 configurations.
This is referred to as the “classical statistics” — not to be confused
with the “classical” definition of probability. This would be true for
coins or dice distributed in boxes. It would not work for molecular
particles distributed in energy levels.

Figure 2.3. All possible configurations for two different particles in four boxes.
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Figure 2.4. Bose–Einstein configurations.

It turns out that Nature imposes some restrictions as to which
configurations are to be counted as elementary events. Nature also
tells us that there are two ways of counting the elementary events
depending on the type of particles. For one type of particles (such
as photons or helium, 4He atoms) called Bosons, only ten out of
these configurations are to be assigned equal probabilities. These
are shown in Figure 2.4.

The second group of particles (such as electrons or protons),
referred to as Fermions, are allowed only six of these configura-
tions. These are shown in Figure 2.5.

In the first case, Figure 2.4, we say that the particles obey the
Bose–Einstein statistics, and in the second case, Figure 2.5, we say
that the particles obey the Fermi–Dirac statistics. In Figure 2.4,
we have eliminated six configurations (within the dashed rectangle
in Figure 2.3). Each of these were counted twice in Figure 2.3,
when the particles are indistinguishable. In Figure 2.5, we have
further eliminated four more configurations within the dash-dotted
rectangle in Figure 2.3. For Fermions, two particles in one box is
forbidden. (This is called Pauli’s Exclusion Principle). It turns out
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Figure 2.5. Fermi–Dirac configurations.

that these rules follow from symmetry requirements on the wave
function of the system of particles. The general counting procedure
for the different statistics is discussed in Appendix B.

The example presented above demonstrates another method of
determination of probabilities frequently used in statistical mechan-
ics. It is often the case that neither the classical nor the frequency
definitions of probability can be applied. In such cases, one guesses
a plausible distribution based on whatever we know about the sys-
tem, then proceeds to calculate average quantities, based on the
guessed distribution. The resulting computed averages can then
be compared with the experimentally measurable quantities. The
extent of agreement between the calculated averages and the cor-
responding quantities serve as an indication, but short of a proof,
of the “correctness” of the guessed distribution.

In the next chapter, we shall discuss another method for assigning
probabilities which is based on the maximum uncertainty (or
entropy) principle. This is also the method we shall use in con-
structing the fundamental probabilities in statistical mechanics in
Chapters 4 and 5.

To conclude this section, it should be mentioned that the ques-
tion of subjective versus objective probabilities is far from being
settled. Some authors believe that probabilistic judgment has to
do only with the state of knowledge, or the state of ignorance of
the observer, and that there exists no such thing as an objective
or a “physical” probability. Others believe that the purely sub-
jective view of probability is utterly untenable, that probabilities
belong to events as much as mass belongs to a piece of matter.
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We shall adopt the latter view, i.e., recognizing the probabilities
of the events as being physical and objective quantities. Without
this recognition, the theory of probability could not have been so
successful in physics as well as in all other sciences.

2.5 Independent Events and Conditional Probability

The concepts of dependence between events and conditional prob-
ability are central to probability theory and have many uses in
sciences.6 Two events are said to be independent, if the occurrence
of one event has no effect on the probability of occurrence of the
other. Mathematically, two events A and B are said to be indepen-
dent, if and only if

Pr(A · B) = Pr(A) Pr(B). (2.5.1)

For example, if two persons who are far apart from each other
throw a fair die each, the outcomes of the two dice are independent
in the sense that the occurrence of, say, “5” on one die, does not
have any effect on the probability of occurrence of a result, say,
“3” on the other. On the other hand, if the two dice are connected
by an inflexible wire, the outcomes of the two results could be
dependent. Similarly, if we throw a single die consecutively, and at
each throw, the die is deformed or damaged, the outcomes would
not be independent. Intuitively, it is clear that whenever two events
are independent, the probability of the occurrence of both events,
say, “5” on one die and “3” on the other, is the product of the
two probabilities. The reason is quite simple. By tossing two dice
simultaneously, we have altogether 36 possible elementary events
(the first die’s outcome “i” and the second die’s outcome “j”).
Each of these outcomes has equal probability of 1/36 which is also
equal to 1/6 times 1/6, i.e., the product of the probabilities of each
event separately.

A fundamental concept in the theory of probability is the condi-
tional probability. This is the probability of the occurrence of an

6Note also that until now we have discussed relations between events that are
relations between sets, as in set theory. Dependence or independence of events
are concepts that originated in probability theory. That is what makes proba-
bility theory divert from set and measure theory.
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event A given that an event B has occurred. We write this as
Pr{A/B} (read: probability of A given the occurrence of B),7 and
define it by

Pr(A/B) = Pr(A · B)/Pr(B). (2.5.2)

Clearly, if the two events are independent, then the occurrence of
B has no effect on the probability of the occurrence of A. Hence,
from (2.5.1) and (2.5.2), we get

Pr(A/B) = Pr(A). (2.5.3)

We can define the correlation between the two events as8

g(A,B) =
Pr(A · B)

Pr(A) Pr(B)
. (2.5.4)

We say that the two events are positively correlated when
g(A,B) > 1, i.e., the occurrence of one event enhances or increases
the probability of the second event. We say that the two events are
negatively correlated when g(A,B) < 1, and that they are uncor-
related (sometimes referred to as indifferent) when g(A,B) = 1.

As an example, consider the following events:

A = {The outcome of throwing a die is “4”},
B = {The outcome of throwing a die is “even”} (i.e., it is

one of the following: 2, 4, 6),

C = {The outcome of throwing a die is “odd”} (i.e., it is

one of the following: 1, 3, 5). (2.5.5)

We can calculate the following two conditional probabilities:

Pr {of A/ given B} =
1
3

> Pr {of A} =
1
6
, (2.5.6)

Pr {of A/ given C} = 0 < Pr {of A} =
1
6
. (2.5.7)

7This definition is valid for Pr(B) �= 0. Note also that Pr(B) is sometimes
interpreted as the probability that the proposition B is true, and Pr(A/B) as
the probability that the A is true given the evidence B.
8In the theory of probability, correlation is normally defined for a random vari-
able (and its values range between −1 and +1). Here, we define the correlation
differently; the values of g range from zero to infinity (see Section 2.7).
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In the first example, the knowledge that B has occurred increases
the probability of the occurrence of A. Without that knowledge,
the probability of A is 1/6 (one out of six possibilities). Given the
occurrence of B, the probability of A becomes larger: 1/3 (one of the
three possibilities). But given that C has occurred, the probability
of A becomes zero, i.e., smaller than the probability of A without
that knowledge.

Exercise: It is known that Mrs. A has two children. You meet her
in the street walking with a boy. She introduces the boy as her
child. What is the probability that she has two boys?

Solution: The sample space contains four elementary events

BB, BG, GB, GG,

B for boy and G for girl (the order is important). These events
are equally probable. We are given that there is at least one boy
(we do not know if this is the first or the second). Therefore, the
event GG is excluded. We are left with three possibilities BB, BG
and GB. The probability of having two boys is one of these three
equally likely possibilities, hence the probability is 1/3. In terms of
conditional probability

Pr(BB/ at least one boy) =
Pr(BB · at least one boy)

Pr(at least one boy)

=
Pr[BB ∩ (BB ∪BG ∪GB)]

Pr[BB ∪BG ∪GB ]
=

1/4
3/4

=
1
3
.

Exercise: It is known that Mrs. A has three children. She is seen
with one of her boys. Calculate the probabilities:

(1) that she has three boys,
(2) that she has one boy and two girls,
(3) that she has two boys and one girl.

Answers: (1) 1/7, (2) 3/7, (3) 3/7.

It is important to distinguish between disjoint (i.e., mutually
exclusive) and independent events. Disjoint events are events that
are mutually exclusive; the occurrence of one excludes the occur-
rence of the second. The events “even” and “5” are disjoint. In
terms of Venn diagrams, two regions that are non-overlapping are
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Figure 2.6. A roulette with 12 outcomes, with two regions A (blue) and B
(yellow); see Section 2.5.

disjoint. If the dart hits one region, say A, in Figure 2.2b, then we
know for sure that it did not hit the second region B.

Disjoint events are properties of the events themselves (i.e.,
the two events have no common elementary event). Independence
between events is not defined in terms of the elementary events
that are contained in the two events but is defined in terms of their
probabilities. If the two events are disjoint, then they are strongly
dependent. In the above example, we say that the two events are
negatively correlated. In other words, the conditional probability of
hitting one circle, given that the dart hit the other circle, is zero
(which is smaller than the “unconditional” probability of hitting
one circle).

If the two regions A and B overlap (i.e., they are not disjoint),
then the two events could be either dependent or independent. In
fact, the two events could either be positively or negatively corre-
lated. The following two examples illustrate the relation between
dependence and the extent of overlapping. The reader is urged to
do the exercise carefully. We first present a simple example with a
finite number of outcomes.

Let us consider the following case. In a roulette, there are alto-
gether 12 numbers {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Each of us chooses a sequence of six consecutive numbers; say I
choose the sequence

A = {1, 2, 3, 4, 5, 6},
and you choose the sequence

B = {7, 8, 9, 10, 11, 12}.
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The ball is rolled around the ring. We assume that the roulette
is “fair,” i.e., each outcome has the same probability of 1/12. If the
ball stops in my “territory,” i.e., if it stops at any of the numbers I
chose {1, 2, 3, 4, 5, 6}, I win. If the ball stops in your territory, i.e., if
it stops at any of the numbers you chose {7, 8, 9, 10, 11, 12}, you win.

Clearly, each of us has a probability 1/2 of winning. The ball has
equal probability of 1/12 of landing on any number, and each of us
has six numbers in each “territory.” Hence, each of us has the same
chance of winning.

Now, suppose we run this game and you are told that I won.
What is the probability that you will win if you chose B? Clearly,
Pr{B/A} = 0 < 1/2, i.e., the conditional probability of B given
A is zero, which is smaller than the unconditional probability;
Pr{B} = 1/2.

Exercise: Calculate the following conditional probabilities. In each
example, my choice of the sequence A = {1, . . . , 6} is fixed. Calcu-
late the conditional probabilities for the following different choices
of your sequence:

Pr{7, 8, 9, 10, 11, 12/A},Pr{6, 7, 8, 9, 10, 11/A},
Pr{5, 6, 7, 8, 9, 10/A}, Pr{4, 5, 6, 7, 8, 9/A},
Pr{3, 4, 5, 6, 7, 8/A},Pr{2, 3, 4, 5, 6, 7/A},Pr{1, 2, 3, 4, 5, 6/A}.

Note that in this game, both of us can win, or lose.

Figure 2.7. Different choices of the event B. The intersection of B and A is
shown in green.
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Solution: In all of these problems, my choice of a sequence is
fixed: {1, 2, 3, 4, 5, 6} and it has the probability of 1/2 of winning.
If you choose the disjoint event {7, 8, 9, 10, 11, 12}, the conditional
probability is

Pr{B/A} = Pr{7, 8, 9, 10, 11, 12/A} = 0,

since knowing that A occurs excludes the occurrence of B. This
is the case of extreme negative correlation. In the first example of
choosing an overlapping sequence, we have

Pr{B/A} = Pr{6, 7, 8, 9, 10, 11, /A} =
1
6

<
1
2
.

Knowing that A occurred means that your winning is possible
only if the ball landed on “6,” and hence the conditional probability
is 1/6, which is smaller than Pr{B} = 1/2, i.e., there is negative
correlation.

Similarly,

Pr{B/A} = Pr{5, 6, 7, 8, 9, 10/A} =
2
6

<
1
2
.

Here, “given A,” you win only if the ball lands on either “5” or
“6,” and hence the conditional probability is 2/6, still smaller than
Pr{B} = 1/2, i.e., negative correlation.

In the third case,

Pr{B/A} = Pr{4, 5, 6, 7, 8, 9/A} =
3
6

=
1
2
.

Here, the conditional probability is 1/2, exactly the same as the
“unconditional” probability Pr(B) = 1/2, which means that the
two events are independent, or uncorrelated. (The terms indepen-
dence and uncorrelated are different for random variables. They
have the same meaning when applied to events; see Section 2.7.)

Next, we have three cases of positive correlations:

Pr{B/A} = Pr{3, 4, 5, 6, 7, 8/A} =
4
6

>
1
2
,

Pr{B/A} = Pr{2, 3, 4, 5, 6, 7/A} =
5
6

>
1
2
,

Pr{B/A} = Pr{1, 2, 3, 4, 5, 6/A} =
6
6

= 1 >
1
2
.
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In the last example, knowing that A occurs makes the occurrence
of B certain. In these examples, we have seen that overlapping
events can be either positively correlated, negatively correlated, or
non-correlated.

Note how the correlation changes from extreme negative (“given
A” certainly excludes your winning in the first example), to extreme
positive (“given A” assures your winning in the last example). At
some intermediate stage, there is a choice of a sequence that is
indifferent to the information “given A.”

The second example of negative and positive correlations is shown
in Figure 2.8 for a continuous sample space.

Consider the two rectangles A and B having the same area.
Since A and B have the same area, the probability of hitting

A is equal to the probability of hitting B. Let us denote that by
Pr{A} = Pr{B} = p, where p is the ratio of the area of A to the
total area of the board, say, p = 1/10 in this illustration.

When the two rectangles are separated, i.e., there is no overlap-
ping area, we have

Pr{A/B} = 0.

This is the case of an extreme negative correlation. Given that
the dart hit B, the probability that it hit A is zero (i.e., smaller
than p).

The other extreme case is when A and B become congruent, i.e.,
the overlapping area is total. In this case, we have

Pr{A/B} = 1.

This is the case of an extreme positive correlation. Given that the
dart hit B, the probability that it hit A is one (i.e., larger than p).

When we move B towards A, the correlation changes continuously
from maximal negative correlation (non-overlapping) to maximal
positive correlation (total overlapping). In between, there is a point
when the two events A and B are independent. Assume for simplic-
ity that the total area of the board is unity, then the probability of
hitting A is simply the area of A. The probability of hitting B is the
area of B. Let p = Pr{A} = Pr{B}. The conditional probability is
calculated by Pr{A/B} = Pr{A·B}/Pr{B}, where Pr{A·B} is the
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Maximal Positive Correlation

Positive Correlation

No Correlation

Negative Correlation

A
Maximal Negative Correlation

B

Figure 2.8. Various degrees of overlapping between two rectangular regions,
and their corresponding extent of correlations.

probability of hitting both A and B. Denote this probability by x.
The correlation between the two events, “hitting A,” and “hitting
B,” is defined as g = Pr{A · B}/Pr{A}Pr{B} = x/p2, when the
overlapping area is x = 0, g = 0 (i.e., extreme negative correla-
tion). When the overlapping area is x = p, we have g = p/p2 = 1/p
or Pr{A/B} = p/p = 1 (i.e., extreme positive correlation). When
x = p2, we have g = p2/p2 = 1 or Pr{A/B} = Pr{A}; in this case,
there is no correlation between the two events, i.e., the two events
are independent.
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Finally, we note that the concept of independence between
n events A1, A2, . . . , An is defined by the requirement that

Pr(A1, A2, . . . , An) =
n∏

i=1

Pr(Ai).

It should be noted that independence between the n events does
not imply independence between pairs, triplets, etc. For example,
independence between three events A1, A2, A3 does not imply inde-
pendence between pairs and vice versa. An example is shown in
Appendix C.

2.5.1 Conditional probability and subjective probability

There is a tendency to refer to “probability” as objective, and
to conditional probability as subjective. These assertions are, in
general, not true. First, note that probability is always conditional.
When we say that the probability of the outcome “4” of throwing
a die is 1/6, we actually mean that the conditional probability of
the outcome 4 given that one of the possible outcomes 1,2,3,4,5,6
has occurred, or will occur,9 and that the die is fair and that we
threw it at random, and any other information that is relevant. We
usually suppress this given information in our notation and refer to
it as the unconditional probability. This unconditional probability
is considered as an objective probability.

Now, let us consider the following two pairs of examples:

O1: The conditional probability of an outcome “4,” given that
Jacob knows that the outcome is “even,” is 1/3.

O2: The conditional probability of an outcome “4,” given that
Abraham knows that the outcome is “odd,” is zero.

S1: The conditional probability that the “defendant is guilty,”
given that he was seen by the police at the scene of the crime
is 0.9.

S2: The conditional probability that the “defendant is guilty,”
given that he was seen by at least five persons in another city
at the time of the crime’s commission is nearly zero.

9When we ask for Pr(A), we actually mean Pr(A/Ω), i.e., that one of the events
in Ω has occurred.
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In all of the aforementioned examples, there is a tendency (such
statements are sometimes made in textbooks) to refer to condi-
tional probability as a subjective probability. The reason is that, in
all the abovementioned examples, we involved personal knowledge
of the conditions. Therefore, we judge that it is highly subjective.
However, that is not so. The two probabilities, denoted O1 and O2,
are objective probabilities. The fact that we mention the names
of the persons who are knowledgeable of the conditions does not
make the conditional probability subjective. We could make the
same statement as in O1, but with Rachel instead of Jacob. The
conditional probability of an outcome “4,” given that Rachel knows
that the outcome is even, is 1/3. The result is the same. The appar-
ent subjectivity of this statement is a result of the involvement of
the name of the person who “knows”10 the condition. A better way
of phrasing O1 is: the conditional probability of an outcome “4,”
given that we know that the outcome is even, is 1/3, or even bet-
ter; the conditional probability of an outcome “4,” given that the
outcome is “even,” is 1/3.

In the last two statements, it is clear that the fact that Jacob,
Rachel, or anyone of us knows the condition does not have any effect
on the conditional probability. In the last statement, we made the
condition completely impersonal. Thus, we can conclude that the
given condition does not, in itself, convert an objective (uncondi-
tional) probability into a subjective probability.

To the best of my knowledge, the probabilities used in all cases
in the sciences are objective. The reason is that the knowledge of
the probabilities is usually explicitly or implicitly given. This is in
accord with Laplace’s statement: “When probability is unknown,
all possible values of probability between zero to one should be
considered equally likely.”

There is a general agreement that there are essentially two dis-
tinct types of probabilities. One is referred to as the judgmental
probability which is highly subjective, the two examples S1 and

10This kind of argument is often used in connection with the use of information
theory in the interpretation of entropy. “Information” is associated with “knowl-
edge” and knowledge is deemed to be subjective. We shall discuss this in the
next chapter.
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S2 fall into this category. The second is the physical or scientific
and is considered as objective probability. Here, we shall use only
the scientific probability. Scientists might disagree on the meaning
of probabilities, but when probabilities are used, they all agree on
their numerical values. The reason is that in all cases, the “cor-
rect” answer to a probability question is the answer you either
already know, or at least you know a method of how to calcu-
late it.

In using probability in all the sciences, we always presume that
the probabilities are given either explicitly or implicitly by a
given recipe on how to calculate these probabilities. Sometimes,
these are very easy to calculate, sometimes extremely difficult, but
you always assume that they are “there” in the event as much as
mass is attached to any piece of matter.

Note also that at the most fundamental level, probability is based
on our belief. Whether it is a belief that the six outcomes of a
die are equally likely, or that the laws of quantum mechanics are
correct and will be correct in the future, or that the tables of
recorded statistics are reliable and that the same statistics will be
maintained. If any of the conditions, or the given information, are
changed, then the method of calculating probabilities must also be
changed accordingly.

We have already quoted Callen (1983) on page 16. We repeat the
beginning of that quotation here:

“The concept of probability has two distinct interpretations in
common usage. ‘Objective probability’ refers to a frequency, or
a fractional occurrence; the assertion that ‘the probability of
newborn infants being male is slightly less than one half ’ is a
statement about census data. ‘Subjective probability’ is a measure
of expectation based on less than optimum information.”

As I have explained in Chapter 1 (see page 16), my views dif-
fer from Callen’s in a fundamental sense. Both examples given by
Callen could be subjective or objective depending on the given
amount of information or on the given relevant knowledge.

An extra-terrestial visitor who has no information on the recorded
gender of newborn infants would have no idea what the probabilities
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for a male or female are, and his assignment of probabilities would
be totally subjective.11

On the other hand, given the same information and the same
knowledge including the frequencies of boys and girls, including
the reliability of all the statistical medical records, the assignment
of probabilities will inevitably be objective.

Let us go back to the question regarding the gender of a new
born, and reformulate the questions with an increasing amount of
given information.

(1) What is the probability that the newborn is a boy (given only
that a child was born, this condition is usually suppressed)?

(2) What is the probability that the newborn is a boy, given the
census data on the ratio of boys and girls is about 1:1, and
assuming that these statistics are reliable and will also be main-
tained in the future?

(3) What is the probability that the newborn is a boy given the
information as in (2), and in addition, it is known that the ultra-
sound test shows a boy, and that this test is quite reliable, and
it is known that in 9 out of 10 cases, the predictions are correct.

(4) What is the probability that the newborn is a boy given the
information as in (2) and (3), and in addition, the level of some
maternal hormones indicates that it is a boy, and that this is a
very sensitive test, and that 10 out of 10 predictions based on
this test are correct.

Clearly, the answer to question (1) can be anything. If nothing is
known on the census data, we cannot give any “objective” estimate
of the probability. This is a highly subjective probability though it
is formulated as an unconditional probability (in the sense that the
only information given is that the experiment has been performed,
i.e., a child is born).

The answer to question (2) is 1/2, to (3) is 9/10 and to (4) is 1.
These answers are objective in the sense that everyone who is given
this information will necessarily give the same answer, again in

11The same is true for an extra-terrestial visitor who has never seen a die or a
coin and is asked about the probability of a specific outcome of a die or a coin.
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contrast to Callen’s statement. The fact that the question is cast in
the form of a conditional probability does not make the probability
subjective. What makes a probability estimate subjective is when
we have no sufficient information to determine the probabilities, or
when different subjects have different information. This conclusion
is far more general and also applies for dice or coins.

Thus, an extra-terrestial visitor who never saw or heard of toss-
ing a coin would not know the answer to the (“unconditional”)
probability of outcome H. Any answer given is necessarily subjec-
tive. However, if he or she knows that the coin is fair, and knows
that many experiments carried out by many gamblers show that the
frequency ratio of H and T is nearly one, then the extra-terrestrial
could correctly give the answer about the probability of H and T .

2.5.2 Conditional probability and cause and effect

The “condition” in the conditional probability of an event may
or may not be the cause of the event. Consider the following two
examples:

(1) The conditional probability that the patient will die of lung
cancer, given that he or she has been smoking for many years
is 0.9.

(2) The conditional probability that the patient is a heavy smoker
given that he or she has lung cancer is 0.9.

Clearly, the information given in the first case is the cause (or the
very probable cause) of the occurrence of lung cancer. In the sec-
ond example, the information that is given — that the patient has
cancer — certainly cannot be the cause for being a heavy smoker.
The patient could have started to smoke at age 20, far earlier, in
time than his cancer developed.

Although the two examples given above are clear, there are cases
where conditional probability is confused with causality. We per-
ceive causes as preceding the effect in the time axis. Similarly, con-
dition in conditional probability is conceived as occurring earlier in
the time axis.
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Consider the following simple and very illustrative example that
was studied in great detail (Falk 1979). You can view it as a simple
exercise in calculating conditional probabilities. However, I believe
this example has more to it. It demonstrates how we intuitively
associate conditional probability with the arrow of time, confusing
causality with conditional probabilistic argument.

The problem is very simple. An urn contains four balls, two whites
and two blacks. The balls are well mixed and we draw one ball,
blindfolded.

First we ask: What is the probability of the event “White ball on
first draw”? The answer is immediate: 1/2. There are four equally
probable outcomes; two of them are consistent with “white ball”
event, and hence the probability of the event is 2/4 = 1/2.

Next we ask: What is the conditional probability of drawing a
white ball on a second draw, given that in the first draw we drew a
white ball (the first ball is not returned to the urn). We write this
conditional probability as Pr{White2/White1}. The calculation is
very simple. We know that a white ball was drawn on the first trial
and was not returned. After the first draw, three balls are left; two
blacks and one white. The probability of drawing a white ball is
simply 1/3. We write this conditional probability as

Pr{White2/White1} =
1
3
.

Now, the more tricky question: What is the probability that we
drew a white ball in the first draw, given that the second draw was
white? Symbolically, we ask for

Pr{White1/White2} =?.

This is a baffling question. How can an event in the “present”
(white ball at the second draw), affect the event in the “past” (white
drawn in the first trial)?

These questions were actually asked in a classroom. The students
easily and effortlessly answered the question about Pr{White2/

White1}, arguing that drawing a white ball in the first draw has
caused a change in the urn, and therefore has influenced the prob-
ability of drawing a second white ball.
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However, asking about Pr{White1/White2} caused uproar in the
class. Some claimed that this question is meaningless, arguing that
an event in the present cannot affect the probability of an event
in the past. Some argued that since the event in the present can-
not affect the probability of the event in the past, the answer to
the question is 1/2. They were wrong. The answer is 1/3. We shall
revert to this problem and its solution after presenting Bayes the-
orem in Section 2.6.

The distinction between causality and conditional probability is
important. Perhaps, we should add one characteristic property of
causality that is not shared by conditional probability. Causality is
transitive. This means that if A causes B, and B causes C, then
A causes C, symbolically: if A ⇒ B and B ⇒ C, then A ⇒ C. A
simple example: if smoking causes cancer, and cancer causes death,
then smoking causes death.

Conditional probability might or might not be transitive. We have
already distinguished positive correlation (or supportive correla-
tion) and negative correlation (counter or anti-supportive).12

If A supports B, i.e., the probability of the occurrence of B
given A is larger than the probability of the occurrence of B, i.e.,
Pr{B/A} > Pr{B}; and if B supports C, (i.e., Pr{C/B} > Pr{C}
then in general, it does not follow that A supports C.

Here is an example where supportive conditional probability is
not transitive. Consider the following three events in throwing a die:

A = {1, 2, 3, 4}, B = {2, 3, 4, 5}, C = {3, 4, 5, 6}.
Clearly, A supports B (i.e., Pr{B/A} = 3/4 > Pr{B} = 2/3), B

supports C (i.e., Pr{C/B} = 3/4 > Pr{C} = 2/3), but A does not
support C (i.e., Pr{C/A} = 1/2 < Pr{C} = 2/3).

2.5.3 Conditional probability and probability of joint events

Suppose that you tossed a coin 1,000 times and all of the outcomes
turned out to be heads {H}. What is the probability of the next
outcome being H? Most people would answer that the chances

12More details in Falk (1979).
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of having 1,001 heads are extremely small. That is correct. The
chances are (1/2)1001, extremely small indeed. But the question
was not about the probability of having 1,001 heads but on the
conditional probability of a result H given 1,000 heads in the last
1,000 tosses. This conditional probability is one half (assuming that
all the events are independent).

The psychological reason for the confusion is that you know that
the probability of H and T are half-half. Therefore, if you throw
1,000 times, it is most likely that you will get about 500 H and
500 T . The event “the first 1,000 throws result in heads,” though
very rare, is possible. You might feel that “it is time that the chances
will turn in favor of T ,” and the sequence of outcome must behave
properly. Therefore, you feel that the chances of a tail T , given that
1,000 heads have occurred, are now close to one. That is wrong,
however. In fact, if a coin shows 1,000 outcomes in a row to be
H, I might suspect that the coin is unbalanced, therefore I might
conclude that the chances of the next H are larger than 1/2.

To conclude, if we are given a fair coin, and we toss it at random
(which is equivalent to saying that the probability of H is 1/2), the
probability of having 1,000 outcomes of H is very low (1/2)1000.
But the conditional probability of having the next H, given “1,000-
heads-in-a-row” is still 1/2. This is of course true presuming that
the events at each toss are independent.

2.6 Bayes’ Theorem

Bayes’ theorem is an extremely useful tool both for calculating
probabilities and for making plausible reasoning. We shall start
with a simple and intuitively clear theorem known as the theorem
of total probability.

Consider n events that are pairwise disjoint and that their union
(or sum) covers the entire space Ω (this is sometimes referred to as
a partition). In mathematical terms, we assume

(1) Ai · Aj = φ for each pair of events i, j
i�=j

= 1, 2, . . . , n, (2.6.1)

(2) Ω =
∑n

i=1 Ai (or
⋃n

i=1 Ai) (2.6.2)



December 7, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch02

66 Statistical Thermodynamics Based on Information

Example: Consider the outcomes of throwing a die. Define the
events

A1 = {even outcome} = {2, 4, 6},
A2 = {odd and larger than one} = {3, 5},
A3 = {1}. (2.6.3)

Clearly, these three events are disjoint and their union covers the
entire range of possible outcomes.

Exercise: Show that for any n events A1, A2, . . . An; if they are
pairwise mutually exclusive (i.e., Ai ·Aj = φ for each pair of i �= j),
then it follows that each group of events are mutually exclusive.
The inverse of this statement is not true. For instance, events A,B

and C can be mutually exclusive (i.e., A·B ·C = φ) but not pairwise
mutually exclusive.

For the second example, we use again the squared board of unit
area and any division of the area into several mutually exclusive
areas, as in Fig. 2.9a.

Clearly, by construction, each pair of events consists of mutually
exclusive events, and the sum of the events is the certain event, i.e.,
hitting any place on the board (neglecting the borderlines) is unity.

Let B be any event. We can always write the following equalities:

B = B · Ω = B ·
n∑

i=1

Ai =
n∑

i=1

B · Ai. (2.6.4)

The first equality is evident (for any event B, its intersection with
the total space of events Ω, gives B). The second equality follows
from the assumption (2.6.2). The third equality follows from the
distributive law of the product of events.13

From the assumption that all Ai are mutually exclusive, it also
follows that all B ·Ai are mutually exclusive.14 Therefore, it follows
that the probability of B is the sum of the probabilities of all the

13Show that A · (B + C) = A · B + A · C for any three events A, B,C and by
generalization B · P

Ai =
P

B · Ai.
14This follows from the commutative property of the product of events i.e.,
B · Ai · B · Aj = B2 · Ai · Aj = B · φ = φ.
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Figure 2.9. (a) Five mutually exclusive events, the union of which is the certain
event. (b) A region B intersects the events Ai.

B · Ai, (see Figure 2.9b):

P (B) = P

( n∑
i=1

B · Ai

)
=

n∑
i=1

P (B · Ai) =
n∑

1=1

P (Ai)P (B/Ai).

(2.6.5)
The last equality follows from the definition of conditional

probabilities.
Theorem (2.6.5) is very simple and intuitively clear. We have

started with n events that cover the entire space of events Ω. We
took an arbitrary “cut” from Ω that we called B. The total prob-
ability theorem states that the area of B is equal to the sum of
the areas that we have cut from each Ai as shown in the shaded B

areas in Figure 2.9b.
From the definition of the conditional probability and theorem

(2.6.5), it follows immediately that

P (Ai/B) =
P (Ai · B)

P (B)
=

P (Ai)P (B/Ai)∑n
j=1 P (Aj)P (B/Aj)

. (2.6.6)

This is one formulation of Bayes’ theorem. It is a very simple
theorem, but as we shall soon see, it is extremely useful for solving
problems that seem intractable.

The events Ai are sometimes referred to as a priori events. Sup-
pose we know the probabilities of all the events Ai and also all
the conditional probabilities (B/Ai). Then (2.6.6) allows us to cal-
culate the (a posteriori) probabilities P (Ai/B). The assignments
of the terms a priori and a posteriori should not be regarded as
ordered in time. The reason will be clear from the examples that
we shall work out.
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A1

A2

A3

A4

S

Figure 2.10. The four events described in the example.

Example: Suppose that our board of unit area is divided into four
equal and mutually exclusive areas (see Figure 2.10). Clearly, the
probability of hitting any one of these areas is

P (A1) = P (A2) = P (A3) = P (A4) = 1/4. (2.6.7)

Now, suppose each of the areas Ai has a shaded part. Let us
denote all the shaded areas in Figure 2.10 by S. (S does not need
to be a connected region, as in Figure 2.10.)

We are given all the conditional probabilities

P (S/A1) =
1
20

, P (S/A2) =
1
10

, P (S/A3) =
2
5
,

P (S/A4) =
1
10

, (2.6.8)

i.e., P (S/Ai) is the ratio of the shaded area to the total area of
each Ai.

Bayes’ theorem simply states that if we know all the areas Ai,
and all the fractions of the shaded area in each of the Ai (2.6.8),
then given that we hit the area S, we can calculate the probability
that we have hit a specific area Ai. Clearly, time does not play any
role in this theorem.

Solution of the urn problem discussed in Section 2.5.2.
We are asked to calculate the probability Pr(White1/White2),

i.e., given that the outcome on the second draw is white, what is
the probability that the outcome of the first draw is white?

Using Bayes’ theorem, we write

Pr(White1/White2) =
Pr(White1 · White2)

Pr(White2)

=
Pr(White2/White1) Pr(White1)

Pr(White2/White1) Pr(White1)+ Pr(White2/Black1) Pr(Black1)
.

(2.6.9)
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Note that on the right-hand side of (2.6.9), all the probabili-
ties are known. Hence, we can calculate the required conditional
probability

Pr(White1/White2) =
1/3 × 1/2

1/3 × 1/2 + 2/3 × 1/2
= 1/3. (2.6.10)

This is the same as the conditional probability Pr(White2/White1),
as in Section 2.5.2.

Exercise: Generalize the urn problem as in Section 2.5.2 for n

white balls and m black balls. Calculate Pr(White2/White1) and
Pr(White1/White2) in the general case.

We shall further discuss this problem from the information-
theoretical point of view in Section 3.7.

An important application of the Bayes’ theorem is the following.
Suppose we have a test for a virus which gives a positive result
(+) if a person is a carrier with probability 0.99, this means that
for each hundred carriers (C) who are tested, 99% show positive
results. The test also shows false positive results, i.e., a non-carrier
tests positive, say with probability 10−4. This sounds like a reliable
and valuable test.

Denote by C the event “being a carrier of the virus.” Suppose
that P (C) is the probability of carriers in a given country (i.e.
the fraction of carriers in a given population). Denote by P (+/C)
the conditional probability that the test is positive given that the
person is a carrier. We are given that P (+/C) = 0.99. On the other
hand, it is known that a false positive result occurs in one out of
10,000, which means that given that a person is not a carrier C̄,
the probability of having a positive result is very low, i.e.,

P (+/C̄) = 10−4. (2.6.11)

Clearly, the closer P (+/C) is to unity, and the smaller the false
positive results P (+/C̄), the more reliable the test is. Yet, some
unexpected and counterintuitive results can be obtained.

Suppose a person chosen at random from the population takes
the test and the result is positive, what is the probability that the
person is actually a carrier? The question is thus, what is P (C/+)?
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According to Bayes’ theorem

P (C/+) =
P (+/C)P (C)

P (C)P (+/C) + P (C̄)P (+/C̄)
. (2.6.12)

This is a straightforward application of (2.6.6). In our example,
we know P (+/C̄) = 10−4, and P (+/C) = 0.99 and we need to know

P (C/+) =
0.99P (C)

0.99P (C) + (1 − P (C))10−4
. (2.6.13)

As can be seen from this equation and from Figure 2.11, the
probability that a person who tested positive is actually a car-
rier, depends on P (C), i.e., on the percentage of the carriers in
the population. Intuitively, we feel that since P (+/C̄) = 10−4 and
P (+/C) = 0.99, the test is very sensitive and we should expect a
high value for P (C/+), and a small value of P (C̄/+). Indeed, if
the population of carriers is larger than, say, P (C) = 0.001 then
P (C/+) is nearly one. However, if the population of carriers is
very low, say, P (C) = 0.0001, then P (C/+) can be about 0.5.
This is understandable. If the population of carriers is extremely
small, then testing positive becomes a rare event; in the case of
P (C) = 0.0001, the denominator of (2.6.13) is

P (+) = P (+/C)P (C) + P (+/C̄)P (C̄) = 0.00019899. (2.6.14)

Hence, the ratio in (2.6.13) is

P (C/+) =
0.99 × 10−4

0.00019899
≈ 0.5. (2.6.15)
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Figure 2.11. Plot of the function P (C/+) as a function P (C) for low and high
fractions of the population P (C).
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As Figure 2.11 shows, the conditional probability P (C/+)
is a monotonic increasing function of P (C). For large P (C)
(Figure 2.11b), the value of P (C/+) is nearly one. However, for
very small P (C) (Figure 2.11a), the values of P (C/+) could be
very small, which means P (C̄/+) is very large, i.e., nearly one.

The reason that we are surprised to see such a relatively small
value of P (C/+) or a large P (C̄/+) is that intuitively we confuse
the given conditional probability, P (+/C), with the calculated
conditional probability, P (C/+), the latter of which can be any
number between 0 to 1. In an extreme case when the population of
carriers is extremely low, say P (C) = 10−6, then P (C/+) ≈ 0.01,
or P (C̄/+) = 0.99. An even more extreme case is when P (C) = 0,
i.e., given that none in the population is a carrier. In this case,
given a positive test, the probability of being a carrier must be
zero, and the probability of being a non-carrier is one! We shall
further analyze this problem from the informational point of view
in Section 3.6.

A slightly different interpretation of (2.6.12) is the following.
P (C) is the fraction of the population which is known to be carri-
ers. Therefore, prior to any test, we can judge that the probability
that a person selected at random from the population is found to
be a carrier is P (C). This is sometimes called the prior probability.
Now we perform the test and find that the result is positive. Equa-
tion (2.6.12) tells us how to modify our prior probability P (C) to
obtain the posterior probability P (C/+), given the new informa-
tion. Similarly, one can extend the same reasoning whenever more
information is available (say additional tests) to assess and modify
our probabilities given the new information. It should be stressed
that the terms prior and posterior, or “before” and “after,” as used
in the aforementioned reasoning, do not necessarily imply events
that are ordered in time.

Exercise: Consider the following problem. A metal detector in an
airport goes off in 999 out of a 1,000 of the cases when a person
carrying metal objects passes through (i.e., P (+/C) = 999

1000 ). There
are also false alarm cases, i.e., where the detector goes off even if the
passenger is not carrying any metallic objects, i.e., P (+/C̄) = 10−6.
Given that the detector went off, what is the probability that the
passenger is a carrier of a metallic object?
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2.6.1 A challenging problem

The following is a problem of significant historical value. It is con-
sidered to be one of the problems the solution of which has not only
crystallized the concept of probability, but has also transformed
the reasoning about chances taken in gambling saloons into math-
ematical reasoning occupying the minds of mathematicians. This
problem was addressed to Blaise Pascal by his friend Chevalier de
Méré in 1654.15

Two players bet $10 each. The rules of the game are very simple.
Each one chooses a number between one and six. Suppose Dan chose
4 and Linda chose 6. They roll a single die and record the sequence
of the outcomes. Every time an outcome “4” appears, Dan gets a
point. When a “6” appears, Linda gets a point. The player who
collects three points first wins the total sum of $20. For instance, a
possible sequence could be

1, 4, 5, 6, 3, 2, 4, 6, 3, 4 (2.6.16)

Once a “4” appears for the third time, Dan wins the entire sum
of $20 and the game ends.

Now, suppose the game is started and at some moment the
sequence of outcomes is the following:

1, 3, 4, 5, 2, 6, 2, 5, 1, 1, 5, 6, 2, 1, 5. (2.6.17)

At this point, there is some emergency and the game must be
stopped! The question is how to divide the sum of $20.

Note that the problem does not arise if the rules of the game
explicitly instruct the player on how to divide the sum should the
game be halted. But in the absence of such a rule, is it not clear
how to divide the sum.

Clearly, one feels that since Dan has “collected” one point, and
Linda “collected” two points, Linda should get the larger portion
of the $20. But how much larger? The question is, what is the
fairest way of splitting the sum, given that sequence of outcomes?
But what does it mean, the fairest splitting of the sum? Should

15The historical account of these and other earlier probabilistic problems can
be found in David (1962).
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Linda get twice as much as Dan because she has gained twice as
many points in her favor? Or perhaps, simply split the sum into two
equal parts since the winner is undetermined? Or perhaps, let Linda
collect the total sum because she is “closer” to winning than Dan.

A correspondence between Blaise Pascal and Pierre de Fermat
ensued for several years. These were the seminal thoughts which
led to the theory of probability. Recall that in the 17th century,
the concept of probability was far from being crystallized yet. The
difficulty was not only of finding the mathematical solution to the
problem. It was not less difficult to clarify what the problem was,
i.e., what does it mean to find a fair method of splitting the sum?

The answer to the last question is the following:
Having no specific rule on how to divide the sum in case of halting

the game, the “fairest” way of splitting the sum is according to the
ratio of the probabilities of the two players winning the game, had
the game continued.

In stating the problem in terms of probabilities, one hurdle was
overcome. We now have a well-formulated problem. But how do
we calculate the probabilities of either player winning? We feel that
Linda has a better chance of winning since she is “closer” to col-
lecting three points than Dan.

We can easily calculate that the probability of Dan winning, on
the next throw is zero. The probability of Linda winning on the next
throw is 1/6, and the probability of neither one of them winning on
the next throw is 5/6. One can calculate the probabilities of winning
after two throws, three throws, etc. The calculations become very
complicated for the fourth, fifth and larger number of throws. Try
calculating the probability of each player winning on the next two
throws, and for the next three throws and see just how messy it gets.
There is a simple solution based on the theorem of total probability
that involves a one-unknown equation.

The solution to the problem is this. Denote by X the probabil-
ity of Linda winning. Clearly, in the next throw after the game is
halted, there are three mutually exclusive possibilities:

(I) outcome {6} with probability 1/6,
(II) outcome {4} with probability 1/6,
(III) outcome {1, 2, 3, 5} with probability 4/6.

(2.6.18)
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Let us denote the event “Linda wins” by LW . Using the theorem
of total probability, the following equation holds:

X = Pr(LW ) = Pr(I) Pr(LW /I) + Pr(II ) Pr(LW /II )

+ Pr(III ) Pr(LW /III )

= 1/6 × 1 + 1/6 × 1/2 + 4/6 × X. (2.6.19)

This is an equation with one unknown 6X = 3/2 + 4X. The
solution is X = 3/4. Note that the events (I), (II), and (III) refer to
the possible outcomes on the next throw. However, the event “LW”
refers to Linda wins, regardless of the number of subsequent throws.
Equation (2.6.19) means that the probability of Linda winning is
the sum of the three probabilities of the three mutually exclusive
events. If (I) occurs, then she wins with probability one. If (II)
occurs, then she has a probability 1/2 of winning (since in this case
both will have two points). If (III) occurs, then the probability of
her winning is X, the same as at the moment of halting the game.
Therefore, the two players should divide the total sum in such a
way that Linda gets 3/4 and Dan gets 1/4.

Exercise: Solve the same problem for the following two cases:

(1) Dan has collected two points and Linda zero points.
(2) Dan has collected one point and Linda zero points.

2.6.2 A more challenging problem: The three prisoners’
problem

This problem is important, interesting, challenging and enjoyable.
Going through the solution should be a rewarding experience for
the following reasons:

(1) It is a simple problem having a counter-intuitive solution.
(2) It illustrates the power of Bayes’ theorem in solving probabilis-

tic problems.
(3) It involves the concepts of “information” in making a “proba-

bilistic decision” but in a very different sense from the way this
term is used in information theory.

This problem could be justifiably referred to as the prisoner
dilemma. As we shall present it, it does involve a very serious
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dilemma. However, the term “prisoner dilemma” is already used
in game theory for quite a different problem. Therefore, we have
chosen the title of: “The three prisoner problem.” This problem is
equivalent to the problem sometimes referred to as the Monty Hall
problem, which arises in connection with the TV show “Let’s Make
a Deal.”16 We shall describe here the more dramatic version of the
problem involving a matter of life and death.

The problem

Three prisoners on death row, named A, B, and C await their
execution scheduled for the first of January. A few days before the
said date, the king decides to free one of the prisoners. The king
does not know any of these prisoners, so he decides to throw a die,
the result of which will determine who shall be set free. On the faces
of this die are inscribed the letters A,A,B,B,C,C. The die is fair.
The probability of each of the letters appearing is 1/3. The king
then instructs the warden to free the prisoner bearing the name
that came up on the face of the die. He warns the warden not to
divulge to the prisoners who the lucky one is until the actual day
of the execution.

The facts that the king has decided to free one prisoner, that the
prisoner was chosen at random with a 1/3 probability, and that
the warden has full knowledge of the results but is not allowed to
divulge to anyone, are known to the prisoners. It is also common
knowledge that the warden is indifferent to the prisoners. Whenever
he has to make a choice, he would toss a coin. A day before the
execution, prisoner A approaches the warden and asks him: “I know
you are not allowed to tell me or anyone else, who shall be freed
tomorrow, however, I know that two of the three prisoners must
be executed tomorrow. Therefore, either B or C must be executed.
Please tell me which one of these two will be executed.

Clearly, by revealing to prisoner A the identity of one prisoner
who will be executed, the warden does not reveal the name of the
one who will be freed. Therefore, he can answer prisoner A’s query

16See Falk (1993).
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without defying the king’s order. The warden tells prisoner A that
B is going to be executed the next day.

The problem is this. Originally, prisoner A knew that the three
prisoners have 1/3 probability of getting freed. Now, he got some
more information. He knows that B is doomed to die. Suppose A

is given the opportunity to exchange names with C (note that the
king decided to free the prisoner, who on the day of the execution
carries the name that appeared on the face of the die). Prisoner
A’s dilemma is this: Should he switch names with C (to render it
more dramatic, we could ask: should A offer C, say $100 to swap
their names?) In probability terms, the question is the following:
Initially, prior to asking the warden, A knows that the probabil-
ity of his survival is 1/3. He also knows that the warden says the
truth, and that the warden is not biased (i.e., if he has to make a
choice between two answers, he will choose between the two with
equal probability). After receiving the information, the question
is: “What is the conditional probability of A’s survival given the
information supplied by the warden?”

Intuitively, we feel that since initially A and C had the same
probability of being freed, there should be the same probability for
A and C to be freed after the warden informed A that B will be
executed.

This problem can be easily solved using Bayes’ theorem. The solu-
tion is counter-intuitive. The reader is urged to solve the problem
before reading the solution in Appendix P.

2.7 Random Variables, Average, Variance and Correlation

A random variable (rv)17 is a real-valued function defined on a
sample space. If Ω = {w1, . . . , wn}, then for any wi ∈ Ω, the
quantity X(wi) is a real number.18 Note that the outcomes of the

17The term “random variable” is somewhat misleading. A rv is actually a func-
tion over the domain Ω, i.e., the variables w are the outcomes of the experiment
and X has a real value for each w ∈ Ω.
18We shall use capital letters X, Y for the random variables, but use X(w) or
Y (w) when referring to the components of these functions, or the value of the
function X at the point w.
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experiment, i.e., the elements of the sample space, are not nec-
essarily numbers. The outcomes can be colors, different objects,
different figures, etc. For instance, the outcomes of tossing a coin
are {H,T}. Another example: suppose we have a die, the six faces
of which have different colors, say white, red, blue, yellow, green
and black. In such a case, we cannot plot the function X(w), but
we can write the function explicitly as a table. For example,

X(w = white) = 2,

X(w = red) = 2,

X(w = blue) = 2,

X(w = yellow) = 1,

X(w = green) = 0,

X(w = black) = 1. (2.7.1)

Note that we always have the equality

P (Ω) =
∑
w∈Ω

P (w) =
∑

i

P [X(w) = xi] = 1. (2.7.2)

The first sum is over all the elements ω ∈ Ω. The second sum is
over all values of rv, xi.

In general, even when wi are numbers, the values of X(wi) are not
necessarily equal to wi. For instance, the outcomes of an ordinary
die are the numbers 1, 2, 3, 4, 5, 6. An rv X can be defined as

X(wi) = w2
i or Y (wi) = exp(wi). (2.7.3)

Clearly, in these cases X(wi) and Y (wi) differ from wi.
In the general case when the outcomes wi are numbers and their

corresponding probabilities are pi, we can define the average out-
come of the experiment as usual. For instance, for the ordinary die,
we have

6∑
i=1

wipi =
1
6

6∑
i=1

wi = 3.5. (2.7.4)

However, it is meaningless to talk of an average of the outcomes
of an experiment when the outcomes are not numbers. For instance,
for the six-colored die described above, there is no “average”
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outcome that can be defined for this experiment. However, if an
rv is defined on the sample space, then one can always define the
average (or the mean value) of the rv as19

X̄ = 〈X〉 = E(X) =
∑

x

xP{w : X(w) = x}

=
∑
w

P (w)X(w). (2.7.5)

The first sum in (2.7.5) is over all possible values of x; the second
sum is over all possible outcomes ω ∈ Ω.

The term {w : X(w) = x} is an event,20 consisting of all the
outcomes w, such that the value of the rv, X(w) is x. In the example
(2.7.1), these events are

{w : X(w) = 0} = {green},
{w : X(w) = 1} = {yellow , black},
{w : X(w) = 2} = {white, red , blue}. (2.7.6)

The corresponding probabilities are (assuming the die is “fair”)

P{X(w) = 0} =
1
6
,

P{X(w) = 1} =
2
6
,

P{X(w) = 2} =
3
6
. (2.7.7)

19We shall use capital letters X, Y , etc., for the rv and lower case letters x, y,
etc., for the values of the rv. We shall either use X or 〈X〉 for an average. In
the mathematical theory of probability, the average is denoted by E(X) and
referred to as the “expected value.” This is a somewhat unfortunate term for
an average. The value of the average is, in general, not an expected outcome.
For instance, in (2.7.4), the average value is 3.5; this is certainly not an expected
outcome.
20In the mathematical theory of probability, the distribution of an rv is
defined by

F (x) = P (X = x)

and for a continuous rv, the density of the distribution is defined such that

f(x) dx = P (x ≤ X ≤ x + dx).

Sometimes we shall use the short hand notation for Pr{w : X(w) = x} as
P (X = x) or even P (x). If we have several random variables, we shall use the
notation PX(x) and PY (y) for the distribution of the rv X and Y , respectively.
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Hence, the average of the rv is

X̄ = 0 × 1
6

+ 1 × 2
6

+ 2 × 3
6

=
4
3
. (2.7.8)

There are many other examples of outcomes that are not numbers
for which an average quantity is not defined. Consider the following
example. Suppose that two drugs A and B when administered to a
pregnant woman have the following probabilities for the gender of
the child at birth:

Boy Girl
Drug A 1/2 1/2
Drug B 2/3 1/3

Which drug is better then? There is no answer to this question
because the outcomes are not numbers. All we can say is that if
we used drug A, we shall have on average 50% boys and 50% girls.
But there is no “average” outcome. On the other hand, if we assign
numbers to the outcomes, say

X(boy) = 10,

X(girl ) = 3,

then we can say that the average of the rv X for each of the two
drugs is

1
2
× 10 +

1
2
× 3 =

13
2

= 6.5 (for drug A),

2
3
× 10 +

1
3
× 3 =

23
3

= 7
2
3

(for drug B).

Thus, in a society where infant boys are more welcome, there is
a higher value placed on the outcome “boy” rather than on the
outcome “girl.” In this case, we may say that drug B is “better”
than drug A — better, only in the sense that the average of the rv

X has a higher value for A than for B.
In a different society, there might be different values assigned

to boys and girls, and the corresponding average values of the rv

would be different. For instance, if one defines a different rv on the
same sample space {boy , girl}

Y (boy) = 1,

Y (girl) = 1,
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then the average value of this rv would be

1/2 × 1 + 1/2 × 1 = 1 (for drug A),

2/3 × 1 + 1/3 × 1 = 1 (for drug B).

In this case, the two drugs are considered equal.

Exercise: Suppose that drugs A and B administered to preg-
nant women produce the following number of offspring with
probabilities:

Number of offspring 0 1 2 3 4 5

Probabilities for Drug A 0.5 0.1 0.2 0.1 0.1 0.0
Probabilities for Drug B 0.0 0.2 0.1 0.2 0.2 0.3

Which drug is better then? Clearly, the answer to this question
depends on the value we assign to the rv. Here, the outcomes are
the number of offspring. We can calculate the average number of
offspring expected for each drug. If more offspring are considered
“better” than fewer, then the second drug, B, is “better.” However,
if we consider a larger number of offspring to be a burden, then we
shall judge drug A as the better one.

A special, very useful random variable is the “indicator function,”
sometimes referred to as the characteristic function. This is defined
for any event A as follows:

IA(w) =

{
1 if ω ∈ A,

0 if ω ∈ A.
(2.7.9)

The distribution of this rv is: P (IA = 1) = P (A), P (IA = 0) =
1 − P (A) = P (Ā).

As a rv, IA(w) is defined for any point ω ∈ Ω. An important
property of this rv is

〈IA〉 = E(IA) = 0 × P (IA = 0) + 1 × P (IA = 1) = P (A), (2.7.10)

i.e., the average, or the expected, value of IA is simply the proba-
bility of the event A.

The extension of the concept of rv to two or more rv is quite
straightforward. Let X and Y be the two rv. They can be defined
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Figure 2.12. Joint probabilities; see Section 2.7.21

on the same or on different sample spaces. The joint distribution of
X and Y is defined as the probability that X attains the value x

and Y attains the value y, and is denoted P (X = x, Y = y). The
distribution

P (X = x) =
∑

y

P (X = x, Y = y), (2.7.11)

is referred to as the marginal distribution of X.21 Similarly, the
marginal distribution of Y is defined as

P (Y = y) =
∑

x

P (X = x, Y = y), (2.7.12)

where the summation is over all y values in (2.7.11) and over all x

values in (2.7.12). Similarly, for a continuous rv, we replace the dis-
tributions by the densities of the distribution and instead of (2.7.11)
and (2.7.12), we have

fX(x) =
∫

fX,Y (x, y) dy, (2.7.13)

fY (y) =
∫

fX,Y (x, y) dx. (2.7.14)

Suppose we toss two connected coins, the outcomes of the two
coins are dependent events. Define X(H) = 1,X(T ) = 0, and sim-
ilarly for Y . We write the distribution P (X = x, Y = y) in a table
form, Figure 2.12. In this example, the marginal distributions are
(0.5, 0.5) for both X and Y .

The average value could be different for different rv defined on the
same sample space. For instance, for the outcomes of an ordinary,

21The marginal distributions are written on the margins of the table. Hence,
the term “marginal.”
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fair die, the averages of X and Y defined in (2.7.3) on the sample
space Ω = {1, 2, 3, 4, 5, 6} are

X̄ =
6∑

i=1

w2
i

1
6

=
1
6

6∑
i=1

w2
i = 15.167, (2.7.15)

Ȳ =
6∑

i=1

exp(wi)
1
6

=
1
6

6∑
i=1

exp(wi) = 106.1. (2.7.16)

For the continuous case, the probability density of the rv X is
defined as

fX(x)dx = P{w : x ≤ X(w) ≤ x + dx}. (2.7.17)

This is the probability of the event in the curly brackets, i.e.,
the set of all w such that X(w) falls between x and x + dx. The
corresponding average is now defined by

X̄ =
∫ ∞

−∞
xfX(x)dx. (2.7.18)

Some properties of the average are:

(i) For any constant number c

E(X + c) = E(X) + c (2.7.19)

(ii) For two rv X and Y , the sum X + Y is also an rv and

E(X + Y ) = E(X) + E(Y ) (2.7.20)

(iii) For any real number c, we have

E(cX) = cE(X) (2.7.21)

(iv) In general, for any number of random variables X1, . . . ,Xn,
and real numbers a1, . . . , an, we have

E

(
n∑

i=1

aiXi

)
=
∑

aiE(Xi). (2.7.22)

This is called the linear property of the expectation functional or
of the average. All the above properties are easily derived from the
definition of the average quantity. A special average of a random
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variable is the variance denoted by σ2, which measures how much
the distribution is spread out or dispersed. This is defined as

σ2 = Var(X) ≡ (X − X̄)2 = E(X − E(X))2 = X2 − 2X̄X̄ + X̄2

= X2 − X̄2 ≥ 0. (2.7.23)

For the continuous case, we have

σ2 =
∫ ∞

−∞
(x − X̄)2fX(x)dx ≥ 0. (2.7.24)

The positive square root of σ2 is referred to as standard devi-
ation. Note that from its definition, it follows that σ2 is always
non-negative.22 For two random variables X and Y , one defines the
covariance of X and Y as

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))]

= E(X,Y ) − E(X)E(Y ) = (X − X̄)(Y − Ȳ ) = XY − X̄Ȳ

(2.7.25)

and the correlation coefficient of X and Y as

R(X,Y ) = Cor (X,Y ) =
Cov(X,Y )√

Var(X)Var (Y )
, (2.7.26)

where the denominator is introduced to render the range of values
of Cor(X,Y ) between −1 and +1.

Exercise: Prove that |Cor(X ,Y )| ≤ 1. See Appendix D.
Two discrete random variables are said to be independent if and

only if for any value of x and y

P (X = x, Y = y) = P (X = x)P (Y = y). (2.7.27)

A similar definition for the continuous case in terms of the
densities is

fX,Y (x, y) = fX(x)fY (y). (2.7.28)

22Important variances in statistical mechanics are the fluctuations in energy, in
volume, and in the number of particles.
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When two rv are independent, then Cov(X,Y ) = 0. This follows
from the definition of the average

E(X · Y ) = 〈X · Y 〉 =
∑
x,y

P (X = x, Y = y)xy

=
∑

x

P (X = x)x
∑

y

P (Y = y)y = E(X)E(Y )

= 〈X〉〈Y 〉. (2.7.29)

Two rv for which E(X ·Y ) = E(X)E(Y ) are called uncorrelated rv.
Note, however, that if Cov(X,Y ) is zero, it does not necessarily

follow that X and Y are independent.23 The reason is that inde-
pendence of X and Y applies for any value of x and y, but the
non-correlation applies only to the average value of the rv, X · Y .

Clearly, independence of rv implies that the rv are uncorrelated,
but the converse of this statement is, in general, not true.

For two uncorrelated random variables X and Y , we have

Var (X + Y ) = Var(X) + Var (Y ). (2.7.30)

It is clear that this relationship holds for two independent rv.
Here, we show that (2.7.30) is valid under weaker conditions, i.e.,
that the two rv are uncorrelated. To show this, we start from the
definition of the variance:

Var(X + Y ) = E{[(X + Y ) − E(X + Y )]2}
= E[(X − E(X))2] + E[(Y − E(Y ))2]

+ 2E[(X − E(X))(Y − E(Y ))]

= Var(X) + Var(Y ). (2.7.31)

In the last equality, we used the condition (2.7.29) that the two rv

are uncorrelated.
The variance is not a linear functional of the rv. The following

two properties are easily derived from the definition of the variance.

23In the theory of probability, correlation is normally defined for random vari-
ables. For random variables, “independent” and “uncorrelated events” are differ-
ent concepts. For single events, the two concepts are identical. See Appendix D.
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For any real number c, we have

Var(cX) = c2Var(X), (2.7.32)

Var(X + c) = Var(X) + Var(c) = Var(X). (2.7.33)

For n random variables that are mutually uncorrelated in pairs
having the same average E(Xi) = µ and the same variance
Var(Xi) = σ2, we have for the arithmetic mean of the rv’s:

X̄ ≡
(∑n

i=1 Xi

n

)
, Var(X̄) = Var

(∑n
i=1 Xi

n

)

=
∑

i Var(Xi)
n2

=
σ2

n
, (2.7.34)

or equivalently

σ(X̄) =
σ√
n

. (2.7.35)

Exercise: X is the rv defined on the sample space of the outcomes
of a fair die, i.e., P (X = i) = 1

6 for i = 1, 2, . . . , 6. X1 and X2 are
two rv defined on the same sample space, but for two independent
fair dice thrown together. We define the new rv, Y = |X2−X1|. The
possible outcomes of Y are {0, 1, 2, 3, 4, 5}. Write the joint proba-
bilities of X = X1, and Y , the averages E(X), E(Y ) and E(XY )
and the covariance of X and Y .

Solution: The joint probabilities are given in Table 2.1. Each entry
is P (X = i, Y = j).

Table 2.1.

Y 0 1 2 3 4 5 PX(i)�
��X

1 1/36 1/36 1/36 1/36 1/36 1/36 1/6
2 1/36 2/36 1/36 1/36 1/36 0 1/6
3 1/36 2/36 2/36 1/36 0 0 1/6
4 1/36 2/36 2/36 1/36 0 0 1/6
5 1/36 2/36 1/36 1/36 1/36 0 1/6
6 1/36 1/36 1/36 1/36 1/36 1/36 1/6

PY (j) 6/36 10/36 8/36 6/36 4/36 2/36 1
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The marginal distributions PX and PY are shown at the right-
hand column and the bottom row, respectively. The averages of X

and Y are:

E(X) =
6∑

i=1

iPX(i) = 3.5, (2.7.36)

E(Y ) =
5∑

j=0

jPY (j) =
35
18

, (2.7.37)

Var(X) =
35
12

, Var(Y ) =
665
324

, (2.7.38)

E(XY ) =
∑
i,j

ijPXY (i, j) =
245
36

, (2.7.39)

Cov(X,Y ) = 0. (2.7.40)

Note: This is an example of two rv that are uncorrelated [see
(2.7.40)] but dependent. To show dependence, it is sufficient to show
that in at least one case, the joint probability of the two events is
unequal to the product of the probabilities of the two events, e.g.,
PXY (2, 5) = 0, but PX(2)PY (5) = 1

6 × 2
36 �= 0. Hence, the two rv

are dependent.

