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Preface

The aim of a molecular theory of solutions is to explain and to predict the
behavior of solutions, based on the input information of the molecular
properties of the individual molecules constituting the solution. Since Prigo-
gine’s book (published in 1957) with the same title, aiming towards that target,
there has been considerable success in achieving that goal for mixtures of gases
and solids, but not much progress has been made in the case of liquid mixtures.
This is unfortunate since liquid mixtures are everywhere. In almost all indus-
tries and all biological sciences, we encounter liquid mixtures. There exists an
urgent need to understand these systems and to be able to predict their
behavior from the molecular point of view.

The main difficulty in developing a molecular theory of liquid mixtures, as
compared to gas or solid mixtures, is the same as the difficulty which exists in
the theory of pure liquids, compared with theories of pure gases and solids.
Curiously enough, though various lattice theories of the liquid state have failed
to provide a fair description of the liquid state, they did succeed in char-
acterizing liquid mixtures. The reason is that in studying mixtures, we are
interested in the excess or the mixing properties — whence the problematic
characteristics of the liquid state of the pure components partially cancel out. In
other words, the characteristics of the mixing functions, i.e., the difference
between the thermodynamics of the mixture, and the pure components are
nearly the same for solids and liquid mixtures. Much of what has been done on
the lattice theories of mixture was pioneered by Guggenheim (1932, 1952). This
work was well documented by both Guggenheim (1952) and by Prigogine
(1957), as well as by many others.

Another difficulty in developing a molecular theory of liquid mixtures is the
relatively poor knowledge of the intermolecular interactions between molecules
of different species. While the intermolecular forces between simple spherical
particles are well-understood, the intermolecular forces between molecules of
different kinds are usually constructed by the so-called combination rules, the
most well-known being the Lorentz and the Berthelot rules.

In view of the aforementioned urgency, it was necessary to settle on an
intermediate level of a theory'. Instead of the classical aim of a molecular theory

! By intermediate level of theory, I do not mean empirical theories which are used mainly by
chemical engineers.
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of solutions, which we can write symbolically as

I: Molecular Information — Thermodynamic Information

An indirect route has been developed mainly by Kirkwood, which involves
molecular distribution functions (MDF) as an intermediate step. The mole-
cular distribution function approach to liquids and liquid mixtures, founded in
the early 1930s, gradually replaced the various lattice theories of liquids. Today,
lattice theories have almost disappeared from the scene of the study of liquids
and liquid mixtures’. This new route can be symbolically written as

II: Molecular Information + MDF — Thermodynamic Information

Clearly, route II does not remove the difficulty. Calculation of the molecular
distribution functions from molecular properties is not less demanding than
calculation of the thermodynamic quantities themselves.

Nevertheless, assuming that the molecular distribution functions are given,
then we have a well-established theory that provides thermodynamic infor-
mation from a combination of molecular information and MDFs. The latter are
presumed to be derived either from experiments, from simulations, or from
some approximate theories. The main protagonists in this route are the pair
correlation functions; once these are known, a host of thermodynamic quan-
tities can be calculated. Thus, the less ambitious goal of a molecular theory of
solutions has been for a long time route II, rather route 1.

Between the times of Prigogine’s book up to the present, several books have
been published, most notably Rowlinson’s, which have summarized both the
experimental and the theoretical developments.

During the 1950s and the 1960s, two important theories of the liquid state
were developed, initially for simple liquids and later applied to mixtures. These
are the scaled-particle theory, and integral equation methods for the pair
correlation function. These theories were described in many reviews and books.
In this book, we shall only briefly discuss these theories in a few appendices.
Except for these two theoretical approaches there has been no new molecular
theory that was specifically designed and developed for mixtures and solutions.
This leads to the natural question “why a need for a new book with the same
title as Prigogine’s?”

To understand the reason for writing a new book with the same title, I will
first modify route II. The modification is admittedly, semantic. Nevertheless,
it provides a better view of the arguments I am planning to present below.

T Perhaps liquid water is an exception. The reason is that water, in the liquid state, retains much
of the structure of the ice. Therefore, many theories of water and aqueous solution have used some
kind of lattice models to describe the properties of these liquids.
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We first rewrite route II as

III:  Microscopic Properties — Thermodynamic Properties

Routes IT and III are identical in the sense that they use the same theoretical
tools to achieve our goals. There is however one important conceptual dif-
ference. Clearly, molecular properties are microscopic properties. Additionally,
all that has been learned about MDF has shown that in the liquid phase, and
not too close to the critical point, molecular distribution functions have a local
character in the sense that they depend upon and provide information on local
behavior around a given molecule in the mixture. By local, we mean a few
molecular diameters, many orders of magnitude smaller than the macroscopic,
or global, dimensions of the thermodynamic system under consideration. We
therefore rewrite, once again, route II in different words, but meaning the same
as III, namely

IV: Local Properties — Global Properties

Even with this modification, the question we posed above is still left unan-
swered: Why a new book on molecular theory of solutions? After all, even along
route IV, there has been no theoretical progress.

Here is my answer to this question.

Two important and profound developments have occurred since Prigogine’s
book, not along route I, neither along II or III, but on the reverse of route IV.
The one-sided arrows as indicated in I, II, and III use the tools of statistical
thermodynamics to bridge between the molecular or local properties and
thermodynamic properties. This bridge has been erected and has been perfected
for many decades. It has almost always been used to cross in a one-way
direction from the local to the global.

The new development uses the same tool — the same bridge — but in reversed
direction; to go backwards from the global to the local properties. Due to its
fundamental importance, we rewrite IV again, but with the reversed directed
arrow:

—IV: Global Properties — Local Properties

It is along this route that important developments have been achieved
specifically for solutions, providing the proper justification for a new book
with the same title. Perhaps a more precise title would be the Local Theory of
Solutions. However, since the tools used in this theory are identical to the tools
used in Prigogine’s book, we find it fitting to use the same title for the present
book. Thus, the tools are basically unchanged; only the manner in which they
are applied were changed.
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There are basically two main developments in the molecular theory of
solutions in the sense of route —IV: one based on the inversion of the
Kirkwood-Buff (KB) theory; the second is the introduction of a new measure
to study solvation properties. Both of these use measurable macroscopic, or
global quantities to probe into the microscopic, or the local properties of the
system. The types of properties probed by these tools are local densities, local
composition, local change of order, or structure (of water and aqueous solu-
tions) and many more. These form the core of properties discussed in this
book. Both use exact and rigorous tools of statistical mechanics to define and to
calculate local properties that are not directly accessible to measurements,
from measurable macroscopic quantities.

The first development consists of the inversion of the Kirkwood—Buff theory.
The Kirkwood-Buff theory has been with us since 1951. It was dormant for
more than 20 years. Though it is exact, elegant and very general, it could only
be applied when all the pair correlation functions are available. Since, for
mixtures, the latter are not easily available, the theory stayed idle for a long
time. It is interesting to note that both Prigogine (1957) and Hill (1956)
mentioned the KB theory but not any of its applications. In fact, Hill (1956), in
discussing the Kirkwood-Buff theory, writes that it is “necessarily equivalent to
the McMillan—-Mayer (1945) theory, since both are formally exact.” I disagree
with the implication of that statement. Of course, any two exact theories must
be, in principle, formally equivalent. But they are not necessarily equivalent in
their range and scope of applicability and in their interpretative power. I believe
that in all aspects, the Kirkwood—Buff theory is immensely superior to the
McMillan—Mayer theory, as I hope to convince the reader of this book. It is
somewhat puzzling to note that many authors, including Rowlinson, com-
pletely ignored the Kirkwood—Buff theory.

One of the first applications of the Kirkwood-Buff theory, even before
its inversion, was to provide a convincing explanation of one of the most
mysterious and intellectually challenging phenomenon of aqueous solutions of
inert gases — the molecular origin of the large and negative entropy and
enthalpy of solvation of inert gases in water. This was discussed by Ben-Naim
(1974, 1992). But the most important and useful application of the KB theory
began only after the publication of its inversion. A search in the literature shows
that the “KB theory” was used as part of the title of articles on the average, only
once a year until 1980. This has escalated to about 20-25 a year since 1980, and
it is still increasing.

Ever since the publication of the inversion of the KB theory, there had
been an upsurge of papers using this new tool. It was widely accepted and
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appreciated and used by many researchers as an efficient tool to study local
properties of mixtures and solutions.

The traditional characterization and study of the properties of liquid
mixtures by means of the global excess thermodynamic functions has been
gradually and steadily replaced by the study of the local properties. The latter
provides richer and more detailed information on the immediate environment
of each molecule in the mixture.

The second development, not less important and dramatic, was in the theory
of solvation. Solvation has been defined and studied for many years. In fact,
there was not only one but at least three different quantities that were used to
study solvation. The problem with the traditional quantities of solvation was
that it was not clear what these quantities really measure. All of the three
involve a process of transferring a solute from one hypothetical state in one
phase, to another hypothetical state in a second phase. Since these hypothetical
states have no clear-cut interpretation on a molecular level, it was not clear
what the free energy change associated with such transfer processes really
means. Thus, within the framework of thermodynamics, there was a state of
stagnation, where three quantities were used as tools for the study of solvation.
No one was able to decide which the preferred one is, or which is really the right
tool to measure solvation thermodynamics.

As it turned out, there was no right one. In fact, thermodynamics could not
provide the means to decide on this question. Astonishingly, in spite of their
vagueness, and in spite of the inability to determine their relative merits, some
authors vigorously and aggressively promoted the usage of one or the other
tools without having any solid theoretical support. Some of these authors have
also vehemently resisted the introduction of the new tool.

The traditional quantities of solvation were applicable only in the realm of
very dilute solutions, where Henry’s law is obeyed. It had been found later that
some of these are actually inadequate measures of solvation'. The new measure
that was introduced in the early 1970s replaced vague and hazy measures by
a new tool, sharply focusing into the local realm of molecular dimensions.
The new quantity, defined in statistical mechanical terms, is a sharp, powerful,
and very general tool to probe local properties of not only solutes in dilute
solutions, but of any molecule in any environment.

The new measure has not only sharpened the tools for probing the
surroundings around a single molecule, but it could also be applied to a vastly
larger range of systems: not only a single A in pure B, or a single B in pure A,

T In fact using different measures led to very different values of the solvation Gibbs energy. In one
famous example the difference in the Gibbs energy of solvation of a small solute in H,O and D,0 even
had different signs, in the different measures.
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but the “double infinite” range of all compositions of A and B, including the
solvation of A in pure A, and B in pure B, which traditional tools never touched
and could not be applied to.

Specifically for liquid water, the solvation of water in pure water paved the
way to answer questions such as “What is the structure of water” and “How
much is this structure changed when a solute is added?” The details and the
scope of application of the new measure were described in the monograph by
Ben-Naim (1987).

While the inversion of the KB theory was welcomed, accepted, and applied
enthusiastically by many researchers in the field of solution chemistry, and
almost universally recognized as a powerful tool for studying and under-
standing liquid mixtures on a molecular level, unfortunately the same was far
from true for the new measure of solvation. There are several reasons for that.

First, solvation was a well-established field of research for many years. Just as
there were not one, but at least three different measures, or mutants, there were
also different physical chemists claiming preference for one or another of its
varieties. These people staunchly supported one or the other of the traditional
measures and adamantly resisted the introduction of the new measure. In the
early 1970s, I sent a short note where I suggested the use of a new measure of
solvation. It was violently rejected, ridiculing my chutzpa in usurping old and
well-established concepts. Only in 1978 did I have the courage, the conviction —
and yes, the chutzpa — to publish a full paper entitled “Standard Thermo-
dynamics of Transfer; Uses and Misuses.” This was also met with hostility and
some virulent criticism both by personal letters as well as published letters
to the editor and comments. The struggle ensued for several years. It was clear
that I was “going against the stream” of the traditional concepts. It elicited the
rage of some authors who were patronizing one of the traditional tools. One
scientist scornfully wrote: “You tend to wreck the structure of solution che-
mistry . .. you usurp the symbol which has always been used for other pur-
poses...why don’t you limit yourself to showing that one thermodynamic
coefficient has a simple molecular interpretation?” These statements reveal
utter misunderstanding of the merits of the new measure (referred to as the
“thermodynamic coefficient”, probably because it is related to the Ostwald
absorption coefficient). Indeed, as will be clear in chapter 7, there are some
subtle points that have evaded even the trained eyes of practitioners in the field
of solvation chemistry.

Not all resisted the introduction of the new tool. I wish to acknowledge the
very firm support and encouragement I got from Walter Kauzmann and John
Edsal. They were the first to appreciate and grasp the advantage of a new tool
and encouraged me to continue with its development. Today, I am proud,
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satisfied, and gratified to see so many researchers using and understanding the
new tool. It now looks as if this controversial issue has “signed off.”

The struggle for survival of the different mutants was lengthy, but as in
biology, eventually, the fittest survives, whereas all the others fade out.

The second reason is more subtle and perhaps stems from misunderstanding.
Since the new measure for the solvation Gibbs energy looks similar to one of the
existing measures, people initially viewed it merely as one more traditional
measure, even referring to it as Ben-Naim’s standard state. As will be discussed
in chapter 7, one of the advantages (not the major one) of the new measure is
that it does not involve any standard state in the sense used in the traditional
approach to the study of solvation.

There is one more development which I feel is appropriate to mention here.
It deals with the concepts of “entropy of mixing” and “free energy of mixing.” It
was shown in 1987 that what is referred to as “entropy of mixing” has nothing
to do with the mixing process. In fact, mixing of ideal gases, in itself, has no
effect on any thermodynamic quantity. What is referred to as “entropy of
mixing” is nothing more than the familiar entropy of expansion. Therefore,
mixing of ideal gases is not, in general, an irreversible process. Also, a new
concept of assimilation was introduced and it was shown that the deassimilation
process is inherently an irreversible process, contrary to the universal claims
that the mixing process is inherently an irreversible process. Since this topic
does not fall into the claimed scope of this book, it is relegated to two
appendices.

Thus, the main scope of this book is to cover the two topics: the Kirkwood—
Buft theory and its inversion; and solvation theory. These theories were
designed and developed for mixtures and solutions. I shall also describe briefly
the two important theories: the integral equation approach; and the scaled
particle theory. These were primarily developed for studying pure simple
liquids, and later were also generalized and applied for mixtures.

Of course, many topics are deliberately omitted (such as solutions of
electrolytes, polymers, etc.). After all, one must make some choice of which
topics to include, and the choices made in this book were made according to
my familiarity and my assessment of the relative range of applicability and
their interpretive power. Also omitted from the book are lattice theories. These
have been fully covered by Guggenheim (1952, 1967), Prigogine (1957), and
Barker (1963).

The book is organized into eight chapters and some appendices. The
first three include more or less standard material on molecular distribution
functions and their relation to thermodynamic quantities. Chapter 4 is devoted
to the Kirkwood-Buff theory of solutions and its inversion which I consider as
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the main pillar of the theories of mixtures and solutions. Chapters 5 and 6
discuss various ideal solutions and various deviations from ideal solutions; all
of these are derived and examined using the Kirkwood—Bulff theory. I hope that
this simple and elegant way of characterizing various ideal solutions will
remove much of the confusion that exists in this field. Chapter 7 is devoted to
solvation. We briefly introduce the new concept of solvation and compare it
with the traditional concepts. We also review some applications of the concept
of solvation. Chapter 8 combines the concept of solvation with the inversion of
the Kirkwood—Buff theory. Local composition and preferential solvation are
defined and it is shown how these can be obtained from the inversion of the KB
theory. In this culminating chapter, I have also presented some specific
examples to illustrate the new way of analysis of the properties of mixtures on a
local level. Instead of the global properties conveyed by the excess function, a
host of new information may be obtained from local properties such as sol-
vation, local composition, and preferential solvation. Examples are given
throughout the book only as illustrations — no attempt has been made to review
the extensive data available in the literature. Some of these have been recently
summarized by Marcus (2002).

The book was written while I was a visiting professor at the University of
Burgos, Spain. I would like to express my indebtedness to Dr. Jose Maria Leal
Villalba for his hospitality during my stay in Burgos.

I would also like to acknowledge the help extended to me by Andres Santos
in the numerical solution of the Percus—Yevick equations and to Gideon
Czapski for his help in the literature research. I acknowledge with thanks
receiving a lot of data from Enrico Matteoli, Ramon Rubio, Eli Ruckenstein,
and others. I am also grateful to Enrico Matteoli, Robert Mazo, Joaquim
Mendes, Mihaly Mezei, Nico van der Vegt and Juan White for reading all or
parts of the book and offering important comments. And finally, I want to
express my thanks and appreciation to my life-partner Ruby. This book could
never have been written without the peaceful and relaxing atmosphere she had
created by her mere presence. She also did an excellent job in typing and
correcting the many versions of the manuscript.

Arieh Ben-Naim
January 2006



Table of Contents

LIST OF ABBREVIATIONS

1 Introduction

1.1
1.2

1.3
1.4
1.5
1.6

Notation regarding the microscopic description of the system
The fundamental relations between statistical thermodynamics
and thermodynamics

Fluctuations and stability

The classical limit of statistical thermodynamics

The ideal gas and small deviation from ideality

Suggested references on general thermodynamics and statistical
mechanics

2 Molecular distribution functions

2.1
2.2
2.3
2.4
2.5

2.6
2.7

2.8
2.9
2.10

The singlet distribution function

The pair distribution function

The pair correlation function

Conditional probability and conditional density

Some general features of the radial distribution function
2.5.1 Theoretical ideal gas

2.5.2  Very dilute gas

2.5.3 Slightly dense gas

2.5.4 Lennard-Jones particles at moderately high densities
Molecular distribution functions in the grand canonical ensemble
Generalized molecular distribution functions

2.7.1 The singlet generalized molecular distribution function
2.7.2 Coordination number

2.7.3 Binding energy

2.7.4 Volume of the Voronoi polyhedron

2.7.5 Combination of properties

Potential of mean force

Molecular distribution functions in mixtures

Potential of mean force in mixtures

3 Thermodynamic quantities expressed in terms of
molecular distribution functions

3.1
3.2
3.3
3.4

Average values of pairwise quantities
Internal energy

The pressure equation

The chemical potential

XVii

12
16

20

21

21
28
31
33
35
35
36
38
40
48
50
50
51
53
54
56
56
61
73

76

77
80
83
85



xiv  TABLE OF

3.5
3.6

4 The

4.1
4.2
4.3
4.4
4.5
4.6
4.7

CONTENTS

3.4.1 Introduction

3.4.2 Insertion of one particle into the system

3.4.3 Continuous coupling of the binding energy

3.4.4 Insertion of a particle at a fixed position: The pseudo-
chemical potential

3.4.5 Building up the density of the system

3.4.6 Some generalizations

3.4.7 First-order expansion of the coupling work

The compressibility equation

Relations between thermodynamic quantities and generalized

molecular distribution functions

Kirkwood-Buff theory of solutions

Introduction

General derivation of the Kirkwood-Buff theory
Two-component systems

Inversion of the Kirkwood-Buff theory
Three-component systems

Dilute system of Sin A and B

Application of the KB theory to electrolyte solutions

5 Ideal solutions

5.1
52

5.3
5.4

Ideal-gas mixtures

Symmetrical ideal solutions

5.2.1 Very similar components: A sufficient condition for SI solutions

5.2.2 Similar components: A necessary and sufficient condition
for Sl solutions

Dilute ideal solutions

Summary

6 Deviations from ideal solutions

6.1
6.2
6.3
6.4

6.5

6.6

6.7

6.8

Deviations from ideal-gas mixtures

Deviations from SI Behavior

Deviations from dilute ideal solutions

Explicit expressions for the deviations from IG, SI, and DI behavior
6.4.1 First-order deviations from ideal-gas mixtures

6.4.2 One-dimensional model for mixtures of hard “spheres”
The McMillan-Mayer theory of solutions

Stability condition and miscibility based on first-order deviations
from Sl solutions

Analysis of the stability condition based on the Kirkwood-

Buff theory

The temperature dependence of the region of instability: Upper
and lower critical solution temperatures

85
87
89

92
94
95
97
99

105

112

112
114
120
124
127
130
131

136
136
140
141

145
150
154

156

156
158
160
164
165
169
171

176

183

187



TABLE OF CONTENTS  xv

7 Solvation thermodynamics

7.1
7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9
7.10

7.11

Why do we need solvation thermodynamics?

Definition of the solvation process and the corresponding

solvation thermodynamics

Extracting the thermodynamic quantities of solvation

from experimental data

Conventional standard Gibbs energy of solution and the

solvation Gibbs energy

Other thermodynamic quantities of solvation

7.5.1 Entropy

7.5.2  Enthalpy

7.5.3 Volume

Further relationships between solvation thermodynamics and

thermodynamic data

7.6.1 Very dilute solutions of sin /

7.6.2 Concentrated solutions

7.6.3 Pure liquids

Stepwise solvation processes

7.7.1  Stepwise coupling of the hard and the soft parts of the
potential

7.7.2  Stepwise coupling of groups in a molecule

7.7.3 Conditional solvation and the pair correlation function

Solvation of a molecule having internal rotational degrees of

freedom

Solvation of completely dissociable solutes

Solvation in water: Probing into the structure of water

7.10.1 Definition of the structure of water

7.10.2 General relations between solvation thermodynamics and

the structure of water
7.10.3 Isotope effect on solvation Helmholtz energy and
structural aspects of aqueous solutions
Solvation and solubility of globular proteins

8 Local composition and preferential solvation

8.1
8.2
8.3
8.4

8.5
8.6
8.7

Introduction

Definitions of the local composition and the preferential solvation

Preferential solvation in three-component systems

Local composition and preferential solvation in two-component

systems

Local composition and preferential solvation in electrolyte solutions

Preferential solvation of biomolecules

Some illustrative examples

8.7.1 Lennard-Jones particles having the same ¢ but different
diameter o

193
194

197

201

203
210
210
212
213

215
215
216
219
221

222
225
227

230
238
244
245

248

251
254

262

263
265
270

276
279
281
283

283



Xvi

TABLE OF CONTENTS

8.7.2
8.7.3
8.7.4
8.7.5
8.7.6
8.7.7

Lennard-Jones particles with the same ¢ but with different e
The systems of argon—krypton and krypton—xenon

Mixtures of water and alcohols

Mixtures of Water: 1,2-ethanediol and water—glycerol
Mixture of water and acetone

Agueous mixtures of 1-propanol and 2-propanol

Appendices

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix
Appendix
Appendix

Appendix
Appendix
Appendix
Appendix
Appendix

REFERENCES
INDEX

A: A brief summary of some useful thermodynamic relations
B: Functional derivative and functional Taylor expansion
C: The Ornstein—Zernike relation
. The Percus—Yevick integral equation

Numerical solution of the Percus—Yevick equation

Local density fluctuations
: The long-range behavior of the pair correlation function
: Thermodynamics of mixing and assimilation in

ideal-gas systems
I: Mixing and assimilation in systems with interacting particles
J: Delocalization process, communal entropy and assimilation
K: A simplified expression for the derivative of the chemical

potential

L: On the first-order deviations from SI solutions
M: Lattice model for ideal and regular solutions
N: Elements of the scaled particle theory
0
P

T o mTmmo

. Solvation volume of pure components
. Deviations from Sl solutions expressed in
terms of pAag and in terms of Pa/PY.

285
286
288
290
291
292

295

297
301
307
312
316
318
323

333
339
345

347
352
354
357
365

368

372
379



List of Abbreviations

BE

CN

DI

FG
GMDF
GPF
HB

HS

KB
KBI
LCST
LJ

lhs
MDF
MM
PMF
PS
PY
QCDF
rhs

S|
SPT
UCST
VP

Binding energy

Coordination number

Dilute ideal

Functional group

Generalized molecular distribution function
Grand partition function

Hydrogen bond

Hard sphere

Ideal gas

Kirkwood—Buff

Kirkwood—Buff integral

Lower critical solution temperature
Lennard-Jones

Left-hand side

Molecular distribution function
McMillan—Mayer

Potential of mean force
Preferential solvation
Percus—Yevick

Quasi-component distribution function
Right-hand side

Symmetrical ideal

Scaled particle theory

Upper critical solution temperature
Voronoi polyhedron



This page intentionally left blank



ONE
Introduction

In this chapter, we first present some of the notation that we shall use
throughout the book. Then we summarize the most important relationship
between the various partition functions and thermodynamic functions. We
shall also present some fundamental results for an ideal-gas system and small
deviations from ideal gases. These are classical results which can be found in
any textbook on statistical thermodynamics. Therefore, we shall be very brief.
Some suggested references on thermodynamics and statistical mechanics are
given at the end of the chapter.

