Chapter 6

Transformations

The chapter on surfaces began with the statement, ‘‘Everything has to end some-
where.”” With respect to transformations, we can also observe that “‘Everything has
to start somewhere.”” The dynamics of phase transformations, especially their initi-
ation, influence many of the changes in the properties of solids that take place during
their manufacture.

Phase transformations may be divided into two broad categories: diffusional and
displacive (nondiffusional). The former requires movement of atoms by a diffusional
process, that is, a process in which atoms move individually, driven by chemical
potential gradients. Displacive transformation, on the other hand, involves cooper-
ative movement of atoms in a shearing action during phase transformation. The most
striking and commercially important example is the martensite reaction in steel,
which accounts for its ability to be hardened. Examples are also to be found in
ceramic materials. Good discussions of displacive transformations are to be found
in especially the metallurgical literature (Refs. 1 and 2).

Diffusional transformations may be subdivided into two categories: spinodal
transformations and those that proceed by nucleation of a new phase, followed by
its growth.
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166 Chapter of Transformations

6.1 TYPES OF DIFFUSIONAL TRANSFORMATIONS

Gibbs, more than 100 years ago, when considering the transformation of supersat-
urated solutions in binary systems, observed that there could be two types of trans-
formations: those that are initially small in degree, but large in extent, and those that
are initially small in extent, but large in degree. The former are spinodal transfor-
mations. To explore the basis for this observation, consider the phase diagram in
Figure 6.1, and the corresponding curve for Gibbs free energy versus composition
at a temperature of about 800 K in Figure 6.2. The points of inflection in Figure 6.2
where the second derivative of the Gibbs free energy—composition curve is zero,
scparate the region of positive from negative second derivatives and are called Spi-
nodal points. If a solution is cooled rapidly from above the miscibility gap to 800
K, its transformation behavior as it decomposes into o and B phases depends on the
overall composition of the material relative to these spinodal points. If the overall
composition is inside (between) the spinodal points, the transformation may proceed
incrementally over a large region, without the nucleation of a new phase. Outside
the spinodal points, nucleation of a new phase is required.

To explain this difference, let us follow, in Figure 6.2, the trajectory of Gibbs
free energy during transformations in the two regions: the one with positive second
derivative (concave up, point A) and the one with negative second derivative (con-
cave down, point B). In the concave down region, inside the spinodal curve, the
decomposition may begin without an initial increase in Gibbs free energy. As the
material decomposes into two others, the combined Gibbs free energies of the two
resulting phases is always below the Gibbs free energy of the original solution. There
is no energy barrier to be overcome. This is the reaction that Gibbs referred to as
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Figure 6.4 Ilustration of the difference
between metastable equilibrium and un-
stable equilibrium. (From Ref. 3.)

first required to lift its center of gravity as the block falls to its stable equilibrium
position.

Consider, now, the difference between the rectangular block and the triangular
block in Figure 6.4. The triangular block, balanced on its tip, represents unstable
¢quilibrium because any slight perturbation from the vertical position will cause the
block to fall to its stable position (on its side) without the addition of any work to
starl (he process. The energy path followed by the rectangular block is analogous to
fransformations characterized by nucleation. The energy path followed by the tri-
anpular block is analogous to spinodal transformations. Nucleation is discussed first
in this chapter. Section 6.8 deals with spinodal transformation.

6.2 HOMOGENEOUS NUCLEATION

To begin the discussion of phase changes of the second kind (nonspinodal), consider
the Gibbs free energy changes during the solidification of a pure material. At tem-
peratures below a material’s melting point (7,,), the driving force for solidification
is the difference in Gibbs free energy (AG) between the liquid and the solid. If we
assume that the heat capacities of the liquid and solid are equal, then the molar
enthalpy and molar entropy of solidification will each remain constant as a function
of temperature, and AG can be calculated as follows:

liquid — solid
AG = AH — T AS

Note that AH = —L, where L is the latent heat of fusion,

AG Liodle

/i
At 3 tI Ll (6.1)
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When a spherical particle of solid of radius » is formed, the change in Gibbs free
energy is the volume of the patticle multiplicd by the volumetric Gibbs free energy
change, AG,.
A‘Gvol = %"ﬂ'r SA_G__V

where AG, is the Gibbs free energy change per unit volume,

i

=

AG, = 54 (T = T) (62)
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But when the particle of radius r is formed, there is another energy term 10 be
considered, the surface energy. The surface energy of the particle is

AG, = 4ur*y 64

where y = <y,—, the surface energy between solid and liquid.
The sum of the two energy terms is:

AG, = 4wy + 4mrAG, (65)

The first of these terms involves the increase in energy reqlfired. to form a new
surface. The second term is negative and represents the decrease in Gibbs free energy
upon solidification. Because the first is a function of the sec'ond power of the radius,
and the second a function of the third power of the radl}xs, the sum of the_ two
increases, goes through a maximum, and then decreases (Figure 6.5?.'The ra(.ilus :t
which the Gibbs free energy curve is at 2 maximum is called the critical rad_lus r¥,
for a nucleus of solid in liquid. The driving force of the Gib‘bs t"ree energy will t:cnd
to cause a particle with a smaller radius than r* to decrease in size. This is a particle
of subcritical size for nucleation. A viable nucleus is one with radius .great:r'than ?kr
equal to r*. The critical Gibbs free energy corresponding to the radius r* is AG*.
In terms of physical parameters, these terms can be shown to be:

r#* when 386,y . 0 = 8mry + 4mwr*AG, (6.6)
ar Jr
o= — 2 6.7
AG,
Age = L TL 6.8)

3 AGE
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Figure 6.5 Gibbs free energy of nuclei as a function of radius.

6.3 SIZE DISTRIBUTION OF NUCLEI

One may well ask why nucleation takes place at all. How does a nucleus of siz¢
greater than r* form at any time? Based on the principles discussed in Chapter 2

(Statistical Thermodynamics), we can calculate the probability that a particle of

radius r will exist at a given temperature, and that probability will be greater than
zero. Let the particle with radius 7 have a Gibbs free energy of formation A(,,
calculated according to Eq. 6.5. Consider now the entropy of mixing of these
particles (numbering »,) with atoms of the liquid (i.e., particles having atomic
radius: numbering n,). To minimize the Gibbs free energy of the combination
of the two:

(nO + nr) !

AS .. =kln
nyln,!

mix

6.9)

AG = n,AG, — kT[(n, + n)ln(n, + n,) — ngln ny — n,1n n,]

At the equilibrium value of #,, (9AG,/on,), = 0 and

AG,+kT<ln[ i ])=0
ny, + n,
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Noting, that ny -» = M,

n, _ é_@_») (6.10)
" oxp (- 52

One could, based on Eq. 6.10, calculate the concentration of sc?lid nuclei of radlilxs
r in a liquid at its melting point. In this case, the value of AG, is zero becausef th :
two phases, liquid and solid, are in equilibrium. Only the surfac§ energy ten;l o e
equation comes into play. As an example, let us calculate the distribution of nucle
in nickel at its melting point, 1725 K.

For nickel: T,, = 1725 K

L o 10 J mol~! K™!
Y i

y = 025 J/m™2

V = 7 cm*mol

Hy = %‘— = 8.6 X 102 cm™

From Eq. 6.5:
AG, = 4nr*y + $ur’AG,

At the melting point, T,,, AG, = 0 (see Eq. 6.2)
Thus:

AG, = 4wr’y

As an example, let us calculate the concentration of clusters of radius 7 A at the
melting point:

AG, = 4m(7 X 1071°2(0.25) = 1.54 X 107** J

AG,
n, = ngexp | = <
1.5 X 10718 ]

n, = 8.6 X 10 exp [‘ (1.38 X 1072)(1725)

n, = 7.3 X 107 clusters/cm®

By repeating, the calculation for a series of cluster radii, we obtain the results in
Table 6.1,
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Table 6.1 Calcutated Concentration of Solid Clusters in Ligmid Nickel at the
Melting Temperature as a Function of Cluster Size

r(A) n,(clusters/cm®)
5 4 X 10°

6 2 X 10%

7 7.3 X 107¢

8 1.8 X 10~
10 4.4 X 1075

The results of the calculations in Table 6.1 show that the concentration of solid
nuclei depends very strongly on cluster radius. This strong dependence enables us
to speak of a ‘‘maximum’’ cluster radius at a given temperature (see Figure 6.6).
Based on Egs. 6.10 and 6.5, there is no true maximum cluster radius at a specified
temperature. For every cluster size, there is a calculated concentration level. But a
consideration of Table 6.1 should convince us that when concentrations of nuclei
fall below one per cubic centimeter, we enter a size regime in which concentrations
fall very rapidly as a function of cluster radius. We may, for our purposes, pick a
reasonable concentration of nuclei, say one per cubic centimeter, and specify the
cluster radius that exists at that concentration to be the maximum size. At the melting
point of nickel, that calculated maximum radius would be about 6.3 A.