2.8 Some Specific Distributions

We shall discuss here very briefly three important distributions that
are frequently used in statistical thermodynamics.

2.8.1 The binomial distribution

Suppose we have a series of experiments, each with only two out-
comes, say H or T in tossing a coin, or a particle being in the left
or the right compartment, or a dipole moment pointing “up” or
“down.” Let p be the probability of the occurrence of one of the
outcomes, say H, and q = 1−p is the probability of the occurrence
of other, say T . If the series of trials are independent, then the
probability of any specific sequence of outcomes, say

H T H H T T H (2.8.1)



December 7, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch02

Elements of Probability Theory 87

is simply the product of the probabilities of each of the outcomes,
i.e., if P (H) = p and P (T ) = 1 − p = q, we have for the specific
sequence (2.8.1) of heads and tails, the probability

pqppqqp = p4q3. (2.8.2)

Similarly, if we have seven particles distributed in two compart-
ments, say the right (R) and the left (L), the probability of finding
exactly particles (1), (2), (4) and (7) in R and particles (3), (5),
and (6) in L is also p4q3. [In this case p = P (R) and q = P (L)].

In most cases, in statistical mechanics, we are not interested in the
specific configuration, i.e., which particle is in which compartment,
but only in the number of particles in each compartment.

Clearly, we have many possible specific sequences of outcomes for
which the number of particles in L is constant. A specific configura-
tion is written as a sequence, say RLLR, which means first particle
in R, second particle in L, third particle in L and fourth particle
in R. For four particles in two compartments, we list all possible
specific configurations in the left-hand column of Table 2.2. There

Table 2.2.

Specific Number of Number of Specific
Configuration Particles in L Events in Each Group

RRRR 0 1

LRRR 1 4
RLRR 1
RRLR 1
RRRL 1

LLRR 2 6
LRLR 2
LRRL 2
RLLR 2
RLRL 2
RRLL 2

LLLR 3 4
LLRL 3
LRLL 3
RLLL 3

LLLL 4 1
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is only one configuration for which all particles are in R, four con-
figurations for which one particle is in L, and three are in R, etc.

Clearly, any two specific configurations are disjoint, or mutually
exclusive events. Therefore, the probability of occurrence of all the
four particles in R is p4. The probability of occurrence of one par-
ticle in L (regardless of which particle is in L) is simply the sum of
the probabilities of the four events listed in the table, i.e.,

P (one particle in L) = 4p3q. (2.8.3)

Similarly,

P (two particles in L) = 6p2q2, (2.8.4)

P (three particles in L) = 4pq3, (2.8.5)

P (four particles in L) = q4. (2.8.6)

In general, for N particles (or N coins), the probability of occur-
rence of the event “n particles in L” (or n coins showing T ), is

PN (n) =
(

N

n

)
pnqN−n. (2.8.7)

Note that in constructing the expression (2.8.7), we used the
product rule for the probabilities of the independent events “R”
and “ L,” and the sum rule for the disjoint events “n specific parti-
cles in L” and N −n specific particles in R. The number of specific
disjoint events is simply the number of ways of selecting a group
of n particles out of N identical particles. The distribution (2.8.7)
is referred to as the binomial distribution. The coefficients

(N
n

)
are

the coefficients in the binomial expansion. For any a and b, the
binomial expansion is24

(a + b)N =
N∑

n=0

(
N

n

)
aN−nbn. (2.8.8)

Sometimes, the distribution PN (n) is also referred to as the
Bernoulli distribution (particularly in the case p = q = 1/2).

Figure 2.13 shows the binomial distribution PN (n) defined in
(2.8.7) for the case p = q = 1/2 for different values of N . Note that

24The normalization of PN (n) follows from (2.8.8), i.e.,
PN

n=0 PN (n) = 1.
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Figure 2.13. The binomial distribution PN (n) in (2.87) for different values
of N .

as N increases, the form of the curve becomes more and more sim-
ilar to a bell-shaped curve, or the normal distribution (see below).

Exercise: Show that the average and the variance of the binomial
distribution are:

E(X) = 〈X〉 =
N∑

n=0

nPN (n) = Np, (2.8.9)

σ2 = E(X2) − [E(X)]2 = Np(1 − p). (2.8.10)

Solution:

E(X) = n̄ =
N∑

n=0

nPN (n) =
∑
n

n

(
N

n

)
pnqN−n, (2.8.11)

where q = 1−p. We now formally view p and q as two independent
variables, and write the identity

p
∂

∂p

[∑
n

(
N

n

)
pnqN−n

]
= p

∑
n

(
N

n

)
npn−1qN−n

=
∑
n

(
N

n

)
npnqN−n. (2.8.12)

Using this identity in (2.8.11) and (2.8.8), we get

n̄ =
∑
n

nPN (n) = p
∂

∂p

[∑
n

(
N

n

)
pnqN−n

]
= p

∂

∂p
(p + q)N

= pN(p + q)N−1 = pN. (2.8.13)

Note that the identity (2.8.12) is valid for any p and q, whereas
in (2.8.13), we used a particular pair of p and q such that p+ q = 1.
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For the variance, we can use the same trick as above to obtain

σ2 =
N∑

n=0

(n − n̄)2PN (n) = (n2) − (n̄)2, (2.8.14)

(n2) =
∑
n

n2PN (n) =
∑
n

n2

(
N

n

)
pnqN−n

= p
∂

∂p
p

∂

∂p

[∑
n

(
N

n

)
pnqN−n

]
= p

∂

∂p
p

∂

∂p
[(p + q)N ]

= p2N(N − 1)(p + q)(N−2) + pN(p + q)(N−1). (2.8.15)

For the particular case p + q = 1, from (2.8.15), we get

(n2) = N(N − 1)p2 + Np. (2.8.16)

Hence,

σ2 = (n2) − (n̄)2 = N(N − 1)p2 + Np − (Np)2 = Npq . (2.8.17)

2.8.2 The normal distribution

As we have seen in Figure 2.13, when N is very large, the form
of the distribution function becomes very similar to the normal, or
the Gaussian distribution. We shall now show that for large N , we
can get the normal distribution as a limiting form of the binomial
distribution.

We start with the binomial distribution (2.8.7) and treat n as a
continuous variable.

The average and the variance are

n̄ = 〈n〉 =
N∑

n=0

nPN (n) = pN, (2.8.18)

σ2 = 〈n2〉 − 〈n〉2 = Npq. (2.8.19)

It is easy to show that the distribution PN (n) has a sharp maxi-
mum at 〈n〉 (Figure 2.13). We expand ln PN (n) about the average
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n̄ = 〈n〉, and take the first few terms

ln PN (n) = ln PN (n̄) +
∂ ln PN (n)

∂n

∣∣∣∣∣
n=n̄

(n − n̄)

+
1
2

∂2 ln PN (n)
∂n2

∣∣∣∣
n=n̄

(n − n̄)2 · · · , (2.8.20)

where the derivatives are evaluated at the point n = n̄.
At the maximum, the first derivative is zero. Therefore, we need

to consider the expansion (2.8.20) from the second term. Taking the
second derivative of ln PN (n) and using the Stirling approximation
(Appendix E), we get

∂2 ln PN (n)
∂n2

∣∣∣∣
n=n̄

= − 1
Npq

. (2.8.21)

Note that the second derivative is always negative, which means
that PN (n) [or ln PN (n)] has a maximum at n = n̄.

We next rewrite Equation (2.8.20) (neglecting all higher order
terms in the expansion that can be shown to be negligible for
large N) as

PN (n) = C exp
[
−(n − n̄)2

2Npq

]
. (2.8.22)

Since we have introduced an approximation in (2.8.20) and
(2.8.22), we need to normalize this function, i.e., we require that∫ ∞

−∞
PN (n)dn = 1. (2.8.23)

This integral is well-known. Thus, from (2.8.22) and (2.8.23), we
get the normalization constant

C = (2πNpq)−1/2. (2.8.24)

Substituting (2.8.24) into (2.8.22), we get

PN (n) =
1√

2πNpq
exp

[
−(n − n̄)2

2Npq

]
. (2.8.25)

This is the normal, or the Gaussian distribution.
Denoting

σ2 = Npq, (2.8.26)
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Figure 2.14. The normal distribution (2.8.27) with different values of σ.

we can rewrite this function as

f(n) =
1√

2πσ2
exp

[
−(n − n̄)2

2σ2

]
. (2.8.27)

Figure 2.14 shows the function f(n) for various values of σ and
n̄ = 0. It is easy to see by direct integration, that n̄ and σ2 are the
average and the variance of the normal distribution.

A very useful approximation for calculating sums of the form

Pr(n1, n2) =
n=n2∑
n=n1

(
N

n

)
pN (1 − p)N−n (2.8.28)

is given by the DeMoivre–Laplace theorem. For very large N , we
have from (2.8.27) and (2.8.28)

Pr(n1, n2)
Large N−−−−−→ 1√

2πNpq

∫ n2

n1

exp
[−(n − Np)2

2Npq

]
dn. (2.8.29)

Exercise: A coin is thrown 1,000 times. What is the probability of
finding the outcome H between 450 to 550 of the times? Calculate
the exact and the approximate probabilities.
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Figure 2.15. The poisson distribution for different values of the average λ.

2.8.3 The Poisson distribution

A second important limit of the binomial distribution is the Poisson
distribution. This occurs when p → 0 and N → ∞, but the average
λ = 〈n〉 = pN is constant. In this case, we have

N !
(N − n)!

= N(N − 1) · · · (N − n + 1) N→∞−−−−→ Nn (2.8.30)

and

qN−n = (1 − p)N−n =
(

1 − λ

N

)N (
1 − λ

N

)−n
N→∞−−−−→ exp(−λ).

(2.8.31)
Hence, we can write (2.8.7) in this limit as

PN (n) → g(n) =
λn exp(−λ)

n!
, (2.8.32)

which is the Poisson distribution. Figure 2.15 shows the function
g(n) for several values of λ.
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It is easy to see that this function is normalized, i.e.,
∞∑

n=0

g(n) =
∞∑

n=0

λn exp(−λ)
n!

= e−λeλ = 1. (2.8.33)

The average and the variance of the Poisson distribution are

n̄ =
∞∑

n=0

ng(n) =
∞∑

n=0

n
λn exp(−λ)

n!

= λ exp(−λ)
∞∑

n=1

λn−1

(n − 1)!
= λ, (2.8.34)

σ2 = (n − n̄)
2

= λ. (2.8.35)

The proof of (2.8.35) is left as an exercise.
As an example, suppose we have a gas in a volume V , and density

ρ = N
V . At equilibrium, the density at each point in the system is

constant. The probability of finding a specific particle in a small
region v is simply

p =
v

V
. (2.8.36)

The average number of particles in v is

λ = Np =
Nv

V
= ρv. (2.8.37)

If v � V , the probability p is very small. The probability of
finding n particles in v follows the Poisson distribution, i.e.,

g(n) =
λn exp(−λ)

n!
=

(ρv)n exp(−ρv)
n!

. (2.8.38)

Exercise: The density of molecules in a gas is ρ = 1020 particles per
cm3. Calculate the probability of finding no more than ten particles
in a region of volume 0.001 cm3.

2.9 Generating Functions

Generating functions (GFs) are a kind of bridge between discrete
mathematics and continuous analysis. In probability theory, gen-
erating functions are extremely powerful tools for solving discrete
problems. Sometimes they offer a simple and elegant solution to a
seemingly intractable problem.
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We shall discuss here only random variables that attain integral
values, e.g., k = 1, 2, 3, 4, 5, 6 in throwing a die.

Definition: Let a0, a1, a2, . . ., be a sequence of real numbers. We
define the generating function of this set as the function

A(t) = a0 + a1t + a2t
2 + · · · . (2.9.1)

If the sequence {ai} is finite, then A(t) is simply a polynomial
in the variable t. If {ai} is infinite, then A(t) is a power series in
t, in which case, it might be convergent in some range of values,
say t1 ≤ t ≤ t2. The function A(t) is referred to as generating
function.25 Whenever A(t) is known in some closed form, one can
generate, or calculate the coefficients in (2.9.1), simply by taking
the derivatives of A(t), i.e.,

A(0) = a0, (2.9.2)

∂A

∂t

∣∣∣∣
t=0

= a1, (2.9.3)

∂2A

∂t2

∣∣∣∣
t=0

= 2a2, (2.9.4)

and in general

ai =
1
i!

∂iA

∂ti

∣∣∣∣
t=0

. (2.9.5)

Examples:

(i) The GF of the infinite sequence ai = 1, for i = 0, 1, 2, . . . is

A(t) =
∞∑
i=0

1 × ti. (2.9.6)

This sum is convergent for |t| < 1 and the sum is

A(t) =
1

1 − t
. (2.9.7)

25This particular generating function is also referred to as ordinary, or proba-
bility generating function.
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(ii) The GF of the finite sequence (for fixed n)

ai =
(

n

i

)
is

A(t) =
n∑

i=0

(
n

i

)
ti = (1 + t)n. (2.9.8)

(iii) The GF of the infinite sequence

ai =
1
i!

is

A(t) =
∞∑
i=0

ti

i!
= exp(t). (2.9.9)

In the above examples, we have defined the GF for a few series
of numbers. In application to probability theory, we shall apply the
concept of GF to a random variable (rv)X that attains only integral
numbers. As a shorthand notation, we denote

pi = P{w : X(w) = i}, (2.9.10)

i.e., pi is the probability of the event {w : X(w) = i} consisting of
all w for which X(w) = i, where i is an integer.

The GF associated with the rv X is defined by

PX(t) =
∞∑
i=0

pit
i. (2.9.11)

If the sequence is finite, then the sum is reduced to a polynomial.
If it is infinite, then since all pi ≤ 1, the series converges at least in
the range −1 < t < 1.

From the GF we can easily get the average and the variance of
the rv X. The first derivative is

P ′
X(t) =

∞∑
i=0

piit
i−1, (2.9.12)

and hence, and evaluating at t = 1, we get

P ′
X(t = 1) =

∞∑
i=0

ipi = 〈x〉, (2.9.13)
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which is the average of the rv X [note that this average does not
necessarily exist if the sum (2.9.13) does not converge].

Similarly, the variance may be easily obtained from

σ2 = Var(X) = P ′′
X(t = 1) + P ′

X(t = 1) − (P ′
X(t = 1))2

= 〈X2〉 − 〈X〉2. (2.9.14)

The most important and useful theorem which renders many dif-
ficult problems soluble is the convolution theorem.

Let X and Y be the two independent random variables that attain
non-negative integral numbers. We assume that the distributions of
the two rν are given:

P (X = i) = ai, (2.9.15)

P (Y = i) = bi. (2.9.16)

We define the sum of the two rν:

S = X + Y, (2.9.17)

which is itself an rν. We are interested in the distribution of the
sum S. Let us denote it by

P (X + Y = r) = P (S = r) = cr. (2.9.18)

Clearly, we can write

cr ≡ P (X + Y = r)

=
∑

i

P (X = i, Y = r − i) =
∑

i

aibr−i. (2.9.19)

In the second equality, we sum over all i. We can let i change over
the range of all integers. Those integers for which the probability
is zero will not contribute to the sum. If X = i, then necessarily
Y = r − i, and since we have assumed independence of the two rν,
X and Y , we get the last equality in (2.9.19).

As an example, suppose that X and Y are the rν of throwing
independent dice. Clearly, the new rν S = X + Y has the range of
values r = 2, 3, . . . , 12. For instance,

c7 = P (S = 7) =
∑

i

P (X = i, Y = 7 − i)

= a1b6 + a2b5 + · · · + a6b1. (2.9.20)
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As we see, for two rν like these, it is relatively easy to calculate the
distribution of the sum. It is very difficult, sometimes impossible,
to do the same for more complicated cases, e.g., for three or more
dice. In these cases, the convolution theorem comes to our aid.

Let A(t) and B(t) be the GF of X and Y , respectively, i.e.,

A(t) =
∑

i

ait
i, (2.9.21)

B(t) =
∑

j

bjt
j. (2.9.22)

The convolution theorem states that the GF of the rν S = X +Y

is given by the product of A(t) and B(t), i.e.,

C(t) = A(t)B(t). (2.9.23)

This is easy to prove by starting from the result (2.9.23) and rewrit-
ing it as

A(t)B(t) =
∞∑
i=0

ait
i

∞∑
j=0

bjt
j

=
∞∑
i=0

∞∑
j=0

aibjt
i+j. (2.9.24)

We can now regroup the terms in (2.9.24). Instead of the sum-
mation on columns and rows, as in (2.9.24), we can sum over the
elements of the diagonals, i.e., elements for which the sum i+ j = r

is constant (Figure 2.16).
Hence, we write

∞∑
i=0

∞∑
j=0

aibjt
i+j =

∞∑
r=0

tr
r∑

k=0

akbr−k

=
∞∑

r=0

trcr = C(t). (2.9.25)

Thus, we have started with the product of A(t) and B(t) in
(2.9.24) and obtained C(t), which is the required result (2.9.23).

The generalization of the convolution theorem to any number of
independent rν is quite straightforward. Let Xk with k = 1, 2, . . . , n
be a sequence of rν.
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a1 b1 a1 b2 a1 b3 a1 b4 a1 b5 a1 b6

a2 b1 a2 b2 a2 b3 a2 b4 a2 b5 a2 b6

a3 b1 a3 b2 a3 b3 a3 b4 a3 b5 a3 b6

a4 b1 a4 b2 a4 b3 a4 b4 a4 b5 a4 b6

a5 b1 a5 b2 a5 b3 a5 b4 a5 b5 a5 b6

a6 b1 a6 b2 a6 b3 a6 b4 a6 b5 a6 b6

2 3 4 5 6 7Sum=

Figure 2.16. Summation along the diagonal lines.

We denote by

p
(k)
i = P (Xk = i) (2.9.26)

the distribution of the kth rν, i.e., p
(k)
i is the probability of the

event {Xk = i}. Define the sum of these random variables:

S = X1 + X2 + · · · + Xn. (2.9.27)

The generating function of the sum S is the product of the gen-
erating functions of all the Xk, i.e.,

PS(t) = PX1(t)PX2(t) · · ·PXn
(t). (2.9.28)

A special case is when all of the Xk have the same distribution, i.e.,

p
(k)
i = P (Xk = i) = pi, (2.9.29)

where pi is independent of k. For this case, (2.9.28) reduces to

PS(t) =
n∏

k=1

PXk
(t) = [PX(t)]n, (2.9.30)

where PX(t) is the GF of one of the random variables Xk.
The generalized convolution theorem can be easily proven by

mathematical induction.
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2.10 The Law of Large Numbers

There are several theorems that are referred to as the law of large
numbers.26 We describe here only one of these, which is important
in connection with the Second Law of Thermodynamics.

In the axiomatic approach to probability, the probability of an
event A is given, and denoted by p. The theory does not provide the
value of p, nor a method of calculating p. However, the following
theorem holds. For any ε > 0

lim
NT→∞

Pr
{∣∣∣∣n(A)

NT
− p

∣∣∣∣ < ε

}
= 1, (2.10.1)

where n(A) is the number of experiments (or trials) in which the
event A occurred, and NT is the total number of experiments.

The theorem states that if we make a very large number of experi-
ments and record the number of outcomes A, then for any ε > 0 the
probability of finding the distance between n(A)/NT and p, smaller
than ε, is, in the limit of NT → ∞, unity. In other words the fre-
quency n(A)/NT tends to the probability p at very large numbers
of experiments. This is what we expect intuitively.

We have already seen the DeMoivre–Laplace theorem (Sec-
tion 2.8), which is also a limiting form of the Bernoulli distribution:(

N

n

)
pnqN−n → 1√

2πNpq
exp[−(n − pN )2/2Npq ], (2.10.2)

where q = 1 − p.
We now transform the inequality |n(A)

NT
− p| < ε as follows. We

first rewrite it as

−ε <
n(A)
NT

− p < ε (2.10.3)

or equivalently

−εNT < n(A) − pN T < p < εNT . (2.10.4)

26See, for example, Feller (1957) and Papoulis (1990).
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We now define n1 and n2:

n1 ≡ −εNT + pN T < n(A) < εNT + pN T ≡ n2 (2.10.5)

Therefore, we can rewrite the left-hand side of (2.10.1) as

Pr
{∣∣∣∣n(A)

NT
− p

∣∣∣∣ < ε

}
= Pr{−εNT + pN T < n(A) < εNT + pN T }
(2.10.2)−−−−→ 1√

2πNT pq

∫ εNT +pN T

−εNT +pN T

exp[−(n − pN T )2/2NT pq ]dn,

(2.10.6)

where q = 1 − p.
It is convenient to define the following function

erf (x) =
1√
2π

∫ x

0
exp[−y2/2]dy. (2.10.7)

This function is referred to as the error function. This function is
applied in many branches of mathematics, not only in error analysis.

1 2 3 4 5
x

0.2

0.4

0.6

0.8

1

e
f
r
(
x
)

Error Function

Figure 2.17. The form of the error function (2.10.7).
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Hence, (2.10.6) can be written as

Pr
{∣∣∣∣n(A)

NT
− p

∣∣∣∣ < ε

}

→ erf
[
n2 − pN T√

NT pq

]
− erf

[
n1 − pN T√

NT pq

]

= erf
[

εNT√
NT pq

]
− erf

[
εNT√
NT pq

]
= 2erf

[
ε

√
NT

pq

]
. (2.10.8)

The last equality follows from the property of the error function

erf (−x) = −erf (x). (2.10.9)

Figure 2.7 shows the form of the function erf (x).
As NT → ∞, we have

lim
NT→∞

Pr
{∣∣∣∣n(A)

NT
− p

∣∣∣∣ < ε

}
= lim

NT→∞
2erf

[
ε

√
NT

pq

]
= 1.

(2.10.10)
Thus, for any fixed p (and q = 1−p) and any ε > 0, this probability
tends to one. We shall use this result in connection with the Second
Law of Thermodynamics (Section 6.12) for the special case p =
q = 1/2:

1
2
N+εN∑

n= 1
2
N−εN

(
1
2

)N (N

n

)
≈ 2erf [2ε

√
N ] N→∞−−−−→ 1. (2.10.11)

Hence, the probability of finding the system in a small neighbor-
hood of the maximum (n = 1/2N), i.e., (1

2N −εN < n < 1
2N +εN)

tends to one when N is large. In applying the error function for a
thermodynamic system, N is of the order of 1023, therefore ε > 0
can be chosen to be very small in such a way that the value of the
error function is almost one!
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Chapter 3

Elements of Information Theory

Information theory was officially born in 1948.1 The theory was
developed in connection with the problem of transmission of infor-
mation along communication channels. The main concerns of the
theory were to search for a method of transmitting information
through a noisy channel with high efficiency and reliability, i.e.,
at a reasonably high rate but with minimal errors.2 Earlier mea-
sures of information, notably Hartley’s measure3 were applied in
the theory of communication. However, it was Shannon’s measure
that was found useful in many branches of science in general, and
in statistical mechanics, in particular. As noted in the introduction
(Section 1.3), the concept of information was mentioned in connec-
tion with the thermodynamic entropy and the Second Law of Ther-
modynamics long before the development of information theory.

“Information,” like probability, is a very general, qualitative,
imprecise and very subjective concept. The same “information”

1Shannon (1948).
2Shannon has shown that even in noisy channels (i.e., channels that introduce
errors), it is possible to transmit information at a non-zero rate with any arbi-
trary small probability of errors.
3Hartley (1927). It is interesting to note that Hartley developed “a quantitative
measure of ‘information’ which is based on physical as contrasted with psycho-
logical consideration.” Here, the “physical” and the “psychological” refers to
what we call objective and subjective. Hartley defined as a “practical measure of
information, the logarithm of the number of possible symbol sequences.” As we
shall see, Shannon’s measure is an extension of Hartley’s measure of information.

103
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might have different meanings, effects and values to different people.
Yet, as probability theory developed from a subjective and impre-
cise concept, so did information theory, which was distilled and
developed into a quantitative, precise, objective and very useful
theory. In the present book, information is a central concept. It is
used both as a tool for guessing the “best” probability distribu-
tions, as well as for interpretation of fundamental concepts in the
statistical mechanical theory of matter. In using the term informa-
tion in information theory, one must keep in mind that it is not the
information itself, nor the amount of information carried by a mes-
sage, that we are concerned with, but the amount, or the size, of
the message that carries the information. We shall further discuss
this aspect of information in Section 3.3.

In this chapter, we present the basic definition, properties and
meanings of the measure of information as introduced by Shannon.
Today, this measure is used in many diverse fields of research from
economics to biology, psychology, linguistics and many others.

We shall start with a qualitative idea of the measure of informa-
tion. We then proceed to define the Shannon measure of information
and list some of its outstanding properties. We shall devote
Section 3.3 to discussing various interpretations of the quantity
−∑

pi ln pi. Finally, we discuss in Section 3.4 the method of “guess-
ing” the best distribution that is consistent with all the known
relevant information on the system.

3.1 A Qualitative Introduction to Information Theory

Let us start with a familiar game. I choose a person, and you have
to find out who the person I chose is by asking binary questions,
i.e., questions which are only answerable by “Yes” or “No.” Sup-
pose I have chosen Einstein. Here are two possible “strategies” for
asking questions:

Dumb “Strategy” Smart “Strategy”
1) Is it Nixon? 1) Is the person a male?
2) Is it Gandhi? 2) Is he alive?
3) Is it me? 3) Is he in politics?
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4) Is it Marilyn Monroe? 4) Is he a scientist?
5) Is it you? 5) Is he very well-known?
6) Is it Mozart? 6) Is he Einstein?
7) Is it Bohr?
8) . . .

In listing the two strategies above, I have qualified the two strate-
gies as “dumb” and “smart.” The reason is that, if you use the first
“strategy,” you might, if you are lucky, hit upon the right answer
on the first question, while with the smart “strategy,” one cannot
possibly win after one question. However, in the dumb “strategy,”
hitting upon the right answer on the first guess is highly improba-
ble. It is more likely that you will keep asking for a long time specific
questions like those in the list, and in principle, never find the right
answer. The reason for preferring the second “strategy” is that for
each question you ask, you get more information (see below for a
more precise definition), i.e., after each answer you get, you exclude
a large number of possibilities (ideally, half of the possibilities; see
below). In the smart “strategy,” if the answer to the first question
is “Yes,” then you have excluded a huge number of possibilities —
all females. If the answer to the second question is “No,” then you
have excluded all living persons. In each of the further answers you
get, you narrow down further the range of possibilities, each time
excluding a large group. In the dumb “strategy” however, assum-
ing you are not so lucky to hit upon the right answer on the first
few questions, at each point you get an answer, you exclude only
one possibility, and practically, you almost have not changed the
range of unknown possibilities. Even though we have not yet defined
the term information, it is intuitively clear that in the smart “strat-
egy,” you gain more information from each answer than in the dumb
“strategy.” It feels correct to invest patience in choosing the smart
“strategy,” than to rush impatiently, and try to get the right answer
quickly.

All that was said above is very qualitative. The term “informa-
tion” used here is very imprecise. Shortly, we shall make the game
more precise, the term “information” more quantitative, and the
term “strategy” clearer so as to justify the reference to the two sets
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of questions as “dumb” and “smart.” To achieve that, we have to
“reduce” this type of game in such a way that it becomes more
amenable to a quantitative treatment, and devoid of any traces of
subjectivity.

The new game, described below is essentially the same game
as before, but in its distilled form, it is much simpler and more
amenable to a precise, quantitative and objective treatment.

Suppose we have eight equal boxes (Figure 3.1). I hide a coin
in one of the boxes and you have to find where I hid it. All you
know is that the coin must be in one of the boxes, and that I have
no “favored” box. The box was chosen at random, or equivalently,
there is a chance of 1/8 of finding the coin in any specific box.

First Q2nd3nd First Q2nd3nd4nd5nd6nd7nd

8       7       6       5       4      3      2      1 8       7       6       5       4       3      2      1

(a) (b)

Figure 3.1. A coin is hidden in one of eight boxes: (a) and (b) are two strategies
(smart and dumb) of asking binary questions, as described in Section 3.1.

Note that in this game, we have completely removed any traces
of subjectivity – the information we need is “where the coin is.”
The fact that I, or you, or anyone else does not know where the
coin is hidden does not make this information a subjective one. The
information is a “built in” concept in the game and is not dependent
on the person who plays or does not play the game.

Clearly, what one needs to acquire by asking questions is the
information as to “where the coin is.” To acquire this information,
you are allowed to ask only binary questions. Thus, instead of an
indefinite number of persons in the previous game, we have only
eight possibilities.

Again, there are many strategies for asking questions. Here are
two extreme and well-defined strategies.
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The Dumbest Strategy The Smartest Strategy
1) Is the coin in box 1? 1) Is the coin in the right half

(of the eight)?
2) Is the coin in box 2? 2) Is the coin in the right half

(of the remaining four)?
3) Is the coin in box 3? 3) Is the coin in the right half

(of the remaining two)?
4) Is the coin in box 4? 4) I know the answer!
5) . . .

Although we did not define the two strategies in the new game,
it is clear that these two correspond to the two strategies of the
previous game. Now, however, it is clear that we can define the
smartest strategy by asking questions to locate the coin in which
half of the possibilities at each point. In the previous game, it was
not clear what all the possibilities are, and even less clear if division
by half is possible.

Note also that here I used the adjectives “dumbest” and
“smartest.” (I could not do that in the previous game, so I just
wrote “dumb” and “smart.”) The reason is that one can prove
mathematically that if you choose the smartest strategy and if
you play the game many, many times, you will out beat any other
possible strategy, including the worst one denoted the “dumbest.”
Before turning to mathematics, let us examine qualitatively why
the “smartest” strategy is far better than the “dumbest” one.

Qualitatively, if you choose the “dumbest” strategy, you might
hit and guess the right box on the first question. But this hap-
pens with a probability of 1/8 and you miss with a probability of
7/8. Presuming you missed on the first question (which is more
likely and far more likely with a larger number of boxes), you will
have a chance of a hit with a probability of 1/7 and a miss with
a probability of 6/7, on the second question, and so on. If you
miss in six questions, after the seventh question you will know
the answer, i.e., you will have the information as to where the
coin is. If on the other hand, you choose the “smartest” strat-
egy, you will certainly fail to get the required information on the
first question. You will also fail on the second question, but you
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are guaranteed to obtained the required information on the third
question.

Thus, although you might choose the dumbest strategy, and with
low probability, hit upon the first question and win, you are better
off choosing the second. The qualitative reason is the same as in
the previous game: with the dumbest strategy, you can win on the
first question but with very low probability. If you fail after the
first question, you have eliminated only the first box and decreased
slightly the number of remaining possibilities; from 8 to 7. On the
other hand, in the smartest strategy, the first question eliminates
half of the possibilities, leaving only four possibilities. The second
question eliminates another half, leaving only two, and in the third
question, you get the required information.

In information theory, the amount of missing information (MI),
i.e., the amount of information one needs to acquire by asking ques-
tions, is defined in terms of the distribution of probabilities. In this
example, the distribution is: {1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8}.
In asking the smartest question, one gains from each answer the
maximum possible information (this is referred to as one bit of infor-
mation). We shall soon see that maximum information is obtained
in each question when you divide the space of all possible out-
comes in two equally probable parts. In this particular case, we have
divided at each step, all of the possibilities into two halves which
have probability 1/2. In more general cases, it might not be possi-
ble to divide into two equally probable halves, say when the boxes
are not equally probable, or when the number of boxes is odd.

Note also that the amount of information that is required is the
same, no matter what strategy you choose. The choice of strategy
allows you to get the same amount of information by different num-
bers of questions. The smartest strategy guarantees that you will
get it, on average, by the minimum number of questions.

The important point to be noted at this stage is that no mat-
ter what strategy you choose, the larger the number of boxes, the
larger the amount of information you need in order to find the coin;
hence, the larger the number of questions needed to gain that infor-
mation. This is clear intuitively. The amount of information is deter-
mined by the distribution [which in our case is {1/M, . . . , 1/M} for
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M equally probable boxes]. The same information is collected on
average with the minimal number of questions if you choose the
smartest strategy.

Clearly, the information itself might have different meanings and
values. What is relevant in information theory is only the size of
the message, which we can measure as the number of questions
one needs to ask in order to obtain the missing information (MI).
Clearly, in our simple game of a coin hidden in M boxes, the number
of boxes, M (or log M) is an objective quantity “belonging” to the
game.

The fact that one person knows where the coin is hidden and
another person is ignorant of the location of the coin does not make
the quantity of the MI a subjective quantity.

As we shall see in the next section, the quantity H defined by
Shannon increases with the number of boxes. However, the informa-
tion (in the general sense of the word) about “where the coin is?” is
clearly independent of the number of boxes. The answer to the ques-
tion “where the coin is?” is simply “the coin is in box x.” Clearly,
this is almost independent of M , (depending on how you express
x; if x is expressed in words then there is a minor difference in the
size of the message when we say, in the “second” or in the “tenth”
box). What depends on M is the average number of questions one
needs to ask to get that information (in communication theory the
analog of M would be the size of the alphabet in the language).

To make the game completely impersonal, thereby removing
any traces of “subjectivity,” you can think of playing against a
computer.4 The computer chooses a box and you ask the computer
the binary questions. Suppose you pay a cent for each answer you
get for your binary questions. Certainly, you would like to get the
required information (where the coin is hidden) by paying the least
amount of money. By choosing the smartest strategy, you will get
full value for your money.

Even without mathematical analysis, it is clear that in this par-
ticular example (where all boxes are equally probable), the larger

4Or better yet, two computers playing the game. One chooses a box and the
second asks binary questions to find the chosen box.
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8       7       6 5    4      3      2 1

Figure 3.2. Two coins hidden in eight boxes.

the number of boxes, the larger the number of questions that have
to be asked. If we use the smartest strategy, doubling the number
of boxes requires only adding one more question. However, in the
dumbest strategy, you would need to ask many more questions.

Let us go one step further. We are told that two different coins
were hidden in N boxes (Figure 3.2). Let us assume that the two
coins were placed in two different boxes (i.e., no two coins in the
same box). Again, we know that the boxes were chosen at random.
For the first coin, we have one out of N boxes; for the second,
we have one out of (N − 1) boxes, etc. In the next chapter, we
shall discuss several cases of such systems where n particles are
distributed over N boxes.

3.2 Definition of Shannon’s Information and Its
Properties

In the mathematical theory of information as developed by Shan-
non, one starts by considering a random variable X, or an experi-
ment (or a game). The probability distribution of X, p1, p2, . . . , pn,
is presumed to be given.5 The question posed by Shannon is the
following: “Can we find a measure of how much ‘choice’ is involved
in the selection of the event, or of how much uncertain we are of the
outcome?” Shannon then assumed that if such a function, denoted
H(p1, . . . , pn), exists, it is reasonable to expect that it will have the
following properties.

(i) H should be continuous in all the pi.

5Here we are given the distribution and we are asked to construct a function
that measures information. In the application of information theory to statistical
thermodynamics, we shall use the quantity referred to as information to obtain
the “best” distribution. See Section 3.4.
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(ii) If all the pi are equal, i.e., pi = 1/n, then H should have a max-
imum value and this maximum value should be a monotonic
increasing function of n.

(iii) If a choice is broken down into successive choices, the quantity
H should be the weighted sum of the individual values of H.

These are not only desirable properties of H, but also reasonable
properties that we expect from such a quantity. The first assump-
tion is reasonable in the sense that if we make an arbitrarily small
change in the probabilities, then we expect that the change in the
uncertainty should also be small. The second requirement is also
plausible. For a fixed n, if the distribution is uniform, we have the
least information on the outcome of the experiment, or the maxi-
mum uncertainty as to the outcome of the experiment. Clearly, the
larger the number n is, the larger the required information. The
third requirement is sometimes referred to as the independence on
the grouping of the events. This requirement is equivalent to the
statement that the missing information should depend only on the
distribution p1, . . . , pn and not on the specific way we acquire this
information, for instance, by asking binary questions using different
strategies. We shall see ample examples in the following sections.
With these plausible requirements of the expected function, Shan-
non then proved that the only function that satisfies these three
requirements is6

H(p1, . . . , pn) = −K

n∑
i=1

pi log pi, (3.2.1)

where K is some positive constant. In this book, we shall always
take K = 1. The proof is given in Appendix F.

In this chapter, we shall define the quantity H, as originally
defined by Shannon in (3.2.1) and examine its properties, and its

6Sometimes, we shall use the notation H(X) instead of H(p1, . . . , pn). But one
should be careful not to interpret H(X) as implying that H is a function of
X. H is a function of the distribution p1, . . . , pn pertaining to the rv X. The
shorthand notation H(X) should be read as the quantity H associated with
the rv X. Note also that if pi = 0, then log pi = −∞, but pi log pi = 0.
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Figure 3.3. (a) Probability distribution for the sum of two dice. (b) The MI,
defined in (3.2.1), for different numbers of dice, N (exercise, Section 3.2).

applications. We shall use log to mean logarithm in any base, and
ln for logarithm to the base e.

Exercise: Two fair, identical and independent dice are thrown.
Calculate the probability distribution of the sum of the outcomes
and the associated quantity H.

Solution: Let X and Y be the rv, the outcomes of which are
{1, 2, 3, 4, 5, 6}. We are interested in the sum S = X + Y whose
outcomes are {2, 3, 4, . . . , 12}. The corresponding probabilities are
plotted in Figure 3.3a. The entropy associated with this distribution
is H2 = −∑12

i=2 pi log2 pi = 3.274.

Exercise: Suppose that we have N dice and define the sum of
the outcomes of N dice, SN = X1 + X2 + · · · + XN . Calculate
the quantity HN associated with the distribution SN as a function
of N .

In Figure 3.3a, we plot the probabilities of finding the sum of
outcomes for two dice. In Figure 3.3b, we show the dependence of
the MI on N.

Results: H1 = 2.58,H2 = 3.27,H3 = 3.59,H4 = 3.81,H5 =
3.98,H6 = 4.11.

3.2.1 Properties of the function H for the simplest case
of two outcomes

Before discussing the general case of n outcomes, it is instructive
to study the properties of H for some simple cases.
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Figure 3.4. The function H for two outcomes; (3.2.2).

If there is only one possible outcome of an experiment, then Ω =
A, and P (A) = 1. In this case, we are certain of the outcome and
no information is required, hence H = 0. The more interesting case
is when we have only two possible outcomes, say A1 and A2 = Ā1,
with probabilities p1 and p2, respectively. In this case, we write
p1 = p and p2 = 1 − p and the H function is

H = −
∑

pi log2 pi = −p log2 p − (1 − p) log2(1 − p). (3.2.2)

Figure 3.4 shows the function H(p).7 The function is positive
everywhere, it is concave (or concave downward), it has a maximum
at p = 1/2, and it is zero at both p = 0 and p = 1. It is easy
to show that the function H tends to zero either at p = 0 or at
p = 1.8 The reason for this limit is that x tends to zero “faster,”
than ln x tends to minus infinity, therefore the product tends to
zero as x → 0. This property is consistent with what we intuitively
expect from a quantity that measures the amount of information.
If p = 1, then we know for certain that A1 occurred. If p = 0, then
we know for certain that A2 occurred. In both cases, we do not
need any further information. In other words, if we know that A1

7Actually, we should write H(p, q), where q = 1 − p. But in this case, H is a
function of one variable p.
8Note that the function x ln x tends to zero as x tends to zero. This is easy to
prove by L’Hôpital’s theorem:

lim
x→0

[x ln x] = lim
x→0

ln x

1/x
= lim

x→0

d
dx

[ln x]
d

dx
[ 1
x
]

= lim
x→0

1
x
−1
x2

= 0.
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(or A2) has occurred, then there is no need to ask any questions
to obtain this information. On the other hand, when p = 1/2, the
two outcomes have equal probabilities. Hence, our uncertainty as
to which event has occurred is maximal. If we use base 2 for the
logarithm, for this case we get

H = −1
2

log2
1
2
− 1

2
log2

1
2

= log2 2 = 1. (3.2.3)

The numerical value of the missing information in this case is
one. This is also called one bit (binary digit) of information.

It is clear that for any value of 0 < p < 1/2, we have more
information than in the case p = 1/2. For instance, if we play with
an uneven (or unfair) coin, and we know that it is more likely to
fall with head upward, say P (head) = 3/4, we clearly have more
information (or less MI) than when the coin is fair (but less if
we know that it always falls with head upward). We can use this
information to bet on the outcome “head,” and on average, we
can beat anyone who does not have that information and chooses
randomly between head and tail.9

3.2.2 Properties of H for the general case of n outcomes

Let X be a random variable, with probability distribution given by
PX(i) = P{X(w) = i} = pi. The subscript X is usually dropped
when we know which random variable is considered.10 Thus, we
write

H = −
n∑

i=1

pi log pi (3.2.4)

9When we say “choose randomly,” we mean choose randomly with uniform dis-
tribution. In this section, we have used the personal language of “I know,” “you
know,” or “we know,” this or that information. The measure of information,
however, is an objective quantity independent of the person possessing that
information.
10We shall define H for any random variable, the probability distribution of
which is given. Alternative terms that are used are: an experiment [Yaglom
and Yaglom (1983)] or a scheme [Khinchin (1957)]. Here, we use log without
specifying the base of the logarithm. In most of the applications in statistical
thermodynamics, we shall use the natural logarithm denoted “ln”.
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with the normalization condition
n∑

i=1

pi = 1. (3.2.5)

The most important property of H is that it has a maximum
when all the pi are equal. To prove that, we apply the method
of Lagrange undetermined multipliers of finding a maximum of a
function subject to a constrained condition (Appendix G).

We define the auxiliary function

F = H(p1, . . . , pn) + λ
∑

i

pi. (3.2.6)

Taking the partial derivatives of F with respect to each of the pi,
we have11 (

∂F

∂pi

)
p′

i

= − log pi − 1 + λ = 0 (3.2.7)

or

pi = exp(λ − 1). (3.2.8)

Substituting (3.2.8) into (3.2.5), we obtain

1 =
n∑

i=1

pi = exp(λ − 1)
n∑

i=1

1 = n exp(λ − 1).

Hence, from (3.2.8), we obtain

pi =
1
n

. (3.2.9)

This is an important result. It says that the maximum value of H,
subject only to the condition (3.2.5), is obtained when the distribu-
tion is uniform. This is a generalization of the result we have seen
in Figure 3.4.

The value of H at the maximum is

Hmax = −
n∑

i=1

pi log pi = −
n∑

i=1

1
n

log
1
n

= log n. (3.2.10)

11The symbol p′
i stands for the vector (p1, p2, . . . , pi−1, pi+1, . . . , pn), i.e., all

the components except pi. Note also that here log stands for natural logarithm
unless otherwise stated.
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N = 8, Log28 = 3

N = 16, Log216 = 4

N = 32, Log232 = 5

Figure 3.5. The MI for different numbers of boxes.

Clearly, when there are n equally likely events, the amount of
missing information is larger, the larger the number of possible
outcomes. It is instructive to consider again the game of hiding
a coin in n boxes. For simplicity, let us assume that we have n =
8, 16, 32 boxes (Figure 3.5). It is intuitively clear that the larger the
number of boxes, the larger the information we shall need to locate
the hidden coin. For the three cases in Figure 3.5, the numbers of
questions we need to ask using the smartest strategy are 3, 4, 5,
respectively. Incidentally, if we choose base 2 for the logarithm in
(3.2.10), for these cases we get12

H(8) = log2 8 = 3, H(16) = 4, H(32) = 5,

i.e., the larger the information we need, the larger the number of
binary questions we need to ask. By choosing the smartest strategy,
we obtain the maximum information from each question, which is
one bit of information. Hence, the amount of missing information
is equal to the number of questions we need to ask to obtain the
required information. Using any other strategy of asking questions

12Note again that H(8) is a shorthand notation for H(p1, p2, . . . , p8) when
pi = 1/8.
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will be less “efficient,” in the sense that each answer provides less
than one bit of information, and hence we need to ask more ques-
tions to acquire the same information. Thus, if you pay, say, one
cent for each answer, then on average, you will pay the least to get
the same information when choosing the smartest strategy. It is
clear now that the smartest strategy is the one in which we divide
all possible events into two groups of equal probability.13 As shown
in the previous section, binary questions about two events of equal
probabilities result in maximum information.

It should be stressed that the amount of missing information is
fixed once the game is fully described in terms of the distribution.
It does not depend on the way we ask questions, or on whether
we ask questions at all. The missing information is there in the
very description of the game, or more generally in the specification
of the random variable. The number of questions and the amount
of information obtained by each question can vary, but the total
amount of information is fixed.

Exercise: In throwing two fair dice, it is known that the sum of the
outcomes is an even number. What is the missing information H?

Solution: There are altogether 36 possible outcomes, 18 of which
have a sum that is an even number. Therefore, H = log2 18 = 4.17.

It is clear that when the distribution is not uniform, the miss-
ing information is smaller than the maximal value of H. This in
turn means that, on average, fewer questions need to be asked. An
extreme case of a non-uniform distribution is the following. The
quantity H is zero if and only if one event is certain (i.e., has prob-
ability one) and all others have probability zero. Clearly, if say
p1 = 1 and pi = 0 for all i = 2, . . . , n, it follows that

H = −
∑

pi log pi = 0. (3.2.11)

This is a straightforward generalization of the result we have seen
in Section 3.2.1. Conversely, if H = 0, then

−
∑

pi log pi = 0. (3.2.12)

13In the examples given in this chapter, we have discussed only cases where M
is a power of 2. However, the relation between H and the average number of
questions is more general. See also Section 3.5.
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But since each term is non-negative, it follows that each term in
(3.2.12) must be zero individually. Hence,

pi log pi = 0 for i = 1, . . . , n. (3.2.13)

From (3.2.13), it follows that either pi = 0 or pi = 1. Since∑
pi = 1, we must have all pi = 0, except one, say p1 which is one.

The intuitive meaning of this result is clear. The amount of missing
information is zero if we know that one specific event has occurred.

Suppose we have two random variables, X and Y with distribu-
tions PX(i) = P{X = xi} and PY (j) = P{Y = yj}, i = 1, 2, . . . , n
and j = 1, 2, . . . ,m. Let P (i, j) be the joint probability of occur-
rence of the events {X = xi} and {Y = yj}. The H function defined
on the probability distribution P (i, j) is14

H(X,Y ) = −
∑
i,j

P (i, j) log P (i, j). (3.2.14)

The marginal probabilities are

pi =
m∑

j=1

P (i, j) = PX(i) (3.2.15)

and

qj =
n∑

i=1

P (i, j) = PY (j). (3.2.16)

The information associated with the rv X and Y are

H(X) = −
n∑

i=1

PX(i) log PX(i) = −
∑
ij

P (i, j) log
m∑

j=1

P (i, j),

(3.2.17)

H(Y ) = −
m∑

j=1

PY (j) log PY (j) = −
∑
ij

P (i, j) log
n∑

i=1

P (i, j).

(3.2.18)

14We shall use the shorthand notations: pi = PX(i) = P{X = xi}, qj = PY (j) =
P{Y = yj} and Pij = PXY (i, j) = P (i, j) = P{X = xi, Y = yj}.
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It is easy to show that for any two distributions {pi} and {qi}
such that

∑n
i=1 qi = 1 and

∑n
i=1 pi = 1, the following inequality

holds15 (see Appendix H):

H(q1, . . . , qn) = −
n∑

i=1

qi log qi ≤ −
n∑

i=1

qi log pi. (3.2.19)

From (3.2.14), (3.2.17) and (3.2.18), we obtain

H(X) + H(Y )

= −
∑

i

PX(i) log PX(i) −
∑

j

PY (j) log PY (j)

= −
∑
i,j

P (i, j) log PX(i) −
∑
i,j

P (i, j) log PY (j)

= −
∑
i,j

P (i, j) log
∑
j=1

P (i, j) −
∑
i,j

P (i, j) log
∑
i=1

P (i, j). (3.2.20)

Applying the inequality (3.2.19) to the two distributions P (i, j)
and PX(i)PY (j), we get

H(X) + H(Y ) ≥ −
∑
i,j

P (i, j) log P (i, j) = H(X,Y ). (3.2.21)

The equality holds when the two rv are independent, i.e., for

P (i, j) = PX(i)PY (j), for each (i, j), (3.2.22)

we have

H(X,Y ) = H(X) + H(Y ). (3.2.23)

The last two results simply mean that if we have two experi-
ments (or two games), the outcomes of which are independent, then
the missing information on the outcome of the two experiments is
the sum of the missing information on the outcomes of each one
of the experiments. On the other hand, if there is a dependence
between the two sets of outcomes, then the missing information on

15This can be proven directly from the elementary inequality ln x ≤ x − 1 (see
H.18 in Appendix H). Choosing x = pi

qi
, we get ln pi

qi
≤ pi

qi
−1. Multiplying by qi

and summing over i, we get
P

qi ln pi
qi

≤ P
pi − P

qi = 0, from which (3.2.19)
follows.
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the compound experiment (X,Y ) will always be smaller than the
missing information on the two experiments separately.

For dependent experiments, we use the conditional probabilities

P (yj/xi) =
P (xi · yj)

P (xi)
(3.2.24)

to define the corresponding conditional quantity as16

H(Y/X) =
∑

i

P (xi)H(Y/xi)

= −
∑

i

P (xi)
∑

j

P (yj/xi) log P (yj/xi)

= −
∑
i,j

P (xi · yj) log P (yj/xi)

= −
∑
i,j

P (xi · yj) log P (xi · yj) +
∑
i,j

P (xi · yj) log P (xi)

= H(X,Y ) − H(X). (3.2.25)

Thus, H(Y/X) measures the difference between the missing infor-
mation on X and Y and the missing information on X. This can
be rewritten as

H(X,Y ) = H(X) + H(Y/X)

= H(Y ) + H(X/Y ), (3.2.26)

which means that the missing information in the two experiments
is the sum of the missing information in one experiment plus the
missing information when the outcome of the second experiment is
known.

From (3.2.21) and (3.2.25), we also obtain the inequality

H(Y/X) ≤ H(Y ), (3.2.27)

which means that the missing information on Y can never increase
by knowing X. Alternatively, H(Y/X) is the average uncertainty

16The quantity H(Y/X) is sometimes denoted by HX(Y ). P (xi ·yj) is shorthand
notation for the probability of the joint event {X = xi, Y = yj}, i.e., X attains
xi and Y attains yj . The term “mutual information” is potentially misleading.
It is better to refer to this quantity as a measure of the dependence between
the two random variables.



December 5, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch03

Elements of Information Theory 121

that remains about Y when X is known. This uncertainty is always
smaller than or equal to the uncertainty about Y . If X and Y

are independent, then the equality sign in (3.2.27) holds. This is
another reasonable property that we can expect from a quantity
that measures MI or uncertainty. The quantity H(Y/X) has been
referred to as conditional information, or equivocation (Shannon
1948).

Another useful quantity is the mutual information defined by17

I(X;Y ) ≡ H(X) + H(Y ) − H(X,Y ). (3.2.28)

From the definition (3.2.28) and from (3.2.15) and (3.2.16), we have

I(X;Y ) = −
n∑

i=1

PX(xi) log PX(xi) −
m∑

j=1

PY (yj) log PY (yj)

+
∑
i,j

P (i, j) log P (i, j)

=
∑
i,j

P (i, j) log
[

P (i, j)
PX(xi)PY (yj)

]

=
∑
i,j

P (i, j) log g(i, j) ≥ 0, (3.2.29)

where g(i, j) is the correlation between the two events, {X = xi}
and {Y = yj}.

Note that I(X;Y ) is defined symmetrically with respect to X

and Y . Sometimes, I(X;Y ) is referred to as the average amount of
information conveyed by one rv X on the other rv Y , and vice versa.
Thus, we see that I(X;Y ) is a measure of an average correlation
[actually, it is the average of log g(i, j)], i.e., it is a measure of the
extent of dependence between X and Y . The inequality (3.2.29) is
a result of the general inequality (3.2.21). The equality holds for
independent X and Y .18

17Note that sometimes instead of I(X;Y ), the notation H(X; Y ) is used instead.
This is potentially a confusing notation because of the similarities between
H(X,Y ) and H(X; Y ).
18Note that the correlations g(i, j) can be either larger than one or smaller than
one, i.e., log g(i, j) can either be positive or negative. However, the average of
log g(i, j) is always non-negative.
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H(X,Y)

H(X) H(Y/X)

H(Y)H(X/Y)

I(X;Y)H(X/Y) H(Y/X)

Figure 3.6. The relationships between the quantities H(X), H(Y ), H(X, Y )
and I(X; Y ).

From (3.2.28) and (3.2.26), we can also write

I(X;Y ) = H(Y ) − H(Y/X) ≥ 0

or

I(X;Y ) = H(X) − H(X/Y ) ≥ 0. (3.2.30)

The mutual information is always non-negative. It is zero when
the two experiments are independent. Thus, I(X;Y ) measures
the average reduction in MI about X resulting from knowing Y ,
and vice versa. The relations between H(X),H(Y ),H(X,Y ) and
I(X;Y ) are shown in Figure 3.6.19

Clearly, from the definition of I(X;Y ), it follows that

I(X;Y ) = I(Y ;X)

and

I(X;X) = H(X). (3.2.31)

All the definitions of the quantities H(X), I(X;Y ), etc., can be
extended straightforwardly to any number of random variables. For
instance, if X1, . . . ,XN are N random variables, the corresponding

19Some authors use Venn-like diagrams to show the relations between the
various quantities H(X), H(Y ), H(X,Y ) and I(X; Y ). This might be poten-
tially confusing. In probabilities, two non-overlapping regions represent mutu-
ally exclusive events. On the other hand, H(X) and H(Y ) are represented by
non-overlapping regions when the random variables X and Y are independent.
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function H is defined as

H(X1,X2, . . . ,XN ) = −
∑

x1,x2,...,xN

P (x1, x2, . . . , xN )

× log P (x1, . . . , xN ), (3.2.32)

where P (x1, x2, . . . , xN ) is the probability distribution of the joint
event, {Xi = xi} (for i = 1, 2, . . . , N). It is also easy to show that

H(X1, . . . ,XN ) ≤ H(X1) + · · · + H(XN ) (3.2.33)

and that the equality holds if and only if all the random variables
are independent, in the sense that

I(X1; . . . ;XN ) =
N∏

i=1

P (xi). (3.2.34)

Actually, complete independence requires that this factorization
of the joint probability will hold for any group of rv.

For dependent random variables, one can extend the definition of
the mutual information as follows

I(X1;X2, . . . ,XN ) =
n∑

i=1

H(Xi) − H(X1, . . . ,XN ) ≥ 0. (3.2.35)

We shall use this quantity in connection with the indistinguishabil-
ity of the particles in Chapters 4 and 6.

Similarly, one can define the conditional amount of missing infor-
mation for any set of random variables. For instance

H(Xk+1, . . . ,XN/X1, . . . ,Xk) = H(X1, . . . ,Xk,Xk+1, . . . ,XN )

− H(X1, . . . ,Xk)

≤ H(Xk+1, . . . ,XN ), (3.2.36)

where the equality sign holds if and only if the random vari-
ables (X1, . . . ,Xk) are independent of the random variables
(Xk+1, . . . ,XN ).

Finally, we show that if we start with any distribution {p1, . . . ,

pn} and make a small change in the distribution toward uniformity,
then H will always increase. This property follows from the exis-
tence of a single maximal value of H at the uniform distribution.
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However, it is instructive to see the “mechanism” of how H changes
upon the variations of the distribution.

Consider any arbitrary initial distribution {p1, . . . , pn}. We take
any two of these probabilities, say p1 and p2, such that p1 �= p2, and
make a small change, say from p1 to p1 + dp and from p2 to p2 −
dp, keeping all the other probabilities p3, . . . , pn fixed. The change
in H is

dH =
∂H

∂p1
dp1 +

∂H

∂p2
dp2

= (− log p1 − 1)dp1 + (− log p2 − 1)dp2. (3.2.37)

Since we need to conserve the sum
∑

pi = 1, dp1 = −dp2 = dp,
from (3.2.37), we get

dH = − log
(

p1

p2

)
dp. (3.2.38)

If initially p1 < p2, then we must increase p1 towards p2, i.e., we
must take dp > 0, which makes dH > 0. Similarly, if p1 > p2, we
need to increase p2 towards p1, i.e., we must take dp < 0, and again
we get dH > 0. Clearly, we can repeat this process of “equalization”
in a pairwise fashion until we reach the uniform distribution, for
which the quantity H attains its maximum value.

We can now summarize the main relationships between the
concept of probability and information. Each random variable X

defines a probability distribution p1, . . . , pn. On this distribution,
we define the MI (or the uncertainty, see Section 3.3), which we
write as H(p1, . . . , pn), or H(X) for short. Conditional informa-
tion corresponds to a conditional probability (though we have to
make a distinction between information on X given an event yj,
or the information on X given Y ). For two independent random
variables, the information on X and Y is the sum of the informa-
tion on X and the information on Y . The correlation between the
two rv is a measure of the extent of dependence between the two
rv. The corresponding concept is the mutual information, which is
also a measure of the average correlation between the two random
variables.
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3.2.3 The consistency property of the missing
information (MI)

The third requirement as stated in Section 3.2 is the condition
of consistency. This condition essentially states that the amount of
information in a given distribution (p1, . . . , pn) is independent of the
path, or of the number of steps we choose to acquire this informa-
tion. In other words, the same amount of information is obtained
regardless of the way or the number of steps one uses to acquire this
information. In its most general form, the statement is formulated
as follows.

Suppose we have n outcomes A1, . . . , An of a given experiment
and the corresponding probabilities are p1, . . . , pn. We regroup all
of the outcomes as, for instance,

{A1, A2, A3, A4, A5, A6, A7, . . . , An}
{A1, A2, A3}, {A4, A5, A6, A7} · · · {An−2, An−1, An}
A′

1, A
′
2, . . . , A

′
r.

A′
1 is a new event consisting of the original events A1, A2, A3. The

corresponding probabilities are

p′1, p
′
2, . . . , p

′
r. (3.2.39)

Thus, from the initial set of n outcomes, we constructed a new set of
r new events {A′

1, A
′
2, . . . , A

′
r}. Since all Ai are mutually exclusive,

the probabilities of the new events are

p′1 =
m1∑
i=1

pi, p′2 =
m1+m2∑
i=m1+1

pi, . . . . (3.2.40)

Thus, the event A′
1 consists of m1 of the original events with

probability p′1, A′
2 consists of m2 of the original events, with prob-

ability p′2, and so on. Altogether, we have split the n events into r

groups, each containing mk(k = 1, . . . , r) of the original events so
that

r∑
k=1

mk = n. (3.2.41)
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The consistency requirement is written as

H(p1, . . . , pn) = H(p′1, . . . , p
′
r) +

r∑
k=1

p′kH
(

plk−1+1

p′k
, . . . ,

plk

p′k

)
,

(3.2.42)
where we denoted lk =

∑k
i=1 mi, l0 = 0, lr = n.

The meaning of this equation is quite simple, though it looks
cumbersome. The missing information in the original system
H(p1, . . . , pn) is equal to the missing information of the set of the
new r events H(p′1, . . . , p

′
n), plus the average missing information

associated with each of the groups.
We shall defer the proof of the uniqueness of the function H to

Appendix F. Here, we shall discuss a few simple examples of this
condition.

Consider the case of four boxes, in one of which a coin is hidden.
We assume that the probabilities of finding the coin in any one of
the boxes are equal, 1/4. The amount of missing information is

H

(
1
4
,
1
4
,
1
4
,
1
4

)
= log2 4 = 2. (3.2.43)

That is, we need two bits of information to locate the coin. We
can obtain this information along different routes. The consistency
requirement means that the amount of information obtained should
be independent of the route, or of the “strategy” of questioning.