1.1 Notation regarding the microscopic
description of the system

To describe the configuration of a rigid molecule we need, in the most general
case, six coordinates, three for the location of some “center,” chosen in the
molecule, e.g., the center of mass, and three orientational angles. For spherical
particles, the configuration is completely specified by the vector R;= (x; y;, z;)
where x;, y;, and z; are the Cartesian coordinates of the center of the ith par-
ticles. On the other hand, for a non-spherical molecule such as water, it is
convenient to choose the center of the oxygen atom as the center of the
molecule. In addition, we need three angles to describe the orientation of
the molecule in space. For more complicated cases we shall also need to specify
the angles of internal rotation of the molecule (assuming that bond lengths
and bond angles are fixed at room temperatures). An infinitesimal element of
volume is denoted by

dR = dxdy dz. (1.1)

This represents the volume of a small cube defined by the edges dx, dy, and dz.
See Figure 1.1. Some texts use the notation d°R for the element of volume to
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dz

dx
dy

X

Figure 1.1 An infinitesimal element of volume dR= dxdydz at the point R.

distinguish it from the vector, denoted by dR. In this book, dR will always
signify an element of volume.

The element of volume dR is understood to be located at the point R. In
some cases, it will be convenient to choose an element of volume other than a
cubic one. For instance, an infinitesimal spherical shell of radius R and width
dR has the volume'

dR = 4nR*dR. (1.2)

For a rigid nonspherical molecule, we use R; to designate the location of the
center of the ith molecule and £2; the orientation of the whole molecule. As an
example, consider a water molecule as being a rigid body. Let u be the vector
originating from the center of the oxygen atom and bisecting the H-O-H
angle. Two angles, say ¢ and 0, are required to fix the orientation of this
vector. In addition, a third angle  is needed to describe the angle of
rotation of the entire molecule about the axis .

In general, integration over the variable R; means integration over the whole
volume of the system, i.e.,

L L L
/ dRi = / dx,- / dyl / dZi = L3 =V (13)
\%4 0 0 0

where for simplicity we have assumed that the region of integration is a cube of
length L. The integration over $2; will be understood to be over all possible
orientations of the molecule. Using for instance, the set of Euler angles, we have

T Note that R is a scalar; R is a vector, and dR is an element of volume.
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2n T 2n
/dﬂ, = / dgbl/ sin 91' d@,/ dlﬂl = 87‘[2. (1.4)
0 0 0

Note that for a linear molecule, we have one degree of freedom less, therefore

2n T
/dﬂl = / dqbl/ sin 01' d@l = 47. (1.5)
0 0

The configuration of a rigid nonlinear molecule is thus specified by a six-
dimensional vector, including both the location and the orientation of the
molecule, namely,

X; = (Ri, ;) = (xi, yi» 2i> 1> 00, ;). (1.6)

The configuration of a system of N rigid molecules is denoted by
XN =X,X,, ..., XN (1.7)
The infinitesimal element of the configuration of a single molecule is denoted by
dX; = dR; d$2;, (1.8)

and, for N molecules,
dXN = dXx,dX,, ...,dXy. (1.9)

1.2 The fundamental relations between statistical
thermodynamics and thermodynamics

The fundamental equations of statistical thermodynamics are presented in the
following subsections according to the set of independent variables employed
in the characterization of a macroscopic system.

E, V, N ensemble

We consider first an isolated system having a fixed internal energy E, volume V,
and number of particles N. Let W(E, V, N) be the number of quantum
mechanical states of the system characterized by the variables E, V, N. That is
the number of eigenstates of the Hamiltonian of the system having the
eigenvalue E. We assume for simplicity that we have a finite number of such
eigenstates. The first relationship is between the entropy S of the system and the
number of states, W (E, V, N). This is the famous Boltzmann formula’

S(E,V,N) = kIn W(E, V,N) (1.10)

T This formula in the form S=k log W is engraved on Boltzmann’s tombstone.
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where k=1.38 x 1072> JK ! is the Boltzmann constant.
The fundamental thermodynamic relationship for the variation of the
entropy in a system described by the independent variables E, V, N is

TdS = dE + PdV — udN (1.11)

from which one can obtain the temperature T, the pressure P, and the chemical
potential u as partial derivatives of S. Other thermodynamic quantities can be
obtained from the standard thermodynamic relationships. For a summary of
some thermodynamic relationships see Appendix A.

In practice, there are very few systems for which W is known. Therefore
equation (1.10), though the cornerstone of the theory, is seldom used in
applications. Besides, an isolated system is not an interesting system to study.
No experiments can be done on an isolated system.

Next we introduce the fundamental distribution function of this system.
Suppose that we have a very large collection of systems, all of which are
identical, in the sense that their thermodynamic characterization is the same,
i.e., all have the same values of E, V, N. This is sometimes referred to as a
microcanonical ensemble. In such a system, one of the fundamental postulates
of statistical thermodynamics is the assertion that the probability of a specific
state i is given by

Pi=—. (1.12)

This is equivalent to the assertion that all states of an E, V, N system have equal
probabilities. Since > P; = 1, it follows that each of the P; is equal to W™

T, V, N ensemble

The most useful connection between thermodynamics and statistical thermo-
dynamics is that established for a system at a given temperature T, volume V,
and the number of particles N. The corresponding ensemble is referred to as the
isothermal ensemble or the canonical ensemble. To obtain the T, V, N ensemble
from the E, V, N ensemble, we replace the boundaries between the isolated
systems by diathermal (i.e., heat-conducing) boundaries. The latter permits the
flow of heat between the systems in the ensemble. The volume and the number
of particles are still maintained constant.

We know from thermodynamics that any two systems at thermal equilibrium
(i.e., when heat can be exchanged through their boundaries) have the same
temperature. Thus, the fixed value of the internal energy E is replaced by a fixed
value of the temperature T. The internal energies of the system can now fluctuate.
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The probability of finding a system in the ensemble having internal energy E is
given
W(E,V,N —pE
pr(E) = Y ()2""1’( BE) (1.13)

where = (kT) "' and Q is a normalization constant. Note that the probability

of finding a specific state having energy E is exp(—fE)/Q. Since there are W such
states, the probability of finding a state having energy E is given by (1.13). The
normalization condition is

> Pr(E) =1, (1.14)

the summation being over all the possible energies E. From (1.13) and (1.14),
we have

Q(T,V,N) =Y _ W(E V,N) exp(—BE) (1.15)

which is the partition function for the canonical ensemble.
The fundamental connection between Q(T, V, N), as defined in (1.15), and
thermodynamics is given by

A(T,V,N) = —kT In Q(T, V, N) (1.16)

where A is the Helmholtz energy of the system at T, V, N. Once the partition
function Q (7, V, N) is known, then relation (1.16) may be used to obtain the
Helmholtz energy.” This relation is fundamental in the sense that all
the thermodynamic information on the system can be extracted from it by the
application of standard thermodynamic relations, i.e., from

dA = —SdT — PdV + pudN. (1.17)
For a multicomponent system, the last term on the right-hand side (rhs) of

(1.17) should be interpreted as a scalar product u - dN = >";_; u; dN;. From
(1.17) we can get the following thermodynamic quantities:

0A 0lnQ
(%) g T 1.1
s==(er),,, ~rmere(5),, o
P= —(a—A> - kT(aln Q) (1.19)
ov TN ov TN
§= (a—A> = —kT(mn Q) . (1.20)
ON/r,v ON /o,y

T We use the terms Helmholtz and Gibbs energies for what has previously been referred to as
Helmholtz and Gibbs free energies, respectively.



6 INTRODUCTION

Other quantities can be readily obtained by standard thermodynamic
relationships.

T, P, N ensemble

In the passage from the E, V, N to the T, V, N ensemble, we have removed the
constraint of a constant energy by allowing the exchange of thermal energy
between the systems. As a result, the constant energy has been replaced by a
constant temperature. In a similar fashion, we can remove the constraint of a
constant volume by replacing the rigid boundaries between the systems by
flexible boundaries. In the new ensemble, referred to as the isothermal—isobaric
ensemble, the volume of each system may fluctuate. We know from thermo-
dynamics that when two systems are allowed to reach mechanical equilibrium,
they will have the same pressure. The volume of each system can attain any
value. The probability distribution of the volume in such a system is

Q(T,V,N) exp(—pPV)

Pr(V) = A(T, P,N)

(1.21)

where P is the pressure of the system at equilibrium. The normalization con-
stant A(T, P, N) is defined by

A(T,P,N) =Y Q(T, V,N)exp(—BPV)

=> Y W(EV,N) exp(—BE — BPV). (1.22)

A(T, P, N) is called the isothermal-isobaric partition function or simply the T,
P, N partition function. Note that in (1.22) we have summed over all possible
volumes, treating the volume as a discrete variable. In actual applications to
classical systems, this sum should be interpreted as an integral over all possible
volumes, namely

A(T,P,N) =¢ /00 dV Q(T,V,N) exp(—pPV) (1.23)

where ¢ has the dimension of V!, to render the rhs of (1.23) dimensionless.
The partition function A(T, P, N), though less convenient in theoretical work
than Q (T, V, N), is sometimes very useful, especially when connection with
experimental quantities measured at constant T and P is required.

The fundamental connection between A(T, P, N) and thermodynamics is

G(T,P,N) = —kT InA(T, P, N) (1.24)

where G is the Gibbs energy of the system.
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The relation (1.24) is the fundamental equation for the T, P, N ensemble.
Once we have the function A(T, P, N), all thermodynamic quantities may be
obtained by standard relations, i.e.,

dG = —SdT + VdP + pdN. (1.25)
Hence

oG OlnA
s==(e7),,~rmare(SF), 0
v= (99) _ (%A (1.27)

opP T,N oP N
§= <6—G> — kT (a hlA) (1.28)

ON T, P ON T, P

Other thermodynamic quantities may be obtained by standard thermodynamic
relationships.

T, V, u ensemble

An important partition function can be derived by starting from Q (T, V, N)
and replacing the constant variable N by p. To do that, we start with the
canonical ensemble and replace the impermeable boundaries by permeable
boundaries. The new ensemble is referred to as the grand ensemble or the T, V,
u ensemble. Note that the volume of each system is still constant. However, by
removing the constraint on constant N, we permit fluctuations in the number
of particles. We know from thermodynamics that a pair of systems between
which there exists a free exchange of particles at equilibrium with respect to
material flow is characterized by a constant chemical potential u. The variable
N can now attain any value with the probability distribution

Q(T, V, N) exp(fuN)

Pr(N) = — (1.29)
E(T, V,u)
where Z(T, V, p), the normalization constant, is defined by
E(T, Vou) =Y Q(T, V,N)exp(BuN) (1.30)
N=0

where the summation in (1.30) is over all possible values of N. The new par-
tition function E(T, V, p) is referred to as the grand partition function, the
open-system partition function, or simply the T, V, u partition function.
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In equation (1.30), we have defined the T, V, u partition function for a
one-component system. In a straightforward manner we may generalize the
definition for a multicomponent system. Let N=Nj,..., N, be the vector
representing the composition of the system, where N; is the number of
molecules of species i. The corresponding vector g =y, ..., it includes the
chemical potential of each of the species. For an open system with respect to all
components we have the generalization of (1.30)

E(T, V,p) = Z ZQTVN exp[fp - N] (1.31)

where p - N = ), i;N; is the scalar product of the two vectors g and N.

An important case is a system open with respect to some of the species but
closed to the others. For instance, in a two-component system of A and B we
can define two partial grand partition functions as follows:

E(T,V,Na, i) = »_ Q(T, V, Ny, Ng) exp(BupNs) (1.32)
Np

E(T, V,Ng, ) = »_ Q(T, V, Ny, Ni) exp(BitsNa). (1.33)
Ny

Equation (1.32) corresponds to a system closed with respect to A, but open
with respect to B. Equation (1.33) corresponds to a system closed to B, but
open to A.

The fundamental connection between the partition function defined in
(1.30) and thermodynamics is

P(T,V,u)V =kT InE(T, V, u) (1.34)

where P(T, V, u) is the pressure of a system characterized by the independent
variables T, V, p.

The fundamental relation (1.34) may be used to obtain all relevant thermo-
dynamic quantities. Thus, using the general differential of PV we obtain

d(PV) = SdT + PdV + N dy (1.35)
a(Pv _ olnE
5= (5 )V’ﬂ—k =+ k1“5 )w (1.36)
p_ o(PV) 4T OlnZE\ len.: (1.37)
ov Ty oV T |4



FLUCTUATIONS AND STABILITY 9

() (e), e

Other quantities, such as the Gibbs energy or the internal energy of the system,
may be obtained from the standard relations

G =uN (1.39)

E=G+TS—PV. (1.40)

1.3 Fluctuations and stability

One of the characteristic features of statistical mechanics is the treatment of
fluctuations, whereas in thermodynamics we treat variables such as E, V, or N
as having sharp values. Statistical mechanics acknowledge the fact that these
quantities can fluctuate. The theory also prescribes a way of calculating the
average fluctuation about the equilibrium values.

In the T, V, N ensemble, the average energy of the system is defined by

(E) = XE: EPr(E) = 2= EW(QE(’;"JZ);TP(_M). (1.41)

Using the definition of Q(T, V, N) in (1.15), we find that

(1.42)

(E) = kT? (M)V .

oT

Note that the average energy of the system, denoted here by (E), is the same as
the internal energy denoted, in thermodynamics, by U. In this book, we shall
reserve the letter U for potential energy and use (E) for the total (potential and
kinetic) energy. Sometimes when the meaning of E as an average is clear, we can
use E instead of (E).

An important average quantity in the T, V, N ensemble is the average
fluctuation in the internal energy, defined by

op = ((E—(E))*). (1.43)
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Using the probability distribution (1.13), we can express 6% in terms of the
constant-volume heat capacity, i.e.,

(E—(E)*) =Y (E— (E))*Pr(E)
=" [E*Pr(E) — 2E(E) Pr(E) + (E)’ Pr(E)]
_ <E2> _ <E>2 (1.44)

On the other hand, by differentiation of (E) in (1.41) with respect to T, we
obtain the heat capacity at constant volume,

o(E) (E*) — ()’
Cy = (a—T> B (1.45)

Thus the heat capacity Cy is also a measure of the fluctuation in the energy of
the T, V, N system.

Similar relationships hold for the enthalpy in the T, P, N ensemble. Thus,
using (1.22), we obtain

(H) = kT2< T )PN: (E) + P(V). (1.46)

Here ( ) denotes averages in the T, P, N ensemble, using the probability dis-

tribution function

W(E, V,N)exp(—pE — BPV)
A(T,P,N) '

Pr(E, V) = (1.47)

The constant-pressure heat capacity is obtained from (1.46) and from the
definition of A. The result is

o(H) (H?) — (H)’
o (A0 e a0

where the average quantities in (1.48) are taken with the probability dis-
tribution (1.47).

In the T, P, N ensemble there exists fluctuations in the volume of the system,
defined by

(V= (V))*) = (V?) = (V)" = kKT(V)xr (1.49)

where the isothermal compressibility is defined by

op = —<—‘1/> (%) . (1.50)
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Another quantity of interest in the T, P, N ensemble is the cross-fluctuations
of volume and enthalpy. This is related to the thermal expansivity, ap, by

(V= (V)(H = (H))) = (VH) — (V){H) = kT*(V)ap (1.51)

Of foremost importance in the T, V, u ensemble is the fluctuation in the

where

number of particles, which, for a one-component system, is given by
(N = (N))*) = (N?) — (N)* = kT<M> = kTV(a—p> . (1.53)
o )y o) ¢

It It

In (1.53), all average quantities are taken with the probability distribution
Pr(N) given in (1.29). The fluctuations in the number of particles in the T, V,
u ensemble can be expressed in terms of the isothermal compressibility, as
follows.

From the Gibbs—Duhem relation

—SdT + VdP = N du (1.54)

Using the chain rule of differentiation, we have

D&

Combining (1.53) and (1.56), we obtain the final result

we obtain

(N?) — (N)* = kTVp*kr. (1.57)

Further relations involving cross-fluctuations in the number of particles in a
multicomponent system are discussed in chapter 4. Note that in (1.54)—(1.56)
we used the thermodynamic notation for V, N, etc. In applying these relations
in the T, V, u ensemble, the density p in (1.57) should be understood as

(N)

=137 (1.58)

where the average is taken in the T, V, u ensemble.
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Note that (1.57) can be written as
(N?) — (N)*  kTxr
(N v
This should be compared with equation (1.49). Thus, the relative fluctuations
in the volume in the T, P, N ensemble have the same values as the relative

fluctuations in the number of particles in the T, V, u ensemble, provided that
(V) in the former is equal to V in the latter.

We have seen that Cy, C,, k7, and (Op/0p) - can be expressed as fluctuations in
E, H, V, and N, respectively. As such, they must always be positive. The posi-
tiveness of these quantities is translated in thermodynamic language as the con-
dition of stability of the system. Thus, Cy,> 0 and C,> 0 are the conditions for
thermal stability of a closed system at constant volume and pressure, respectively.
k1> 0 expresses the mechanical stability of a closed system at constant tem-
perature. Of particular importance, in the context of this book, is the material
stability. A positive value of (Opt/0p) r means that the chemical potential is always a
monotonically increasing function of the density. At equilibrium, any fluctuation
which causes an increase in the local density will necessarily increase the local
chemical potential. This local fluctuation will be reversed by the flow of material
from the higher to the lower chemical potential, hence restoring the system to its
equilibrium state. In chapter 4, we shall also encounter fluctuations and cross-
fluctuations in multicomponent systems.

1.4 The classical limit of statistical
thermodynamics

In section 1.2, we introduced the quantum mechanical partition function in the
T, V, N ensemble. In most applications of statistical thermodynamics to pro-
blems in chemistry and biochemistry, the classical limit of the quantum
mechanical partition function is used. In this section, we present the so-called
classical canonical partition function.

The canonical partition function introduced in section 1.2 is defined as

Q(T, V,N) Zexp —BE)=>_ W(E V,N)exp(—BE)  (1.59)

where the first sum is over all possible states of the T, V, N system. In the second
sum all states having the same energy E are grouped first, and then we sum over
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all the different energy levels. W(E, V, N) is simply the degeneracy of the energy
level E (given V and N), i.e., the number of states having the same energy E.

The classical analog of Q(T, V, N) for a system of N simple particles (i.e.,
spherical particles having no internal structure) is

Q(T,V,N) = (1/h3NN!)/~~~/dedRNexp(—ﬁH). (1.60)

Here, h is the Planck constant (h=6.625 x 10~ *” erg s) and H is the classical

Hamiltonian of the system, given by
N

H(p",RY) = " (pi/2m) + Un(RY). (1.61)
i=1
Here p; is the momentum vector of the ith particle (presumed to possess only
translational degrees of freedom) and m is the mass of each particle. The total
potential energy of the system at the specified configuration R is denoted by
Un(RY).

Note that the expression (1.60) is not purely classical since it contains two
corrections of quantum mechanical origin: the Planck constant h and the NI.
Therefore, Q defined in (1.60) is actually the classical limit of the quantum
mechanical partition function in (1.59). The purely classical partition function
consists of the integral expression on the rhs of (1.60) without the factor
(K*NN1). This partition function fails to produce the correct form of the che-
mical potential or of the entropy of the system.

The integration over the momenta in (1.60) can be performed straightfor-
wardly to obtain

o0 N - o0 3N
h_3N/ deeXp[ [32 /2m] = h_l/ dpexp(—[)’pz/Zm)]

— |wemp [

3N
exp(—xz) dx]
- N
- (277:ka)3/2/113} AN, (1.62)
In (1.62) we have introduced the momentum partition function, defined by
B h
(27rka)1/2 '

This is also referred to as the thermal de Broglie wavelength of the particles at
temperature T. Another important quantity is the configurational partition
function, defined by

ZN:/---/dRNexp[—ﬁUN(RN)]. (1.64)

(1.63)
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The canonical partition function in (1.60) can be rewritten as
Zn
NIAPN

The condition required for the applicability of the classical partition func-

Q(T,V,N) = (1.65)

tion, as given in (1.60), is

pA < 1 (1.66)
i.e., when either the density is low, or the mass of the particles is large, or the
temperature is high. Indeed, for most systems of interest in this book, we shall
assume the validity of the condition (1.66), hence the validity of (1.60).

For a system of N nonspherical particles, the partition function (1.60) is
modified as follows

N
__ 7 .. N oxpl— N
QT VN) = [ [ ax¥esl-pusx)). (o7
The integration on the rhs of (1.67) extends over all possible locations and
orientations of the N particles. We shall refer to the vector xXN= X, ..., Xyas

the configuration of the system of the N particles. The factor g, referred to as the
internal partition function, includes the rotational, vibrational, electronic, and
nuclear partition functions of a single molecule. We shall always assume in this
book that the internal partition functions are separable from the configura-
tional partition function. Such an assumption cannot always be granted,
especially when strong interactions between the particles can perturb the
internal degrees of freedom of the particles involved.
In the classical T, V, N ensemble, the basic distribution function is the
probability density for observing the configuration X,
P(XN) — exp[—ﬁUN(XN)] ) (1.68)
J-+- ] ax™ exp[—BUNn(XY)]
In the classical T, P, N ensemble, the basic distribution function is the prob-
ability density of finding a system with a volume V and a configuration X", i.e.,

exp[—fPV — fUN(XV)]

P<XN’ V)= def' ..deN exp[—pPV — ﬁUN(XN)]'

(1.69)

The integration over V extends from zero to infinity. The probability density of
observing a system with volume V, independently of the configuration, is
obtained from (1.69) by integrating over all configurations, i.e.,

P(V) :/~~~/dXNP(XN, V). (1.70)
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The conditional distribution function defined by’
P(xN,V)
P(V)
exp[—fpPV — fUN(XY)]
[+ [ axN exp[—pPV — BUN(XY)]
exp[—Un(X")]

= T dX™ exp|—fUn(XV)] (7

P(XY/V) =

is the probability density of finding a system in the configuration X", given that
the system has the volume V.
In the classical T, V, u ensemble, the basic distribution function defined by

N oA (qV/N1) exp[BuN — BUxn(XM)]
PN = S @ TN lexp (B [~ ] dX™ expl—fUx (X
(1.72)

is the probability density of observing a system with precisely N particles and
the configuration X". The probability of finding a system in the T, V, u
ensemble with exactly N particles is obtained from (1.72) by integrating over all
possible configurations namely,

P(N) = / e / dxVp(x™,N) (1.73)
which can be written as
P(N) = Q(T, Z, N) exp(ﬂuN). (1.74)
E(T, V. )
The conditional distribution function, defined by
P(x", — xN
p(x¥ /Ny = PELN) exp| -pUn(X") (1.75)

P(N) [ [dXNexp[-pUn(X™)]’

is the probability density of observing a system in the configuration X, given
that the system contains precisely N particles.

 We use the slash sign for the conditional probability. In some texts, the vertical bar is used instead.
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1.5 The ideal gas and small deviation
from ideality

Theoretically, an ideal gas is a hypothetical system of noninteracting molecules, i.e.,
Un(XM)y =0 (1.76)

for any configuration X". Of course, there is no real system that obeys
equation (1.76).

In practice, the ideal-gas behavior is obtained in the limit of very low den-
sities or pressure, where interactions between the (real) molecules are on the
average negligible. One should be careful, however, to distinguish between
these two conditions for ideality. The two systems are not identical, as we shall
see later in the book.

Using (1.76) in the classical partition function (1.67), we immediately obtain

qN N
QAT V.N) = (8n2)NA3NN!/ - / X

qN 2n T 2n N
= dR d in 0d0 d
(872) AN NI [/v /0 v /0 o /o ‘p]

_ quN
AN

(1.77)

For simple spherical particles, sometimes referred to as “structureless” particles,
equation (1.77) reduces to
VN

QAT VoN) =S5y

(1.78)
Note that g and A depend on the temperature and not on the volume V or on
N. An important consequence of this is that the equation of state of an ideal gas
is independent of the particular molecules constituting the system. To see this,
we derive the expression for the pressure. Differentiating (1.77) with respect to

P=kT (a In Q> _KIN _ it (1.79)
T,N

volume, we obtain

ov \%

This equation of state is universal, in the sense that it does not depend on
the properties of the specific molecules. This behavior is not shared by all
thermodynamic quantities of the ideal gas. For instance, the chemical
potential obtained by differentiation of (1.77) and using the Stirling
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approximation’ is

1
u= —kT(aar]l\]Q) = kTIn(A’q") + kTlnp
T,V
= u®(T) + kTlnp (1.80)

where p=N/V is the number density and u°%(T) is the standard chemical
potential. The latter depends on the properties of the individual molecules in
the system. Note that the value of 1°(T) depends on the choice of units of p.
The quantity pA’, however, is dimensionless. Hence, u is independent of the
choice of the concentration units.

