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1 Laws of thermodynamics

1.1 First and second laws of thermodynamics

Thermodynamics is a science concerning the state of a system when interacting with the
surroundings; it is based on two laws of nature, the first and second laws of thermodynam-
ics. The interactions can involve exchanges of any combinations of heat, work, and mass
between the system and the surroundings, dictated by the boundary conditions between
the system and the surroundings. The first law of thermodynamics describes those
interactions, while the second law of thermodynamics governs the evolution of the state
inside the system. Consequently, the combination of the first and second laws of
thermodynamics provides an integration of the external and internal parts of a system.

A system typically consists of many chemical components. The first law of thermo-
dynamics states that the exchanges of heat, work, and individual components with the
surroundings must obey the law of conservation of energy. In the domain of materials
science and engineering, the energy of interest is at the atomic and molecular levels. The
energies at higher and lower levels such as nuclear energy and the kinetic and potential
energies of a rigid body are usually excluded from the discussion of the thermodynam-
ics of materials.

Let us consider a system receiving an amount of heat, dQ, an amount of work, dW,
and an amount of each independent component i, dNi, from the surroundings. Such a
system is called an open system in contrast to a closed system when dNi = 0 for all
components, i.e. there is no exchange of mass between the system and the surroundings.
Other types of systems commonly defined in thermodynamics include adiabatic
systems, those without exchange of heat, i.e. dQ = 0, and isolated systems, those
without exchange of any kind, i.e. dQ = dW = dNi = 0.

The corresponding change of energy in the system, i.e. the internal energy change,
dU, is formulated in terms of the first law of thermodynamics as follows,

dU ¼ dQþ dW þ
X

HidNi 1.1

where Hi is the unit energy of component i in the surroundings, and the summation is
for all components in the system which can be controlled independently from the
surroundings, i.e. the independent components of the system.

It is self-evident that the left-hand side of Eq. 1.1 refers to the change inside the
system, while its right-hand side is for the contributions from the surroundings to the
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system. In principle, no matter how the heat and mass are added, or how work is done
to the system, as long as their summation is the same the change of the internal energy
from the first law of thermodynamics will be the same, indicating that for a closed
system the system always reaches the same state. The internal energy is thus a state
function in a closed system as it does not depend on how the state is reached.

On the other hand, for the purpose of easy mathematical treatment, a reversible
process can be considered for a closed system, in which the initial state of the system
can be restored reversibly without any net change in the surroundings. Therefore, the
heat transferred and the work done to the system are identical to the heat and work lost
by the surroundings and vice versa. The classic example of reversible processes is the
Carnot cycle, which is shown in Figure 1.1. It consists of four reversible processes for a
closed system. The four reversible processes are compression at constant temperature T1
(isothermal), compression without heat exchange (adiabatic) ending at T2, isothermal
expansion at T2, and adiabatic expansion ending at T1.

The Carnot cycle involves a simple type of mechanical work, either hydrostatic
expansion or compression, with the work that the surroundings does to the system
represented by

dW ¼ �PdV 1.2

with P being the external pressure that the surroundings exerts on the system and V the
volume of the system. It is now necessary to differentiate the external and internal
variables for further discussion, with the former representing variables in the surround-
ings and the latter representing variables in the system. For the isothermal processes in
the Carnot cycle, the entropy change of the system, dS, can be defined as the heat
exchange divided by temperature:

dS ¼ dQ

T
1.3

In addition to processes involving heat, work, and mass exchanges between the system
and the surroundings, there can be internal processes taking place inside the system. As
the system cannot do work to itself, the criterion for whether an internal process can
occur spontaneously must be related to the heat exchange, which is related to the
entropy change as shown by Eq. 1.3.

P

V

Tb

Ta

3

4

1

2

V2 V4 V1V3

Figure 1.1 Schematic diagram of the Carnot cycle, from [1] with permission from Cambridge
University Press.
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It is a known fact that heat will spontaneously transfer from a higher temperature (T2)
region to a lower temperature (T1) region inside a system if heat conduction is allowed,
and this process is irreversible because heat cannot be conducted from a low tempera-
ture region to a high temperature region spontaneously. Equation 1.3 indicates that for
the same amount of heat change, the entropy change at T1 is higher than that at T2, and
the heat conduction thus results in a positive entropy change in the system, i.e.

ΔS ¼ � dQ

T2
þ dQ

T1
¼ dQ

T2T1
T2 � T1ð Þ > 0 1.4

Consequently, the second law of thermodynamics is obtained, which states that for an
internal process to take place spontaneously, or irreversibly, this internal process (ip)
must have positive entropy production, which can be written in differential form as
follows:

dipS > 0 1.5

From the definition of entropy change shown by Eq. 1.3, the amount of heat produced
by this irreversible internal process can be calculated as follows:

dipQ ¼ TdipS 1.6

Let us represent this internal process by dξ and define the driving force for the internal
process by D. The work done by this internal process is thus Ddξ, which is released as
heat, i.e.

Ddξ ¼ dipQ ¼ TdipS 1.7

An irreversible process thus must have a positive driving force in order for it to take
place spontaneously.

1.2 Combined law of thermodynamics and equilibrium conditions

For a system with an irreversible internal process taking place, the entropy change in the
system consists of three parts: the heat exchange with the surroundings, defined by
Eq. 1.3, the entropy production due to the internal process, represented by Eq. 1.5, and
the entropy of mass exchange with the surroundings. The total entropy change of the
system can thus be written as follows:

dS ¼ dQ

T
þ dipSþ

X
SidNi 1.8

where Si is the unit entropy of component i in the surroundings, often called the partial
entropy of component i, which will be further discussed in Chapter 2.

Combining Eq. 1.7 and Eq. 1.8 and re-arranging, one obtains

dQ ¼ TdS� Ddξ �
X

TSidNi 1.9
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Inserting Eq. 1.2 and Eq. 1.9 into Eq. 1.1 yields the combined law of thermodynamics
from the first and second laws of thermodynamics,

dU ¼ TdS� PdV þ
X

Hi � TSið ÞdNi � Ddξ 1.10

The internal energy of the system is thus a function of the variables S, V, Ni and ξ of the
system, which are called natural variables of the internal energy, i.e. U(S,V,Ni,ξ). The
other variables are dependent variables and can be represented by partial derivatives of
the internal energy with respect to their respective natural variables with other natural
variables kept constant, as shown below:

T ¼ ∂U
∂S

� �
V ,Ni,ξ

1.11

�P ¼ ∂U
∂V

� �
S,Ni, ξ

1.12

μi ¼ Hi � TSi ¼ ∂U
∂Ni

� �
S,V ,Nj6¼i,ξ

¼ Ui 1.13

�D ¼ ∂U
∂ξ

� �
S,V ,Ni

1.14

In Eq. 1.13, a new variable, μi, is introduced. This is called the chemical potential and is
defined as the internal energy change with respect to the addition of the component i
when the entropy, volume, and the amount of other components of the system are kept
constant. It may be worth pointing out that for a system at equilibrium, i.e. dipS ¼ 0, and
with constant entropy, dS ¼ 0, if the system exchanges mass with the surroundings,
dNi 6¼ 0, then it must also exchange heat with the surroundings at the same time in
order to keep the entropy invariant as demonstrated by Eq. 1.8.

The pairs of natural variables and their corresponding partial derivatives are called
conjugate variables, i.e. S and T, V and –P, Ni and μi, and ξ and –D. There are minus
signs in front of P and D as the increase of volume and the progress of the internal
process decrease the internal energy of the system. The importance of this conjugate
relation will be evident when various forms of combined thermodynamic laws and
various types of phase diagrams are introduced.

The last pair of conjugate variables, ξ and –D, is worthy of further discussion. Based on
the second law of thermodynamics, i.e. Eq. 1.5, no internal processes take place sponta-
neously if there is no entropy production, i.e. D � 0 or dξ = 0 and D > 0. With D � 0,
there is no driver for any internal processes, and the system is in a full equilibrium state.
The last term in Eq. 1.10 drops off, and ξ becomes a dependent variable of the system and
can be calculated from the equilibrium conditions. With dξ = 0 and D > 0, the system
is under a constrained equilibrium or freezing-in condition when the internal process is
constrained not to take place, and ξ remains an independent variable of the system.

These two cases represent the two branches of thermodynamics: equilibrium,
i.e. reversible, thermodynamics and irreversible thermodynamics. It is clear from the above

4 Laws of thermodynamics



discussions that these two branches are identical if the internal energy is not only a function
of S, V, and Ni, but is also a function of any internal process variable ξ. This means that
one should be able to evaluate the internal energy of a system for any freezing-in equili-
brium conditions in addition to the full equilibrium conditions. In the rest of the book,
freezing-in equilibrium and full equilibrium are not differentiated unless specified.

As the mechanical work under hydrostatic pressure is very important in experiments,
let us define a new quantity called the enthalpy as follows:

H ¼ U þ PV 1.15

Its differential form can be obtained from Eq. 1.1 as

dH ¼ dU þ d PVð Þ ¼ dQþ VdPþ
X

Hi dNi 1.16

There are two significant consequences of the above equation. First, for a closed system
under constant pressure, i.e. dNi ¼ dP ¼ 0, one has dH ¼ dQ. This implies that the
enthalpy change in a system is equal to the heat exchange between the system and
the surroundings of the system, which is why enthalpy and heat are often used
exchangeably in the literature. Second, for an adiabatic system under constant pressure,
i.e. dQ ¼ dP ¼ 0, Eq. 1.16 can be re-arranged to the following equation:

Hi ¼ ∂H
∂Ni

� �
Nj 6¼i,dQ¼dP¼0

1.17

The quantity Hi is thus the partial enthalpy of component i and will be further discussed
in Chapter 2. The chemical potential of component i defined in Eq. 1.13 is thus related
to the partial enthalpy and partial entropy of the component.

To further define the equilibrium conditions of a system, consider a homogeneous
system in a state of internal equilibrium, i.e. no spontaneous internal processes are
possible with Ddξ ¼ 0 and Eq. 1.10 becomes

dU ¼ TdS� PdV þ
X

μidNi ¼
X

YidXi 1.18

where X represents S, V, Ni, and Y represents their conjugate variables T, �P, μi.
The state of the system with c independent components is completely determined by
cþ 2 variables, i.e. S, V, and Ni with i ranging from 1 to c.

To simplify the situation, let us limit the discussion to an isolated equilibrium system,
i.e. dU ¼ 0, and conduct a virtual internal experiment inside the system by moving an
infinitesimal amount of Xi, dXi, with other Xj kept constant, from one region of the
system to another region of the system as schematically shown in Figure 1.2.

dXi

System Surroundings

Figure 1.2 Virtual experiment for a system at equilibrium.
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As the system is homogeneous and at equilibrium, �dX0
i ¼ dX00

i ¼ dXi. The total
change of the internal energy for this internal process is the combination of the changes
in the two regions, i.e.

dU ¼ dU0 þ dU00 ¼ Y 0
idX

0
i þ Y 00

i dX
00
i ¼ �Y 0

i þ Y 00
i

� �
dXi ¼ 0 1.19

Therefore, Y 0
i ¼ Y 00

i for T, �P, and μi, indicating that T, �P, and μi are homo-
geneous in the system, respectively, and are thus named as potentials of the
system. Furthermore, these potentials are independent of the size of the system
and are often referred to as intensive variables in the literature. On the other hand,
all X, i.e. S, V, and Ni, are proportional to the size of the system and can be
normalized with respect to the size of the system, usually in terms of the total
number of moles,

N ¼
X

Ni 1.20

They are thus called molar quantities and are often referred to as extensive variables,
and the respective normalized variables are molar entropy, molar volume, and mole
fractions, defined as follows:

Sm ¼ S

N
1.21

Vm ¼ V

N
1.22

xi ¼ Ni

N
1.23

Consider a small subsystem in this homogeneous system at equilibrium and let the
subsystem grow in size. The entropy, volume, and mass enclosed in the subsystem
increase as follows:

dS ¼ SmdN 1.24

dV ¼ VmdN 1.25

dNi ¼ xidN 1.26

The corresponding change in the internal energy of the subsystem becomes

dU ¼ TdS� PdV þ
X

μidNi ¼ TSm � PVm þ
X

μixi
� �

dN ¼ UmdN 1.27

By integration one obtains the integral form of the internal energy as

U ¼ TSm � PVm þ
X

μixi
� �

N ¼ UmN ¼ TS� PV þ
X

μiNi 1.28

Similarly, the molar enthalpy can be defined as follows:

H ¼ U þ PV ¼ UmN þ PVmN ¼ Um þ PVmð ÞN ¼ HmN 1.29
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In the case when a potential is not homogeneous in a system, the system will not be
in a state of equilibrium. Let us consider the same virtual experiment as shown in
Figure 1.2 for an isolated system that is not in equilibrium, i.e. by moving an infinite-
simal amount of Xi, dXi, with other Xj kept constant, from one region of the system
to another region of the system with the two regions having different potentials. The
total internal energy change is equal to zero as the virtual experiment has dU ¼ 0.
Similarly, each region can be considered to be homogeneous by itself, and one has
�dX0

i ¼ dX00
i ¼ dXi. The total internal energy change in the system is thus the sum

of that for these two regions plus the entropy production due to the internal process
with dξ ¼ dXi, i.e.

dU ¼ dU0 þ dU00 þ Ddξ ¼ Y 0
idX

0
i þ Y 00

i dX
00
i þ Ddξ ¼ �Y 0

i þ Y 00
i

� �
dXi þ Ddξ ¼ 0

1.30

Consequently, one obtains the following:

D ¼ Y 0
i � Y 00

i 1.31

The driving force thus represents the difference of the potential at the two regions, and
the internal process acts to eliminate inhomogeneity of the potential by means of heat
transfer from high temperature regions to low temperature regions, or volume shrinkage
of low pressure regions (high �P) and volume expansion of high pressure regions
(low �P), and/or the transport of components from high chemical potential regions to
low chemical potential regions.

1.3 Stability at equilibrium and property anomaly

As shown by Eq. 1.19, potentials are homogenous for a homogeneous system in a state
of internal equilibrium. To study the stability of the equilibrium state, one considers the
entropy production due to a fluctuation of a molar quantity as an internal process. Based
on the second law of thermodynamics, the driving force, as the first derivative of the
entropy production with respect to the internal process, is zero for such a fluctuation at
equilibrium, i.e. D ¼ 0, and the entropy of production thus depends on the second
derivative. It can be written as follows in terms of Taylor expansion:

TdipS ¼ ∂ipS
∂ξ

dξ þ 1
2

∂2ipS

∂ξ2
dξð Þ2 ¼ Ddξ � 1

2
D2 dξð Þ2 1.32

with D2 ¼ �∂2ipS=∂ξ2 . When ∂2ipS=∂ξ2 < 0 or D2 > 0 along with D ¼ 0, the fluctu-
ation does not produce positive entropy of production and thus cannot develop
further. The equilibrium state of the system is therefore stable against the fluctuation.
On the other hand, when ∂2ipS=∂ξ2 > 0 or D2 < 0 along with D ¼ 0, the fluctuation
creates positive entropy of production and can continue to grow. The equilibrium
state of the system is therefore unstable against the fluctuation. In connection with
Eq. 1.8, one can realize that for a system at stable equilibrium without heat and mass
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exchange with the surroundings, its entropy is at its maximum and there are no other
internal processes which could produce any more entropy. This is schematically
shown in Figure 1.3.

Using Eq. 1.10, Eq. 1.18, and Eq. 1.32, the combined law of thermodynamics can be
written as

dU ¼
X

YidXi � Ddξ þ 1
2
D2 dξð Þ2 1.33

Let us carry out the same virtual internal experiment as in Section 1.2, i.e. moving an
infinitesimal amount of Xi in an isolated homogenous system with the other Xj

kept constant, i.e. dU ¼ 0 and D ¼ 0. The internal energy change due to this internal
process is

dU ¼ 1
2
D2 dX0

i

� �2 þ dX00
i

� �2n o
1.34

For a homogeneous system in a state of stable equilibrium with dX 0
i

� �2 ¼
dX00

i

� �2 ¼ dXið Þ2, this internal process must result in an increase of internal energy,
dU > 0, and thus gives

D2 ¼ 2
∂2U

∂Xi
2

� �
Xj

¼ 2
∂Yi

∂Xi

� �
Xj

> 0 1.35

Equation 1.35 shows that for a system to be stable, any pair of conjugate variables must
change in the same direction when other independent molar quantities are kept constant.
For the conjugate variables discussed so far, this means that for a stable system, the
addition of entropy increases with temperature if ∂T=∂S > 0, the volume decreases with
pressure or increases with the negative of pressure if ∂ �Pð Þ=∂V > 0, and the chemical

z

DipS

Figure 1.3 Schematic diagram showing maximum entropy, from [1] with permission from
Cambridge University Press.
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potential of a component increases with the amount of the component, i.e. ∂μi=∂Ni
> 0,

where the derivatives are taken with all other molar quantities kept constant. The limit
of stability is reached when Eq. 1.35 becomes zero, i.e.

D2 ¼ 2
∂Yi

∂Xi

� �
Xj

¼ 0 1.36

Figure 1.4 shows schematically the energy as a function of configuration includ-
ing three states: unstable, stable, and metastable. Both the stable and metastable
states have positive curvatures due to D2 > 0, while the unstable state has a
negative curvature due to D2 < 0. There is an inflection point, at which D2 ¼ 0,
for a state between a stable or metastable state with D2 > 0 and an unstable state
with D2 < 0. These two inflection points, called spinodal, represent the limit of
stability. The states between the two inflection points are unstable, and the other
states are either stable or metastable. The two inflection points can move apart from
or close to each other depending on the change of external conditions, i.e. the
natural variables. One extreme situation is when these two inflection points merge
into one point, and the instability occurs only at this particular point. It is evident
that then all three states, stable, metastable, and unstable, also merge into one point.
This point is called the critical or consolute point, beyond which the instability no
longer exists.

To mathematically define the consolute point, the third derivative needs to be added
to Eq. 1.32 because both D and D2 vanish at this point, i.e.

TdipS ¼ ∂ipS
∂ξ

dξ þ 1
2

∂2ipS

∂ξ2
dξð Þ2 þ 1

6

∂3ipS

∂ξ3
dξð Þ3 ¼ Ddξ � 1

2
D2 dξð Þ2 þ 1

6
D3 dξð Þ3 1.37

dU ¼
X

YidXi � Ddξ þ 1
2
D2 dξð Þ2 � 1

6
D3 dξð Þ3 1.38

At the consolute point, the third derivative also becomes zero, i.e.

D3 ¼
∂3ipS

∂ξ3
¼ 0 1.39

E
ne
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A B C

x

Spinodal

Figure 1.4 Schematic diagram showing the metastable (A), unstable (B), and stable (C)
equilibrium states.
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Let us further discuss the properties of the system in relation to the critical point.
By taking the inverse of the equation for the limit of stability, Eq. 1.36, one obtains

∂Xi

∂Yi

� �
Xj

¼ þ∞ 1.40

i.e. all Xi quantities diverge at the critical point. Therefore, when a system approaches the
critical point from its stable region, the change of a molar quantity with respect to
its conjugate potential varies dramatically and becomes infinite at the critical point,
resulting in property anomalies in the system. In the unstable region, the system will thus
separate into stable subsystems and become heterogeneous, and the Xi will change
discontinuously between subsystems. In the stable region, the change of a molar quantity
with respect to its conjugate potential decreases as the system moves away from the
critical point and remains positive due to the stability criterion denoted by Eq. 1.35.

However, it is not clear how a molar quantity changes with respect to a non-conjugate
potential at the critical point. From the Maxwell relation, one has

∂Yi

∂Xj

� �
Xk 6¼j

¼ ∂2U
∂Xi∂Xj

¼ ∂Yj

∂Xi

� �
Xk 6¼i

1.41

∂Xj

∂Yi

� �
Xk 6¼j

¼ ∂Xi

∂Yj

� �
Xk 6¼i

1.42

Since all the Xi diverge at the critical point, both derivatives in Eq. 1.42 should also go
to infinity at the critical point. To investigate their signs, let us carry out a virtual
experiment similar to that used to derive the stability condition (Eq. 1.34 and Eq. 1.35).
In this case, two internal processes are needed for moving two molar quantities
simultaneously in an isolated system, i.e.

dU ¼ �Dξ1dξ1 � Dξ2dξ2 þ Dξ1ξ2dξ1dξ2 þ
1
2
D2ξ1 dξ1ð Þ2 þ 1

2
D2ξ2 dξ2ð Þ2 1.43

Based on the above discussions, in a stable system at equilibrium with Dξ1 ¼ Dξ2 ¼ 0,
D2ξ1 > 0, and D2ξ2 > 0, the sign of Dξ1ξ2 cannot be unambiguously determined when
keeping the change of internal energy positive, i.e. dU > 0. This indicates that the
quantities in Eq. 1.41 can be either positive or negative in the stable region and become
zero at the critical point. By the same token, the quantities in Eq. 1.42 can be either
positive or negative and become either positive or negative infinity at the critical point.

A profound conclusion from this analysis is that in a stable system, even though a
molar quantity always changes in the same direction as its conjugate potential, the same
molar quantity may change in the opposite direction to a non-conjugate potential,
resulting in additional anomalies represented by Eq. 1.40. One example of Eq. 1.42 is
the thermal expansion in a closed system, i.e. dNi ¼ 0, as follows

∂V
∂T

� �
S

¼ ∂S
∂ �Pð Þ

� �
V

1.44

The left-hand side of Eq. 1.44 can be understood as follows: with the increase of
temperature, the system regulates its pressure in order to keep the entropy from
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increasing, which results in a volume change of the system. The behavior of the system
depends on whether the pressure decreases or increases in order to maintain the entropy of
the system constant. If the pressure decreases to maintain the entropy of the system
constant, the volume will increase with the increase of temperature, i.e. the left-hand side
of the equation has a positive sign, which is also shown by the right-hand side of the
equation as the changes of S and �P have the same sign. That the volume increases with
temperature is the normal scenario. On the other hand, if the pressure increases to
maintain the entropy of the system constant, the volume will decrease with the increase
of temperature, resulting in a negative sign for the left-hand side of the equation. This
decrease of volume with the increase of temperature is usually considered to be anomal-
ous, originating from the increase of entropy by the decrease of �P, i.e. the increase of
pressure. More discussions on entropy will follow in Section 5.2.5 and Chapter 9.

1.4 Gibbs–Duhem equation

In experiments, it is difficult to control the variables S and V of a system in comparison
with their conjugate variables T and �P. It is thus desirable to construct new functions
to represent the system with T and �P as natural variables of the functions. One of them
is the enthalpy, defined in Eq. 1.15, and the other two can be defined as follows:

F ¼ U � TS ¼ � PV þ
X

μi Ni 1.45

G ¼ U � TSþ PV ¼
X

μiNi ¼ H � TS ¼ F þ PV 1.46

where F and G are the Helmholtz energy and Gibbs energy, respectively. The middle
part of Eq. 1.46 is obtained using U from Eq. 1.28. The corresponding combined law of
thermodynamics in terms of H, F, and G can be obtained through the Legendre
transformation of Eq. 1.10 as

dH ¼ TdS� Vd �Pð Þ þ
X

μidNi � Ddξ 1.47

dF ¼ �SdT � PdV þ
X

μidNi � Ddξ 1.48

dG ¼ �SdT � Vd �Pð Þ þ
X

μi dNi � Ddξ 1.49

The independent variables in each of the above forms are regarded as the natural
variables of the corresponding function. The integral forms of all the functions can thus
be written as follows with their natural variables listed within parentheses:

U ¼ U S;V ;Ni; ξð Þ 1.50

H ¼ H S;�P;Ni; ξð Þ 1.51

F ¼ F T ;V ;Ni; ξð Þ 1.52

G ¼ G T;�P;Ni; ξð Þ 1.53
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By differentiating Eq. 1.46, one obtains

dG ¼
X

μidNi þ
X

Nidμi ¼ �SdT � Vd �Pð Þ þ
X

μidNi � Ddξ 1.54

For a system at equilibrium, Ddξ ¼ 0, re-arranging Eq. 1.54 gives the Gibbs–Duhem
equation

0 ¼ �SdT � Vd �Pð Þ �
X

Nidμi 1.55

This equation indicates that for a homogeneous system with c independent components
at equilibrium, there is a direct relation among all the cþ 2 potentials, which are the c
chemical potentials (μi), temperature, and pressure. Consequently, only cþ 1 potentials
can change independently, and the remaining potential is dependent on the other
potentials. As discussed in connection with Eq. 1.18, there are cþ 2 independent
variables for an equilibrium system with c independent components, all of which are
molar quantities.

With the relationships between potentials and molar quantities defined by Eq. 1.11 to
Eq. 1.13, one can switch between potentials and molar quantities as natural variables of
the system. For example, one can define a new energy function Φ when the chemical
potential of one component is controlled by the surroundings instead of its content and
obtain the following combined law of thermodynamics:

Φ ¼ G� μ1N1 ¼
Xc

i¼2

μiNi 1.56

dΦ ¼ �SdT � Vd �Pð Þ � N1dμ1 þ
Xc

i¼2

μidNi � Ddξ 1.57

However, even though the cþ 2 molar quantities are independent of each other, Eq. 1.55
indicates that not all the cþ 2 potentials are independent, i.e., if chemical potentials of
all components are changed to natural variables, one would obtain Eq. 1.55. Therefore,
among the cþ 2 independent variables used to define the system, the maximum number
of independent potentials is cþ 1, and at least one of the cþ 2 independent variables
must be a molar quantity. This variable is usually chosen to be the size of the system or of
the major element in the system. The Gibbs–Duhem equation is used to derive the Gibbs
phase rule in heterogeneous systems, which is discussed in Section 3.2.

Exercises

1. Consider a closed system with a spontaneous internal process under such
conditions that there is no exchange of heat or work with the surroundings.
a. Calculate the equilibrium value of ξ if the internal entropy production

has the form ΔipS ¼ �R ξlnξ þ 1� ξð Þln 1� ξð Þ½ �, where ξ is a meas-
ure of the progress of the internal process.
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(cont.)

b. Estimate the change of internal energy.
c. If one would like to keep the temperature constant, should one put

heat into the system or extract heat from the system? How much?
2. In thermodynamics, state functions such as internal energy, enthalpy, and

entropy are path independent. Consider the two differentials

df 1 ¼ y 3x2 þ y2
� �

dxþ x x2 þ 2y2
� �

dy

df 2 ¼ y 3x2 þ y
� �

dxþ x x2 þ 2y
� �

dy

Integrate them between the points x ¼ 0, y ¼ 0 and x ¼ 1, y ¼ 1, along two
different paths, y ¼ x and y ¼ x2. Are the functions f1 and f2 state functions?

3. The combination of the first and second thermodynamic laws of a closed
system yields the following combined law of thermodynamics

dU ¼ dQþ dW ¼ TdS� PdV (1)

Other characteristic state functions are defined as F ¼ U � TS,
H ¼ U þ PV , G ¼ U � TSþ PV . Answer the following questions

∂S
∂V

� �
T

¼ ∂P
∂T

� �
V

(2)

a. Derive the equations for dF, dH, and dG.
b. List the natural variables of U, H, F, and G.
c. What natural variables and characteristic state function should one use

in order to prove equation 2?
d. Prove equation 2.

4. Through virtual experiments, show in detail, by means of the combined law
of thermodynamics, that each potential has the same value everywhere in a
homogeneous system at equilibrium.

5. Use a Maxwell relation to check whether the two functions in Exercise 2 are
state functions or not.

6. Entropy change and heat exchange of a system are two quantities closely
related to each other. Discuss in detail whether it is possible to have a system
with a spontaneous process such that dS and δQ have different signs under
isothermal conditions. If your answer is yes, find such a system.

7. Enthalpy and partial enthalpy can be expressed by H ¼ Gþ TS and
Hj ¼ Gj þ TSj, respectively. Derive an expression for Hj in terms of the
partial derivatives of the molar Gibbs energy, Gm, with respect to the natural
variables of Gm.

8. Consider a system that can exchange energy with the environment through
magnetic work in addition to the usual heat flow and volume work. The
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(cont.)

magnetic work can be represented by HdM, where M is the magnetization
and H the applied field.
a. Prove that:

∂V
∂M

� �
T ,P

¼ ∂H
∂P

� �
H,T

b. Derive one more Maxwell relation with either H or M in it.
9. If a rubber band is stretched, the reversible work is given by δW ¼ τdL

where τ is the tension on the band and L is the length.
a. If the stretching is carried out at constant pressure and the volume of

the band also remains constant during expansion/contraction, derive a
thermodynamic function (G) which is a function of L and T.

b. Show that

∂τ
∂T

� �
L

¼ � ∂S
∂L

� �
T

c. Derive the following from thermodynamic principles:

∂U
∂L

� �
T

¼ τ þ T
∂S
∂L

� �
T

¼ τ � T
∂τ
∂T

� �
L

d. For an ideal gas, U is a function of T only, and as a result it can be
shown that

1
P

∂P
∂T

� �
V

¼ 1
T

Show that a corresponding equation exists for an “ideal” rubber band.
10. Prove the identity

T
∂2P

∂T2

� �
V

¼ ∂CV

∂V

� �
T

11. Derive the relation

Hj ¼ ∂ μi=Tð Þ
∂ 1=Tð Þ

� �
P,Ni

from

H ¼ ∂ G=Tð Þ
∂ 1=Tð Þ

� �
P,Ni
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2 Gibbs energy function

As shown in Eq. 1.50 through Eq. 1.53, all functions have Ni and ξ as natural variables
while they differ in the other two natural variables. In typical materials-related experi-
ments, temperature and pressure are the two variables that are controlled. They are also
the natural variables of the Gibbs energy. Consequently, the Gibbs energy is the most
widely used function in the thermodynamics of materials science. The rest of this book
focuses on the Gibbs energy for this reason. In this chapter, the mathematical formulas
for the Gibbs energy of phases with fixed and variable compositions are discussed.
These are needed for quantitative calculations of the Gibbs energy under given values of
its natural variables.

From Eq. 1.46, the molar Gibbs energy can be defined as

Gm T ,P, xi, ξð Þ ¼ G

N
¼
X

μixi 2.1

The molar entropy, molar volume, chemical potential, and the driving force can be
obtained from Eq. 1.49 as

Sm ¼ S

N
¼� 1

N

∂G
∂T

� �
P,Ni,ξ

¼� ∂Gm

∂T

� �
P,xi,ξ

2.2

Vm ¼ V

N
¼ 1

N

∂G
∂P

� �
T ,Ni,ξ

¼ ∂Gm

∂P

� �
T ,xi, ξ

2.3

μi ¼
∂G
∂Ni

� �
T ,P,Nj 6¼i, ξ

2.4

�D ¼ ∂G
∂ξ

� �
T ,P,Ni

2.5

Based on Eq. 1.46, the molar enthalpy is written as

Hm ¼ Gm þ TSm 2.6

Other physical properties of the system can also be represented by the partial deriva-
tives of Gibbs energy, such as the heat capacity, CP, volume thermal expansivity, αV ,
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isothermal compressibility, κT , under constant pressure or temperature:

CP ¼ ∂Q
∂T

� �
P

¼ ∂H
∂T

� �
P

¼ T
∂ Gþ TSð Þ

∂T

� �
P

¼ T
∂S
∂T

� �
P

¼ �T
∂2G

∂T2

� �
P

2.7

αV ¼ ∂V
∂T

� �
P

�
V ¼

∂ ∂G
∂ �Pð Þ
� �

T

∂T

0
@

1
A

P

�
∂G

∂ �Pð Þ
� �

T

¼ ∂2G
∂T∂ �Pð Þ

�
∂G

∂ �Pð Þ
� �

T

2.8

κT ¼ ∂V
∂ �Pð Þ
� �

T

�
V ¼

∂ ∂G
∂ �Pð Þ
� �

T

∂ �Pð Þ

0
@

1
A

T

�
∂G

∂ �Pð Þ
� �

T

¼ ∂2G

∂ �Pð Þ2
�

∂G
∂ �Pð Þ
� �

T

¼ 1
B

2.9

where the Ni and ξ are kept constant for all partial derivatives, and B is the bulk modulus.
In Eq. 2.4, G cannot be directly replaced by Gm because N also depends on Ni. The

thermodynamic quantities under such conditions, i.e. variations in the amount of a
component at constant temperature and pressure, are called partial quantities; these were
introduced in Eq. 1.8 for partial entropy and Eq. 1.17 for partial enthalpy. This type of
definition can be extended to all molar quantities such as partial volume and partial
Gibbs energy. Partial quantities of a molar quantity, A, can thus be defined in general as

Ai ¼ ∂A
∂Ni

� �
T ,P,Nj 6¼i,ξ

2.10

The general differential form of a molar quantity for a system at equilibrium can be
represented by its partial quantities as

dA ¼ ∂A
∂T

� �
dT þ ∂A

∂P

� �
dPþ

X ∂A
∂Ni

� �
dNi 2.11

where the subscripts representing variables that are kept constant, i.e. the remaining
natural variables of Gibbs energy not in the denominator, are omitted for simplicity.
This will be done throughout the book unless specified otherwise.

Using the following relations, A ¼ NAm, N ¼
X

Nj, xi ¼ Ni=N, ∂xi=∂Ni ¼
ð1� xiÞ=N, and ∂xk=∂Ni ¼ �xk=N, Eq. 2.10 can be expressed as, under constant T andP,

Ai ¼ Am þ N
Xc
j¼1

∂Am

∂xj

∂xj
∂Ni

¼ Am þ ∂Am

∂xi
�
Xc
j¼1

xj
∂Am

∂xj
2.12

where the summation is for all c components and the partial derivatives are taken with
other mole fractions kept constant. However, mole fractions are not independent, but
follow the relation

X
xi ¼ 1. Taking x1 ¼ 1�

Xc

j¼2
xj as the dependent mole fraction,

Eq. 2.12 can be rewritten as

Ai ¼ Am þ ∂Am

∂xi
� ∂Am

∂x1

� �
�
Xc
j¼2

xj
∂Am

∂xj
� ∂Am

∂x1

� �
2.13
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Applying Eq. 2.12 and Eq. 2.13 to the Gibbs energy, the partial Gibbs energy or
chemical potential of component i is obtained as

μi ¼ Gi ¼ Gm þ ∂Gm

∂xi
�
Xc
j¼1

xj
∂Gm

∂xj
¼ Gm þ ∂Gm

∂xi
� ∂Gm

∂x1

� �
�
Xc
j¼2

xj
∂Gm

∂xj
� ∂Gm

∂x1

� �

2.14

The derivatives in the stability equation, Eq. 1.35, are defined with the molar quantities
kept constant. On the other hand, the Gibbs energy has two potentials, temperature and
pressure, as natural variables instead. One would thus need to compare the stability
conditions when a variable kept fixed is changed from a molar quantity to its conjugate
potential. This can be carried out through the use of Jacobians to change the independ-
ent variables:

∂ Yi; Yj

� �
∂ Xi;Xj

� � ¼ ∂Yi

∂Xi

� �
Yj

∂Yj

∂Xj

� �
Xi

¼ ∂Yi

∂Xi

� �
Xj

∂Yj

∂Xj

� �
Xi

� ∂Yi

∂Xj

� �
Xi

∂Yj

∂Xi

� �
Xj

2.15

For a stable system, both ð∂Yi=∂XiÞXj
and ð∂Yj=∂XjÞXi

are positive based on Eq. 1.35.
Using the Maxwell relation shown by Eq. 1.41, one thus obtains

∂Yi

∂Xi

� �
Xj

� ∂Yi

∂Xi

� �
Yj

¼ ∂Yi

∂Xj

� �
Xi

∂Yj

∂Xi

� �
Xj

�
∂Yi

∂Xi

� �
Xj

� 0 2.16

This means that ð∂Yi=∂XiÞYj
will go to zero before ð∂Yi=∂XiÞXj

does. It indicates that
the stability condition becomes more restrictive when potentials are kept constant in
place of their conjugate molar quantities. Based on the Gibbs–Duhem equation,
Eq. 1.55, the maximum number of independent potentials is cþ 1, and the last potential
is dependent, i.e.

∂Ycþ2

∂Xcþ2

� �
Yj�cþ1

¼ 0 2.17

Therefore, the limit of stability is determined when the derivative becomes zero with
one molar quantity kept constant, for example

∂Ycþ1

∂Xcþ1

� �
Yj<cþ1,Xcþ2

¼ 0 2.18

The reason is that this derivative reaches zero faster than any other derivatives with
more molar quantities kept constant. Equation 2.18 shows that all molar quantities
diverge at the limit of stability. The consolute point is obtained with c additional
conditions as follows, based on Eq. 1.39:

∂2Yi

∂ Xið Þ2
 !

Yj�cþ1, j 6¼i,Xcþ2

¼ 0 2.19
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Together with Eq. 2.18, all cþ 1 independent potentials at the consolute point can be
determined. It is evident that the consolute point is a zero-dimensional point in a two-
dimensional space of independent potentials in a one-component system.With the addition
of a second component to form a binary system, this consolute point in the one-component
system extends into a one-dimensional line. This line represents the limit of stability of the
binary system, and a consolute point is located at the end of this line. It is thus evident that in
a system with c independent components, the limit of stability is a c� 1ð Þ-dimensional
hypersurface in a space of cþ 1 independent potentials, while the consolute point is a zero-
dimensional point in all systems, and may be called the invariant critical point.

2.1 Phases with fixed compositions

The homogeneous system discussed so far has only one phase in the system, i.e. it is a
single-phase system. A phase with a fixed composition can be a pure element or a
stoichiometric compound. There is thus only one independent component in the system.
A stoichiometric compound contains more than one element, but the relative amounts of
each element are fixed by the stoichiometry and cannot vary independently, i.e.,
dNi ¼ xidN. The combined law of thermodynamics becomes

dG¼�SdT�Vd �Pð Þþ
X

xiμi
� �

dN�Ddξ¼�SdT�Vd �Pð ÞþGmdN�Ddξ 2.20

Here Gm is the molar Gibbs energy of the stoichiometric compound and can be regarded
as the chemical potential of the stoichiometric phase α:

Gm ¼ μα ¼
X

xiμi 2.21

The chemical potential of an individual component in the phase cannot be defined because
the amount of each component cannot be varied independently. For a stoichiometric phase
of N moles of atoms at equilibrium with dG = Ndμα þ μαdN, Eq. 2.20 reduces to

0 ¼ �SdT � Vd �Pð Þ � Ndμα 2.22

which is the Gibbs–Duhem equation, Eq. 1.55, applied to a stoichiometric phase. It can
be represented graphically by a surface in a three-dimensional space defined by μα, T,
and –P. A direction on the surface is represented by the three partial directives between
any two of μα, T, and –P with the third one kept constant, i.e.

∂μα

∂T

� �
P

¼ � S

N
¼ �Sm 2.23

∂μα

∂ �Pð Þ
� �

T

¼ � V

N
¼ �Vm 2.24

∂ �Pð Þ
∂T

� �
μα
¼ � S

V
¼ � Sm

Vm
2.25

Based on Nernst’s heat theorem, the entropy difference between two crystals
approaches zero when the temperature approaches absolute zero. It is thus a common
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practice to put S ¼ 0 for a crystal at 0 K. This is usually referred to as the third law of
thermodynamics. From the definition of entropy change in Eq. 1.3, S or Sm is always
positive at finite temperatures as the system or the crystal absorbs heat from the
surroundings to increase its temperature. The volume V or Vm of a phase is a well-
defined physical quantity, and its absolute value can be given and is always positive.
The above three equations can be written in a general form as

∂Yi

∂Yj

� �
Yk

¼ �Xj

Xi
< 0 2.26

The surface thus has negative slopes in all directions. The curvature of the surface can
be derived from Eq. 2.26:

�
∂2Yi

∂ðYjÞ2
!

Yk

¼ �
∂ Xj

Xi

� �
∂Yj

0
@

1
A

Yk

¼ � 1
Xi

∂Xj

∂Yj

� �
Yk

þ Xj

ðXiÞ2
∂Xi

∂Yj

� �
Yk

¼ � 1
Xi

�
∂Xj

∂Yj

�
Yk

� Xj

Xi

∂Xi

∂Yi

� �
∂Yi

∂Yj

� �
Yk

" #

¼ � 1
Xi

∂Xj

∂Yj

� �
Yk

þ Xj

Xi

� �2 ∂Xi

∂Yi

� �
Yk

" #
< 0

2.27

Both terms inside the last bracket are positive for a system in a state of stable internal
equilibrium, and the surface thus has a negative curvature and is convex everywhere as
shown in Figure 2.1.

From experimental observations, it is known that Svaporm � Sliquidm > Ssolidm . The curves
of Gm or μα plotted with respect to T at constant P would thus have the most negative
slope for a vapor phase, followed by those for its liquid and solid phases. As an
example, Figure 2.2 shows the Gibbs energy of Zn in its solid, liquid, and vapor forms
as a function of T at constant P ¼ 1 atmospheric pressure.

P
T

mA

Figure 2.1 Gibbs energy of a one-component phase as a function of temperature and negative
pressure, showing the convex shape, from [1] with permission from Cambridge University Press.
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Similarly it is well known that Vvapor
m � Vliquid

m > Vsolid
m , and the curves of Gm or μα

plotted with respect to P at constant T would thus have the most positive slope for a
vapor phase, followed by those for its liquid and solid phases, though there are cases for
which Vliquid

m < Vsolid
m such as that of water and ice. As an example, Figure 2.3 shows the
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Gibbs energy of Fe in its three solid (fcc, hcp and bcc), and liquid forms as a function of
P at constant T ¼ 1000 K. The gas phase is out of the chart.

The quantities measurable by experiments typically include temperature, pressure,
volume, composition, and amount of heat flow, in the combined law of thermodynamics
discussed so far. By measuring the heat needed to increase the temperature of a phase,
the heat capacity of the phase is obtained, as shown by Eq. 2.7. A typical heat capacity
curve as a function of temperature is shown in Figure 2.4 for fcc-Al, hcp-Mg, and an
intermetallic phase, Al12Mg17.

There are various theoretical models, to be discussed in Chapter 5, for the heat
capacity under constant volume, which is defined as
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Figure 2.4 Heat capacities of fcc-Al, hcp-Mg, and Al12Mg17 as a function of temperature.
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CV ¼ ∂U
∂T

� �
V

¼ T
∂ F þ TSð Þ

∂T

� �
V

¼ T
∂S
∂T

� �
V

¼ �T
∂2F

∂T2

� �
V

2.28

To establish the relationship between CP, defined by Eq. 2.7, and CV , U needs to be
represented as a function of T and V in terms of G and its derivatives with respect to the
natural variables of the Gibbs energy, T and P. It can be done as follows:

dV ¼ ∂V
∂T

dT þ ∂V
∂ �Pð Þ d �Pð Þ ¼ � ∂2G

∂T∂ �Pð Þ dT � ∂2G

∂ �Pð Þ2 d �Pð Þ 2.29

dU¼∂ðGþTS�PVÞ
∂T

dTþ∂ðGþTS�PVÞ
∂ð�PÞ dð�PÞ¼� T

∂2G

∂T2�P
∂2G

∂T∂ð�PÞ
� �

dT

� T
∂2G

∂T∂ð�PÞþP
∂2G

∂ð�PÞ2
 !

�1

�
∂2G

∂ð�PÞ2dVþ ∂2G
∂T∂ð�PÞ

�
∂2G

∂ð�PÞ2dT
 !

¼� T
∂2G

∂T2�T
∂2G

∂T∂ð�PÞ
� �2�

∂2G

∂ð�PÞ2
" #

dTþ �T
∂2G

∂T∂ð�PÞ
�

∂2G

∂ð�PÞ2þP

 !
dV

2.30

CV ¼CPþT
∂2G

∂T∂ð�PÞ
� �2�

∂2G

∂ð�PÞ2¼CP�α2VVT
κT

¼CP�α2VBVT 2.31

where the thermal expansion, αV , and the compressibility κT or bulk modulus B, are
defined by Eq. 2.8 and Eq. 2.9, respectively. From the heat capacity, the enthalpy and
entropy can be obtained by integration of Eq. 2.7 at constant pressure:

S ¼ S0 þ
ðT

0

CP

T
dT ¼ S0 þ

ð298:15

0

CP

T
dT þ

ðT

298:15

CP

T
dT ¼ S298:15 þ

ðT

298:15

CP

T
dT 2.32

H ¼ H0 þ
ðT

0

CPdT ¼ H0 þ
ð298:15

0

CPdT þ
ðT

298:15

CPdT ¼ H298:15 þ
ðT

298:15

CPdT 2.33

In the above equations, two temperature ranges of integration are chosen for practical
applications, as most processing procedures in the field of materials science and engin-
eering take place at temperatures above room temperature. Based on the third law of
thermodynamics, S0 ¼ 0, S298:15 can be obtained by integration. On the other hand, for
H0 ¼ U0 þ PV one does not know the absolute value of the internal energy and thus one
has to select a reference state for H. In principle, the reference state can be arbitrarily
chosen. A widely used reference state in thermodynamic modeling practice is that for
which HSER

298:15 ¼ 0 at ambient pressure for pure elements in their respective stable
structures at room temperature; it is called the stable element reference (SER) state, with

GSER
298:15 ¼ HSER

298:15 � TSSER298:15 ¼ �TSSER298:15 2.34
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It is further noted that after defining S298:15 and H298:15, one only needs the heat
capacity at higher temperatures. This makes the mathematical representation of
heat capacity simpler due to the relatively simple temperature dependence of heat
capacity at higher temperatures in comparison with the variation at lower tempera-
tures. One common expression for heat capacity at high temperatures and ambient
pressure is as follows:

CP ¼ cþ dT þ e

T2 þ f T2 2.35

where c, d, e, and f are parameters fitted to experimental or theoretical data and
compiled in various handbooks.

Corresponding expressions for S, H, and G are obtained as

S ¼ b0 þ clnT þ dT � e

2T2 þ
f

2
T2 2.36

H ¼ aþ cT þ d

2
T2 � e

T
þ f

3
T3 2.37

G ¼ H � TS ¼ a� bT � cTlnT � d

2
T2 � e

2T
� f

6
T3 2.38

with b ¼ b0 � c: The integration constants b0 and a are evaluated from S298:15 and
H298:15, respectively. As an example, the enthalpy and entropy of Zn in solid (hcp),
liquid, and gas forms are plotted in Figure 2.5 and Figure 2.6, respectively. The
distances between any two curves in Figure 2.5 and Figure 2.6 represent the enthalpy
or entropy differences between the two phases. It can be seen that the gas has much
higher enthalpy and entropy than the solid and liquid.

Figure 2.5 Enthalpy of Zn as a function of temperature at one atmospheric pressure.
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Similarly, one can add the pressure dependence into the Gibbs energy function,
obtaining for example

G ¼ a� bT � cT lnT� d

2
T2 � e

2T
� f

6
T3 þ gPþ hTPþ mP2 2.39

where g, h, and m are parameters fitted to experimental or theoretical data and compiled
in various handbooks.

The expression for V can be derived as

V ¼ gþ hT þ 2mP 2.40

The Helmholtz energy can be expressed as a function of its natural variables by solving
P from Eq. 2.40:

F ¼ G� PV ¼ a� bT � cTlnT � d

2
T2 � e

2T
� f

6
T3 � gþ hT � Vð Þ2

4m
2.41

In the literature there are many models available to represent the temperature and
pressure dependences of thermodynamic properties. The Gibbs energy difference
between a stoichiometric compound and the components of which the compound is
composed at their reference states, 0Gref

i , is termed the Gibbs energy of formation, i.e.

Δf G ¼ G�
X

Ni
0Gref

i 2.42

with Ni being the stoichiometry of the compound. Similarly, the enthalpy of formation,
entropy of formation, and heat capacity of formation with respect to components in their
reference states, 0Href

i , 0Srefi , and 0CP
ref
i , can be defined as

Figure 2.6 Entropy of Zn as a function of temperature at one atmospheric pressure.
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Δf H ¼ H �
X

Ni
0Href

i 2.43

Δf S ¼ S�
X

Ni
0Srefi 2.44

Δf CP ¼ CP �
X

Ni
0CP

ref
i 2.45

It should be mentioned that one mole of a compound usually refers to one mole of
formula the stoichiometric of the compound. With a formula like AaBbCc, the com-
pound is composed of a total aþ bþ cð Þ moles of components. One should thus be
very careful when dealing with numerical values to be sure whether the data are given
per mole of formula or per mole of components. At the same time the reference states
must be clearly defined. When the SER state defined in Eq. 2.34 is selected as the
reference state, the above formation quantities are called standard formation quantities,
such as the standard enthalpy of formation.

Since there are only two independent potentials in a one-component system, its limit
of stability can be evaluated with one potential kept constant, i.e. either T or P.
Consequently, either the Helmholtz energy or enthalpy is to be used in deriving the
limit of stability of a homogeneous system. For practical purposes, let us use the
Helmholtz energy because its natural variables T and V are measurable quantities in
typical experiments, while one of the natural variables of enthalpy, the entropy, is not.
From Eq. 1.48 and Eq. 2.16, the limit of stability for a one-component system at
constant temperature can be written as

∂ �Pð Þ
∂V

� �
T ,N

¼ FVV ¼ 1
VκT

¼ B

V
¼ 0 2.46

where the isothermal compressibility and bulk modulus, κT and B, are defined in Eq. 2.9.
The limit of stability is thus determined when the isothermal compressibility diverges or
the bulk modulus becomes zero, because V has a finite value at any temperature. It is
evident that the Helmholtz energy must have higher order dependence on volume than in
Eq. 2.41 for a system with instability because FVV as derived from Eq. 2.41 is constant.

From Eq. 2.19, the consolute point is defined by

FVVV ¼ ∂2ð�PÞ
∂V2

� �
T ,N

¼ ∂
�
1=VκT

�
∂V

¼ � 1þ �V=κT��∂κT=∂V�
κTV2 ¼ 0 2.47

Since κT becomes infinite at the limit of stability, ∂κT=∂V approaches negative infinity
when the critical/consolute point is approached, so that ðV=κTÞð∂κT=∂VÞ ¼ �1 and
FVVV ¼ 0:

2.2 Phases with variable compositions: random solutions

The combined law of thermodynamics and the Gibbs–Duhem equation for a solution
phase with variable composition are shown by Eq. 1.49 and Eq. 1.55, respectively.
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A phase can be represented by a cþ 1ð Þ-dimensional surface in a cþ 2ð Þ-dimensional
space of potentials based on the Gibbs–Duhem equation. The directions and curvature
of the surface are represented by the partial derivatives shown in Eq. 2.26 and second
derivatives shown in Eq. 2.27, both being negative for a stable phase. To develop a
mathematical formula for the Gibbs energy of a phase with variable compositions, one
can consider a phase as a mixture of independent components that make up the phase.
Its Gibbs energy function can be postulated as the sum of the Gibbs energies of the
independent components of a solution with the same structure, 0Gi, plus the contribution
due to the mixing, mixingG or MG :

G ¼
X

Ni
0G i þ MG 2.48

Since the system size is usually not important in thermodynamics, properties are
typically normalized to one mole with its composition represented by molar fractions
of components. The molar Gibbs energy is obtained as shown below with the molar
Gibbs energy of mixing separated into two parts: the ideal Gibbs energy of mixing
assuming no chemical interaction among components, idealGm or IGm, and the excess
Gibbs energy of mixing due to chemical reaction among components, excessGm or EGm:

Gm ¼
X

xi
0Gi þ MGm ¼

X
xi
0Gi þ IGm þ EGm 2.49

From Eq. 2.14, the chemical potential of a component is thus

μi ¼ 0Gi þ IGm þ EGm þ ∂ IGm þ EGm

� �
∂xi

�
Xc

j
xj
∂ IGm þ EGm

� �
∂xj

2.50

One can define the chemical activity of component i, ai, as follows:

RT lnai ¼ μi � 0Gi ¼ IGm þ ∂IGm

∂xi
�
Xc
j¼1

xj
∂IGm

∂xj

þ EGm þ ∂EGm

∂xi
�
Xc
j¼1

xj
∂EGm

∂xj
2.51

In this definition, the chemical activity or simply activity is calculated with respect to
the pure elements in the structure of the solution for practical reasons, as one would
like to understand the chemical potential difference of components both in the
solution and by itself, with the same structure. It should be noted that this reference
state for chemical activity is usually different from the SER reference state defined in
Eq. 2.34 as the solution may have a different structure from that of pure components
in their SER states. On the other hand, the activity under the SER reference state can
be easily obtained by replacing 0Gi with 0GSER

i from Eq. 2.34. In principle, one may
choose any structure as the reference state in order for the activity to be useful for
practical applications, i.e.

RT lnarefi ¼ μi � 0Gref
i 2.52

26 Gibbs energy function



For example, the activity of a component in a liquid solution is defined with respect to
the pure component in its liquid form from Eq. 2.51, but can also be referred to its SER
state which is solid using Eq. 2.52. The following sections will discuss in more detail
how components mix when they are brought together, including concepts such as
random mixing, short-range ordering, and long-range ordering.

The limit of stability of a solution with respect to composition fluctuation under
constant T, P, and Ni can be derived as follows from Eq. 2.16 and Eq. 2.18:

∂μi
∂Ni

� �
T ,P,Nj6¼i, i>1

>
∂i
∂Ni

� �
T ,P,N1,μ2,Nj 6¼i, i, j>2 >

. . . >
∂μc
∂Nc

� �
T ,P,N1,μ2::μc�1

¼ 0 2.53

The first term can be derived from Eq. 2.14 as follows:

∂μi
∂Ni

� �
T ,P,Nj 6¼i, i>1

¼
Xc
j¼1

∂2Gm

∂xi∂xj

∂xj
∂Ni

�
Xc
j¼1

xj
Xc
k¼1

∂2Gm

∂xj∂xk

∂xk
∂Ni

¼ 1
N

∂2Gm

∂x2i
�
Xc
j¼1

xj
∂2Gm

∂x2j
�
Xc
j¼1

xj
∂2Gm

∂xi∂xj
þ
Xc
j¼1

Xc
k¼1

xjxk
∂2Gm

∂xj∂xk

 !

2.54

Denoting Gij ¼ ð∂μi=∂NjÞT ,P,Nk 6¼j
and using Equation 2.15 to change the variables kept

constant from molar quantities to potentials one by one (see [1]), the limit of stability
can be obtained as

∂μc
∂Nc

� �
T ,P,N1,μ2, ...,μc�1

¼ det Gij : 2 � i; j � c
� �

det Gij : 2 � i; j � c� 1
� � ¼ 0 2.55

where det stands for determinant. Equation 2.55 indicates that det Gij : 2 � i; j � c
� � ¼ 0

at the limit of stability. Considering x1 ¼ 1�
X

j 6¼1
xj, let us introduce

gi ¼ μi � μ1 ¼
∂Gm

∂xi

� �
xk 6¼i

� ∂Gm

∂x1

� �
xk 6¼1

2.56

and

gij ¼
∂gi
∂xj

¼ ∂ μi � μ1ð Þ
∂xj

¼ ∂2Gm

∂xi∂xj
� ∂2Gm

∂x1∂xj
� ∂2Gm

∂xi∂x1
þ ∂2Gm

∂ x1ð Þ2 2.57

The limit of stability can be rewritten as

∂ μc � μ1ð Þ
∂xc

� �
T ,P,N,μ2�μ1, :::,μc�1�μ1

¼ det gij : 2 � i; j � c
� �

det gij : 2 � i; j � c� 1
� � ¼ 0 2.58

i.e. det gij : 2 � i; j � c
� � ¼ 0: The consolute point can be defined using Eq. 2.19:

∂2μc
∂ Ncð Þ2
 !