The first route is to divide the total number of boxes into two
halves, each half having probability 1/2 (Figure 3.7a). For this case,

1/4 1/4 1/4 1/4

FirstSecond

1/4 1/4 1/4 1/4

First Second Third

(a) (b)

Figure 3.7. The two strategies of asking binary questions for four boxes.
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the general equality (3.2.42) reduces to

H

(
1
4
,
1
4
,
1
4
,
1
4

)
= H

(
1
2
,
1
2

)
+

[
1
2
H

(
1
2
,
1
2

)
+

1
2
H

(
1
2
,
1
2

)]

(3.2.44)
which simply means that the MI in the original set of events is the
sum of the MI associated with the two groups (left and right halves)
and the average MI within the newly formed groups. After the first
question, we do not know where the coin is. The reduction of the
MI at this stage is

H

(
1
2
,
1
2

)
= 1bit. (3.2.45)

At the first step, we only know in which half of the boxes the
coin is. In the next step, the average reduction in MI is[

1
2
H

(
1
2
,
1
2

)
+

1
2
H

(
1
2
,
1
2

)]
= 1bit. (3.2.46)

Thus, the sum of (3.2.45) and (3.2.46) is the same as in (3.2.43),
i.e., the total missing information is 2 bits.

Now suppose we take a different route (Figure 3.7b). Instead of
dividing into two halves, we divide into two groups; one box and
three boxes. In this case, by applying (3.2.42), we have20

H

(
1
4
,
1
4
,
1
4
,
1
4

)
= H

(
1
4
,
3
4

)
+

[
1
4
H(1) +

(
3
4

)
H

(
1
3
,
1
3
,
1
3

)]

=
[
H

(
1
4
,
3
4

)]
+

[
3
4
H

(
1
3
,
2
3

)]

+
3
4

[
1
3
H(1) +

2
3
H

(
1
2
,
1
2

)]

= −
[
1
4

log2
1
4

+
3
4

log2
3
4

]

− 3
4

[
1
3

log2

1
3

+
2
3

log2

2
3

]
+

1
2

∼= 0.8113 + 0.6887 + 0.5 = 2. (3.2.47)

20Note that H(1) = 0.



December 5, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch03

128 Statistical Thermodynamics Based on Information

Note that by the first route, we gain one bit of information at each
step. Therefore, we need exactly two steps to gain the required MI =
2. On the other hand, on the second route, the average amount
of information gained at the first step is only 0.8113 bits. In the
second step, 0.6887 bits, and in the third step 0.5 bits. Clearly, the
total MI is again 2 bits. However, by this route, we shall need, on
average, more steps or more questions to gain the same amount of
information.

We shall return to this problem and similar ones in Section 3.5.

Exercise: Suppose you are given 26 letters (27 if we include the
space between words) from the English alphabet. It is known that
the frequency of occurrence of these letters is as in Table 3.1. I pick
a letter at random (e.g., pick up a book and choose a page, and
within the page point at a letter while the eyes are blindfolded).
What is the best strategy for you to ask binary questions in order
to find out what the letter is? How many binary questions do you
need to ask on average if you use the best strategy? How much MI
is there in this game (calculate with logarithm to the base 2)? Why
is there a difference between the MI and the number of questions?

Table 3.1. The frequencies of the letters in the English language.

i Letter pi − log2 pi i Letter pi − log2 pi

1 a 0.0575 4.1 15 o 0.0689 3.9
2 b 0.0128 6.3 16 p 0.0192 5.7
3 c 0.0263 5.2 17 q 0.0008 10.3
4 d 0.0285 5.1 18 r 0.0508 4.3
5 e 0.0913 3.5 19 s 0.0567 4.1
6 f 0.0173 5.9 20 t 0.0706 3.8
7 g 0.0133 6.2 21 u 0.0334 4.9
8 h 0.0313 5.0 22 v 0.0069 7.2
9 i 0.0599 4.1 23 w 0.0119 6.4
10 j 0.0006 10.7 24 x 0.0073 7.1
11 k 0.0084 6.9 25 y 0.0164 5.9
12 l 0.0335 4.9 26 z 0.0007 10.4
13 m 0.0235 5.4 27 – 0.1928 2.4
14 n 0.0596 4.1
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Solution: The total MI for this distribution is

H = −
27∑
i=1

pi log2 pi = 4.138 bits. (3.2.48)

This means that in the “best strategy,” we need to ask, on aver-
age, 4.138 questions. However, since we cannot divide the events
into two groups with exactly equal probabilities at each step, the
best we can do is divide into two groups of about equal probability.
For example, in the first step choose the first 12 letters (with prob-
ability 0.504, and the remaining letters with probability 0.496), and
so on in the next steps. In this way, you can get the answer in five
questions. Clearly, this is much better than asking: Is the letter A?
Or B? And so on.

Information theory was originally developed to deal with infor-
mation transmitted along communication lines. We shall use this
example to clarify some of the concepts we use in this book.

Consider the following message:

A: “Each of the houses in this street costs one million dollars”
(3.2.49)

Clearly, the message A conveys information on the cost of houses
in a certain street. This kind of information is not dealt with in
information theory. If this message was never sent to me, I would
obviously miss this information, but this is not the missing infor-
mation we are dealing with.

Information theory deals only with a measure of the size of the
message — not with the information carried by the message. The
best way to describe the “size of the message” is to view each letter
in the alphabet as a coin hidden in one of the 26 boxes (or 27 if
we add the space between words). The average number of binary
questions we need to ask to find out which letter was sent is between
4 and 5. Clearly, the more uniform the frequency of occurrence of
the letters, the more questions we need to ask. This is the value of
H per letter. Now multiply by the number of letters in the message
and you get a feeling for the kind of the size of the message dealt
with by information theory.

It is true that the concepts of “information,” “missing informa-
tion” or “amount of missing information,” that feature in this book
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may or may not be objective quantities. However, the size of the
message is objective, as objective as the number of letters in the
alphabet, or the number of letters in the message itself.

Thus, the same information expressed in different languages or
by different words can have different sizes in the above sense. On
the other hand, totally different information might have the same
size.

The quantity

R =
log2 N − H(p1, . . . , pN )

log2 N

is called the redundancy of the alphabet with N letters (or symbols).
Since log N ≥ H (for any rv with N outcomes), R varies between
zero and one. It is zero when all the letters have equal probability.
The other extreme case is when one letter has probability nearly
one, and all others nearly zero. In this case H = 0, and the redun-
dancy is one. In general, the redundancy is somewhere between zero
and one. For the English language, log2 N = log2 27 = 4.755 and
R = 0.13.

3.2.4 The case of an infinite number of outcomes

The case of discrete infinite possibilities is straightforward. First,
we note that for a finite and uniform distribution, we have

H = log n, (3.2.50)

where n is the number of possibilities. Taking the limit of n → ∞,
we get

H = lim
n→∞ log n = ∞, (3.2.51)

which means that the missing information tends to infinity. Note,
however, that the probabilities 1/n tend to zero.

For a non-uniform distribution, the quantity H might or might
not exist, depending on whether the quantity

H = −
∞∑
i=1

pi log pi (3.2.52)

converges or diverges.



December 5, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch03

Elements of Information Theory 131

The case of a continuous distribution is problematic.21 If we start
from the discrete case and proceed to the continuous limit, we get
into some difficulties.22 We shall discuss this problem in Appendix I.
Here, we shall follow Shannon’s treatment for a continuous distri-
bution for which a density function f(x) exists. By analogy with
the definition of the H function for the discrete probability distri-
bution, we define the quantity H for a continuous distribution. Let
f(x) be the density distribution, i.e., f(x)dx is the probability of
finding the random variable having values between x and x + dx.

We defined the H function as

H = −
∫ ∞

−∞
f(x) log f(x)dx. (3.2.53)

A similar definition applies to an n-dimensional distribution func-
tion f(x1, . . . , xn). In (3.2.53), H is defined as the expectation value
of the random variable − log f(X), where X is a random variable
having distribution density f(x).

In the following, we shall discuss three important cases that are
relevant to statistical thermodynamics: the uniform distribution of
the location of a particle in a one-dimensional box of length L, the
normal distribution of the velocities in one direction, say vx, and
the Boltzmann distribution.

It should be noted that there is a fundamental difference between
the first two distributions. Regarding the locational distribu-
tion, particles are always confined to some finite-size box, in any
n-dimensional space.23 On the other hand, there are in principle

21In Appendix I, we shall further discuss the difference between the MI as
defined for discrete and continuous cases. Here, we note that H for the contin-
uous case as defined in (3.2.53) may be negative, whereas in the discrete case,
it is always positive.
22Shannon himself was apparently not worried about the mathematical dif-
ficulties involved in the generalization of the measure of information to the
continuous case. See also Khinchin (1957).
23Note that if the particles were not confined to be within the limits of a box,
there would be no equilibrium state. The particles would expand their “volume”
indefinitely.
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no limits on the possible range of velocities a particle can attain.24

However, in an isolated system the total energy is constant, and at
equilibrium the average kinetic energy of say, mono-atomic parti-
cles is also constant. In the three cases discussed below, we shall
evaluate the probability densities which maximize H, to which we
shall refer to as the equilibrium density.

3.2.4.1 The uniform distribution of locations

Consider a particle that is confined in a one-dimensional “box” of
length L. We seek the maximum of H defined in (3.2.53), but with
limits (0, L), subject to the condition that∫ L

0
f(x)dx = 1. (3.2.54)

Applying the Lagrange method of undetermined multipliers (or
the calculus of variation), we find that the equilibrium probability
density feq(x) that maximize H, in (3.2.53), subject to the condi-
tion (3.2.54) must satisfy the equality

−1 − log feq(x) + λ = 0. (3.2.55)

From (3.2.54) and (3.2.55), we obtain

1 =
∫ ∞

0
feq(x)dx = eλ−1

∫ L

0
dx = eλ−1L (3.2.56)

or equivalently

feq(x) =
1
L

. (3.2.57)

The MI associated with this density is

H = −
∫ L

0
feq(x) log feq(x)dx = − 1

L
log

1
L

∫ L

0
dx = log L.

(3.2.58)
Thus, the equilibrium density distribution is uniform over the

entire length L. The probability of finding the particle at any

24Although the velocity of light is the limit, in practice, a system of particles
at room temperature would have a negligible number of particles having very
high velocities.
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interval, say, between x and x + dx is

feq(x)dx =
dx

L
, (3.2.59)

which is independent of x. This result is of course in accordance
with our expectations: since no point in the box is preferred, the
probability of being found in an interval dx is simply proportional
to the length of that interval. A more general result is when the
density function f(x) is defined in an interval (a, b). In this case,
the maximum uncertainty is obtained for the density function

f(x) =
1

b − a
, for a ≤ x ≤ b (3.2.60)

and the corresponding value of the uncertainty is H(X) = log(b−a).
By generalization to a three-dimensional system of volume V, we

have

feq(x, y, z)dxdydz =
dxdydz

V
(3.2.61)

and the associated MI is25

H = log V, (3.2.62)

where V is the volume of the system.
Clearly, the larger L is, the larger the MI, or the uncertainty,

in the location of a particle within the range (0, L). Let us denote
this MI by H[L]. In anticipating the application of this result in
Chapter 5, we divide the length L into n segments each of length
h (h will later be the Planck constant, but here it is an arbitrary
unit of length), Figure 3.8. We can use the property of consistency
to express H[L] as

H[L] = H

[
1
n

, . . . ,
1
n

]
+

n∑
i=1

1
n

H[h]. (3.2.63)

0 L

h h h h h h h h h h

Figure 3.8. The range (0, L) is divided into n segments of length h.

25As we shall discuss in Appendix I, we “pretend” that V is the number of
states. Actually, we shall need this result only for two cases: (i) differences in
H , and (ii) when in fact we cannot have infinite accuracy.
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This simply corresponds to rewriting the uncertainty in two
terms; first, the uncertainty with respect to which of the n boxes of
size h, and the average uncertainty in the location within the boxes
of size h.

From (3.2.50) and (3.2.63), we have

H[L] = log n +
n∑

i=1

1
n

log h

= log
L

h
+ log h = log L. (3.2.64)

Now suppose that h is very small so that we do not care (or
cannot care) for the location within the box of size h. All we care
about is in which of the n boxes the particle is located. Clearly, the
uncertainty in this case is simply the MI of a discrete and finite
case, i.e.,

H

[
1
n

, . . . ,
1
n

]
= log n = log

L

h
. (3.2.65)

Thus, the subtraction of log h from H[L] amounts to choosing
the units of length with which we locate the site of the particle,
i.e., in which of the boxes the particle is located. We shall use the
definition of H in the continuous case only for the difference in
∆H (see also Appendix I). In practice, we can never determine the
location of a particle with absolute, or infinite, accuracy. There is
always a short interval of length within which we cannot tell where
the particle is. Hence, in all these cases, it is the discrete definition
of H that applies.

3.2.4.2 The normal distribution of velocities or momenta

Shannon (1948) has proved the following theorem26:
Of all the continuous distribution densities f(x) for which the

standard deviation exists and is fixed at σ, the Gaussian (or the nor-
mal) distribution has the maximum value of H. Thus, we maximize

26Shannon’s theorem is very general. We shall use it for a special case where
σ2 is proportional to the temperature or the average velocities of particles in
an ideal gas. In this case, we obtain the Maxwell–Boltzmann distribution of the
velocities.
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H as defined in (3.2.53) subject to the two conditions∫ ∞

−∞
f(x)dx = 1, (3.2.66)

∫ ∞

−∞
x2f(x)dx = σ2. (3.2.67)

Using the calculus of variation, the condition for maximum H is

−1 − log f(x) + λ1x
2 + λ2 = 0. (3.2.68)

The two Lagrange’s constants may be obtained by substituting
(3.2.68) in (3.2.66) and (3.2.67). The result is27:

f(x) = exp[λ1x
2 + λ2 − 1], (3.2.69)

1 =
∫ ∞

−∞
f(x)dx = exp[λ2 − 1]

∫ ∞

−∞
exp[λ1x

2]dx

=
√

− π

λ1
exp[λ2 − 1], (3.2.70)

σ2 =
∫ ∞

−∞
x2f(x)dx = exp[λ2 − 1]

∫ ∞

−∞
x2 exp[λ1x

2]dx

=
√

π

2(−λ1)3
exp[λ2 − 1]. (3.2.71)

From the last two equations, we can solve for λ1 and λ2 to obtain

λ1 =
−1
2σ2

, exp[λ2 − 1] =
1√

2πσ2
. (3.2.72)

Hence,

f(x) =
exp[−x2/2σ2]√

2πσ2
(3.2.73)

and

H = −
∫ ∞

−∞
f(x) log f(x)dx =

1
2

log(2πeσ2). (3.2.74)

27In this and in the next subsection, the probability density that maximizes H
will be referred to as the equilibrium density.
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This is an important result. We shall see that this is equivalent to
the statement that the Maxwell–Boltzmann distribution of veloci-
ties is the distribution that maximizes H (or the entropy).

In the application of this result for the velocity distribution in one
dimension (see Chapter 5), we have the probability distribution for
vx as

P (vx) =
√

m

2πT
exp

[
−mv2

x

2T

]
, (3.2.75)

where we identify the standard deviation σ2 as

σ2 =
T

m
, (3.2.76)

and T is the temperature defined in units of energy. The uncertainty
associated with the velocity distribution is thus28

H(vx) =
1
2

log(2πeT/m). (3.2.77)

Assuming that the velocities along the three axes vx, vy, vz are
independent, we can write the corresponding uncertainty as

H(vx, vy, vz) = H(vx) + H(vy) + H(vz) = 3H(vx). (3.2.78)

Similarly, for the momentum distribution in one dimension, we have
px = mvx, and hence

P (px) =
1√

2πmT
exp

[ −p2
x

2mT

]
,

and the corresponding uncertainty is

H(px) =
1
2

log(2πemT ). (3.2.79)

We shall use this last expression to construct the analogue of the
Sackur–Tetrode equation in Section 5.4.

The significance of the last result is that σ2 is proportional to the
temperature of the gas, and the temperature of the gas is related
to the average kinetic energy of the particles in the gas. Hence,
the last result means that given a temperature, or equivalently
fixing the total kinetic energy of the gas molecules, the distribu-
tion of velocities vx, vy and vz for which the MI is maximum, is

28Note that H(vx) is the MI associated with the distribution of velocities. Sim-
ilarly, H(px) is the MI associated with the distribution of momenta.
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the Gaussian or the normal distribution. This is the equilibrium
Maxwell–Boltzmann distribution of velocities.

3.2.4.3 The Boltzmann distribution

The last example we discuss here is the case where instead of fixing
the variance as in (3.2.67), we fix the average of the rv. In this case,
we look for the maximum of the quantity

H = −
∫ ∞

0
f(x) log f(x)dx (3.2.80)

subject to the two conditions∫ ∞

0
f(x)dx = 1 (3.2.81)

and ∫ ∞

0
xf(x)dx = a, with a > 0. (3.2.82)

Using the Lagrangian multipliers λ1 and λ2, we look for the maxi-
mum of the function

F [f(x)] =
∫ ∞

0
[−f(x) log f(x)dx + λ1f(x) + λ2xf(x)]dx. (3.2.83)

The condition for an extremum is:

−1 − log f(x) + λ1 + λ2 = 0. (3.2.84)

or equivalently

f(x) = exp[λ2x + λ1 − 1]. (3.2.85)

Substituting this density function in the two constraints (3.2.81)
and (3.2.82), we get

exp[λ1 − 1]
∫ ∞

0
exp[λ2x]dx = 1, (3.2.86)

exp[λ1 − 1]
∫ ∞

0
x exp[λ2x]dx = a. (3.2.87)

Note that λ2 cannot be positive; otherwise the two constraints can-
not be satisfied (not even for λ2 = 0). From (3.2.86) and (3.2.87),
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we obtain

exp[λ1 − 1]
[
exp[λ2x]

λ2

]∞
0

= −exp[λ1 − 1]
λ2

= 1, (3.2.88)

exp[λ1 − 1]
[
(λ2x − 1) exp[λ2x]

λ2
2

]∞
0

=
exp[λ1 − 1]

λ2
2

= a. (3.2.89)

From these two equations, we solve for λ1 and λ2 to obtain

λ2 =
−1
a

, (3.2.90)

exp[λ1 − 1] =
1
a
. (3.2.91)

Hence, the density that maximizes H is

f(x) =
1
a

exp
(−x

a

)
. (3.2.92)

The value of H for this density is

H(X) = −
∫ ∞

0
f(x) log f(x)dx (3.2.93)

= log a + 1 = log(ae). (3.2.94)

An important example of such a distribution is the barometric
distribution. The number density (or the pressure) at height h, rel-
ative to the number density at height h0, is given by the Boltzmann
relation:

ρ(h) = ρ(h0) exp[−βmg(h − ho)], (3.2.95)

where β = T−1 (assuming the temperature is constant throughout
the column of air of length h − ho), m is the mass of the particles,
and g the gravitational acceleration.

Relation (3.2.95) can be converted to the pressure distribution
by substituting P = ρT .

3.3 The Various Interpretations of the Quantity H

After having defined the quantity H and seen some of its properties,
let us discuss a few possible interpretations of this quantity. Origi-
nally, Shannon referred to the quantity he was seeking to define as
“choice,” “uncertainty,” “information” and “entropy.” Except for
the last term which does not, the first three terms have an intuitive
meaning. Let us discuss these for a simple case.
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Suppose we are given n boxes and we are told that a coin was
hidden in one and only one box. We are also told that the events,
“the coin is in box k” are mutually exclusive (i.e., the coin cannot
be in more than one box), and that the n events form a complete
set of events (i.e., the coin is certainly in one of the boxes), and
that the box in which the coin was placed was chosen at random,
i.e., with probability 1/n.

The term “choice” is easily understood in the sense that in this
particular game, we have to choose between n boxes to place the
coin.29 Clearly, for n = 1, there is only one box to choose and the
amount of “choice” we have is zero; we must place the coin in that
box. It is also clear that as n increases, the larger n is, the larger
the “choice” we have to select the box in which the coin is to be
placed. The interpretation of H as the amount of “choice,” for the
case of unequal probabilities is less straightforward. For instance, if
the probabilities of, say, ten boxes are 9/10, 1/10, 0, . . . , 0, it is clear
that we have less choice than in the case of a uniform distribution,
but in the general case of unequal probabilities, the “choice” inter-
pretation is not satisfactory. For this reason, we shall not use the
“choice” interpretation of H.30

The term “information” is clearly and intuitively more appealing.
If we are asked to find out where the coin is hidden, it is clear, even
to the lay person, that we lack information on “where the coin is
hidden.” It is also clear that if n = 1, we need no information,
we know that the coin is in that box. As n increases, so does the
amount of the information we lack, or the missing information.
This interpretation can be easily extended to the case of unequal
probabilities. Clearly, any non-uniformity in the distribution only
increases our information, or decreases the missing information.
In fact, all the properties of H listed in the previous section are
consistent with the interpretation of H as the amount of missing
information. For instance, for two sets of independent experiments
(or games), the amount of the missing information is the sum of the

29Or to “choose” the box where the coin was hidden, or in general, to make a
choice between n possibilities.
30It seems to me that although Shannon himself named Section 6 of his article
“Choice, Uncertainty and Entropy,” he did not use the term “choice” when
interpreting the properties of the function H .
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missing information of the two experiments. When the two sets are
dependent, the occurrence of an event in one experiment affects
the probability of an outcome of the second experiment. Hence,
having information on one experiment can only reduce the amount
of missing information on the second experiment.

The “information” interpretation of H is also intuitively appeal-
ing since it is also equal to the average number of questions we need
to ask in order to acquire the missing information (see Section 3.5).
For instance, increasing n will always require more questions to be
asked. Furthermore, any deviation from uniformity of the distribu-
tion will decrease the average number of questions. Thus, when-
ever a distribution is given, the most plausible measure of the
amount of MI is the quantity H. For this reason, the interpre-
tation of H as the amount of missing information will prevail in
this book.

There are two more interpretations that can be assigned to H

which are useful. First, the meaning of H as the amount of uncer-
tainty. This interpretation is derived from the meaning of proba-
bility. When pi = 1, and all other pj = 0 (j �= i), we are certain
that the event i occurred. If, on the other hand, p1 = 9/10, p2 =
1/10, p3 . . . pn = 0, then we have more uncertainty of the outcome
compared with the previous example where our uncertainty was
zero. It is also intuitively clear that the more uniform the distri-
bution is, the more uncertainty we have about the outcome, and
the maximum uncertainty is reached when the distribution of out-
comes is uniform. One can also say that H measures the average
uncertainty that is removed once we know the outcome of the rv X.
The “uncertainty’ interpretation can be applied to all the properties
discussed in the previous section.

Both “missing information” and “uncertainty” may have subjec-
tive quality. However, when used to interpret Shannon measure,
they are objective quantities.

A slightly different but still useful interpretation of H is in terms
of likelihood or expectedness. These two are also derived from the
meaning of probability. When pi is small, the event i is less likely to
occur, or its occurrence is less expected. When pi approaches one,
the occurrence of i becomes more likely or more expected. Since
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log pi is a monotonous increasing function of pi, we can say that the
larger log pi, the larger the likelihood or the larger the expectedness
of the event i; only the range of numbers is now changed: instead
of 0 ≤ pi ≤ 1, we now have −∞ ≤ log pi ≤ 0. The quantity − log pi

is thus a measure of the unlikelihood or the unexpectedness of the
event i.31 Therefore, the quantity H = −∑

pi log pi is a measure
of the average unlikelihood, or unexpectedness, of the entire set of
the events.

There are several other interpretations of the term H. We shall
specifically refrain from using the meaning of H as a measure of
“entropy,” nor as a measure of disorder. The first is an outright mis-
leading term (see Preface). The second, although very commonly
used, is very problematic. First, because the terms order and dis-
order are fuzzy concepts. Order and disorder, like beauty, are very
subjective terms and lie in the eye of the beholder. Second, many
examples can be given showing that the amount of information does
not correlate with what we perceive as order or disorder (see also
Section 1.2 and Chapter 6).32

Perhaps the most important objection to the usage of order and
disorder for the entropy, or for H is that the concept of order or
disorder, unlike information or uncertainty, does not have the prop-
erties that H has. When Shannon sought for a measure of informa-
tion, or uncertainty, he posed several plausible requirements that
such a measure should fulfill. None of these can be said to be a plau-
sible requirement for the concept of order or disorder. Certainly, the
additivity and the consistency properties cannot be assigned to the
concept of disorder.33 Also, the concepts of conditional information
and mutual information cannot be claimed to be plausible proper-
ties of disorder.

Brillouin has coined the term “neg-entropy” for the quantity H.
In my opinion, this suggestion amounts to a corruption of the mean-
ingful term “information” into a vague term. It is one of the main

31The quantity − log pi is sometimes called “self-information.” We shall not use
this term in this book.
32For a qualitative discussion of this aspect of entropy, see Ben–Naim (2007).
33It is not clear why the “disorder” of two systems should be the “sum” of the
“disorder” of each system.
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aims of this book to replace the vague term “entropy” by the more
meaningful term “neg-information,” or better yet, “missing infor-
mation.” As we have discussed in the Preface, the term “entropy” as
coined by Classius was an unfortunate choice. It did not convey the
meaning it was meant to communicate. This unfortunate choice can
be understood retrospectively since it was made many years before
the concept that Claussius named “entropy” was understood on a
molecular level.

In this book, we shall mainly use the term information, or missing
information, to replace the quantity currently called entropy. Occa-
sionally, we shall also use the terms uncertainty or unlikelihood. It
should be noted, however, that all these terms refer to the whole set
of outcomes, not to a single outcome. It is a property of the entire
distribution of events and not of any specific event. Furthermore,
we consider this quantity as an objective quantity that “belongs” to
the distribution. Sometimes, people have misinterpreted the term
uncertainty or information as implying that this quantity is sub-
jective and depends on our ignorance of the system. It is true that
information, in its general sense, may or may not be subjective.
However, the fact that H may be interpreted as missing informa-
tion or as uncertainty does not make it a subjective quantity.

Another interpretation of the quantity −∑
pi log pi is as average

surprisal. The quantity − log pi may be interpreted as a measure of
the extent of surprise associated with the specific outcome i. The
smaller pi, the larger our surprise to find that the outcome i has
occurred. Hence, H is an average of the surprise associated with all
the possible outcomes. We shall not use this interpretation of H.

We stress again that the amount of uncertainty or unlikelihood
is a property of the distribution of the events, and does not depend
on the values of the events. The following examples should clarify
this statement.

Consider the following events and their probabilities:

A = The criminal is hiding in London,

B = The criminal is hiding in Oxford,

C = The criminal is hiding in Dover,
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with the probabilities P (A) = P (B) = P (C) = 1/3. And consider
another set of events:

D = The criminal is hiding in London,

E = The criminal is hiding in Paris,

F = The criminal is hiding in Tokyo,

with the probabilities P (D) = P (E) = P (F ) = 1/3.
Clearly, the uncertainty or the unlikelihood or the MI, as mea-

sured by H, are the same for the two examples. Yet, we feel that in
the first example, we have more information, i.e., we know for sure
that the criminal is in England, even without asking any question.
In the second example, we have no idea in which country the crim-
inal is. The point is that the MI as defined on the distribution
(1
3 , 1

3 , 1
3) does not address the question as to which country the

criminal is in, but only to the three cities, London, Oxford and
Dover in the first case, and London, Paris and Tokyo in the second.
It does not matter how close or far the outcomes are; what matters
is only the distribution of the three events.

As a second example, suppose we are given the following informa-
tion on two drugs, X and Y . It is known that administering drug
X to a patient with disease D, has the following outcomes:

Pr[the patient will recover from D if X is administered] = 1/2,

Pr[the patient will die if X is administered] = 1/2.

On the other hand, for drug Y to be administered to the same
disease D, we have:

Pr[the patient will recover fully, with absolutely

no recurrence of the disease] = 1/2,

Pr[the patient will recover, but will

have some very infrequent recurrence of D] = 1/2.

In both cases, our uncertainty regarding the two events is the same.
However, we clearly feel that in the first case, we do not know
whether the patient will survive or not. In contrast, in the second
case we know for sure that the patient will survive. The point to
be emphasized is that survival or non-survival are the two events
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in the first case, but not in the second case. In the second case, the
uncertainty does not apply to the question of survival, but to the
question of whether or not the disease will recur.

If we use the average surprisal interpretation, it is clear that in
both cases, the average surprisal should be the same — although
we might be extremely surprised if the patient dies upon taking the
drug Y in the second example.

In this book, we shall use the definition H in (3.2.1) for any kind
of information. It is always a dimensionless, non-negative quantity.
When we apply the quantity H for a thermodynamic system, we
shall also use the same quantity, as defined in (3.2.1), but change the
notation from H to S. This is done to conform with the traditional
notation for the entropy. However, unlike thermodynamic entropy,
the quantity which we shall denote by S is defined as in (3.2.1) with
K = 1 and is dimensionless.

3.4 The Assignment of Probabilities by the Maximum
Uncertainty Principle

Up to this point, we have assumed that the distribution p1, . . . , pn

is given and we have examined the properties of the function H

defined on this distribution. We now turn to the “inverse” problem.
We are given some information on some averages of the outcomes of
a random variable, and we want to find out the “best” distribution
which is consistent with the available information.34

Clearly, having an average value of some rv does not uniquely
determine the distribution. There are a infinite number of distribu-
tions that are consistent with the available average quantity.

As an example, suppose we are interested in assigning probabil-
ities to the outcomes of throwing a single die without doing any
counting of frequencies, and having no information on the die.

What is the best guess of a distribution if the only requirement it
must satisfy is

∑6
i=1 pi = 1? There are many possible choices; here

34The method used in this section is due to Jaynes, based on Shannon’s defini-
tion of information.
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are some possible distributions:

1, 0, 0, 0, 0, 0,

1
2
,
1
2
, 0, 0, 0, 0,

1
4
,
1
4
,
1
4
,
1
4
, 0, 0,

1
6
,
1
6
,
1
6
,
1
6
,
1
6
,
1
6
. (3.4.1)

The question now is which is the “best” or the most “honest” choice
that is consistent with the available information.

Clearly, the first choice is highly biased. There is nothing in
the available information that singles out only one outcome to be
deemed the certain event. The second choice is somewhat less biased
but still there is nothing in the given information which indicates
that only two of the outcomes are possible and the other four are
impossible events. Similarly, the third choice is less biased than the
second, but again there is nothing in the given information which
states that two of the outcomes are impossible. Thus, what is left
in this list is the fourth choice (of course there are more possibili-
ties which we did not list). This is clearly the least biased choice.
According to Jaynes (1957), the best distribution is obtained by
maximizing the uncertainty H over all possible distributions sub-
ject to the known constraints, or the available information. We have
already done this in Section 3.2.2 and found that the “best” guess
for this case is the uniform distribution, i.e., the fourth choice in
the list (3.4.1).

Suppose we are told that the measurements have been done and
the average outcome was 4.5. In this case, the distribution must
satisfy the two conditions

6∑
i=1

pi = 1, (3.4.2)

6∑
i=1

ipi = 4.5. (3.4.3)
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Figure 3.9. Possible distributions for a single die (3.4.4), and the distribution
that maximizes H (3.4.7).

Again, it is clear that we have only two equations and six
unknown quantities. Therefore, there are many solutions to this
problem. Some possible solutions are (Figure 3.9).

p(1) = {0.1, 0.1, 0.1, 0.1, 0.1, 0.5},

p(2) =
{

0, 0, 0,
1
2
,
1
2
, 0

}
,

p(3) =
{

0, 0,
1
4
,
1
4
,
1
4
,
1
4

}
(3.4.4)

and many more. Clearly, all the distributions in (3.4.4) are consis-
tent with the given information in (3.4.2) and (3.4.3).

The general procedure as cogently advocated by Jaynes (1957)
is35 “in making inferences on the basis of partial information
we must use the probability distribution which has the maximum
entropy, subject to whatever is known.”

The application of this principle to statistical mechanics was sug-
gested by Jaynes (1957). It has given a new view of both the funda-
mental postulate, as well as of other fundamental probability distri-
butions of statistical mechanics. It did not solve any unsolved prob-
lem. As Katz (1967) wrote: “Information theory approach is not a
miracle device to arrive at a solution of any statistical problem. It
is only a general way to formulate the problem itself consistently. It

35Here, Jaynes uses the term entropy as defined by Shannon, as −K
P

i pi log pi.
Actually, Jaynes uses the meaning of “information” or “uncertainty” assigned
to this quantity, not the particular quantity used in thermodynamics where K is
chosen as the Boltzmann constant, and the entropy has units of energy divided
by temperature.



December 5, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch03

Elements of Information Theory 147

most often happens that the ‘best guess’ coincided with the educated
guess of those who practice guessing as an art.”

This “best guess,” according to Katz is the one that is consistent
with the “truth, the whole truth and nothing but the truth.”36

To find the “best” distribution, we have to maximize the uncer-
tainty H subject to the two conditions (3.4.2) and (3.4.3). Using
the method of Lagrange’s multipliers, we have to find the maximum
of the function

F = −
∑

pi log pi + λ1

[
1 −

∑
pi

]
+ λ2

[
4.5 −

∑
ipi

]
. (3.4.5)

The condition for maximum is

0 =
(

∂F

∂pi

)
p′

i

= − log pi − 1 − λ1 − λ2i = 0 (3.4.6)

or

pi = exp[−1 − λ1 − λ2i]. (3.4.7)

The coefficients λ1 and λ2 can be determined from (3.4.2) and
(3.4.3), i.e.,

1 =
∑

pi = exp[−1 − λ1]
∑

i exp[−λ2i], (3.4.8)

4.5 =
∑

ipi =
∑

iexp[−λ2i]∑
exp[−λ2i]

=
∑

ixi∑
ixi

, (3.4.9)

where x = exp[−λ2].
These are two equations with the two unknowns λ1 and λ2. One

can solve these equations to obtain the distribution (3.4.7).37 This
distribution, denoted p(Max H), is plotted in Figure 3.9.

Next, we shall work out a simple example where at each step we
add more information on the averages of the outcomes. Suppose
we start with a given distribution, for a tetrahedral die, having
four faces. The outcomes are {1, 2, 3, 4}, and we know that the

36In my view, a better way of describing what the “best guess” means is to
say that it is consistent with the knowledge, the whole knowledge and nothing
but the knowledge we have on the system under study. This is closer to Jaynes’
original description of the merits of the maximum entropy principle.
37The only real solution is x = 1.44925 and exp [−1 − λ1] = 0.0375.
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probabilities are: { 1
12 , 2

12 , 3
12 , 6

12 , }. In this case, we can calculate all
the averages we wish. In particular, we have for this case∑

pi = 1, (3.4.10)

〈i〉 =
∑

ipi = 3.16667, (3.4.11)

〈i2〉 =
∑

i2pi = 11, (3.4.12)

〈i3〉 =
∑

i3pi = 40.1667. (3.4.13)

In Figure 3.10, we plot the known distribution as dots. Next, we
shall try to guess the distribution in steps. First, suppose we are
given no information at all on this die. The only constraint on the
distribution we have is (3.4.10). Using the maximum MI procedure
in this case will result in

p
(1)
i = e−1−λ1 =

1
4
. (3.4.14)

At this level of information, our best guess is a uniform distribution
(3.4.14). Next, suppose we know the average in (3.4.11). What is
the best guess of the distribution? In this case, using the method
of maximum MI, we get

p
(2)
i = e−1−λ1−λ2i. (3.4.15)

Solving for λ1 and λ2 by using (3.4.10) and (3.4.11), we get the new
distribution

p(2) = {0.0851, 0.1524, 0.273, 0.4892}. (3.4.16)

This distribution is also plotted in Figure 3.10. We see that we
got quite a good “guess” for the distribution with only one average.
Next, we assume that we have two average quantities (3.4.11) and
(3.4.12). We use the same procedure and get a new distribution

p
(3)
i = e−1−λ1−λ2i−λ3i2 . (3.4.17)

Solving for λ1, λ2 and λ3, we get

p(3) = {0.0888, 0.1503, 0.2664, 0.4945}, (3.4.18)

which is almost the same as in the previous solution. The two solu-
tions can hardly be distinguished in Figure 3.10.
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Figure 3.10. The three distributions as in (3.4.14)–(3.4.16). The dots are the
exactly known probabilities.

Finally, if we have all three averages in (3.4.11)–(3.4.13), we do
not need to guess anything. These equations together with (3.4.10)
determine uniquely the solution for the four unknown quantities
p
(4)
1 , p

(4)
2 , p

(4)
3 , p

(4)
4 , which are the same as the original distribution

we started with, i.e., the dots in Figure 3.10.

Exercise: Start with a given distribution for an “unfair” die with
distribution { 1

12 , 1
12 , 2

12 , 2
12 , 3

12 , 3
4}. Calculate the best guess of the

distribution for the cases (i) of no information and (ii) the case of
knowing only the average

∑
ipi = 4.1667.

3.5 The Missing Information and the Average Number
of Binary Questions Needed to Acquire It

We shall consider here a few examples for which we first calcu-
late the total MI and then we ask binary questions to acquire this
information. The number of questions depends on the strategy of
asking questions, but the total information is the same, indepen-
dent of the strategy one chooses to acquire that information. The
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{a,b,c,d}

{b,c,d}
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Figure 3.11. Two methods of acquiring information for the case of four
boxes: (a) the smart strategy, and (b) the dumb strategy of asking ques-
tions. The reduction of MI at each stage is noted to the left-hand side of each
diagram.

relation between the MI and the number of questions is the most
meaningful interpretation of the quantity H. By asking questions,
we acquire information. The larger the MI, the larger the average
number of questions to be asked. For a mathematical proof that the
minimum average number of binary questions required to determine
an outcome of a random variable is between H(X) and H(X) + 1,
see Cover and Thomas (1991).

Example 1: We have four equally probable events, say a coin hid-
den in one of four boxes, each having probability 1/4. Let us iden-
tify the boxes by the letters a, b, c, d, (Figure 3.11). We have to ask
binary questions to locate the coin. The first method, the smartest
one, is shown on the left-hand side of Figure 3.11. Split the four
boxes into two halves, then again into two half-halves. The dia-
gram in Figure 3.11a shows the method of splitting the events into
groups, and the amount of information acquired at each step.

The total MI is

H = −
4∑

1=1

1
4

log2
1
4

= 2. (3.5.1)
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The number of steps as can be seen in the diagram is also 2:

g1 = H

(
1
2
,
1
2

)
= 1,

g2 =
1
2
H

(
1
2
,
1
2

)
+

1
2
H

(
1
2
,
1
2

)
= 1, (3.5.2)

g1 + g2 = 2.

Clearly, we have two steps. At each step, we gain 1 bit of
information.

Let us calculate the probabilities for getting the MI in each step.
Denote by Gi and Ni, gaining and not gaining the information on
the ith step.38 We have at the first step

P (G1) = 0,

P (N1) = 1.
(3.5.3)

This means that in the smartest strategy, there is probability zero
of gaining the information in the first step. At the second step, we
have

P (G2N1) = P (G2/N1)P (N1) = 1 × 1 = 1. (3.5.4)

Thus, the average number of steps is

0 × 1 + 1 × 2 = 2, (3.5.5)

which is the same as H in (3.5.1). Note that at the second step,
whatever the answer we get, we shall know where the coin is.

The second method, the dumbest one, is shown on the right-hand
side of Figure 3.11. We ask questions such as: Is the coin in box a?
Is it in box b? And so on. The diagram in (3.11) shows how we split
the events in this case.

We see that in this case, we gain less than the maximum infor-
mation at each step. Therefore, we need to ask more questions. In
the first step, in contrast to the previous strategy, we can find the

38Note that in this and in the following examples, we shall use the phrase
“gaining the information” in two senses. In one, colloquially we shall mean
“gaining information” on where the coin is. In the second, we shall refer to
gaining an amount of information in the sense of reducing the MI to zero. Also,
the meaning of Gi and Ni can be slightly altered. See example in Figure 3.19.
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coin in one step. The probability of finding the coin in one step is 1
4 .

The average reduction of the MI in the first step is

g1 = H

(
1
4
,
3
4

)
= 0.8113. (3.5.6)

We can refer to this quantity as the average gain of information on
the first step. On the second step, we have39

g2 =
1
4
H(1) +

3
4
H

(
1
3
,
2
3

)
= 0.6887, (3.5.7)

and on the third step, we have

g3 =
3
4

[
1
3
H(1) +

2
3
H

(
1
2
,
1
2

)]
=

1
2
. (3.5.8)

Clearly,

g1 + g2 + g3 = 2. (3.5.9)

Thus, the total MI acquired is the same. The average number of
questions is different in the two methods.

The average number of questions in the second method is
obtained from the following probabilities. If we ask “Is the coin
in box a?” and obtain the answer “Yes”, the game is ended. This
happens with probability 1/4, and the “No” answer is obtained
with probability 3/4. Thus,

P (G1) = 1/4,

P (N1) = 3/4.

To gain the information on the second step, we need to get a “No”
answer at the first step, and “Yes” on the second step.40 Hence,

P (G2N1) = P (G2/N1)P (N1) =
1
3
× 3

4
=

1
4
,

P (N2N1) = P (N2/N1)P (N1) =
2
3
× 3

4
=

2
4
,

P (G3N1N2) = P (G3/N1, N2)P (N1, N2) = 1 × 2
4

=
2
4
.

(3.5.10)

39Note that since we have a finite probability of correctly guessing the location
of the coin on the first step, the quantity g2 is the average gain of information
in the second step given that we did not succeed in the first step.
40Note that in the third step, we shall know where the coin is, whether the
answer is a Yes or a No.
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1/8 1/8 1/8 1/8

FirstSecond

1/8 1/8 1/8 1/8

Third

First Second Third

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Fourth Fifth Sixth Seventh

Smart method

Dumb method

Figure 3.12. Two methods of asking binary questions for the case of eight
boxes.

The average number of steps is

1
4
× 1 +

1
4
× 2 +

2
4
× 3 =

1 + 2 + 6
4

=
9
4

= 2.25, (3.5.11)

which is slightly larger than the number of steps in the first method.

Example 2: We repeat the calculations as in Example 1, but with
eight boxes of equal probability.

Solution: The total MI is

H = 8
(

1
8

log2 8
)

= 3. (3.5.12)

First method (the smartest)
Dividing each time into two equally probable parts. See Figure 3.12.
The average gain of information in each step is

g1 = H

(
1
2
,
1
2

)
= 1,

g2 =
1
2
H

(
1
2
,
1
2

)
+

1
2
H

(
1
2
,
1
2

)
= 1,
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g3 =
1
2

[
1
2
H

(
1
2
,
1
2

)
+

1
2
H

(
1
2
,
1
2

)]

+
1
2

[
1
2
H

(
1
2
,
1
2

)
+

1
2
H

(
1
2
,
1
2

)]
= 1. (3.5.13)

Thus, at each step, the reduction in the MI is one bit; hence, the
total reduction in the MI is

g1 + g2 + g3 = 3. (3.5.14)

The corresponding probabilities are the following. The probabil-
ity of terminating the game on the first step is zero:

P (G1) = 0,

P (N1) = 1.
(3.5.15)

The probability of terminating the game on the second step is also
zero:

P (G2N1) = P (G2/N1)P (N1) = 0 × 1 = 0,

P (N2N1) = P (N2/N1)P (N1) = 1.
(3.5.16)

The probability of terminating the game on the third step is one:

P (G3N1N2) = P (G3/N1N2)P (N1N2) = 1 × 1 = 1. (3.5.17)

The average number of steps is

0 × 1 + 0 × 2 + 1 × 3 = 3, (3.5.18)

which is exactly equal to H in (3.5.12).

The second method (the dumbest)
Choose one box at each step (see Figures 3.12 and 3.13). The total
MI is the same; however, the average gain of information at each
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{a,b,c,d,e,f,g,h}

{b,c,d,e,f,g,h}{a}

{c,d,e,f,g,h}{b}

{d,e,f,g,h}{c}

{e,f,g,h}{d}

{f,g,h}{e}

{g,h}{f}

{g} {h}

0.54

0.52

0.49

0.45

0.41

0.34

0.25

Figure 3.13. Stepwise acquisition of information for the case of eight boxes
(3.5.18). The reduction of the MI is shown on the left-hand side.

step is different now:

g1 = H

(
1
8
,
7
8

)
= 0.543,

g2 =
7
8
H

(
1
7
,
6
7

)
=

7
8
× 0.592 = 0.518,

g3 =
7
8
× 6

7
H

(
1
6
,
5
6

)
=

6
8
× 0.650 = 0.487,

g4 =
7
8
× 6

7
× 5

6
H

(
1
5
,
4
5

)
=

5
8
× 0.722 = 0.451,

g5 =
7
8
× 6

7
× 5

6
× 4

5
H

(
1
4
,
3
4

)
=

4
8
× 0.8113 = 0.406,

g6 =
7
8
× 6

7
× 5

6
× 4

5
× 3

4
H

(
1
3
,
2
3

)
=

3
8
× 0.918 = 0.344,

g7 =
7
8
× 6

7
× 5

6
× 4

5
× 3

4
× 2

3
H

(
1
2
,
1
2

)
=

2
8
× 1 = 0.25, (3.5.19)
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Figure 3.14. Stepwise gain of information by the two methods of asking ques-
tions. The longer bars correspond to (3.5.13), the shorter bars to (3.5.19).

Note again that in this case, in contrast to the previous method,
we can find the coin in the first step (or the second or the third,
etc.) gi is the average gain of information on the ith step, provided
we reached the ith step.

Note also that the MI left after each step increases with each step:

H

(
1
8
,
7
8

)
<

(
1
7
,
6
7

)
< H

(
1
6
,
5
6

)
< · · · < H

(
1
2
,
1
2

)
= 1.

(3.5.20)
The reason is that the distribution gets more and more symmet-
ric from the initial distribution (1/8, 7/8) to the final distribution
(1/2, 1/2). On the other hand, the probabilities of reaching that
step become smaller; from one to 2/8. Therefore, the average gain
in information decreases at each step, i.e.,

g1 > g2 > g3 > · · · > g7 = 0.25. (3.5.21)

The sum of the average gains is
7∑

i=1

gi = 3. (3.5.22)

In Figure 3.14, we show the gain of information for the two meth-
ods. In the smartest method (shown with longer horizontal bars),
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we gain 1 bit from each question, and hence we need on aver-
age a smaller number of questions. In the dumbest method, less
information is acquired on average at each step (shown as shorter
bars). Hence, more questions are needed on average.

The corresponding probabilities of terminating the game at each
step are:

P (G1) =
1
8
,

P (N1) =
7
8
,

P (G2N1) = P (G2/N1)P (N1) =
1
7
× 7

8
=

1
8
,

P (N2N1) = P (N2/N1)P (N1) =
6
7
× 7

8
=

6
8
,

P (G3N1N2) = P (G3/N1N2)P (N1N2) =
1
6
× 6

8
=

1
8
,

P (N3N1N2) = P (N3/N1N2)P (N1N2) =
5
6
× 6

8
=

5
8
,

P (G4N1N2N3) = P (G4/N1N2N3)P (N1N2N3)

=
1
5
× 5

8
=

1
8
,

P (N4N1N2N3) = P (N4/N1N2N3)P (N1N2N3)

=
4
5
× 5

8
=

4
8
,

P (G5N1N2N3N4) = P (G5/N1N2N3N4)P (N1N2N3N4)

=
1
4
× 4

8
=

1
8
,

P (N5N1N2N3N4) = P (N5/N1N2N3N4)P (N1N2N3N4)

=
3
4
× 4

8
=

3
8
,

P (G6N1N2N3N4N5) = P (G6/N1N2N3N4N5)

× P (N1N2N3N4N5) =
1
3
× 3

8
=

1
8
,
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P (N6N1N2N3N4N5) = P (N6/N1N2N3N4N5)

× P (N1N2N3N4N5) =
2
3
× 3

8
=

2
8
,

P (G7N1N2N3N4N5N6) = P (G7/N1N2N3N4N5N6)

× P (N1N2N3N4N5N6) = 1 × 2
8

=
2
8
.

(3.5.23)

The average number of steps in this method is

1
8
× 1+

1
8
× 2+

1
8
× 3+

1
8
× 4+

1
8
× 5+

1
8
× 6+

2
8
× 7=

35
8

= 4
3
8
,

(3.5.24)

which is larger than the number of questions in the first method.

The general case
Suppose we have N boxes, in one of which a coin is hidden. To find
out where the coin is, we ask binary questions. For simplicity, we
take N to be of the form N = 2n, where n is a positive integer, and
also assume that the probabilities are equal. Clearly, there are many
ways of asking questions (or strategies). We shall discuss the two
extreme cases corresponding to the “smartest” and the “dumbest”
strategies.

The total MI in this problem is

MI = log2 2n = n. (3.5.25)

Using the smartest strategy, the probabilities of gaining the infor-
mation at the various stages and terminating the game are:

P (G1) = 0, P (N1) = 1,

P (G2) = 0, P (N2) = 1;

for i < n

P (Gi) = 0, P (Ni) = 1;

for i = n

P (Gn) = 1. (3.5.26)
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Clearly, on the nth question, we are guaranteed to obtain the
required information. This is a straightforward generalization of
the results of the previous examples.

It is also clear that at each step, in this particular example, we
obtain the maximum information of one bit. We get the total infor-
mation in the minimum number of questions, on average. We can
also calculate the average number of questions in this case to be

n∑
i=1

P (Gi)i = n. (3.5.27)

If N is an integer, not necessarily of the form 2n, we cannot make
the same divisions as described above. However, one can always find
an integer n such that N will be in the range

2n ≤ N ≤ 2n+1. (3.5.28)

Thus, if N is the number of boxes, we can increase the number
of boxes to the closest number of the form 2n+1. By doing that,
the number of questions will increase by at most one. Therefore,
the general dependence of the MI on the number of boxes will not
change, i.e., for large N , the number of questions will go as

log2 N ≈ n log2 2 = n. (3.5.29)

It should be noted that the above estimates of the number of
questions is for N boxes of equal probability. This gives an upper
limit on the average number of questions. If the distribution of
probabilities is not uniform, we can only reduce the number of
questions necessary to obtain the information.

On the other hand, using the “dumbest” strategy to ask ques-
tions, we have a generalization of Example 2:

P (G1) =
1
N

, P (N1) =
N − 1

N
,

P (G2N1) = P (G2/N1)P (N1) =
1

N − 1
N − 1

N
=

1
N

,

P (N2N1)= P (N2/N1)P (N1) =
N − 2
N − 1

N − 1
N

=
N − 2

N
,



December 5, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch03

160 Statistical Thermodynamics Based on Information

P (G3N1N2) = P (G3/N1N2)P (N1N2)

=
1

N − 2
N − 2

N
=

1
N

,

P (N3N1N2) = P (N3/N1N2)P (N1N2)

=
N − 3
N − 2

N − 2
N

=
N − 3

N
,

P (GN−1N1 · · ·NN−2) = P (GN−3/N1 . . . NN−2)P (N1 · · ·NN−2)

= 1 × 2
N

=
2
N

. (3.5.30)

At the last step, we acquire the required information. The average
number of questions in this strategy is

1
N

N−1∑
i=1

i +
2(N − 1)

N
≈ N

2
. (3.5.31)

Thus, the average number of questions in this case is approxi-
mately linear in N , whereas in the smartest strategy, it is linear in
log2 N . This difference in behavior is shown in Figure 3.15.
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Figure 3.15. The average number of questions as a function N for the two
strategies.
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1

a         b           c
¼ ¼ ½
a         b           c
¼ ¼ ½

{a,b,c}

{a,b}{c}

{a} {b}

{a,b,c}

{b,c}a

{b} {c} 

½

0.81

0.69

(a) (b)

Figure 3.16. An asymmetrical case of three boxes; Example 3.

Example 3: Three boxes with unequal probabilities.
Consider the case described in Figure 3.16. The probabilities of the
boxes are 1

4 , 1
4 , 1

2 , The total MI in this case is

H = −
(

2
4

log2
1
4

+
1
2

log2
1
2

)
=

3
2

= 1.5. (3.5.32)

The first method (the smartest)
Divide each time into two equally probable halves. See diagram in
Figure 3.16a:

g1 = H

(
1
2
,
1
2

)
= 1,

g2 =
1
2
H

(
1
2
,
1
2

)
=

1
2
,

g1 + g2 = 1.5.

(3.5.33)

This is the total amount of MI as in (3.5.32).
The probabilities of terminating the game at each step are:

P (G1) =
1
2
,

P (N1) =
1
2
,

P (G2N1) = P (G2/N1)P (N1) = 1 × 1
2

=
1
2
.

(3.5.34)
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The average number of steps is

1
2
× 1 +

1
2
× 2 =

3
2

= 1.5. (3.5.35)

which is the same as H in (3.5.32).

The second method (the dumbest)41

See diagram in Figure 3.16b. The average gains of information at
each step are

g1 = H

(
1
4
,
3
4

)
= 0.8113,

g2 =
3
4
H

(
1
3
,
2
3

)
= 0.6887.

(3.5.36)

The total MI is

g1 + g2 = 1.5, (3.5.37)

which is the same as in (3.5.32). However, the average number of
steps is different. The probabilities, in this case are:

P (G1) =
1
4
,

P (N1) =
3
4
,

P (G2N1) = P (G2/N1)P (N1) = 1 × 3
4
.

(3.5.38)

The average number of steps is thus

1
4
× 1 +

3
4
× 2 =

7
4

= 1.75, (3.5.39)

which is slightly higher than in the first method.

41Note that in this example the probabilities depend on which box we select
first. Here, we refer to the specific selection described in Figure 3.16b.
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c
1/4

1/2

d

a
1/8 1/8

b

{a,b,c,d}

{a,b,c}{d}

{a,b}{c}

{a} {b} 

{a,b,c,d}

{b,c,d}{a}

{c,d}{b}

{c} {d} 

1.0

0.5

0.25

0.54

0.52

0.69

(a) (b)

Figure 3.17. An asymmetrical case of four boxes; Example 4.

Example 4: Four boxes of unequal probabilities are shown in the
upper part of Figure 3.17. The total MI is

H = −
(

1
2

log2

1
2

+
1
4

log2

1
4

+
2
8

log2

1
8

)
=

4 + 4 + 6
8

=
7
4

= 1.75.

(3.5.40)
The first method
The average gains of information at each step are shown in the left
diagram of Figure 3.17a. The arrows show the reduction in MI at
each step42:

g1 = H

(
1
2
,
1
2

)
= 1,

g2 =
1
2
H(1) +

1
2
H

(
1
2
,
1
2

)
=

1
2
,

g3 =
1
2

[
1
2
H

(
1
2
,
1
2

)]
=

1
2
× 1

2
=

1
4
. (3.5.41)

Hence, the total MI is

g1 + g2 + g3 = 1.75. (3.5.42)

42Note that we can get the information on “where the coin is” at the first step
with probability 1

2
.
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The probabilities:

P (G1) =
1
2
,

P (N1) =
1
2
,

P (G2N1) = P (G2/N1)P (N1) =
1
2
× 1

2
=

1
4
,

P (N2N1) = P (N2/N1)P (N1) =
1
2
× 1

2
=

1
4
,

P (G3N1N2) = P (G3/N1N2)P (N1, N2) = 1 × 1
4
.

(3.5.43)

The average number of steps:

1
2
× 1 +

1
4
× 2 +

1
4
× 3 =

2 + 2 + 3
4

= 1
3
4
, (3.5.44)

which is the same as the total MI in (3.5.40).

The second method
See Figure 3.17b.

The average gains of information at each step are:

g1 = H

(
1
8
,
7
8

)
= 0.544,

g2 =
7
8
H

(
1
7
,
6
7

)
= 0.518,

g3 =
7
8
× 6

7
H

(
1
3
,
2
3

)
= 0.689.

(3.5.45)

The sum of the total MI is

g1 + g2 + g3 = 1.75. (3.5.46)
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The probabilities:

P (G1) =
1
8
,

P (N1) =
7
8
,

P (G2N1) = P (G2/N1)P (N1) =
1
7
× 7

8
=

1
8
,

P (N2N1) = P (N2/N1)P (N1) =
6
7
× 7

8
=

6
8
,

P (G3N1N2) = P (G3/N1N2)P (N1N2) = 1 × 6
8

=
6
8
.

(3.5.47)

The average number of steps is:
1
8
× 1 +

1
8
× 2 +

6
8
× 3 =

1 + 2 + 18
8

= 2
5
8
, (3.5.48)

which is larger than in the first method.

Exercise: Calculate the total MI, and the gain of information at
each step for the problems in Figure 3.18a.

Solution: In Figure 3.18a, we have six boxes with unequal proba-
bilities (1

2 , 1
4 , 1

8 , 1
16 , 1

32 , 1
32 ). The total MI is

H = −
∑

pi log2 pi = 1.9375. (3.5.49)

Note that in this case, we have more boxes than in Example 1,
yet the total MI is less than in that example. The reason is that,
in this case, the distribution is highly non-uniform.

1/4

1/8

1/2

1/16

1/321/32

1/4

1/8

1/2

1/16

1/64

1/641/64

1/64

(a) (b)

Figure 3.18. Asymmetrical cases with six and eight boxes.
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Let us calculate the average number of questions we need to ask
by two different routes. First, along the smart route where at each
step, we divide the total number of events into equal-probability
groups. Denote by P (Gi) the probability of gaining the information
on where the coin is at the ith step, and by P (Ni), the probability
of not gaining the information at the ith step.

The probability of gaining the information at the first step is:
P (G1) = 1

2 , and not gaining, P (N1) = 1
2 .

The probability of gaining the information at the second step is
equal to the probability of not gaining at the first step times the
conditional probability of gaining at the second step, given that N1:

P (G2/N1)P (N1) =
1
2
× 1

2
=

1
4
. (3.5.50)

The probability of gaining at the third step is equal to the prob-
ability of not gaining at the first and second steps times the con-
ditional probability of gaining the information at the third step,
given N1, N2:

P (G3/N1N2)P (N1N2) =
1
2
× 1

2
× 1

2
=

1
8
. (3.5.51)

The probability of gaining the information at the fourth step is:

P (G4/N1N2N3)P (N1N2N3) =
1
2
× 1

2
× 1

2
× 1

2
=

1
16

. (3.5.52)

The probability of gaining the information on the fifth step is:

P (G5/N1N2N3N4)P (N1N2N3N4) =
1
2
× 1

2
× 1

2
× 1

2
× 1 =

1
16

.

(3.5.53)

Thus, the average number of steps is

1
2
× 1 +

1
4
× 2 +

1
8
× 3 +

1
16

× 4 +
1
16

× 5 = 1.9375, (3.5.54)

which is equal to the total MI.
By the second route, we ask first whether it is in the little square

in the figure denoted 1/32 and continue with boxes of higher prob-
ability. The probability of gaining the information at the first step
is P (G1) = 1

32 , and not gaining P (N1) = 31
32 . The probability of
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gaining the information at the second step is P (G2/N2)P (N1) =
1
31 × 31

32 = 1
32 .

The probability of gaining the information at the third step is:

P (G3/N1N2)P (N1N2) =
2
30

× 30
32

=
2
32

.

The probability of gaining the information at the fourth step is:

P (G4/N1N2N3)P (N1N2N3) =
1
7
× 28

30
× 30

31
× 31

32
=

1
8
.

The probability of gaining the information at the fifth step is:

P (G5/N1N2N3N4)P (N1N2N3N4) =
1
3
× 6

7
× 28

30
× 30

31
× 31

32

=
1
3
× 3

4
=

1
4
.

The probability of gaining the information at the sixth step is:

P (G6/N1N2N3N4N5)P (N1N2N3N4N5)

= 1 × 2
3
× 6

7
× 28

30
× 30

32
× 31

32
= 1 × 1

2
=

1
2
.

The average number of steps in this case is
1
32

× 1 +
1
32

× 2 +
1
16

× 3 +
1
18

× 4 +
1
4
× 5 +

1
2
× 6 = 5.03.

(3.5.55)

Clearly, along this route one needs much more questions to get
the required information.

Exercise: Consider eight boxes with unequal probabilities (1
2 , 1

4 , 1
8 ,

1
16 , 1

64 , 1
64 , 1

64 , 1
64) (Figure 3.18b). Calculate the total MI and the

average number of questions along the smartest and dumbest
routes.

In all the above examples, we always had a way of dividing the
total number of events into two parts with equal probabilities. This
is of course, not the general case. We shall now turn to a few cases
where there is no way to divide into two equally probable halves.

The simplest case is of two events only. We have seen that for the
case of equal probabilities, we have Figure 3.19a:

H

(
1
2
,
1
2

)
= 1, (3.5.56)
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1/2 1/ 2 1/10 9/10 999/1000

(a) (b)

1/1000

(c)

Figure 3.19. Symmetrical and asymmetrical cases with two boxes.

which means that there is one bit of information in the problem
and we need to ask only one binary question. What about the
unsymmetrical case where one event is much more probable than
the other? Figure 3.19b shows two events with probabilities 1

10 and
9
10 . The total MI is

H

(
1
10

,
9
10

)
= 0.49, (3.5.57)

which means that we need to ask less than one question. But the
number of questions is always an integer, and even with this exam-
ple, we must ask at least one question. The reason is that in this
example, we have no way of splitting into two equally probable
halves. Yet, we certainly feel that we have more information in this
case than in the previous case.

