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INTRODUCTORY NOTE

Tee former edition of Willard Gibbs’s writings, published in 1906
under the title The Sctentific Papers of J. Willard Gebbs, did not include
his important treatise Elemeniary Principles in Stafisiical Mechanics
which had originally been published as a separate book and was at that
time still available. In the present reprint this work has been included
as Part One of Volume II, and this is therefore the first complete edition
of the author’s published writings. Permission to reprint the Stafistical
Mechanics was kindly granted by Yale University, holder of the copy-
right, a courtesy which is hereby gratefully acknowledged.

There is no doubt that interest in the works of Willard Gibbs and
appreciation of their fundamental importance have greatly increased in
the twenty-two years since the publication of the former edition. Itis
hoped that this new reprint may serve to make the original text of his
writings accessible to a far wider circle of readers than heretofore, and
with this object in view the two vplumes are offered at a low price.
This has been made possible by the generosity of Professor Irving
Fisher of Yale University, a former pupil of Willard Gibbs, and by the
economy resulting from the use of photographic reproduction, which
was also desirable as a means of avoiding typographical errors. The
photographic method accounts for the slight typographical dissimilarity
between Parts One and Two of Volume II, and for the separate pagi-
nation of the two parts, which on account of the footnotes could not
readily be changed.

As a supplement to this reprint of the original text, a commentary
designed to aid the student of Willard Gibbs’s writings may, it is hoped,
be published at a later date. This volume, or volumes, to be written by
recognized authorities in the several fields, would aim to explain the
theoretical background of Gibbs's method, to amplify the treatment of
points of special difficulty, fo discuss the evaluationr of Gibbs’s functions-



vi INTRODUCTORY NOTE

in terms of directly measurable quantities and to furnish a variety of
illustrative examples from the literature now available. Such treat-
ment is probably most needed in the case of the thermodynamic papers,
but other parts of his writings may also be covered if it seems desirable.
A special committee is now investigating the practicability of the whole
plan.

Wictiam Ravvoxp LoNGLEY

Rarex GiBes Vax NaME

YarLe UNIVERSITY,
May, 19280



PREFACE TO THE 1906 EDITION

WrireE the exception of Professor J. Willard Gibbs’'s last work,
Elementary Principles im Statistical Mechanies,* and of his lectures
upon Vector Analysis, adapted for use as a text-book by his pupil
Dr. E. B. Wilson,t and printed like the former as & volume of the
Yale Bicentennial Sertes, none of his contributions to mathematical
and physical science were published in separate form, but appeared
in the transactions of learned societies and in various scientific
Jjournals.

These scattered papers, which constitute the larger and perhaps
the more important part of his published work, are here presented
in a collected edition, from which, so far as known to the editors,
no printed paper has been omitted. A small amount of hitherto
unpublished matter has also been included. Permission for the
presenf reprint of the different papers contained i these: volumes-
hes in every csse been granted by the authorities in charge of the
publications in which they originally appeared, a courtesy for which
the editors desire here to make due acknowledgment.

In the arrangement of the papers a grouping by subject has been
adopted in preference to a strict chronological order. Within the
separste groups, however, the chronological order has in general
been preserved.

The papers on Thermodynamics, which form somewhat more than
one half of the whole, constitute the first volume. Among these
is the well-known memoir On the Fquilibrium of Heterogeneous
Substances, which has proved to be of such fundamental importance
to Physical Chemistry and has been translated into German by
Professor Ostwald, and into French by Professor Le Chatelier.

* ¢ Elementary Principles in Statistical Mechanics developed with especial reference
to the Rational Foundation of Thermodynamics.” By J. Willard Gibbe. Charles
Scribner’s Sons, New York. Edwin Arnold, London. 1902

t * Vector Analysis, & text-bock for the use of students of Mathematics and Physics,
founded wpon the Lectures of J. Willard Gibbe.” By E. B. Wilson. Charles Scribner’s
Sons, New York. Edwin Arnoid, London. 1901.
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Shortly before the author’s death he had yielded to numerous
requests for a republication of his thermodynamic papers, and had
arranged for a volume which was to contain the Equilibrium of
Heterogeneous Substances and the two earlier papers, Graphical
Methods wn the Thermodynamics of Fluids, and A Method of
GQeometrical Representation of the Thermodynamic Properties of
Substances by means of Surfaces. To these he proposed to add
some supplementary chapters, the preparation of which he had hardly
more than commenced when he was overtaken by his last illness.
The manuseript of a portion of this additional material (evidently
a first draft) was found among the author’s papers and has been
printed at the end of the first volume. It is believed that it will
be of interest and value in spite of its unfinished and somewhat
fragmentary condition.

The remaining papers, which compose the second volume, atre
divided between mathematical and physical science. Most of them
naturslly fall ander one of the following heads: Dynamies, Vector
Analysis and Multiple Algebra, the Electromagnetic Theory of Light,
and are so grouped in the volume in the order named A fourth
section is made up of the unclassified papers.

In the first section the short abstract of a paper read before the
American Association for the advancement of Science is worthy of
notice as showing that the fundamental ideas and methods of the
treatise on Statistical Mechanics were well developed in the author’s
mind ab least seventeen years before- the-publication of that werk: -

The second section includes the Elemenis of Vector Amnalysis,
privately printed in 1881-1884 for the use of the author’s classes,
but never published. It contains in a very condensed form all the
essential features of Professor Gibbs's system of Vector Analysis,
but without the illastrations and applications which he was accus-
tomed to give in his lectures on this subject. Copies of this pamphlet
have been for many years past practically unobtainable. Here is
also placed a hitherto unpublished letter to the editer of Klinkerfues’
Theoretische Astronomie, on the use of the author’s vector method
for the determination of orbits

Five papers on the Electromagnetic Theory of Light constitute
the third section. The fourth and last is composed of miscellaneous
papers, including biographical sketches of Clausius and of the
aathor’s colleague Hubert A Newton.

The editors have spared no pains to make the reprint typographi-
cally accurate. In a few cases slight corrections had been made by
Professor Gibbs in his own copies of the papers. These changes,
together with the correction of obvious misprints in the originals,
have been incorporated in the present edifion without comment.



PREFACE. ix
Where for the sake of clearness it has seemed desirable to the editors
to insert a word or two in a footnote or in the text itself, the addition
has been indicated by enclosing it within square brackets [ ], a sign
which is otherwise used only in the formulae.

A gketch of the life and estimate of the work of Professor Gibbs,
by one of the editors, is placed at the beginning of the first volume.

It is taken, with some additions, from the American Journal of
Jcience, September 1903.

HENRY ANDREWS BUMSTEAD:
RALPH GIBBS VAN NAME.

Yire UNIVERSITY,
New Havey,

October 1906.
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JOSIAH WILLARD GIBBES.

[Reprinted with some additions from the Americun Journal of Science,
ser. 4, vol. XVL, September, 903} - -

Jos1AE WILLARD GiBBS was born in New Haven, Connecticut,
February 11, 1839, and died in the same city, April 28, 1903. He
was descended from Robert Gibbs, the fourth son of Sir Henry Gibbs
of Honington, Warwickshire, who came to Boston about 1658. One of
Robert Gibbe's grandsons, Henry Gibbs, in 1747 married Katherine,
danghter of the Hon. Josiah Willard, Secretary of the Provinece of
Massachusetts, and of the descendants of this couple, im various parts
of the country, no fewer than six have borne the name Josiah Willard
Gibbs.

The subjeet of this memorial was the fourth child and only son of
Josiah Willard Gibbs, Professor of Sacred Literature in the Yale
Divinity School from 1824 to 1861, and of his wife, Mary Anna,
daughter of Dr. John Van Cleve of Princeton, N.J. The elder
Professor Gibbs was remarkable among his contemporaries for pro-
found scholarship, for unusual modesty, and for the conscientious and
painstaking accuracy which characterized all of his published work.
The following brief extracts from a discourse commemorative of his
life, by Professor George P. Fisher, can hardly fail to be of interest to
those who are familiar with the work of his distinguished son: “ One
who should look simply at the writings of Mr. Gibbs, where we meet
only with naked, laboriously classified, skeleton-like statements of
scientific trath, might judge him to be devoid of zeal even in his
favorite pursuit. But there was a deep fountain of feeling that did
not appear in these curiously elaborated essays. . .. Of the science
of comparative grammar, as I am informed by those most competent
to judge, he i3 to be considered in relation to the scholars of this
country a8 the leader.” Again, in speaking of his unfinished trans-
lation of Gesenius's Hebrew Lericon: ©“But with his wonted
thoronghness, he conld not leave a word until he had made the article
apon it perfect, sifting what the author had written by independent
Investigations of his own.”

The ancesiry of the somr presents-other-points-of-interest. On his
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father’s side we find an unbroken line of six college graduates. Five
of these were graduates of Harvard,—President Samuel Willard, his
son Josiah Willard, the great grandfather, grandfather and father of
the elder Professor Gibbs, who was himself a graduate of Yale.
Among his mother’s ancestors were two more Yale graduates, one of
whom, Rev. Jonathan Dickinson, was the first President of the College
of New Jersey.

Josiah Willard Gibbs, the younger, entered Yale College in 1854
and was graduated in 1858, recetving during his college course several
prizes for excellence in Latin and Mathematics; during the next five

years he confinued his studies in New Haven, and in I863 received
the degree of doctor of philosophy and was appointed a futor in the
college for a term of three years. During the first two years of his
tutorship he taught Latin and in the third year Natural Philosophy,
in both of which subjects he had gained marked distinction as an
undergraduate. At the end of his term as tutor he went abroad with
his sisters, spending the winter of 1866-67 in Paris and the following
year in Berlin, where he heard the lectures of Magnus and other
teachers of physics and of mathemratics. In 1868 he went to Heidel-
berg, where Kirchhoff and Helmholtz were then stationed, refurning
to New Haven in June, 1869. Two years Iater he was appointed
Professor of Mathematical Physics in Yale College, a position which
he held until the time of his death.

It was not until 1873, when he was thirty-four years old, that he
- gave--to- the-- world;- by—publieation; - evidence- of - his- extraordinary -
powers as an investigator in mathematical physics. In that year two
papers appeared in the Transactions of the Connecticut Academy, the
first being entitled “ Graphical Methods in the Thermodynamics of
Fluids,” and the second “ A Method of Geometrical Representation of
the Thermodynamic Properties of Substances by Means of Surfaces.”
These were followed in 1876 and 1878 by the two parts of the great
paper “On the Equilibrium of Heterogeneous Substances,” which is
generally, and probsbly rightly, considered his most important contri-
bution to physical science, and which is unquestionably among the
greatest and most enduring monuments of the wonderful scientific
activity of the nineteenth century. The first two papers of this series,
although somewhat overshadowed by the third, are themselves very
remsrkable and valuable contributions to the theory of thermo-
dynamics; they have proved useful and fertile in many direct ways,
and, in addition, it is difficult to see how, without them, the third
could have been written. In logical development the three are very
closely connected, and methods first brought forward in the earlier
papers are used continually in the third.
 Professor Gibbe was much inclined to the use of geometrical
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illustrations, which he employed as symbols and aids to the imsgin-
ation, rather thau the mechanical models which have served so many
great investigators ; such models are seldom in complete correspondence
with the phenomena they represent, and Professor Gibbs's tendency
toward rigorous logic was such that the discrepancies apparently
destroyed for him the usefulness of the model. Accordingly he usually
had recourse to the geometrical representation of his equations, and
this method he used with great ease and power. With this inclination,
it is probable that he made much use, in his study of thermodynamics,
of the volume-pressure diagram, the only one which, up fo that time;,
had-been—used-extensively. To those who are acquainted with the
completeness of bis nvestigation of any sabject which interested him,
it is not surprising that his first published paper should have been a
careful study of all the different diagrams which seemed o have any
chance of being useful. Of the new diagrams which he first described
in this paper, the simplest, in some respects, is that in which entropy
and temperature are taken as coordinates; in this, as in the familiar
volume-pressure diagram, the work or heat of any cycle is proportional
to its ares in any part of the plane; formany purposes it is far more
perspicuous than the older diagram, and it has found most important
practical applications in the study of the steam engine. The diagram,
however, to which Professor Gibbs gave most attention was the
volume-entropy diagram, which presents many advantages when the
properties of bodies are to be studied, rather than the work they do or
the heat they give out. The chief reason for this superiority is that
volume and entropy are both proportional o the quantity of subetance;
while pressure and temperature are not ; the representation of coexis-
tent states is thus especially clear, and for many purposes the gain.in
this direction more than counter-balances the loss due to the varisbility
of the scale of work and heat. No diagram of constant scale can, for
example, adequately represent the triple state where solid, liquid znd
vapor are all present; nor, without confusion, can it represent the
gtates of a substance which, like water, has &2 maximum density; in
these and In many other cases the volume-entropy diagram is superior
in distinctness and convenience.

In the second paper the considerafion of graphical methods in
thermodynamics was extended to diagrams in three dimensions.
James Thomson had already made this extension to the volume-pressure
diagram by erecting the temperature as the third coordinate, these
three immediately cognizable quantities giving a surface whose inter-
pretation is most simple from elementary considerations, but which,
for several reasons, is far less qonvenient and fertile of results than
one in which the coordinates are thermodynamic quantities less directly
known:— -In-Tact;-if-the-general relation between the volume, entropy.
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and energy of a: 7 body is known, the relation between the volume,
pressure and temperature may be immediately deduced by differen-
tiation ; but the converse is not true, and thus a knowledge of the
former relation gives more complete information of the properties of &
substance than a knowledge of the latter. Accordingly Gibbs chooses
as the three coordinates the volume, enfropy and enmergy and, in a
masterly manner, proceeds to develop the properties of the resulting
surface, the geometrical conditions for equilibrium, the criteria for its
stability or instability, the conditions for coexistent states and for the
critical state ; and he points out, in several examples, the great power

exceptional importance and beauty of this work by a hitherto unknown
writer was immediately recognized by Maxwell, who, in the last years
of his life, spent considerable time in carefully constructing, with his
own hands, a model of this surface, & cast of which, very shortly before
his death, he sent to Professor Gibbs.

One property of this three dimensional diagram (analogous to that
mentioned in the case of the plane volume-entropy diagram) proved
to be of capital importance in the development of Gibbss future work
in thermodymnamics; the volume, entropy and energy of a mixture of
portions of a substance in different states (whether in equilibrium or
not), are the sums of the volumes, entropies and energies of the separate
parts, and, in the diagram, the mixture is represented by a single point
which may be found from the separate points, representing the different
portions;-by -a- process--like that-of finding centers of gravity.. In
general this point is not in the surface representing the stable states
of the substance, but within the solid bounded by this surface, and
its distance from the surface, taken parallel to the axis of energy,
represents the available energy of the mixture. This possibility of
representing the properties of mixtures of different states of the same
substance immediately suggested that mixtures of substances differing
in chemical composition, as well as in physical state, might be treated
in & similar manner; in a note at the end of the second paper the
author clearly indicates the possibility of doing so, and there can be
little doubt that this was the path by which he approached the task
of investigating the conditions of chemical equilibrinm, a task which
he was destined to achieve in such & magnificent manner and with
such advantage to physical science.

In the discussion of chemically homogeneous substances in the first
two papers, frequent use had been made of the principle that such a
substance will be in equilibrium if, when its energy is kept constant,
its entropy cannot increase; at the head of the third paper the suthor
puts the famous statement of Clausius: “Die Energie der Welt ist
constant. Die Entropie der Welt strebt einem Maximum zu™ He
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proceeds to show that the above condition for equilibrium, derived
from the two laws of thermodynamics, is of universal application,
carefully removing one restriction after another, the first to go being
that the substance shall be chemically homogeneous. The important
analytical step is taken of introducing as variables in the fundamental
differential equation, the masses of the constituents of the hetero-
geneous body; the differential coefficients of the energy with respect
to these masses are shown to enter the conditions of equilibrium in a
manner entirely analogous to the “intensities,” pressure and temper-
ature, and these coefficients are called potentials, Constant use is
made of the analogies with the equations-for- homogeneous-substauces,.
and the analytical processes are [ike those which a geometer would
use in extending to n dimensions the geometry of three.

It is quite out of the question to give, in brief compass, anything
approaching an adequate ountline of this remarkable work. It is
universally recognized that its publication was an event of the first
importance in the history of chemistry, that in fact it founded a new
department of chemical science which, in the words of M. Le Chatelier,
is becoming comparable in importance with that created by Lavoisier.
Nevertheless it was a number of years before its value was generally
known ; this delay was due largely to the fact that its mathematical
form and rigorous deductive processes make it difficult reading for
sny one, and especially so for students of experimental chemistry
whom it most concerns; twenty-five years ago there was relatively
only- a-small number of chemists who possessed sufficient mathematical
knowledge to read easily even the simpler portions of the paper.
Thus it came about that a number of nstural laws of great importance
which were, for the first time, clearly stated in this paper were subse-
quently, during its period of neglect, discovered by others, sometimes
from theoretical considerations, but more often by experiment. At
the present time, however, the grest value of its methods and results
are fully recognized by all students of physical chemistry. It was
translated into German in 1891 by Professor Ostwald and into French
in 1899 by Professor Le Chatelier; and, although so many years had
passed since ifs original publication, in both cases the distinguished
translators give, as their principal reason for undertaking the task,
not the historical interest of the memoir, but the many important
questions which it discusses and which have not even yet been worked
out experimentally. Many of its theorems have already served as
starting points or guides for experimental researches of fundamental
consequence; others, such as that which goes under the name of
the “Phase Rule,” have served to classify and explain, in a simple
and logical manner, experimental facts of much apparent complexity;
while still others, suck as the theories of catalysis; of solid-solubions,
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and of the action of semi-permeable disphragms and csmotic pressure,
showed that many facts, which had previously seemed mysterious and
scarcely capable of explanation, are in fact simple. direct and necessary
consequences of the fundamental laws of thermodynamics. In the
discussion of mixtures in which some of the components are present
only in very small quantity (of which the most interesting cases af
present are dilute solutions) the theory is carried as far as is possible
from & priori considerations; at the time the paper was written the
lack of experimental facts did not permit the statement, in all its
generality, of the celebrated law which was afterward discovered by
var’'t-Hoff - but- the-law-is-distinetly-stated-for solutions-of- gases-as-a—
direct consequence of Henry’s law and, while the facts at the author’s
disposal did not permit a further extension, he remarks that there are
many indications “that the law expressed by these equations has a
very general application.”

It is not surprising that a work containing results of such conse-
quence should have excited the profoundest admiration among students
of the physical sciences; but even more remarkable than the results,
and perhaps of even greater service to science, are the methods by
which they were attained ; these do not depend upon special hypatheses
as to the constitution of matter or any similar assumption, but the
whole system rests directly upon the truth of certain experiential
laws which possess a very high degree of probability. To have
obtained the results embodied in these papers in any manner would
have been a great achievement ; that they were reached by a method
of such logical austerity is a still greater cause for wonder and
admiration. And it gives to the work a degree of certainty and an
assurance of permacence, in form and matter, which is not often
found in investigations so original in character.

In lecturing to students upon mathematical physics, especially in
the theory of electricity and magnetism, Professor Gibbs felt, as so
many other physicists in recent years have done, the desirability of a
vector algebra by which the more or less complicated space relations,
dealt with in many departments of physics, could be conveniently and
perspicuously expressed ; and this desire was especially active in him
on account of his natural tendency toward elegance and conciseness
of mathematical method. He did not, however, find in Hamilton’s
system of quaternions an instrument altogether suited to his needs,
in this respect sharing the experience of other investigators who have,
of late years, seemed more and more inelined, for practical parposes,
to reject the quaternionic analysis, notwithstanding its beauty and
logical completeness, in favor of a simpler and more direct treatment
of the subject: - For the use of his students; Professor Gibbs privately
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printed in 1881 and 1884 a very concise account of the vector analysis
which he had developed, and this pamphlet was to some extent circu-
lated among those especially interested in the subject. In the develop-
ment of this system the author had been led to study deeply the
Awsdehnungslelere of Grassmann, and the subject of multiple algebra
in general; these investigations interested him greatly up to the time
of his death, and he has often remarked that he had more pleasure in
the study of multiple algebra than in any other of his intellectual
activities. His rejection of quaternions, and his championship of
Grassmann’s claim to be considered the founder of modern algebrs,
led— Wscrme—pzpers—&f—a— somewhat- controversial character, most of
which appeared in the columns of Vufwre. When the utility of
his system as an instrument for physical research had been proved
by twenty years' experience of himself and of his pupils, Professor
Gibbs consented, though somewhat reluctantly, to its formal publi-
cation in much more extended form than in the criginal pamphlet.
As he was at that time wholly occupied with another work, the task
of preparing this treatise for publication was entrusted to one of his
students, Dr. E. B. Wilson, whose very snccessfui accomplishment of
the work entitles him to the gratitude of all who are interested in
the subject.

The reluctance of Professor Gibbs to publish his system of vector
analysis certainly did not arise from any doubt in his own mind as
to its utility, or the desirability of its being more widely employed ;
1t seemed rather to be due to the feeling that it was not an original
contribution to mathematics, but was rather an adaptation, for special
purposes, of the work of others. Of many portions of the work this
1s of course necessarily true, and it is rather by the selection of
methods and by systematization of the presentsation that the author
has served the canse of vector analysis. But in the treatment of the
linear vector function and the theory of dyadics to which this leads,
a distinet advance was made which was of consequence not only in
the more restricted field of vector analysis, but also in the broader
theory of multiple algebra in general.

The theory of dyadics® as developed in the vector analysis of 1384
must be regarded as the most Important published contribution of
Professor Gibbs to pure mathematics. For the vector analysis as an
«lyebre does not fulfil the definition of the linear associative algebras
of Benjamin Peirce, since the scalar prodnct of vectors lies outside the
vector domain: nor is it & geometrical analysis in the sense of

* The three succeeding paragraphs are by Professor Percey F. Smith ; they form part
of a sketch of Professor (Gibbss work in pure mathematics, which Professor Smith con-

tributed to the Bullctm of the dmerican Mathemntical routy, vol. x, p. 34 (Qctaber,
1903).
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Grassmann, the vector product satisfying the combinatorial law, but
yielding a vector instead of a magnitude of the second order. While
these departures from the systems mentioned testify to the great
ingenuity and originality of the author, and do not impair the utility
of the system as a tool for the use of students of physics, they never-
theless expose the discipline to the criticism of the pure algebraist.
Such objection falls to the ground, however, in the case of the theory
mentioned, for dyadies yield, for n=3, a linear associative algebra of
nine units, namely nonions, the general nonion satisfying an identical
equation of the third degree, the Hamilton-Cayley equation.