T ,P,N1,μ2, :::,μc�1

¼ ∂2 μc � μ1ð Þ
∂ xcð Þ2

 !
T ,P,N,μ2�μ1, :::,μc�1�μ1

¼ 0 2.59

No closed mathematic form for it has been published in the literature.
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2.2.1 Random solutions

The ideal Gibbs energy of mixing corresponds to an ideal solution in which all sites are
equivalent and the distributions of components on the sites are completely random. The
number of different configurations for arranging all components is

w ¼ N!Y
Ni!ð Þ 2.60

Based on Boltzmann’s relation from statistical thermodynamics, when all configur-
ations have the same probability of being observed, the ideal configurational molar
entropy of mixing for the distribution is

idealSm¼ ISm¼Rlnw
N

¼R
lnN!�

X
lnðNi!Þ

N
ffiR

NlnN�
X

NilnNi

N
¼�R

X
xilnxi 2.61

whereR is the gas constant. Equation 2.61 represents the entropy difference between that of
the ideal solution and that of the individual components, i.e. it gives the entropy due to the
mechanical mixing of the components. As xi is smaller than unity, the entropy production
on forming an ideal solution from pure components is thus positive, indicating that it is a
spontaneous process. In such an ideal solution, it is assumed that there are no interactions
between components, and the enthalpy of mixing is thus zero as the internal energy and the
volume of the system do not change. The ideal Gibbs energy of mixing is written as

IG ¼ �TISm ¼ RT
X

xilnxi 2.62

The Gibbs energy of real solutions, i.e. Eq. 2.49, becomes

Gm ¼
X

xi
0Gi þ RT

X
xilnxi þ EGm 2.63

From Eq. 2.50, the chemical potential is obtained as

μi ¼ Gi ¼ 0Gi þ RT lnxi þ EGm þ ∂EGm

∂xi
�
Xc
j¼1

xj
∂EGm

∂xj
2.64

From the chemical activity in Eq. 2.51, the activity coefficient, γi, can be defined as follows:

γi ¼
ai
xi
¼ 1

xi
exp

Gi � 0Gi

RT
2.65

The solution is an ideal solution if γi ¼ 1, and is said to be positively or negatively
deviating from an ideal solution if γi > 1 or γi < 1, respectively. The chemical potential
is related to the activity and activity coefficient by the following equation:

μi ¼ 0Gi þ RT lnai ¼ 0Gi þ RT lnγixi ¼ 0Gi þ RT lnxi þ RT lnγi 2.66

Let us examine Eq. 2.14 in more detail in order to better understand the relation between
Gm and μi. The partial derivatives in Eq. 2.14 represent the directions of the molar Gibbs
energy in the composition space, i.e. the tangents of the molar Gibbs energy with
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respect to mole fractions of independent components. Collectively, they define the
multi-dimensional tangent plane of the molar Gibbs energy at the given composition,
x0i : The mathematical representation of this tangent plane, zGm , is defined by its
directional derivatives and the distance from the point where the derivatives are taken,

zGm ¼ Gmðx0i Þ þ
Xc
j¼1

∂Gm

∂xi

� �
x0i

ðxi � x0i Þ 2.67

The intercept of this tangent plane at each pure component axis, i.e. xi ¼ 1 and xj 6¼i ¼ 0,
is obtained as

zGm,xi¼1 ¼ Gmðx0i Þ þ
∂Gm

∂xi

� �
xi¼x0i

�
Xc
j¼1

x0j
∂Gm

∂xj

� �
xi¼x0i

2.68

This is identical to Eq. 2.14 at the point x0i : It is thus shown that the chemical potential
of a component in a solution is represented by the intercept of the tangent plane of the
Gibbs energy of the solution and the Gm axis of the component. The distance between
the intercept and the Gibbs energy of the pure component in the same solution structure
is related to the chemical activity of the component as defined by Eq. 2.51. On the other
hand, it is evident that one can choose any other structure of the pure element to define
the chemical activity in order to compare the chemical potentials of the components as
shown by Eq. 2.52.

The stability of a solution is evaluated using Eq. 2.55, and the derivatives of chemical
potential with respect to the numbers of moles, i.e. the elements in the determinant, are
obtained as follows from Eq. 2.12 and Eq. 2.66,

N

RT

∂μi
∂Ni

¼ N

RT
Gii ¼ 1� xi

xi
þ 1
γi

∂γi
∂xi

�
Xc
j¼1

xj
∂γi
∂xj

 !
2.69

N

RT

∂μi
∂Nk

¼ N

RT
Gik ¼ � xk

xi
þ 1
γi

1�
Xc
j¼1

xj
∂γi
∂xj

 !
2.70

To study further the Gibbs energy of solution phases, let us discuss the details of the
excess Gibbs energy of mixing. At this point, one can start with lower-order systems
with fewer components, i.e. two-component and three-component systems, noting that
the Gibbs energy of phases with one component was already presented in Section 2.1.

2.2.2 Binary random solutions

From Eq. 1.55, the Gibbs–Duhem equation of a binary system consisting of compon-
ents A and B is written as

0 ¼ �SdT � Vd �Pð Þ � NAdμA � NBdμB 2.71

This equation represents a three-dimensional surface in a four-dimensional space. It is
self-evident that both Eq. 2.26 and Eq. 2.27 hold for stable binary solutions too, i.e. the
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directions and the curvature of the surface are all negative. To visualize the
three-dimensional surface in three-dimensional space, one needs to fix one of the four
potentials. As T and P are the natural variables of the Gibbs energy, they are usually
chosen to be kept constant. One can typically investigate behaviors of systems consist-
ing of condensed phases by varying the temperature at constant pressure. Equation 2.71
at constant pressure thus becomes

0 ¼ �SdT � NAdμA � NBdμB 2.72

Similarly to Eq. 2.22 and Figure 2.1, the property of a phase can be represented by a
two-dimensional surface in the three-dimensional space composed of T , μA, and μB
under constant P, keeping in mind the following:

Gm ¼ xAμA þ xBμB ¼ xA
0GA þ xB

0GB þ RT xAlnxA þ xBlnxBð Þ þ EGm 2.73

Since EGm must be zero for pure components A and B, it needs to be in the following
form:

EGm ¼ xAxBLAB 2.74

with LAB a parameter denoting the interaction between components A and B, called the
interaction parameter. When LAB ¼ 0, the solution is an ideal solution. When LAB is a
non-zero constant independent of temperature and composition, the solution is called
a regular solution. Its excess entropy and excess enthalpy of mixing are obtained as

ESm ¼ ∂EGm

∂T
¼ 0 2.75

EHm ¼ EGm � TESm ¼ xAxBLAB 2.76

The chemical potential of component A or B in a binary regular solution can be
derived as

μi ¼ 0Gi þ RT lnxi þ 1� xið Þ2LAB 2.77

In a dilute solution with xi ! 0, one has

RT lnγi ¼ 1� xið Þ2LAB � LAB 2.78

γi ¼ eLAB=RT 2.79

The activity is thus proportional to its mole fraction, which is called Henry’s law. By the
same token, for the solvent, i.e. for xi ! 1,

RT lnγi ¼ 1� xið Þ2LAB � 0 2.80
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which gives γi � 1, and its activity approaches its mole fraction. This is called
Raoult’s law.

The stability of a binary regular solution is derived from Eq. 2.69 as

∂μA
∂NA

� �
T ,P,NB

¼ RT

xA
� 2 1� xAð ÞLAB

	 

1� xA
N

2.81

∂μB
∂NB

� �
T ,P,NA

¼ RT

xB
� 2 1� xBð ÞLAB

	 

1� xB
N

2.82

It should be noted that the two chemical potentials in a binary system at constant
temperature and pressure are dependent on each other due to the Gibbs–Duhem
equation shown in Eq. 2.72, i.e.

0 ¼ �NAdμA � NBdμB 2.83

and the two chemical potentials depend on each other according to the following
relation,

∂μA
∂μB

� �
T ,P

¼ �NB

NA
2.84

Therefore, at the limit of stability, both Eq. 2.81 and Eq. 2.82 go to zero at the same
time, which is obtained when

RT ¼ 2xAxBLAB 2.85

As the absolute temperature cannot be negative, Eq. 2.85 has no solution for a solution
phase with LAB < 0, i.e. the solution phase is stable with respect to the composition
fluctuation. For a solution with LAB > 0, its limit of stability is represented by
Eq. 2.85.

A schematic of the molar Gibbs energy of a solution with LAB < 0 at constant
temperature and pressure is shown in Figure 2.7 along with the ideal and excess Gibbs
energies of mixing. A tangent line is drawn on the molar Gibbs energy of the solution,
and its two intercepts at xB ¼ 0 and xB ¼ 1 give the chemical potentials of components
A and B, μA and μB, respectively by Eq. 2.68. It is evident that μA and μB are not
independent of each other as they are two points on the same straight line. This is a
graphic representation of the Gibbs–Duhem equation! of Eq. 2.83. The chemical
activity of component B is also depicted, the reference state being pure B with the same
structure. As shown in Eq. 2.52, other structures of pure B can be selected as the
reference state of the chemical activity of component B, resulting in different distances
from its chemical potential in the solution, and thus different values of its chemical
activities. It is clear that this change of reference state for chemical activity does not
affect the chemical potential of the component in the solution.

When LAB > 0, Eq. 2.85 represents a parabola in the T�xi two-dimensional coordinate
plane that is symmetric with respect to xA and xB, as shown in Figure 2.8; it is the spinodal

312.2 Phases with variable compositions: random solutions



of the solution. The consolute point is obtained by applying Eq. 2.59 to Eq. 2.81 and setting
Eq. 2.81 equal to zero at the consolute point:

∂2μA
∂N2

A

� �
T ,P,NB

¼ �RT

x2A
þ 2LAB

	 

1� xA
N

� �2

¼ 0 2.86

which gives
Tcons ¼ 2x2ALAB 2.87

Solving Eq. 2.85 and Eq. 2.87, one obtains xA ¼ xB ¼ 0:5 and

Tcons ¼ LAB
2R

2.88

G
ib

b
s 

en
er

g
y 

an
d

 c
o

n
tr

ib
u

ti
o

n
s 

mB=GBmA=GA

°GB

G
B –°

G
B =

R
T

In
a

B

°Gm

°GA

EGm

G

RT(XAlnXA+XBlnXB)

xB

0

0 1.0

Figure 2.7 Schematic molar Gibbs energy diagram with LAB < 0.

Figure 2.8 A spinodal curve with LAB > 0.
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A schematic molar Gibbs energy diagram at temperatures below the consolute point
is shown in Figure 2.9. It can be seen that part of the molar Gibbs energy has negative
curvature, and the solution becomes unstable. The chemical potential thus does not
change monotonically with respect to composition and its derivative changes sign at the
inflexion point, as denoted by the two filled circles in Fig. 2.9, also called spinodal.

For more complex solutions, LAB can be a function of temperature, pressure, and
composition. In principle, the temperature and pressure dependences can be treated by
means of a formula similar to Eq. 2.39. There are various approaches in the literature for
considering the composition dependence of LAB: The empirical Redlich–Kister polyno-
mial stands out as the approach most widely used because it can be extrapolated to ternary
and multi-component systems consistently; this will be discussed in Chapter 6.

2.2.3 Ternary random solutions

From Eq. 1.55, the Gibbs–Duhem equation of a ternary system consisting of compon-
ents A, B, and C is written as

0 ¼ �SdT � Vd �Pð Þ � NAdμA � NBdμB � NCdμC 2.89

This equation represents a four-dimensional surface in a five-dimensional space. It can
be visualized in a three-dimensional space with two of the five potentials fixed. Usually
T and P are kept constant as they are the natural variables of G, and Eq. 2.89 reduces to

0 ¼ �NAdμA � NBdμB � NCdμC 2.90
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Figure 2.9 Schematic molar Gibbs energy diagram with LAB > 0.

332.2 Phases with variable compositions: random solutions



A phase can thus be represented by a surface in the three-dimensional space of μA, μB,
and μC at constant T and P with similar geometric appearance of Figure 2.1.

From Eq. 2.63, the Gibbs energy of a ternary solution is written as

Gm ¼ xA
0GA þ xB

0GB þ xC
0GC þ RT xAlnxA þ xBlnxB þ xClnxCð Þ þ EGm 2.91

When the mole fraction of one component approaches zero, EGm reduces to the excess
Gibbs energy of mixing of the binary systems of the remaining two components,
represented by Eq. 2.74. However, for a given composition of a ternary solution, there
is no unique way to assign the contributions from the EGm of each binary to the EGm of
the ternary solution because the EGm of the ternary solution contains information on
both binary and ternary interactions. A variety of models is available in the literature
(see [1]). One intuitive approach would be to use the same formula as that in the binary
system, i.e. Eq. 2.74, with the mole fractions substituted by the values in the ternary
system, and EGm for a ternary solution may thus be defined as the following, by
including the ternary interaction involving all three components,

EGm ¼ xAxBLAB þ xAxCLAC þ xBxCLBC þ xAxBxCLABC 2.92

The chemical potential of a component is represented by Eq. 2.64. When all interaction
parameters in Eq. 2.92 are constant, i.e. we have a ternary regular solution, the chemical
potential of component A can be derived as

μA ¼GA ¼ 0GAþRT lnxAþ xBLABþ xCLAC� EGm

¼ 0GAþRT lnxAþ xBð1� xAÞLABþ xCð1� xAÞLAC� xBxCLBCþ xBxCð1�2xAÞLABC
¼ 0GAþRT lnxBþ x2BLABþ x2CLACþ xBxCðLABþLAC�LBCÞþ xBxCð1�2xAÞLABC

2.93

Similar equations can be derived for componentsB andCwith LAB ¼ LBA, LAC ¼ LCA, and
LBC ¼ LCB: A schematic molar Gibbs energy diagram at constant temperature and pressure
is shown in Figure 2.10 with all three binary systems having Lij < 0 of similar value.

To evaluate the stability of a ternary solution, one needs to calculate the elements in
the determinants shown in Eq. 2.55. Using the moles of component C as the independ-
ent molar quantity, the limit of stability is expressed as

GAAGBB � GABGBA ¼ 0 2.94

As an example, GAA is shown in the following equation, which must be positive for the
solution to be stable:

N
∂μA
∂NA

� �
T ,P,NB,NC

¼ NGAA ¼ RT 1� xAð Þ
xA

� 2x2BLAB � 2x2CLAC � 2xBxC

� LAB þ LAC � LBCð Þ � 2xBxC 2� 3xAð ÞLABC 2.95

It is evident that any instability in binary systems with positive interaction parameters
extends into the ternary system. It can also be seen that even if all binary interaction
parameters are negative, i.e. there is no instability in the binary systems, it is possible for
Eq. 2.95 to become negative for some combinations of the binary interaction parameters
such that ΔL ¼ LAB þ LAC � LBC becomes very positive and overshadows the
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contributions due to LAB and LAC, i.e. LBC is more negative than LAB and LAC combined.
In an extreme case with LAB ¼ LAC ¼ LABC ¼ 0 and LBC < 0, i.e. when we have ideal
solutions for the A� B and A� C binary systems, a stable solution in the B� C binary
system, and no additional ternary interaction, Eq. 2.95 reduces to

N
∂μA
∂NA

� �
T ,P,NB,NC

¼ RT 1� xAð Þ
xA

þ 2xBxCLBC 2.96

Setting ð∂μA=∂NAÞT ,P,NB,NC
¼ 0, one obtains

� RT

2LBC
¼ xAxBxC

1� xA
¼ 1� xB � xCð ÞxBxC

xB þ xC
2.97

With �RT=2LBC being positive due to LBC < 0, there is a parabola-shaped compos-
ition area in which the solution is unstable at constant temperature and pressure. This
is reasonable because the system tends to maximize the number of B–C bonds in
order to lower its energy, but this competes with the entropy of mixing among the
three elements and results in the segregation of B–C bonds, and thus a miscibility gap
at low temperatures.

To evaluate the ternary consolute point, the second derivatives for components A and
B are obtained as

N
∂2μ

A

∂N2
A

� �
T ,P,NB,NC

¼ RT 1� xAð Þ
x2A

þ 4x2BLAB þ 4x2CLAC þ 4xBxC

� LAB þ LAC � LBCð Þ þ 2xBxC 7� 9xAð ÞLABC ¼ 0 2.98

N
∂2μ

B

∂N2
B

� �
T ,P,NA,NC

¼ RT 1� xBð Þ
x2B

þ 4x2ALAB þ 4x2CLBC þ 4xAxC

� LAB þ LBC � LACð Þ þ 2xAxC 7� 9xBð ÞLABC ¼ 0 2.99

The consolute point can then be obtained using Eq. 2.94, Eq. 2.98 and Eq. 2.99.
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Figure 2.10 Schematic ternary molar Gibbs energy diagram as a function of composition for given
temperature and pressure, from [1] with permission from Cambridge University Press.
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It may be observed in Eq. 2.93 that 1� 2xAð ÞLABC ¼ 0 at xA ¼ 0:5, i.e. the ternary
interaction parameter does not contribute to the chemical potential of A: It may also be
observed in Eq. 2.95 that the contribution from the ternary interaction parameter
changes sign at xi ¼ 2=3 since 2� 3xAð ÞLABC ¼ 0:

2.2.4 Multi-component random solutions

Similarly to that for a ternary solution, the excess Gibbs energy of mixing of a multi-
component solution can be written as

EGm ¼
X
i

X
j

xixjLij þ
X
i

X
j

X
k

xixjxkLijk 2.100

In principle, one can add interaction parameters for quaternary and higher order
systems, but their contributions to the Gibbs energy are relatively minor; the major
contributions have already been taken into account by the binary and ternary inter-
actions. It is anticipated that not only are the interaction parameters of four or more
components small, but also the mole fractions multiplying the interaction parameters
diminish their contribution to the Gibbs energy even further.

Under the condition that all interaction parameters are constant, the chemical poten-
tial of a component in a multi-component system with binary and ternary interaction
parameters can be extended from Eq. 2.93 as

μi ¼ 0Gi þ RT lnxi þ
X
j 6¼i

x2j Lij þ
X
k>j

X
j 6¼i

xjxk½Lij þ Lik � Ljk þ ð1� 2xiÞLijk	 2.101

The stability of the solution can also be extended from Eq. 2.95 as

N
∂μi
∂Ni

� �
T ,P,Nj 6¼i

¼ NGii ¼ RT 1� xið Þ
xi

� 2
X

j6¼i
x2j Lij � 2

X
k>j

X
j 6¼i
xjxk

� Lij þ Lik � Ljk þ 2� 3xið ÞLijk
� � 2.102

The limit of stability of a multi-component random solution can be represented by
Eq. 2.55 or Eq. 2.58.

2.3 Phases with variable compositions: solutions with ordering

2.3.1 Solutions with short-range ordering

The order in a system can be measured by correlation functions which describe how the
various components are correlated in space. For simplicity, let us consider only the pairs
of nearest neighbors, with the correlation function represented by the pair probability of
nearest neighbor bonds between two components. In a random solution, the probability
of finding nearest neighbor bonds between two components i and j is

pij ¼ xixj 2.103
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When pij 6¼ xixj, the nearest neighbors of component i are not occupied randomly by
component j; rather, certain components are favored, resulting in short-range ordering
or local clustering in the solution. When short-range ordering develops throughout the
solution, long-range ordering takes place, and each component has its own primary sites
in the solution, as discussed in Section 2.3.2. There are relations between bond
probabilities and mole fractions of components due to the mass balance, as follows,
with the assumption pij ¼ pji: X

i

X
j

pij ¼ 1 2.104

xi ¼
X
j

pij 2.105

For small deviations from a random solution, one can consider the formation of i�j
bonds from i�i and j�j bonds and the ideal mixing of the three types of bonds,
similarly to a typical Ising model. The bond reaction can be written as

i�ið Þ bondsþ j�jð Þ bonds ¼ 2 i�jð Þ bonds 2.106

with Gibbs energy

ΔGij ¼ 2Gij � Gii þ Gjj

� �
2.107

The Gibbs energy of the solution per mole of atoms is thus represented by the bond
energies and the ideal mixing of bonds plus non-ideal interactions between pairs,

Gm ¼
X
i

X
j

pijGij þ Z

2
RT
X
i

X
j

pijlnpij þ EGm 2.108

with Gij the molar bond energy between components i and j, Z the number of bonds per
atom, which is divided by two in the equation because two atoms are needed to form
one bond, and EGm ¼

X
pijpklIijkl the excess Gibbs energy of mixing between bonds.

This approach proposed by Guggenheim [2] is called the quasi-chemical method as it is
based on the chemical reaction shown in Eq. 2.106.

However, the entropy of mixing in Eq. 2.108 does not reduce to the ideal entropy of
mixing for a solution without short-range ordering as defined by Eq. 2.103. An approxi-
mated correction may be added for a small degree of short-range ordering as follows:

Gm ¼
X
i

X
j

pijGij þ Z

2
RT
X
i

X
j

pijln
pij
xixj

þ RT
X

xilnxi þ EGm 2.109

For a random solution defined by Eq. 2.103, Eq. 2.109 becomes

Gm ¼
X

xi
0Gi þ RT

X
xilnxi þ

X
xixjΔGij þ EGm 2.110

with 0Gi ¼ Gii, ΔGij from Eq. 2.107 representing the interaction parameter between
components i and j, and EGm ¼

X
xixjxkxlIijkl denoting the higher order interactions in

comparison with Eq. 2.100.
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When short-range ordering exists in a solution, one typically uses the law of mass
reaction for the chemical reaction represented by Eq. 2.106 to define the equilibrium
among all bonds, i.e.

ðpijÞ2
piipjj

¼ e�ΔGij=kT 2.111

However, this is under the assumption that the chemical activities of all bonds can be
represented by their respective probabilities, which is only true for an ideal solution
even excluding dilute solutions due to Henry’s law, as shown by Eq. 2.78. Preferably,
the bond probabilities can be obtained by calculating the driving force for the fluctu-
ation of bond probabilities under constant temperature, pressure, and amount of each
component, along with the constraints defined by Eq. 2.104 and Eq. 2.105, and equating
the driving force to zero, i.e.

1
N

∂G
∂ξ

� �
T ,P,Nn

¼ ∂Gm

∂pij

 !
T ,P,Nn

¼ ∂Gm

∂pij

 !
T ,P,xn,pkl 6¼ij

�
X
kl6¼ij

∂Gm

∂pkl

� �
T ,P,xn,pop 6¼kl

þ ∂Gm

∂xi

� �
T ,P,xq 6¼i,pkl

þ ∂Gm

∂xj

� �
T ,P,xq 6¼j,pkl

¼ 0

2.112

where op indicates the indexes different from ij and kl and ∂pkl=∂pij ¼ �1 and
∂xi=∂pij ¼ ∂xj=∂pij ¼ 1 are used from Eq. 2.104 and Eq. 2.105. Numerical values of
pij can be obtained by minimization of the Gibbs energy under the constraints given by
Eq. 2.104 and Eq. 2.105.

The chemical potential of an independent component i is defined as in Eq. 2.14 and
can be represented by the following equation

μi ¼ Gm þ ∂Gm

∂xi
�
Xc
j¼1

xj
∂Gm

∂xj
þ2
Xc
j¼1

∂Gm

∂pij
� ∂Gm

∂pii
�2
Xc
j¼1

xj
Xc
k¼1

∂Gm

∂pjk
þ
Xc
j¼1

xj
∂Gm

∂pjj
2.113

The stability of the solution can be derived similarly to Eq. 2.54.
When the bonding between components becomes very strong, distinctive new compon-

ents may form. They are not independent components and are often called associates. Both
the independent and dependent components are collectively called species. The formation
of an associate iai jbj consisting of ai moles of i and aj moles of j can be written as

aiiþ ajj ¼ iai jaj 2.114

The Gibbs energy of the associate follows the same format as that of a stoichiometric
phase, Eq. 2.42,

0G iai jaj
¼
X

ai
0GSER

i þ Δf Giai jaj
2.115

The Gibbs energy of the solution is obtained by extending Eq. 2.63 to all species:

Gm ¼
X

yiai jaj
0Giai jaj

þ RT
X

yiai jaj
lnyiai jaj þ

EGm 2.116
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where yiai jaj is the mole fraction of species iai jaj in the solution, with ai ¼ 1 and aj ¼ 0
for component i and ai ¼ 0 and aj ¼ 1 for component j: The equilibrium amount of
each associate iai jaj is obtained by combination of mass balance and the zero driving
force for the variation of the amount of the associate, similarly to Eq. 2.112, i.e.

X
i

X
j
yiai jaj

¼ 1 2.117

xi ¼
X

aiyiai jaj
2.118

∂Gm

∂yiai jaj

 !

xi

¼ 0 2.119

Associates are particularly plentiful in the gas phase, and their amounts are significantly
affected by pressure. For an ideal gas phase with EGm ¼ 0 and PVm ¼ RT , the effect of
pressure is added as follows:

Gm ¼
X

yiai jaj
0 Giai jaj

þ RT
X

yiai jaj
lnyiai jaj

þ
ðP
P0

VmdP

¼
X

yiai jaj
0Giai jaj

þ RT
X

yiai jaj
lnyiai jaj þ RT ln

P

P0
2.120

where P is the total pressure, and P0 the reference pressure at which 0Giai jaj
is defined,

usually chosen to be one atmospheric pressure. Equation 2.120 thus becomes

Gm ¼
X

yiai jaj
0G iai jaj

P ¼ 1 atmð Þ þ RT
X

yiai jaj
lnyiai jaj þ RT lnP 2.121

where the unit of the total pressure P is atmospheric pressure (atm). The chemical
potential of species iai jaj is equal to

μiai jaj
¼ 0Giai jaj

P ¼ 1 atmð Þ þ RT lnyiai jaj P ¼ 0G iai jaj
P ¼ 1 atmð Þ þ RT lnPiai jaj

2.122

where Piai jaj
is the partial pressure of species iai jaj , defined as

Piai jaj
¼ yiai jaj

P 2.123

Combining Eq. 2.21 and Eq. 2.115 with Eq. 2.122, the relation between the chemical
potentials of an associate and its constituents is expressed as

μiai jaj
¼ aiμi þ ajμj ¼ ai

0Gi þ aj
0G j þ RT ln Pi

aiPj
aj

� �
2.124

The equilibrium condition for the chemical reaction of an associate forming from its
constituents in an ideal gas phase is obtained as

Δf Giai jaj
þ RT ln

Pi
aiPj

aj

Piai jaj

¼ 0 2.125
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For non-ideal phases, the mole fractions of various associates can be calculated numer-
ically by the minimization of the Gibbs energy under the constraints Eq. 2.117 and
Eq. 2.118.

2.3.2 Solutions with long-range ordering

So far, solutions in which a component can occupy any site in a phase have been
discussed. In many phases, this is not the case. For example, in the fcc solid solution of
Fe and C, Fe atoms take the fcc lattice sites, and C atoms occupy the interstitial sites
between the fcc lattice sites. Therefore, Fe atoms do not mix with C atoms on the fcc
lattice sites; rather, they develop long-rang ordering by occupying their own distinct
sites in the phase. Long-range ordering can also develop when short-range ordering
extends to the whole lattice. A new formula for the Gibbs energy of mixing is needed
and is obtained by considering the details of how components are distributed and mixed
in various sites in a phase.

One way to group various sites in a phase is based on equivalent crystallographic
positions in a phase, i.e. Wyckoff positions. Various sets of equivalent positions divide
the lattice into subsets of lattices. Each set of equivalent positions forms a sublattice.
The distributions of components on each sublattice can be represented by mole
fractions of components in the sublattice, commonly referred to as site fractions and
defined as

yti ¼
Nt

iX
j

Nt
j

2.126

X
i

yti ¼ 1 2.127

where the superscript t denotes the sublattice in which the component resides, and the
summation is for all species in sublattice t including the vacancy. Site fractions and
mole fractions are related through the mass balance as follows:

xi ¼
X

atytiX
at 1� ytva
� � 2.128

where at and ytva are the numbers of sites and the site fraction of vacancies in the
sublattice t.

Random solutions form when each component enters all sublattices equally. Mole
fractions and site fractions thus become identical. Solutions with both substitutional and
interstitial components, like the fcc Fe–C solution mentioned above, can be represented
by two sublattices. Stoichiometric compounds have the site fractions equal to unity in
each sublattice. When site fractions in a compound deviate from unity, the compound is
no longer stoichiometric and develops a composition range of homogeneity. When the
composition range is small, the deviations are often referred to as defects. Since many
properties of a compound are determined by defects, a distinct field of defect chemistry
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exists, predominantly for charged species. As will be demonstrated in Section 2.3.4 and
the rest of the book, defects can be treated as an integral part of the thermodynamics of a
phase with more than one sublattice.

Let us consider a case where there is only one component in each sublattice, which
represents one possible stoichiometric composition of the phase and is often called
an end-member of the phase. The Gibbs energy of an end-member is the same as that
of a phase with a fixed composition as given by Eq. 2.38, Eq. 2.39, or Eq. 2.42. By
re-arranging Eq. 2.42, the Gibbs energy of an end-member, 0G em, is obtained as

0Gem ¼
X

t
at0G t, ref

i þ Δf Gem 2.129

where 0Gt, ref
i represents the Gibbs energy of component i, in a given reference state,

which occupies sublattice t in the end-member. For a vacancy, 0G Va ¼ 0 is defined.
The contribution of each end-member to the Gibbs energy of the phase is the product of
the site fraction of each component in its respective sublattice and the Gibbs energy of
the end-member per mole of formula unit (mf), i.e.

0Gmf ¼
X

em

�Y
t

yti
0Gem

�
2.130

The ideal mixing in each sublattice is similar to that in a random solution with mole
fractions substituted by site fractions. The excess Gibbs energy of mixing consists of
two contributions: (i) that due to mixing in one sublattice, with all other sublattices
containing only one component, and (ii) that due to simultaneous mixing in more than
one sublattice. The Gibbs energy of a solution phase with multi-sublattices can thus be
written per mole of formula unit as

Gmf ¼ 0Gmf þ RT
X

t
at
X

i
ytilny

t
i þ EGmf 2.131

with EG mf given by

EGmf ¼
X
t

Y
s 6¼t

ysl
X
i>j

X
j

ytiy
t
jL

t
i, j:l þ

X
t

Y
s 6¼t

ysl
X
i>j

X
j>k

X
k

ytiy
t
jy
t
kL

t
i, j,k:l

þ
X
t

Y
s6¼t, u

ysl
X
i>j

X
j>k

X
k

ytiy
t
jy
u
my

u
nL

t,u
i, j:m,n:l 2.132

The first term in Eq. 2.132 represents the binary interaction between components i and j in
sublattice t with sublattice s occupied by component l, with a comma separating interacting
components in one sublattice and a colon separating sublattices. The product

Q
s 6¼ty

s
l runs

over all sublattices with one component in each sublattice except sublattice t, in which the
interaction is considered. The second term denotes the ternary interaction among i, j, and k
in sublattice t with sublattice s occupied by component l. The third term depicts simultan-
eous interactions in both sublattices t and u, and the product runs over all other sublattices
with one component in each sublattice except sublattices t and u, in which the interactions
are considered. The third term thus partially reflects the short-range ordering between
components in two sublattices. In principle, high-order interaction parameters such as
quaternary, quinary, and multiple sublattice interaction parameters could be added, but
their contributions to EGmf are small due to the physical insignificance of the co-location of
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four or five components, indicated by the product of their site fractions in front of the
interaction parameters.

In Eq. 2.21, the chemical potential of a stoichiometric compoundwas defined in terms of
a summation of the chemical potentials of individual components in the compound because
the relative amounts of components are constrained by the stoichiometry of the compound
and the chemical potentials of individual components cannot vary independently. By the
same token, the chemical potential of an end-member in a solution can be written as

μem ¼ Gem ¼
X

t
atμti 2.133

where μti is the chemical potential of component i that occupies the sublattice t in the
end-member, and can be derived using Eq. 2.12:

μti ¼ at 0Gt, ref
i þ atRT lnyti þ EGmf þ ∂EGmf

∂yti
�
X
j

ytj
∂EGmf

∂ytj
2.134

For constant interaction parameters in Eq. 2.132, Eq. 2.134 for the chemical potential
reduces to the following expression from Eq. 2.101:

μti ¼ at0 Gt
i þ atRTInyti þ

X
j 6¼i

yti
� �2

Lti, j þ
X
k>j

X
j 6¼i

ytjy
t
k

� Lti, j þ Lti,k � Ltj,k þ 1� 2yti
� �

Lti, j,k

h i
2.135

The stability of the solution is defined by ∂μem=∂Nem, where Nem is the number of moles
of the end-member in the solution and is given by Nμem ¼ N

Q
uy

u
j and

∂Nem

∂yuj
¼

N
Y
t

yti

yuj 1�
Y
t

yti

 ! 2.136

Following Eq. 2.102, one obtains

∂μem
∂Nem

¼
X
u

∂
X
t

atμti

 !

∂yuj

∂yuj
∂Nem

¼
1�
Y
t

ytj

 !

N
Y
t

ytj

X
u

auyui
∂μui
∂yui

¼
1�
Y
t

ytj

 !

N
Y
t

ytj

X
u

auyui

� RT 1�yui
� �
yui

�2
X
j 6¼i

yuj

� �2
Lui,j�2

X
k>j

X
j6¼i

yuj y
u
k Lui,jþLui,k�Luj,kþ 2�3yui

� �
Lui,j,k

h i( )

2.137

It is self-evident from Eq. 2.126 that a site fraction is only uniquely defined from the
mole fraction of the component when the component enters into one sublattice only and
does not form any associates. Therefore, in general, the distribution of components on
sublattices and different kinds of molecules can only be obtained by equilibrium
calculations, and the thermodynamic properties for such a phase thus cannot be
represented in a closed form using mole fractions of independent components. This
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was demonstrated in Section 2.3.1 in the case when short-range ordering exists in solution
phases; there the energy minimization procedure was used to obtain the distribution of
components over different kinds of bonds and the amounts of individual associates.

2.3.3 Solutions with both short-range and long-range ordering

The short-range ordering in a solution with long-range ordering can take place in each
sublattice or between two sublattices. The short-range ordering in one sublattice can be
treated as in Section 2.3.1, with mole fractions substituted by site fractions. In the case
in which associates form, the relation between mole fractions and site fractions becomes
more complicated, as follows:

xi ¼
X

at
X

k
ikytkX

at 1� ytva
� � 2.138

where the summation for k goes over all associates in sublattice t containing component i:
The short-range ordering between two sublattices indicates that a component in one

sublattice has different interactions with different components in another sublattice.
This results in the local ordering of one component around another component in two
neighboring sublattices. Such local ordering involves interactions between two sublat-
tices, shown as the third term in Eq. 2.132.

2.3.4 Solutions with charged species

One special type of solutionwith both short-range and long-range ordering is solutionswith
charged species, i.e. ionic solutions, plus electrons and holes. There is an additional
constraint on species concentrations to maintain the charge neutrality of such solutions, i.e.

0 ¼
X
t

X
i

atytiv
t
i 2.139

where vti is the valence of species i in sublattice t including its sign, which is positive for
cations, negative for anions, and zero for neutral species. Conventional defect chemistry
theory is typically based on the ideal mass action laws and applicable to a single set of
defects and at very low defect concentrations, i.e. in the limit of ideal solutions. For
interacting defects, their concentrations should be replaced by their activities, which can
be obtained from thermodynamic principles, as discussed in previous sections. It should
be emphasized that in addition to the formation of many more charged species, one
component may have different valences. This is particularly the case for the transition
metals. Consequently, there can be many more species in an ionic phase than the
number of independent components in the system, and their concentrations can be
found by equilibrium calculations as discussed in Section 2.3.1.

2.4 Polymer solutions and polymer blends

A polymer solution is a mixture of polymer molecules and solvents, while a polymer
blend is a mixture of different polymer molecules. A polymer molecule consists of the

432.4 Polymer solutions and polymer blends



same repeating units of one or more monomers; a monomer can be an atom or a small
molecule. The number of repeating units is called the degree of polymerization and can
be as large as 104–105. It defines the molecular mass, i.e. the mass of one polymer
molecule. There are three typical architectures of polymerization: a linear chain, a
branched chain, and a cross-linked polymer. Nearly all polymers are mixtures of
molecules with a different degree of polymerization and thus with a molecular mass
distribution, complicating the modeling of their thermodynamic properties because of
the dependence of the properties on molecular mass.

Gibbs energy functions of polymers with a single molecular mass can be treated as in
Section 2.1. For a polymer solution, the ideal entropy of mixing is quite different from
that of the atomically random solutions discussed in Section 2.2.1 because the mono-
mers in a polymer molecule are connected to each other and cannot move freely. One
common approach to calculating the ideal entropy of mixing is to invoke a lattice model
and assume that one monomer occupies a lattice site with a fixed volume. The number
of translational states of a single molecule is equal to the number of lattice sites
available. In a homogeneous solution, the total number of lattice sites available is

n ¼
X
i

mini 2.140

where ni and mi are the number of molecules i and the number of lattice sites per
molecule i, respectively. In its pure state, i.e. before mixing, the number of states of
molecule i in terms of the number of lattice sites is

wi ¼ mini ¼ nϕi 2.141

where ϕi is the volume fraction of molecule i in the solution. The entropy change per
molecule i is thus

Si ¼ klnn� klnwi ¼ kln
1
ϕi

¼ �klnϕi 2.142

The total entropy of mixing is the summation for all molecules, normalized to one mole
of lattice sites:

ISm ¼ Na

n

X
i
niSi ¼ �R

X
i

ϕi
mi

lnϕi 2.143

where Na is the Avogadro number. When mi ¼ 1 for all molecules, Eq. 2.143 reduces to
Eq. 2.61. Since the mi values are typically very large numbers for polymers, the entropy of
mixing in polymer solutions andblends is thus significantly lower than those in non-polymer
solutions, as shown schematically in Figure 2.11 for binary systems with variousmi values.

Similarly to Eq. 2.64, the Gibbs energy of a multi-component random polymer
solution or blend can be written as

Gm ¼
X ϕi

mi

0Gim þ RT
X ϕi

mi
lnϕi þ

X
ϕiϕjχij

� �
2.144

where 0Gim is the Gibbs energy of molecule i per mole of lattice sites, and χij the unitless
interaction parameter between molecules i and j. Other equations shown in Section 2.2.1
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can be derived similarly. It is to be noted that Eq. 2.144 is very similar to the Flory–
Huggins solution equation, widely used in the polymer community.

2.5 Elastic, magnetic, and electric contributions to the free energy

Sections 2.1 and 2.2 focused on the thermal and hydrostatic pressure contributions to
the Gibbs energy, which are the two prime variables affecting phase stability in typical
experimental environments. However, there are other internal and external contribu-
tions, which are particularly important for crystalline phases. Two important internal
contributions are from the magnetic and electric polarizations of materials, with corres-
ponding external contributions due to magnetic and electric fields. Furthermore, for the
non-hydrostatic pressure of solid phases, the PV term in the combined law is to be
replaced by the elastic energy calculated from elastic stress and elastic strain. The
corresponding work done on a system is as follows [3]:

dWelastic ¼ �V
X
i, j:k, l

σijdεkl 2.145

dWmagnetic ¼ �V
X

i
HidBi 2.146

dWelectric ¼ �V
X

i
EidDi 2.147

where i, j, k, l ¼ 1, 2, 3; σij and εkl are the components of stress and strain; Hi and Bi are
the components of magnetic field and magnetic induction; Ei and Di are the components
of electric field and electric displacement; and V is the volume of the crystal. The
negative signs in front of the equations are due to the fact that the system does work on
the surroundings when it expands its volume due to strain, magnetic induction, or
electric displacement.
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Figure 2.11 Schematic entropy of mixing in solutions, with the numbers of lattice sites per
molecule shown.
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Using the combined law of thermodynamics, Eq. 1.10 can thus be rewritten as follows:

dU ¼ TdS� V

�X
i, j,k, l

σijdεklþ
X
i

HidBi þ
X

i

EidDi

�
þ
X

μidNi � Ddξ 2.148

A Legendre transformation, similar to that used to obtain the Helmholtz energy and
Gibbs energy, Eq. 1.48 and Eq. 1.49, can be made to obtain the following characteristic
free energy functions:

dF ¼ d U � TSð Þ

¼ �SdT � V
X
i, j, k, l

σijdεkl þ
X
i

HidBi þ
X
i

EidDi

 !
þ
X

μidNi � Ddξ 2.149

dFH ¼ d U � TSþ
X
i

HiBi

 !

¼ �SdT � V
X
i, j, k, l

σijdεkl �
X
i

BidHi þ
X
i

EidDi

 !
þ
X

μidNi � Ddξ 2.150

dFE ¼ d U � TSþ
X
i

EiDi

 !

¼ �SdT � V
X
i, j, k, l

σijdεkl þ
X
i

HidBi �
X
i

DidEi

 !
þ
X

μidNi � Ddξ 2.151

dFEH ¼ d U � TSþ
X
i

HiBi þ
X
i

EiDi

 !

¼ �SdT � V
X
i, j, k, l

σijdεkl �
X
i

BidHi �
X
i

DidEi

 !
þ
X
i

μidNi � Ddξ 2.152

dG ¼ d U � TSþ
X
i, j, k, l

σijεkl þ
X
i

HiBi þ
X
i

EiDi

 !

¼ �SdT þ V
X
i, j, k, l

εijdσkl þ
X
i

BidHi þ
X
i

DidEi

 !
þ
X

μidNi � Ddξ 2.153

From the above equations, it can be seen that the natural variables of the various free
energies are F T , εij,Bi,Di,Ni, ξ

� �
, FH T , εij,Hi,Di,Ni, ξ

� �
, FE T , εij,Bi,Ei,Ni, ξ

� �
,

FEH T , εij,Hi,Ei,Ni, ξ
� �

, and G T , σij,Hi,Ei,Ni, ξ
� �

: Clearly, there can be more com-
binations when the components of εij, Di, and Bi are partially replaced by their
conjugate potentials. The free energies listed above are useful depending on how the
system is constrained by the surroundings. For practical applications, the elastic,
magnetic, and electric properties are usually considered for phases with fixed compos-
itions, and Eq. 2.153 at equilibrium can then be written as
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dG ¼ �SdT þ V

� X
i, j, k, l

εijdσklþ
X

i

BidHi þ
X

i

DidEi

�
þ μdN 2.154

The corresponding Gibbs–Duhem equation follows from Eq. 2.22

0 ¼ �SdT þ V

� X
i, j, k, l

εijdσklþ
X
i

BidHi þ
X
i

DidEi

�
� Ndμ 2.155

The general differential form of a molar quantity can be extended from Eq. 2.11 as
follows, for a one-component system:

dS ¼ ∂S
∂T

� �
σ,E,H

dT þ ∂S
∂σkl

� �
E,T ,H

dσkl þ ∂S
∂Ek

� �
σ,T ,H

dEk þ ∂S
∂Hk

� �
σ,T ,E

dHk 2.156

dεij ¼ ∂εij
∂T

� �
σ,E,H

dT þ ∂εij
∂σkl

� �
E,T ,H

dσkl þ ∂εij
∂Ek

� �
σ,T ,H

dEk þ ∂εij
∂Hk

� �
σ,T ,E

dHk 2.157

dDi ¼ ∂Di

∂T

� �
σ,E,H

dT þ ∂Di

∂σkl

� �
E,T ,H

dσkl þ ∂Di

∂Ek

� �
σ,T ,H

dEk þ ∂Dj

∂Hk

� �
σ,T ,E

dHk 2.158

dBi ¼ ∂Bi

∂T

� �
σ,E,H

dT þ ∂Bi

∂σkl

� �
E,T ,H

dσkl þ ∂Bi

∂Ek

� �
σ,T ,H

dEk þ ∂Bi

∂Hk

� �
σ,T ,E

dHk 2.159

The first derivatives in Eq. 2.156 to Eq. 2.159 are the second directives of the Gibbs
energy with respect to its natural variables, i.e. potentials, and have their respective
nomenclatures as shown in Table 2.1. The limit of stability follows from Eq. 2.18 and
can be rewritten as

∂Xi

∂Yi

� �
N,Yj

¼ ∞ 2.160

This means that the derivatives in Eq. 2.156 to Eq. 2.159, i.e. the quantities in Table 2.1,
diverge at the limit of stability.

Table 2.1 Physical quantities related to the first derivatives (∂S=∂T etc.) in Eq. 2.156 to Eq. 2.159. The
table is symmetric because the Maxwell relations are related to the second derivatives of the Gibbs energy
with respect to its natural variables.

T σkl Ek Hk

S C/T, heat capacity αkl, piezocaloric
effect

pk , electrocaloric
effect

mk, magnetocaloric
effect

εij αij, thermal
expansion

sijkl, elastic
compliance

dijk , converse
piezoelectricity

qijk , piezomagnetic
moduli

Di pi, pyroelectric
coefficients

dikl, piezoelectric
moduli

kik , permittivities aik , magnetoelectric
coefficients

Bi mi, pyromagnetic
coefficients

qikl,
piezomagnetic
moduli

aik , magnetoelectric
coefficients

μik , permeability
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Exercises

1. Derive the relation between the heat capacities at constant pressure and
constant volume, i.e.

CV ¼ CP � α2VVT
κT

¼ CP � α2VBVT

Note that CV ¼ ð∂U=∂TÞV and CP ¼ �Tð∂2G=∂T2ÞP. You may want to
represent U as a function of T and V in terms of G and its derivatives
with respect to its natural variables, T and P, starting with V and
U ¼ Gþ TS� PV as a function of T and P.

2. Go through the steps in detail needed to derive the following equations and
specify which variables are kept constant in the partial derivatives:

μj ¼
∂G
∂Nj

� �
T ,P,Nk 6¼j

¼ ∂ NGmð Þ
∂Nj

� �
T ,P,Nk 6¼j

¼ Gm þ 1� xj
� � ∂Gm

∂xj
�
X
k 6¼j

xk
∂Gm

∂xk

whereGm T ;P;Nið Þ is the molar Gibbs energy, N ¼
X

i
Ni is the total number

of moles of components, and xi ¼ Ni=N is the mole fraction of component i.
3. The Gibbs energy diagram for the Al–Zn system at 800 K is shown below.

Obtain necessary data through measurements from the figure and answer the
following questions. Note the factor 103 at the bottom of the y axis, so the
enthalpy values on the y axis need to be multiplied by 1000.
a. What are the reference states of components Al and Zn shown in the

diagram?
b. Calculate the activities of Al in a metastable, single-phase liquid with

xZn ¼ 0:2 when referred to pure liquid Al, pure fcc Al and pure hcp Al,
respectively.
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(cont.)

4. The Gibbs energy of the fcc Al–Zn solution is given as follows:

Gfcc
m ¼ xAl

oG fcc
Al þ xZn

oG fcc
Zn þ RT xAllnxAl þ xZnlnxZnð Þ þ 5224xAlxZn

Because the interaction parameter is positive, the fcc phase is unstable under
certain conditions, which is why there are two fcc phases in the figure in
Exercise 3, and the limit of stability is commonly called the spinodal. Derive
the expression for the spinodal and plot it in a T�xZn diagram.

5. The equation for the Gibbs energy per site, Gm, was given as Eq. 2.144.
a. Calculate the entropy of mixing per site and the total entropy of

mixing for the following three binary systems on a three-dimensional
cubic lattice with one ball per site:

 300 black 25-ball chains with 300 white 25-ball chains,

 300 black 25-ball chains with 7500 white balls,

 5000 black balls with 5000 white balls.

b. Under what values of χij can a solution become unstable? Explain.
c. Assuming that the three solutions discussed in part a above have the

same values for χij, which solution has the strongest tendency to
become unstable, which has the weakest tendency to become unstable,
and which is in the middle? Explain.

6. Given S T ,P,Nið Þ ¼ NSm T ,P, xið Þ, where S is the entropy of a system, N the
number of moles in the system, and Sm the molar entropy, and
Si ¼ ∂S=∂Nið ÞT ,P,Nj 6¼i

, where Si is the partial entropy of component i, show
that

Si ¼ Sm þ ∂Sm
∂xi

� �
T ,P,xk 6¼i

�
Xc
j¼1

xj
∂Sm
∂xj

� �
T ,P,xk 6¼j

7. An α solution in the A–B system has aB ¼ 0:9 at 1000 K when pure α-B is
used as the reference state. Calculate aB referred to another state of B, called
β-B, which is more stable than α-B by 1200 J/mol. Illustrate with a Gm

diagram.
8. Assuming that the Gibbs energy of an A–B binary solution is represented by

the equation
Gm ¼ xA 0GA þ xB 0GB þ RT ðxAlnxA þ xBlnxBÞ � 1000xAxB (J/mol)
where 0GA and 0GB are the Gibbs energies of pure A and pure B, respect-
ively. Do the following.
a. Plot Gm as a function of xB at 1000 K with 0GA ¼ � 2000 and

0GB ¼ � 1000 (J/mol).
b. Derive expressions for partial quantities, μA and μB, and show

Gm ¼ μAxA þ μBxB.
c. Calculate the values of μA and μB at xB ¼ 0:6 and T ¼ 1000 K.
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(cont.)

d. Draw a tangent at xB ¼ 0:6 in your Gm versus xB diagram and show that
μA and μB are the intercepts of the tangent at xB ¼ 0 and xB ¼ 1,
respectively.

9. What is the free energy of mixing of 2 moles of polystyrene (molar mass 2 �
105g/mol) with 1� 104 liter of toluene (molar mass 92.14 g/mol) at 25 �C, with
Flory interaction parameter χ = 0.37? The densities of polystyrene and toluene
are 1.06 and 0.87 g/cm3, respectively. Assume no volume change upon mixing.

10. At T ¼ 0 K, the entropic contributions to the free energy of mixing disappear.
With χ ¼ Aþ B=T where A and B are both constants, sketch the composition
dependence of the free energy for cases where B < 0, B ¼ 0, and B > 0, and
discuss whether any of those situations leads to a stable mixture at T ¼ 0
K. Does your answer depend on whether polymer solutions, or polymer
blends, or metallic solutions are considered?

11. Plot on a single graph the composition dependence of the free energy of
mixing per mole of atoms at 1000 K in a binary metallic solution with
interaction parameter LAB ¼ �20000, 0, 20000 (J/mol). Which choices of the
interaction parameter make the solution unstable at what composition range at
1000 K? This limit of instability is often called the spinodal. Calculate and
plot the spinodal as a function of temperature for the choices you find.

12. The Gibbs energy of the Al–Cu binary fcc solution is represented by the
following equation,

Gm ¼ xAl
0GAl þ xCu

0GCu þ RT ðx Allnx Al þ xCulnxCuÞ þ xAlxCu �50000þ 2Tð Þ
where 0GAl and 0GCu are the Gibbs energies of pure fcc Al and fcc Cu,
respectively. Do the following.
b. Derive expressions for the partial quantities GAl and GCu and show

Gm ¼ GAlxAl þ GCuxCu:
c. Calculate the partial quantities GAl and GCu at 500 K and xAl ¼ 0:4.
d. Plot Gm, GAl, and GCuas a function of xAl at 500 K.
e. Validate the Gibbs–Duhem equation using the above information, at

constant temperatures.
f. Discuss the applicability of Henry’s law and Rault’s law based on your

results.
g. Will the solution become unstable at any temperatures? Why or

why not?
13. A complex oxide can be represented by the formula for two sublattices, i.e.

(A,B)(O,Va)b with a small oxygen deficiency in the second sublattice. At one
temperature, the composition of the oxide is measured in terms of mole
fraction as xA ¼ 0:21 and xB ¼ 0:13. Calculate the value of b, i.e. the number
of sites of the second sublattice, and the site fractions of A and B in the first
sublattice and of O and Va in the second sublattice.
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(cont.)

14. The sublattice model
�
Ca2þ, Zr4þ

�
1 O2�� �

1:5 O2�,Va
� �

0:5 is used to describe
the doping of Ca into ZrO2. Show in a composition square where you would
expect to find such a solid solution. Calculate the entropy of mixing, assuming
random mixing in the first and third sublattices for equal amounts of O and Va
in the third sublattice. Compare with the ideal entropy of mixing when the
second and third sublattices are combined into one sublattice.

15. Consider the contents of an expandable vessel as a system. We have enclosed
a certain amount of water in the vessel. Then we vary T and P by actions from
the outside and studies what happens to V in an attempt to decide whether the
system behaves as a unary system. Due to its larger volume, it is easy to see
when a gas phase forms. Discuss what we would expect to happen. Assume
that the wall of the vessel acts as a catalyst for the dissociation of H2O into H2

and 1
2O2.

16. The stable element reference (SER) state is widely used in thermodynamic
databases. Describe in detail its definition. From a database using such a
reference state, one obtains the following Gibbs energy values in joules per
mole of atoms at 1273 K: fcc-Fe, 62287; C in graphite, 20089; Fe3C, �52379.
Calculate the standard Gibbs energy of formation of Fe3C at 1273 K. Based on
the value you obtain, should Fe3C be stable at this temperature? Why or why
not? Explain your results in detail in the context of the stable and metastable
phase equilibria of Fe–C at 1273 K using Thermo-Calc.

17. The sublattice model
�
Y3þ, Zr4þ

�
1 O2�� �

1:5 O2�,Va
� �

0:5 is used to describe
the doping of Y into ZrO2. Show in a composition square where you would
expect to find such a solid solution. Calculate the entropy of mixing, assuming
random mixing in the first and third sublattices for equal amounts of O and Va
in the third sublattice. Compare with the ideal entropy of mixing when the
second and third sublattices are combined into one sublattice.

18. Show that ∂ EGi=∂xj ¼ ∂ EGj=∂xi with EG the excess Gibbs energy.
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3 Phase equilibria in
heterogeneous systems

3.1 General condition for equilibrium

A system is heterogeneous if some properties have different values in different portions
of the system when the system is at equilibrium. Two scenarios may exist, where
variations of the properties can be either continuous or discontinuous. In the scenario
of continuous variations, the gradients of the variations must be coupled so that the
system remains at equilibrium. The number of independent variables is thus reduced.
These gradients must also be constrained along the boundaries between the system and
the surroundings. This type of constrained equilibrium is not discussed in the book as it
involves heterogeneous boundary conditions between the system and the surroundings
and depends on the morphology of the system.

In the second scenario, with discontinuous variations, the properties have different
values in different portions of the system, but remain homogenous within each portion.
The system is in equilibrium as each portion is in equilibrium with all other portions
of the system. The homogeneous portions represent different phases in the system, with
the properties in each phase being homogeneous at equilibrium. In the previous chapter,
it was been shown that all potentials are homogeneous in a homogeneous system.

For a heterogeneous system, the same conclusion can be obtained. If the temperature
is inhomogeneous, heat can be conducted from high temperature locations to low
temperature locations, and this process is irreversible based on the second law of
thermodynamics because it increases the internal entropy of the system. If the pressure
is inhomogeneous, the amounts of lower molar volume phases will increase to reduce
the internal energy of the system. If the chemical potential of a component is inhomo-
geneous, the chemical potential difference of the component will drive that component
to locations with a lower chemical potential in order to decrease the internal energy of
the system. Therefore, it can be concluded that all potentials are homogeneous in
a heterogeneous system at equilibrium, and the variables that are not homogeneous
are thus their conjugate molar quantities. Under certain special circumstances, to be
discussed later in this book, some molar quantities may also have the same values in
difference phases.