64 SUPERCOOLING

Based on Eqgs. 6.7, 6.8, and 6.10, we should be able to calculate the temperature at
which a liquid will start to solidify through the process of homogeneous nucleation.
As an example, let us calculate the probability of finding nuclei of critical size in
pure nickel that has been supercooled 10 K below its melting point. Using the phys-
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! : s > oo the eritics ""Tsucha
ical properties of nickel from bection 6.3, we express the critical radius fo
nucleus as follows:

2y (2)(0:25)
r¥ = — =
L1 1
B = _J-10
ST T 10 (7 - 10_6)( )
r* =350 A

The Gibbs free energy of this nucleus is:

3

16 ™y

AG* = — 2
31L1
ey ¢ M &
B

AG* = 13 X 107157

Based on Eq. 6.10, the concentration of such nuclei is

AG* 22 1.3 X 1077 ]
n, = ny exp [— -,;;] = 8.6 X 10% exp | = (173875 1072)(1715)
n, = (8.6 X 10°2)(107240%)

no= 10"24,0()0 Cm"3

We may thus safely conclude that homogeneous nucleation éoes rflot talkfa pfla:;z
in nickel at 10 K below its melting point, because the concentration of nuclel O

it i ‘ 10W. . . . .
crltll;:iln:ztiéss:‘r)ne equations, we may calculate the m?ximum clus:t‘er size in l’lfll:,:g
nickel as a function of temperature (Figure 6.6), not.mg that by ‘‘maximum N
mean the cluster size that is present in 2 concentratlc_m of at least one per cu e
centimeter. The critical radius of nuclei as a function of temperature may
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Figure 6.7 Critical radius r* as a function
of temperature.
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Figure 6.8 Superposition of Figures 6.6
and 6.7.

caleulated from Eq. 6.7. The results are shown schematically in Figure 6.7. Figure
6.8 is a superposition of Figures 6.6 and 6.7. The intersection of the critical radius
curve of Figure 6.7 with the maximum radius curve of Figure 6.6 should be at the
temperature of homogeneous nucleation. We can calculate this temperature for pure
nickel by repeating the calculation above for various degrees of supercooling. The
results of such a calculation are presented in Table 6.2.

Based on Table 6.2, homogeneous nucleation should take place at about 340-350
I of supercooling. In fact, the maximum degree of supercooling for nickel is 319

I, observed in an experiment on the solidification of very fine droplets of liquid
nickel.

6.5 HETEROGENEOUS NUCLEATION

Although it is possible to achieve supercooling levels exceeding 300 K in nickel,
substantial supercooling of this magnitude takes place only under very carefully
controlled experimental conditions. Under practical solidification conditions, super-

Table 6.2 Critical Radius and Concentration of Nucleii of Critical Radius as a
Function of Temperature for Nickel®

T=T, r* (A) AG () n¥ (cm™)
10 350 1.3 X 1018 10—24.000
100 35 13 ¥ 107 1053
300 11.7 145 % 10" T X107
125 10.7 1,24 = (" 1.4 X 10°°
40 10.3 L g 2.8 > 10

400 9.0 B4 % 100 11 3700

SActually: £ 1, in observed for Nioat appoisissiedy 18§
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cooling of only a few degrees is observed because mfclei .of the solid can b.e forrqezld
on surfaces that catalyze solidification, such as inclusions in the material being SOl.l -
ified, the walls of the container in which it is being held, or the surfaces of the casting
molds. To catalyze solidification, the nucleus of solid must 'wet th_e ca.talyst to some
extent. A nucleus catalyzed on a surface is shown schematically in I?lgure 6.9.

The analysis of the energies involved in heteroger?em}s nucl.eatlon follows tf{e
same method as the one used for homogeneous nucleation 1n Sectlon 6.2. In the case
of a heterogeneous nucleus in the form of a spherical cap (Figure 6.9), th; s;rfa.c:
energy term involves the surface energy between the sol%d.nucleus and the 1ciu1 A
and the change in surface energy of the catalyst surface as 1t 1s coated by the nucleus.
The surface energy term is derived as follows:

solid-liquid surface = 27r3(1 — cos 0) (6.11)
catalyst—solid surface = wr23(1 — cos’0) 6.12)
where r is the radius of curvature of the nucleus. Then we write
AG e = 27071 — €08 0)Y,— 4+ (1 — cos20)(Ye—s — V) (6.13)

where 7y,  © solid-liguid interfacial energy
Mo o nolid-catalyst interfacial energy
Nt Hipuhed « atalyst interfacial energy
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The tevms involving the interactions between the catalyst surface and the higuid
and the solid can be expressed in terms of the solid ligquid inteefacial energy by
noting, the relationships among them (Section 4.10);

Vet = Yoms T Yy—i{CO8 0)

The volumetric Gibbs free energy change is the product of the volume of the ¢
and AG,, the specific Gibbs free energy change. That volume, in terms of its radius
of curvature and contact angle, is:

4 2+ - 2 .
velope ( cos 8)(1 — cos 0) 6.14)
-3 4
or
AGvolumctric = %‘"r BA_.G_.vﬂe) (6-|5)
where
2 + cos 8)(1 — cos 0)?
f(0) = {( )i ) } (6.16)
tollowing the method of Section 6.2 yields the following conclusion:
2'Ys"l 16 mg—l
H o — 2 d b SR> G SR e 4 %
r AG. an AG 3 AG f(® 6.17)

It is particularly important to note that the critical radius of curvature, r*, doey
not change when the nucleation becomes heterogeneous. The critical Gibbs free
energy, AG*, however, is strongly influenced by the wetting that occurs at the surface
of the material that catalyzes the nucleation. A lower value of AG* means a lower
activation energy to be overcome in nucleation; that is, nucleation takes place more
casily. The magnitude of the effect can be appreciated by considering values of f{0),
shown in Table 6.3. It can be shown that f(8) is the ratio of the volume of the

Table 6.3 Values of £(0) in Eq. 6.17, Indicating the Extent to Which the
Activation Energy Is Reduced by Wetting of the Nucleus

: )
90" 0.50

060" 016

0" 13 X 107
i 7.0 x 107
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heterogencous nucleus (the cap) to (he volume of the sphere with the same radius
of curvature. .

Figure 6.10, a graph of AG as a function of radius of curvature of the m;‘de:;fé
shows the effect of wetting on the critical Gibbs free energy to be overcome Ior

nucleus to form. )
The critical Gibbs free energy for nucleation depends on the nucleus volume.

This can be demonstrated by considering a nucleus having the shape of spheritc;ll
cap with radius of curvature 7. The Gibbs free energy of the nucleus depem‘is on the
interfacial energy and the volumetric Gibbs free energy change as follows:

AG, = ar’y + Bri’AG, (6.18)

The parameters o and 3 are determined by the particular geometry of the m:lcl'eues(.i
The surface energy term, vy, is an average surface energy for the nucleus determin

according to the geometrical factors. o
The volume of the nucleus is pr’. To determume =,

(aAG,) —o
ar Jr

2ayr* + 3Br*?AG, = 0
r* = — 20 v or o= - —-3-9-9:(3——‘1' r* (6.19)
3BAG, 2y
________ G*
(Homogeneous
nucleation)
AG —

AG*
(Heterogeneous
nucleation)

Figure 6.10 Plot of AG versus r for homogeneous nucleation
pndd an example of heterogeneous nucleation.
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Substituting in Eq, 6.18, we have

3BAG*
AG} = — -—9-5—1——— r)* 1+ AG PG
AGF = —¥B(VAG,
AGF = —}V*AG, (6.20)

where V* is the volume of the critical nucleus.

From this analysis, it is apparent that any factors that reduce the volume of the
nucleus reduce the critical Gibbs free energy of formation of that nucleus, rriaking
nucleation more probable. '

6.6 RATE OF NUCLEATION

The r.:uu vof nucleation in a transformation is determined by the concentration of
nuclei of the critical size and the rate at which they are “‘activated’ through

ihe addition of atoms or molecules to their surfaces. This may be expressed as
tollows: ‘

N = van* 6.21)

where n* = concentration of critical nuclei
n, = number of atoms or molecules on the nucleus surface
v = collision frequency of molecules with nuclei

=

In the case of the formation of nuclei from a vapor (ideal gas), the collision

!’1 m:uc.ncy. is given by the Langmuir equation (Section 2.12). The rate of nucleation
i then:

g I AG*
N = - — § ] e
QmmkT)'? g XY ( kT ) 822

where A* is the area of the critical nucleus.