One way of expressing this additional information is the following.
Instead of asking binary questions and stopping when the informa-
tion is known (in which case we must ask at least one question in
the two cases given above), we ask binary questions but wait until
we get a “Yes” answer (Y ). Alternatively, when we get the “Yes”
answer, open the box and get the coin.

In the case of equally probable cases, we ask, is it in the right
box? If the answer is “Yes,” we open and take the coin. If the answer
is “No,” we must continue to ask, is it in the left box? Only now
do we get a “Yes,” answer and we shall open the box and take the
coin. The probabilities in this case are (here Yi and Ni stand for
getting an answer “Yes” or “No” on the ith step, respectively):

P (Y1) =
1
2
,

P (N1) =
1
2
,

P (Y2N1) = P (Y2/N1)P (N1) = 1 × 1
2

=
1
2
.

(3.5.58)
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Thus, the average number of steps is
1
2
× 1 +

1
2
× 2 = 1

1
2
. (3.5.59)

Thus on average, we need 1.5 questions for this case.
On the other hand, in the second case we have the probabilities

1
10 , 9

10 . There is no smartest strategy in the sense discussed above.
However, you should be smart enough to ask first about the box
with the higher probability. Hence,

P (Y1) =
9
10

,

P (N1) =
1
10

,

(3.5.60)

and

P (Y2N1) = P (Y2/N1)P (N1) = 1 × 1
10

=
1
10

. (3.5.61)

The average number of steps is now
9
10

× 1 +
1
10

× 2 =
11
10

= 1.1. (3.5.62)

So we need roughly one question to gain the coin. Clearly, the larger
the asymmetry between the two probabilities, the closer we shall
be to a single question. For the case ( 1

1000 , 999
1000 ) (Figure 3.19c), we

have the average number of questions:
999
1000

× 1 +
1

1000
× 2 =

1001
1000

= 1.001. (3.5.63)

In both of the last two cases, the average number of questions is
smaller than in the case (3.2.59).

Exercise: Calculate the MI and the (smallest) average number of
questions you need to gain the coin hidden in one of the three boxes,
(Figure 3.20), knowing that the probabilities are:

(a)
(

1
100

,
1

100
,

98
100

)
,

(b)
(

2
200

,
99
200

,
99
200

)
.

Explore the number of questions using different “strategies” of
choosing the order of opening the boxes.
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1/100 99/200

a b

98/100

1/100 2/
20

0 99/200

Figure 3.20. Two asymmetrical cases with three boxes.

3.6 The False Positive Problem, Revisited

Exercise: This is an extension of the problem discussed in Sec-
tion 2.6. It is known that the population of carriers of a virus is
P (C) = 2/100, i.e., two out of one hundred persons in the popu-
lation are carriers. A test for the virus gives a positive (+) result
if the person is a carrier in 999 out of 1,000 cases. There is also a
false positive, i.e., the test is positive, for a non-carrier (C̄), with
probability 10−4. Find the MI of the two experiments: X, being a
carrier or not; Y , testing positive or negative. The corresponding
conditional MI and the mutual information.

Solution: The probabilities in this problem are:

P (C) =
2

100
, P ¯(C) =

98
100

, (3.6.1)

P (+/C) =
999
1000

, P (−/C) =
1

1000
, (3.6.2)

P (+/C̄) = 10−4, P (−/C̄) = 1 − 10−4, (3.6.3)

P (+) = P (+/C)P (C) + P (+/C̄)P ¯(C)

=
999
1000

× 2
100

+ 10−4 × 98
100

= 0.0201, (3.6.4)

P (−) = P (−/C)P (C) + P (−/C̄)P ¯(C)

=
1

1000
× 2

100
+ (1 − 10−4)

98
100

= 0.9799, (3.6.5)

P (C/+) =
P (+/C)P (C)

P (+)
=

999
1000 × 2

100

0.02
= 0.9951,

P (C̄/+) = 1 − P (C/+), (3.6.6)
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P (C/−) =
P (−/C)P (C)

P (−)
=

1
1000 × 2

100

0.98
= 0.0000204,

P (C̄/−) = 1 − P (C/−). (3.6.7)

The correlations between the various events are

g(+, C) =
P (+/C)
P (+)

= 49.756, g(−, C) =
P (−/C)
P (−)

= 0.0010205,

(3.6.8)

g(+, C̄) =
P (+/C̄)
P (+)

= 0.00498, g(−, C̄) =
P (−/C̄)
P (−)

= 1.02039.

(3.6.9)

The MI for X (carrier or non-carrier) is

H(X) = −P (C) log P (C) − P (C̄) log P (C̄) = 0.1414. (3.6.10)

The MI for Y (test positive or negative)

H(Y ) = −P (+) log P (+) − P (−) log P (−) = 0.1419. (3.6.11)

The conditional missing information are:

H(X/+) = −P (C/+) log P (C/+) − P (C̄/+) log P (C̄/+)

= 0.0445, (3.6.12)

H(X/−) = 0.000347, (3.6.13)

H(X/Y ) = P (+)H(X/+) + P (−)H(X/−) = 0.001234, (3.6.14)

H(Y/C) = P (+/C) log P (+C) + P (−/C) log P (−/C)

= 0.011408, (3.6.15)

H(Y/C̄) = P (+/C̄) log P (+/C̄) + P (−/C̄) log P (−/C̄)

= 0.001473, (3.6.16)

H(Y/X) = P (C)H(Y/C) + P (C̄)H(Y/C̄) = 0.001671. (3.6.17)

The joint and the mutual information are:

H(X,Y ) = H(X) + H(Y/X) = H(Y ) + H(X/Y )

= 0.14311, (3.6.18)

I(X;Y ) = H(X) + H(Y ) − H(X,Y ) = 0.14017. (3.6.19)
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H(X,Y)=0.14311

H(X)=0.1414 H(Y/X)=0.00167

H(Y)=0.1419H(X/Y)=0.00123

I(X;Y)=0.14017H(X/Y)=0.00123 H(Y/X)=0.00167

Figure 3.21. The relationships between the quantities H(X), H(Y ), H(X, Y )
and I(X; Y ); Section 3.6.

Note that the correlations come in pairs, one larger than one, and
one smaller than one. However, the mutual information gives larger
weight to the positive correlations; hence, I(X;Y ) is always pos-
itive. The relative sizes of the different quantities are shown in
Figure 3.21.

3.7 The Urn Problem, Revisited

Exercise: This is an extension of the problem discussed in Sec-
tions 2.5 and 2.6. In an urn, there are two white balls and two
black balls. The first experiment XI is a draw of a first ball from
the urn. The drawn ball is not returned. XII is the draw of the
second ball from the urn after the first ball was drawn, and not
returned. Calculate the MI of the two experiments, the conditional
MI, and the mutual information.

Solution: We use the obvious notations; W and B for white and
black:

P (WI) =
1
2
, P (BI) =

1
2
, (3.7.1)

P (WII/WI) =
1
3
, P (BII/WI) =

2
3
, (3.7.2)

P (WII/BI) =
2
3
, P (BII/BI) =

1
3
, (3.7.3)

P (WII) = P (WII/WI)P (WI) + P (WII/BI)P (BI)

=
1
3
× 1

2
+

2
3
× 1

2
=

1
2
, (3.7.4)
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P (BII) = P (BII/BI)P (BI) + P (BII/WI)P (WI)

=
1
3
× 1

2
+

2
3
× 1

2
=

1
2
, (3.7.5)

P (WI/WII) =
P (WII/WI)P (WI)

P (WII)
=

1/3 × 1/2
1/2

=
1
3
, (3.7.6)

P (BI/WII) =
P (WII/BI)P (BI)

P (WII)
=

2/3 × 1/2
1/2

=
2
3
, (3.7.7)

P (WI/BII) =
P (BII/WI)P (WI)

P (BII)
=

2/3 × 1/2
1/2

=
2
3
, (3.7.8)

P (BI/BII) =
P (BII/BI)P (BI)

P (BII)
=

1/3 × 1/2
1/2

=
1
3
. (3.7.9)

The correlations between the various events are

g(WI ,WII) =
P (WI/WII)

P (WI)
=

1/3
1/2

=
2
3
, (3.7.10)

g(WI , BII) =
P (WI/BII)

P (WI)
=

2/3
1/2

=
4
3
, (3.7.11)

g(BI , BII) =
P (BI/BII)

P (BI)
=

1/3
1/2

=
2
3
, (3.7.12)

g(BI ,WII) =
P (BI/WII)

P (BI)
=

2/3
1/2

=
4
3
. (3.7.13)

Note that two of the correlations are positive (g > 1) and two
negative (g < 1). However, the mutual information which is an
average of log gij is always non-negative. The reason is that the
correlations come in pairs, i.e.,

g(WI ,WII) + g(BI ,WII) = 2, (3.7.14)

g(WI , BII) + g(BI , BII) = 2. (3.7.15)

Hence, when one correlation is larger than one, the second is
smaller than one. However, in forming the average in I(XI ;XII),
the positive correlations get the larger weight. Therefore, the net
effect is that I(XI ;XII) is always non-negative.
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The MI of the two experiments is

H(XI) = −P (WI) log P (WI) − P (BI) log P (BI) = 1, (3.7.16)

H(XII) = −P (WII) log P (WII) − P (BII) log P (BII) = 1,
(3.7.17)

i.e., the MI for both XI and XII are one bit. The conditional
MI are:

H(XII/WI) = −P (WII/WI) log P (WII/WI)

− P (BII/WI) log P (BII/WI) = 0.918, (3.7.18)

H(XII/BI) = −P (WII/BI) log P (WII/BI)

− P (BII/BI) log P (BII/BI) = 0.918, (3.7.19)

H(XII/XI) = P (BI)H(XII/BI)

+ P (WI)H(XII/WI) = 0.918, (3.7.20)

H(XI/WII) = −P (WI/WII) log P (WI/WII)

− P (BI/WII) log P (BI/WII) = 0.918, (3.7.21)

H(XI/BII) = −P (WI/BII) log P (WI/BII)

− P (BI/BII) log P (BI/BII) = 0.918, (3.7.22)

H(XI/XII) = P (BII)H(XI/BII)

+ P (WII)H(XI/WII) = 0.918. (3.7.23)

H(X,Y)=1.918

H(X)=1 H(Y/X)=0.918

H(Y)=1H(X/Y)=0.918

I(X;Y)=0.082H(X/Y)=0.918 H(Y/X)=0.918

Figure 3.22. The relationships between the quantities H(X), H(Y ), H(X, Y )
and I(X; Y ); Section 3.7.
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Thus, all the conditional MI’s are equal to 0.918. The joint and the
mutual information are

H(XI ,XII) = H(XI) + H(XII/XI) = 1.918, (3.7.24)

I(XI ;XII) = H(XI) + H(XII) − H(XI ,XII) = 0.082. (3.7.25)

The relative sizes of the different quantities are shown in
Figure 3.22, with X = XI and Y = XII .

Exercise: Generalize for the case of arbitrary NW and NB. Exam-
ine how H(XI/XII),H(XII/XI) and I(XI ;XII) depend on the
ratio NW /NB .
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Chapter 4

Transition from the General MI to the
Thermodynamic MI

In this chapter, we shall make the transition from the general math-
ematical concept of the amount of missing information applied to
a general system as discussed in Chapter 3, and denoted H, to
some simple thermodynamic systems.1 Whenever we discuss ther-
modynamic systems at equilibrium, we shall switch notation from
H to S. There are essentially four axes along which this transition
is accomplished:

(i) From systems consisting of a small number of particles, not
very different from the game of hiding a coin in a box, to
macroscopically large systems consisting of atoms and mole-
cules (thermodynamic systems).

(ii) From discrete to continuous space.
(iii) From independent information to dependent information.
(iv) From one type of information, such as a few particles on a

lattice (locational information only), to two types of informa-
tion, such as a few particles in a gaseous phase (locational and
velocity information).

1Note that in thermodynamics, the letter H is used for the enthalpy. Here, we
use H , following Shannon’s notation for the MI. In this book, we shall never use
the concept of enthalpy and therefore no confusion should arise. We shall refer
to H as information, missing information or the amount of missing information.
In all cases, we mean the Shannon measure of information.

177
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The four transitions are intertwined: the idea is to start with
the MI for very simple systems and eventually reach the MI of a
macroscopic thermodynamic system at equilibrium such as binding
on a surface, the MI of an ideal gas, and the analog of the Sackur–
Tetrode equation.

In Section 4.1, we start with a simple binding system with a small
number of sites and ligands. In Section 4.2, we take the limit of a
macroscopic large system, where M → ∞ and N → ∞, but N/M

is small and constant. The resulting systems are used as simple
models for binding systems. In Section 4.3, we discuss a few sim-
ple processes: expansion, mixing and assimilation that are relevant
to real binding systems. In Section 4.4, we discuss the transition
from one kind (locational), to two kinds of information (locational
and momentum). The culmination of all these transitions brings us
to the derivation of the Sackur–Tetrode equation for the amount
of missing information of an ideal gas. This is a system with a
large number of particles, characterized by two types of information
(location and momenta) and two correction terms (mutual informa-
tion). The derivation will be done in two steps. First, we treat the
locational and the momentum information as if they were indepen-
dent, then introduce two corrections due to dependence; both are of
quantum mechanical origin. One results from the Heisenberg uncer-
tainty principle, and the second is due to the indistinguishability of
the particles. These two corrections are cast in the form of mutual
information, i.e., measuring the extent of dependence between two
or more random variables. Once we achieve that, we can go on
to discuss some simple processes that have been treated both by
classical thermodynamics and statistical mechanics. These will be
deferred to Chapter 6.

4.1 MI in Binding Systems: One Kind of Information

In this section, we start with systems of small number of binding
sites and small number of ligands. The questions we shall ask are
identical to the questions posed in the game of a coin hidden in one
of M boxes (Chapter 3).
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Figure 4.1. All possible configurations for N = 1 and M = 4

4.1.1 One ligand on M sites

The model is very simple. We have one ligand occupying one of
M distinguishable binding sites (or boxes). A configuration, or an
event is a complete specification of where the ligand is. Figure 4.1
shows all configurations for N = 1 and M = 4.

Since there are M equivalent, but distinguishable sites, the prob-
ability of finding the ligand in one specific site, say the jth site is
simply2

Pj =
1
M

. (4.1.1)

The corresponding MI for this system is

H = log M. (4.1.2)

Clearly, the uncertainty or the MI regarding the question “Where
is the ligand?” is larger the larger M is. The more possibilities there
are, the more difficult it is to find out the configuration, or the larger
the number of questions required to acquire this MI (note that the
number M is the analog of the number of letters in an alphabet, in
connection with communication problems). In this, as well as in the
next few examples, there is only one kind of MI, which is locational.
It is presumed that the ligand does not have any other degrees of
freedom, nor velocity.

4.1.2 Two different ligands on M sites

In this section, we assume that there are two ligands on M sites,
and that there exist no ligand–ligand interactions. We distinguish

2We can also “derive” this distribution by starting from the general expression
for the MI, H = −P

pj log pj , then take the maximum of MI subjected to the
only constraint

P
pj = 1, to get (4.1.1); see Section 3.4.
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between two cases:
(a) The sites can accommodate any number of ligands. The total

number of configurations for this problem is simply M2 (there are
M sites to place the first ligands, and M sites to place the second).
Hence, the probability of finding a specific configuration (i.e., which
particle is in which site) is

Pij(1, 2) =
1

M2
=

1
M

1
M

= Pi(1)Pj(2). (4.1.3)

The indices i and j refers to the specific sites i and j. The number
in the parentheses refer to the specific particle, 1 or 2. Clearly, in
this case, the MI is3

H(1, 2) = log M2 = log M + log M = H(1) + H(2), (4.1.4)

i.e., the joint missing information on the locations of the two ligands
is the sum of the MI of each ligand. There is no correlation between
the events “particle 1 in site i” and “particle 2 in site j.” Note that
in this case, “no correlation” is a result of the assumption of no
interactions between the particles, whether they are on the same or
on different sites.

(b) The sites can accommodate, at most, one ligand. Here, the
problem is slightly different from case (a) The total number of con-
figurations in this case is M(M − 1) [there are M possible sites to
place the first ligand, and (M − 1) possibilities to place the second
ligand; the second cannot be placed in the occupied sites]. Thus,
the probability of each specific configuration is

Pij(1, 2) =
1

M(M − 1)
= Pi(1)Pj(2/1), (4.1.5)

where Pi(1) is the probability of finding particle 1 in site i, and
Pj(2/1) is the conditional probability of finding particle 2 in site j,
given that particle 1 occupies a site,i(i �= j).

In this case, though we still presume no intermolecular interac-
tions between the ligands, there exists correlation between the two
events “particle 1 in site i,” and “particle 2 in site j.” We can

3H(1,2) means the MI regarding the locations of particles 1 and 2.



December 5, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch04

Transition from the General MI to the Thermodynamic MI 181

express this correlation by defining the correlation function

gij(1, 2) =
Pij(1, 2)

Pi(1)Pj(2)
=

M2

M(M − 1)
=

1
1 − 1

M

. (4.1.6)

Instead of (4.1.5), we write

Pij(1, 2) = Pi(1)Pj(2)gij(1, 2)

=
1
M

× 1
M

×
(

1
1 − 1

M

)
. (4.1.7)

Compare this with (4.1.3). Here, the joint probability is not equal
to the product of the probabilities of the two events. Note that this
correlation is due to the finiteness of the number of the sites. It is
easy to understand the origin of this correlation. The probability
of placing the first particle in any site, say i, is as in (4.1.1). How-
ever, for the second particle, there are now only (M − 1) available
sites, i.e., the mere occupation of one site causes a change in the
probability of occupying another site.4

In terms of MI, we have to modify (4.1.4) to take into account
the correlation. We define the mutual information for this case as

I(1; 2) = H(1) + H(2) − H(1, 2)

= log M + log M − log M(M − 1)

= log
M2

M(M − 1)
= log[g(1, 2)] = − log

(
1 − 1

M

)
. (4.1.8)

Note that in (4.1.8), we omitted the subscripts i, j since this
quantity is independent of the specific sites i and j (i �= j) . We
retain the indexes of the particles 1 and 2, to stress the fact that
the particles are different.

Note that I(1; 2) is always positive; this means that knowing
where particle 1 is gives us some information on where particle 2 is.
Alternatively, the MI regarding the location of 2 (or 1) is reduced
after having located particle 1 (or 2) — a result that makes sense
and is in accordance with the meaning of the mutual information.

4The restriction of single occupancy can be interpreted as an infinite repulsive
interaction between two ligands occupying the same site.
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Figure 4.2. All possible configurations for N = 2 and M = 4.

We shall never be interested in this kind of correlation. We shall
always assume that M is very large, where the correlation (4.1.6)
will tend to unity.

4.1.3 Two identical ligands on M sites

In this example, we introduce another kind of correlation. To high-
light this new effect, we shall eliminate the effect of the finiteness
of the binding system. Before doing so, we should note that in the
present problem we need not discuss cases (a) and (b) as we did
in Section 4.1.2. We shall assume for simplicity that there is only
a single occupancy, and that M � N > 1 (N is the number of lig-
ands and M is the number of sites). The number of configurations
for N = 2 and any M is:

W =
M(M − 1)

2
M→∞−−−−→ M2

2
. (4.1.9)

Figure 4.2 show all the configurations for N = 2 and M = 4, which
are given by

W =
4(4 − 1)

2
= 6. (4.1.10)

This case is fundamentally different from the previous case.
Because of the indistinguishability of the particles, we have two
different singlet distributions: one, when we ask for the probability
of finding a specific particle in site i, and the second is the proba-
bility of finding any particle in site i.5 The first is simply 1/M , the
second is 2/M . In this chapter, we shall be interested in the cor-
relation due to the indistinguishability of the particles. Therefore,

5In the theory of liquids, the only significant distributions are the so-called
generic distributions. Here, we first assume that particles are labeled, then un-
label them to find out the emergent correlations due to the indistinguishability
of the particles.



December 5, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch04

Transition from the General MI to the Thermodynamic MI 183

we shall use the first probability to calculate the correlation. Thus,
the number of configurations when a single particle is in the system
is M . When there are two particles in the system, the number of
configurations is M2

2 . Hence, the probabilities are:

Pi(1) =
1
M

, Pi(2) =
1
M

, Pij(1, 2) =
2

M2
. (4.1.11)

The correlation function for this case is

gij =
Pij(1, 2)

Pi(1)Pj(1)
= 2. (4.1.12)

This means that the conditional probability of finding a particle
in site j is larger than the (unconditional) probability of finding
a particle at site j. This correlation may be expressed as mutual
information:

I(1; 2) = H(1) + H(2) − H(1, 2)

= log M + log M − log
M2

2
= log 2> 0. (4.1.13)

Comparing this case with the case of Section 4.1.2, we see that if we
have two distinguishable ligands, the number of states is M2. When
we un-label the ligands, i.e., make the particles indistinguishable,
the number of configurations decreases. This is somewhat coun-
terintuitive. We conceive the process of un-labeling as a process
where we lose information. Here, we have erased the identity of the
particles. We feel that something is lost, yet the number of config-
urations decreases, and the corresponding joint MI is smaller than
the joint MI of the labeled particles. We shall return to this point
in Chapter 6, and Appendix M.

4.1.4 Generalization to N ligands on M sites

We assume that the sites can accommodate at most one ligand. We
have N ligands and M > N sites.

For N different (D) ligands (or coins in M boxes), the number
of configurations is

W D = M(M − 1)(M − 2) · · · (M − (N − 1))

=
M !

(M − N)!
. (4.1.14)
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The probability of each specific configuration is 1/W D. This is
the same as the joint probability

Pi1i1···iN
(1, 2, 3, . . . , N) =

[
M !

(M − N)!

]−1

=
(

1
M

)N

g(1, 2, . . . , N),

(4.1.15)

where the correlation function is given by6

g(1, 2, · · · , N) =
MN (M − N)!

M !

= 1 × 1
1 − 1

M

× 1
1 − 2

M

× · · · × 1
1 − N−1

M

. (4.1.16)

Clearly, for M � N , this correlation tends to unity:

g(1, 2, . . . , N) M→∞−−−−→ 1. (4.1.17)

However, for an N indistinguishable (ID) particles, we have instead
of (4.1.14)

W ID =
M !

(M − N)!N !
=
(

M

N

)
. (4.1.18)

This is simply the number of ways of placing N identical objects
in M distinguishable boxes.

The probability of each specific configuration is
(
M
N

)−1
. The cor-

responding correlation function is now

g(1, 2, . . . , N) =
Pi1i2···iN

(1, 2, . . . , N)
[Pi(1)]N

=

(M
N

)−1

(
1
M

)N M→∞−−−−→ N ! > 1.

(4.1.19)
Note that in this case, as in Section 4.1.3, there exists a correlation

due to the indistinguishability of the particles. This correlation is
different from correlations due to intermolecular interactions.

6Again, we note that this correlation is between labeled particles, and is dif-
ferent from correlations used in the theory of liquids. Here, we first assume
that the particles are distinguishable, then introduce the correlation and the
corresponding mutual information due to indistinguishability of the particles.
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Figure 4.3. The process of assimilation four distinguishable particles. The cor-
responding change in MI is (4.1.20)

Consider the process depicted in Figure 4.3. The change in the
MI in this process for any N � M is:

∆H = H(1, 2, . . . , N) −
n∑

i=1

H(1) = log
(

M

N

)
− N log M

= log
M !MN

N !(M − N)!
M→∞−−−−→ − log N !. (4.1.20)

The mutual information in this case is

I(1; 2; . . . ;N) = log N !. (4.1.21)

This is the mutual information due to the indistinguishability of the
N particles. At this stage, it is instructive to calculate the change in
the MI for the following process. We start with N distinguishable
(D) particles distributed on M distinguishable sites. We assume
M � N , so that it does not matter if we allow only single or
multiple occupation of each site. We next un-label the particles, i.e.,
we make the particles indistinguishable (see also Appendix M). The
change in MI is

HID(1, 2, . . . , N) − HD(1, 2, . . . , N)

= log
(

M

N

)
− log

M !
(M − N)!

M>>N−−−−−→ log
1

N !
= − log N !,

(4.1.22)

i.e., in this process, the amount of MI decreases. This is again a
counterintuitive result. We expect that by erasing the labels, infor-
mation will be lost. Loss of information should increase the uncer-
tainty or the MI. Here, we find that the uncertainty or the MI has
actually decreased. The reason is that in (4.1.22), we calculated the
MI associated with the number of states, or the number of configu-
rations, and this number has decreased upon un-labeling. It is true
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that by un-labeling, we lose information. We initially knew which
particle is which. After un-labeling, we no longer know which is
which. However, this loss of information is not the kind of informa-
tion we are calculating in (4.1.22). This apparent counterintuitive
conclusion probably led both Maxwell and Gibbs to reach an erro-
neous conclusion. We shall further discuss this later in Chapter 6.

We summarize what we have found so far in this model system.
The process of labeling and un-labeling is relevant for macroscopic
particles, say billiard balls. In actual molecular systems, the atoms
and molecules are ID by nature. We have discussed here one kind of
information, locational: where the particles are. We have seen that
there are two kinds of correlations or dependence between these
events. One is due to the finiteness of the system. We saw that we
can get rid of this correlation by taking the limit of M → ∞. The
second correlation is due to the indistinguishability of the particles.
This correlation stays with us whenever we want to use information
or MI about the location of molecular particles. This correlation
is not removed by letting M → ∞, and cannot be removed, in
principle. This correlation is always positive and increases with N .

Before generalization to two kinds of information in Section 4.3,
we discuss a few processes on this model. For reasons that will be
clear later, we shall always assume that M � N � 1, i.e., there will
be no correlations due to the finiteness of the system. The number
of particles is very large, yet very small compared with M . (Hence,
it does not matter whether the sites can be accommodated by one
or more particles.)

4.2 Some Simple Processes in Binding Systems

We assume the following model. A surface consists of M sites, each
site can accommodate one atom of type A, and there are no inter-
actions between the particles.

In this section, there is one energy level which, by construction
of the system, is simply Nε, where ε is the interaction energy
between the atom and the site. The degeneracy of this energy level
is simply the number of ways (or the number of configurations,
or the number of microstates) of distributing N indistinguishable
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atoms on M distinguishable sites (or boxes). This number is

W =
(

M

N

)
. (4.2.1)

The corresponding missing information (MI) is7

S(E,M,N) = log W. (4.2.2)

We have written the MI as a function of the three variables. The
total energy E, the total number of sites (which in Chapter 5 will
be replaced by the volume), and the total number of atoms. In this
particular system, E is determined by N . We assume that all of the
W states of the system are accessible.8 We stress from the outset
that the MI is a state function, in the sense that for any specific
values of the macroscopic variables E,M,N , the value of the MI is
uniquely determined when the system is at equilibrium.

We also note that the MI is an extensive quantity, i.e., it is a
homogenous function of order one. This means that for any positive
number α > 0:

S(αE,αM,αN, ) = αS(E,M,N) (4.2.3)

as can be verified directly from (4.1.2) and (4.2.2). Next, we calcu-
late the change in MI for some simple processes.

4.2.1 The analog of the expansion process

Consider the process depicted in Figure 4.4. We have two compart-
ments each having the same number of M sites and N particles.
Initially, the two compartments are disconnected (or are separated
by a barrier that precludes the passage of ligands from one system
to the other).

Clearly, the total number of configurations of the combined sys-
tems, L and R is

Wtotal = WLWR (4.2.4)

7We use now S instead of H . We shall do so whenever we deal with a model for
a real thermodynamic system at equilibrium.
8We could have constructed some mechanism that induces transitions between
different configurations. However, in this simple model, we simply assume that
all the configurations are attainable.
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L RLR

Figure 4.4. The analog of the expansion process, but on a lattice model.

and

Stotal = log WLWR = log WL + log WR

= SL + SR. (4.2.5)

Thus, the total MI of the combined (but separated) systems is
simply the sum of the MI of the right (R) and the left (L) systems.
This is consistent with the meaning of S as missing information as
discussed in Chapter 3.

To simulate an “expansion” process, suppose that we start ini-
tially with two compartments as in the left-hand side of Figure 4.4,
where the right compartment R, is empty (“vacuum”).

In this case, the initial (i) number of configurations is

Wi = WLWR = WL (4.2.6)

and

Si = SL. (4.2.7)

We next remove the partition that separates the two compart-
ments. The new system is now characterized by the new variables
(E, 2M,N). Note that E and N do not change, only the number
of sites changes from M to 2M . The new number of configuration
in the final system (f) is

Wf =
(

2M
N

)
(4.2.8)

and the corresponding MI is

Sf = log Wf = log
(

2M
N

)
. (4.2.9)
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Therefore, the change in the MI in this process is

∆S = Sf − Si = log

(2M
N

)
(M

N

) > 0. (4.2.10)

Clearly, the number of configurations has increased by the removal
of the partition. Hence, the MI is larger in the final state compared
with the initial state. This is true for any N and M (of course with
N ≤ M). Let us look at one limiting case 1 � N � M , i.e., the
ligands are very “diluted” on the surface. Equivalently, the “mole
fraction” of the occupied sites is very small

x =
N

M
� 1. (4.2.11)

In this case, we have

∆S = log

(2M
N

)
(M

N

) = log
(2M)!(M − N)!
(2M − N)!M !

.

= log
(2M − N + 1)(2M − N + 2) · · · 2M

(M − N + 1)(M − N + 2) · M

= log

[
(2 − N

M + 1
M )(2 − N

M + 2
M ) · · · 2

(2 − N
M + 1

M )(2 − N
M + 2

M ) · · · 1

]

1�N�M−−−−−−→ log 2N = N log 2 > 0. (4.2.12)

Note that this result is for the case in which N and M are large
compared with 1 and that N � M . The significance of this result
is the following. Suppose we are interested only in the locations of
the particles in either R or in L.9 With this choice, we have all the
information on the initial system, i.e., we know that all particles are
in L. Hence, Si = 0. On the other hand, in the final system, each
particle can be either in L or in R, hence there are altogether 2N

possibilities, the corresponding MI is Sf = log 2N . In terms of the
number of questions we need to ask to acquire the MI, we take the
logarithm to the base 2, hence ∆S = Sf −Si = log2 2N = N . Thus,
exactly N questions are needed to locate the N particles — locate in
the sense of being either in L or in R. This example already shows

9Note that this is one possible choice, of the amount of information we are
interested in. We shall discuss several other possibilities in Section 4.2.4.
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that the MI depends on our choice of characterizing the system.
However, the change in MI is independent of that choice. We shall
discuss this in greater details in Section 4.2.4.

The conclusion reached here is the following: whenever we remove
a barrier separating the two compartments, the amount of MI
always increases. This is the analog of the expansion of an ideal
gas as will be discussed in Section 6.1.

The quantity W in (4.2.1) can be given another informational
interpretation. We assume that N and M are very large so that we
can apply Stirling approximation (see Appendix E) to get

ln W = M ln M − N ln N − (M − N) ln(M − N)

= −M [x ln x + (1 − x) ln(1 − x)], (4.2.13)

where x = N
M is the mole fraction of occupied sites and 1 − x

is the mole fraction of empty sites. Thus, (4.2.13) can be viewed
as M times the MI associated with each site, x and 1 − x are
the probabilities for two possible events of each site, occupied and
empty, respectively.

4.2.2 A pure deassimilation process

In the expansion process discussed in Section 4.2.1, we started with
a system initially characterized by E,M,N and finally character-
ized by E, 2M,N . Only one parameter has changed, i.e., M → 2M
(this is the analogue of the expansion process where the volume
changes, say V → 2V ; see Section 6.1).

We now describe another process, where again only one param-
eter changes, this time the number of indistinguishable particles.
The process is depicted in Figure 4.5. For reasons that will be clari-
fied later, we refer to this process as deassimilation, i.e., the reverse
of the process of assimilation. For the moment, we shall not elabo-
rate on the meaning of this term. We shall do that in Section 6.3.
Also, we shall not be interested in the way we get from the initial
to the final state. All that matters is the characterization of the
initial and the final states.

We are interested in the change in the MI between the initial
and the final state. Initially, we have N particles on M sites, and
in the final states we have split the system into two parts each
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Figure 4.5. A pure process of deassimilation.

having M sites and exactly N/2 particles.10 As before, we assume
for simplicity, that 1 � N � M . The change in MI in this process is

∆H = Hf − Hi = log

(
M

N/2

)(
M

N/2

)
(
M
N

)
= log

N !
[(N/2)!]2

+ log
(M − N)!M !

(M − N/2)!(M − N/2)!

= log
N !

[(N/2)!]2
+ log

(
M − N

2 + 1
) (

M − N
2 + 2

) · · ·M
(M − N + 1)(M − N + 2) · · · (M − N

2

)
= log

N !
[(N/2)!]2

+ log

(
1 − N

2M + 1
M

) · · · 1(
1 − N

2 + 1
M

) · · · (1 − N
2M

)
N�M−−−−→ log

N !
[(N/2)!]2

→ log
(

N

N/2

)
> 0. (4.2.14)

This is always positive for any N . Furthermore, for large N

(strictly for N →∞), we can use the Stirling approximation to
obtain

∆S = log
(

N

N/2

)
= log 2N = N log 2. (4.2.15)

Thus, for any finite N (and N � M), ∆H is always positive. For
macroscopic N , ∆H turns into ∆S, which is exactly of the same
magnitude as in (4.2.12) for the expansion process. Note that the
type of information that we consider here is the same as in the

10The requirement of exactly N/2 particles in each side is not essential. When
N is very large, we need only require that in each compartment, we have about
N/2.
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expansion process, i.e., we are concerned with the locational infor-
mation. Here, however, the accessible number of sites for each par-
ticle is unchanged. What has changed is the extent of correlation
among the particles, due to the indistinguishability of the particles.

Initially, we had N indistinguishable particles and we end up
with two separate groups: N/2 indistinguishable particles in one
box, and another N/2 indistinguishable particles in another box.
Note that in the final state, the two groups are distinguishable
by the fact that they are in different boxes. All the N particles
are identical. However, N/2 in R are distinguishable from the N/2
in L.11 This is a subtle point that should be considered carefully.
Another point that should be considered is that though the amount
of MI has increased from the initial to the final state, the process in
Figure 4.5 is not a spontaneous process, i.e., a system of N identical
particles do not spontaneously split into two separate boxes, each
of which contain N/2 particles.

We now describe an equivalent process where the same amount
of informational change occurs spontaneously. We shall briefly
describe this process here, but we shall elaborate on this in greater
detail in Chapter 6.

Suppose the ligands molecules have a chiral center, so there exists
two isomers (ennantiomers) of the molecule. This will be referred to
as d and l forms. The two isomers are identical in all aspects except
that they are mirror images of each other. They are distinguishable,
and in principle also separable. Figure 4.6 shows schematic exam-
ples of such molecules.

As in Figure 4.5, we shall start again with N molecules on M sites
(Figure 4.7), but now all particles are in, say, the d form. The N

molecules are indistinguishable. We place a catalyst (alternatively,
we can assume that the binding surface is itself the catalyst) which
initiates transitions from d to l and vice versa.12

11We shall further discuss this property in Chapter 6 and in Appendix J.
12Note that this catalyst does not use any “knowledge,” as in the case of
Maxwell’s demon. It allows molecules to pass in both directions, from l to d,
as well as from d to l. Here, the catalyst is the analog of removing the partition
in the expansion process.
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Figure 4.6. A molecule and its mirror image.
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Figure 4.7. A spontaneous process of deassimilation.

After reaching equilibrium, we shall have N/2 of the d form and
N/2 of the l form. The same calculation as done in (4.2.14) applies
here. The resulting change in MI is

∆S = log
(

N

N/2

)
= N log 2. (4.2.16)

The reason for the increase in MI here is exactly the same as in
(4.2.15). In fact, the processes in Figures 4.5 and 4.7 are thermody-
namically equivalent. In both, we started with N indistinguishable
molecules and ended up with two groups, N/2 of one kind and N/2
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of another kind. The two kinds of molecules are distinguishable.
The reason for the increase in the amount of information is that
the N/2 of the d particles acquire a new identity. This is a sponta-
neous process where the MI has increased by the amount (4.2.16).
We shall come back to this process in a real system in Chapter 6.
It should be noted that the locational MI of each particle has not
changed in this process: each particle can be in any one of the M

sites. What has changed is the mutual information; initially, we
have mutual information associated with N particles, and at the
end we have two systems with mutual information associated with
N/2 particles each.

4.2.3 Mixing process in a binding system

We discuss here the simplest mixing process. We start with two
systems each having M sites. One system contains NA particles of
type A, and the second contains NB particles of type B. We assume
that 1 � NA, NB � M . The A particles are indistinguishable (ID)
among themselves and the B particles are ID among themselves,
but the A particles are different, hence, distinguishable from the B

particles.
The process is shown in Figure 4.8. We bring NA and NB onto a

system having the same number of sites.13

Figure 4.8. A pure process of mixing.

13We shall not be concerned here with the method of accomplishing this process.
It can be done by employing semi-permeable partitions. Here, we are interested
only in the difference between the final and the initial states. See Section 6.2.
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Assuming that the site can have at most a single occupancy, we
have

∆H = log
(

M

NA

)(
M − NA

NB

)
− log

(
M

NA

)
− log

(
M

NB

)
M>>NA,NB−−−−−−−−→ 0, (4.2.17)

and for multiple occupancy

∆H = log
MNA

NA!
MNB

NB !
− log

MNA

NA!
− log

MNB

NB !
= 0. (4.2.18)

Thus, the change in MI in this mixing process is zero. Note, how-
ever, that if the two systems contain the same kind of particles,
say all of the A kind, then the change in MI is, say in the case of
multiple occupancy,

∆H = log
MNAMNB

(NA + NB)!
− log

MNA

NA!
− log

MNB

NB!

= log
NA!NB !

(NA + NB)!
< 0. (4.2.19)

∆H (4.2.19) is always negative. This follows from the fact that the
number of ways of choosing NA out of NA + NB is larger than one,
unless NA = 0, or NA = NA + NB:(

NA + NB

NA

)
=

(NA + NB)!
NA!NB !

≥ 1. (4.2.20)

In particular, when NA = NB = N , we have

∆H = log
(N !)2

(2N)!
< 0, (4.2.21)

and when N → ∞, this quantity tends to14

∆S → − log 2N = −N log 2. (4.2.22)

This process is clearly the reversal of the process described in Sec-
tion 4.2.2. We refer to this process involving identical particles as
assimilation. We see that assimilation of any two quantities of par-
ticles of the same species always involves a decrease in MI. We shall
return to this kind of process in an ideal gas system in Section 6.3.

14Note again that ∆S is the same as ∆H , but we use ∆S whenever we deal
with thermodynamic systems.
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4.2.4 The dependence of MI on the characterization of
the system

We have already seen in Section 4.1.1 that the MI itself depends
on how we choose to view the system, but the change of MI does
not depend on this choice, provided that the choice is not changed
in the process. We shall further elaborate on this point since it has
caused considerable confusion. We discuss here two kinds of such
characterizations.

(a) Precision with respect to the locations of the particles
First let us extend the case of Section 4.1.1. Suppose for concrete-
ness, we have M = 64 sites, and we choose to group the sites
into four groups, say the sites have different forms or different
colors, or simply, are at different corners of the binding system
(Figure 4.9). For one atom distributed on the M = 64 sites, the MI
is H = log2 64 = 6. However, if we are not interested in the details
of at which site each particle is located, but only in which one of
the four cells; upper left (UL), upper right (UR), lower left (LL)
and lower right (LR), then the MI is different. In this characteriza-
tion, we have altogether four configurations, among which we care
to distinguish. The amount of MI in this view is simply

H = log2 4 = 2. (4.2.23)

Clearly, the finer the description of the location of the particles,
the larger the MI. More generally, suppose we divide the M sites
into m groups, each containing v = M/m sites. We have N particles
distributed over these sites, with N � M , and we are interested
only in locating the particles in the various groups. We consider
again the process of expansion as in Figure 4.4. The MI in the

L RLR

Figure 4.9. The analog of the expansion process, but considering each group
of eight sites as one cell.
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initial and the final states is15

Hi = log
mN

N !
, Hf = log

(2m)N

N !
, (4.2.24)

and the change in the MI in the process is

∆H = Hf − Hi = log
(2m)N

mN
= N log 2. (4.2.25)

Note carefully that Hi and Hf depend on the number of groups,
m or on the size of each group v = M/m. Clearly, if we choose
smaller cells we need more information to locate the particles. In
Section 4.2.1, we have chosen the extreme case where there are
only two groups, or the two compartments L and R. In both cases,
the change in MI does not depend on v. It is the same MI here,
N log 2 as in Section 4.2.1. We conclude that the MI depends on
the precision we choose to describe the system, but changes in the
MI are not dependent on this choice.

(b) Precision with respect to the composition of the system
We next turn to a different type of description of the system. Sup-
pose there are two kinds of isotopes, say N1 atoms of one kind and
N2 atoms of another kind, all on M sites, and we do care to distin-
guish between them, say one kind are white balls while the others
are gray balls (Figure 4.10a). We are interested in the total number
of configurations of this system, which is simply

Wa =
(

M

N1

)(
M − N1

N2

)
. (4.2.26)

Clearly, this is different from having (N1 +N2) identical particles
on M sites. The MI in the first case is

Ha,1 = log(Wa,1) = log
(

M

N1

)(
M − N1

N2

)
, (4.2.27)

and the MI for the second case is

Ha,2 = log Wa,2 = log
(

M

N1 + N2

)
. (4.2.28)

15We assume for simplicity that each site can accommodate any number of
particles, and that there are no interactions between particles occupying either
the same or different sites.
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L RL
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(b)
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Figure 4.10. (a) The analog of the expansion process, but with mixture of
two isotopes (depicted as two shades of grey). (b) The analog of the expansion
process, but with labeled particles.

The difference in the MI in the two cases is

Ha,1 − Ha,2 = log
(

M

N1

)(
M − N1

N2

)
− log

(
M

N1 + N2

)

= log
(N1 + N2)!

N1!N2!
≥ 0. (4.2.29)

For macroscopic systems, i.e., when N1, and N2 are very large,
this difference tends to

Ha,1 − Ha,2 = −N log[x1 log x1 + x2 log x2], (4.2.30)

where N = N1 +N2 and x1 and x2 are the mole fractions of the two
isotopes. The expression on the right-hand side of (4.2.30), when
multiplied by kB , is very often referred to as the entropy of mixing.
Clearly, this term has nothing to do with a mixing process. When
proceeding from one case to the other, we simply choose to care
for, or to distinguish between, the two isotopes, or the two colors
of the balls. If we are color-blind, this term does not appear. It
only depends on our willingness to distinguish or not to distinguish
between the two species.

Thus, as in the previous example, different levels of descriptions,
lead to different measures of MI. However, changes of MI, as well
as the changes in the thermodynamic MI, in a physical process,
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are independent of that choice, provided the composition does not
change in the process. We demonstrate that for the simple process
of expansion.

First, we do the expansion recognizing that the two components
are different (i.e., we distinguish between the white and the gray
colored balls) (Figure 4.10a). The change in MI is

∆H(distinguishing between the colors)

= log
(

2M
N1

)(
2M − N1

N2

)
− log

(
M

N1

)(
M − N1

N2

)
N1+N2�M−−−−−−−→ log 2N1+N2 = (N1 + N2) log 2. (4.2.31)

Next, we do the same process but when we are unaware of the
existence of the two isotopes (we are color-blind):

∆H(not distinguishing between the colors)

= log
(

2M
N1 + N2

)
− log

(
M

N1 + N2

)
N=N1+N2�M−−−−−−−−−−→ log 2N1+N2 = (N1 + N2) log 2. (4.2.32)

Clearly, the change in the MI is the same, whether we do or we
do not care to distinguish between the two species. This is true
as long as the number of each kind of molecule does not change
in the process. The result above simply means that the (N1 + N2)
molecules have expanded their accessible “volume” from M to 2M .

We can conclude that removing the color, or deleting the labels
on the two species, always lowers the MI. It is easy to show that
this is true for any number of species, say if we start with N1

molecules of one kind (say oxygen molecules), N2 of another kind
(say nitrogen molecules), N3 of another kind (say carbon dioxide
molecules), etc. The MI is different whether we distinguish or do
not distinguish (voluntarily or involuntarily) between the different
species. However, the change in MI in the process of expansion
would be the same whether we care or do not care to distinguish
between the species.

Let us go to the extreme case. Suppose that we could have labeled
all the particles, say by numbering them 1, 2, . . . , N (or color all the
balls differently from each other) (Figure 4.10b).
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The initial number of configurations is

Wi = M(M − 1)(M − 2) · · · (M − N + 1) =
M !

(M − N)!
. (4.2.33)

Note that we have not divided by N ! since we have N distinguish-
able particles. The number of configurations in the final state is

Wf =
(2M)!

(2M − N)!
. (4.2.34)

The change in the MI, in the process of expansion is thus [see
(4.2.12)]

∆H = Hf − Hi = log
(2M)!(M − N)!
(2M − N)!M !

1�N�M−−−−−−→ N log 2, (4.2.35)

which is exactly the same as in the previous expansion of N indistin-
guishable particles. The reason is that the identities of the particles
did not change in the process. What has changed is that each par-
ticle had initially M accessible sites and finally 2M accessible sites.
Note, however, that the MI itself is very different when the par-
ticles are distinguishable or indistinguishable. For this particular
example, we have

H(labeled) = log
M !

(M −N)!
, H(ID) = log

(
M

N

)
= log

M !
(M −N)!N !

.

(4.2.36)
Thus, the process of labeling the particles changes the amount of
MI by

H(labeled) − H(ID) = log N ! (4.2.37)

This is a very important result that should be remembered. By
labeling the particles, the MI increases by the amount log N !, where
N ! is the number of ways one can label N particles. We shall return
to this point in connection with the process of assimilation of ideal
gases in Section 6.3 and Appendix M.

Exercise: Calculate the number of configurations for a system
of N = 2 particles on M = 6 sites, where each site can accom-
modate at most one particle, once when the particles are labeled
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(say 1 and 2), and once when the particles are unlabeled. Calculate
the change in the MI for the process of labeling or un-labeling the
particles.

4.3 MI in an Ideal Gas System: Two Kinds of
Information. The Sackur–Tetrode Equation

In this section, we discuss the MI of a system of N particles in a box
of volume V . In doing so, we extend the treatment of Section 4.1 in
two senses: from a discrete to a continuous system, and from one
kind to two kinds of information.

The building blocks of these generalized MI were introduced by
Shannon in his original work on the theory of communication. The
relevant measures of information were discussed in Section 3.2. Note
also that whenever we handle MI in a continuous space, we should
be careful in applying the concept of MI, not to a single state but
to a difference in MI between two states of the system (see also
Appendix I).

4.3.1 The locational MI

For a single particle moving along a segment of length L, the equi-
librium probability density is uniform (Section 3.2.4):

f(x) =
1
L

, (4.3.1)

and the corresponding MI is

H(X) = log L. (4.3.2)

Note that in (4.3.2), X is the random variable, the values of which
are the x coordinates. We ignore here the question of the units of
length we use for L; we shall be interested only in differences in the
MI, not in the MI itself.

For one particle in a box of volume V (for simplicity assume that
the box is a cube, the length of each edge being L). The corre-
sponding MI, assuming that the locations along the three axes are
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independent, is

H(R) = H(X) + H(Y ) + H(Z) = 3 log L

= log V. (4.3.3)

For N different, or distinguishable (D) and non-interacting par-
ticles 1, 2, . . . , N , the corresponding MI is simply the sum of the MI
for each particle, i.e.,

HD(RN ) =
N∑

i=1

H(Ri) = N log V. (4.3.4)

Here, RN is a shorthand notation for the configuration R1, . . . ,RN ,
of the particles.

Consider the process depicted in Figure 4.11a, which is similar to
the process in Figure 4.3 except that the lattice points are replaced
by the volume V . The difference in the MI in this case is

HD(RN ) −
N∑

i=1

H(Ri) = 0. (4.3.5)

Initially we have N boxes of equal volume V , each containing one
labeled particle. All these are brought to one box of the same volume
V . The change in MI is zero. (Note that we are discussing here
totally non-interacting particles; this is a hypothetical system of
point particles. Any real particles would have some finite molecular
volume, and hence the same process as in Figure 4.11a would entail
a finite change in MI.)

1
1

2
23 3

4 4
(a)

(b)

Figure 4.11. (a) The process of assimilating four labeled particles. (b) The
process of assimilating four identical particles.
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Figure 4.12. Six different configurations become indistinguisable when the
labels are erased.

Next, consider the same process as in Figure 4.11a with identical,
but un-labeled particles (Figure 4.11b). As long as each particle is
in a different box, they are distinguishable from each other. We can
say this particle is in box 1, that particle is in box 2, etc. (the boxes
are distinguishable). Once they are together in a single box having
volume V , they become indistinguishable. This process produces a
change in the MI.

To see this, consider three labeled particles in a configuration as in
Figure 4.12. Clearly, for labeled particles, these are distinguishable
configurations. When counting the total number of possible config-
urations in (4.3.4), we have assumed that each particle can occupy
any point Ri independently of the occupancy of other points in V .
Thus, all of these six configurations are counted as different config-
urations in (4.3.4). For ID particles, we cannot distinguish between
these six configurations. This is true for any configuration of the
three particles. Thus, in (4.3.4), we have over-counted the number
of configurations. To correct for this over-counting, we must divide
the total number of configurations by six, i.e., instead of V 3, we
must take V 3/3!, and for N particles, we must take V N/N !. Thus,
in this case we have instead of (4.3.4)

HID(RN ) = log
V N

N !

= HD(RN ) − log N !

=
N∑

i=1

H(Ri) − log N !. (4.3.6)

Hence, in the process of Figure 4.11b, we have

HID(RN ) −
N∑

i=1

H(Ri) = − log N !. (4.3.7)
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This is the same as we had in the case of binding system (see
Section 4.1.4). Here, we do not have to take the limit M → ∞, as
the finite volume V already has infinite “sites” compared to N . We
can conclude that the indistinguishability of the particles introduces
dependence, or correlations, between the locational information of
the particles. The mutual information in this case is

I(R1;R2; . . . ;RN ) =
N∑

i=1

H(Ri) − HID(R1, . . . ,RN ) = log N !.

(4.3.8)

4.3.2 The momentum MI

Real particles are described classically by both their locations and
their momenta. A single classical particle in an isolated box of vol-
ume V must have a single velocity, hence an exact kinetic energy.16

We therefore proceed directly to an isolated system of N non-
interacting particles.17

Following Shannon, the maximum MI of a continuous random
variable, having a fixed variance σ2, is obtained for the normal
distribution (see Section 3.2.4). We also know from the Maxwell–
Boltzmann theory that at equilibrium, the distribution of the veloc-
ities is the normal distribution. The variance is simply related to
the temperature by

σ2
vx

=
T

m
, (4.3.9)

where T is the absolute temperature in units of energy (or kBT in
the conventional absolute temperature), and m in the mass of each
particle.

16We assume here that the walls of the box are not made of particles, being
distributed over different momenta. The wall in this idealized isolated system
is considered as being an infinite potential barrier that confines the particles to
the interior of the box.
17A system of strictly non-interacting particles does not exist. In reality, if
the gas is dilute enough, one can neglect the interaction energy among the
particles compared with the total energy of the system, which in this case is the
total kinetic energy of the particles. Note that collision between the particles is
necessary to obtain the equilibrium distribution of velocities, or momenta.
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Assuming that the motion along the three axes are independent,
we write for a system of N independent particles the corresponding
MI associated with the velocity distribution (see Section 3.2.4)

HD(vN ) =
3N
2

log(2πeT/m), (4.3.10)

where vN = vI , · · · ,vN . Note that vi is the velocity vector vx, vy, vz

of the ith particle.
The corresponding MI for the momentum is (see Section 3.2.4)

HD(pN ) =
3N
2

log(2πemT ). (4.3.11)

Here, we took the result from Section 3.2.4 multiplied by three for
the three axes, and by N for the N independent particles.

4.3.3 Combining the locational and the momentum MI

In Section 4.3.1, we have seen that the joint locational MI of N

particles is not the sum of the locational MI of each particle. Indis-
tinguishability introduced correlations among the locations of the
particles.

In combining the MI of the locations and of momenta, a new cor-
relation enters. We cannot write the MI of a system of N particles
as a sum of the form

HD(RN ,pN ) = HD(RN ) + HD(pN ). (4.3.12)

The reason is that the location and the momentum of each degree
of freedom (i.e., along each axis) are not independent. The variation
in the location and the momentum for each pair of coordinates x

and px are connected by the Heisenberg uncertainty principle. As
we have seen in Section 3.2, this amounts to the division of the
entire phase space for each pair of x, px into cells of size h, where
h is the Planck constant.18

As we have seen in Section 3.2, the passage from the continuous
to the discrete space requires one to change the MI from log L to

18In Section 3.2, we also use the letter h to denote the size of each cell. Here h
is the size of the so-called action, having the units of the product of length and
momentum.
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log L
h , which transforms the “volume” of the continuous space into

the number of cells in a discrete space.
We do the same for each degree of freedom of the particles. We

subtract log h (here h is the Planck constant) for each axis, hence
3N log h for N particles, each moving along three axes. Thus,
instead of (4.3.12), we write

HD(RN ,pN ) = HD(RN ) + HD(pN ) − 3N log h. (4.3.13)

This correction can be cast in the form of mutual information
which we denote as

I (qm uncertainty) = 3N log h. (4.3.14)

We now combine all the four contributions to the MI of an ideal
gas; the locational MI (4.3.4), the momentum MI (4.3.11), the cor-
relation due to the indistinguishability of the particle, and the quan-
tum mechanical correction (4.3.14). The result is

HID(1, 2, . . . , N) = HD(RN ) + HD(pN ) − I (qm uncertainty)

− I (indistinguishability)

= N ln V +
3N
2

ln(2πemT ) − 3N ln h − ln N !

= N ln

[
V

N

(
2πmT

h2

)3/2
]

+
5N
2

. (4.3.15)

In (4.3.15), we recognize the Sackur–Tetrode equation for the MI
(multiply by the Boltzmann constant kB to obtain the entropy19).
We shall revert back to this equation in Section 5.4 and in Appendix
L. Here, we emphasize that this equation for the MI of an ideal gas
was obtained from informational considerations. We have recog-
nized two types of classical information (locational and momen-
tum), and two types of correlations.

Note that the correlation due to the indistinguishability of the
particles is different from the correlations discussed in the theory

19Note that we have changed to natural logarithm ln to conform with the famil-
iar Sackur–Tetrode equation.
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of liquids. In the latter, the correlation is between the densities
of already indistinguishable particles. We shall discuss this type of
correlation in Section 5.8.

Note carefully that both the locational and the momentum dis-
tribution employed in this section are the equilibrium distributions
derived in Section 3.2. It is only for macroscopic systems at equi-
librium that we identify the MI, H, with the thermodynamic MI, S.
It is easy to envisage a system with initial conditions such that
it will not evolve towards a thermodynamic equilibrium, and for
which the Second Law of thermodynamics does not apply. For an
explicit example, see Ben-Naim (2006).

4.4 Comments

(i) It is tempting to interpret ln N ! as information associated
with the information about the identity of the particles. This
interpretation is potentially misleading. In fact, we have seen that
there are two kinds of information; one about the location (i.e.,
where is particle i?) and one about the velocity or the momentum
(i.e., how fast does particle i move?). We do not count informa-
tion about the identity of the particle. Therefore, when performing
any process, one should consider only the changes in the number
of states. In particular, for the hypothetical or the thought exper-
iment of labeling the particles, we find that the number of states
increases. Hence, also the MI increases in contradiction with our
intuitive feeling that the act of labeling should decrease the MI or
the uncertainty. This sense of losing information upon un-labeling is
probably the reason for an erroneous conclusion reached by Gibbs.
We shall further discuss that in Chapter 6.

(ii) It is a remarkable fact that the Sackur–Tetrode expression
that applies to macroscopic systems contains two elements from
the laws of quantum mechanics — laws that govern the micro-
scopic world. It is even more remarkable that the corrections to
the (purely) classical partition function was made before the devel-
opment of quantum mechanics to obtain agreements between the
experimental and calculated entropy of a macroscopic system.



December 5, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch04

208 Statistical Thermodynamics Based on Information

(iii) In this chapter, we discussed systems consisting of non-
interacting particles (or nearly non-interacting). However, corre-
lations did feature even when interactions were absent. It should
be noted, however, that in most cases where correlations are stud-
ied, they originate from intermolecular forces. These are the most
studied type of correlations especially in the theory of liquids. We
shall briefly discuss these correlations in Chapters 5 and 6. More
on these for liquids and liquid mixtures can be found in Ben-Naim
(2006).

(iv) We have seen that changing the size of the cells, or the level
of details we choose to describe the system, changes the value of the
MI. It is a remarkable fact that the MI (or the entropy) of many
gases, calculated by the choice of the particular cell size h (the
Planck constant), is in agreement with the MI (or the entropy)
measured by calorimetry. This adds additional confirmation for the
validity of the Bolzmann expression for the MI (or the entropy).
It also shows that Nature imposes on us a specific lower bound on
the cell size, beyond which we have no freedom to choose the level
of precision to describe the configuration of the system. It is also
a remarkable fact that in most cases when such agreement is not
found, one can explain the discrepancy by the existence of degener-
acy in the state of the system near the absolute zero temperature —
the so-called residual entropy.

(v) This chapter was devoted to develop the transition from a
measure of MI in a simple system to a thermodynamic system.
However, many of the results obtained in this chapter are rele-
vant to experimental systems. It is instructive to derive one equa-
tion which is very useful in binding systems. In Section 4.1.4, we
derived the expression for the MI of a system of N ligands on M

sites:

S = ln W = ln
(

M

N

)
. (4.4.1)
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The chemical potential of the ligand can be obtained from the ther-
modynamic relation

βµ =
(

∂S

∂N

)
E,M

. (4.4.2)

From (4.4.1), and the stirling approximation, we get

βµ =
∂ ln W

∂N
= ln

(
M − N

N

)
= ln

x0

x1
, (4.4.3)

where x1 = N/M and x0 = (M − N)/M are the “mole fractions”
of occupied and empty sites, respectively. In binding systems, x1 is
referred to as the fraction of the occupied sites. We also introduced
the absolute activity defined by

βµ = lnλ. (4.4.4)

From (4.4.3) and (4.4.4), we get

x1 =
λ

1 + λ
. (4.4.5)

This result is well-known as the “binding isotherm” of the system,
i.e., the fraction of the occupied sites as a function of the absolute

0 5 10 15 20 25 30
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Figure 4.13. The Langmuir isotherm (4.4.5).
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activity of the ligands [the latter is proportional to the partial pres-
sure at low pressures; see Ben-Naim (2001)] (Figure 4.13).

Thus, although we have started with an extremely simple sys-
tem to calculate the MI (4.4.1), the result obtained (4.4.5) is very
relevant to a real system of binding of ligands on discrete sizes.
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Chapter 5

The Structure of the Foundations of
Statistical Thermodynamics

This chapter is devoted to presenting the foundations of statistical
thermodynamics. The material of this chapter is standard and is
contained in most textbooks on statistical mechanics. Therefore,
the presentation will be brief, sketchy and unconcerned with details.
Our aim is to reach for the applications of statistical mechanics as
quick as possible. The reader who wishes to study the fundamentals
in more detail should consult the bibliography at the end of the
book. In this chapter, we shall also sacrifice accuracy, replacing
rigor by plausibility. We shall also restrict ourselves to equilibrium
systems. The field of non-equilibrium statistical mechanics is vast
and requires an entire text.

We shall present both the “conventional” method, as well as
Jaynes’ maximum-uncertainty method, to obtain the fundamen-
tal distributions in the various ensembles. The only “new” element
in this presentation is the elimination of the Boltzmann constant
which renders the MI (or the entropy) dimensionless. It should be
stressed from the outset that the traditional and the maximum-
uncertainty methods are equivalent. We do not deem the former to
be more “objective” than the latter, as some authors have claimed.
In both cases, the number of microstates of a given macrostate is a
physical, objective quantity; it is only the interpretation of lnW in
terms of MI (or uncertainty) that has the flavor of being “subjec-
tive.” In any case, either the traditional entropy defined by kB ln W ,

211
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E,V,N

T,V,N E,P,N E,V,�

T,P,N T,V,�

T,P,�

Figure 5.1. Schematic chart of the transformation from one set of variables to
other sets of variables.

or the MI defined for an isolated system as ln W , need ultimately
be identified with the thermodynamic entropy as introduced by
Clausius, with or without the Boltzmann constant.