Another useful expression is that for the entropy of an ideal gas, which can be
obtained from (1.77):

S=klnQ+ kT<aln Q)
V,N

oT

Olng
oT

Clearly, the entropy in (1.81) depends on the properties of the specific gas. For

simple particles, this reduces to the well-known Sackur—Tetrode equation for the
entropy:

=3kN — NkIn(pA’q ") + kTN

(1.81)

S = 2kN — Nkln pA°. (1.82)

The dependence of both 1 and S on the density p through In p is confirmed by
experiment. We note here that had we used the purely classical partition
function [i.e., the integral excluding the factors NN in (1.60)], we would not
have obtained such a dependence on the density. This demonstrates the
necessity of using the correction factors #*YN! even in the classical limit of the
quantum mechanical partition function.

Similarly, the energy of an ideal-gas system of simple particles is obtained
from (1.78) and (1.82), i.e.,

E=A+TS=kTInpA’ — kTN + T(ZkN — NklnpA’) = 3kTN  (1.83)

which in this case is entirely due to the kinetic energy of particles.
The heat capacity for a system of simple particles is obtained directly
from (1.83) as

Cy = (0E/0T), = 3kN (1.84)

T In this book, we always use the Stirling approximation in the form In N!=NIn N— N. A better
approximation for small values of N is In N'=NIn N— N+1In (2zN).
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which may be viewed as originating from the accumulation of k/2 per trans-
lational degree of freedom of a particle. For molecules having also rotational
degrees of freedom, we have

Cy = 3kN (1.85)

which is built up of %kN from the translational, and %kN from the rotational
degrees of freedom. If other internal degrees of freedom are present, there are
additional contributions to Cy.

In all of the aforementioned discussions, we left unspecified the internal
partition function of a single molecule. This, in general, includes contributions
from the rotational, vibrational, and electronic states of the molecule.
Assuming that these degrees of freedom are independent, the corresponding
internal partition function may be factored into a product of the partition
functions for each degree of freedom, namely,

a(T) = q:(T)qy(T)qe(T). (1.86)

We shall never need to use the explicit form of the internal partition function in
this book. Such knowledge is needed for the actual calculation, for instance, of
the equilibrium constant of a chemical reaction.

The equation of state (1.79) has been derived theoretically for an ideal gas for
which (1.76) was assumed. In reality, equation (1.79) is obtained when the
density is very low, p~0, such that intermolecular interactions, though
existing, may be neglected.

We now present some corrections to the ideal-gas equation of state (1.79).
Formally, we write P as a power series in the density, presuming that such an
expansion exists,

_ @(ﬁP)> . z<62(ﬁP)>
PP p( Op T,p=0+2p Op? T,p=0+

= p+ By(T)p* + Bs(T)p* + - -- (1.87)

where the coefficients Bi(T) are evaluated at p =0, and hence are functions of
the temperature only.'

One of the most remarkable results of statistical mechanics is that it provides
explicit expressions for the coefficients in (1.87). The first-order coefficient is

1
By(T) = _W/{exp[_ﬁu(xl,xz)] — 1} dX,dX,

1
- —z(gnz)/{exp[—ﬁU(X)] ~ 1} dX. (1.88)

T The coefficients By(T), Bs(T), etc., are sometimes denoted by B, C, D, etc.



THE IDEAL GAS AND SMALL DEVIATION 19

This is known as the second virial coefficient. In the second step on the rhs of
(1.88), we exploit the fact that U(X, X;) is actually a function of six coordinates,
not twelve as implied in X;, X;; i.e., we can hold X fixed, say at the origin, and
view the potential function U(X;, X;) as depending on the relative locations and
orientations of the second particle, which we denote by X. Thus integrating over
X, produces a factor V87n? and the final form of B,(T) is obtained.

Note also that since the potential function U(X) has a short range, say of a
few molecular diameters, the integral over the entire volume is actually over
only a very short distance from the particle that we held fixed at the origin. This
is the reason why B,(T) is not a function of the volume.

Expression (1.88) can be further simplified when the pair potential is a
function of the scalar distance R= | R, — R, | . In this case, the integration over
the orientations produce the factor 87 and the integration over the volume can
be performed after transforming to polar coordinates to obtain

By(T) = —%/Ow{exp[(—ﬂU(R))] — 1}4nR*dR. (1.89)

Note that we chose infinity as the upper limit of the integral. In practice, the
integration extends to a finite distance of the order of a few molecular dia-
meters, i.e., the effective range of the interaction potential. Beyond this limit,
U(R) is zero and therefore the integrand becomes zero as well. Hence, the
extension of the range of integration does not affect the value of B,(T).

Of the virial coefficients, B,(T) is the most useful. The theory also provides
expressions for the higher order corrections to the equation of state. We cite
here the expression for the third virial coefficient,

1
By(T) = —W/{exp[—ﬁUs(Xsz,Xs)]
— exp[—BU(X1, X2) — BU(X5, X5)]
—exp[-pU(X,, Xz) — BU(X), X3)]
- ﬁU(XZ)X??)]

U(X1, X3)] + exp[—BU (X1, X3)]

[=BU( )
[=BU( )
— exp[—BU(X1, X3)
+ exp[—BU( )

[=BU( )

+ exp U X2,X3 ] — 1}dX2dX3 (190)

We see that this expression is fairly complicated. If the total potential energy is
pairwise additive, in the sense that

U3(X1)X21X3) = U(XDXZ) + U(XlaXS) + U(X27X3) (191)
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the integrand in (1.90) simplifies to'
1
B3(T) == —W/f(Xl,Xz, )f(Xl,X3)f(X2,X3)dX2dX3 (192)

where f, the so-called Mayer f-function, is defined by
f(Xi, X;) = exp[—pU(X;, X;)] — 1. (1.93)

Extending the same procedure for mixtures, say of two components, A and B
will give us the second virial coefficient for a mixture. The first-order correction
to the ideal-gas behavior of the mixture is

BP = pa+ pg + Baaps + Bespy + 2Bapapp + - (1.94)

In terms of the total density pr=pa+ pp, and the mole fraction x4 =pa/pr
(1.94) can be written as

ﬁP =PT + [BAAxi + BBBx123 + 2BABxAxB]p2T + .- (195)

where the term in the square brackets may be interpreted as the average second
virial coefficient of the mixture. B, is related to U,z by the same relation as B,
to Uin (1.88) or (1.89).

1.6 Suggested references on general
thermodynamics and statistical mechanics

There are many good textbooks on thermodynamics: Denbigh (1966, 1981),
Prigogine and Defay (1954) and Callen (1960).

Books on the elements of statistical thermodynamics: Hill (1960),
McQuarrie (1976) and Ben-Naim (1992).

Advanced books on statistical thermodynamics: Hill (1956), Miinster
(1969,1974) and Hansen and McDonald (1976).

 Note that in both (1.90) and (1.92), integration over X; has been performed so that the integrands
are not functions of X;.



TWO

Molecular distribution
functions

In this chapter, we introduce the concepts of molecular distribution function
(MDEF), in one- and multicomponent systems. The MDFs are the fundamental
ingredients in the modern molecular theories of liquids and liquid mixtures.
As we shall see, these quantities convey local information on the densities,
correlation between densities at two points (or more) in the system, etc.

We start with detailed definitions of the singlet and the pair distribution
functions. We then introduce the pair correlation function, a function which is
the cornerstone in any molecular theory of liquids. Some of the salient features
of these functions are illustrated both for one- and for multicomponent sys-
tems. Also, we introduce the concepts of the generalized molecular distribution
functions. These were found useful in the application of the mixture model
approach to liquid water and aqueous solutions.

In this chapter, we shall not discuss the methods of obtaining information
on molecular distribution functions. There are essentially three sources of
information: analyzing and interpreting x-ray and neutron diffraction patterns;
solving integral equations; and simulation of the behavior of liquids on a
computer. Most of the illustrations for this chapter were done by solving the
Percus—Yevick equation. This method, along with some comments on the
numerical solution, are described in Appendices B-F.

2.1 The singlet distribution function

We start with the simplest MDF, the singlet distribution function. The pre-
sentation here is done at great length, far more than is necessary, but, as we
shall soon see, fully understanding the meaning of this quantity will be essential
for the understanding the higher MDF as well as the generalized MDF.

In this and the following chapter, we shall always start with a one-component
system, then generalize for multicomponent mixtures. This is done mainly for
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notational convenience. We also discuss rigid molecules, i.e., molecules without
internal rotational degrees of freedom. The state of each molecule is fully
described by the six-dimensional vector X consisting of three locational
coordinates R= (x, y, z) and three orientational coordinates 2 = (¢, 0, ).
We start with a system consisting of N rigid particles at a given temperature
T, contained in volume V. The basic probability density for such a system is

essentially the Boltzmann distribution
exp[—fUn(XV)]
P(XN) = . 2.1
X = T ax T exp U] 1)
In general, an average of any function of the configuration, F(XM),inthe T, V,
N ensemble, is defined by

F= / : / dXNP(XN)F(x™). (2.2)

In some cases, we shall also use either the symbol (F) or F for an average

quantity. However, we shall refrain from using this notation whenever the
meaning of that quantity as an average is evident.

As a first and very simple example, let us calculate the average number of
particles in a region S within the system. (A particle is said to be in the region S
whenever its center falls within that region.) Let N(XY, S) be the number of
particles in S, given that the system is at a particular configuration X". One may
imagine taking a snapshot of the system at some instant and counting the
number of particles that happen to fall within S at that configuration. Hence,
N(X", S) is also referred to as a counting function. A two-dimensional illus-
tration is given in figure 2.1.

The average number of particles in S is, according to (2.2)

N(S) = // dXVP(XN)N(XN, ). (2.3)

This relation can be written in an alternative form which will turn out to be
useful for later applications.
Let us define the characteristic function
1 if R,’ €S
Ai(R;, S) = {o if R; ¢85. (2:4)
The symbol € means “belongs to.” Hence, A{R;, S) is unity whenever R; is
within S and zero elsewhere. The quantity N(X™, S) can be expressed as

N(xN,8) = ZN:Ai(Ri, S). (2.5)

Clearly, in order to count the number of particles within S, we have to check the
location of each particle separately. Each particle whose center falls within S will
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Figure 2.1. An arbitrary region S within the system of volume V. In the particular configuration shown
here, the number of particles in Sis 12.

contribute unity to the sum on the rhs of (2.5); hence, the sum counts the exact
number of particles in S, given a specific configuration X. Introducing (2.5)
into (2.3), we obtain the average number of particles in S:

N(S) = / : / dXNP(XN)iAi(R,-, S)
= EN: / / dXVP(X™)Ai(R;, S)
=N / e / dXNP(XM)A|(Ry, S). (2.6)

Since all the particles are equivalent, the sum over the index i produces N
integrals having the same magnitude. We may therefore select one of these
integrals, say i=1, and replace the sum by N times that specific integral. The
mole fraction of particles within S is defined as

x(8) = % = / : / dXN P(XN) Ai(Ry, S). (2.7)

x(S) is the average fraction of particles found in S. This quantity may also be
assigned a probabilistic meaning that is often useful. To see this, we recall that
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the function A;(R;,S) used in (2.7) has the effect of reducing the range of
integration from V to a restricted range which fulfills the condition: “R; being
located in S.” Symbolically, this can be written as

/ /dXNP (XM A (Ry, S) /R S/dXNP (xM)y =Pi(S).  (2.8)
1€

Thus, the integration over the entire volume V is reduced to the region for
which R, €8S.

We recall that P(X") is the probability density of the occurrence of the event
XV, i.e., that the N particles are found at the specific configuration Xj, ..., Xy
Therefore, integration over all the events X" for which the condition R, €S is
fulfilled gives the probability of the occurrence of the condition, i.e., P;(S) is the
probability that a specific particle, say number 1, will be found in S. From (2.7)
and (2.8) we arrive at an important relation:

x(S) = Pi(9), (2.9)

which states that the mole fraction of particles in S equals the probability that a
specific particle, say 1, will be found in S. [Of course, we could have chosen in
(2.9) any other specific particle other than particle 1.]

We now introduce the singlet molecular distribution function, which is
obtained from N(S) in the limit of a very small region S. First we note that
Ai(R;, S) can also be written as

Ai(R;, S) :/Sé(R,»—R’) drR, (2.10)

where J(R;— R’) is the Dirac delta function. The integral over 6(R;— R’) is
unity if R;€ S, and zero otherwise.
When S is an infinitesimally small region dR’, we have

Ai(R;,dR') = 6(R; — R') dR'. (2.11)
Hence, from (2.6) we obtain the average quantity
N
N(dR') = dR' / /dXNP (XN)> " S(R; (2.12)
i=1

The average local (number) density of particles in the element of volume at dR’
at R’ is now defined by

PRy =N ;”;’f') _ / .. / IXPXNY SR -R). (213)
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Table 2.1

Event Probability of the event
Particle 1 in dR’ PR dR'

Particle 2 in dR' PUR') dR

Particle N in dR F“’(R'ﬁ ar'

Note that dR’ is an element of volume dx'dy’dZ at R'. The quantity p"(R’) is
referred to as the singlet molecular distribution function.

The meaning of p'"(R’) as a local density will prevail in all our applications.
However, in some cases one may also assign to p"’(R’) the meaning of
probability density. This must be done with some caution, as will be shown
below. First, we rewrite (2.13) in the form

p(R) = N/- - / dXVP(XN)d(R, — R') = NPY(R)). (2.14)

The interpretation of PY(R") AR’ follows from the same argument as in the case
of Py(S) in (2.8). This is the probability of finding a specific particle, say 1, in dR’
at R'. Hence, P'V(R’) is often referred to as the specific singlet distribution
function.

The next question is: “What is the probability of finding any particle in dR'?”
To answer this question, we consider the events listed in Table 2.1.

Since all particles are equivalent, we have exactly the same probability for
each of the events listed on the left-hand side (lhs).

The event “any particle in dR’” means either “particle 1 in dR"” or “particle 2
in dR"”, ..., or “particle Nin dR’.” In probability language, this event is called
the union of all the events as listed above, and is written symbolically as

N
{any particle in dR'} = U{particle iin dR'}. (2.15)

i=1

It is at this point that care must be exercised in writing the probability of
the event on the lhs of (2.15). In general, there exists no simple relation
between the probability of a union of events and the probabilities of the
individual events. However, if we choose dR’ to be small enough so that no
more than a single particle may be found in dR’ at any given time, then all
the events listed above become disjoint (i.e., occurrence of one event pre-
cludes the possibility of simultaneous occurrence of any other event). In this
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case, we have the additivity relation for the probability of the union of the
events, namely:

Pr{any particle in dR'} = Z Pr{particle i in dR'}
=1
=> PU(R)dR
-1

= NPY(R) dR
= pW(R) dR. (2.16)

Relation (2.16) provides the probabilistic meaning of the quantity pM(R)dR',
which is contingent upon the choice of a sufficiently small element of volume
dR’'. The quantity p'"(R’) is referred to as the generic singlet distribution
function’. Clearly, the generic singlet distribution function is the physically
meaningful quantity. We can measure the average number of particles in a
given element of volume. We cannot measure the probability of finding a
specific particle in a given element of volume.

Caution must also be exercised when using the probabilistic meaning of
p" (R")dR'. For instance, the probability of finding a specific particle, say 1, in
a region S is obtained from the specific singlet distribution function simply by
integration:

P(S) = /S PY(R) dR. (2.17)

1»

This interpretation follows from the fact that the events “particle 1 in dR" and
“particle 1 in dR"” are disjoint events (i.e., a specific particle cannot be in two
different elements dR’ and dR” simultaneously). Hence, the probability of the
union is obtained as the sum (or integral) of the probabilities of the individual
events.

This property is not shared by the generic singlet distribution function, and

the integral

/ pV(R) dR (2.18)
S

does not have the meaning of the probability of the event “any particle in S.”
The reason is that the events “a particle in dR’” and “a particle in dR"”
disjoint events; hence, one cannot obtain the probability of their union in a

are not

' The adjectives “specific” and “generic” were introduced by Gibbs. Since the particles of a given
species are indistinguishable, only the generic MDF has physical meaning. However, the specific MDF
is an important step in the definition of MDFs. One first “labels” the particles to obtain the specific
MDF, then “un-labels” them to obtain the generic MDF.
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simple fashion. It is for this reason that the meaning of p'"’(R’) as a local density
at R’ should be preferred. If p"’(R’) dR’ is viewed as the average number of
particles in dR’, then clearly (2.18) is the average number of particles in S. The
meaning of pV(R") AR’ as an average number of particles is preserved upon
integration; the probabilistic meaning is not. A particular example of (2.18)
occurs when S is chosen as the total volume of the system, i.e.,

/ J(R)dR = N/ J(R)dR = (2.19)

The last equality follows from the normalization of p(l)(R’ ); i.e., the probability
of finding particle 1 in any place in V is unity. The normalization condition
(2.19) can also be obtained directly from (2.13).

In a homogeneous fluid, we expect that p(l)(R’ ) will have the same value at
any point R’ within the system. (This is true apart from a very small region near
the surface of the system, which we always neglect in considering macroscopic
systems.) Therefore, we write

pW(R') = const. (2.20)

and, from (2.19) and (2.20), we obtain

const. x / dR = N. (2.21)
%
Hence
N
pR) =T =p. (2.22)

The last relation is almost a self-evident result for homogenous systems. It
states that the local density at any point R’ is equal to the bulk density p. That
is, of course, not true in an inhomogeneous system.

In a similar fashion, we can define the singlet distribution function for
location and orientation, which by analogy to (2.14) is defined as

— // dXNP(XN)i o(X; — X')

—N/ /XNPXN (X, - X)

— npW (2.23)

Here P'(X’) is the probability density of finding a specific particle at a given
configuration X'.
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Again, in a homogeneous and isotropic fluid, we expect that

pW(X') = const. (2.24)
Using the normalization condition
/p<1>(x’)dx’ = N/P(l)(X’)dX’ =N (2.25)
we get
N p
W(x) = = 2.26
PIX) = e =g (2.26)

The connection between p'"(R’) and p'"(X’) is obtained simply by integration
over all the orientations:

pUR) = [ (x)def = p. (2.27)

2.2 The pair distribution function

In this section, we introduce the pair distribution function. We first present its
meaning as a probability density and then show how it can be reinterpreted as
an average quantity. Again, the starting point is the basic probability density
P(XM), (2.1), in the T, V, N ensemble. The specific pair distribution function is
defined as the probability density of finding particle 1 at X’ and particle 2 at X”.
This can be obtained from P(X") by integrating over all the configurations of
the remaining N — 2 molecules':

P (X, X") :// dXs...dXyP(X, X", X5, ..., XN).  (2.28)

Clearly, P (X', X") dX' dX” is the probability of finding a specific particle, say
1, in dX’ at X' and another specific particle, say 2, in dX” at X”. The same
probability applies for any specific pair of two different particles.

As in the case of the singlet MDF, here we also start with the specific pair
distribution function defined in (2.28). To get the generic pair distribution
function, consider the list of events and their corresponding probabilities in
table 2.2. Note that the probabilities of all the events on the left-hand column of
table 2.2 are equal.

T We use primed vectors like X’ and X”,... to distinguish them from the vectors X3, Xy, ...
whenever each of the two sets of vectors has a different “status.” For instance, in (2.28) the primed

vectors are fixed in the integrand. Such a distinction is not essential, although it may help to avoid
confusion.
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Table 2.2

Event Probability

Particle 1 in dX’ and particle 2 in dX” P2 (X', X")dX'dX"

Particle 1 in dX’ and particle 3 in dX” P2 (X', X")dX'dX"

Particle 1 in dX’ and particle N in dX” P2 (X!, X")dX'dX"

Particle 2 in dX’ and particle 1 in dX” P2 (X', X") dX' dX"

Particle N in @X’ and particle N— 1 in dX” P2 (X!, X"y dX' dX"
The event:

{any particle in dX’ and any other particle in dX"} (2.29)

is clearly the union of all the N(N — 1) events listed in table 2.2. However, the
probability of the event (2.29) is the sum of all probabilities of the events on the
left-hand column of table 2.2 only if the latter are disjoint. This condition can
be realized when the elements of volume dR’ and dR” (contained in dX’ and
dX", respectively) are small enough so that no more than one of the events in
table 2.2 may occur at any given time.

We now define the generic pair distribution function as

p (X', X")dX'dX" = Pr{a particle in dX’ and a different particle in dX"}

= ZPr{particle iin dX’ and another particle j in dX"}

7
= Z PA(X, X" dX' dX"
i#
=N(N-1)PY(X,X")dX'dX". (2.30)

The last equality in (2.30) follows from the equivalence of all the N(N—1)
pairs of specific and different particles. Using the definition of P (X, X) in
(2.28), we can transform the definition of p® (X', X”) into an expression
which may be interpreted as an average quantity:

p(z)(X/,X”)dX/dX”

:N(N—l)dX’dX”/-~-/dX3...dXNP(X’,X”,X3,...,XN)

—N(N—l)dX’dX”/---/Xm...dXNP(Xl,...,XN)5(X1—X’)é(XZ—X”.)



30 MOLECULAR DISTRIBUTION FUNCTIONS

N N

= dXx'dx" / : / dxNP(x™M) > "> " s(x; - X)s(X; - X"). (2.31)

=1 j=]
i#j /

In the second form of the rhs of (2.31), we employ the basic property of the
Dirac delta function, so that integration is now extended over all the vectors
X, ..., XN In the third form we have used the equivalence of the N particles, as
we have done in (2.30), to get an average of the quantity

N N
dx'dx"y " " 8(X; - X') 6(X; - X"). (2.32)
ERE
This can be viewed as a counting function, i.e., for any specific configuration X,
this quantity counts the number of pairs of particles occupying the elements
dX' and dX”. Hence, the integral (2.31) is the average number of
pairs occupying dX’ and dX”. The normalization of p®(X’, X") follows
directly from (2.31):

/ / dx'dx"p®(x',X") = N(N — 1) (2.33)

which is the exact number of pairs in V. As in the previous section, we note that
the meaning of p®(X’, X”) as an average quantity is preserved upon integra-
tion over any region S. This is not the case, however, when its probabilistic
meaning is adopted.

For instance, the quantity

/ / dx'dx"p®(x', X" (2.34)
S JS

is the average number of pairs occupying the region S. This quantity is, in
general, not a probability.

It is also useful to introduce the locational (or spatial) pair distribution
function, defined by

p?P(R,R") = / / e de"p?(x', x"), (2.35)

where integration is carried out over the orientations of the two particles.
Here, p*(R', R") dR’ dR" is the average number of pairs occupying dR’ and
dR" or, alternatively, for infinitesimal elements dR’ and dR”, the probability
of finding one particle in dR" at R’ and a second particle in dR” at R”. It is
sometimes convenient to denote the quantity defined in (2.35) by 5*(R’, R"),
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to distinguish it from the different function p(z)(X’ , X"). However, since we
specify the arguments of the functions there should be no reason for confusion
as to this notation.

2.3 The pair correlation function

We now introduce the most important and most useful function in the theory
of liquids: the pair correlation function. Consider the two elements of volume
dX' and dX” and the intersection of the two events:

{a particle in dX'} and {a particle in dX"}. (2.36)

The combined event written in (2.36) means that the first and the second events
occur i.e., this is the intersection of the two events.

Two events are called independent whenever the probability of their inter-
section is equal to the product of the probabilities of the two events. In general,
the two separate events given in (2.36) are not independent; the occurrence of
one of them may influence the likelihood, or the probability, of the occurrence
of the other. For instance, if the separation R= |R” — R’| between the two
elements is very small (compared to the molecular diameter of the particles),
then the occurrence of one event strongly affects the chances of the occurrence
of the second.

In a fluid, we expect that if the separation R between two particles is very
large, then the two events in (2.36) become independent. Therefore, we can
write for the probability of their intersection

p (X', X")dX'dX" = Pr{a particle in dX'} and {a particle in dX"}
= Pr{a particle in dX'} x Pr {a particle in dX"}
= pW(x"dx' pW(X")dX", for R— o0,  (2.37)

or in short,
pP (X, X") = pW(X)pM(X") = (p/87)*, R — o0 (2.38)

The last equality is valid for a homogeneous and isotropic fluid. If (2.38) holds,
it is often said that the local densities at X’ and X" are uncorrelated. (The limit
R — 00 should be understood as large enough compared with the molecular
diameter, but still within the boundaries of the system.)