In the case of transformation in condensed phases, the collision frequency at the
nucleus interface may be expressed as follows:

Y = ¥, CXP ("“ T ) (6.23)

where v, is the jump frequency of the molecules or atoms at the surface of the nucleus
and AGy, is the activation energy for the movement ts the nuclens
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The nucleation rate would have the form

AGH* AG,
N = vty €XP (— kc; ) exp <—~ _———kTM) (6.24)

The first exponential term in Eq. 6.24 increases as the temperature decreases
below the equilibrium temperature. for the reaction. To use solidification as an
example,

3

AGH =13.6. = Lk I 625)
Bl

At the melting temperature, T,,, AG* is infinite and exp(—AG*/kT) is zero. As
the temperature drops, the value of this exponential term increases.! The value of
the second exponential term, exp(—AGy/kT), decreases as the temperature
decreases, assuming that the activation energy term, AG,,, remains constant. The
product of the two goes through a maximum as the temperature drops farther below
the equilibrium temperature. This is illustrated in Figure 6.11. Because the nucleation
rate passes through a maximum, we have the possibility of cooling a material rapidly
enough to suppress the transformation altogether. This would be accomplished by
passing through the temperature of the maximum nucleation rate before the equilib-
rium phase nucleates.

N ———

1yt is interesting to note that the term exp(—AG*/kT) does not increase monatonically as
temperature decreases below the equilibrium temperature. 1t can be shown to have a maximum
as follows:

s e () ) ()
T 3 AmOVAK\T) \T — T, T)\T - T,

Maximum at

dlexp(—AG,/kT)] -0
dT

[+ (1) (2 B - ER ) -0

m %

= —= at maximum

3

tﬂ
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Figure 6.11 Nucleation rate N as a function
of temperature.

6.7 GROWTH OF TRANSFORMED PHASE

The rate of .

fiem il lrans%‘;mg:i;fl 2 [;agffoma“"“ PrOt'iuct is determined by the driving force

the transition from th “' e frequency with which molecules successfully make

v et 15 it le reactant phase to the product phase. To use solidification as
ample, the driving force is the negative of the AG of solidification: i

L
_AG = 2 (T —
G=7 Ta=D (6.26)

m

AG,
soorp -

L
',I—,";(Tm -T)

Temperature —>
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Figure 6.13 A TTT diagram.

The jump frequency across the liquid-solid interface has a temperature depen-

dence of the form:
AG
f=foexp (—-—‘kTM) 6.27)

where AG is the activation energy for movement across the liquid—solid interface.

The product of the two is:
AG L
solidification rate = fo €xp | ~ Vv | ) (T, — D) (6.28)
kT ) \Tm

As the temperature decreases, the driving force increases but the jump frequency
decreases. These two opposing dependencies can produce a maximum in the rate of
growth as a function of temperature, as {llustrated in Figure 6.12.

The temperature dependencies of both nucleation of a new phase and its rate of

growth result in a strong temperature dependence of transformation rate. Results of

iransformation studies are often presented in the form of diagrams in which the time
required to transform a specific amount of the material is plotted against the tem-
perature of transformation. A schematic example is shown in Figure 6.13. These
curves are often referred to as time—temperature—-transformation (TTT) curves, OF
¢’ curves because their shape is in the form of the letter C.

The TTT curve of a transformation indicates that it may be possible t0 cool a
material rapidly enough fo slide past the nose of the curve, that is, t0 avoid the
transformation and to arrive at a temperature where the transformation rate is very
glow. Thig accounts for the existence of nonequilibrium structures, such as silicate

plasses, and smoiphous metals.
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0.8 SPINODAL TRANSFORMATIONS

Two different types of diffusive transformations were discussed in Section 6.1-
spinodal and those that are initiated by nucleation. The difference between the two
was shown in graphical form in Figures 6.2-6.4. Nucleation was discussed in Section
6.2. Now we discuss the principles of decomposition of homogeneous solutions by
the spinodal mechanism.

Recognize at the outset that we are discussing the decomposition of a supersat-
urated solution into its equilibrium phases. The solution became supersaturated, pre-
sumably, by being cooled into a temperature—composition region inside a miscibility
gap. In the binary system we are considering, the solution will eventually decompose
into a mixture of two phases. '

Consider, first, the change of Gibbs free energy of the homogeneous, supersatu-
rated solution as it undergoes composition fluctuations. For the purpose of our anal-
ysis, let the solution of overall composition c, undergo local fluctuations of *3c;
that is, it will split up into two regions of composition ¢, + 8¢ and ¢, — 8¢. We can

cxpand the Gibbs free energy of the solution as a function of composition around
the composition ¢, by a Taylor series:

G, +s = G, + (£80)G/ + H*8c)*G,,

oG 4
G =|— and G’ = e
2 ac /., & oc /.,

The change in Gibbs free energy accompanying the composition fluctuation is:

where

AG'—:G +3, "'G

AG = H®A)G,, + ¥BcPGL] + H(—Be]G,, + H~8c)°GL)]

AG = 3(3c)’G?, (6.29)

If the second derivative of G with respect to composition is positive, then AG
accompanying the fluctuation is positive, and the fluctuation will tend to collapse.
This tells us that the solution is in a metastable, but not unstable, state. The decom-
position of such a solution requires that nuclei of a new phase be formed as discussed
in Section 6.2.

If, however, the second derivative of G with respect to composition is negative,
then the AG accompanying the fluctuation is negative, and the fluctuations will tend
{o intensify. The solution is unstable. This is the spinodal decomposition case. The
differences in composition profiles during the development of a new phase from the
supersaturated solution are shown schematically in Fignie 614 (Ref. 3) for the two
CAases.

As we have so far developed the basis fae spdnailal decomposition, we could
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Figure 6.14 Schematic evolution of concentratifm proﬁle-s to 1'illlustrate the difference
between the spinodal mechanism (b) and nucleation and growth (a).
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conclude that there is no size limit or dimensional scale that cbar.aciiter(léfsetrl‘;eior;eis
teristic
is i e. however. A wavelength or charac on 1
phase. This is not the case, howe e emon M i
in spi tions. The explanation or p es 1
observed in spinodal decompost : D
i i of an atom in a concentration g
the observation that the Gibbs free energy : e ot
i of that atom in a solution of u
not the same as the Gibbs free energy . f o
position (Ref. 4). Hillert showed this to be the case using a regular solu;z?elxlr;ional
A rigorous derivation of the relationship (Ref. 5) yields, for a one-di

case:
de\’
G = NVJ [Q_c + K (Zx) ]dV (6.30)
A%

where N, = number of atoms per unit volume
G(c) = Gibbs free energy (per atom) of a homogeneous
solution of composition ¢
deldx = concentration gradient
a constant that is positive when two phases tend to
separate

=
il

i ution in a
iquation 6,30 tells us that the Gibbs fre_e energy of a vol\:‘me ‘llu?::i)y b
concentration gindient has two parts: the Gibbs free energy the vo
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ifitexisted as a part of a homogeneous solution of untform compuosition, and another
part that depends on the concentration gradient at that point. This last term is called
the gradient energy. The concept of “‘gradient energy’” is not uuitively obvious,
Its plausibility can be demonstrated by comparing the energy associated with the
bond energy of an atom with its nearest neighbors in a uniform solution, and in a
concentration gradient. An example of such a calculation is presented in Appendix
OA.

Il we expand G(c) in Eq. 6.30 in a Taylor series, and note that the odd terms will
vanish in an isotropic medium, then the equation becomes:

AG = N, J; [% G, (Bcy + x (%) ] av (6.31)

where G/ is the second derivative of G with respect to concentration at C.
In Eq. 6.31, the value of G/ is inherently negative inside the spinodal curve. The

decomposition as a spinodal can proceed only if the overall AG is negative, that s,
i

1
~1G”
21 %

e > x (%) (6.32)

Based on Eq. 6.32, there is a minimum magnitude of fluctuation, 8¢, below which
it is unstable. One solution of Eq. 6.31 has the form of a wave. Consider a compo-
sition fluctuation of size 8¢ in the x direction expressed as a wave:

c— ¢, = d = A cos Bx 6.33)
where ‘B = 2ar/\.