The general structure of the theory is schematically described in
Figure 5.1. The starting system under consideration is an isolated
system, having constant energy E, volume V and number of par-
ticles N . It is on this system that the fundamental postulates of
statistical mechanics are applied.

In the traditional approach, one uses the postulate of equal prob-
ability distribution for all the quantum mechanical states of the
system (see Section 5.1). In the Jaynes’ approach, the maximum
MI principle is invoked as a fundamental postulate to reach the
equal probability distribution of states.

Starting from the isolated system characterized by the indepen-
dent variables E,V,N , we can proceed to construct other ensembles
(an ensemble is a large collection of systems all characterized by
the same thermodynamic variables, such as E,V,N or T, V,N ,
etc.). These are obtained by changing the independent variable,
say from E,V,N to T, V,N to T, P,N , etc. This procedure corre-
sponds to changing the physical boundaries of the system in the
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ensemble — from athermal, to thermal, to permeable boundaries,
etc. In the diagram of Figure 5.1, the most useful systems are shown
with shaded rendition. In Section 5.2, we transform to the vari-
ables T, V,N to obtain the canonical ensemble. A special and use-
ful case of a canonical system is the classical limit discussed in
Sections 5.3, 5.4 and 5.6. The latter leads to the Sackur–Tetrode
expression, which we have already encountered in Chapter 4. In
Section 5.6, we proceed to the grand-ensemble characterized by the
variables T, V, µ. These systems are very useful for the study of open
systems, such as osmotic systems. We shall conclude this chapter
with a brief discussion of the role of intermolecular interactions in
modifying the MI of a system.

5.1 The Isolated System; The Micro-Canonical Ensemble

The simplest system to start with is a system of fixed energy E,
number of particles N and volume V . We shall refer to this as an
E,V,N system. We shall also assume that the system is completely
isolated, with no interaction with the rest of the universe. Of course,
such a system does not exist; it is an idealized system that is con-
venient for laying the foundations of statistical thermodynamics.
Even if such a strictly isolated system could exist, it would not
be of interest. No experiments, nor measurements, not even obser-
vations, could be performed on such a system. Any observation
necessarily will require interaction with the system. In practice,
when the energy of the system is nearly constant, and the interac-
tions with the surroundings are negligible, we treat such a system
as being effectively isolated. The whole universe may be viewed as
a single isolated system. However, this system is clearly far from
equilibrium and therefore cannot be treated within the framework
of equilibrium statistical thermodynamics.

The classical description of the microstates of an isolated sys-
tem requires the specification of the locations and the velocities (or
momenta) of all the N particles (assumed to be spherical). Clas-
sically, these variables could change continuously. However, quan-
tum mechanics imposes a limit on the accuracy of the element of
“action,” dxdpx, which is of the order of the Planck constant, h.
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From quantum mechanics, we know that a system of particles
characterized by the variable E,V,N can have many quantum
mechanical states or microstates. These are the time-independent,
or the stationary solutions of the Schrödinger equation. It is always
assumed that quantum mechanics is in principle the provider of
these solutions; statistical mechanics uses this information as input
in the formalism to calculate average quantities. These calculated
average quantities can then be compared with the corresponding
experimentally measurable quantities.

It is an experimental observation that an isolated system when
left undisturbed for a sufficiently long period of time reaches a
state of equilibrium.1 In this state, the thermodynamic system is
fully characterized by a very few thermodynamic quantities such
as E,V,N . This is a remarkable fact. The microscopic state of the
system is characterized by myriads of parameters such as locations
and momenta of all the particles in the system. On the other hand,
the macrostate is described by a very small number of parameters
such as volume, pressure, energy, etc.

There are essentially two fundamental postulates in statistical
mechanics.2

First postulate
The time average of a dynamical quantity A in a macroscopic sys-
tem is equal to the ensemble average.

The quantity we actually measure is a time average of some quan-
tity A(t)= A[RN (t),pN (t)],3 i.e.,

〈A(t)〉 =
1
t

∫ t

0
A[RN (t′)pN (t′)]dt′, (5.1.1)

1This is true for most systems studied within equilibrium statistical mechanics,
such as gases and simple liquids. Some systems do not reach equilibrium for
very long periods, and therefore cannot be studied by equilibrium statistical
mechanics.
2In the old literature, the idea of the atomic constitution of matter was also
taken as a fundamental postulate. See Fowler and Guggenheim (1939).
3We shall use lower case pi for probability, but the vector p for the momentum
with components px, py, pz. Here, we assume that the quantity A(t) is a function
of t, only through the functions of R(t) and p(t) of all the particles.



December 7, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch05

The Structure of the Foundations of Statistical Thermodynamics 215

where t is a finite length of time, very large compared with time-
scale of molecular events. The first postulate says that

lim
t→∞

1
t

∫ t

0
A(t′)dt′ = lim

M→∞

M∑
i=1

Aipi, (5.1.2)

where Ai is the value of the function A for a system in the state i,
and pi is the probability, or the mole fraction of the system in the
ensemble in state i.

The reason for adopting the not-so-obvious postulate (5.1.2) can
be better understood with the following analogy. Suppose we throw
a single die many times and record the frequency of occurrence of
the different outcomes. With these frequencies, we can calculate
average quantities pertaining to this particular die (note here that
we do not require the die to be fair). Clearly, we feel that if the
consecutive throws of the die are independent, then the average
quantities calculated from these frequencies will be the same as
the average quantities calculating from an ensemble of dice; all
have the same characterization as the single die. In the ensemble
of the die case, we throw M (M very large) simultaneously, and
record the fraction of dice showing the different possible outcomes.
If all the dice are independent, i.e., an outcome on one die does not
affect the probability of occurrence of an outcome on a second die,
then it is very plausible that the sequence (time) average will be
equal to the ensemble average.

This plausible reasoning when translated into the language of
our macroscopic system involves one serious difference. We cannot
claim that the events “being in a specific microstate” at different
times are independent. In fact, if we know the positions and veloci-
ties at one time, the equations of motion determine the microstate
of the system at any other time, yet in spite of this dependence
between the “events” at different times, we accept this postulate
for a macroscopic system. We cannot prove this postulate. The only
“proof” is in the agreement between calculated averages based on
this postulate, and the corresponding measured quantities.

The second postulate
In an isolated system (micro-canonical ensemble), all possible
micro-states are equally probable.
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Using again the analogy with dice, we assume that if the dice
are fair, then the probability of occurrence of each outcome should
be the same. The reason involved is symmetry (see Section 2.3).
While the symmetry argument is compelling for a fair die, it cannot
be carried over straightforwardly to the macroscopic system. It is
not clear whether or not the symmetry argument can be applied
in this case. Nevertheless, this postulate is supported by a more
powerful argument based on information theory; we shall discuss
this argument below.

The two postulates cannot be proven. One can provide arguments
of plausibility but not proof of these postulates. They are called
postulates rather than axioms because they are less obvious than
what we expect from axioms. The ultimate truth or validity of
these postulates is in the agreement one obtains between computed
results based on these postulates, and experimentally measurable
quantities. For over a hundred years, this kind of agreement was
confirmed in a myriad of cases.

In the classical description, how the microscopic state of an iso-
lated system changes with time is easily visualized. In the quan-
tum mechanical formulation, it is not easy to see how the system
can access all states without any interaction with the surround-
ings. However, as in the case of dice, we can accept the idea that
without any other information, the best guess is to assign equal
probabilities for all the quantum states of the system characterized
by E,V,N .

We start by assuming that a system characterized by the macro-
scopic variables E,V,N , at equilibrium has W states. All of these
are assumed to be accessible to the system, within very short times,
i.e., time much shorter than the typical time length of an exper-
iment. The missing information (MI), (or the uncertainty) associ-
ated with the probability distribution for this system is

S = −
∑

pi ln pi. (5.1.3)

In the traditional foundation of statistical mechanics, one
assumes as a postulate, a uniform probability of all the W
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micro-states,4 i.e.,

pi =
1
W

, (5.1.4)

where pi is the probability of finding the system in a specific
microstate.

Then one defines the thermodynamic MI (or the entropy) by the
relationship

S = −
W∑
i=1

1
W

ln
1
W

= lnW. (5.1.5)

This relationship, when multiplied by the Boltzmann constant
(kB = 1.3807 × 1023 J/K) is the familiar relationship between the
entropy and the total number of microstates of the system charac-
terized by the variables E,V,N . Here, we use the same quantity,
denoted H by Shannon, but when applied to thermodynamics sys-
tem, we use the notation S instead of H. We do that in order to pre-
serve the traditional notation for the entropy S. However, note that
S in (5.1.5) is the entropy divided by the Boltzmann constant kB.
Therefore, S is dimensionless and can be expressed in units of bits.
In the traditional definition of the Boltzmann entropy in (5.1.5),
one has to show that this entropy is identical to the thermodynamic
entropy of the system. In fact, one needs to show that differences
in the Boltzmann entropies are equal to differences in the thermo-
dynamic entropy. The same applies to the MI defined in (5.1.3).

In the Jaynes formalism, one obtains the uniform distribution
(5.1.4) from the principle of maximum MI (originally the maxi-
mum entropy principle), i.e., one maximizes MI in (5.1.3) subject
to the condition

∑
pi = 1, to obtain the distribution (5.1.4). As we

have seen, having only this information on the microstates of the
system, the distribution (5.1.4) is the best guess, or the least biased
distribution. Thus, Jaynes’ procedure provides plausibility — not

4In the classical version of (5.1.4), one assumes equal a priori probabilities for
equal regions on a constant energy surface, in an abstract phase space. It is
interesting to note that in actual applications, the classical limit of statistical
mechanics was found to be more useful. However, the statement of the postulate
is easier to make in quantum mechanical language.
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a proof — for one of the fundamental postulates of statistical
mechanics.

Having the distribution (5.1.4) still leaves open the question of
how to calculate W for a specific macroscopic system. We have
seen one simple example of W in Chapter 4. In general, this quan-
tity is very difficult to calculate. It should be made clear however,
that the calculation of W is not part of the formalism of statistical
mechanics. W is presumed to be given as input into the formalism.
Thus, for each set of variables E,V,N , the quantity W is uniquely
determined, and hence the MI is also defined for such a system, i.e.,

S(E,V,N) = ln W. (5.1.6)

Although we do not know how to calculate W for the general
macroscopic system, it is believed that for macroscopic systems, W

increases very sharply with the energy, such as

W (E) ≈ Ef , (5.1.7)

where f is the number of degrees of freedom of the system and where
E the energy measured relative to the energy of the ground state,
E0, i.e., the lowest possible value of the energy of the system. Since
f is of the order of the Avogadro number NAV ≈ 1023, W grows
very steeply with E as well as with N .

Once we identify S(E,V,N) in (5.1.6) as the MI of the system,
and that the changes of the MI are equal to the changes in the ther-
modynamic entropy of the system (in dimensionless units), then one
can use thermodynamic identities to obtain all the thermodynamic
quantities of the system. The most important derivatives of S are
obtained from the relation

TdS = dE + PdV − µdN. (5.1.8)

Hence,

β =
∂ ln W

∂E
, (5.1.9)

βP =
∂ ln W

∂V
, (5.1.10)

−βµ =
∂ ln W

∂N
, (5.1.11)
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where P is the pressure, µ is the chemical potential of the system
and β is T−1.

Relation (5.1.6) is the fundamental cornerstone of statistical
mechanics. It is a remarkable relation between a quantity Clau-
sius named entropy, which was defined in terms of heat transfer
and temperature on the one hand, and the total number of states
of an isolated system characterized by the variables E,V,N on the
other. These two quantities seem to be totally unrelated. The first is
defined in terms of physically measurable quantities (heat transfer
and temperature); the second is based on counting of states, which
seems to be almost devoid of any physical reality. There is no formal
proof that the two quantities are identical. The validity of the rela-
tionship between the two quantities ultimately rests on the agree-
ment between the calculated values of S, based on (5.1.6), and
experimental data based on Clausius’ definition.

Another remarkable property of this relation, due to the develop-
ment of statistical mechanics by Gibbs, is the realization that the
function S(E,V,N) encapsulates all the thermodynamics of the
system, e.g., by taking the first derivatives of (5.1.6), one can get
the temperature, pressure and chemical potential,5 and from the
second derivative the compressibility, heat capacity, etc.

For these reasons, (5.1.6) is referred to as the fundamental rela-
tionship in statistical thermodynamics. The function S(E,V,N)
has the same status as the canonical partition function Q(T, V,N)
or the grand canonical partition function Ξ(T, V, µ), discussed in
the next sections.

The relation between entropy and the number of states, although
well understood and aggressively promoted by Boltzmann, was
never explicitly published by Boltzmann himself. It seems that
Planck was the first to publish this relationship in 1923, and pro-
claimed it to be a definition of the absolute entropy. Boltzmann
was also the one who tried hard to convince his contemporaries
that entropy is related to probabilities. Although probability does

5The chemical potential, the most important quantity in chemical thermody-
namics, was introduced by Gibbs. We have already seen one application of
(5.1.11) in Section 4.4.
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not explicitly feature in (5.1.5), it does implicitly. We shall discuss
that aspect in relation to the Second Law in Section 6.12.

It should also be emphasized that early in the 20th century, prob-
ability arguments were foreign to physics. The first who introduced
probability to physics was James Clerk Maxwell. The idea that
entropy is related to probabilities also rendered the Second Law
less absolute, as compared with other laws of physics. In the origi-
nal, non-atomistic formulation of the Second Law by Rudolf Clau-
sius, it was proclaimed to be absolute. In Boltzmann’s atomistic
formulation, exceptions were permitted. This was a revolutionary
idea in the pre-quantum physics era, when probabilistic arguments
were only starting to diffuse into physics.

5.2 System in a Constant Temperature; The Canonical
Ensemble

As we have noted, the actual calculation of W is usually extremely
complicated: only a very few cases are computationally feasible,
such as the example discussed in Chapter 4.

To overcome this difficulty, one proceeds to remove the constraint
of either one or more of the constant variables E,V or N (see
Figure 5.1). We shall start with the case of a system in contact with
a thermal, or heat, reservoir. Traditionally, one envisages a very
large ensemble of systems all conforming to the same macroscopic
variables E,V,N but are completely isolated from each other. We
now bring the systems into thermal contact (Figure 5.2), i.e., the
athermal boundaries between all the isolated systems are replaced
by diathermal (or heat conducting) boundaries. In the new ensem-
ble, heat (or thermal energy) can flow from one system to another.
We know from thermodynamics (the Zeroth Law) that any two
macroscopic systems in thermal contact at equilibrium will have
the same temperature. The energy of the systems which were ini-
tially fixed at E will now fluctuate and be replaced by an average
energy of Ē. Note that the whole ensemble is isolated.

There are several ways to proceed from the system characterized
by the variables E,V,N to a system characterized by the variables
T, V,N . One simple way is to take one system in the ensemble
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E,V,N E,V,N E,V,NE,V,N

T,V,N

E,V,NE,V,NE,V,N

T,V,N T,V,N T,V,N T,V,NT,V,NT,V,N T,V,N

(a)

(b) T,V,N

T,V, µ T,V, µ T,V, µ T,V, µT,V, µ T,V, µ T,V, µ T,V, µT,V, µ(c)

Figure 5.2. (a) An ensemble of isolated systems, all with the same E, V, N .
(b) An ensemble of systems in thermal equilibrium, all with the same T, V, N .
(c) An ensemble of systems in thermal and material equilibrium, all with the
same T, V, µ.

(Figure 5.2) and view all the other systems as a heat reservoir (or
a thermal bath). The main property of the heat reservoir is that
it is so large that even when it exchanges thermal energy with the
system, its own thermal energy is almost unaffected, and hence its
temperature remains very nearly constant.

We next turn to the question of finding the probability distribu-
tion for the energy levels. The traditional method of calculating this
distribution is discussed in Appendix K. As will be shown there, it
is essentially equivalent to the procedure we shall use here due to
Jaynes. The latter is somewhat more general than the former. Let
Ei be the energy level, measured relative to the ground state which
may conveniently be chosen to be zero. Let pi be the probability
of finding the system in any one of the states, having the energy
level Ei. According to Jaynes’ maximum uncertainty principle, we
write the MI for this system as

S = −
∑

i

pi log pi. (5.2.1)

Find the maximum of MI subject to the two conditions∑
pi = 1, (5.2.2)

∑
piEi = Ē. (5.2.3)
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EA,VA,NA EB,VB,NB EA,VA,NA EB,VB,NB

WA(EA) WB(EB) WC(ET = EA + EB)

Figure 5.3. Two systems brought to thermal equilibrium.

Using the Lagrange method of undetermined multipliers, we max-
imize S, subject to the two conditions (5.2.2) and (5.2.3), and get
the result (see Section 3.4 and Appendix G)

pi =
exp[−λ2Ei]

Q
, (5.2.4)

where

Q =
∑

i

exp[−λ2Ei]. (5.2.5)

The sum in (5.2.5) is carried out over all possible states of
the system. There are many states corresponding to the energy
level Ei. These are degeneracies of the energy levels. We denote by
W (Ek, V,N) the number of states (or the degeneracy) having the
same energy level Ek and rewrite Q as

Q(λ2, V,N) =
∑

k

W (Ek, V,N) exp[−λ2Ek]. (5.2.6)

Now the summation is over all the energy levels, rather than over
all quantum mechanical states of the system as in (5.2.5). What we
have achieved so far is the general form of the distribution (5.2.4)
which is referred to as the Boltzmann distribution (see also Sec-
tion 3.2).6

The quantity Q(λ2, V,N) is known as the canonical partition
function.7 This partition function turns out to be the most use-
ful one in applications of statistical mechanics.

6In the traditional formalism, we apply the postulates of statistical mechanics
to the ensemble of systems at thermal contact. This is essentially equivalent to
the Jaynes prescription. See Appendix K.
7The term “canonical” was introduced by Gibbs meaning standard. The quan-
tum states are the eigenstates of the energy operator with eigenvalue E.
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Next, we turn to identify the physical meaning of the para-
meter λ2. There are various ways of doing that.8 Here, we shall iden-
tify λ2 by appealing to thermodynamic relations. We shall return to
this identification of λ2 in connection with ideal gases in Section 5.5.

Consider two macroscopic systems A and B that are character-
ized by the variables (EA, VA, NA) and (EB , VB , NB), respectively.
When the two systems are isolated, the corresponding number of
states are W (EA) and W (EB), respectively.

We suppress the dependence of W on the volume and on the
number of particles since these will be held constant in the following
discussion.

We now bring the two systems into thermal contact. Thermal
energy can flow from one system to the other. The volume and
the number of particles of each of the system are unchanged. The
combined system C is presumed to be isolated. Let WC be the total
number of states of the combined systems A and B at thermal
equilibrium. Since the total energy of the combined system is fixed
at say ET , the number of states of the combined system is

WC(ET ) =
∑
EA

WA(EA)WB(ET − EA), (5.2.7)

where we assume for simplicity that the energies are discrete. The
summation in (5.2.7) is over all possible energy levels EA of A. Since
ET is presumed constant, the energy of B is determined by EA.

The probability of finding the system A with energy EA is simply

P (EA) =
WA(EA)WB(ET − EA)

WC(ET )
, (5.2.8)

where we have used the classical definition of the probability (Sec-
tion 2.3). Recall that the combined system A and B is isolated.
Therefore, the probability of each state of the combined system is
1/WC(ET ). WC(ET ) is the total number of states, or the events
of C, whereas in the numerator, we have the total number of
events consistent with the requirement that system A will have
energy EA (and system B must have energy ET −EA). We now

8For details, see for example, Rushbrooke (1949) and Hill (1960).



December 7, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch05

224 Statistical Thermodynamics Based on Information

use the fact that WA(EA) increases extremely rapidly with EA.
Hence, WB(ET −EA) decreases extremely rapidly with EA. There-
fore, P (EA) has a sharp peak at some value E∗

A. The condition for
maximum value of P (EA) is the same condition for the maximum
of lnP (EA). Hence,

1
P (EA)

∂P (EA)
∂EA

=
∂ ln P (EA)

∂EA
=

∂ lnWA(EA)
∂EA

+
∂ ln WB(ET −EA)

∂EA

=
∂ ln WA(EA)

∂EA
− ∂ lnWB(EB)

∂EB
= 0, (5.2.9)

where we have denoted EB = ET − EA and used the equality
dEA = −dEB.

Thus, the condition for maximum value of P (EA) is the same as
the condition for the equilibrium value of EA,9 i.e., at equilibrium
we have [

∂ lnWA(EA)
∂EA

]
eq

=
[
∂ ln WB(EB)

∂EB

]
eq

. (5.2.10)

This equality means that at thermal equilibrium, the derivative
of the MI with respect to the energy is the same for A and B.
We know from thermodynamics that any two systems in thermal
equilibrium must have the same temperature. Also, we know from
thermodynamics that the derivative of the MI with respect to the
energy is (

∂S

∂E

)
V,N

=
1
T

, (5.2.11)

where T is the absolute temperature. Since we identify the thermo-
dynamic MI, with ln W for each system, following from (5.2.10):(

∂ ln WA(EA)
∂EA

)
eq

=
1
T A

=
1
T B

=
1
T

, (5.2.12)

where T is the absolute temperature measured in units of energy.

9The average value, the most probable and the equilibrium value of EA are all
different concepts. However, because of the extreme sharpness of P (E), they
are practically the same.
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Next, we go back to (5.2.6), where we have defined the quantity
Q as a normalization constant in (5.2.4). We now apply the same
argument as above regarding the behavior of the two factors W (Ek)
and exp[−λ2Ek] as a function of Ek. The first is a sharply increasing
function of Ek; the second a steeply decreasing function of Ek (for
λ2 ≥ 0; see below). Hence, one can replace the sum in (5.2.6) by
the maximal term,10 the condition for which is

∂ ln W (Ek)
∂Ek

− λ2 = 0

or equivalently

λ2 =
∂ lnW (Ek)

∂Ek
. (5.2.13)

Comparing (5.2.13) and (5.2.12), we can conclude that the
parameter λ2 is simply the inverse of the temperature. We shall
henceforth use the notation

β = λ2 =
1
T

. (5.2.14)

In Section 5.5, we shall see that the parameter β is related, for a
classical ideal monoatomic gas, to the average kinetic energy of the
atoms.

With this identification of λ2, the quantity Q defined in (5.2.6)
is now a function of the variables T, V,N . It is referred to as the
canonical partition function. Having the partition function Q, one
can obtain all the thermodynamic quantities from Q and its deriva-
tives with respect to T, V and N .

Let E∗ be the energy value for which the quantity W (Ek, V,N)
exp[−βEk] is maximum. Define the new quantity A(β, V,N) by

exp[−βA(β, V,N)] = W (E∗, V,N) exp[−βE∗]
= exp[S(E∗, V,N) − βE∗]
= exp{−β[E∗ − TS (E∗, V,N)]}. (5.2.15)

10This replacement is quite often done in statistical mechanics. We shall discuss
one such case in more detail in Appendix N.
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Hence, from (5.2.15) and (5.2.6), and replacing the sum in (5.2.6)
by its maximal term, we get the fundamental relationships

A(T, V,N) = E∗ − TS (E∗, V,N)

= −T ln Q(T, V,N), (5.2.16)

where

T−1 =
∂S

∂E

∣∣∣∣
E=E∗

. (5.2.17)

We can immediately identify A(T, V,N) as the Helmholtz energy
of the system. Note that the probability distribution P (E) is
extremely sharp. Therefore, one can also identify E∗ with the aver-
age energy of the system characterized by the variables T, V,N .

Having the general relationship between the canonical partition
function and the Helmholtz energy A(T, V,N), we can obtain all
the thermodynamic quantities using thermodynamic identities. For
instance, for the differential of A, we have11

dA = −SdT − PdV +
∑

µidNi. (5.2.18)

We get

S =
−∂A

∂T
= ln Q + T

∂ ln Q

∂T
,

P =
−∂A

∂V
= T

∂ ln Q

∂V
,

µi =
∂A

∂Ni
= −T

∂ ln Q

∂Ni
. (5.2.19)

Having identified λ2, we can now rewrite the probability pi for
the state i in (5.2.4) as

pi =
exp[−βEi]

Q
, (5.2.20)

and the probability of finding the system in an energy level E as

P (E) = W (E) exp[−βE]/Q. (5.2.21)

11For a multi-component system, N is replaced by the vector N = (N1,
N2, . . . , Nc), where Ni is the number of molecules of species i.
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The transformation from the function S(E,V,N) to A(T, V,N)
within thermodynamics is known as the Legendre transformation
of the function S(E,V,N), where we replace the fixed energy E by
a fixed temperature T . In statistical mechanics, the corresponding
transformation is the discrete analog of the Laplace transform for
the discrete variable E [for a continuous variable E, we need to
replace the sum in (5.2.6) by an integral].

It is instructive to reproduce the Clausius original definition of
the entropy change, here in terms of MI, as an amount of heat
transferred at a fixed temperature.

Consider a macroscopic system in contact with a heat reservoir
at a constant temperature T having average energy Ē. We assume
that a very small amount of heat ∆Qrev is transferred to the system,
such that ∆Qrev � Ē. As a result of this energy change, the MI
of the system will change. For very small ∆Qrev , we take the first
order expansion of MI about Ē, to obtain

S(Ē + ∆Qrev ) = lnW (Ē + ∆Qrev )

= lnW (Ē) +
∂ lnW

∂E

∣∣∣∣
E=Ē

∆Qrev + · · · . (5.2.22)

Thus, for very small ∆Qrev , we have

∆S = S(Ē + ∆Qrev ) − S(Ē) = β∆Qrev . (5.2.23)

The original definition of the entropy change for a reversible
transfer of heat ∆Qrev to a system at constant temperature T ,
as defined by Clausius, was

∆S =
∆Qrev

T
. (5.2.24)

Originally, ∆S in (5.2.24) was defined in units of energy divided
by temperature (in units of Kelvin, K). As we discussed in Chap-
ter 1, had the temperature been defined in units of energy, then
Clausius’ entropy would have been rendered dimensionless. This
would make the Clausius entropy change in (5.2.24) identical to
the change in the MI in (5.2.23).
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5.3 The Classical Analog of the Canonical Partition
Function

There is a standard procedure to obtain the classical analogue of
the quantum mechanical partition function.12 Here, we shall use an
heuristic argument based on analogy.

The classical analogue of the quantum mechanical canonical par-
tition function can be written as

Qquant =
∑

i

exp[−βEi] → Qclass =
∫

· · ·
∫

dRNdpN exp[−βHN ].

(5.3.1)
Here, the sum over i extends over all possible states of the

system. By purely formal analogy, we write the (purely) classi-
cal equivalent of the quantum mechanical partition, replacing the
sum over all states, by the integration over all possible classical
states of the system of N , simple spherical particles in a vol-
ume V and at temperature T . Ri is the locational vector for the
center of the ith particle and pi is the corresponding momen-
tum vector. RN and pN are shorthand notations for the vectors
RN = R1, . . . ,RN and pN = p1, . . . ,pN , and similarly for the
product dRN = dR1 · · · dRN and dpN = dp1 · · · dpN . HN is the
classical Hamiltonian of the system, which in this case constitutes
the kinetic energies of all particles and the total potential energy
of interactions among the particles. Thus, we write

HN =
∑

i

p 2
i

2m
+ UN (R1, . . . ,RN ), (5.3.2)

where pi is the momentum of particle i, i.e., pi is the vector13

pi = (pxi
, pyi

, pzi
), (5.3.3)

and the mass m is assumed to be the same for all particles.

12Kirkwood (1933) following Wigner showed how to obtain the limiting expres-
sion for the quantum mechanical partition function as a power series in Planck
constant h. The leading term in this expansion is now referred to as the clas-
sical PF. More appropriately this should be referred to as the classical limit of
the quantum mechanical PF [see also Hill (1956)].
13Note that Ri and pi are vectors, but dRi and dpi are elements of “volume,”
i.e., dRi = dxidyidzi and dpi = dpxidpyidpzi . In this section, we use the letter
H for the Hamiltonian function. In the rest of the book H is used for the MI.
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UN is the total interaction energy among all the particles of the
system. The integration over all of the momenta is well known. The
result is∫

dp1 · · · dpN exp

[
−

N∑
i=1

β p̄2
i

2m

]
=

{∫
dp1 exp

[
−β p̄2

1

2m

]}N

=
{∫ ∞

−∞
dpx exp

[
−βp2

x

2m

]}3N

= (2πmT )3N/2. (5.3.4)

It is easy to show that had we defined the Helmholtz energy as

Aclass = −T lnQclass = −T ln V N (2πmT )3N/2, (5.3.5)

we would have obtained the correct equation of state of an ideal
gas [i.e., for UN ≡ 0 in (5.3.2)]

P = −
(

∂A

∂V

)
N,T

=
NT
V

, (5.3.6)

and also the correct average energy of the system

Ē =
3
2
NT . (5.3.7)

However, it was known for over a hundred years that the entropy,
or the MI derived from the classical partition function, would have
come out wrong, namely

Sclass = N ln V +
3
2
N ln(2πmT ) +

3
2
N. (5.3.8)

Clearly, if we replace N by 2N and V by 2V , the MI will not be
doubled. This result is sometimes referred to as the Gibbs paradox
(see Appendix O).

Similarly, the chemical potential of an ideal gas would have the
form

µclass =
(

∂Aclass

∂N

)
T,V

= T ln
(2πmT )

V

3/2

, (5.3.9)

which has the incorrect dependence on the density ρ = N/V [see
(5.3.17) below].



December 7, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch05

230 Statistical Thermodynamics Based on Information

Indeed, it was found that the “classical” partition function, as
defined in (5.3.1), must be corrected by two factors to get the clas-
sical limit of the quantum mechanical partition function. Instead
of (5.3.1), we need to make the correspondence

Qquant → Qclass =
1

h3NN !

∫
· · ·

∫
dRN , dpN exp[−βHN ].

(5.3.10)
Both of the new factors h3N and N ! have their origins in quantum

mechanics. Both can be interpreted as mutual information (see Sec-
tion 4.3). Both can be viewed as corrections due to over-counting.

The first factor h arises from counting too many configurations
in the “phase space.” The uncertainty principle dictates that we
cannot distinguish between configurations for which the element
of action dxdpx is smaller than the Planck constant h. Therefore,
we must divide by h for each degree of freedom — hence the factor
h3N in the denominator of (5.3.10). This is the same type of mutual
information we encountered in Section 3.2.4.

The second factor N ! is also due to correction for over-counting
configurations in the purely classical partition function. When inte-
grating over all locations, we have tentatively labeled the particles
1, 2, . . . , N , then integrated for each particle over the entire volume
V . In quantum mechanics, this “labeling” is not possible. What we
do in practice is to first label the particles, say 1, 2, . . . , N . This
results in an over-counting of configurations; therefore, we must
correct this over-counting by dividing by N !. This labeling and un-
labeling of particles should be done with some care. We shall further
discuss this point in Appendix M.

From the “corrected” classical partition function in (5.3.10), we
obtain the MI of the system of non-interacting particles

S =
5
2
N − N ln ρΛ3, (5.3.11)

where

Λ =
h√

2πmT
. (5.3.12)

Expression (5.3.11), when multiplied by the Boltzmann constant
kB, is the well-known Sackur–Tetrode equation for the entropy.
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We can transform this equation to express the MI in terms of the
energy, volume and number of particles. For an ideal monoatomic
gas, the average energy is14

E = NεK =
3
2
TN = N

m〈v2〉
2

, (5.3.13)

where εK is the average kinetic energy per particle.
The equation of state for this system is

P = ρT. (5.3.14)

We can identify the relation between the temperature and the aver-
age energy per particle as

T =
2
3

E

N
. (5.3.15)

Hence, we can express S as a function of the variable E, V , N

S(E,V,N) = ln

[
e5N/2(4πmE)3N/2

ρNh3N (3N)3N/2

]
. (5.3.16)

The chemical potential for this system is

µ =
(

∂A

∂N

)
T,V

= −T

(
∂S

∂N

)
E,V

= T ln ρΛ3. (5.3.17)

This should be compared with relation (5.3.9) for the chemical
potential, obtained from the classical partition function (5.3.5).

Having obtained the MI for an ideal monoatomic gas, we can
write the number of states of the system as

W = exp[S] =

[
e5/2

ρΛ3

]N

, (5.3.18)

where W is given as a function of T, V,N . We can also use (5.3.15)
to transform into a function of E,V,N to obtain

W =

[(
4πm

3

)3/2 e5/2

h3

E3/2V

N5/2

]N

. (5.3.19)

14For simplicity of notation, we omit the bar over E.
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5.4 The Re-interpretation of the Sackur–Tetrode
Expression from Informational Considerations

In the previous section, we have derived the Sackur–Tetrode expres-
sion for an ideal monoatomic ideal gas of N particles in volume
V and at temperature T at equilibrium. In Section 4.3.3, we have
derived the same expression, but from informational considerations.
In anticipation of its applications in Chapter 6, we shall summarize
here the four contributions to the Sackur–Tetrode expressions:

(i) The locational MI, S(Locations). In a one-dimensional box, we
have seen (Section 4.3.3) that the uncertainty is15

S(Locations) = N lnL, (5.4.1)

where L is the length of the “box.” Assuming that the locations
along the three axes x, y, z are independent, we can easily general-
ize (5.4.1) to obtain

S(Locations) = N lnV . (5.4.2)

The meaning of this MI is clear. Each particle can wander in the
entire volume V . The larger the volume V , the greater the uncer-
tainty is, or the greater the missing information regarding the loca-
tion of the particles. Assuming that the particles are independent,
we have to take N times the uncertainty for each particle.

(ii) The momentum MI, S(Momenta). For the momenta in one
dimension, we have seen the expression for S(Momenta) in
Section 4.3.3:

S(Momenta) =
1
2
N ln(2πemT ). (5.4.3)

Again, assuming that the momenta along the three axes are inde-
pendent, we obtain

S(Momenta) =
3
2
N ln(2πemT ). (5.4.4)

So far, we have accounted for the MI in the location and momenta
of each particle, as if these were independent. Also, the N particles

15Note again that L and V must be dimensionless quantities. However, we shall
use only differences in S, where units of L or V will cancel out.
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are considered to be independent. Thus, we have the “classical”
Sackur–Tetrode expression

S = S(Locations ) + S(Momenta)

= N ln V +
3
2
N ln(2πemT ) (5.4.5)

[see (5.3.8)].
As we have pointed out in Section 5.3, this expression for the

MI (or the original entropy) is not satisfactory. It does not lead to
results consistent with experiments. There are two corrections that
must be introduced:

(i) Correction due to the quantum mechanical uncertainty. In
Section 3.2.4, we have seen how to correct the missing informa-
tion when we pass from the continuous range of locations (0, L)
to the discrete division of the length L into cells of length h. In
this process, we effectively transformed the expression for S from
the continuous space (0, L) to the discrete space of n cells, each of
which of length h.

In a similar fashion, we recognize that in “counting” all possi-
ble points in the “phase space” of each particle, we have counted
too many configurations. We must divide the phase space of each
particle into cells of size h3, thereby transforming the MI as calcu-
lated in (5.4.5) from a continuous space into a discrete space. The
correction due to the quantum mechanical uncertainty principle is
therefore

∆S(uncertainty principle) = − ln h3N = −3N ln h. (5.4.6)

(ii) Correction due to indistinguishability of the particles. The sec-
ond correction to the “classical” Sackur–Tetrode expression is more
subtle. We recall that in Section 5.3, we have written the classical
partition function (5.3.1), where we have performed integrations
over all locations and all momenta of the particles. In the very writ-
ing of (5.3.1), we have labeled the particles by giving each particle
a number 1, 2, . . . , N . This labeling of particles is not permitted
by quantum mechanics. Therefore, we must correct for the labeling
of the particles by un-labeling them. Here is the subtle point. Un-
labeling is conceived as loss of information. Loss of information is
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equivalent to an increase in MI or an increase in the uncertainty. In
other words, we expect that un-labeling should involve an increase
in MI. However, this conclusion is incorrect, and the conception of
an increase in MI is only an illusion. More on this in Chapter 6 and
Appendix M.

The fact is that by un-labeling the particles we actually decrease
the number of states of the system (see a simple illustration in
Section 4.1). Decreasing the number of states is associated with
a decrease in the MI or a decrease in the uncertainty. Hence, the
necessary correction is

∆S(indistinguishability of the particles) = − lnN !. (5.4.7)

We can now collect the two contributions (5.4.2) and (5.4.4), and
the two corrections to construct the Sacker–Tetrode equation for
this system

S = [N ln V ] +
[
3
2
N ln(2πemT )

]
+ [−3N ln h] + [− ln N !]

= N ln

[
V

N

(
2πmT

h2

)3/2
]

+
5
2
N, (5.4.8)

where we used the Stirling approximation ln N ! ≈ N ln N − N .
From (5.4.8), we can calculate the changes in MI associated with

either the change in location or in momenta. Perhaps, the sim-
plest way of calculating the effect of changing the locational and
the momenta information is to use the well-known thermodynamic
equation for the change in MI between two states (T1, V1) and
(T2, V2). For one mole of ideal gas

S2 − S1 = CV ln
T2

T1
+ NAV ln

V2

V1
, (5.4.9)

where CV is the heat capacity at constant volume, and NAV is
the Avogadro number (in conventional thermodynamics CV is mea-
sured in entropy units and the gas constant R appears in the second
term; here the two terms are dimensionless).

Clearly, for any process where the volume changes at constant
temperature, the change in the MI is only locational information,
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i.e., from V1 to V2. On the other hand, for a process at constant
volume, the change from T1 to T2 is equivalent to the change in the
distribution of the momenta — from one momentum distribution
to another.

5.5 Identifying the Parameter β for an Ideal Gas

In Section 5.2, we have interpreted the parameter λ2 that was used
as an undetermined multiplier. In the previous Section 5.4, we have
derived the classical limit of the quantum mechanical partition
function, from which we can derive the distribution of momenta
along say the x-axis

P (px) =
(

β

2πm

)1/2

exp
[
−βp2

x

2m

]
. (5.5.1)

From the momentum distribution function, it is easy to get the
velocity distribution along the x-axis. Putting px = mvx, we get

P (vx) =
(

mβ

2π

)1/2

exp
[
−β

mv2
x

2

]
. (5.5.2)

The average square velocity along the x-axis is

〈v2
x〉 =

∫ ∞

−∞
v2
xp(vx)dvx. (5.5.3)

Assuming that the motions along the three axes are independent,
we can get from (5.5.2) the distribution of velocities:

P (v) =
(

βm

2π

)3/2

4πv2 exp
[
−βmv2

2

]
. (5.5.4)

This is the Maxwell–Boltzmann distribution of velocities. This is
the probability density for finding a particle with velocity between
v and v + dv from which one can obtain the average of v2

〈v2〉 = 〈v2
x〉 + 〈v2

y〉 + 〈v2
z〉

= 3〈v2
x〉. (5.5.5)

By integrating (5.5.4) over all possible velocities, we obtain

1
2
m〈v2〉 =

3
2β

. (5.5.6)
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Since we already know the relation between the average kinetic
energy and the temperature

1
2
m〈v2〉 =

3
2
T, (5.5.7)

we can identify β as

β =
1
T

. (5.5.8)

This is the same result we obtained in Section 5.2. Here, the result
is valid for a classical ideal gas only.

The root mean square velocity is defined by

vrms =
√

〈v2〉 =

√
3T
m

. (5.5.9)

5.6 Systems at Constant Temperature and Chemical
Potential; The Grand Canonical Ensemble

We now proceed one step forward and transform from the indepen-
dent variables T, V,N into the new independent variables T, V, µ

where µ is the chemical potential. (Here we discuss only one com-
ponent system. The generalization for a multi-component system
is quite straightforward.) As we have discussed in the previous sec-
tion, there are different ways of achieving this transformation of
variables. On a purely thermodynamic level if we already have the
Helmholtz energy A(T, V,N) given by

A(T, V,N) = E(T, V,N) − TS(T, V,N), (5.6.1)

we can transform from the independent variable N into the corre-
sponding intensive variable µ, defined by

µ =
(

∂A

∂N

)
V,N

(5.6.2)

to define a new potential function, denoted tentatively as ψ by

ψ(T, V, µ) = A(T, V, µ) − µN(T, V, µ). (5.6.3)

Note that in this transformation, the thermodynamic variable N

becomes a function of the independent variables T, V, µ.
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Physically, this transformation can be viewed as a result of open-
ing the system to a material reservoir similar to the “opening” of
the isolated system to the heat reservoir (Figure 5.2c).

We can think of a large number of systems all at fixed values of
T, V,N brought into contact in such a way that particles can flow
from one system to another. We know from thermodynamics that
any two thermodynamic systems at thermal and material contact at
equilibrium must have the same temperature and the same chemical
potential.

Instead of looking at a large ensemble of system, we can also
focus on a single system and view all the surrounding system as a
very large heat and particle reservoir at constant temperature and
chemical potential. The number of particles, as well as the energy
of the system, will fluctuate about the average values N̄ and Ē,
respectively.

We wish to find the probability pi of finding the system at a spe-
cific state i, for which the energy of the system is Ei and the number
of particles Ni. In this case, we need to maximize the quantity

H = −
∑

pi log pi, (5.6.4)

subject to the conditions ∑
i

pi = 1, (5.6.5)

∑
i

piEi = Ē, (5.6.6)

∑
i

piNi = N̄ , (5.6.7)

where the summation is over all possible states of the system. We
proceed by defining the auxiliary function

L = −
∑

pi log pi − λ1

∑
pi − λ2

∑
piEi − λ3

∑
piNi. (5.6.8)

Take the derivatives of L with respect to pi and requiring that all
derivatives be zero, we obtain the condition for maximum L

− log pi − 1 − λ1 − λ2Ei − λ3Ni = 0 (5.6.9)
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for all i, or equivalently

pi = exp[−1 − λ1 − λ2Ei − λ3Ni]. (5.6.10)

To identify the multiplier λi, we substitute (5.6.10) into (5.6.5) to
(5.6.7) to obtain

Ξ ≡ exp[−1 − λ1] =
∑

i

exp[−λ2Ei − λ3Ni], (5.6.11)

where Ξ is referred to as the Grand partition function. Before we
identify the undetermined multipliers λ2 and λ3, we note that by
taking the derivatives of ln Ξ, we obtain

∂ ln Ξ
∂λ2

=
1
Ξ

∑
(−Ei) exp[−λ2Ei − λ3Ni]

= −
∑

Eipi = −Ē, (5.6.12)

∂ ln Ξ
∂λ3

=
1
Ξ

∑
(−Ni) exp[−λ2Ei − λ3Ni]

= −
∑

Nipi = −N̄ (5.6.13)

where Ē and N̄ are the average energy and average number of
particles, respectively.

As in the case of Section 5.2, we can also look at two systems A

and B at thermal and material equilibrium. The combined system
C is isolated and has a total energy ET and a total number of
particles NT . The total number of states of the combined system
is WC(ET , NT ). Since the combined system is isolated, all of the
WC(ET , NT ) states are equally probable. For any specific energy EA

and number of particles NA of the system A, there are WA(EA, NA)
number of states. For each of these WA(EA, NA) states of system A,
there are WB(ET −EA, NT −NA) states of the system B. Therefore,
the total number of states of the combined system is

WC(ET , NT ) =
∑
NA

∑
EA

W (EA, NA)W (ET − EA, NT − NA).

(5.6.14)
Since all these states are considered to be equally probable events,

the probability of finding the system A with energy EA and number
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of particles NA according to the classical definition of probability
[see Section 2.3 and (5.2.8)] is

P (EA, NA) =
WA(EA, NA)WB(ET − EA, NT − NA)

WC(ET , NT )
. (5.6.15)

We now proceed as in Section 5.2. Since for a fixed (but macro-
scopic) NA,WA(EA, NA) is a steeply increasing function of EA,
and WB(ET − EA, NT − NA) will be a steeply decreasing function
of EA, the product in the numerator will have a sharp maximum
at the average value ĒA. The condition for maximum with respect
to EA has already been carried out in Section 5.2, which led to
the identification of the temperature of the two systems at thermal
equilibrium: (

∂ ln WA(EA, NA)
∂EA

)
eq

=
1
T

= λ2. (5.6.16)

Similarly, we use the condition of maximum of P (EA, NA) but
now with respect to NA at a fixed (but macroscopic) EA to obtain
the analog of (5.2.10)

∂ ln WA(EA, NA)
∂NA

=
∂ ln WB(EB , NB)

∂NB
. (5.6.17)

We know from thermodynamics that when two systems are at
thermal and material equilibrium, the chemical potentials are also
equal, so we also have the thermodynamic relation(

∂S

∂N

)
E,V

=
−µ

T
, (5.6.18)

where T is the absolute temperature (in units of energy) and µ is
the chemical potential. Hence, from (5.3.17) and (5.3.18), we have

∂ ln WA(EA, NA)
∂NA

=
−µ

T
. (5.6.19)

Once we have identified λ2 in (5.6.16), we can proceed to identify
λ3 using a similar argument to that used in Section 5.2. First, we
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rewrite (5.6.11) as

Ξ =
∑

i

exp[−βEi − λ3Ni]

=
∑
N

exp[λ3N ]
∑
E

W (E,V,N) exp[−βE]

=
∑
N

Q(β, V,N) exp[−λ3N ], (5.6.20)

where in the second equality, we have replaced the sum over all
states i, by first fixing N and summing over all energy levels E [as
in (5.2.6)], and then summing over all possible N . We next identify
the sum over E with the canonical partition function Q as in (5.2.6).

Using again a similar argument as in Section 5.2, we take the
maximal term in the sum (5.6.20). The condition for maximum is

∂ ln Q

∂N
− λ3 = 0. (5.6.21)

We now use the relation between Q and the Helmholtz energy in
(5.2.16) to rewrite (5.6.21) as

λ3 =
∂ ln Q

∂N
=

−∂(A/T )
∂N

=
−µ

T
. (5.6.22)

Having identities λ2 and λ3, we can rewrite the probabilities in
(5.6.10) as

P (E,N) =
exp[−βE + βµN ]

Ξ
, (5.6.23)

and the probability of finding the system with N particles as

P (N) =
Q(T, V,N) exp[βµN ]

Ξ
. (5.6.24)

Replacing the sum in (5.6.20) by the maximal term, we obtain

Ξ(T, V, µ) = Q(T, V,N∗) exp[µN∗/T ]

= exp[−(A(T, V,N∗) − µN∗)/T ]

= exp[P (T, V, µ)V/T ]. (5.6.25)

Note that in (5.6.21), we view N∗ that satisfies the equality
(5.6.21) as a function of λ3, T and V , or equivalently of T, V, µ.
In (5.6.25), we also used the thermodynamic identity

P (T, V, µ)V = A[T, V,N∗(T, V, µ)] − µN∗(T, V, µ). (5.6.26)
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Hence, the fundamental connection between thermodynamics and
the Grand partition function is

P (T, V, µ)V = T ln Ξ(T, V, µ). (5.6.27)

Here, the pressure P is viewed as a function of the independent
variables T, V, µ. From (5.6.27), one can obtain all the thermo-
dynamic quantities of the system by taking derivatives of Ξ with
respect to T, V, µ. Thus, from

d(PV ) = SdT + PdV + N̄dµ, (5.6.28)

and (5.6.27), we get

S = ln Ξ + T
∂ ln Ξ
∂T

,

N̄ = T
∂ ln Ξ
∂µ

,

P = T
∂ ln Ξ
∂V

= T
ln Ξ
V

. (5.6.29)

It is instructive to obtain the equation of state of an ideal gas
from the Grand partition function

Ξ(T, V, µ) =
∑
N≥0

Q(T, V,N) exp[βµ]

=
∑
N≥0

qN

N !
exp[βµ] = exp(λq), (5.6.30)

where λ is the absolute activity defined by

λ = exp[βµ], (5.6.31)

and q = qintV/Λ3 , with qint as the internal partition function of a
single molecule.

From the general results (5.6.29) and (5.6.30), we obtain for an
ideal gas:

N̄ = T
∂ lnΞ
∂µ

= λ
∂ ln Ξ
∂λ

= λq = PV /T, (5.6.32)

which is the equation of state of an ideal gas.
Note that in (5.6.32), the average number of particles replaces

the exact N in the canonical ensemble (5.3.6). As we have seen in
Section 5.3, the equation of state of an ideal gas is universal in the
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sense that it does not depend on the particular gas under consid-
eration. This is not true for other quantities such as the chemical
potential, which for an ideal gas is

βµ = ln λ = ln N̄q−1 = ln(N̄q−1
intΛ

3/V ). (5.6.33)

Clearly, different gases will have different internal degrees of free-
dom and different masses. For an ideal monoatomic gas with
qint = 1, this reduces to

βµ = ln ρΛ3 (5.6.34)

with ρ = N̄/V .

5.7 Systems at Constant Temperature and Pressure;
The Isothermal Isobaric Ensemble

We shall briefly outline the procedure of transforming from the
independent variables T, V,N to T, P,N (see Figure 5.1). We leave
the detail as exercises for the reader.

Starting with an ensemble of systems, all characterized by the
same values of T, V,N , we remove the constraint on fixed volume
by allowing an “exchange of volume” between the systems. This
means that we replace the rigid boundaries between the systems,
by movable or flexible boundaries. We know from thermodynamics
that for each pair of systems, connected by a movable boundary,
in mechanical equilibrium, the volume would fluctuate about some
average value but the pressure of the two systems will be the same.

For simplicity, we shall assume that the volume of the system can
attain only discrete values, say V1, V2, . . .. We write the MI as in
the previous section

H = −
∑

pi log pi, (5.7.1)

and find the maximum of MI subject to the conditions∑
i

pi = 1, (5.7.2)

∑
i

piEi = Ē, (5.7.3)

∑
i

piVi = V̄ , (5.7.4)
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where V̄ is the average volume of the system in the T, P,N ensem-
ble. Using the procedure as in Sections 5.2 and 5.6, we can obtain
the probability of each state as

pi =
exp[−βEi − βPV i]

∆(T, P,N)
. (5.7.5)

The probability of finding the system at a specific volume Vi is

Pr(Vi) =
Q(T, Vi, N) exp[−βPV i]

∆(T, P,N)
, (5.7.6)

where ∆(T, P,N) is referred to as the isothermal isobaric partition
function:

∆(T, P,N) =
∑
V

Q(T, V,N) exp[−βPV ]. (5.7.7)

The relation between ∆(T, P,N) and thermodynamics is

G(T, P,N) = −T ln ∆(T, P,N), (5.7.8)

where G(T, P,N) is the Gibbs energy.
One can also rewrite (5.7.7) as an integral over the continuous

variable V , in which case Pr(V ) in (5.7.6) will turn into a proba-
bility density, i.e., Pr(V )dV is the probability of finding the system
having volume between V and V + dV .

The partition function ∆(T, P,N) is less convenient than
Q(T, V,N) in calculating thermodynamic quantities of theoretical
models. However, when discussing processes under constant pres-
sure and temperature, the partition function ∆(T, P,N) is the more
relevant one to use.

From ∆(T, P,N), one can obtain all the thermodynamic quanti-
ties by taking the derivative of G, e.g.,

S = −∂G

∂T
,

V =
∂G

∂P
,

µ =
∂G

∂N
. (5.7.9)

Finally, we note that if we do one further step in the diagram
of Figure 5.1, and change all of the extensive variables E,V,N
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into intensive variables T, P, µ, one gets the so-called “generalized
partition function”

Γ(T, P, µ) =
∑
E

∑
V

∑
N

W (E,V,N) exp[−βE − βPV + βµN ]

≈ exp[−β(E + PV − ST − G)] = e0 = 1. (5.7.10)

Thus, the corresponding “thermodynamic potential” for these
variables is zero. This is in accordance with the Gibbs–Duhem
identity

SdT − VdP +
∑

Nidµi = 0, (5.7.11)

i.e., the variable T, P, µi cannot be changed independently. We note
that in spite of the fact that the three variables T, P, µ are depen-
dent, the partition function in (5.7.10) is sometimes useful [see, for
example, Ben-Naim (1992)].

5.8 The Mutual Information due to Intermolecular
Interactions

In Section 4.3, we discussed two kinds of correlation among the
particles. One is due to the uncertainty principle; the second is due
to the indistinguishability of the particles. In this section, we discuss
a third kind of correlation, which is expressed as mutual information
among the particles due to intermolecular interactions.

The classical canonical partition function is written as16

Q(T, V,N) =
ZN

N !Λ3N
, (5.8.1)

where ZN is the configurational PF of the system

ZN =
∫

· · ·
∫

dRN exp[−βUN (RN )]. (5.8.2)

The probability density for finding the particles at a specific con-
figuration RN = R1, . . . ,RN is

P (RN ) =
exp[−βUN (RN )]

ZN
. (5.8.3)

16For simplicity, we assume that the particles are spherical and have no internal
degrees of freedom.
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When there are no intermolecular interactions (ideal gas), we
have ZN = V N and the corresponding partition function is
reduced to

Qig(T, V,N) =
V N

N !Λ3N
. (5.8.4)

We define the change in the Helmholtz energy due to the interac-
tions as

∆A = A − Aig = −T ln
Q(T, V,N)

Qig(T, V,N)
= −T ln

ZN

V N
. (5.8.5)

The corresponding change in the MI is

∆S = −∂∆A

∂T
= ln

ZN

V N
+ T

1
ZN

∂ZN

∂T

= ln ZN − N ln V +
1
T

∫
dRNP (RN )UN (RN ). (5.8.6)

We now substitute UN (RN ) from (5.8.3) into (5.8.6) to obtain

∆S = −N lnV −
∫

P (RN ) ln P (RN )dRN . (5.8.7)

Note that the second term on the right-hand side of (5.8.7) has the
form of MI. We can also write the first term on the right-hand side
of (5.8.7) as the MI of an ideal gas. For an ideal gas UN (RN ) = 0
and P ig(RN ) = (1/V )N = P (R1)P (R2) · · ·P (RN ).

Hence,

∆S = ln P ig(RN ) −
∫

P (RN ) ln P (RN )dRN

= H(1, 2, . . . , N) − H ig(1, 2, . . . , N)

= −
∫

P (RN ) ln
[

P (RN )
P ig(RN )

]
dRN

= −
∫

P (RN ) ln

[
P (RN )∏N
i=1 P (Ri)

]
dRN

= I(1; 2; . . . ;N). (5.8.8)

The last expression on the right-hand side of (5.8.8) has the form
of a mutual information. The quantity

g(1, 2, . . . , N) =
P (RN )∏N
i=1 P (Ri)

(5.8.9)
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has the form of a correlation due to the interactions between par-
ticles. Note that P (Ri) = V −1 is the probability density of finding
a specific (labeled) particle at Ri.

A special case of interest is, in the limit of very low density, when
pair interactions are operative but interactions among more than
two particles are rare and can be neglected. To obtain this limit,
we write ZN as

ZN =
∫

dRN
∏
i<j

exp[−βUij ]. (5.8.10)

Define the so-called Mayer f function by

fij = exp(−βUij) − 1 (5.8.11)

and rewrite ZN as

ZN =
∫

dRN
∏
i<j

(fij + 1)

=
∫

dRN


1 +

∑
i<j

fij +
∑

i<i<k

fijfjk + · · ·

 . (5.8.12)

Neglecting all terms beyond the first sum, we obtain

ZN = V N +
N(N − 1)

2

∫
f12dRN

= V N +
N(N − 1)

2
V N−2

∫
f12dR1dR2, (5.8.13)

where we have integrated over N − 2 variables R3, . . . ,RN .
We now identify the second virial coefficient as

B2(T ) =
−1
2V

∫
V

∫
V

f12dR1dR2 (5.8.14)

and rewrite ZN as

ZN = V N − N(N − 1)V N−1B2(T )

= V N

[
1 − N(N − 1)

V
B2(T )

]
. (5.8.15)
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The corresponding Helmholtz energy change is

∆A = A − Aig = −T ln
ZN

V N

= −T ln
[
1 − N(N − 1)

2V 2

∫∫
f12(R1,R2)dR1dR2

]
. (5.8.16)

At low densities, ρ → 0, the limiting behavior of the right-hand
side of (5.8.16) is

∆A =
TN(N − 1)

2V 2

∫∫
f12(R1,R2)dR1dR2. (5.8.17)

Let Z2 be the configurational partition function for a system
with exactly two particles. For this special case, N = 2, the
corresponding change in the MI is obtained from (5.8.5)

∆S = −
(

∂∆A

∂T

)
V,N

= ln
(

Z2

V2

)
+

∫∫
exp[−βU(R1,R2)]βU(R1,R2)dR1dR2

Z2
.

(5.8.18)

For this system, the probability of finding the two particles at the
exact configuration (R1,R2) is

P (R1,R2) =
exp[−βU(R1,R2)]

Z2
. (5.8.19)

Hence, from (5.8.18) and (5.8.19), we get

∆S = − ln(V 2) −
∫∫

[P (R1,R2) ln P (R1,R2)]dR1dR2, (5.8.20)

which is the analog of (5.8.18) for this special case, N = 2.
When the particles are independent, we have P ig(R1,R2) = V −2

and the normalization condition for the probability is17∫ ∫
P ig(R1,R2)dR1dR2 =

∫ ∫
P (R1,R2)dR1dR2 = 1,

(5.8.21)

17Note that P (R1, R2) is the probability density for two specific particles 1
and 2. For details, see Hill (1960) or Ben-Naim (2006).
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we get from (5.8.20)

∆S =
∫∫

P (R1,R2) ln
P (R1,R2)

P ig(R1,R2)
dR1dR2 = −I(1; 2),

(5.8.22)
which is the analog of (5.8.8) for this special case.

For a system with N particles, but in the limit of very low den-
sities, we have instead of (5.8.22)

∆S = −N(N − 1)
2

∫∫
P (R1,R2) ln

P (R1,R2)
P ig(R1,R2)

dR1dR2.

(5.8.23)
The integral on the right-hand side of (5.8.22) has the form of

mutual information per pair of interacting particles. The whole
right-hand side of (5.8.23) is the mutual information for the total
of N(N − 1)/2 pairs of particles.

We now discuss two simple cases of this mutual information.

(i) Hard spheres of diameter σ

Hard spheres are defined by the interaction potential function:

U(R) =

{
∞ for R ≤ σ,

0 for R > σ.
(5.8.24)

From (5.8.17), we get

∆A =
−TN(N − 1)σ

2V

∫ ∞

0
{exp[−βU(R)] − 1}4πR2dR

=
TN(N − 1)σ

2V

(
4πσ3

3

)
. (5.8.25)

The corresponding change in MI is

∆S =
−N(N − 1)

2v

(
4πσ3

3

)

≈ N ln

[
V − (N − 1)4πσ3

6

V

]
= −I(1; 2; . . . ;N). (5.8.26)

The interpretation of this negative change in MI is simple. When
passing from an ideal to a real gas of hard spheres, the accessible
volume for each particle reduces from V to V − (N−1)

2
4πσ3

3 . Fig-
ure 5.4 illustrates the reduction in the accessible volume for the
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�

�

vV –

v

Figure 5.4. The reduction of the accessible volume for each particle from V
to V − vσ.

case of exactly two particles, N = 2. This mutual information is
similar to what we encountered in Section 4.1. We noted there that
the restriction of one ligand per site is equivalent to an infinite
repulsion between two ligands occupying a single site. Here again,
we have infinite repulsion due to the finite size of the hard sphere,
which effectively reduces the accessible volume—hence a reduction
in the MI.

(i) Square well potential
The square well potential is defined by

U(R) =



∞ for R ≤ σ,

−ε for σ ≤ R < σ + δ,

0 for R ≥ σ + δ.

(5.8.27)

Next, we examine the the change in the MI when we turn on
the square well potential (5.8.27). In this case, we examine only
the contribution to ∆S due to the additional part of the potential
function at σ ≤ R ≤ σ + δ. For the case of exactly two particles,
we have

∆A =
T

V

∫ RM

σ
(exp[−U(R)/T ] − 1)4πR2dR (5.8.28)

∆S =
1
V

(∫ RM

σ
(exp[−U(R)/T ] − 1)4πR2dR

+
∫ RM

σ
(exp[−U(R)/T ])(U(R)/T )4πR2dR

)
, (5.8.29)
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Figure 5.5. The additional decrease of the MI due to turning on the square
well potential.

where for simplicity we assume that the system is spherical, with
radius RM .