In a system at equilibrium, with c independent components, there are cþ 2 pairs
of conjugate variables, based on Eq. 1.10 or Eq. 1.49, though more can be added,
as shown by Eq. 2.148, depending on experimental conditions. For simplicity,
most discussions in this book are limited to systems with cþ 2 pairs of conjugate
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variables unless otherwise specified, where the number “2” represents the variables
T, (�P) or their conjugate variables S, V.

For a system under constant temperature, pressure, and number of moles of each
independent component, the equilibrium condition is derived from Eq. 1.49 as

dG ¼ �SdT � Vd �Pð Þ þ
X

μidNi � Ddξ ¼ �Ddξ ¼ 0 3.1

Consequently, the equilibrium state is defined by minimization of the Gibbs energy of
the system at constant T , P, and Ni because the second derivatives need to be positive
for the equilibrium system to be stable, as stipulated by Eq. 2.53. For heterogeneous
systems with two or more phases, the Gibbs energy of the system is the weighted sum of
the Gibbs energies of the individual phases, i.e.

G

N
¼ Gm ¼

X
β

f βGβ
m 3.2

where f β and Gβ
m are the mole fraction and molar Gibbs energy of the phase β,

respectively, and the summation goes over all phases in the system; f β is equal to zero
for phases not present in the equilibrium state.

The minimization of the Gibbs energy of the system is carried out under the
following mass balance conditions:

xi ¼
X
β

f βx βi ¼
X
β

f β

X
β�t

aβ�t
X

k
iβ�t
k yβ�t

kX
β�t

aβ�t 1� yβ�t
va

� � 3.3

X
i

xi ¼ 1 3.4

X
k

y β�t
k ¼ 1 3.5

where aβ�t and y β�t
k are the number of sites in sublattice t in the β phase and the

corresponding site fraction of species k in the sublattice, respectively, and iβ�t
k is the

stoichiometry of the component i in the species k, as used in Eq. 2.138. The summation
in Eq. 3.5 runs over species for each sublattice. For phases containing ionic species,
electroneutrality also needs to be maintained, i.e. Eq. 2.139 is applied to each phase.
This minimization problem of the Gibbs energy under the constraint of mass conser-
vation can be solved by means of a range of algorithms. It should be noted that the mole
fractions of phases and site fractions of species are bounded between 0 and 1.

This minimization procedure must have the result that potentials are homogeneous
in the system as discussed above. Since the present book deals with the thermodynamics
of materials, the chemical potential of each component is of particular interest and must
be homogenous in all phases of the system at equilibrium, i.e.

μαi ¼ μβ
i ¼ μγi . . . 3.6

For phases in which the chemical potentials of individual components cannot be
evaluated by stoichiometry, the combined chemical potentials can be used to relate
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individual potentials as shown by Eq. 2.21 and Eq. 2.133. As proved in Section 2.2.1,
see Eq. 2.68, the chemical potential of a component in a solution is represented by the
intercept on the Gibbs energy axis of the multi-dimensional tangent surface of the Gibbs
energy of the solution, plotted with respect to the mole fractions of the independent
components. The Gibbs energy functions of all phases in equilibrium must thus share
the same tangent surface. This is usually referred to as the common tangent construction
for phases at equilibrium. Any phase with its Gibbs energy curve above the tangent
surface is not stable under the given composition of the system.

3.2 Gibbs phase rule

The Gibbs–Duhem equation, i.e. Eq. 1.55, states that only cþ 1 potentials are inde-
pendent in a homogeneous system with c independent components and the additional
two variables of temperature and pressure. In a heterogeneous system at equilibrium,
this equation can be applied to individual phases as each phase is homogeneous. Noting
that each potential has the same value in all phases at equilibrium, Eq. 1.55 can be
written as follows for each individual phase, β, in the system at equilibrium:

0 ¼ �SβdT � Vβd �Pð Þ �
X

Nβ
i dμi 3.7

For a system with p phases at equilibrium, there are p such equations relating the
potentials in the system. The number of independent potentials thus becomes

υ ¼ cþ 2� p 3.8

Equation 3.8 is called the Gibbs phase rule. It dictates the number of potentials that
can change independently, for a given number of phases co-existing at equilibrium,
commonly called the degree of freedom of the system at equilibrium. It stipulates
that the maximum number of phases which can co-exist in a system at equilibrium
is obtained by setting υ ¼ 0: This is called an invariant equilibrium due to the zero
degrees of freedom,

pmax ¼ cþ 2 3.9

There are thus a maximum of three phases in a one-component system, four phases in a
binary system, five phases in a ternary system, and so on, that can co-exist simultan-
eously at equilibrium with all potentials in the system at fixed values. This should not be
confused with the total number of phases that could exist, but not co-exist, in a system,
which of course is not limited by the Gibbs phase rule.

It should be emphasized that the degree of freedom, υ, refers to the number of
potentials only, not to molar quantities of the system, because molar quantities are
generally not homogeneous in a heterogeneous system. For example, in a system at
equilibrium with υ ¼ 0, the amount of each component can be varied, while keeping
the number of phases at pmax ¼ cþ 2: This can be done by changing the amount of each
phase in the system through the mass balance equation, Eq. 3.3, without altering the
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composition of each phase and thus the chemical potentials in the system. As mentioned
at the beginning of Section 3.1, the number of independent variables in a system at
equilibrium, i.e. the sum of numbers of independent potentials and independent molar
quantities, is cþ 2, with the maximum number of independent potentials determined by
the Gibbs phase rule, Eq. 3.8.

3.3 Potential phase diagrams

The Gibbs phase rule can be further understood through the cþ 2ð Þ-dimensional space
of potentials consisting of T , �P, and μi with i ranging from 1 to c. Each phase is a
cþ 1ð Þ-dimensional feature in this cþ 2ð Þ-dimensional space, characterized by Eq. 3.7.
The directions of this cþ 1ð Þ-dimensional feature are represented by their molar
quantities as shown by the following equations, obtained from Eq. 3.7,

∂μi
∂T

� �
P,μj 6¼i

¼ � Sβ

Nβ
i

¼ � Sβm
x βi

3.10

∂μi
∂ �Pð Þ
� �

T ,μj 6¼i

¼ � Vβ

Nβ
i

¼ �Vβ
m

xβi
3.11

∂ �Pð Þ
∂T

� �
μi

¼ � Sβ

Vβ ¼ � Sβm
Vβ
m

3.12

As can be seen, all the direction derivatives are negative, indicating that the cþ 1ð Þ-
dimensional feature is convex. The intercept of any two cþ 1ð Þ-dimensional features
is thus a c-dimensional feature. On this c-dimensional feature, these two phases are
in equilibrium with each other because each potential has the same value in both
phases. This feature thus represents a two-phase equilibrium. By the same token, the
intercept of any three cþ 1ð Þ-dimensional features is a c� 1ð Þ-dimensional feature
in the cþ 2ð Þ-dimensional space of potentials and represents a three-phase equilibrium.
This continues until the number of phases reaches cþ 2, with all cþ 2 potentials
completely determined, and the dimension of their intercepts becomes zero.

Those (cþ 1)- to zero-dimensional geometrical features in the cþ 2ð Þ-dimensional
space of potentials thus denote one-phase, two-phase, three-phase to cþ 2ð Þ-phase
equilibria of the system with the dimensionality of the feature and the number of phases
in equilibrium related by Eq. 3.8, i.e. the Gibbs phase rule. Their arrangements in the
cþ 2ð Þ-dimensional space of potentials thus depict the phase relations in the system
and are commonly called phase diagrams. Since all the diagram axes in the phase
diagram discussed above are potentials, the diagram is called a potential phase diagram
in order to differentiate it from phase diagrams, in which some or all diagram axes are
the conjugate molar quantities. Both potential and molar phase diagrams are discussed
in this chapter.
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3.3.1 Potential phase diagrams of one-component systems

As the physical vision of human beings is limited to three dimensions, only one-
component systems can be completely visualized as shown in Figure 2.1 for one phase
where any two of the three potentials can change independently. From the Gibbs phase
rule, when two phases are in equilibrium, only one potential can vary freely if the
two-phase equilibrium is to be maintained. When three phases are in equilibrium,
the degree of freedom is zero, and all three potentials are fixed.

For a two-phase equilibrium, two surfaces intersect each other as depicted by the
dashed line in Figure 3.1. This two-phase equilibrium line is obtained by applying
Eq. 3.7 to both phases in the one-component system. Since one of the potentials is
dependent on the other two, one can eliminate it by dividing the equation by its
conjugate molar quantity and subtracting the two equations, resulting in the following
three equations:

0 ¼ Sα

Nα
A

� Sβ

Nβ
A

 !
dT þ Vα

Nα
A

� Vβ

Nβ
A

 !
d �Pð Þ ¼ ΔSαβm dT þ ΔVαβ

m d �Pð Þ 3.13

0 ¼ Sα

Vα �
Sβ

Vβ

� �
dT þ Nα

A

Vα �
Nβ

A

Vβ

 !
dμA ¼ Δ

Sm
Vm

� �αβ

dT þ Δ
1
Vm

� �αβ

dμA 3.14

0 ¼ Vα

Sα
� Vβ

Sβ

� �
d �Pð Þ þ Nα

A

Sα
� Nβ

A

Sβ

 !
dμA ¼ Δ

Vm

Sm

� �αβ

d �Pð Þ þ Δ
1
Sm

� �αβ

dμA

3.15

The directions of the two-phase equilibrium line can thus be obtained as

d �Pð Þ
dT

¼ � ΔSαβm
ΔVαβ

m

3.16

mA

–P
b

T

a

Figure 3.1 Gibbs energy surfaces of two phases and their intersection (dashed line), representing
two-phase equilibrium.
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dT

dμA
¼ �Δ

1
Vm

� �αβ
,

Δ
Sm
Vm

� �αβ

3.17

d �Pð Þ
dμA

¼ �Δ
1
Sm

� �αβ
,

Δ
Vm

Sm

� �αβ

3.18

These three equations define the mathematical forms of the two-phase equilibrium line
in the two-dimensional T� �Pð Þ, μA�T and μA� �Pð Þ spaces, respectively, and can thus
be plotted as two-dimensional diagrams. Equation 3.16 is commonly called the
Clausius–Clapeyron equation in the literature. One may thus call all three equations
above generalized Clausius–Clapeyron equations. At equilibrium, the chemical poten-
tials of the components in both phases are equal to each other and so are their Gibbs
energies. One thus has

Gα
m � Gβ

m ¼ 0 ¼ ΔGm ¼ ΔHαβ
m � TΔSαβm 3.19

The Clausius–Clapeyron equation, Eq. 3.16, can be rewritten as

d �Pð Þ
dT

¼ � ΔHαβ
m

TΔVαβ
m

3.20

As an example, three potential phase diagrams of pure Fe are shown in Figure 3.2.
There are four phases in the system, bcc, fcc, hcp, and liquid. In the literature, the high
temperature and low temperature bcc phases are usually denoted by δ (high tempera-
ture) and α (low temperature), the fcc and hcp phases by γ and ε, and the liquid phase
by L, respectively. In these figures, the two-dimensional areas are single-phase regions
where two potentials can change independently with the system remaining as single-
phase. The lines denote two-phase equilibrium regions where only one potential can
vary independently if the two-phase equilibrium is to be maintained. The points where
three two-phase equilibrium lines meet represent the invariant three-phase equilibria
with three potentials fixed.

Based on the discussions in Section 2.1, the enthalpy and entropy of a phase increase
monotonically with temperature, and phases that are stable at higher temperatures have
higher enthalpy and entropy than phases that are stable at lower temperatures. Conse-
quently, the two-phase equilibrium lines in a T� �Pð Þ potential phase diagram have
negative slopes if the phase stable at higher temperatures also has larger molar volume
than the phase stable at lower temperatures (note that ifP is plotted instead of�P, the slope
is positive). This is the case for the two-phase equilibrium lines of δ/L, γ/L, and γ/δ at
high temperatures, and ε/γ shown in Figure 3.2a. On the other hand, the two-phase
equilibrium lines of α/ε and α/γ at low temperatures have positive slopes, indicating that
ε and γ have smaller molar volume than α, as ε and γ are more stable at higher pressures than
α at constant temperatures. It is thus evident that the phase that is stable at higher pressure
can have either higher or lower entropy than the phase that is stable at lower pressure, and
the phase that is stable at higher temperature can have either higher or lower volume than
the phase that is stable at lower temperature. This is the property anomaly discussed in
Section 1.3.
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Figure 3.2 T� �Pð Þ, μA�T , and μA� �Pð Þ potential phase diagrams of pure Fe.
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Another useful example of a potential phase diagram is the pressure–temperature
phase diagram of H2O, shown in Figure 3.3, with three phases: ice, water, and vapor. It
is known that solid ice has many polymorphic structures at high pressures, which are
not included in this diagram. As in the pure Fe potential phase diagram discussed above,
the single-phase regions of ice, water, and vapor are represented by the two-dimensional
areas with two degrees of freedom based on the Gibbs phase rule. The lines are for
the two-phase regions of ice–water, ice–vapor, and water–vapor, and the three-phase
equilibrium has zero degrees of freedom, represented by a point at 273:16 K and
611:73 Pa.

There are two features in Figure 3.3 which are different from those of Fe shown in
Figure 3.2a. The first feature is that the slope of the liquid–solid two-phase equilibrium
line in Figure 3.3 has the opposite sign to that in Figure 3.2a, because solid ice has a
larger molar volume than liquid water, while the molar volume of liquid Fe is larger
than the molar volumes of fcc-Fe and bcc-Fe. The second feature is that the two-phase
equilibrium line of water–vapor ends at 647 K and 22:064� 106 Pa. Beyond this point,
the difference between vapor and water disappears when the pressure and temperature
are changed, i.e. it behaves as one phase. This point is a critical point, as discussed in
Section 1.3. However, it should be noted that it does not represent an invariant reaction
as the degree of freedom based on the Gibbs phase rule is equal to one and not zero. On
the other hand, both the temperature and pressure of the critical point are invariant due
to the two constraints introduced by the limit of stability of a single phase, i.e. the
second and third derivatives of temperature with respect to entropy or pressure with
respect to volume are zero.
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Figure 3.3 P–T phase diagram of H2O.
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3.3.2 Potential phase diagrams of two-component systems

From the Gibbs–Duhem equation (see Eq. 1.55), a single phase in a two-component
system has three independent potentials, out of the four potentials T , �P, μA, and μB, and
is a three-dimensional geometric feature in a four-dimensional space. Alternatively, it can
be represented by a three-dimensional feature bassed on three independent potentials.
A two-phase equilibrium is thus a two-dimensional surface, in this three-dimensional
space, created by the intercept of two three-dimensional features, a three-phase equilib-
rium is a one-dimensional line, and a four-phase equilibrium is a zero-dimensional point.
This is shown in Figure 3.4 for the Fe–C binary system involving four phases: fcc, bcc,
Fe3C (cementite) and graphite.

The two-phase equilibrium surfaces are obtained by choosing any of the four
potentials as the dependent one and solving the Gibbs–Duhem equations for both
phases, resulting in the following four equations:

0 ¼ Sα

Nα
A

� Sβ

Nβ
A

 !
dT þ Vα

Nα
A

� Vβ

Nβ
A

 !
dð�PÞ þ Nα

B

Nα
A

� Nβ
B

Nβ
A

 !
dμB

¼ ΔSαβmAdT þ ΔVαβ
mAdð�PÞ þ ΔzαβB dμB 3.21
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Nα
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� Sβ

Nβ
B

 !
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� Vβ

Nβ
B

 !
dð�PÞ þ Nα

A

Nα
B

� Nβ
A

Nβ
B

 !
dμA

¼ ΔSαβmBdT þ ΔVαβ
mBdð�PÞ þ ΔzαβA dμA 3.22

0

1

2

3

4

5

6

7

8

9

10

P
re

ss
ur

e,
 P

a 
x 

10
8

930 960 990 1020 1050 1080 1110
Temperature, K

1

   1: F+ BCC_A2#1 F+ CEMENTITE#1 FCC_A1#1

1

2

   2: F+ BCC_A2#1 F+ CEMENTITE#1 FCC_A1#1 GR

3

   3: F+ BCC_A2#1 F+ CEMENTITE#1 GRAPHITE #1

21232123212

11

2321232123212

4

   4:*FCC_A1#1 BCC_A2#1 F+ GRAPHITE#1

4

5

   5:*CEMENTITE#1 BCC_A2#1 F+ GRAPHITE#1

6

   6:*CEMENTITE#1 FCC_A1#1 F+ GRAPHITE#1

44447

   7:*BCC_A2#1 FCC_A1#1 F+ GRAPHITE#1

777

Figure 3.4 Projected potential phase diagram of the Fe–C system with fcc, bcc, Fe3C, and graphite
phases.
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Vβ

� �
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 !
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Sα
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Sβ

!
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A

Sα
� Nβ

A

Sβ

 !
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Nα
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Sα
� Nβ

B

Sβ

 !
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¼ Δ
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� �αβ

dð�PÞ þ Δ
1
SmA

� �αβ

dμA þ Δ
1
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� �αβ

dμB 3.24

A three-phase equilibrium line is represented by the intercept of two two-phase surfaces
by applying any of the above four equations to two two-phase equilibria. Let us use
Eq. 3.21 as an example:

0 ¼ ΔSαβmAdT þ ΔVαβ
mAd �Pð Þ þ ΔzαβB dμB 3.25

0 ¼ ΔSαγmAdT þ ΔVαγ
mAd �Pð Þ þ ΔzαγB dμB 3.26

It is self-evident that the two-phase equilibrium surface between β and γ is not independ-
ent and can be obtained by the subtraction of Eq. 3.25 and Eq. 3.26:

0 ¼
�
ΔSαβmA � ΔSαγmA

�
dT þ

�
ΔVαβ

mA � ΔVαγ
mA

�
dð�PÞ þ

�
ΔzαβB � ΔzαγB

�
dμB

¼ ΔSγβmAdT þ ΔV γβ
mAdð�PÞ þ ΔzγβB dμB 3.27

Eliminating one of three potentials in Eq. 3.25 and Eq. 3.26, one can obtain three
equations for the three-phase equilibrium line:

d �Pð Þ
dT

¼ � ΔSαβmA=Δz
αβ
B � ΔSαγmA=Δz

αγ
B

ΔVαβ
mA=Δz

αβ
B � ΔVαγ

mA=Δz
αγ
B

3.28

dT

dμB
¼ � ΔzαβB =ΔVαβ

mA � ΔzαγB =ΔV
αγ
mA

ΔSαβmA=ΔV
αβ
mA � ΔSαγmA=ΔV

αγ
mA

3.29

d �Pð Þ
dμB

¼ � ΔzαβB =ΔSαβmA � ΔzαγB =ΔS
αγ
mA

ΔVαβ
mA=ΔS

αβ
mA � ΔVαγ

mA=ΔS
αγ
mA

3.30

Equations 3.28 to 3.30 can be referred to as generalized Clausius–Clapeyron equations
for binary systems. Similar equations can be derived for T� �Pð Þ�μA, T�μA�μB, and
�Pð Þ�μA�μB potential phase diagrams from Eq. 3.22 to Eq. 3.24, and are listed below.

� Generalized Clausius–Clapeyron equations for a three-phase equilibrium in
T� �Pð Þ�μA potential phase diagrams:

d �Pð Þ
dT

¼ � ΔSαβmB=Δz
αβ
A � ΔSαγmB=Δz

αγ
A

ΔVαβ
mB=Δz

αβ
A � ΔVαγ

mB=Δz
αγ
A

3.31
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ΔSαβmB=ΔV
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3.32

d �Pð Þ
dμA

¼ � ΔzαβA =ΔSαβmB � ΔzαγA =ΔS
αγ
mB

ΔVαβ
mB=ΔS

αβ
mB � ΔVαγ

mB=ΔS
αγ
mB

3.33

� Generalized Clausius–Clapeyron equations for a three-phase equilibrium in
T�μA�μB potential phase diagrams:

dT

dμA
¼ � Δð1=VmAÞαβ=Δð1=VmBÞαβ � Δð1=VmAÞαγ=Δð1=VmBÞαγ

ΔðSm=VmÞαβ=Δð1=VmBÞαβ � ΔðSm=VmÞαγ=Δð1=VmBÞαγ
3.34

dT

dμB
¼ � Δð1=VmBÞαβ=Δð1=VmAÞαβ � Δð1=VmBÞαγ=Δð1=VmAÞαγ

ΔðSm=VmÞαβ=Δð1=VmAÞαβ � ΔðSm=VmÞαγ=Δð1=VmAÞαγ
3.35

dμA
dμB

¼ �Δð1=VmBÞαβ=ΔðSm=VmÞαβ � Δð1=VmBÞαγ=ΔðSm=VmÞαγ
Δð1=VmAÞαβ=ΔðSm=VmÞαβ � Δð1=VmAÞαγ=ΔðSm=VmÞαγ

3.36

� Generalized Clausius–Clapeyron equations for a three-phase equilibrium in
�Pð Þ�μA�μB potential phase diagrams:

dð�PÞ
dμA

¼ � Δð1=SmAÞαβ=Δð1=SmBÞαβ � Δð1=SmAÞαγ=Δð1=SmBÞαγ
ΔðVm=SmÞαβ=Δð1=SmBÞαβ � ΔðVm=SmÞαγ=Δð1=SmBÞαγ

3.37

dð�PÞ
dμB

¼ � Δð1=SmBÞαβ=Δð1=SmAÞαβ � Δð1=SmBÞαγ=Δð1=SmAÞαγ
ΔðVm=SmÞαβ=Δð1=SmAÞαβ � ΔðVm=SmÞαγ=Δð1=SmAÞαγ

3.38

dμA
dμB

¼ �Δð1=SmBÞαβ=ΔðVm=SmÞαβ � Δð1=SmBÞαγ=ΔðVm=SmÞαγ
Δð1=SmAÞαβ=ΔðVm=SmÞαβ � Δð1=SmAÞαγ=ΔðVm=SmÞαγ

3.39

3.3.3 Sectioning of potential phase diagrams

Based on the Gibbs–Duhem equation (see Eq. 1.55), a single-phase equilibrium in a
system with more than two independent components has more than three independent
potentials. There is no problem in representing them using the mathematical formulas
discussed so far, but it is not possible for us to visualize graphically the full potential
phase diagrams for multi-component systems with more than two independent compo-
nents. In principle, there are two options. One option is to project the multi-dimensional
potential phase diagram onto a two- or three-dimensional diagram, and another option
is to section the multi-dimensional potential phase diagram by fixing the values of
some potentials.

The projection approach was used for one-component systems in Section 3.3.1. Since
a two-phase equilibrium in a one-component potential phase diagram is one-
dimensional, the projection does not lose any information, and the same is true for a
three-phase equilibrium in a one-component potential phase diagram. In a binary
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system, the projections of three-phase and four-phase equilibria do not lose any infor-
mation, while the projections of two-phase equilibria become two-dimensional and
cannot retain all the information as the original dimensionality of these two-phase
equilibria is three. Consequently, sectioning at fixed values of some potentials is
necessary in order to visualize the phase relations in systems with two or more
components. The Gibbs phase rules shown in Eq. 3.8 and Eq. 3.9 are thus modified to

υ ¼ cþ 2� p� ns ¼ c� nsð Þ þ 2� p 3.40

pmax ¼ c� nsð Þ þ 2 3.41

where ns is the number of potentials fixed in sectioning. As can be seen in the last part of
Eq. 3.40, the number of sections is equivalent to the reduction of the effective number
of independent components. Therefore, any multi-component system with ns ¼ c� i
behaves like an i-component system. The equations presented in Sections 3.3.1 and
3.3.2 are thus directly applicable to multi-component systems with ns ¼ c� 1 and
ns ¼ c� 2, respectively.

A common practice in experiments is to fix the pressure, temperature, or chemi-
cal potentials of volatile components as they are usually the variables controlled
experimentally. In a binary system, the potential phase diagram at constant pressure
can be represented by any two of the three potentials, i.e. two chemical potentials
and temperature, with the remaining potential being dependent, and has morphology
identical to that of a one-component system. The Gibbs–Duhem equation under such
conditions becomes

0 ¼ �SdT � NAdμA � NBdμB 3.42

The corresponding two-phase Clausius–Clapeyron equations are written as

dT

dμA
¼ � ΔzαβA

ΔSαβmB
3.43

dT

dμB
¼ � ΔzαβB

ΔSαβmA
3.44

dμA
dμB

¼ Δð1=SmBÞαβ
Δð1=SmAÞαβ

3.45

As an example, the T–μC potential phase diagram for the Fe–C binary system at one
atmospheric pressure is shown in Figure 3.5.

In a ternary system, two potentials need to be fixed in order to obtain two-
dimensional potential phase diagrams. When the pressure and the chemical potential
of one species are fixed, the system behaves like the binary system discussed above.
When the system temperature and pressure are fixed, the Gibbs–Duhem equation is
written as

0 ¼ �NAdμA � NBdμB � NCdμC 3.46
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Taking the component A as the dependent element, the two-phase Clausius–Clapeyron
equation is simplified as

dμB
dμC

¼ d lnaBð Þ
d lnaCð Þ ¼ �ΔzαβC

ΔzαβB
3.47

When the two phases in equilibrium are stoichiometric phases, the two-phase equilibrium
is thus a straight line. For example, the Ti–O–Cl potential phase diagram at 600 �C and one
atmospheric pressure is shown in Figure 3.6. Since both O and Cl are volatile components,
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Figure 3.5 T–μC potential phase diagram for the Fe–C binary system at P ¼ 1 atm.
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their activities are usually represented by their partial pressures, with the pure O2 and Cl2
gas as their respective reference states at the given temperature and pressure.

For systems with more than three components, the chemical potentials of one or more
components must be fixed in order to obtain a two-dimensional potential phase diagram
similar to the potential phase diagrams discussed above.

3.4 Molar phase diagrams

The potential phase diagrams discussed in Section 3.3 present information on which
phases are in equilibrium under given values of potentials, but do not have any information
on the properties of the phases in equilibrium. On the other hand, there are direct relations
between potentials and their conjugate molar quantities for each phase at equilibrium,
given by Eq. 2.2 to Eq. 2.5. One can thus substitute the potentials by their conjugate molar
quantities in the potential phase diagrams, as molar quantities provide more information
on the properties of the phases in the system. This is particularly true when chemical
potentials are replaced by compositions, as the compositions of the system are often the
variables controlled and measured in experiments instead of chemical potentials.

3.4.1 Tie-lines and lever rule

It is self-evident from Eq. 2.2 to Eq. 2.4 that while potentials are homogeneous in all
phases in a heterogeneous system at equilibrium, the molar quantities usually have
different values in the individual phases. This is also stipulated in various Clausius–
Clapeyron equations such as Eq. 3.16 to Eq. 3.18 and Eq. 3.28 to Eq. 3.39. The
difference in molar quantities thus increases the dimensionality of the phase region by
the number of potentials that have been replaced by their conjugate molar quantities.
The maximum dimensionality of a phase region is the dimensionality of the phase
diagram under consideration. This thus creates a finite space between phases in equilib-
rium in the phase diagram when some axes are molar quantities.

For an equilibrium system under constant T , P, and Ni, the potentials in the system
and their conjugate molar quantities in each phase are all uniquely defined. In a phase
diagram with one or more potentials replaced by their conjugate molar quantities, two
phases in equilibrium in a system with c independent components are connected by a
c-dimensional line in a cþ 2ð Þ-dimensional space or its cþ 1ð Þ-dimensional projection,
as discussed in Section 3.3. These lines are called tie-lines and collectively repre-
sent a two-phase equilibrium region. For a k-phase equilibrium, there are in total
C2
k ¼ kðk � 1Þ=2 tie-lines connecting every two phases, with k � 1 of them independ-

ent because the number of independent tie-lines increases by one with each new phase
added. For the invariant equilibrium, with zero degrees of freedom, the number of phases
in equilibrium is cþ 2, as shown by Eq. 3.9, corresponding to C2

cþ2 ¼ ðcþ 2Þðcþ 1Þ=2
tie-lines with cþ 1 of them independent.

Inside the space encapsulated by the tie-lines, the axis variables of the phase diagram
(a mixture of potentials and molar quantities) can be changed independently without
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changing the phases in equilibrium and their properties. Accordingly, only the relative
amounts of individual phases are adjusted, to maintain the conservation of the molar
quantities in the system specified by the molar quantity axes of the phase diagram.
The geometric feature circumscribing the space encapsulated by the tie-lines no longer
represents any phase regions, but a boundary between the neighboring phase regions. Its
characteristics will be discussed in more detail in the next few sections. As the proper-
ties in each phase are homogeneous, the values of the molar quantities of a system are
simply the sum of individual phases and can be represented by the following equation:

Am ¼
X
α

f αAα
m 3.48

where Am and Aα
m represent the values of a molar quantity of the system and of the α

phase, respectively, f α is the mole fraction of the α phase, and the summation goes over

all phases in equilibrium with each other. With
X

α
f α ¼ 1, Eq. 3.48 can be re-arranged

into the following equation:
X
α

f α Am � Aα
m

� � ¼ 0 3.49

Equation 3.49 is commonly referred to as the lever rule. For a two-phase equilibrium of
α and β, it becomes

f α ¼ Aβ
m � Am

Aβ
m � Aα

m

3.50

f β ¼ Aα
m � Am

Aα
m � Aβ

m

3.51

For a phase diagram with number of axes n ¼ c� nsð Þ þ 1, the number of possible
axes that are molar quantities is thus k � n: There are thus k equations similar to
Eq. 3.49 with one for each molar quantity, Ami, resulting in the following k þ 1
equations:

X
α

f α Ami � Aα
mi

� � ¼ 0 3.52

1�
X
α

f α ¼ 0 3.53

The summations in Eq. 3.52 and Eq. 3.53 go over the phases in equilibrium, and the
amount of each phase is obtained by solving these k þ 1 equations simultaneously
along with the equilibrium conditions.

3.4.2 Phase diagrams with both potential and molar quantities

Based on the Gibbs phase rule discussed in Sections 3.2 and 3.3.3, the dimensionali-
ties of phase regions in a potential phase diagram are given by Eq. 3.8 or Eq. 3.40.
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As each potential is substituted by its conjugate molar quantity, the dimensionalities
of phase regions increase by one until the phase region reaches the dimensionality of
the phase diagram. The axes of this phase diagram now consist of both potentials and
molar quantities. The dimensionality of a phase region can thus be represented by the
following equation based on Eq. 3.40:

υm ¼ c� nsð Þ þ 2� pþ nm � c� nsð Þ þ 1 3.54

where nm is the number of molar axes. This equation is applicable to phase regions with
more than nm þ 1 phases. For phase regions with nm þ 1 phases or fewer, i.e. p� nmþ 1,
the dimensionalities are the same as the phase diagram, i.e. υm ¼ c� nsð Þ þ 1, and no
longer vary with the number of molar quantity axes. When all c� nsð Þ þ 1 potentials are
substituted by their conjugate molar quantities, one obtains a complete molar phase
diagram, to be discussed in Section 3.4.3, and all phase regions have the same
dimensionality, c� nsð Þ þ 1:

For the sake of graphic visualization, let us examine a two-dimensional phase
diagram of a one-component system. Topologically, it is equivalent to a multi-
component system with ns ¼ c� 1: In Figure 3.2, three two-dimensional phase dia-
grams were shown for pure Fe. In principle, one can use any one of them to illustrate
mixed potential and molar phase diagrams. For practical purposes, one selects the
T� �Pð Þ potential diagram because the temperature and pressure are the two typical
variables controlled in experiments on one-component systems. The conjugate molar
quantities of �P and T are molar volume and molar entropy, respectively. For stable
phases, any two conjugate variables change in the same direction, as illustrated by
Eq. 1.35 and Eq. 2.16, i.e. the phase stable at higher T has higher molar entropy, and the
phase stable at higher �P, i.e. lower pressure, has higher molar volume. Let us first
substitute �P by Vm as shown in Figure 3.7a. The dimensionality of a single-phase
region remains unchanged because p ¼ 1 < 2 ¼ nm þ 1: The dimensionality of two-
phase regions is changed from 1 to 2 due to υm ¼ 3� 2þ 1 ¼ 2 from Eq. 3.54.

As both phases in a two-phase equilibrium have the same temperature, all tie-lines,
depicted as parallel vertical lines in Figure 3.7a, are perpendicular to the temperature
axis. When the molar volume of the system changes from one end of a tie-line to the
other end at a constant temperature, the mole fraction of one phase increases from 0 to 1,
and the mole fraction of the other phase decreases from 1 to 0. The tie-lines at various
temperatures combine together to form a two-dimensional two-phase region. The two
curves at the two ends of the tie-lines represent the boundaries between the single-phase
and two-phase regions and are no longer phase regions themselves. They are thus called
phase boundaries.

By the same token, by changing the temperature at a constant molar volume of the
system, the system will locate on different tie-lines, with the amounts of the two phases
determined by the lever rule. It is thus clear that the system maintains the two-phase
equilibrium state with both T and Vm changing independently inside the two-
dimensional two-phase region. This seems in contradiction to the Gibbs phase rule
υ ¼ 3� p ¼ 1 from Eq. 3.8, but it is not because the Gibbs phase rule applies strictly to
potential phase diagrams only, while the T�Vm phase diagram has for one of its axes a
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Figure 3.7 T–Vm and Sm–(�P) phase diagrams of Fe.
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molar quantity. As an alternative, one can consider Eq. 3.54 as a modified Gibbs phase
rule in describing the dimensionality of a phase region in a mixed potential and molar
phase diagram with p � nm þ 1:

The two three-phase equilibria in pure Fe are also represented by tie-lines connecting
all three phases. The dimensionality of three-phase regions is υm ¼ 3� 3þ 1 ¼ 1 from
Eq. 3.54, and the three two-phase tie-lines for a three-phase equilibrium thus overlap
each other with their three molar volumes on the same tie-line.

Let us examine the two three-phase equilibria in more detail. In the γ/α/ε three-phase
equilibrium at TE ¼ 756:6 K and �PEð Þ ¼ �1:046� 1010 Pa, the molar volumes of
α, γ, and ε are 6.837, 6.677, and 6.582 �10�6m3/mol, respectively. There are two two-
phase regions at higher temperatures and one two-phase region at lower temperatures.
This is also shown in the potential phase diagram of Figure 3.2a with two two-phase
curves entering into and one two-phase curve leaving the three-phase equilibrium point
with decreasing temperature. Consider a system with fixed molar volume equal to that
of the γ phase, i.e. Vm TEð Þ ¼ 6:677� 10�6 m3/mol. At T > TE, the system is in
the single γ phase region. With a decrease in temperature across TE, it enters into the
αþ ε two-phase region. This transformation can be written as follows and is called a
eutectoid reaction,

γ ! αþ ε 3.55

if the high temperature phase is a liquid phase. If the system molar volume is between
V γ
m and Vα

m at 756.6 K, with a decrease of temperature the system first moves from the
single γ phase region to the αþ γ two-phase region when the γ= αþ γð Þ phase boundary
is crossed. When the temperature reaches TE, the eutectoid transformation takes place in
the remaining γ phase. The α formed prior to the eutectoid transformation is called
proeutectoid α. By the same token, when the system molar volume is between V γ

m and
V ε
m at 756.6 K, with a decrease in temperature proeutectoid ε would form followed by

the eutectoid transformation.
On the other hand, the L=δ=γ three-phase equilibrium at TP ¼ 1977:9 K and

�PPð Þ ¼ �5:111� 109 Pa has different characteristics; the subscript P will be defined
shortly. There is one two-phase equilibrium above, and there are two two-phase
equilibria below the invariant temperature, shown in the potential phase diagram of
Figure 3.2a with one two-phase curve entering into and two two-phase curves leaving
the three-phase equilibrium point with decreasing temperature. The molar volumes of
L, δ, and γ at TP are 7.735, 7.542, and 7.498 �10�6 m3/mol, respectively. For T > TP,
the two-phase region is Lþγ. If the system molar volume is between 7.735 and
7.498 �10�6 m3/mol, i.e. VL

m TPð Þ and V γ
m TPð Þ, when the temperature reaches TP

L and γ are combined to form δ, with the transformation written as

Lþ γ ! δ 3.56

This type of reaction is called a peritectic reaction or peritectoid reaction when the high
temperature phase by a solid phase, denoted by the subscript P. At T < TP, one or both
high temperature phases may no longer be present in equilibrium, depending on the
value of the system molar volume. For Vm ¼ Vδ

m TPð Þ ¼ 7:542� 10�6 m3=mol, the
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peritectic reaction, Eq. 3.56, can come to completionwith noL and γ left, as the temperature
decreases. For V γ

m TPð Þ ¼ 7:498 < Vm < Vδ
m TPð Þ ¼ 7:542 10�6 m3=mol

� �
, the liquid

phase is consumed, and the system enters the γþ δ two-phase region. On the other hand,
forVδ

m TPð Þ ¼ 7:542 < Vm < V L
m TPð Þ ¼ 7:735 10�6 m3=mol

� �
, the γ phase is consumed

instead, and the system enters into the Lþ δ two-phase equilibrium region upon cooling.
Let us now replace T by Sm to obtain the �Pð Þ�Sm phase diagram shown in

Figure 3.7b. The morphology of this phase diagram is identical to the T�Vm phase
diagram just discussed, but with all tie-lines perpendicular to the pressure axis. The
transformations at the two three-phase equilibria with �Pð Þ decreasing or P increasing
are as follows:

γþ α ! ε 3.57

δ ! Lþ γ 3.58

To visualize two-dimensional phase diagrams of binary systems, one usually keeps
the pressure constant. One type of commonly used binary phase diagram is the
temperature–composition (T–x) phase diagram. As an example, let us re-plot the
T�μC potential diagram shown in Figure 3.5 as a T�xC mixed potential and
molar phase diagram by replacing the chemical potential of C by its mole fraction.
The T�xC phase diagram thus obtained is shown in Figure 3.8. In this phase diagram
there are one peritectic, one eutectic, and one eutectoid reactions as follows:

Lþ δ ! γ 3.59

L ! γþ C 3.60

γ ! αþ C 3.61
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In Figure 2.9 in Section 2.2.2, the formation of miscibility gaps due to repulsive
interactions between components was illustrated. One example is shown in Figure 3.9
for the Al–Zn binary system in terms of both a T�μZn potential phase diagram and
a T�xZn mixed potential and molar phase diagram.

In Figure 3.9, there are one eutectic reaction and one eutectoid reaction as follows:

L ! fccþ hcp 3.62

fcc#1 ! fcc#2þ hcp 3.63
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The eutectoid reaction, Eq. 3.63, is also termed a monotectoid reaction because the fcc
phase appears on both sides of the reaction with different compositions, fcc#1 and
fcc#2, due to the miscibility gap. The highest temperature of the miscibility gap is
called the consolute point, as discussed in Section 2.2.2, and can be clearly seen in the
T�μZn potential phase diagram shown in Figure 3.9. This is a critical point, marking the
limit of instability as shown in Figure 2.8.

When there is only one phase on either side of the reaction, i.e. both phases have the
same composition, the reaction is called a congruent reaction. One example is shown in
Figure 3.10 for the T�xSiO2 mixed potential and molar phase diagram of the CaO–SiO2

pseudo-binary system with two congruent reactions as follows:

L ! CaSiO3 3.64

L ! Ca2SiO4 3.65

They are not invariant reactions, based on the Gibbs phase rule. In Figure 3.10, it is
noted that there is a miscibility gap in the liquid phase close to the SiO2 side and there
are four eutectic reactions, one being monotectic involving two liquid phases due to the
miscibility gap, and three peritectic reactions.

Let us generalize the above discussion to phase diagrams with c� nsð Þ þ 1 axes.
In such a phase diagram, the maximum number of phases is given by Eq. 3.41 as
pmax ¼ c� nsð Þ þ 2: The number of phases on either side of an invariant reaction can
vary from one phase to pmax � 1 ¼ c� nsð Þ þ 1 phases, with the remaining phases on
the other side of the reaction, typically with the potential decreasing from left to right.
The invariant reaction with one phase on the left of the reaction is named a eutectic or
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eutectoid reaction, depending on whether the phase on the left of the reaction is liquid
or solid. The remaining invariant reactions are named peritectic or peritectoid reactions,
according to whether they occur with or without a liquid phase.

3.4.3 Phase diagrams with only molar quantities

When all c� nsð Þ þ 1 potentials in a potential phase diagram are replaced by their
conjugate molar quantities, one obtains a molar phase diagram with molar quantities on
all axes of the phase diagram. For regions with the number of phases p � nm þ 1 ¼
c� nsð Þ þ 2 ¼ pmax (see Eq. 3.41), the phase regions have the same dimensionality
as that of the phase diagram, i.e. all phase regions have the same dimensionality,
c� nsð Þ þ 1, and any geometric features with lower dimensionalities, i.e. from 0 to
c� nsð Þ, are not phase regions but phase boundaries between neighboring phase
regions. For the sake of graphic visualization, the molar phase diagram of pure Fe
is shown in Figure 3.11; it was obtained by combining the two mixed phase diagrams in
Figure 3.7.

In this molar phase diagram, all one-, two-, and three-phase regions are two-
dimensional, the same as the dimensionality of the phase diagram. A two-phase region
is made up of tie-lines connecting the two phases in equilibrium, while a three phase-
region is surrounded by three two-phase tie-lines, i.e. a tie-triangle. The amount of
each phase in the tie-triangle can be obtained using the lever rule represented by
Eq. 3.52 and Eq. 3.53. As can be seen, phase boundaries between a one-phase region
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and a two-phase region are one-dimensional. When the system crosses such a phase
boundary the number of phases changes by one, from two to one or vice versa. Phase
boundaries between two- and three-phase regions are represented by two-phase tie-
lines. When the system crosses such a phase boundary, the number of phases also
changes by one. The lowest-dimensional phase boundaries are points between
one-phase and three-phase regions that are zero-dimensional and the intercept of four
one-dimensional phase boundaries. When the system crosses such a phase boundary,
the number of phases changes by two.

For multi-component systems, the phase relations cannot be directly visualized.
By representing the system of equations in terms of equilibrium conditions and lever
rules on a phase boundary, using phases separately from the two adjacent phase
regions, Palatnik and Landau [4] postulated that the difference between the number
of unknowns and equations gives the dimensionality of the phase boundary and
derived the following relationship:

Dþ þ D� ¼ r � b ¼ ðc� nsÞ þ 1� b 3.66

where Dþ and D� are the numbers of phases added and removed when the phase
boundary is crossed, and r and b are the dimensionalities of the phase diagram and the
phase boundary, respectively. They termed Eq. 3.66 the contact rule, called the MPL
boundary rule by Hillert [1].

By the same token, Eq. 3.66 is applicable to any phase boundary where the
two adjacent phase regions have the same dimensionality as the phase diagram,
even in phase diagrams with a mixture of potentials and molar quantities as the
diagram axes. This can be understood because the potentials are homogeneous in
all phases in equilibrium on the phase boundary. The phase boundary is thus equiv-
alent to those in a complete molar phase diagram with the number of components
equal to the number of molar axes in a mixed potential and molar phase diagram
minus one, i.e.

c0 ¼ nm � c� ns 3.67

The last part of Eq. 3.67 stems from the discussion related to Eq. 3.54 when
all c0+1 potentials are replaced by their conjugate molar quantities, which is
analogous to a molar phase diagram with c independent components and ns
potentials fixed.

For a two-dimensional phase diagram with r ¼ 2, the phase boundary can be either
zero- or one-dimensional. As shown in Figure 3.11, the basic element of a molar
phase diagram is a joint of four one-dimensional phase boundary lines. When a phase
boundary line is crossed, the number of phases is either increased or decreased by one.
The joint of four one-dimensional phase boundary lines is zero-dimensional. The
number of phases differs by two between the phase regions across the zero-dimensional
join. Two scenarios are possible.

� Two phases are added or removed, i.e. Dþ ¼ 2 and D� ¼ 0 or Dþ ¼ 0 and
D� ¼ 2, and the number of phases in the two-phase regions differs by two.
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� One phase is added, one phase is removed, i.e. Dþ ¼ D� ¼ 1, and the phase
regions have the same number of phases.

By combining the contact rules for both zero- and one-dimensional phase boundaries,
it is evident that the above two scenarios co-exist in a joint of four-phase regions, with
some two-phase regions following the first scenario and other two-phase regions
following the second scenario. Based on Schreinemakers’ rule generalized by Hillert
[5], each of the two-phase regions with the same number of phases contains one
extrapolation of the phase boundaries, while the other two-phase regions contain either
zero or two extrapolations of the phase boundaries. This can be observed for all the
zero-dimensional phase boundaries in Figure 3.11 and is further schematically illus-
trated in Figure 3.12 for general cases.

3.4.4 Projection and sectioning of phase diagrams with potential and molar quantities

As discussed in Section 3.3.3, projections of high-dimensional phase diagrams usually
do not keep all the information. However, there is one type of projection widely used
in the literature, i.e. the liquidus surface in ternary systems under constant pressure
with temperature and mole fractions of two components as its axes. The projection
along the temperature axis reveals the composition regions for primary phases that
solidify from liquid upon cooling. These regions are separated by univariant lines
of three-phase equilibria. The projections along one of the two mole fractions show
the temperature as a function of composition on the univariant three-phase equilibrium
lines and also depict whether a four-phase equilibrium is peritectic or eutectic. There are
four scenarios for the three univariant three-phase equilibrium lines to meet at the four-
phase equilibrium, as depicted in Figure 3.13 and discussed individually below.

The first scenario is that with decreasing temperature all three univariant lines merge
into the four-phase equilibrium. This indicates that the liquid phase does not exist at
temperatures below the four-phase invariant reaction. This invariant reaction is thus a
ternary eutectic reaction with the liquid completely transformed to three solid phases
upon cooling, i.e.

L ! αþ β þ γ 3.68
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Figure 3.12 Schematic molar phase diagram, demonstrating Schreinemakers’ rule, from [1] with
permission from Cambridge University Press.
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In the second scenario, two univariant lines merge into and one leaves the four-phase
equilibrium with decreasing temperature. This means that one solid phase at higher
temperatures is no longer stable at lower temperatures, and it must react with the liquid
phase to form the remaining two solid phases. The four-phase invariant reaction is
thus peritectic. The solid phase common to both univariant lines at high temperatures
reacts with the liquid phase. Assuming that this phase is α, the four-phase invariant
reaction becomes

Lþ α ! β þ γ 3.69

In the third scenario, one univariant line points to and two leave the four-phase
equilibrium with decreasing temperature. A new phase forms at low temperatures from
the three high temperature phases, for example liquid, α, and β, with the four-phase
invariant reaction as

Lþ αþ β ! γ 3.70

The fourth scenario is the inverse of the first scenario, indicating the formation of liquid
from solid phases upon cooling, i.e.

αþ β þ γ ! L 3.71

This case has not been observed in reality.
As an example, the liquidus projections of the Al–Fe–Si ternary system are shown

in Figure 3.14 in two formats [6], i.e. (a) three-dimensional liquidus surface with
the isotherms showing the liquidus contours; (b) conventional projection onto the
composition axes with the temperature decrease shown by contours; (c) projection onto
the temperature and weight fraction of Si. The first to third scenarios of invariant
reactions discussed above can clearly be identified and are listed in Table 3.1. It is
evident that Figure 3.14c provides the easiest route to visualize the types of invariant
reaction shown by Figure 3.13.

In contrast to projections, sectioning is used more often to understand phase rela-
tions in multi-component systems. Sectioning of a potential phase diagram is relatively
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Figure 3.13 Schematic diagram showing four options for three univariant three-phase
equilibrium lines to meet at the invariant four-phase equilibrium.
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simple as the resulting phase diagram behaves like a system with one component less.
The same is true if potentials are sectioned in phase diagrams with both potential and
molar quantities, as the section is along the tie-lines of the fixed potentials. As an
example, Figure 3.15 shows the ternary Al–Fe–Si potential and molar phase diagrams
sectioned at T = 1273 K and P = 1 atm, commonly referred to as an isothermal section.
It is evident that the geometric features of both phase diagrams are identical to those
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Table 3.1 Invariant liquidus reactions of the Al–Fe–Si ternary system with the
composition of the liquid phase [6]

Reaction T, �C wFe, % wSi, %

Lþ Fe2Si , bccþ FeSi 1178 77.9 21.0
Lþ Al5Fe2 þ Al5Fe4 , Al2Fe 1155 49.0 0.16
Lþ Al5Fe4 , Al2Feþ bcc 1127 52.7 2.81
Lþ FeSiþ FeSi2-H , FeSi2-L 1076 41.6 44.0
Lþ Al2Fe , Al5Fe2 þ bcc 1073 51.0 7.19
Lþ bcc , Al5Fe2 þ τ1 1050 53.8 18.4
Lþ FeSi2-H , Siþ FeSi2-L 1019 34.8 44.4
Lþ bcc , Al5Fe2 þ τ1 1004 49.0 12.6
Lþ Al5Fe2 , τ1 þ θ 1000 46.7 13.2
Lþ FeSi , τ1 þ FeSi2-L 940 37.9 32.0
Lþ τ1 þ θ , τ23 921 33.7 20.1
Lþ τ1 þ FeSi2-L , τ 899 33.8 32.2
Lþ τ1 , τ þ τ23 884 30.8 26.0
Lþ FeSi2-L , τ þ Si 877 29.5 35.2
Lþ θ þ τ23 , γ 851 23.3 21.6
Lþ Siþ τ , δ 834 22.2 31.7
Lþ τ , τ23 þ δ 825 22.1 25.7
Lþ τ23 , γþ δ 823 21.8 25.4
Lþ θ þ γ , α 715 6.64 10.8
Lþ γþ δ , β 694 6.11 17.1
Lþ γ , αþ β 680 4.68 11.6
Lþ θ , fccþ α 630 2.11 4.10
Lþ α , fccþ β 616 1.76 6.56
Lþ δ , β þ Si 598 1.22 14.3
L , fccþ β þ Si 575 0.73 12.7
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Figure 3.15 (a) Ternary isothermal section of the Al–Fe–Si ternary system at T = 1273 K and
P = 1 atm and (b) the corresponding potential phase diagram, from [6] with permission from
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of pure Fe, shown in Figure 3.2 and Figure 3.11, respectively, with one-, two-, and
three-phase regions and corresponding phase boundaries.

On the other hand, when the phase diagram is sectioned along a molar quantity,
usually it would not follow a tie-line because phases in equilibrium usually have
different values for the same molar quantity. Consequently, there are no tie-lines inside
such phase diagrams in general, and any phase regions only show which phases are in
equilibrium with each other without any information on the values of molar quantities
of individual phases.

This type of sectioning reduces the dimensionalities of both the phase diagram
and phase boundary by the same number, but does not alter the number of phases in
the adjacent phase regions. The contact rule, i.e. Eq. 3.66, thus remains valid and
is applicable to phase regions with the same dimensionality as that of the sectioned
phase diagram. Similarly, Schreinemakers’ rule shown in Figure 3.12 is valid under the
same conditions.

As an example, the two-dimensional phase diagram of the Mg–Al–Zn ternary system
sectioned with one atmospheric pressure and the weight fraction of Zn fixed at 0.01 is
shown in Figure 3.16, in a plot of temperature versus mole fraction of Al [7]. This phase
diagram is commonly called an isopleth and is generated by fixing one potential, the
pressure, P, changing the chemical potentials of Al and Zn to their conjugate molar
quantities represented by weight fractions of Al and Zn, and sectioning at wZn ¼ 0:01:
From the discussions in Section 3.4.2, the phase regions with number of phases
equal to three or fewer, i.e. p � nm þ 1 ¼ 3, have the same dimensionality as the
phase diagram, i.e. they are two-dimensional in the present case, and the phase
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Figure 3.16 Isopleth with the weight fraction of Zn fixed at 0.01 of the Mg–Al–Zn ternary system,
from [7] with permission from TMS.
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boundary rule is applicable. The maximum number of phases co-existing at equilibrium
is given by Eq. 3.41 as the following, for the present case:

pmax ¼ c� nsð Þ þ 2 ¼ 3� 1þ 2 ¼ 4 3.72

This is so because introducing molar quantities only increases the dimensionality of
phase regions and does not change the maximum number of co-existing phases.

The dimensionality of a four-phase region is calculated from Eq. 3.54 as

υm ¼ c� nsð Þ þ 2� pþ nm � nms ¼ 3� 1þ 2� 4þ 2� 1 ¼ 1 3.73

where nms is the number of sectioned molar quantities. Since the dimensionality of a
four-phase region is lower than that of the phase diagram, the phase boundary rule cannot
be applied directly. Such a four-phase region, liquid +Mg+ γ+ ϕ, is shown in
Figure 3.16 between three three-phase regions of liquid +Mg+ γ, liquid +Mg+ ϕ, and
Mg+ γ+ ϕ.

Figure 3.16 also displays information on what phases are in equilibrium for a given
alloy at various temperatures. One example is shown by the dotted vertical line marking
a weight fraction of Al of 0.09, a widely used Mg alloy called AZ91. Various phases are
present at different temperature ranges, but the equilibrium phase fractions and phase
compositions are not shown in the figure as the tie-lines are not in the plane of the phase
diagram and have to be calculated at each temperature individually. Figure 3.17 shows
the amount of each phase of the AZ91 alloy as a function of temperature, with the dotted
lines depicting the values under equilibrium conditions and the solid lines depicting the
values under the so-called Scheil condition assuming no diffusion in solid phases and
infinitely fast diffusion in the liquid. Similarly, the composition of each phase can also
be plotted as shown in Figure 3.18.
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Figure 3.17 Mole fraction of individual phases under equilibrium (dotted curves) and Scheil
(solid curves) conditions in the AZ91 alloy, from [7] with permission from TMS.
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Exercises

1. In this problem, you need to first write down your steps in solving the
problems using equations and thermodynamic variables such as CP, Hm,
Sm, xi etc. and then obtain the numerical values using any available software.
When using software, take screen snapshots as necessary to show your
procedure.
� 1 kg of a steel (Fe + 0.8 mass% C) is heated from a state of equilibrium

at 500 �C to a new state of equilibrium at 800 �C. The pressure is kept
at 1 atm. How much heat is needed for this operation? (Hint: for
constant pressure, the enthalpy change is equal to the heat exchange.)

� A mixture of 2 mol of H2 and 0.1 mol of O2 is kept in a very strong
cylinder at 25 �C. The cylinder has a moveable piston, working against
an outside atmosphere of 1 atm. The mixture is ignited and reacts
quickly to reach a state of equilibrium, without giving time for any
exchange of heat with the surroundings. Calculate the new tempera-
ture. (Hint: dQ ¼ 0 and dP ¼ 0).

2. Calculate the P–T diagram for Ca with T ranging from 600 to 1800 K and P
ranging from 1 to 1000 Pa. Answer the following questions.
a. There should be two three-phase equilibrium points (triple points).

Complete the phase diagram to lower pressures by hand so that
another three-phase equilibrium can be seen.

b. List the phases in all one-, two- and three-phase regions.

Figure 3.18 Mass fraction of Al and Zn in the Mg solid solution phase under equilibrium
(dotted curves) and Scheil (solid curves) conditions in AZ91, from [7] with permission from TMS.
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c. Draw G–T diagrams at P = 105, 102, and 10–4 Pa by hand for all
phases, as accurately as possible in terms of transition temperatures.

d. Draw G–P diagrams for T = 2500 and 1500 K by hand for all phases,
as accurately as possible in terms of transition pressures.

e. Draw the extension of metastable two-phase equilibrium from triple
(three-phase) points.