By substituting in Eq. 6.33 in Eq. 6.31, and noting that L sin? ax dx =

W
I cos* ax dx = 7/2,
J0

AG  wA
v © E/T [Ge, + 2xB7] (6.34)

Within the spinodal region the term G/ is negative. The homogeneous solution
of interest becomes unstable; that is, it will decompose as a spinodal, when
“Ihete can be other terms in the equation, such as the one seprcaenting elastic encrgy, if region
of composition fluctuation is erystallopraphically cobwvent with the Inttice of the solution but
has different dimensions, This is discussed i Bel 5 The congclosons seached relative to the

exntence of wominbmun lenpth of the new phinie do ot depaad on s coherency energy,
nlthougt it i Hnpottant
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AG < 0. The critical value of B, B, at which AG = 0 is:
172
= |- -1— G, (6.35)
Bc e 2K co

At values of B greater than B, (A < ), the spinodal decomposition will not
proceed. The critical wavelength, A, is

[—8'\12&]1/2 (6.36)
= |

; . ; -
At values of \ less than \,, spinodal fluctuations w.xll decay. The s'olutmn can stil
decompose to its equilibrium state, but not by d}.edsplgzcrila(l) fnzﬁzhﬁi!:::?és of the spi
an extend the treatment above to a considera : - :
no::let:ansfonnation (Refs. 3 and 5). The amplitude of a sinusoidal fluctuation can

be expressed as follows:
A, 1) = AB, 0) exp[R(B)] 637
The amplification factor, R(B)t, is:

RP) = — 9}% (G2 + 2vf?] (6.38)

where B is the mobility, A(B, f) is the amplitude of the fluctnation with wavelength
’- » ., . . == 0.
ime ¢, and A(B, 0) is the initial amplitude at .t . .
P a];:slgg on Eq. 6.38, when |GZ| > 2«p?, R(B) is positive. Remember that G, is

1.0 s

0.95

0.90 1~ 1% 99% transformed

Temperature relative to
spinodal temperature, /T,

} ] I 1
1 10 100 1000

Time (arbitrary units)

Flgsire 6,15 Schematic time tcmpemuu‘eﬂrmsformalmn dia-
g for apinodal decomposition. (From Ref. 7.)
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negative in the spinodal region. If the opposite is irue (|G| < 2xpy’), R(B) will be
negative, and the Huctuation will decay with time.

The amplification factor, R(B), varies with wave number {3 and shows a maximum
value, B,, when X = V/2\,, where \_ is the critical wavelength (Eq. 6.36). The extent
of a spinodal transformation can be expressed as a TTT diagram (or C curve) as in
the case of nucleation and growth (Figure 6.13). A representative sample of such a
curve is shown in Figure 6.15(7).

Spinodal transformations are observed in metallic, ceramic (Refs. 3 and 4), and
polymer systems (Ref. 8).
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APPENDIX 6A
Gradient Energy in a Regular Solution

liquation 6.30 indicates the Gibbs free energy of an atom in a concentration gradient
is not the same as the Gibbs free energy of that atom in a solution of uniform
composition. According to the equation, a gradient energy term, proportional to
deldy must be added to the Gibbs free energy term for the atom in a uniform solution.

2
d .
G=n,| |G.+«|Z) |av (6.30)
v dx

where G(e) is the Gibbs free enerpy (per atonn) of a homogencous soluation of com-
position ¢, and defdy is the concentration pradient

The purpose of this caleulation is to demonstiate that o pradient energy term will
arise when a regular solution model of atonmie e tons cirest neiphbor) s used

1o describe the energy of an atom in a concentrat
of the regular solution model is needed.

composition ¢ with coordination number Z is oc(l — ©),
1+ Egp)). For convenience,
[Eas — %(EAA + EBB)]'

overall coordination number is 12. In the close-packed

i hree near
neighbors, and there are t 1bor ( !
The energy of this atom will be the sum of its mtera.ctlon wi
bors, six in its plane and three each in the neighboring planes.
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ion gradient. Only the energy term
energy of an atom in a uniform binary solution of

where w is Z(Exp — %(E,\.A
let us write this as Ze(l — CODE, where AE is

In a regular solution, the

-packed plane in a close-packed structure. Its
plane there are siX nearest

est neighbors in each of the neighboring pla{xes.
th the 12 nearest neigh-

Let us consider an atom in a close

If the atom exists on a plane where the concentration is Co, ,;1;: .ne:;l: pl‘ar:: q()tlz ri;sr
i where is the in
right) will have a concentration of ¢, + (dcldx)Ax,

spacing and deldx is the concentration gradient. The plane to the left will have a

concentration of ¢, — (dcldx) Ax. For the purpose of this calculation, let Ac =

(dcldx)Ax. The energy of the atom in the concentration gradient is:
E = 6[c(1 — ©)AE] + 3[(c + AcXl — (c + ANIAE
+ 3[(c — Ao)(1 — (¢ — Ac)HIAE
E = 6[c(1 — ©)AE] + 6[cl — o) t (AcY]AE
E = 12[c(1 — OAE] + 6(Ac’AE

de\ ., .,
12[c(l — OAE] + 6 (i) (AxYAE

il

E

i i tom
This first term in the energy equation, 12¢(1 — c)AE',. is the T:c;ergy t:g ?erm
would have if it were in 2 uniform solution of composition ¢. 1he seco ;

6(dcldx)(AxXY°AE, is the gradient energy term.

PROBLEMS

; ; ; £
6.1 For pure, liquid copper at its melting pout, wh‘at is the Gibbs frf.ed en;:rrizliﬁs
' formation of a spherical crystalline cluster of solid (a nucleus of solid) o
5,7, 10A? o
Estimate the concentration of such nuclei (r = 5,7, 10 A).
For copper:
Melting temperature = 1083°C
N~y = 200 ergsfem?
teat of fusion = 3120 cal/mol ‘ . o
l’\(‘-r‘m'nr that the molar volume is 7.0 em?/mol for both solid and liquid.
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6.2 In experiments on homogeneous nucleation, it hias been found that solidification

6.3

64

6.5

of many pure metals can be suppressed (o a temperature where AGU/ET, the
exponential term in the nucleation equation, reaches a value of about 30. Assum:
ing that copper is such a metal, estimate the value of the liquid-solid interfacial
cnergy using the following data.

DATA

Melting point = 1356 K

Entropy of fusion = 2.29 cal/(mol-K)
Specific volume = 7 cm®/mol

Maximum observed supercooling is 236 K

What is the radius of the critical-sized nucleus of solid copper at 236 K below
the melting point using the information in Problem 6.27

The temperature at which nuclei of solid water (ice) form homogeneously from
undercooled water is —40°C.

(a) What is the critical radius of the solid water nuclei at this temperature?
(b) Why do ponds freeze when the temperature is just a few degrees below the
equilibrium freezing point (0°C)?
DATA

Interfacial energy between solid and liquid water is 25 ergs/cm?,
Latent heat of fusion of ice is 335 J/g.
Density of ice is 0.92 g/em®.

A metal (m) being deposited on a solid oxide surface (s) from the vapor (v)
condenses as spherical caps. The contact angle 6 is 90°, as indicated in the
accompanying diagram.

(a) What is the relationship between the surface energy of the solid surface (y,,)
and the interfacial energy between the metal and the surface (y,,)?

(b) Derive an equation for the critical radius size of a nucleus of the metal as
a function of the surface energy of the metal (vy,,,) and the volumetric change
of Gibbs free energy (AG,).

(¢) Derive an equation for the Gibbs free energy of the critical nucleus as a
function of the surface energy of the metal (y,,,) and the change of Gibbs
free energy per unit volume (AG,).

Metal (m)

bevrrwwawwyrandperssherry

Solid owide (1)

6.6 Cylindrical particles of a metal

Problems 189

are being grown on the flat surface of the same

i i i tant (a). (This could represent the
metal. The height of the particles is cons ( )'on i

i nati
wth of a new layer of atoms.) Derive an eq '
tgl:: particles and for the critical free energy change nf?cessary for tthhe,- nutc;:;eatl(:;
of the particles in terms of the solid—vapor interfacial energy, the en Py

" sublimation, and the specific volume of the metal.

=




Chapter 7

Reaction Kinetics

The principles discussed in the preceding chapters can now be combined to study
the rates of change in various chemical and physical systems. This is the study of
reaction kinetics. In this chapter, we consider reactions of three different types:
homogeneous reactions in fluids, solid state reactions, and heterogeneous reactions.

In homogeneous reactions, the reactants and products exist in the same phase—
for example, two gases reacting to form a third gas. In heterogeneous reactions, the
reactants and products exist in different phases. An example is the reaction between
gaseous oxygen and solid aluminum to form solid aluminum oxide. Solid state reac-
tions, as the words imply, are reactions in which the reactants and products are in
the solid state. The kinetics in solid state reactions differ from the other two classes
because of the relatively low mobility of the reactants and the products. An example
of this type of transformation is the recrystallization of a cold-worked piece of metal
to form relatively strain-free grains. Another is the growth of crystallites in an amor-
phous polymer, or a glass.