It~ 5 easy to make clear—the prectse— point- of- viewadopted—by-
Professor Gibbs in this matter. This is well expounded in his vice-
presidential address on multiple algebra, before the American Asso-
ciation for the Advancement of Seience, in 1886, and also in his warm
defense of Grassmann's priority rights, as against Hamilton’s, in his
article in Nature “Quaternions and the Awsdehnungslehre” He
points out that the key fo matricular algebras is to be found in the
open (or indeterminate) product (ie., a product in which no equations
subsist between the factors), and, after calling attention to the brief
development of this product in Grassmann’s work of 184, affirms
that Sylvesier's assignment of the date 1858 to the “second birth of
Algebra” (this being the yearof Cayley's Memoivr on Hairices) must be
changed to 1844. Grassmann, however, ascribes very little importance
to the open product, regarding it as offering no useful applications.
On the contrary, Professor Gibbs assigns to it the first place in ‘the
three kinds of multiplication considered in the dusdeinumngslehre,
since from it may be derived the algebraic and the combinatorial
products, and shows in fact that both of them may be expressed in
terms of indeterminate products. Thus the multiplication rejected
by Grassmann becomes, from the standpoint of Professor Gibbs, the
key to all others. The originality of the latter's treatment of the
algebra cf dyadics, as contrasted with the methods of other authors in
the allied theory of matrices, consists exactly in this, that Professor
Gibbs regards a matrix of order n as a multiple quantity in n* units,
each of which is an indeterminate product of two factors. On the
other hand, C. S. Peirce, who was the first to recognize (1870) the
quadrate linear associative algebras identical with matrices, uses for
the units a leffer paur, but does not regard this combination as a
product. In additiou, Professor Gibbs, following the spirit of
Grassmann’s system, does not confine himself to one kind of multi-
plication of dyadics, as do Hamilton and Peirce, but considers two
sorts, both originating with Grassmann. Thus it may be said that
quadrate, or matricular algebras, are brought entirely within the
wonderful system expounded by Grassmann in IS+%
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As already remarked, the exposition of the theory of dyadics given
in the vector analysis is not in accord with Grassmann's system. In
a footnote to the address refecred to above, Professor Gibbs shows the
slight modification necessary for this purpose, while the subject bas
been treated in detail and in all generality in his lectures on multiple
algebra delivered for some years past at Yale University.

Professor Gibbe was much interested in the application of vector
analysis to some of the problems of astronomy, and gave examples
of such application in a paper, “On the Determination of Elliptic
Orbits from Three Complete Observations” (Mem. Naf. dcad. Sct.,
vol iv, pt. Z, pp. 79-104). ~ The methods-developed-in-this paper were
afterwards applied by Professors W. Beebe and A. W. Phillips* to
the computation of the orbit of Swift’s-comet (1880 V) from three
observations, which gave a very critical test of the method. They
found that Gibbs's method possessed distinet advantages over those
of Gauss and Oppolzer; the convergence of the successive approxi-
mations was more rapid and the labor of preparing the fundamental
equations for solution much less. These two papers were translated
by Buchbolz and incorporated in the second edition of Klinkerfues'
Theoretische Astromomae.

Between the years 1882 and 1889, five papers appeared in The
dmerican Journal of Science upon certain points in the electro-
magnetic theory of light and its relations to the various elastic
theories. These are remarkable for the entire absence of special
hypotheses as to the connection befween efher and matter; the
only supposition made as to the coastitution of matter being that
it is fine-grained with reference to the wave-length of light, but
not infinitely fine-grained, and that it does disturb in some manner
the electrical fluxes in the ether. By methods whose simplicity
and directness recall his thermodynamic investigations, the author
shows in the first of these articles that, in the case of perfectly
transparent media, the theory not only accounts for the dispersion
of colors (including the *“dispersion of the optic axes” in doubly
refracting media), but also leads to Fresnel's laws of double refrac-
tion for any particular wave-length without neglect of the small
quantities which determine the dispersion of colors. He proceeds
in the second paper to show that circular and elliptical polariza-
tion are explained by taking into account quantities of a still
bigher order, and that these in turn do not disturb the explanation
of any of the other known phenomena; and in the third paper he
deduces, in a very rigorous manner, the general equations of mono-
chromatic light in media of every degree of transparency, arriving

* turonomicad Journal, vol ix, pp. [T£I17; 121124, 1889
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at equations somewhat different from those of Maxwell in that they
do not contain explicitly the dielectric constant and conductivity as
measured electrically, thus avoiding certain difficulties (especially in
regard to metallic reflection) which the theory as originally stated had
encountered ; and it is made clear that “a point of view more in
accordance with what we know of the molecular constitution of
bodies will give that part of the ordinary theory which is verified
by experiment, without including that part which is in opposition
to observed facts.” Some experiments of Professor C. S. Hastings
in 1888 (which showed that the double refraction in Iceland spar
conformed to Huyghenss law o a degree of precision far exceeding
that of any previous verification) again led Professor Gibbs to take
up the subject of optical theories in a paper which shows, in a
remarkably simple manner, from elementary considerations, that this
result and also the general character of the facts of dispersion are in
strict accord with the electrical theory, while no one of the elastic
theories which had, at that time, been proposed could be reconciled
with these experimental results. A few months later upon the publi-
cation of Sir William Thomson’s theory of an infinitely compressible
ether, it became necessary to supplement the comparison by taking
account of this theory also. It is not subject to the insuperable
difficulties which beset the other elastic theories, since its equations
and surface conditions for perfectly homogemecus and transparent
media are identical in form with those of the electrical theory, and
teact in-ap- equally direet manner to- Eresnel's construction. for doubly~
refracting medis, and to the proper values for the intensities of the
reflected and refracted light. But Gibbs shows that, in the case of
& fine-grained medium, Thomson's theory does not lead to the known
facts of dispersion without unnatural and forced hypotheses, and that
in the case of metallic reflection it is subject to similar difficulties;
while, on the other hand. “it may be said for the electrical theory
that it is not obliged to invent hvpotheses, but only to apply the
laws furnished by the science of electricity, and that it is difficult to
account for the coincidences between the electrical and optical pro-
perties of media unless we regard the motions of light as electrical”
Of all the arguments (from theoretical grounds alone) for excluding
all other theories of light except the electrical, these papers furnish
the simplest, most philesophical, and most conclusive with which the
present writer is acquainted: and it seems likely chat the con-
siderations advanced in them would have sufficed to firmly establish
this theory even if the experimental discoveries of Hertz had not
supplied a more direct proof of its validity.

In his last work, Llementary Principles in Statistical Hechanics,
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Professor Gibbs returned to a theme closely connected with the
subjects of his earliest publications. In these he had been concerned
with the development of the consequences of the laws of thermo-
dynamies which are accepted as given by experience ; in this empirical
form of the science, heat and mechsanical energy are regarded as two
distinct entities, mutually convertible of course with certain limita-
tions, but essentially different in many mmportant ways. Inaccordance
with the strong tendency toward unification of causes, there have been
many attempts fo bring these two things under the same category;
to show, in fact, that heat is nothing more than the purely mechanicsl
energyof the- minute-particles of which all sensible matter is supposed
to be made up, and that the extra-dynamical laws of heat are con-
sequences of the immense number of independent mechanical systems
in any body,—a number so great that, to human observation, only
certain averages and most probable effects are perceptible. Yet in
spite of dogmatic assertions, in many elementary books and popular
exposiﬁons, that “heat is a mode of molecular maotion,” these attempts
have not been entirely successful, and the failure has been signalized
by Lord Kelvin as one of the clouds upon the history of science in
the nineteenth century. Such investigations must deal with the
mechanics of systems of an immense number of degrees of freedom
and (since we are quite unable in our experiments to identify or
follow mdividual particles), in order to compare the results of the
dynamical reasoning with observation, the processes must be statistical
in character. The difficulties of such processes have been pointed out
more than once by Maxwell, who, in a passage which Professor Gibbs
often quoted, says that serious errors have been made in such inquiries
by men whose competency in other branches of mathematics was un-
questioned.

On account, then, of the difficulties of the subject and of the pro-
found importance of results which can be reached by no other known
method, it 18 of the utmost consequence that the principles and pro-
cesses of statistical mechanics should be put upon a firm and certain
ioundation. That this has now been accomplished there can be no
doubt, and there will be little excuse in the future for a repetition of
the errors of which Maxwell speaks; moreover, theorems have been
diseovered and processes devised which will render easier the task of
every future student of this subjecs, as the work of Lagrange did in
the case of ordinary mechanies.

The greater part of the took is taken up with this general develop-
ment of the subject without special reference to the problems of
rational thermodynamics. At the end of the twelfth chapter the
author has in his hands a far more perfect weapon for attacking such
problems ™ than  any previous investigator has- possessed, and Iiis
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triumphant use in the last three chapters shows that such purely
mechanical systems as he has been considering will exhibit, to human
perception, properties in all respects analogous to those which we
actually meet with in thermodynamies. No one can understandingly
read the thirteenth chapter without the keenest delight, as one after
another of the familar formul®e of thermodynamics appear almost
spontaneously, as it seems, from the consideration of purely mechanical
systems. But it is characteristic of the author that he should be more
impressed with the limitations and imperfections of his work than
with its successes; and he is careful to say (p. 166): “But it should be
distinctly stated; -that—if-theresults-obtained- when the nurobers— of-
degrees of freedom are enormous coincide sensibly with the general
laws of thermodynamics, however interesting and significant this
coincidence may be, we are still far from having explained the
phenomena of nature with respect to these laws. For, as compared
with the case of nature, the systems which we have considered are of
an ideal simplicity. Although our only assumption is that we are
considering conservative systems of a finite number of degrees of
freedom, it would seem that this is assuming far too much, so far as
the bodies of nature are concerned. The phenomena of radiant heat,
which certainly should not be neglected in any complete system of
thermodynamties, and the electrical phenomena associated with the
combination of atoms, seem to show that the hypothesis of a finite
number of degrees of freedom is inadequate for the explanation of the
properties of bodies” While this is undoubtedly true, it should alsa
be remembered that, in no department of physics have the phe-
nomens of nature been explained with the completeness that is here
indicated as desirable. In the theories of electricity, of light, even in
mechanics itself, only certain phenomena are considered which really
never occur alone. In the present state of knowledge, such partial
explanations are the best that can be got, and, in addition, the
problem of rational thermodynamics has, historically, always been
regarded in this way. In a matter of such difficulty no positive
statement should be made, but it is the belief of the present
writer that the problem, as it has always been understood, has been
successfully solved in this work; and if this belief is correct, one of
the great deficiencies in the scientific record of the nineteenth century
has been supplied in the first year of the twentieth.

In methods and results, this part of the work is more general than
any preceding treatment of the subject; it is in no sense a treatise on
the kinetic theory of gases, and the resulfs obtained are not the
properties of any one form of matter, but the general equations of
thermodynamics which belong to all forms alike. This corresponds to
the generslify of the hypothesis in which nothing 18 assumed as fo
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the mechanical nature of the systems considered, except that they are
mechanical and obey Lagrange's or Hamilton’s equations. Im this
respect it may be considered to have done for thermodynamics what
Maxwell’s: treatise did for electromagnetism, and we may say (as
Poincaré has said of Maxwell) that Gibbs has not sought to give a
mechanical explanation of heat, but has limited his task to de-
monstrating that such an explanation is possible. And this achieve-
ment forms a fitting culmination of his life's work.

The value to science of Professor Gibbs's work has been formally
recognized-by many learned societies and universities both in this
country and abroad. The list of societies and academies of which he
was a member or correspondent includes the Connecticut Academy of
Arts and Sciences, the National Academy of Sciences, the American
Academy of Arts and Sciences, the American Philosophical Society,
the Dutch Society of Sciences, Haarlem, the Royal Society of Sciences,
Gottingen, the Royal Institution of Great Britain, the Cambridge
Philosophical Society, the London Mathematical Society, the Man-
chester Literary and Philosophical Society, the Royal Academy of
Amsterdam, the Royal Society of London, the Royal Prussian
Academy of Berlin, the French Institute, the Physical Society of
London, and the Bavarian Academy of Sciences. He was the
recipient of honorary degrees from Williams College, and from the
universities of Erlangen, Princeton, and Christiania. In 1881 he
received the Rumford Medal from the American Academy of Boston,
and in 1901 the Copley Medal from the Royal Society of Eondom

Outside of his scientific activities, Professor Gibbs’s life was
uneventful ; he made but one visit to Europe, and with the exception
of those three years, and of summer vacations in the mountains, his
whole life was spent in New Haven, and all but his earlier years in
the same house, which his father had built only a few rods from the
school where he prepared for college and from the university in the
service of which his life was spent. His constitution was never
robust—the consequence apparently of an attack of scarlet fever in
early childhood—but with careful attention to health and a regular
mode of life his work suffered from this cause no long or serious
interruption until the end, which came suddenly after an illness of
only a few days. He never married, but made his home with his
gister and her family. Of a retiring disposition, he went Iittle into
general society and was known to few outside the university; but
by those who were honoured by his friendship, and by his students,
he was greatly beloved. His modesty with regard to his work was
proverbial among all who knew him, and it was entirely real and
unsaffected: There- was-never anyg doubt in his mind, however, as



xxV1 JOSIAH WILLARD GIBBS.

to the accuracy of anything which he published, nor indeed did he
underestimate its importance; but he seemed to regard it in an
coiirely impersonal way and never doubted, apparently, that what he
nad accomplished could have been done equally well by almost snyone
who might have happened to give his attention to the same problems.
Those nearest him for many years are constrained to believe that he
never realized that he was endowed with most unusual powers of
mind ; there was never any tendency to make the importance of his
work an excuse for neglecting even the most trivial of his duties as
an officer of the college, and he was never too busy to devote, at once,
as-much-timre-and-energy as might be necessarv-to-amy of his students
who privately sought his assistance.

Althongh long intervals sometimes elapsed between his publications
his habits of work were steady and systematic; but he worked alone
and, apparently, without need of the stimulus of personal conversation
apon the subject, or of criticism from others, which is often helpful
even when the critic is intellectually an inferior. So far from pub-
lishing partial results, he seldom, if ever, spoke of what he was doing
until it was practically in its final and complete form. This was his
chief limitation ss a teacher of advanced students; he did not take
them into his coufidence with regard to his current work, and even
when he lectured upon a subject in advance of its publication (as was
the cuse for a number of years before the appearance of the Stutistrcal
Mechanics) the work was really complete except for a few finishing
touches. Thus his stndents were deprived of the advantage of seeing
his great structures in process of building, of helping him in the
details, and of being in such ways encouraged to make for themselves
attempts similar in character, however small their scale. But on the
other hand, they owe to him s debt of gratitude for an introduction
into the profounder regions of natural philosophy such as they could
have obtained from few other living teachers. Always carefully
prepared, his lectures were marked by the same great qualities as his
published papers and were, in addition, enriched by many apt and
simple illustratious which can never be forgotten by those who heard
them. No necessary qualification to a statement was ever omitted,
and. on the other hand, it seldom failed to receive the most general
application of which it was capable; his students had ample oppor-
tunity to learn what may be regarded as known, what is guessed
at, what a proof is, and how far it goes. Although he disregarded
many of the shibboleths of the mathematical rigorists, his logical
processes were really of the most severe type; in power of deduction,
of generalization, in insight into hidden relations, in critical acumen,
ntter lack of prejudice, and in the philosophical breadth of his view
of the object and aim of physics, ke Bas had few superiors in the
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history of the science; and no student could come in contact with
this serene and impartial mind without feeling profoundly its influence
in all his future studies of nature.

In his personal character the same great qualities were apparent.
Unassuming in manner, genial and kindly in his intercourse with his
fellow-men, never showing impatience or irritation, devoid of personal
ambition of the baser sort or of the slightest desire to exalt himself,
he went far toward realizing the ideal of the unselfish, Christian
gentleman. In the minds of those who knew him, the greatmess of
his intellectual achievements will never overshadow the beauty and
dignity of- his- lfe-
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GRAPHICAL METHODS IN THE THERMODYNAMICS
OF FLUIDS.

[ Transactions of the Connecticut Academy, 1L, pp. 309-342, April-May, 1873.]

ALTHOUGH geometrical representations of propositions in the thermo=
dynamics of fluids are in general use, snd have done good service
in disseminating clear notions in this science, yet they have by no
mesns received the extension in respect to variety and generality
of which they are capable. So far as regards a general graphical
method, which can exhibit at once all the thermodynamic properties
of a fluid concerned in reversible processes, and serve alike for the
demonstration of general theorems and the numerical solution of
particular problems, it is the general if not the universal practice to
use diagrams in which the rectilinear co-ordinates represent volume
and pressure. The object of this article is to call attention to certain
diagrams of different construction, which afford graphical methods co-
extensive in their applications with that in ordinary use, and prefer-
able to it in many cases in respect of distinctness or of convenience.

Quantities and Relations which are to be represented by the
Diagram.
We have to consider the following quantitiea :—

v, the volume, )

P, the pressure,
t, the (absolute) temperature, } of a given body in any state,
¢, the energy,

n, the entropy, )

also - W, the work done, }by the body in passing from one state
and H, the hest received,®* } to another.

* Work spent upon the body is as usual to be considered as a negative quantity of
worlc done by the body, and heat given out by the body a3 a negative quantity of heat
received by it.

It is taken for granted that the body has a uniform temperature throughout, and that
the pressare (or expansive force) bas & wniform value both for all points in the body and
for all directions. This, it will be observed, will exclude irreveraible processes, but will
not entirely excinde solids, althongh the condition of equal pressare in all directions
renders the cass very [imited, in which they come within the scope of the discussion.
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These are subject to the relaticns expressed by the following differ-

ential equations :— dW=ap dv, (a)
de=BdH~dW, (b)

d
dn= _H* (c)

¢

where ¢ and 8 are constants depending upon the units by which v, p,
W and H are measured. We may suppose our units so chosen that
a=1and 8=1,1 and write our equations in the simpler form,

de=dH-dW, (1)
dW =pde, (2}
dH =tdy. (3)
Eliminating d W and dH, we have
de=tdn—pdu. (4)

The quantities v, p, ¢, € and n are determined when the state of the
body is given, and it may be permitted to call them jfunctions of the
state of the body. The state of a body, in the sense in which the
term is used in the thermodynpamics of fluids, is capable of two inde-
pendent variations, so that between the five quantities v, p, {, eand #
there exist relations expressible by three finite equations, different in
general for different substances, but always such as to be in harmony
with the differential equation (4). This equation evidently signifies
that if ¢ be expressed as function of v and 7, the partial differential
co-efficients of this function taken with respect to v and to 7 will be

equak to- —pr and: to-¢ respectively. ¢

* Equation (a) may be derived from simple mechanical considerations. Equations (b)
and (¢} may be considered as defining the energy and entropy of any state of the body,
or more strictly as defining the differentials de and dn. That functions of the atate of
the body exist, the differentials of which satisfy these equations, may easily be dednced
from the first and second Iaws of thermodynamics. The term entropy, it will be
observed, in here used in accordance with the original suggestion of Clausius, and not
in the semse in which it has been employed by Professor Tait and others after his
suggestion. The same quantity has been called by Professor Rankine the Thermo-
dynamic function. See Clausins, Mechanische Wirmetheorie, Abhnd. ix. §14; or Pogg.
Ann., Bd. exxv. (1865), p. 390 ; and Rankine, Phil. Trans., vol. 144, p. 126.

t For example, we may choose as the unit of volume, the cube of the unit of length,—
&s the unit of pressure the unit of force acting upon the square of the umt of length,—
a8 the nnit of work the unit of force acting through the anit of length,—and as the unit
of heat the thermal equivalent of the unit of work. The units of length and of force
would still be arbitrary as well as the unit of temperature.

! An equation giving ¢ in terms of n and v, or more generally any finite equation
between ¢, » and v for a definite qoantity of any fluid, may be considered as the funda-
meutal thermodynamic equation of that flnid, as from it by aid of equations (2}, (3) and
(4) may be derived all the thermodynamic properties of the fluid (so far as revermble
proceases are concerned), viz : the fundamental equation with equation (4} gives the
three relations existing between v, p, ¢, ¢ and 7, and these relations being known,
equations (2} and. (3} give the work W and heat H for any change of state of the flnid.
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On the other hand W and H are not functions of the state of the
body (or functions of any of the quantities v, p, ¢, € and #), but are
determined by the whole series of states through which the body is

supposed to pass.

Fundamental Idea and General Properties of the Diagram.

Now if we associate a particnlar point in & plane with every separate
state, of which the body is capable, in any continucus manner, so that
states differing infinitely little are associated with points which are
infinitely near to each other,* the points associafed with states of
equal- volame- witl- form--lines; which may be called lines of equal
vulume, the different lines being distinguished by the numerical value
of the volume (as lines of volume 10, 20, 30, etc.). In the same way
we may conceive of lines of equul pressure, of equal temperature, of
equal energy, and of equal entropy. These lines we may also call
tsometric, isoprestic, wothermal, odynamaic, 1sentropic,t and if neces-
sary use these words as substantives.

Suppose the bady to change its state, the points associated with the
states through which the body passes will form a line, which we may
call the puth of the body. The conception of & path must include
the idea of direction, to express the order in which the body passes
through the series of states. With every such change of state there
is connected in general a certain amount of work done, W, and of heat
received, H, which we may call the work and the heat of the path.}
The value of these quantities may be calculated from equations (2)
and (3), |

dW=pdr,

JfH=tdn,
ie., W=(pdy. (3)
H=/tdn, (6)

* The method usually emploved in treatises on thermedynamies, in which the rect-
angular co-ordinares of the point are made proportional to the volume and pressure of
the body, isa singie example of such an association.

t These lines are usually known by the name given them by Rankine, adiabatic. If,
however, we follow the suggestion of Clausius and csil that quantity entropy, which
Rankine cailed the thermodynamic function, it seems natural to go one step farther, and
call the lines in witch this quantity has a constant value isentropic.

= For the sake of brevity, it will be convenient to uze language which attributes to
the diagram properties which bejong to the associated states of the body. Thus it can
give rise to no ambiguity, if we speak of the volume or the temperature of a point in the
diagram, or oi the work or heat of a line, instead of the volume or tempersture of the
body in the state asscciated with the peint, or the work done or the heat received by
the body in passing throngh the states associated with the points of the line. In iike
wanner also we may speak of the body moving along a line in the disgram, instead of
passing through the series of states represented by the line.
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the integration being carried on from the beginming to the end of the
path. If the direction of the path is reversed, W and H change their
stgns, remaining the same in abeolute value.

[f the changes of state of the body form a cycle, ie, if the final
state is the same as the initial, the path becomes a circuit, and the
work done and heat received are equal, as may be seen from equation
(1), which when integrated for this case becomes 0=H— W.

The cireuit will enclose & certain ares, which we may consider as
positive or negative according to the direction of the circuit which
circumscribes it.  The direction in which areas must be cirenmseribed
in order that their value may be positive, is of course arbitrary. In
other words, if z and y are the rectangular co-ordinates, we may
define an area either as fydz, or as_fzdy.

If an area be divided into any number of parts, the work done in
the circuit bounding the whole area is equal to the sum of the work
done in all the circuits bounding the partial areas. This is evident
from the consideration, that the work done in each of the lines which
separate the partial areas appears twice and with contrary signs in
the sum of the work done in the circuits bounding the partial areas.
Also the heat received in the circuit bounding the whole area is equal
to the sum of the heat received in all the circuits bounding the
partial areas.*

If all the dimensions of a circuit are infinitely small, the ratio of
the included area to the work or heat of the circuit is independent of
the shape of the circuit and the
direction in which it is described
and varies only with its position
in the diagram. That this ratio
is independent of the direction in
which the circuit 1s described, is
evident from the consideration
that a reversal of this direction
simply changes the sign of both
terms of the ratio. To prove that
the ratio is independent of the
shape of the circuit, let us suppose
the area ABCDE (fig. 1) divided
up by an infinite number of isometrics #v,, v, ete, with equal
differences of volume dv, and an infinite number of isopiestics p, p,,
. Do, etc.. With equal differences of pressure dp. Now from the

% The conception of areas aa positive or negative renders it nnnecessary in propositions
of this kied to state explicitly the direction in which the circuits are to be described.
For the directions of the circuits are determined by the signs of the areas, and the signs
of the-partisl areas must-be the same as that of the area.out.of which they were formed.
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principle of continuity, as the whole figure is infinitely small, the
ratio of the area of one of the small quadrilaterals into which the
figure is divided to the work done in passing around it is approxi-
mately the same for all the different quadrilaterals. Therefore
the area of the figure composed of all the complete quadrilaterals
which fall within the given circuit has to the work done in circum-
scribing this figure the same ratio, which we will call . But the
ares of this figure is approximately the same as that of the given
eircuit, and the work done in desenbing this figure is approximately
the same as that done in describing the given circuit (eq. 5). There-
fare the area of the given circuit has to the work done or heat received
in that circuit this ratio y, which is independent of-the shape-of
the circuit.