3. Shown below is the potential phase diagram of Fe–C under one atmosphere.
There are four phases in the system, i.e. liquid (L), fcc (γ), bcc (ɑ), and
graphite (C). Do the following.
a. Derive a Clausius–Clapeyron-like equation for the slope of the lines in

the diagram.
b. Discuss the reasons why the lines are curved.
c. Label all phase regions, including one-, two- and three-phase regions.
d. Draw the metastable extensions of two-phase equilibria in the poten-

tial phase diagram.
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4. Consider the equilibrium between the liquid and solid phases of a pure metal
at its melting temperature. It is found that the solid phase has 10–3 vacancies
per atom. Assuming the entropy of melting is approximately equal to R,
calculate the melting temperature if there were no vacancies in the
solid phase.

5. Derive the Gibbs phase rule in detail using both words and equations.
6. The P–T potential phase diagram of water is shown. Note the critical point

between liquid and vapor, beyond which these is only one phase. Answer the
following questions.
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Pressure, Torr

Liquid

Solid

Vapor

Temperature, ˚C
0 100

374˚C &
~165,000
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0˚C &

4.6 Torr

760

a. The single-phase regions are already labeled. Label all remaining
two-phase equilibrium and three-phase equilibrium regions.

b. Derive the Clausius–Clapeyron equation.
c. By comparing the Clausius–Clapeyron equation and the slopes of phase

regions, discuss the relative magnitudes of molar volumes and the
relative magnitudes of molar entropies of phases in equilibrium.

d. Draw pressure–molar-entropy, molar-volume–temperature, and molar-
volume–molar-entropy phase diagrams as accurately as possible with
scales of pressure and temperature properly marked wherever
needed.

e. In your molar-volume–temperature phase diagram, select the molar
volume of the system in the vapor–solid two-phase region and calculate
the mole fraction of each phase using the lever rule.

f. In your molar-volume–molar-entropy phase diagram, select the molar
volume and molar entropy of the system in the vapor–solid–liquid three-
phase region and calculate the mole fraction of each phase.

7. A T–P phase diagram for a unary system (pure A) is given in the figure.
It shows four phases. Construct a reasonable T–μ1 property diagram at P1.
It should show all the stable and metastable two-phase equilibria at P1.

P

T
g

a d

b

P1
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8. The Al–Ni binary phase diagram is shown below. The γ and γ0 phases have
the disordered fcc and ordered L12 structures, respectively, which are repre-
sented by one Gibbs energy similar to that of a miscibility gap.
a. Draw molar Gibbs energy curves of ALL phases including both stable

and metastable ones at 1200 K and 1800 K as accurately as possible.
b. Calculate the phase fractions of an alloy with 30%at. Ni as a function

of temperature using the lever rule.
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c. For the most part, the two-phase regions between β and liquid are
two-dimensional. However, at the highest temperature, we have a
point, and the transformation between these two phases is called
a congruent transformation. Draw a Gibbs energy diagram at this
temperature for these two phases and discuss whether this point is an
invariant point.

d. Thirty grams of Ni and 14 grams of Al are mixed to form a single-
phase solid solution. How many moles of solution are there? What are
the mole fractions of Al and Ni? Which phase region is this solution in,
at 1500 K?

e. Convert the phase diagram into a potential phase diagram.
f. Write down all invariant reactions and types of reactions in the binary

system with the high temperature phase(s) on the left and low tem-
perature phase(s) on the right of the reactions.

9. Refer to the enlarged Al–Ni binary phase diagram shown below. For an
alloy with xNi = 0.8, calculate and plot the phase fractions of γ0(L12) and
γ (fcc) as a function of temperature. To obtain a microstructure with a

84 Phase equilibria in heterogeneous systems



(cont.)

two-phase mixture of 70 volume% γ phase and 30 volume% γ0 phase,
assuming the volume fraction is equal to the mole fraction, what tempera-
ture should one choose? Discuss whether the assumption that the volume
fraction is equal to the mole fraction is a good one.
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10. Below are shown the results of increasing the pressure at constant tempera-
ture and increasing the temperature at constant pressure of a one-component
system. The latter type of experiment is routinely done using differential
thermal analysis (DTA) or differential scanning calorimetry (DSC). There are
four phases: two solid (S1 and S2), liquid (L) and vapour (V).
� Based on these plots, construct the potential phase diagram. You may

want to work out the phase boundary between S1 and the vapor phase
first and then the boundary between S1 and S2. Assume that phase
boundaries are straight lines.

� Plot a molar–potential phase diagram by changing the pressure axis to
its conjugate variable, molar volume.

� The plots contain steps. Assume a constant heating rate (dQ/dt) and a
constant rate of pressurization (dV/dt). Do the durations of the hori-
zontal portions of the plots mean anything? If so, what?

� Do the slopes of the curves mean anything? If so, what?
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11. The specific volume of poly(tetrafluoroethylene) can be found on page 209
and 210 in Standard Pressure Volume Temperature Data for Polymers, by P.
Zoller and D. J. Walsh (CRC Press, 1995). Do the following as accurately as
possible.
a. Convert the specific volume to molar volume assuming a constant

molecular weight of 340000.
b. Construct a molar volume–temperature phase diagram for this one-

component system. Draw schematically the spinodal curve, i.e. the
limit of stability of the single phase in your phase, diagram.
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c. Convert your molar volume–temperature phase diagram to a pressure–
temperature phase diagram.

d. For a system at 40 MPa pressure and 0.55 cm3/g specific volume, use
the lever rule to calculate the volume fractions of the two phases in
equilibrium based on your phase diagram.

12. Use the following phase diagrams to answer the questions. The polystyrenes-
cyclohexane phase diagram is taken from the reference, M. Tsuyumoto, Y.
Einaga, and H. Fujita, “Phase equilibrium of the ternary system consisting of
two monodisperse polystyrenes and cyclohexane”, Polym. J. 16 (1984)
229–240, with permission from Nature.
a. Draw the Gibbs energy of stable phases as a function of concentra-

tion for the following systems at given temperatures as accurately as
possible.

b. Write down all invariant reactions and the type of reactions in the
above systems with the high temperature phase(s) on the left and low
temperature phase(s) on the right of the reactions.

c. Label all single-phase and two-phase regions.
d. Convert the mixed phase diagrams to potential phase diagrams.
e. Calculate the phase fractions at the temperatures given in (a) with the

following compositions.

Polystyrene-cyclohexane
(first diagram with ξ4 = 0)

26 �C

Fe–C (second and third diagrams) 1300 �C 800 �C
CaO–SiO2 (fourth diagram) 2400 �C 2000 �C 1800 �C

Polystyrene-cyclohexane
(first diagram with ξ4 = 0)

ϕ = 0.05

Fe–C (second and third diagrams) xC = 0.10 xC = 0.15
CaO–SiO2 (fourth diagram) xSiO2 = 0.10 xSiO2 = 0.30 xSiO2 = 0.90
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13. The liquidus projection of the Cu–Sn–Ti ternary system under constant pressure
is shown here with the arrows showing the directions of decreasing temperature,
taken from the reference J. Wang et al., “Experimental investigation and
thermodynamic assessment of the Cu–Sn–Ti ternary system,”. CALPHAD 35
(2011) 82–94, with permission from Elsevier. Assume that all intermetallic
compounds are stoichiometric. Answer the following questions.
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(cont.)

a. Mark accurately the alloy with 0.2 mole fraction of Sn and 0.3 mole
fraction of Ti in the composition triangle.

b. Invariant reactions are labeled in the diagram with E, P, and U. Write all
invariant reactions with the high temperature phases on the left side and
the low temperature phases on the right side and list whether they are
eutectic or peritectic.

c. Write down and explain the solidification path of the alloy frompart a above.
d. Write down the Gibbs phase rule for this system. Explain whether the

Gibbs phase rule can be applied to the liquid projection.
14. The isopleth section at 15 at.% Sn in the Cu–Sn–Ti ternary system under

constant pressure is shown here, taken from the reference J. Wang et al.,
“Experimental investigation and thermodynamic assessment of the Cu–Sn–Ti
ternary system,” CALPHAD 35 (2011) 82–94, with permission from
Elsevier. Answer following questions.

B



(cont.)

a. There are seven four-phase equilibria in the isopleth. Mark all of them
on the diagram with numbers. For those that you know all four phases,
list the four phases.

b. Explain whether the phase boundary rule (Dþ þ D� ¼ r � b) can be
applied to the four-phase equilibria.

c. List the phases in the A, B, C, D phase regions.
d. Explain whether one can use the lever rule to calculate the phase

fractions from the phase diagram.
15. The isopleth of the multi-component Fe–1.5Cr–3Ni–0.5Mn–0.3Si–C (all in

weight percent) system is shown here. The numbers indicate the stability limits
of various phases (zero phase fraction lines). It is important to realize that the
tie-lines are not in the plane of the isopleth. The single fcc phase region is
labeled.
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a. List the phases in all the phase regions.
b. Explain whether it is possible to draw a complete molar phase diagram

from the given phase diagram.
c. Explain whether one can use the lever rule to calculate the phase fraction

from the given phase diagram.
d. Draw schematic diagrams of phase fractions as a function of tempera-

ture for 0.1%, 0.2%, 0.4%, and 0.8% C, respectively, as accurately as
possible with scales for both axes of your diagrams.

e. Explain whether there any invariant reactions in the phase diagram.
16. The liquidus projection and the isothermal section at 1500 �C of the quasi-ternary

system CaO–Al2O3–SiO2 under constant pressure are shown below, taken from
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the reference H. Hao et al., “Thermodynamic assessment of the CaO–Al 203-
SiO2 system, J. Am. Ceram. Soc. 89 (2006) 298–308, with permission from John
Wiley & Sons. The numbered lines in the liquidus projection are isotherms at
100 �C intervals with the smallest number corresponding to the lowest tempera-
ture. The tie-lines in two-phase regions in the isothermal section are shown.
Answer the following questions.
a. What are the maximum numbers of phases possible in the two diagrams?
b. Mark the alloy with 30% Al2O3 and 30% SiO2 on both the liquidus

projection and the isothermal section.
c. When this alloy is cooled from its liquid state, which solid phase will

form first? Explain.
d. At 1500 �C, what are the equilibrium phases present in the alloy in

part a? Use the isothermal section to identify the approximate compos-
itions of the phases.

e. Use the lever rule to estimate the composition change of the liquid phase
of the alloy in part a as a function of temperature during solidification.
Explain.

f. Based on your results in part d, which phase will be the second solid
phase formed during solidification? Explain.

g. As the temperature continues to decrease, which phase will be the third
solid phase to form? Is this an invariant reaction? Explain. If so, write
down the reaction and its type, with the high temperature phase(s) on the
left and low temperature phase(s) on the right.
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17. The magnetic contribution to entropy can be represented by ΔS ¼ Rln β þ 1ð Þ
with β the number of unpaired electrons. The Gibbs energy difference between
the fcc and bcc phases is shown in the figure below. Assume that the fcc phase
is non-magnetic. Use the data in the figure to estimate the values of ΔS and β of
the bcc phase.
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18. Find the Gibbs energy, molar volume, and the interfacial energy between
liquid and solid pure Al from the literature. Plot the critical nucleus size and
barrier for homogeneous nucleation as a function of temperature. At what
temperature would you expect that nucleation can be observed? You may
assume that the strain energy equals zero and both liquid and solid have the
same molar volume.

19. When a liquid phase is cooled fast enough below its glass transition tempera-
ture (Tg), crystallization can be suppressed and instead an amorphous phase is
formed. Estimate the difference of enthalpy between the two states in terms of
the melting temperature, assuming Tg is one third of the melting temperature
and assuming the following.
a. Both the amorphous and crystalline states have the same entropy at 0 K.
b. For temperatures below Tg, both states have the same heat capacity.
c. For temperatures above Tg, the difference of the heat capacity for both

phases is a linear function of T.
d. At the melting temperature, both phases have the same heat capacity

again, and the entropy of melting is approximately equal to R.
20. The polystyrene-cyclohexane phase diagram, from problem 12 enlarged as

shown below, with ξ4 = 1 representing the miscibility gap of a binary phase
diagram with the following properties.
� Cyclohexane: solvent C6H12, density 0.779 � 106 g/m3, molar volume

1.078 � 10–4 m3/mol.
� Polystyrene: homopolymer of styrene monomer CH2–CH–C6H5,

density (ρ) 1.04 � 106 g/m3, molar volume 0.0420 m3/mol.
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a. Apply the following Gibbs energy per lattice site to this binary system
using the above data and derive expressions for the chemical potentials
of cyclohexane and polystyrene, respectively:

G

n
¼ Gn ¼

X ϕi
mi

0Gim þ kT
X ϕi

mi
lnϕi þ

X
ϕiϕjχij

� �

where ϕi and mi are the volume fraction and number of lattice sites per
molecule i, and n is the total number of lattice sites; 0G im is the Gibbs
energy of pure molecule i per molecule, which can be set to zero at any
temperatures a the reference state, k is the Boltzmann constant, and χij
is the dimensionless interaction parameter between molecule i and
molecule j.

b. Estimate the interaction parameter, χ, for ξ4 = 1 at T = 12 �C using the
data from the figure.
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4 Experimental data for
thermodynamic modeling

The most widely used thermodynamic modeling technique is the CALPHAD
(CALculation of PHAse Diagram) method to be discussed in detail in Chapter 6.
The input data in the evaluations of thermodynamic model parameters came primarily
from experiments and estimations until first-principles calculations based on the density
functional theory [8] became a user tool in the later 1990s. Experimental data include
both thermodynamic and phase equilibrium data; the first-principles calculations, which
provide thermodynamic data for individual phases, are discussed more extensively in
Chapter 5.

Three fairly recently published books summarize the methods commonly used for
experimental measurements of the thermodynamic properties of single [9] and multiple
phases [10] and phase diagrams [11]. The methods are briefly discussed here, and
readers are referred to these books for details. The main techniques for crystal structure
analysis include X-ray diffraction, electron backscatter diffraction (EBSD), electron
diffraction in transmission electron microscopy, neutron scattering, and synchrotron
scattering, which are not discussed in this book.

4.1 Phase equilibrium data

4.1.1 Equilibrated materials

The most common method to determine phase equilibria is to use equilibrated materials.
This method typically involves material preparation through high temperature melting
or powder metallurgy, homogenization heat treatment, isothermal or cooling/heating
procedures, and identification of crystal structures and phase compositions. It is import-
ant to avoid macro-inhomogeneity as it can be difficult to remove the inhomogeneity in
subsequent treatments. It is also important to use starting materials of the highest purity
and to minimize the loss and contamination of materials during the entire experiment
using a protective atmosphere of inert gas or vacuum. Typical melting techniques include
high temperature furnaces with crucibles, arc melting, and induction melting. Attention
needs to be paid to possible reactions between materials and crucibles/containers, which
can be avoided by levitating the materials by electromagnetic fields or other means.
In addition to using pure elements as raw materials, master alloys with well-controlled
compositions are often utilized because the compositions and melting properties of
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master alloys are usually much closer to those of the final materials than the pure elements.
For materials with very high melting temperature or volatile components, the powder
metallurgy method can be used where compacts are made, capsulated, and sintered.

Homogenization during subsequent heat treatment is achieved through diffusion, in
which time and temperature are two important parameters. To accelerate the homo-
genization process, the heat treatment temperature should be as close to the solidus
temperature as possible, taking into account the composition inhomogeneity with
variable solidus temperatures. When there are phase transformations taking place during
the heat treatment, extra time is needed for the heat treatment.

The phase boundaries are then determined through measurements of either the
compositions of individual phases that are in equilibrium under constant temperature,
pressure/stress/strain, and electric/magnetic field or the discontinuity in some physical
properties of the material due to a phase transition from the continuous change of
temperature or pressure/stress/strain or electric/magnetic fields. The measurement of
compositions is usually carried out under ambient conditions so it is necessary that the
phases are fully equilibrated under experimental conditions, which requires rigorous
verification, and can be “quenched” to ambient conditions to remain unaltered during
“quenching” at least in terms of composition. The compositions are typically measured
by scanning electron microscopy (SEM) equipped with energy dispersive spectrometry
(EDS) or wavelength dispersive spectroscopy (WDS), which has micrometer spatial
resolution and better compositional resolution than EDS. A dedicated SEM with WDS
gives another important, widely used composition measurement technique called elec-
tron probe microanalysis (EMPA). For submicrometer sized phases, analytical trans-
mission electron microscopy equipped with EDS can be used, though care must be
taken to avoid interference from neighboring phases.

To accurately identify phases in equilibrium under experimental conditions, in situ
characterizations are necessary, which complicates the experimentation. An alternative
indirect method is to measure a physical property that changes discontinuously or
dramatically for a first- or second-order phase transition, such as heat, volume, electric
conductivity, or magnetization. There are two widely used techniques for measuring
heat: differential thermal analysis (DTA) and differential scanning calorimetry (DSC).
Both measure the difference in temperature with the same amount of power supplied
between a sample and an inert standard during heating or cooling; DSC may alterna-
tively measure the difference in the amount of power supplied to keep the temperatures
identical. The deviation of this difference from a baseline indicates a phase transition in
the sample and is plotted as a function of time or temperature of either the sample or the
inert standard. It is evident that the major challenges in both DTA and DSC techniques
are to reach thermal equilibrium between the sample or standard and the instrument and
thermodynamic equilibrium within the sample due to continuous heating or cooling.
The thermal equilibrium can be improved or mitigated through altering various aspects
of the experiment such as sample shape and size, type of crucible, mixture with the
material used for the inert standard and by using thermocouples in direct contact with
the sample and the inert standard. However, thermodynamic equilibria within the sample
can only be reached when the heating/cooling rate is comparable with the rate of the
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phase transition in the sample, which is almost impossible if the phase transition
typically involves diffusion in solid phases. Therefore, extreme care is needed in
interpreting the temperature determination and the amount of heat associated with the
DTA/DSC curves as discussed in detail in reference [11].

4.1.2 Diffusion couples/multiples

The major challenge in the equilibrated material approach is to ensure that the whole
sample reaches equilibrium. On the other hand, the diffusion couple/multiple technique
does not require the whole sample to be in equilibrium and is based on the assumption that
any two phases in contact are in equilibrium with each other at the phase interface, and that
the phase compositions can be obtained by extrapolation of concentration profiles in the two
phases to the phase interface. Since the total system of a diffusion couple is not at equilib-
rium,many kinetic phenomena related to diffusion can be studied in a diffusion couple, such
as the interdiffusion coefficients, the parabolic growth kinetics of product layer thickness,
the diffusion path (represented by the local overall compositions) in ternary and multi-
component systems for visualizing the microstructure of reaction zones, and other proper-
ties, all as a function of composition; these are beyond the scope of the present book.

Typical diffusion couples are in the solid state with two materials brought into intimate
contact to allow diffusion of elements between the twomaterials, though solid–liquid diffu-
sion couples are also used. The contacting faces are commonly ground and polished flat,
clamped together using mechanical mechanisms, and annealed at high temperatures where
diffusion can take place to a significant degree in a matter of days, weeks, or months. The
samples are then quenched to retain the high temperature equilibrium features. For metallic
systems, diffusion couples can also be prepared by eletrolytical and electroless plating
techniques. It is important to avoid the formation of liquid during annealing as it ruins the
sample geometry. Furthermore, good adherence at the interfaces is critical for reliable data.

Since diffusion couples are not in a fully equilibrium state, the tie-lines between two
phases at the phase interfaces need to be obtained by extrapolation of concentration
profiles in neighboring phases. The electron propagation in quantitative EPMA is
typically in the range 1–2 μm, yielding an excitation volume of approximately 2–4 μm
diameter and a requirement of reasonable layer widths of phases on both sides of
the interface for accurate extrapolation. Therefore, the reliable composition of a single
phase must be taken several micrometers away from the interface. When steep concen-
tration gradients exist near the interfaces, the extrapolation may lead to large errors, and
analytical electron microscopy is then needed. Furthermore, fluorescence effects, where
the primary excitation can be powerful enough to excite other elements in the sample,
result in enhanced X-ray production and the need for proper corrections. For a new
phase to become observable experimentally, it must nucleate and grow to reach the
resolution limit of analytical tools. It is thus not uncommon that some known equilib-
rium phases are not found, and some non-equilibrium phases form. One way to
circumvent this issue is to use next to the phase of interest incremental diffusion couples
with narrow concentrations so that only this phase may be formed.

For ternary and higher-order systems, a more efficient approach can be used by
placing a thin layer of a third alloy between two other alloys. The thin central layer is
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eventually consumed, and the diffusion path is not fixed as in the semi-infinite diffusion
couples. The phase compositions change continuously with time as a result of the
overlapping of two quasi-equilibrated diffusion zones.

A diffusion multiple contains three or more pure elements or alloys of different
compositions and is a sample with multiple diffusion couples and diffusion triples in it.
It is more efficient in terms of both materials and time in comparison with equilibrated
alloys and diffusion couples. All alloy blocks are prepared individually and sealed in a
vacuum in a cylinder, which is also used as one alloy for the diffusion multiple. The
sealed cylinder with a vacuum inside also serves as the can for subsequent hot isostatic
pressing to achieve intimate interfacial contacts. The cylinder can then be cut into disks
for further annealing treatments. A broad range of design strategies is needed for
complex diffusion multiples, along with automated plotting procedures, due to the large
amounts of EMPA data. The major source of error lies in the extraction of tie-lines from
EPMA results, due to very condensed information relating to a small area and the
deviation of scanned lines from those perpendicular to the interface.

In terms of the local equilibrium characteristics of diffusion couples/multiples, it is
evident that in the equilibrated materials approach it may not be necessary to reach full
equilibrium for the whole sample if one is only interested in the local equilibrium
compositions between two neighboring phases. This can even provide information on
metastable extensions of two phases if the two phases are in a metastable equilibrium
at the annealing temperature.

4.1.3 Additional methods

The electrical resistivities of different phases are usually different. A change of slope of
electric resistivity as a function of composition or temperature or pressure reflects a
phase transformation. This technique is simple and reliable.

Magnetic transitions can be measured using a vibrating sample or superconducting
quantum interference device (SQUID) magnetometer by determining the magnetic
moment of a sample in the presence of an applied magnetic field. Magnetic field lines
form closed loops, resulting in an external dipolar and demagnetizing field in a finite-sized
sample. The effective field sensed by the sample is thus the difference between the applied
field and the demagnetizing field. The magnetic transition temperature is evaluated from
Arrott plots, where the ratio of magnetic field over magnetization with a proper exponent
is plotted with respect to the magnetization with another proper exponent for a series of
temperatures. These proper exponents result in parallel isotherm lines, and the isotherm
line intersecting the origin corresponds to the magnetic transition temperature.

Thin films with composition gradients, commonly referred to as combinatorial libraries,
can be used to study the phase relations similar to diffusion couples/multiples, though the
results may differ due to the effects of surface and potential interactions with the substrate.

Phase relations at high pressures are measured by equipment using diamond anvil
cells (DAC) or multi-anvil devices. The high pressure is realized by decreasing the area,
i.e. the anvil culet size. Pressures up to 100 GPa can be created in a DAC with a culet
size of 0.3 mm for small samples of the order of 0.2 to 0.4 mm. For large samples, the
large-volume press (LVP) technique has been developed, typically using WC with the
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pressure mostly limited to 30 GPa and the sample size ranging from 1 mm3 to 1 cm3.
The pressure can be measured either using the ruby (Cr3+ doped Al2O3) fluorescence
line shift or monitoring the molar volume of a pressure marker by X-ray diffraction. The
samples in DAC apparatus are heated by lasers or resistive wires or a small heater
around the samples, while high temperatures in LVPs are achieved by resistive heaters.
Crystal structures are detected by in situ X-ray or synchrotron diffraction. Attention
needs to be paid to temperature and pressure homogeneity and the non-hydrostatic
stresses, which are both better controlled in LVP equipment.

4.2 Thermodynamic data

Broadly speaking, thermodynamic data represent the values of the Gibbs free energy
and its first and second derivatives. For thermochemical properties, the main topic of
this book, calorimetric, electrochemical, and vapor pressure methods are the primary
techniques used, with the first used for accurate measurement of enthalpy and entropy
and the latter two used for direct determination of Gibbs energy and activity. The
electrochemical method is discussed in Chapter 8. The calorimetric method is divided
into solution, combustion, direct reaction, and heat capacity calorimetry, respectively,
which all involve chemical reactions to be discussed in detail in Chapter 7. The vapor
pressure method involves the equilibrium of volatile species between gas and samples
and is divided into Knudsen effusion and equilibration methods, respectively.

4.2.1 Solution calorimetry

The book edited by Marsh and O’Hare [12] documents the detailed experimental tech-
niques used for solution calorimetry. In one experiment, the enthalpy of solution of a
single phase is measured in a particular solvent. To convert this enthalpy of solution into
enthalpy of formation of the phase, a thermodynamic cycle is set up for a chemical reac-
tion to form this phase from either constitutive pure elements or compounds. Therefore, in
another experiment, the enthalpy of solution of the constitutive pure elements or com-
pounds is measured in a solvent which is as identical as possible to that used in the first
experiment. The difference of the two enthalpies of solution thus gives the enthalpy of
formation of the single phase from its constitutive elements or compounds at the tempera-
ture of the samples, usually at room temperature, before they are dropped into the solvent.

The solvent can be aqueous solutions at ambient temperatures and pressures or
metallic/salt/oxide melts at high temperatures under either adiabatic or isoperibol
conditions. Adiabatic calorimetry measures the temperature change of the solvent and
is usually more accurate than isoperibol calorimetry, which measures the heat gener-
ated during the dissolution, though adiabatic calorimetry requires more complex
instruments. It is important that the choices of solvent and temperature ensure the
complete dissolution of all substances into the solvent to form a homogeneous solution.
Furthermore, the effects of dilution and of changes in solvent composition need to be
considered in the calculation of the enthalpy of solution.
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A large number of solvents are used. For aqueous solvents, hydrofluoric acid or
mixtures of HF and HCl are often used. For oxides, buffer-type systems are typical such
as lead and alkali borates and alkali tungstates or molybdates. For metallic phases, low
melting metals such as Sn, Bi, In, Pb, and Cd, or sometimes Al and Cu, are used.
Factors such as solubility, dissolution kinetics, thermal history, stirring, heat flow,
particle size, and system size are optimized for accurate measurements. To enhance
the solution kinetics, the compound to be studied can be mixed with another element or
compound so that the mixture can form liquid in the solvent at a higher reaction rate. In
all cases, it is important to calibrate the system with pure elements and compounds of
known enthalpy of formation.

4.2.2 Combustion, direct reaction, and heat capacity calorimetry

In combustion calorimetry, the sample is ignited and reactswith reactive gases likeoxygen or
fluorine. To accurately calculate the enthalpy of formation from the enthalpy of combustion,
reliable characterization of the reactants and reaction products is critical, in order to identify
problems such as incomplete combustion, impurities in the reactants, which are often ill
defined, and more than one reaction of the gaseous species and condensed phase. Combus-
tion calorimeters are usually of the isoperibol type around room temperature in a water bath.

Direct reaction calorimetry is similar to combustion calorimetry, though it is carried
out at high temperatures in heat-flux or adiabatic environments. The partial enthalpy of
reaction can also be measured if the partial pressure of volatile species can be controlled
and measured. The key factor for accurate results is that both the reactants and reaction
products are well characterized and the reaction goes to completion quickly, like in
combustion calorimetry. For reactive reactants, special procedures are needed to avoid
loss of the reactants before the reaction takes place.

Heat capacity is defined as the amount of heat needed to increase the temperature by
1 K, as shown by Eq. 2.7, and its integration with respect to temperature from 0 K gives
the entropy as shown by Eq. 2.32. At low temperatures, adiabatic calorimetry gives
more accurate data regarding heat capacity though it is time consuming and requires
complex instruments. At high temperatures, the efficient but less accurate DSC method
is more widely used.

4.2.3 Vapor pressure method

In the Knudsen effusion method, a small amount of volatile species in the gas phase
effuses through a small orifice of 0.1 to 1 mm with negligible influence on the
equilibrium in the Knudsen cell. The vapor is ionized and analyzed with a mass
spectrometer. The partial pressure of a species can be calculated from its ionization
area and intensity using a calibration factor determined by a reference material with
known partial pressure. For high temperature measurements, care must be taken to avoid
reactions between the cell and sample and the fragmentation of gas species on ioniza-
tion. The typical vapor pressure range is between 10–7 and 10 Pa.

994.2 Thermodynamic data



In the various equilibration methods, the total vapor pressure is usually measured
directly using pressure gauges in the range of 10–7 and 100 kPa. Other direct or indirect
methods include the following:

� the thermogravimetric method for measuring the vapor mass;
� atomic absorption spectroscopy for measuring gas composition;
� measurement of sample composition equilibrated with a gas of well-defined

activity of the volatile species;
� the dew point method in which the condensation temperature of the volatile

component is measured from the vapor equilibrated with the sample at a higher
temperature;

� the chemical transport method, to be discussed in Section 7.4.

The main error in all these methods is often due to inadequate equilibration between
vapor and sample.

Exercises

1. A container of liquid lead is to be used as a calorimeter to determine the
enthalpy of formation of Mg2Si. It has been determined by experiment that
the heat capacity of the bath is 4000 J/K at 300 �C. With the bath originally at
300 �C, the following experiments are performed.
a. A mixture of 0.2 mol of pure Mg (4.861 grams) and 0.1 mol of pure Si

(2.808 grams) at 25 �C is dropped into the calorimeter. When the
mixture has dissolved completely, the temperature of the bath is found
to have increased by 0.37 �C from 300 �C.

b. One tenth of a mol of formula of Mg2Si (7.669 grams) at 25 �C is
dropped into the calorimeter. When the compound is dissolved com-
pletely, the temperature of the bath decreases by 1.60 �C from 300 �C.
Answer the following questions.
i. What is the enthalpy of formation of Mg2Si per mole of formula

and per mole of atoms?
ii. To what temperature does the result for the enthalpy of formation

apply? Explain.
2. Design an experiment similar to Exercise 1 to measure the enthalpy of mixing

of a liquid solution of Pb–Sn at 250 �C with xSn ¼ 0:7.
a. Derive an expression to calculate the enthalpy of mixing, representing

your measurements by symbols.
b. Evaluate the interaction parameter, assuming the solution is a regular

solution.
3. The melting point of gold is 1336 K. The vapor pressure of liquid gold is

given by

lnP ¼ 23:716� 43552
T

� 1:222lnT

where the units of P and T are atmospheres and degrees kelvin.
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(cont.)

a. Calculate the heat of vaporization of gold at its melting point.
Answer parts b, c, and d numerically only if the data given in this problem
statement are sufficient to support the calculations. If there are not enough
data, write “solution not possible.”
b. What is the vapor pressure of solid gold at its melting temperature?
c. What is the vapor pressure of solid gold at 1200 K?
d. What is the heat of fusion of solid gold?

4. The heat capacity of CuO is shown in the figure below. Do the following.
a. Evaluate the parameters in the following expression for the heat cap-

acity using the data in the figure: CP ¼ cþ dT þ e=T2 þ f T2.
b. Derive an expression for the entropy, with S298 = 42.74 J/K per mole of

CuO. What is the reference state of this entropy?
c. Derive an expression for the enthalpy, with H298 = �155800 J/K per

mole of CuO. Discuss the reference state.
d. Derive an expression for the Gibbs energy. State your reference state.
e. Plot the heat capacity, entropy, enthalpy, and Gibbs energy as functions

of temperature using your expressions.
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5. Calcium has two solid structures in addition to liquid and gas phases: fcc at
low temperatures and bcc at high temperatures. Their heat capacity data are
shown in the figure below. Their transition temperatures and enthalpies of
transition are as follows:

101Exercises



(cont.)

fcc ! bcc 716 K 930 J=mol

bcc ! liquid 1115 K 8542 J=mol

liquid ! gas 1762 K 148282 J=mol

a. Evaluate the parameters in the following expression for the heat
capacity by measuring four data points for the fcc and bcc phases in
the figure and using least squares fitting or any of your favored
programs: CP ¼ cþ dT þ e=T2 þ f T2. You can assume constant heat
capacities for liquid and gas.

b. Derive expressions for the enthalpies of the solid structures. Specify
your reference state.

c. Derive the expression for their entropies using Sfcc�Ca
298 ¼ 42 J/(K mol).

What is the reference state for the entropy?
d. Derive the expressions for their Gibbs energies. State your refer-

ence state.
e. Plot the heat capacity, entropy, enthalpy, and Gibbs energy of each

phase as functions of temperature using your expressions.
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6. Use the following thermodynamic data for Ca to answer the questions below.

Molar weight Ca ¼ 40:078 g=mol

VðCa, αÞ ¼ 26:025 cc=mol, VðCa, βÞ ¼ 26:200 cc=mol, VðCa, lÞ ¼ 28:361 cc=mol

S298KðCa, αÞ ¼ 41:6 J=ðK molÞ, S298KðCa; gÞ ¼ 154:8 J=ðK mol)
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(cont.)

Heat capacity ðJ=mol-KÞ valid between 298�2500 K at 1 atm

CpðCa, αÞ ¼ 16:0þ 12:0� 10�3T

CpðCa, βÞ ¼ 14:0þ 15:0� 10�3T Tðα ! βÞ ¼ 716 K

CpðCa, lÞ ¼ 33:5 TðfusionÞ ¼ 1115 K

CpðCa, gÞ ¼ 20:8

α ! β: ΔH½CaðαÞ ¼ CaðβÞ� ¼ 930 J=mol at 716 K

Fusion: ΔH½CaðβÞ ¼ CaðlÞ� ¼ 8542 J=mol at 1115 K

Sublimation: ΔH½CaðαÞ ¼ CaðgÞ� ¼ 177800 J=mol at 298 K

a. In the pressure–temperature potential phase diagram, calculate the
slopes of the phase boundaries between α and β and between β and
liquid phases.

b. The pressure of Ca(g) in equilibrium with the stable condensed cal-
cium phase is 1.0�10–9 bar at 627 K, and 1.0�10–2 bar at 1228
K. Using the results from Problem a and other information given
above, draw a pressure–temperature potential phase diagram of Ca
and make sure that all boundaries have correct slopes with all metasta-
ble extensions included.

c. Label all phase regions and apply the Gibbs phase rule to all phase
regions in the potential phase diagram you create.

d. Draw two Gibbs energy diagrams: one as a function of temperature for
a given pressure and one as a function of pressure for a given tempera-
ture. Include all stable and metastable phase equilibria.

e Assume Ca(g) is in equilibrium with Ca(α) at 298 K and calculate the
equilibrium vapor pressure of the gas at this temperature.

f. What is the entropy, S[Ca(β)], at 500 K and 1 atm?
g. Determine a general equation for the entropy of S[Ca(α)] at 1 atm

(in other words, determine an equation for S[Ca(α)] = f(T)).
h. A sample of 100 g of Ca(α) at 298 K is added to 100 g of Ca(l) at

1200 K, and then allowed to equilibrate under adiabatic conditions in a
closed system, i.e. the enthalpy of the system is constant. The system
volume is small so that no appreciable amount of vapor can form;
only the condensed phases need to be considered. Calculate the final
equilibrium state of the system.
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5 First-principles calculations
and theory

In the previous chapter, the experimental techniques used to obtain the thermochemical
and phase equilibrium data that were the inputs for the thermodynamic modeling of a
system were summarized. However, experimental data are not always available. This is
due to the fact that (i) the experiments are expensive, especially when they involve
developing new materials, and (ii) the experiments cannot reliably access the non-stable
phases in most cases. The alternative approach is to predict the thermochemical data by
first-principles calculations. The prediction of material properties, without using phe-
nomenological parameters, is the basic spirit of first-principles calculations. In particu-
lar, the steady increase of both computer power and the efficiency of computational
methods have made the first-principles predictions of most thermodynamic properties
possible, including both enthalpy and entropy as a function of temperature, volume,
and/or pressure.

By definition, the term “first-principles” represents a philosophy that the prediction is
to be based on a basic, fundamental proposition or assumption that cannot be deduced
from any other proposition or assumption. This implies that the computational formu-
lations are based on the most fundamental theory of quantum mechanics, the Schrö-
dinger equation or density functional theory, and the inputs to the calculations must be
based on well-defined physical constants – the nuclear and electronic masses and
charges. In other words, once the atomic species of an assigned material are known,
the theory should predict the energies of all possible crystalline structures, without
invoking any phenomenological fitting parameters.

This chapter is organized in sequence from thermodynamic calculations to funda-
mental theory, to help those readers who are more interested in realistic calculations
using existing computer codes. Detailed theoretical discussions follow the subsections
on thermodynamic calculations for those readers who are also interested in the
derivation of the formulations used in the thermodynamic calculations. The subsec-
tions are arranged accordingly in the order: (i) examples of the commonly adopted
calculation procedures for thermodynamic properties using the elemental metal nickel
as the main prototype; (ii) derivation of the Helmholtz energy expression under the
first-principles framework; (iii) introduction of the solution to the electronic Schrö-
dinger equation within two well-developed frameworks – the quantum chemistry
approach and the density functional theory; (iv) detailed description of the procedure
on how to solve the Schrödinger equation for the motions of atomic nuclei by means
of lattice dynamics; and (v) First-principles approaches to disordered alloys.
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5.1 Nickel as the prototype

This section exemplifies the step-by-step procedures for calculating the thermal proper-
ties within the framework of the first-principles phonon approach, using the elemental
metal Ni as the prototype. The calculation of the formation enthalpy of Ni3Al is given at
the end. The calculation in this section is limited to the ferromagnetic phase, i.e. a
single microstate, implying that no configurational mixtures or magnetic phase transi-
tions are considered. Those are discussed in Section 5.2.5 and Chapter 6.

The Vienna Ab-Initio Simulation Package (VASP) [13, 14] has been employed for
electronic calculations, and the YPHON code [15] has been employed for phonon
calculations. VASP is a code based on the pseudopotential approach to density func-
tional theory using plane wave functions as the basis set, by which only the valence
electrons are handled explicitly and the core electrons are approximated by an effective
pseudopotential. The same energy cutoff value, which determine the number of plane
waves in the expansion of the electronic wave function, has been used for Ni, Al, and
Ni3Al. The rationale for the derivations of the formulations used in this section is given
in Section 5.2 for readers who wish to have an in-depth understanding of the physics
behind the formulations used.

5.1.1 Helmholtz energy and quasi-harmonic approximation

At present, the most rigorous method for predicting the thermodynamic properties of a
material at finite temperatures is the phonon approach. In such an approach, the
microscopic Hamiltonian is expanded up to the second order. All the thermodynamic
quantities are calculated using formulations derived from statistical physics without
further approximation. The great advantage of phonon theory is that all the input
parameters can be obtained by means of first-principles calculations without using
any phenomenological parameters.

Let us consider a system with an average atomic volume V. Neglecting the electron
phonon coupling, it is a well-demonstrated procedure [16] to decompose the Helmholtz
energy F(V,T) of the system at temperature T into three additive contributions as follows:

F V ; Tð Þ ¼ Ec Vð Þ þ Fvib V ; Tð Þ þ Fel V ; Tð Þ 5.1

where Ec is the static total energy, which is the total energy of the system at 0 K without
any atomic vibrations, Fvib is the vibrational contribution due to the lattice ions, and Fel

is the electronic contribution, due to thermal electronic excitation at finite temperature,
which can become important for metals at high temperature.

The terminology “quasi-harmonic approximation” arises from the fact that for a
given volume, Fvib(V,T) is calculated under the harmonic approximation and the
anharmonic effects are included solely through the volume dependence of the phonon
frequency. The easiest computational implementation of Eq. 5.1 is to first
independently calculate the Helmholtz energies at several selected volumes near the
equilibrium volume and then use numerical interpolation to find the Helmholtz energy
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at an arbitrary volume. The volume interval is usually at the scale of 3%~5% of the
equilibrium volume. Too small a volume interval can result in numerical instability due
to the numerical uncertainties in the static total energy calculation, in particular, when
one numerically computes the first- and especially the second-order derivatives of the
Helmholtz energy in deriving the thermodynamic quantities. It should be noted that,
whenever available, analytic formulas should be used instead of a numerical second-
order derivative to avoid numerical errors. For instance, when the phonon approach is
employed, the constant volume heat capacity has an analytic expression in terms of
the phonon density of states.

Nickel metal adopts the fcc structure at ambient conditions and the primitive unit cell
contains one atom. Almost all the existing first-principles codes have a function for
calculating the static total energy. The static total energy Ec in Eq. 5.1 should be
calculated using the primitive unit cell. As the Helmholtz energy is to be calculated at
several volumes, it is good practice to plot the calculated static total energy points
together with an interpolated energy curve to examine the convergence of the static
total energy calculation. Since the first-principles method often employs the self-
consistent technique, it could occur that calculations at certain volumes may not be
convergent, which should be fixed by trying the various algebraic schemes provided in
most of the existing codes. Furthermore, since certain calculations involve the second-
order derivative of the Helmholtz energy, a minor uncertainty along the static total
energy curve can result in a large deviation for calculated properties such as the thermal
expansion coefficient and bulk modulus. In that case, a reasonable solution is to smooth
the static total energy using the modified Birch–Murnaghan equation of state
(EOS) [17, 18]

Ec ¼ aþ bV�2=3 þ cV�4=3 þ dV�2 þ eV�8=3 5.2

The calculated static total energy of elemental metal Ni is plotted in Figure 5.1, with the
circles representing the calculated values and the curve representing the EOS fitting.

The vibrational contribution to the Helmholtz energy from phonon theory can be
computed by [19]

Fvib V ; Tð Þ ¼ kBT

ð∞

0

ln 2 sinh
ℏω
2kBT

� �
g ω;Vð Þdω 5.3

where kB is Boltzmann’s constant, ω represents the phonon frequency, and g ω;Vð Þ is
the phonon density of states. It is recommended that g ω;Vð Þ is calculated at the same
volume set at which the static total static energies are calculated.

For the present prototype of Ni, the supercell method for the calculation of g ω;Vð Þ
was employed. The procedure is follows.

i. Make a supercell by enlarging the primitive unit cell according to the defined
neighbor interaction distance; employ the first-principles code (VASP [13, 14] in
this work) to calculate the interatomic force constants.
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ii. Assign the mesh in the wave vector (q) space; make the dynamical matrix at each
q point; diagonalize the dynamical matrix to find the phonon frequencies at
each q point; and finally collect all the phonon frequencies for all q points. The
detailed formulation for phonon calculations is given in Section 5.2.

For the phonon calculations, one can use the open source code YPHON [15]
developed by the present authors. Other choices are the free ATAT code [20] or the
free PHON code [21]. For calculation of the phonon density of states, we used a
supercell containing 64 atoms, which is a 4�4�4 supercell of the primitive unit cell.
Figure 5.2 is a plot of the calculated phonon density of states using YPHON code at
the calculated static equilibrium volume compared with the measured data at 10
K [22] (symbols).

For a first-principles thermodynamic calculation, an important step to avoid possible
calculation errors is to examine the phonon dispersions first. Phonon dispersion [23]
means the evolution of phonon frequencies along the designated direction for a crystal.
Phonon dispersion can be measured rather accurately by inelastic neutron scattering
[24–26] or inelastic X-ray scattering [27] experiments. Figure 5.3 shows the calculated
phonon dispersions (curves) along the [00ζ], [0ζ1], [0ζζ], and [ζζζ ] directions of Ni
using the YPHON code and the neutron scattering data at 296 K (symbols).

For the calculation of Fel in Eq. 5.1, the most computationally convenient approach is
to use the Mermin statistics, as follows:

Fel V ; Tð Þ ¼ Eel V ; Tð Þ � TSel V ; Tð Þ, 5.4

where Eel is the thermal electronic energy, and Sel is the bare electronic entropy. Both
the calculations of Eel and Sel need the electronic density of states (EDOS) as input. The
electronic density of states can be obtained during the calculation of the static total
energy. The detailed formulations for Eel and Sel are given in Section 5.2.2. Since Ni is
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Figure 5.1 Static total energy of nickel.
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magnetic, the EDOS of Ni can be partitioned into those of spin up and spin down, due to
the spin freedom of electrons. The calculated EDOS for Ni is shown in Figure 5.4 where
the solid, dot-dashed, and dashed lines represent the total, spin up, and spin down
EDOS with the Fermi energy set to zero.

The calculated temperature evolution of the Helmholtz energy as a function of
volume for Ni is illustrated in Figure 5.5. The circles represent the calculated static

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

Ph
on

on
 d

en
si

ty
 o

f 
st

at
es

 (
T

H
z–1

)

Frequency (THz)

Ni
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total energies. The solid curves represent the Helmholtz energy curves from 0 to 1600
K at a temperature increment of 100 K as displayed from top to bottom in the figure.
The dashed line marks the evolution of the equilibrium volume at P ¼ 0 with increasing
temperature. It is to be noted that the Helmholtz energy always decreases with increas-
ing temperature due to the entropy term –TS. Note that at 0 K the Helmholtz energy is
higher than the static total energy due to the zero point vibrational energy as can be seen
when T ! 0 which reduces Eq. 5.3 to
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Figure 5.5 Temperature evolution of the Helmholtz energy for nickel.
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Fvib V ; Tð ÞjT¼0 ¼
ð∞

0

ℏω
2

g ω;Vð Þdω 5.5

which is positive.

5.1.2 Volume, entropy, enthalpy, thermal expansion, bulk modulus, and heat capacity

The equilibrium volume Veq(P,T) at given T and P can be obtained by finding the root of
the following equation:

� ∂F V ; Tð Þ
∂V

� �
T

¼ P 5.6

As mentioned above, the dashed line in Figure 5.5 illustrates Veq(P,T ) as a function of T
from 0 to 1600 K at P ¼ 0 for Ni.

The entropy can be calculated through F by

S V ; Tð Þ ¼ � ∂F V ; Tð Þ
∂T

� �
V

5.7

Figure 5.6 is a plot of the calculated entropy (curve) of Ni as a function of temperature
from 0 to 1600 K at P ¼ 0 and the recommended data (symbols) with details in
reference [16].

Based on F and S, the enthalpy at given P and T can be computed as

H V ; Tð Þ ¼ F V ; Tð Þ þ TS V ; Tð Þ þ PV 5.8
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Figure 5.6 Entropy of nickel as a function of temperature.
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Figure 5.7 is a plot of the calculated enthalpy (curve) of Ni as a function of temperature
from 0 to 1600 K at P ¼ 0 and the recommended data (open circles) with details in
reference [16].

With the equilibrium volume Veq(P,T) calculated by Eq. 5.6, the volume thermal
expansion coefficient defined by Eq. 2.8 can be calculated using

βP P; Tð Þ ¼ 1
Veq

∂Veq P; Tð Þ
∂T

� �
P

5.9

Figure 5.8 is a plot of the calculated thermal expansion coefficient (curve) of nickel as a
function of temperature from 0 to 1600 K at P ¼ 0 compared with experimental data
(symbols) with details in reference [16].
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Figure 5.7 Enthalpy of nickel as a function of temperature.
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The bulk modulus of a material represents the substance’s resistance to uniform
compression. Depending on how the temperature varies during compression, a distinc-
tion should be made between the isothermal bulk modulus (constant temperature) and
the adiabatic bulk modulus (constant entropy or no heat transfer). As a matter of fact,
most of the available experimental data are adiabatic whereas most of the published
theoretical data are isothermal.

The isothermal bulk modulus, as defined in Eq. 2.9 in terms of the Gibbs energy, can
be calculated from

BT V ; Tð Þ ¼ V
∂F2 V ;Tð Þ

∂V2

� �
T

5.10

Based on the isothermal bulk modulus, the adiabatic bulk modulus can be calculated
from

BS V ; Tð Þ ¼ ðCP=CV ÞBT V ; Tð Þ 5.11

where CP and CV represent the constant pressure heat capacity and constant volume heat
capacity, respectively. Figure 5.9 is a plot of the calculated bulk moduli (curves) of Ni
as a function of temperature from 0 to 1600 K at P ¼ 0. The experimental data are from
ultrasonic measurements (symbols, see reference [28] for more details) and are therefore
adiabatic bulk moduli calculated based on the measured adiabatic elastic constants,
using the relation

BS ¼ CS
11 þ 2CS

12

� �
=3 5.12

The heat capacity at constant volume, as defined in Eq. 2.28, can be calculated from
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CV V ; Tð Þ ¼ ∂U V ; Tð Þ
∂T

� �
V

5.13

where U V ;Tð Þ ¼ F V ; Tð Þ þ TS V ; Tð Þ represents the internal energy. The heat capacity
at constant pressure (see Eq. 2.31) can then be calculated as

CP P; Tð Þ ¼ CV V ; Tð Þ þ VTBT V ; Tð Þ βP P; Tð Þð Þ2 5.14

utilizing the calculated thermal expansion coefficient in Eq. 5.9 and bulk modulus in
Eq. 5.10.

It can be seen that thermal expansion makes the difference between the heat capacity
at constant volume and the heat capacity at constant pressure. The calculated contribu-
tions to the heat capacity of Ni as a function of temperature from 0 to 1600 K at P ¼ 0
are illustrated in Figure 5.10, where the lattice vibration and the thermal electron
contributions have been separated out. From Figure 5.10, it is observed that there is a
large difference between the calculated CP (solid line) and the experimental data
(symbols, see reference [18] for more details) at 600 K due to the magnetic phase
transition which has not been considered in the calculation. It should be pointed out that
for Ni the thermal electronic contribution to the heat capacity (dotted line in Figure 5.10)
is substantial at high temperatures.

5.1.3 Formation enthalpy of Ni3Al

One can do similar calculations for elemental metal Al and the compound Ni3Al, which
has the L12 structure, by following the same steps as in the calculations for Ni. The
formation enthalpy in units of per mole atom can be calculated as

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200 1400 1600

H
ea

t c
ap

ac
ity

 (
J/

(K
 m

ol
 a

to
m

))

T (K)

Ni

Theory, Cp

Theory, Cv
Theory, Cv, lat
Theory, Cv, el

Desai

Figure 5.10 Heat capacity of nickel as a function of temperature; Cvib
V represents the calculated

lattice vibration contribution and Cel
V represents the calculated thermal electronic contribution.

1135.1 Nickel as the prototype



Δf H
LI2�Ni3Al ¼ HLI2�Ni3Al

m � 3
4
Hfcc�Ni

m � 1
4
Hfcc�Al

m 5.15

where HLI2�Ni3Al
m , Hfcc�Ni

m , and Hfcc�Al
m represent the enthalpies of Ni3Al, Ni, and Al in

energy units per mole of atoms, respectively. Figure 5.11 is a plot of the calculated
formation enthalpy of Ni3Al (curve) as a function of temperature from 0 to 1600 K at
P ¼ 0 compared with experimental data (symbols) with details in reference [16].

5.2 First-principles formulation of thermodynamics

5.2.1 Helmholtz energy

In this chapter so far, all our discussions have been limited to the case of a system which
consists of a single microstate (microscopic state). Here, the terminology “microstate”
refers to the microscopic structure that is distinguished by the crystal structure, atom
distributions in the lattice sites, and the arrangements of the local atomic spin and
electronic angular momentum distributions among the lattice sites. From this section on,
the index σ is employed to label the microstate. For a solid material at finite tempera-
tures, a phase can be formed by a single microstate or a mixture of multiple microstates.

Let us consider a canonical system made of N atoms with an average atomic volume V.
The study is limited to the motions of the atomic nuclei and electrons. For such a
system, one can use εg,n N;V ; σð Þ to denote the energy eigenvalues of the corresponding
microscopic Hamiltonian associated with microstate σ. The subscript g symbolically
labels the different vibrational states for the motions of the atomic nuclei and the
subscript n symbolically labels the electronic states distinguished by the different
distributions of the electrons between the electronic valence and conduction bands.
Neglecting electron–phonon coupling, one can assume that the contributions to
εg,n N;V ; σð Þ between the vibrational and electronic states are additive, so that
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εg,n N;V ; σð Þ ¼ Ec N;V ; σð Þ þ εg N;V ; σð Þ þ εn N;V ; σð Þ 5.16

where Ec is the static total energy of the microstate σ. Note that in Eq. 5.16 εg N;V ; σð Þ
and εn N;V ; σð Þ represent the energies of the vibrational state and the electronic state
respectively.

One then can formulate the canonical partition function of the microstate σ at the
given temperature T and volume V as

Z N;V ;T ;σð Þ ¼
X
g,n

exp �βεg,n N;V ;σð Þ� �

¼ exp �βEc N;V ;σð Þ½ �
X
g

exp �βεg N;V ;σð Þ� �X
n

exp �βεn N;V ;σð Þ½ �

5.17

where β = 1/kBT, kB being Boltzmann’s constant. As a result, with F ¼ �kBTlnZ, the
Helmholtz energy F per atom for the microstate σ is derived as follows:

F V ; T; σð Þ ¼ Ec V ; σð Þ þ Fvib V ; T ; σð Þ þ Fel V ; T; σð Þ 5.18

where the variable N has been abbreviated using

Ec V ; σð Þ ¼ Ec N;V ; σð Þ
N

: 5.19

We have

Fvib V ; T ; σð Þ ¼ � kBT

N
ln
X
g

exp �βεg N;V ; σð Þ� �
5.20

Fel V ; T ; σð Þ ¼ � kBT

N
ln
X
n

exp �βεn N;V ; σð Þ½ � 5.21

The calculation of Ec is straightforward in most of the existing first-principles codes as
discussed earlier.

5.2.2 Mermin statistics for the thermal electronic contribution

For the calculation of Fel in Eq. 5.21, the most computationally flexible approach is to
use the Mermin statistics [28] by which

Fel V ; T; σð Þ ¼ Eel V ; T ; σð Þ � TSel V ; T; σð Þ 5.22

where the bare electronic entropy Sel takes the form, after replacing the summation in
Eq. 5.21 over the electronic states with integration,

Sel V ; T ; σð Þ ¼ �kB

ð
n ε;V ; σð Þ f ε;V ; T ; σð Þln f ε;V ; T; σð Þ

þ 1� f ε;V ; T; σð Þ½ �ln 1� f ε;V ; T; σð Þ½ �
� 	

dε 5.23

by utilizing n ε;V ; σð Þ, the electronic density of states. Here f in Eq. 5.23 is the Fermi
distribution and takes the form
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f ε;V ; T ; σð Þ ¼ 1

exp ε�μ V ;T ;σð Þ
kBT

h i
þ 1

5.24

Note that μ V ; T ; σð Þ in Eq. 5.24 is the electronic chemical potential, which is strongly
temperature dependent. At each given T, μ V ; T; σð Þ should be carefully calculated
keeping the number of electrons unchanged in satisfying the following equation:

ð
n ε;V ; σð Þf ε;V ; T ; σð Þdε ¼

ðεF
n ε;V ; σð Þdε 5.25

noting that εF is the Fermi energy calculated at 0 K. With respect to Eq. 5.22, the thermal
electronic energy Eel, due to the thermal electron excitations, can be calculated using

Eel V ; T ; σð Þ ¼
ð
n ε;V ; σð Þf ε;V ; T ; σð Þεdε�

ðεF
n ε;V ; σð Þεdε 5.26

At low temperatures, Eq. 5.22, Eq. 5.23, and Eq. 5.26 are reduced to

Fel V ; T; σð Þ ¼ � 1
2
λ V ; σð ÞT2 5.27

where λ is the so-called electronic specific heat coefficient, calculated as

λ V ; σð Þ ¼ π2

3
kBð Þ2n εF;V ; σð Þ 5.28

where n εF;V ; σð Þ is the electronic density of states at the Fermi level, and

Eel V ; T ; σð Þ ¼ 1
2
λ V ; σð ÞT2 5.29

Sel V ; T ; σð Þ ¼ λ V ; σð ÞT 5.30

From Eq. 5.29, one can easily derive the electronic contribution to the specific heat at
low temperature as

Cel V ; T; σð Þ ¼ λ V ; σð ÞT 5.31

Usually, the dependence of λ V ; σð Þ on V is weak. Therefore for a normal conductor
(except for heavy fermion metals or superconductor related materials), at low tempera-
tures, the electronic contribution to the heat capacity is linear with T. Equation 5.31 also
indicates that, for insulators, from Eq. 5.28 the electronic contribution to the heat
capacity is zero since for insulators n εF ;V ; σð Þ ¼ 0.