For any finite distance R, factoring of p(z)(X’ ,X") into a product is, in
general, not valid. We now introduce the pair correlation function g(X’, X”)
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which measures the extent of deviation from (2.38) and is defined byT
P, X) = o (X)) (X g (X, X")
= (p/87*)’g(X’, X"). (2.39)
The second equality holds for a homogeneous and isotropic fluid. A related

quantity is the locational pair correlation function, defined in terms of the
locational pair distribution function, i.e.,

pP (R, R') = p’g(R,R). (2.40)
The relation between g(R’,R”) and g(X’, X") follows from (2.35), (2.39)
and (2.40):

/ /! 1 / /! ! 1
(R, R) :(8n2)2// a2 d2'g(x, X"), (2.41)

which can be viewed as the average of g(X’, X”) over all the orientations of the
two particles. Note that this average is taken with the probability distribution
d2'df"/(8n*)*. This is the probability of finding one particle in orientation
df2’ and a second particle in d2” when they are at infinite separation from each
other. At any finite separation, the probability of finding one particle in d$2’
and the second in df2” given the locations of R’ and R” is
p(z)(X/,X//)d.fZ/ i’
f p(z) (X',X”)d.fl/ 192"
! " / /!
_ 8 X )ast A" (2.42)
(87%)°¢(R, R")

It is only for |R” — R'| — oo that this probability distribution becomes d€2’
ae"|(8n*)>.

In this book, we shall only be interested in homogeneous and isotropic fluids.
In such a case, there is a redundancy in specifying the full configuration of the

Pr(2,2"/ R,R") d2' 2" =

pair of particles by 12 coordinates (X', X"). It is clear that for any configuration
of the pair X', X", the correlation g(X’, X”) is invariant to translation and
rotation of the pair as a unit, keeping the relative configuration of one particle
toward the other fixed. Therefore, we can reduce to six the number of inde-
pendent variables necessary for the full description of the pair correlation
function. For instance, we may choose the location of one particle at the origin
of the coordinate system, R’ = 0, and fix its orientation, say, at ¢' =0’ =/’ =0.
Hence, the pair correlation function is a function only of the six variables
X" — R”, Q'

T The correlation function as defined here differs from the correlation defined in probability theory.
In probability theory, it is defined as the difference between the probability of the intersection of the
two events and the product of the probabilities of each of the events. It is also normalized in such a way
that its range of variation is between —1 and +1.
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Similarly, the function g(R’,R”) is a function only of the scalar distance
R=|R” — R'|. For instance, R’ may be chosen at the origin R’ = 0, and because
of the isotropy of the fluid, the relative orientation of the second particle is of
no importance. Therefore, only the separation R is left as the independent
variable. The function g(R), i.e., the pair correlation function expressed
explicitly as a function of the distance R, is often referred to as the radial
distribution function. This function plays a central role in the theory of fluids.

The generalization to multicomponent systems is quite straightforward.
Instead of one pair correlation g(X’, X”), we shall have pair correlation func-
tions for each pair of species a.ff. For instance, if A and B are spherical particles,
then we have three different pair correlation functions g44(R), gap(R) = gga(R)
and ggp(R). We shall describe these in more detail in section 2.9.

2.4 Conditional probability and conditional density

We now turn to a somewhat different interpretation of the pair distribution
function. We define the conditional probability of observing a particle in dX” at
X", given a particle at X', by

p(2>(X’,X") dX/ dX//
pW(X') dX'
= pW(X")g(X', X") dX" (2.43)

p(X///X/) dx// —

The last equality follows from the definition of g(X’, X”) in (2.39). Note that
the probability of finding a particle at an exact configuration X” is zero, which
is the reason for taking an infinitesimal element of volume at X”. On the other
hand, the conditional probability may be defined for an exact condition: “given a
particle at X’.” This may be seen formally from (2.43), where dX’ cancels out
once we form the ratio of the two distribution functions. Hence, one can
actually take the limit dX’ — 0 in the definition of the conditional probability.
What remains is a conditional probability of finding a particle at X”, given a
particle at exact configuration X'.

We recall that the quantity p"(X”) dX” is the local density of particles at X"
We now show that the quantity defined in (2.43) is the conditional local density
at X", given a particle at X’. In other words, we place a particle at X’ and view
the rest of the N— 1 particles as a system subjected to the field of force pro-
duced by the particle at X'. Clearly, the new system is no longer homogeneous,
nor isotropic. Therefore, the local density may be different at each point of
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the system. To show this we first define the binding energy, B;, of one particle,
say 1, to the rest of the system by

N
Un(X1,...» Xn) = Uv1(Xos .., XN) + Z U (X1, X))
j=2

= Uy-1 + Bi. (2.44)

In (2.44), we have split the total potential energy of the system of N particles
into two parts: the potential energy of the interaction among the N — 1 particles
and the interaction of one particle, chosen as particle 1, with the N— 1 par-
ticles. Once we fix the configuration of particle 1 at Xj, the rest of the system
can be viewed as a system in an “external” field defined by B;.

From the definitions (2.1), (2.23), (2.31) and (2.43), we get

iy NIN=1) [ [dX" exp[- BUN(XV)]0 (X1 — X')0(X, — X")
p(X/X) = N [ [ dXN exp[—BUx(XN)]5(X, — X)
(N1 [ [dX,...dXyexp[~BUn(X, Xa.. ., XN)]O(Xs — X)
B [ [dX,...dXyexp[—BUn(X', X2, ..., XN)]
=(N- 1)/~--/dX2...dXN P*(X', X2, ..., XN)8(X, — X")

(2.45)

where P*(X’, X, ..., Xy) is the basic probability density of a system of N— 1
particles in an “external” field produced by a particle fixed at X/, i.e.,

exp(—fUn-1 — fB1)
[---[dX,...dXyexp(—BUn_1 — fBi)’

We now observe that relation (2.45) has the same structure as relation (2.23)
but with two differences. First, (2.45) refers to a system of N— 1 instead of N
particles. Second, the system of N — 1 particles is in an “external” field. Hence,
(2.45) is interpreted as the local density at X" of a system of N— 1 particles
placed in the external field B;. This is an example of a conditional singlet
molecular distribution function which is not constant everywhere.

Similarly, for the locational pair correlation function, we have the relation

p(RY/R) = pg(R,R), (2.47)

where p(R"/R’) is the conditional average density at R” given a particle at R'.
In the last relation, the pair correlation function measures the deviation of the

P(X,X5,...,XN) = (2.46)

local density at R”, given a particle at R’ from the bulk density p. In Appendix F
we present another expression for the correlation function in terms of local
fluctuation in the density. Note again that in a multicomponent system, we
have several different conditional densities, e.g., the conditional density of A at
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a distance R from an A-particle, the conditional density of A at a distance R
from a B-particle, etc.

2.5 Some general features of the radial
distribution function

In this section, we illustrate the general features of the radial distribution
function (RDF), g(R), for a system of simple spherical particles. From the
definitions (2.31) and (2.39) (applied to spherical particles), we get
N(N—=1) [---[dR;...dRyexp[—-fUx(R,R',Rs, ..., Ry)]
p? J---JdRy...dRyexp[—BUN(Ry,...,Ry)]
(2.48)

g(Rl, R//) —

A useful expression, which we shall need only for demonstrative purposes, is
the density expansion of g(R’, R"), which reads'

S(R,R) = exp[~U(R, R)|{1 + BR,R')p+ C(R,R")p* + - }
(2.49)

where the coefficients B(R’, R"), C(R’, R"), etc., are given in terms of integrals
over the so-called Mayer f-function, defined by

f(R,R") = exp[-BU(R,R")] — 1. (2.50)
For instance, the expression for B(R’, R") is
B(R,R") = /f(R’, R3;)f(R',R;) dRs. (2.51)
v

We now turn to some specific cases.

2.5.1 Theoretical ideal gas

A theoretical ideal gas is defined as a system of strictly noninteracting particles.

The RDF for such a system can be obtained directly from definition (2.48). With

Un= 0 for all configurations, the integrations in (2.48) become trivial and we get

N(N—1)[---[dRs...dRy N(N—1)VN=2
p2  [---[dR,...dRy p2 VN

g(R,R") = (2.52)

T See, for example, Hill (1956). We shall not need this expansion in p of the pair correlation
function. However, it should be noted that this expansion is derived in an open system, i.e., using the
grand partition function. In a closed system, we always have an additional term of the order of N~ '.
See Appendix G for details.
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or equivalently

g(R) =1 —I\%- (2.53)

As is expected, g(R) is practically unity for any value of R. This behavior reflects
the basic property of an ideal gas i.e., the absence of correlation follows from
the absence of interaction. The term N~ ' is typical of a closed system'. At the
thermodynamic limit N— oo, V— 00, N/V=const., this term, for most
purposes, may be dropped. Of course, in order to get the correct normalization
of g(R), one should use the exact relation (2.53), i.e.,

p /V (R, R')dR' = p /V 01— (1/N)dR' = N — 1, (2.54)

which is exactly the total number of particles in the system, excluding the one
fixed at R'.

It should be clear that the pair correlation function has, in general, two
contributions. One is due to interaction, which in this case is unity. The second
arises from the closure condition with respect to N. Placing a particle at a fixed
position changes the conditional density of particles everywhere in the system
from N/Vinto (N — 1)/V. Hence, the pair correlation due to this effect is

o(®) = NIV 1

=1-——.
N/V N
More on this aspect of the pair correlation can be found in Appendix G.

2.5.2 Very dilute gas

For any real gas at very low densities, p — 0, we may neglect all powers of p in
the density expansion of g(R), in which case we get, from (2.49)}

g(R) = exp[-BU(R)], p—0, (2.55)
where U(R) is the pair potential operating between two particles. Relation
(2.55) is essentially the Boltzmann distribution law. Since at low densities
encounters in which more than two particles are involved are very rare, the pair
distribution function is determined solely by the pair potential.

A direct way of obtaining (2.55) from the definition (2.48) (and not through
the density expansion) is to consider the case of a system containing only two
particles.

T In an open system, g(R) is everywhere unity for a theoretical ideal gas. For more details, see
Appendix G.
Again, we note that since (2.49) is derived for the open system, also (2.55) is valid for an open
system.
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Letting N=2 in (2.48), we get

, 2.56
p2 Z2 ( )

where Z, is the configurational partition function for a system of two particles
in V.
Since we choose U(R) — 0 as R— 00, we can use (2.56) to form the ratio

8(R)

= =exp|—pU(R)]. 2.57

oy = el pUR) (2.57)
Assuming that as R— oo, g(00) is practical unityT, we get from (2.57)

8(R) = exp[-BU(R)], (2.58)

which is the same as (2.55). Note that (2.55) and (2.58) have been obtained for
two apparently different systems (p — 0 on one hand and N=2 on the other).
The identical results for g(R) in two cases reflects the fact that at very low
densities, only interactions between pairs determine the behavior of g(R).
The form of g(R) as p — 0 for a system of hard spheres (HS) and Lennard-
Jones (LJ) particles is depicted in figure 2.2. It is seen that for HS particles as
p — 0, correlation exists only for R< g. For R> g, the function g(R) is iden-
tically unity. For L] particles, we observe a single peak in g(R) at the same point
for which U(R) has a minimum, namely at R= 216
the behavior of g(R) which are common to any gas. First, at large distance

0. There are two features of

R— 00, g(R) — 1; this is normally attained for R on the order of a few mole-
cular diameters. Second, for R < g, g(R) — 0, where ¢ is a length referred to as
the molecular diameter of the particles. For L] particles U(R=¢) =0.

It should be noted that for any gas with any intermolecular interactions,
when p — 0, we obtain the ideal-gas behavior. For instance, the equation of
state has the typical and well-known form. One should distinguish between the
ideal-gas behavior of a real gas as p — 0, and a theoretical ideal gas which is a
model system, where no interactions exist. Such a system does not exist;
however, the equation of state of such a model system is the same as the
equation of state of a real system as p — 0.

In this section, we have seen that in the limit p — 0, the pair correlation is
(2.55). This is different from the theoretical ideal gas case obtained in section
(2.5.1). There, the form of g(R) is valid for any density provided that all

T By R — oo we mean here a very large distance compared with the molecular diameter of the
particles, but still within the macroscopic system of volume V. The assumption that g(co) =1 is valid
for an open system. In a closed system, we have an additional N~ ' term. This is negligible whenever we
are interested in g(R) itself. It becomes important when we integrate over the entire volume of the
systems. See also Appendix G.
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Figure 2.2. The form of the pair correlation function g(R) at very low densities (o — 0): (a) for hard
spheres with ¢ = 1; (b) for Lennard-Jones particles with parameters ¢ =1 and &/kT=0.5.

intermolecular interactions are strictly zero. In (2.55) we have the limit of a
ratio p'"(R'/R") and p'V(R’). Both of these densities tend to zero at p — 0, but
their ratio is finite at this limit.

2.5.3 Slighty dense gas

In the context of this section, a slightly dense gas is a gas properly described by
the first-order expansion in the density, i.e., up to the linear term in (2.49).
Before analyzing the content of the coefficient B(R’, R”) in the expansion of
g(R), let us demonstrate its origin by considering a system of exactly three
particles. Putting N=3 in (2.48), we get

6 [ dRs exp[-fU(R,R",R;)]
R,R") =— 2.59
S(R.R) =, ~ (2.59)
where Z; is the configurational partition function for a system of three

particles.
Assuming pairwise additivity of the potential energy Us, and using the
definition of the function fin (2.50), we can transform (2.59) into

¢(R,R") = §exp[—ﬁU<R',R">]

» JdRs[f(R,Rs)f(Rs,R") + f(R,Rs) + f(R", R3) + 1] .

2 (2.60)
Noting again that U(R’, R”) =0 for R= |R” — R'| — o0, we form the ratio
g(R)
= =exp|—PU(R
£ — enl-pU)
degf(R/,Rg,)f(R_?,,R”) +2 de3f(R’,R3) +V (2.61)

“limp_| [ dRof (R, Rs)f (Rs, R") + 2 [ dRof (R, R3) + V]’
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Clearly, the two integrals over f(R’, R;) and f(R”, Rs) are equal and inde-
pendent of the separation R. Denoting by

c— /V dR; f(R, Rs) = /V iR, [(R',Rs) (2.62)

and noting that since f{R) is a short-range function of R, the integral in (2.62)
does not depend on V, for macroscopic V. On the other hand, we have the
limiting behavior

lim / dR, f(R, R)f(Rs, R') = 0, (2.63)

R—o0

which follows from the fact that two factors in the integrand contribute to the
integral only if R; is close simultaneously to both R” and R”, a situation that
cannot be attained if R= |R” — R'| — oc.

Using (2.62), (2.63), and (2.51), we can now rewrite (2.61) as

B(R,R")+2C+V

S — expl-pUR) =T L

(2.64)

Since C is constant, it may be neglected, as compared with V; in the thermo-
dynamic limit. Also, assuming that g(co) is practically unity,’ we get the final
form of g(R) for this case:

¢(R) = exp[-BU(R)][1+ (1/V)B(R,R")], R=|R"—R|.  (2.65)

Note that 1/V, appearing in (2.65), replaces the density p in (2.49). In fact, the
quantity 1/V may be interpreted as the density of “free particles” (i.e., the
particles besides the two fixed at R’, R”) for the case N=3.

The derivation of (2.65) illustrates the origin of the coefficient B(R’, R"),
which in principle results from the simultaneous interaction of three particles
[compare this result with (2.58)]. This is actually the meaning of the term
“slightly dense gas.” Whereas in a very dilute gas we take account of interac-
tions between pairs only, here we also consider the effect of interactions among
three particles, but not more. For hard spheres (HS), we can calculate B(R’, R”)
exactly; in this case we have

| -1 forR<o
f(R)_{ 0 forR>¢o (2.66)

Thus, the only contribution to the integral in (2.51) comes from regions in which
both f (R’,R;) and f (R”,R;) are equal to —1. This occurs for R< 20. The
integrand vanishes when either |R" — Rs;| >0 or |R” — Rs;| > o. Furthermore,
for |R"—R'| <o, the exponential factor in (2.65), exp[— fU(R',R")],

T Note again that this is strictly true for an open system. See Appendix G.
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Figure 2.3. The form of g(R) for hard-
sphere particles (¢ = 1), using the first- 0.5f
order expansion in the density (equation
2.68). The three curves correspond to ‘ \ . \ |
p=0.1 (lower), p = 0.4 (intermediate), 05 1 15 2 25 3
and p = 0.9 (upper). R

vanishes. Thus, the only region of interest is ¢ < R<2¢. Since the value of
the integrand in the region where it is nonzero equals (—1) x (—1)=1, the
integration in (2.51) reduces to the geometric problem of computing the volume
of the intersection of the two spheres of radius ¢. The solution to this problem is
well known." The result is

B(R) = 4”36 [1 —Z ? +% (g) ] (2.67)

Using (2.67), we can now rewrite explicitly the form of the radial distribution

function for hard spheres at “slightly dense” concentration:

0 for R<o
4ng3 3R 1 (R\’
Ry =<1 -4+ —(= fi R<2 2.68
$(R) TP [ 4a+l6<a>] oro<R<2s  (2.68)
1 for R >20.

The form of this function is depicted in figure 2.3.

2.5.4 Lennard-Jones particles at moderately high densities

Lennard-Jones (LJ) particles are model particles, the behavior of which
resembles the behavior of real, simple spherical particles such as argon. In this
section, we present some further information on the behavior of g(R) and its
dependence on density and on temperature. The L] particles are defined by
means of their pair potential as

Uy (R) = 4 [(%) v (%)6] . (2.69)

Figure 2.4 demonstrates the variation of g(R) as we increase the density. The
dimensionless densities po” are recorded next to each curve. At very low

T See, for instance, Ben-Naim (1992), page 279.
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Figure 2.4. Dependence of the pair correlation function g(R) for the L J particles on the number density.
The density p is indicated next to each curve in the dimensionless quantity pa°. We choose ¢ =1 and
&/kT=0.5in the L Jpotential. All the illustrations of g(R) for this book were obtained by numerical solution
of the Percus—Yevick equation. See Appendix E for more details.



42 MOLECULAR DISTRIBUTION FUNCTIONS

densities, there is a single peak, corresponding to the minimum in the potential
function (2.69). The minimum of U (R) is at R, = 2¢0. Hence, the first
maximum of g(R) at low densities is also at Ry;,. At successively higher dens-
ities, new peaks develop which become more and more pronounced as the
density increases. The location of the first peak is essentially unchanged, though
its height increases steadily. The locations of the new peaks occur nearly at
integral multiples of g, i.e., at R~ ¢, 20, 307, ... This feature reflects the pro-
pensity of the spherical molecules to pack, at least locally, in concentric and
nearly equidistant spheres about a given molecule. This is a very fundamental
property of simple fluids and deserves further attention.

Consider a random configuration of spherical particles in the fluid. An
illustration in two dimensions is depicted in figure 2.5. Now consider a
spherical shell of width do and radius o, and count the average number of
particles in this element of volume. If the center of the spherical shell has been
chosen at random, as on the rhs of figure 2.5, we should find that on the
average, the number of particles is p47wzdaT. On the other hand, if we choose
the center of a spherical shell so that it coincides with the center of the particle,
then on the average, we find more particles in this element of volume. The
drawing on the left illustrates this case for one configuration. One sees that, in
this example, there are more particles in the element of volume on the left as
compared with the elements of volume on the right. Similarly, we could have
drawn spherical shells of width do at 26 and again have found excess particles
in the element of volume, the origin of which has been chosen at the center of
the particle. The excess of particles at the distances of about g, 20, 30, etc., from
the center of a particle is manifested in the various peaks of the function g(R).
Clearly, this effect decays rapidly as the distance from the center increases.
We see from figure 2.4 that g(R) is almost unity for R > 4¢. This means that
correlation between the local densities at two points R and R” extends over a
relatively short range, of a few molecular diameters only.

At short distances, say in the range of ¢ <R < 5g, in spite of the random
distribution of the particles, there is a sort of order as revealed by the form
of the RDF. This order is often referred to as the local structure of the liquid.
The local character of this structure should be noted. It contrasts with the
long-range order typical of the solid state.

From the definition of g(R), it follows that the average number of particles in
a spherical shell of radius R (from the center of a given particle) and width dR is

N(dR) = pg(R) 4nR* dR. (2.70)

T This is for the three-dimensional case. In the two-dimensional case illustrated in the figure, the
average number of particles in a ring of width do is p2nods.
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Figure 2.5. A random distribution of spheres in two dimensions. Two spherical shells of width do with
radius o and 2 are drawn (the diameter of the spheres is ¢). On the left, the center of the spherical shell
coincides with the center of one particle, whereas on the right, the center of the spherical shell has been
chosen at a random point. It is clearly observed that two shells on the left are filled by centers of particles
to a larger extent than the corresponding shells on the right. The average excess of particles in these shells,
drawn from the center of a given particle, is manifested by the various peaks of g(R).

100

Figure 2.6. The average coordination number Ny as a function of Ry, (equation 2.71) for different
densities pa> and &/kT=0.5. The curves from the lowest upwards correspond to p =0.1, 0.2, 0.4, 0.6,
0.8 and 1.

Hence, the average number of particles in a sphere of radius Ry, (excluding the
particle at the center) is

Ry

Nen (Ry) = p /0 ¢(R) 4nR* dR. (2.71)

The quantity Nen(Ry) may be referred to as the coordination number of
particles, computed for the particular sphere of radius R,z A choice of
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0 < Ry < 1.5¢ will give a coordination number that conforms to the common
meaning of the concept of the first coordination number. Figure 2.6 illustrates
the dependence of the coordination number on Ry, for L] particles, for different
densities p03 (and constant &/kT=0.5). At large values of Ry, the function
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Figure 2.7. The functions G(Ry,) defined in (2.72) as a function of Ry, for the same system and the same
densities as in figure 2.4.
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takes the form p3nR>. Figure 2.7 shows the integrals
Ry
G(Ry) = / [g(R) — 1]4nR* dR (2.72)
0

at several densities, corresponding to the values in figure 2.4. The quantity
pG(Ryy) is the excess' in the average number of particles in a spherical volume
of radius R, centered at a given particle, relative to the average number of
particles in a random sphere of the same radius. Note that all curves start at
zero at Ry;=0. At large R, of the order of a few molecular diameters, the
function G(R,,) tends to a constant value.

The limit

RMHOO

G= lim G(RM):/Oc[g(R)—l]sz2 dR (2.73)

is the so-called Kirkwood—Buff integral. We shall encounter these integrals very
frequently throughout this book.

Figure 2.8 shows one of the functions G(R,) and the corresponding pair
correlation functions. Note that the maxima and minima of the function

3
2-
p=0.8
']-
. I
1tk
oL
0 2 4 6 8 10

Figure 2.8. The combined curves of g(R), upper curve, and G(Ry), lower curve, for the case of p =0.8
and e/kT=0.5.

A negative excess is considered a deficiency.
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G(Ryy) correspond to points at which g(R) = 1. Note also that the oscillations in
G(Ryy) are quite pronounced even at distances where g(R) looks almost flat on
the scale of this figure.

In figure 2.9 we show the variation of g(R) with &/kT for a given density
p = 0.8. The values of ¢ in units of kT are indicated near each curve. Clearly, one
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Figure 2.9. Variation of g(R) with ¢ (in units of k7) for a specific density p =0.8.



SOME GENERAL FEATURES OF THE RADIAL DISTRIBUTION FUNCTION 47

can interpret the variation of g(R) either as a result of changing ¢ (in units of
kT), or as changing the temperature T (in units of &/k).

Finally we show two illustrations of g(R) for real liquids, first, figure 2.10 for
liquid argon (drawn as a function of the reduced distance R* = R/3.5). Clearly
the general behavior is similar to the LJ fluid. It is also shown in the figure
that the theoretical curve, obtained from the solution of the Percus—Yevick
equation, is almost indistinguishable from the experiment curve.

The second, figure 2.11, shows g(R) for H,O and D,O at 4 ° C. Note that the
two curves are almost indistinguishable on the scale of the figure. In water we
see a second peak of g(R) at 4.5 A, which indicates a high degree of “structure”
in this liquid. For a normal, spherical particles of diameter 2.8 A we would have
expected a second peak at about 5.6 A.

g(R) for argon

Figure 2.10 The pair correlation function for g(R*) for liquid argon (at 84.25 K and 0.71 atm) with
R* = R/3.5. The dotted curve is experimental values provided by N.S. Gingrich (to which the author is very
grateful). The solid curve is a solution of the Percus—Yevick equation with parameters ¢ =3.54,
&/kT=1.39 and pa>=0.85 (for details see Appendix E). The theoretical and experimental curves are
almost indistinguishable.

g(R) for H,0-D,O

-2

Figure 2.11 The pair correlation function for H,0 and D,0 at 4° C and 1atm, as a function of R (in A).
The two curves are almost indistinguishable at this scale (based on data provided by A.N. Narten to which
the author is very grateful).
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2.6 Molecular distribution functions in the grand
canonical ensemble

In the previous section, we introduced the MDF in the canonical ensemble, i.e.,
the MDF in a closed system with fixed values of T, V, N. Similarly, one can define
the MDF in any other ensemble, such as the T, P, N ensemble. Of particular
interest, for this book, are the MDFs in the grand canonical ensemble, i.e., the
MDF pertaining to an open system characterized by the variables T, V, . The
fundamental probability in the grand canonical ensemble is

P(N) = T, ;/(:lr\r )‘ffi)[ﬁum, (2.74)

where Q (T, V, N) and Z (T, V, u) are the canonical and the grand canonical
partition functions in the two ensembles, respectively. P(N) is the probability of
finding a system in the T, V, u ensemble with exactly N particles.