Now if we imagine the systems of equidifferent isometrics and
isopiestics, which have just been spoken of, extended over the whole
diagram, the work done in circumseribing one of the small quadri-
laterals, so that the increase of pressure directly precedes the increase
of volume, will have in every part of the diagram a constant value,
viz, the product of the differences of volume and pressure (dv xdp),
as may easily be proved by applying equation (2) successively to its
four sides. But the area of one of these quadrilaterals, which we
could consider as constant within the limits of the infinitely small
circuit, may vary for different parts of the diagram, and will indicate
proportionally the value of v, which is equal to the area divided by
dv xdp.

In like manner; if we imagine-systems of isentrapics and isother-
mals drawn throughout the diagram for equal differences dpn and dt,
the heat_received in passing around one of the small quadrilaterals,
so that the increase of ¢ shall directly precede that of 5, will be the
constant product dn xdt, as may be proved by equation (3), and the
value of vy, which is equal to the ares divided by the heat, will be
indicated proportionally by the areas.®

* The indication of the value of v by systems of equidifferent isometrics and isopies-
ticg, or isentropics and isothermals, is explained sbave, because it seems in accordance
with the spirit of the graphical method, and because it avoids the extraneous consider-
ation of the co-ordinates. If, however, it is desired to have analytical sxpressions for
the value of vy Uased upon the relations between the co-ordinates of the point and the
state of the body, it is easy to deduce such expressions as the following, in which =
and y are the rectangular co-ordinates, and it is supposed that the sign of an area is
determioed in accoridance with the equation .{:ﬁcﬁ: —_

1 dv dp dp dv_dp & dt dy
v dr dy dxr dy-dr dy dzr dy
where r and y are regarded as the independent variables ;—or

& dy dy dr
Y= " dp dv " dp’
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This quan.ity v, which is the ratio of the area of an infinitely small
circuit to the work done or heat received in that circuit, and which
we may call the scale on which work and heat are represented by
areas, or more briefly, the scale of work und lLeat, may have a constant
value throughout the diagram or it may have a varying value. The
diagram in ordinary use affords an example of the first case, as the
area of & circuit is everywhere proportional to the work or heat.
There are other diagrams which have the same property, and we may
call all such diagrams of constant scale.

In any case we may consider the scale of work and heat 2s known
for every point of the diagram. so far as we are able to draw the
isometrics aned-isopiestics- or- the-isentropics and- isothermais H-we-
write W and §H for the work and heat of an infinitesimal circuit,
and dd for the ares included, the relations of these quantities are
thus expressed -—*

sW=sH=L34. (7)

Y
We may find the value of W and H for & circuit of finite dimensions
by suppusing the included area A divided into areas Jd infinitely
small in all directions, for which therefore the above equation will
hold, and taking the sum of the values of §H or §W for the various
areas dd. Writing W®and H® for the work and heat of the circuit

C, and I€ for a summation or integration performed within the
limits of this circuit, we have

where r and p are the independent variables ;—or

— e — o — o ——

where n and ¢ are the independent variabies ;—or

_ e
L_ dr dv

— O m—————

where v and 7 are the independent variables.

These aud similar expressions for % may be found by dividing the value of the work

or heat for an infinitely small circeit by the area included. This operation can be most
~onveniently performed upon a circuit consisting of fonr Lines, in each of which oue of
the independent variables is constant. E.g., the last formnla can be most easily found
from an infinitely amall circuit formed of two isometrics and two iser cropics.

*Tao avoid cnafusion, as AW and £H are generally used and are uacd elsewhere in
this article to denote the work and heat of an infinite short path, a slightiy different
naotation, SIF and dA, is here used to denote the waork and heat of an icfinitely small
circuit. So §4 18 used to denote an element of area which is infinitely sinall in all
directious, as the letter Z wonld only imply that the element was infinitely small in one
direction. So also below, the integration or summation which extends o all the ele-
ments written with 3 is denoted by the character =, as the character [ naturally
refers to elements written with . il
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WeeH= zc;—,m. (8)

We have thus an expression for the value of the work and heat of a
circuit involving an integration extending over an area instead of one
extending over & line, as in equations (3) and (6).

Similar expressions may be found for the work and the heat of a
path which is not a circuit. For this case may be reduced to the
preceding by the consideration that W=0 for a path on an iso-
metric or on the line of no pressure (eq. 2), and H=0 for a path on
an isentropic or on the line of absolute cold. Hence the work of any
path § is equal to that of the circuit formed of S the isometrie of
the final state, the line of mo pressure-and-the- isometric of the imitial
state, which eircuit may be represented by the notation [S, v, p% v}
And the heat of the same path is the same ag that of the cireuit S, 7",
t, 5] Therefore using W* and X® to denote the work and heat of
any path S, we have

W_g:z[&i'. Pl .

;-'o ' (9
Hs=E[S- T, plﬂ;“; [ N (10)

where as before the limits of the integration are denofed by the
expression occupying the place of an index to the sign £.* These
equations evidently include equation (8) as & particular case.

It is easy to form a material conception of these relations. If we
imagine, for example, mass inherent in the plane of the diagram with

a varying (superficial) density represented by ;L, then E:; od will

* A word shonid be sail in regard to the sense in which the above propnsitions
shouid be nnderstood. If beyond the limits, within which the relations of v, p, ¢ ¢
and n are known and which we may call the iimits of the known field, we contipue the
isometrics, isopiestics, &c., in any way we please, only subject to the condition thac the
relations of o, p, £, € and 7 shall be consistent with the equation de=tdy - pdr, then in
calculating the valnes of qnactities W and H determined by the equations diF =pdr
aml A H =¢dn for paths or circnita in any part of the diagram thus extended, we may
use any of the propositions or processes given sbove, as these three eqpations have
formed the oniy basis of the reasoning. We will thus ohtain valnes of ¥ and A, which
will be identical with these which wonld be cbtained by the immediate application of
the equations d F"=pdv and df{ =tdn to the path in qnestion, and which in the case of
any path which is entirely contained in che known feld will be the trne values of the
work and heat for the change of state of the body which the path represents. We
may thus use lines outside of the known field without attribnting to them uny physical
signitication whatever, without cousidering the points in the lines as representing any
states of che bady. If howerer, to fix our ideas, we choose to conceive of this part of
the diagram as having the same physical interpretation as the known tield, and to
enuncinte our propasitions io language based upsu soch a conception, the unceality or
even the impossihility of the states represented by the lines antside of the known field
eannot lead to any incorrect resuits in regard to paths in the known field.
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evidently denote the mass of the part of the plane included within
the limits of integration, this mnass being taken positively or nega-
tively according to the direction of the circuit.

Thus far we have made no supposition in regard to the nature of
the law, by which we associate the points of a plane with the states
of the body, except a certain condition of continnity. Whatever law
we may adopt, we obtain a method of representation of the thermo-
dynamic properties of the body, in which the relations existing
between the functions of the state of the body are indicated by a
net-work of lines, while the work done and the heat received by the
body when it changes its state are represented by integrals extend-
ing- over-the-elements of & lime; and also by an infegral exfending
over the elements of certaln areas in the diagram, or, if we choose to
introduce such a consideration, by the mass belonging to these areas.

The different diagrams which we obtain by different laws of asso-
ciation are sll such as may be obtained from one another by a process
of deformation, and this consideration is sufficient to demonstrate
their properties from the well-known properties of the diagram in
which the volume and pressure are represented by rectangular co-
ordinates. For the relations indicated by the net-work of isometries,
isopiestics etc., are evidently not altered by deformation of the sur-
face upon which they are drawn, and if we conceive of mass as belong-
ing to the surface, the mass included within given lines will also not
be affected by the process of deformation. If, then, the surface upon
which the ordinary diagram 1s drawn has the uniform superficial den-
sity 1, so that the work and heat of a circuit, which are represented
in this diagram by the included area, shall also be represented by
the mass included, this latter relation will hold for any diagram
formed from this by deformation of the surface on which it is drawn.

The choice of the method of representation is of course to be deter-
mined by considerations of simplicity and convenience, especially in
regurd to the drawing of the lines of equal volume, pressure, tempera-
ture, energy and entropy, and the estimation of work and heat. There
is an obvious advantage in the use of diagrams of constant scale, in
which the work and heat are represented simply by areas. Such dia-
grams may of course be produced by an infinity of different methods,
as there is no limit to the ways of deforming a plane figure without
altering the magnitude of its elements. Among these methods, two
are especially important,—the ordinary method in which the volume
and pressure are represented by rectilinear co-ordinates, and that in
which the entropy and temperature are so represented. A diagram
formed by the former method may be called, for the sake of distine-
tion, a volume-pressure diagram,—one formed by the latter, an entropy-
temperature diagram. That the latter as well as the former satisfies
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the condition that y=1 throughout the whole diagram, may be seen
by reference to page 5.

The Entropy-temperature Diagram compared with that in
ordinary use.

Considerations independent of the nuture of the body in question.

As the general equations (1), (2), (3) are not altered by interchang-
ing v, —p and — W with 7, £ and H respectively, it is evident that,
so far as these equations are concerned, there is nothing to choose
between a volume-pressure and an entropy-temperature diagram. In
the former, the work is represented by an area bounded by the path
which represents the change of state of the body, two ordinates and
the axis of abscissas. The same is true of the heat received in the
latter diagram. Again, in the former diagram, the heat received is
represented by an area bounded by the path and certain lines, the
character of which depends upon the nature of the body under consid-
eration. Except in the case of an ideal body, the properties of which
are determined by assumption, these lines are more or less unknown
in & part of their course, and in any case the area will gererslly
extend to an infinite distance. Very much the same inconveniences
attach themselves to the areas representing work in the entropy-
temperature disgram.* There 1s, however, a consideration of a

¥In neither diagram do these circumstances create any serious difficalty in the esti-
mation of areas. representing work or heat. [t is always possible to divide these zreaa
into two parts, of which one is of finite dimensions, and the other can be calcolated in
the simplest manner. Thus in the entropy-tempeca-
tore diagram the work done in a path AB (fig. 2} is
represented by the area incinded by the path AB, the
isometric BC, the line of ne pressure and the isometrie B
DA. The line of no pressure and the adjacent parts
of the isometrics in the case of an actaal gas or vapor
are more or less nodetermined in the present state X
of onr knowledge, and are likely to remain so; for
an idesl gas the line of no pressure coincides with et
the axis of abscissas, and is an asymptote to the
isometrics. But, be this as it msy, it is not necessary Fig. 2
to examine the form of the remoter parts of the
disgram. If we draw an isopiestic MY, cotting AD and BC, the area MNCD, which
represents the work done in MN, will be equal to p(r” -t’}, where p denotes the pressure
io MY, and v" and ¢ denote the volumes at B and A respectively (eq- 5). Hence the
work done in AB will be represented by ABNM +p(v"-v). In the volnme-pressare
diagram, the areas representing hest may be divided by an isothermal, and treated in
a manner entirely analogons.

Or we may make use of the principle that, for a path which begins and ends on the
same isodynamic, the work and heat are equal, as appears by integration of equation
(1). Hence, in the entropy-temperature diagram, to find the work of any path, we may
extend it by an isometric (which will not alter its work), so that it shall begin and end

14 A
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general character, which shows an important advantage on the side of
the entropy-temperature diagram. In thermodynamic problems, heat
received at one temperature is by no means the equivalent of the
same amount of heat received at another temperature. For example,
a supply of a million calories at 150° is a very different thing from a
supply of & million calories at 50°. But no such distinction exists in
regard to work. This is & result of the general law, that heat can
only pass from a hotter to a colder body, while work can be trapsferred
by mechanical means from one fluid to any other, whatever may be
the pressures. Hence, in thermodynamic problems, it is generally
necessary to distingmish between the quantities of heat received or
given out by the body at different temperatures, while as far as work
1S concerned, it is generally sufficient to ascertain the total amount
performed. If then, several heat-areas and one work-area enter into
the problem, it is evidently more important that the former should be
gimple in form, than that the latter should be so. Moreover, in the
very common case of a circuit, the work-area is bounded entirely by
the path, and the form of the isometrics and the line of no pressure
are of no especial consequence.

It is worthy of notice that the simplest form of a perfect thermo-
dynamic engine, so often described in treatises on thermodynamics, is
represented in the entropy-temperature
diagram by a figure of extreme sim-
plicity, viz: a rectangle of which the
D c sides are parallel to the co-ordinate
- - - axes. Thus i figure 3, fhe circmt
ABCD may represent the series of
states through which the fluid is made
to pass in such an engine, the included
area representing the work done, while
the area ABFE represents the heat
received from the heater at the highest temperature AE, and the
area CDEF represents the heat transmitted to the cooler at the lowest
temperature DE.

There is another form of the perfect thermodynamic engine, viz:
one with a perfect regenerator as detined by Rankine, Phil. Trans.
vol. 144, p. 140, the representation of which becomes peculiarly
simple in the entropy-temperature diagram. The circnit consists of
two equal straight lines AB and CD (fig. 4) parallel to the axis of
abscissas, and two precisely similar curves of any form BC and AD.

t A B

Fig. 3.

on the same isodynamic, and then take the heat {instead of the work) of the path thus
extended. This method was saggested by that employed by Cazin, Theorie @émen-
taire des machines a air chaud, p. 11, and Zenner, Mechanische Warmetheorie, p- 80,
in the reverse case, viz : to find the heat of a path in the volume-pressure diagram.
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The included area ABCD represents the work done, and the aress
ABbs and CDdc represent respectively the heat received from the
heater and that transmitted to the . A B
cooler. The heat imparted by the flnid
to the regenerstor in passing from B
to C, and afterward restored to the D c
fluid in ifs passage from D to A, is
represented by the areas BCeb and
DAad.

It is often a matter of the frst
importance in the study of any thermo- © d = e b 9
dynamie engine, to compare it-with-a - Fig 4.
perfect engine. Such a comparison will obviously be much facilitated
by the use of a method in which the perfect engine is represented
by such simple forms.

The method in which the co-ordinates represent volume and pressure
has a certain advantage in the simple and elementary character of the
notions upon which it is based, and its analogy with Watt's indicator
has doubtless contributed to render it popular. On the other hand,
s method involving the notion of entropy, the very existence of which
depends upon the second law of thermodymamics, will doubtless seem
to many far-fetched, and may repel beginners as obscure and difficult
of comprehension. This inconvenience is perhaps more than counter-
balanced by the advantages of a method which malkes the second law
of thermodynamics so promivent. and gives it so clear and elementary
an- expression. The fact, that the different states of a fluid can be
represented by the positions of & point in a plane, so that the ordi-
pates shali represent the temperatures, and the heat received or given
out by the flnid shall be represented by the area bounded by the line
representing the states through which the body passes, the ordinates
drawn through the exireme points of this line, and the axis of
abscissas,—this fact, clumsy as its expression in words may be, is one
which presents a clear image to the eye, and which the mind can
readily grasp and retain. It is, however, nothing more nor less than
a geometrical expression of the second law of thermodynamies in its
application to fluids, in a form exceedingly convenient for use, and
from which the analytical expression of the same law can, if desired,
be at once obtained. I, then, it is more important for purpeses of
instruction and the like to familiarize the learner with the second
law, than to defer its statement as long as possible, the use of the
entropy-temperature diagram may serve a useful purpose in the
popularizing of this science.

The foregoing considerations are in the main of a general character,
and independent of the nature of the substance to which the graphical
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method is applied. On this, however, depend the forms of the
isometrics, 1sopiestics and isodynamics in the entropy-temperature
diagram, and of the isentropics, isothermals and isodynamics in the
volume-pressure diagram. As the convenience of a method depends
largely upon the ease with which these lines can be drawn, and upon
the peculiarities of the fluid which has its properties represented in
the diagram, it is desirable to compare the methods under considera-
tion in some of their most important applications. We will commence
with the ease of a perfect gas.

Cuse of « perject gas.

A perfect or ideal gas may be defined as such a gas, that for any
constant quantity of it the product of the volume and the pressure
varies as the temperature, and the energy varies as the temperature, Le.,

pr=at, (a)*
e=ct. (B)
The significance of the constant a is sufficiently indicated by equation
(A) The significance of ¢ may be rendered more evident by differen-
tiating equation (B) and comparing the result
de=cdt
with the general equations (1) and (2), viz:
de=dH—-dW, dW=pdv.

If du=0, dW =0, and- dH =cdt, re:;

dH .

%)f‘” ()
ie, ¢ is the quantity of heat necessary to raise the temperature of
the body one degree under the condition of constant volume. It will
be observed, that when different quantities of the same gas are con-
sidered, a and ¢ both vary as the quantity, and ¢+« is constant; also,
that the value of ¢+« for different gases varies as their specific heat
determined for equal volumes and for constant volume.

With the aid of equations (i) and (B) we may eliminate p and ¢

from the general equation (4), viz:

de=tdn—pdu,

* In this article, all equations which are designated by arabic numerals subsiat for
any bedy whatever (snbject to the condition of uniform pressure and temperature), and
those which are designated by small capitals snbsist for any quantity of a perfect gas
as defined above (snbject of course to the same conditions).

1+ A snbscript letter after a differential co-efficient is used in this article to indicate
the quantity which is made constant in the differentiation.
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which 18 then reduced to C-l—e-—_-ldq_cﬁ ii_v_,
€ ¢ c v
and by integration to log e=%-—% logv.* (D)

The constant of integrafion becomes 0, if we call the entropy O for
the state of which the volume and energy are both unity.

Any other eguations which subsist between «, p, , € and 5 may be
derived from the three independent equations (1), (B) and (D). If we
eliminate e from (B) and (D), we have

n=clogv+tclogti-cloge. (&)
Eliminatiog-v-from-(4}-and (&), we-have.
n=(u+c)logt—alog p+clogc+aloga (F)

Eliminating ¢ from (a) and (E), we have
n=(a+c)logv+tclog p+clog 2. (G)

If v is constant, equation (E) becomes
n=c logt+Const.,

ie., the isometries in the entropy-temperature diagram are logarithmic
curves identical with one another in form,—a change in the value of
v having only the effect of moving the curve parallel to the axis of 7.
If p is constant, equation (F) becomes
7 =(a+c)log t-+Const.,

so that the isopiestics in this diagram have similar properties. This
identity in form diminishes greatly the abour of drawing any com-
siderable number of these curves. For if a card or thin board be cut
in the form of one of them, it may be used as a paitern or ruler-to
draw all of the same system.

The isodynamics sre straight in this diagram (eq. B)-

To find the form of the isothermsls and isentropics in the volume-
pressure diagram, we may make ¢ and » constant in equations (A)
and (G) respectively, which will then reduce to the well-known equa-
tions of these curves:—

puv=Const.,
and pftt<=Const.

¥If we use the letter e to denote the base of the Naperian system ot logarithms,
equation (D) may also be written in the form

e=cwe

This may be regarded as the fundamental thermodynamic equation of an ideal gas. See
the last note on page 2. It will be observed, that there would be no real loas of
generslity if we should choose, as the body to which the letters refer, such a quantity
of the gas that one of the constants @ and ¢ shonid be equal to unity.
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The equation of the isodynamics is of course the same as that of the
sothermals. None of these systems of lines have that property of
identity of form, which makes the systems of isometrics and isopiestics
80 easy to draw in the entropy-temperature diagram.

Cuse of condensable vapors.

The case of bodies which pass from the liquid to the gaseous condi-
tion is next to be considered. It is usual to assume of such a body,
that when sufficiently superheated it approaches the condition of a
perfect gas. If, then, in the entropy-temperature diagram of such a
body we draw systems of isometrics, isopiestics and isodynamics, as if
for a perfect gas, for proper values of the constants « and ¢, these will
be asymptotes to the true isometrics, ete., of the vapor, and in many
cases will not vary from them greatly in the part of the disgram which
represents vapor unmixed with liquid, except in the vicinity of the
line of saturation. In the volume-pressure diagram of the same body,
the isothermals, isentropics and isodynamics, drawn for a perfect gas
for the same values of « and ¢, will have the same relations to the true
isothermals, etc

In that part of any diagram which represents a mixture of vapor
and liquid, the isopiestics and isothermals will be identical, as the
pressure is determined by the temperature alone. In both the
diagrams which we are now comparing, they will be straight and
parallel to the axis of abscissas. The form of the isometrics and
isodynamics irr the entropy-temperature diagraty, or- that of the-
isentropics and isodynamics in the volume-pressure diagram, will
depend upon the nature of the fluid, and probably cannot be ex-
pressed by any simple equations. The following property, however,
renders it easy to construct equidifferent systems of these lines, viz:
any such system will divide any isothermal (isopicstic) into equal
segments.

It remains to consider that part of the diagram which represents
the body when entirely in the condition of liquid. The fundamental
characteristic of this condition of matter is that the volume is very
nearly comnstant, so that variations of volume are generally entirely in-
appreciable when represented graphically on the same scale on which
the volume of the body in the state of vapor is represented, and both
the variations of volume and the connected variations of the connected
quantities may be, and generally are, neglected by the side of the
variations of the same quantities which occur when the body passes
to the state of vapor.

Let us make, then, the usual assumption that » is constant, and see
how the general equations (1), (2), (3) and (4) are thereby affected.
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We have first,

dv =0,
then dW =0,
and de =tds.
If we add dH =tdn,

these four equations will evidently be equivalent to the three inde-
pendent equations (1), (2) and (3), combined with the assumption
which we have just made. For a liquid, then, ¢, instead of being a
function of two quantities v and 7, is a function of 5 alone—¢ is also
e fonction of 7 alone, being equal to the differential co-efficient of the
funetion ¢; that is, the-value of one of the three quantities f, eand 5,
18 sufficient to determine the other two. The value of v, moreover, is
fixed without reference to the values of ¢, € and 5 (so long as these do
not pass the limits of values possible for liquidity); while p does not
enter into the equations, ie., p may have any value (within certain
limits) without affecting the values of ¢, €, 7 or v. If the body change
its state, continuing always liquid, the value of W for such a change
is 0, and that of H is determined by the values of any one of the
three quantities ¢, € and 5. It is, therefore, the relations between ¢, ¢,
7 and H, for which a graphical expression is to be sought; a method,
therefore, in which the co-ordinates of the diagram are made equal
to the volume and pressure, is totally inapplicable to this particu-
lar case; v and p are indeed the only two of the five functions of the
state of the body, v, p, ¢, € and 7, which have n.: relations either to
each other, or to the other three, or to the quantities W and H, to be
expressed.t* The values of v and p do not really determine the state
of an incompressible fluid,—the values of ¢, ¢ and 7 are still left
undetermined, so that through every point in the volume-pressure
diagram which represents the liquid there must pass (in general) an
infinite number of Isothermals, isodynamics and isentropics. The
character of this part of the diagram is as follows:—the states of
liquidity are represented by the points of a line parallel to the axis of
pressures, and the isothermals, isodynamics and isentropics, which
cross the field of partial vaporization and meet this line, turn upward
and follow its course.t

In the entropy-temperature diagram the relations of ¢, € and 7 are

¢ That is, v and p have uo such relations to the other quantities, as are expressible
by equations ; p, however, cannot be /ess than & certain function of &

+ All thess difficulties are of course removed when the differences of voiume of the
lignid at differeut temperatures are reudered appreciable on the volume-pressure
disgram. This can be done in various ways,—amoug others, by choosing as the body
to which v, etc., refer, a safficieutiy large quantity of the fluid. But, however we do it,
we must evidently give up the possibility of represeuting the body in the state of vapor
in the same diagram without making its dimensions enormous.
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distinctly visible. The line of liquidity is & curve AB (fig. 5) aeter-
mined by the relation between ¢ and 5. This curve is also an iso-
5 metric. Every point of it has a definite
' volume, temperature, entropy and
N energy. The Iatter is indicated by the
isodynamics E,E,, E,E,, ete, which
\ cross the region of partial vaporization
and terminate in the line of Liquidity.