5.2.3 Vibrational contribution by phonon theory

Under the harmonic/quasi-harmonic approximation, lattice dynamics or phonon theory
is currently the most established method. It truncates the interaction potential up to the
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second order. In such a case, εg N;V ; σð Þ in Eq. 5.16 can be expressed in terms of
phonon frequency ωj V ; σð Þ as follows:

εg N;V ; σð Þ ¼
X3N
j¼1

gj þ 1=2
� �

ℏωj V ; σð Þ 5.32

where the label g has the meaning (g1, g2, . . ., g3N) and the gj can take any integer values
from zero to infinity.

As a result, Eq. 5.20 is reduced to

Fvib V ; T ; σð Þ ¼ kBT

N

X3N
j¼1

ln 2sinh
ℏωj V ; σð Þ
2kBT


 �
5.33

or equivalently,

Fvib V ; T ; σð Þ ¼ kBT

ð∞
0
ln 2sinh

ℏω
2kBT


 �
g ω;V ; σð Þdω 5.34

where an integration has been used to replace the summation in Eq. 5.20 by means of
introducing a function, g ω;V ; σð Þ, named the phonon density of states (PDOS) whose
integration over ω is equal to three per atom.

Accordingly, the formula to calculate the entropy becomes

S V ; T; σð Þ ¼ Sel V ; T ; σð Þ þ kB

ð∞

0

ℏω=kBTð Þ
eℏω=kBT � 1

� ln 1� e�ℏω=kBT
� 
 �

g ω;V ; σð Þdω 5.35

the formula to calculate the internal energy becomes

U V ; T ; σð Þ ¼ Eel V ; T; σð Þ þ kB

ð∞

0

ℏω
2

þ ℏω

eℏω=kBT � 1

� �
g ω;V ; σð Þdω 5.36

and the formula to calculate the heat capacity at constant volume becomes

CV V ; T ; σð Þ ¼ ∂Eel V ; T ; σð Þ
∂T

� �
V

þ kB

ð∞

0

ℏω=kBTð Þ2eℏω=kBT
eℏω=kBT � 1ð Þ2

g ω;V ; σð Þdω 5.37

5.2.4 Debye–Grüneisen approximation to the vibrational contribution

Strictly speaking, the Debye theory is only accurate at very low temperatures. It
assumes a parabolic type of dependence of the PDOS on the phonon frequency. This
assumption is only correct at the scale of tens of degrees kelvin because at low
temperatures only the low frequency acoustic phonons are activated, and so they play
the major role in the parabolic type of PDOS found in the low frequency range, as shown
in Figure 5.2. That is why there are two kinds of Debye temperature: the low temperature
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Debye temperature and the high temperature Debye temperature. The low temperature
Debye temperature can be strictly derived by fitting low temperature heat capacity data.
The high temperature Debye temperature is usually a phenomenological fitting parameter.

The Debye model approximates the PDOS in Eq. 5.34 by

g ω;V ; σð Þ ¼ 9ω2=ω3
D V ; σð Þ, if ω � ωD V ; σð Þ

0, if ω > ωD V ; σð Þ
�

5.38

where ωD is the so-called Debye cutoff frequency, related to the Debye temperature ΘD by

ΘD V ; σð Þ ¼ ℏωD V ; σð Þ
kB

5.39

As the result, the vibrational contribution to the Helmholtz energy under the Debye
approximation becomes

Fvib V ; T ; σð Þ ¼ 9
8
kBΘD V ; σð Þ þ kBT 3ln 1� exp �ΘD V ; σð Þ

T

� �
 �
� D

ΘD V ; σð Þ
T

� �� 	

5.40

where D(ΘD/T) is the Debye function given by D xð Þ ¼ 3=x3
ðx
0

�
t3= exp tð Þ � 1½ �

	
dt.

Under the Debye approximation, the formula for calculating the entropy becomes

S V ; T; σð Þ ¼ Sel V ; T ; σð Þ þ kB �3ln 1� exp �ΘD V ; σð Þ
T

� �
 �
þ 4D

ΘD V ; σð Þ
T

� �� 	

5.41

the formula for calculating the internal energy becomes

U V ; T; σð Þ ¼ Ec V ; σð Þ þ Eel V ; T; σð Þ þ Uvib V ; T ; σð Þ 5.42

where

Uvib V ; T; σð Þ ¼ 9
8
kBΘD V ; σð Þ þ 3kBTD

ΘD V ; σð Þ
T

� �
5.43

and the formula for calculating the heat capacity at constant volume becomes

CV V ; T ; σð Þ ¼ ∂Eel V ; T; σð Þ
∂T

� �
V

þ 9kB
T

ΘD V ; σð Þ
� �3ðΘD V ;σð Þ=T

0

x4ex

ex � 1ð Þ2 dx 5.44

Here it is noted that ΘD V ; σð Þ is volume dependent, and this dependence is often written
in terms of the Grüneisen constant:

γvib V ; σð Þ ¼ � ∂lnΘD V ; σð Þ
∂lnV

5.45

It has been found that the dependence of γvib V ; σð Þ on V is usually weak and hence
γvib V ; σð Þ is often approximated as a constant. With γvib V ; σð Þ, the formula for calculat-
ing the pressure becomes
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P V ; T; σð Þ ¼ � ∂Ec V ; σð Þ
∂V

� ∂Fel V ; T; σð Þ
∂V

� �
T

þ γvib V ; σð Þ
V

Uvib V ;T ; σð Þ 5.46

An important result of the Debye approximation is that when T ! 0, together with
Eq. 5.31, the heat capacity in Eq. 5.44 is reduced to

CV V ; T; σð Þ ¼ λ V ; σð ÞT þ 12π4

5
kB

T

ΘD V ; σð Þ
� �3

5.47

This gives the Debye T3 law when the thermal electron contribution λ V ; σð ÞT is
neglected. In the analysis of superconductor and heavy fermion materials, Eq. 5.47 is
often rewritten as

CV V ; T ; σð Þ
T

¼ λ V ; σð Þ þ 12π4

5
kB

T2

ΘD V ; σð Þ3 5.48

which is more convenient for examining the heat capacity measured at extremely low
temperatures.

5.2.5 System with multiple microstates (MMS model)

For a system consisting of multiple microstates, the total partition function is the
summation over the partition functions of all microstates, Eq. 5.17:

Z N;V ; Tð Þ ¼
X
σ

wσZ N;V ; T ; σð Þ 5.49

where wσ is the multiplicity of the microstate σ. It is immediately apparent that
xσ ¼ wσZ N;V ; T ; σð Þ=Z N;V ; Tð Þ is the thermal population of the microstate σ. Further-
more, with F ¼ �kBT lnZ, one obtains

F N;V ;Tð Þ ¼ �kBT
X
σ

xσlnZ N;V ;T;σð ÞþkBT
X
σ

xσlnZ N;V ;T;σð Þ�xσlnZ N;V ;Tð Þ
" #

¼
X
σ

xσNF V ;T ;σð ÞþkBT
X
σ

xσln xσ=wσð Þ

5.50

Equation 5.50 relates the total Helmholtz energy, F(N,V,T), of a system with mixing
among multiple microstates and the Helmholtz energy, F V ; T; σð Þ, of the individual micro-
states. An important result of Eq. 5.50 is the configurational entropy due to themixing among
multiple microstates, called the microstate configurational entropy) (MCE) in this book,

ΔSf N;V ; Tð Þ ¼ �kB
X
σ

wσ
�
xσ=wσ ln xσ=wσð Þ� 5.51

which makes the entropy of a system with mixing among multiple microstates equal to

S N;V ; Tð Þ ¼ ΔSf N;V ; Tð Þ þ
X
σ

xσNS V ; T ; σð Þ 5.52
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Similarly, one can obtain the heat capacity at constant volume of a system with mixing
among multiple microstates as

CV V ; Tð Þ ¼ ΔCf V ; Tð Þ þ
X
σ

xσCV V ; T ; σð Þ 5.53

where the configurational contribution to the heat capacity due to the mixing among
multiple microstates is

ΔCf V ;Tð Þ ¼ 1

kBT2

X
σ

xσ E V ; T; σð Þ½ �2 �
X
σ

xσE V ; T ; σð Þ
" #28<

:
9=
; 5.54

Moreover, the isothermal bulk modulus of a system with mixing among multiple
microstates can be also computed similarly as

BT V ; Tð Þ ¼ ΔBf V ; Tð Þ þ
X
σ

xσBT V ; T ; σð Þ 5.55

with

ΔBf V ; Tð Þ ¼ V

kBT

X
σ

wσxσP V ; T ; σð Þ
" #2

�
X
σ

wσxσ P V ; T ; σð Þ½ �2
8<
:

9=
; 5.56

This multiple microstate model (MMS model) is used in Chapter 9 to quantitatively
predict thermal expansion anomalies.

5.3 Quantum theory for the motion of electrons

5.3.1 Schrödinger equation

The Schrödinger equation is typically written as follows:

iℏ
∂
∂t
Ψ X; tð Þ ¼ bHΨ X; tð Þ 5.57

where Ψ is the wave function of the system, ℏ is the reduced Planck constant, X is an
abbreviation of the space coordinates and spin states of the multiple particle system,bH is the energy operator the called, Hamiltonian. When bH is independent of time t,
one can separate the coordinate X from the time t in finding the solution of Eq. 5.57 by
writing

Ψ X; tð Þ ¼ Ψ Xð ÞΨ tð Þ 5.58

by which the stationary solutions of Eq. 5.57 can be expressed through setting

iℏ
∂
∂t
Ψ tð Þ

Ψ tð Þ ¼
bHΨ Xð Þ
Ψ Xð Þ ¼ E 5.59
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resulting in

bHΨ Xð Þ ¼ EΨ Xð Þ 5.60

Ψ tð Þ ¼ exp �i
E

ℏ
t

� �
5.61

Note that E=ℏ is the frequency of the de Broglie matter wave.
For any trial function Λ(X) (in the Hilbert space) for Ψ(X), the variational principle

tells us that the energy of the system always has a lower bound corresponding to a
ground state with energy E0, as

E ¼

ð
Λ� Xð ÞbHΛ Xð ÞdXð
Λ� Xð ÞΛ Xð ÞdX

� E0 5.62

where Λ� Xð Þ represents the complex conjugate of Λ(X), resulting in

δE
δΨ

¼ 0 5.63

which is known as the Rayleigh–Ritz variational principle.

5.3.2 Born–Oppenheimer approximation

For a time independent atomic system, it is often accurate enough to write bH in Eq. 5.57
or Eq. 5.60 in terms of the electron coordinates r and nuclei coordinates R,

bH r;Rð Þ ¼
X
i

� ℏ2

2me
r2

i þ
X
I

� ℏ2

2MI
r2

I

�
X
I, i

ZIe2

RI � rij j þ
1
2

X
i 6¼j

e2

ri � rj
�� �� þ 1

2

X
I, J

ZIZJe2

RI � RJj j
5.64

where e represents the electron charge and i and j label the electrons, I and J the atomic
nuclei, ZI the atomic nuclear charge number of atom I, me the electron mass,MI the mass
of atomic nuclei I, r2

i the Laplace operator for electron i, and r2
I the Laplace operator

for atomic nuclei I, noting that

r2 ¼ ∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2
5.65

with respect to the Cartesian axes x, y, and z.
Considering the fact that the electron mass is two thousand times smaller than the

mass of the atomic nuclei, implying that the motions of the electrons are much faster
than those of the atomic nuclei, Born and Oppenheimer proposed that the wave function
of the whole system can be simply approximated as the product of the electron wave
function Ψ rð Þ and the atomic nuclei wave function Ψ Rð Þ as
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Ψ r;Rð Þ ¼ Ψ rð Þ � Ψ Rð Þ 5.66

With the auxiliary approximation of neglecting the dynamic coupling between the
motions of electrons and atomic nuclei, the Schrödinger equation for the motion of
the electrons becomes

bHeΨ rð Þ ¼ E Rð ÞΨ rð Þ 5.67

where

bHe ¼
X
i

� ℏ2

2me
r2

i �
X
I, i

ZIe2

RI � rij j þ
1
2

X
i6¼j

e2

ri � rj
�� �� 5.68

and the Schrödinger equation for the motion of the atomic nuclei becomes

bHNΨ Rð Þ ¼ εnΨ Rð Þ 5.69

where

bHN ¼
X
I

� ℏ2

2MI
r2

I þ 1
2

X
I, J

ZIZJe2

RI � RJj j þ E Rð Þ 5.70

with

E Rð Þ ¼

ð
Ψ� rð ÞbHeΨ rð Þdrð
Ψ� rð ÞΨ rð Þdr

5.71

where Ψ� rð Þ represents the complex conjugate of Ψ rð Þ.

5.3.3 Hartree–Fock approximation to solve the Schrödinger equation

It was Hartree who first assumed that the electron wave function in Eq. 5.67 can be
expressed as a product of a collection of N independent one-electron wave functions,
Φi r; sð Þ where i = 1, 2, . . ., N, N being the number of electrons in a system, in terms of
its space coordinate r and spin state s. After that, Fock modified the Hartree approxi-
mation by considering the fact that the wave function of a multi-fermionic system
should satisfy anti-symmetry requirements and thus the Pauli exclusion principle that
the total wave function changes sign upon the exchange of fermions. Accordingly, the
wave function of an N- electron system under the Hartree–Fock approximation is
expressed as the Slater determinant [29]

ΨSlater r; sð Þ ¼ 1ffiffiffiffiffi
N!

p
Φ1 r1; s1ð Þ Φ1 r2; s2ð Þ ::: Φ1 rN ; sNð Þ
Φ2 r1; s1ð Þ Φ2 r2; s2ð Þ ::: Φ2 rN ; sNð Þ

..

. ..
. ..

. ..
.

ΦN r1; s1ð Þ ΦN r2; s2ð Þ ::: ΦN rN ; sNð Þ

���������

���������
5.72
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For brevity, one can use atomic units, thus setting ℏ ¼ 1, e ¼ 1, and me ¼ 1 in Eq. 5.68,
so that

bHe ¼
X
i

h ið Þ þ 1
2

X
i6¼j

1
rij

5.73

where rij ¼ jri � rjj, and

h ið Þ ¼ � 1
2
r2

i �
X
n

Zn

ri � Rnj j 5.74

Accordingly, the total energy of the system is expressed as

E ¼
X
i

Φijh ið ÞjΦih i þ 1
2

X
ij

Jij � Kij

� �
5.75

where Jij is called the Coulomb–Hartree term:

Jij ¼ Φi r1; sið ÞΦi r1; sið Þ 1
r12

Φj r2; sj
� �

Φj r2; sj
� �� �

¼
ðð
Φ�

i r1; sið ÞΦi r1; sið Þ 1
r12

Φ�
j r2; sj
� �

Φj r2; sj
� �

dr1dr2
5.76

and where Kij is called the exchange term:

Kij ¼ Φi r1; sið ÞΦj r1; sj
� � 1

r12
Φj r2; sj
� �

Φi r2; sið Þ
� �

¼ δsi, sj

ðð
Φ�

i r1; sið ÞΦj r1; sj
� � 1

r12
Φ�

j r2; sj
� �

Φi r2; sið Þdr1dr2
5.77

Here δsi, sj¼1 if spins si and sj point in the same direction and δsi, sj ¼ 0 if spins si and sj
point in the opposite direction.

By utilizing the variational condition δE=δΦi ¼ 0, one obtains

h r1ð Þ þ J r1ð Þ � K r1ð Þ½ �Φi r1; sið Þ ¼ εi sið ÞΦi r1; sið Þ 5.78

where εi sið Þ is called the one-electron energy, and

J r1ð Þ ¼
ð

1
r12

X
j

Φ�
j r2; sj
� �

Φj r2; sj
� �

d r2 ¼
ð
ρ r2ð Þ
r12

dr2 5.79

with ρ the electronic charge density, whose expression is

ρ rð Þ ¼
X
j

Φ�
j r; sj
� �

Φj r; sj
� �

5.80

The third term on the left in Eq. 5.78 is given by

K r1ð ÞΦi r1; sið Þ ¼ δsi, sj

ð
1
r12

X
j

Φ�
j r2; sj
� �

Φi r2; sið ÞΦj r1; sj
� �

dr2 5.81

It should be especially noted here that to solve the Hartree–Fock equation, Eq. 5.78,
the most time consuming part is due to the non-local exchange term K r1ð Þ, because
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the one-electron wave function Φi r1; sið Þ being evaluated is also contained in the
expression on the left-hand side of Eq. 5.78 in view of Eq. 5.81.

The configurational interaction method is a generalization of the Hartree–Fock
approximation. In such a case, Y, the number of one-electron wave functions, can be
larger than the number of electrons, N, in the system. Accordingly, from the Y
one-electron wave functions Φy, y = 1, 2, . . ., Y, one can build a number M of Stater
determinants by combinatorial mathematics such that the maximum of M can be

M ¼ Y
N

� �
5.82

As a result, the wave function of an N electron system becomes a combination of the M
Stater determinants:

Ψ r;Sð Þ ¼
XM
σ¼1

CσΨSlater
σ r; sσð Þ 5.83

where the coefficients are found from the multiple linear equation

H1,1 H1,2 ::: H1,N

H2,1 H2,2 ::: H2,N

..

. ..
. ..

. ..
.

HN, 1 HN, 2 ::: HN,N

8>>><
>>>:

9>>>=
>>>;

Cj
1

Cj
2

..

.

Cj
N

8>>><
>>>:

9>>>=
>>>;

¼ Ej

Cj
1

Cj
2

..

.

Cj
N

8>>><
>>>:

9>>>=
>>>;

5.84

The matrix elements in Eq. 5.84 are determined by the integral

Hμν ¼ ΨSlater
μ r; sμ

� �jbHejΨSlater
ν r; sνð Þ

D E
5.85

5.3.4 Density functional theory (DFT) and zero temperature Kohn–Sham equations

The density functional theory assumes that the properties of a system are solely dictated
by its electronic density distribution (or, equally, its charge density), ρ r

!� 
, in real

space. This is to say that for an arbitrary ρ r
!� 

, the total energy of the system, E, is
always larger or equal to a value, E0, called the ground state energy:

E ρ½ � � E0 5.86

In terms of variational principle, Eq. 5.86 is equivalent to

δE ρ½ �
δρ

¼ 0 5.87

Kohn and Sham [8] proposed writing the total energy E ρ½ � as
E ρ½ � ¼ T ρ½ � þ Vext ρ½ � þ VH ρ½ � þ Vxc ρ#; ρ"

� �
5.88
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where T ρ½ � represents the kinetic energy of the system, Vext ρ½ � ¼
ð
Vextð r!Þρð r!Þd r

! is

the external potential acting on the system, VH ρ½ � ¼ e2

2

ðð
ρð r!Þρð r!0Þ=j r! � r

!0j

d r
!
d r
!0

�

is the Hartree energy, and Vxc ρ#; ρ"
� �

is the so-called exchange-correlation energy, with

ρ ¼ ρ# þ ρ" where ρ# and ρ"represent the charge densities of electrons with spin down
and spin up, respectively. Using

ρ r
!� 

¼
XN
i¼1

X2
s¼1

���Φi r
!
; s

� ���2 5.89

together with the variational principle of Eq. 5.87, one can obtain the one-electron
Schrödinger equation

� ℏ2

2me
r2 þ veff r

!
; ρ#; ρ"

� 
 �
Φi r

!
; s

� 
¼ εiΦi r

!
; s

� 
5.90

veff r
!
; ρ#; ρ"

� 
¼ Vext r

!� 
þ e2

ð ρ r
!0
� 

j r! � r
! 0 j d r

!0 þ δVxc ρ#; ρ"
� �
δρ

5.91

so that the total energy is obtained as

E ρ½ � ¼
XN
i¼1

εi � VH ρ½ � þ Vxc ρ½ ��
ð
δVxc ρ#; ρ"

� �
δρ

ρ r
!� 

d r
! 5.92

The major challenge within DFT is that an accurate formulation of the exchange-
correlation energy is unknown. Except for a uniform electron gas, no exact
analytical form for the exchange-correlation energy has yet been obtained. Therefore
approximations must be made for the exchange-correlation energy in calculating
a realistic system. At present, the two most popular approximations are the local
density approximation (LDA) [30] and the generalized gradient approximation
(GGA) [31, 32].

The local density approximation (LDA)) takes the exchange-correlation energy
to be the same as that for a locally uniform electron gas. In this case one can write
Vxc as

Vxc ρ#; ρ"
� � ¼

ð
εxc ρ#; ρ"
� �

ρ r
!� 

d r
! 5.93

Although this approximation is extremely simple, it works reasonably well for many
systems. The only remaining problem is to find an approximate solution to εxc ρ#; ρ"

� �
.

One of the most commonly employed parameterized expressions for εxc ρð Þ is that of
Perdew and Zunger [30].

Many modern DFT codes use the more advanced generalized gradient approximation
(GGA) [31, 32] to the exchange-correlation energy to improve accuracy for certain
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physical properties. As the LDA approximates the energy of the true density by the
energy of a local constant density, it fails in situations where the density undergoes
rapid changes, such as in molecules. An improvement to this can be made by consider-
ing the gradient of the electron density. Symbolically, this can be written as

Vxc ρ#; ρ"
� � ¼

ð
εxc ρ#; ρ";rρ#;rρ"
� �

ρ r
!� 

d r
! 5.94

The most commonly used GGA is that due to Perdew et al. [31, 32].

5.3.4.1 Solving the Kohn–Sham equations for a solid
For a solid, Eq. 5.90 is still a mathematical challenge, with an infinite number of one-
electron wave functions to be solved, and therefore cannot be solved directly in real
space. To reduce the dimension of the problem, one can choose to solve the equation at
a specific k

!
point in the reciprocal space. According to Blöch’s theorem, the wave

function for a solid can be written as the product of a wave-like part, exp i k
! � r!

� 
, and a

cell-periodic part, uj r
!; k

!� 
:

Φi r
!, s; k

!� 
¼ exp i k

! � r!
� 

ui r
!
; k
!� 

jsji 5.95

where uj r
! ; k

!� 
can be expressed as a sum of a finite number of plane waves whose

wave vectors are reciprocal lattice vectors of the crystal:

uj r
! ; k

!� 
¼
X
G

Cj k
! þ G

!� 
exp iG

! � r!
� 

5.96

so that

X
G
!0

ℏ2

2me
; jk! þ G

! j2δ
G
!
G
!0 þ veff G

! � G
!0Þ

� i
Cj k

! þ G
⇀0Þ ¼ εj k

!� 
Cj k

! þ G
⇀� �


5.97

where the band index j is used to number the eigenenergies εj k
!� 

and the eigenvectors
Cj k

! þ G
⇀� 

at a given k
!
. The number of plane waves is determined by the following

equation:

ℏ2

2me
j k!þG

! j2 � Ecut 5.98

where Ecut is the energy cutoff.
Utilizing the obtained wave functions, the charge density can be calculated using

Brillouin zone integration:

ρ r
!� 

¼ Ω

2πð Þ3
ð
BZ

X
j

Φ�
j r

!
; εj k

!� � 
Φj r

!
; εj k

!� � 
Θ εj k

!� 
� εF

� 
dk
!

5.99

where
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Θ εj k
!� 

� εF
� 

¼
1, if εj k

!� 
� εF ;

0, if εj k
!� 

> εF

8<
:

9=
;,

ð
Ω

ρ r
!� 

d r
!¼ N 5.100

where the parameter εF is needed to make the integration over the charge density
within the primitive unit cell equal to the number of electrons, N, in the primitive unit
cell. Numerically, the integration can be approximated by summation over a discrete
k-mesh as

ρ r
!� 

¼
XNBZ

i¼1

X
j

Φ�
j r

!
; εj k

!
i

� � 
Φj r

!
; εj k

!
i

� � 
Θ εj k

!
i

� 
� εF

� 
5.101

where NBZ represents the number of k
!
points in the first Brillouin zone in the k-mesh.

When a solid possesses symmetry, the summation in the above equation can be further
reduced to a summation over the irreducible Brillouin zone (IBZ)):

ρ r
!� 

¼
XNIBZ

i¼1

w k
!
i

� X
j

Φ�
j r

!
; εj k

!
i

� � 
Φj r

!
; εj k

!
i

� � 
Θ εj k

!
i

� 
� εF

� 
5.102

where w k
!
i

� 
is a weight factor that represents the number of points that are equivalent

to k
!

i by space group symmetry.

5.4 Lattice dynamics

5.4.1 Quantum theory for motion of atomic nuclei

For convenience of discussion, the following notation convention is used: α and β label
the Cartesian axes x, y, and z, j and k label atoms in the primitive unit cell, mj is the
atomic mass of the jth atom in the primitive unit cell, r( j) is the position of the jth atom
in the primitive unit cell, P and Q are the indices of the primitive unit cell in the system,
R(P) is the position of the Pth primitive unit cell in the system, and V is the average
volume of the primitive unit cell.

The quantum theory for the motion of atomic nuclei replicates closely the quantum
theory for the motion of electrons. That is, the wave function Φ Rð Þis solved for the
motions of the atomic nuclei for a Schrödinger equation whose potential is the total
electronic energy E Rð Þ derived from Eq. 5.71. The symbol E Rð Þ is replaced by
E Rþ u; σð Þ to represent the static total electronic energy, with R representing the static
equilibrium positions of the atomic nuclei, u the displacements of atomic nuclei away
from their static equilibrium positions, and σ the additional degrees of freedom such as
electronic states. The Schrödinger equation for the motion of atomic nuclei is then

HNΨ Rþ uð Þ ¼ εg N;V ; σð ÞΨ Rþ uð Þ 5.103

where

HN ¼ KN þ E Rþ u; σð Þ 5.104

with KN representing the kinetic energy operator:
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KN ¼ � 1
2

XNc

P

XNa

j

X3
α

ℏ2

mj

∂2

∂u2α j;Pð Þ 5.105

where Nc is the number of primitive unit cells in the system, Na is the number of atoms
in the primitive unit cell, ℏ is the Planck constant, uα j;Pð Þ represents the αth Cartesian
component of u for the atom at the jth lattice site in the Pth primitive unit cell in the
system.

The harmonic approximation [23, 33] truncates the term E Rþ u; σð Þ to the second
order in its Taylor series:

E Rþ u; σð Þ ¼ 1
2

XNc

P,Q

XNa

j, k

X3
α, β

Φjk
αβ P;Qð Þuα j;Pð Þuβ k;Qð Þ 5.106

where Φjk
αβ is the real-space interatomic force constant. With the approximation of

Eq. 5.106, it can be demonstrated that finding the solution of Eq. 5.103 is equivalent
to finding the vibrational frequencies of a classical system with N=NcNa particles for
small mechanical oscillations.

Let us rewrite Eq. 5.106 as

E Rþ u; σð Þ ¼ 1
2

XNc

P,Q

XNa

j, k

X3
α, β

Cjk
αβ P;Qð Þwα j;Pð Þwβ k;Qð Þ 5.107

where

Cjk
αβ P;Qð Þ ¼ Φjk

αβ P;Qð Þffiffiffiffiffiffiffiffiffiffi
mjmk

p 5.108

wα j;Pð Þ ¼ ffiffiffiffiffi
mj

p
uα j;Pð Þ 5.109

Accordingly, the kinetic energy operator in Eq. 5.105 becomes

KN ¼ � 1
2

XNc

P

XNa

j

X3
α

ℏ2 ∂2

∂w2
α j;Pð Þ 5.110

5.4.2 Normal coordinates, eigenenergies, and phonons

One way to simplify the solution to the Schrödinger equation for the motion of atomic
nuclei is to follow the study of the vibrations of atoms in crystal lattice dynamics. The
essential step in lattice dynamics is to transform the problem of the correlated motions of
3N particles into a problem of 3N independent harmonics. For this purpose, one can
introduce a set of new coordinates ζ i ( i = 1, 2, . . ., 3N), known as normal coordinates, by
the transformation

ζ i ¼
XNc

P

XNa

j

X3
α

eiα j;Pð Þwα j;Pð Þ 5.111
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where eiα j;Pð Þ is the transformation coefficient, which can be determined by solving 3N
simultaneous equations

ω2eα j;Pð Þ ¼
XNc

Q

XNa

k

X3
β

Cjk
αβ P;Qð Þeβ k;Qð Þ 5.112

Here ω2 is to be determined such that one can find 3N eα j;Pð Þ which are not all zero.
The equations are linear and homogeneous. Following the basic theorem in linear
algebra that, to find the non-zero solutions of the equations, the determinant formed
by Cjk

αβ P;Qð Þ must equal zero, we obtain

Cjk
αβ P;Qð Þ � δαβδjkδPQω

2
��� ��� ¼ 0 5.113

where δ is the Kronecker delta symbol. Since Eq. 5.113 is an equation with 3N degrees,
one can always find 3N values of ω2

i (i = 1, . . ., 3N). Each of the ω2
i yields a set of

eiα j;Pð Þ which can be chosen such that

XNc

Q

XNa

k

X3
β

eiβ k;Qð Þelβ k;Qð Þ ¼ δil 5.114

where δil represents the Kronecker delta symbol and

X3N
i¼1

eiα j;Pð Þeiβ k;Qð Þ ¼ δαβδjkδPQ 5.115

Then with the normal coordinates defined in Eq. 5.111 and utilizing Eq. 5.114, wα j;Pð Þ
defined in Eq. 5.109 is obtained as

wα j;Pð Þ ¼
X3N
i¼1

eiα j;Pð Þζ i 5.116

With this equation, Eq. 5.107 is simplified by the following process:

E Rþu;V ;σð Þ ¼ 1
2

XNc

P,Q

XNa

j,k

X3
α,β

Cjk
αβ P;Qð Þwα j;Pð Þwβ k;Qð Þ

¼ 1
2

X3N
i¼1

ζ i
XNc

P

XNa

j

X3
α

eiα j;Pð Þ
X3N
i0¼1

ζ i0
XNc

Q

XNa

k

X3
β

Cjk
αβ P;Qð Þei0β k;Qð Þ

¼ 1
2

X3N
i¼1

ζ i
XNc

P

XNa

j

X3
α

eiα j;Pð Þ
X3N
i0¼1

ζ i0ω
2
i0e

i0
α j;Pð Þ

¼ 1
2

X3N
i¼1

X3N
i0¼1

ζ iζ i0ω
2
i0
XNc

P

XNa

j

X3
α

eiα j;Pð Þei0α j;Pð Þ

¼ 1
2

X3N
i¼1

X3N
i0¼1

ζ iζ i0ω
2
i0δii0

¼ 1
2

X3N
i¼1

ζ 2i ω
2
i

5.117
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noting that in the above process Eq. 5.112 and Eq. 5.114 have been utilized.
Furthermore, using Eq. 5.116, the kinetic energy operator in Eq. 5.110 can be

transformed as follows:

KN ¼ � 1
2

XNc

P

XNa

j

X3
α

ℏ2 ∂2

∂w2
α j;Pð Þ

¼ � 1
2

XNc

P

XNa

j

X3
α

ℏ2 ∂
∂wα j;Pð Þ

X3N
i¼1

∂ζ i
∂wα j;Pð Þ

∂
∂ζ i

¼ � 1
2

XNc

P

XNa

j

X3
α

ℏ2 ∂
∂wα j;Pð Þ

X3N
i¼1

∂
∂ζ i

eiα j;Pð Þ

¼ � 1
2

XNc

P

XNa

j

X3
α

ℏ2
X3N
i0¼1

∂
∂ζ i0

ei
0
α j;Pð Þ

X3N
i¼1

∂
∂ζ i

eiα j;Pð Þ

¼ � 1
2

X3N
i0¼1

ℏ2 ∂
∂ζ i0

X3N
i¼1

∂
∂ζ i

XNc

P

XNa

j

X3
α

ei
0
α j;Pð Þeiα j;Pð Þ

¼ � 1
2

X3N
i0¼1

ℏ2 ∂
∂ζ i0

X3N
i¼1

∂
∂ζ i

δii0

¼ � 1
2

X3N
i¼1

ℏ2 ∂2

∂ζ 2i

5.118

,noting that in the above process Eq. 5.112 and Eq. 5.114 are utilized again.
As a result, under the harmonic approximation, the Hamiltonian in Eq. 5.104 is

simplified as

HN ¼
X3N
i¼1

1
2

∂2

∂ζ 2i
þ ω2

i ζ
2
i

 !
5.119

which represents a quantum system containing 3N independent harmonics. Correspond-
ing to each of the ωi, quantum theory tells us that the eigenenergy of a harmonic has the
form

εi N;V ; σð Þ ¼ gi þ 1=2ð Þℏωi V ; σð Þ 5.120

with gi = 0, 1, . . ., ∞. Such a harmonic behaves like a boson particle with energy
ℏωi V ; σð Þ and forms the concept of the phonon.

Furthermore, a state of the whole system is specified by the set of 3N independent
quantum numbers g = (g1, g1, . . ., g3N,). Finally, the energy of a state of the system
formed by 3N independent harmonics, εg N;V ; σð Þ, introduced in Eq. 5.16, is obtained
from the summation of the energies of the 3N independent harmonics as

εg N;V ; σð Þ ¼
X3N
i¼1

εi N;V ; σð Þ 5.121

This concludes the rationale by which Eq. 5.32 is derived.
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5.4.3 Dynamical matrix and phonon mode

Because of the periodicity of a crystal, one can make an initial guess that the solutions
of Eq. 5.103 are elastic plane waves based on collective atomic vibrations [23, 33], from
the harmonic approximation of Eq. 5.107,

uα t;Rð Þ ¼ uα j;Pð Þexp �iωtð Þ ¼ uα jð Þexp iqt: R Pð Þ þ r jð Þ½ � � iωtf g 5.122

where ω represents the frequency of the plane wave, and qt is a wave vector designating
the wave number and direction along which the plane wave propagates. It should be
pointed out that uα jð Þ in Eq. 5.122 is now independent of the index P. That is, except for
a phase factor, atoms that are equivalent by translational symmetry among different
primitive unit cells will experience the same type of atomic motion, independently of
the positions of these primitive unit cells in the system. This is equivalent to applying
the periodic condition, so that wα j;Pð Þ in Eq. 5.107 obeys

wα j;Pð Þ ¼ exp iqt � R Pð Þ þ r jð Þ½ �f gwα jð Þ 5.123

Note that wα jð Þ is now independent of the index P.
Furthermore, one wants to limit the qt in Eq. 5.125 and Eq. 5.126 to those known as

exact wave vectors, which represent a special set of points in the reciprocal space that
satisfy the condition

1
Nc

XNc

P

exp iqt� R Pð Þ � R 0ð Þ½ �f g ¼ δ qtð Þ 5.124

where δ qtð Þ is the Kronecker delta function. In fact, the number of qt equals to the
number of primitive unit cells contained in the system.

Utilizing the translational invariance by which Cjk
αβ in Eq. 5.108 (or Φjk

αβ P;Qð Þ in
Eq. 5.106) depends on P and Q only through the difference R Pð Þ � R Qð Þ, the following
Fourier transformation can be employed to simplify Eq. 5.113:

Djk
αβ qtð Þ ¼ 1

Nc

XNc

P,Q
Cjk
αβ P;Qð Þexp iqt� R Pð Þ þ r jð Þ � R Qð Þ � r kð Þ½ �f g 5.125

and one obtains

Djk
αβ qtð Þ � δαβδjkω

2 qt;V ; σð Þ
��� ��� ¼ 0 5.126

The counterpart of Eq. 5.126 with respect to Eq. 5.112 is

ω2 qt;V ; σð Þeα j; qtð Þ ¼
XNa

k

X3
β

Djk
αβ qtð Þeβ k; qtð Þ 5.127

Equation 5.126 is now an equation with 3Na degrees of freedom. At each qt, one can
always find 3Na eigenvalues of ω2

i qt;V ; σð Þ (i = 1, . . ., 3Na). The 3Na vibrations are
often known as phonon modes, noting again that Na is the number of atoms in the
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primitive unit cell. Each of the ω2
i qt;V ; σð Þ yields a set of eiα j; qtð Þ which can be chosen

such that

XNa

k

X3
β

eiβ k; qtð Þ
� �

ei
0
β k; qtð Þ ¼ δii0 5.128

where eiβ k; qtð Þ
� �

represents the complex conjugate of eiβ k; qtð Þ, and
X
i

eiα j; qtð Þ� ��
eiβ k; qtð Þ ¼ δαβδjk 5.129

Finally, for a solid, the summation over Q in Eq. 5.125 can be factorized out, resulting
in, after transforming Cjk

αβ P;Qð Þ back to Φjk
αβ P;Qð Þ together with using Eq. 5.108,

Djk
αβ qtð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi

mjmk
p

XNc

P

Φjk
αβ P; 0ð Þexp iqt� R Pð Þ þ r jð Þ � R 0ð Þ � r kð Þ½ �f g 5.130

Note that, because of translational invariance, Φjk
αβ depends on P and Q only through the

difference R Pð Þ � R Qð Þ.
In the case where a system is built from a parallelepiped multiplication of the primitive

unit cell with lattice vectors aα (α = x, y, and z) in the form Nx
cax � Ny

cay � Nz
caz, qt in

Eq. 5.126 and Eq. 5.130 takes the form

qαt ¼
mα

Nα
c

bα 5.131

where mα= 0, 1, . . ., Nα
c � 1, and bα is the primitive lattice vector in the reciprocal

space, given by

bx ¼ 2π=Vað Þ ay � az
� �

by ¼ 2π=Vað Þ az � axð Þ
bz ¼ 2π=Vað Þ ax � ay

� � 5.132

with Va, representing the volume of the primitive unit cell, given as

Va ¼ ax� ay � az
� �

5.133

Combining Eq. 5.132 and Eq. 5.133, it is easy to demonstrate that

bα � aβ ¼ 2πδαβ 5.134

where δαβ is the Kronecker delta symbol.
It can be shown that the q points defined in Eq. 5.131 represent the exact wave vector

points. First, R Pð Þ � R 0ð Þ can be written as

R Pð Þ � R 0ð Þ ¼
X
α

pαaα 5.135

where pα= 0, 1, . . ., Nα
c � 1. Then, the left-hand side of Eq. 5.124 for the definition of an

exact wave vector becomes
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1
Nc

X
P

exp iqt� R Pð Þ � R 0ð Þ½ �f g

¼ 1
Nx

cN
y
cN

z
c

Y
α

XNα
c�1

pα¼0

exp 2πipα
mα

Nα
c

� �

¼ 1
Nx

cN
y
cN

z
c

Y
α

1� exp 2πimαð Þ
1� exp 2πi

mα

Nα
c

� � 5.136

Knowing the fact that

1� exp 2πimαð Þ
1� exp 2πi

mα

Nα
c

� � ¼ 0, if mα 6¼ 0
Nα

c , if mα ¼ 0

�
5.137

Hence, the q points defined in Eq. 5.131 are the exact wave vector points.

5.4.4 Linear-response method versus supercell method

The problem of lattice vibrations in a solid is now transformed into computing the
dynamical matrix in Eq. 5.126. The first-principles solution of the problem is currently
divided into two categories: the linear-response method [34] and the supercell method
[35]. In the linear-response method, utilizing the electronic linear response of the
undistorted crystals [36], evaluation of the dynamical matrix can be performed through
the density functional perturbation theory [34] without the approximation of the cutoff
in neighboring interactions.

Compared with the linear-response method, the supercell method is conceptually
simple and is easy to implement computationally. The supercell method adopts the
frozen phonon approximation, in which the changes in total energy or forces are
calculated in the real space by displacing the atoms from their equilibrium positions.
The advantage of the supercell method is that the phonon frequencies at the exact wave
vectors, which are commensurable with the supercell, are calculated exactly with no
further approximation [37]. The shortcoming of the supercell method is that it is often
limited by the size of the supercell that can be handled with current computing
resources.

In the supercell approach, inaccuracies are thought to arise from the truncation of the
force constants [34, 35]. This is only partially true. In the supercell method, the
calculated φjkαβ represents the cumulative contributions of the atom indexed by k and P
in the supercell and all its images resulting from translational transformation of the
supercell in the whole space. Let Lα represent the lattice vectors of the supercell, then

φjkαβ P; 0ð Þ ¼
X∞

nx¼�∞, ny¼�∞, nz¼�∞

Φjk
αβ R Pð Þ þ nxLx þ nyLy þ nzLz; 0
� �

5.138

For the exact wave vectors in Eq. 5.131, one has

1335.4 Lattice dynamics



qαt � Lα ¼ 2π kl 5.139

where kl is an integer. Replacing Φ
jk
αβ P; 0ð Þ from Eq. 5.130 with φjkαβ P; 0ð Þ in Eq. 5.138,

one obtains

Djk
αβ qtð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi

mjmk
p

XNc

P

φjkαβ P; 0ð Þexp iqt� R Pð Þ þ r jð Þ � R 0ð Þ � r kð Þ½ �f g

¼ 1ffiffiffiffiffiffiffiffiffiffi
mjmk

p
X∞
P¼�∞

Φjk
αβ P; 0ð Þexp iqt� R Pð Þ þ r jð Þ � R 0ð Þ � r kð Þ½ �f g 5.140

Therefore, the phonon frequencies calculated at the exact wave vectors by the cumula-
tive force constants approach are exact, and the supercell size will not lead to errors in
the calculated phonon frequencies [37].

Generally speaking, if a supercell contains Nc primitive unit cells, one can always
find Nc corresponding exact wave vectors in the q space. In most linear response
calculations, the common choice of a 4�4�4 q-mesh is exactly equivalent to a
4�4�4 supercell in real space. Furthermore, since the supercell approach does not
impose any approximation on the electronic response to the distortion of the lattice
geometry, the effects of electron–phonon interactions can be accounted for by the
supercell method.

In the supercell method, due to the imposition of periodic conditions, the calculated
force constant in real space cannot account for the effects of the vibration-induced
electric field for polar materials. It has been demonstrated that such an effect adds an
additional term to the dynamical matrix in reciprocal space in the form

djkαβ nað Þ ¼ 4πe2

Va

q �Z� jð Þ½ �α q �Z� kð Þ½ �β
q � ε∞ � q

����
q!0

5.141

where Z*(j) represents the Born effective charge tensor of the jth atom in the primitive
unit cell and ε∞ the high frequency static dielectric tensor, i.e. the contribution to the
dielectric permittivity tensor from electronic polarization. As a result, for polar mater-
ials, the matrix element at wave vector q ! 0 of the dynamical matrix in Eq. 5.130,
derived by means of Eq. 5.138, should have the form

Djk
αβ 0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi

mjmk
p djkαβ nað Þ þ

XNc

P

φ jk
αβ P; 0ð Þ

" #
5.142

It can be demonstrated [38] that this is equivalent to replacing the real-space force
constant Φjk

αβ P; 0ð Þ in Eq. 5.106 as follows:

Φjk
αβ P; 0ð Þ ! φ jk

αβ P; 0ð Þ þ djkαβ nað Þ
Nc

5.143

At present, implementations of the first-principles method for calculating phonon
frequencies are mostly limited by the supercell size when using Eq. 5.113 or the number
of exact wave vector points when using Eq. 5.126. A 4� 4� 4 supercell built on
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the primitive unit cell or 4� 4� 4 exact wave vector mesh is usually the common limit.
If only the phonon frequencies derived from Eq. 5.113 or Eq. 5.126 are used, g ω;V ; σð Þ
can be rather unsmooth, which will result in inaccurate thermodynamic properties when
it is used with Eq. 5.34. The mixed-space approach [38] can circumvent this difficulty
by use of the Fourier interpolation to calculate the dynamical matrix for an arbitrary
wave vector q as

Djk
αβ qð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi

mjmk
p

XNc

P

φ jk
αβ P; 0ð Þ þ djkαβ nað Þ

Nc

" #
exp iq � R Pð Þ þ r jð Þ � R 0ð Þ � r kð Þ½ �f g

5.144

with the help of Eq. 5.106, Eq. 5.138, and Eq. 5.141 for polar materials. Note that the
term involving djkαβ nað Þ is for polar materials only.

The quantity g ω;V ; σð Þ can be calculated as

g ω;V ; σð Þ ¼ 1
Nq

X
q

X3Na

i¼1

δ ω� ωi q;V ; σð Þ
�

5.145

where the function δ xð Þ is usually taken as a Gaussian:

δ xð Þ ¼ 1

Δ
ffiffiffiffiffi
2π

p exp � x2

2Δ2

� �
5.146

where Δ is an adjustable damping (broadening) parameter whose role is to smear out the
g ω;V ; σð Þ curve; Nq in Eq. 5.145 is the number of q points used. Empirically, a q mesh
of 60� 60� 60 is accurate enough for most purposes and can be done efficiently with
the YPHON code [15]; this is discussed in Appendix A.

5.5 First-principles approaches to disordered alloys

The first-principles calculations discussed so far strictly rely on the exact atomic
positions in the unit cells. A brute-force approach for a random solution phase would
be to directly construct a large supercell and randomly decorate the host lattice with
different types of atoms. Such an approach would necessarily require very large super-
cells to adequately mimic the statistics of the random solutions. Since first-principles
methods are computationally constrained by the number of atoms that one can treat, this
brute-force approach is computationally prohibitive. Take a binary A1�xBx substitu-
tional alloy as illustrated in Figure 5.12 as an example. For a system containing N
atoms, there is a possible number 2N of configurations, which is an astronomically large
number when N is large. It is an impossible task to explore such a huge configuration
space with the available computing resources.

As a result, approximations must be made to the first-principles calculations. At
present, there are three main approaches to calculating disordered solution phases: the
coherent potential approximation (CPA)) [41], the cluster expansion) (CE) [42], and the
special quasi-random structures (SQS)) [43] approach.
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The coherent potential approximation [41] treats random alloys by considering the
average occupations of lattice sites in solving the Kohn–Sham equation. Since a mean-
field approach is employed, the dependence of properties on the local environments
surrounding an atom is not treated explicitly in CPA. In a random solution, there exists a
distribution of local environments (e.g., in bcc alloys, A or B surrounded by the various
AXB8�X coordination shells with X between 0 and 8), resulting in local environmentally
dependent quantities such as charge transfer and local displacements of atoms from their
ideal lattice positions. Even in random A1�xBx solid solutions, the average A–A, A–B,
and B–B bond lengths are generally different. These effects are considered in the CE
and SQS approaches, on which we focus in the next two subsections. In all the
following subsections, unless specifically noted, the formulism for the binary system
is discussed for the sake of simplicity.

5.5.1 Cluster expansions

Many properties of a solution phase, such as the energy, are dependent on the
configuration – the arrangement of atoms on the lattice sites. In a cluster expansion
[35, 42], the configuration dependence of properties is formulated efficiently by a
“lattice algebra” which maps a substitutional configuration into an Ising-like lattice

Lattice model

–1 –1+1 +1

–1 +1+1 –1

–1 +1+1 +1

+1 +1+1 –1

Alloy configuration

(a)

(b)

A AB B

A BB A

A BB B

B BB A

Figure 5.12 Mapping of a substitutional A1�xBx alloy into an Ising-like lattice model [39, 40].
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model. Taking a binary A1�xBx solution phase for instance, A atoms are represented by
the “down” spins (Si = �1) and B atoms are represented by the “up” spins (Si = +1) as
illustrated in Figure 5.12. Using the cluster expansion technique, for a system contain-
ing N atoms, the total energy of any alloy configuration σ = (S1, S2, . . ., SN) can be
conveniently evaluated using the following Ising-like Hamiltonian:

E σð Þ ¼ J0 þ
X
i

JiSi σð Þ þ
X
i, j

JijSij σð Þ þ
X
i, j, k

JijkSijk σð Þ þ
X
i, j, k, l

JijklSijkl σð Þ þ . . .

5.147

where the J’s are the effective cluster interactions (ECIs)); Si σð Þ is a number represent-
ing the atomic occupation at the lattice i under the configuration σ, which takes the
values�1 and 1 for binary and�1, 0, and 1 for ternary systems, etc. In Eq. 5.147, the 2-
site, 3-site, and 4-site correlations are written as follows,

Sij σð Þ ¼ Si σð ÞSj σð Þ 5.148

Sijk σð Þ ¼ Si σð ÞSj σð ÞSk σð Þ 5.149

Sijkl σð Þ ¼ Si σð ÞSj σð ÞSk σð ÞSl σð Þ 5.150

The expansion in Eq. 5.147 is exact as long as all the n-site interactions are included.
For a binary system, this can be observed by using the combination law thatPN

n¼0

� n
N

�
¼ 2N where

� n
N

�¼ N!=ðn! N � nð Þ!Þ is the number of n-site interactions.
However, in actual calculations, one never does an expansion to order N (containing
2N terms for a binary system) since this would be too long to be practical. In fact, since
the interactions between widely separated atoms are expected to be weaker than the
interactions between nearer atoms for most of the important properties, the expansion in
Eq. 5.147 is usually truncated at a certain distance to include only a few short-range pair
(2-site), triple (3-site), and at the most, quadruple (4-site) interactions.

Once a configuration is assigned, the correlations S’s are just geometrical factors.
The common practice in cluster expansion is as follows: (i) perform first-principles
calculations of a selected set of configurations (around 20–100); (ii) evaluate the
values of the interactions J’s using Eq. 5.147 with the energies from (i); (iii) use the
fitted J’s to predict the energy for a desired set of configurations; and (iv) find the
ensemble average at a given temperature for the energetics of the random alloys
through Monte Carlo simulations.

5.5.2 Special quasi-random structures

Special quasi-random structures (SQSs) [43, 44] are specially designed small unit cell
periodic structures with minimal number of atoms per unit cell, which can be used to
closely mimic the most relevant, near-neighbor pair and multi-site correlation functions
of random substitutional alloys. The correlation functions are classified by their n-site
component “figures” f = (n,m), where the index n is called the vortex for pair, triple, and
quadruple correlations (n = 2, 3, and 4); m measures the correlation distance.
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In the SQS approach, a distribution of distinct local environments is maintained and
their average corresponds to a random alloy. Thus, a single DFT calculation of an SQS
can give many important alloy properties (e.g. equilibrium bond lengths, charge trans-
fer, formation enthalpies, etc.) that depend on the existence of those distinct local
environments. The SQS approach has been used extensively to study formation enthal-
pies, bond length distributions, density of states, band gaps, and optical properties in
semiconductor alloys. It is to be noted that the cluster expansion (CE) approach can treat
short-range ordering efficiently, while it is not clear how the SQS approach can be used
to represent short-range ordering.

The key quantities in the SQS approach are the n-site correlation functions.
Specifically, the 2-site correlation function corresponding to the 2-site component
figures (2,m) is

Π2,m σð Þ ¼ 1
N2,m

XN
i6¼j,Rij¼m

Sij σð Þ 5.151

where N2,m represents the total number of possible pairs with correlation distance
(neighboring distance) Rij equal to m. The 3-site correlation function corresponding to
the 3-site component figures (3,m) is

Π3,m σð Þ ¼ 1
N3,m

XN
i6¼j 6¼k,Rijk¼m

Sijk σð Þ 5.152

where N3,m represents the total number of all possible 3-site figures with the correlation
distance (size and shape) Rijk equal to m. The 4-site correlation function corresponding
to the 4-site component figures (4,m) is

Π4,m σð Þ ¼ 1
N4,m

XN
i 6¼j6¼k 6¼l,Rijkl¼m

Sijkl σð Þ 5.153

where N4,m represents the total number of all possible 4-site figures with correlation
distance (size and shape) Rijkl equal to m.

With a given supercell size N, the essential task of the SQS approach is to search
through all configurations that approach as closely as possible to the correlation
functions of a perfectly random (R) structure, and for the binary system their number is

Πn,m Rð Þ ¼ 2x� 1ð Þn 5.154

Describing random alloys by small unit cell periodical structures surely introduces
erroneous correlations beyond a certain distance. However, since interactions between
nearest neighbors are generally more important than interactions between more distant
neighbors, SQSs can be constructed in such a way that they exactly reproduce the
correlation functions of a random alloy between the first few nearest neighbors,
deferring errors due to periodicity to more distant neighbors. The practical procedure
could be to find the structures that match the 2-site correlation functions up to a given
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neighboring distance, and then to add the conditions matching the high order correlation
functions up to a certain correlation distance.

Appendix B is a collection of SQSs with a variety of compositions for binary fcc, bcc,
hcp, and L12 structures, for ternary fcc, bcc, and B2 structures, and for perovskite in the
cubic ABO3 structure. The format used is that of VASP.

5.5.3 Phonon calculations for SQSs

A somewhat more theoretically demanding application of the SQS approach is the
calculation of the phonon dispersions of a random alloy. Considering the fact that the
size of an SQS cell in general is around 8–32, phonon calculations based on SQSs are
achievable using either the SQS cell or its supercell, for example, 2� 2� 2 of the SQS
cell. However, one notes that while the phonon density of states can be calculated
straightforwardly, calculations of the phonon dispersions run into a problem. That is,
since the phonon calculation treats the SQS as a primitive unit cell made of more atoms
than the primitive unit cell of the ideal lattice, the number of phonon dispersions derived
from a regular phonon calculation is much greater than that measured for a random
alloy. For example, if one uses an SQS containing 16 atoms for an fcc solid solution, the
regular phonon calculations would produce 3� 16 ¼ 48 phonon dispersions in com-
parison to just three phonon dispersions from measurement. By averaging over the force
constants of an SQS, the dynamical matrix can be calculated with respect to the wave
vector space of the ideal lattice of a random alloy.

One consideration that must be taken into account is that the phonon dispersions
measured from inelastic neutron scattering experiments only represent the averaged
vibrations of the ideal lattice. For random alloys or phases with minor geometry
distortion, it was suggested that one should calculate the dynamical matrix using
Eq. 5.155 below instead of Eq. 5.125, obtaining (see [45])

Djk
αβ qð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

mjmk
p 1

Nc

XNc

P,Q
φ jk
αβ P;Qð Þ þ djkαβ nað Þ

Nc

" #
exp iq� R Pð Þ þ r jð Þ � R Qð Þ � r kð Þ½ �f g

5.155

where in the case of a random alloy, mj represents the averaged atomic mass at the jth
lattice site. The purpose of the summation over Q is to average the effects of local
distortions, making it possible to compare the calculated dispersions with the measured
dispersions representing the averaged vibrations of the ideal lattice. As a result, the
dimension of the SQS supercell dynamical matrix is thus reduced to match that of the
primitive unit cell of the ideal lattice for the calculation of the phonon frequencies. The
calculational procedure is as follows.

i. Make an SQS supercell based on the primitive unit cell of the ideal lattice, in
order to mimic the correlation functions of the random solution;

ii. relax the SQS supercell with respect to the internal atomic positions while
keeping the cell shape and volume fixed;
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iii. make the phonon supercell by further enlarging the SQS supercell and calculate
the force constants; and

iv. calculate the dynamical matrix Djk
αβ qð Þ, with the wave vector, q, being defined

from the primitive unit cell of the ideal lattice, through a Fourier transformation.