The conditional nth-order MDF of finding the configuration X", given that
the system has N particles, is'

N [f dX,y ... dXy exp[—BUn(XN))]
(N — n)! J--] dXY exp[-BUN(XY)]

This quantity is defined for n < N only. The nth-order MDF in the T, V, u
ensemble is defined as the average of (2.75) with the weight given in (2.74), i.e.,

Pl (X7 =3 P(N) o) (X/N)

N>n

E & (N —n)!

y Q(T,V,N)exp(BuN) [-+-[ dX,1...dXyexp[—BUy (XV)]
ZN '

Pl (X"/N) =

(2.75)

(2.76)

The bar over p(") (XN) denotes the average in the T, V, u ensemble’. Recalling
that the canonical partition function is

Q(T, V.N) = (¢"/N!)Zy (2.77)

and denoting by A the absolute activity which is related to the chemical
potential by

4 = exp(Bu), (2.78)

' For more details on this and other expressions in this section, see Ben-Naim (1992).
 We use either an over-bar or the brackets ( ) to denote averages in the open system.
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we can rewrite (2.76) as

Z M // dX 1 ... dXyexp[—BUy (XV)].

pi) (X7) =
& (N —n)!

[ —

(2.79)

The normalization condition for p(® (X") is obtained from (2.76) by
integrating over all the configurations X":

// dax" o (x7) = 3" P(N) (NI\_”n)!:<(Nli!n)!>. (2.80)

N>n

Two simple important cases are the following. For n=1, we have
/Xm pM (X)) = (N!/(N —1)!) = (N), (2.81)

which is simply the average number of particles in a system in the T, V, u
ensemble (compare this with (2.19) in the T, V, N ensemble). Using essentially
the same arguments as in section 2.1, we get for a homogeneous and isotropic
system

N) _p
(X)) = { —
P (X) 8n2V  8m?,

which is the same as in (2.26) but with the replacement of the exact N by the

average (N).
For n=2, we get from (2.80)

// dX,dX> P (X0, X5) = (NV/(N — 2)1) = (N(N — 1))
= (N?) — (N). (2.83)

(2.82)

As in the T, V, N ensemble, one may introduce correlation functions in the 7, V,
u ensemble. Of particular importance is the pair correlation function defined by

pP (X1,X0) = p0) (X1) ) (X3) g (X0 Xo).  (2.84)

One important property of g(X;,X>), defined in the T, V, u ensemble, is its
limiting behavior at low densities, i.e.,

X0 X0) =2 exp[-BUX1, X5)] (2.85)

which is strictly true without additional terms on the order of (N) ~'. Also for
the (theoretical) ideal gas, where U(X;, X;) =0, (2.85) reduces to

See also Appendix G.
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2.7 Generalized molecular distribution functions

We present here a few examples of generalized molecular distribution functions
MDFs (see Ben-Naim 1973a). Of particular interest is the singlet GMDF. These
have been found very useful to establish a firm basis for the mixture model
approach to any liquid (Ben-Naim 1972a, b, and 1973b, 1974), and in particular
to aqueous solutions. It also provides some new relationships between MDFs and
thermodynamic quantities. These will be presented in the next chapter.

The general procedure of defining the generalized MDF is the following. We
recall the general definition of the nth-order MDF, say in the T, V, N ensemble,
which for a system of spherical particles is written in the following two
equivalent forms:

N!
,O(n) (Sl’-”)sn>:W/”'/anJrl”-dRNP(Sl)--'asn;RnJrl’”wRN)

_Z Z/ /dRN P(RY)

=1 i,=1

WFipFE
X [0(R;, — 81) -+ 3(R;, —S,)]. (2.87)

Here, P(RY) is the basic probability density in the T, V, N ensemble. In the
first form on the rhs of (2.87), we have made the distinction between fixed
variables S, ..., S, and dummy variables R, , 1,..., Rn. The latter undergo
integration. The second form on the rhs has the form of an average quantity of
the function in the squared brackets. We first recognize that the squared
brackets in the integrand comprise a stipulation on the range of integration,
i.e., they serve to extract from the entire configurational space only those
configurations (or regions) for which the vector R; attains the value Sy, ... and
the vector R; attains the value §,.

2.7.1 The singlet generalized molecular distribution function

In this section, we present a special case of the generalization procedure out-
lined above. Consider the ordinary singlet MDEF:

N
W(s))ds, = dSl/ /dRN P(RY) >~ 5(Ri — 1)
i=1

=N dS, // dRNP(RN) §(R, — §)). (2.88)
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Here, NL(l) (81) dS, is the average number' of particles occupying the element
of volume dS;. For the present treatment, we limit our discussion to spherical
molecules only. As we have already stressed in section 2.1, the quantity defined
in (2.88) can be assigned two different meanings. The first follows from the first
form on the rhs of (2.88), which is an average quantity in the T, V, N ensemble.
The second form on the rhs of (2.88) provides the probability of finding
particle 1 in the element of volume dS,. Clearly, this probability is given by
NV (8,)dS,/N.

Let us now rewrite (2.88) in a somewhat more complicated way. For each
configuration R", we define the property of the particle i as

Li(RY) = R,. (2.89)

The property of the i-th particle, defined in (2.89), is the location of particle i,
giving a configuration R" which is simply R;. This is the reason for using the
letter L in the definition of the function L; (RY).

Next, we define the counting function of the property L by

N
N (RY, 81)ds = > S[Li(RY) — 8,1, (2.90)

i=1

This is the number of particles whose property L attains a value within 4§, at
S1, given the configuration RY. The average number (here in the T, V, N
ensemble) of such particles is

NY(8,)ds, = <NL“>(RN, sl)> ds,

N

:dSl/---/ dRNP(RY) Y " S[Li(RN) — )] (2.91)
i—1
which is the same as (2.88).
We present a few illustrative examples of properties that may replace L in
(2.90) and (2.91), and which are of interest in the theory of liquids and solutions.

2.7.2 Coordination number

A simple property which has been the subject of many investigations is the
coordination number (CN). We recall that the average coordination number
can be obtained from the pair distribution function (section 2.5). Here, we are
interested in more detailed information on the distribution of CN.

! Here we use the letter N rather than p for the density of particles. This is done in order to unify the
system of notation for the continuous as well as discrete cases that are treated in this section.
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Let R be a fixed number, to serve as the radius of the first coordination shell.
If o is the effective diameter of the particles of the system, a reasonable choice of
Rc for our purposes could be ¢ < Rc < 1.50. This range for R¢ is in conformity
with the meaning of the concept of the radius of the first coordination sphere
around a given particle. In what follows, we assume that R had been fixed, and
we omit it from the notation.

The property to be considered here is the CN of the particle i at a given
configuration R of the system. This is defined by

N
C/(RY) = > H(IR - R - Rc), (2.92)
=Lt
where H(x) is a unit step function, defined as
0 if x>0
H(x)_{l if x < 0. (293)

Each term in (2.92) contributes unity whenever | R;— R;| < R, i.e., whenever
the center of particle j falls within the first coordination sphere of particle i.
Hence, C(R") is the number of particles (j# 1) that falls in the coordination
sphere of a particle i for a given configuration R". Next, we define the counting
function for this property by

N

N (RY,K) =Y 9[Ci(RY) — K] (2.94)

i1
Here, we have used the notation é(x— K) for the Kronecker delta function,
instead of the more common notation J, g, for the sake of unity of notation.
The meaning of 6 as a Dirac or Kronecker delta should be clear from the
context. In the sum of (2.94) we scan all the particles (i=1,2,..., N) of the
system at a given configuration R". Each particle whose CN is exactly K con-
tributes unity to the sum (2.94), and zero otherwise. Hence, the sum in (2.94)
counts all particles whose CN is exactly K for the particular configuration R".
The average number of such particles is

N (K) = (NO(RY, K) )

RN
N[ / dRVP(RY) 5[C,(RY) — K]. (2.95)

We can also define the following quantity:

N (K)

XC(K> = N

_ / / dRVP(RY) S[C,(RY) — K] (2.96)
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From the definition of Ng)(K ) in (2.95), it follows that x(K) is the mole
fraction of particles whose coordination number is equal to K. On the other
hand, the second form on the rhs of (2.96) provides the probabilistic meaning
of x(K); i.e., this is the probability that a specific particle, say 1, will be found
with CN equal to K. The quantity x-(K) can be viewed as a component of
a vector

xc = (xc(0), xc(1), -...,). (2.97)

This vector gives the “composition” of the system with respect to the CN, i.e.,
each component is the mole fraction of particles with a given CN. The average
CN of particles in the system is given by

= i Kxc(K). (2.98)

We also use this example to demonstrate that changes in the condition can be
achieved easily. For instance, with the same property (CN), we can ask for the
average number of particles whose CN is less than or equal to, say, five. This is
obtained from (2.95):

J(K < 5) ZN V(K (2.99)

The CN, as defined above, may be viewed as a property conveying the local
density around the particles. Another quantity conveying a similar meaning will
be introduced in section 2.7.4.

2.7.3 Binding energy

An example of a continuously varying property is the binding energy (BE). This
is defined for particle i and for the configuration R" as follows:

Bi(RN) = UN(Rlx >Ry, Ri) Ri+1’ cee >RN)
~ Uv_i(Riy...,Ri,Risr, ..., Ry). (2.100)

This is the work required to bring a particle from an infinite distance with
respect to all the other particles, to the position R;. For a system of pairwise
additive potentials, (2.100) is simply the sum
N
B(RY) = Y  U(R,R)). (2.101)

J=1

! Note that (K) as defined in (2.98) coincides with the definition of the average CN given in section
2.5 provided that we choose R in this section to be the same as Ry, in section 2.5.
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The counting function corresponding to this property is

N(l)(RN, v)dv = deé (RNY — v, (2.102)
i=1
which is the number of particles having BE between v and v+ dv for the
specified configuration R". Note that since v is a continuous variable, the
o-function in (2.102) is the Dirac delta function. The average number of
particles having BE between v and v+ dv is thus

N (v) dv = dv <Z(S Bi(RV) — v > (2.103)

The corresponding mole fraction is

xp(v) dv = ————, (2.104)

With the normalization condition

/OO xg(v) dv =1. (2.105)

o0

The function xp(v) is referred to as the distribution of BE. By analogy with the
vector (2.97) which has discrete components, we often write xp for the whole
distribution function, the components of which are xg(v). For simple spherical
particles, the function x(v) has one maximum at 2{Uy)/N. For more complex
liquids such as water, this function has more “structure,” reflecting the pos-
sibility of the different structural environments of a molecule in the liquid (for
more details, see Ben-Naim 1974).

2.7.4 Volume of the Voronoi polyhedron

Another continuous-type local property of interest in the study of liquids is the
Voronoi polyhedron (VP), or the Dirichlet region, defined as follows. Consider
a specific configuration R and a particular particle i. Let us draw all the
segments [;(j=1,..., N, j# i) connecting the centers of particles i and j. Let P;
be the plane perpendicular to and bisecting the line [;. Each plane P;; divides
the entire space into two parts. Denote by Vj; that part of space that includes
the point R;. The VP of particle i for the configuration R" is defined as the
intersection of all the Vj; (j=1,..., N, j#1):
N
(VP), = [ Vi(R:Ry). (2.106)
J=1
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6
2
5
3 Figure 2.12. Construction of the Voronoi
polygon of particle 1 in a two-dimensional
4 system of particles.

A two-dimensional illustration of the construction of a VP is shown in
figure 2.12. It is clear from the definition that the region (VP); includes all the
points in space that are “nearer” to R; than to any R(j# 7). Furthermore, each
VP contains the center of one and only one particle.

The concept of VP can be used to generate a few local properties'; the one we
shall be using is the volume of the VP, which we denote by

Y;(RY) = volume of (VP);. (2.107)

The counting function for this property is

N
N (RY, ) dg = d >~ ol (RY) - ¢, (2.108)
i=1
and its average is
N
N () do = dp( > oli(RY) - ¢] ). (2.109)

N!/(jl)(qS)qu is the average number of particles whose VP has a volume between
¢ and ¢ + d¢. The VP of a particle i, in a system at a specific configuration R",
conveys a measure of the contribution of this particle to the total volume of the
system at this specific configuration. See also section 3.6 for the relation
between the volume of the system and the partial molar volume of the “species”
of particles having a specific volume of VP. Clearly, the larger the volume of the
VP, the smaller the local density around the particle.

t Note that the form of the VP is also a property which can be considered in the context of this
section. Other properties of interest are the number of faces of the VP, the surface area of the VP, etc.
The distribution functions defined in this section involve random variables whose values are real
numbers. If we choose the form of the VP as a random variable, then its range of variation is the space
of geometric figures and not real numbers.
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2.7.5 Combination of properties

One way of generating new properties is by combination of properties. For
instance, the counting function of BE and the volume of the VP is defined as

Ny, (RN, v, ) dv dp = dvdgbZé Bi(RY) — v[o[y,(RN) — ¢]  (2.110)

which counts the number of particles having BE between v and v+ dv and
the volume of the VP between ¢ and ¢ + d¢. The average number of such
particles is

Ny, (v ¢)dvd¢—dvdd)<25 Bi(RY) —v]é[t//i(RN)—¢]>. (2.111)

Note that although we have combined two properties, we still have a singlet
generalized MDEF. A related singlet generalized MDF which conveys similar
information to that in (2.111), but is simpler for computational purposes, is
constructed by the combination of BE and CN, i.e.

N (v, K dv—dv<25 Bi(RY) — v]6 [Ci(RN)—K}.>. (2.112)

In (2.112) the firs § on the rhs is a Dirac delta function, whereas the second is a
Kronecker delta function.

The general procedure of defining generalized MDFs is now clear. We first
define a property which is a function definable on the configurational space, and
then introduce its distribution function in the appropriate ensemble. Examples
of some of these may be found in Ben-Naim (1973a and 1974).

2.8 Potential of mean force

The potential of mean force (PMF) is an important quantity related to the pair
correlation function. In this section, we show that PMF as defined below,
equation (2.113), is the work involved (the Helmholtz energy in the T, V, N
ensemble or the Gibbs energy in the T, P, N ensemble) in bringing two selected
particles from infinite separation to the final configuration X', X”. We shall
also show that the gradient of this function is the average force exerted on one
particle at X', given a second particle at X", averaged over all configurations of



POTENTIAL OF MEAN FORCE 57

the particles in the system. We shall start with the definition of the PMF for
a one-component system consisting of N spherical particles in the 7, V, N
ensemble.

W(R,R") = —kT Ing(R,R"). (2.113)
Using the definition of the pair correlation function in (2.48) we have
exp[-fW(R,R")]

CN(N=1) [--[dR;...dRy exp[~BUN(R,R',R;, ..., Ry)]
E Zn '

(2.114)

We now take the gradient of W(R’, R”) with respect to the vector R’, and get
_ ,BV/W(R/,R”)

= V/{h’l/ . / dR3 . dRN CXP[—ﬁUN(R/, RH, Rs,... ,RN)]} (2115)

The symbol V' stands for the gradient with respect to the vector R’ = (', y/, Z),
i.e.,

., (3 0
V'={ow 5y 52) (2.116)

We also assume that the total potential energy is pairwise additive. Hence,
we write

N
Un(R,R',Rs,...,Ry) = Uy 2(Rs,...,Ry) + Y [U(R;, R
i=3
+ U(R,R")] + U(R,R"). (2.117)

The gradient of Uy with respect to R’ in (2.117) is
N
V'Uny(R,R",Rs,...,Ry) = Z V'UR;R)+V'UR,R"). (2.118)
i—3
Taking the gradient of Win (2.115), we get
. V/W(R/,R”)
N
[---[dRs...dRy exp(—BUy) {— S V'U(R,R)—V'U(R,R")
— i=3

[---[dRs---dRy exp(—BUy)

(2.119)
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Note that the integration in the numerator of (2.119) is over Rs,...,Rn,
and the quantity V'U(R’, R”) is independent of these variables. We also
introduce the conditional probability density of finding the N — 2 particles at
a specified configuration Rs, ... ,Ry given that the two particles are at R’ and
R”, namely

P(R,R',R;,...,Ry)
P(R/, R//)
_ exp[-BUN(R,R",Rs,...,Ry]
— .

P(R;,...,Ry/R,R") =

Zn
. J+--[dRs...dRy exp[—BUN(R,R",Rs,...,Ry)]

_ exp[~BUn(R,R",Rs, ..., Ry)]
[+ [dRs...dRy exp[~BUN(R,R',R;,...,Ry)]

(2.120)

Using (2.120) we rewrite (2.119) as

~-V'W(R,R")=—-V'U(R,R") +// dR;...dRNP(R;,...,Ry/R,R")

N

x Y [-V'U(R,R)]

i=3
(N-2)
= —V'UR,R")+ < Zv U(R;,R) > . (2121)

In (2.121), we expressed —V W(R’, R”) as a sum of two terms. The first term is
simply the direct force exerted on the particle at R’ when the second particle is
at R”. This is the same force operating between the two particles in vacuum.
The second term is the conditional average force (note that the average has been
calculated using the conditional probability density 2.120) exerted on the
particle R’ by all the other particles present in the system. It is an average over
all the configurations of the N — 2 particles given that the two particles are at R’
and R”. The latter may be referred to as the indirect force operating on the
particle at R’, which originates from all the other particles excluding the one
at R”. The foregoing discussion justifies the designation of W(R’, R”) as the
potential of mean force. Its gradient gives the average force, including direct and
indirect contributions, operating on the particle at R’.
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We can further simplify (2.121) by noting that the sum over i produces N — 2
equal terms, i.e.,

N
// dR;...dRyP(Rs,...,Ry/R,R') Y V'U(R,R)

1=3

= (N_Q)/..-/ dR;...dRyP(Rs,...,Ry/R,R")V'U(R;, R)
= (N—Z)/dR3V’U(R3,R’)/m/ dR,...dRNP(Rs,...,Ry/R,R")
= (N -2) / dR;V'U(Rs,R)P(R;/R,R")

= / dR [V'U(R,R)|p(R/R,R"). (2.122)

The quantity p(R/R’, R”), introduced in (2.122), is the conditional density at a
point R, given two particles at R’ and R”. This is a straightforward general-
ization of the conditional density introduced in section 2.4. The total force
acting on 1 can now be written as

Fi = —V'U(R,R') / iR [VURK)p(R/R,R).  (2.123)

This form is useful in the study of forces applied to solutes or to groups in
proteins, in aqueous solutions. The first term is referred to as the direct force
and the second term as the solvent-induced force.

The form of the function W(R), with R= |R” — R’|, for L] particles, and its
density dependence are depicted in figure 2.13. At very low densities, the
potential average force is identical to the pair potential; this follows from
the negligible effect of all the other particles present in the system. At higher
densities, the function W(R) shows successive maxima and minima [corre-
sponding to the minima and maxima of g(R)]. The interesting point worth
noting is that the indirect force at, say, R > ¢ can be either attractive or repulsive
even in the region where the direct force is purely attractive.” We now derive an
important relation between the PMF and the change of the Helmholtz energy.

Consider a system of N simple spherical particles in a volume V at tem-
perature T. The Helmholtz energy for such a system is

exp[—BA(T, V, N)] = (1/NIA*) / / dRY exp[—BU(RNY]. (2.124)

Now consider a slightly modified system in which two specific particles, say 1
and 2, have been fixed at the points R’ and R”, respectively. The Helmholtz

! In fact this oscillatory behavior is manifested even by a system of hard spheres for which the direct
force is zero beyond R>g.
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Figure 2.13. The potential of mean force W(R) for the same system and the same densities as in
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energy for such a system is denoted by A(R’, R”) and we have
1
(N —2)IA*N-2)
X / . / dR3 cen dRN exp[—ﬂUN(R’, R”,R3, - ,RN)].
(2.125)

exp[—BA(R, R")] =

Let us denote by A(R), with R= |R” — R'|, the Helmholtz energy of such a system
when the separation between the two particles is R, and form the difference

AA(R) = A(R) — A(c0). (2.126)

This is the work required to bring the two particles from fixed positions at
infinite separation to fixed positions where the separation is R. The process is
carried out at constant volume and temperature. From (2.113), (2.114), (2.125)
and (2.126), we get

f' de3 dRN exp[—ﬁUN(R’,R”,R3,...,RN)]
“BAA(R)] =
P PAAR)] = T T dRs . dRy exp|—BUx (R R, Ry, Ry)

= 8(R) = exp{—p[W(R) — W(c0)]}. (2.127)

This is an important and useful result. The correlation between two particles at
distance R is related to the work required (here for constant T, V) to bring the
two particles from infinite separation to a distance R. Since g(R) is proportional
to the probability density of finding the two particles at a distance R, we can
conclude that the probability of finding the event “two particles at R” is related
to the work required to create that event. This is a particular example of a much
more general relation between the probability of observing an event and the
work required to create that event.

In this section, we used the T, V, N ensemble to obtain relation (2.127). A
similar relation can be obtained for any other ensemble. Of particular
importance is the analog of (2.127) in the T, P, N ensemble. It has the same
form but the events occur in a T, P, N system and instead of the Helmholtz
energy change, we need to use the Gibbs energy change.

2.9 Molecular distribution functions in mixtures

Molecular distribution functions (MDFs) in mixtures are defined in a similar
way as in the case of the one-component system; the only complication is
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notational. For two-component systems, we use the shorthand notation for the
configuration of the entire system of N, particles of type A and Np particles of
type B:

Na+N,
X A+Np :X17X2)"')XNA’XNA+1>XNA+2"")XNA+NB' (2128)
The total interaction energy for a specific configuration is

UNA, Np (XNA’ XNB)

Ny N;
= —Z UAA XI,X Z UBB XZ,X + zA:ZB: UAB XI)X (2129)
i£j ,35] i=1 j=1

Here we have assumed pairwise additivity of the total potential energy
and adopted the convention that the order of arguments in the parentheses
corresponds to the order of species as indicated by subscript of U. Thus X;
in the first sum on the rhs of (2.129) is the configuration of the ith
molecule (i=1, 2,..., N,) of species A, whereas Xj, in the last term on the rhs
of (2.129), stands for the configuration of the jth molecule (j=1, 2,..., Nj) of
species B.
The basic probability density in the canonical ensemble is

P(XNA+NB) — P(XNA,XNB)
_ exp[—BUn, Ny (XM, X))
f' ’ .deNA dx™e eXp[_ﬁUNA-,NB(XNA’XNB)] ‘

(2.130)

The singlet distribution function for the species A is defined in complete
analogy with the definition in the pure case (section 2.1),

X/ / / XNAJ”NB P XNAJFNB Za XA Xl

_ NA/' . '/dXNA+NB P(XNA+NB) 5(X’f —X’) (2'131)
and similarly
p%l)(X/) _ NB/' . ‘/dXNA+NBP(XNA+NB) 5(X? — X’)_ (2.132)

Clearly, pgl) (X") is the probability of finding any molecule of type A in a small
region dX’ at X'. Similar interpretation applies to pg)(X’).

As in the case of a one-component system, ,01(0‘1 (X') is also the average density
of A molecules in the configuration X'. In a homogenous and isotropic fluid,
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we have (see section 2.1 for more details)

1) xy = _Na
X = 2.133
) = (2133)

(1) /7 Ng
= ) 2.134
pB ( ) 87T2V ( )

The average local density of A molecules at R’ is defined by
M)y — F Wy Na

VR = [agpl(x) =2 =), (2.135)

and a similar definition applies to pg)(R’ ).
The probability density of finding an A-particle at a specific orientation €
(independently of its location) is

(1) N (1) /o /_N
(2') = / (X") dR o (2.136)

and a similar definition applies to B. Note that pf;)(R’ ) and pg)(ﬂ’) are the
marginal probability densities, derived from pflp(X’).