Before studying the individual reaction types, we will review the terminology
used in the study of chemical reaction kinetics.

191
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7.1 RATE OF REACTION

Wy

Consider the following reaction in which ““a”" mofes of niierial A react with “‘b*'
moles of B to form ‘¢’ moles of C and “‘d”’ moles ol 1),

aA + bB = cC + dD 7.1

The number of moles of C at any time after the reaction has begun (n,) can be
expressed as follows:

ne = n2 + ct (7.2)

where £ is the extent of the reaction.
In general form, Eqgs. 7.1 and 7.2 are written as Eqs. 7.3a and 7.3b:

0

Il

> v (7.32)

i

;= ni + vk (7.3b)

I

n

where v, represents stoichiometric coefficients (negative for reactants, positive for
products).
Take as an example the following situation:

3A + B = C + 2D
1 1 0 0 Before reaction (n})
1 — 3¢ 1-& 3 2¢  After reaction (£)

The rate of reaction R is defined as the rate of change of & with time.

g = 48

= 7.4
7 (7.4)

The rate of change of the number of moles of species i can be written as follows:
— =y =2 (1.5)

If species involved in a chemical reaction are contained in a volume (which is
assumed to be constant), Eq. 7.5 can be written in terms of concentrations:

& ol

Py
lag_ 1dc 4
Vd v odt

————

FoREE UERENSE BT RSROERY LARTEOY . Fpr

7.2 ORDER OF REACTIONS

When reaction rates are determined experimentally, it is often found that the CXPros:
sion for the rate or the extent of reaction can be expressed in the following way':

‘l/% = kC2CB or k[AJ*[B]P 1.7)

The exponents of the concentrations,  and B, are called the orders of the reaction.
In this case the reaction would be called ‘‘of order a’’ with respect to A, ‘‘of order
(3"* with respect to B, or “‘of order « plus 3’ overall.

As an example, consider the dissociation of hydrogen iodide into hydrogen and
iodine:

2HI — H, + 1,
For this reaction it has been found experimentally that

_dHY
— = kHI

Because of this relationship, this decomposition is a second-order reaction. It is
important to note that the order of a reaction is not necessarily related to the stoi-

chiometric coefficients (a, b, c, d). For example, the reaction of ozone to form oxygen
can be written as follows:

20, — 30,

If the reaction were an elementary bimolecular reaction, it would be expected to
be second order with relation to ozone as follows:

_d[0;] _ "
o k10
Actually, measurements have shown that

dt (0]

'The square bracket notation for concentration—for example, [C] for the concentration of
C—will be used interchangeably with the symbol C..

9%
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This suggests a much more complex reaction path for the formation of oxygen
from ozone. One explanation might entail the assumption that ozone breaks down
into oxygen and monatomic oxygen in the following reaction:

ky
0,2 0,+0
k-

Further assume that this monatomic. oxygen reacts with ozone to form two
diatomic oxygen molecules.

0 + 0, — 20,
k,

If the first reaction proceeds rapidly so that equilibrium is achieved, then the
equilibrium constant for the reaction will be:

[0,]

=K
(o1 = K15,

k

where K = EL (see section 7.3)
e |

And for the second reaction we will have

_ d[oj]

i lOl0:]

'Then the overall reaction rate can be expressed as follows:

_d0g] _ _ . OF
2 = kIONO. = kK (55

‘i is one explanation for the form of the experimentally determined rate of the
reaction,

‘I'he important point made by the example above is that the order of reaction it
ot necessarily related to the stoichiometric coefficients.

"The order of a reaction with respect to a particular component can be determine
from experimental data. The data needed are the concentrations of that component
as a function of time in the reaction of interest. As an example, consider the reaction
of A and B to form another compound. The rate of reaction is expressed by T, 7.7

1 d§ R
o R TA TR
vV di KIAT'IE)
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Our task is to determine a, the order of the reaction with respect to A, from data.
Let us assume that the data are reliable and accurate enough to determine the slope
of the plot of [A] versus time, d[A}/dt. From Eq. 7.6,

7223

liz_M_kAuBﬁ
V@ e [A]°[B] (7.8)

Taking the logarithm of both sides of eq. 7.8,

ln<—£-g:—l>=lnk+[31n[3]+aln[A]

Assuming that [B], the concentration of B, does not change appreciably during
the reaction, the slope of the graph of the logarithm of (—d[A1/df) versus the loga-
rithm of [A] is a, the order of the reaction with respect to A.

7.3 EQUILIBRIUM CONSTANTS: RELATION TO REACTION
RATE CONSTANTS

Consider the reaction of a molecule dissociating to form two ions:
MX — M* + X~ (7.8)

The equilibrium constant for this reaction (considering all the species to be present
as ideal solutions) would be, in terms of concentrations:

_ MY

K
[MX]

(7.9)

If we think of this reaction in kinetic terms, we can define a reaction rate constant
in the forward and reverse directions (f * and f ~). Assuming first-order kinetics, the
rate of change of the concentration of the molecule MX is

f+
MX =2 M* + X~ (7.10)
-
d[MX] i R w8
A = *IMX] + £ IM*[X"] (7.11)

A equilibrivm, the gt of change of the concentration of this salt will be zero;
Ill*ll(‘l',
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dMX] _ 0

g7 (7.12)
fHIMX] = fTIMT]XT] (7.13)
MX] £
[MX] I
which implies
j; = Koquitibriun (7.14)

'I'he ratio of the forward and reverse reaction rates is the equilibrium constant.
Thus we can conclude that chemical equilibrium is not necessarily a static situation.
Rather, we can view it as a balance between forward and reverse reaction rates so
that the concentration of the various species remains constant, but the form of the
individual chemical reactants and products may change with time. In the solid state,
lor example, we have the formation and annihilation of Schottky defects. Schottky
defects may, through time, be formed and destroyed at various sites in the crystal.
Bt at cquilibrium, the product of the concentrations of vacancies on the anion and
cntion sites is constant, [Vy,] X [Vx] = K. At equilibrium, the rate of formation of
the defects must equal their rate of annihilation.

7.4 FIRST-ORDER REACTIONS

An example of a first-order reaction is the decomposition of material A into a product
(or products). As a simplification, let us first treat a case in which only the forward
renction (from the reactant to the product) is important. This means that the reverse
ite, [ is nepligible in comparison with the forward rate, f *. Said another way,
{he equilibrium constant is large; that is, the reaction strongly favors the product or
products, Because the reaction is first order, reaction rate and concentrations are
related as follows:

A = products

ltom
1d¢ 1&g
vV dt v, dt

1l dIA]
Vot it

with 1y |
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If the reaction is first order:

e

d

1
V- k[A] (7.15)

[

t
Thus, the simple differential equation relating concentration and time is

_diAl

A k[A] (7.16)

Assuming that the concentration of material A at time zero is [A,], the integrated
form of the equation can be derived as follows:

[A]EJ_L".\_]__. ——kft

tagl [A] 0 a

al _
n[AO] kt

[A] = [A,] exp(—ki)

1
(7.17)

A good example of this kind of reaction is the decay of a radioactive species. In
this case the relationship between the number of moles of the radioactive species
present at any time (V) and the amount originally present at time zero (M) is:

N = N, exp(—\f) (7.18)

where \ is called the decay constant.

By taking the natural logarithm of both sides of Eq. 7.18, we can see that a graph
of the natural log of the number of moles of the species present at any time versus
time will be a straight line with the slope negative A.

InN=InN, — Mt

In the case of radioactive species, this decay constant is often expressed in terms
of the half-life of the species (7), the time in which the concentration is reduced to
half the original concentration. In this case N/N, = 1 thus:

1
) = eXp(—AT)

3 "\]‘()\’I‘) or A In 2



198 Chapter 7/Reaction Kinetics

Substituting in Eq. 7.18:

1 tr
N=N2"" o N=N, (E) (7.19)

An application of Eq. 7.19 is in the carbon dating of archaeological samples.
(arbon-14 is a radioactive isotope of carbon with a half-life of 5760 years. Cosmic
radiation in the upper atmosphere synthesizes carbon-14, which balances the loss
due to radioactive decay. Living matter exchanges carbon with the atmosphere and
maintains a level of carbon-14 that produces 15.3 disintegrations per minute per
pram of carbon contained. Dead organisms no longer exchange carbon with atmo-
spheric CO,, and the amount of carbon-14 in dead material decreases with time as
a result of radioactive decay. As an example, let us calculate the age of an archae-
ological sample that undergoes 10 disintegrations per minute per gram of carbon in
(he sample. Because we are dealing with a first-order reaction, the rate of disinte-
pration is proportional to the amount of carbon-14 present. Hence:

N 10
— = —— = 0.65
N, 153
From Lig. 7.18,
In L. —\ =In 0.65 = —0.43
N,
From the definition of the half-life,
[o2 2
AN=InE=In——=123 X107 =1
- T:/lnfr "8 year
Ilence, the d?;e of the sample is about
4
i = 3530 years,

=123 x 10

hetter stated as 3500 years, considering the accuracy possible in these measurements.