N

E (They do not in this diagram turn and

E \r:,' follow fhe kne) I[f the body pass
T »_\5 i from one state to another, remaining
g, liquid, as from M to N in the figure,

the heat received is represented as

usual by the area MNnm. That the

0 @ o ? work done is nothing, is indicated

Fig. 5. by the fact that the line AB is an

isometric. Only the isopiestics in this diagram are superposed in

the line of flnidity, turning downward where they meet this line and

following its course, so that for any poinf in this line the pressure is

undetermined. This is, however, no inconvenience in the diagram, as

it simply expresses the fact of the case, that when all the quantities
v, t, € and » are fixed, the pressure is still undetermined.

Diagrams in which the Isometrics, Isopiestics, Isothermals, Iso-
dynamics and Isentropics of a Perfect Gas are all Straight
Lines.

There are many cases in which it is of more importance that it
should be easy to draw the lines of equal volume, pressure, tempera-
ture, energy and entropy, than that work and heat should be repre-
sented in the simplest manner. In such cases it may be expedient to
give up the condition that the scale (v) of work and heat shall be
constant, when by that means it is possible to gain greater simplicity
in the form of the lines just mentioned

[n the case of a perfect gas, the three relations between the quanti-
ties v, p, ¢, € and 5 are given on pages 12, 13, equations (1), (B)and (D).
These equations may be easily transformed into the three

log p+logv—logi=logea, (m)
log e—logit=loge, (1)
n—cloge—alogv=0; ()

so that the three relations between the quantities log v, logp, logt,
log € and n are expressed by linear equations, and it will be possible
to make the five systems of lines all rectilinear in the same diagram,
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the distances of the isometrics being proportional to the differences
of the logarithms of the volumes, the distances of the isopiestics being
proportional to the differences of the logarithms of the pressures, and
so with the isothermals and the isodynamics,—the distances of the
isentropics, however, being proportional to the differences of entropy
simply.

The scale of work and heat in such a diagram will vary inversely
a8 the temperature. For if we imagine systems of isentropics and
isothermals drawn throughout the diagram for equal small differences
of entropy and temperature, the isentropics will be equidistant, but
the distances of the isothermals will vary inversely as the temperature,
and the small quadrilsterals- into- which-the-dizgram- is-divided- wilk
vary in the same ratio: .. y=>1=t (See p. 3.

So far, however, the form of the diagram has not been completely
defined. -This may be done in various ways: e.g, if z and y be the
rectangular co-ordinates, we may make

z=log, r=n, z=log v,
{y=10§p: . {?/=10gﬁs . {y=n; ete-

Or we may set the condition that the logarithms of volume, of pressure
and of temperature, shall be represented
in the diagram on the same scale (The 7 v
logarithms of energy are necessarily re- \
presented on the same scale as those of ¢
temperature.) This will require that the \
isametrics, isopiestics and isotherwaals cut
one another at angles of 60°

The general character of all these dia-

grams, which may be derived from one o D A R
another by projection by parallei lines, may
be illustrated by the case in whick z=logw, -
and y=Ilogp.

Through any point A (fig. 6) of such a Fig. & v 7

diagram let there be drawn the isometric
vV, the isopiestic pp’, the isothermal tt” and the isemtropic 7. The
lines pp” and vv”are of course parallel to the axes. Also by equation (H)

g () ~(52) 1,

d log v/,
o (Y _(¢logpy _ _cta
and by (@) tan nAp _(RE),,_(dlog v),,_- c

Therefore, if we draw another isometrie, cutting 7, tt/, and pp’ in

B, C and D,
BD c¢+a BC_a CD

c
CD ¢ CD ¢ BC «
B
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Hence, in the diagrams of different gases, CD+ BC will be propor-
tional to the specitic heat determined for equal volumes and for
constant volume.

As the specific heat, thus determined, has probably the same value
for most simple gases, the isentropics will have the same inclination
in diagrams of this kind for most simple gases. This inclination may
easily be found by a method which is independent of any umits of
measurement, for 71 Il i g

ogp\ [dlogp\ _/dp\ (4
BD:CD =‘(a‘1“5§%),, - (d—bgg);-(z%),- ).
t.e., BD=CD is equal to the quotient of the co-efficient of elasticity
under the eondition of no transmission of heat; divided by the co-
effictent of elasticity at constant temperature. This quotient for a
simple gas is generally given as 1408 or 1'421. As
CA+CD=,/2=1414,

BD is very nearly equal to CA (for simple gases), which relation it
may be convenient to use in the construction of the diagram.

In regard to compound gases the rule seems to be, that the specific
heat (determined for equal volumes and for constant volume) is to the
specific heat of a simple gas inversely as the volume of the compound
is to the volume of its constituents (in the condition of gas): that s,
the value of BC+CD for a compound gas is to the value of BC+-CD
for a simple gas, as the volume of the compound is to the volume of
its constituents. Therefore, if we compare the diagrams (formed by
this method) for a simpie and a compound gas, the distance DA and
therefore. CD- being the same in each, BC in the diagram of the com-
pound gas will be to BC in the diagram of the simple gas as the
volume of the compound is to the volume of its constituents.

Although the inclinasion of the isentropics is independent of the
quantity of gas under consideration, the rate of increase of # will vary
with this quantity. In regard to the rate of increase of ¢, it is evident
that if the whoie diagram be divided into squares by isopiesties and
isometrics drawn at equal distances, and isothermals be drawn as
diagonals to these squares, the volumes of the isometrics, the pressures
of the isopiestics and the temperatures of the isothermals will each
form a gcometrical series, and in all these series the ratio of two
contiguous terms will be the same.

The properties of the diagrams obtained by the other methods men-
tioned on page L7 do not differ essentially from those just described.
For example, in any such diagram, if through any point we draw an
isentropic, an isothermal and an isopiestic, which cut any isometric
not passing through the same point, the ratio of the segments of the
isometric will have the value which has been found for BC:CD.

In treating the case of vapors also. it may be convenient to use
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diagrams in which z=logv and y=logp, or in which z=# and
y=logt; but the diagrams formed by these methods will evidently.
be radically different from one another. It is to be observed that
each of these methods is what may be called a method of defintte scale
for work and heat; that is, the value of y in any part of the diagram
is independent of the properties of the fluid considered. In the first

method y= e%—, in the second .y,:él!_’_ In this respect these methods

have an advantage over many others. For example, if we should
make r=log v, y =y, the value of y in any part of the diagram would
depend upon the properties of the fluid, and would probably not vary
in any case, except-that-of a-perfect gas, actording to-any simple-law.

The conveniences of the entropy-temperature method will be found
to belong in nearly the same degree to the method in which the
co-ardinates are equal to the entropy and the logarithm of the tem-
perature. No serious difficulty attaches to the estimation of heat and
work in a diagram formed on the latier method on account of the
variation of the scale on which they are represented, as this variation
follows so simple a law. It may often be of use to remember that
such a diagram may be reduced to an entropy-temperature diagram
by a vertical compression or extension, such

that the distances of the isothermals shall be B
made proportional to their differences of tem- pdih
perature. Thus if we wish to estimate the work \

or heat of the circuit ABCD (fig. 7), we may

draw & number of equidistant ordinates (isen- & )>c
tropics) as if to estimate the included area, and HER

for each of the ordinates take the differences __,.-"/

of temperature of the points where it cuts the "B

. . . Fig. 7.
circuit ; these differences of temperature will

be equal to the lengths of the segments made by the corresponding
circuit in the entropy-temperature diagram upon a corresponding
system of equidistant ordinates, and may be used fo calenlate the
ares of the circuit in the entropy-temperature diagram, ie, to find
the work or heat required. e may find the work of any path by
applying the same process to the circuit formed by the path, the iso-
metric of the final state, the line of no pressure (or any isopiestic: see
note on page 9), and the isometric of the initial state. And we may
find the hest of any path by applying the same process to a circuit
formed by the path, the ordinates of the extreme points and the line
of absolute cold. That this line is at an infinite distance occasions no
difficulty. The lengths of the ordinates in the entropy-temperature
diagram which we desire are given by the temperature of points in
the path determined (in either diagram) by equidistant ordinates.
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The properties of the part of the entropy-temperature diagram
representing & mixture of vapor and liquid, which are given on
page 14, will evidently not be altered if the ordinates are made
proportional to the logarithms of the temperatures instead of the
temperatures simply.

The representation of specific heat in the diagram under discussion
is peculiarly simple. The gpecific heat of any substance at constant
volume or under constant pressure ma.y be defined as the value of

w).o (&), = (giog), = (aiogd),

for a certain quantity of the substance. Therefore, if we draw a dia-
gram, in which z=7 and y=logt, for that quantity of the substance
which is used for the determination of the specific heat, the tangents
of the angles mmade by the isometrics and the isopiestics with the
ordinates in the diagram will be equal to the specific heat of the
substance determined for constant volume and for constant pressure
respectively. Sometimes, instead of the condition of constant veolume
or constant pressure, some other condition is used in the determination
of specific heat. In all cases, the condition will be represented by a
[ine in the diagram, and the tangent of the angie made by this line
with an ordinate will be equal to the specific heat as thus defined. If
the diagram be drawn for any other quantity of the substance, the
specific heat for constant volume or constant pressure, or for any other
condition, will be equal to the tangent of the proper angle in the
disgram, multiplied by the ratio of the quantity of the substance for
which the specific heat is determined to the quantity for which: the
diagram is drawn_*

The Volume-entropy Diagram.

The method of representation, in which the co-ordinates of the point
in the diagram are made equal to the volume and entropy of the
body, presents certain characteristics which entitle 1t to a somewhat
detailed consideration, and for some purposes give it substantial
advantages over any other method. We might anticipate some of
these advantages from the simple and symmetrical form of the general
equations of thermodyramics, when volume and entropy are chosen
as independent variables, viz-—t

*From this general property of the disagram, its character in the case of a perfect
gas might be immediately deduced.

+See page 2, equations (2), (3) and (4).

In general, in this article, where differential coefficienta are used, the quantity which
is constant in the differentiation is indicated by a snbscript letter. In this discussion
of the volume-entropy diagram, however, v and 5 are uniformly regarded as the inde-
pendent variables, and the snbacript letter is omitted.
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de
- (1)
de
t=3—q' (12)
dW=pdv,
dH =tdy.
Eliminating p and ¢ we have also
de
_de |
dH _a—ﬂd‘n. (I4Y

The geometrical relations corresponding to these equations are n
the volume-entropy diagram extremely simple. To fix our ideas, let
the axes of volume and entropy be horizontal and vertical respec-
tively, volume increasing toward the right and entropy upward.
Then the pressure taken negatively will equal the ratio of the differ-
ence of energy to the difference of volume of éwo adjacent points in
the same horizontal line, and the temperature will equal the ratio of
the difference of energy to the difference of entropy of two adjacent
points in the same vertical line. Or, if a series of isodynamics be
drawn for equal infinitesimal differences of energy, any series of hori-
zontal lines will be divided into segments inversely proportional to
the pressure, and any series of vertical lines into segments inversely
proportional to the temperature. We see by equations (13) and (14).
that for a motion parallel to the axis of volume, the heat received is
0, and the work done is equal to the decrease of the energy, while for
a motion parallel to the axis of entropy, the work done is 0, and the
heat received is equal to the mcrease of the energy. These two
propositions are true either for elementary paths or for those of finite
length. In general, the work for any element of a path is equal to
the product of the pressure in that part of the diagram into the hori-
zontal projection of the element of the path, and the heat received is
equal to the product of the temperature into the vertical projection
of the element of the path.

I[f we wish to estimate the value of the integrals /pdv and stdy,
which represent the work and heat of any path, by means of measure-
ments upon the diagram, or if we wish to appreciate readily by the
eye the approximate value of these expressions, or if we merely wish
to illustrate their meaning by means of the diagram ; for any of these
purposes the diagram which we are now considering will have the
advantage that it represents the differentials dv and dy more simply
and clearly than any other.
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But we may also estimate the work and heat of any path by means
of an integration extending over the elements of an area. viz: by the
formulee of page 7,

We=H= EC-JA

ws=sEmal A
Y
HS=3& o L.g
v
In regard to the limits of integration in these formule, we see that for
the work of any path which is not a circuit, the bounding line is com-
posed of the path, the line of no pressure and two vertical lines, and
for the heat of the path, the bounding line is composed of the path,
the line of absolute cold and two horizontal lines.

As the sign of y, a8 well as that of 34, will be indeterminate until
we decide in which direction an ares must be circumscribed m order
to be considered positive, we will call an area positive which is cir-
cumscribed in the direction in which the hands of a watch move.
This choice, with the positions of the axes of volume and entropy
which we have supposed. will make the value of y in most cases posi-
tive, as we shall see hereafter.

The value of v, in a diagram drawn according to this method, will
depend upon the properties of the body for which the diagram is

drawn. In this respect, this method
7 differs from all the others which have
been discassed in detail in this article.

It is easy to find am expression for ¢

depending simply upon the variations of

the energy, by comparing the area and

the work or heat of an infinitely small

circuit in the form of a rectangle having
its sides parallel to the two axes.

Let N, N ,N,N, (tig.8) be such a circuit,

and let it be described in the order of

v the numerals, so that the area is positive.

Also let <, €., €, €, represent the energy
at the four corners. The work done in the four sides in order com-
mencing at N, will be ¢, —e,, 0, ,—e¢,, 0. The total work, therefore,
for the rectangular circuit is

€ —E+E—E,
Now as the rectangle is infinitely small,«if we call its sides dv and d7,
the above expression will be equivalent to

d e
~Tods ——du dy.

or

Fig. 8.
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Dividing by the area duv dy, and writing y.,, for the scale of work and
heat in a diagram of this kind, we have
1 d* dp_di
——— - 15
Yo, n dvdy dn dv (15)
The two last expressions for the value of 1+, , indicate that the
value of v, , in different parts of the diagram will be indicated pro-
portionally by the segments into which vertical lines are divided by a
system of equidifferent isopiestics, and alsc by the segments imto
which horizontal lines are divided by a system of equidifferent iso-
thermals. These results might also be derived directly from the
propositions on page 3.
As, in almost all cases, the pressure of wbadris*frrcmasecfwhen—it
receives heat without change of volume, += d 1s in general positive, and

the same will be true of y.,, under the assumptmns which we have
made in regard to the directions of the axes (page 21) and the defini-
tion of a positive area (page 22).

In the estimation of work and heat it may often be of use to
consider the deformation necessary to reduce the diagram tc one of
constant scale for work and heat. Now if the diagram be so deformed
that each point remains in the same vertical line, but moves in this
line so that all isopiestics become straight and horizontal lines at
distances proportional to their differences of pressure, it will evidently
become a volume-pressure diagram. Again, if the diagram be so
deformed that each point remains in the same horizontal line, but
moves in it 30 that isothermals become straight and vertical lines at
distances proportional to their differences of temperature, if will
become an entropy-temperature diagram. These considerations will
enable us to compute numerically the work or heat of any path
which is given in a volume-entropy dizgram, when the pressare and
temperature are known for all points of the path, in a manner
analogous to that explained on page 19.

The ratio of any element of area in the volume-pressure or the
entropy-temperature diagram, or in any other in which the scale of
work and heat is unity, to the corresponding element in the volume-

entropy diagram is represented by yl or —Elfg:le—q- The cases in
v, n

which this ratio is 0, or changes its sign, demand especial attention,
as in such cases the diagrams of constant scale fail to give a satis-
factory representation of the properties of the body, while no difficulty
or inconvenience arises in the use of the volume-entropy diagram.

As d%ﬁ ‘%’, its value is evidently zero in that part of the
diagram which represents the body when in part solid, in part liquid,



24 GRAPHICAL METHODS IN THE

and in part vapor. The properties of such a mixture are very simply
and clearly exhibited in the volume-entropy disgram.
Let the temperature and the pressure of the mixture, which are
independent of the proportions of vapor, solid and liquid, be denoted
by ¢ and p. Alsolet V, L and S (fig. 9)
be points of the diagram which indicate
v the volume and entropy of the bedy in
three perfectly defined states, viz: that of
& vapor of temperature ¢ and pressure p’,
that of a liquid of the same temperature

L

L. and pressure, and that of a solid of the
i same temperature and pressure. And let

Ve, g, Yp, ML, Vg N denote the volume and
0 v

Fig. 9. entropy of these states. The position of
the point which represents the body, when
part is vapor, part liquid, and part solid, these parts being as g, »,
and 1—pu —yv, is determined by the equations
v=pvr+v,+(1 —pg—rius,
n=puny+vi+(1—g—v)is
where v and 5 are the volume and entropy of the mixture. The
truth of the first equation is evident. The second may be written
n—ng=p(ny—ns)+v(1.—1g),
or multiplying by ¢,
E—ns)=pt(ny—ng)+v (0, —n5)-
The first member of this eqaation denotes the heat necessary to bring
the body from the state S to the state of the mixture in question
under the constant temperature i, while the terms of the second
member denote separately the heat necessary to vaporize the part ,
and to liquefy the part v of the body.

The values of v and # are such as would give the center of gravity
of masses g, v and 1 — g —v placed at the points V, L, and S.* Hence
the part of the diagram which represents a mixture of vapor, liquid
and solid, is the triangle VLS. The pressure and temperature are
constant for this iriangle, le., an isopiestic and also an isothermal

here expand to cover a space. The isodynamics are straiyht and equi-

distant for equal differences of energy. For de _ p” and g-%= £,

v~
both of which are constant throughout the triangle.

*These points will not be in the same straight line unless
Clnr—ns):(ne—ns)i:Vr—Us: 0L - vy,
a condition very uulikely to be fulfilled by any substance. The first and second terms

of this proportion denote the heat of vaporizatina (from the solid state) and that of
liquefaction.
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This case can be but very imperfectly represented in the volume-
pressure, or in the entropy-temperature diagram. For all points in
the same vertical line in the triangle VLS will, in the volume-pressure
dizagram, be represented by a single point, as having the same volume
and pressure. And all the points in the same horizonfal line will be
represented in the entropy-temperature diagram by a single point, as
havipg the same entropy and temperature. In either diagram, the
whole triangle reduces to a straight line. It must reduce to a line
in any diagram whatever of constant scale, as its area must become
0 in such a diagram. This must be regarded as a defect in these
diagrams, as essentially different states are represented by the same
point: In- consequence; anycircuit- within the iriangle VES will be
represented in any diagram of constant scale by two paths of opposite
directions superposed, the appearance being as if a body should change
its state and then return to its original state by inverse processes, so
as to repass through the same series of states. It i1s true that the
circuit in question is like this combination of processes in one important
particular, viz: that W=H=0, ie., there is no transformation of heat
into work. But this very fact, that a circuit without transformation
of heat info work is possible, is worthy of distinct representation.

A body may have such properties that in one part of the volume-

i Loie %P g n L
entropy diagram o Le., i S
posiive and in another negative.
These parts of the diagram may A ﬂt
be separated by o line, in which | S
% =0, or by one in which ¢p D

dn

changes abruptly from a positive to
& negative value.* (In part, also,
they may be separated by an area in H /

which :-i%o=0.) In the representa-
tion of such cases in any diagram
of constant scale, we meet with a © v
difficulty of the following natare. Fig- 0.

Let us suppose that on the right of the line LL (fig. 10) in a volume-

entropy diagram, :—%J is positive, and on the left negative Then, if

we draw any circuit ABCD on the right side of LL, the direction

€ The line which represents the various states of water at its maximum density for
various constant pressures is an example of the first case. A substance which ax a
liquid has no proper maximum density for coustant pressure, but which erxpands in
solidifying, affords an example of the second case.
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being that of the hands of a watch, the work and heat of the cireunit
will be positive. But if we draw any circuit EFGH in the same
direction on the other side of the line LL, the work and heat wiil
be negative. For

W—H=s_L m:z‘%’ s4.

R4S d
and the direction of the circuits makes the areas positive in beth
cases. Now if we should change this diagram into any diagram of
constant scale, the areas of the circuits, as representing proportionally
the work done in each case, must necessarily have opposite signs,
Le., the direction of the circuits must be opposite. We will suppose
that the-work done is-positive i the disgram of constant-scale; when
the direction of the circait is that of the hands of a watch. Then, in
that diagram, the circuit ABCD would have
that direction, and the circuit EFGH the con-
B trary direction, as in figure 11. Now if we
imagine an indefinite number of cireuits on
D each side of LL in the volume-entropy dia-
gram, it will be evident that to transform
such a diagram into one of constant scale, so

F as to change the direction of all the circuits
\G on oune side of LL, and of none on the other
L

P L

the diagram must be jolded over along that
line; so that the points on one side of LL in
a diagram of constant scale do not represent
Y —_— v any states of the body, while aon the other
€ side of this line, each point, for a certain
distance at least, represents two different states of the body, which in
the volume-entropy diagram are represented by points on opposite
sides of the line LL. We have thus in a part of the field two diagrams
superposed, which must be carefully distinguished. If this be done,
ss by the help of different colors, or cf continnous and dotted lines,
or otherwise, and it is remembered that there is no continuity between
these superposed diagrams, except along the bounding line LL, all the
general theorems which have been developed in this article can be
readily applied to the diagram. But to the eye or to the imagination,
the figure will necessarily be much more confusing than a volume-
entropy diagram.
If %:0 for the line LL, there will be another inconvenience in
the use of any diagram of constant scale, viz: in the vicinity of the

line LT, %, le, l1+vy,, will have a very small value, so that areas
will be very greatly reduced in the diagram of constant scale, as com-
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pared with the corresponding areas in the volume-entropy diagram.
Therefore, in the former diagram, either the isometrics, or the isen-
tropics, or both, will be crowded together in the vicinity of the line
LL, so that this part of the diagram will be necessarily indistinet.

It may occur, however, in the volume-entropy disgram, that the
same point must represent two different states of the body. This
occurs in the case of liquids which can be vaporized. Let MM (fig. 12)
be the line representing the states of the liquid
bordering upon vaporization. This line will be 4 W
near to the axis of entropy, and neurly parallel
to it. If the body is in a state represented by
& point of - the hme MM, and is- compressed |-
without addition or subtraction of heat, it will
remain of course liquid. Hence, the points of
the space immediately on the left of MM re-
present simple liquid. On the other hand, the |
bady being in the original state, if its volume
should be increased without addition or sub-
traction of heat, and if the conditions necessary
for vaporization are present (conditions relative
to the body enclosing the liquid in question,
ete.), the liquid will become partially vaporized,
but if these conditions are not present it will continue liquid. Hence,
every point on the right of MM and sufficiently near to it represents
two different states of the body in one of which it is partially
vaporized, and in the other it is entirely liquid. [If we take the
points as representing the mixture of vapor and liquid, they form
one diagram, and if we take them as representing simple liquid, they
form a totally different diagram saperposed on the first. There is
evidently no continuity between these diagrams except at the line
MM ; we may regard them as upon separate sheets united only along
MM. For the body cannot pass from the state of partial vaporization
to the state of liquid except at this line. The reverse process is
indeed possible; the body can pass from the state of superheated
lquid to that of partial vaporization, if the conditions of vaporization
alluded to above are supplied, or if the increase of volume is carried
beyond a certain limit, but not by gradual changes or reversible
processes. After such a change, the point representing the state of
the body will be found in a different position from that which it
occupied before, but the change of state cannot be properly repre-
sented by any path, as during the change the body does not satisfy
that condition of uniform temperature and pressure which has been
assumed throughout this article, and which is necessary for the
graphical methods under discussion. (See note on page 1.)