In a similar fashion, one defines the pair distribution functions for the four
different pairs AA, AB, BA and BB. For instance,

Ny Ny

P (X, X") / / dXNtNe p(x NN § NN P (x4 X6 (XA - X)

i=1 1
=

=Nu(Ny—1) / / dX NN p( XNt 5 (x4 — X9 (X2 — X).
(2.137)
Similarly, for different species,

A B
DX, X" / / dXNATNs p(xNat+Ns) ZZ 5(X} —X"o(XP - X")

i=1 j=1
= NuNj / . / dXNatNs p(xNatNey5( x4 — X') 5(XP — X").
(2.138)

The pair correlation functions g,5(X’, X”) where o and f§ can either be A or B,
are defined by

pizﬁ)(X,’X//) _ (1)(X,),0[; (x") G (x', X" (2.139)
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and the spatial pair correlation functions by

B fdﬂlfdﬂﬁgaﬁ(X/)XU)
N (872)° '

&p(R,R") (2.140)

As in a one-component system, the functions g,s(R’, R”) depend only on the
scalar distance R= |R” — R’|. Hence, for the spatial pair correlation function,
we have

g48(R) = ga(R). (2.141)

The conditional distribution functions are defined by
pan(X [X") = plip(X, X" [ pls) (X7) = p) (X)) gan(X,X"). (2142)

As in the one-component case, p4/5(X’/X") may be interpreted as the density
(or probability density) of finding A in a small region at X', given that a
B-particle is at an exactly fixed configuration X” (see also section 2.4). Note
also that the probability interpretation of the singlet distribution function holds
only in a very small region around X'; the density interpretation holds true for
any region including the entire range of configuration.

The normalization conditions for the pair distribution functions in a closed

system are
/ pA(X', X") dX'dX" = No(Ns — 1) (2.143)
/ p D (X', X") dX'dX" = NsNp. (2.144)

The first is simply a statement that the total number of A— A pairs is
Na(N4 —1). The second refers to the total number of A — B pairs which is
NaNp. Note that since we are in a closed system, these numbers are exact. We
shall see in chapter 4 the analogs of these equations in an open system.

As in the case of the one-component system, we also expect here that as the
distance becomes very large, the pair distribution function becomes a product
of the corresponding singlet distribution functions.

We now turn to discuss some features of the pair correlation functions that
are typical to mixtures of two (or more) components. We have seen in section
2.5 that for spherical particles, the pair correlation has peaks at roughly o, 20,
30, etc., where ¢ is the effective diameter of the particles. However, it is not
exactly at multiples of g, first because the minimum of the pair potential is at
26 ¢ and not at g, and second because of the randomness of the packing of
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Figure 2.14. (3) At a distance of about R=g¢ the correlation is determined mainly by the direct
interaction between A and B (clear circles). (b) At R> g, the direct interaction between A and B is weak.
The correlation between A and B (clear circles) is mediated by the surrounding molecules (shaded circle),
which interact with both A and B.

spheres in the liquid state. In mixtures, say of A and B, the location of the first
maximum of gap (R) is expected to be at about g 45, where g5 is defined as

OAB = %(O'AA + O-BB) (2.145)

Note that this is the exact distance of closest approach for two hard
sphere particles. For Lennard-Jones particles 045 is defined in (2.145). This is
practically the distance of closest approach for A and B. The occurrence of
the first peak at g4 is due to the dominance of the direct interaction between A
and B at this distance. This is true for one-component as well as for multi-
component systems. However, the other peaks of g(R) are not determined by
the direct interactions. Normally at a distance of about 2¢ and beyond, U(R) is
very weak and what determines the location of the second, third, etc., peaks
is not the direct interactions but the indirect correlation mediated by the
surroundings of the pair A, B. The difference between these two cases is
schematically depicted in figure 2.14.

We now turn to examine some features of the pair correlation functions of
the mixture of A and B. Let A and B be two simple spherical molecules
interacting through pair potentials which we denote by Ua4(R), Uap(R), and
Usggp(R). For simplicity, assume Lennard-Jones particles

Uua(R) =t (78) - (0] (2.146)
Ups(R) = 4epp [(%) s (%) 6} (2.147)

Uns(R) = Usa (R) = 4eap [(%) v (%2) 6}. (2.148)
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We also assume the combination rules

GAB:O-BA:(O-AA+O-BB)/2 (2149)

ol—

eap = €pa = (£4a€BB)*. (2.150)

Before proceeding to mixtures at high densities, it is instructive to recall the
density dependence of g(R) for a one-component system (see section 2.5). We
have noticed that the second, third, etc., peaks of g(R) develop as the density
increases. The illustrations in sections 2.5 were calculated for Lennard-Jones
particles with ¢ = 1.0 and increasing (number) density p. It is clear, however,
that the important parameter determining the form of g(R) is the dimensionless
quantity po’ (assuming for the moment that &/kT is fixed). This can be
illustrated schematically with the help of figure 2.15. In the two boxes, we have
the same number density, whereas the volume density (qualitatively the “actual”
volume occupied by the particles) defined below is quite different. Clearly, the
behavior of these two systems will differ markedly even when A and B are hard
spheres differing only in their diameters. Thus we expect that the form of g(R)
will be quite different for these two systems. The reason is that although the
average separation between the particles is the same in a and b, the average
interaction between the particles is quite different in a and b. In this illustration,
the particles in a are most of the time within the range of the intermolecular
interactions, whereas in b, the particles are far apart relative to the range of
interactions; hence the effects of intermolecular interactions are negligible.

Now consider mixtures of A and B (with g4, >> opp) at different composi-
tions but at constant total number density p. If we study the dependence of say
g4 (R) on the mole fraction of x,4, we shall find that at x4 ~ 1, g4p (R) behaves

e L e
© ©
o ©
0

. . 5 O

Figure 2.15. Two systems with the same number density but differing in the volume densities.
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as in the case of a high-density fluid, whereas at x4 ~ 0, we shall observe the
behavior of the low-density fluid. In order to highlight those effects that are
specific to the properties of the mixtures, it is advantageous to study the
behavior of the pair correlation function when the total “volume density” is
constant. The latter is defined as follows. In a one-component system of par-
ticles with effective diameter o, the ratio of the volume occupied by the particles
to the total volume of the system is

_ Ndn(e/2)’  pno?
Vo3 6

Similarly, the total volume density of a mixture of two components A and B is
defined by

(2.151)

N =(PaTia + PpOsp) = 1P (X404 + XB03p) (2.152)

In the second equation on the rhs of (2.152), we have expressed # in terms of
the total (number) density and the mole fractions.

We shall now illustrate some of the most salient features of the behavior of
the various pair correlation functions in systems of Lennard-Jones particles
obeying relations (2.146)—(2.148) with the parameters

OAp = 1.0 OBB = 1.5

€AA _ €BB

— =—=05 = 0.45. 2.153

KT~ kT 1 (2.153)
Note that the volume density of closed pack spheres is about #.,~ 0.74. The
choice of = 0.45, which is about 6/10 of the maximum density, was chosen for
convenience. In fact even at these densities converging of the Percus—Yevick
equation is quite slow (see also Appendix E).

We shall discuss separately three regions of compositions.

(1) Systems that are dominated by the presence of A’s, between any pair of
particles, i.e., x4~ 1.

Figure 2.16 shows the three pair correlation functions for a system with
composition x4 =0.99. Here, gaa (R) is almost identical to the pair correlation
function for pure A. The peaks occur at about 6 44, 20 44, 36 44, and 4G 4. Since
7 =0.45 in (2.153) corresponds to quite a high density, we have four pro-
nounced peaks. The function g5 (R) has the first peak at about ¢ 4. (The value
of 6 4p1s (644 + 0pp)/2 =1.25, but due to errors in the numerical computation
and the fact that the minimum of U,y is at 2ig Ap> we actually obtain the first
maximum at about R=1.3.) Similarly the first peak of ggz(R) is at about
opg=1.5. The second, third, and fourth peaks of g5 (R) are determined not by
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Figure 2.16. The three pair correlation functions g gss= gsa and ggs for a system with parameters
as in equation (2.153) and = 0.45 and x4 =10.99.

multiples of 45 but by the addition of Gax That is, the maxima are at
R0 4p, O+ Oan Oag—+ 2044, etc. This is a characteristic feature of a dilute
solution of B in A, where the spacing between the maxima is determined by
O A 1.€., the diameter of the dominating species. The molecular reason for this
is very simple. The spacing between, say, the first and second peaks is deter-
mined by the size of the molecule that will most probably fill the space between
the two molecules under observation. Because of the prevalence of A molecules
in this case, they are the most likely to fill the space between A and B. The
situation is depicted schematically in Figure 2.17 where we show the most likely
filling of space between a pair of molecules for the case x4~ 1, i.e., for a very
dilute solution of B in A. The first row in Figure 2.17 shows the approximate
locations of the first three peaks of g4 (R); other rows correspond successively
to gap (R) = gpa (R) and ggp (R).

For x4~ 1, the component A may be referred to as the solvent and B as the
solute. For any pair of species of, we can pick up two specific particles (one of
species o and the other of species 5) and refer to these particles as a “dimer.”
From the first row of figure 2.17, we see that the most probable configurations of
the dimers occur either when the separation is ¢, or when they are “solvent
separated,” i.e., when the distances are R~ 6,5 + 16 44, where n=1, 2, 3, for the
second, third, and fourth peaks. Note that because of the approximate nature of
the computations, the curves g45 (R) and gga (R) may come out a little different;
however, theoretically they should be identical and in our computation they are
nearly identical and may not be distinguished on the scale of figure 2.16.

t The second peak of gap (R) is clearly related to 645+ 044 and the third to 045+ 20 44. If we had
chosen 044=1.0 and g35=2.0 then we could not have distinguished between 645+ 2044 and
04+ opp. It is for this reason that we have chosen the values of 644 = 1.0 and 63z = 1.5 which could
lead to less ambiguity in the interpretation of the first two peaks.
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Figure 2.17. Configurations corresponding to the first three peaks of g, (R) for a system of B diluted in
A (e.g., x4=0.99) corresponding to figure 2.16. The two unshaded particles are the ones under obser-
vation, i.e., these are the particles for which g,4(R) is considered. The shaded particles here, which are
invariably of species A, are the ones that fill the spaces between the observed particles. The locations of the
expected peaks of g,4(R) can be estimated with the help of this figure with ,=1.0 and gg=1.5.
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Figure 2.18. The three pair correlation functions gas gas= gsa and g for the same system as in
figure 2.16 and = 0.45 and x4, =0.01.

(2) System dominated by the presence of B’s, between any pair of particles,
ie., x4 ~0.

This is the other extreme case where x4~ 0 or xg== 1. Figure 2.18 shows the
pair correlation functions for this case. Here A is diluted in B and the
separation between the peaks is determined by opp, since now it is B that
dominate the space between any pair of particles. Thus the first peak of g44 (R)
appears at g, as expected. But the second and third peaks are roughly at
R~ 04+ nogs n=1, 2, 3 for the second, third, and fourth peaks.
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Figure 2.19. Same as figure 2.17 but for the case x4, =0.01. The particles that fill the space between the
pair o in g, (R) are now B particles.
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Figure 2.20. The functions G,4 (Ry) for the same system as that of figure 2.18.

Figure 2.19 shows the configurations corresponding to first three peaks of
2 (R) for the system of A diluted in B. Note that in this case it is the B particles
that fill the space between the pair of particles for which g,z(R) is under
consideration.

Figures 2.20 and 2.21 show the functions G,z (Ry) and the potential of mean
force W, (R) for the same system as in figure 2.18.

(3) Systems of intermediate composition; x4 = 0.64.

Figure 2.22 shows the pair correlation functions g,z(R) for the composition
x4 =0.64. The most remarkable feature of these curves is the almost complete
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Figure 2.21. The potential of mean force W, (R) for the same system as in figure 2.18.
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Figure 2.22. The three pair correlation functions gaa, gas= gsa and gss for the same system as in figure
2.16 but with 7 =0.45 and x,=0.64. Note the relatively flat region where a second peak is expected.

disappearance of the third and fourth peaks. The second peak is less pro-
nounced than in the case of either x4 =0.99, or x4, =0.01. Since there is no
component that is dominant in this case, we cannot describe the most likely
configuration as we did in figure 2.17 and 2.19.

It is interesting to note the composition dependence of g44 (R) in the region
1.2 < R<3.0. The most important point to be noted is the way the location of
the second peak changes from about g4+ 044 at x4 =0.99 (A being the
“solvent”) to about 644 + op at x4 =0.01 (B being the “solvent”). The second
peak has its maximal value of about 1.2 for the case x4 =0.99. It gradually
decreases when the composition changes until about x4, =0.64. The curve
becomes flat in the region between G4+ 0asa and oas+ opg. When x4
decreases further, a new peak starts to develop at g4 + g, which reaches its
highest value of about 1.18 at x4, =0.01. Figure 2.23a shows gs4 (R) for the
three compositions, x4 =0.01, 0.64 and 0.99, and figure 2.23b shows the
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Figure 2.23. (a) The function gu4(R) for three compositions: x;=0.01, 0.99 and 0.64 (dashed). Other
parameters are as in figure 2.18. (b) The function ggs(R) for the three compositions: x,=0.01, 0.99 and
0.64 (dashed). Other parameters are as in figure 2.18.

behavior of ggg(R) for the same three compositions. A more detailed variation
of g4a(R) as a function of x4 has been described by Ben-Naim (1992).

We stress that the fading away of the second peak of g44(R) as the composition
changes is not a result of the decrease in the density of the system. We recall that
in a one-component system all the peaks of g(R), except the first one, will vanish
as p — 0. The same is true in the mixture if we let p, + pg— 0. In both cases the
disappearance of successive peaks in g,s(R) is simply a result of the fact that as
p — 0 the availability of the particles to occupy the space between the “tagged
dimer” become vanishingly small. The phenomenon we have observed in the
mixture at a relatively high volume density (7 =0.45) is not a result of the
scarcity of particles in the system but a result of the competition between the
species A and B, to occupy the space between the two selected particles.

We recall that the location of the second peak is determined principally by
the size of the particles that fill the space between the two selected particles. For
x4 =0.99 it is most likely that the space will be filled by A molecules. Similarly,
for x4 =0.01, it is most probable that the B molecules will be filling the space.
The strong peak at 2044 in the first case and at 6,4 + op in the second case
reflects the high degree of certainty with which the system chooses the species
for filling the space between any pair of selected particles. As the mole fraction
of A decreases, the B molecules become competitive with A for the “privilege”
of filling the space. At about x4~ 0.64, B is in a state of emulating A (in the
sense of filling the space). The situation is schematically shown in figure 2.24.

The fact that this occurs at x4 = 0.64 and not, say at x5 ~ 0.5 is a result of the
difference in g of the two components. Since Bis “larger” than A, its prevalence
as volume occupant is effective at xz~0.36 < 0.5. The fading of the second
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Figure 2.24. A schematic description of the
competition between A and B to fill the
spaces between two A's (the smaller circles).

peak reflects the inability of the system to “make a decision” as to which kind of
particle should be filling the space between the two selected particles. We shall
see in the next section an equivalent interpretation in terms of the force acting
between the two particles. As in section 2.5, we stress again that all our con-
siderations here are valid for spherical particles. For mixtures of more com-
plicated molecules, the location of the various peaks is determined both by the
abundance of molecules occupying the space between the tagged particles as
well as by the strength of the intramolecular forces between the various species.
For example, for the pair distribution function for two methane molecules in
water, the second peak is determined by the structure of water and less by its
molecular volume.

2.10 Potential of mean force in mixtures

In section 2.8, we defined the potential of mean force (PMF) between two
tagged particles in a one-component system. This definition can be extended to
any pair of species; for example, for the A—A pair, the potential of average force
is defined by

244 (R) = exp[—fWaa(R)]. (2.154)
Similar definitions apply to other pairs of species. Repeating exactly the same
procedure as in section 2.8, we can show that the gradient of W, 4 (R) is related
to the average force between the two tagged particles. The generalization of the

expression (2.123) is quite straightforward. The force acting on the first A
particle at R/, given a second A particle at R”, can be written as

Fy = —V'Un(R, R") — / R4V Uns (Ra, B)|p(Ra/ R, R)

- / dR5[V' Uss (Rs, R)|p(Rs/R, R'). (2.155)
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The first term on the rhs of (2.155) is simply the direct force exerted on the first
A particle at R, by the second A particle at R”. The average force exerted by the
solvent now has two terms, instead of one in (2.123). The quantity —V' Uy,
(R4, R') is the force exerted by any A particle (other than the two selected A’s)
located at R, on the particle at the fixed position R" and p(R4/R’, R") is the
conditional density of A particles at R4, given two A’sat R’ and R”. Integration
over all locations of R, gives the average force exerted by the A component on
the A particle at R’. Similarly, the third term on the rhs of (2.155) is the average
force exerted by the B component on the A particle at R’. The combination of
the two last terms can be referred to as the “solvent” induced force (the term
“solvent” is used here for all the particles in the system except the two selected
or “tagged” particles).

Two extreme cases of equation (2.155) are the following. If pg— 0, then
p(Rp/R’, R") — 0 also and the third term on the rhs of (2.155) vanishes. This is
the case of a pure A. The “solvent” in this case will consist of all the A particles
other than the two tagged particles at R’ and R”.

The second extreme case occurs when p, — 0. Note, however, that we still
have two A’s at fixed positions (R’, R”), but otherwise the solvent (here in the
conventional sense) is pure B. We have the case of an extremely dilute solution
of A in pure B. Note also that at the limit p, — 0, both the pair and the singlet
distribution functions of A tend to zero, i.e.,

PU(RLR) =0 (2.156)
p(R) = o. (2.157)

However, the pair correlation function as well as the potential of average force
are finite at this limit. We can think of W,4(R) in the limit of p4, — 0 as the
work required to bring two A’s from infinite separation to the distance R in a
pure solvent Bat constant T'and V (or T, P depending on the ensemble we use).

As in the case of pure liquids, the solvent-induced force can be attractive or
repulsive even in regions where the direct force is negligible. An attractive force
corresponds to a positive slope of W(R), or equivalently, to a negative slope
of g(R). The locations of attractive and repulsive regions change when the
composition of the system changes. Specifically, for x4 — 1 we have the second
peak of gaa (R) at about g 44+ 044 ~2. On the other hand, for x4 — 0, the
second peak of g44(R) is at 044 + 045~ 2.5 Clearly, there are regions that are
attractive when x4, — 1 (say 2 < R<2.5), but become repulsive when x4 — 0.
Therefore, when we change the composition of the system continuously,
there are regions in which the two terms on the rhs of (2.155) produce
forces in different directions. The result is a net diminishing of the overall
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solvent-induced force between the two tagged A particles. This corresponds to
the flattening of g(R) or of W(R) which we have observed in figures 2.23a and
2.23b at x4~ 0.64.

Another useful way of examining the behavior of say, ga4(R) in a mixture of
A and B is to look at the first-order expansion of g44(R) in ps and pp. The
generalization of (2.49) for two-component systems is

gan(R) = exp[— U (R)] [1 o [ Faa(R ) fus (R ) s

+pp / fas (R, Rp) fga(Rp, R") dRB+-~} (2.158)

where f,5 are defined as
fup (R,R") = exp[—PU,(R,R")] — 1. (2.159)

As we have discussed in section 2.5, we expect that the first integral, on the rhs
of equation (2.158), will contribute an attractive force (even for hard-sphere
particles) in the region g4, < R< 2044, whereas the second integral will have
an attractive region at o453 < R< 2043



THREE

Thermodynamic quantities
expressed in terms of
molecular distribution
functions

In this chapter, we derive some of the most important relations between
thermodynamic quantities and the molecular distribution function (MDF). As
in the previous chapter, we shall first present the relation for a one-component
system. This is done mainly for notational convenience. One can easily repeat
exactly the same steps to derive the generalized relation for a multicomponent
system. This is, in general, not necessary to do. As a rule, once we have the
relation for a one-component system, we can almost straightforwardly write
down the generalized relation without resorting to a full derivation. All that is
needed is a clear understanding of the meaning of the various terms of the
relations. An exception to this rule is the relation for the isothermal com-
pressibility. Here, the one-component equation does not provide any clue for
its generalization. We shall devote part of chapter 4 to derive the generalization
of the compressibility equation, along with other relations between thermo-
dynamic quantities and the MDF.

Most of the relations discussed in this chapter apply to systems obeying the
assumption of pairwise additivity for the total potential energy. We shall
indicate, however, how to modify the relations when higher order potentials are
to be incorporated in the formal theory. In general, higher order potentials
bring in higher order MDFs. Since very little is known about the analytical
behavior of the latter, such relationships are rarely useful in applications.

Of particular importance to solution chemistry is the expression for the
chemical potential, first derived by Kirkwood (1933). We shall devote a rela-
tively large part of this chapter to discuss various expressions for the chemical
potential.



AVERAGE VALUES OF PAIRWISE QUANTITIES 77

The derivations carried out in this chapter apply to systems of simple
spherical particles. We shall also point out the appropriate generalizations for
non-spherical particles that do not possess internal rotations. For particles
with internal rotations, one needs to take the appropriate average over all
conformations. An example of such an average is discussed in chapter 7.

There are some steps common to most of the procedures leading to the
relations between thermodynamic quantities and the pair distribution func-
tion. Therefore, in the next section we derive a general theorem connecting
averages of pairwise quantities and the pair distribution function.

3.1 Average values of pairwise quantities

Consider an average of a general function of the configuration, F(X"), in the
T, V, N ensemble:

(F) = // dxVP(XN)F(xN), (3.1)

with

_ expl-BUNXY)
ZN

P(xM) (3.2)
A pairwise quantity is defined as a function that is expressible as a sum of
terms, each of which depends on the configuration of a pair of particles, namely

FXN) =YY (X, X)) (3.3)
i# o
where the sum is over all different pairs. In most of the applications, we shall
have a factor of % in (3.3) to account for the fact that this sum counts each
pairwise function f(X; X;) twice, i.e., f(X;, X;) appears when i=1 and j=2
and when i=2 and j=1. In the present treatment, all of the N particles are
presumed to be equivalent, so that the function fis the same for each pair of
indices. (The extension to mixtures will be discussed at the end of this section.)
Substituting (3.3) in (3.1) we get

#) = [ [ axveex) >r0xx)

-y / . / dxN p(XN)f (X, X;)

i#]



78 THERMODYNAMIC QUANTITIES EXPRESSED IN TERMS OF MDFs

=N(N-1) // dx™ P(xX™) f(X1,X,)

:/Xm/dXZ f(X1,X,) [N(N— 1) // dXs...dXy P(X")
:/Xm/dXz (X1, X)) p?P (X1, Xs). (3.4)

It is instructive to go through the steps in (3.4) since these are standard steps in
the theory of classical fluids. In the first step, we have merely interchanged the
signs of summation and integration. In the second step, we exploit the fact that
all particles are equivalent; thus each term in the sum has the same numerical
value, independent of the indices i, j. Hence, we replace the sum over N(N — 1)
terms by N(N—1) times one integral. In the latter, we have chosen the
(arbitrary) indices 1 and 2.

Clearly, due to the equivalence of the particles, we could have chosen any
other two indices. The third and fourth steps make use of the definition of the
pair distribution function defined in section 2.2.

We can rewrite the final result of (3.4) as

(F) = / dx’' / dx"f(x', x"p?(x', X" (3.5)

where we have changed to primed vectors to stress the fact that we do not refer
to any specific pair of particles.

A simpler version of (3.5) may be obtained for spherical particles, for which
each configuration X consists only of the locational vector R. This is the
most frequently used case in the theory of simple fluids. The corresponding
expression for the average quantity in this case is

(F) = / dR / dR'f(R,R")p? (R, R"). (3.6)

Normally the function f(R’, R”) depends only on the separation between the
two points R=| R” — R'|. In addition, for homogeneous and isotropic fluids,
pP (R, R") depends only on the scalar R. This permits the transformation
of (3.6) into a one-dimensional integral. To do this, we first transform to
relative coordinates

R=R, R=R'-R. (3.7)

Hence,

(#) = [ & [ arg®p?(R) = v [ dRFRPOR.  (38)
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The integration over the entire volume yields the volume V.
Next, we transform to polar coordinates:

dR = dxdy dz = R*sin0 d0 d¢ dR. (3.9)

Since the integrand in the last form of (3.1.8) depends only on the scalar R, we
can integrate over all the orientations to get the final form

(F)=V /0 h f(R)p®(R)4nR? dR

= p*V /0 h f(R)g(R)4nR* dR. (3.10)

It is clear from (3.10) that a knowledge of the pairwise function f(R) in (3.3),
together with the radial distribution function g(R), is sufficient to evaluate the
average quantity (F). Note that we have taken as infinity the upper limit of the
integral in (3.10). This is not always permitted. In most practical cases, how-
ever, f(R) will be of finite range, i.e., f(R) = 0 for R > Rc. Since g(R) tends to
unity at distances of a few molecular diameters (excluding the region near the
critical point), the upper limit of the integral can be extended to infinity
without affecting the value of the integral.