The calculated phonon dispersions along the directions (00ξ), (0ξξ), and (ξξξ) are
compared with the inelastic neutron scattering data in Figure 5.13 for Cu3Au.

Exercises

The exercises are solely for the purpose of practice in using the YPHON package for
the calculation of phonon properties.

By default, it is assumed that you have access to VASP.5. Even if you do not have
VASP, you can still use the YPHON package since the exercise subfolders contain
the force constants already calculated for all demo materials and the dielectric data
for the polar materials. If you do not have VASP, you can work on Exercises 1.7,
1.8, 2.8, and 3 to 6.

To start, make an exercise folder named “mYdemo.”
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Figure 5.13 Phonon dispersions for random Cu3 Au. The solid lines represent the present
calculation and the open circles represent the inelastic neutron scattering data with details in
reference [45]. The dashed lines represent the results calculated using the ab initio transferable
force constant model by Dutta et al. [46].
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(cont.)

Exercise 1. Magnesium
Make a folder “Mg” under the folder “Ydemo” and go to the folder Mg. You need to
prepare the following files before submitting your VASP.5 job. (Note: if you do not
have VASP5, you can skip to Exercise 1.7.)

1.1 POSCAR file
First, prepare the VASP input file POSCAR using the primitive unit cell, name the
file “POSCAR.prm” and copy/paste the following lines into it
Mg HCP
1.00
1.594090000000 -2.761040000000 0.000000000000
-3.188170000000 0.000000000000 0.000000000000
0.000000000000 0.000000000000 -5.186410000000
Mg
2

D
0 0 0
0.66666667 0.33333333 0.5

Then make the supercell using “Ycell –ss 2 <POSCAR.prm >POSCAR” which
builds the supercell POSCAR file containing these lines:

Supercell
1.00
3.1881800000 -5.5220800000 0.0000000000
-6.3763400000 0.0000000000 0.0000000000
0.0000000000 0.0000000000 -10.3728200000

Mg
16
D
0.0000000000 0.0000000000 0.0000000000 Mg
0.0000000000 0.0000000000 0.5000000000 Mg
0.0000000000 0.5000000000 0.0000000000 Mg
0.0000000000 0.5000000000 0.5000000000 Mg
0.5000000000 0.0000000000 0.0000000000 Mg
0.5000000000 0.0000000000 0.5000000000 Mg
0.5000000000 0.5000000000 0.0000000000 Mg
0.5000000000 0.5000000000 0.5000000000 Mg
0.3333333350 0.1666666650 0.2500000000 Mg
0.3333333350 0.1666666650 0.7500000000 Mg
0.3333333350 0.6666666650 0.2500000000 Mg
0.3333333350 0.6666666650 0.7500000000 Mg
0.8333333350 0.1666666650 0.2500000000 Mg
0.8333333350 0.1666666650 0.7500000000 Mg
0.8333333350 0.6666666650 0.2500000000 Mg
0.8333333350 0.6666666650 0.7500000000 Mg
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(cont.)

1.2 INCAR file
Make the VASP input file INCAR containing the following lines:

EDIFF=1.d-6
PREC = A
ISMEAR = 1
SIGMA = 0.2
IBRION = 6
ISIF = 0
NSW=1

1.3 KPOINTS file
Make the VASP input file KPOINTS containing the following lines:
Magnesium
0
G
3 3 3
0 0 0

1.4 POTCAR file
Make the VASP input potential file POTCAR by the Linux command (depending on
the VASP pseudopotential file location in your system)

zcat /usr/global/msc/vasp/potpaw_PBE/Mg/POTCAR.Z >POTCAR

1.5 Run VASP.5
Run VASP interactively (the run can be finished in less than one minute) or make a
PBS batch job script containing the following lines and then submit your job
(depending on your system environment for batch jobs)

#PBS -q debug
#PBS -l nodes=1:ppn=8
#PBS -S /bin/tcsh
#PBS -j oe
#PBS -l walltime=00:30:00
module load vasp/5.3.5
setenv VSPCMD "mpirun -np 8 vasp"
cd $PBS_O_WORKDIR
$VSPCMD

1.6 Collect the force constants for input to YPHON
After your job is done, first delete the files not used using “rm CHGDYNMAT IBZKPT
WAVECAR CHGCAR DOSCAR EIGENVAL REPORT XDATCAR PCDAT” and
then type the following Linux command sequentially, namely to get the force constant by

vasp_fij
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You will see a file named “superfij.out” which contains lines like
1.5940900000 -2.7610400000 0.0000000000
-3.1881700000 0.0000000000 0.0000000000
0.0000000000 0.0000000000 -5.1864100000
3.188180 -5.522080 0.000000
-6.376340 0.000000 0.000000
0.000000 0.000000 -10.372820

16 8
Direct
0.00000000 0.00000000 0.00000000 Mg
0.00000000 0.00000000 0.50000000 Mg
0.00000000 0.50000000 0.00000000 Mg
0.00000000 0.50000000 0.50000000 Mg
0.50000000 0.00000000 0.00000000 Mg
0.50000000 0.00000000 0.50000000 Mg
0.50000000 0.50000000 0.00000000 Mg
0.50000000 0.50000000 0.50000000 Mg
0.33333333 0.16666667 0.25000000 Mg
0.33333333 0.16666667 0.75000000 Mg
0.33333333 0.66666667 0.25000000 Mg
0.33333333 0.66666667 0.75000000 Mg
0.83333333 0.16666667 0.25000000 Mg
0.83333333 0.16666667 0.75000000 Mg
0.83333333 0.66666667 0.25000000 Mg
0.83333333 0.66666667 0.75000000 Mg
-2.885402 0.000005 0.000000 0.056928 0.000000 0.000000

1.425033 0.000000 0.000000 -0.042757 0.000000 0.000000
0.356201 -0.617095 0.000000 0.016087 0.033974 0.000000
0.356196 0.617091 0.000000 0.016087 -0.033974 0.000000
-0.027400 0.000000 -0.000001 -0.027400 0.000000 0.000001
0.003752 0.000000 0.000000 0.003752 0.000000 0.000000
0.187231 -0.123917 0.312727 0.187231 -0.123917 -0.312727
0.187230 0.123917 -0.312726 0.187230 0.123917 0.312726
. . .

1.7 To calculate the PDOS
Note: if one does not have VASP.5, one can copy the superfij.out file from the
YPHON package under the folder “Ydemo/Mg.”

To calculate the PDOS, type (if your system has gnuplot installed, you will see the
PDOS plotted)
Yphon <superfij.out –plot

1.8 Calculate the phonon dispersions
Prepare the phonon dispersion instruction file containing the lines (copy and paste
works fast)
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(cont.)

0.0 0.0 0.0 0.5 0.5 0.0 Gamma K 0 ($1*2) 2
0.5 0.0 0.0 0.0 0.0 0.0 K Gamma 1 ((0.5-$1)*2) 2
0.0 0.0 0.0 0.0 0.0 0.5 Gamma A 2 (($1)*2) 2
0.0 0.0 0.5 0.5 0.5 0.5 A L 3 ($1*2) 2
0.5 0.0 0.5 0.5 0.0 0.0 L M 4 ((0.5-$1)*2) 2

Then execute YPHON as follows to see the phonon dispersion plot.
Yphon <superfij.out –pdis dfile.hcp –expt exp01.dat –plot
Note: the dfile.hcp file contains the instruction on how to plot the experimental

data contained in the file “exp01.dat” together with the calculated phonon disper-
sions. You can get the dfile.hcp and exp01.dat files from the YPHON package under
the folder “Ydemo/Mg.”

At this step, you will find two useful the files “vdis.plt” and “vdos.plt” which are
gnuplot scripts produced by YPHON for usage by gnuplot to make figures of
phonon dispersions and PDOS.

Exercise 2. MgO
Make a folder “MgO” under the folder of “mYdemo” and go to the folder MgO.

This exercise just shows how to calculate the phonon dispersions of MgO. You
need to prepare the following files and submit your VASP.5 job. (Note: if one does
not have VASP.5, one can skip to exercise subsection 2.8.))

2.1 POSCAR file
First, prepare the POSCAR file containing the following lines for the primitive unit
cell, naming the file “POSCAR.prm.”
MgO-Born effective charge
4.212
.0 .5 .5
.5 .0 .5
.5 .5 .0
Mg O
1 1
D
.0 .0 .0 Mg
.5 .5 .5 O
Then type “cp POSCAR.prm POSCAR.”

2.2 INCAR file
EDIFF=1.d-6
PREC = High
ISMEAR = -5
IBRION = -1
LEPSILON=.T.
NSW=0
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2.3 KPOINTS file
Magnesium oxide
0
G
9 9 9
0 0 0

2.4 POTCAR file
Get POTCAR by the following Linux commands (depending on the VASP pseudo-
potential location in your system)
zcat /usr/global/msc/vasp/potpaw_LDA/Mg/POTCAR.Z >POTCAR
zcat /usr/global/msc/vasp/potpaw_LDA/O/POTCAR.Z >>POTCAR

2.5 Collect the Born effective charge tensor and macroscopic dielectric tensor
Submit your batch job and after the batch job is done, type “vasp_BE” to collect the
Born effective charge and macroscopic dielectric tensor and then you will see the file
named “dielecfij.out” which contains lines like
0.000000 2.106000 2.106000
2.106000 0.000000 2.106000
2.106000 2.106000 0.000000

0.0000000000000000 0.0000000000000000 0.0000000000000000 Mg
0.5000000000000000 0.5000000000000000 0.5000000000000000 O
3.147 0.000 0.000
0.000 3.147 0.000
0.000 0.000 3.147

ion 1
1 1.96085 0.00000 0.00000
2 0.00000 1.96085 0.00000
3 0.00000 0.00000 1.96085

ion 2
1 -1.96142 0.00000 0.00000
2 0.00000 -1.96141 0.00000
3 0.00000 0.00000 -1.96141

2.6 Modify INCAR for force constant calculation
EDIFF=1.d-6
PREC = A
ISMEAR = -5
IBRION = 6
ISIF = 0
NSW=1

2.7 Create supercell POSCAR file
Ycell –ss 2 <POSCAR.prm >POSCAR
You will see a POSCAR file like
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Supercell
1.00
0.0000000000 4.2120000000 4.2120000000
4.2120000000 0.0000000000 4.2120000000
4.2120000000 4.2120000000 0.0000000000

Mg O
8 8
D

0.0000000000 0.0000000000 0.0000000000 Mg
0.0000000000 0.0000000000 0.5000000000 Mg
0.0000000000 0.5000000000 0.0000000000 Mg
0.0000000000 0.5000000000 0.5000000000 Mg
0.5000000000 0.0000000000 0.0000000000 Mg
0.5000000000 0.0000000000 0.5000000000 Mg
0.5000000000 0.5000000000 0.0000000000 Mg
0.5000000000 0.5000000000 0.5000000000 Mg
0.2500000000 0.2500000000 0.2500000000 O
0.2500000000 0.2500000000 0.7500000000 O
0.2500000000 0.7500000000 0.2500000000 O
0.2500000000 0.7500000000 0.7500000000 O
0.7500000000 0.2500000000 0.2500000000 O
0.7500000000 0.2500000000 0.7500000000 O
0.7500000000 0.7500000000 0.2500000000 O
0.7500000000 0.7500000000 0.7500000000 O

2.8 Modify KPOINTS file
Magnesium oxide
0
G
3 3 3
0 0 0

2.9 Phonons for MgO
Run VASP interactively (the run can be finished in less than one minute) or make a
PBS batch job script and then submit your job. After your supercell calculation job is
done, you need to type the following Linux commands sequentially:

vasp_fij

Note: if one does not have VASP.5, one can copy the superfij.out and dielecfij.out
files from the YPHON package under the folder “Ydemo/MgO.”

To calculate the phonon dispersions, you run
Yphon -Born dielecfij.out -pdis dfile.fcc -bvec -expt exp01.dat –plot <superfij.out
Note: dfile.fcc is a phonon dispersion file to instruct YPHON and exp01.dat

contains the experimental neutron scattering data. You can get the dfile.fcc and
exp01.dat files from the exercise folder “MgO.” The data in the dfile.fcc are like
0 0 0 0 0 .5 Gamma X 1 $1 2
0 .5 .5 0 .5 .0 X X 3 $1 2
0 .5 .5 0 0 0 X Gamma 0 (1-$1) 2
0 0 0 .25 .25 .25 Gamma L 2 (2*$1) 2
.25 .25 .25 0 .5 .5 L X
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The key “– expt” instructs YPHON to plot the experimental data contained in the file
“exp01.dat” together with the calculated phonon dispersions. The key “–plot”
instructs YPHON to plot the figure in the terminal using gnuplot for you to check
the calculated results.

Exercise 3. Fe2O3

The folder “Fe2O3” comes together with the YPHON package under the subfolder
“Ydemo.” Go to the folder and you can play around by running
pos2s Symmetry.pos
Yphon -pdis dfile.rho -Born dielecfij.out -plot -Gfile symmetry.mode <superfij.out

You can see some outputs from the screen, where the lines after the line “Solving
frequencies considering LO-TO splitting:” contain the vibrational mode analysis
shown as
2 A1g Modes of raman_active
No irrep THz (cm-1) Z*(x) Z*(y) Zz(z)
0 A1g 14.7222 14.7222 (491.08 491.08) 0.0001 0.0001 -0.0000
1 A1g 6.7666 6.7666 (225.71 225.71) 0.0000 -0.0001 -0.0000
3 A2g Modes of silent_mode
No irrep THz (cm-1) Z*(x) Z*(y) Zz(z)
0 A2g 19.3966

19.3966
(647.00
647.00)

0.0000 -0.0000 0.0000

1 A2g 12.0187
12.0187

(400.90
400.90)

-0.0000 -0.0000 -0.0000

2 A2g 5.1938
5.1938

(173.25
173.25)

0.0000 0.0000 0.0000

5 Eg Modes of raman_active
No irrep THz (cm-1) Z*(x) Z*(y) Zz(z)
0 Eg 18.0561

18.0561
(602.29
602.29)

0.0001 -0.0000 -0.0000

1 Eg 12.3172
12.3172

(410.86
410.86)

0.0005 0.0000 0.0000

2 Eg 9.1456
9.1456

(305.06
305.06)

-0.0002 -0.0000 0.0000

3 Eg 8.5509
8.5509

(285.23
285.23)

0.0001 -0.0000 0.0000

4 Eg 7.3436
7.3436

(244.96
244.96)

0.0000 0.0000 -0.0000

2 A1u Modes of silent_mode
No irrep THz (cm-1) Z*(x) Z*(y) Zz(z)

0 A1u 16.9678
16.9678

(565.99
565.99)

0.0000 0.0000 0.0000

1 A1u 10.4414
10.4414

(348.29
348.29)

-0.0000 0.0000 -0.0000
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3 A2u Modes of ir_active: P= 0.000, 0.000, 1.000 ( 0.577, 0.577, 0.577) with one
translational mode
No irrep THz (cm-1) Z*(x) Z*(y) Zz(z)

0 A2u 15.3959
19.1088

(513.55
637.40)

0.0000 -0.0000 -1.6197

1 A2u 8.9912
11.5315

(299.92
384.65)

-0.0000 0.0000 0.6251

2 A2u -0.0002
-0.0002

(-0.01
-0.01)

-0.0000 0.0000 -0.0000

5 Eu Modes of ir_active: P= 0.866, 0.500, 0.000 ( 0.000, 0.707,-0.707) with one
translational mode
No irrep THz (cm-1) Z*(x) Z*(y) Zz(z)

0 Eu 15.4084
19.0377

(513.97
635.03)

-1.6366 -0.9449 0.0000

1 Eu 12.9891
14.7124

(433.27
490.75)

-0.3671 -0.2119 -0.0000

2 Eu 8.9470
10.9725

(298.44
366.00)

0.3687 0.2129 -0.0000

3 Eu 6.9920
7.0000

(233.23
233.49)

-0.0170 -0.0098 -0.0000

4 Eu 0.0000
0.0000

(0.00
0.00)

0.0000 -0.0000 0.0000

Note: for the LO-TO splitting analysis, do not use the output lines after the line
“Frequencies in Gamma point without & with NA term)” that have been calculated
by diagonalization of the force constant matrix in real space using a polarization
direction which might not be along the polarization direction of all infrared modes.
For example, the polarization direction of the Eu mode is different from that of the
A2u mode for Fe2O3 as shown above.

Exercise 4. MnO
The salient feature of YPHON is best shown using the data contained in the
subfolder MnO that we have published previously [14]. The idea is that, for many
materials, measurements are usually made on the high symmetry structure, which
may not be mechanically stable at low temperature. And if one employs the high
symmetry structure in the calculation, one would get some imaginary phonon modes
[15]. Other cases include the case when the magnetic ordering breaks the crystal
symmetry. The YPHON solution is to restore the symmetry, or in other words,
“unfold” the Brillouin zone.

First, one can run YPHON as follows and get a plot showing that there are in total
12 dispersion curves along each direction since the primitive unit cell of MnO in the
antiferromagnetic structure contains four atoms:

Yphon -Born dielecfij.out -pdis dfile.scc -expt exp05.dat -plot -thr2 0.01 –bvec <superfij.out

Next, one can run YPHON as follows and get a total of six dispersion curves
along each direction of the cubic MnO by averaging the force constants calculated
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from the hexagonal structure through “restore translational symmetry,” resulting in
two atoms (six dispersion curves) in the primitive unit cell:

Yphon -Born dielecfij.fcc -pdis dfile.fcc -expt exp05.dat -plot -thr2 0.01 -bvec <superfij.out

At the same time, one can run YPHON in the following form and get the phonon
dispersions of MnO in perfect fcc symmetry by further averaging the force constants
calculated from the hexagonal structure by means of “restore rotational symmetry,”
recovering the degeneracy of the dispersion curves:
Yphon -Born dielecfij.fcc -pdis dfile.fcc -expt exp05.dat -plot -thr2 0.01 -bvec -Rfile Rotation.
sym <superfij.out

Exercise 5. Cu3Au
This exercise is for the phonon dispersion calculation of disordered Cu3Au using the
SQS structure with the following YPHON command:
Yphon -pdis dfile.fcc -Born dielecfij.out -thr2 0.10 -expt exp01.dat -plot -bvec -nof -noNA
-sqs-mall -Mass mass.1 <superfij.out

For the detailed mechanism and formulations, see reference [7].

Exercise 6. Al2O3, BiFeO3, GaAs, MgAl2O4, NaCl, ZrW2O8, BeO, and ZrSiO4

These subfolders contain the force constants already calculated and the dielectric
data. Some of them are not published yet. We hope that the users can find some
useful settings from these subfolders on gaining experience in running YPHON.
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6 CALPHAD modeling of
thermodynamics

The CALPHADmodeling of thermodynamics was pioneered by Kaufman and Bernstein
[47] and has been reviewed in detail by Saunders and Miodownik [48] and Lukas, Fries,
and Sundman [49]. Information on features of software tools for CALPHAD modeling
can be found in two series of publications in the CALPHAD journal [50, 51]. The key
feature of the CALPHAD method is the modeling of the Gibbs energy of individual
phases using both thermodynamic and phase equilibrium data. The main significance of
the CALPHAD method is the following.

i. It enabled the development of the concept of lattice stability, i.e. the energy differ-
ence between the stable and non-stable crystal structures of a pure element.

ii. The Gibbs energy expression of each phase covers the full temperature,
pressure, and composition spaces including both stable and non-stable
regions of the phase. This enables the evaluation of the Gibbs energy of a
system as a function of non-equilibrium state, i.e. with ξ as an independent
variable.

iii. Thermodynamic data are usually obtained by measurements of heat such as the
enthalpy of transition and heat capacity, as discussed in Section 4.2, which have
large uncertainties typically in the range of kilojoules per mole-of-atoms. On the
other hand, phase equilibrium data as discussed in Section 4.1, though more
accurate, only contain information on compositions of phases at equilibria, i.e.,
the relative Gibbs energy of phases at equilibrium. The combination of these two
sets of data is foundational in CALPHAD modeling and allows for the accurate
modeling of thermodynamic properties of individual phases and reliable calcula-
tions of phase stability and driving forces.

iv. CALPHAD provides a framework to model thermodynamic properties of multi-
component systems of industrial importance, enabling computational materials
design. It has also been extended to model a range of properties of individual
phases in multi-component systems such as diffusion coefficients, elastic coeffi-
cients, and thermal expansion, supplying input data for computational simula-
tions of phase transformations during materials processing.

In this chapter, the basics of CALPHAD modeling of the Gibbs energy of individual
phases are presented. For detailed implementations in various software packages and
modeling procedures, readers are referred to the references given above.
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6.1 Importance of lattice stability

For modeling of the Gibbs energy of individual phases, it is necessary to define the
values of 0Gi in Eq. 2.48. However, the independent component i may not be stable in
the crystal structure of the phase under consideration, in which case its Gibbs energy
cannot be obtained directly from experiments and must be estimated with respect to the
Gibbs energy of the stable crystal structure. In the pioneering work by Kaufman and
Bernstein [47], this Gibbs energy difference was termed the lattice stability and was
obtained through extrapolations in either temperature–pressure or temperature–
composition phase diagrams. It is evident from Eq. 2.48 that the values of 0Gi and
MG jointly contribute to the Gibbs energy of the solution, and Kaufman and Bernstein
had to simplify the treatment of MG in order to show the importance of the concept of
lattice stability. Using ideal or regular solution models, they were able to define the
lattice stability for pure elements and remarkably reproduce many features of binary
phase diagrams by introducing the interaction parameters afterwards.

Over the years, there have been various revisions of lattice stability values for
common crystal structures [48], and every revision necessitates the re-evaluation of
interaction parameters in the solution phase shown in Eq. 2.49. It was not until lattice
stability values were established by the Scientific Group Thermodata Europe (SGTE)
[52] that the development of binary thermodynamic models using the same thermo-
dynamic models as for pure elements became possible, and those binary models as
developed in different groups around the world can be combined to create thermo-
dynamic models of ternary and multi-component systems. Clearly, any further modifi-
cations of the SGTE pure element database will require the re-modeling of all binary
and ternary systems in which the models of pure elements are changed. This challenge
is briefly addressed in the later part of this chapter.

An issue less addressed is the Gibbs energy of the end-members in non-
stoichiometric compounds, i.e. Eq. 2.129, where each sublattice contains only one
element. In the latter case, this is the lattice stability of the element in the structure of
the compound. Since the stable composition ranges of non-stoichiometric compounds
are typically small, the existing method cannot be used to reliably evaluate the Gibbs
energy of end-members, and currently there is no commonly accepted lattice stability
database for compounds. Most values used in the existing databases have been either
roughly estimated or computed from first-principles calculations. Such a standard
database is highly desirable in order to make the various models of compounds
compatible.

In an effort to compare the lattice stability obtained from CALPHAD models and
first-principles calculations, Wang et al. [53] systematically calculated the total energies
of 78 pure elements at 0 K in the face-centered-cubic (fcc), body-centered-cubic (bcc),
and hexagonal-close-packed (hcp) crystal structures using the projector augmented-
wave (PAW) method within the generalized gradient approximation (GGA). The
calculated values are compared with the values in the SGTE database in Table 6.1 and
Table 6.2. For non-transition metal elements, the differences between the SGTE data
and the PAW-GGA data are typically around 1 ~ 2 kJ/mole-of-atoms or less, while for
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Table 6.1 Lattice stability Ebcc–fcc (kJ/mol atom), from [53] with permission from Elsevier

Li
0.25
0.11
0.11

Be
2.19
0.04
0.50

B
34.73

C
� 19.71
� 6.00

N O F

Na
0.10
0.05
0.05

Mg
1.37
0.50
0.50

 ������������������������VASP-PAW-GGA������������������������!
 ����������������������������SGTE data����������������������������!
 ��������������������������Saunders et al.��������������������������!

Al
9.21

10.08
10.08

Si
� 1.89
� 4.00
� 4.00

P
� 16.04

7.95

S
� 17.65

Cl

K
0.08

� 0.05
� 0.05

Ca
1.62
1.41
0.93

Sc
5.80

� 3.02

Ti
4.79
0.48

V
� 23.95
� 7.50
� 15.30

Cr
� 36.76
� 6.13
� 9.19

Mn
7.41
0.78
1.80

Fe
� 8.45
� 7.97

Co
8.31
1.71
4.20

Ni
9.15
7.99
7.49

Cu
2.87
4.02
4.02

Zn
5.94

� 0.08
6.03

Ga
1.48
0.70
0.70

Ge
0.71

� 1.90
� 1.90

As
� 10.71

Se
� 14.68

Br
� 2.85

Rb
0.07

� 0.20
� 0.20

Sr
0.43
1.33
0.75

Y
10.02
1.19

Zr
3.61

� 0.29

Nb
� 31.20
� 13.50
� 22.00

Mo
� 38.74
� 15.20
� 28.00

Tc
19.04
8.00
8.00

Ru
48.93
9.00

14.00

Rh
32.39
19.00
19.00

Pd
3.74

10.50
10.50

Ag
2.27
3.40
3.40

Cd
4.92

In
1.02
0.64
0.65

Sn
0.99

� 1.11
0.25

Sb
� 8.96

Te
� 11.19

I
� 1.26

Cs
0.12

� 0.50
� 0.50

Ba
� 1.62
� 1.80
� 1.80

Hf
10.14
2.38

� 4.14

Ta
� 23.75
� 16.00
� 26.50

W
� 45.02
� 19.30
� 33.00

Re
24.87
6.00

18.20

Os
70.92
14.50
30.50

Ir
59.39
32.00
32.00

Pt
7.85

15.00
15.00

Au
1.90
4.25
4.25

Hg
� 1.43

Tl
� 1.41
� 0.09

0.07

Pb
4.20
2.40
2.40

Bi
� 4.70

1.40

Po At

La
12.22

Ce
22.40

Pr
11.56

Nd
12.00

Pm
12.53

Sm
12.89

Eu
� 1.61

Gd
13.08

Tb
12.97

Dy
12.73

Ho
12.36

Er
11.86

Tm
11.29

Yb Lu
9.90

Fr Ra Ac
12.56

Th
13.95

Pa
17.09

U
� 10.36

Np
� 23.17

Pu
11.73

Am Cm Bk Cf Es Fm Md No Lr
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Table 6.2 Lattice stability Ehcp–fcc (kJ/mol atom), from [53] with permission from Elsevier

Li
� 0.05
� 0.05
� 0.05

Be
� 7.91
� 6.35
� 6.35

B
� 67.84

C
� 6.18
� 3.00

N O F

Na
0.03

� 0.05
� 0.05

Mg
� 1.22
� 2.60
� 2.60

 ������������������������VASP-PAW-GGA������������������������!
 ����������������������������SGTE data����������������������������!
 ��������������������������Saunders et al.��������������������������!

Al
2.85
5.48
5.48

Si
� 3.26
� 1.80
� 1.80

P
� 3.77

S
� 43.63

Cl

K
0.26
0.00

Ca
0.29
0.50
0.50

Sc
� 4.48
� 5.00

Ti
� 5.51
� 6.00
� 6.00

V
0.53

� 3.50
� 4.80

Cr
� 0.91
� 2.85
� 1.82

Mn
� 3.01
� 1.00
� 1.00

Fe
� 7.76
� 2.24

Co
� 1.99
� 0.43
� 0.43

Ni
2.13
2.89
1.50

Cu
0.52
0.60
0.60

Zn
� 2.88
� 2.97

Ga
0.69
0.70
0.70

Ge
� 0.27
� 1.00
� 1.00

As
� 4.83

Se
� 35.88

Br
3.00

Rb
� 0.02

0.00

Sr
0.38
0.25
0.25

Y
� 2.13
� 6.00

Zr
� 3.69
� 7.60
� 7.60

Nb
� 3.08
� 3.50
� 5.00

Mo
1.14

� 3.65
� 5.00

Tc
� 6.53
� 10.00
� 10.00

Ru
� 10.79
� 12.50
� 12.50

Rh
3.26
3.00
3.00

Pd
2.50
2.00
2.00

Ag
0.29
0.30
0.30

Cd
� 1.00
� 0.89

In
0.35
0.37
0.65

Sn
� 0.50
� 1.61
� 0.25

Sb
� 3.94

Te
� 23.24

I
0.99

Cs
� 0.07

0.00

Ba
� 0.40

0.20
0.20

Hf
� 6.82
� 10.00
� 10.00

Ta
3.06

� 4.00
� 6.50

W
� 1.78
� 4.55
� 6.00

Re
� 6.26
� 11.00
� 11.00

Os
� 13.26
� 13.00
� 13.00

Ir
6.55
4.00
4.00

Pt
5.02
2.50
2.50

Au
0.08
0.24
0.55

Hg
� 1.92
� 2.07

Tl
� 1.81
� 0.31
� 0.31

Pb
1.80
0.30
0.30

Bi
� 4.20

Po At

La
2.63

Ce
8.50

Pr
2.08

Nd
1.94

Pm
1.77

Sm
1.53

Eu
0.24

Gd
0.74

Tb
0.24

Dy
� 0.41

Ho
� 1.18

Er
� 1.97

Tm
� 2.68

Yb Lu
� 3.86

Fr Ra Ac
0.80

Th
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some transition metal elements the differences can be quite large, for example, as high as
about 54 kJ/mole-of-atoms for Ebcc�fcc

Os and about 40 kJ/mole-of-atoms for Ebcc�fcc
Ru .

Figure 6.1 and Figure 6.2 present the differences between the PAW-GGA data and the
SGTE data, for elements from the Ti group to the Ni group, respectively.
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Figure 6.1 Differences between the PAW-GGA and SGTE data for Ebcc�fcc, for selected elements,
from [53] with permission from Elsevier.
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from [53] with permission from Elsevier.
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The large differences between the first-principles calculations and the SGTE data
could partly be attributed to the instability of the higher-energy phases, the entropies of
which become abnormal at finite T. The lattice instabilities along the tetragonal trans-
formation path between fcc and bcc structures with the continuous change of the c=a
ratio defined in a bcc-based tetragonal lattice are demonstrated for bcc Mo, Ta, W in
Figure 6.3 and for fcc Al, Cu, Ni in Figure 6.4. It is shown that the fcc structure of bcc
Mo, Ta, and W is a local maximum with respect to the tetragonal transformation, and
that the higher the maximum is, the larger the discrepancy between the SGTE data and
the present PAW-GGA data. For fcc Al, Cu, Ni, the bcc structure is at a local maximum.
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Figure 6.3 Total energy, E � Ebcc, along the Bain deformation path between bcc and fcc
structures for Mo, Ta, and W, from [53] with permission from Elsevier
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Similarly, the lattice instabilities along the tetragonal transformation path for the hcp
metals Ru and Os are shown in Figure 6.5. The behavior of energy against the c=a ratio
of these two hcp metals is very similar to that of the fcc elements.

It can be concluded that a fcc structure for elements with ground state bcc, or a bcc
structure for elements with ground state fcc, is unstable with respect to the tetragonal
transformation. For an unstable structure, the harmonic description of its vibrational
entropy is thermodynamically incorrect since the potential surface seen by the lattice ion
can no longer be approximated by a parabola. If an unstable structure of a pure element
is stabilized at high temperatures, its entropy will be abnormal. The instability issue has
been recently addressed by ab initio molecular dynamics simulations at high tempera-
tures using W as an example [54]; this is beyond the scope of the book and thus not
discussed here.

6.2 Modeling of pure elements

In modeling the Gibbs energy of pure elements in the SER structure in terms of
Eq. 2.38, the coefficients in Eq. 2.35 are evaluated using the heat capacity data, b0 in
Eq. 2.36 is evaluated from the value of S298:15, and a in Eq. 2.37 is evaluated from
HSER

298:15 ¼ 0. For the high temperature phase, the enthalpy of transformation from the
low temperature phase to the high temperature phase, ΔHtrans, can be measured by the
calorimetry methods discussed in Section 4.2, and the entropy of transformation,
ΔStrans, is then calculated using the equilibrium condition of equal Gibbs energy of
the two phases, i.e.

ΔStrans ¼ ΔHtrans

Ttrans
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Figure 6.5 Total energy, E � Ehcp, along the tetragonal transformation path for Ru and Os, from
[53] with permission from Elsevier
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where Ttrans is the transition temperature. The quantities ΔHtrans and ΔStrans are then
used to evaluate the integration constants b0 and a, in place of S298:15 and HSER

298:15, for the
structure in the SER state.

This works well for the stable temperature range of each phase. However, there is an
issue in extrapolating above and below the melting temperature (Tm). It is known that the
heat capacity of the solid phase, Cs

P, increases with temperature, while that of the liquid
phase, Cl

P, is typically constant. The extrapolation of the Gibbs energy of a solid phase to
temperatures above its melting temperature can result in the solid phase becoming more
stable than the liquid phase at high temperatures. By the same token, extrapolation of the
Gibbs energy of a liquid phase to temperatures below its melting temperature can result in
the liquid phase becoming more stable than the solid phase at low temperatures.
To address this problem, it was proposed by SGTE that the heat capacity of the solid
phase approaches that of the liquid at high temperatures, and that of the liquid phase
approaches that of the solid phase at low temperatures, using the following equations.
� For solid at T > Tm,

Cs
P ¼ Cl

P þ Cs
P Tmð Þ � Cl

P Tmð Þ� � T

Tm

� ��10
6.2

Gs ¼ Gl þ Cs
P Tmð Þ � Cl

P Tmð Þ� � � T � Tm

10
þ 1� T

Tm

� ��9 !
Tm

90

( )
6.3

� For liquid at T < Tm,

Cl
P ¼ Cs

P þ Cl
P Tmð Þ � Cs

P Tmð Þ� � T

Tm

� �6

6.4

Gl
m ¼ Gs

m þ Cl
P Tmð Þ � Cs

P Tmð Þ� � T � Tm

6
þ 1� T

Tm

� �7
 !

Tm

42

( )
6.5

As an example, the heat capacities of solid fcc Al and liquid Al in the SGTE pure
element database are plotted in Figure 6.6. It can be seen that the heat capacity of fcc
Al approaches that of liquid Al at high temperatures, while the heat capacity of liquid Al
approaches that of fcc Al at low temperatures. This ensures that the liquid Al is stable at
high temperatures, and fcc Al is stable at low temperatures. However, this simple model
for liquids is often not satisfactory, in comparison with the available experimental data
for supercooled liquids, particularly those systems with glass transitions. New models
are thus needed and are being developed in the CALPHAD community.

6.3 Modeling of stoichiometric phases

The Gibbs energy of a stoichiometric phase can be modeled in the same way as that of
pure elements discussed above using the data for heat capacity, S298:15, and enthalpy of
formation at 298.15 K (Eq. 2.43). When these data are not available from experiments,
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they can be predicted by first-principles calculations as discussed in Chapter 5. It should
be pointed out that constraints placed on the heat capacity of stoichiometric compounds
above melting temperatures, i.e. Eq. 6.2 and Eq. 6.3, have not been rigorously imple-
mented in the literature for such modeling, because the heat capacity of the correspond-
ing liquid solution is not well established and the heat capacity of a compound is often
not available.

When the data for heat capacity are not available, a simple approach, commonly
referred to as the Neumann–Kopp rule, assuming that the heat capacity of formation of
Eq. 2.45 is zero, can be used. The Gibbs energy of the compound is written as

G ¼
X

Ni
0Gref

i þ Δf H � TΔf S 6.6

with Δf H and Δf S modeled as constants. An drawback of Eq. 6.6 is that the melting
temperature of the compound can be higher than those of the pure elements, and the heat
capacity of the compound may thus be questionable at temperatures higher than the
melting temperatures of pure elements due to the non-physical contributions from pure
elements based on Eq. 6.2.

6.4 Modeling of random solution phases

Depending on the degree of short-range ordering in a solution phase, various Gibbs
energy models are available as discussed in Section 2.3.1. When the short-range
ordering is weak, it can be accounted for by the composition dependence of the
excess Gibbs energy in a binary system. This is discribed in terms of the Redlich–
Kister polynomial as follows:

EGm ¼ xixj
X
k¼0

kLi, j xi � xj
� �k ¼ xixj

0Li, j þ 1Li, j xi � xj
� ��

þ2Li, j xi � xj
� �2 þ . . .� 6.7
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Figure 6.6 Heat capacities of fcc Al solid and liquid as a function of temperature.
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where the interaction parameters, kLi, j, can be temperature dependent or even have
contributions from the heat capacity, as in Eq. 2.38, when data are available.
Equation 6.7 shows that 0Li, j and 2Li, j are symmetrical with respect to compo-
sition, while 1Li, j is asymmetrical. Their individual contributions to the excess
Gibbs energy are shown in Figure 6.7 with all interaction parameters taken
as�30000 J/mole-of-atoms.

It can be seen in Figure 6.7 that even though all interaction parameters are negative,
the asymmetrical shape of 1Li, j results in a change in curvature in the excess Gibbs
energy as a function of composition. This indicates the tendency to form a miscibility
gap at low temperatures. The interaction parameters are evaluated from the data of
enthalpy, entropy, and heat capacity of mixing. The experimental data on the enthalpy
of mixing are available for the liquid phase in some systems, but typically are very
limited for solid solution phases. First-principles calculations can predict the enthalpy,
entropy, and heat capacity of mixing in solid solution phases using the dilute solution
approach with one solute atom in a supercell and the CPA/CE/SQS approach for
concentrated solutions as discussed in Section 5.5. This demonstrates again that the
interaction parameters and the lattice stability jointly determine the Gibbs energy
of an individual phase. The change in lattice stability requires the re-evaluation of
interaction parameters.

For individual phases with strong short-range ordering, quasi-chemical or associ-
ated models can be used. As discussed in Section 2.3.1, with fixed composition in
the system, the amounts of various chemical bonds or associates are related through
mass conservation in the system and are calculated through minimization of the
Gibbs energy of the phase with given temperature, pressure, and amount of each
independent component. The model parameters include the formation energy of bonds
or associates and the interactions between various bonds or associates, noting that
pure elements can be considered as the simplest associates. The interactions between
pure elements can be predicted from first-principles calculations as mentioned above,

4

2

0

–2

–4

–6

–8C
o

n
tr

ib
u

ti
o

n
 t

o
 D

G
mX

S
 (

kJ
/m

o
l)

–10
0 0.2 0.4 0.6

xB

0.8 1.0

DXSGm

0LA,B

1LA,B
iLA,B = –3×104

2LA,B

Figure 6.7 Contributions of interactions parameters to the excess Gibbs energy.

1596.4 Modeling of random solution phases



but currently there are no efficient approaches to predict the interactions between
associates from first-principles calculations.

6.5 Modeling of solution phases with long-range ordering

A commonly used Gibbs energy model is shown in Section 2.3.2, with the crystal
lattice divided into sublattices; it is often referred to as the compound energy formalism
[55]. The Gibbs energy of end-members represented by Eq. 2.129 plays the same
important role for solution phases with sublattices as the lattice stability for random
solution phases. The end-members are modeled in the same way as the stoichiometric
phases discussed in Section 6.3. The enthalpy and entropy of mixing in each sublattice
can be predicted by first-principles calculations using the dilute solution and SQS
approaches discussed in Chapter 5 and modeled in the same way as the random solution
discussed in Section 6.4.

It is important to realize that with a simple two-sublattice model A;Bð Þa C;Dð Þb,
the miscibility gap can easily form even without any interaction parameters when the
Gibbs energies of end-members differ from each other significantly. The contribution of
end-members to the Gibbs energy of the phase, i.e. Eq. 2.130, is re-written as follows,
and schematically shown in Figure 6.8,

0Gmf ¼ yIAy
II
C
0GA:C þ yIAy

II
D
0GA:D þ yIBy

II
C
0GB:C þ yIBy

II
D
0GB:D 6.8

where the superscript denotes the sublattice, and colon and comma separate sublattices
and interaction components, respectively. From Figure 6.8b, it is evident that there is a

AaDb BaDb

AaCb

yD
II

yB
I BaCb

(a)

0GAaDb

(b)

0GBaCb

0GBaDb

0GAaCb

Figure 6.8 Schematic diagrams depicting (a) the concentration square with the site fractions of
B and D on the horizontal and vertical axes, respectively, and (b) Gibbs energy reference plane
for A;Bð Þa C;Dð Þb, as represented by Eq. 6.8.
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strong tendency to form a miscibility gap between the composition sets Að Þa Cð Þb and
Bð Þa Dð Þb because of their lower Gibbs energies compared with the other two end-
members. Since it would be rare for all four end-members to have equal Gibbs energy
values, a miscibility gap in this type of phase is practically inevitable at low temperatures.
An example is shown in Figure 6.9 for the complex titanium niobium carbonitride
(Ti,Nb)(C,N). The lines parallel to the direction from NbC to TiN are tie-lines. The
Gibbs energy values of TiC, TiN, NbC, and NbN are�144495,�229236,�132324, and
�179772 J/mole-of-atoms, respectively. The Gibbs energy value of TiN is significantly
lower than the other values, resulting in the tie-lines originating from the TiN corner.

The order–disorder transitions can be similarly described, the simplest case being a
two-sublattice model A;Bð Þa A;Bð Þb. When the site fractions of A or B in both sub-
lattices are the same, it becomes a random solution model; when they are different, the
phase is partially ordered; and when there is only one component in each sublattice, the
phase is fully ordered as a stoichiometric compound. The Gibbs energy of this phase is
obtained from Eq. 2.131 as follows:

Gmf ¼ yIAy
II
A
0GA:A þ yIAy

II
B
0GA:B þ yIBy

II
A
0GB:A

þyIByIIB 0GB:B þ aRTðyIAlnyIA þ yIBlny
I
BÞ þ bRT

þðyIIA lnyIIA þ yIIB lny
II
B Þ þ yIIA y

I
Ay

I
B LA,B:A þ yIIB y

I
Ay

I
B LA,B:B þ yIAy

II
A y

II
B LA:A,B

þyIByIIA yIIB LB:A,B þ yIAy
I
B y

II
A y

II
B LA,B:A,B 6.9

The relationship between site fraction and overall atomic fractions in such a two-
sublattice model can be represented by Eq. 2.138 and is schematically shown in
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Figure 6.9 Miscibility gap in (Ti,Nb)(C,N) at 1673 K . The straight lines in the middle of the plot
are tie-lines.
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Figure 6.10. The two dashed lines represent the phase with xB ¼ a= aþ bð Þ but different
a=b ratios. Along the dashed lines, the phase can adjust the site fraction to minimize its
Gibbs energy, i.e. it has one internal degree of freedom, i.e. ξ, to be either disordered on
the diagonal line between A:A and B:B or ordered anywhere else. The interplay of
interaction parameters and site fractions is depicted: LA,B:A, LA,B:B, LA:A,B, and LB:A,B
affect the four sides, and LA,B:A,B influences the center part.

When fully disordered with yIA ¼ yIIA ¼ xA and yIB ¼ yIIB ¼ xB, Eq. 6.9 becomes

Gmf ¼ xAð1� xBÞ0GA:A þ xAxB
0GA:B þ xAxB

0GB:A þ xBð1� xAÞ 0GB:B

þ ðaþ bÞRTðxAlnxA þ xBlnxBÞ þ xAxBxALA,B:A þ xAxBxB LA,B:B
þ xAxBxA LA:A,B þ xAxBxB LB:A,B þ xAxAxBxBLA,B:A,B
¼ xA

0GA:A þ xB
0GB:B þ ðaþ bÞRTðxAlnxA þ xBlnxBÞ

þ xAxB ½ð0GA:B þ 0GB:A � 0GA:A � 0GB:BÞ þ xAðLA,B:A þ LA:A,BÞ
þ xB ðLA,B:B þ LB:A,BÞ þ xAxBLA,B:A,B�

¼ ðaþ bÞ½xA0GA þ xB
0GB þ RTðxAlnxA þ xBlnxBÞ þ xAxBLA,B� 6.10

with

0GA:A ¼ aþ bð Þ0GA 6.11

0GB:B ¼ aþ bð Þ0GB 6.12

LA,B ¼ 0GA:B þ 0GB:A � 0GA:A � 0GB:B

� �þ xA LA,B:A þ LA:A,Bð Þ�
þ xB LA,B:B þ LB:A,Bð Þ þ xAxBLA,B:A,B�= aþ bð Þ 6.13

where 0GA , 0GB , and LA,B are the molar Gibbs energy of pure A and B and the molar
interaction parameter in the disordered solid solution, respectively. It is evident that the
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Figure 6.10 Schematic composition square of A,Bð Þa A,Bð Þb.
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interaction parameter LA,B is fully determined by the parameters in the ordered phase,
but the parameters in the ordered phase are not uniquely determined by the interaction
parameters in the disordered phase.

Due to crystal symmetry, some of the parameters in Eq. 6.9 are related. For example,
in the bcc A2/B2 ordering with a ¼ b ¼ 0:5, the bcc corner or center lattice sites are
favored by one type of atom but the two sublattices are equivalent crystallographically,
resulting in the following relations:

0GA:B ¼ 0GB:A 6.14

LA,B:A ¼ LA:A,B 6.15

LA,B:B ¼ LB:A,B 6.16

For more complex orderings of a bcc lattice such as B32, D03, and L21 shown in
Figure 6.11, with ideal compositions AB, A3B, and A2BC, respectively, more
sublattices are needed, noting that the L21 Heusler structure exists in ternary systems
only. To use one model to describe all orderings in the bcc lattice, the minimum cluster
is an irregular tetrahedron with four sublattices, depicted in Figure 6.11, as discussed
in the modeling of the Al–Fe system [56]. In such a four-sublattice model
A;Bð ÞI0:25 A;Bð ÞII0:25 A;Bð ÞIII0:25 A;Bð ÞIV0:25, the site fractions of A2, B2, B32, and D03 are
represented by yIi ¼ yIIi ¼ yIIIi ¼ yIVi , yIi ¼ yIIi 6¼ yIIIi ¼ yIVi , yIi ¼ yIIIi 6¼ yIIi ¼ yIVi , and
yIi ¼ yIIi 6¼ yIIIi 6¼ yIVi , respectively. The site fractions of L21 are the same as those of
D03 except that they have at least three components.

Another common ordering phenomenon occurs for the fcc lattice including the
disordered A1 structure and ordered L10 and L12 structures as shown in Figure 6.12.
In the L10 structure, the neighboring (001) planes are favored by different atoms,
respectively, resulting in an ideal composition AB. In the L12 structure, however, the
corners and faces are favored by different atoms, respectively, resulting in an ideal
composition A3B. In a four-sublattice model A;Bð ÞI0:25 A;Bð ÞII0:25 A;Bð ÞIII0:25 A;Bð ÞIV0:25, the

B32

B2 DO3, L21A2

Figure 6.11 Atomic structures and four sublattice tetrahedrons of bcc disordered and
ordered phases.
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site fractions of A1, L10, and L12 are represented by yIi ¼ yIIi ¼ yIIIi ¼ yIVi ,
yIi ¼ yIIi 6¼ yIIIi ¼ yIVi , and yIi ¼ yIIi ¼ yIIIi 6¼ yIVi , respectively [57].

As mentioned above, the interaction parameters in each sublattice can be predicted by
first-principles calculations using the dilute solution and SQS approaches when there is
only one component in each of the remaining sublattices. For interactions involving two
components in two or more sublattices, i.e. LA,B:A,B in Eq. 6.9, applicable to four-
sublattice models [58], the energetics from the cluster expansion (CE) approach dis-
cussed in Section 5.5 can be used to evaluate the interaction parameters.

6.6 Modeling of magnetic and electric polarizations

The elastic, magnetic, and electric energy contributions to the Gibbs energy discussed in
Chapter 2.5 originate from the changes of strain, magnetization, and polarization in
the system due to the external elastic, magnetic, and electric fields. The CALPHAD
modeling of the elastic compliance coefficients, sijkl, permeability, μij, and permittivity,
kij, as functions of temperature, stress, magnetic and electric fields, and composition has
not been reported in the literature, except for recent work on the modeling of elastic
stiffness coefficients [59], which are the inverse of elastic compliance coefficients.

In addition to the contributions from the external magnetic and electric fields, some
phases are spontaneously polarized due to unpaired electron spins, such as in ferromag-
netic bcc Fe, or internal electric dipoles, such as in ferroelectric PbTiO3, or both, such as
in multi-ferroric BiFeO3. The CALPHAD modeling of the spontaneous magnetization
contribution to the Gibbs energy is based on the Inden–Hillert–Jarl model with an
empirical constraint [60], recently modified by Xiong et al. [61]. This contribution is
important in Fe-based alloys, as it is the reason for the return of the bcc structure at low
temperatures. The CALPHAD modeling of the spontaneous electric polarization con-
tribution to the Gibbs energy has not been reported in the literature. The existing
thermodynamic modeling of the spontaneous electric polarization is based on the
Landau–Ginsburg–Devonshire formalism in a power series of the polarization [62].
Our recent approach in modeling critical phenomena in general is discussed in
Section 5.2.5 and Chapter 9.

A1 L10 L12

Figure 6.12 Atomic structures and four-sublattice tetrahedrons of fcc disordered
and ordered phases.
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7 Applications to chemical reactions

A chemical reaction can be viewed as a framework dividing a system into two closed
subsystems: reactants and products. The phases and species of reactants and products
are selected from the possible phases and species that may form from the independent
components of the system. A chemical reaction can thus be considered as an internal
process to transfer heat and work between the two subsystems of reactants and products.
It is evident that this subset of phases and species only represents partial equilibrium
information for the system under given external conditions, and more stable equilib-
rium states may exist if more phases and species are included in the global equilibrium,
depicted by the phase diagrams discussed in previous chapters where all known phases
and species are included.

7.1 Internal process and differential and integrated driving forces

The driving force for an internal process can be defined as follows, using U, H, F, or G
as discussed in Sections 1.2 and 1.4 depending on which system variables are kept
constant:

�D ¼ ∂U
∂ξ

� �
S,V ,Ni

¼ ∂H
∂ξ

� �
S,P,Ni

¼ ∂F
∂ξ

� �
T ,V ,Ni

¼ ∂G
∂ξ

� �
T ,P,Ni

7.1

The quantity D can be termed the differential driving force as it relates the derivative of
an energy with respect to an internal process. For a system under constant T and P, let us
consider an internal process for forming a new phase α with the composition xαi and
Gibbs energy Gα

m xαi
� �

. The differential driving force for such an internal process can
thus be defined as

�D ¼ Gα
m xαi
� ��X

i

xαi μi ¼
X
i

xαi μαi � μi
� �

7.2

where μi is the chemical potential of component i in the system. It may also be called the
nucleation driving force if the α phase is nucleating in the system. As discussed
in Section 2.2.1, chemical potentials are the intercepts on the Gibbs energy axis of
the tangent plane of the Gibbs energy. Equation 7.2 thus represents the distance between
the tangent planes of the original system and the α phase, at the composition of the α
phase. Evidently, this distance is at its maximum when the two tangent planes are
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parallel to each other; then it is commonly called the parallel tangent construction when
evaluating the nucleation driving force.

The situation is different for chemical reactions where the amount of each compo-
nent in the reactants is the same as that in the products, i.e. there is a mass balance
between reactants and products. The driving force for a chemical reaction is defined
by the Gibbs energy difference between the reactants and products, if all the
reactants are transferred to the products. This driving force may thus be called an
integrated driving force as it describes the energy difference of a system under two
different states, i.e.

�
ð
Ddξ ¼ ΔG ¼

X
p

npGp �
X
r

nrGr 7.3

where the subscripts p and r denote products and reactants, np and nr are the corres-
ponding numbers of moles, and Gp and Gr are the Gibbs energies per mole of formula
of their respective stoichiometries as written in the chemical reaction. Conventionally,
the products and reactants are represented by species or stoichiometric compounds
rather than individual phases. This is particularly evident when various gaseous species
are considered in a chemical reaction. Consequently, Gp and Gr in Eq. 7.3 represent the
chemical potentials of the product and reactant species. For a species with a fixed
composition, its chemical potential is the same as its Gibbs energy as shown by
Eq. 2.21. For a species in a solution phase, its chemical potential is related to its activity
as shown in Eq. 2.66. Equation 7.3 can thus be further written as

ΔG ¼
X
p

np
0Gp �

X
r

nr
0Gr þ RT ln

Y
p
ap
� �np

Y
r
arð Þnr ¼ Δ0G þ RT ln

Y
p
ap
� �np

Y
r
arð Þnr 7.4

It is evident from Eq. 2.21 that for stoichiometric phases in a chemical reaction, their
activities are equal to one. At equilibrium, the integrated driving force becomes zero, i.e.
ΔG ¼ 0, and Eq. 7.4 can be re-arranged to become

�RT ln

Y
p
ap
� �np

Y
r
arð Þnr ¼ �RT lnKe ¼ Δ0G ¼ Δ0H � TΔ0S 7.5

where Ke is often called the reaction constant relating the activities of products

and reactants at equilibrium. In a system with
Y

p
ap
� �np.Y

r
arð Þnr > Ke the

chemical reaction goes to the left, and the products are decomposed, while ifY
p
ap
� �np.Y

r
arð Þnr < Ke the chemical reaction goes to the right, and the products

are formed. Equation 7.5 is often recast into the following form by dividing by �RT on
both sides of the equation:

lnKe ¼ �Δ 0H

RT
þ Δ 0S

R
7.6
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With lnKε plotted with respect to 1=T , Eq. 7.6 indicates that the slope is �Δ 0H=R and
the intercept on the y axis is Δ 0S =R, as shown in Figure 7.1.

7.2 Ellingham diagram and buffered systems

One type of chemical reaction is that between a pure element in liquid or solid state and
its oxides involving one mole of oxygen gas, i.e.

4
vM

M þ O2 gasð Þ ¼ M4=vMO2 7.7

with vM the valence of the elementM in the oxide. Taking the pureM and gaseous O2 at
the reaction temperature and one atmospheric pressure as their respective reference
states, the activities of both the pure M solid or liquid phase and its oxide are unity, and
the activity of O2 equals its partial pressure in an ideal gas. Equation 7.5 becomes

RT lnPO2 ¼ Δ 0G ¼ Δ 0H � TΔ 0S 7.8

Based on Eq. 7.8, one can plot Δ 0G as a function of temperature for various oxidation
reactions. This is called an Ellingham diagram. The intercept at T ¼ 0K is given by
Δ 0H , and the slope is represented by �Δ 0S and given by the following equation:

Δ 0S ¼ SM4=vM
O2 � SO2 �

4
vM

SM 7.9

Since the entropy of one mole of O2 gas is significantly larger than those of the pure
element and its oxide when they are in solid or liquid states and than the entropy

Figure 7.1 The logarithm of Kε plotted with respect to 1=T for several M–O systems at 1 bar Ke

represented by the partial pressure ratio of CO2 and CO, from [1] with permission from
Cambridge University Press.
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difference between the pure element and its oxide, the entropy of reaction is dominated by
the reduction of the entropy corresponding to one mole of O2 gas. Consequently, the
entropies of reaction are approximately the same for most reactions when the pure elements
and their oxides are solid, as seen in Figure 7.2 where most lines have similar slopes.

For a chemical reaction on the Ellingham diagram at a given temperature, Δ 0G can
be read from the y axis of the diagram, and the equilibrium partial pressure of O2 gas can
be calculated using Eq. 7.8. Alternatively, one can plot the left part of Eq. 7.8 for a
given PO2 as a function of temperature on the Ellingham diagram, i.e.