}quid
lquid, or vapor and liquid ™~

-

O jrov o v
4
<9

Fig. 12.
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Of the two superposed diagrams, that which represents simple
liquid is & continuation of the diagram on the left of MM. The
isopiestics, isothermals and isodynamics pass from one to the other
without abrupt change of direction or curvature. But that which
represents & mixture of vapor and liquid will be different in its
character, and its isopiestics and isothermals will make angles in
general with the corresponding lines in the diagram of simple liquid.
The isodynamics of the diagram of the mixture, and those of the
diagram of simple liquid, will differ in general in curvature at the
line MM, but not in direction, for %:——p and g%=t.

- The case is essentially the same with some substances_ss water
for example, about the line which separates the simple liquid from a
mixture of liquid and solid.

In these cases the inconvenience of having one diagram superposed
upon another cannot be obviated by any change of the principle on
which the diagrasm is based. For no distortion can bring the three
sheets, which are united along the line MM (one on the left and two
on the right), into a single plane surface without superposition. Such
cases, therefore, are radically distinguished from those in which the
superposition is cansed by an unsuitable method of representation.

To find the character of a volume-entropy disgram of a perfect gas,
we may make ¢ constant in equation (D) on page 13, which will give
for the equation of an isodynamic and isothermal

1=a log v+ Const.,

and we may make p constant in equation (G), which will give for the
equation of an isopiestic

n=(a+c¢)log v+ Const.

It will be observed that all the isodynamics and isothermals can be
drawn by a single patiern and so also with the isopiesties.

The case will be nearly the same with vapors in a part of the
diagram. In that part of the diagram which represents a mixture of
liquid and vapor, the isothermals, which of course are identical with
the isopiestics, are straight lines. ¥or when a boedy is vaporized
under constant pressure and tempersture, the quantities of heat
received are proportional to the increments of volume; therefore, the

increments of entropy are proportional to the increments of volume.
de

As =P and g—:=t, any isothermal is cut at the same angle by
all the isodynamics, and is divided into equal segments by equi-
different isodynamics. The latter property is pseful in drawing
systems of equidifferent isodynamics.
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Arrangement of the Isometric, Isopiestic, Isothermal and
Isentropic about a Point.

The arrangement of the isometric, the isopiestic, the isothermal and
the isentropic drawn through any same point, in respect to the order
in which they succeed one another around that point, and in respect
to the sides of these lines toward which the volume, pressure, tem-
perature and entropy increase, is not altered by any deformation of
the surface on which the diagram is drawn. and is therefore inde-
pendent of the method by which the diagram is formed.* This
arrangement is determined by certain of the most characteristic
thermodynamic properties- of the- body i the- state- in question: and-
serves in turn to indicate these properties. It is determined, namely,

by the value of C—%’) as positive, negative, or zero, i.e, by the effect

of heat as increasing or diminishing the pressure when the volume
is maintained constant, and by the nature of the intermal thermo-
dynamic equilibrium of the body as stable or neutral—an unstable
equilibrium, except as a matter of speculation, is of course out of
the question.

Let ns first examine the case in which (%J) is positive and the
equilibrium is stable. As %) does not vanish at the point in
question, there is a definite isopiestic passing through that point,
on one side of which the pressures are greater, and on the other less,

than on the line itselfi As f% '=—(%l), the case is the same
dv/, .

with the isothermal. It will be convenient to distinguish the sides
of the isometric, isopiestic, etc.,, on which the volume, pressure, ete.,
increase, as the posztive sides of these lines. The condition of stability
requires that, when the pressure is constant, the temperature shall
increase with the heat received,—therefore with the entropy. This
may be written [dt:dp], >0.f It also requires that, when there
is no transmission of heat, the pressure should increase as the volume
diminishes, ie., that [dp:dv], «0. Through the point in question,

% [t is here assumed that, in the vicinity of the point in question, each point in the
diagram representa only one state of the body. The propositions developed in the fol-
lowing pages cannot be applied to points of the line where two superposed diagrams
are united (see pages 25-28) without certain modifications.

t As the notation Z—‘- is used to denote the limit of the ratio of d¢ to dy, it would not
n

be quite accurate to say that the condition of stability reqnires that ( ?) >0. This
n/»

condition requires that the ratio of the differences of temperature and entropy between
the point in question and any other infinitely near to it and npon the same isopiestic
should be positive. It is nnt necessary that the limit of this ratio should be positive.
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A (fig. 13), let there be drawn the isometric vv’ and the isentropic
nm’, and let the positive sides of these lines be indicated as in the

figure. The conditions (2—5;) >0 and [dp:dv], <0 require that the

pressure at v and at 5 shall be greater than at A, and hence, that
the isopiestic shall fall as pp”in the figure, and have its positive side

torned as indicated. Again, the conditions (‘%‘) <0 and [di:dp]p>0
n

requaire that the temperature at 5 and at p shall be greater than at A,
and hence, that the isothermal shall fall as tt” and have its positive

ot

side twmed as indicated. As it is not necessary that ( Tl >0, the

lines pp” and tt" may be tangent to one another at A, prowded that
they cross cne another, so as to have the same order about the point

A as is represented in the figure ; ie., they may have a contact of the
second (or any even) order.* Bnf the condition that ( dp >0, and

hence (g——) <0, does not allow pp” to be tangent to vv’, nor tt* to ny’.

( ) be still positive, but the equilibrium be neutral, it will be
possible for the body to change its

+P_ state without change either of tem-

/ perature or of pressure; Le., the

\ +-v isothermal and isopiestic will be
\ / identical. The lines will fall as in

figure 13, except that the isothermal
=" and isopiestic will be superposed.

- .o (XD .
I[n like manner, if ( Cz;l.)f 0, it may
be proved that the lines wil! fall as
in figure I4 for stable equilibrium,

and in the same way for neutral
equilibrium, except that pp” and tt’ will be superposed.t

Fig. 13.

# An example of this is doubtless to be found at the critical point of a duid. See
Dr. Andrews *“Om the continuity of the gaseous and liquid states of matter.” Phdl.
Trans., vol. 159, p. 375.

[f the isothermal and isopiestic have a simple tangency at A, on one side of that
point they will have such directions as will express an unstahle equilibrium. A line
drawn through all such points in the diagram will form a boundary te the posndle part

of the diagrum. It may be that the part of the diagram of a fluid, which represents
the superheated liquid state, is bounded on one side by such a Iine.

+ When it is said that the arrangement of the lines in the diagram must be like that
in figure I3 or in figure 14, it i3 not meant to exclude the case in which the figure
(13 or 14) mast be turmed aver. in order to correspond with the diagram. In the caase,
however, of diagrams formed by any of the methods mentioned in this article, if the
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The case that (%?) =0 includes a considerable number of con-

ceivable cases, which would require to be distinguished. It will be
sufficient to mention those most likely to occur.

In a field of stable equilibrium it may occur that (%):o along a

line, on one side of which (lp ) >0, and on the other side (j—’:) <0.

dn
At any point in sach a line the isopiestics will be tangent to the
isometrics and the isothermals to the isen- o v
T
In a field of neutral equilibrium repre- /
senting & mixture of two different states .
of the substance, where the isothermals and
isopiestics are identical, a line may occur
which has the threefcld character of an =
isometric, an isothermal and an isopiestic.
g
opposite signs on cpposite sides of this
line, it will be an isothermal of maximum or minimum temperature.®
The case in which the bedy is partly solid. partly liqnid and partly
vapor has already been sufficiently discussed. (See pages 23, 24.)
The arrangement of the isometric, isopiestic, etc., as given in figure

tropics. (See, however, note on page 29.)
. /
For such a line ((—E) =0. If (dp) v
13, will indicate directly the sign of any differential co-efficient of the

Fig. 14

form. (du) where % w and = may be any of the quantities v, p.t 7

(and ¢, if the isodynamic be added in the tigure). The value of such
a differential co-efficient will be indicated, when the rates of increase
of v, p, etc, are indicated. as by isometrics, etc., drawn both for the
values of v, ete., at the point A, and for values differing from these by

a small quantity. For example, the value of ((ﬁv) will be indicated

L]
by the ratio of the segments intercepted upon an isentropic by a pair

of isometrics and a pair of isopiesties. of which the differences of
volume and pressure have the same numerical value. The case in
which W or H appears in the numerator or denominator instead of a

directions of the axes be snch as we have assnmed, the agreement with tigure I3 will
be withowt inversion, and the sgreemenc with fig. 14 will also be roithout incersion for
volnme-entropy diagrams, but with intersion for volume-pressure or entropy-temperature
diagrams, or those in which r=Ilogr and y=logp, or r=rand y=loge.

# As some lignids expand and others contract in solidifying, it is possibie that there
are some which will solidify either with expansion, or without change of volume, or

with contraction, according to the pressnre. If any such there are, they atford examples
of the case mentioned above.
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function of the state of the body, can be reduced to the preceding by
the substitution of pdv for d W, or that of ¢dn for dH.

In the foregoing discussion, the equations which express the fanda-
mental principles of thermodynamies in an analytical form have been
assumed, and the aim has only been to show how the same relations
may be expressed geometrically. It would, however, be easy, starting
from the first and second laws of thermodynamics as usually enun-
ciated, to arrive at the same results without the aid of analytical
formulse,—to arrive, for example, at the conception of energy, of
entropy, of absolute temperature, in the construction of the diagram
without the analytical definitions of these-quantities; and-to-obtain-the-
various properties of the diagram without the analytical expression
of the thermodynamic properties which they involve. Such a course
would have been better fitted to show the independence and sufficiency
of a graphical method, but perhaps less suitable for an examination
of the comparative advantages or disadvantages of different graphical
methods.

The possibility of treating the thermodynamics of fluids by such
graphical methods as have been described evidently arises from the
fact that the state of the body considered, like the position of a point
in a plane, is capable of two and only two independent varistions.
It is, perhaps, worthy of notice, that when the diagram is only used
to demonstrate or illustrate general theorems, it is not necessary,
although it may be convenient. to assume any particular method of
forming the diagram; it i3 enough to suppose the different states of
the body to be represented continucusly by points upon a sheet.



IT.

A METHOD OF GEOMETRICAL REPRESENTATION OF THE
THERMODYNAMIC PROPERTIES OF SUBSTANCES BY
MEANS OF SURFACES.

[Transactions of the Connecticut Academy, 11. pp. 382404, Dec. 1873.]

THE leading thermodymamic properties of a fluid are determined
by the relations which exist between the volume, pressure, tempera-
ture, energy, and entropy of & given mass of the fluid in a state of
thermodsnamic equilibrinm. The same is true of a solid in regard
to those properties which it exhibits in processes in which the
pressure is the same in every direction about any point of the solid.
But all the relations existing between these five quantities for any
substance (three independent relations) may be deduced from the
single relation existing for that substance between the volume, energy,
and entropy. This may be done by means of the general equation,

de=tdn—pduv, (1)*
_ de
that is, r=~(%)- ()
de’
~(Z). (3)

where v, p, t, €, and 7 denote severally the volume, pressure, absolute
temperature, energy, and entropy of the body considered. The sub-
seript letter after the differential coetficient indicates the quantity
which is supposed constant in the differentiation.

Representation of Volume, Entropy, Energy, Pressure. and
Temperature.

Now the relation between the volume, entropy, and energy may
be represented by a surfsce. most simply if the rectangular co-
ordinates of the various points of the surface are made equal to the
volume, entropy, and energy of the body in its various states. It
may be interesting to examine the properties of such a surface, which

*For the demoustration of this equation, and in regard to the units used in the
measurement of the quantities, the reader is referred to page 2.



34 REPRESENTATION BY SURFACES OF THE

we will call the thermodynamic surface of the body for which it 18
formed.*

To fix our ideas, let the axes of v, 7, and ¢ have the directions
usually given to the axes of X, Y, and Z (v increasing to the right,
n forward, and e upward). Then the pressure and temperature of
the state represented by any point of the surface are equal to the
tangents of the inclinations of the surface to the horizon at that
point, as measured in planes perpendicular to the axes of 5 and of v
respectively. (Eqs. 2 and 3.) It must be observed, however, that
in the first case the angle of inclination is measured upward from
the direction of decreasing v, and in the second, upward from the
direction- of imeregeing 7 Hence, the tangent plane at any peint.
indicates the temperature and pressure of the state represented. It
will be convenient to speak of a plane as representing & certain
pressure and temperature, when the tangents of ita inclinations to
the horizon, measaured as above, are equal to that pressure and
temperature.

Before proceeding farther, it may be worth while to distinguish
between what is essential and what is arbitrary in a surface thus
formed. The position of the plane v=0 in the surface is evidently
fized, but the position of the planes =0, e=0 is arbitrary, provided
the direction of the axes of 5 and ¢ be not altered. This results from
the pature of the definitions of entropy and energy, which involve
each an arbitrary constant. As we may make 7=0 and ¢=0 for any
state of the body which we may choose, we may place the origin of
co-ordinates at any point in the plane v=0. Agsin, it is evident
from the form of equation (1) that whatever changes we may make in
the units in which volume, entropy, and energy are measured, it will
always be possible to make such changes in the units of temperature
and pressure, that the equation will hold true in its present form,
without the introduction of constants. It is easy to sce how a change
of the units of volume, entropy, and energy would affect the surface.
The projections parallel to any one of the axes of distances between
points of the surface would be changed in the ratio inverse to that
in which the corresponding unit had been changed. These con-
siderations enable us to foresee to a certain extent the nature of the
general properties of the surface which we are to investigate. They

* Professor J. Thomson has proposed and used a surface in which the co-ordinates
are proporticnal to the volame, pressore, and temperatore of the body. (Proc. Roy.
Soc., Nov. 16, 1871, vol. xx, p. 1; and PAd. Magq., vol xiiii, p. 227.) It iz evident,
however, that the relation between the volume, pressure, and temperature affords a
less complete knowledge of the properties of the body than the relation between the
volnme, entropy, and energy. For, while the former relation is entirely determined by
the latter, and can be derived from it by differentiation, the latter relation is by no
meauns determined by the former.
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must be sach, namely, as shall not be affected by any of the changes
mentioned above. For example, we may find properties which concern
the plane v=0 (as that the whole surface must necessarily fall on the
positive side of this plane), but we must not expect to find properties
which concern the planes =0, or €=0, in distinetion from others
parallel to them. It may be added that, as the volume. entropy, and
energy of a body are equal to the sums of the volumes, entropies, and
energies of iis parts, if the surface should be constructed for bodies
differing in quantity but not in ldnd of matter, the different surfaces
thus formed would be similar to one another, their linear dimensions
being proportionsal to the quantities of matter.

Nuature of that Part of the Surface which represents States which are
not Homogeneous.

This mode of representation of the volume, entropy, energy, pressure,
and temperature of a body will apply as well to the case in which
different portions of the body are in different states (supposing always
that the whole is in a state of thermodynamic equilibrium), as to that
in which the body is uniform in state throughout. For the body
taken as a whole has a detinite volume, entropy, and energy, as well
as pressure and temperature, and the validity of the general equation
(1) 1s independent of the unifermity or diversity in respect to state
of the different portions of the body.* It is evident, therefore. that

* [t is, however, snpposed in this equation thac the variations in the state of the
body, to which dv, dy, and de refer, are snch as may be produced reverubly by expan-
siom: and: compressiow-oe by sdidition and- subtractionr of hest: Hence, wher the body
consists of parts in different states, it i necessary that these states should be anch as
can pass either into the other without sensible change of pressnre or temperatnre.
Otherwise, it would be necessary to suppese in the differential equation ([} that the
proportion in which the body is divided into the ditferent states remains constant.
Bot snch a limitation would render the equation as applied to 2 compouund of different
states valneless tor onr present purpose. If, however, we leave ont of account the
cases in which we regard the scates xs chiemically different irom one another, which
lie beyond the scope of this paper, eiperience justifies us in assnming the above con-
dition (that either of the two states existing in contact can pass into the other without
sensible change of the pressnre or temperature), as at least approximately true. when
one of the states is fluid. But if both are solid, the necessary mobility of the parts is
wanting. [t must thereture be underswod, that the following discussion of the com-
pound states is not intended to apply without limitation to the exceptional cases. where
we have two different solid states of the same substance at the same pressure and
temperature. [t may be added that the thermodynamic equilibrium which snbsista
between two such solid states of the same substance differs from tnat which snbaists
when one of the states is duid, very much as in statics an equilibrivm which is main-
tained by friction differs from thac of a frictionless machine in which the active forces
are so balanced, that the slightest change of force will produce motion in either
direction.

Another limitation is rendered necessary by the fact that in the following discussion
the magnitude and form of the bounding and dividiug surfaces are left out of account:
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the thermodynamic surface, for many substances at least, can be
divided into two parts, of which one represents the homogeneous
states, the other those which are not so. We shall see that, when
the former part of the surface is given, the latter can readily be
formed, as indeed we might expect. We may therefore call the
former part the primitive surface, and the latter the derived surface.

To ascertain the nature of the derived surface and its relations to
the primitive surface sufficiently to construct it when the latter is
given, it is only necessary to use the principle that the volume,
entropy, and energy of the whole body are equal to the sums of the
volumes, eatropies, and energies respectively of the parts, while the
pressure and. temperature of the whole are the same as those of each
of the parts. Let us commence with the case in which the body is
in part solid, in part liquid, and in part vapor. The position of the
point determined by the volume, entropy, and energy of such a com-
pound will be that of the center of gravity of masses proportioned
to the masses of solid, liquid, and vapor placed at the three points of
the primitive surface which represent respectively the states of com-
plete solidity, complete liquidity, and complete vaporization, each at
the temperature and pressure of the compound. Hence, the purt of
the surface which represents a compound of solid, liquid, and vapor 18
a plane triangle, having its vertices at the points mentioned. The
fact that the surface is here plane indicates that the pressure and
temperature are here constant, the inclination of the plane indicating
the value of these quantities. Moreover, as these values are the same
for the compound as for the three different homogeneous states cor-
responding to its differen€ porfions, the plane of the friangle is
tangent at each of its vertices to the primitive surface, viz: at one
vertex to that part of the primitive surface which represents solid, at
another to the part representing liquid, and at the third to the part
representing vapor.

When the body consists of a compound of two different homo-
geneous states, the point which represents the compound state will be
at the center of gravity of masses proportioned to the masses of the
parts of the body in the two different states and placed at the points
of the primitive surface which represent these two states (ie., which
represent the volume, entropy, and energy of the body, if its whole
mass were supposed successively in the two homogeneous states which
oceur in its parts). It will therefore be found upon the straight line

so that the results are in general strictly valid ouly in cases in which the inflnence
of these particulara may be negiected. When, therefore, two states of the substance
are spoken of as in contact, it mnst be understood that the surface dividing them
is plane. To consider the subject in a more general form, it would be necessary to
introduce considerations which belong to the thearies of capillarity and crystallization.
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which unites these two points. As the pressare and temperature are
evidently constant for this line, a single plane can be tangent to the
derived surface throughout this line and at each end of the line tan-
gent to the primitive surface.* If we now imagine the temperature
and pressure of the compound to vary, the two points of the primitive
gurface, the line in the derived surface uniting them, and the tangent

¥ 1t is here shown that, if two different states of the substance are snch that they
can exist permanently in contact with each other, the points representing these states
in the thermodynamic surface have a commoo tangent plane. We shall see hereafter
that the couverse of this is true,—that, if two poiuts in the thermod ynamic surface have
s common tangent plane, the states represented are such as can permanently exist in
contact ; and we ghall also see what determines the direction of the discontinuous
change which-ocours when two-differentstates of the same pressure and temperatnre;
for which the condition of a common tangent plane is not satisfied, are brought into
contact.

It is easy to express this condition anaiytically. Resolving it into the conditions,
that the tangent planes shall be parallel, aud that they shall cut the axis of ¢ at the
same pomt, we have the equations

r e

p=p, (a)
g=r", (8)
( - ‘l”’_{_?l«:e’r ‘-"’7’" +pftu}" (7’

where the letters which refer to the different states are distinguished by accents. If
there are three states which can exist in contact, we muat have for these states,

pl =#’ =pll'."
C=t"'= ﬁtr’
¢ —Oq P = - P =~ g

These results are interesting, as they show ns how we might foresee whether two
given states of a substance of the same pressure and temperature, can or eannot exist
in contact. It is indeed true, that the valnes of ¢ and 7 cannot [ike those of v, p, and ¢
be ascertained by mere measurements upon the substance while in the two states in
question. [t is necessary, in order to find the value of ¢’ -¢ or 3" —x', to carry ont
measurements upou a process by which the substance is bronght from one state to the
other, but this need not be by a process in which the two given states shall be found in con-
tact, and in some cases at least it may be done by processes in which the body remains
slways homogenecus in state. For we know by the experimants of Dr. Andrews,
Phil. Trans., vol. 159, p. 575, shat carbonic acid may be carried from any of the
states which we usuvally call liquid to any of those which we usually call gas, withont
losing its homogeneity. Now, if we bad so carried it from a state of lignmidity to a
state of gas of the same pressure and temperature, making the proper measurements
in the process, we shonid be abie to foretell what world occur if these two states of
the snbstance should be brought together,—whether evaporation would take place, or
condensation, or whether they would remain unchanged in contact,—althongh we had
never seen the phenomenon of the coexistence of these two states, or of any other two
states of this subatance.

Equation (y) may be pnt in a form in which its validity is at once manifest for two
states which can pass either into the other at a constant pressure and temperatnre.
If we put p” and ¢ for the equivalent p” and ¢”, the equation may be written

- =t (g"~n)-p (v -v).

Here the left hand member of the equation represents the difference of energy in the
two states, and the two terms on the right represent severally the heat received and
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plane will change their positions, maintaining the aforesaid relations.
We may conceive of the motion of the tangent plane as produced by
rolling upon the primitive surface, while tangent to it in two points,
and as it 13 also tangent to the derived surface in the lines joining
these points, it is evident that the Iatter is a developable surface
and forms a part of the envelop of the successive positions of the
roiling plane. We shall see hereafter that the form of the primitive
surface is such that the double tangent plane does not cut it, so
that this rolling is physically possible.

From these relations may be deduced by simple geometrical
considerations one of the principal propositions in regard to such
compounds. Let the tangent plane touch the pri-

‘Er mitive surface at the two points L and V (fig. 1),
- \ which, to fix our ideas, we may suppose to repre-
‘ sent Hquid and vapor: let planes pass through
\ these points perpendicular to the axes of v and g
g‘ *Y respectively, intersecting in the line AB, which

L\\,/ will be parallel to the axis of e Let the tangent

L plane cut this line at A, and let LB and VC be
drawn at right angles to AB and parallel to the
axes of 7 and ©= Now the pressure and temperature represented by

Fig 1.

the tangent plane are evidently %T" and %—% respectively, and if we

suppose the tangent plane in rolling upon the primitive surface to
turn about its instantaneous axis LV an infinitely small angle. so
AA’ AA’
ce *nd B

as to meet AB in A", dp and dt will be equal to

respectively. Therefore.
dp _BL _n"—n
([t —C‘* - ’_-r_ J_'"
where ¢" and 7 «enote the volume and entropy for the point L,

and ¢” and 7" those for the point V. [f we substitute for n”"—g

its equivalent 7 (r denoting the heat of vaporization), we have the

.. dp T
equation in its usual form, Al T2}

the work done when the body passes from one state to the other. The equation may
also be derived at once from the general equation (1) by integration.