Now, we briefly mention two straightforward extensions of equation (3.5).

(1) For mixtures of, say, two components, A and B, a pairwise function is
defined as

F(XNNe) =" fua(X X5) + Y fon(Xi X))
7 7
Ny Ng Np Ny

+Z Z fan(Xi» Xj) +Z Z faa(XuXj)  (3.11)

where X' stands for the configuration of the whole system of N4+ Nj
particles of species A and B. Here, f,5 is the pairwise function for the pair
of species o and f(a=A, B and f=A, B). Altogether, we have in (3.11)
Na(Ng— 1)+ Np(Np—1) +2N4Ng terms which correspond to the total of
(Na + Ng) (Na + N — 1) pairs in the system. Note that here we count the pair i, ¢
and j, i as different pairs'.

Note that in (3.11) we have assumed summation over i# j for pairs of the

same species. This is not required for pairs of different species. Using exactly

T We also note that, as in (3.3), for most quantities of interest we need only half of the sums in
(3.11). See the example in the next section.
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the same procedure as for the one-component system, we get for the average
quantity the result

(#) = [ ax [ ax” (e, x0pg 00 x7)
- / dx' / dX"fos(X', X")pa (X', X")
b [ax [ ax e X0 x)
+ / ax’' / AX" (X, X)) (X, X" (3.12)
)

where p, g are the pair distribution functions for species « and f.

(2) For functions F that depend on pairs as well as on triplets of particles of
the form

F(XN) =3 f(Xa X))+ Y h(Xi X)X (3.13)
7 777k

the corresponding average is
<F> :/dX//dX”f(X’,X”)p(z)(X/,XN)
—i—/dX//dXN /deh(X/,X”,X///)p(s)(X/,XN,XN/). (3.14>

The arguments leading to (3.14) are the same as those for (3.6). The new
element which enters here is the triplet distribution function. Similarly, we can
write formal relations for average quantities which depend on larger numbers
of particles. The result would be integrals involving successively higher order
molecular distribution functions. Unfortunately, even (3.14) is rarely useful
since we do not have sufficient information on p®.

3.2 Internal energy

We now derive an important expression for the internal energy of a liquid.
Consider a system in the T, V, N ensemble and assume that the total potential
energy of the interaction is pairwise additive, namely,
Un(XY) = 13 U(X, X)), (3.15)
i#j
The factor % is included in (3.15) since the sum over i# j counts each pair
interaction twice.
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The canonical partition function for the system is

qN

Q(T,V,N) =7 A _q—|// dX"N exp[—BUn(XM)] (3.16)

where the momentum partition function is included in ¢".
The internal energy of the system is given by'

0(A/T) , 0InQ , Olng , 0lnZy
= kT = NkT T
or U p = N o TR
The first term on the rhs includes the internal and the kinetic energy of the
individual molecules. For instance, for spherical and structureless molecules,
we have g= A" and hence

E=-T°

(3.17)

ol
NeX = NkT? (1) = 2 NkT (3.18)
oT
which is the average translational kinetic energy of the molecules. This con-
sists of JkT for the average Kinetic energy per particle along the x, y, and z
coordinates.
The second term on the rhs (3.17) is the average energy of interaction among
the particles. This can be seen immediately by performing the derivative of the
configurational partition function:

GanN _ f . f dXN exp[ﬁUN(XN)] UN(XN)

kT?

oT ZN
:// AXNP(XN) Uy (XN) = (Uy). (3.19)

Hence, the total internal energy is
E = Ne* + (Uy) (3.20)

where Ne¥ originates from the first term on the rhs of (3.17), which in general
can include contributions from the translational, rotational, and vibrational
energies.

The average potential energy in (3.20), with the assumption of pairwise
additivity (3.15), fulfills the conditions of the previous section; hence, we can
immediately apply theorem (3.5) to obtain

E=Ne +1 / dx’' / dx" u(x,x") p@x’, x"). (3.21)

! Note that E is referred to as the internal energy in the thermodynamic sense. &¥ designates the
internal energy of a single molecule.
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For spherical particles, we can transform relation (3.16) into a one-
dimensional integral. Using the same arguments as were used to derive (3.10),
we get from (3.21)

E = N +1Np / U(R)g(R)4nR* dR. (3.22)
0

Note again that integration in (3.22) extends to infinity. The reason is that
U(R) usually has a range of a few molecular diameters; hence, the main con-
tribution to the integral on the rhs (3.22) comes from the finite region around
the origin.

The interpretation of the second term on the rhs of (3.22) is quite simple. We
select a particle and compute its total interaction with the rest of the system.
Since the local density of particles at a distance R from the center of the selected
particle is pg(R), the average number of particles in the spherical element of
volume 47R* dR is pg(R)4mR’ dR. Hence, the average interaction of a given
particle with the rest of the system is

/ h U(R)pg(R)4nR* dR. (3.23)

We now repeat the same computation for each particle. Since the N particles
are identical, the average interaction of each particle with the medium is the
same. However, if we multiply (3.23) by N, we will be counting each pair
interaction twice. Hence, we must multiply by N and divide by two to obtain
the average interaction energy for the whole system, i.e.,

Np /0 ) U(R)g(R)4nR* dR. (3.24)

Once we have an analytical form for U(R) and acquired information (from
either theoretical or experimental sources) on g (R), we can compute the energy
of the system by a one-dimensional integration.

The generalization of the result (3.21) or (3.22) is quite straightforward once
we recognize the meaning of each term. The first term is the total kinetic and
internal energy of all the particles. Instead of Ne® we simply have to write a sum
over all species in the system, i.e., Zf:]- N; EIK where the sum extends over all
the ¢ species. Similarly, the second term on the rhs of (3.21) should be replaced
by a double sum over all pairs of species. The final result for a c-component
system is thus

E=d Nt +130) [ax [axu e xf o x. 629
i=1

i=1 j=1
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3.3 The pressure equation

We first derive the pressure equation for a one-component system of spherical
particles. This choice is made only because of notational convenience. We shall
quote the equation for nonspherical particles at the end of this section, along
with the generalization for multicomponent systems.

The pressure in the T, V, N ensemble is obtained from the Helmholtz

energy by
A
p—— (a_) (3.26)
oV/)rn

A= —kTInQ(T, V,N). (3.27)

where

Note that the dependence of Q on the volume comes only through the con-
figurational partition, hence

P=kT <aanN> . (3.28)
oV Jrn

To continue, we first express Zy explicitly as a function of V. For macroscopic
systems, we assume that the pressure is independent of the geometric form of
the system. Hence, for convenience, we choose a cube of edge L= V5 so that the
configurational partition function is written as

L L
Iy = / . / dx) dy, dz, - -+ dxy dyn dzy exp[—ﬂUN(RN)]. (3.29)
0 0

Next we transform variables:

=1

X, = V3x yi = V3, 4 =V’z (3.30)
so that the limits of the integral in (3.29) become independent of V, hence we

write

1 1
N = VN/ = / dx, dy| dz; - - - dx\, dyy dzy exp(—BUy).  (3.31)
0 0

After the transformation of variables, the total potential becomes a function of
the volume, i.e.,

U =1 T UR) =1 T UV Ry). (.32
i#j i#j
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The relation between the distances expressed by the two sets of variables is
1
2 2 212
Ry = | (5 =)+ = 7) " +(z— =)

l / / 2 / / 2 / / 2 %
=3l (5= %) + (=) + (4 - 4)
1
— V3 jo. (3.33)

We now differentiate (3.31) with respect to the volume to obtain

(aaiVN> = NVN_I/I“‘/1 dx; - - - dz; exp(— B Uy)
TN 0 0
+ VN/O /o dx{"-dzf\,[exp(—ﬁUN)]< ﬁaﬂ> (3.34)

From (3.32), we also have

aUN
v 22 aR,]

OU(Ry)

_ 1 =2
_%Z OR:: %V3jo
i#] "
OU(R;i
- ( J)R,-j. (3.35)
6V v GR,-j

Combining (3.34) and (3.35) and transforming back to the original variables,
we obtain

dlnz QU(R;
AN ———/ / dRVP(RY) Y Ri) . (3.36)
oV Jon V6V OR;

The second term on the rhs of (3.36) is an average of a pairwise quantity.
Therefore, we can apply the general theorem of section 3.1 to obtain

InZ o0
pP= kT(a 1 N) = ——/ aU ¢(R)4nR*dR.  (3.37)
OV Jrn

This is the pressure equation for a one-component system of spherical particles
obeying the pairwise additivity for total potential energy. Note that the first
term is the “ideal gas” pressure. The second is due to the effect of the inter-
molecular forces on the pressure. Note that in general, g(R) is a function of the
density; hence, the second term in (3.37) is not the second-order term in the
density expansion of the pressure.
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The pressure equation is very useful in computing the equation of state
of a system based on the knowledge of the form of the function g(R). Indeed,
such computations have been performed to test theoretical methods of
evaluating g (R).

In a mixture of ¢ components, the generalization of (3.37) is straightforward.
Instead of the density p in the first term on the rhs of (3.37), we use the total
density p; = > . p,. Also, the second term is replaced by a double sum over all
pair of species. The result is

‘ ou,
P:;kTpa Zpapﬁ/o ﬁgw( R)4nR® dR (3.38)

o, =1
where p, is the density of the o species and g,3(R) is the pair correlation
function for the pair of species o and f.
For a system of rigid, nonspherical molecules, the derivation of the pressure
equation is essentially the same as that for spherical molecules. The result is

P=kTp— (%) / ax’ / dX"[R- VRU(X',X")p? (X, X") (3.39)

where R=R’ — R and Vg is the gradient with respect to the vector R.

3.4 The chemical potential

3.4.1 Introduction

The chemical potential is the most important quantity in chemical thermo-
dynamics and, in particular, in solution chemistry. There are several routes for
obtaining a relationship between the chemical potential and the pair correla-
tion function. Again we start with the expression for the chemical potential in a
one-component system, and then generalized to multicomponent systems
simply by inspection and analyzing the significance of the various terms.

In this section, we discuss several different routes to “build up” the expression
for the chemical potential. Note, however, that in actual applications only dif-
ferences in chemical potentials can be measured.

The chemical potential is defined, in the T, V, N ensemble, by

= (aa—l’:‘])m. (3.40)

For reasons that will become clear in the following paragraphs, the chemical
potential cannot be expressed as a simple integral involving the pair correlation



86 THERMODYNAMIC QUANTITIES EXPRESSED IN TERMS OF MDFs

function. Consider, for example, the pressure equation that we have derived in
section 3.3 which we write symbolically as

P = P[g(R); p, T|. (3.41)

By this notation, we simply mean that we have expressed the pressure
as a function of p and T, and also in terms of g(R), which is itself a function of
pand T.

Since the pressure is also given by

where a=A/N and p~ '= V/N, we can integrate (3.42) to obtain
o=~ [ Ple(®yi p.TId(p ). (5.3

Clearly, in order to express a in terms of g(R), we must know the explicit
dependence of ¢g(R) on the density. Thus, if we used the pressure equation in
the integrand of (3.43) we need a second integration over the density to get the
Helmholtz energy per particle.

The chemical potential can then be obtained as

u=a-+ Pv (3.44)

with v = V/N.
A second method of computing the chemical potential is to use the energy
equation derived in section 3.2, which we write symbolically as

E = E[g(R); p, T]. (3.45)

The relation between the energy per particle and the Helmholtz energy is

e= % = —Tz{%}p (3.46)

which can be integrated to obtain

a

=N [ Eg(Ryp. 1)/ 1T, (347)

Again, we see that if we use the energy expression [in terms of g(R)] in
the integrand of (3.47), we must also know the dependence of g(R) on the
temperature.

The two illustrations above show that in order to obtain a relation between u
and g(R), it is not sufficient to know the function g(R) at a given p and T; one
needs the more detailed knowledge of g(R) and its dependence on either p or T.
This difficulty follows from the fact that the chemical potential is not an average
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of a pairwise quantity, and therefore the general theorem of section 3.1 is not
applicable here. Nevertheless, the two procedures above are useful in the
numerical computation of the chemical potential.

3.4.2 Insertion of one particle into the system

The chemical potential in the T, V, N ensemble may be written as

= (@A> _ lim [A<N +dN) = A(N)] AN +1) — A(N)
Ty dN=0

oN N = 1 . (3.48)
In (3.48), we start with the definition of the chemical potential in the T, V, N
system, then take the limit AN — 0 as if N was a continuous variable. If Nis very
large, the addition of one particle may be viewed as an “infinitesimal” change in
the variable N.'

The replacement of a derivative with respect to N by a difference is justified
since the Helmholtz energy is an extensive function, i.e., it has the property
A(T, aV, aN) =aA(T, V, N) for any « > 0. Now define o = 1/dN, M = N/dN,
and Y= V/dN. Instead of taking the limit dN— 0, we take the limits M — oo
and Y— oo, but M/Y is kept constant (this is the thermodynamic limit).

Thus, we rewrite (3.48) as

[A(T, V,N + dN) — A(T, V, N)]

dAN—0 dN
V N V N
=1 Al T, —, —+1)-A(T, —, —
dﬁrﬂo[ ( AN dN+> < dN, dN)]
= lim A(T,Y,M+1) = A(T, Y, M). (3.49)
M—oo
p=M/Y=const.

Relation (3.49) simply means that in order to compute the chemical potential,

it is sufficient to compute the change of the Helmholtz energy upon the

addition of one particle. We now use the connection between the Helmholtz

energy and the canonical partition function to obtain

Q(T,V,N+1)
Q(T,V,N)

[ NN 1) [ [ dRy - dRy exp(—BUp 1)
N (qN/A3NN!)f~--de1'“dRNeXP(—ﬁUN) '

exp(—pu) =exp{—BIA(T,V,N +1) — A(T,V,N)|} =

(3.50)

T Clearly, this “approximation” is not valid for any function. Take for instance sin(N); one cannot
approximate the derivative limgy_o((sin(N + dN) — sin(N))/(dN)), by taking dN=1, no matter
how large N is.
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Note that the added particle has been given the index zero. Using the
assumption of pairwise additivity of the total potential, we may split Uy, ; into
two terms:

N
Un+1(Ro,...»Ry) = Uy(Ry,...,Ry) + Z U(Ro, R;
j=1
= Un(Ry, ..., Ry) + B(Ry, ... Ry). (3.51)

In (3.51), we have included all the interactions of the zeroth particle with the
rest of the system into the quantity B(R,, ..., Ry). The quantity B(R,, ..., Ry)
may be referred to as the binding energy of the particle at R, to the rest of the
particles at Ry, ..., Ry. Using (3.51) and the general expression for the basic
probability density in the T, V, N ensemble, we rewrite (3.50) as

exp(—Bu) :m// dRydR, ... dRyP(Ry,...,Ry)
x exp[—pB(Ry, - .., RN)]. (3.52)
Next, we transform to coordinates relative to R, i.e.,
R.=R,— Ry, i=12,...,N.

Note that B(Ry,...,Ry) is actually a function only of the relative coordinates
R}, ..., Ry; for instance, U(Ry, R)) is a function of R} and not of both R, and R;.
Hence, we rewrite the chemical potential as

exp(—fu) = A3N+ /Ro/ /dR .dRP(R,...,Ry)
x exp[—BB(Ry, ... (3.53)

In this form, the integrand is independent of R,. Therefore, we may integrate
over R, to obtain the volume. The inner integral is simply the average in the
T, V, N ensemble of the quantity exp (—fB), i.e.,

() = s (2B (3.54)

Since p = N/V=(N+ 1)/V (macroscopic system), we can rearrange (3.54) to
obtain the final expression for the chemical potential:

= kTIn(pA’q ") — kT'In(exp(—fB)). (3.55)

This is a very important and very useful expression for the chemical potential.
As we shall soon see, this form is retained almost unchanged upon general-
ization to non- spherical particles, mixtures of species, or in different ensembles.
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Note that when the newly added particle does not interact with the other par-
ticles in the system, i.e., B=0, the second term on the rhs of (3.55) is zero (of
course, this is also true when there are no interactions among all the particles, in
which case we have an ideal gas). The addition of a new particle at Ry (or
equivalently at Ry=0) can be viewed as “turning on” of an “external field”
acting on the system of N particles. This external field introduces the factor
exp (—pB) in the expression for the chemical potential. More explicitly, if the
potential energy is pairwise additive, then

exp[—BB(Ry, .. ., Ry)] = H exp[—BU(Ro, R))]. (3.56)
j=1

Clearly, this is not a pairwise additive quantity in the sense of (3.3), i.e., it is not
a sum, but a product of pairwise functions. This is the reason why we cannot
express the chemical potential as a simple integral involving only the pair
distribution function.

The expression (3.54) follows directly from the definition of the chemical
potential in (3.48). It was first derived in a slightly different notation by Widom
(1963, 1982).

We now re-express the second term on the rhs of (3.55) in terms of the pair
distribution function.

3.4.3 Continuous coupling of the binding energy

In section 3.4.1, we have seen that the chemical potential could be expressed

in terms of g(R) provided that we also know the dependence of g(R) on either T

or p. We now derive a third expression due to Kirkwood (1933), which employs

the idea of a coupling parameter &.' The ultimate expression for the chemical

potential would be an integral over both R and ¢ involving the function g(R, &).
We start by defining an auxillary potential function as follows:

U(&) = Un(Ry,...,Ry) + gi U(Ro, R;) (3.57)

which can be compared with (3.51). Clearly, we have the following two limiting
cases:

U(¢ =0) = Uy(Ry, ..., Ry) (3.58)

U(E=1) = Uns1(Ro, ..., Ry). (3.59)

! This idea is a generalization of the charging process employed in the theory of ionic solutions.
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The idea is that by changing ¢ from zero to unity, the function U(£) changes
continuously from Uy to Uy ;. Another way of saying the same thing is that
by changing £ from zero to unity the binding energy of the newly added particle
at Ry is “turned on” continuously. This is, of course, a thought experiment. We
mentally “add” the new particle by “switching” on its interaction with the rest
of the particles in the system.

Note, however, that within the assumption of pairwise additivity of the total
potential energy, the quantity Uy is unaffected by this coupling of the binding
energy of the newly added particle.

For each function U(¢), we also define the corresponding configurational
partition function by

— / . / dRy dR; ...dRy exp[—pU(&)]. (3.60)

Clearly, we have the following two limiting cases:

and
Z(¢E=1)=Zns1- (3.62)

The expression (3.50) for the chemical potential can be rewritten using the
above notation as

p=kTIn(pA’q ") — kTIn Z(é = 1) + kTIn Z(¢ = 0) (3.63)

or, using the identity

1
lenZ(é:l)—lenZ(é:O):kT/ alna?é)dg (3.64)
0
we get
_ '0lnZ(¢)
= kTIn(pA’q ") — kT | —=2 dé. 3.65
n=KTn(pn'q ™) — k7 [ S5 ae (3.69)

We can now differentiate Z (£) in (3.60) with respect to ¢ to obtain

N

_ﬁ Z U(RO) R])

j=1

OlnZ(c) _ kT [ e dRe fexpl—
kT _Z(é)/ /dRo dRy{exp[-BU(&)]}

o¢
N
- / /dRO -dRyP RN“éZURO,

j=1




THE CHEMICAL POTENTIAL 91
N
- —Z// dRy - -- dRyP(RY™, £)U(Ry, R;)
i—1

- —N//dROdR1 U(RO,Rl)/---/ dR; - dRyP(RNT! &)

1

— _N—_H/ / dROdR1 U(Ro,Rl)p(z) (RO) Rlaé)

=—p /OOC U(R)g(R, &)4nR*dR. (3.66)

It is instructive to go through the formal steps in (3.66). They are very similar to
those in section 3.1. The only new feature in (3.66) is the appearance of the
parameter &, in the pair distribution functions.

We now combine (3.66) with (3.65) to obtain the final expression for the
chemical potential:

1 0
= kTIn(pA’q™") + p/ df/ U(R)g(R, &)4nR*dR. (3.67)
0 0

We can also define the standard chemical potential in the ideal gas phase by
1% = kTIn(A’q ™) (3.68)

and the corresponding activity coefficient

1 00
kT Inyidel &8 — / dé / U(R)g(R, ¢)4nR*dR, (3.69)
0 0

to rewrite (3.67) in the form

1= 1% + kT In(pyldet &), (3.70)

In (3.69) we have an explicit expression for the activity coefficient ' %5,

which measures the extent of deviation of the chemical potential from the
ideal-gas form. The quantity pg (R, &), is the local density of particles around a
given particle that is coupled to the extent of ¢, to the rest of the system. Note
that (3.67) is not a simple integral involving g(R). A more detailed knowledge
of the function g(R, &) is required to calculate the chemical potential.

The interpretation of the terms in (3.67) is as follows. Suppose that we have a
system of N interacting particles at a given T and p, we now add a hypothetical
particle which carries the same momentum and internal partition function as
all other particles of the system. This particle is initially uncoupled in the sense
of £ =0. The corresponding chemical potential of this particular particle at this
stage is

W =kTIn(A’qg v, (3.71)
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Note that since we have added one particle which is initially different from all
the other N particles, its density is p' =V~ ! The volume V enters here because
the particle can reach any point within the system.

We now “turn on” the coupling parameter £ until it reaches the value of
unity. The chemical potential of the added particle changes in two ways. First,
we have the work required to build up the interaction between the added
particle and the rest of the system. This is the second term on the rhs of (3.67).
Second, as long as the new particle is distinguishable from all the other particles
(ie, £#1), its density remains fixed p'=V~'. At the point {=1, it
abruptly becomes identical to the other particles. This involves an assimilation
Helmholtz energy of amount (see Appendices H and I)

AA =kTIn(N/1) = kTIn(pV). (3.72)

This, together with the coupling work, converts (3.71) into (3.67). A second
way of interpreting the two terms in (3.67), or equivalently in (3.55), will be
discussed in the next section.

3.4.4 Insertion of a particle at a fixed position:
the pseudo-chemical potential

The chemical potential is the work (here, at constant T,V') associated with the
addition of one particle to a macroscopically large system:

p=A(T,V,N+1)— A(T, V,N). (3.73)

The pseudo-chemical potential refers to the work associated with the addition
of one particle to a fixed position in the system, say at Ry.'

1 = A(T,V,N +1; Ry) — A(T, V, N). (3.74)

The statistical mechanical expression for the pseudo-chemical potential can
be obtained in a similar way as in (3.50), i.e., as a ratio between two parti-
tion functions corresponding to the difference in the Helmholtz energies in
(3.74), i.e.,

(¢ /ANNY) [+ [dR, ... dRy exp[~BUn11(Ro, - - -, Ry)]
(gN/A’NN!) [---[dR; ...dRy exp[~BUn(Ry,...,RN)].
(3.75)

exp(—fu) =

It is instructive to note carefully the differences between (3.50) and (3.75).
Since the added particle in (3.74) is devoid of the translational degree of

T This process is meaningful in classical statistical mechanics. The particle at R is assumed to have
an exact location and exact velocity.
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freedom, it will not bear a momentum partition function. Hence, we have AN
in (3.75) instead of A>*™*1 in (3.50). For the same reason, the integration in
the numerator of (3.75) is over the N locations R;,..., Ry and not over
Ry, ..., Ry as in (3.50). Furthermore, since we have added a particle to a fixed
position, it is distinguishable from the other particles; hence, we have N! in
(3.75) instead of (N+ 1)! in (3.50).

Once we have set up the statistical mechanical expression (3.75), the fol-
lowing formal steps are nearly the same as in the previous section. The result is

p* =kTlng ' — kTIn{exp(—pBB))

1 o0 (3.76)
=kTlng '+ p/ dé/ U(R)g(R, &)4nR*dR
0 0

which should be compared with (3.55) and (3.67). Note that we have added the
particle to a fixed position Ry; therefore, from the formal point of view, p*
depends on Ry. However, in a homogeneous fluid, all the points of the system
are presumed to be equivalent (except for a small region near the boundaries,
which is negligible for our present purposes), and therefore u* is effectively
independent of R,,.

Combining (3.76) with either (3.55) or (3.67), we obtain the expression for
the chemical potential

w= @+ kTln(pA?). (3.77)

Here, the work required to add a particle to the system is split into two parts.
This is shown schematically in figure 3.1. First, we add the particle to a fixed
position, say Ry, the corresponding work being u*. Next, we remove the con-
straint imposed by fixing the position of the particle; the corresponding work is
the second term on the rhs of (3.77). The last quantity was referred to as the
liberation Helmholtz energy'. Since we are dealing with classical statistics
pA’ < 1 and therefore the liberation Helmholtz energy is always negative.
Thus, liberating the particle from its fixed position is always associated with a
decrease in free energy. Note also that the term kT In(pA°) is in general not the
ideal-gas chemical potential of the particles. The latter is kT In(pA’q ") where g
is the internal partition function of the particles.