7.5 FIRST-ORDER REACTIONS WITH FORWARD

AND REVERSE RATES
Section 7.4 dealt with the type of fivst order waction, such as radioactive decay, in
which the Torward rate dominmtes. 1 b o imagine that proeess ol tadioactive
decay reversing isell spontianconnly

7.5 First-Order Reactions with Forward and Reverse Rates 199

In this section we consider a first-order reaction in which both the forward and
reverse reactions must be considered. We will demonstrate that the rate of a reaction
(the reaction rate constant) depends on the driving force (the decrease in Gibbs free
energy) when the driving force is small compared to RT, as in the case of nucleation
or diffusion. The reaction rate will be independent of the magnitude of the driving
force when the driving force is large compared to R7, as in radioactive decay or
oxidation reactions with large values of AG.

Consider the reaction below.

f+
A=2B (7.20)
I

If we assume first-order kinetics for both the forward and reverse reactions, then:

_diAl

o - TIAl=STIAl - fTIB) (7.21)

At equilibrium, the rate of change of the concentration of A, [A], is zero, hence:

7Bl _ o _ _AG® _ _ P g
ST exP( RT)_exP( RT

where [A], is the equilibrium concentration of A.
Substituting in Eq. 7.21 yields

~[A] = f* ([A] - % [B])
e (7.22a)
; [Al. [B]
e A = + 1 ey R S
[Al = f ( B, [A]) [A]

If we want to use the simple form of the kinetic equation derived in Section 7.4
(Eq. 7.17), we can substitute as follows:

Al, [B
f=r (1 + %%) (7.22b)

To put this expression in terms of the Gibbs free energy, or chemical potential
change involved i the reaction, we can make the following substitutions:

(LN ps bORT I ay
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Assuming, ideal solutions,

Na

= X and X
R PR

The concentration of A, [A] = N,/V, where N, is the number of moles of A and
V is the volume. Thus:

Vv
pa = pg + RT In {[A] (m)}

The term V/(N, + Np) is the molar volume, V. Setting the molar volumes of A
and B each equal to the overall molar volume,

pa = p3 + RT, ([ALY)

or

_1 Pa — WA
[A] = v &P (——-—————RT >

The same is true for component B.
Then:

B B~ M Pa ~ M) _ P~ M _AG®
E—Al]=exp (*"“—“‘u RT“)GXP (“—‘——RT )——exp (—"‘“‘—“BRT )exp( RT)
Bl _ ,_ (_AG
HxI'K"e"p( RT)

e B
Bl _ . (wg ;»A) Bl

Al RT ) IAlL

Hence,

Substituting in Eq. 7.22b, we have

~[A] = f* {1 ~ exp (—“ﬁ—RF]:‘—”A)} [A]

Thus the first-order rate constant is

f=F* {1 — exp (%}*ﬁé)} (7.23)

Ot EHDVRAUGE NGACUIOTE WIHIE COFWRTG Q00U IKoverse [iws 401

This expression is sometimes written in terms of the driving force for the reaction
AG,, or p, — Wy, which is the negative of the AG of reaction as normally written,

f=rt {1 — exp (-— %%)} (7.24)

When the driving force for the reaction is large (i.e., AG is large as compared (o
RT), the exponential term in Eq. 7.24 becomes negligible compared to 1 and the
overall reaction rate is simply the forward rate as in Section 7.4.

f=ft {1 — exp (__ _Al_g.r)} = P (7.254)

One such case has already been discussed, that of radioactive decay. Another
illustration is the oxidation of silicon to form silicon dioxide. At 900°C (1173 K),
the AG® for the reaction is about —700,000 J/mol. The term AG®/RT is about 72,
and exp(—AG°/RT) is about 6 X 10~%2, Thus the frequency of the reverse reaction
is negligible, and the overall reaction rate is simply equal to the forward reaction
rate.

By contrast, when AG, is small compared to RT, Eq. 7.24 becomes (noting that
exp x = 1 — x when x is small):

el L AG
f=r {1 1+RT}

f=f* {%%} (7.25b)

In many condensed state reactions AG, is indeed small compared to RT. Grain
growth in a solid is one example. In a solid with an average grain size of 0.1 mm,
there is about 300 cm? of grain boundary per cubic centimeter of material. The
driving force for grain growth is the reduction of total interfacial energy. Assuming
a specific interfacial energy of about 300 ergs/cm? gives a total grain boundary
energy of the order of 10° ergs per cubic centimeter of material, or about 0.1 J per
mole of material, assuming a molar volume of about 10 cm*mol. The term AG/RT
at a temperature of about 900 K is about 3 X 1075, a value small compared to 1,
This means that the reaction rate for grain growth takes the form of Eq. 7.25b. The
reaction rate depends on the magnitude of the driving force in the case at hand. There
is no universal rate that characterizes grain growth in a particular material, The
recrystallization of cold-worked material is another example. The degree of cold
work (or amount of energy stored in the lattice distortion) will influence the reaction
rate as the material recrystallizes to form stress-free grains.
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As another example, consider the process of didfuston an i rei tiong, I this cane,
we think of the reaction as the jump of atoms from one lattice position to another,
a movement through a distance N, The velocity of the atom 14

v=f\ (7.260)

where f is the *‘reaction rate.”’
The flux of diffusing atoms is

J=vC = f\C (7.26b)

where C is the concentration of the diffusing species. Expressing the reaction ratc
according to Eq. 7.25b because the term AG,/RT is small, we write

. [AG,
r=s- {82

Substituting for the chemical potential and assuming ideal solutions:

TIln C
AG, = _<§E) Ax = _<‘_9_'i> % = ,~<§(_I?__E__)) A
ox Jy ox Jp ox i

At constant T,

Thus the reaction rate approach yields a relationship that is parallel to Fick’s first
law, where the diffusion coefficient D is

D =f*"\ (1.27)

7.6 HIGHER ORDER REACTIONS

The mathematical representation of the kinetics of higher order reactions is a straight-
forward exercise in calculus. For a second-order reaction of the form

2A = products (7.28)
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the differential equation relating concentration and time is:

_ dIA]

n k[A)? (7.294)

In integrated form this yields:

—— = (7.29b)

Consider a second-order reaction involving reactants A and B:
A + B = products
The reaction rate equation is:

] =
5 = TkIAIBI (7.30)

The integrated form of the Eq. 7.30 depends on the relationship of the initial
concentrations of A and B, [A,] and [B,]. If [A,] = [B,], then:

1 _ 1 1 _ b
RS R T (3D

If the initial concentrations of A and B, [Ay] and [B,], are different, then:

[A] [B]
i) = in 22 ) = - _
n ([Ao]) In ([B0]> k([Bo] — [AoDt (7.32a)

An interesting special case arises when one of the reactants, B for example, is
present in very much larger concentration than A. During the reaction, the concen-
tration of B will not change much, i.e., [B] = [B,] or [BJ/[B,] = 1. Eq. 7.32a then
becomes:

[A]
[Aol

In = —(k[Bo])t (7.32b)

The reaction, thus, becomes essentially first-order with respect to A. The rate
constant is k[B,]. (See text following Eq. 7.8.)
For third-order reactions of the kind:

3A = products (7.33)
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The corresponding equations are:

— == = k[A] ‘ (7.340)

1 1
e (7.34b)

7.6 REACTIONS IN SERIES

In this section we consider a situation in which two reactions may take place in
series. Material A reacts (or decomposes) into material B, which in turn forms mate-
rial C. Diagrammatically this can be shown as

f
A N s B Sz C
[A,] 0 0 Initial concentrations
[A] [B] [C] Concentration during reaction

Through the mathematical manipulations to be shown, we will illustrate that the
overall rate of reaction A to C will be governed by the relative rates of reaction f;
and f,. The slower of the two will control the overall reaction.

For simplicity, assume that the reactions are all first order, and that at zero time
the concentration of A is [A,] and the concentrations of B and C are zero. The
differential equations that govern the concentrations of the various species are as
follows:

_dial _
= = flA] (7.353)
d[B
- —-Eh] = —f,[A] + £[B] (7.36a)
diC) _
=== i8] (7.37a)

The integrated forms of these equations are:

[A] = [Ao] exp(—fi0) (7.35b)

51 = - h 1A exp(~£i0lexpCf, = £ = 1] (7.36b)

[C] = [A,] [1 il exp(—fif) + h exp(—fzt)] (7.37b)
L= h Hh—h

e S e e R ey

In the first case, consider the situation in which the reaction rate for A to B (/.
is very much slower than f,, the reaction between B and C. In this case the conceri
tration of material C becomes:

d[C
[C] = [Aolll — exp(—fi)]  or 7%[1 = fi(Ad = [CD (708

This illustrates that reaction from A to C is controlled by the reaction rate constin

/,, the reaction from A to B.