[t is well known that when the two states being both iuid meet in a corved suriace,
- - . ‘11
iustead of (a) we have p-p =T ‘;.,-;,),
where r and r’ are the radii of the principal curvatures of the surface of contact at any
point (positive, if the concavity i8 toward the mass to which p” refers), and T is what
is called the superfirial tenvion. Equation (3), however, holds good for such cases, and
it might easily be proved that the same is true of equation (). In other words, the

tangent planes for the points in the thermodynamic surface representing the two states
cut the piane r=0 in the same line.
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Properties of the Surface relating to Stability of Thermodynamic
Equilibrium.

We will now turn our attention to the geometrical properties of
the surface, which indicate whether the thermodynamic equilibrium
of the body is stable, unstable, or neutral. This will involve the
consideration, to a certain extent, of the nature of the processes which
fake place when equilibrium does not subsist. We will suppose the
body placed in a medium of constant pressure and temperature; but
as, when the pressure or temperature of the body at its surface differs
from that of the medium, the immediate contact of the two is hardly
consistent with the continuance of the initial pressure and temperature
of the medium, both of which we desire to suppose constant, we will
suppose the body separated from the medium by an envelop which
will yteld to the smallest differences of pressure between the two, but
which can only yield very gradually, and which is also a very poor
conductor of heat. It will be convenient and allowable for the pur-
poses of reasoning to limit its properties to those mentioned, and to
suppose that it does not occupy any space, or absorb any heat except
what it transmits, ie., to make its volume and its specific heat 0. By
the intervention of such an envelop, we may suppose the action of the
body upon the medium to be so retarded as not sensibly to disturb
the uniformity of pressure and temperature in the laster.

When the body is not in a state of thermodynamic equilibrium, its
state is not one of those which are represented by our surface. The
body, however, as a whole has a certain volume, entropy, and energy,
which are equal to the sums of the volumes, etc., of ifs parfs® If
then, we suppose points endowed with mass proportional to the
masses of the various parts of the body, which are in different thermo-
dynamic states, placed in the positions determined by the states
and motions of these parts, (i.e, so placed that their co-ordinates are
equal to the volume, entropy, and energy of the whole body supposed
successively in the same states and endowed with the same velocities
as the different parts), the center of gravity of such points thus
placed will evidently represent by its co-ordinates the volume, entropy,
and energy of the whole body. If all parts of the body are at rest,
the point representing its volume, entropy, and energy will be the
center of gravity of & number of points upon the primitive surface.
The effect of motion in the parts of the body will be to move the
corresponding points parallel to the axis of ¢ a distance equal in
each case to the vis vive of the whole body, if endowed with the

* As the discussion is to apply to cases in which the parts of the body are in (seasible]
motion, it is necessary to define the sense in which the word erergy is to be used. We
will use the word as including the vis viva of tensible mocions.
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velocity of the part represented;—the center of gravity of points
thus determined will give the volume, entropy, and energy of the
whole body.

Now let us suppose that the body baving the initial volume,
entropy, and energy, v, 7, and. €, is placed (enclosed in an envelop as
aforesaid) in & medium having the constant pressure P and tempera-
ture 7, and by the action of the medium and the inieraction of its
own parts comes to & final state of rest in which its volume, etc., are
Vv, 7%, € ;—we wish to find a relation between these quantities. If
we regard, as we may, the medium as a very large body, so that
imparting heat to it or compressing it within moderate [imits will
have- no- apprecizble- etfeet apon- its— pressure and temparature, and
write ¥V, H, and E, for its volume, entropy, and energy, equation (1)

becomes dE=TdH-PdV,
which we may integrate regarding P and T as constants, obtaining
E—-E=TH*-TH' -PV*+PV", (@)

where E’, E”, ete., refer to the initial and final states of the medium.
Again, as the sum of the energies of the body and the surrounding
medium may become less, but cannot become greater (this arises from
the nature of the envelop supposed), we have

€+E =+ E. (b)
Again as the sum of the entropies may increase but cannot diminish

"+H Zq+H" (e)
Lastly, it is evident that

1;_’-1,—‘?-:(:1):_1,_?!' (d):

These four equations may be arranged with slight changes as follows:
—E"+TH"—-PV"'=—E'+TH - PV’
e;r+Eur§£r+EJ
—TqIP-THll é-— T”’-THP
Pv'+ PV"=Pv'+ PV

By addition we have

€ =T +Pv' =¢—-Tn+Pv. (e)
Now the two members of this equation evidently denote the vertical
distances of the points (¢, 77, €”) and (v, 5, €) above the plane pass-
ing through the origin and representing the pressure P and tempera-
ture 7. And the equation expresses that the ultimate distance is less
or at most equal to the initial It is evidently immaterial whether
the distances be measured vertically or normally, or that the fixed
plane representing P and 7 should pass through the origin; but

distances must be considered negutive when measured from a point
below the plane.
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It is evident that the sign of inequality holds in (e) if it holds in
either (b) or (¢), therefore, it holds in (e) if there are any differences
of pressure or temperature between the different parts of the body
or between the body and the mediam, or if any part of the body has
sensible motion. (In the latter case, there would be an increase of
entropy due to the conversion of this motion into heat.) But even if
the body is initially without sensible motion and has throughout the
same pressure and tempersture as the medium, the sign < will still
hold if different parts of the body are in states represented by points
in the thermodynamic surface at different distances from the tixed
plane representing P and 7. For it certainly holds if such initial
circumstances-are followed- by differences-of pressure-or temperature;
or by sensible velocities. Again, the sign of inequality would neces-
sarily hold if one part of the body should pass, without producing
changes of pressure or temperature or sensible velocities, into the
state of another part represented by a poinf not at the same distance
from the fixed plane representing P and I. But these are the only
suppositions possible in the case, unless we suppose that equilibrium
subsists, which would require that the points in question should have
& common tangent plane (page 37), whereas by supposition the planes
tangent at the different points are parallel but not identical.

The results of the preceding paragraph may be summed up as
follows :—Unless the body is initially without sensible motion, and
its state, if homogeneous, is such as is represented by a point in the
primitive surface where the tangent plane is parallel to the fixed plane
representing P and T, or, if the hody is not homogeneous in state,
unless the points in the primitive surface representing the states of
its parts have a common tangent plane parallel to the fixed plane
representing P and 7, such changes will ensue that the distance
of the point representing the volume, entropy, and energy of the
body from that fixed plane will be diminished (distances being con-
sidered negative if measured from points beneath the plane) Let
us apply this result to the question of the stability of the body when
surrounded, as supposed, by & medium of constant temperatare and
pressure.

The state of the body in equilibrium will be represented by a point
in the thermodynamic surface, and as the pressure and temperature of
the body are the same as those of the surrounding medium, we may
take the tangent plane at that point as the fixed plane representing
P and T. If the body is not homogeneous in state, although in
equilibrium, we may, for the purposes of this discussion of stability,
either take a point in the derived surface as representing its state, or
we may take the points in the primitive surface which represent the
states of the different parts of the body. These points, as we have



42 REPRESENTATION BY SURFACES OF THE

seen (page 37), have a common tangent plane, which is identical with
the tangent plane for the point in the derived sarface.

Now, if the form of the surface be such that it falls above the tan-
gent plane except at the single point of contact, the equilibrium is
necessarily stable: for if the condition of the body be slightly altered,
either by imparting sensible motion to any part of the body, or by
slightly changing the state of any part, or by bringing any small
part into any other thermodynamic state whatever, or in all of these
ways, the point representing the volume, entropy,and energy of the
whole body will then occupy a position ubove the original tangent
plane, and the proposition above enunciated shows that processes
witl ensue- which- will- diminish- the- distance-of this-point- from- that-
plane, and that such processes cannot cease until the body is brought
back into its original condition, when they will necessarily cease on
account of the form supposed of the surface.

On the other hand, if the surface have such a form that any part
of it falls below the ftixed tangent plane, the equilibrium will be
unstable. For it will evidently be possible by a slight change in the
original condition of the body (that of equilibrium with the surround-
ing medium and represented by the point or points of contact) to
bring the point representing the volume. entropy, und energy of the
body into a position below the fixed tangent plane, in which case we
see by the above proposition that processes will occur which will
carry the point still farther from the plane, and that such processes
cannot cease until all the body has passed into some state entirely
different. from ity original state

It remains to consider the case in which the surface, although it
does not anywhere fall below the fixed tangent plane, nevertheless
meets the plane in more than one point. The equilibrium in this
case, as we might anticipate from its intermediate character between
the cases already considered, is neutral. For if any part of the
body be changed from iis original state into that represented by
another point in the thermodymamic surface lying in the same tan-
gent plane, equilibrium will still subsist. For the supposition in
regard to the form of the surface tmplies that uniformity in tempera-
ture and pressure still subsists, nor can the body have any necessary
tendency to pass entirely into the second state or to return into the
original state, for a change of the values of 7T and P less than any
assignable quantity would evidently be sufficient to reverse such a
tendency if any such existed, as either point at will could by such an
infinitesimal variation of 7 and P be made the nearer to the plane
representing T and P.

It must be observed that in the case where the thermodynamic
surface at a certain point is concave upward in both its principal
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curvatures, but somewhere falls below the tangent plane drawn
through that point, the equilibrium although unstable in regard to
discontinuous changes of state is stable in regard to continuous
changes, as appears on restricting the test of stability to the vicinity
of the point in question: that is if we suppose a body to be in a state
represented by such a point, although the equilibrium would show
itself unstable if we should introduce into the body a small portion
of the same substance in one of the states represented by points
below the tangent plane, yet if the conditions necessary for such a
discontinuous change are not present, the eqailibrium would be
stable. A familiar example of this is afforded by liquid water when
heated st~ amy- pressure above the temperature of botling water at
that pressure.*

Leading Features of the Thermodynamic Surface for Substunces
which take the forms of Solid, Liguid. and Vapor

We are now prepared to form an idea of the general cliaracter of
the primitive and derived surfaces and their mutual relations for a
substance which takes the forms of solid, liquid, and vapor. The
primitive sarface will have a triple tangent plane touching it at the
three points which represent the three states which can exist in
contact. Except ut these three points, the primitive surface falls
entirely above the tangent plane. That part of the plane which forms
a triangle having ifs vertices at the three points of contact.is the
derived surface which represents a compound of the three states of the
substance. We may now suppose the plune to roll on the under side
of the surface, continuing to touch it in two points without cutting it.
This it may do in three ways. viz: it may commence by turning about
any one of the sides of the triangle aforesaid. Any pair of points
which the plane touches at once represent states which can exist
permanently in contact. In this way six lines are traced upon the
surface. These lines have in general a common property, that a
tangent plane at any point in them will also touch the surface in
another point. We must suy in general, for, as we shall see hereafter,
this staternent does not hold good for the critical point. A tangent
plane at any point of the surface owutstde of these lines has the surface

*If we wish to express in a single equation the necessary and sutficient condition
of thermodynamic equilibrium for a substance when surrounded by a medium of constant
pressure P and temperature T, this equation may be written

d(e—~ T+ Pe}=0,
when 5 refers to the varistion prodncéd by any variations in the state of the parts of
the body, and (when different parts of the body are in different states) in the proportion
in which the body is divided between the different states. The condition of stable
equilibrium is that the vaine of the expression in the parenthesis shall be a minimum.
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entirely above it, except the single point of contact. A tangent plane
at any point of the primitive surface within these lines will cut the
surface. These Lines, therefore, taken together may be called the
limat of absolute stability, and the surface outside of them, the surface
of absolute stability. That part of the envelop of the rolling plane,
which lies between the pair of lines which the plane traces on the
surface, is a part of the derived surface, and represents a mixture of
two states of the substance.

The relations of these lines and surfaces are roughly represented in
horizontal projection* in tigure 2, in which the full lines represent lines
on the primitive surface, and the dotted lines those on the derived
surface: S; L;-and- ¥ are the points which have s common tangent

L -
L /.
i/
L : X
ICd

SJ"/S\ ;
\
L ¢

SII

Fig. 2

plane and represent the siates of solid, kquid, and vapor which can
exist in contact. The plane triangle SLV is the derived surface
representing compounds of these states. LL’and VV’ are the pair of
lines traced by the rolling double tangent plane, between which lies
the derived surface representing compounds of liquid and vapor.
VV” and SS” are another such pair, between which lies the derived
surface representing comypounds of vapor and solid. SS™ and LL™
are the third pair, between which lies the derived surface representing
a compound of solid and liquid. L“LL, V'VV” and S”"SS™ are the
boundaries of the surfaces which represent respectively the absolutely
stable states of liquid, vapor, and solid

The geometrical expression of the results which Dr. Andrews,

¥ A horizontal projection of the thermodynamic sarface is identical with the diagram
described on pages 20-28 of this volume, under the pame of the volume-entropy
diagram.
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Phil. Tranas., vol. 159, p. 575, has obtained by his experiments with
carbonic acid is that, in the case of this substance at least, the derived
surface which represents a compound of liquid and vapor is terminated
as follows: as the tangent plane rolls upon the primitive surface,
the two points of contact approach one another and finally fall
together. The rolling of the double tangent plane necessarily comes
to an end. The point where the two points of contact fall together is
the erttical point. Before considering fartherthe geometrical character-
istics of this point and their physical significance, it will be convenient
to investigate the nature of the primitive surface which lies between
the lines which form the limit of absolute stability:

Between two_points of the primitive surface which have a common
tangent plane, as those represented by L"and V" in figure 2, if there
is no gap in the primitive surface, there must evidently be a region
where the surface is concave toward the tangent plane in one of its
principal curvatures at least, and therefore represents states of un-
stable equilibrium in respect to continuous as well as discontinuous
changes (see pages 42, 43)* If we draw a line upon the primitive
surface, dividing it into parts which represent respectively stable and
unstable equilibrium, in respect to continuous changes, ie, dividing
the surface which is concave upward in both its principal curvatures
from that which is concave downward in one or both, this line, which
may be called the ltmit of essential instabilify, must have a form
somewhat like that represented by WCwv'ss” in figure 2. It touches
the limit of absolute stability at the critical point C. For we may
take a pair of points in LC and VC having & common tangent plane
as near to C as we choose, and the [ine joining them upon the primi-
tive surface made by a plane section perpendicular to the tangent
plane, will pass through an area of instability.

The geometrical properties of the critical point in our surface may
be made more clear by supposing the lines of curvature drawn upon
the surface for one of the principal curvatures, that one, namely,
which has different signs upon different, sides of the limit of essential
instability. The lines of curvature which meet this line will in
geveral cross it. At any point where they do so, as the sign of their
curvature changes, they evidently cut a plane tangent to the surface,
and therefore the surface itself cuts the tangent plane. But where
one of these lines of curvature touches the imit of essential instability
without crossing it, so that its curvature remains always positive
(curvatures being considered positive when the concavity is on the
upper side of the surface), the surface evidently does not cut the

* This is the same resuit as that ohtained by Professor J. Thomson in connection with
the surface referred to in the note an page 34.
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tangent plane, but has & contact of the third order with it in the section
of least curvature. The critical point, therefore, must be a point
where the line of that principal curvature which changes its sign
is tangent to the line which separates positive from negative
curvatures.

From the last paragraphs we may derive the following physical
property of the critical state:—Although this is a limiting state
between those of stability and those of instability in respect to eon-
tinuous changes, and althongh such limiting states are in general
unstable in respect to snch changes, yet the critical state is stable in
regard to them. A similar proposition is true in regard to absolute
stability, ie., if we disregard the-distinction between continuous and
discontinuous changes, viz: that although the critical state is a limit-
ing state between those of stability and instability, and although the
equilibrium of such limiting states is in general neutral (when we
suppose the substance surrounded by a medium of constant pressure
and temperature), yet the critical point is stable.

From what has been said of the curvature of the primitive sorface
at the critical point, it is evident, that if we take a point in this
surface infinitely near to the critical point, and such that the tangent
planes for these two points shall intersect in a line perpeadicular to
the section of least curvature at the critical point, the angle made by
the two tangent planes will be an infinitesimal of the same order as
the cube of the distance of these points. Hence, at the critical point

C%)fm (%)50- (& =0 (j—;‘ =0,

=0,

and if we imagine the isothermal and isopiestic (line of constant
pressure) drawn for the critical point upon the primitive surface,
these lines will have a contact of the second order.

Now the elasticity of the substance at constant temperature and
its specific heat at constant pressure may be detined by the equations,

-8, o2,

therefore at the critical point

e=0,

o e

=0,

The last four equations would also hold good if p were substituted
for t, and »ice versa.
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We have seen that in the case of such substances as can pass con-
tinuously from the state of liquid to that of vapor, unless the primi-
tive surface is abruptly terminated, and that in a line which passes
through the critical point, a part of it must represent states which are
essentially unstable (Le., unstable in regard to continuous changes),
and therefore cannot exist permanently unless it very limited spaces.
It does not necessarily follow that such states cannot be realized at
all. It appears quite probable, that a substance initially in the
critical state may be allowed to expand so rapidly that, the time being
too short for appreciable conduction of heat, it will pass into some of
these states of essential instability. No other result is possible on
the- suppoesition- of no- transmission of heat, which requires that the
points representing the states of all the parts of the body shall be
contined to the isentropic (adiabatic) line of the ecritical point upon
the primitive surface. It will be observed that there is no instability
in regard to changes of state thus limited, for this line (the plane
section of the primitive surface perpendicular to the axis of #) is con-
cave upward, as i8 evidert from the fact that the primitive surface
lies entirely above the tangent plane for the critical point.

We may suppose waves of compression and expansion to be propa-
gated in a substance initially in the critical state. The velocity of

. . rd . e
propagation will depend upon the value of ([!—{J;)q Le,of — &)
Now for a wave of compression the value of these expressions is
determined by the form of the isentropic on the primitive surface.
If a wave of expansion has the same velocity approximately as one
of compression, it follows that the substance when expanded under
the circumstances remains in a state represented by the primitive
surface, which involves the realization of states of essential instability.

The value of (5%) in the derived surface is. it will be observed,
L1

totally different from its value in the primitive surface, as the
curvature of these surfaces at the critical point 1= different.

The case is different in regard to the part of the surface between
the limit of absolute stability and the limit of essential instability.
Here, we have experimental knowledge of some of the states repre-
sented. In water, for example, it is well known that liquid states can
be realized beyond the limit of absolute stability, —both beyond the
part of the limit where vaporization usually commences (LL’ in figure
2), and beyond the part where congelation usually commences (LL™).
That vapor may also exist beyond the limit of absolute stability, ie.,
that it may exist at a given temperature at pressures greater than
that of equilibrium between the vapor and its liquid meeting in a
plane surface at that temperature, the considerations adduced by Sir
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W. Thomson in his paper “On the equilibrium of a vapor at the
curved surface of a liquid”’ (Proc. Roy. Soc. Edinb., Session 1869-1870,
and Phal. Mag., vol. <lii, p. 448), leave no roomn for doubt. By experi-
ments like that suggested by Professor J. Thomson in his paper
already referred to, we may be able to carry vapors farther beyond
the limit of absolute stability.* As the resistance to deformation
characteristic of solids evidently tends to prevent a disconfinuous
change of state from commencing within them, substances can doubt-
less exist in solid states very far beyond the limit of absolute stability.

The surface of absolute stability, together with the triangle repre-
senting a compound of three states,and the three developable surfaces
which  have beerr described representing compounds of two states,
forms a continuous sheef, which is everywhere concave upward
except where it is plane, and has only one value of e for any given
values of v and 5. Hence, as ¢ is necessarily positive, it has only one
value of # for any given values of v and e. If vaporization can take
place at every temperature except 0, p i1s everywhere positive, and
the surface has only one value of v for any given values of 7 and e
It forms the surfuce of dissiputed energy. If we consider all the
points representing the volume, entropy, and energy of the body in
every possible state, whether of equilibrium or not, these points will
form a solid figure unbounded in some directions, but bounded in
others by this surface.t

*If we experiment with a fluid which does not wet the vessel which contains it,
we may avoid the necessity of keeping the vessel hotter than the vaper, in order to
prevent condensation. If a glass bulb with s stem of sufficient length be placed vertically
with the cpen end of the stem in a cup of mercury, the stem containing nothing bnt
mercury and its vapor, and the bulb nothing but the vapor, the height at which the
mercury rests in the stem, affords a ready and accurate means of determining the
pressure of the vapor. If the stem a: the top of the colnmn of liquid shoald be made
hotter than the bulb, condensation would take place in the latter, if the liguid were one
which would wet the bulb. But as this is not the case, it appears probable, that if
the experiment were conducted with proper precautions, there would be no condensa-
tion within certain limits in regard to the temperatures. If condensation should take
place, it would be easily observed, especially if the bulb were bent over, so tha: the
mercury condensed could not run back into the stem. So long as condensation does
not occar, it will be easy to give any desived (different) temperatures to the bulb and
the top of the column of mercury in the stem. The temperature of the latter will
determine the pressure of the vapor in the bulb. In this way, it would appear, we
may obtain in the bulb vapor of mercury having pressures greater for the tempera-
tares than those of saturated vapor.

t This description of the surface of dissipated energy is intended to apply to a sub-
stance capable of existing aa solid, liguid, and vapor, and which presenta no anomalies
in its therrmnodynamic properties. But, whatever the form of the primitive surface
may be, if we take the parts of it for every point of which the tangent plane does
not cut the primitive surface, together with all the plane and developable derived
surfaces which can be formed in a manner analogous to those deseribed in the preceding
pages, by fixed and rolling tangent planes which do not cut the primitive surface,—
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The lines traced upon the primitive surface by the rolling double
tangent plane, which have been called the limit of absolute stability,
do not end at the vertices of the triangle which represents a mixture
of those states. For when the plane is tangent to the primitive surface
in these three points, it can commence to roll upon the surface as
a double tangent plane not only by leaving the surface at one of
these points, but also by a rotation in the opposite direction. In the
latter case, however, the lines traced upon the primitive surface by
the points of contact, although a continuation of the lines previously
described, do not form any part of the limit of absolute stability.
And the parts of the envelops of the rolling plane between these lines,
although-a continnation- of the-developable-surfaeeswhich-have been-
described, and representing states of the body, of which some at least
may be realized, are of minor interest, as they form no part of the
surface of dissipated energy on the one hand, nor have the theoretical
interest of the primitive surface on the other.

Problems relating to the Surface of Dissipated Emnergy.

The surface of dissipated energy has an important application to a
certain class of problems which refer to the results which are theo-
retically possible with a given body or system of bodies in a given
initial condition.

For example, let it be required to find the greatest amount of
mechanical work which can be obtained from a given quantity of a
certain substance in & given initisl state, without incressing its total
volume or allowing heat to pass to or from external bodies, except

guch surfaces taken together will form a continuous sheet, which, if we reject the
part, if any, for which p<0, forms the surface of dissipated energy and has the geo-
metrical properties mentioned above.