Again, ∆S is negative and it is larger, the larger value of ε. The
interpretation of this result in terms MI is again quite straightfor-
ward. Suppose we have only two particles and neglect the volume of
each particle (this was taken into account in the previous example).
In this case, the accessible volume for one particle is the entire vol-
ume V . However, the second particle is now more likely to be in the
spherical shell of radius σ and width δ around the first particle. This
additional information reduces the MI (see Figure 5.5) The larger
ε > 0, the larger the reduction in the MI. The general conclusion is
that whenever we introduce interactions between particles, the MI
is reduced, i.e., the mutual information is positive.
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Chapter 6

Some Simple Applications

The purpose of this chapter is three-fold; first, to present a few
very simple applications of statistical thermodynamics. Some of
these are discussed in most text books on statistical mechanics,
while some are not. All of these examples are uniformly analyzed
in terms of the changes in the MI. Second, the examples are simple
enough so that they can be viewed as exercises. The reader is urged
to do these exercises with or without the solutions that are given
as part of the text. Finally, most of these examples are designed to
demonstrate the workings of the Second Law of Thermodynamics.
Instead of the common formulation of the Second Law in terms
of the increasing entropy, we shall show that all of the processes
occurring spontaneously in an isolated system involve the increasing
of the MI.

Using information as a fundamental concept makes the under-
standing of the Second Law much easier. It also removes the mys-
tery that has befogged entropy and the Second Law for a long time.
We shall briefly discuss the Second Law of Thermodynamics in the
last section of this chapter. We shall see that the MI is the best
way of describing what is the quantity that changes in a sponta-
neous process. However, the only way of understanding why the MI
changes in one way is in terms of probability. This aspect will be
discussed in Section 6.12.

As we have seen in Chapter 4, there are essentially two kinds of
information: one associated with the locations of the particles and

251
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the second associated with the momenta of the particles. There are
also corrections for over-counting. These can be cast in the form
of mutual-information, which basically measures an average corre-
lation, or dependence between the particles. For an ideal gas, we
found two kinds of such corrections. One is due to the quantum
mechanical uncertainty principle. The second is due to the indis-
tinguishability of the particles. When intermolecular interactions
exist, there is an additional mutual information due to these inter-
actions. In this chapter, we shall discuss various processes where
one or two of these factors change.

In all of the examples discussed in this chapter, we shall be talk-
ing about changes in MI in various processes. However, we shall
never follow the process itself. The only quantities of interest will
be differences in MI between two equilibrium states; the initial and
the final states. It should be noted that the identification of the
entropy S with the Shannon measure of information H is valid
only at equilibrium states.

6.1 Expansion of an Ideal Gas

We start with the simplest spontaneous process in an isolated sys-
tem, i.e., a system of N particles having fixed energy E and con-
tained in volume V (Figure 6.1).

The system is an ideal gas, i.e., no interactions exist between
the particles (or, if they exist, the density is very low so that the
interactions between particles can be neglected). Also, we assume
for simplicity that the particles are structureless, i.e., point masses
with no internal degrees of freedom. The total energy of the system

I

2 V, NV,N 

Figure 6.1. Expansion of an ideal gas, from volume V to 2V .
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is simply the sum of the translational kinetic energy of the particles.
All the conclusions of these and the next few sections are valid for
complex particles. As long as none of the internal degrees of freedom
change in the process, the conclusion reached regarding the changes
in the MI will not be affected.

The change in the MI in the process depicted in Figure 6.1 can be
obtained most straightforwardly from the Sackur–Tetrode equation
for the MI that we derived in Sections 4.3 and 5.4. Since the energy
E and the number of particles N do not change in this process, the
change in the MI in this process is due only to the change of the
accessible volume for each particle, from the initial value V to the
final value 2V. The change in the MI for N particles is thus

∆SI = N ln
2V
V

= N ln 2 > 0. (6.1.1)

This is the same result one obtains from thermodynamics.1

Note that we could have derived this result directly from consid-
ering the change of the locational information as we have done in
Section 4.3.

For an ideal gas system, constant energy is equivalent to con-
stant temperature. Therefore, the entropy change obtained from
either the Sackur–Tetrode equation or from the canonical partition
function must be the same. We therefore rederive the result (6.1.1)
from the canonical partition function.

We write the PF for the system in the initial (i) and in the final
(f) states as

Qi =
V N

N !Λ3N
, Qf =

(2V )N

N !Λ3N
. (6.1.2)

Using the thermodynamic relationship for the MI, as the tempera-
ture derivative of the Helmholtz energy

S = −
(

∂A

∂T

)
V,N

=
∂(T ln Q)

∂T
, (6.1.3)

we get

∆SI = Sf − Si = ln
(

2V
V

)
= N ln 2 > 0. (6.1.4)

1See, for example, Denbigh (1967).
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It is instructive, however, to re-derive the result (6.1.1) directly by
counting configurations in a discrete sample space.2 In this manner,
we illustrate again that the MI does depend on details we choose
to describe the system. However, the change of the MI is indepen-
dent of this choice. This is the same result we have obtained in
Section 4.2.4. Suppose that we divide the volume V into m cells
each of volume v, such that V = mv . Suppose that we are inter-
ested in the distribution of the particles only in the different cells.
We assume for simplicity that each cell can contain any number of
particles. We could also ignore N ! in this example. Since N does
not change in the process, the change in MI will not depend on N .
The number of configurations in the initial state is mN/N !, and in
the final state is (2m)N/N !. Hence, the corresponding MI in the
initial and final states are

Hi = ln
mN

N !
, (6.1.5)

Hf = ln
(2m)N

N !
. (6.1.6)

The change of the MI in the process of Figure 6.2 is

∆SI = Sf − Si = N ln
2m
m

= N ln 2. (6.1.7)

Thus, the amount of MI, Hi and Hf in (6.1.5) and (6.1.6) depends
on the accuracy we choose in locating the particles; the finer the
size of the cell, the larger m, and the larger the MI in (6.1.7). The
difference in the MI is however independent of the size of the cells.

2 m, Nm, N

Ia

Figure 6.2. Expansion of an ideal gas, as in Figure 6.1, but from m cells to
2m cells.

2This also illustrates the validity of the result (6.1.4) even though we used the
definition of S for the continuous case.
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When m → ∞, the MI in both the initial and the final states
tends to infinity. However, if we first take the difference in MI, then
let m → ∞, we get a finite change of N ln 2, independent of m.

Note carefully that the change in the MI in the expansion process
depends only on the initial and the final volume accessible to each
particle. It does not depend on the kind of the particles. This sounds
like a trivial comment in the context of the expansion process. It
is far from trivial in the context of the same process discussed in
Section 6.4.

6.2 Pure, Reversible Mixing; The First Illusion

Figure 6.3 shows a pure process of mixing. It is pure in the sense
that none of the parameters E,V or N changes in this process. Only
mixing is observed. In Figure 6.3a, we depicted only the initial and
the final states. In Figure 6.3b, we show the process itself. In most
of this chapter, we shall not be concerned with the process itself,
but only on the difference in the MI between the initial and the
final states. Initially, we have NA particles of type A in a volume
V , and NB particles of type B in a volume V . We bring the two
systems into the same final volume V , and we now have a mixture
of A and B.

We can calculate the change in MI in this process either from the
Sackur–Tetrode equation, or from the canonical partition functions.
For the initial and the final states, we have

Qi =
V NA

NA!Λ3NA

A

V NB

NB!Λ3NB

B

, Qf =
V NA+NB

NA!NB !Λ3NA

A Λ3NB

B

. (6.2.1)

Clearly, since Qi = Qf , we get

∆SII = 0. (6.2.2)

Note that if we are interested only in the change in the MI from
the initial to the final states, all we need are the partition functions
in these two states. In most textbooks on thermodynamics, one
can also find a reversible process that transforms the initial to the
final states. This process requires the existence of semi-permeable
partitions that are permeable selectively, one to A, and the second
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II

V, NA ,NBV, NA V,NB

Partition
permeable
to B only 

Partition
permeable
to A only

(a)

(b)

B =A=

Figure 6.3. (a) Pure mixing of two components A and B. (b) Reversible pro-
cess of mixing.

to B (see Figure 6.3b). However, the result (6.2.2) does not depend
on the existence of such partitions.

The interpretation of the result (6.2.2) is simple and straightfor-
ward. The volume V accessible for each particle before and after
the process did not change. Also, the temperature, and hence the
velocity distribution, did not change in the process. Therefore, the
net effect is strictly a zero change in the MI.

From this simple result, we conclude that mixing in ideal gas
systems, in itself, has no effect on any thermodynamics process.
Hence, thermodynamically speaking, mixing is a non-process. This
is in sharp contrast to the frequent statements made in the liter-
ature, as well as in daily life, regarding mixing as an inherently
irreversible process.

From the example discussed in this section, we conclude that the
association of mixing with increase of entropy is only an illusion.
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There are two reasons that contribute to this illusion. First is
the common association of mixing, or “mixed-upness,” with disor-
der, and the association of disorder with increase in entropy. As we
have discussed in Chapter 1, the first part of the preceding sen-
tence is qualitatively correct, while the second part is, in general,
incorrect.

The second reason is that in daily life, we do see many mixing
processes that are indeed spontaneous and involve an increase in
entropy. None of these is a pure mixing process. As we shall see
in Sections 6.4 and 6.5, both mixing and demixing can be made
spontaneous when coupled with another process, such as expansion.
In all of these processes, it is the expansion, not the mixing, which
is responsible for the increase in entropy, or the MI. It just happens
that mixing processes coupled with expansion are more frequently
encountered (see Section 6.4). This fact creates the illusion that the
mixing part of the process such as IV in Figure 6.6 is responsible
for the increase in entropy.

6.3 Pure Assimilation Process; The Second Illusion

Figure 6.4 shows two processes similar to the one described in
Figure 6.3, but now the particles in the two compartments are of
the same type, say A.3 We refer to this process as pure assimilation
for the following reasons.4 In process IIIa, we have NA particles
in one box of volume V , and another NA particles in a second
box. The particles in one box are distinguishable from the particles
in the second box by the very fact that they are confined to two
macroscopically distinguishable boxes.5 In the final state, we have
2NA indistinguishable particles in the same volume V . The volume
accessible to each particle, as well as the velocity distribution of the
particles, is unchanged in this process. What has changed is only

3Note again that in Figure 6.4 we do not discuss the process itself. All we
are interested in is the difference in the MI between the initial and the final
states.
4In this book, we shall use the terms “mixing” and “assimilation” for the two
processes which Gibbs (1906) referred to as “mixing of particles of different
kinds,” and “mixing of particles of the same kind” (see also Section 6.6).
5Indistinguishability of identical particles is further discussed in Appendix J.
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IIIa

V, 2 NAV, NA V, NA

IIIb

V,  NA+1V, 1A V, NA

Figure 6.4. Pure process of assimilation.

the number of indistinguishable particles, from NA ID particle and
another NA ID particles into 2NA ID particles. Process IIIb is the
same as IIIa but with one A particle in the left box.

The particles of one box when “mixed” with particles in the sec-
ond box are assimilated. There is a strong sense of loss of informa-
tion that can never be recovered. This sense of loss has already been
alluded to by Maxwell in connection with the Second Law, and also
by Gibbs. We shall discuss these ideas in Section 6.6 where assim-
ilation is coupled with a process of expansion, a process that is
more closely related to the ones discussed by both Maxwell and
Gibbs. We shall see that this sense of loss of information has led to
erroneous conclusions. It is probably a result of relating consciously
or unconsciously the loss of this kind of information to increase in
the MI. These conclusions are erroneous however. Before analyzing
this conclusion, let us calculate the change in the MI in this process.
Since these processes involve changes in the number of particles, we
must discuss separately particles that obey Fermi–Dirac and Bose–
Einstein statistics. As in the previous section, we shall not discuss
the actual execution of the process. What matters is only the initial
and the final states.
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6.3.1 Fermi–Dirac (FD) statistics; Fermions

Let M be the number of molecular states available to each of the
N Femions. The total number of states for the whole system, with
the restriction that no more than one particle can occupy a specific
molecular state, is well-known (see Appendix B):

W
(N)
FD =

M !
N !(M − N)!

=
(

M

N

)
. (6.3.1)

This is the number of ways of placing N indistinguishable par-
ticles in M boxes (or molecular states) with the restriction that
the occupancy of each molecular state can be either zero or one.
Clearly, to satisfy this condition, M must be larger than N . The
MI associated with this number of states is

S
(N)
FD = ln W

(N)
FD . (6.3.2)

In order to interpret this quantity as informational measure, we
adopt the assumption that each of the W

(N)
FD states has the same

probability, equal to

P
(N)
FD =

(
M

N

)−1

. (6.3.3)

The informational measure defined on this probability distribu-
tion is

S
(N)
FD = ln W

(N)
FD = −

(M

N)∑
i=1

P
(N)
FD ln P

(N)
FD . (6.3.4)

Note that the informational measure for this system is rendered
possible only because of the fundamental postulate of statistical
mechanics expressed in (6.3.3). We first examine the change in the
MI process IIIb in Figure 6.4:

∆S
(1,N)
FD = ln

W
(N)
FD

W
(1)
FDW

(N−1)
FD

= ln
(

1
N

− 1
M

+
1

NM

)
< 0. (6.3.5)

Since M > N , this change in MI is negative. Thus, upon assimi-
lating one Fermion into N − 1 Fermions of the same kind, we have
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a decrease in MI. In the more general case of assimilation of N1 and
N2 Fermions, the change in the MI process IIIa (Figure 6.4):

∆S
(N1,N2)
FD = ln

W
(N1+N2)
FD

W
(N1)
FD W

(N2)
FD

. (6.3.6)

Again, this is negative (to prove that, one can simply repeat
process IIIb, N1 times, until all of the N1 particles in process IIIa
are transferred from the left box into the right box). We conclude
that the process of pure assimilation involving indistinguishable
Fermions always decreases the MI. This result is due to a decrease
in the total number of states of the whole system.

6.3.2 Bose–Einstein (BE) statistics; Bosons

Here, we consider a system of N non-interacting Bosons. The num-
ber of states for the whole system of N indistinguishable Bosons,
with no restriction on the occupation number in each molecular
state, is the well-known (Appendix B):

W
(N)
BE =

(M + N − 1)!
N !(N − 1)1

=
(

M + N − 1
N

)
. (6.3.7)

Again, viewing W
(N)
BE as the total number of states of the whole

system (at fixed energy, volume and number of Bosons), we write
the MI of the system as

S
(N)
BE = ln W

(N)
BE . (6.3.8)

In addition, we assume per postulate that all states have equal prob-
ability, i.e.,

P
(N)
BE =

(
M + N − 1

N

)−1

. (6.3.9)

We can then interpret (6.3.8) as a Shannon-measure of informa-
tion, i.e.,

S
(N)
BE = −

(M+N−1
N )∑

i=1

P
(N)
BE ln P

(N)
BE , (6.3.10)

where the sum, on the right-hand side of (6.3.10), is over all the
states of the system.
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The changes in the MI processes IIIb and IIIa are thus

∆S
(1,N)
BE = ln

W
(N)
BE

W
(1)
BEW

(N−1)
BE

= ln
(

1
N

+
1
M

− 1
NM

)
< 0 (6.3.11)

and

∆S
(N1,N2)
BE = ln

W
(N!+N2)
BE

W
(N1)
BE W

(N2)
BE

< 0. (6.3.12)

Thus, we find again that in both processes IIIa and IIIb of the pure
assimilation of Bosons, the MI decreases.

6.3.3 Maxwell–Boltzmann (MB) statistics

It is well-known6 that in the limit of M � N , both the FD and
the BE statistics tend to the Maxwell–Boltzmann statistics and
the following inequality holds for any N and M(M > N) (see
Figure 6.5):

W
(N)
BE > W

(N)
MB > W

(N)
FD (6.3.13)
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Figure 6.5. (a) WBE , WMB , WFD as a function of N for a fixed M = 1000.
(b) WBE , WMB , WFD as a function of M for a fixed N = 100 (The curve for
WMB is the intermediate curve).

6See, for example, Hill (1960).
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and

W
(N)
FD → W

(N)
MB =

MN

N !
, W

(N)
BE → W

(N)
MB =

MN

N !
. (6.3.14)

Thus, in the limit of M � N , the MB statistics is obtained from
either the FD or the BE statistics.

The MI associated with W
(N)
MB is

S
(N)
MB = ln W

(N)
MB . (6.3.15)

Assuming that each of the W
(N)
MB states has equal probability, i.e.,

P
(N)
MB =

(
MN

N !

)−1

. (6.3.16)

The corresponding MI defined on this distribution is

S
(N)
MB = −

“
MN

N !

”∑
i=1

P
(N)
MB ln P

(N)
MB . (6.3.17)

The relevant changes in MI in the processes IIIa and IIIb are

∆S
(1,N)
MB = ln

W
(N)
MB

W
(1)
MBW

(N−1)
MB

= − ln N < 0 (6.3.18)

and

∆S
(N1,N2)
MB = ln

W
(N1+N2)
MB

W
(N1)
MB W

(N2)
MB

= − ln
(N1 + N2)!

N1!N2!
< 0. (6.3.19)

The inequality (6.3.19) follows from the inequality(
N1 + N2

N1

)
=

(N1 + N2)!
N1!N2!

> 1. (6.3.20)

Thus, in all the processes of pure assimilation, the MI decreases.
This is clearly a counter-intuitive result. We shall revert to this
aspect of the assimilation process in Section 6.6.
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As we have done in Section 6.2, we can calculate the change of
MI for the MB case from the canonical PF. The canonical partition
functions in the initial and final states are

Qi =
V N1

N1!
V N2

N2!Λ
3(N1+N2)
A

, Qf =
V (N1+N2)

(N1 + N2)!Λ
3(N1+N2)
A

. (6.3.21)

The corresponding change in MI of the process is

∆S = Sf − Si = ln
N1!N2!

(N1 + N2)!
< 0, (6.3.22)

In agreement with (6.3.19). We stress again that this process is
referred to as a pure assimilation process. It is pure in the sense
that only the number of indistinguishable particles have changed;
the volume accessible to each particle as well as the temperature
has not changed in this process. A special case of (6.3.22) is when
N1 = 1 and N2 = N − 1, for which we have

∆S = ln
1!(N − 1)!

N !
= − ln N < 0. (6.3.23)

This process is important in the study of solvation where one
particle, initially distinguishable from the rest of the particles of
the same type, is assimilated into the other members of the same
species.7

It is tempting to interpret (6.3.23) directly in terms of changes
in the identity of the particles. We write

∆S = − ln N =
N∑

i=1

1
N

ln
1
N

=
N∑

i=1

p ln p < 0. (6.3.24)

This has the correct form of an informational measure, defined
on the probability distribution p = 1/N . But what are these prob-
abilities? Recall that we have started with a system of one dis-
tinguishable particle and (N − 1) indistinguishable particles, and
ended with N indistinguishable particles. One interpretation of p

could be the probability that a particle picked at random would be

7See Ben-Naim (2006).
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that one that was originally separated and distinguishable from the
other. Thus, we are tempted to accept the intuitively very appeal-
ing interpretation that upon assimilation, we lose information. Ini-
tially, we knew which particle was in the separate box; after assim-
ilation, we lost that information, we lost it forever and we can
never retrieve this information; we can never find out which parti-
cle we have just added.8 This argument is so compelling that even
Gibbs himself concluded that retrieving this particular particle is
“entirely impossible” (see Section 6.6). Looking again at the sign
of ∆S in (6.3.23), we see that ∆S is negative, corresponding to a
negative change in MI. Negative MI is equivalent to the gain in
information.

The sense of loss of information in either process IIIa or IIIb is
genuine.9 This sense of loss of information seems to conflict with
the finding that the MI has decreased in the process of assimila-
tion. However, this conflict is an illusion, perhaps a deeper illu-
sion than that involved in the process of mixing as discussed in
Section 6.2. The source of this illusion is that we tend to associate
any loss of information with an increase in MI. However, as we
have seen in Section 4.3, we have two kinds of information in the
classical description that contribute to the MI; the locational and
the momentum information. Neither of these types of information
change in the assimilation process. We have also seen in Section 4.3
that the change in the number of indistinguishable particles is asso-
ciated with the mutual information, i.e., with the correlation among
the particles. Likewise, we have also seen that the process of un-
labeling of particles does feel like a loss of information, actually it
causes an increase in the number of states — hence an increase in
the MI. We shall revert to this question of assimilation in Section 6.7
and in Appendix M.

8This loss of information not only applies to the addition of a particle of the
same kind as described in process IIIa, but also for the change of the identity of a
molecule from one kind to another. We discuss a specific example in Section 6.7.
9This is similar to taking a letter, putting it in an envelope, and dropping the
envelope into a bag of N identical envelopes. If the envelopes cannot be opened,
we can never retrieve the information on “where the letter is.”
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6.4 Irreversible Process of Mixing Coupled with
Expansion

The process IV in Figure 6.6 is perhaps the most common process
of mixing discussed in textbooks on thermodynamics. It is in this
process that the erroneous conclusions are most frequently reached
that mixing is essentially an irreversible process. As the title of this
section says, this is a process of mixing coupled with expansion. In
the literature, this is referred to as mixing at constant pressure, or
simply as a mixing process.

Following Gibbs original treatment two processes IV and V are
presented in connection with the process of mixing as depicted in
Figures 6.6 and 6.7. For simplicity, we take NA = NB = N and
VA = VB = V , but all the arguments and conclusions are valid
for any NA, NB , VA and VB . It is easily shown that in process IV
there is a positive change of MI ∆SIV = −N

∑
xi ln xi = N ln 2 > 0

whereas in process V, no change is observed. Hence, ∆SV = 0. Com-
paring these two results, the natural conclusion is that the mixing in
IV is the cause for the positive change in MI. Indeed, the mixing in
process IV is the only conspicuous difference between the two pro-
cesses IV and V. As will be shown below, the conspicuous mixing

IV

2 V, NA ,NBV, NA V, NB

Figure 6.6. Irreversible mixing coupled with expansion.

V

2 V, 2 NAV, NA V, NA

Figure 6.7. Reversible assimilation coupled with expansion.
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in IV does not necessarily imply that the mixing is the cause for the
irreversibility of the process IV. The perception that mixing is an
inherently irreversible process is not only part of our basic scientific
education, intimately woven into our comprehension of the Second
Law of Thermodynamics, it also conforms with our everyday expe-
rience. Many processes of mixing that we encounter everyday are
indeed spontaneous processes, involving an increase in the MI.

No doubt, this is the reason why most textbooks on thermody-
namics reach the (erroneous)conclusion that mixing is an inherent
irreversible process — hence the quantity −∑xi ln xi is referred to
as the entropy of mixing.

In this section, we analyze the origin of ∆S > 0 in process IV, and
in Section 6.6, we shall analyze the origin of ∆S = 0 in process V.
We have already seen that the pure mixing process involves no
change in MI (see process II in Figure 6.3). In other words, a pure
mixing process does not cause any change in MI, whereas a pure
assimilation processes involves a decrease in MI.

As in the previous sections, we can calculate the change of MI in
the process IV (Figure 6.6) either from the Sackur–Tetrode equa-
tion or from the canonical PF. We write for the initial and the final
states the PF’s as

Qi =
V NAV NB

NA!NB !Λ3NA

A Λ3NB

B

, Qf =
(2V )NA(2V )NB

NA!NB !Λ3NA

A Λ3NB

B

. (6.4.1)

The corresponding change in MI is

∆SIV = Sf − Si = NA ln
2V
V

+ NB ln
2V
V

= (NA + NB) ln 2. (6.4.2)

We thus see that process IV is equivalent to two processes of
the same kind as process of expansion I where the systems of NA

and NB expand from initial volume V into 2V . This equivalence
is depicted in Figure 6.8 (i.e., process IV is equivalent to the two
processes IV1 and IV2).

Once we realize that the expansion from V to 2V is the cause
of the change in the MI, the puzzle regarding the origin in the
difference between processes IV and V is passed to process V. We
shall further discuss process V in Section 6.6. Here, it is important
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IV

2 V, NA ,NBV, NA V, NB

IV1

2 V, NA
V, NA

IV2

2 V, ,NB
V, NB

Figure 6.8. The mixing in process IV is equivalent to two processes of expan-
sion; IV1 and IV2.

to realize that since the change in MI due to the expansion process
is independent of the kind of molecules, the change in ∆S in the
mixing process is also independent of the type of molecules. This
conclusion was not always so obvious. Gibbs considered the fact
that the value of the “entropy of mixing” is independent of the kind
of gas, no less striking than the fact that ∆S becomes zero when
the two gases become identical. On this matter, Gibbs writes10

“But if such considerations explain why the mixture of gas-masses
of the same kind stands on different footing from mixtures of gas-
masses of different kinds, the fact is not less significant that the
increase of entropy due to mixture of gases of different kinds in
such a case as we have supposed, is independent of the nature of
the gases.”

Indeed, if one conceives of the mixing itself as the cause of the
“entropy of mixing” then it is quite puzzling to find that the entropy
of mixing is independent of the kind of the mixing molecule. It

10Gibbs (1906), page 167.
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should be noted here that in mixing of two liquids the change in
MI (or entropy) will in general, depend on the type of molecules
that are mixed. The reason is that in mixing liquids, the interactions
between AA, AB and BB are different, and strongly dependent on
the type of molecules. However, for ideal gases, the mixing, in itself,
does not play any role in determining the value of the so-called
“entropy of mixing.” Once we recognize that it is the expansion,
not the mixing, which causes a change in the MI, then the puzzling
fact that the change in MI is independent of the kind of molecules
evaporates.

Clearly, we do observe mixing in process IV. This is a fact! But
it is also clear that the mixing that occurs in process IV does not
contribute to the change in MI. In both processes I and IV, each
particle was initially confined to a smaller volume V and finally can
access a larger volume 2V . In both cases, the change in MI has the
same source: the change in the accessible volume to each particle.
The irrefutable conclusion is that the mixing observed in process IV
has no effect on the entropy of this process. This conclusion leaves
us with an uneasy feeling: if mixing in process IV does not affect
the MI in the process, then what is the cause of the different results
we obtain for the MI change in processes IV and V in Figures 6.6
and 6.7?

Since the only conspicuous difference in processes IV and V is
the mixing in IV and non-mixing in V, it is almost inevitable to
ascribe the change in MI to the mixing in IV, and the no change in
MI in process V to the apparent non-process in V. This conclusion
is erroneous, however. To clarify, and to answer the aforementioned
question, we have to examine the change in MI in process V, which
looks deceptively simple but is actually more complex and more
difficult to understand than the change of MI in the process of
mixing in IV. We shall return to this process in Sections 6.6 and 6.7.

6.5 Irreversible Process of Demixing Coupled
with Expansion

While processes IV and V are well-known and well-discussed in text-
books, the following example is not as well-known. It is, however,
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onlyAto
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Figure 6.9. Irreversible de-mixing coupled with expansion.

an important process since it demonstrates that both mixing and
demixing could be irreversible when coupled with a driving force
which is an irreversible one involving increase of MI. In Section 6.11,
we shall discuss another possible driving force, the solvation Gibbs
energy, that can be coupled with mixing or demixing.

Process VI depicted in Figure 6.9 is a spontaneous irreversible
demixing. We start with a mixture of NA and NB in a small volume
v, and let the A molecules expand into a larger volume V through
a partition permeable to A only. Similarly, we let B expand from
v to V .

The change in MI for this process is11

∆SVI = NA ln
(

V + v

v

)
+ NB ln

(
V + v

v

)
> 0. (6.5.1)

If we choose V � v, we can achieve an almost complete demixing
of A and B. If we insist, we can also demix completely the remaining
mixture in v with no change in MI.12 For NA = NB = N , we find

11For more details, see Ben-Naim (1987).
12Simply reversing the process II described in Section 6.2, but for the remaining
mixture in v.
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that the total change in MI is

∆SVI = 2N ln
(

V

v

)
− N

v

V
≈ 2N ln

(
V

v

)
> 0. (6.5.2)

The important lesson we learned from processes IV and VI is
that the observed mixing in IV, and the observed demixing in VI,
are not the driving force for these processes. In both processes the
mixing is coupled to expansion — which provides the thermody-
namic driving force. Clearly, by the same logic that many authors
conclude from process IV, that mixing is inherently irreversible, we
could have concluded from process VI that demixing is inherently
an irreversible process. The two conclusions are erroneous.

Moral: Mixing, as well as demixing, are something we see but
that something has no effect on the MI of the system.

6.6 Reversible Assimilation Coupled with Expansion

In Section 6.2, we have seen that process II involves ∆S = 0, and
we concluded that from the thermodynamic point of view, this is
a non-process. However, not every process for which ∆S = 0, is a
non-process.

Process V in Figure 6.7 looks deceptively simple. Indeed, no con-
spicuous process is observed in V, but underneath this apparent
non-process, two processes are at work. One is expansion: each par-
ticle has changed its accessible volume from V to 2V . In addition N

indistinguishable particles and another N indistinguishable parti-
cles of the same kind are assimilated into into each other to form 2N
indistinguishable particles. (Gibbs refers to this process as “mixing
of gases of the same kind.” I prefer to use the word “assimilation”
for this kind of mixing, and reserve the term “mixing” for mixing
different species.) Let us see quantitatively how much each of these
processes contribute to the total change in the MI. The PF in the
final and initial states are

Qf =
(2V )2N

(2N)!Λ3(2N)
, Qi =

V NV N

N !N !Λ3(2N)
. (6.6.1)
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For any finite N , we have

∆HV = 2N ln
2V
V

− ln
(2N)!
(N !)2

> 0. (6.6.2)

Mathematically, this is always a positive quantity! This follows from
the inequality

22N = (1 + 1)2N =
2N∑
i=1

(
2N
i

)
>

(2N)!
N !N !

. (6.6.3)

Note that (2N)!
N !N ! is only one term in a sum of many positive numbers.

Thus, the MI always increases in process V. However, thermody-
namically speaking, the difference between the two terms in (6.6.2)
is insignificant and cannot be noticed experimentally. When N is
very lage, ∆HV in (6.6.2) is practically zero. This is easy to see if
we use the Stirling approximation for the factorials N ! and (2N)!
in (6.6.2):

∆SV = lim
N→∞

∆HV = 2N ln
2V
V

− 2N ln 2 = 0. (6.6.4)

We can now conclude that in process V, two things happen. First,
we have an expansion that causes an increase in the MI exactly as in
Section 6.1. In addition, there is also an assimilation process which
contributes negatively to the MI. The two cancel each other for
macroscopic systems (strictly for N → ∞), so that the net result
is a zero change in MI.

Exercise: Calculate ∆SV for process V for the following two cases,
and interpret the results in terms of change in the MI:

(i) V1 = V2 = V , and N1 �= N2,
(ii) V1 �= V2 and N1 = N2 = N .

Solutions: Using the partition functions (6.6.1) for the initial and
final states, we get for the first case (equal volumes but unequal
number of particles)

∆SV
∼= (N1 + N2)[ln 2 + x1 ln x1 + x2 ln x2], (6.6.5)

where x1 = N1/(N1 + N2) and x2 = 1 − x1.
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The first term is due to the increase of the accessible volume for
each of the N1 + N2 particles, the same as in (6.6.4). The second
and third terms are the contributions to ∆S due to assimilation,
which is different from (6.6.4). This term has the form of the so-
called “entropy of mixing,” but clearly it has nothing to do with the
mixing. For the special case, x1 = 1/2, (6.6.5) reduces to (6.6.4).

For the second case (equal number of particles, but different ini-
tial volume) we have

∆SV
∼= −N ln y1 − N ln y2 − 2N ln 2, (6.6.6)

where y1 = V1/(V1 + V2) and y2 = 1 − y1. Here, the third term
is due to assimilation. The change in MI due to volume change is
different. N particles have changed the accessible volume from V1

to V1+V2, and N particles have changed the accessible volume from
V2 to V1 + V2. When V1 = V2 = V , (6.6.6) reduces to (6.6.4).

6.7 Reflections on the Processes of Mixing
and Assimilation

In this section, we reflect on the way we perceive the outcome of
the two processes IV and V, and how our minds struggle to decide
between two choices; to believe in what our eyes see, or to accept
what the formal theoretical analysis tells us.

The two experiments IV and V are very simple and the theory
we use to analyze them is very elementary, yet something very
strange occurs when we compare what either our physical eyes or
our “mental eyes” see, and what theory tells us.

As we have already seen in the previous sections, these issues run
deep in our way of thinking and our way of visualizing the molecular
processes. We shall separately discuss the two issues.
(i) Does mixing increase the MI? It does not!
The idea that mixing is an inherently irreversible process is not
only written in textbooks of thermodynamics. It is not only the
knowledge we acquired as students, learning thermodynamics. It is
part of our daily experience. We see mixing occurring everywhere
and everyday. Process IV is only one of many examples of mixing
processes. A more familiar one; a drop of dark blue ink in a glass
of water will mix with the water and color it light blue.
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These are undeniable observations. We learn in all textbooks
that in the mixing process, e.g., process IV, the MI or the entropy
increases. We also learn that the MI increase is intimately associ-
ated with increase in disorder, and that seems very reasonable. It is
therefore natural to associate any mixing process with decrease of
order or increase of MI, and of course, irreversibility. The very usage
of the term “mixed-up” in daily life implies disordering, whether it
is two different gases or a thousand pairs of shoes — we mix them
and we realize an increase of disorder. Thus, we intuitively, as well
as intellectually, view mixing as one example of nature’s manifes-
tation of the arrow of time. Indeed, mixing is taught in the context
of other examples of irreversible process — as flow of heat sponta-
neously from high to low temperature or flow of matter from high
to low chemical potential.

We almost never observe a spontaneous demixing — as much as
we never observe a spontaneous cooling of one part of a vessel of
water and heating another part. So what could be more natural
and appealing to our intuition than to accept that mixing is an
irreversible process, that mixing causes disorder, and that mixing
increases the MI in the system?

But alas, we have just learned that all of these are only an
illusion — an illusion of our eyes. Mixing, by itself, is actually
reversible, and both mixing and demixing, when properly coupled
with expansion, can be rendered irreversible and if we eliminate the
real thermodynamic “driving force” of expansion, we are left with
bare mixing that has no effect on the thermodynamics in general,
and on the MI, in particular.

It is admittedly shocking to learn that what we have seen every-
day as mixing and what we thought we have fully understood is
only an illusion. Nevertheless, we can quickly accommodate the new
way of looking at the process of mixing. Mixing is something we do
observe in our eyes, but that something has no effect on the MI of
the system. We can easily subscribe to the new way of thinking —
not to trust our eyes, but to trust our theoretical “microscopic”
eyes; not to reach to a conclusion that what is conspicuous is nec-
essarily the driving force, and that the real, genuine driving force
might not be conspicuous. As Isaiah proclaimed: “And he shall not
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judge after the sight of his eyes, neither reprove after the hearing
of his ears.”13

Once we are faced with the compelling argument as presented
above, it is relatively easy to accept and to embrace the new con-
clusion. It is easy, since we know that both mixing and demixing
can either be reversible or irreversible. It is easy, since we are offered
a convincing alternative driving force, which facilitates the divorce
from the notion that mixing is a driving force. We say relatively
easy — easy with respect to what awaits us in the next section when
discussing assimilation and deassimilation, which are anything but
easy to accept and assimilate into our thinking.

But before plunging into the highly treacherous and slippery
issue of assimilation, let us look at a fringe issue of semantics. I
have often heard comments that the whole issue of “the entropy
of mixing” is merely a matter of semantics. I adamantly disagree
with that comment. Of course, there is one and only one aspect of
the issue that has the flavor of being semantic. Of course, one can
name the quantity −kB

∑
xi ln xi “entropy of mixing” or entropy

of whatever, but one cannot dismiss the whole issue that mixing is
“inherently irreversible” as an issue of semantics.14 The latter is a
profound issue, relevant to our understanding of the Second Law of
Thermodynamics.

But even the admittedly semantic aspect of the issue is not fully
justified. Naming a quantity “entropy of mixing” implies more than
naming a person or a thing by an arbitrarily chosen name. A term
like “entropy of mixing” is both inappropriate and potentially mis-
leading. This term has misled so many of us to think of mixing as
an irreversible process, as attested by most authors of textbooks
on thermodynamics. It is fitting, therefore, to further elaborate on
the “semantic” part of the issue. I will do that via a caricature
rendition of a process.

Consider the process depicted in Figure 6.10, VIIa. N particles
initially in a circle shape container (or sphere) of volume V are

13Isaiah 11:3. ).א ו"ישעיה י(ולא למשמע אוזניו יוכיח , ולא למראה עיניו ישפוט
14In this section, we discuss the common concept of “entropy of mixing.” All the
conclusions apply equally to the MI in the mixing process. The latter becomes
equal to the former after multiplying by the Boltzmann constant.
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2N,2V2N, V
VIIa

N,VN,V
VIIc

2N, V 2N,2V
VIIb

(a)

(b)

(c)

Figure 6.10. (a) “irreversible squaring”, (b) “irreversible circling” and
(c) “reversible squaring”.

allowed to expand and fill a sphere (or a cube) of volume 2V . The
reverse of this process is shown in VIIb and a reversible version
(in the sense that ∆S = 0, see below) of the process is shown
in VIIc. We can calculate the change in MI in process VIIa and
find ∆S = 2N ln 2. The same is true for VIIb, but ∆S = 0 for
VIIc (assuming the system is macroscopic and neglecting surface
effects).

Would anyone dare to refer to ∆S = 2N ln 2 in process VIIa as
the “entropy of squaring,” or in process VIIb, as the “entropy of
circling?” Obviously, we all feel that though we see squaring in VIIa
and we see circling in VIIb, the terms “entropy of squaring” and
“entropy of circling” would not be appropriate. We all know and feel
correctly that the “driving force” for both processes VIIa and VIIb
is the expansion, and the quantity 2N ln 2 should appropriately be
referred to as the entropy of expansion. In exactly the same sense,
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what we used to call the “entropy of mixing” should be referred to
as the entropy of expansion, or the MI of expansion.15

(ii) Does assimilation increase the MI? No, it does not! It actually
decreases the MI of the system.

We now turn to discussing the heart of the issue of assimilation.
We first note that in the entire discussion in the previous sub-
section, we did not mention the word “indistinguishability.” This
is not accidental. Though indistinguishability of particles affects
almost everything involving matter, it does not directly feature in
the discussion of mixing, when discussing mixing gases of different
kinds. What is important is that we do distinguish A from B. The
indistinguishability among the NA particles, and among the NB

particles does not change in the process of mixing and therefore we
find it unnecessary to mention it.

We now turn to process V, where a more astounding revela-
tion awaits us. Finding that assimilation decreases the MI (or the
entropy) is even more shocking than finding that the mixing does
not change the MI. After all, we do see many mixing processes
occurring spontaneously. Our theoretical analysis in Section 6.3 tells
us that assimilation processes decrease the MI. We must conclude
that the reverse process of deassimilation should increase the MI.
Yet the fact is that we never see around us processes of deassimi-
lation occurring spontaneously. Therefore, it is hard to accept and
harder to visualize why the deassimilation increases MI and assim-
ilation decreases MI.

There is yet another, more profound reason why we have a hard
time accepting and associating assimilation with the decreasing
of MI. I venture to guess that even Gibbs himself would have been
resentful of this idea. At this juncture, we can do no better than
cite Gibbs himself16:

“If we should bring into contact two masses of the same kind of
gas, they would also mix but there would be no increase in entropy.

15The equivalence of process IV and two expansion processes was demonstrated
in Figure 6.8.
16Gibbs (1906).
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When we say that when two different gases mix by diffusion . . .
and the entropy receives a certain increase, we mean that the
gases could be separated and brought to the same volume . . .
by means of certain changes in external bodies, for example,
by the passage of a certain amount of heat from a warmer to
a colder body. But when we say that when two gas masses of
the same kind are mixed under similar circumstances, there is
no change of energy or entropy, we do not mean that the gases
which have been mixed can be separated without change to exter-
nal bodies. On the contrary, the separation of the gases is entirely
impossible.”

“Entirely impossible”! Why? Gibbs did not explain why. We feel,
however, that his conclusion is obvious. Let us repeat what Gibbs
says in plain words: though the mixing of different species, e.g.,
process IV can be reversed (by investing energy), the mixing of
gases of the same species, e.g., process V, cannot be reversed.17

Gibbs’ comment leaves us with an awesome feeling — something
strange is going on in process V: the mixing in process IV, which we
all observed as a spontaneous irreversible process, can be reversed.
The “mixing” in process V, where we have observed nothing, there
is no noticeable change in energy or in MI (or entropy). We are
told that this process is irreversible in a more absolute sense: it
can never be reversed, it is “entirely impossible.” That sounds both
obvious and paradoxical. It is obvious, since there exists no way of
bringing each particle back to its original compartment. It is also
paradoxical: how can it be that an irreversible mixing in process IV
that causes an increase in the MI can be reversed, but the “mixing”
in the reversible process V, where no change in the MI is observed,
cannot be reversed — it is entirely impossible?

Is this another mysterious paradox borne out of Gibbs’ writing
on the entropy of mixing? To understand the troubling issues, let
us analyze what Gibbs really meant by “entirely impossible.”

There are at least three senses in which we can think of reversing
process V. First, the easiest to conceive; let us call it the mechanical
sense. We all know, and certainly Gibbs knew, that the equations of

17A very similar idea was expressed by Maxwell almost three decades before
Gibbs. We shall comment on Maxwell’s quotation at the end of this section.
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motion are symmetrical with respect to time reversal. If we could, at
least theoretically or mentally, reverse the motion of each particle,
i.e., run the process V backward, we could in principle, reverse the
process. However, in this sense, process IV can be reversed as well,
i.e., this kind of reversal applies to both processes IV and V. It is
clear that Gibbs did not mean “impossibility” in this sense. Hence,
this sense is ruled out.

The second meaning, which is a little harder to conceive, can
be referred to as the fluctuation sense. We all know, and proba-
bly Gibbs knew too, that the Second Law of Thermodynamics is
not absolute — that a fluctuation, though very rare, can occur, in
which the initial state can be observed. It can occur spontaneously
by investing nothing. All we have to do is sit and watch. Watch for
a very long time. How long? It depends on the size of the system. It
might take many more years than the age of the Universe. But if we
are willing to wait long enough, it will occur. For the present argu-
ment, it does not matter how long. It is clear that Gibbs could not
have possibly meant “impossible” in this sense. True, the reversal
is highly improbable but possible. However, reversal in this sense
equally applies to both processes IV and V and Gibbs has singled
out only the reversal of process V to be deemed “entirely impossi-
ble.” Therefore, this sense is ruled out too.

The “impossibility” referred to by Gibbs is in the thermody-
namic sense. Process IV, though spontaneous and irreversible, can
be reversed by manipulating the system’s thermodynamic variable.
All we would need is to invest some work and we could get back to
exactly the initial state of process IV. For instance, we could com-
press the system from 2V to V (investing energy by the amount
2N ln 2) then demix the two-component reversibly (reversing pro-
cess II discussed in Section 6.2) and we are back exactly to the
initial state.

Note that this reversal brings every A particle which originates
from the left-hand compartment back to the left-hand compart-
ment and similarly all B particles brought to the right-hand com-
partment. All we need is that all the A’s are distinguishable from
all the B’s — the NA particles are ID among themselves and the
NB , B particles are ID among themselves.
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It is in this sense that Gibbs singled out process V and concluded
that reversing the system to its initial state is “impossible,” no
matter how much energy we are willing to invest, and how many
ingenious thermodynamic manipulations we are willing to devise to
achieve that goal. We can never do that.

It is in this sense that we are left with a deep and compelling con-
viction that in process V something of a stronger irreversibility has
occurred — something has been lost and can never be retrieved.
Thus, even before knowing the connection between entropy and
information, we already feel it in our bones that some information
has been lost forever in process V. But what is that information
which we have lost and because of which we are unable to bring
back each particle to its original compartment? Not by reversing
the equation of motion, not by waiting for an unimaginably long
time but by experimental thermodynamic means? We understand
clearly and vividly that something has been lost forever. We also
know that the expansion part of the processes in both IV and V
are the same. Therefore, the loss of that “something” in process V
cannot be attributed to the increase of accessible volume for each
particle. This will not single out process V. So what is left in pro-
cess V which is not in process IV is the indistinguishability of all
the particles in process V. It is at this juncture that our mental
eyes betray us — including Gibbs. The deception is deeper than the
deception we encountered in connection with the mixing process IV,
where we saw mixing with our real eyes — irreversible mixing —
only to be told by our microscopic eyes that the mixing did not
have any effect on the MI.

Gibbs understood that process IV is irreversible. However, one
can devise a contraption that separates A and B. All you need
are partitions that are permeable only to A and only to B. He
also understood that there can be no contraption that can separate
between A particles that originate from the left compartment from
A particles that originate from the right compartment. Recall that
Gibbs’ writings were at the end of the 19th century before quantum
mechanics taught us that particles are ID. Had Gibbs thought from
the outset of the particles as being ID, he would not have reached
the conclusion that process V cannot be reversed. The question
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of whether or not process V could be reversed would not even be
raised. In such a world, process V can be reversed, and ridiculously
simply, with no investment of energy. Simply return back the par-
tition into its original place and you are back exactly to the initial
state, and the arrow in process V had been reversed.

Here is the apparent paradox. We were first convinced by Gibbs’
argument that mixing of gases of the same kind cannot be reversed
and that it is “entirely impossible.” Lo and behold! We now find
that not only it is not “entirely impossible,” but it is so simply
possible. So where did we go wrong?

The answer is this: our mental eyes have betrayed us. Every time
we try to visualize process V we make a mental image of the sys-
tem. In our mental eyes, we label the particles or assign them men-
tal coordinates and mental trajectories. Then we are told, and we
accept the fact, that particles are ID. At this point, we have to give
up the labels or the coordinates of the particles. This results in
a sense of loss of information. Therefore, we understand that pro-
cess V cannot be reversed. But if we think from the outset that the
particles are ID, then from the outset, we do not assign coordinates
to the particles. Therefore, we do not have a sense of loss of infor-
mation. The reversal to the initial system becomes trivially possible.

As far as we can tell from Gibbs’ writings, he never discussed the
reason for the entropy change in process IV. He realized though
that while process IV is spontaneous and irreversible, it can be
reversed by using some contraption that can distinguish between
A and B, and by investing energy. He apparently did not realize
that process IV, from the thermodynamic point of view, is just an
expansion — nothing more.

Gibbs did contemplate the question of reversing process V. He
concluded that such a reversal is “entirely impossible.” We can-
not reconstruct his sequence of thoughts leading to this conclusion.
However, when he thought of process V, he probably made a mental
image of the system. In this mental image, particles have definite
coordinates, or definite labels. This very labeling of the particles give
a sense of possessing information, information about the location of
each individual particle. Knowing, however, that the particles are
ID, one has to relinquish this information. This results in a sense
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of informational loss — hence the conclusion that reversing pro-
cess V is entirely impossible. But here our mental eyes fail us. By
the very act of visualizing the individual particles as in process V,
we already delude ourselves that we are in possession of informa-
tion, information that we never had in the first place, and therefore
we could not have lost.

Gibbs was well aware of the fact that in thermodynamics what
matters is the macroscopic state of the system, not the detailed
microscopic description of the states of the individual molecule.

In the same paragraph from which we took the quotation above,
Gibbs writes (the italics are mine)

“So when gases of different kinds are mixed, if we ask what
changes in external bodies are necessary to bring the system to its
original state, we do not mean a state in which each particle shall
occupy more or less exactly the same position as at some previous
epoch, but only a state which shall be indistinguishable from the
previous one in its sensible properties. It is to states of systems
thus incompletely defined that the problem of thermodynamics
relate.”

Thus, Gibbs clearly understood that it is the thermodynamic,
or the macroscopic, states that can be reversed for a mixture of
different kinds of molecules. Yet he failed to see that by placing
the partition back after performing process V, one does recover
the same thermodynamic state, which is indistinguishable from the
initial state.

To summarize, in an expansion process I, we lose real informa-
tion. We know more about the locations of the particles before the
process than after the process. It is this loss of information that is
responsible for the change in the MI in the expansion process. In the
mixing process IV, we have again real loss of information, exactly
as in the expansion process (only twice as large — one for the A’s
and one of the B’s). In process V, again we lose real information
due to the expansion — exactly as in the case of mixing I. But now
we also gained real information by the assimilation process, which
exactly cancels the loss of information due to the expansion. The
net effect is no change in information (or in entropy).
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I would like to end this long section with two pedagogical com-
ments both involving the concept of indistinguishability of the par-
ticles. Quite a few times after I gave a talk on this topic, people
who teach thermodynamics asked me, “how can you explain the
entropy change in process IV within thermodynamics?” This is a
very valid question. In a course in thermodynamics, you show stu-
dents the two processes IV and V. It is clear that in IV there is a
conspicuous mixing whereas in V nothing happens. Therefore, the
only possible explanation for the increase in entropy is to assign it
to the mixing process.

My answer is this: First, you cannot explain entropy change in
any process within the realms of thermodynamics. That is true for
the expansion of ideal gas, a spontaneous heat transfer from a hot
to a cold body, or any other spontaneous process. Thermodynam-
ics offers no explanation of any of these processes. The only way
to understand entropy is within statistical mechanics. However, if
one teaches only thermodynamics, one can explain that the entropy
change in process IV is due only to expansion, nothing more. On the
other hand, explaining the change in the MI (or in entropy) in either
process V or the processes of assimilation is more subtle. There
is no way but to admit that the particles are ID. That fact can-
not be dealt with within classical thermodynamics. I believe, how-
ever, that the cyclic process depicted in Figure M.1 of Appendix M
can help in understanding the role of labeling and unlabeling of
particles as a source of the changes in information — hence of
entropy — in any process involving changes in the numbers ID of
particles.

The second comment is also related to the perception and under-
standing of the concept of ID particles.

James Clerk Maxwell, in a letter to J.W. Strutt in 1870 wrote
(the italics are mine)18:

“Moral. The Second Law of Thermodynamics has the same degree
of truth as a statement that if you throw a tumblerful of water into
the sea, you cannot get the same tumblerful of water out again.”

18Quoted in Leff and Rex (1990) and Munowitz (2005).
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If you have grasped the concept of ID of particles (here of water
molecules), you will immediately realize the double fallacy of this
statement. We realize that this statement was made 30 years before
Gibbs analyzed the process of mixing and reached the conclusion
quoted on pages 276–277. It is very clear that Maxwell, perhaps the
greatest physicist of the 19th century, who was the first to introduce
statistical arguments into scientific thought, did not, and perhaps
could not, think in terms of ID particles. As we have discussed ear-
lier — the Gibbs “entirely impossible” — we can also say in this case
that we can get the same tumblerful of water from the sea19: simply
fill-up the tumbler with sea water. This counter-intuitive conclusion
can only be made if we rationally accept the idea that particles are
ID. What we have in the tumbler is the same water, before and
after we have thrown and retrieved it from the sea.20 Note that
initially the water in the tumbler is distinguishable from the water
in the sea (see Appendix J). Throwing the water into the sea makes
the water that originated from the tumbler indistinguishable from
the water in the sea. After refilling the tumbler, the water in the
tumbler is again distinguishable from the water in the sea. How-
ever, the water in the refilled tumbler is the same and ID from the
water in the tumbler before it was emptied into the sea (except for
a possible negligible difference in the number of water molecules in
the two cases).

Although we feel it in our bones that this is not the same water,
there is no way to prove it experimentally since this would require
labeling the water molecules. Once we recognize the invalidity of
the second part of the Maxwell statement, the invalidity of the first

19It is not clear what Maxwell had in mind when referring to the “sea,” whether
it is pure water or aqueous solution. For our purposes, it makes no difference.
If we threw a tumblerful of water into the sea, we can easily get the same
tumblerful of water by refilling it, from the sea. For simplicity, we shall assume
that the water is pure, both in the tumbler and in the sea.
20It is understandable why Maxwell did err in this quoted statement. It is
amusing that many authors make the same mistake even in the 21st century.
For instance, Munowitz (2005) writes: “You can get another tumblerful of water
out again, even one that looks the same superficially and macroscopically just
like the original, but not the tumblerful you first tossed.”
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part follows suit, i.e., this statement is irrelevant to the Second Law
of Thermodynamics.

Even thinking classically about the (labeled) particles, it is not
true that we cannot retrieve (in an absolute sense) the same water
molecules that were originally in the tumbler. It is not impossi-
ble but highly improbable! If the tumbler originally contained say
1023 water molecules, and the sea contains say 109 × 1023 = 1032

water molecules, then filling the tumbler from the sea, we might
retrieve the same water molecules. The probability of such an event
is approximately 10−32×1023

.
This is a fantastically small number. However, thinking of water

as made of indistinguishable molecules, the probability of retrieving
the same molecules becomes nearly one (except that there might
be a negligible change in the number of water molecules). It should
be noted that though the order of magnitude of the probability of
retrieving the same (classically thinking) water molecule is similar
to the order of magnitude of the occurrence of a violation of the
Second Law of Thermodynamics, the specific experiment referred
to by Maxwell is irrelevant to the Second Law.

6.8 A Pure Spontaneous Deassimilation Process

We have seen that the assimilation process causes a decrease in
MI. This leads us to conclude that the reverse of this process, the
deassimilation process, should be associated with an increase in
the MI. A purely assimilation process is one where V and T (or
V and E) do not change, but only N changes. This is simply the
reverse of process III described in Section 6.3, denoted process-III
in Figure 6.11.

We all know that a spontaneous process causes an increase in
MI. So, why do we never observe the reverse of process III occur-
ring spontaneously? The answer is simple. Many processes can be
described for which the MI change is positive but they do not actu-
ally occur as long as a constraint precludes its occurrence. The pure
deassimilation in the reversed process III does not occur sponta-
neously as it is described in Figure 6.11a. However, we can simply
do the deassimilation in III in two steps (Figure 6.11b). First, let
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Figure 6.11. (a) Pure process of deassimilation, (b) The same process, as in (1),
but in two steps; expansion followed by reduction of volume and deassimilation.
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Figure 6.12. The two enantiomers of Alanine.

the system of 2NA particles at V expand spontaneously into 2V .
Then divide the resulting volume into two halves. The net process
is pure deassimilation. In this two-step process, we used the expan-
sion (process I) part of the process as a “catalyst” for executing the
net pure deassimilation.

Finally, we show that a pure deassimilation can occur sponta-
neously also in one step. Consider a system of 2N molecules, each
of which contains one chiral center, say an alanine molecule (Fig-
ure 6.12). We initially prepare all the molecules in one form, say
the d-form, in a volume V and temperature T . We next introduce
a catalyst that facilitates the conversion of d- to l-form. Since l and
d have exactly the same set of energy levels, hence, the same inter-
nal partition functions, the system will spontaneously evolve into a
mixture of N molecules in the d-form and the N molecules in the
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T = 400 K      T = 50 K T = 225 K

Figure 6.13. Heat transfer from a hot to a cold body. Initially, the two com-
partments are thermally insulated.

l-form. The net change in MI is

∆S = 2N ln 2 > 0. (6.8.1)

This is a pure deassimilation process — the system of 2N indis-
tinguishable particles evolved into N particles of one kind and N

particles of a second kind. The net effect is the same as in the
reverse of process III where we achieve a split of the 2N particles
into two groups — N in one box and another N in a second box.
In both processes, the only change that took place is the deassimi-
lation of the particles. The change in MI is positive. As we noted in
Section 6.3, the decrease in MI in the assimilation process is coun-
terintuitive; also, the increase in MI in the deassimilation process
is counterintuitive. After all, we started with 2N particles which
were initially indistinguishable, N of which acquired a new and
different identity — and that certainly sounds like acquiring new
information.

Another way of interpreting the process of racemization as
described above is the following: If we start with say, pure d-
molecules, each molecule has a set of energy levels. When the sys-
tem changes to a mixture of d and l, we can view the system as
composed of particles with the same energy levels, but now each
energy level is doubly degenerated. This is the molecular reason for
the increase in the MI.

It is interesting to note that some textbooks of physical organic
chemistry refer to this process as “mixing” and the correspond-
ing entropy change as “entropy of mixing” [see, for example, Eliel
(1962), Jacques, Collet and Wilen (1981)]. Clearly, no mixing occurs
in this process, only a spontaneous evolution of two components
from a one-component system.
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6.9 A Process Involving only Change in the
Momentum Distribution

Up to this point, we have discussed changes in MI due to either the
changes in location (changes in the volume V ), or changes in the
number of ID particles (changes in N). We now turn to discussing
the simplest process where changes in momentum distribution is
involved. This is also important from the historical point of view.
It is one of the earliest processes for which the Second Law was
formulated.

Consider the following process. We start with two systems of
ideal gases, each containing N particles in a volume V , but the
temperatures are different, say T1 = 50 K and T2 = 400 K. Note also
that T1 and T2 here are in Kelvin temperatures and the illustration
in Figure 6.14 is for argon gas at these temperatures. We bring
the two systems in contact (by placing a heat-conducting partition
between them). Experimentally, we observe that the temperature of
the hot gas will get lower, and the temperature of the cold gas will
get higher. At equilibrium, we shall have a uniform temperature of
T = 225 K throughout the system.21

Clearly, heat or thermal energy is transferred from the hot to the
cold gas. But how can we understand the change in the MI in this
process? The qualitative discussion of this process has already been
given in Section 1.2. Here, we present the more quantitative aspect
of the change in MI in the process of heat transfer.

First, we note that temperature is associated with the distri-
bution of molecular velocities. In Figure 6.14a, we illustrate the
distribution of velocities for the two gases in the initial state. We
see that the distribution is sharper for the lower temperature gas,
and is more dispersed for the higher temperature gas. At thermal
equilibrium, the distribution is somewhat intermediate between the
two extremes, and is shown as a dashed curve in Figure 6.14a.

21The qualitative argument given here is valid for ideal gases. In general, when
two different bodies at different temperatures are brought into thermal contact,
the final temperature is somewhere between T1 and T2. However, to calculate
the final temperature, we need to know the heat capacities of each system.
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Figure 6.14. Velocity distributions (a) of the two systems before the thermal
contact, (b) of the combined systems before and after the thermal contact.

What we observed experimentally is interpreted on a molecu-
lar level as the change in the distribution of molecular velocities.
Some of the kinetic energies of the hotter gas is transferred to the
colder gas so that a new, intermediary distribution is attained at
equilibrium.

Within classical thermodynamics, we argue that since the total
energy of the system is conserved in this process, and since in this
particular example, the heat capacities of the two bodies are equal,
the rise in the temperature of the cold gas must be equal to the
decrease in the temperature of the hotter gas. If the final temper-
ature is T , then

T = T1 + ∆T,

T = T2 − ∆T, (6.9.1)

and

T =
T1 + T2

2
. (6.9.2)

The informational argument is different. We start with the velocity
distributions of the two gases, g1(v) and g2(v) at temperatures T1

and T2, respectively. The variance of the velocity distribution of the
combined initial (i) system is

σ2
i =

∫ ∞

−∞
(v − v̄)2

(
g1(v) + g2(v)

2

)
dv =

σ2
1 + σ2

2

2
. (6.9.3)
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For simplicity, we can take v to be the x-component of the veloc-
ity. The three components of the velocities are independent —
hence, their variances are equal.

We now apply Shannon’s theorem for the continuous distribution
(see Section 3.24). The theorem says that of all the distributions
for which the variance is constant, the normal (or the Gaussian)
distribution has a maximum MI. Since the total kinetic energy of
the system before and after the process must be conserved, and
since the average kinetic energy at equilibrium is proportional to
the temperature, it follows that the final temperature T must be

T =
T1 + T2

2
. (6.9.4)

The change in the MI in this process can easily be calculated from
the Sackur–Tetrode equation (Section 5.4):

∆S = Sf − Si

=
3
2
(2N) ln T − 3

2
N ln T1 − 3

2
N ln T2

=
3
2
N ln

T

T1
+

3
2
N ln

T

T2
, (6.9.5)

where the two terms correspond to the changes in the MI when the
temperature changes from T1 to T and from T2 to T , respectively.
Since T is the arithmetic average of T1 and T2, we have

∆S =
3
2
N ln

T1 + T2

2T1
+

3
2
N ln

T1 + T2

2T2

=
3
2
N ln

(T1 + T2)2

4T1T2
=

3
2
N ln

(
T1+T2

2

)2
T1T2

= 3N ln

[
T1+T2

2√
T1T2

]
≥ 0. (6.9.6)

The last inequality follows from the inequality about the arithmetic
and the geometric average (Appendix H):

T1 + T2

2
>
√

T1T2. (6.9.7)

Thus, we have seen that in the spontaneous process as depicted
in Figure 6.11, the MI has increased. This process is the simplest
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spontaneous process that involves an increase in the momentum
MI. It should be noted, however, that the positive change in MI as
calculated in (6.9.7) does not consist of an explanation of why the
process proceeds spontaneously from the initial state to the final
state. In both the initial and the final states, the momentum distri-
bution is such that it maximizes the MI of the system. The Second
Law of thermodynamics states that the MI in the final state must
be larger than the MI in the initial state. To understand why the
system proceeds spontaneously from the initial to the final states,
we must appeal to a probabilistic argument. As will be shown in
Section 6.12, the probability of the final distribution of the momenta
is larger than the initial distribution.