In the second case, assume that the reaction rate constant from B to C (/) it
slower than the one from A to B (f}).

d[C ‘
[C] = [AGl[l — exp(—=f0]  or —Ezt‘l = LAl = [CD (739

The foregoing is an example of what is often called the bottleneck principle. 'Thi:
implies that in a series of reactions, the overall rate of reaction is controlled by (I
bottleneck rate, that is, the slowest rate in the series.

7.8 TEMPERATURE DEPENDENCE OF REACTION RATE

One of the factors that can be used to control the rate of a reaction is the temperatu
at which the reaction takes place. Usually higher temperatures mean faster reactiol
rates.

The seminal work on the subject was that of Arrhenius in the latter part ol th
nineteenth century. He observed that the rate of change of the equilibrium constan
for a reaction with temperature could be expressed as follows:

d(n Ka) _ AH

ar RT? (7.40

But, as we have shown, the equilibrium constant can really be thought of as th
ratio of two reaction rate constants, the forward and the reverse reaction rates (K
= f*/f7). It was thus a reasonable assumption that these individual reaction raic
should follow the same basic mathematical form:

or dinf*)y=——d |z

d(nf*) _ E* E* (1
dT  RT? R\T

where E* is called an activation energy. Integrating the equation yields:
%
Inff =Aexp|— — (7.41
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From B, 741 it is apparent that a graph of the natucal logarithm of the reaction
rate constant as a function of inverse absolute temperature shioukd be a steaight line
with a negative slope of the activation energy (£) divided by R, the universal pas
constant. The preexponential factor A is sometimes called the frequency factor.

One way of looking at this is to consider a chemical potential barrier between the
reactant A and its decomposition products (Figure 7.1). We can think of a pseudo
equilibrium between the material A and A*, where A* is an activated complex on
the path between A and its decomposition products.

The equilibrium constant relating the concentration of this activated complex to
the concentration of the reactant is:

__(Act ,
K= (A] = exp< RT) (7.42a)

where AG* is the Gibbs free energy of formation of this activated complex from the
reactant A.

The forward reaction rate is determined by the concentration of the activated
species, [A*], and the decomposition frequency, fe.

f* = [A%f°

This yields an equation of the form:

g _Acry _ . As* _Am*
fr=f exp( RT)*f exp(R)exp( RT) (7.42b)

A*

Activation

Gibbs free energy —>

Reaction path —>

Figure 7.1 Schematic diagram of activation energy
along reaction path,
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The decomposition rate of the activated complex is governed by its vibratio
pattern, By a consideration of the energy required to disintegrate the complex it ca
be shown that the decomposition frequency, f°, is kT/h, where k is the Planck con
stant and k is the Boltzmann constant. Based on this approach, the reaction rat

constant, ', is:
AS*\ kT AH*
+ o SenlinilEN | it — 7.42»

f exp<R>hexp<‘ RT) Wit

The rate constant, using the activation energy approach, is then dependent o
temperature as follows?:

AH* 0
+ = - = 42
f 06Texp< RT) or Texp( RT) (7.42d

One may also derive the temperature dependence of the reaction rate constant i
gas reactions by postulating that molecules that undergo a collision with energ
greater than a specified level, E*, will react. Consider a reaction in which two mol
ecules of A form another compound. The collision rate of two molecules of A pc
unit volume, N, A/t is:

Nan _ _, (4mkT\"™
2 = o} ( o) (7434

where o, is the diameter of the molecule, and M, is the mass of the A molecule.
In terms of temperature, this equation is of the form:

ﬂt“ﬁ o T2AP (7.43t

If we postulate that only collisions with energy greater than E* will result in
reaction, then the reaction rate constant will be of the form:

f1 o< T exp B (7.43¢
RT

We thus have three forms of the temperature dependence of the reaction ra

constant, f *. We can express f * as:

+ = 7.44
fT o< T™exp “RT (7.44

?The terms AH* and E* will be used interchangeably in this section.
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The value ol the Tactor mocan be between zeto nid onie Taking the logarithm ol
Fq. 7440 and differentinting with respect (o lemperitiee
| o
Inf"=mnt 7.44b
J R ( )
dlnf* m  E* mRT - E*
! =R s S (7.44¢)
dar T RT RT?

If we note that mRT is usually much less than E*, it becomes apparent that the
temperature dependence of the reaction rate constant can well be approximated by
the Arrhenius form of Eq. 7.41.

7.9 HETEROGENEOUS REACTIONS

Most studies concerned with chemical reaction rates deal with homogeneous chem-
ical reactions, that is, reactions occurring within a single fluid phase. However, many
of the reactions of interest to materials scientists and engineers are heterogeneous;
that is, reactants are initially present in different phases and therefore have to react
at a phase boundary. These heterogeneous reactions take place by way of a series
of consecutive steps. Consider the simple reaction of a gas dissolving in a metal—
for example, hydrogen dissolving in aluminum (Figure 7.2a). The overall reaction
(Figure 7.2b) may be written as follows:

H, (gas) = 2H (in solution)

This expression represents the stoichiometry of the equilibrium involved. It does
not, however, express the mechanism of the reaction, which consists of a series of
consecutive steps.

1. The transport of hydrogen molecules by diffusion (or convection) in the gas
phase to the gas—metal phase boundary.

2. The adsorption of hydrogen molecules on the surface of the aluminum.

3. The decomposition of the adsorbed molecules into adsorbed hydrogen atoms.

4. The solution of adsorbed hydrogen atoms into the aluminum at the gas—metal
phase boundary.

5. The transport of the dissolved hydrogen atoms away from the phase boundary.

In principle, all these steps can be regarded as limiting the rate of the overall
reactions. They act as resistances in series. In practice, however, it is usually one
step that is slow enough (the bottleneck) to effectively determine the overall rate of
reaction. (This was illustrated in Section 7.7.) In the example cited, possible rate-
limiting steps include the transport of hydrogen to the gas~metal interface or away
from the interface into the metal, and the surface reaction itself.

Because each of these consecutive reactions has its own activation energy, hence
its own temperature dependence, the rate-limiting reaction may vary as the temper-
ature is varied, or as other physical parameters are varied.

e
ey

T

Flow in x direction

Surface of aluminum
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Flow

X

(a)

CHZ(G) or [Hylg

2

5
Cy(s) l

s

CHZ or [HZ]G e

(b)

Figure 7.2 (a) Velocity of flowing gas as a function of distance from
the surface. (b) Concentration of hydrogen as a function of distance

from the surface.

As an example, consider the situation of diffusion to the gas—metal interfu

.; Assume, for the time being, that the hydrogen is contained in a carrier gas such
argon. The diffusion of hydrogen to the surface may well be controlled by the d
fusion of the hydrogen through a boundary layer (Figure 7.2) which is in turn depe
dent on the flow rate of the gases over the metallic surface as follows:

Ju, =

Ju, =

2

)

]
Dy, i .

_DH2 {[H2]S ; [H2]G} 45'% = ’:’3

- 2o (), - ) (.

- irh] Y



In this case the temperatire dependence of the reaction rate would not be of the
Arthenius form (g, 7.41), The temperatuee dependence s detenmined by the rate
limiting step, the diffusion through the boundary Tayer. In that case the rate depends
on 7%, as discussed in Chapter 2 (Section 2.14),

The oxidation of silicon by an oxygen-containing gas provides an interesting,
example (Ref. 1). Figure 7.3 illustrates the oxygen concentration and chemical poten-
tials after some silicon dioxide has been formed. The rates of oxygen movement or
consumption in the three phases present are:

Fy = h(pe — ) [in gas]
F,=D Es—g—t”l [oxide]
Fy = kp, [at metal-oxide interface]

Gas Oxide Metal

C02

Gas Oxide Metal

Ko,

Hy

Fp—> Fp—>  Fg—>

Figure 7.3 Concentration of oxygen (C,,) and
chemical potential of oxygen (po,) in the oxi-
dation of silicon metal.
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Al steady state, F, = F, = F,. We have established that the slowest step will
limit the rate of reaction. In this case, it is known that F, is fast compared to F, and
F,. This simplifies the situation, as shown in Figure 74.