Δ 0G ¼ RT lnPO2 7.10
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Figure 7.2 Ellingham diagram for a number of metal–oxide systems, from http://
www.doitpoms.ac.uk/tlplib/ellingham_diagrams/ellingham.php, with permission from D.ITP.MS
of Cambridge University Press.
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This results in straight lines, representing iso-partial-pressure lines of O2, with intercepts
zero at T ¼ 0K and slopes RlnPO2 , which are negative for PO2 lower than one atmos-
pheric pressure (1 atm). The values of PO2 are marked on the secondary axis on the right
side of the Ellingham diagram. The intersection of the isoactivitiy line and the equilib-
rium line of the chemical reaction thus gives the relation between the equilibrium
temperature and equilibrium partial pressure of O2. This is demonstrated in Figure 7.3.

For each chemical reaction in the Ellingham diagram, the three phases are in
equilibrium on the line represented by Eq. 7.8, i.e. metal, metal oxides, and O2 gas.
For conditions above the line, the value of PO2 is larger than its equilibrium value, and
the metal will be oxidized. For conditions below the line, the value of PO2 is lower than
its equilibrium value, and the metal oxide will be reduced. Therefore, the metal oxides
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Figure 7.3 Intersection of iso-partial-pressure lines of O2 and equilibrium lines in the
Ellingham diagram, http://www.doitpoms.ac.uk/tlplib/ellingham_diagrams/ellingham.php, with
permission from D.ITP.MS of Cambridge University Press.
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in the upper part of the Ellingham diagram can be reduced by the metals in the lower
part of the diagram, and, vice versa, metals in the lower part of the diagram can be
oxidized by the metal oxides in the upper part of the diagram. For example, in
Figure 7.2, Ca can reduce all oxides, and Cu2O is the least stable oxide.

From the Ellingham diagram, it may be noted that the equilibrium partial pressures of
O2 are very low for most chemical reactions, with many of them lower than 10�12 atm.
One approach to obtaining such a low pressure is to use auxiliary reactions containing
O2 that are easy to control and are independent of the equilibrium system of interest
except for a shared oxygen partial pressure. Two common auxiliary reactions are those
of H2/H2O and CO/CO2 mixtures. For an H2/H2O mixture, the chemical reaction is

2H2 gasð Þ þ O2 gasð Þ ¼ 2H2O gasð Þ 7.11

The equilibrium oxygen partial pressure is obtained as

�RT ln
1
PO2

PH2O

PH2

� �2
( )

¼ Δ 0G ¼ Δ 0H � TΔ 0S ¼ �498488þ 112:972T Jð Þ 7.12

where the values of Δ 0H and Δ 0S are taken from the substance thermodynamic
database (SSUB4) compiled by Scientific Group Thermodata Europe (SGTE) [63], and
are slightly dependent on temperature, and the values in Eq. 7.12 are evaluated at 1273
K using Thermo-Calc [64]. At any given temperature, one has the following relation:

RT lnPO2 ¼ Δ 0H � TΔ 0S � 2RT ln
PH2

PH2O
¼ �498488þ 112:972� 2Rln

PH2

PH2O

� �
T

7.13

Its intercept at T ¼ 0 K is given by Δ 0H ¼ �498488 (J), and the slope by
�Δ 0S � 2Rln PH2=PH2Oð Þ ¼ 112:972� 2Rln PH2=PH2Oð Þ. The values of the PH2=PH2O

ratio are marked on a secondary axis on the right side of the Ellingham diagram. The
intersection of the iso-partial-pressure ratio line and the equilibrium line of the chemical
reaction gives the relation between equilibrium temperature and equilibrium partial
pressure ratio PH2=PH2O for the desired PO2 of the chemical equilibrium as shown in
Figure 7.3 by the dashed line marked by H at T ¼ 0 K.

For an CO/CO2 mixture, the chemical reaction is

2CO gasð Þ þ O2 gasð Þ ¼ 2CO2 gasð Þ 7.14

Similarly, from the SSUB database, the following equation is obtained:

�RT ln
1
PO2

PCO2

PCO

� �2
( )

¼ Δ 0G ¼ Δ 0H � TΔ 0S ¼ �562, 927� 172:020T Jð Þ

7.15

with Δ0H and Δ0S calculated at 1273 K; they are also slightly temperature dependent
as in the case of the H2/H2O mixture. The iso-partial-pressure ratio line is written as

RT lnPO2 ¼ Δ 0H � TΔ 0S � 2RT ln
PCO

PCO2

¼ �562, 927þ 172:020� 2Rln
PCO

PCO2

� �
T

7.16
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Its intercept at T ¼ 0 K is given by Δ0H ¼ �562927 (J), and its slope by
172:020� 2Rln PCO=PCO2ð Þ. The values of the PCO=PCO2 ratio are marked on the third
secondary axis on the right of the Ellingham diagram. The intersection of the iso-partial-
pressure ratio line and the equilibrium line of the chemical reaction gives the relation
between equilibrium temperature and equilibrium partial pressure ratio PCO=PCO2 for
the desired PO2 of the chemical equilibrium as shown in Figure 7.3 by the dotted line
marked by C at T = 0 K.

Therefore, one can use the H2/H2O system or the CO/CO2 system to obtain the
desired low PO2 values using Eq. 7.13 and Eq. 7.16 or the calculation from the SSUB
database. For example, for PO2 ¼ 10�15atm at 1273 K, the calculated values from the
SSUB database are PH2=PH2O � 1:67 and PCO=PCO2 � 2:78, respectively, in which
the temperature dependences of Δ0H and Δ0S and the many more gaseous species in
the gas phase are taken into account. On the other hand, reading from the Ellingham
diagram gives PH2=PH2O � 2:0 and PCO=PCO2 � 2:4, and the agreement with the more
accurate calculations above is remarkable keeping in mind the uncertainties in graphic-
ally drawing the lines and reading both values in the logarithmic scales from the
diagram, indicating the robustness of the Ellingham diagram.

7.3 Trends of entropies of reactions

The reaction entropy, Δ0S in Eq. 7.5, plays an important role in determining the
equilibria of high temperature reactions. The most important single factor that deter-
mines the entropy of a reaction is the net change in the number of moles of gas, as
briefly mentioned in the discussion of the Ellingham diagram above. The reason this is
true can be explained as follows.

The entropy of a substance can be thought of as being the sum of four parts:
(i) translational, (ii) rotational, (iii) vibrational, and (iv) electronic. The translational
entropy of a gas is the largest entropy term under most conditions. To the extent that the
other contributions cancel between reactants and products, the entropy of reaction is
determined by the change in the number of moles of gaseous molecules. Based on the
literature data or calculations from the SSUB database, the net change in the number of
moles of gas in a reaction results in an entropy of reaction of about 175�45 J/K per
mole of gas at 298 K for many halides and oxides. The chemical reactions of Eq. 7.11
and Eq. 7.14 discussed above both reduce the gas by one mole, and their entropies of
reaction are �113 and �172 J/K at 1273 K, and �89 and �173 J/K at 298 K,
respectively, indicating that the chemical reaction of Eq. 7.11 is an exception to the
empirical rule. For the chemical reactions shown in the Ellingham diagram, the entro-
pies of reaction follow this empirical rule pretty well with some of them, shown
in Table 7.1, calculated from the SGTE database.

Since the entropy of a reaction is primarily determined by the net change in the
number of moles of gas, the entropies for reactions involving only condensed phases
must be small. The entropies of fusion of monatomic solids are usually in the range
8–15 J/K per mole of atoms, as shown for some elements in Table 7.2. Most metals and
many ionic salts have values that lie in this range when given per mole of atoms. There
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are a few exceptions such as silicon and boron, as shown in the table. For solid state
reactions, the average values can be approximated as 0�8 J/K per mole of atoms, as
also shown in the table.

7.4 Maximum reaction rate and chemical transport reactions

Equilibrium thermodynamics can be used to calculate the maximum rates of reaction
that are possible in dynamically reacting systems, such as when a corrosive gas passes
over a heated sample. Other examples of such reactions include the reduction of a metal
oxide in flowing hydrogen, the evaporation of a material in a vacuum, and the deposi-
tion of a thin film by a chemical vapor deposition process. The basic assumption used
in calculating these maximum reaction rates is that local equilibrium exists at the
location of the considered reaction.

This section examines several examples in which maximum reaction rates are
calculated. The system can typically be divided into three regions: (i) the input region,
which is usually near room temperature, (ii) the high temperature region in which
the primary reaction of interest is occurring, and (iii) the exit region. Such a system
is almost always at constant pressure throughout the system. Since the three regions
have different temperatures, the key is to use the mass conservation of the carrier gas
in all three regions. With the input gas at T ¼ 298 K and P ¼ 1 atm, the volume of

Table 7.1 Entropies of reactions with gas at 298.15 K

Reaction Entropy (J/K)

Si+O2=SiO2 �182
Ti+O2=TiO2 �185
2Mg+O2=2MgO �217
2Ca+O2=2CaO �212
2Mn+O2=2MnO �150

Table 7.2 Entropies of reactions of condensed phases
at 298.15K

Reaction Entropy (J/K)

Si(s)=Si(l) 29.762
Ti(s2)=Ti(l) 7.288
Mg(s2)=Mg(l) 9.184
Ca(s2)=Ca(l) 7.659
Mn(s2)=Mn(l) 11.443
W(s)=W(l) 14.158
B(s)=B(l) 21.380
3Fe+C=CFe3 17.060
S+Mn=MnS 13.909
NiO+Fe2O3=Fe2NiO4 0.464
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one mole of ideal gas is 0.0244 m3 = 24.4 liters. The number of moles of input gas
flowing through the system can be written as

n0gas ¼
Pf gas
RT

¼ f gas
24:4

¼ 0:0409 f gas 7.17

where f gas is the input gas flow rate in liters per unit time at T ¼ 298 K and P ¼ 1 atm,
and R is the gas constant.

The first example is the evaporation of water in a flowing stream of dry hydrogen.
A schematic diagram of this system is given in Figure 7.4. The goal of the calculation is
to determine the maximum rate of H2O(liquid) loss, nH2O, through vaporization in a
flowing stream of H2, for example for the purpose of generating a given H2O/H2 ratio in
order to produce a given O2 pressure in a high temperature system, as related to the
Ellingham diagram discussed in Section 7.2. The maximum rate is determined by
saturating the H2 with H2O(liquid) at equilibrium vapor pressure, the number of moles
of H2 being n0H2

¼ 0:0409f H2
and f H2

being the input flow rate of H2 in liters per
unit time.

In the first input region, the total number of moles of gas is N ¼ n0H2
. In the second,

high temperature, region, with temperature and pressure Tsys and Psys, the total number
of moles of gas is N ¼ n0H2

þ nH2O, which is the same for the third, exit, region with
Texit. To avoid condensation, one needs to maintain Texit > Tsys. The vapor pressure of
H2O at Tsys, PH2O, can be obtained from equilibrium thermodynamic calculations. Since
the H2 and H2O are occupying the same volume at the same temperature, the maximum
number of moles of H2O can be calculated from the following relation, based on the
ideal gas law:

nH2O ¼ PH2O

PH2

n0H2
¼ PH2O

Psys � PH2O
n0H2

¼ PH2O

Psys � PH2O

f H2

24:4
7.18

For Psys ¼ 101325 Pa, one can calculate PH2O and plot nH2O=f H2
as a function of

temperature from the SSUB database, as shown in Figure 7.5. The corresponding partial
pressure ratio, PH2O=PH2 , is plotted in Figure 7.6, which can be used to calculate PO2 at
any given temperature. An example is shown in Figure 7.7 with Tsys ¼ 348:15 K and
PH2O=PH2 ¼ 0:607.

T1 Tsys

Input =T1 Exit =T3
H2O-H2 system

Tsys

H2O, g
H2O, liquid

T3

H2 H2

H2O
H2, H2O

Figure 7.4 Schematic diagram of the vaporization of water in a flowing stream of dry hydrogen.
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The second example is the corrosion of SiO2 (s) by flowing H2 gas at high
temperatures. Taking Tsys ¼ 1700 K, Psys ¼ 101325 Pa, and f H2

¼ 1 liter/min,
the system is thus defined with 0.0409 moles of H2 and an equilibrium between
the gas phase and the tridymite SiO2. The equilibrium calculation gives 0.04092
moles of gas with constitution H2:H2O:SiO = 0.998887:4.833�10�4:4.832�10�4.
The corrosion rate of SiO2(s) is thus 0.04092�4.832�10�4 = 1.98�10�5 mol/min =
1.19 gram/min.
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Figure 7.5 Ratio of the maximum number of moles of H2O with respect to the hydrogen flow rate,
nH2O=f H2

, plotted as a function of temperature.
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Figure 7.6 Partial pressure ratio, PH2O=PH2 , corresponding to Figure 7.5.
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Another example is that of CO gas at 298 K and 1 atm (101325 Pa) flowing at a rate
of 1 liter/min through and equilibrating with single phase C(s) at 1500 K. The equilib-
rium system is defined by T ¼ 1500 K, P ¼ 1 atm, and 0.0409 moles of CO, the
equilibrium being between the gas phase and C(s). The equilibrium calculation gives
0.040872 moles of gas phase with mole fraction of CO equal to 0.999327, resulting in
the loss of CO or the deposition of C(s) at a rate of 0.0409 � 0.040872�0.999327 =
5.55�10�5 mol/min.

A chemical transport reaction is a reaction in which a condensed phase reacts with a
gas phase to form vapor-phase products, which in turn undergo the reverse reaction to
the condensed phase. Two well-known examples of such reactions are

M sð Þ þ n

2
I2 gð Þ ¼ MIn gð Þ 7.19

Ni sð Þ þ 4CO gð Þ ¼ Ni COð Þ4 gð Þ 7.20

which are used in the purification of metals by the iodide process and in the
purification of nickel by the Mond–Langer process. In both processes the forward
reaction is favored by lower temperatures and the reverse reaction by higher tem-
peratures, resulting in the deposition of the metal. The most common technique for
causing chemical transport of a condensed substance makes use of the temperature
dependence of the equilibrium constant. As was discussed previously, the enthalpy
of reaction, Δ0H , determines the manner in which Ke changes with temperature (see
Eq. 7.6). The value of Ke increases with increasing T for Δ0H > 0, decreases with
increasing T for Δ0H < 0, and is independent of T for Δ0H ¼ 0. The Δ0H and Δ0S
values for chemical transport reactions may be either positive or negative.
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Figure 7.7 Partial pressure of oxygen, PO2 , as a function of temperature with Tsys ¼ 348:15K
and PH2O=PH2 ¼ 0:607.
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In a typical experiment the starting solid is located at the point in a temperature
gradient that corresponds to the largest Ke value for the experimental conditions.
As the gaseous species migrate to other locations in the system with temperatures
corresponding to lower Ke values, the reverse reaction occurs to satisfy the new
equilibrium requirements, and the solid phase is deposited. The dependence of Ke on
Δ0H results in material transport from hot to cold for Δ0H > 0 (the same as for
vaporization–condensation reactions), from cold to hot for Δ0H < 0, and in no
transport for Δ0H ¼ 0.

The success of a particular reaction in causing appreciable transport of a con-
densed phase depends mainly upon the partial pressure gradients or concentration
gradients of the gaseous species in the system. A reaction whose equilibrium is
extreme toward either the reactant side or the product side will not give an appre-
ciable transport of material. The concentration gradients are too small in such a
system. Reactions with equilibrium constants near unity at the experimental tem-
peratures usually give the largest transport since small changes in Ke cause large
changes in concentration. The general condition required to obtain a Ke value near
unity at a reasonable temperature is that Δ0H and Δ0S both have the same sign; this
results from the equalities of Eq. 7.5.

Exercises

1. Estimate the entropy of formation at 298 K (Δf S at 298 K) for the following
species based on the trends of the entropy of reactions. Some of them can be
found in the SSUB database; calculate them and compare them with your
estimations.

BaSO4ðsÞ LaNðsÞ UC2ðsÞ ZrBr4ðgÞ LiFðgÞ Mg2SiO4ðsÞ
TiO2ðgÞ Al2Cl6ðgÞ SiCðsÞ U2N3ðsÞ UC2ðgÞ

2. A defect mechanism that may occur simultaneously with oxygen vacancies in
LaCoO3�δ is charge disproportionation, where two Co

3+ ions transform into a
Co2+ and Co4+ pair. Perform defect analysis on LaCoO3�δ to predict the slope
of a plot of log(PO2 ) versus log(yVa), assuming the valence of Co3+ changes
when oxygen vacancies form. Do this with and without charge disproportio-
nation present. Compare your two results to the experimental plot shown
below (from [65] with permission from Elsevier). Which result best describes
the experiments?
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(cont.)
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3. Use the oxygen potential diagram given to answer the following questions.
a. Will an Nb/NbO mixture maintained at 2000 K in a furnace containing

~1 bar H2(g) oxidize Cr metal that is located in another part of the same
furnace chamber at 1000 K?

b. Can a Cr2O3 crucible be used to contain Mo metal at 1500 K? Why or
why not?
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(cont.)

4. Ar(g) flowing at a rate of 2 liter/min (T = 273 K and P = 1 atm) contains
1% H2(g) impurity. It is passed through a furnace containing ZnO(s) at
1000 K. Assume the 1 atm gas equilibrates with the ZnO(s) before passing
out of the system. The equilibrium calculation results from Thermo-Calc
using the SSUB4 database are given below. The given constants may also
be useful.
� At T = 273 K and P = 1 atm, the volume of 1 mol gas is equal to 22.4

liters.
� Molar weights (g/mol): H 1.008, O 15.9994, Zn 65.38, ZnO 81.3794,

and Ar 39.948.
a. What is the primary chemical reaction causing the erosion of

ZnO(s)?
b. What is the maximum rate of mass loss of ZnO(s) in units of

mg/min?

Conditions:
T=1000, P=100000, N(H)=2E-2, N(AR)=9.9E-1, N(ZN)=2, N(O)-N
(ZN)=0
DEGREES OF FREEDOM 0

Temperature 1000.00, Pressure 1.000000E+05
Number of moles of components 5.01000E+00, Mass 2.02327E+02
Total Gibbs energy -9.99490E+05, Enthalpy -6.18436E+05,
Volume 8.32438E-02

Component Moles W-Fraction Activity Potential Ref
.stat

AR 9.9000E-01 1.9547E-01 2.2663E-09 -1.6550E+05 SER
H 2.0000E-02 9.9631E-05 1.4841E-05 -9.2442E+04 SER
O 2.0000E+00 1.5815E-01 1.9969E-17 -3.1971E+05 SER
ZN 2.0000E+00 6.4628E-01 8.3890E-06 -9.7185E+04 SER

GAS#1 Status ENTERED Driving force 0.0000E+00
Number of moles 1.0124E+00, Mass 3.9665E+01 Mass fractions:
AR 9.97057E-01 ZN 1.95593E-03 H 5.08203E-04 O 4.78644E-04
Constitution:
AR 9.88827E-01 H1O1ZN1 1.25762E-11 O 1.84294E-21
H2 8.80291E-03 H2O2ZN1 1.26148E-12 O2 1.37349E-22
ZN 1.18523E-03 H1ZN1 7.35625E-13 H2O2 3.76372E-23
H2O1 1.18523E-03 H1O1 6.32162E-14 H1O2 1.86169E-26
H 2.13129E-10 O1ZN1 5.41021E-16 O3 1.00000E-30
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(cont.)

O1ZN1_S#1 Status ENTERED Driving force 0.0000E+00
Number of moles 3.9976E+00, Mass 1.6266E+02 Mass fractions:
ZN 8.03397E-01 O 1.96603E-01 AR 0.00000E+00 H 0.00000E+00

5. Assume a small, closed isothermal chamber at 1000 K with the following
solid materials:

0:6 moles NiO 0:6 moles Mn 0:6 moles Sc 0:2 moles Cr2O3

0:5 moles Cu2O 0:4 moles Fe2O3 0:5 moles Zn 0:3 moles Co

Each material is in its own container, so it cannot react with the other
materials to form complex phases or solutions. By using a mixture of H2O
and H2 as a means of efficiently moving oxygen around in the system,
equilibrium is readily obtained. Use the figure to help in answering the
following questions (K. E. Spear, private communication).
a. What is the equilibrium form of each material? Show the logic/calcu-

lations behind your answer. A simple list of metals and metal oxides is
not sufficient.

b. What is the equilibrium O2 partial pressure for this system?
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(cont.)

6. The W–C binary phase diagram is shown in the figure below. At T = 1250
�C, there is a three-phase equilibrium among WC, W, and W2C, all the
phases being solid. This three-phase equilibrium can be represented by the
chemical reaction WC + W = W2C. As the phase diagram shows, at tempera-
tures above 1250 �C, the reaction goes to the right, and at temperatures below
1250 �C, the reaction goes to the left. Use the information given below along
with the required estimates to calculate the enthalpy and entropy of formation
for W2C. Explain any estimates you make. Δ0

f H
WC
m ¼ �21 kJ/(mole atom),

and Δ0
f S

WC
m ¼ �3:14 J/K/(mole atom).
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7. A waste material is found to contain 1 wt% of aluminum with the rest assumed
to be aluminum oxide (Al2O3). The aluminum and the Al2O3 are thermally
connected. If the waste material is stored at 298 K, what is the maximum
temperature to which it may rise if all the metallic aluminum is oxidized by
air? The entire mass may be assumed to rise to the same temperature. Specify
any assumptions you make. You may need to use the following data. If you
use Thermo-Calc for your work, include appropriate screen shots.
a. Atomic weights: Al 27 and O 16 g/mol.
b. Heat capacity: solid aluminum, 26 J/(k mol); solid Al2O3, 104 J/(k mol

Al2O3).
c. Enthalpy of formation for Al2O3: �1676000 J/(mol Al2O3).

8. Use the Ellingham diagrams to answer the following questions.
a. What is the partial pressure of oxygen above pure Ti and TiO2 at

1100 �C? What ratios of CO/CO2 or H2/H2O are needed to obtain this
partial pressure of oxygen?

b. If the system in part (a) is in equilibrium, and then carbon is added to
the system, would the oxygen pressure increase, decrease, or remain
the same? Explain your answer. What are the equilibrium phases?
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(cont.)

c. Will a Ti/TiO2 mixture maintained at 1600 �C in a furnace containing
~1 bar H2(g) oxidize Cr metal that is located in another part of the same
furnace chamber at 1000 �C? Explain.

d. Can a Cr2O3 crucible be used to contain Mo metal at 1500 K? Why or
why not?
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8 Applications to electrochemical
systems

The two basic types of chemical processes involving ions as reactant and/or product
species are electrolyte reactions and electrochemical reactions. Electrolyte reactions are
accompanied by the atomic scale movement of ionic species and possibly electrons.
Chemical changes that produce changes in valence and electron and ion transport over
finite distances constitute an area of science termed electrochemistry. The latter chem-
ical changes occur in an electrochemical cell comprising two electrodes, an anode and
a cathode, which are coupled by an electrolyte and an external electron conductor.
Most thermodynamic concepts and analyses described in the previous chapters remain
unchanged when applied to electrochemistry, but the analysis of electrochemical
systems does require some new terminology, new definitions, and new conventions.
The primary focus of this chapter is on applications of thermodynamics to electrochem-
ical reactions that involve either aqueous electrolyte solutions or solid state electrolytes.
Since all electrochemical systems include ionized species as reactant and/or product
species, electrolyte reactions will also be discussed.

8.1 Electrolyte reactions and electrochemical reactions

Electrolytes that dissolve in a polar solvent such as water to produce ionic species do
not necessarily exhibit changes in valence. A simple example is the strong electrolyte
NaCl(s) dissolving in water to produce solvated ions:

NaCl sð Þ ¼ Naþ aqð Þ þ Cl� aqð Þ 8.1

where (aq) indicates that the ionic species is in an aqueous solution. In this system, the
ion concentrations must become quite large before the solution is saturated and can exist
in equilibrium with NaCl(s). Its reaction constant, defined by Eq. 7.5, is shown as
Ke ¼ aNaþaCl� . If the product of the ion activities is less than Ke, the solution is not
saturated, and more NaCl(s) can be dissolved.

The precipitation of AgCl(s), a weak electrolyte, occurs quite readily when Cl� ions
are added to an aqueous solution containing Ag+(aq):

Agþ aqð Þ þ Cl� aqð Þ ¼ AgCl sð Þ 8.2

The equilibrium constant for this reaction, Ke ¼ 1= aAgþaCl�
� �

is quite large, so the
equilibrium product of the ion activities, proportional to their concentrations, is quite
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small. In the laboratory, the above reaction could occur as a result of adding hydro-
chloric acid to a silver nitrate solution. The accompanying H+(aq) (or H3O

+(aq)) and
NO�

3 (aq) ions in solution are not directly involved in the silver chloride precipitation
reaction so are not shown in the reaction represented by Eq. 8.2.

The above ionic equilibrium in the AgCl(s)–H2O system is not only important for
understanding this electrolyte system, but is also critical in electrochemical systems in
which Ag(s) undergoes a valence change at one electrode and reacts with a Cl�(aq) ion
to produce AgCl(s) and an electron that is externally transported finite distances to
another electrode. The oxidation reaction occurs at the Ag/AgCl electrode (an anode
half-cell reaction where electrons are added into the system):

Ag sð Þ þ Cl� aqð Þ ¼ AgCl sð Þ þ e� 8.3

A reduction reaction occurs at the other electrode (a cathode half-cell reaction where
electrons are consumed by the reaction):

1
2
Cl2 gð Þ þ e� ¼ Cl� aqð Þ 8.4

The net cell reaction results in the formation of AgCl(s) from its elements:

Ag sð Þ þ 1
2
Cl2 gð Þ ¼ AgCl sð Þ 8.5

Without knowledge of the physical system under which the reaction is occurring, it
would not be possible to know whether the reaction of Eq. 8.5 is a result of chlorine
gas reacting directly with Ag(s), or whether the reaction is part of an electrochemical
cell with a transport of electrons and ions over finite distances. The addition of the
two half-cell reactions gives the net cell reaction, which does not show electrons as
either reactant or product species and may or may not include ionic species.
A schematic diagram of an electrochemical cell for the above system is shown in
Figure 8.1.

Oxidation and reduction can occur in electrolyte reactions without creating an
electrochemical cell. This is the case when chlorine gas reacts directly with silver on
an Ag(s) surface. The reaction of Eq. 8.5 above is the net reaction for this process, but
the electrons produced from the oxidation of Ag(s) are not transported over finite

V

<Ag Cl><Ag>

[Ag
+]

Pt

(Cl2)

Figure 8.1 Schematic diagram of an electrochemical cell consisting of a chlorine electrode and
a silver–silver-chloride electrode.

1838.1 Electrolyte reactions and electrochemical reactions



distances before combining with Cl2(g) in its reduction to Cl–(aq). No anode or cathode
half-cell reactions exist in this system. The electrons and ions involved in the reaction
move only over atomic scale distances.

8.2 Concentrations, activities, and reference states of electrolyte species

Thermodynamic descriptions of ionic species in solutions are different from those of
neutral species, which leads to a need to define concentration units, standard states,
activities, and activity coefficients of ionic solutions. In most studies of electrochemical
corrosion and electrodeposition, and in the applied work of electrochemical engineers,
ionic species concentrations are given in units of molarity, i.e., the number of moles of a
species in a liter of solution (mol/l), symbolically represented in equations by either ci or
[MZ+]. The other common concentration used for ionic species is molality, which is
defined as the number of moles of a species in 1000 g of solvent. For dilute aqueous
solutions, molarity and molality values are very similar.

As discussed in Section 2.2.1, a practical definition of the activity of a species i is the
thermodynamic reactivity, or tendency to react, of species i in the system of interest as
compared to i in its reference state form. The reference state of a species is typically
chosen as a specific chemical/physical state of the species at 1 atm external pressure and
the temperature of interest. Similarly, a typical reference state for ionic species in
aqueous solutions is the 1 molar ideal solution at 1 bar external pressure and the
temperature of interest. If an electrolyte solution behaves ideally, then the activity of
species i in solution is

ai ¼ ci mol=lð Þ
c0i mol=lð Þ ¼

ci mol=lð Þ
1 mol=lð Þ ¼ ci dimensionlessð Þ 8.6

where ci is the molar concentration of i in the solution divided by c0i , the 1 molar
reference state ideal solution concentration. Thus, in ideal solutions, the activity of an
electrolyte species is numerically equal to its molar concentration. The above treatment
of ionic species is equivalent to the common practice of depicting the activity of a gas
by the value of its ideal gas partial pressure in units of bars.

The activity coefficient corrects for the non-ideality of the species in solution as
defined in Eq. 2.51. If the solution is ideal, γi ¼ 1 for all concentrations of the species in
solution. For all solutions, one expects γi ! 1 as ci ! 1. It is not possible to measure γiþ
or γi� for individual charged ions, but only a geometric mean of the positive and
negative ion values. Consider the following ionic solution,

Avþ
u Bu�

v ¼ uAvþvþ Bu� 8.7

Its chemical potential can be written as

μAvþ
u Bu�

v
¼ uμAvþ þ vμBu� ¼ uμ0Avþ þ vμ0Bu� þ uRT ln aAvþ þ vRT ln aBu�

¼ μ0Avþ
u Buþ

v
þ RT lnaAvþ

u Bu�
v

8.8
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Its geometric average or mean activity and activity coefficient are defined as

aAvþ
u Bu�

v
¼ ðaAvþÞuðaBu�Þv ¼ uuvvcuþvðγAvþÞuðγBu�Þv ¼ uuvvðγ�cÞuþv 8.9

γ� ¼ ðγuAvþγvBu�Þ1=ðuþvÞ 8.10

For example, one can define γ� ¼ γNaþγCl�ð Þ1=2 and γ� ¼ γ2
Al3þγ

3
SO4

2�

� �1=5
for NaCl and

Al2(SO4)3, respectively. For ideal, weak, electrolytes, γ� ¼ 1, and for non-ideal, strong,
electrolytes, γ� 6¼ 1.

8.3 Electrochemical cells and half-cell potentials

An electrochemical system must fulfill certain requirements, including the following, in
order to apply equilibrium thermodynamic descriptions of the system.

� The cell must be reversible when slight changes in conditions (potentials, concen-
trations, pressures, temperature) cause electrochemical reactions and an external
flow of electrons to occur in the direction needed to re-establish equilibrium.

� All non-electrochemical reactions in the system must be prevented as such
reactions would cause a shift in equilibrium without causing a shift in cell
potential and thus a driving force for external electron flow.

� Chemical reactions must occur only when an external current flows. The finite
distances for external electron transport can be as short as grain size dimensions
in many corrosion reactions, or this transport may be through an external
electrical conductor connecting the anode and cathode half-cell, as in batteries.

� Charge balance as well as mass balance is required of all reactions.

8.3.1 Electrochemical cells

A potential difference, i.e. voltage difference, can be generated between the electrodes
in a cell from differences in the potentials of the half-cell reactions. This potential can
originate from potential differences of two chemically different half-cells (a galvanic
cell), or concentration differences in two otherwise identical half-cells (a concentration
cell). Each type of cell is illustrated below.

The reaction between copper ions and zinc illustrated below represents the net cell
reaction of a galvanic cell in which the oxidation of Zn(s) occurs at the anode electrode,
and the reduction of Cu2+ occurs at the cathode electrode (see Figure 8.2):

Cu2þðaqÞ þ ZnðsÞ ¼ CuðsÞ þ Zn2þðaqÞ 8.11

The reaction at each electrode, the half-cell reaction, includes ions and electrons as
reactant and/or product species. The anode oxidation, reaction is represented by

ZnðsÞ ¼ Zn2þðaqÞ þ 2e� 8.12
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Electrons are products of anode reactions and flow externally from anode to cathode.
By convention, the activities of the electrons in an equilibrium cell are taken as unity.
The cathode, reduction, reaction is written as

Cu2þðaqÞ þ 2e� ¼ CuðsÞ 8.13

Electrons are reactants of cathode reactions and are supplied by an external flow from
the anode. In addition to consuming electrons at the cathode at the same rate as they are
produced at the anode, charge balance is maintained in the electrolyte by the generation
of Zn2+ ions at the same rate that Cu2+ ions are consumed. A schematic diagram in
Figure 8.2 illustrates the simple physical relationships in such an electrochemical cell.

A concentration cell in which an electrochemical potential is developed because of
concentration differences between otherwise equivalent anode and cathode reactions is
illustrated below. Such a cell can be produced by the oxidation and reduction of copper
at two separate electrodes as is depicted in the following reactions:

CuðsÞ ¼ Cu2þðaq, caÞ þ 2e� ðanodeÞ 8.14

Cu2þðaq, cbÞ þ 2e� ¼ CuðsÞ ðcathodeÞ 8.15

where ca and cb are the respective concentrations of Cu
2+ in the aqueous solutions at the

anode and cathode, and ca < cb. The net cell reaction is

Cu2þðaq, cbÞ ¼ Cu2þðaq, caÞ 8.16

where the reaction occurs spontaneously to decrease cb and to increase ca until the two
concentrations become the same, cb = ca. A schematic diagram of such a cell is shown
in Figure 8.3.

V

<Zn>

[H2O]

[Cu2+]

<Cu>

[Zn2+]

Figure 8.2 Schematic diagram of a galvanic electrochemical cell consisting of a zinc electrode
and a copper electrode.
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A semi-impermeable membrane, or a salt bridge, must exist in such a cell to maintain
the charge balance. As Cu2+ ions are produced at the anode and consumed at the
cathode, the negatively charged ions in the solution, for example SO2�

4 , must be
transferred from the cathode region to the anode region of the cell to maintain an
electrically neutral solution.

The above concentration cell provides a good example for illustrating standard
notation for an electrochemical cell. This cell can be represented by Figure 8.4. The
anode where oxidation occurs is always shown on the left, and the cathode where
reduction occurs is on the right. A single line separating phases denotes an interface
between two phases. The above anode electrode and reaction of Eq. 8.14 are symbolic-
ally represented by

jCuðsÞjCu2þðcaÞ 8.17

The interface between the external conductor and Cu(s) is depicted by the single line
to the left of Cu(s), while the single line between Cu(s) and Cu2+(ca) depicts

V

<Cu>

H2O

SO2
4

– SO2
4
–

SO2
4
–Membrane permeable to

Cu2+(Ca) Cu2+(Cb)H2O

<Cu>

Figure 8.3 Schematic diagram of a concentration electrochemical cell consisting of
two copper electrodes.

Anode Cathode

| Cu(s) | Cu2+(ca) | | Cu2+(cb) | Cu(s) |

Figure 8.4 Standard notation for an electrochemical cell.

1878.3 Electrochemical cells and half-cell potentials



the interface between the anode electrode and the electrolyte solution. Similarly, the
cathode electrode and reaction of Eq. 8.15 are symbolically represented by

Cu2þðcbÞjCuðsÞj 8.18

A double line between the two copper ions in the notation denotes a physical separation
of two solution phases, the anode and cathode electrolyte regions, which exhibit
different concentrations of copper ions:

Cu2þðcaÞj jCu2þðcbÞ 8.19

These solution phases are physically connected by a semi-impermeable membrane
or salt bridge that allows a common negative ion, for example SO2�

4 , of the solution
phases to diffuse from one region to the other in order to maintain charge balance
as the cell reaction occurs. The Cu2+ ions cannot be transported from one region to
the other.

8.3.2 Half-cell potentials

When an electron current flows between electrodes, reactions are occurring at the
electrodes, and concentration gradients causing polarization develop around the elec-
trodes. These gradients result in extraneous potentials occurring at the electrodes. In such
cases cell equilibrium is not established and the measured cell potentials are not those for
true partial equilibrium. If a cell is short-circuited, with the electrodes connected by a
conductor, current will flow until the external potential becomes zero, i.e. εext ¼ 0, and
equilibrium is established with the same conditions as for non-electrochemical systems.
If an external potential, εext , is applied to the cell, chemical reactions occur until the cell
potential balances to εext, and no current flows. This potential is called the open-circuit
voltage (OCV) in the literature. It is important to realize that the OCV includes all
reactions that occur on the electrode surface when the electrode is in contact with the
electrolyte, such as passivation, discussed in Section 8.5.1. Partial equilibrium in a cell is
achieved when the cell potential is balanced by an applied external potential. In such
partial equilibrium cases, equilibrium thermodynamic analyses can be used even though
the cell potential is not zero, i.e. εcell 6¼ 0. This differentiates electrochemical systems
from other equilibrium systems discussed previously.

The number of electrons involved in a net cell reaction is important in relating the
cell potential and the Gibbs energy change for the cell reaction. As will be illustrated
later in this section, this number is equal to the number of electrons involved in the
half-cell reactions that were added to yield the net cell reaction. The electrical work
achieved by the transport of an electrical charge through a cell potential can be
written as

w ¼ z f ε 8.20

where z represents the number of moles of electrons in the cell reaction, f is the
Faraday constant, equal to 96,485 J/V per mole of electrons, and ε is the potential
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difference, often referred to as the electromotive force (emf) in the literature. For a
system at constant temperature, pressure, and composition, this work is the same as
the Gibbs energy difference between the two electrodes, i.e. the Nernst equation

�ΔG ¼ w ¼ zf ε 8.21

where the negative sign is needed because the system does work on the surroundings
when the Gibbs energy of the system is decreased. When the applied external potential
is larger than the cell potential, the surroundings does work on the system, and a
common example is the charging of a battery. Thermodynamic relations discussed in
previous chapters can thus be directly applied to electrochemical systems; some
common equations are shown in Table 8.1.

A half-cell reaction potential cannot be measured directly, but only its potential
relative to another half-cell reaction. By convention, a standard half-cell potential is
measured relative to the standard hydrogen half-cell reduction reaction at 25 �C (298 K)
and 1 bar, which has a defined standard potential of zero volts,

Hþðaq, a ¼ 1Þ þ e� ¼ 1
2
H2ðg, 1 barÞ 8.22

with ε0(H+/H2,g) = 0.00 V. The standard half-cell reduction reactions of metals at 25 �C
are for the general reaction

Mzþðaq, a ¼ 1Þ þ ze� ¼ MðsÞ 8.23

with ε0(Mz+/M) volts. Half-cell reactions with the most positive standard elec-
trode potentials have a tendency to spontaneously proceed toward reduction (cath-
ode reactions). Half-cell reactions with the most negative standard electrode
potentials have a tendency to spontaneously proceed toward oxidation (anode
reactions).

Consider, for example, a cell made up of a standard hydrogen electrode and a
standard zinc electrode with ε0(H+/H2,g) = 0.00 V and ε0 (Zn2+/Zn) = �0.762 V. Thus,
the H+ would tend to be reduced, and the zinc metal would tend to be oxidized, and the
spontaneous reaction if all species had unit activities would be

2Hþðaq, a ¼ 1Þ þ Zn ¼ H2ð1 barÞ þ Zn2þðaq, a ¼ 1Þ 8.24

with ε0cell ¼ 0:762 V and Δ0G ¼ �2� 96485� ε0cell. The cathode half-cell reaction
would be the same as Eq. 8.22, while the anode half-cell reaction would be

Zn ¼ Zn2þðaq, a ¼ 1Þ þ 2e� 8.25

Table 8.1 Thermodynamic equations for electrochemical cells

ΔG ¼ �zf ε

ΔS ¼ � ∂ΔG
∂T

� �
P
¼ þzf ∂ε

∂T

� �
P

ΔH ¼ �
∂ ΔG

T

� �
=∂ 1

T

� ��
P

¼ �zf
�
∂ ε

T

� �
=∂ 1

T

� ��
P

¼ zf
�
T ∂ε

∂T

� �
P

� ε
�

ΔCP ¼ ∂ΔH
∂T

� �
P
¼ Tzf ∂2ε

∂T2

� �
P

1898.3 Electrochemical cells and half-cell potentials



When the ion concentrations and H2 gas do not all have unit activities, the Gibbs energy
and cell potential of the cell reaction, Eq. 8.24, become

ΔG ¼ Δ0G þ RT ln
aZn2þPH2

aHþð Þ2 8.26

εcell ¼ ε0cell �
RT

zf
ln
aZn2þPH2

aHþð Þ2 8.27

The standard reduction potentials of some common metals at 25 �C are given in
Table 8.2.

A cell reaction can be established by different half-cell reactions. For example, for
the following reaction, ε01 can be derived from two different cells:

3 Fe2þ ¼ 2 Fe3þ þ Fe sð Þ 8.28

cell A

3Fe2þ þ 6e� ¼ 3FeðsÞ ε01 ¼ �0:440 V 8.29

2 FeðsÞ ¼ 2 Fe3þ þ 6e� ε02 ¼ þ0:036V 8.30

cell B

2Fe2þ ¼ 2Fe3þ þ 2e� ε04 ¼ �0:772 V 8.31

Fe2þ þ 2e� ¼ FeðsÞ ε05 ¼ �0:440 V 8.32

Table 8.2 Standard reduction potentials of some common
metals at 25 �C

Electrode E* Volts Reaction

Li+/Li –3.00 Li+ + e�!Li
Rb+/Rb –2.92 Rb+ + e�!Rb
K+/K –2.92 K+ + e�!K
Sr+/Sr –2.92 Sr+ + 2e�!Sr
Ca2+/Ca –2.87 Ca2+ + 2e�!Ca
Na+/Na –2.71 Na+ + e�!Na
Mg2+/Mg –2.39 Mg2+ + 2e�!Mg
Al3+/Al –1.67 Al3+ + 3e�!Al
Zn2+/Zn –0.76 Zn2+ + 2e�!Zn
Cr3+/Cr –0.60 Cr3+ + 3e�!Cr
Fe2+/Fe –0.44 Fe2+ + 2e�!Fe
Ni2+/Ni –0.24 Ni2+ + 2e�!Ni
Sn2+/Sn –0.14 Sn2+ + 2e�!Pb
H+/H2 0.00 H+ + e�!½H2

Cu2+/Cu +0.34 Cu2+ + 2e�!Cu
Ag+/Ag +0.80 Ag+ + e�!Ag
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Both cells give the same net reaction shown by Eq. 8.28, but with six and two electrons
and standard cell potentials ε0cell A = �0.404 V and ε0cell B = �1.212 V, respectively.
However, the standard Gibbs energies of both cells are the same, i.e.

Δ0Gcell A ¼ �6 f ð�0:404Þ ¼ þ2:424 f 8.33

Δ0Gcell B ¼ �2 f ð�1:212Þ ¼ þ2:424 f 8.34

This shows that Δ0G values are independent of half-cell reactions and depend only on
the net reaction because the net reaction is neutral in electrons and balanced in mass.

8.4 Aqueous solution and Pourbaix diagram

The importance of aqueous solutions in all aspects of life is well known and needs
not be discussed further. Since many electrochemical processes involve electrolyte
solutions in an aqueous solvent, electrochemical processes including water, hydrogen,
and/or oxygen are discussed in more detail. The hydrogen–oxygen cell can be described
for both acidic electrolytes, and alkaline electrolytes. With acidic electrolytes, H+ is in
much higher concentrations than OH�, and thus half-cell reactions with H+ as an ionic
transport species are more important than those involving OH�. The reverse is true for
alkaline electrolytes which contain high OH� concentrations. Other than for nearly
neutral acid–base systems, either H+ or OH� dominates the other by several orders of
magnitude as can be seen from the value of the 298 K dissociation constant for H2O:

H2OðlÞ ¼ HþðaqÞ þ OH�ðaqÞ 8.35

with reaction constant Ke = [H+][OH�] = 10–14 and Δ0G = �RTlnKe = +79,908 J.
By convention, one defines pH = �log [H+] and pOH = �log [OH�], and then pH +
pOH = 14.

Under acidic electrolyte conditions of low pH (high [H+] concentrations) the anode
reaction in a hydrogen–oxygen cell is:

1
2
H2ðgÞ ¼ HþðaqÞ þ e� 8.36

with ε01 = 0.0 V and Δ0G1= 0 J. The corresponding cathode (reduction) reaction is:

2HþðaqÞ þ 1
2
O2ðgÞ þ 2e� ¼ H2OðlÞ 8.37

with ε02 = 1.229 V and Δ0G2 = �2�1.229�96485 J = �237160 J. The net cell reaction
for acidic electrolytes is:

H2ðgÞ þ 1
2
O2ðgÞ ¼ H2OðlÞ 8.38

with ε0cell = 1.229 V and Δ0Gcell = �2�1.229�96485 J = �237160 J.
Under alkaline electrolyte conditions of high pH (high [OH�] concentrations) the

anode reaction in a hydrogen–oxygen cell is:

2OH�ðaqÞ þ H2ðgÞ ¼ 2H2OðlÞ þ 2e� 8.39
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with ε03 = 0.828 V and Δ0G3= �2�0.828�96485 J = �159779 J. The corresponding
cathode (reduction) reaction is:

H2OðlÞ þ 1
2
O2ðgÞ þ 2e� ¼ 2OH�ðaqÞ 8.40

with ε04 = 0.401 V and Δ0G4 = �2�0.401�96485 J = �77381 J. The net cell reaction
for alkaline electrolytes is:

H2ðgÞ þ 1
2
O2ðgÞ ¼ H2OðlÞ 8.41

with ε0cell = 1.229 V and Δ0G cell = �2�1.229�96,485 J = �237160 J.
Plots of ε versus pH for a given chemical system have been typically used

to exhibit the stability relationships of ionic species and solid phases in aqueous-
based electrochemical systems. These graphs are often called Pourbaix diagrams
after their inventor and are constant temperature and constant pressure diagrams
for a constant concentration, usually for one metallic element. By convention, the
variable ε in a Pourbaix diagram corresponds to the potential for the cathode
reduction reactions in the electrochemical half-cell with electrons as reactants.
Pourbaix diagrams can be extended to multi-component materials when the thermo-
dynamic properties of the components are available for both the materials and the
aqueous solution.

An example of an ε versus pH diagram is shown in Figure 8.5 for the Ni–H2O
system at a 298 K, 1 bar, and cNi2þ ¼ 0:001 molality. Three stability regions for Ni
species are shown: Ni(s), NiO(s), and [Ni2+]. The two lines on the upper and lower
bounds of this diagram correspond to hydrogen reduction (Eq. 8.36) and oxygen
reduction (Eq. 8.37) reactions, respectively.
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14

Figure 8.5 An ε versus pH, Pourbaix diagram for Ni–H2O at 298 K, 1 bar, and cNi2þ ¼ 0:001
molality.
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For the ε and pH conditions within the boundaries of the Ni(s) region, no solid phase
other than Ni(s) is stable, no ionic species with a concentration of 10�3 molarity is
stable, and no gas species with a pressure of 1 bar is stable. Similar statements could be
made about the NiO(s) and [Ni2+] regions on the diagram. In the [Ni2+] area, the
introduction of Ni(s) or NiO(s) into the system would result in the dissolution of these
solid phases since they are not stable with respect to the [Ni2+] aqueous solution. The
corresponding chemical reactions proceed spontaneously to the right as follows until the
solid phases are consumed:

NiðsÞ ! Ni2þð10�3 molarityÞ þ 2e� 8.42

NiOðsÞ þ 2HþðaqÞ ! Ni2þð10�3 molarityÞ þ H2OðlÞ 8.43

No H+(aq) is involved in the first reaction, Eq. 8.42, so the boundary line separating
Ni(s) and Ni2+ is independent of pH. No oxidation or reduction occurs in the second
reaction, Eq. 8.43, i.e. no electrons are reactants or products in the reaction, so the
boundary line separating NiO(s) and Ni2+ is independent of ε.

Note the convention that ε is the potential for a cathode reduction reaction, and also
note that boundary lines between two stability regions depict conditions under which
partial equilibrium of the two species occurs for the ε and pH values at any point on
these lines. For the boundary line separating Ni(s) and Ni2+ in an ideal aqueous solution,
i.e. the reverse of Eq. 8.42, the following equation is obtained.

ε ¼ ε0 ¼ �0:268 V 8.44

For the NiO(s)–Ni2+ boundary line of an ideal solution, the reaction Eq. 8.43 is a
complete equilibrium, and thus the relationship is

0 ¼ Δ0G þ RT ln
1

cHþð Þ2 ¼ Δ0G þ 2� 2:303RTpH 8.45

pH ¼ � Δ0G

2� 2:303RT
8.46

where Δ0G is obtained as follows and can be calculated from the SSUB database and
the standard potential of Ni:

Δ�G ¼ �GH2o þ �GNi2þ� �GNiO � 2�GHþ

¼ �GH2O � �GH2 � 1
2
�GO2

�
� �GNiO � GNi � 1

2
�GO2

�		

� �GNi � 2�Ge� ��GNi2þ
� �

� �GH2 � 2�Ge� � 2�GHþ
� �h i

¼ Δf
�GH2O � Δf

�GNiO � Δ�GNi2þ=Ni 8.47

At a specified temperature, only one standard free energy and only one equilib-
rium constant exists for this chemical reaction, and thus only one specific value
of pH = 6.631 exists for the reaction represented by Eq. 8.43 in this Pourbaix
diagram.
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The diagonal line between Ni(s) and NiO(s) in Figure 8.5 represents the equilibrium
between the two phases and holds for a partial equilibrium reaction that is the sum
reactions Eq. 8.42 and Eq. 8.43:

NiOðsÞ þ 2HþðaqÞ þ 2e� ¼ NiðsÞ þ H2OðlÞ 8.48

The reduction of Ni from a divalent state in NiO to metallic Ni(s) occurs, but the
reaction also depends on the H+ concentration, the pH value. The corresponding Gibbs
energy and Nernst equations are

ΔG ¼ Δ0G þ RT ln
1

cHþð Þ2 ¼ �23939þ 2� 2:303RTpH 8.49

ε ¼ ε0 � RT

2f
ln

1

cHþð Þ2 ¼ 0:124� 2:303RT
f

pH 8.50

where Δ0G can be calculated as follows:

Δ�G ¼ �GH2o þ �GNi ��GNiO � 2�GHþ � 2�Ge�

¼ �GH2O � �GH2 � 1
2
�GO2

�
� �GNiO ��GNi � 1

2
�GO2

�		

þ �GH2 � 2�Ge� � 2�GHþ� �
¼ Δf

�GH2O � Δf
�GNiO 8.51

The bottom and top lines in Figure 8.5 correspond to the reduction reactions related to
H2 and O2 gases, i.e. the stability of H2O. The lower one is for the reverse of Eq. 8.36
under ε0 ¼ 0 and PH2 ¼ 1 with the Nernst equation being

ε ¼ ε0 � RT

f
ln

PH2ð Þ1=2
cHþ

¼ � 2:303RT
f

pH 8.52

As the pH increases from 0, ε becomes more negative, as depicted. The top line
corresponds to the oxygen reduction reaction represented by Eq. 8.37 with ε0 ¼ 1:225
and calculated from the aqueous solution database in Thermo-Calc [64] and PO2 ¼ 1
with the Nernst equation being

ε ¼ ε0 � RT

2f
ln

PO2ð Þ1=2
cHþð Þ2 ¼ 1:225� 2:303RT

f
pH 8.53

The dependence of ε on pH is identical for the reduction reactions Eq. 8.37 and
Eq. 8.48, and their intercepts at pH ¼ 0 differ by the difference in their ε0 values.

In this simple Pourbaix diagram for Ni in an ideal aqueous solution, all boundary
lines are straight because there is only one ionic species of Ni in the aqueous solution,
i.e. Ni2+. When there is more than one ionic species in the aqueous solution, the
boundary lines may no longer be straight due to the competition between species.
One example is Cu with two main ionic species of Cu2+ and CuOH+, and the reduction
reaction between the metallic Cu and the aqueous solution involves both species, i.e.

xCu2þ þ 1� xð ÞCuOHþ þ 1� xð ÞHþ þ 2 e�� ¼ Cu sð Þ þ 1� xð ÞH2O 8.54
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with

ΔG ¼ Δ0G þ RT ln
1

cCu2þð Þx cCuOHþcHþð Þ1�x

¼ Δ0G þ RT ln
1

cCu2þð Þx cCuOHþð Þ1�x þ 2:303 1� xð ÞRTpH 8.55

ε ¼ ε0 � RT

2f
ln

1

cCu2þð Þx cCuOHþð Þ1�x �
2:303 1� xð Þ � RT

2f
pH 8.56

It is evident that both the slope and the intercept at pH = 0 are a function of the
concentration of CuOH+, which is a function of the pH value. Consequently, the
boundary between metallic Cu and the aqueous solution is no longer a straight line,
as shown in Figure 8.6. The concentrations of various species in the aqueous solution,
i.e. commonly called the speciation, are plotted in Figure 8.7, showing the change of
dominant species as a function of pH value.

In Pourbaix diagrams for alloys with two or more elements, the activities of individ-
ual elements are used in calculating the potentials of reduction reactions. Considering a
Fe–Ni alloy with Fe2+ and Ni2+ in the aqueous solution, the reduction reactions for
Fe and Ni can be written separately as

Ni2þðcNiÞ þ 2e� ! Ni ðaNi in alloyÞ 8.57

Fe2þðcFeÞ þ 2e� ! Fe ðaFe in alloyÞ 8.58

1.2
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Figure 8.6 An ε versus pH Pourbaix diagram for the Cu–H2O system at 298 K, 1 bar, and
cCu ¼ 0:001 molality.
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with potentials

εNi ¼ ε0Ni �
2:303RT

2f
ln
aNi
cNi

¼ �0:268� 2:303RT
2f

ln
aNi
cNi

8.59

εFe ¼ ε0Fe �
2:303RT

2f
ln
aFe
cFe

¼ �0:441� 2:303RT
2f

ln
aFe
cFe

8.60

In principle, there are two scenarios for a given set of aNi and aFe for the alloy. The first
scenario is at the limit of a dilute aqueous solution, i.e. cNi ¼ cFe ¼ 0:001 molarity,
εNi and εFe can be calculated, and the element with the lower potential has the
tendency to dissolve first, which can result in the so-called dialloying effect. The second
scenario is for equal potentials, i.e. εNi ¼ εFe due to an externally imposed potential, and
the equilibrium concentrations of Fe2+ and Ni2+ can be calculated from Eq. 8.59
and Eq. 8.60.

8.5 Application examples

Amongmany applications of electrochemistry, several are briefly discussed in this section.

8.5.1 Metastability and passivation

Our modern industrial society is built on various metals such as Fe, Ni, Al, Ti,
and Zr alloys which are reactive, but exhibit extraordinary kinetic stability in
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Figure 8.7 Concentrations Y of ionic species in the aqueous solution at ε ¼ 0:3V from Figure 8.6.
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oxidizing environments due to the existence of a thin reaction product film on the
surface. This film effectively isolates the metal from the corrosive environment, a
phenomenon called passivation. One interesting experiment was reported by Faraday
in 1836 who found that iron corrodes freely in dilute nitric acid, while in concen-
trated nitric acid no reaction apparently occurred. To understand this phenomenon,
let us examine a simple, schematic Pourbaix diagram for an iron–water system,
shown in Figure 8.8.

For iron in deaerated acid solution, the partial anodic and cathodic reactions are
given by line 1 (Fe/Fe2+) and line (a), respectively, resulting in a corrosion potential
that lies between lines 1 and (a). In oxygenated (aerated) solutions, the corrosion
potential may lie between lines 1 and (b), because the reduction of oxygen is a
possible (likely) cathodic reaction. Since dilute HNO3 is only a weak oxidizing
agent, the principal cathodic reaction is most likely hydrogen evolution, and hence
the corrosion potential is expected to lie between lines 1 and (a) at relatively high
pH, as shown. Since the Fe/Fe2+ reaction is relatively fast compared with that for
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Fe3+

Fe2+E/V
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Figure 8.8 Schematic Pourbaix diagram for iron illustrating the resolution of the Faraday paradox in
the corrosion of iron in nitric acid [66]. Lines (a) (b), and (c) correspond to the following equilibria:
(a) Hþ þ e� ¼ 1

2 H2; (b) O2 þ 4Hþ þ 4e� ¼ 2H2O; (c) NO�
3 þ 3Hþ þ 2e� ¼ HNO2 þ H2O,

respectively, with permission from IUPAC.
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H+/H2 on iron, if the corrosion potential is situated below the extension of line 2 (Fe/
Fe3O4) into the Fe2+ stability region then Fe3O4 cannot form on the surface, even as
a metastable phase.