6.10 A Process Involving Change in the
Intermolecular Interaction Energy

Up to this point, we have discussed ideal gas systems, i.e., sys-
tems with no intermolecular interactions or negligible interactions.
In Section 5.8, we derived the general expression for the MI due
to the interactions among all the N particles. We discuss here a
particularly simple process in which the intermolecular interaction
changes. We assume that the density of the system is very low
so that interaction among three or more particles can be neglected,
but pair interactions are still operative. We have seen in Section 5.8
that the change in MI associated with turning on the (pairwise)
interactions is

∆S = −N(N − 1)
2V 2

∫∫
g(R1,R2) ln g(R1R2)dR1dR2. (6.10.1)

We now design a process where the MI changes only due to
changes in the interaction energy among the particles. We start
with two boxes of equal volume V and equal number of particles N .
The particles in the two boxes are different, but their intermolecular
potential function U(R) is very nearly the same, say two isotopes of
argon. Figure 6.15 shows the form of the pair potential and the cor-
responding correlation function for a system at very low densities.

We now bring the two systems into one box of the same volume.
Note that since the particles in the two boxes were different, we now
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Figure 6.15. (a) Intermolecular pair potential, U(R), (b) The corresponding
pair correlation g(R), at very low densities.

have a mixture of N particles of one kind, and N particles of the
second kind. We have seen that this mixing process had no effect
on the MI of the system. There is also no change in the volume of
the system. If the process is carried out at constant temperature,
then g(R1, R2) is unchanged in the process.22 The change in the MI
in this process is thus

∆S = Sf − Si

= −
[
2N(2N − 1)

2V 2
− 2

N(N − 1)
2V 2

]

×
∫∫

g(R1,R2) ln g(R1,R2)dR1dR2. (6.10.2)

Note that we assume that, though the density has changed,
g(R1,R2) is unchanged. The only thing that has changed is
the total number of pairs of interacting particles; from initially
N(N − 1)/2 pairs to 2N(2N − 1)/2 pairs in the final state.

It should be noted that in all of the examples discussed in the
previous sections, the processes involved ideal gases, i.e., no inter-
actions and no changes in internal degrees of freedom. In such a
process, keeping the temperature constant is equivalent to keeping
the total energy constant. Therefore, we could calculate the changes

22See Section 5.8 for the form of the function g(R) at low densities. We discuss
here only this case where the function g(R) is independent of the density. Such
systems can be studied experimentally, for example, gaseous argon.
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in MI either from the Sackur–Tetrode equation or from the canon-
ical PF.

In systems of interacting particles, the situation is quite different.
The change in the MI depends on whether we carry out the process
at constant temperature or at constant energy (isolated system).
We demonstrate this difference with the simplest process of expan-
sion. We assume again that the system is dilute enough so that only
pairwise interactions are operative.

The mutual information due to intermolecular interactions in the
system is given in (6.10.1). We now perform a spontaneous expan-
sion, under two different conditions.

(a) At constant energy (isolated system)
In this process, the spontaneous expansion from volume V to 2V
causes an increase in the locational MI as we calculated in Sec-
tion 6.1. However, in contrast to Section 6.1 where we had ideal
gas, here, the average intermolecular interaction energy will change
in the process. Assuming that (6.10.1) is valid in this process, the
number of pairs of interacting particles is unchanged in the pro-
cess. However, the average interaction energy — hence the mutual
information — changes in this process by the amount

∆S = −N(N − 1)
2(2V )2

∫∫
gf (R1,R2) ln gf (R1,R2)dR1dR2

+
N(N − 1)

2V 2

∫∫
gi(R1,R2) ln gi(R1,R2)dR1dR2. (6.10.3)

There are two contributions to ∆S in (6.10.3). First, the density
of particles changes from the initial density ρi = N

V to the final
density ρf = N

2V . Therefore, on average, the intermolecular inter-
actions decrease (in absolute magnitude). To achieve that, energy
must be invested.

Second, since the total energy is kept constant, the energy
required to increase the average separation between the particles
must come from the kinetic energy of the particles. Hence, the sys-
tem’s temperature must decrease. This will affect the pair corre-
lation function from the initial value gi to the final value gf [see
(5.8.19)]. The total change in MI will consist of three contribu-
tions. One is due to the changes in the locational MI, the second is
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due to the changes in the momentum MI, and the third is due to
the change in the mutual information due to the interaction of the
form (6.10.3).

The average interaction energy in a system of interacting parti-
cles is

Ū =
ρ2

2

∫∫
U(R1,R2)g(R1,R2)dR1dR2, (6.10.4)

where U(R1,R2) in the interaction energy between two particles
at R1,R2. Note that in general this quantity is negative.

(b) At constant temperature
If the system’s temperature is maintained constant, then upon a
spontaneous expansion, the changes in the locational MI will be
the same as in the previous case. However, if we keep the temper-
ature constant, then the pair correlation function will not change
in the process. The change in the mutual information will be due
only to changes in the density of the particles. Again, energy must
be invested in order to increase the average separation between
the pairs of particles. Since the temperature is kept constant, this
energy must come from the heat reservoir (or from the thermostat).
The net effect is that energy will flow into the system to maintain
a constant temperature.

6.11 Some Baffling Experiments

We present here two “thought experiments” (which, in principle,
could be carried out in practice if the right solutes and solvents,
as specified below, could be found) that serve to demonstrate the
moral of this chapter: what we observe with our eyes should not,
in general, be trusted for reaching thermodynamic conclusions.

We recall the two processes IV and V as discussed in Section 6.7
(see Figures 6.6 and 6.7). In IV, we remove a partition that sep-
arates two different components of ideal gases. As is well known,
Gibbs’ energy change is23

∆GIV = −2NT ln 2, (6.11.1)

23In this section, we use a constant temperature system and instead of the MI —
we follow the changes in the Gibbs’ energy of the system. One could carry out
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where N is the number of molecules in each compartment. In pro-
cess V, where we have the same components in the two compart-
ments, the change in the Gibbs energy is

∆GV = 0. (6.11.2)

We now modify these experiments and show that in an apparently
“no mixing” and “demixing” process, we obtain free energy changes
that are exactly equal to (6.10.1).

To demonstrate these cases, consider again processes IV and V.
Suppose that A and B are colored molecules, say A is blue and
B is yellow. Assume also that NA = NB = N and the systems
are dilute enough so that the gases are ideal. We carry out two
experiments in front of a class of students under a constant tem-
perature. Removing the partitions in processes IV and V leads to
the following conclusions:

(a) In process IV, we observe mixing. The entire system becomes
green and we calculate ∆GIV = −2NT ln 2.

(b) In process V, we observe no mixing. The entire system remains
blue and we calculate ∆GV = 0.

After removing the partitions, we reach an equilibrium state. At
equilibrium, we can introduce the partitions back into their original
places and remove them with no discernible effect on the system
and no change in the Gibbs energy.

Next, we place the two partitions back in their original places
and modify the experimental situation as follows (Figure 6.16).

We fill the two compartments with two different liquids that are
transparent to visible light. We also assume that we have chosen the
solutes A and B in such a way that their colors are not affected by
the presence of the solvents. We require also that the two liquids be
completely immiscible with each other. (We may also use miscible
solvents, but then we should require that partitions be permeable
to A and B only and not to the solvents.)

the same process in an isolated system, but in that case, the temperature of the
system would also change due to changes in the total interaction energy in the
process. The reading of this section requires some familiarity with the theory
of solutions. See, for example, Ben–Naim (2006).
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Figure 6.16. Two baffling experiments, described in Section 6.11. In these two
processes, the removal of the partition between the two compartment, allow A
and B to cross from one side to another, but not the solvents.

We now remove the partitions, the audience being unaware of the
presence of the solvents in the two compartments. For the audience,
the system looks exactly the same as in the original experiment. We
claim that now the removal of the partition has caused the following
results [compare with (a) and (b) above]:

(a*) In process IV*, we observe demixing. The entire green sys-
tem separates into yellow and blue. We claim that ∆GIV ∗ =
−2NT ln 2.

(b*) In process V*, we observe no mixing. The entire system
remains blue, and we claim again that ∆GV ∗ = −2NT ln 2.

The results given above are correct. It is also true that removing
the partitions causes only the flow of A or A and B between the
two compartments, but not of the solvents (which are presumed to
be immiscible).

Clearly, anyone who observes these experiments must be puzzled
if he or she is not aware of the presence of the two solvents. For
anyone in the audience, the compartments still contain the ideal
gases, and therefore processes IV* and V* are expected to yield
positive and zero Gibbs energy changes, respectively.
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Evidently, the trick was made possible by introducing a new
“driving force” into the system; the difference in the solvation
Gibbs energies A and B in the two liquids. The existence of these
particular results for ∆GIV ∗ and ∆GV ∗ can be proved.24 Here, we
shall show a more general result. In the above examples, we have
endeavored to obtain a predetermined value for the free energy.
However, the argument can be made much more general. In the
rest of this section, we rely on the concept of solvation Gibbs energy
and the pseudo-chemical potential. The reader can either skip this
part, or consult a book on solvation, e.g., Ben-Naim (2006).

We first show a process of spontaneous “compression.” Suppose
that initially we had an ideal gas in both compartments, α and γ,
such that initially we have Nαi

A = Nγi
A = 1/2NT , V α = V γ = V ,

where NT is the total number of molecules in the system, NT =
Nα

A + Nγ
A, ρT = NT /2V .

Let us now replace one phase, say α by a transparent solvent. At
equilibrium, we have

µαf
A = µ∗α

A + T ln ραf
A = µ∗γ

A + T ln ργf
A , (6.11.3)

where µ∗γ
A is the pseudo-chemical potential of A in an ideal gas

phase, and the solvation Gibbs energy of A in α is, by definition25

∆G∗α
A = µ∗α

A − µ∗γ
A = T ln(ργf

A /ραf
A )eq

= T ln
1 − x

x
, (6.11.4)

where x =Nαf
A /NT = ραf

A /2ρT is the mole fraction of A in the
phase α at equilibrium. Clearly, the more negative the solvation
Gibbs energy of A in the phase α is (i.e., ∆G∗α

A < 0) the smaller
the ratio (1 − x)/x, or the closer x is to unity. By choosing a sol-
vent that strongly solvates A, we can make x as close to unity as we
wish. The audience, who is not aware of the presence of a solvent
in α (it is a transparent liquid), would be astonished to observe
that the gas A that was initially distributed evenly in the two com-
partments is now concentrated in one compartment α. Clearly, the

24Ben-Naim (1987).
25See Ben-Naim (2006).
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“driving force” that produced this spontaneous “condensation” is
the solvation Gibbs energy of A in α.

We can calculate the Gibbs energy change in this process carried
out at constant temperature

∆G = Gf − Gi = [Nαf
A µαf

A + Nγf
A µγf

A ] − [Nαi
A µαi

A + Nγi
A µγi

A ],

∆G

NT
= x[µ∗α

A + T ln ραf
A ] + (1 − x)[µ∗ig

A + T ln ργf
A ]

−
[
1
2
(µ∗ig

A + T ln ρ) +
1
2
(µ∗ig

A + T ln ρ)
]

, (6.11.5)

where we µ∗γ
A = µ∗ig

A and ραi
A = ργi

A = ρT = NT /2V .
Hence, from (6.11.4) and (6.11.5):

∆G

NT
= x[µ∗α

A − µ∗ig
A ] + Tx ln 2x + T (1 − x) ln 2(1 − x)

= Tx ln
1 − x

x
+ Tx ln x + T (1 − x) ln(1 − x) + T ln 2

= T ln 2(1 − x). (6.11.6)

Thus, for each chosen x (determined by choosing ∆G∗
A), we can

calculate the corresponding change in Gibbs energy, or ∆G/TN T .
Figure 6.17a shows the plot of ∆G/TN T as a function of x. For
x = 0, we start with the value of ln 2. As expected, the larger x,
the larger and negative is ∆G/TN T . Thus, we see that we can
achieve a value of x as close to one as we wish.
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Figure 6.17. (a) The Gibbs energy change for the “compression” process,
(6.11.6), (b) The same function for the A and the B components in the de-mixing
experiment.
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The same argument can be applied to performing a spontaneous
demixing process. Simply start with two types of molecules, say
A and B, in the two compartments. Then fill one compartment
with a transparent solvent that strongly solvates the A molecules,
as in the example discussed above. The second compartment can
be filled with a liquid that strongly solvates B molecules. In this
case, removing the partition between the two compartments will
result in “compression” of nearly all A into one compartment, and
“compression” of nearly all B in the other compartment. This is
effectively a spontaneous demixing of A and B — driven by the
solvation Gibbs energy. The change in the Gibbs enery for the two
processes of “compression” are shown in Figure 6.17b.

6.12 The Second Law of Thermodynamics

The Second Law of Thermodynamics was originally formulated in
terms of some specific experimental observations such as the maxi-
mal efficiency of a heat engine operating between two temperatures,
the spontaneous heat flow from a hot to a cold body, or the sponta-
neous expansion of an ideal gas. Clausius’ formulation of the Second
Law in terms of the entropy is much more general and refers to any
spontaneous process occurring in isolated systems. It states that
there exists a function S, which Clausius called entropy (but here
referred to as MI), that is a state function, and that in an isolated
system never decreases.

In the classical non-atomistic formulation26 of the Second Law,
entropy always increases in a spontaneous process in an isolated
system, and it stays constant forever once it reaches the equilibrium
state. The law is stated in absolute terms.

The atomistic, or Boltzmann’s, formulation of the Second Law,
is essentially the same except for the “absoluteness” of its validity.
Instead of the terms “always” and “forever,” we must use the softer
terms “almost always” and “almost forever.”

Both formulations of the Second Law, the non-atomistic as well
as the atomistic, consist of statements about what is the thing that

26Here, classical refers to the original non-atomistic formulation. See, for exam-
ple, Denbigh (1966).
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changes, and in which direction that thing changes in a spontaneous
process. None offers any explanation to the question of why the
entropy changes in one direction; it makes no difference whether
one refers to entropy as a measure of disorder or a measure of MI,
all these are only possible descriptions of the thing that changes.
It is not true, as claimed in some textbooks, that a system left
unattained, or undisturbed, such as a child’s bedroom or the books
in a library, will tend to a state of greater disorder.

The only convincing answer to the question “why” is probabilis-
tic. It is this probabilistic answer that also reduces the Second Law
to a matter of plain common sense.27 Basically, it says that the
system will go from a relatively low probability state to a high
probability state. If we accept the frequency interpretation of prob-
ability, then the last statement is tantamount to saying that a single
system will spend a larger fraction of the time in states that have
larger probability, i.e., states having larger frequency of occurence.

As it stands, the Boltzmann equation does not contain the word
nor the concept of probability explicitly. It connects between the
MI (or the entropy), and the total number of states. We also know
that the MI is defined for any distribution (p1, . . . , pn). It is an
average quantity −∑ pi ln pi. The principle of maximum MI states
that there exists a distribution (p∗1, . . . , p∗n) that maximizes the
MI, i.e., S(p1, . . . , pn) has a maximum at the specific distribution
(p∗1, . . . , p

∗
n). This statement, although formulated in terms of the

probability distribution, does not consist of a probabilistic inter-
pretation of the Second Law. The latter is provided by a proba-
bility distribution that is defined on the probability distribution
(p1, . . . , pn). We shall denote the latter probability by Pr. It is
this probability that attains a maximum at the equilibrium state,
which is characterized by the distribution (p∗1, . . . , p∗n), and we shall
denote it by Pr(p∗1, . . . , p∗n). The existence of these “two levels” of
distributions can be potentially confusing. Therefore, we shall refer
to (p1, . . . , pn) as the state distribution, and to Pr as the super
probability.

We next describe a few examples which will clarify the connec-
tion between the state distribution (p1, . . . , pn), which describes the

27See Ben-Naim (2007).
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state of the system or of the ensemble, on the one hand, and the
quantity MI, which is defined on the distribution (p1, . . . , pn), and
provides an answer to the question of “what” is the thing that is
changing in a spontaneous process on the other hand. On the same
distribution (p1, . . . , pn), we define the super probability function,
denoted Pr(p1, . . . , pn), which harbors the answer to the question of
“why,” and hence provides a probabilistic explanation of the Second
Law of Thermodynamics.

(i) Ideal gas in two compartments
We start with a classical system of N non-interacting particles
(ideal gas) in a volume 2V at constant energy E. We divide the vol-
ume of the system into two parts, each of volume V (Figure 6.18).
We define the microscopic state of the system when we are given
E, 2V,N , and in addition we know which specific particles are in
compartment R, and which specific particles are in compartment L

(Figure 6.18a). The macroscopic description of the same system is
(E, 2V,N ;n), where n is the number of particles in the compart-
ment L (Figure 6.18b). Thus, in the microscopic description, we
are given a specific configuration of the system as if the particles
were labeled 1, 2, . . . , N , and we are given the specific information
about which particle is in which compartment. In the macroscopic
description, only the number n is specified.

Clearly, if we know only that n particles are in L and N − n

particles are in R, we have

W (n) =
N !

n!(N − n)!
, (6.12.1)
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Figure 6.18. (a) A specific or microscopic description of the state of the system,
(b) A generic, or a macroscopic description of the system.
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specific configurations that are consistent with the requirement that
there are n particles in L.

The first postulate of statistical mechanics states that all specific
configurations of the system are equally probable. Clearly, the total
number of specific configurations is

WT =
N∑

n=0

W (n) =
N∑

n=0

N !
n!(N − n)!

= 2N . (6.12.2)

Using the classical definition of probability (see Section 2.3), we
can write the probability of finding n particles in L as

PN (n) =
W (n)
WT

=
(

1
2

)N N !
n!(N − n)!

. (6.12.3)

It is easy to show that W (n), or PN (n) has a maximum as a
function of n. The condition for the maximum is

∂ ln W (n)
∂n

=
1

W (n)
∂W (n)

∂n

= − ln n∗ + ln(N − n∗) = 0 (6.12.4)

or equivalently

n∗ =
N

2
. (6.12.5)

This is a maximum since
∂2 ln W (n)

∂n2
=

−1
n

− 1
N − n

=
−N

(N − n)n
< 0. (6.12.6)

Thus, the function W (n) or PN (n) has a maximum with respect
to n (keeping E, 2V,N constant). The value of the maximum of
W (n) is

W (n∗) =
N !

[(N/2)!]2
, (6.12.7)

and the corresponding probability is

PN (n∗) =
W (n∗)

2N
. (6.12.8)

Thus, for any given N , there exists a maximum of the probability
PN (n). Therefore, if we prepare a system with any initial distribu-
tion of particles n and N − n in the two compartments, and let
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the system evolve, the system’s macroscopic state (here described
by the parameter n) will change from a state of lower probability
to a state of higher probability. We can perform the process in a
quasi-static way by opening and closing a small window between
the two compartments. [For a detailed description of the transition
probabilities at cach stage of the process, see Ben-Naim (2007).]As
can be seen in Figure 6.19, the maximal value of the probability
PN (n∗) is a decreasing function of N . Thus, for any starting value
of n, the system will evolve towards n∗ [this tendency will be very
strong for large deviations from n∗, and weaker as we reach closer
to n∗; for a detailed example, see Ben-Naim (2007)]. However, as
N increases, the value of the maximum number of configurations
W (n∗) increases with N , but the value of the maximal probability
PN (n∗) decreases with N .28
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Figure 6.19. (a) The function S(p, 1 − p), (b) The distribution (6.12.3) for
different values of N , (c) The same distribution as in (b), but as a function of
the reduced variable p = n/N and (d) The same distributions as in (c), but for
N = 100, 200 and 1000.

28This fact has caused some confusion in the literature. Though it is true that
as N becomes larger, W (n∗) increases with N , the denominator of (6.12.8) 2N

increases with N faster than W (n∗).
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To appreciate the significance of this fact, consider a few cases:

(a) N = 2
Suppose we have a total of N = 2 particles. In this case, we have the
following possible macroscopic descriptions and the corresponding
probabilities:

n = 0, n = 1, n = 2,

PN (0) =
1
4
, PN (1) =

1
2
, PN (2) =

1
4
.

(6.12.9)

This means that on average, we can expect to find the configu-
ration n = 1 (i.e., one particle in each compartment) about half of
the time, but each of the configurations n = 0 and n = 2 only a
quarter of the time.

(b) N = 4
For the case N = 4, we have a distribution with a maximal probabil-
ity PN (2) = 6/16, which is smaller than 1

2 . In this case, the system
will spend only 3/8 of the time in the maximal state n∗ = 2.

(c) N = 10
For N = 10, we can calculate the maximum at n∗ = 5, which is

P10(n∗ = 5) = 0.246.

Thus, as N increases, W (n∗) increases, but PN (n∗) decreases. For
instance, for N = 1000, the maximal probability is only P1000(n∗) =
0.0252. See Figure 2.13.

To examine how PN (n∗) changes with N , we use the Stirling
approximation (Appendix E) in the form

n! ∼=
(n

e

)n √
2πn (6.12.10)

and get

PN

(
n∗ =

N

2

)
≈
√

2
πN

. (6.12.11)

Thus, as N increases, the maximal probability decreases as
N−1/2. In practice, we know that when the system reaches the
state of equilibrium, it stays there “forever.” The reason is that
the macroscopic state of equilibrium is not the same as the exact



December 5, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch06

304 Statistical Thermodynamics Based on Information

2 4 6 8 10
x

0.2

0.4

0.6

0.8

1

ef
r 
(x
)

Error Function

Figure 6.20. The function erf (x).

state for which n∗ = N
2 , but this state along with a small neighbor-

hood of n∗, say n∗ − δN ≤ n ≤ n∗ + δN , where δ is small enough
such that no experimental measurement can detect the difference
between n∗ and n∗ ± δN . (Note that δN means δ × N and not a
small increment in N .)To calculate the probability of finding the
system in the neighborhood of n∗, we use the approximation.

PN (n∗ − δN ≤ n ≤ n∗ + δN)

=
n∗+δN∑

n=n∗−δN

PN (n)

≈
∫ n=n∗+δN

n=n∗−δN

1√
πN/2

exp

(
− (n − N

2

)2
N/2

)
dn. (6.12.12)

This is the error function erf (
√

2δN ) (see Section 2.10). Fig-
ure 6.20 shows that the function erf (x) is almost unity when N

is of the order of 10. This means that when N is of the order of
1023, we can allow deviations of δ ≈ 0.001, or even smaller, yet the
probability of finding the system at, or near, n∗ will be almost one.
It is for this reason that when the system reaches the neighborhood
of n∗, it will stay at n∗ or near n∗ for most of the time. For N of
the order of 1023, “most of the time” means always.
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The above-mentioned specific example provides an explanation
for the fact that the system will “always” change in one direction,
and always stay at the equilibrium state once that state is reached.
The tendency towards a state of larger probability is equivalent
to the statement that events that are supposed to occur more fre-
quently will occur more frequently. This is plain common sense. The
fact that we do not observe deviations from either the monotonic
change of n towards n∗, nor deviations from n∗, is a result of our
inability to detect very small changes in n.

In the above example, we have given an explanation of the Second
Law in terms of probabilities. We shall next turn to the relation-
ship between these probabilities and the MI. Before doing that, let
us reformulate the problem in such a way that it will be easy to
generalize it. Instead of n and N−n, we define the fractions p and q:

p =
n

N
, q =

N − n

N
, (6.12.13)

i.e., p is the fraction of particles in the L compartment and q, the
fraction in the R compartment. Clearly, (p, q) with p + q = 1 is a
probability distribution.29 We now proceed to calculate the super
probability defined on this probability distribution.

The number of specific configurations for which there are n par-
ticles in L is

W (p, q) =
(

N

pN

)
, (6.12.14)

and the corresponding super probability is

Pr(p, q) =
(

1
2

)N ( N

pN

)
. (6.12.15)

Note that Pr(p, q) is the same distribution as in (6.12.3), but here
only expressed in term of the distribution (p, q). For each distribu-
tion (p, q), we can define the measure of MI as

H(p, q) = −p ln p − q ln q. (6.12.16)

29Note that at equilibrium the probability of finding a specific particle in L is
1/2. However, if we prepare the system with n particles in L, then the probability
of finding a specific particle in L is n/N .
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When N → ∞, we can use the Stirling approximation to rewrite
the right-hand side of (6.12.15) as

ln
(

N

pN

)
N→∞−−−−→ −N [p ln p + q ln q] − ln

√
2πNpq

= NH (p, q) − 1
2

ln(2πN pq). (6.12.17)

Hence, in this approximation

Pr(p, q) ∼=
(

1
2

)N exp[NH (p, q)]√
2πNpq

(for large N). (6.12.18)

This is the relationship between the MI defined on the distribu-
tion (p, q), and the super probability Pr(p, q) defined on the same
distribution. Clearly, these two functions are very different (see Fig-
ure 6.19). H(p, q) has a maximum at the point p∗ = q∗ = 1/2. This
maximum is independent of N . On the other hand, Pr(p, q) has
a sharp maximum at the point p∗ = q∗ = 1/2. The value of the
maximum Pr(1

2 , 1
2), decreases with N .

We stress again that H is defined for any arbitrary state distri-
bution (p, q). To relate changes in H to changes in the thermody-
namic entropy, we have to perform the transition from the initial
state (n,N − n) [or the distribution (p, q)], to the final equilibrium
state (N/2, N/2)[or the distribution (1/2, 1/2)], in a quasi-static
process. Suppose we open a small window between the two com-
partments, and allow for an infinitesimal change dn, we have from
(6.12.16), after substituting (6.12.13), dH = ∂H

∂n dn = dn
N ln N−n

n .
When N −n > n, dn > 0 and dH > 0; also when N − n < n, then
dn < 0 and dH > 0. This is exactly the same entropy change cal-
culated from either the partition function or the Sackur–Tetrode
equation for an ideal gas system. The result for the change in
entropy per particle is: dS = dn

N ln N−n
n .

Thus, the change in the MI is the same as the change in entropy
calculated from the Sackur–Tetrode equation. This identification
is rendered possible only when we make an infinitesimal change
in n, so that the process, from the initial to the final states, may
be viewed as sequence of equilibrium states. We note also that at
the final equilibrium state, we place the partition between the two
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compartments. The net change in H, or in S, is due only to the
change in the number of indistinguishable particles.

We can now summarize our findings for this specific example
as follows. For any state distribution (p, q) with p + q = 1, we
can define the MI by (6.12.16). When N is macroscopically large,
changes in MI turn into changes in the thermodynamic MI. This
function has a maximum at p∗ = q∗ = 1/2 — hence the state-
ment that the macroscopic system will tend towards the maxi-
mum value of S (consistent with the fixed values of E,V,N). This
provides an explanation of “what” is the thing that changes in
this process. On the other hand, the super probability Pr(p, q)
in (6.12.15), also has a sharp maximum at p∗ = q∗ = 1/2. This
fact provides the explanation “why” the system will move towards
the state distribution p∗ = q∗ = 1/2. Thus, for any initially pre-
pared distribution (p, q), the system will evolve towards the dis-
tribution (p∗, q∗) for which the super probability Pr(p, q) has a
maximum. This is also the distribution for which the MI, or the
entropy, is maximum, for a system characterized by the variables
E,V,N. For very large N , the relation between the two functions
is (6.12.18).

Once the distribution reaches the state for which p∗ = q∗ = 1/2,
or nearly this state, it will practically stay in this neighborhood
forever. There will be fluctuations away from (p∗, q∗). Small fluctu-
ations will be frequent, but unobservable and un-measurable. Large
fluctuations are in principle measurable, but are extremely improb-
able — hence almost never observable.

(ii) Ideal gas in r compartments
We briefly discuss here a generalization of the previous case.
Instead of two compartments, we now have r compartments each
of volume V . The whole system contains N particles and has a
fixed energy E. This case does not add any new idea. However, it
facilitates the generalization discussed in subsections (iii).

Clearly, we can prepare a system with any prescribed distribution
N1, N2, . . . , Nr, (

∑
Ni = N), where Ni is the number of particles

in the compartment i (Figure 6.21). We also know that once we
remove the partitions between the compartments, the system will



December 5, 2007 B534 Statistical Thermodynamics Based on Information 9in x 6in ch06

308 Statistical Thermodynamics Based on Information

N1/V N2/V N3/V +  N4)/4 V(N1 + N2 +  N3N4/V

(a) (b)

Figure 6.21. (a) An initial prepared distribution (different densities in each
volume) and (b) The final equilibrium uniform density.

evolve from the initial distribution to the final uniform distribution
N1 = N2 = · · · = Nr = N/r.

Following similar reasoning as in the previous example, we define
the state distribution p1, . . . , pr, such that pi = Ni

N is the fraction
of particles in the ith compartment (

∑
pi = 1).

The corresponding MI is

H(p1, . . . , pr) = −
∑

pi ln pi. (6.12.19)

This quantity is defined for any distribution p1, . . . , pr. At the
moment of removal of the partitions between the r compartments,
the quantity pi is the probability of finding a specific particle in the
ith compartment. This probability distribution changes with time
towards the distribution (p∗1, . . . , p∗r) for which the super probability
function

Pr(p1, · · · pr) =
(

1
r

)N N !∏r
i=1 Ni!

(6.12.20)

has a maximum. This probability provides the “driving force”30 for
the evolution of the system from the initial distribution p1, . . . , pr,
having lower probability, to the final distribution (p∗1, . . . , p∗r). It
turns out that the distribution p∗1 = p∗2 = p∗r = 1

r , which maximizes
Pr, is also the distribution that maximizes the MI in (6.12.19); the
connection between the two functions for N → ∞ is

Pr(p1, . . . , pr) ∼=
(

1
r

)N exp[NH (p1, . . . , pr)]√
(2πN)r−1p1 × p2 × · · · × pr

. (6.12.21)

30In this section, we use the phrase “driving force” in its colloquial sense. This
is not a force in the physical sense.
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Figure 6.22. (a) The MI (6.12.19), for the case r = 3 and (b) The probability
distribution, (6.12.20), for r = 3 and three values of N:100, 1000 and 10000.
The horizontal axes are as in Figure 6.23

At the point p∗1 = p∗2 = · · · = p∗r = 1
r , (6.12.21) reduces to

Pr
(

1
r
, . . . ,

1
r

)
=
(

1
r

)N rN√
(2πN)r−1(1/r)r

=

√
rr

(2πN)r−1
. (6.12.22)

This quantity sharply decreases with N . However, if we take a
neighborhood of the point p∗1 = p∗r = · · · = pr = 1

r , the probabil-
ity of finding the system at, or near, the point p∗1 = p∗r = · · · =
pr = 1

r tends to unity as N increases and becomes macroscopi-
cally large. In Figure 6.22, we show the function Pr(p1, p2, p3) with
p1 + p2 + p3 = 1, defined in (6.12.20) and the function S(p1, p2, p3)
defined in (6.12.19) for the case r = 3. The two functions are plot-
ted over the equilateral triangle region whose edge is a a = 2/

√
3.

With this choice, any point within the triangle represents a triplet
of numbers p1, p2, p3, such as

∑
pi = 1. The distances between
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Figure 6.23. The triangular area over which the S and Pr are plotted In
Fig. 6.22.

any point p within the triangle and the three edges is shown in
Figure 6.23.

The transformation between p1, p2 and p3, and the Cartesian
coordinates is31

p1 = y,

p2 =
(

a − x − y√
3

) √
3

2
,

p3 = 1 − p1 − p2. (6.12.23)

The range of the variations of x and y is

0 ≤ y ≤ 1,
y√
3
≤ x ≤ a − y√

3
. (6.12.24)

As in the case of r = 2, here also we see that as N increases the
distribution becomes sharper, and the value of the maximum prob-
ability becomes smaller (note the scale of the probability axis in
Figure 6.22).

31These relationships are based on a theorem of geometry. The sum of the three
perpendicular lines p1, p2 and p3 in Figure 6.23 is equal to h (here h = 1).
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We note again that the changes of H as defined in (6.12.19) for
a quasi-static process is

dH =
r∑

i=1

∂H

∂Ni
dNi =

−1
N

r∑
i=1

dNi ln Ni.

This is the same change in the entropy of the system calcu-
lated from either the partition function or from the Sackur–Tetrode
equation (applied for each compartment). The result is

dS =
−1
N

r∑
i=1

dNi ln Ni.

Note that if at each step of the process, we close the windows
between the compartments, the net change in the MI or the entropy
will be due to changes in the number of indistinguishable particles
only.

(iii) The more general case
In the previous examples, we had a classical system described by
the locations and momenta of all the particles. We also restricted
ourselves to changes in the locational MI only. In the more general
case, the distribution of momenta might also changes (e.g., in heat
transfer from a hot to a cold body). Yet, in a more general case,
the system is described in terms of its quantum mechanical states.

Suppose we have again a system of N particles contained in a
volume V and with a fixed total energy E. The second postu-
late of statistical mechanics states that all the microstates states
i(i = 1, 2, . . . ,WT ) of a system characterized by E,V,N at equilib-
rium have equal probability 1/WT . For this equilibrium state, the
Boltzmann relation is

S = lnWT . (6.12.25)

In the previous examples, we have prepared a single thermody-
namic system at some arbitrary distribution of particles in the vari-
ous compartments. We then removed the constraints (i.e., removed
the partitions between the compartments), and followed the evo-
lution of the system. For a general system of interacting particles,
it is impossible to prepare a single system with an initial arbitrary
distribution (p1, . . . , pWT

). Instead, we can imagine an ensemble of
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M systems all characterized by the same thermodynamic variables
E,V,N . In this ensemble, we can imagine that we have prepared
the ensemble in such a way that M1 systems are in the quantum
mechanical state 1, M2 in state 2, and so on. Thus, the total number
of systems in the ensemble is32

M =
WT∑
i=1

Mi. (6.12.26)

Clearly, such an ensemble does not represent an equilibrium sys-
tem characterized by E,V,N . Note that this ensemble is not the
micro-canonical ensemble discussed in Chapter 5. Here, each sys-
tem is in a single quantum mechanical state. This is a highly hypo-
thetical ensemble. Recall that even the micro-canonical ensemble is
highly hypothetical. There exists no absolute isolated system with
exactly fixed energy E. For any initially prepared ensemble with dis-
tribution (p1, . . . , pWT

), where pi = Mi

M is the fraction of systems in
the ensemble being in state i,33 we can write the super probability
distribution is

Pr(p1, . . . , pWT
) =

W (M1, . . . ,MWT
)∑

W (M1, . . . ,MWT
)

=
(

1
WT

)M M !∏WT

i=1 Mi!
. (6.12.27)

This super probability follows from the second postulate of sta-
tistical mechanics and from the classical definition of probability.

The MI defined on the same distribution p1, . . . , pWT
is

H(p1, . . . , pWT
) = −

WT∑
i=1

pi ln pi. (6.12.28)

32This hypothetical ensemble can be constructed from the micro-canonical
ensemble as follows: We make a measurement on each of the systems, and deter-
mine its quantum mechanical state, and then we choose M1 systems in state
1, M2 systems in state 2, and so on. In this way, we get the new hypothetical
ensemble.
33pi is the probability of finding a system, picked at random from the ensemble,
in state i.
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It should be noted that there is a fundamental difference between
this case and the previous two cases. In the previous cases, it was
possible to prepare a system at any distribution N1, . . . , Nr which
is at equilibrium. We can also perform a quasi-static precess of
removing the constraint on the initial distribution towards the final
distribution (1/r, 1/r, . . . , 1/r). For example, we can open and close
small windows between the compartments so that at each stage of
the process, each compartment is in an internal equilibrium state.
Hence, the thermodynamic entropy is defined at each stage of the
quasi-static process.

In the general case, each system in the ensemble is in one specific
quantum mechanical state. This is clearly not an equilibrium state.
Hence, the thermodynamic entropy is not defined for the initially
prepared system.

Nevertheless, the measure of MI is definable for such an ensemble
since this is definable for any distribution p1, . . . , pr. As we shall
see below, the relation between the MI and the super probability
is the same as in the previous cases. However, the MI is equal to
the thermodynamic entropy, neither in the initial state nor along
the way towards the final equilibrium state. It is only at the final
equilibrium state that the MI, denoted H, becomes identical to the
thermodynamic entropy S.

The argument regarding the evolution of the ensemble’s distribu-
tion towards equilibrium is essentially the same as in the previous
examples. The number of particles is now replaced by the number
of systems in the ensemble.

If we apply a small perturbation to each of the systems, the pro-
posed ensemble will evolve forwards the distribution p∗1 = p∗2 =
· · · = p∗WT

that maximises both the super distribution and the MI.
The maximal value of H is the thermodynamic MI, which we denote
by S and is given by

S = H

(
1

WT
, . . . ,

1
WT

)
= −

WT∑
i=1

1
WT

ln
1

WT

= ln WT , (6.12.29)

which is the Boltzmann relation (6.12.25). Note that only the max-
imal value of H is identified with the thermodynamic MI.
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So far we have made a statement about what the thing that
changes and attains a maximum value at equilibrium is. The “driv-
ing force” for this change is the super probability Pr(p1, . . . , pWT

).
This function has a sharp maximum for the same distribution
p∗i , . . . , p

∗
WT

that maximizes the MI. The value of the maximal
probability is

Pr(p∗i , . . . , p
∗
WT

) =
(

1
WT

)M M !∏WT

i=1(p
∗
i M)!

. (6.12.30)

The connection between the super probability function
Pr(p1, . . . , pWT

) and the MI function H(p1, . . . , pWT
) is formally

the same as in previous sections. We take the limit M → ∞ and
use the Stirling approximation for all the Mi! to obtain

Pr(p1, . . . , pWT
) =

(
1

WT

)M exp[MH (p1, . . . , pWT
)]√

(2πM)WT −1
∏WT

i=1 pi

. (6.12.31)

Again, we conclude that the MI MH(p1, . . . , pWT
) is defined for

any arbitrary distribution (p1, . . . , pWT
), with

∑
pi = 1. It attains

the thermodynamic value of the MI MH(p∗1, . . . , p∗WT
) for the spe-

cific distribution p∗i = W−1
T . The “driving force” for the evolution

of the ensemble’s distribution towards the equilibrium distribution
p∗1, . . . , p

∗
WT

is the super probability Pr(p1, . . . , pWT
). This has a

sharp maximum at p∗1, . . . , p
∗
WT

. The value of the maximal proba-
bility for M → ∞, is

Pr(p∗1, . . . , p
∗
WT

) =

√
W WT

T

(2πM)WT−1
. (6.12.32)

This is the general relation between the super probability at equi-
librium and the total number of states of a single system. The latter
is related to the MI by (6.12.29).

To summarize this section, we note that (6.12.31) can be viewed
in two ways, or in two directions. One can formulate the Second Law
by stating that the entropy (or the MI) increases in a spontaneous
process in an isolated system. Such a formulation does not provide
any explanation of the Second Law. It reaches a dead end, and it
does not matter whether you refer to S as entropy, disorder or MI.
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The second view is to start with a description of the ensemble
and the corresponding super probability as in (6.12.27). We then
interpret the probability of an event as the fraction of time the
system will spend at that event. Therefore, the system will spend
more time at events (or states) of higher probability. This, in itself,
provides an explanation of the “driving force” for the evolution
of the system; from a state of low to a state of high probability.
Equation (6.12.31) translates the last statement from the language
of probability into the language of the entropy (or the MI). In this
view, we have not only an interpretation for the quantity S as MI,
but also an answer to the question of “why” the system evolves in
the specific direction of increasing the entropy (or the MI). In this
view, the statement of the Second Law is reduced to a statement of
common sense, nothing more [for an elementary discussion of this
topic, see Ben-Naim (2007)].

A very common way of explaining the Second Law is to use the
example of the scattered pages of a novel, say Tolstoy’s “War and
Peace.” It is true that there are many more ways of collecting the
scattered pages of the book in the wrong order than in the right
order. This is also a good example of an extremely improbable event
(collecting the pages in the exact order of the book). However, this
example might be misleading if used to explain the Second Law
of Thermodynamics. Clearly, the “right order” of the pages of the
book depends on the content written on each of the pages. A person
who does not know the language in which the book is written might
not distinguish between the right and the wrong “order” of the
pages. From such considerations, it is easy to reach the conclusion
that entropy or MI is a subjective quantity.

Note, however, that the “original order” of the pages of any book
is meaningful even when the pages are all blank, or contain the
same content. Since the pages of a book are classical objects, they
are distinguishable. Therefore, it is highly improbable to collect
the scattered pages of a book into the “original order”, just as it
is highly improbable to retrieve the tumblerful of water from the
sea (see page 282). If the pages of the book were indistinguishable
(see Appendix J) then the probability of collating the pages in the
“original order” becomes one!
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Finally, one should realize that the Second Law is crucially depen-
dent on the atomic constituency of matter. If matter were not made-
up of a huge number of atoms, the Second Law would not have
existed, and the entropy would not have been defined. The same
is true for the concepts of temperature and heat. Hence, also the
Zeroth and the First Law of Thermodynamics would not have been
formulated.

The atomic constitution of matter is perhaps the most important
discovery of science. On this matter, I cannot do any better then
citing Feynman (1996):

“If, in some cataclysm, all scientific knowledge were to be
destroyed, and only one sentence passed on to the next generations
of creatures, what system would contain the most information in
the fewest words?

I believe it is the atomic hypothesis (or atomic fact, or whatever
you wish to call it) that all things are made of atoms.”
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Appendix A Newton’s binomial theorem and some useful
identities involving binomial coefficients

The binomial coefficient is defined by(
n

i

)
=

n!
i!(n − i)!

. (A.1)

The Newton bionomial theorem is

(x + y)n =
n∑

i=0

(
n

i

)
xiyn−i. (A.2)

The proof, by mathematical induction on n, is quite straightfor-
ward. For n = 1 and n = 2, we have the familiar equalities

(x + y)1 = x1y0 + x0y1 = x + y, (A.3)

(x + y)2 = x2 + 2xy + y2. (A.4)

Assuming that (A.1) is true for n, it is easy to show that it is also
true for n + 1:

(x + y)n+1

= (x + y)n(x + y) = (x + y)
n∑

i=0

(
n

i

)
xiyn−i

317
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=
n∑

i=0

(
n

i

)
xi+1yn−i +

n∑
i=0

(
n

i

)
xiyn+1−i

=
n+1∑
l=1

(
n

l − 1

)
xlyn−l+1 +

n∑
i=0

(
n

i

)
xiyn+1−i

=
n+1∑
i=1

(
n

i − 1

)
xiyn−i+1 +

n∑
i=0

(
n

i

)
xiyn+1−i

=
n∑

i=1

(
n

i − 1

)
xiyn−i+1 +

n∑
i=1

(
n

i

)
xiyn+1−i + xn+1 + yn+1

=
n∑

i=1

[(
n

i − 1

)
+
(

n

i

)]
xiyn−i+1 + xn+1 + yn+1

=
n+1∑
i=0

(
n + 1

i

)
xiyn−i+1 = (x + y)(n+1) (A.5)

Note that in the last step, we used identity (A.8) below.
The generalization of (A.1) to m variables is called the multi-

national theorem. Denote(
n

i1, i2, i3, . . . , im

)
=

n!∏m
k=1 ik!

. (A.6)

The multinomial theorem is(
m∑

i=1

xi

)n

=
∑

i1,i2,...,im

(
n

i1, i2, . . . , im

) m∏
k=1

xik

k , (A.7)

where the sum is over all sequences i1, i2, . . . , im such that∑m
k=1 ik = n.
Some useful identities involving binomial coefficients are:(

n

i − 1

)
+
(

n

i

)
=
(

n + 1
i

)
(A.8)

or equivalently (
n

i

)
=
(

n − 1
i

)
+
(

n − 1
i − 1

)
, (A.9)(

n

i

)
=
(

n

n − i

)
, (A.10)
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k

(
n

k

)
= n

(
n − 1
k − 1

)
, (A.11)

(
n

m

)
=

(n
i

)(n−i
m−i

)
(m

i

) , (A.12)

(
2n
n

)
=

n∑
i=0

(
n

i

)2

=
4n − 2

n

(
2n − 2
n − 1

)
, (A.13)

n∑
i=0

(−1)i
(

n

i

)
= 0, (A.14)

n∑
i=0

i

(
n

i

)
= n2n−1, (A.15)

n∑
i=0

(
n

i

)
= 2n, (A.16)

n∑
i=0

i

(
n

i

)2

=
(

2n
n

)
n

2
. (A.17)

Appendix B The total number of states in the Fermi–
Dirac and the Bose–Eistein statistics

The results of this appendix are well known and can be found in
any textbook on statistical mechanics.

In the Fermi–Dirac (FD) statistics, we are given N indistinguish-
able particles to be placed in M boxes (with M ≥ N) with the
condition that no more than one particle can occupy a given box.

In this case, the counting is straightforward. For N distinguish-
able particles, the total number of ways of placing the N particles
in M boxes is simply M(M − 1)(M − 2) · · · (M −N + 1). Next, we
divide by N ! to correct for indistinguishability of the particles. The
result is

W
(N)
FD =

M(M − 1) · · · (M − N + 1)
N !

=
M !

N !(M − N)!
=
(

M

N

)
.

(B.1)

For BE particles, we do not impose any restriction on the number
of particles in each box. To calculate the number of arrangements,
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we place N particles and M − 1 sticks on a line. Clearly, M − 1
sticks define M boxes; an example of an arrangement for N = 18
and M = 7 is

◦ ◦ ◦| ◦ ◦| ◦ ◦ ◦ | ◦ | ◦ ◦| ◦ ◦ ◦ ◦| ◦ ◦◦
Since there are no restrictions on the number of particles in any

single box, the total number of arrangements is exactly the total
number of permutations of the N + M − 1 objects (particles and
sticks). But in this count, we counted too many arrangements; we
must divide by (M − 1)!N ! to account for over-counting configu-
rations that are indistinguishable. Thus, the required number of
indistinguishable configurations is

W
(N)
BE =

(M + N − 1)!
N !(M − 1)!

=
(

N + M − 1
N

)
. (B.2)

To obtain the Maxwell–Boltzmann (MB) statistics, we can either
take the limit of either (B.1) or (B.2) as M � N , or do the calcu-
lation directly.

If M � N , the limit of (B.1), using the Stirling approximation
(see Appendix E), is

ln W
(N)
FD

∼= M ln M − N ln N − (M − N) ln(M − N)

= −M ln
(

1 − N

M

)
+ N ln

(
M

N
− 1
)

∼= N ln
M

N
+ N = ln

MNeN

NN
∼= ln

MN

N !
. (B.3)

Hence,

W
(N)
FD → MN

N !
. (B.4)

The same limit can also be obtained from

W
(N)
BE → MN

N !
. (B.5)

Figure 6.5 shows WFD ,WBE and WMB for fixed M and varying
N , and for a fixed N = 100 and varying 100 ≤ M ≤ 2000.

Exercise: Calculate all the possible configurations for the FD and
BE statistics for M = 4 and N = 3.
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Appendix C Pair and triplet independence between
events

We present here two examples where dependence or independence
between two events does not imply dependence or independence
between three events, and vice versa.

(i) Pairwise independence does not imply triplewise independence

Consider a board of total area S being hit by a ball. The prob-
ability of hitting a certain region is assumed to be proportional to
its area. On this board, we draw three regions A–C (Figure C.1).
If the area of the entire board is chosen as unity, and the areas of
A–C are 1/10 of S, then we have the probabilities

P (S) = 1, P (A) = P (B) = P (C) =
1
10

. (C.1)

In this example, we have chosen the regions A–C in such a way
that the area of the intersection (region I) is 1/100 of S. Hence, in
this case we have

P (A · B) = P (B · C) = P (A · C) =
1

100
= P (A)P (B)

= P (A)P (C) = P (B)P (C). (C.2)

Thus, we have pairwise independence, e.g., the probability of
hitting A and B is the product of the probabilities P (A) and P (B).
However, in this system

P (A · B · C) =
1

100
�= P (A)P (B)P (C) =

1
1000

. (C.3)

S

C

B

A II

Figure C.1. Three events A,B and C and the intersection I . The areas are
given in equations (C.1) and (C.2)
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Figure C.2. Three events A, B and C and the intersection I . The areas are
given in (C.1) and (C.4).

The probability of hitting A–C is not the product of the proba-
bilities P (A), P (B)–P (C), i.e., there is no triplewise independence.

(ii) Triplewise independence does not imply pairwise independence

In this example (Figure C.2), the total area of S is unity. Also, the
area of each region A–C is again 1/10 of S. But now the intersection
I of the three regions has an area 1/1000 of S. In this case we have

1
1000

= P (A · B · C) = P (A)P (B)P (C). (C.4)

The probability of the event (A ·B ·C) is the product of the three
probabilities P (A), P (B) and P (C), On the other hand,

1
1000

= P (A · B) �= P (A)P (B) =
1

100
, (C.5)

and similarly for P (A ·C) and P (B ·C). Hence, in this system there
is triplewise independence, but not pairwise independence.

Appendix D Proof of the inequality |R(X, Y )| ≤ 1
for the correlation coefficient

The correlation coefficient between two random variables X and Y

is defined by

R(X,Y ) =
Cov(X ,Y )

σxσy
=

E(X · Y ) − E(X)E(Y )√
Var(X )

√
Var(y)

, (D.1)
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where it is assumed that Var (X) �= 0 and Var(Y ) �= 0 and the
positive square root is taken in the denominator of (D.1).

We have seen in Section 2.7 that

Var (X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

= Var(X) + Var(Y ) + 2R(X,Y )
√

Var(X)Var (Y ).
(D.2)

We have to show that

−1 ≤ R(X,Y ) ≤ 1. (D.3)

First, we show that R(X,Y ) does not change if we transform to
new random variables, defined by

X ′ = αX + a, Y ′ = βY + b (D.4)

with α > 0, β > 0. This follows from the properties

E(αX + a) = αE(X) + a, (D.5)

E(βY + b) = βE(X) + b, (D.6)

E[(αX + a)(βX + b)] = αβE(X · Y ) + αbE(X) + aβE(Y ) + ab.

(D.7)

Hence,

Cov(X ′, Y ′) = E(X ′ · Y ′) − E(X ′)E(Y ′)
= αβ[E(X · Y ) − E(X)E(Y )], (D.8)

Var(X ′) = Var(αX + a) = α2Var(X), (D.9)

Var(Y ′) = Var(βY + b) = β2Var(Y ), (D.10)

R(X ′, Y ′) =
αβ[E(X · Y ) − E(X)E(Y )]

α
√

Var(X ) β
√

Var(Y )
= R(X,Y ). (D.11)

Because of the invariance property (D.11), we can assume that
X and Y have average equal zero and variance equal to one. If this
is not the case, we can transform into a new rv as follows:

X ′ =
X − E(X)√

Var(X )
, Y ′ =

Y − E(Y )√
Var(Y )

(D.12)

so that X ′ and Y ′ have these properties.
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For such “normalized” random variables, we have [note that the
variance is always positive Var(X) ≥ 0]

Var(X + Y ) = Var (X) + Var(Y ) + 2R(Y, Y )
√

Var(X)Var (Y )

= 1 + 1 + 2R(X,Y ) ≥ 0. (D.13)

Hence,

R(X,Y ) ≥ −1. (D.14)

Similarly, we can write

Var(X − Y ) = Var(X) + Var(Y ) − 2R(X,Y )

= 1 + 1 − 2R(X,Y ) ≥ 0. (D.15)

Hence,

R(X,Y ) ≤ 1. (D.16)

The last two results can be written as

|R(X,Y )| ≤ 1. (D.17)

Note that the two limits +1 and −1 are attainable. For X = Y ,
we have R(X,X) = 1 and for Y = −X,R(X,−X) = −1. Thus,
positive and negative correlations correspond to positive and neg-
ative values R(X,Y ), respectively.

Exercise: Calculate R(X,Y ) for the two rv: X being the outcomes
of throwing a fair dice, and Y = −X.

Solution:

E(X) = 3.5, E(Y ) = −3.5, E(X · Y ) =
−91
6

, (D.18)

Var(X) =
35
12

, Var(Y ) = (−1)2Var(X) =
35
12

, (D.19)

R(X,Y ) = −1. (D.20)

Note that the values of the two rv do not necessarily have to be of
opposite signs to get a negative correlation. The following example
shows that X and Y attain only positive values but the correlation
is negative.

Exercise: X is, as before, the rv associated with throwing a fair
die (with values 1, 2, 3, 4, 5, 6) and Y is defined on the same sample
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space, but

X(i) = i for i = 1, 2, . . . , 6,

Y (i) = |7 − i|, (D.21)

i.e., Y gets the value of the “opposite face” of i. These are:

Y (1) = 6, Y (2) = 5, Y (3) = 4, Y (4) = 3, Y (5) = 2, Y (6) = 1,

(D.22)

E(X) = E(Y ) = 3.5,Var (X) = Var(Y ) =
35
12

, (D.23)

E(X · Y ) =
1
6
(1 × 6 + 2 × 5 + 3 × 4 + 4 × 3 + 5 × 2 + 6 × 1)

=
28
3

, (D.24)

and

R(X,Y ) =
−35
35

= −1. (D.25)

Thus, we have the largest negative correlation coefficient although
the values of X and Y are all positive. What makes the correlation
negative is that a positive deviation from the average of one rv
is correlated with a negative correlation from the average of the
second rv. We can see this clearly from the explicit form of the
Cov(X,Y ):

(6 − 3.5)(1 − 3.5) + (5 − 3.5)(2 − 3.5) + (4 − 3.5)(3 − 3.5)

+ (3 − 3.5)(4 − 3.5) + (2 − 3.5)(5 − 3.5) + (1 − 3.5)(6 − 3.5).

Each of the terms in this sum is negative; hence, the correlation is
negative too.

A special case of a correlation function is for two characteristic
functions. Let A and B be two events, and let IA and IB be the
corresponding characteristic functions:

IA(ω) =

{
1 if ω ∈ A,

0 if ω /∈ A,

IB(ω) =

{
1 if ω ∈ B,

0 if ω /∈ B.
(D.26)
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The corresponding averages are

E(IA) = P (A), E(IB) = P (B),

E(IA · IB) = P (A ∩ B),

Var(IA) = P (A)P (Ā) = P (A)(1 − P (A)),

Var(IB) = P (A)P (B̄) = P (B)(1 − P (B)),

R(IA, IB) =
P (A ∩ B) − P (A)P (B)√

P (A)P (Ā)P (B)P (B̄)
= R(A,B). (D.27)

If A= B, then there is maximum positive correlation and
R(A,B)= 1. When B = Ā, there is maximum negative correlation
and R(A,B)= − 1. Note also that in this case, independent events
(i.e., P (A∩B)= 0) is equivalent to uncorrelated events R(A,B)= 0.

Appendix E The Stirling approximation

A very useful approximation for n! is the following:

n! ≈
√

2πn nne−n. (E.1)

We usually use this approximation for ln(n!) and for very large
n, say of the order of 1023. In this case

ln(n!) ∼= n ln n − n +
1
2

ln(2πn). (E.2)

When n is very large, one can neglect the last term on the right-
hand side of (E.2). A detailed proof of this approximation can be
found in Feller (1957). The general idea is as follows. We can write

ln(n!) =
n∑

i=1

ln i =
n∑

i=1

∆i ln i, (E.3)

where ∆i = (i + 1) − i = 1. For very large n, this sum can be
approximated by the integral

n∑
i=1

∆i ln i ≈
∫ n

1
ln(i)di = n lnn − n − 1 ≈ n lnn − n. (E.4)

Exercise: The binomial distribution is

PN (n) =
(

N

n

)
pn(1 − p)N−n. (E.5)
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Use the Stirling approximation to show that the value of n for
which PN (n) has a maximum is the same as the average value of n.

Solution:
∂ lnPN (n)

∂n
= − lnn + ln(N − n) + ln p − ln(1 − p) = 0. (E.6)

Hence, the maximum is attained for n = n∗, which fulfills the
equation

n∗

N − n∗ =
p

1 − p
(E.7)

or equvalently

n∗ = pN. (E.8)

It is easy to see that this is a maximum. We have already seen in
Section 2.8 that n∗ is also the average value of n.

Appendix F Proof of the form of the function H

Here, we shall assume that the function H fulfills the three require-
ments as stated in Section 3.2 and show how one gets the form of
this function [there are other proofs that are based on different set
of requirements; see Khinchin (1957) and Katz (1967)].

We have an experiment with n outcomes A1, . . . , An. These are
assumed to be mutually exclusive. We group them into r sets, each
of which contains mk elements (k = 1, 2, . . . , r), and

∑r
k=1 mk = n.

We denote the new events A′
1, A

′
2, . . . , A

′
r. These are defined in

terms of original outcomes1:

A′
1 = {A1 + A2 + A3 + · · · + Am1}

A′
2 = {Am1+1 + Am1+2 + · · · + Am1+m2}

A′
3 = {Am1+m2+1 + Am1+m2+2 + · · · + Am1+m2+m3}
...

A′
r =

{
APr−1

k=1 mk+1
+ · · · + An=

Pr
k=1 mk

}
. (F.1)

1The plus sign in (F.1) means union of events. The original outcomes are not
necessarily elementary events.
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Since the original events {Ai} are mutually exclusive, the proba-
bilities of the new events are simply the sum of the probabilities of
the original events that are included in the new event, thus

p′1 = P (A′
1) =

m1∑
i=1

pi,

p′2 = P (A′
2) =

m1+m2∑
i=m1+1

pi,

...

p′r = P (A′
r) =

n∑
i=

Pr−1
k=1 mk+1

pi. (F.2)

It is convenient to denote the events included in the kth group as
Ak

1 · · ·Ak
mk

, and the corresponding probabilities as pk
1 · · · pk

mk
(the

superscript is the index of the kth group, and the subscript is the
index of the event within the kth group).

In this notation, the requirement of consistency for the function
H is written as:

H(p1, . . . , pn) = H(p′1, . . . , p
′
r) +

r∑
k=1

p′kH

(
pk
1

p′k
, . . . ,

pk
mk

p′k

)
. (F.3)

Thus, the total MI of the original set of events should be equal
to the MI of the new set of r compound events, plus an average MI
within the groups of events k = 1, 2, . . . , r.

We now assume that the original probabilities are all rational
numbers, i.e., they can be written as

pi =
Mi∑n

j=1 Mj
, (F.4)

where Mi are non-negative integers. The assumption of rational
probabilities in (F.4) is not really serious, since in any event we
know the probabilities up to a given accuracy, and we can always
cast this into a rational number.

We next “expand” our set of outcomes. Instead of the original n

outcomes A1 · · ·An, we build a new set of outcomes in such a way
that A1 consists of M1 elements of equal probability 1

M , A2 consists
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(a)

(b)

(c)

p4p1 p2

p1
, p2

, p3
, p4

,

p3 p5 p6 p7 p8

M

1

M

1

M

1

M

1

Figure F.1. The three “levels” of describing the set of events, as described in
Appendix F.

of M2 elements of equal probability 1
M , etc., where M =

∑n
i=1 Mi

(see Figure F.1).
With this expansion into M events, all of the equal probability,

we can rewrite the requirement of consistency on the expanded set
of events as

H

(
1
M

, . . . ,
1
M

)
= H(p1, . . . , pn) +

n∑
i=1

piH

(
1/M

Mi/M
, . . . ,

1/M
Mi/M

)
.

(F.5)

Note that in (F.5), we have on the left-hand side the MI of M

events of equal probability. These are regrouped in such a way that
the kth group is exactly the event Ak of the original set of events
in which we have started.

We now define the function

F (M) = H

(
1
M

, . . . ,
1
M

)
(F.6)

and rewrite (F.5) as

F (M) = H(p1, . . . , pn) +
n∑

i=1

piF (Mi). (F.7)
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It is now clear that if we can find the form of the function F (M),
we can use (F.7) to obtain the required function H(p1, . . . , pn) for
any distribution p1, . . . , pn.

We now digress to the mathematical problem of finding the func-
tion F (M). We choose a particular case when all Mi are equal, i.e.,

Mi = m,

n∑
i=1

Mi = nm = M. (F.8)

In this particular case, the probabilities are

pi =
Mi

M
=

m

M
=

1
n

. (F.9)

Therefore, for this particular case, we have

H(p1, . . . , pn) = H

(
1
n

, . . . ,
1
n

)
= F (n) (F.10)

and
n∑

i=1

piF (Mi) = F (m). (F.11)

Hence, (F.7) reduces, for this case, to

F (M) = F (n) + F (m) (F.12)

or equivalently

F (n × m) = F (n) + F (m). (F.13)

One can easily prove that the only function that has this property
is the logarithm function [for details of the proof, see Khinchin
(1957) or Katz (1967)], i.e.,

log(n × m) = log(n) + log(m), (F.14)

where we left the base of the logarithm unspecified. Thus, we found
that

F (M) = log M. (F.15)
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Having found the form of the function F (M), we can now go
back to (F.7), and write for the general case where p1, . . . , pn are
unequal:

H(p1, . . . , pn) = F (M) −
n∑

i=1

piF (Mi)

= log M −
n∑

i=1

pi log Mi

= −
∑

pi log
Mi

M
= −

n∑
i=1

pi log pi. (F.16)

Thus, we found the general form of the function H:

H(p1, . . . , pn) = −
n∑

i=1

pi log pi (F.17)

for any distribution p1, . . . , pn. Because of the continuity require-
ment of H, we can approximate any distribution by rational num-
bers of the form (F.4). Therefore, this is not a real limitation on
the validity of the proof of the function H.