It is instructive to recognize the three different sources that contribute to
the liberation free energy. First, the particle at a fixed position is devoid of
momentum partition function (though it still has all other internal partition
functions such as rotational and vibrational). Upon liberation, the particle

! In some articles, this term is referred to as the “mixing free energy.” Clearly, since no mixing
process occurs, we prefer the term “liberation of free energy.”
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Figure 3.1 The process of adding one A particle to a solution is carried out in two steps. First, we insert
the particle at a fixed position, then we release the particle to wander in the entire system. The corre-
sponding free energy changes are 1, and kT In psA°, respectively.

acquires momentum, the distribution of which depends on the temperature. The
corresponding contribution to the free energy is kT In A”. Second, the released
particle that was confined to a fixed position can now access the entire volume V.
The corresponding contribution is —k7T In V. Finally, and most importantly, the
particle at Ry is distinguishable from all other particles in the system. Once it is
released, it becomes indistinguishable from the other N members of the same
particles. We call this process assimilation and the corresponding contribution to
the change in free energy is kT1n N. Together, the three contributions comprise
the liberation free energy in which only the dimensionless quantity pA”> features.
It is important to realize that these three contributions are independent and
conceptually arise from different sources. One can change one of these without
changing the others (see also Appendices H and I).

3.4.5 Building up the density of the system

A third interpretation of the expression for the chemical potential in a one-
component system may be obtained in terms of the Kirkwood—Buff integrals as
discussed in section 3.5. We quote here only one result which we shall use for
the purpose of this section [see equation (3.126) in section 3.5]:

<2—g>T: KT (% 1 +GpG> (3.78)

G= /oc [¢(R) — 1]4nR* dR (3.79)

where G is defined by
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and g (R) is the pair correlation function, defined in an open system (see section
3.5 for more details). Integrating (3.79) with respect to p (assuming that at
p =0 we have the ideal-gas behavior) we obtain

G
14+p'G

p
p=kTInA’q"' +kTlnp — kT/ dp'. (3.80)
0

The third term on the rhs of (3.80) may be identified with the coupling work;
i.e., comparing (3.80) with (3.55), we have

G
kT'1 —pB)) = kT dp'. 3.81
nlexp(~pB) = KT [ = dp (81
The coupling work is interpreted in (3.81) as the work required to increase the
density from p =0 to the final density p. A slightly different interpretation is
obtained by rewriting (3.80) as

P11 G
= (kTInA’q ' + kT1 kT/ - — dp’
p=(kTInA’q" + kTInp,) + v 10 I

= (kTInA’q~ ' + kTl
(kTInA’q~ + kT'Inp,) + o 119G

p
kTIn 2 — kT / G dp']. (3.82)
I

The expression within the first set of parentheses corresponds to the work
required to introduce one particle to an ideal-gas system (po very low). The
second term is the work involved in changing the density from p, to the final
destiny p. This work is composed of two contributions; first, the change in the
assimilation term kTln p/p, (note that V is constant in the process), and sec-
ond, the coupling work (3.81).

Since (3.82) is valid for any po~ 0, we can put po =0 and get the expression
(3.80). Note also that in order to express the chemical potential in terms of the
pair correlation function, we need to take two integrations, one over R as in
(3.79), and one over the density in (3.80).

3.4.6 Some generalizations

We now briefly summarize the modifications that must be introduced into the
equation for the chemical potential for more complex systems.

(1) For systems that do not obey the assumption of pairwise additivity for
the potential energy, equation (3.67) becomes invalid. In a formal way, one can
derive an analogous relation involving higher order molecular distribution
functions. This does not seem to be useful at present. However, in many
applications for mixtures, one can retain the general expression (3.55) even
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when the potential energy of the solvent does not obey any additivity assump-
tion. We briefly discuss this case below.

(2) For rigid, nonspherical particles whose potential energy obeys the
assumption of pairwise additivity, a relation similar to (3.67) holds. However,
one must now integrate over the orientation as well as over the location of the
particle. The generalized relation is

1
= kTIn(pA’q ") + / dé / ax"u(x’, X" p(X"/X',&).  (3.83)
0

Here, g includes the rotational as well as the internal partition function of a
single molecule. The quantity p(X” / X', &) is the local density of particles at
X', given a particle at X', coupled to the extent of . Clearly, the whole integral
on the rhs of (3.83) does not depend on the choice of X’ (for instance, we can
take R’ =0 and ' = 0 and measure X' relative to this configuration).

(3) For mixtures of ¢ components, the expression for the chemical potential
can be written upon inspection of the terms in the case of a one-component
system. Consider first the expression (3.55), which is the more general one.
Once we know the meaning of the two terms on the rhs (3.55), we can write
down the chemical potential of any component i, immediately, i.e.,

p; = kTlnp;Alq: " — kT In(exp[—BBi]), (3.84)

where the first term is the liberation term for particle of species i. This term
does not depend on the presence of other species in the system, and it is the
same as for pure i. The second term is the coupling work of i to the entire
system. Note also that the significance of this term does not depend on any
assumption of pairwise additivity i.e., B; is defined simply as

Bi=U(N,Ns, ...,Ni+1,...,N) = UN, Ny, ..., Njy ..., N.) (3.85)

i.e., B;is the change in the total potential energy of the system being at a specific
configuration, upon the addition of one particle of type i at a fixed position,
say Ry.

Note that the average ( ), in (3.84) is over all the configurations of the
“solvent” molecules, i.e., all the molecules of the system except the one placed at
a fixed position.

If the total potential energy does fulfill the assumption of pairwise additivity,
then we can obtain the generalization of equation (3.67) as

c 1 00
‘ui:lenp,-quil—l—ij/ d&/ U;i(R)g;i(R, &)4nR*dR.  (3.86)
0 0

j=1
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(4) For molecules having internal rotational degrees of freedom (say poly-
mers), the expression for the chemical potential should be modified to take into
account all possible conformations of the molecules. In particular, the rota-
tional partition function of the molecules (included in g) might be different for
different conformations. We shall discuss a simple case of such molecules in
chapter 7, section 7.8.

(5) The expression of the chemical potential in other ensembles. In all previous
sections, we have used the definition of the chemical potential in the T, V, N
ensemble. This was done mainly for convenience. In actual applications, and in
particular when comparison with experimental results is required, it is necessary
to use the T, P, N ensemble. In that case, the chemical potential is defined by

where G is the Gibbs energy of the system. It is easy to show that the formal split
of 1 into two terms as in (3.77) or (3.84) is maintained. In the T, P, N ensemble,
p = N/(V) where (V) is the average volume, and ( ) should be interpreted as a
T, P, N average. In the T, V, u ensemble, p is one of the independent variables
used to describe the system. Yet it can also be written in the form (3.77), with
the reinterpretation of the density p = (N)/V, where (N) is the average in the T,
V, 1 ensemble; for more details see Ben-Naim (1987).

3.4.7 First-order expansion of the coupling work

We end this long section on the chemical potential with one simple and useful
expression. We note first that in all of the expressions we had so far, the
chemical potential was expressed as integrals over the pair correlation function.
It is desirable to have at least one expression of the chemical potential in terms
of molecular interactions. This can be obtained for very low densities, for which
we know that the pair correlation function takes the form

g(R) = exp[-fU(R)] (3.88)
and hence for the added particle we write
8(R, &) = exp[-BEU(R)]. (3.89)

Substituting (3.89) into (3.67), we get an immediate integral over ¢, hence
1 00
/ dé / U(R) exp[—BEU(R)]4nR*dR
0 0

= —kT /OO {exp[~BU(R)] — 1}4nR*dR. (3.90)
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Using the notation for the second virial coefficient (see section 1.5)
By(T) = —%/ {exp[-BU(R) — 1]}4nR*dR (3.91)
0

we can write (3.67) for this case as
1= u" + kTln p 4 2kTB,(T)p. (3.92)

The last term on the rhs of (3.92) is the first-order term in the expansion of the
coupling work in the density.

The virial expansion for the pressure may be recovered from (3.92) by using
the thermodynamic relation

dP = pdu (T constant). (3.93)
From (3.92) we have

du = kFT dp + 2kTB,(T)dp. (3.94)

Combining (3.93) and (3.94) yields
dP = [kT + 2kTB,(T)p]dp. (3.95)
This may be integrated between p =0 and the final destiny p to yield
P = kTp + kTB,(T)p* (3.96)

which is the leading form of the virial expansion of the pressure.

It should be noted that for p — 0, we obtain the ideal-gas expression for the
chemical potential. In (3.92), we have the first-order term in the expansion of
the nondivergent part of the chemical potential in the density.

The same result can be obtained by expanding the third term on the rhs of
(3.80) to first order in the density, i.e.,

G
—kT dp' = —kTpG’ 3.97
/0 el p (3.97)
where we have denoted by
G’ = lim G. (3.98)
p—0

From (3.97) and (3.92), we can identify G as
G’ = —2B,(T) = /OO {exp[-BU(R)] — 1}4nR* dR (3.99)
0

We shall discuss the generalization of equation (3.92) for mixtures in the next
chapter.
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3.5 The compressibility equation

The compressibility relation is one of the simplest and most useful relations
between a thermodynamic quantity and the pair correlation function. In
this section, we derive this relation and point out some of its outstanding
features.

We consider here a one-component system of rigid, nonspherical particles in
the T, V, u ensemble. We stress from the outset that no assumption of addi-
tivity of the potential energy is invoked at any stage of the derivation. As we
shall soon see, the generalization of this equation for a multicomponent system
is not straightforward.

We recall the normalization conditions for p(V)(X,) and for p® (X3, X;) in
the T, V, u ensemble:

[ axi0) = ) (3.100)
/Xmdsz(z) (X1,X,) = (N*) = (N). (3.101)

Either bars or the bracket ( ) stand for the average in the T, V, u ensemble. We
used bars for MDFs defined in the T, V, u ensemble, whereas the symbol () is
used for averages computed with these MDFs.

By squaring equation (3.100) and subtracting from (3.101), we get

/ dX,dX,[p? (X1, X,) — pD(X1)  pD(X,)] = (N?) — (N)’—(N).

(3.102)
For a homogeneous and isotropic fluid we also have
0(xy)= 2. 3.103
PX)= 2 (3.10)
The definition of the pair correlation function is
- (X, X
g(X1, X;) = =2 X, X5) (3.104)

p(X1) p(X2)

and the corresponding spatial pair correlation function is defined by

- 1 -
g(Rl,Rz) :W/dﬁl,dﬂzg(Xl,Xz). (3105)
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We can rewrite (3.102) as
o / AR AR, [g(R Ry — 1] = (N?) — (N)—(N). (3.106)

Since g(R;, R;) depends only on the scalar distance R = |R, — R;|, we can
rewrite (3.106) as

(N?) = (N)*

1+p/dR[g(R)—1]: )

N (3.107)
=1 +p/ [g(R) — 1]4nR*dR.

Relation (3.107) is an important connection between the radial distribution
function and fluctuations in the number of particles. The fluctuations in the
number of particles can be obtained directly from the grand partition function.
The relation is (see section 1.3)

(N?) — (N)’= kTVp*kr (3.108)

where xr is the isothermal compressibility of the system. Combining (3.108)
with (3.107), we get the final result

1 1 —
‘=5 g, AR~ 1)

1 | —
=+ — R) — 1]4nR? dR. 3.10
ot ), 80— 1 (3.109)

This is known as the compressibility equation. We define the quantity’
G= / [g(R) — 1]4nR* dR. (3.110)
0
In terms of G, the compressibility equation is written as

kTpxr =1+ pG. (3.111)

Note that the first term on the rhs of (3.109) is the compressibility of an ideal
gas. That is, for a system obeying the equation of state P = pkT, we have

_ Ly _(Ghe) _ L (3.112)
=y \er). o \op ), kT ‘

Hence, the second term on the rhs of (3.109) conveys the contribution to the
compressibility due to the existence of interactions (and therefore correlation)

! We use the letter G for both the Gibbs energy and the Kirkwood—Buff integral, as defined
in (3.110).
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among the particles. Note also that the last expression for the isothermal
compressibility holds either for an ideal gas in the sense of U(R) =0, for any
density p, or for a real gas at very low density, for which the equation of state
P=pk T holds. Clearly, in the limit p — 0, k+— oc. Originally, the compres-
sibility equation was used by Ornstein and Zernike (1914) in their theory of the
well-known phenomenon of critical opalescence. Since kdiverges to infinity at
the critical point, it follows also that G diverges at the critical point. Since
pg(R) has probabilistic meaning, the integrand in (3.110) must be bounded
from above. Therefore, the divergence of G should be a result of long-range
correlations near the critical point.

The compressibility equation has some outstanding features which we now
highlight.

(1) We recall that no assumption of additivity on the total potential energy
has been introduced to obtain (3.109). In the previous sections, we found
relations between some thermodynamic quantities and pair correlation func-
tions which were based explicitly on the assumption of the pairwise additivity
of the total potential energy. We also recall that higher order molecular dis-
tribution functions must be introduced if higher order potentials are not
negligible. Relation (3.109) does not depend on the additivity assumption;
hence, it does not undergo any modification should high-order potentials be of
importance. In this respect, the compressibility equation is far more general
than the previously obtained relations (e.g., the energy or the pressure relation).

(2) The compressibility equation involves the radial distribution function
even when the system consists of nonspherical particles. We recall that pre-
viously obtained relations between, say, the energy or the pressure, and the pair
correlation function were dependent on the type of particle under considera-
tion. The compressibility depends only on the spatial pair correlation function.
If nonspherical particles are considered, it is understood that g(R) in (3.109) is
the average over all orientations (3.105). In the following, we shall remove the
bar over g(R). We shall assume that the angle average has been taken before

using the compressibility equation.

(3) The compressibility equation is a simple integral over g(R). It does not
require explicit knowledge of U(R) (or higher order potentials). It is true that
g(R) is a functional of U(R). However, once we have obtained g(R), we can use
it directly to compute the compressibility by means of (3.109). This is not
possible for the computation of, say, the energy.

One of the most important applications of the compressibility equation is to
test the accuracy of various methods of computing ¢(R). We recall that the
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pressure equation (3.37) has been found useful for computing the equation of
state of a substance, and hence can be used as a test of the theory that has
furnished g(R). Similarly, by integrating the compressibility equation, we
obtain the equation of state of the system, which may serve as a different test of
the theory. Clearly, if we use the exact function g(R) in either the pressure or in
the compressibility equations, we must end up with the same equation of state.
However, since we usually have only an approximation for g(R), the results of
the two equations may be different. Therefore, the discrepancy between the two
results obtained with the same g(R) using the pressure and the compressibility
equations, can serve as a sensitive test of the accuracy of the method of com-
puting g(R).

In applying the compressibility equation (3.109), care must be exercised to
use the pair correlation function g(R) as obtained in the grand canonical
ensemble, rather than the corresponding function g(R) obtained in a closed
system. Whenever this distinction is important, we use the notation go (R) and
gc(R) for open and closed systems, respectively. Although the difference
between the two is in a term of the order of N~ ' this small difference becomes
important when integration over the entire volume is performed as in the
definition of the quantity G (equation 3.110).

Let us first demonstrate the source of difficulty by a simple example. Con-
sider an ideal gas in the T, V, N ensemble. In section 2.5, we saw that g-(R) in
this case has the form (see also Appendix G)

gc(R) =1—1/N (ideal gas: T, V, N ensemble). (3.113)
On the other hand, go(R) in the T, V, u ensemble is
20(R) =1 (ideal gas: T, V, u ensemble). (3.114)

The difference between the two results (3.113) and (3.114) arises from the finite
number of particles in the T,V,N system. Even when there are no interactions,
U(RY) =0, there is still correlation between the particles. The density at any
point in the system is p(R) = N/ V. The conditional density at R given a particle
at any other point R is not p(R) = N/V but (N — 1)/V. Fixing one particle at
some point has an effect on the density at any other point merely because the
number of particles was reduced from N to N — 1. Such an effect does not exist
if we open the system, in which case the pair correlation function go(R) is unity
everywhere for an ideal gas.

Clearly, we can always take the infinite-system size limit of (3.113) to obtain

I\l]im gc(R) =1 (3.115)

which can be used in the compressibility equation.
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Thus, although the difference between g-(R) and go(R) is extremely small for
macroscopic systems (N ~ 10°%), the results obtained upon integration over a
macroscopic volume are not negligible. The different results obtained using
gc(R) and go(R) in equation (3.109) for an ideal gas are

1 1 —1 1 1
S S Y i I S S G R) from (3.113
“T=kTp kT, <N> kT krp O Lusing sc(R) from (3.113)
(3.116)

KT [using go(R) from (3.114)]. (3.117)

:m

Clearly, only the second result gives the correct compressibility of the ideal gas.
Relations (3.113) and (3.114) hold for an ideal gas. In the general case, the
limiting behavior of g-(R) as R— oo is (see also Appendix G)

pkTKr

gc(R) — 1 — (T, V,N ensemble) (3.118)

20 (R) — 1 (T,V,u ensemble). (3.119)

Clearly, (3.119) can be obtained from (3.118) by taking the infinite-system-size
limit (N— o0). Another way of demonstrating the discrepancy between the
two results in the T,V,N and T,V,u ensembles is in the difference in the nor-
malization conditions for the molecular distribution functions. In particular, in
the T, V, N ensemble, we have

(N?) = (N)’= N~ (3.120)
Hence, the normalization condition is
/XmdXz [p(z)(Xl,Xz) - p(1>(X1)p(1>(X2)] =N (3.121)
which is equivalent to the normalization condition
P /OO [gc(R) — 1]4nR*dR = —1, (T, V, N ensemble). (3.122)
0

The last result simply means that the total number of particles in the system, N,
is equal to the total number of particles around a given particle at the origin,
plus that particle at the origin. This simple calculation does not hold for an
open system where N is not a fixed number.

The corresponding normalization condition in the T, V, i ensemble is (3.106)
in which (N°) # (N)?. Here, instead of (3.122), we have the compressibility
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equation (3.109) which we write again as

p/ [¢0(R) — 1]4nR*dR = —1 + kTpxr. (3.123)
0

Clearly, the difference, kTpx 1, between (3.122) and (3.123) is finite and arises
from the difference in the long-range behavior of g-(R) and go(R). For more
details, see Appendix G.

The reader may wonder why we have dealt only now with the question of the
limiting behavior of g(R) as R— oo. The reason is quite simple. In all of our
previous integrals, g (R) appeared with another function in the integrand. For
instance, in the equation for the energy, we have an integral of the form

/ N U(R)g(R)4nR* dR. (3.124)

Clearly, since U(R) is presumed to tend to zero, as, say, R~ 6as R— oo, itisof no
importance whether the limiting behavior of g (R) is given by (3.118) or (3.119);
in both cases the integrand will become practically zero as R becomes large
enough so that U(R) ~ 0. The unique feature of the compressibility relation is
that only g(R) appears under the integral sign. Therefore, different results may
be anticipated according to the different limiting behavior of g(R) as R — oo.

As a corollary to this section, we derive a relation between the density
derivative of the chemical potential and an integral involving g(R). Recall the
thermodynamic identity

6/1) 1
— | = . 3.125
<ap r Krp? ( )
Combining (3.125) and (3.111) yields
(a—“) __ kK kT(l— G ) (3.126)
op)r p+p*G p 1+4+pG

Relation (3.126) will be generalized in the next chapter for mixtures. Here, we
note that by integrating (3.126) with respect to the density, we get the chemical
potential, i.e.,

kT dp
u= + const. (3.127)
p+p*G

Thus, once we have G and its density dependence, we can determine u from
(3.127) up to a constant. The constant of integration is evaluated as follows. We
choose a very low density (py — 0) in such a way that the chemical potential has
the ideal-gas form, i.e.,

#(po) = kTIn(pA’q~") = p + kT In p,. (3.128)
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The chemical potential may be obtained by integrating (3.126) from p, to the
final density p, i.e.,

’ (1 G
= kT [ (- dp’
u(p) = ulpo) + /p <p, 1+pr> p

% + kT1 +kT/p L G dp’
= n —_—
M Po L\ 149G p

P G
= 1% + kT1 —kT/ do'. 3.129
1 +kTlnp TG (3.129)

Note that in the last form on the rhs of (3.129), we have replaced the lower limit
po by po =0. This could not have been done when the divergent part (p') " was
in the integrand.

Finally, we note that unlike the procedure we have used to generalize pre-

vious expression to mixtures, here there is no straightforward generalization
procedure. In all of the previous examples we have generalized for mixtures
simply by inspection of the expression for the one-component system. Looking
at the compressibility equation (3.109) or (3.123), we see no hint or clue that
suggests a generalization for mixtures. We shall indeed see that the analog of
the compressibility equation for mixtures is far more complicated than what we
would have expected from our experience so far with the equation for the
energy, the pressure, and the chemical potential. We shall devote the next
chapter to obtain this generalization. In doing so, we shall also reach for new,
interesting and very important relations between thermodynamic quantities
and integrals over the pair correlation functions.

3.6 Relations between thermodynamic
quantities and generalized molecular
distribution functions

In section 2.7, we introduced the generalized molecular distribution functions
GMDFs. Of particular importance are the singlet GMDF, which may be
re-interpreted as the quasi-component distribution function (QCDEF). These
functions were deemed very useful in the study of liquid water. They provided a
firm basis for the so-called mixture model approach to liquids in general, and
for liquid water in particular (see Ben-Naim 1972a, 1973a, 1974).

In this section we shall derive some new relationships between thermodynamic
quantities and GMDF. In previous sections we have derived a few relationships
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between thermodynamic quantities and pair distribution functions. It is well
known and easy to see that if we try to express quantities such as heat capacity,
compressibility, thermal expansion coefficients, etc., we shall need higher order
MDFs. Since these are largely unknown, such relationships were not found to be
useful. However, by using GMDFs, we can express these thermodynamic
quantities in terms of singlet and pair distribution functions. It is hoped that
once we gain information on the singlet and pair distribution function, these
relations would be more useful.” However, even without knowing any details of
these GMDFs, some of these relationships were found useful in interpreting some
anomalous properties of water and aqueous solutions (Ben-Naim 1974).

In this section we shall be working in the T, P, N ensemble, and all the
distribution functions are presumed to be defined in this ensemble. We denote
by x either a vector or a function which serves as a QCDF. An appropriate
subscript will be used to indicate the property employed in the classification
procedure. For instance, using the coordination number (CN) as a property,
the components of xc are the quantities xo(K). Similarly, using the BE as a
property, the components of xp are the quantities xz(v). When reference is
made to a general QCDF, we simply write x without a subscript. Once a QCDF
is given, we can obtain the average number of each quasi-component directly
from the components of the vector N= Nx.}

Let E be any extensive thermodynamic quantity expressed as a function of the
variables T, P, and N (where N is the total number of molecules in the system).
Viewing the same system as a mixture of quasi-components, we can express E as a
function of the new set of variables T, P, and N. For correctness, consider a QCDF
based on the concept of CN. The two possible functions mentioned above are then

E(T,P,N) = E(T, P, N (0), N (1),..). (3.130)

For the sake of simplicity, we henceforth use N(K) in place of Nél)(K ), so that
the treatment will be valid for any discrete QCDF. Since E is an extensive
quantity, it has the property

E(T, P,aN(0),aN(1),...) = oE(T, P, N(0), N(1),...) (3.131)
for any real a > 05 i.e., E is a homogeneous function of order one with respect to

the variables N(0), N(1),..., keeping T, P constant. For such a function, the
Euler theorem states that

oo
E(T,P,N) =Y E(T,P,N)N(i) (3.132)
i=0
t Matubayasi and Nakahara (2000, 2002, 2003) have recently investigated a related topic, specif-

1cally for dilute solutions.
 Note that N is the vector N=(Nj, N», ..., N,), but N is the sum of all N; (i=1, ..., ¢).
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where E(T, P, N) is the partial molar (or molecular) quantity defined by

E(T,P,N) = [ oF (3.133)

aN(i)] TPNG) A

In (3.132) and (3.133), we have stressed the fact that the partial molar
quantities depend on the whole vector N.

At this point, we digress to discuss the meaning of the partial derivatives
introduced in (3.133). We recall that the variables N(i) are not independent;
therefore, it is impossible to take the derivatives of (3.133) experimentally. One
cannot, in general, add dN(i) of the i-species while keeping all the N(j), j# i,
constant, a process which can certainly be achieved in a mixture of independent
components. However, if we assume that in principle E can be expressed in
terms of the variables T, Pand N, then E; is the component of the gradient of E
along its ith axis. Here, we must assume that in the neighborhood of the
equilibrium vector N, there is a sufficiently 