There will, however, be no such part in which p<9, if there is any assignable
temperature ¢ at which the substance has the properties of a perfect gas except when its
volume is leas than a certain quantity v. For the equations of an isochermal line in the
thermodynamic surface of a perfect gas are (sec equatious (B) and (E) on pages 12-13)

e=C

r=aloguv+C'.
The isothermal of ¢ in the thermodynamic surface of the substance in guestion must
therefore have the same equations in the part in which v exceeds the constant v'.
Now if at any point in this sariace p<0and ¢ >0 the equation of the tangent plane for
that point will be

e=mn+nv+C”,
where m denotes the temperature and —n the pressure for the point of contact, so that
m and n are both positive. Now it is evidently possible to give so large a value to
vin the equations of the isothermal that the point thus determined shall fall below the
tangent plane. Therefore, the tangens* plane cuts the primitive surface, and the point
of the thermodynamic surface for which p <0 cannot belong to the surfaces mentioned
in the last paragraph as forming a continuous sheet.
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sach as at the close of the processes are left in their initial con-
dition. This has been called the available energy of the body. The
initial state of the body is supposed to be such that the body can
be made to pass from it to states of dissipated energy by reversible
processes.

If the body is in a state represented by any point of the surface of
dissipated energy, of course no work can be obtained from it under
the given conditions. But even if the body is in a state of thermody-
namic equilibrium, and therefore in one represented by a point in the
thermodynamic surface, if this point is not in the surface of dissipated
energy, because the equilibrium of the body is unstable in regard to
diseontinuous- ehanges, a certain amount. of energy will be available
under the conditions for the production of work. Or, if the body is
solid, even if it is uniform in state throughout, its pressure (or tension)
may have different values in different directions, and in this way it
may have a certain available energy. Or, if different parts of the
body are in different states, this will in general be a source of avail-
able energy. Lastly, we need not exclude the case in which the body
has sensible motion and its vis vive constitutes available energy. In
any case, we must find the initial volume, entropy, and energy of the
body, which will be equal to the sums of the initial volumes, entropies,
and energies of its parts. (‘Energy’ is here used to include the wis
wmva of sensible motions.) These values of v, 5, and e will determine
the position of a certain point which we will speak of as representing
the initial state.

Now the condition that no hest shall be allowed to pass fo ex-
ternal bodies, requires that the final entropy of the body shall not be
less than the initial, for it could only be made less by violating this
condition. The problem, therefore, may be reduced to this,—to find
the amount by which the energy of the body may be diminished
without increasing its volume or diminishing its entropy. This
quantity will be represented geometrically by the distance of the
point representing the initial state from the surface of dissipated
energy measured parallel to the axis of €.

Let us consider a different problem. A certain initial state of the
body is given as before. No work is allowed to be done upon or by
external bodies. Heat is allowed to pass to and from them only on
condition that the algebraic sum of all heat which thus passes shall
be 0. From both these conditions any bodies may be excepted, which
shall be left at the close of the processes in their initial state. More-
over, it is not allowed to increase the volume of the body. It is
required to find the greatest amount by which it is possible under
these conditions to diminish the entropy of an external system.
This will be, evidently, the amount by which the entropy of the
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body can be increased without changing the energy of the body
or increasing its volume, which is represented geometrically by the
distance of the point representing the initial state from the surface
of dissipated energy, measured parallel to the axis of 5. This might
be called the capacity for entropy of the body in the given state.®

* [t may be worth while to call attention to the analogy and the difference between
this problem and the preceding. In tbe first case, the qnestion is virtually, how great
a weight does the state of the given body enable us to raise a given distance, no other
permanent change being prednced in external bodies? In the second case, the qnestion
i8 virtoally, what amonnt of heat does tbe state of the given body emable ns to
take from an external body at a tixed temperature, and impart to another at a higher
fixed temperature? In order thac the unmerical valnes of the available energy and
of the capacity for entropy shonld be identical with the unswers to these questions, it
would be necessary in the first case, if the weight is measured in nnits of force, that
the given distance. measored vertically, shouid be the nuit of length, and in the second
case, that the difference of the reciprocals of the fixed temperatures should be unity.
[f we prefer to take the [reezing and boiling points as the fixed temperatures, as
eby — x}y=000098, the capacity for entropy of the body in any given condition
wonld be 00098 times the amonnc of heat which it would enable us to raise from the
freezing to the boiling peint (i.e., to take from the body of which the temperatore

remains fixed at the ireezing point, and impart to another of which the temperature
remains tixed at the bailing point).
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Fig. 3.

The relations of these quantities to one anotber and to the surface of dissipated
energy are illustrated by figure 3, which represents a plane perpendicular to the axis
of v and passing threngh the point A, which represents the initial state of the body.
MN is the section of the surface of dissipated energy. Qe and Qn are sections of the
nlanes =0 and =1, and therefore paraliel to the axes of < and 5 respectively. AD anl
AE are the energy and entropy of the body in its initinl state, AB and AC its availahle
energy and its capacity fur encropy respectively. It will be observed that when either
the availahle energy or the capacity for entropy of the body is 1), the other has the same
valpe. Except in this case, either quantity may be varied without affecting vhe other.
For, on acconnt of the curvatnre of the snrface of dissipated energy, it is evidently
possible to change the position of the point representing the initial state of the body so
as to vary its distance from the surface measured parallel to one axis withont varying
that weasored parallel to the other.

As the different sense in which the word entropy has been used by different
writers is liable to canse misunderstanding, it way not he out of place to add a
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Thirdly. A certain initial condition of the body is given as before.
No work is allowed to be done upon or by external bodies, nor any
heat to pass to or from them; from which conditions bodies may be
excepted, as before, in which no permanent changes are produced.
It is required fo find the amount by which the volume of the body
can be diminished, using for that purpose, according to the conditions,
only the force derived from the body itself. The conditions require
that the energy of the body shall not be altered nor its entropy
diminished. Hence the quantity sought is represented by the distance
of the point representing the initial state from the surface of dissi-
pated energy, measured parallel to the axis of volume.

Fourthly_  An initial condition of the body is given as before. Its
volume iz not allowed to be increased. No work ie allowed to be
done upon or by external bodies, nor any heat to pass to or from
them, except a certain body of given constant temperature ¢. From
the latter conditions may be excepted as before bodies in which no
permanent changes are produced. It is required to find the greatest
amount of heat which can be imparted to the body of constant
temperature, and also the greatest amount of heat which can be taken
from it, under the supposed conditions. If through the point of the

few words on the terminology of this subject. If Professor Clausins had defined
entropy so that its valne should be determined by the equation

instead of his equation (decRanische Wdarmetheorie, Abband. ix. § 14; Pogg. Ann.
July, 1865)
d5=24

TIT!

where § denotes the entropy and T the temperature of a body and dQ the element of
heat imparted to it, that which is here called capacty jor entrapy would naturally be
called arailable entropy, a term the more convenient on accaonnt of its asalogy with the
term avaidzble erergy. Such a difference in the definition of entropy would involve no
difference in the form of the thermodynamic surface, nor in any of our geometrical
constructions, if vnly we soppose the direction in which entropy is measured to be
reversed. It wonid only make it necessary to mbstitnte —1n for 4 in our equations,
and to make the corresponding change in the verbal enunciation of propositions.
Professor Tait has proposed to use the word entropy ** in the opposite sense to that in
which Claasius has employed it” (TAermodynamics, § 48. See also § 178), which
appears to mean that he woald determine its value by the first of the above equations.
He nevertheless appears subsequently to use the word to denote available emergy
(§ 182, 2d theorem). Professor Maxwell uses the word entropy aa synonymous with
available energy, with the erroneous statemnent that Clansius uses the word to denote
the part of the energy which is not available (ThAeory of Heat, pp. 186 and I88). The
term entropy, however, as used by Clausins does not denote a quantity of the same
kind (ie., oue which can be measured by the same unit) as energy, as is evident from
his equation, cited above, in which Q (heat) denotes a quantity measured by the unit
of energy, and as the unit in which T' (temperatnre) is measured is arbitrary, § and @
are evidently measured by different unite. It may be added that entropy as defined
by Claosiua is synonymouns with the thermodynamic function as defined by Rankine,
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initial state a straight line be drawn in the plane perpendicular to
the axis of v, so that the tangent of the angle which it makes with
the direction of the axis of 5 shall be equal to the given temperature
t, it may easily be shown that the vertical projections of the two
segments of this line made by the point of the iniiial state and the
surface of dissipated energy represent the two quantities required.*

These problems may be modified so as to make them approach
more nearly the economical problems which actually present them-
selves, if we suppose the body to be surrounded by & medium of
constant pressure and temperature, and let the body and the medium
together take the place of the body in the preceding problems. The
resuits would be as follows =

If we suppose a plane representing the constant pressure and tem-
perature of the medium to be tangent to the surface of dissipated
energy of the body, the distance of the point representing the initial
state of the body from this plane measured parallel fo the axis of ¢
will represent the available energy of the body and medium, the
distance of the point to the plane measured parallel to the axis of
will represent the capacity for entropy of the body and mediam, the
distance of the point to the plane measured parallel to the axis of v
will represent the magnitude of the greatest vacuum which can be
produced in the body or medium (all the power used being derived
from the body and medium); if a line be drawn through the point
in & plane perpendicular to the axis of v, the vertical projection of the
segment of this line made by the point and the tangent plane will
represent the greatest amount of heat which can be given to or taken
from another body at a constant temperature equal to the tangent of
the inclination of the line to the horizon. (It represents the greatest
amount which can be given to the body of constant temperature, if
this temperature is greater than that of the medium; in the reverse
case, it represents the greatest amount which can be withdrawn from
that body.) In all these cases, the point of contact between the plane
and the surface of dissipated energy represents the final state of the
given body.

If a plane representing the pressure and temperature of the medium
be drawn through the point representing any given initial state of
the body, the part of this plane which falls within the surface of
dissipated energy will represent in respect to volume, entropy, and
energy all the states into which the bady ean be brought by rever-
sible processes, without producing permanent changes in external
bodies (except in the medinm), and the solid figure included between

*Thus, in figure 3, if the straight line MAN be drawn so that tan NAC=¢, MR
will be the greafest amount of heat which can be given w the body of coustant
temperature and NS will be the greateat amount which can be taken from it.
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this plane figure and the surface of dissipated energy will represent
all the states into which the body can be brought by any kind of

processes, without producing permanent changes in external bodies
(except in the mediam).*

* The body under discussivn has been supposed thronghont this paper to be home-
geneous in substance. Bnt if we imagine any material system whatever, and suppose
the position of a point to be determimed for every possible state of the system, by
mnaking the co-ordinates of the point equal to the total volnme, entropy, and energy
of the system, the points thus determined will evidently form a solid figure bounded
in certain directions by the surface representing the states of dissipated energy. In
these states, the temperature is necessarily umiforor thronghont the system; the
pressure may vary {e.g., in the case of a very [arge mass like a planet), bnt it will always
be possible to mxintain the equilibrium of the system (in a state of dissipated energy}
by a uniform normal pressure applied to its surface. This pressure and the uniform
:emperature of the system will be represented by the inclination of the surface of
dissipated energy according to the rule on page 34. And in regard to such problems as
have been discussed in the last five pages, this surface will possess, relatively to the

system which it represents, properties entirely similar to those of the sarface of
dissipated energy of a homogeneous body.
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ON THE EQUILIBRIUM OF HETEROGENEQOUS
SUBSTANCES.

[ Transactions of the Connecticut Academy, II1. pp. 108-248, Ocu. 1875-May,
1876, and pp. 343-524, May, 1877-Tuly, 1878.]

*¢ Die Energie der Welt st canstant.
Die Entropie der Welt strebt einem Maximum zu.”
Craostos.*

THE comprehension of the laws which govern any material system
is greatly facilitated by considering the energy and entropy of the
system in the various states of which it is capable. As the difference
of the values of the energy for any two states represents the com-
bined amount of work and heat received or yielded by the system
when it is brought from one state to the other, and the difference of

entropy is the limit of all the possible values of the integral f c{—?,

(dQ denoting the element of the heat received from external sources,
and ¢ the temperature of the part of the system receiving it,) the
varying values of the energy and entropy characterize in all that is
essential the effects producible by the system in passing from one
state to another. For by mechanical and thermodynamic con-
trivances, supposed theoretically perfect, any supply of work and
heat may be transformed into any other which does not differ from
it either in the amount of work and heat taken together or in the
value of the integral jc—i-zg But it is not only in respect to the
external relations of a system that its energy and entropy are of
predominant importance. As in the case of simply mechanical sys-
tems, (such as are discussed in theoretical mechanies,) which are capable
of only one kind of action upon external systems, viz, the perform-
ance of mechanical work, the function which expresses the capability
of the system for this kind of action also plays the leading part in
the theory of equilibrium, the condition of equilibrium being that
the variation of this function shall vanish, so ip & thermodynamic
system, (such as all material systems actually are,) which is capable of

* Pogg. Ann. Bd. cxxv. (1863), S. 400; or Mechaniscke Warmetheorie, Abhand. ix.
S. 44.
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two different kinds of action npon external systems, the two functions
which express the twofold capabilities of the system afford an almost
equally simple criterion of equilibrium.

Criteria of Equilibrium and 8tability.

The criterion of equilibrium for a material system which is isolated
from all external influences may be expressed in either of the follow-
ing entirely equivalent forms :—

L For the equilibrium of any isolated system it is mecessary and
sufficient that in all possible variatioms of the state of the system
which do not alter its energy, the variation of its entropy shall either
vanish or. be negative. If ¢ denote the energy, and 5 the entropy of
the system, and we use a subseript letfer after a variation to indicate
s quantity of which the value is not to be varied, the condition of
equilibrium may be written

(6n).=0. (1)

II. For the equilibrium of any isolated system it is necessary and
sufficient that in all possible variations in the state of the system
which do not alter its entropy, the variation of its energy shall either
vanisk or be positive. This condition may be written

(de), =0. (2)

That these two theorems are equivalent will appear from the con-
sideration that it 18 always possible to increase both the energy and
the entropy of the system, or to decrease both together, viz.,, by
imparting heat to any part of the system or by taking it away. For,
if condition (1) is not satisfied, there must be some variation in the
state of the system for which

on>0 and de=0:

therefore, by diminishing both the energy and the entropy of the
gystem n its varied state, we shall obtain & state for which (considered
a8 a variation from the original state)

n=0 and Je<0;

therefore condition (2) is not satisfied. Conversely, if condition (2)
is not satisfied, there must be a variation in the state of the system
for which

0e<0 and dn=0;

hence there must also be one for which
8e=0 and d7>0;
therefore condition (1) is not satisfied.

The equations which express the condition of equilibrium, as also
its statement in words, are to be interpreted in accordance with the
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general usage in respect to differential equations, that is, infinitesimals
of higher orders than the first relatively to those which express the
amount of change of the system are to be neglected. But to distin-
guish the different kinds of equilibrium in respect to stability, we
must have regard to the absolute values of the variations. We will
use A as the sign of variation in those equations which are to be con-
strued strictly, Le., in which infinitesimals of the higher orders are
not to be neglected. With this understanding, we may express the
necessary and sufficient conditions of the different kinds of equi-
librium as follows ;—for stable equilibrium

(An),<Q, Le, (Ae) >Q; (3)
for neutral equilibrium there must be some variations in the state of
the system for which

(An).=0, Le, (Ae),=0; (4)
while in general
(Aﬂ}téoi i*e-' (Ae)ﬂéo; (5)
and for unstable equilibrium there must be some variations for which
(an), >0, (6)
iLe., there must be some for which
(Ae), <0, (7)
while in general
(8n). =0, ie., (de), =0. (8)

In these criteria of equilibrium and stability, account is taken only
of possible variations. It is necessary to explain in what sense this is
to be understood. Frir the first place; all variations im the state of
the system which involve the transportation of any matter through
any finite distance are of course to be excluded from consideration,
although they may be capable of expression by infinitesimal varia-
tions of quantities which perfectly determine the state of the system.
For example, if the system contains two masses of the same sub-
stance, not in contact, nor connected by other masses consisting of
or containing the same substance or its components, an infinitesimal
increase of the one mass with an equal decrease of the other is not to
be considered as a possible variation in the state of the system. In
addition to such cases of essential impossibility, if heat can pass by
conduction or radiation from every part of the system to every other,
only those variations are to be rejected as impossible, which involve
changes which are prevented by passive forces or analogous resist-
ances to change. But, if the system consist of parts between which
there is supposed to be no thermal communication, it will be neces-
sary to regard as impossible any diminution of the entropy of any of
these parts, as such a change can not take place without the passage
of heat. This limitation may most conveniently be applied to the
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second of the abave forms of the condition of equilibrium, which will
then become (8. . e2e. =0, (9)

1, 1", ete., denoting the entropies of the various parts between which
there is no commaunication of heat. When the condition of equi-
librium is thus expressed, the limifation in respect to the conduction
of heat will need no farther eonsideration.

In order to apply to any system the criterta of equilibrium which
have been given. a knowledge is requisite of its passive forces or
resistances to change. in so far, at least, as they are capable of pre-
venting change. (Those passive forces which only retard change,
like viscosity, need not be considered.) Such properties of a system
are in general easily recognized upon the most superficial knowledge
of its nature. As examples, we may instance the passive force of
friction which prevents sliding when two surfaces of solids are
pressed together,—that which prevents the different components of
a solid, and sometimes of a fluid, from having different motions one
from another,—that resistance to change which sometimes prevents
either of two forms of the same substance (simple or compound),
which are capable of existing, from passing into the other,—that
which prevents the chznges in solids which imply plasticity, (in other
words, changes of the form to which the solid tends to return,) when
the deformation does not exceed certain limits.

[t is a characterstic of all these passive resistances that they pre-
vent a certain kind of motion or change, however the initial state of
the systemr may bemodified, and te-whatever external sgenctes of force
and heat it may be subjected, within limits, it may be, but yet within
limits which allow finiie variations in the values of all the quanti-
ties which express the initial state of the system or the mechanical
or thermal influences acting on it, without producing the change in
question. The equilibrium which is due to such passive properties
is thus widely distinguished from that caused by the balance of the
active tendencies of the system, where an externai influence, or a
change in the initial state, infinitesimal in amount, is sufficient to pro-
duce change either in the positive or negative direction. Hence the
ease with which these passive resistances are recognized. Only in
the case that the state of the system lies so near the limit at which
the resistances cease to be operative to prevent change, as to create a
doubt whether the case falls within or withont the limit, will a more
accurate knowledge of these resistances be necessary.

To establish the validity of the criterion of equilibrium, we will
consider first the sufficiency, and afterwards the necessity, of the con-
dition as expressed in either of the two equivalent forms.

In the first place, if the system is in a state in which its entropy is
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greater than in any other state of the same energy, it is evidently in
equilibrium, as any change of state must involve either a decrease of
entropy or an increase of energy, which are alike impossible for an iso-
lated system. We may add that this is a case of stable equilibrium, as
no infinitely small cause (whether relating to a variation of the initial
state or to the action of any external bodies) can produce a finite
change of state, as this would involve a finite decrease of entropy or
increase of energy.

We will next suppose that the system has the greatest entropy
consistent with its energy, and therefore the least energy consistent
with its entropy, but that there are other states of the same energy
and- entropy as its actual state: Im this case, if is impossible that
any motion of masses should take place; for if any of the energy
of the system should come to consist of vi¢ viva (of sensible motions),
a state of the system identical in other respects but without the
motion would have less energy and not less entropy, which would be
contrary to the supposition. (But we cannot apply this reasoning to
the motion within any mass of its different components in different
directions, as in diffusion, when the momenta of the components
belance one another.) Nor,in the case supposed, can any conduction
of heat take place, for this involves an increase of entropy, as heat is
only conducted from bodies of higher to those of lower temperature.
It is equally impossible that any changes should be produced by the
transfer of heat by radiation. The condition which we have sup-
posed is therefore sufficient for equilibriam, so far as the motion of
masses and. the transfer of heat are coneerned, but to- show that the
same is true in regard fo the motions of diffusion and chemical or
molecular changes, when these can occur without being accompanied
or followed by the motions of masses or the transfer of heat, we must
have recourse to considerations of a more general nature. The fol-
lowing considerations seem to justify the belief that the condition is
sufficient for equilibrium in every respect.

Let us suppose, in order to test the tenability of such a hypothesis,
that a system may have the greatest entropy consistent with its
energy without being mn equilibrium. In such a case, changes in the
state of the system must take place, but these will necessarily be such
that the energy and the entropy will remain anchanged and the
gystem will continue to satisfy the same condition, as initially, of
having the greatest entropy consistent with ifs energy. Let us con-
gider the change which takes place In any time so short that the
change may be regarded as uniform in nature throughout that time.
This time must be so chosen that the change does not take place in it
infinitely slowly, which is always easy, as the change which we sup-
pose to take place cannot be infinitely slow except at particular
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moments. Now no change whatever in the state of the system,
which does not alter the value of the energy, and whichk commences
with the same state in which the system was supposed at the com-
mencement of the short time considered, will cause an increase of
entropy. Hence, it will generally be possible by some slight variation
in the circumstances of the case to make all changes in the state
of the system like or nearly like that which is supposed actually to
occur, and not involving a change of energy, to involve a necessary
decrease of entropy, which would render any such change impossible.
This variation may be in the values of the vanables which determine
the state of the system, or in the values of the constants which deter-
mine the nature of the system, or in the form of the functions which-
express its laws,—only there must be rothing in the system as modi-
fied which is thermodynamically impossible. For example, we might
suppose temperature or pressure to be varied, or the composition of
the different bodies in the system, or, if no small varistions which
could be actually realized would produce the required result, we
might suppose the properties themselves of the substances to undergo
variation, subject to the general laws of matter. If, then, there is
any tendency toward change in the system as first supposed, it is a
tendency which can be entirely checked by an infinitesimal variation
in the circumstances of the case. As this supposition cannot be
allowed, we must believe that a system is always in equilibrium
when 1t has the greatest entropy consistent with its energy, or, in
other words, when it has the least energy consistent with its entropy.

The same considerations will evidently apply to any case in which
a system is in such a state that Ag=0 for any possible infinitesimal
variation of the state for which Ae=0, even if the entropy is not
the greatest of which the system 1s capa.ble with the same energy.
(The term possible has here the meaning previously defined, and the
character A is used, as before, to denote that the equations are to be
construed strictly, ie., without neglect of the mfinitesimals of the
higher orders.)

The only case in which the sufficiency of the condition of equi-
librium which has been given remains to be proved is that in which
in our notation dp =0 for all possible variations not affecting the
energy, but for some of these variations An>0, that is, when the
entropy has in some respects the characteristics of a minimum. In
this case the considerations adduced in the last paragraph will not
apply without modification, as the change -of state may be infinitely
slow at first, and it is ouly in the initial state that the condition
on.=0 holds true. But the differential coefficients of all orders of
the quantities which determine the state of the system, taken with
respect of the time, must be functions of these same quantities. None
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of these differential coefficients can have any value other than 0, for
the state of the system for which 87, =0. For otherwise, as it would
generally be possible, as before, by some infinitely small modification
of the case, to render impossible any change like or nearly like that
which might be supposed to occur, this infinitely small modification
of the case would make a finite difference in the value of the differ-
ential coefficients which had before the finite values, or in some of
lower orders, which is contrary to that continuity which we have
reason to expect. Such considerations seem to justify us in regarding
such a state as we are discussing as one of theoretical equilibrium ;
although as the equilibrium is evidently unstable, it cannot be realized.
We- havestill to- prove that the condition enunciafed i1s in every
case necessary for equilibrium. It is evidently so in all cases in which
the active tendencies of the system are so balanced that changes of
every kind, except those excluded in the statement of the condition of
equilibrium, can take place reversioly, (i.e., both in the positive and
the negative direction,) in states of the system differing infinitely Little
from the state in question. In this case, we may omit the sign of
inequality and write as the condition of such a state of equilibrium

(8. =0, ie., (5),=0. (10)

But to prove that the condition previously enunciated is in every
case necessary, it must be shown that whenever an isolated system
remains without change, if there is any infinitesimal variation in its
state, not involving a finite change of position of any (even an infini-
tesimal part) of its matter, which would diminish ifs energy by &
quantity which is not infinitely small relatively to the variations of
the quantities which determine the state of the system, without
altering its entropy,—or, if the system has thermally isolated parts,
without altering the entropy of any such part,—this variation involves
changes in the system which are prevented by its passive forces or
analogous resistances to change. Now, as the described variation in
the state of the system diminishes its energy without altering its
entropy, it must be regarded as theoretically possible to produce that
variation by some process, perhaps a very indirect one, so as to gain
a certain amount of work (above all expended on the system). Hence
we may conclude that the active forces or tendencies of the system
favor the variation in question, and that equilibrium cannot subsist
unless the variation is prevented by passive forces.