Appendix G The method of Lagrange undetermined
multipliers

Let F (x) be a function of a single independent variable x. The
condition for an extremum is

dF
dx

= 0 (G.1)

and for a maximum, we also need the condition

d2F

dx2
< 0. (G.2)

For a function F (x1, . . . , xn) of n independent variables, the
condition for an extremum is

dF =
n∑

i=1

∂F

∂xi
dxi = 0, (G.3)
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where ∂F/∂xi is the partial derivative of F with respect to the
variable xi, keeping all other variable constant. Since (G.3) must
hold for any variation in the independent variables, it follows from
(G.3) that2

∂F

∂xi
= 0 for each i = 1, . . . , n. (G.4)

The derivatives should be evaluated at the point of the extremum,
say x0

1, . . . , x
0
n.

Now, suppose we need to find an extremum of a function
F (x1, . . . , xn), but with the constraint that the variables x1, . . . , xn

are not independent. The simplest case is that the variables are to
satisfy a condition that can be written as

G(x1, . . . , xn) = c, (G.5)

where c is a constant. Clearly, if (G.5) is to be satisfied, the
variations in x1, . . . , xn are not independent, since

dG =
n∑

i=1

∂G

∂xi
= 0. (G.6)

If the function G(x1, . . . , xn) is given explicitly, one can eliminate
one of the variables, say x1, express it in terms of the others, say
x1 = f(x2, . . . , xn), and substitute in F (x1, . . . , xn) to obtain a
function of n − 1 independent variables.

The procedure due to Lagrange is much more simple and elegant.
One first defines the auxiliary function L, by subtracting λ times
the constraint (G.5) from F to obtain

L ≡ F (x1, . . . , xn) − λ[G(x1, . . . , xn) − c], (G.7)

where λ is any constant, independent of x1, . . . , xn. We now write
the total difference of L as

dL =
n∑

i=1

(
∂F

∂xi
− λ

∂G

∂xi

)
dxi. (G.8)

2For instance, one could take dx1 �= 0 and dxi = 0 for all i �= 1 and obtain the
condition ∂F

∂x1
= 0 .
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Since λ can be chosen at will, we can choose λ in such a way that
one of the terms in (G.8) is zero,3 e.g.,

∂F

∂x1
− λ

∂G

∂x1
= 0 or λ =

∂F/∂x1

∂G/∂x1
. (G.9)

From (G.8) and (G.9), it follows that all the coefficients in (G.8)
must be zero. Thus, we have the conditions

∂F

∂xi
− λ

∂G

∂xi
= 0 for i = 2, 3, . . . , n, (G.10)

where λ is determined by (G.9). Thus, we have altogether n con-
ditions in (G.9) and (G.10) that can be solved to find the point of
extremum. The same procedure can be generalized to cases when
there are more than one constraint.

Exercise: Find the maximum of the function f(x, y) = xy , subject
to the condition x2 + y2 = 1.

Solution: Define F (x, y) = xy − λ(1 − x2 − y2). Take the deriva-
tives with respect to x and with respect to y, and the condition of
maximum is

∂F

∂x
= y − 2λx = 0,

∂F

∂y
= x − 2λy = 0. (G.11)

From these two equations, we get

λ =
y

2x
, λ =

x

2y
. (G.12)

Hence, the maximum is attained at

x0 = y0 = ±
√

1/2, (G.13)

and the value of the maximum f is

fmax = 1/2. (G.14)

3Note that since all the derivatives in (G.3) as well as in (G.8) are evaluated at
the point of extremum, say x0

1, . . . , x
0
n, the parameter λ depends on this point.
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Appendix H Some inequalities for concave functions

In this appendix, we shall present some important inequalities that
are used in connection with information theory. Proofs can be found
in Yaglom and Yaglom.4

Definition: A function is said to be concave5 in some region (a, b)
if for any two points x′ and x′′ such that a ≤ x′ ≤ b, a ≤ x′′ ≤ b,
the entire straight line connecting the two points f(x′) and f(x′′)
is below the function f(x) (Figure H.1).

An important property of a concave function is the following: a
function f(x) is concave in (a, b) if and only if, the second derivative
is negative in (a, b).

Examples of concave functions are (Figure H.2):

(i) f(x) = log x. (H.1)

This function is defined for x > 0. The first two derivatives are:

f ′(x) =
1
x

, f ′′(x) =
−1
x2

< 0 for x > 0. (H.2)

(ii) f(x) = −x log x. (H.3)

y

xX’’X’

Figure H.1. A convex downward function.

4Yaglom, A.M. and Yaglom, I.M. (1983).
5Some authors refer to what we call a “concave function” as a “convex function.”
We use the definition of “concave function” as described above and illustrated
in Figure H.1.
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Figure H.2. The function f(x) = log(x).

This function is defined for x ≥ 0 and its first two derivatives are:

f ′(x) = −1 − log x, f ′′(x) =
−1
x

< 0 for x ≥ 0. (H.4)

(iii) The function

−x log x − (1 − x) log(1 − x) for 0 ≤ x ≤ 1 (H.5)

is concave in 0 ≤ x ≤ 1, and its first two derivatives are:

f ′(x) = − log x+log(1−x), f ′′(x) =
−1

x(1 − x)
< 0 for 0 < x < 1.

(H.6)
We now present a few inequalities for concave functions.

Inequality I

If f(x) is concave in (a, b), and if a ≤ x1 ≤ x2 ≤ b, then

f(x1) + f(x2)
2

≤ f

(
x1 + x2

2

)
, (H.7)

i.e., the value of the function f at the point x1+x2
2 is always larger

than the point (f(x1)+f(x2))/2 on the straight line connecting the
points f(x1) and f(x2). This property follows immediately from the
definition, and it is clear from Figure H.1. A more general statement
of this property is:
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Inequality II

λf(x1) + (1 − λ)f(x2)

≤ f(λx1 + (1 − λ)x2) for any λ, such 0 ≤ λ ≤ 1. (H.8)

As an example, applying inequality (H.7) to the function (H.1),
we get

log x1 + log x2

2
≤ log

(
x1 + x2

2

)
(H.9)

or equivalently

(x1x2)1/2 ≤ x1 + x2

2
. (H.10)

This is a well-known inequality, i.e., the geometrical average of
two different and positive numbers x1, x2 is always smaller than
their arithmetic average.

Applying the second inequality (II) to this function, we obtain

λ log x1 + (1 − λ) log x2 ≤ log(λx1 + (1 − λ)x2) for 0 ≤ λ ≤ 1
(H.11)

or equivalently

xλ
1x

(1−λ)
2 ≤ λx1 + (1 − λ)x2, (H.12)

which is a generalization of (H.10).

Inequality III

Another generalization of the inequality I is:

f(x1) + f(x2) + · · · + f(xm)
m

≤ f

(
x1 + x2 + · · · + xm

m

)
. (H.13)

Or more generally:

Inequality IV

λ1f(x1) + λ2f(x2) + · · · + λmf(xm)

� f(λ1x1 + λ2x2 + · · · + λmxm) for λi ≥ 0 and
m∑

i=1

λi = 1.

(H.14)
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The inequalities (III) and (IV) can easily be proven by mathemati-
cal induction over n. Applying (IV) for the function (H.1), we have

m∑
i=1

λi log xi ≤ log

(
m∑

i=1

λixi

)
(H.15)

or equivalently
m∏

i=1

xλi

i ≤
m∑

i=1

λixi. (H.16)

An important inequality that follows from (H.15) is the following
Let p1, . . . , pm and q1, . . . , qm be any of the two distributions, such

that
∑m

i=1 pi =
∑m

i=1 qi = 1, pi > 0 and qi > 0. We choose λi = pi

and xi = qi

pi
. Since

∑
λi = 1, and since the function log x is concave

for any x > 0, then application of (H.15) for this choice gives
m∑

i=1

pi log
qi

pi
≤ log

(
m∑

i=1

pi
qi

pi

)
= log

∑
qi = 0. (H.17)

Hence, it follows from (H.17) that
m∑

i=1

pi log qi ≤
m∑

i=1

pi log pi. (H.18)

This inequality was used in Section 3.2.2. In Section 3.2.2, we
proved this inequality from the inequality ln x ≤ x− 1 for any x >

0. The latter inequality follows from the following considerations:
define the function f(x) = ln x− (x− 1), the derivative of which is

f ′(x) =
1
x
− 1 =

1 − x

x
. (H.19)

For 0 < x < 1, this derivative is positive. Hence, in this region,
f(x) is an increasing function of x. Since f(1) = 0, it follows that
f(x) ≤ 0, or equivalently ln x ≤ x − 1 for x < 1.

For x > 1, f ′(x)is negative. Hence, f(x) is a decreasing function
of x. Since f(1) = 0, it follows that f(x) ≤ 0, or equivalently
ln x ≤ x−1 for x > 1. The equality sign holds for x = 1. Figure H.3
shows the function ln(x) and the function x − 1. The geometrical
meaning of the inequality ln x ≤ x − 1 is that the straight line
y = x − 1 is always above the line y = ln x, for any x > 0.
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Figure H.3. The logarithm and the linear functions.

Another application of (H.14), for the function (H.3) is

−
m∑

i=1

λixi log xi ≤ −
(

m∑
i=1

λixi

)
log

(
m∑

i=1

λixi

)

for λi ≥ 0,
∑

λi = 1. (H.20)

Two important conclusions result from the concavity of the function
f(x) = −x log x.

(i) The missing information (MI) of an experiment having m out-
comes cannot exceed the MI of an experiment with equally
probable outcomes. Thus, if we choose xi = pi, the probabili-
ties of the outcomes of an experiment we have from (H.13)

−
∑

xi log xi

m
≤
(∑

xi

m

)
log
(∑

xi

m

)
. (H.21)

Multiplying by m and choosing xi = pi,
∑

xi = 1, we get

−
m∑

i=1

pi log pi ≤ − log
1
m

= log m, (H.22)

i.e., the MI of an experiment with m equally probable events
is always larger than the MI of m events with unequal proba-
bility. The equality holds if and if only all pi = p = 1/m. (We
have seen this Chapter 3, proven by the method of Lagrange
undetermined multipliers.)
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(ii) The second result that follows from the concavity of the func-
tion f(x) = −x log x is the following. Suppose we have two
random variables, or two experiments, X and Y . Let pi be the
probabilities of the events xi = (i = 1, . . . , n).6 Let us denote
by P (yj/xi), the probability of yj, given the event xi. Substi-
tuting λi → pi and xi → P (yj/xi) in (H.20), we obtain

−
n∑

i=1

piP (yj/xi) log P (yj/xi)

≤
[
−

n∑
i=1

piP (yj/xi)

]
log
[∑

piP (yj/xi)
]
. (H.23)

We now apply the theorem of total probability (see Section 2.6),
which for this case, is

n∑
i=1

piP (yj/xi) = P (yj). (H.24)

Hence, (H.23) can be rewritten as

−
n∑

i=1

piP (yj/xi) log P (yj/xi) ≤ −P (yj) log P (yj). (H.25)

The last inequality is valid for any j(j = 1, 2, . . . ,m). Summing
over all j(j = 1, . . . ,m), we obtain

−
n∑

i=1

pi

m∑
j=1

P (yj/xi) log P (yj/xi) ≤ −
m∑

j=1

P (yj) log P (yj), (H.26)

which in the notation of Section 3.2.2 is
n∑

i=1

piH(Y/xi) ≤ H(Y ), (H.27)

or equivalently

H(Y/X) ≤ H(Y ). (H.28)

6The “event xi” is a shorthand notation for the event {X = xi} , and similarly
the event yi, is a shorthand for {Y = yi}.
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Note that X and Y are the two random variables or two experi-
ments, the outcome of which are x1, . . . , xn and y1, . . . , ym, respec-
tively. The equality in (H.28) holds when the two experiments are
independent, which we have already seen in Section 3.2.

Appendix I The MI for the continuous case

In this appendix, we discuss the passage to the limit of a continuous
distribution. We assume that the random variable X can attain any
value within the interval (a, b), and that there exists a probability
density f(x), such that

Pr(x1 ≤ X ≤ x2) =
∫ x2

x1

f(x)dx (I.1)

and ∫ b

a
f(x)dx = 1. (I.2)

We now divide the interval (a, b) into n intervals, each of size
δ = (b − a)/n. We denote the points.

x1 = a, xi = a + (i − 1)δ, xn+1 = a + nδ = b. (I.3)

Thus, the probability

P (i, n) =
∫ xi+1

xi

f(x)dx (I.4)

is the probability of finding the value between xi and xi+1, for a
given subdivision into n intervals.

The MI associated with the probability distribution P (i, n), for
a fixed n, is

H(n) = −
n∑

i=1

P (i, n) log P (i, n). (I.5)

Clearly, since H(n) is defined for a finite value of n, there is no
problem in using (I.5) for any fixed n.
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Substituting (I.4) into (I.5), we have [note that δ = (b − a)/n]

H(n) = −
n∑

i=1

[∫ xi+1

xi

f(x)dx

]
log
[∫ xi+1

xi

f(x)dx

]

= −
n∑

i=1

[f̄(i, n)δ] log[f̄(i, n)δ]

= −
n∑

i=1

[
f̄(i, n)

(b − a)
n

]
log[f̄(i, n)]

−
[

n∑
i=1

f̄(i, n)
(b − a)

n

][
log
(

(b − a)
n

)]
, (I.6)

where f̄(i, n) is some value of the function f(x) between f(xi) and
f(xi+1), for a specific value of n. When n → ∞, we have

lim
n→∞

n∑
i=1

f̄(i, n)
(b − a)

n
=
∫ b

a
f(x)dx = 1, (I.7)

lim
n→∞

n∑
i=1

f̄(i, n) log[f̄(i, n)]
(b − a)

n
=
∫ b

a
f(x) log f(x)dx. (I.8)

The two limits in (I.7) and (I.8) are basically the definition of the
Rieman integral. These are presumed to be finite [note, however,
that the quantity in (I.8) might either be positive or negative].
Hence, in this limit we have

H = lim
n→∞H(n) = −

∫ b

a
f(x) log f(x)dx − lim

n→∞ log
[
b − a

n

]
. (I.9)

Clearly, the second term on the right-hand side of (I.9) diverges
when n → ∞. The reason for this divergence is clear. The larger the
n, the larger the number of intervals, and the more information is
needed to locate a point on the segment (a, b). Note, however, that
this divergent term does not depend on the distribution density
f(x). It only depends on how we choose to divide the segment
(a, b). Therefore, when we calculate the differences in H for different
distributions, say f(x) and g(x), we can take the limit n → ∞ after
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the formation of the difference, i.e.,

∆H = lim
n→∞∆H(n) = −

∫ b

a
f(x) log f(x)dx +

∫ b

a
g(x) log g(x)dx.

(I.10)
Here the divergent part does not appear and the quantity ∆H is
finite in the limit n → ∞ [assuming the two integrals in (I.10) exist].
It should also be noted that the quantity H always depends on how
accurately we are interested to locate a particle in a segment (a, b)
(or in a volume V in the 3-dimensional case); in other words, H

depends on δ. It is only the difference ∆H that is independent of δ.
In practice, we always have a limited accuracy for any measurable
quantity; therefore, the strict mathematical limit of n → ∞ is never
used in practice (see also Sections 3.24 and 4.4).

Thus, for a continuous rv we shall always use, as Shannon did,
the definition of the MI as

H = −
∫ b

a
f(x) log f(x)dx. (I.11)

One should be careful, however, in interpreting this quantity. This
MI does not have all the properties of H as for the finite case. First,
because H in (I.11) does not need to be positive, as in the finite
case. Second, H in (I.11) is not zero when we specify the outcome of
the experiment. In the finite case, if we know the outcome, then H

is zero. Here, knowing the answer means that f(x) becomes a Dirac
delta function and H in (I.11) diverges.7 We shall use the definition
(I.11) for H only when we are interested in the differences in the
MI, in which case no difficulties arise even in the limit n → ∞.

The extension of the inequality (3.2.19) to the continuous case
is as follows8: Let f(x) and g(x) be any two probability den-
sity functions. If the two integrals − ∫∞

−∞ f(x) log g(x)dx and
− ∫∞

−∞ f(x) log f(x)dx exist, then the following inequality holds:

−
∫ ∞

−∞
f(x) log

f(x)
g(x)

dx ≤ 0, (I.12)

with equality if and only if f(x) = g(x) for almost all x.

7There is another problem with the invariance of the MI to a linear transforma-
tion of the random variable. We shall not be concerned with this aspect of H .
8See Ash (1965).
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It should be noted that the quantity I(X;Y ), the mutual informa-
tion for X and Y , is defined as the difference between two uncertain-
ties; therefore, there exists no problem in extending this quantity
to the case of continuous random variables. Thus, for two random
variables with densities f(x) and g(y), we define

I(X;Y ) =
∫ ∞

−∞

∫ ∞

−∞
F (x, y) log

[
F (x, y)
f(x)g(y)

]
dxdy, (I.13)

where F (x, y) is the density distribution for the joint distribution
of X and Y , and f(x) and g(y) are the marginal distributions:

f(x) =
∫

F (x, y)dy, (I.14)

g(y) =
∫

F (x, y)dx. (I.15)

Appendix J Identical and indistinguishable (ID) particles

In daily life, we use the two concepts of identical and indistinguish-
able (ID) as synonyms. In physics, we distinguish between the two
terms. Two particles are said to be identical if we cannot tell the
difference between them. Two identical particles are said to be dis-
tinguishable if they can be given a label, in the sense that at each
point of time, we can tell that this particle has this label, and that
particle has that label. It should be said from the outset that by
“label” we do not mean a tag, a number or any other kind of label
that one attached to the particles. Clearly, such a label will make the
identical particles un-identical, and hence distinguishable. What we
need is a label that we can assign to the particles without affecting
their identity. Or put better: two identical particles are said to be
ID if we cannot find a label that distinguishes between the two, yet
does not affect their being identical. Quite often, it is said that,
“In quantum mechanics, identical particles are indistinguishable in
principle.”9 This does not consist of a definition of what makes
particles ID. Clearly, even in classical mechanics, one can say that
“identical particles are indistinguishable in principle.” Unless one
defines indistinguishability, this sentence is merely a tautology. The

9Kubo (1965).
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� �

Figure J.1. Two identical, but distinguishable particles on two lattice points.

� �
Figure J.2. Two identical, but distinguishable particles in two different boxes.

difference between classical and quantum mechanical views is that
in the former, one can use the trajectory of a particle to make
it distinguishable from another identical particle. This assignment
of trajectories as labels is, in principle, not allowed in quantum
mechanics.

Two kinds of “labels” are frequently encountered.

(i) Two identical particles at two different lattice sites, say α and
β (Figure J.1).

(ii) Two identical particles in different boxes, say boxes α and β

(Figure J.2).

In these two cases, we can always say that one particle is in site
α (or box α), and the other is in site β (or box β). Clearly, these
labels, though making the particles distinguishable, do not affect
the identity of the particles. The situation is different when the two
particles are in the same box. In this case, the two particles are
identical and indistinguishable (ID). The reason is that these parti-
cles cannot be labeled. This distinction originates from the different
ways particles are viewed in classical and in quantum mechanics;
this brings us to the third way of labeling, which is “permitted” in
a classical, but not in a quantum mechanical, world.
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Figure J.3. Two particles that can be labeled by their coordinates.

In classical mechanics, the particles can be, in principle, labeled.
For instance, the two particles shown in Figure J.3 can be assigned
coordinates, say R1 = (x1, y1, z1), and R2 = (x2, y2, z2) at some
time t = 0. When we write the equations of motion of N particles,
we label the particles 1, 2, . . . , N . We solve the equations and, in
principle, we can follow the trajectories of each particle having a
specific label. That means that at each time t, we can tell which
particle had the “label” R1 at time t = 0, the “label” R2 at time
t = 0, etc. The trajectoy of each particle is unique and can serve as
a label. The particles are thus distinguishable, though identical, if
these labels are maintained.

In quantum mechanics, this labeling of microscopic particles is, in
principle, impossible.10 Even if we start with two particles with an
assigned label at time t = 0, after some time, we cannot tell which
particle originates from R1, which particle from R2, and so on.11

10Rushbrooke (1949) expressed a different opinion on this matter: “. . . there is
nothing quantum mechanical about this result. The division by N ! is an essen-
tially classical necessity produced by the indistinguishability of the systems.”
11It is sometimes said that the labels are “erased,” or the information on the
labels is “lost.” These statements could be potentially misleading since the
assigned information is not really there. When two particles in the same box
collide, the Heisenberg uncertainty principle prevents us from telling which out-
going particle can be identified with which incoming particle.
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1 32 4 5 L0

Figure J.4. A one-dimensional fluid.

It should be noted that in both examples (i) and (ii) as given
above, the particles can either vibrate about the lattice points, or
wander in the entire volume V of the box. The particles can reach
an arbitrary close distance from each other. Yet, if we can always
say that this particle belongs to site α (or to box α), and that that
particle belongs to site β (or to box β), then the two particles have
different labels and therefore are considered to be distinguishable
(though identical). The labels, in this case, are α and β.

Another case of labeling of particles is a one-dimensional liquid
(Figure J.4). If particles are assumed to be impenetrable (i.e., the
intra-molecular potential is infinitely repulsive at very short dis-
tances), then we can label the particles as first, second, third, etc.
In this case, the particles are considered to be distinguishable.

In the earlier literature, a distinction used to be made between
localized and non-localized particles,12 instead of distinguishable
and indistinguishable. “Localized” normally refers to a particle at
a lattice point, but it can also refer to particles in this or that box,
i.e., particles that belong to site α, or to box α, can be said to be
localized at α, or labeled by the index α.

We can generalize the concept of ID to many particles as follows:
suppose that we have two boxes (Figure J.5), N1 particles in α,
N2 particles in β, all particles being identical. We treat all the
N1 particles as ID among themselves, and the N2 particles as ID
among themselves, but the particles in α are distinguishable from
the particles in β. It is very often said that if we exchange any
two ID particles we get an indistinguishable state. That is true for
identical particles as well. In the example of N1 particles in one
box and N2 particles in another box it is true that exchanging
one particle from α with one particle in β leaves the state of the

12See, for example, Rushbrooke (1949).
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N2N1

� �
Figure J.5. Identical particles in two different boxes. The particles in one box
are distinguishable from particles in the second box.

entire system unchanged, yet the two particles are not considered
as ID. The reason is that the particles in α can be labeled as α,
and particles in β can be labeled as β, and these labels are retained
as long as the walls of the boxes are impenetrable. Thus, particles
in α are identical but distinguishable from particles in β. Had we
considered particles in α to be indistinguishable from particles in
β, we would have gotten the following absurd result: removing the
partition between the two compartments in Figure J.5 causes a
change in free energy

∆A = −T ln
Qfinal

Qinitial
= −T ln

(2V )N1+N2(N1 + N2)!
(N1 + N2)!V N1V N2

= −T ln 2(N1+N2) = −T (N1 + N2) ln 2 < 0. (J.1)

Clearly, there should be no change in the free energy if the vol-
umes of α and β are the same and N1 = N2 = N . The error in
the above reasoning is that we have assumed that the (N1 + N2)
particles in both boxes are ID. Instead, we should view the initial
state as having N1 ID particles in α, and N2 ID particles in β, but
in the final state, we have (N1 + N2) ID particles in the combined
volume 2V . In this view, the change in free energy is

∆A = −T ln
Qfinal

Qinitial
= −T ln

(2V )N1+N2N1!N2!
(N1 + N2)!V N1V N2

= −T ln 2(N1+N2) − T ln
N1!N2!

(N1 + N2)!
. (J.2)
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If N1 = N2 = N , then in the limit of large N , these two terms
cancel each other and ∆A = 0 as should be (see also Sections 6.6
and 6.7).

A special case is a one-dimensional liquid. The configurational
partition function of a system of N identical particles in a box of
length L can be written in two forms:

Q =
1

N !

∫ L

0
· · ·
∫ L

0
dX1 · · · dXN exp[−βUN (X1, . . . ,XN )]

=
∫ L

XN−1

dXN

∫ XN

XN−2

dXN−1 · · ·

×
∫ X2

0
dX1 exp[−βUN (X1, . . . ,XN )]. (J.3)

In the first expression on the right-hand side of (J.3), we allow
all the configurations 0 ≤ Xi ≤ L for each particle. In this case, the
particle are ID. Hence, in performing the integration for each par-
ticle between 0 and L, we over-count configurations; thus, we need
to divide by N ! to correct for over-counting. In the second expres-
sion, we impose order on the particles, i.e., we distinguish between
the first, the second, the third . . . the Nth particle — hence, no
correction of N ! is required. In this case, the particles have labels;
first, second, third, etc., and hence, though they are identical, they
are distinguishable. In the example shown in Figure J.5, the indi-
vidual particles in each compartment cannot be labeled. However,
N1 particles in one group have a common label (say α), and N2

particles have a common label as well (say β). Once we remove the
partition, these labels are no longer in effect, and all the (N1 + N2)
particles become indistinguishable.

An important difference between the concepts of identity and ID
is the following.

Classically, we can conceive of a process that changes some
attribute of the particles (say billiard balls) continuously so that
they are transformed from being different to being identical. For
instance, we can change the color, the tag or the form of particles
(Figure J.6) continuously to make them identical, but not ID. One
cannot change continuously from identical to indistinguishable, i.e.,
particles can either be labeled or not. The indistinguishability of
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Figure J.6. Continuous change of colors, labels or shapes.

the particles is not a property that we can see or measure. If parti-
cles can exchange spontaneously in such a way that we cannot tell
which particle is which, then the two identical particles are also ID.
Particles localized on lattice points, or particles in different boxes
cannot exchange spontaneously and therefore are considered to be
label-able — hence, distinguishable. Thus, particles are either ID
or not ID; there is no continuous transition from distinguishable
to ID. As Lesk (1980) wrote: “Indistinguishability is necessarily an
all-or-nothing phenomenon.” Not recognizing this discontinuity of
the property of ID leads to the so-called Gibbs paradox. This is
discussed in Appendix O.

It should be noted that the concept of impenetrable walls or
impenetrable particles (in one dimension) is an idealization. In prac-
tice, whenever the barrier energy is so high that the probability of
penetration is negligibly small, we say that the wall is impenetrable.
Gibbs was the first to introduce the correction of N ! to the classical
partition function. When writing the partition function for the com-
bined systems as in Figure J.5 or for mixtures, Gibbs introduced
N1! for one box and N2! for the second box. He reasoned that a con-
figuration in which two particles are exchanged are considered as
the same configuration. Hence, one must divide by N1! (or N2!) for
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over-counting configurations in one box, or in the second box — but
not (N1 + N2)! since, by definition, we do not count configurations
for which particles in one box are exchanged with particles in the
second box. Gibbs’ correction for over-counting of configurations
was introduced before quantum mechanics. It was only later recog-
nized that this property of the particles was intimately connected
with the symmetry (and anti-symmetry) of the wave function of the
system. This in turn led to the recognition of the existence of two
types of indistinguishable particles, the Bosons and the Fermions.

Gibbs correctly calculated the so-called “entropy of mixing” in
the process of removing the partition between the two compart-
ments in Figure J.5, once for particles of “different kinds,” and
once for particles of the “same kind.” However, Gibbs was appar-
ently thinking of the particles as being in principle label-able, not
recognizing the full implication of the indistinguishability of par-
ticles of the same kind. We further discuss this aspect of Gibbs’
thoughts in Section 6.6 and Appendix O. In Section 6.8, we showed
that there exists a spontaneous process (referred to as deassimi-
lation) in which a group of particles can acquire a collective label
spontaneously. This spontaneous process involves an increase in the
MI of the system.

Appendix K The equivalence of the Boltzmann’s and
Jaynes’ procedures to obtain the fundamen-
tal distribution of the canonical ensemble

In Chapter 5, we discussed the application of the maximum MI
principle to derive the canonical distribution. Here, we show the
equivalence between the traditional method and the maximum MI
method.

The traditional method of obtaining the Boltzmann distribution
is well known.13 We construct an ensemble of M isolated systems
(M → ∞), each of which has the same thermodynamical character-
ization E,V,N . We next bring the system to thermal contact. The
volume and the number of particles remain fixed, but the energy

13See, for example, Hill (1960), Rushbrook (1965).
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of each system can now fluctuate. We assume, for simplicity that
each system can be in any one of the finite number of energy levels
Ei(i = 1, 2, . . . , r). Let Mi be the number of systems being in a state
having energy Ei. Clearly, the two conditions must be satisfied:

r∑
i=1

Mi = M, (K.1)

r∑
i=1

MiEi = ET = MĒ, (K.2)

where Ē is the average energy of a system in the ensemble.
The number of quantum mechanical states of the whole ensemble

with a specific distribution M = (M1,M2, . . . ,Mr) is given by

W (M) =
M !∏r

i=1 Mi!
, (K.3)

and the total number of states of the ensemble as a whole is

WT =
∑
M

W (M), (K.4)

where the sum is over all possible M subject to the constraints (K.1)
and (K.2).

The Boltzmann procedure is to find the maximum of (K.3) sub-
ject to the two constraints (K.1) and (K.2). The result is

x∗
i =

M∗
i

M
(i = 1, 2, . . . , r), (K.5)

where x∗
i is the most probable fraction of systems in the ensem-

ble being in a state of energy Ei. Using the Lagrange method of
undetermined multipliers, one obtains the well-known Boltzmann
distribution

x∗
i =

M∗
i

M
=

exp[−βEi]∑r
j=1 exp[−βEj ]

. (K.6)

Jaynes’ procedure can be obtained as follows. We write the loga-
rithm of W (M) in (K.3) and assuming the Stirling approximation
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for all Mi!, we get, in the limit M → ∞

ln W (M) ∼= M ln M −
r∑

i=1

Mi ln Mi

= M

[
−

r∑
i=1

pi ln pi

]

= MH (p1, p2, . . . , pr), (K.7)

where pi = Mi/M .
Thus, instead of maximizing W (M) subject to the conditions

(K.1) and (K.2), we can maximize H(p1, . . . , pr) subject to the con-
ditions

∑
pi = 1 and

∑
piEi = Ē = ET /M . The two methods are

equivalent when M → ∞.
Clearly, the interpretation of H as a measure of missing infor-

mation does not make the Jaynes’ approach more subjective than
the Boltzmann procedure, where the word “information” is not
mentioned. Both of these approaches deal with physically objec-
tive quantities.

Appendix L An alternative derivation of the Sackur–
Tetrode equation

Consider a point particle confined to a rectangular box of edges
Lx, Ly, Lz. We assume that the walls of the box are such that they
provide an infinitely high potential barrier so that the probability
of crossing the walls is null. For such a system, the Schrödinger
equation is

−h2

8π2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ = Eψ, (L.1)

where h is the Planck constant. With the boundary conditions
imposed by the walls, the solutions of the Schrödinger equation
have the form

ψ(x, y, z) = sin
(

πx

Lx
i

)
sin
(

πy

Ly
j

)
sin
(

πz

Lz
k

)
, (L.2)

and the corresponding energies are

E(i, j, k) =
h2

8m

(
i2

L2
x

+
j2

L2
y

+
k2

L2
z

)
. (L.3)
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The solutions (L.2) are referred to as the eigenfunctions, and the
energies (L.3) as the eigenvalues of the Schrödinger equation for
this system, and i, j, k are integers.

For simplicity, we assume that the box is a cube of length L, in
which case (L.3) reduces to

E(i, j, k) =
h2

8mL2
(i2 + j2 + k2). (L.4)

Note that the same energy is obtained for any triplet of integers,
having the same sum (i2 + j2 + k2).

Next, we calculate the number of stationary states having energy
between zero to ε. We also assume that i, j and k are large and can
be treated as continuous variables. Thus, the number of stationary
states having energy between zero and ε is equal to the volume of
the sphere having radius r, where r is given by

r =
√

i2 + j2 + k2 =

√
8mL2ε

h2
. (L.5)

The volume of the sphere of radius r is 4πr3

3 , but since we are
interested only in triplets of positive numbers (i2 + j2 + k2), we
need only 1/8 of this sphere which is πr3/6. The total number of
states within this “volume” that has energy between zero to ε is

W (ε) =
πr3

6
=

π

6

(
8mL2ε

h2

)3/2

=
π

6

(
8mε

h2

)3/2

V. (L.6)

The number of states with energy between ε and ε + dε is thus

W (ε + dε) − W (ε) ≈ ∂W

∂ε
dε =

π

6

(
8m
h2

)3/2

V
3
2
ε1/2dε = �(ε)dε.

(L.7)
The partition function for one molecule is thus

q =
∫ ∞

0
�(ε) exp(−βε)dε. (L.8)

Changing variables x = βε, the integral in (L.8) becomes a definite
integral and of the form∫ ∞

0

√
x exp(−x)dx =

√
π

4
. (L.9)
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Hence, from (L.7)–(L.9), we obtain

q =
V

Λ3
, (L.10)

where

Λ3 =
(

h√
2πmT

)3

. (L.11)

The partition function for a system of N such particles is

Q(T, V,N) =
V N

N !Λ3N
. (L.12)

Note that this form is valid for the case of the Boltzmann
statistics, i.e., when the number of states is very large compared
with N , i.e., when (

2πmT

h2

)3/2

V � N, (L.13)

or equivalently, when
N

V
Λ3 � 1. (L.14)

The quantity Λ3 is referred to as either the momentum partition
function, or as the thermal de Broglie wavelength. Indeed, for a
particle with the velocity υ ≈√T/m , using the relation Λ = h

p =
h

mv , we get

Λ ≈ h√
2πmT

. (L.15)

The condition ρΛ3 � 1 essentially states that the thermal wave-
length should be much smaller than the average distance between
the particles.

From the canonical partition function (L.12), we can get all the
thermodynamic quantities for an ideal gas (see Section 5.3). In par-
ticular, we have for the MI of an ideal gas

S =
(−∂A

∂T

)
V,N

=
(

∂(T ln Q)
∂T

)
V,N

= N ln
[

V

NΛ3

]
+

5
2
N, (L.16)

which is the Sackur–Tetrode equation. (See Sections 4.3 and 5.4.)
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Appendix M Labeling and un-labeling of particles

In Section 6.3, we discussed the pure assimilation process. It is
pure in the sense that only the number of indistinguishable par-
ticles is changed. The volume accessible to each particle does not
change, nor does the temperature. Hence, there is no change in the
MI associated with either the locational distribution or the velocity
distribution of the particles. As was pointed out in Sections 6.6 and
6.7, there is a conceptual difficulty in interpreting the kind of infor-
mational gain in the assimilation process (or the loss of information
in the deassimilation process). This difficulty is probably the reason
for Gibbs’ erroneous conclusion that the reversing of process V of
Section 6.6 is “entirely impossible.”

The interpretation offered here applies to all the three cases dis-
cussed in Section 6.3, but for simplicity, we assume that M � N ;
hence the change in the MI is always

∆Hqm = − ln N < 0. (M.1)

To interpret this result, suppose we could do the same process
V, as in Section 6.3, in a purely classical world. By classical world,
I do not mean the MB statistics but a world where the particles
are distinguishable, i.e., particles can be labeled. Hence, the mutual
information among the particles is zero (see Section 4.3).

Now we perform the same process in the classical (cl) world and
in a quantum mechanical (qm) world, as shown in Figure M.1.

In the quantum world, the change in the MI, ∆Hqm is as in (M.1).
However, in the classical world, the same process does not involve
any change in the MI. Hence, we have

∆Hcl = 0. (M.2)

The transfer of each box from the quantum world to the classi-
cal world involves the change of MI due to labeling the particles
(i.e., changing from indistinguishable to distinguishable particles).
These are

∆Ha = 0, (M.3)

i.e., the MI of a system with one particle is unchanged by labeling it.
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Figure M.1. The cycilc process of assimilation as described in Appendix M.

On the other hand,

∆Hb = ln(N − 1)! (M.4)

and

∆Hc = ln N !, (M.5)

i.e., labeling involves increase in the MI (or un-labeling involves
decrease in the MI). Thus, instead of carrying out the process in the
quantum world, we first transform the two boxes into the classical
world, perform the process there and then transfer the resulting
system back to the quantum world. The balance of information is

∆Hqm = ∆Ha + ∆Hb − ∆Hc + ∆Hcl

= − lnN !/(N − 1)! = − ln N. (M.6)

Thus, the reduction of the MI in the assimilation process is a
result of the difference in the MI associated with un-labeling N

and (N − 1) particles, respectively.

Appendix N Replacing a sum by its maximal term

In statistical thermodynamics, we frequently use the approximation
of replacing a sum of a huge number of terms by only the maximal
term. Intuitively, this sounds a very unreasonable approximation,
in particular when the sum consists of many positive terms.
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Figure N.1. Removing and reinserting a partition between two compartments.

We demonstrate the general principle with a simple example.
Suppose we have two compartments R and L of equal volumes and
containing N particles each (Figure N.1a).

We start with the identity which is a particular case of the
Binomial theorem:

(1 + 1)N =
N∑

n=0

(
N

n

)
=

N∑
n=0

N !
n!(N − n)!

. (N.1)

Neither this identity, nor the approximation which we shall
describe soon, has anything to do with any physical system. How-
ever, it is helpful to think of it in terms of configurations of the
particles in the two boxes. We define a specific configuration of the
system as a list of the specific particles that are in compartment
R and in compartment L. We assume that the probability of any
specific particle to be found in R is 1/2. Likewise, the probability
to be found in L is 1/2.

We also assume that the events “particle i is in R” are inde-
pendent events (for i = 1, 2, . . . , N). Therefore, the probability of
finding any specific set of particles, say 1, 2, 3, . . . , k in R, and the
remaining particles, k + 1, k + 2, . . . , N in L is

Pr(specific) =
(

1
2

)k (1
2

)N−k

=
(

1
2

)N

. (N.2)

Thus, all of the 2N specific configurations have equal probabil-
ity 2−N .

Next, we define the generic configurations, as the event that com-
partment R contains n particles, and the compartment L contains
N −n particles. Clearly, since all the specific configurations are dis-
joint events, the probability of the generic event “n particles in R”
is the sum of the probabilities of all the specific events for which
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there are n particles in R and N − n in L, regardless of which
specific particles are in R and in L. This probability of this event is

PN (n) =
1

2N

(
N

n

)
. (N.3)

This probability follows from the classical definition of probability
(Section 2.3). There are

(N
n

)
specific events that conform with the

generic event “n particle in R and N−n in L,” and the total number
of specific events is 2N .

Recall that the Stirling approximation is quite good for n of the
order of 100, and it is excellent for numbers of the order of Avogadro
numbers 1023 (Appendix E). We use the approximation in the form

n! ≈
(n

e

)n √
2πn. (N.4)

Since all the terms in (N.1) are positive, we have the inequality

2N =
N∑

n=0

N !
n!(N − h)!

≥ N !
[(N/2)!]2

. (N.5)

Recall that at n = N/2, the probability (N.3) has a maximum.
Thus, on the right-hand side of (N.5), we have the maximal terms
of the sum on the left-hand side. We now apply the Stirling approx-
imation (N.4) to the right-hand side of (N.5) to obtain

2N ≥ N !
[(N/2)!]2

≈ 2N

√
2

πN
, (N.6)

or equivalently

ln
N∑

n=0

(
N

n

)
− ln

(
N

N/2

)
≥ ln

√
2

πN
. (N.7)

In thermodynamics we are dealing with the logarithm of the sums
(N.1) in which case we have

ln
N∑

n=0

(
N

n

)
= N ln 2

> ln
(

N

N/2

)
≈ N ln 2 + ln

√
2

πN
. (N.8)
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Therefore, when dealing with the logarithm of the sum in (N.1),
we see that as N increases, the difference between the logarithm of
the sum and the logarithm of the maximal term is of the order of
ln N , whereas the sum itself is of the order of N . As an example,
for N = 1023, we have

ln
N∑

n=0

(
N

n

)
∼= 1023 ln 2 (N.9)

ln
(

N

N/2

)
∼= 1023 ln 2 + ln

√
2

π1023
. (N.10)

We conclude that for a thermodynamic system, when N is very
large, we can use the Stirling approximation in the form

n! ≈
(n

e

)n
. (N.11)

Applying (N.11) to (N.9) and (N.10), we get an approximate
equality, i.e.,

ln
N∑

n=0

(
N

n

)
≈ ln

(
N

N/2

)
. (N.12)

This “equality” should be understood in the sense that the
difference of the two quantities in (N.12) is negligible compared
with the value of each quantity.

One should be careful not to apply the approximation (N.11) to
the probability in (N.3) which will lead to the absurd result. Thus,
for n = N/2 in (N.3), we get

PN (n = N/2) ≈ 2N

2N
= 1. (N.13)

Instead, one must use the approximation (N.4) to obtain

PN (n = N/2) =
2N

2N

√
2

πN
. (N.14)

Thus, the probability of finding n particles in R and (N −n) par-
ticles in L has a maximum at n = N/2. The value of the maximum
probability decrease with N as N−1/2.

We conclude this appendix with a comment on the experimen-
tal significance of the approximation (N.12). Suppose we start with
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the two compartments having initially exactly N/2 in each com-
partment. We remove the partition and let the particles “mix”
(Figure N.1b). In the new system, all of the 2N specific configu-
rations have the same probability 2−N . We next place the partition
in exactly the original position. The new system will now differ
from the initial system for two reasons (see Figure N.1c):

(i) Different specific particles will occupy R and L.
(ii) The number of particles in R can be any number between

zero to N.

In spite of this huge number of possibilities for the final state,
we can claim that thermodynamically speaking, the final state will
be “equal” to the initial state. The reasons are: first, the particles
are indistinguishable; therefore, there are only (N + 1) possible
generic configurations, i.e., we cannot distinguish between all the
2N specific configurations. Second, the number of particles in R will
most likely be different from N/2, but the difference will be very
small compared with N/2 itself. Therefore, we can conclude that the
final state (after placing the partition) will be, thermodynamically
speaking, identical to the initial state.

Appendix O The Gibbs paradox (GP)

There are several versions of the so-called Gibbs paradox (GP).
None is really a paradox, and none was viewed as a paradox by
Gibbs himself. We shall discuss here two versions of the GP and
show that one arises from treating the particle classically, not rec-
ognizing the indistinguishability (ID) of the particles, the other
involves the fallacious idea that the ID of the particles is a property
that can be changed continuously.

The first “paradox” arises when we use the (purely) classical par-
tition function. As we saw in Section 5.3, the classical PF gives the
correct equation of state, the correct heat capacity and some other
properties of an ideal gas. It fails to give the correct MI or the
chemical potential. More specifically, the MI (or the entropy) of a
system, derived from the classical partition function, does not have
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the additive property, or more generally, SClass is not an extensive
function of the variable E,V,N .

As we have also seen in Section 5.3, by correcting the classical
PF for the ID of the particles, the thermodynamic MI becomes an
extensive function.

Clearly, the fact that a wrong result is obtained from the classical
PF does not consist of a paradox. In the history of science, there
are abundant examples of incorrect results obtained from an inap-
propriate theory. For instance, lattice models of the liquid states
yielded some correct results for mixtures, but failed to predict the
entropy of liquids. This discrepancy was never considered to be a
paradox; it was “fixed” in an ad hoc manner by adding the so-called
communal entropy.14 However, this remedy was abandoned later
when it was recognized that a lattice model is inherently inappro-
priate to describe the liquid state.

The second version of the “paradox” is associated with the
so-called “entropy of mixing.” In Chapter 6, we discussed two pro-
cesses that were analyzed by Gibbs. As we saw in Sections 6.6 and
6.7, the MI (or the entropy) change in processes IV and V of Fig-
ures 6.6 and 6.7 are

∆SIV = 2N ln 2, (O.1)

∆SV = 0. (O.2)

The paradox in this case is often stated as follows.15 Suppose we
could have changed the “extent of ID” of the particle continuously,
say linearly from the distinguishable particles to ID. Similar to
the processes depicted in Figure J.6. If we do that, we should have
expected that the value of ∆S should also change continuously from
∆SIV , when the two components A and B are distinguishable, to
∆SV when they become ID. The fact is that one never observes
any intermediary value between ∆SIV and ∆SV . The fact that

14See Ben-Naim (2006).
15Note that if one uses the purely classical PF for ideal gases, one does not get
the results (O.1) and (O.2) which are consistent with experiments. We assume
here that (O.1) and (O.2) were derived from the classical limit of the quantum
mechanical PF (see also Section 5.3), i.e., after introducing the correction due
to the ID of the particles.
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∆S changes discontinuously as one changes the ID continuously is
viewed as a paradox. However, there is no paradox here, and there
was no allusion to any paradox in Gibbs’ writings. The fact that
the density of water changes discontinuously when the temperature
changes continuously, say between 90◦C to 110◦C, is not viewed as
a paradox. Furthermore, the presumed continuous change in the
“extent of ID” of the particles is now recognized as, in principle,
invalid. Particles are either distinguishable or ID — there are no
intermediate values of indistinguishability.

In process IV, the two components A and B are different, whereas
in process V, the particles are all identical. In the initial state, the
particles in each compartment are ID among themselves, but the
particles in one compartment are distinguishable from the particles
that are in the second compartment.

Upon removal of the partition in process IV, the particles A and B

remain distinguishable. On the other hand, removal of the partition
in process V makes all the particles in the system indistinguishable.

As we noted in Section 6.4, Gibbs did notice the remarkable fact
that the “entropy of mixing” is independent of the degree of similar-
ity between the particles. This fact seems to be more puzzling than
the fact that ∆S collapses discontinuously to zero when the parti-
cles become identical. However, the independence of the entropy of
mixing on the kind of particles is only puzzling when we view the
mixing itself as the cause of ∆S > 0. Once we recognize that it is
the expansion (i.e., the increase of the accessible volume for each
particle), not the mixing, that is responsible for the positive change
in the MI, the puzzlement evaporates.

The real paradox that arises from Gibbs’ writings and that
seemed to elude the attention of scientists is the following. In ana-
lyzing the two processes IV and V, Gibbs correctly obtained the
results (O.1) and (O.2). Today, we would say that process IV, for
which ∆S > 0, is irreversible — in the sense that it cannot be
reversed spontaneously. On the other hand, process V in which
∆S = 0 is said to be reversible.

However, Gibbs concluded (see Section 6.7) that process IV can
be reversed — in the sense that the system can be brought to its
initial state. This reversal of process IV would require investing
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energy. However, for process V, Gibbs concluded that its reversal is
“entirely impossible.” Here is a paradox: How can a process, which
is deemed to be reversible (process V), be at the same time “entirely
impossible” to reverse? As I have discussed in Section 6.7, this
apparent paradox is only an illusion. It is an illusion arising from
our mental imaging of process V, in which particles are assigned
mental coordinates, and mental trajectories.

Appendix P The solution to the three prisoner’s problem

Formulation of the mathematical problem

We present here the solution to the three prisoners’ problem from
Section 2.6.2. Define the following three events (Figure P.1):

Af = {Prisoner A is going to be freed}, P (Af) = 1/3,

Bf = {Prisoner B is going to be freed}, P (Bf) = 1/3,

Cf = {Prisoner C is going to be freed}, P (Cf) = 1/3, (P.1)

and the following three events:

Ad = {Prisoner A is going to die}, P (Ad) = 2/3,

Bd = {Prisoner B is going to die}, P (Bd) = 2/3,

Cd = {Prisoner C is going to die}, P (Cd) = 2/3 (P.2)

We also denote by W (B) the following event:

W (B)

= {The warden points at B and says that he will be executed}.
(P.3)

Af Bf Cf

Figure P.1. The Venn diagram for the three events Af ,Bf , and Cf .
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First “solution”

A asks the question. He knows that B will die. Therefore, the prob-
ability that A will be freed, given that B is going to die is

P (Af/Bd) =
P (Af · Bd)

P (Bd)

=
P (Bd/Af)P (Af)

P (Bd)
=

1 × 1
3

2
3

=
1
2
. (P.4)

Similarly,

P (Cf/Bd) =
P (Cf · Bd)

P (Bd)
=

P (Bd/Cf)P (Cf)
P (Bd)

=
1 × 1/3

2
3

=
1
2
. (P.5)

According to this “solution”, the conditional probabilities of
either events Af or Cf are the same. This solution is intuitively
appealing; there were equal probabilities for Af and Cf before A

asked the question and the probabilities remain equal after A asked
the question.

This solution, though intuitively appealing, is wrong. The reason
is that we have used the event Bd as the given condition, instead
we must use the event W (B). If given Bd is the condition, then the
probabilities in (P.4) and (P.5) are correct. However, the “infor-
mation” given to A is not Bd but W (B), and W (B) is an event
contained in Bd . In other words, if one knows that W (B) occurred,
then it follows that Bd is true. However, if Bd is true, it does not
necessarily follow that W (B) occurred. In terms of Venn diagrams
(Figure P.2), we can see that the size (or the probability) of the
event W (B) (now rewritten as W (A → B), see below) is smaller
than that of Bd . Note that Bd is the complementary event to Bf .
We had P (Bd) = 2

3 , but using the theorem of total probability, we
can write the event W (B) as:

W (B) = W (B) · Af + W (B) · Bf + W (B) · Cf (P.6)
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Af Bf Cf

W(A->B)= W(A->B)    Af + W(A->B)   Cf

Af Bf Cf

Af Bf Cf

W(A->B)    Af W(C->B)   Cf

•

W(C->B)= W(C->B)    Af + W(C->B)   Cf• •

• •

(a)

(b)

(c)

•

+

Figure P.2. Various Venn diagrams for the solution of the three prisoners
problem.

and the probability of W (B) is:

P (W (B)) = P (W (B)/Af )P (Af ) + P (W (B)/Bf )P (Bf )

+ P (W (B)/Cf )P (Cf )

=
1
2
× 1

3
+ 0 × 1

3
+ 1 × 1

3
=

1
2
. (P.7)

Note that in (P.7), we capitalize on the fact that the warden is
indifferent or unbiased towards A or C ; if Af has occurred, i.e., A

is going to be freed, then the warden can point at either B or C.
The choice he makes is with probability 1

2 . On the other hand, if Cf
occurred, then the warden does not have a choice but to point at
B (as a result of A’s question). Recognizing that the event W (B)
is smaller than Bd , in the sense that W (B) ⊂ Bd), it follows that
W (B) contains more information than Bd. Therefore, we must use
W (B) in the solution of the problem.
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The second solution

Instead of (P.4) and (P.5), we write

P (Af /W (B)) =
P (W (B) · Af )

P (W (B))
=

P (W (B)/Af )P (Af )
P (W (B))

=
1
2 × 1

3
1
2 × 1

3 + 0 × 1
3 + 1 × 1

3

=
1
3
, (P.8)

P (Cf /W (B)) =
P (W (B) · Cf )

P (W (B))
=

1 × 1
3

1
2 × 1

3 + 0 × 1
3 + 1 × 1

3

=
2
3
.

(P.9)

Thus, if we use the information contained in W (B), we get a
different result. Note that the amount of information contained in
W (B) is larger than in Bd , we can express this as

P (W (B)/Bd) =
2
3

< 1,

P (Bd/W (B)) = 1.

Note that neither the “information” nor the “amount of infor-
mation” that we refer to here is the kind of information used in
information theory (see also the last example at the end of this
appendix).

Thus, in solving the problem intuitively, we tend to use the given
information Bd . This is less than the available information to A

which is W (B). Therefore, the correct solution is (P.8) and (P.9).
In other words, by switching names, A can double his chances of
survival.

A more general problem but easier to solve

The solution to the problem of the three prisoners is not easily
accepted: it runs against our intuition which tells us that if the
probabilities of the two events Af and Cf were initially equal, the
equality of the probabilities must be maintained.

A simple generalization of the problem should convince the skep-
tic that the information given by the warden indeed changes the
relative probabilities.
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Consider the case of 100 prisoners named by the numbers “1”,
“2”,. . . “100”. It is known that only one prisoner is going to get
freed with probability 1/100. Suppose that prisoner “1” asked
the warden, “who out of the remaining 99 prisoners will be exe-
cuted”? The warden points to the following: “2”, “3”,. . ., (exclude
“67”) . . .,“100”, i.e. the warden tells “1” that all the 98 prisoners,
except the “67”, will be executed.

Clearly, by switching names with “67”, the prisoner “1” increases
his chances of survival from 1/100 to 99/100.

Note that initially, prisoner “1” knows that he has a 1/100 chance
of surviving. He also knows that one of the remaining 99 prisoners
has a 99/100 chances of survival. By acquiring the information on
the 98 prisoners who will be executed, prisoner “1” still has a 1/100
chance of survival, but the chances of survival of one of the remain-
ing 99 prisoners is now “concentrated” on one prisoner named “67.”
The latter has now a 99/100 chance of survival, therefore “1” should
pay any price to switch names with “67.” An illustration for ten
prisoners is shown in Figure P.3b.

Af Bf Cf

2/31/3

Af Bd Cf

2/31/3

1    2    3   4    5    6    7    8   9  10 1    2    3   4    5    6    7    8   9  10

1/10 1/109/10 9/10

a

b

Before                                   After

Figure P.3. The probabilities before and after the warden answers the ques-
tion.
(a) The warden pointed at B to be executed. The probability 2/3 is now “con-
centrated” at C.
(b) The warden pointed at: 2,3,4,5,7,8,9,10 to be executed. The probability 9/10
is now “concentrated” at “6”.
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An apparent paradox

A student who followed the arguments of the solution to this prob-
lem asked: suppose that C asks the same question and the warden
answers with the same answer, i.e., the warden points at B to be
executed. Therefore, given W (B), we should conclude, by the same
arguments as above, that it is in C’s advantage to switch names
with A. But we have just concluded that it is in A’s advantage to
switch names with C.

It sounds as if given the same information W (B), we reach two
conflicting conclusions. If A asks the warden, then P (Af /W (B)) =
1/3 and P (Cf /W (B)) = 2/3. But if C asks the warden then
P (Cf /W (B)) = 1/3 and P (Af /W (B)) = 2/3. How come we arrive
at different conclusions based on the same information given to
either A or to C?

The apparent paradox is a result of our reference to W (B) as
the same information, when given to either A or to C. In order
to remove the apparent paradox, we should redefine W (B) more
precisely: instead of (P.3), we should define

W (A → B) = {The warden points at B to be doomed

as a result of A’s question}. (P.10)

Similarly,

W (C → B) = {The warden points at B to be doomed

as a result of C’s question}. (P.11)

Now it is clear that the two events (P.10) and (P.11) are not the
same. The reason is that the warden knows who is to be freed;
therefore, when answering either A or C, he might or might not
point to the same prisoner. In terms of Venn diagrams, we can
write the events (P.10) and (P.11) as (see Figure P.2)

W (A → B) = W (A → B) · Af + W (A → B) · Bf

+ W (A → B) · Cf ,

P (W (A → B)) =
1
2
× 1

3
+ 0 × 1

3
+ 1 × 1

3
=

1
2
, (P.12)
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W (C → B) = W (C → B) · Af + W (C → B) · Bf

+ W (C → B) · Cf ,

P (W (C → B)) = 1 × 1
3

+ 0 × 1
3

+
1
2
× 1

3
=

1
2

(P.13)

Note that the events W (A → B) and W (C → B) are different
(see Figure P.2), but their probabilities (size of the area in the Venn
diagram) are the same.

Since the warden knows who is going to be freed, the information
given to A is different from the information given to C. Therefore,
the conditional probabilities will be different depending on who
receives the information. It is true though that the warden answers
to both A and C by using the same words, i.e., “B is doomed to
die,” but the significance of this information is different if given to
A as a result of A’s question or as a result of B’s question. The
solution we reached above is that if W (A → B) is true, then it is
in A’s advantage to exchange names with C. If, on the other hand,
C receives the same information, i.e., if C knows W (A → B), then
it is still in A’s advantage to exchange names. It is only when C

asks the warden and gets the different information W (C → B),
that it is in C’s advantage to exchange names with A. Thus, in this
problem, we have four different conditional probabilities:

(i) A asks and receives W (A → B):

P (Af /W (A → B))=
P (W (A → B)/Af )P (Af )

P (W (A → B))
=

1
2 × 1

3
1
2

=
1
3
,

(P.14)
and

(ii) A asks, and C receives the answer W (A → B):

P (Cf /W (A → B)) =
P (W (A → B)/Cf )P (Cf )

P (W (A → B))
=

2
3
. (P.15)

(iii) C asks and receives W (C → B):

P (Cf /W (C → B))=
P (W (C → B)/Cf )P (Cf )

P (W (C → B))
=

1
2 × 1

3
1
2

=
1
3

(P.16)
and
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(iv) C asks, and A receives the answer W (C → B):

P (Af /W (C → B))=
P (W (C → B)/Af )P (Af )

P (W (C → B))
=

1 × 1
3

1
2

=
2
3
.

(P.17)

Thus, we see that if either A or C receives the same information,
then the conclusion is the same and there is no paradox.16

To complete the list of possible cases, we should add two more
cases:

(v) No one asks any question. In this case, the probabilities are
equal as in (P.1).

(vi) If both A and C ask the warden the same question and the
warden points at B. Both A and C know the two answers. In
this case, the known information is W (A → B)

⋂
(C → B)

and the probabilities are:

P (Af /W (A → B) · W (C → B))

=
P (W (A → B) · W (C → B)/Af )P (Af)

P (W (A → B) · W (C → B))

=
1
2 × 1

3
1
3

=
1
2
, (P.18)

and similarly for

P (Cf/W (A → B) · W (C → B)) = 1/2.

Note that:

W (A → B) · W (C → B) = W (A → B) · W (C → B) · Af

+ W (A → B) · W (C → B) · Cf .

(P.19)

Thus, the size (probability) of the intersection event, is 1/3
(see Figure P.2c). In this case, both A and C receive the same
information. Hence, no one will have an advantage by switching
their names.

16Sometimes, this apparent paradox is used to reject the solution of this prob-
lem. How could it be that given the same information (meaning W (A → B)
leads to different conclusions? The answer is that the same information does
lead to the same conclusion.
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Exercise: In the solution given in (P.8) and (P.9), we have assumed
that the warden is completely indifferent in the sense that if he
knows Af , then he chooses to point at either B or C with equal
probabilities. Equivalently, he tosses a fair coin to make his decision.
Suppose that A asks the same question and he knows that the coin
the warden uses (if indeed he uses one) is unbalanced. Therefore, if
the warden needs to make a decision between B and C (i.e., when
he knows Af), he tosses the coin with probabilities

P (W (A → B)/Af) = x,

P (W (A → C)/Af) = 1 − x. (P.20)

How does this new information affects A’s decision to switch or not
to switch?

As we have noted earlier, all the “information” used in this prob-
lem is not the kind of information used in information theory.
However, one can define Shannon’s information measure for this
problem as follows

Initially, we have three equally likely events; hence,

H = −
3∑

i=1

pi log2 pi = log2 3 ∼= 1.585. (P.21)

When A asks the warden and receives his answer, [W (A → B)],
there are only two possibilities; the corresponding MI is

H = −1
3

log2
1
3
− 2

3
log2

2
3
≡ 0.918. (P.22)

In the more general problem, with 100 prisoners, we start with

H = −
100∑
i=1

pi log2 pi = log2 100 ∼= 6.644 (P.23)

and after prisoner “1” receives information from the warden, H

reduces to

H = − 1
100

log2
1

100
− 99

100
log2

99
100

∼= 0.080. (P.24)

Note that the reduction in the MI is much larger in the more
general problem, and the reduction in MI is larger, the larger the
number of prisoners.
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Exercise: Solve the problem of 1,000 prisoners and calculate the
MI before and after prisoner “1” receives the information from the
warden.

Final suggestion for a teasing thought

Suppose that there are 10 prisoners as in the case of Figure P.3b.
Again, prisoner “1” asks the warden the same question. But, the
warden points not at all 8 prisoners that are doomed but only at k

prisoners to be doomed (k = 1, 2, . . . , 8). The question is again the
probability of “1” surviving relative to the probability of survival
of one the remaining 9−k prisoners, about which no information is
available. Clearly, the larger k, the more “information” is given to
“1”. Also, the reduction of the missing “information” in the problem
is larger, the larger k is. Note, however, that the term “information”
is used in different senses in the previous sentence.
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