Because F, = F,,

Dps = ) _
x
and ., = W, and p is
Dps _ _ WBe

M= +D kD + 1

An expression for F, is then:

_ e D B
F=D=——=7% " T+ D
_~Dkl1'0
i s

But F, is the rate of growth of the silicon dioxide layer

dx

F,=—
2 odt

where N is a constant related to the volume change from silicon to silicon dioxide.

Gas Oxide Metal

Hs

L]

POZ

My

Fg s>
F3—>

Figure 7.4 The chemical potential of oxygen in
the oxidation of silicon metal with very fast dif-
fusion in the gas phase relative to transport in
the oxide or reaction at the oxide-metal
interface.
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Then,

d\ i I“,; Dy
di N NItk

(D+kx)dx=9~’;—v*fﬂdz

Integrating, we have

; _kalcf
J;(D-f—kx)dx—— N Odt

k Dk,
Dx + =2 = —=2
X Zx N t
2D 2D .,
[ R Mpeeut Vi asanl
P N £=0

This equation is of the form:
x>+Bx—Cr=0

where B = 2D/k and C = ZQA-,*-”E

o TB+ @ +ach
2

B ¢ 12
*72 [( 32/4c) 1]

Now consider two cases. In case I, ¢t << B¥4C. Then, (1 + &) =1+ &/2

and the thickness x is linear with time; that is, the reaction rate is constant.
In case II, where ¢ >> B*/4C,

B ¢ 1/2
¥=2 [32/4(:] = "

2D pg

x2=Ct= t

The thickness x is parabolic with time; that is, it is a function of the square root of
time. This is illustrated in Figure 7.5.
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Slope = 0.5

Inx

Int s

Figure 7.5 Thickness of oxide (x) versus time for the oxidation of
silicon metal.

In the preceding example, the rate-limiting step changed during the course ol
reaction, and the rate changed accordingly.

7.10 SOLID STATE TRANSFORMATION KINETICS

Many of the reactions of interest to materials scientists involve transformationt
the solid state, reactions such as recrystallization of a cold-worked material,
precipitation of a crystalline polymer from an amorphous phase, or simply the groy
of an equilibrium phase from a nonequilibrium structure, the driving force for wh
is brought about by cooling from one temperature to another. Consider the ini
phase to be a and the resulting phase to be B; the reaction is thus written:

a—>B
The total volume of the sample is the sum of the volumes of o and 3:
V=V + VP (7.

The fraction transformed is simply:
B
F = ..‘{-- ('7‘
vV

Assume that the process of transforming o to B is controlled by nucleation
growth, that is, the nucleation of phase B within a and then the rate of growth o

2%



Consider that;
N = nucleation rate per unit volume
G = growth rate in one direction = dr/dr (assuming spherical form of )
Referring to Figure 7.6, consider the time line from zero to a time, 1. We will

consider another measure of time (1), which starts when a nucleus is formed. The
number of nuclei formed in the differential time dr is equal to

NVedq

Assuming that the particles nucleated in this time dt grow as spheres, the radius
of the particles formed during dr, after they have grown to time ¢, is:

err = J:Gd'r
r=G@t—1) (7.48)

The volume of the particle nucleated during dr at time ¢ is:

dve

Il

LGP — 1PV

I

dVP = $nGN(V — VB)(t — 7)%d7 (7.49)

Early in the transformation, when V® is small, VP can be considered negligible
with respect to V. In this case, the fraction transformed may be calculated as follows:

vB ¢
[ ave = [ smcoive - wpas

0
Ve =V Gt
Ve .
P == g G (7.50)

el
0 I__)T !

Time —>

Figure 7.6 Definitions of ¢ and 7 for derivation of solid state
transformation equations.
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To treat the regime beyond the early fransformation, we adopt what is cal
extended volume concept. In this case we separate the nucleation and prowt
from geometrical considerations such as impingement. The extended volum
is the volume that would have been formed if the entire volume had particip
nucleation and growth, even that portion transformed (V). In this case,

i

dve = VEnGPN(t — 7)’dr

Ve

[

tnv L GN(@ — )

But the total volume is equal to the sum of the volumes of « and {}:
V=ve+ VP

ve Ve
Z=1-—=1-F
AT

where F = V®/V.
The amount of B formed, dV?, is the fraction of o times dV!!

VB
B = ——— V‘?
av (1 V>d 5

Integrating Eq. 7.52,
74
VE=~-Vn|l -V = ~Vin(l — F)

Combining Eqgs. 7.53 and 7.51 yields:

t

~In(l = F) = §w f G*N(@ — 7ydr

0

If G and N are constant,
~In(1 — F) = $nG°N fo (t — 7dr = -giczwz«
F=1-—exp (—§G3Nt‘>

The resulting equation relating the fraction transformed to nucleation rate, |
rate, and time is called the Johnson—-Mehl equation.
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A similar treatment of the subject is given by Aveamit In general he expresses

the fraction transformed as
F =1 - exp(- k") (7.55)
where # is called ‘‘the Avrami n.”’

The variation of n from 4 (in the Johnson-Mehl equation) can occur for a number
of reasons. In some solid state reactions, the nucleation rate is a decaying function
of time. In that case the Avrami n would be 4 early in the reaction, but decreasing
to 3 as the nucleation decreases as a function of time, and the transformation is
governed strictly by the growth rate. In general, for three-dimensional solids, the
Avrami n is between 3 and 4.

In the case of growth of a phase in two dimensions such as in a sheet or a film,
the Avrami 7 is between 2 and 3. In the case of wire, a one-dimensional solid, the
Avrami #n is between 1 and 2.

To determine the value of the Avrami n from Eq. 7.55, the following mathematical
manipulation is performed:

F =1 — exp(—kt")
| — F = exp(—kt")
In(l — F) = —kt"
Inln(l —F)=mmk—nlnt

Thus the Avrami n is the slope of the plot of the logarithm of the logarithm of
(1 — F) versus the negative of the logarithm of t.
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PROBLEMS

7.1 In a diffusion experiment, radioactive copper (**Cu) is plated on one end of a
sample and then ‘‘diffused”” by heating in a furnace for a specified period of
time. The concentration of copper-64 as a function of distance is determined
by taking thin slices of the sample and counting the rate of isotope decay in
them.

The last slice is analyzed 4 hours after the first. What correction factor must
be applied to the last reading to make it comparable to the first?
The half-life of **Cu is 12.8 hours.

R St s B oo

7.2

7.3

74

7.5

7.6

7.7

How many disintegrations occur per minute in a sample containing | gram
2351J7 The half-life of 25U is 7.04 X 10® years.

The decay rate of the isotope carbon-14 (*C) is often used to establish the d:
on which carbon-containing matter died. In the upper atmosphere, cosmic ri
ation synthesizes '“C. This process balances the loss of 14C through radioacti
decay. Living matter, which exchanges carbon with atmospheric carbon dio
ide and maintains its “C level, produces 15.3 disintegrations per minute |
gram of carbon it contains. Dead organisms no longer exchange carbon wi
the atmosphere, and the '*C content decreases with time because of radioacti
decay.

A 0.5 g sample of a plant from an excavation shows 3.5 disintegrations |
minute from its **C. How long ago did the plant die?

A well-known generalization (rule of thumb) concerning biochemical reactio
near room temperature (300 K) is that their rates double for every 10 K rise
temperature.

(a) What is the activation energy for the reactions implied by this rule?

(b) In an experiment on one of these reactions conducted near room tempx
ature, the rate constant (k) is to be determined to an accuracy of =1
How accurately must the temperature be controlled to achieve at least tl
level of accuracy in k? State answer in * degrees kelvin.

The following statement appears on the side of a milk carton:

The contents will spoil in 8 days if stored at 5°C.
The contents will spoil in 12 hours if stored at 30°C.

If the mechanism and definition of spoilage remain constant in this te
perature range, how long will the milk remain unspoiled at 20°C?

An amorphous polymer fiber is being treated to form polymer crystals. Y
may assume that the fiber is thin enough to be treated as a one-dimensio
solid.

(a) Write an equation for the functional relationship between the fraction
the amorphous polymer that has crystallized (F) and time (£). Assume fl
the nucleation of crystals is homogeneous and that the rate of nucleati
is constant. Assume also that the rate of crystal growth is constant.

(b) After 1 hour of the treatment, 10% of the polymer fiber is crystalline. H
long will it take for 50% of the fiber to become crystalline?

(¢) Will your answer to part a be changed if the nucleation is heterogenco
and all the nuclei become active at the beginning of the transformati
(¢t = 0)? If so, how?

For simple decomposition reactions (i.e., those with no reverse reaction) |

“‘half-life’” concept yields a convenient equation for the amount of react;

remaining as a function of time:

N 1 tr
%= )
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