The preceding considerations will suffice, it is believed, to establish
the validity of the criterion of equilibriumn which has been given.
The criteria of stability may readily be deduced from that of equi-
librium. We will now proceed to apply these principles to systems
consisting of heterogeneous substances and deduce the special laws
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which apply to different classes of phenomena. For this purpose we
shall use the second form of the criterion of equilibrium, both because
it admits more readily the introduction of the condition that there
shall be no thermal communication between the different parts of the
system, and because it is inore convenient, a3 respects the form of
the general equations relating to equilibrium, to make the entropy
one of the independent variables which determine the state of the
system, than to make the energy one of these variables.

The Conditions of Equilibrium for Heterogeneous Masses in
Contact when Uninfluenced by Gravity, Electricity, Distortion
of the Sohid Masses; or Capitlary Tensions:

In order to arrive as directly as possible at the most characteristic
and essential laws of chemical equilibrium, we will first give our
attention to & case of the simplest kind. We will examine the con-
ditions of equilibrium of a mass of matter of various kinds enclosed
in a rigid and fixed envelop, which is impermeable to and unalter-
able by any of the substances enclosed, and perfectly non-conducting
to heat. We will suppose that the case is not complicated by the
action of gravity, or by any electrical influences, and that in the
solid portions of the mass the pressure is the same in every direction.
We will farther simplify the problem by supposing that the varia-
tions of the parts of the energy and entropy which depend upon the
surfaces separating heterogeneous masses are so small in comparison
with the variations of the parts of the energy and entropy which
depend upotr the-quansities of these masses, that the former may be
neglected by the side of the latter; in other words, we will exclude
the considerations which belong to the theory of capillarity.

[t will be observed that the supposition of a rigid and non-
conducting envelop enclosing the mass under discussion involves uo
real loss of generality, for if any mass of matter is in equilibrium, it
would also be so, if the whole or any part of it were enclosed in an
envelop as supposed: therefore the conditions of equilibrium for 2
mass thus enclosed are the general conditions which must always
be satisfied in case of equilibrium. As for the other suppositions
which have been made, all the circumstances and considerations
which are here excluded will afterward be made the subject of
special discussion.

Conditions relating to the Equilibrium between the initially existing
Homogeneous Parts of the given Mass.

Let us first consider the energy of any homogeneous part of the
given mass, and its variation for any possible variation in the com-
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position and state of this part. (By homogeneous is meant that the
part in question is uniform throughout, not ounly in chemical com-
position, but also in physical state.) If we consider the amount and
kind of matter in this homogeneous mass as tixed, its energy ¢ is a
function of its entropy 7, and its volume v, and the differentials of
these quantities are subject to the relation

de=t dn—pdu, (11)

¢ denoting the (absolute) temperature of the mass, and p its pressure.
For tdy is the heat received, and p«v the work done. by the masa
during its change of state. But if we consider the matter in the
mass &5 varizble, and write nm,, w,, ... m, for the quantities of the
various substances S,, S,, ... S, of which the mass is composed, ¢ will
evidently be a function of #, v, m,, 7, ... m_, and we shall have for
the complete value of the differential of €

de=tdn—pdv+p dm+ pdm, ... +u,dm,, (12)
My Ms ... b denoting the differential coefficients of e taken with
respect to m,;, m,, ... m,.

The substances S,, §,, ... Sn, of which we consider the mass com-
posed, must of course be such that the values of the differentials
dm,, dm,, ...dm, shall be independent, and shall express every
possible variation in the composition of the homogeneous mass con-
stdered, including those produced by the absorption of substances
different from any initially present. [t may therefore be necessary
to have terms in the equation relating to component substances
which do not. iitially occur in the homogeneous mass considered,
provided, of course, that these substances, or their components, are
to be found in some part of the whole given mass.

If the conditions mentioned are satistied, the choice of the sub-
stances which we are to regard as the components of the mass con-
sidered, may be determined entirely by convenience, and independently
of any theory in regard to the internal constitution of the mass. The
number of components will sometimes be greater, and sometimes
less, than the number of chemical elements present. For example,
in considering the equilibrium in a vessel containing water and free
bydrogen and oxygen, we should be obliged to recognize three com-
ponents in the gaseous part. But in considering the equilibrium of
dilute sulphuric acid with the vapor which it yields. we should have
only two components to consider in the liquid mass, sulphuric acid
(anhydrous, or of any particular degree of concentration) and (addi-
tonal) water. If, however, we are considering sulphuric acid in a
state of maximum concentration in connection with substances which
might possibly afford water to the acid, it must be noticed that the
condition of the independence of the differentials will require that- we-
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consider the acid in the state of maximum concentration as one of
the components. The quantity of this component will then be cap-
able of variation both in the positive and in the negative sense, while
the quantity of the other component can increase but cannot decrease
below the value 0.

For brevity’s sake, we may call a substance S, an actual component
of any homogeneous mass, to denote that the quantity m, of that
substance in the given mass may be either increased or diminished
(although we may have so chosen the other component substances
that m,=0); and we may call a substance S; a possible component
to denote that it may be combined with, but cannot be subtracted
from the homogeneous mass in question. In this case, as we have
seen in the above example, we must so choose the component sub-
stances that m,=0.

The units by which we measure the substances of which we regard
the given mass as composed may each be chosen independently. To
fix our ideas for the purpose of a general discussion, we may suppose
all substances measured by weight or mass Yet in special cases, it
may be more convenient to adopt chemical equivalents as the units
of the component substances.

It may be observed that it is not necessary for the validity of
equation (12) that the variations of nature and state of the mass to
which the equation refers should be such as do not disturb its homo-
geneity, provided that in all parts of the mass the variations of
nature and state are infinitely small. For, if this last condition be
not wiolated: an equation hike ¢k2) is certainty vahd for alf the infin-
itesimal parts of the (initially) homogeneous mass; ie., if we write
De, Dn, ete., for the energy, entropy, etc., of any infinitesimal part,

dDe=tdDyp—opdDv+p, dDm+pudDm, ... +pu,dDm,, (13)

whence we may derive equation (12) by integrating for the whole
initially homogeneous mass.

We will now suppose that the whole mass is divided into parts so
that each part is homogeneous, and consider such variations in the
energy of the system as are due to variations in the composition and
state of the several parts remaining (at least approximately) homoge-
neous, and together occupying the whole space within the envelop.
We will at first suppose the case to be such that the component sub-
stances are the same for each of the parts, each of the substances
81, Sy, ... 3, being an actual component of each part. If we distinguish
the letters referring to the different parts by accents, the variation in
the energy of the system may be expressed by d¢’+4ge” +ete., and the
general condition of equilibrium requires that

€’ + 8¢ +ete. =0 (14)
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for all variations which do not conflict with the equaiions of condi-
tion. These equations must express that the entropy of the whole
given mass does not vary, nor its volume, nor the total quantities of
any of the substances S,,S;,...S,. We will suppose that there are

no other equations of condition. It will then be necessary for
equilibrium that

t’aq' *—Plé‘v’ +ﬂ;a’rn1' +#1’6m2’ L +I.L"3m,:
+t/fanu_p”6/uﬂ' '{‘ﬂl” 6m1”+#2”6m!” . +Furr6mnn

+ ete. =0 (15)
for any values of the variations for which
o +an" +an” +ete. =0, (16)
U +3u" +6v" +ete. =0, (17)
om, +ém,” +dm,” +ete.=0, 1
omy +dmy” +dmy fete.=0, | (18)
L o
For this it is evidently necessary and sufficient that
t=t"=t" =ete. (19)
p=p"=p” =ete. (20)
= = et
=g =g =ete- | 1)
Ny

Equations (19) and (20) express the conditions of thermal and
mechanical equilibrium, viz, that the temperature and the pressure
must be constant throughont the whole mass. In equations (21) we
have the conditions characteristic of chemical equilibrium. If we
call 8 quantity ., as defined by such an equation as (12), the potential
for the substance S, in the homogeneous mass considered, these con-
ditions may be expressed as follows:—

The potential for each component substance must be comstant
throughout the whole mass.

It will be remembered that we have supposed that there is no
restriction upon the freedom of motion or combiration of the com-
ponent substances, and that each is an actual component of all parts
of the given mass.

The state of the whole mass will be completely determined (if we
regard as immaterial the position and form of the various homoge-
neous parts of which it is composed), when the values are determined
of the quantities of which the variations occur in (15). The number
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of these quantities, which we may call the independent variables, is
evidently (n+2)», v denoting the number of homogeneous parts
into which the whole mass is divided. All the quantities which
occur in (19), (20), (21), are functions of these variables, and may be
regarded as known functions, if the energy of each part is known as
a function of its entropy, volume, and the quantities of its com-
ponents. (See eq. (12)) Therefore, equations (19), (20), (21), may
be regarded as (v—1) (n+2) independent equations between the
independent variables. The volume of the whole mass and the total
quentities of the various substances being known afford n+1 addi-
tional equations. If we also kmow the fofal energy of the given
mass, or its total entropy. we will have as many equations as there-
are independent variables.

But if any of the substances S, S, ...S, are only possible com-
ponents of some parts of the given mass, the variation dm of the
quantity of such a substance in such a part cannot have a negative
value, so that the general condition of equilibrium (15) does not
require that the potential for that substance in that part should be
equal to the potential for the same substance in the parts of which it
18 an actual component, but only that it shall not be less. In this
case instead of (21) we may write

=M, ‘
for all parts of which S, is an actual component, and
m= M
for all parts of which S, is a possible (but not actusal) component,
e =M, -(22)
for all parts of which S, is an actual component, and
o= M,
for all parts of which S, is a possible (but not actual) component,
etc., J

M, M, etc., denoting constants of which the value is only determined
by these equations.

If we now suppose that the components (actual or possible) of the
various homogeneous parts of the given mass are not the same,
the result will be of the same character as before, provided that all the
different components are independent (i.e, that no one can be made
out of the others), so that the total quantity of each component is
fixed. The general condition of equilibrium (15) and the equations
of condition (16), (17), (18) will require no change, except that, if any
of the substances §,, S,, ... S, is not a component (actual or possible) of
any part, the term 4 &m for that substance and part will be wanting
in the former, and the ém in the latter. This will require no change in
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the form of the particular condifions of equilibrium as expressed by
(19), (20), (22); but the number of single conditions contained in (22)
ia of course less than if all the component substances were components
of all the parts. Whenever, therefore, each of the different homo-
geneous parts of the given mass may be regarded as composed of some
or of all of the same set of substances, no one of which can be formed
out of the others, the condition which (with equality of temperature
and pressure) is necessary and sufficient for equilibrium between the
different parts of the given mass may be expressed as follows:—

The potential for each of the component substances must have a
constant value vn all parts of the given mass of which that substance
8 un actual component, and have a value not less than this in all
parts of which it 18 « possible component.

The namber of equations afforded by these conditions, after elimi-
nstion of M;, M, ... M, will be less than (n+2)(v—1) by the number
of terms in (15) in which the variation of the form &m is either
necessarily nothing or incapable of a negative value. The number of
variables to be determined is diminished by the same number, or, if
we choose, we may write an equation of the form m=0 for each of
these terms. But when the substance is a possible component. of the
part concerned, there will also be a condition (expressed by =) to
show whether the supposition that the substance is not an actual
component is consistent with equilibriom.

We will now suppose that the substances S, S,,...S, are not all
independent of each other, ie., that some of them can be forwed
out- of others: We will first consider & very simple case: Eet S, be
composed of S, and §, combined in the catio of a to b, S| and S,
occurring a8 actnal components in some parts of the given mass, and
S; in other parts, which do not contain S, and S, as separately
variable components. The general condition of equilibrium wAill still
have the form of (15) with certamn of the terms of the form udm
omitted. It may be written more briefly

S (£61)— Z(p&v)+ E(sydm) + S(pydmy) -+ Z(p,dm)Z0,  (23)
the sign I denoting summation in regard to the different parts of
the given mass. But instead of the three equations of condition,

2ém,=0, Zgm,=0, Tom;=0, (24)
we shall have the two,

. e
Zoml-{-a_*_bzom, _0,1

-

b
va —
¥ om,,-(-a bZ m, _O.J

The other equations of condition,
2dn=0, Zdv=0, Zdim =0, etc, (26)
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will remain unchanged. Now as all values of the varistions which
satisfy equations (24) will also satisfy equations (25), it is evident
that all the particular conditions of equilibrium which we have
already deduced, (19), (20), (22), are necessary in this case also.
When these are satisfied, the general condition (23) reduces to

M.Z dm,+ M2 dmy+ M, dm, = 0. (27)
For, although it may be that g, for example, is greater than M,
yet it can only be so when the following dm,” is incapable of a nega-
tive value. Hence, if (27) is satisfied, (23) must also be. Again, if
(23) is satisfied, {27) must also be satisfied, so long as the variation
of the quantity of every substance has the value 0 in all the parts of
which it is not an acfusl component. But as this limitation does not
affect the range of the possible values of Xam,, £dm, and X dm,,
it may be disregarded. Therefore the conditions (23) and (27) are
entirely equivalent, when (19), (20), (22) are satisfied. Now, by
means of the equations of condition (25), we may eliminate X dm,
and  dm, from (27), which becomes

—al Z émy—bMZ dmy+(a+b)M,Z 6mg =0, (28)
Le., as the value of T dm, may be either positive or negative,
ad,+60M,=(a+b) I, (29)

which is the additional condition of equilibrium which is necessary
in this case.

The relations between the component substances may be less
simple than in this case, but in any case they will only affect the
equations of condition, and these may always be found without diffi-
culty, and will enable us to eliminate from the general condition of
equilibrium as many variations as there are equations of condition,
after which the coefficients of the remaining variations may be set
equal to zero, except the coefficients of variations which are incapable
of negative values, which coeflicients must be equal to or greater
than zero. It will be easy to perform these operations in each par-
ticular case, but it may be interesting to see the form of the resultant
equations in general

We will suppose that the various homogeneous parts are considered
as having in all n components, S, S, ...S,, and that there is no
restriction upon their freedom of motion and combination. But we
will so far limit the generality of the problem as to suppose that
each of these components is an actual component of some part of
the given mass.* If some of these components can be formed out

* When we come to seek the conditions of eqnilibrium relating to the formation of
masses unlike any previously existing, we shall take up de novo the whole problem
of the equilibripm of heterogeneous masses enclosed in a non-condncting envelop,
and give it a more general treatment, which will be free from this limitation.
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of others, all such relations can be expressed by equations such as
a@.,-{-ﬁ @b-{-et&:x@'g-i-k.@,-{-em. (30)

where &, ©,, S, ete. denote the units of the substances S, S,, S,, ete.,
(that is, of certain of the substances S, §,,...S5,) and qa, 8, «x
etc. denote numbers. These are not, it will be observed, equations
between abstract quantities, but the sign = denotes qualitative as
well as quantitative equivalence. We will suppose that there are
r independent equations of this character. The equations of con-
dition relating to the component substances may easily be derived
from these equations, but it will not be necessary to consider them
particularly. It is evident that they will be satisfied by any values
of the variations which satisfy equations (18); hence, the particular
conditions of equilibrium (19), (20), (22) must be necessary in this
case, and, if these are satistied, the general equation of equilibrium
(15) or (23) will reduce to

HEom+HEimy ...+ M 2 om, =0. (31)
This will appear from the same considerations which were used in
regard to equations (23) and (27). Now it is evidently possible to
give to Zém,, T dm, XZdm, ete. values proportional to a«, B8, —«x,
e¢te. in equation (30), and also the same values taken negatively,
making £dm =0 in each of the other terms; therefore

aM,+BM,+ete. ... — M, —A\M; —ete.=0, (32)
or, al+BM,+ete.=cM, +1M, +etc. (33)

[t will be observed that this equation has the same form and coeffi-
cients ag equation (30}, i taking the place of ©. [f is evident that
there must be a similar condition of equilibrium for every one of the
r equations of which (30) is an example, which may be obtained
simply by changing € in these equations into M. When these
conditions are satistied, (31) will be satistied with any possible values
of Tdm,, Zdm,, ...Edm, For no values of these quantities are
possible, except such that the equation

(2om )&, +(Zdm,)G, ... +(Eom,)S, =0, (34
after the substitution of these values, can be derived from the r equa-
tions like (30), by the ordinary processes of the reduction of linear
equations. Therefore, on account of the correspondence between (31)
and (34), and between the r equations like (33) and the r equations
like (30), the conditions obtained by giving any possible values to
the variations in (31) may also be derived from the r equations like
(33); that is, the condition (31) is satisfied if the r equations like
(33) are satisfied. Therefore the r equations like (33) are with
(19), (20), and (22) the equivalent of the general condition (I5)
or (23).
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For determining the state of a given mass when in equilibrium
and having a given volume and given energy or entropy, the condi-
tion of equilibrium affords an additional equation corresponding to
each of the r independent relations between the n» component sub-
stances. But the equations which express our kmowledge of the
matter in the given mass will be correspondingly diminished, being
n—r in number, like the equations of condition relating to the
quantities of the component substances, which may be derived from
the former by differentiation.

Conditions relating to the possible Formation of Masses Unlike any
Previously Existing.

The variations which we have hitherto considered do not embrace
every possible infinitesimal variation in the state of the given mass,
so that the particular conditions already formed, although always
necessary for equilibrium (when there are no other equations of con-
dition than such as we have supposed), are not always sufficient.
For, besides the infinitesimal variations in the state and composition
of different parts of the given mass, infinitesimal masses may be
formed entirely different in state and composition fromn any initially
existing. Such parts of the whole mass in its varied state as
cannot be regarded as parts of the initially existing mass which
have been infinitesimally varied in state and composition, we will
call new parts. These will necessarily be infinitely small. As it is
more convenient to regard a vacuum as a limiting case of extreme
rarefaction than to give a special consideration to the possible for-
mation of empty spaces within the given mass, the term new paris
will be used to include any empty spaces which may be formed,
when such have not existed initially. We will use D¢, Dn, Dv,
Dm,, Dm,, ... Dm, w denote the infinitesimal energy, entropy, and
volume of any one of these new parts, and the infinitesimal quantities
of its components. The component substances S§,, S,....5, must
now be taken to include not only the independently variable com-
ponents (actual or possible) of all parts of the given mass as initially
existing, but also the components of all the new parts, the possible
formation of which we have to consider. The character ¢ will be
used as before to express the infinitesimal variations of the quantities
relating to those parts which are only infinitesimally varied in state
and composition. and which for distinction we will call original parts,
including under this term the empty spaces. if such exist initially,
within the envelop bounding the system. As we may divide the
given mass into as many parts as we choose, and as not only the
initial boandaries, but also the movements of these boundaries during
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any variation in the state of the system are arbitrary, we may so
define the parts which we have called original, that we may consider
them as initially homogeneous and remaining so, and as initially con-
stituting the whole system.
The most genersl value of the varation of the energy of the whole
system is evidently
2 de+X De, (35)
the firs¢ summation relating to all the original parts, and the second
to all the new parts. (Throughout the discussion of this problem, the
letter ¢ or D following = will sufficiently indicate whether the sum-
mation relates to the origiual or to the new parts.) Therefore the
general condition of equilibrium is
Zde+ZDe=0, (36)
or, if we substitute the value of de taken from equation (12),
2 De+3(t dn) —Z(p )+ Z(p, 0my) + Z(padms,) ...+ Z(g,, dm, ) = 0. (37)

If any of the substances S, S,,...S, can be formed out of others,
we will suppose, as before (see page 69), that such relations are
expressed by equations between the units of the different substances.
Let these be

68 +a.8,...+a,8, = 0]
b€, + 6,8, ...+ 5,8, =0\ r equations. (38)
ete.

The equations of condition will be (if there is ‘no restriction upon the
freedom of motion and composition of the components)
Zén+ZDp=0, (39)
S v+ X Du=0, (40)
and n —r equations of the form
h(Z 6my+ = D)+ RS dme+ = Dmyy) ..
+h( ém,+5 Dm,)=0 [
T(Z dmy+ = Dm) + i(Z dme+ £ Dmy,) J
+1(Z dm,+ X Dm,)=0

(+1)*

ete.
Now, using Lagrange's “ methed of multipliers,” f we will subtract

*[n regard to the relation between the coefficients in (41) and those in (38), the
reader will easily convince himself that the ccetficients of any one of equations {41)
are such as wonld satisfy ali the equations (38) if substituted for S, &, ..., ; and
that this is the only condition which tnese coetficients must satisfy, except that the
n -r sets of coefficients shall be independent, ie., ahall be such as to form independent
equatious ; and that this relation between the coetficients of the two sets of equations is
a reciprocal one.

£ On account of the sign =in {37), and because some of the variations are incapable
of negative valnes, the successive steps in the reasoning will be cdeveloped at greater
length than would be otherwise necessary.
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TEM+ZDy)— PEo+ZDv) from the first member of the
general condition of equilibrium (37), T’ and P being constants
of which the value is as yet arbitrary. We might proceed in the
same way with the remaining equations of condition, but we may
obtain the same result more simply in another way. We will first
observe that

(Zdm,+ X Dm ))&, +(Z dm+ T Imy)S, ...
+(Z ém,+Z Dm )G, =0, (42}

which equation would hold identically for any possible values of the
quantities in the parentheses, if for rof the letters &,, &,, ... &, were
substituted their values in terms of the others asderived from equations
(38). (Although &,, &,,...5, do not represent abstract quantities,
vet the operations necessary for the reduction of linear equations
are evidently applicable to equations (38).) Therefore, equation (42)
will hold true if for &, &,, ... &, we substitute n numbers which
satisfy equations (38). Let M, M,, ... M, be such numbers, 1.e, et

a M, +a M, ...+a M, =0,
b, +b.M, --.-{-bnMn:O,] r equations, (43)
et J
then
M (Zom +Z Dm)+ M (Zéme+2 Dmy,) ...
+ M (Zém, +ZDm )=0. (44)

This expression, in which the values of n—7 of the constants M|,
M, ... M are still arbitrary, we will also subtract from the first
member of the general condition of equilibrium (37), which will
then become

L De+ Z(tén)— Z(pdv)+ (g, dm,) ...+ Z (u,dm,)
—TXdn +PEXév —-M,Zémy ...—M_ Zém,
—TEDp+PZDv —M,ZDm, ...- M, SDm,=0. (45)

That is, baving assigned to T, P, M,, M,, ..., any values con-
sistent with (43), we may aas