On the other hand, concentrated HNO3 is a strong oxidizing agent due to the reaction
of NO�

3 þ 3Hþ þ 2e� ¼ HNO2 þ H2O, so that the corrosion potential can lie any-
where between lines 1 and (c) at low pH. Since reaction (2) is likely to be fast, the
corrosion potential will be high and certainly will be more positive than the extension of
line 2 into the stability region for Fe2+ at low pH. Therefore, Fe3O4 becomes metastable
and can form between the aqueous solution and iron. The thickness of this Fe3O4 film
depends on its dissolution rate into the aqueous solution and its growth rate at the
interface with iron, which in turn depends on the diffusion of ionic species across the
film. Its existence results in passivity and the observed kinetic inactivity of iron in this
medium. When the potential becomes even more positive above the extension of line 3,
Fe2O3 may form on Fe3O4 as an additional metastable phase, resulting in the commonly
observed bilayer structure.

8.5.2 Galvanic protection

A galvanic reaction takes place between two different materials at the two respective
electrodes each with a different tendency to hold on to electrons. Consider the following
electrochemical cell used to protect Cu tanks against oxidation by using a “sacrificial”
Fe electrode:

anode solution cathode
FeðsÞ j Fe2þj SO4

¼j Cu2þj CuðsÞ j
Cathode reduction: Cu2þþ2e� ¼ CuðsÞ ε0 (volts) = 0.34
Anode oxidation: FeðsÞ¼ Fe2þ þ 2e� ε0 (volts) = 0.44

Net reaction: Cu2þ þ Fe ! Cuþ Fe2þ ε0 (volts) = 0.78

If the cell has a direct connection between the electrodes, i.e. it has a short circuit, then
ΔG ! 0 and thus εcell ! 0. Since we have the value ε0cell > 0 for the net cell reaction,

the equilibrium constant Ke > 1, which means [Fe2+]/[Cu2+] > 1. By assuming an
ideal electrolyte solution, the activities in Ke can be represented by concentrations
(in molar concentration units), further assuming that solid Fe and Cu are present at unit
activities. If the electrodes of Cu and Fe are short circuited while in contact with the
same “electrolyte solution,” the final equilibrium concentrations can be calculated by
the standard equation

Ke ¼ ½Fe2þ�=½Cu2þ� ¼ expð�Δ0G=RTÞ 8.61

or, using the Nernst equations,

ε ¼ ε0 � ðRT=z f Þ ln ð½Fe2þ�=½Cu2þ�Þ ¼ 0 8.62

Thus the above standard cell potential [Fe2+]/[Cu2+] = 2.4�1026.
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With this large ratio it can be seen that the tendency to produce Cu2+ ions, i.e. the
tendency to corrode the Cu(s), is extremely small if a sacrificial Fe electrode is
configured in an electrochemical cell with the Cu tank.

8.5.3 Fuel cells

Fuel cells are devices to convert chemical energy to electricity and heat through
electrochemical reactions, with the fuel and oxygen supplied to the anode and cathode,
respectively. Typical ions migrating through the electrolyte are H+, OH�, CO2�

3 , and
O2�. In fuel cells with H+ as migrating ions, H2 molecules are dissociated into H+ on the
anode, which combine with O2 on the cathode to form H2O and release heat, on the basis
of the half-cell and the net cell reactions in their simplest form as shown by Eq. 8.36 for
the anode, Eq. 8.37 for the cathode, and Eq. 8.38 for the net cell, respectively.
Commonly used electrolytes are polymer and phosphoric acid, and both anode and
cathode reactions are facilitated by a catalyst, typically platinum. The thermodynamic
limit for the power which can be generated by the fuel cell is represented by

w ¼ �ΔG ¼ �Δ0Gcell þ RT ln PH2P
1=2
O2

� �
8.63

For fuel cells with anions as migrating ions, the anions are generated on the cathode,
with H2O formed and heat generated on the anode. Their representative cathode
reactions are

1
2
O2 þ H2Oþ 2e� ¼ 2OH� 8.64

1
2
O2 þ CO2 þ 2e� ¼ CO2�

3 8.65

1
2
O2 þ 2e� ¼ O2� 8.66

The anode reaction Eq. 8.64 is the reaction represented by Eq. 8.39, operating at low
temperatures and using a catalyst for both electrodes. The anode reactions Eq. 8.65 and
Eq. 8.66 are

CO2�
3 þ H2 ¼ H2Oþ CO2 þ 2e� 8.67

O2� þ H2 ¼ H2Oþ 2e� 8.68

respectively. To enable the diffusion of CO2�
3 and O2� through the cathode and the

electrolyte, both fuel cells are operated at relatively high temperatures, with the former
typically in molten carbonate solutions and the latter through solid oxides. Due to the
high operating temperatures, fuels are converted to hydrogen within the fuel cell itself
by a process called internal reforming, removing the need for a precious-metal catalyst
and enabling the use of a variety of fuels. The net cell reaction for all three fuel cells is
the same as in the case of H+, represented by Eq. 8.38.
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8.5.4 Ion transport membranes

Ion transport membranes (ITMs) are ceramic membranes conducting both electrons and
oxygen ions, but no other species. The chemical potential difference of oxygen between
the two sides of a membrane provides the driving force for oxygen to diffuse through
the membrane. Commonly used ITM oxides include perovskite and fluorite, with
chemical formulas ABO3 and AO2, respectively, typically with more than one element
in the A-site and/or the B-site to modify the electron and ionic conductivities. Key
thermodynamic properties of ITM oxides are their stability in service environments,
their vacancy concentrations in the oxygen and cation sites, and their cation valences
their. On the high oxygen partial pressure side, the reaction is the following:

1
2
O2 þ 2e� ¼ O2� 8.69

At the same time, the number of oxygen vacancies is reduced, resulting in a lower
concentration of oxygen vacancies and higher oxygen activity in the oxide on the high
oxygen partial pressure side. On the low oxygen partial pressure side, the reaction is
reversed to produce oxygen molecules, i.e.

O2� ¼ 1
2
O2 þ 2e� 8.70

This reaction results in a higher oxygen vacancy concentration and lower oxygen
activity. On both sides, the charge neutrality is compensated for by the valence changes
of the cations, resulting in electron flow in the opposite direction of oxygen diffusion.
The ionic conductivity is dictated by the oxygen transportation across the membrane by
the driving force of the following net reaction:

1
2
O2 Phigh

� � ¼ 1
2
O2 Plowð Þ 8.71

with change in Gibbs energy

ΔG ¼ 0:5RT ln
Plow

Phigh

	 �
8.72

The oxygen transportation is closely related to the concentration of oxygen vacancies in
the membrane, which is obtained by minimizing the Gibbs energy of the phase under
given temperature and oxygen partial pressure conditions. High vacancy concentrations
can be obtained by cation dopants with lower valences or small energy differences
between various valence states. However, at the same time, high vacancy concentrations
reduce the thermodynamic stability of the membrane, which may result in its decom-
position into more stable phase and can be tailored by alloying in A and B sites.

8.5.5 Electrical batteries

Batteries utilize electrochemical reactions to generate electricity for various devices.
The theoretical voltage of a battery can be calculated from Eq. 8.20 and Eq. 8.21 as

ε ¼ �ΔG
zf

¼ ε0 � RT lnQ
zf

8.73
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with ΔG the driving force of the net cell reaction and Q the reaction activity quotient.
The actual voltage of a battery is lower than the theoretical value due to kinetic
limitations of cell reactions and resistance to ion diffusion through the electrolyte.
Based on whether the cell reactions are reversible or not, batteries are typically
categorized as either primary disposable or secondary rechargeable batteries. The net
cell reactions in primary disposable batteries are not easily reversible, and electrode
materials may not return to their original forms on application of a higher external
potential of opposite sign. Consequently, primary batteries cannot be reliably recharged.
On the other hand, the net cell reactions in secondary batteries are easily reversible.
Furthermore, two half-cells in batteries may use different electrolytes with each half-cell
enclosed in a container and a separator permeable to conducting ions but not to the bulk
of the electrolytes.

One common primary battery is the zinc–carbon battery, with a zinc anode cylinder
and a carbon cathode central rod. The electrolytes are ammonium or zinc chloride next
to the zinc anode and a mixture of ammonium chloride and manganese dioxide next to
the carbon cathode. The half-cell and net reactions with ammonium chloride are as
follows:

Znþ 2NH3 ! ZnðNH3Þ22þ þ 2e� 8.74

2NH4Clþ 2MnO2 þ 2e� ! 2NH3 þMn2O3 þ H2Oþ 2Cl� 8.75

Znþ 2MnO2 þ 2NH4Cl ! Mn2O3 þ ZnðNH3Þ2Cl2 þ H2O 8.76

The electric potential of the reaction is, treating all compounds as stoichiometric,

ε ¼ �ΔG
2f

¼ �Δ0G

2f

¼ 1
2f

0GZn þ 2 0GMnO2 þ 2 0GNH4Cl � 0GH2O � 0GZn NH3ð Þ2Cl2 � 0GMn2O3

� �
8.77

The Gibbs energy of Zn(NH3)2Cl2 is not available in current databases but has been
estimated to be �505375 J per mole of formula [67]. The value of Eq. 8.77 at 298.15
K is thus obtained as 1.67 V, which is pretty close to the actual operating voltage of the
battery, around 1.5 V.

With zinc chloride, the cell reactions and electric potential may be written as

Znþ ZnCl2 þ 2OH� ! 2ZnOHClþ 2e� 8.78

MnO2 þ H2Oþ e� ! MnOOHþ OH� 8.79

Znþ 2MnO2 þ ZnCl2 þ 2H2O ! 2MnOOHþ 2ZnOHCl 8.80

ε ¼ 1
2f

0G
Zn þ 2 0G MnO2 þ 0G ZnCl2 þ 2 0G H2O � 2 0G MnOOH � 2 0G ZnOHCl

� �
8.81

Secondary batteries can be recharged by applying an external electrical potential,
which reverses the net cell reaction that occurs during discharging. The oldest form
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of rechargeable battery is the lead–acid batteries used in automotives, and the latest
development is the lithium-ion (Li-ion) batteries. A lead–acid battery typically uses
Pb and PbO2 as the cathode and anode electrodes and a 35% sulfuric acid and 65%
water solution as the electrolyte. Its anode and cathode reactions can be simplified
as follows

Pbþ SO2�
4 ¼ PbSO4 þ 2e� 8.82

PbO2 þ 4Hþ þ SO2�
4 þ 2e� ¼ PbSO4 þ 2H2O 8.83

The net cell reaction is

Pbþ PbO2 þ 2H2SO4 ¼ 2PbSO4 þ 2H2O 8.84

Its electric potential is represented by the following equation:

ε ¼ � 1
2f

2 0G
H2O þ 2 0G PbSO4 � 0G Pb � 0G PbO2 � 2 0G H2SO4

� �
8.85

the value being 2.651 V at 298.15 K as calculated from Thermo-Calc [64]. During
discharge, the reaction Eq. 8.84 goes to the right, and PbSO4 is formed on both the
anode and cathode. During charging, the reaction Eq. 8.84 goes to the left, and Pb
and PbO2 are restored. In practical applications, other ionic species such as H3O

+

and HSO�
4 may form in the electrolyte, complicating the reactions and affecting

its potential.
In lithium-ion batteries, during charging and discharging lithium ions migrate in

electrolytes between electrodes made of intercalated lithium compounds; LiCoO2 and
LiFePO4 are two of the several cathode materials used in lithium-ion batteries, and the
anode is typically made of carbon or metallic lithium. The anode and cathode reactions
for LiCoO2 batteries can be written in simple form as follows:

LixC6 ¼ xLiþ þ xe� þ 6C 8.86

xLiþ þ xe� þ Li1�xCoO2 ¼ LiCoO2 8.87

with the net reaction and electric potential being

LixC6 þ Li1�xCoO2 ¼ LiCoO2 þ 6C 8.88

ε ¼ � 1
xf

60G
C þ 0GLiCoO2 � GLixC6 � GLi1�xCoO2

n o

¼ � 1
f

μLi1�xCoO2
Li � μLixCLi

� �� 1
x

μLi1�xCoO2
LiCoO2

� 0G
LiCoO2

� �
 �
8.89

The electric potential is a function of x. The value in the first parentheses in the second
line of the above equation denotes the chemical potential difference of Li between two
electrodes, and the value in the second parentheses represents the chemical potential
difference of LiCoO2 between the states in the solution phase of Li1�xCoO2 and by
itself. The Gibbs energies of LixC6 and Li1�xCoO2 need to be obtained as a function of x
in order to calculate the electric potential of the battery.
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The compound LiFePO4 uses metallic lithium as the anode with the following half-
cell and net cell reactions:

xLi ¼ xLiþ þ xe� 8.90

xLiþ þ xe� þ Li1�xFePO4 ¼ LiFePO4 8.91

xLiþ Li1�xFePO4 ¼ LiFePO4 8.92

Its electric potential is also a function of x, i.e.

ε ¼ � 1
xf

0G
LiFePO4 � x0GLi � GLi1�xFePO4

n o

¼ � 1
f

μLi1�xFePO4
Li � 0μLi

� �� 1
x

μLi1�xFePO4
LiFePO4

� 0G
LiFePO4

� �
 �
8.93

The value in the first parentheses in the second line of the above equation denotes
the chemical potential difference of Li between the two electrodes, and the value in
the second parentheses represents the chemical potential difference of LiFePO4

between the states in the solution phase of Li1�xFePO4 and by itself. Consequently,
the Gibbs energy of Li1�xFePO4 needs to be obtained as a function of x in order to
calculate the electric potential of the battery. It is known that there are several
miscibility gaps in the FePO4 and LiFePO4 psuedo-binary system, in which the
chemical potentials are constants, and therefore so is the electric potential, resulting
in a stable battery output.

Exercises

1. The following solid state electrochemical cell, which is based on a calcia
stabilized zirconia electrolyte, is operated at 800 K and produces a cell
potential e = 0.10 V.

<Pt><Co,CoO> j <ZrO2 � 12%CaO> j <Cu�Co,CoO><Pt>

a. Which species transports charge through the electrolyte?
What is the half-cell reaction at the anode?
What is the half-cell reaction at the cathode?
What is the net cell reaction?

b. For the net cell reaction, calculate ΔG0 and ΔG.
What is the activity of Co in the Cu–Co alloy?

2. The emf of a cell having the following reaction,

ZnðsÞ þ 2AgClðsÞ ¼ ZnCl2ðsÞ þ 2AgðsÞ
is 1.010 V at 298 K, and 1.021 V at 273 K.
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(cont.)

a. Assume the temperature coefficient is constant, and calculate the 298 K
values of Δ0G, Δ0H, Δ0S for the reaction.

b. What is the anode reaction? The cathode reaction?
3. Create your own lithium ion battery by selecting anode and cathode materials.

Write down the half-cell reactions and the net cell reaction. Find their thermo-
dynamic properties and estimate the voltage of your battery.

4. The Pourbaix diagram (e versus pH) for the Cu–H2O system is given below.
This diagram is for a temperature of 298 K and ion concentrations of
10�3 molality.
a. Write down the chemical reaction depicting the equilibrium between

Cu2+ ions and CuO(s).
b. Calculate the change in the position of the vertical line between

Cu2+ and CuO(s) on this diagram when the Cu2+ concentration for the
diagram is changed to 1 molality.

c. Calculate the standard reduction potential of Cu2+/Cu using the e value
at pH = 0.

d. Describe what the possible forms of Cu in the aqueous solution are on the
boundary between the aqueous solution and Cu2O. Give your reasons.
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5. The Pourbaix diagram (e versus pH) for the Ni–H2O system is given here.
This diagram is for a temperature of 298 K and ion concentrations of
10–3 molality.
a. Calculate the change in the position of the vertical line between

Ni2+ and NiO(s) on this diagram when the Ni2+ concentration for the
diagram is changed to 0.1 molality.

b. Calculate the standard reduction potential of Ni2+/Ni.
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(cont.)

c. Write down the chemical reaction depicting the equilibrium between
Ni2+ ions and NiO(s).

8
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9 Critical phenomena, thermal
expansion, and Materials Genome®

In Section 1.3, it was shown that all molar quantities of a homogeneous system diverge
at the critical point, i.e. the limit of stability, including the additional quantities shown in
Eq. 2.148. As illustrated by Eq. 1.43, even though each molar quantity changes in the
same direction as its conjugate potential, i.e. with the same sign, its dependence with
respect to a non-conjugate potential can be of either the same sign or opposite sign. It is
often considered to be normal when the quantities change in the same direction, while
abnormal when they change in different directions.

In this chapter, the thermal expansion defined by Eq. 2.8 is used as an example for a
detailed discussion, based on the MMS model presented in Section 5.2.5, of those extraor-
dinary phenomena in the context of a critical point. The MMS model is first discussed, in
terms of thermal expansion and is then applied to elemental cerium (Ce), with colossal
positive thermal expansion (CPTE), and Fe3Pt with negative thermal expansion (NTE).

9.1 MMS model applied to thermal expansion

As shown in Eq. 1.44, the thermal expansion of a system can be positive, zero, or
negative depending on the pressure dependence of the entropy of the system. Let us
carry out a virtual experiment by analyzing a system starting with one microstate only,
α, when a metastable microstate β has a higher entropy than the microstate α, i.e.
Sβ > Sα, and the relative stability of the β microstate thus increases with temperature.
Cases with Sβ < Sα, starting with a mixture of the α and β microstate, will be discussed
after this.

When a metastable microstate, β, is introduced by changing the pressure under
constant temperature, based on Eq. 5.51 and Eq. 5.52 the entropy change of the system
can be written as

ΔS ¼ S� Sα ¼ pβ Sβ � Sα
� �� kB 1� pβ

� �
ln 1� pβ
� �þ pβ ln pβ

� �
9.1

where pβ represents the statistical probability of the microstate β in the system. With
Sβ > Sα, this would result in a positive entropy change of Eq. 9.1, i.e. ΔS > 0, since
0 < pβ < 1. If this entropy increase is due to the decrease of pressure, i.e. Vβ > Vα

because volume and its conjugate potential (negative pressure) change in the same
direction, the volume thermal expansion of the system is positive due to the increase of
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the population of the β microstate with a larger volume. In this case, ΔVαβ=ΔSαβ > 0,
and the volume and entropy of the two microstates change in the same direction.

On the other hand, if this entropy increase is realized by increasing the pressure, i.e.
Vβ < Vα, the volume thermal expansion of the system is negative due to the increase of
the population of the β microstate with a smaller volume. In this case, ΔVαβ=ΔSαβ < 0,
and the volume and entropy of the two microstates change in opposite directions.

Therefore, the sign of ΔVαβ=ΔSαβ for the two microstates can be used as a
criterion to determine whether a system has NTE, since a positive value of
ΔVαβ=ΔSαβ means positive thermal expansion and a negative value of ΔVαβ=ΔSαβ

means NTE. At a critical point, the entropy change with respect to temperature is
infinite, resulting in either infinite positive or infinite negative thermal expansion
correspondingly. When the system moves away from the critical point into the
macroscopically homogeneous single-phase region, the thermal expansion becomes
less positive or negative. A number of systems with ΔVαβ=ΔSαβ < 0, thus poten-
tially NTE, are listed in the supplementary information of reference [68].

Now let us consider the case when the metastable βmicrostate has lower entropy than
the α microstate, i.e. Sβ < Sα, and the β microstate is thus more stable at low tempera-
tures. The system at higher temperatures thus contains only the α microstate and has
positive thermal expansion. When the metastable β microstate is introduced, the sign of
the entropy change in Eq. 9.1 can be either positive or negative because the first term is
negative and the second term is positive, and its sign thus depends on the value of the
entropy difference between two microstates and the probability of the metastable β
microstate. The virtual experiment should thus be carried out in a system with the
highest microstate configurational entropy in Eq. 9.1, i.e. pβ ¼ 0:5 when the two
microstates have the same free energy and are in equilibrium with each other. From
Eq. 5.51 and Eq. 5.52, the system entropy can be written as

S ¼ Sα þ 0:5 Sβ � Sα
� �þ kBln2 9.2

With a change of pressure, pβ will either increase or decrease, and the entropy of the
system becomes

S ¼ Sα þ pβ Sβ � Sα
� �� kB 1� pβ

� �
ln 1� pβ
� �þ pβ ln pβ

� �
9.3

The difference of Eq. 9.3 and Eq. 9.2 is obtained as

ΔS ¼ pβ � 0:5
� �

Sβ � Sα
� �� kB 1� pβ

� �
ln 1� pβ
� �þ pβ ln pβ þ ln 2

� �
9.4

The second term in Eq. 9.4 is always negative, and the first term is also negative if
pβ > 0:5 because Sβ < Sα. It is thus evident that if pβ is increased by decreasing the
pressure, the entropy of the system decreases, and the system would possess
negative thermal expansion because Eq. 9.4 is negative, and the entropy is reduced
by the decrease of pressure. At the same time, Vβ > Vα and ΔVαβ=ΔSαβ < 0, the
latter being the same condition for a negative thermal expansion as in the first
virtual experiment with Sβ > Sα. One can thus conclude that for a two-phase
equilibrium line with dT=dP ¼ ΔVαβ=ΔSαβ < 0, both phases can display negative
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thermal expansion. On the other hand, if pβ is increased the by increasing pressure,
the system would possess positive thermal expansion because the entropy is reduced
by the increase of pressure.

Furthermore, the thermal expansion of a system can be approximated as follows,
using the rule for the mixture of volumes:

V ¼ 1� pβ
� �

Vα þ pβVβ 9.5

av ¼ aαvV
α þ pβ aβvV

β � aαvV
α

� �þ Vβ � Vα
� � ∂pβ

∂T

� ��
V 9.6

where aV , aαV , a
β
V , V , V

α, and Vβ are the thermal expansion coefficients and volumes of
the system and the α and βmicrostates, respectively. For simplification, let us assume both
microstates have similar positive thermal expansion, i.e. aaV � aβV , and Eq. 9.6 becomes

aV ¼ aαvV
α � Va � Vβ

� �
pβaβV þ ∂pβ

∂T

	 
� ��
V 9.7

Equation 9.7 shows that it is the combination of volume difference and ∂pβ=∂T value
that determines the macroscopic thermal expansion. By setting aV ¼ 0, one obtains

∂pβ

∂T
¼ aαV

1

1� Vβ=Vα � pβ
	 


9.8

For Vβ > Vα, ∂pβ=∂T < 0 for pβ � 0, and for Vβ < Vα, ∂pβ=∂T > 0 at pβ ! 0.
Readers are reminded that the sign of ∂pβ=∂T is the same as the sign of Sβ � Sα

� �
.

9.2 Application to cerium

Cerium (Ce) displays intriguing physical and chemical properties of which the most
fascinating is its first-order isostructural phase transition. This involves a magnetic, high
temperature/high volume “γ-phase” and a non-magnetic, low temperature/low volume
“α-phase,” both in the same face centered cubic (fcc) lattice structure. At 298 K and 0.7
GPa, the γ!α transition is accompanied by a 14%–17% volume collapse. The Ce phase
transition has been studied extensively; this includes our own works on systems with
with two or three microstates [69, 70].

The simplest model for the system has two microstates: ferromagnetic and non-
magnetic. The first-principles calculations of the free energy of two Ce microstates
are problematic in the absence of strong correlation of the f-electrons in the DFT
Hamiltonian. The stability of the non-magnetic (“delocalized”) Ce 4f state relative to
that of the magnetic (“localized”) Ce 4f state is greatly overestimated in the generalized
gradient approximation [31, 32] with spin polarization. A usual approach to surmount
this is the Dudarev DFT +Umethod [71] with on-site Coulomb and exchange interactions
described by a Hartree–Fock approximation added to the DFT Hamiltonian. This method
offers the advantage that only the difference between the Hubbard U (due to the energy
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increase from addition of an electron to a specific site) and J (due to the screened exchange
energy) need to be specified a priori.

Evaluation of numerous U � J values over a 1.0–6.0 eV range revealed that 1.6 eV
gives the most consistent prediction of the non-magnetic Ce and magnetic Ce energetics
over a range of atomic volumes that includes both microstates at 0 K. The energy–
volume curve thus obtained is plotted in Figure 9.1, showing that the non-magnetic
microstate is the ground state, and the equilibrium between the two microstates at 0 K is
at the negative pressure of �0.87GPa. Since Sα < Sγ and Vα < V γ, NTE does not exist
in the system.

To take into account the possible magnetic disordering in the ferromagnetic micro-
state at finite temperatures, the following contribution is added to the free energy of the
ferromagnetic microstate:

Fmag V ; Tð Þ ¼ �kBT ln 1þMS 2l�MSð Þ½ � 9.9

where MS is the spin moment, and l = 3 the orbital angular momentum of an f-electron.
Equation 9.9 is a generalization of Hund’s rule, with total angular momentum
J ¼ MS 2l�MSð Þ=2. The Helmholtz energies thus obtained for both microstates and
the system are shown in Figure 9.2 at several temperatures, with the tie-lines included.
In the figures, the dot-dashed curves are for the non-magnetic microstate, the solid
curves are for the ferromagnetic microstate, the shading shows the entropy of mixing
between two microstates, and the circle in (e) is the critical point. The numbers below
the black dashed lines, representing the common tangent curves, mark the transition
pressures. The 0 K static energies of the non-magnetic microstate and the magnetic
microstate are also plotted in (a) using solid circles and dotted lines.

The temperature versus volume phase diagram is plotted and compared with
available experimental data (triangles) in Figure 9.3 [72]. In this figure, the volume
(V) is normalized to its equilibrium volume (VN) at atmospheric pressure and room
temperature. In the pressure range 2.25–3.5 GPa, the system is within the single-phase
region at all temperatures considered, as shown by the five continuous isobaric
volumes as functions of temperature. In this pressure range, normal thermal expansion
is observed at both low and high temperatures on each isobaric curve, where the
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Figure 9.1 Variation of cell energy (eV) with atomic volume (Å3) for Ce computed with strong
correlation using Dudarev’s method with U – J = 1.6 eV.
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probability of each microstate does not change significantly with temperature. How-
ever, in the middle temperature range on each isobaric curve, colossal positive thermal
expansion (CPTE), highlighted by the open diamond symbols, exists due to the fast
increase of the probability of the metastable ferromagnetic microstate with tempera-
ture, i.e. Sα < Sγ, Vα < V γ, and ∂pγ=∂T > 0. This CPTE is much higher than the
individual positive thermal expansions of the stable and metastable microstates,
respectively.

With decreasing pressure, the system reaches a critical point (circle) where the
homogeneous single phase becomes unstable, represented by ∂S=∂Tð ÞP ¼ ∞ and
∂V=∂Pð ÞT ¼ ∞, and both the entropy and volume change infinitely. At even lower
pressure a miscibility gap forms, and the single phase separates into two phases with the
same fcc crystal structure, but different magnetic spin structures. Inside the miscibility
gap, the volume changes discontinuously with respect to temperature by a so-called
first-order transition, as shown by the isobaric curve at zero pressure. This compares
well with the experimental volume data (solid squares) under ambient pressure.

The fraction of the ferromagnetic microstate, xmag, in α-Ce (dark line) and γ-Ce (light
line) calculated using xσ ¼ Zσ=Z is plotted in Figure 9.4 as a function of pressure along
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the miscibility gap phase boundary. It can be seen that the fraction of the ferromagnetic
microstate in α-Ce increases with increasing pressure while the fraction of the ferro-
magnetic microstate in γ-Ce decreases. At the critical point, the fraction of ferromag-
netic microstate is calculated to be 0.58. This is in qualitative agreement with the 0.67
value (solid circle) estimated experimentally at the critical point.

The relative volume, V/VN, as a function of pressure, is plotted as the thin black
solid lines in Figure 9.5 from 200 to 600 K at 50 K increments. The dark and light
thicker solid lines correspond to α-Ce and γ-Ce, respectively. The symbols denote
experimental data in the literature, except for the open circle which is the calculated
critical point, in good agreement with the computed isotherms. In the two-phase
miscibility gap region, the γ!α volume collapse is again noted, with the magnitude
of the collapse increasing with decreasing T. This is shown explicitly by the dashed
vertical lines at T = 200, 250, 300, 350, 400, and 450 K. For T > 476 K, the
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calculated isotherms show an anomalous slope change which closely matches the
behavior near V/VN = ~0.85 from experiment.

In a more complex model, one adds the antiferromagnetic microstate. The E–V and
Helmholtz energy curves obtained at 0 K are shown in Figure 9.6. The equilibrium
volume energies reveal that the energy of the antiferromagnetic microstate at the
equilibrium volume is close to that of the non-magnetic microstate but substantially
lower than that of the ferromagnetic microstate. It should be noted that the magnetic
spin disordering in the system is taken into account by the two magnetic microstates,
and the contribution denoted by the mean-field theory, i.e. Eq. 9.9, should thus not be
added to either magnetic microstate, to avoid double counting. The predicted critical
point values are 546 K and 2.05 GPa, closer to the experimental data than the previous
prediction for two microstates as shown in the temperature–pressure phase diagram in
Figure 9.7 in comparison with experimental data.

The calculated entropy changes are plotted in Figure 9.8a in terms of lattice vibration
only (dashed line), lattice vibration plus thermal electron (dot-dashed line), and lattice
vibration plus thermal electron and plus configuration coupling (solid line). The square
gives the estimated vibrational entropy change at 0.7 GPa of γ-Ce relative to α-Ce, and
other open (solid) symbols are from experimental measurements of total entropy.
Various contributions to the Helmholtz energy along the γ–α phase boundary, along
with experimental data, are plotted in Figure 9.8b; these are TΔS (diamonds), ΔE
(circles), and PΔV (squares). Excellent agreement with experimental data is shown.

The predicted fractions of the three microstates as a function of temperature and
heat capacity at the critical pressure of 2.05 Pa are shown in Figure 9.9a and
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Figure 9.9b, respectively. Near the critical point, the theory predicts that the system
is a mixture of the various microstates. Figure 9.9a depicts that for T < 300 K, the
system consists mainly of the non-magnetic Ce state, α-Ce. For T > 300 K, the
thermal populations of the magnetic states increase with increasing temperature.
Finally, for T > 546 K (the critical point), 70% of the system is composed of the
antiferromagnetic Ce state with the remaining 30% consisting of the non-magnetic
and ferromagnetic Ce states. This is in agreement with the common belief that γ-Ce
is magnetic but with a partially disordered local moment (paramagnetic) and that α-
Ce is non-magnetic.

Figure 9.9b shows the predicted temperature evolution of the contributions to the heat
capacity: vibrational and magnetic (Cf / T), electronic (Cel / T), and their sum (Cf+el / T) at
2.05 GPa. The theory suggests the following: (a) below ~500 K, Cf+el / T shows an
exponential temperature dependence due to statistical fluctuations between the
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non-magnetic, ferromagnetic, and antiferromagnetic states; (b) a peak appears at ~500
K in the Cf+el –T curve, which typically suggests the Schottky anomaly; (c) the electronic
specific heat coefficient (Cel / T) is linear against T; (d) above ~500 K the sum ofCf / T and
Cel / T renders Cf+el / T temperature independent.

9.3 Application to Fe3Pt

Invar was first discovered in the intermetallic Fe65Ni35 alloy and is characterized by
“anomalies” in the thermal expansion, equation of state, elastic modulus, heat capacity,
magnetization, and Curie temperature. There are a number of theoretical models for Invar
such as theWeiss 2-γmodel, the non-collinear spinmodel, and the disordered localmoment
approach, as reviewed in reference [73]. In this section, the application of theMMSmodel
to ordered L12 Fe3Pt is presented to study the Invar anomaly at finite temperatures.
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For a supercell of 12 atoms with nine magnetic Fe atoms in Fe3Pt, if only the up and
down spins are considered, the system contains 29 = 512 spin configurations, which are,
by symmetry, reduced to 37 non-equivalent configurations. They are the microstates in
the MMS model, and FMC and SFC are used to represent the ferromagnetic and spin
flipping microstates, respectively. For the first-principles calculations of each microstate,
the VASP package [14] within the projector-augmented wave (PAW) method and the
exchange-correlation part of the density functional treated within the GGA of Perdew,
Burke, and Ernzerhof (PBE) [32] are employed with details given in reference [73]. For
the lattice vibration, the Debye–Grüneisen approach described in Section 5.2.4 is used.

Figure 9.10 presents the first-principles 0 K total energies of 36 non-equivalent SFCs
as well as the FMC as functions of atomic volume. It can be seen that there are a number
of SFCs, whose energies are within the range of ~1 mRy/atom of that of the FMC. It is
noted that all the SFCs studied here have equilibrium averaged atomic volumes at least
1.8 % smaller than that of the FMC, the 0 GPa ground state. In Figure 9.10, the two
lowest energy SFCs are labeled as SFC55 and SFC41 with their spin arrangements very
similar to the double layer antiferromagnetic state. The non-magnetic configuration has
a very small atomic volume of 11.66 Å3/atom, and much higher energy than both FMC
and all SFCs, and is thus not shown here.

The normalized Helmholtz energies of all SFCs are plotted in Figure 9.11 with the
Helmholtz energy of FMC as the reference state, showing that the FMC has the lowest
Helmholtz energy at all temperatures considered. If only the relative Helmholtz
energies of microstates were considered, FMC would be stable at all temperatures.
However, the configurational entropy due to the mixing among multiple microstates,
i.e. Eq. 5.51, lowers the system free energy by introducing the statistical probability of
metastable SFCs.
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By minimization of the Helmholtz energy of Eq. 5.50, the temperature–pressure and
temperature–volume phase diagrams are obtained and are shown in Figure 9.12 [72].
A critical point at 141 K and 5.81 GPa is predicted with V = 12.61 Å3. Below the critical
point, there is a two-phasemiscibility gap (the shaded area), the dominantmicrostates being
FMC and SFCs, respectively, and the transition between these states is first order. Above
the critical point, the macroscopically homogeneous single phase is stable, and phase
transitions between the ferromagnetic dominant phase with large volume and the SFC
dominant paramagnetic phase with small volume are of second order. The second-order
transition pressures and volumes are determined by the condition that the weighted
Helmholtz energy counting all SFCs equals the Helmholtz energy counting only FMC.

In Figure 9.12a, the data points give the measured pressure dependence of the Curie
temperature, and the agreement between the measurements and predictions is remark-
able. It should be pointed out that the classical Weiss 2-γ model predicts only first-order
phase transitions while the non-collinear spin model yields only second-order phase
transitions at all temperatures. In Figure 9.12b, four isobaric volume curves are also
plotted with the predicted NTE regions marked by the open diamonds and the experi-
mental volume data under ambient pressure superimposed, showing excellent agreement.
It also depicts the gigantic NTE around the critical point on the isobaric curve at 7 GPa.

Figure 9.11 indicates that the entropies of SFCs are larger than that of FMC, so their
Helmholtz energy differences decrease with temperature. This is in line with the origin
of NTE in a single phase due to the statistical existence of metastable microstates with
lower volumes and higher entropies than the stable state in a temperature range where
their probabilities change dramatically. Figure 9.13 plots the calculated thermal popu-
lations of the FMC (solid line) and that of the sum over all SFCs (dot-dashed line) under
ambient pressure. The two major contributions to the paramagnetic (PM) phase are from
SFC55 and SFC41, which are plotted using dashed and long dashed lines, respectively.
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The system is dominated by the FMC at temperatures below half the transition tem-
perature, and the populations of SFCs increase monotonically at temperatures higher
than half the transition temperature. As mentioned above, the transition temperature is
defined as that when the population of all SFCs is the same as that of FMC due to their
equal Helmholtz energies.

The predicted thermal volume expansion and the derived linear thermal expansion
coefficient (LTEC) under ambient pressure are plotted in Figure 9.14. A positive thermal
expansion is predicted from 100 K to 288 K, followed by a negative thermal expansion
in the range 289 to ~ 449 K, and then a positive thermal expansion again at > 450 K, in
excellent agreement with experiment. The only disagreement between the predictions and
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Figure 9.13 Calculated thermal populations of FMC, SFC41, SFC55, and the sum of all SFCS,
respectively, from [73] with permission from Taylor and Francis Group.
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Figure 9.12 Calculated phase diagrams of Fe3Pt, (a) temperature-pressure, from [73] with
permission from Taylor and Francis, and (b) temperature-volume, from [72] with permission
from the Nature Publishing Group.
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experiments occurs at T ¼ 100 K where the calculations do not reproduce the negative
thermal expansion for Fe3Pt. A larger supercell ormore spin configurationsmay be needed.

9.4 Concept of Materials Genome®

“A genome is a set of information encoded in the language of DNA that serves as a
blueprint for an organism’s growth and development. The word genome, when applied in
nonbiological contexts, connotes a fundamental building block toward a larger purpose”
[74]. Materials Genome® (a trademark of Materials Genome, Inc., Pennsylvania, PA)
thus concerns the building blocks of materials. Most of this book focuses on the Gibbs
and/or Helmholtz energies of individual phases as a function of their natural variables,
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Figure 9.14 (a) Relative volume increase (V� V300)/V300 with V300 the equilibrium volume
at 300 K and 0 GPa for ordered Fe3Pt. (b) Linear thermal expansion coefficient (LTEC)
along with various experimental data (symbols), with details in reference [73] with permission
from Taylor and Francis. Copy from Figure 9.10.
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and the same applies in the CALPHAD modeling of thermodynamics and other proper-
ties of individual phases. Multi-component materials systems and their properties are
built on the individual phases and their properties. Individual phases are thus naturally
considered as building blocks of materials. Consequently, the language of CALPHAD
thermodynamics and kinetics contains the genomics of materials by representing experi-
mental and theoretical results in databases to make them applicable to a much wider
context than the original experiments or calculations [75]. The variation of individual
phases in terms of their properties, amounts, and interactions with other phases with
respect to external conditions thus determines the performance of the materials.

On the other hand, at critical points and beyond, phases lose their individuality and
form one macroscopically homogeneous system, and the properties of the system
change dramatically with respect to external conditions. As shown in this chapter, these
dramatic responses can be predicted through the statistical competition of stable and
metastable microstates. From the thermodynamic point of view, under any given
conditions, one of the individual microstates has the lowest Gibbs/Helmholtz energy
and is stable, while all other microstates have higher free energy and are metastable or
unstable. These metastable or even unstable microstates are brought into statistical
existence in the matrix of the stable microstate due to the entropy of mixing of all the
configurations. Those microstates may thus be considered as the building blocks of
individual phases [76].

It has been demonstrated in this chapter that the properties of a macroscopically
homogeneous system with multiple microstates are not linear combinations of the
properties of the constituent microstates and depend significantly on the rate of change
of the statistical probability of microstates with respect to external fields. This rate of
change is determined by the free energy difference between the stable and metastable
microstates and its rate of change with respect to external fields. As shown in Figure 9.3
and Figure 9.12, this rate of change can be correlated to the distance of the system with
respect to the critical point in the system. At the critical point, there is a mathematical
singularity when the single phase becomes unstable. When the macroscopically homo-
geneous single-phase system moves away from the critical point, its properties become
less and less dramatic, but always retain a certain degree of anomaly. The properties of a
system can thus be dramatically altered and designed by changing the position of the
critical point through adjustments of chemical compositions and strain energy in
thin films.
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Appendix A: YPHON

Currently there are essentially two methods in use for the first-principles calculations
of phonon frequencies: the linear response theory and the direct approach. The
linear response theory evaluates the dynamical matrix through the density functional
perturbation theory. In comparison, one advantage of the direct or mixed-space
approach over the linear-response method is that it can be applied with the use
of any code capable of computing forces. The direct approach is also referred to
as the small displacement approach, the supercell method, or the frozen phonon
approach.

However, none of the previous implementations of the supercell approach are
able to accurately handle long-range dipole–dipole interactions when calculating
phonon properties of polar materials. The problem has been solved by the
parameter-free mixed-space approach, which makes full use of the accurate force
constants from the supercell approach in real space and the dipole–dipole inter-
actions from the linear response theory in reciprocal space. The mixed-space
approach is the only existing method that can accurately calculate the phonon
properties of polar materials within the framework of the supercell or small displace-
ment approach.

The program YPHON is written in C++ and can be downloaded at http://cpc.cs.qub
.ac.uk/summaries/AETS_v1_0.html. The precompiled executable binaries should work
for most Linux and Windows systems. Recompiling YPHON requires the GNU Scien-
tific Library (GSL), which is a numerical library for C and C++ programmers. If one is
just interested in phonon dispersions, the phonon density-of-states (PDOS), or the
neutron scattering cross-section weighted PDOS the so-called generalized phonon
density-of-states (GPDOS), this is enough. YPHON also makes it a lot easier to plot
phonon dispersions and PDOS. In this case, it is required that Gnuplot be installed.

The static energy and force constants from first-principles calculations need to be
formatted to the YPHON input formats (text formats as detailed later). At present,
YPHON works closely with VASP.5 or later. The mixed-space approach has
built up a unique base of the supercell approach to polar materials and has been
adopted in a number of software tools such as CRYSTAL14 by R. Dovesi,
ShengBTE (a solver of the Boltzmann transport equation for phonons) by W. Li,
J. Carrete, N. A. Katcho, and N. Mingo, the Phonopy package by Atsushi Togo, and
the Phonon Transport Simulator (PhonTS) by Chernatynskiy and Phillpot.
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A.1 General software requirements

As mentioned above, YPHON is written in C++. The precompiled executable binaries
should work for most Linux and Windows systems. Recompiling YPHON requires the
GNU Scientific Library (GSL). If one is just interested in the phonon dispersions,
phonon density-of-states (PDOS), or the neutron scattering cross-section weighted
PDOS, the so-called generalized phonon density-of-states (GPDOS), this is enough.
YPHON also makes it a lot easier to plot phonon dispersions and PDOS. In this case, it
is required that Gnuplot be installed.

At present, YPHON works closely with VASP.5 or later. The static energy and force
constants from other codes for first-principles calculations need to be organized into the
YPHON input formats, as discussed below.

A.2 Get and unpack YPHON

Get the zipped file “yphon.tar.gz” from the website, unpack the package, and install
YPHON using the following series of Linux commands:

tar zxf yphon.tar.gz
cd YPHON; make

Notes: Mostly you do not need to recompile the codes with “make.” The pre-
compiled executable binaries enclosed with the package work quite well in a
number of computational centers and up to the present time we have not seen any
exceptions.

For a csh user, depending on the specific management of your Linux system, the
Linux command search PATH should be modified by inserting into the .cshrc, .tcshrc,
or .cshrc.ext files the following line:

set PATH = (. $HOME/YPHON $PATH)

assuming that $HOME/YPHON is the path where the YPHON package is unpacked.
For a bsh user, the Linux command search PATH should be modified by inserting the

two lines below into the .bash,_profile, or .bashrc files:

PATH=.:$HOME/YPHON:$PATH
export PATH

A.3 Contents of the YPHON package

Yphon – The main C++ code performing the phonon calculations based on the
force constants.

Ycell – A C++ code to build the supercell in the VASP.5 POSCAR format.
vasp_fij – A Linux script for user convenience to collect the force constant matrix

from the OUTCAR and CONTCAR files of VASP.5 or the Hessian matrix from
the vasprun.xml file of VASP.5. The output file superfij.out is the main input
to Yphon.
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vaspfijxml – A C++ code to convert the Hessian matrix from the vasprun.xml file
into the force constant matrix; vaspfijxml is only called vasp_fij when it sees the
vasprun.xml file.

vasp_BE – A Linux script for user convenience to collect the data of Born effective
charge and high frequency dielectric tensors from the OUTCAR and CONTCAR
files of VASP.5. The output file dielecfij.out forms the input to YPHON when
calculating polar materials.

Ydemo – A folder containing several subfolders as exercises of the YPHON package.

A.4 Command line options and files used by YPHON

The usage of YPHON follows the command convention of the Linux operating system.
A YPHON command is followed by a series of keywords and parameters. Different
keywords and parameters are separated by a space character in the command line. All
keywords in YPHON commands are case sensitive.

A.4.1 Ycell
Usage: Ycell [options] <yourprimitiveposcarfile>yoursupercellposcarfile

where yourprimitiveposcarfile is a file from the standard input and yoursupercellpos-
carfile is a file for the standard output. Both files are in the VASP.5 POSCAR format.

The options are as follows.

-bc2
Make a supercell by a kind of doubling of the primitive unit cell.
-bc3
Make a supercell by a kind of tripling of the primitive unit cell.
-bc4
Make a supercell with a size four times the primitive unit cell.
-mat matrix 3�3
Make a supercell by transforming the primitive unit cell with a 3�3 matrix

(nine parameters), for example, -mat 2 -2 0 2 2 0 0 2.
–ss n
Make an n�n�n supercell of the primitive unit cell.

A.4.2 Yphon
Usage: Yphon [options] <superfij.out

where superfij.out is the name of the file created by vasp_fij containing the crystal
structure as well as force constant information. By default, Yphon calculates the PDOS
and outputs it into the file vdos.out.

The main options are as follows.

-Born dielecfij.out
This considers the vibration-induced dipole–dipole interaction (called LO-TO split-

ting in the literature) in the calculation, where dielecfij.out is the name of the
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file created by vasp_BE containing all information about the Born effective
charge and high frequency dielectric tensors.

-pdis yourdisfile
This option instructs Yphon to calculate the phonon dispersion instead of the PDOS.

yourdisfile is a file defining the directions for the dispersion calculation; see the
subsection “File for dispersion calculation” for instruction on how to prepare the
file yourdisfile.

-pvdos
This calculates also the generalized PDOS (GPDOS, the neutron scattering cross-

section weighted PDOS), following GPDOS ¼
X

i

σi
μi
pDOSi where σi and

pDOSi represent respectively the atomic scattering cross-section and the partial
phonon density of states projected onto the individual atoms. The results are
saved in the file pvdos.out.

-sqs
This is used together with the options -noNA –nof. It calculates the phonon disper-

sions of a random alloy with respect to the wave vector space of the ideal lattice, by
averaging over the force constants calculated using a special quasi-random struc-
ture (SQS). The detailed formulism can be found in our publication [19].

-thr2 parameter
This defines the threshold on how to determine the atomic position relation between

the high symmetry structure and the low symmetry structure. Care should be
taken in this kind of calculation. One should gradually increase the value of the
parameter from 0.01 to 0.15.

-Mass yourmassfile
This option tells Yphon to redefine the atomic mass, as required for the SQS phonon

dispersion calculation. The context in the yourmassfile file contains lines like
Cu 96.8975
Au 96.8975

–plot
This instructs Yphon to display the plot in the terminal using gnuplot to check the

calculated results.

–expt exp01.dat
This instructs Yphon to plot the experimental data contained in the file “exp01.dat”

together with the calculations.

A.5 Files used by YPHON

A.5.1 superfij.out file
superfij.out is the main input file of YPHON through the standard input stream stdin in
the Linux environment. It contains information about the lattice vectors of the primitive
unit cell, the lattice vectors of the supercell, the atomic positions in the supercell, and the
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matrix of the negative values of the force constants. One does not have to prepare this
file by hand if you use VASP.5 since the enclosed script vasp_fij can prepare this file by
extracting data from the output files of VASP.5, namely, CONTCAR, OUTCAR, and
vasprun.xml. The format of the data contained in superfij.out is illustrated below:

0.0000000000 2.1060000000 2.1060000000
2.1060000000 0.0000000000 2.1060000000
2.1060000000 2.1060000000 0.0000000000
0.000000 4.212000 4.212000
4.212000 0.000000 4.212000
4.212000 4.212000 0.000000

16 8
Direct

0.00000000 0.00000000 0.00000000 Mg
0.00000000 0.00000000 0.50000000 Mg
0.00000000 0.50000000 0.00000000 Mg
0.00000000 0.50000000 0.50000000 Mg
0.50000000 0.00000000 0.00000000 Mg
0.50000000 0.00000000 0.50000000 Mg
0.50000000 0.50000000 0.00000000 Mg
0.50000000 0.50000000 0.50000000 Mg
0.25000000 0.25000000 0.25000000 O
0.25000000 0.25000000 0.75000000 O
0.25000000 0.75000000 0.25000000 O
0.25000000 0.75000000 0.75000000 O
0.75000000 0.25000000 0.25000000 O
0.75000000 0.25000000 0.75000000 O
0.75000000 0.75000000 0.25000000 O
0.75000000 0.75000000 0.75000000 O

�10.944494 0.000000 0.000000 1.260786 3.229127 0.000000
1.260786 0.000000 3.229127 �0.377911 0.000000 0.000000 �0.377911
0.000000 0.000000 1.260786 0.000000 �3.229127 1.260786 �3.229127
0.000000 1.697668 0.000000 0.000000 �0.151592 0.000000 0.000000
0.788701 0.000000 0.000000 0.788701 0.000000 0.000000 1.065411
0.000000 0.000000 1.065411 0.000000 0.000000 0.788701 0.000000
0.000000 0.788701 0.000000 0.000000 �0.151592 0.000000 0.000000

0.000000 �10.944494 0.000000 3.229127 1.260786 0.000000
0.000000 �0.377911 0.000000 0.000000 1.260786 �3.229127 0.000000
1.260786 3.229127 0.000000 �0.377911 0.000000 �3.229127 1.260786
0.000000 0.000000 1.697668 0.000000 0.000000 �0.151592 0.000000
0.000000 0.788701 0.000000 0.000000 1.065411 0.000000 0.000000
0.788701 0.000000 0.000000 0.788701 0.000000 0.000000 1.065411
0.000000 0.000000 0.788701 0.000000 0.000000 �0.151592 0.000000

. . .

where
line 1 – line 3 are lattice vectors of the primitive unit cell
line 4 – line 6 are lattice vectors of the supercell
line 7 gives the number of atoms in the supercell, and the number of primitive unit

cells in the supercell (serves as an error check)
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line 8 has the same meaning as VASP
line 9 – line of 8+“Number of atoms in supercell” give the internal atomic positions

in the supercell, which again have the same meaning as VASP, and the data after
these lines are the negative of the values of the force constant matrix.

A.5.2 dielecfij.out file
When one wants to consider the effects of vibration-induced dipole–dipole interaction
on phonon frequencies, the dielecfij.out file is required in the command line option in
the form of -Born dielecfij.out in running YPHON. The file dielecfij.out contains
information about the lattice vectors of the primitive unit cell, the atomic positions,
the high frequency dielectric tensor, and the Born effective charge tensor. You do not
have to prepare this file by hand if you use VASP.5 since the enclosed script vasp_BE
can prepare this file by extracting data from the OUTCAR of VASP.5, if you have
the setting “LEPSILON = .T.” and “NSW=0” in the INCAR file when running VASP.
The format of the data contained in dielecfij.out is illustrated below:

0.000000 2.106000 2.106000
2.106000 0.000000 2.106000
2.106000 2.106000 0.000000
0.0000000000000000 0.0000000000000000 0.0000000000000000 Mg
0.5000000000000000 0.5000000000000000 0.5000000000000000 O
3.147 0.000 0.000
0.000 3.147 0.000
0.000 0.000 3.147
ion 1
1 1.96085 0.00000 0.00000
2 0.00000 1.96085 0.00000
3 0.00000 0.00000 1.96085
ion 2
1 �1.96142 0.00000 0.00000
2 0.00000 �1.96141 0.00000
3 0.00000 0.00000 �1.96141

where
line 1 – line 3 are lattice vectors of the primitive unit cell
line 4 – line of 3+“Number of atoms in the primitive unit cell” give the internal

atomic positions in the primitive unit cell, which again have the same meaning as
VASP. The lines following the atomic positions are the dielectric constant tensor
and the Born effective charge tensor.

Note: Calculation of the dielectric properties should be performed using the primitive
unit cell separately.

A.5.3 vdos.plt file
The file vdos.plt is a gnuplot script made by YPHON when no “-pdis” command line
option is supplied. Its purpose is to use gnuplot to plot the PDOS, typically using the
Linux command “gnuplot –persist vdos.plt.”
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A.5.4 vdos.out file
The file vdos.out is a default output file of YPHON when no “-pdis” command line
option is defined. It contains the PDOS data.

Note: The PDOS in vdos.out has been normalized to 3M where M is the number of
atoms in the primitive unit cell. Also be careful that the unit in the vdos.out file for the
frequency is Hz. Therefore, if you want to compare the calculated phonon frequencies
with experiment, you need the proper conversion factor.

A characteristic feature of YPHON is concerned with the PDOS calculation.
YPHON does not follow the conventional Gaussian smearing approach to calculate
the PDOS, since it is difficult to determine the value of the empirical Gaussian
broadening parameter. Instead, YPHON uses the following convolution average to
calculate the PDOS:

D ωð Þ ¼ 3M
Nω

1
S Sþ 1ð ÞΔω

XS

n¼0

A ωþ nΔωð Þ � A ωþ nΔω� SΔωð �½ A.1

where D ωð Þ is the PDOS, Nω is the total number of phonon frequencies calculated by
a uniform q mesh in the wave vector space, A ωð Þ is the total number of phonon
frequencies below the frequency ω, Δω is the frequency interval of the numerical
expression of the PDOS, and S is an integer playing the role of smoothing the PDOS.
By default, YPHON calculates D ωð Þ with a mesh containing 10001 equally spaced
points together with S = 40. In general, the calculated D ωð Þ is reasonable from our
experience for a q mesh providing Nω= ~3000000.

Note: Using the option “-nq nqx nqy nqz,” YPHON is still affordable for an even
denser q mesh, which can provide ~30000000 frequencies if one wants more
accurate PDOS.

A.5.5 pvdos.out file
The file pvdos.out is an output file of YPHON when the key “-pvdos” is defined in the
command line. It contains the neutron scattering cross-section weighted phonon density
of states (GPDOS). The format of the data contained in this file is:

column 1: phonon frequency (in units of THz)
column 2: PDOS (in units of THz�1).
column 3: weight factor due to the different atomic neutron scattering cross-

sections, therefore, (column 2)*(column 3) in this file is the GPDOS
column 4: not useful
column 5-(M
+4):

partial PDOSs of the atoms following their orders in the primitive
unit cell.

Note: When using gnuplot, one can plot GPDOS by plotting “pvdos.out” using
1:($2*$3) w l.

A.5.6 vdis.plt file
The file vdis.plt is a gnuplot script made by YPHON when the “-pdis” command line
option is defined. It is used by gnuplot to plot the phonon dispersions. After you run
YPHON, you can always display the calculated phonon dispersion using
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gnuplot –persist vdis.plt

In particular, if you delete the comment sign “#” in the vdis.plt file and then run it with
“gnuplot vdis.plt,” it can produce a postscript file almost ready for publication.

A.5.7 vdis.out file
The file vdis.out is a file made by YPHON when the “-pdis” command line option is
defined. It contains phonon dispersion data.

A.6 File for dispersion calculation

To calculate phonon dispersions, one needs to use the command line option “-pdis
yourdisfile” with YPHON. The file yourdisfile is a file defining the direction for the
dispersion calculation, and typically its format is as follows, using GaAs as an
example:

0 0 0 0 0 .5 Gamma X 0 $1 2 0 $1 3
0 .5 .5 0 0 0 X Gamma 1 (1.-$1) 2 1 (1.-$1) 3 1 (1.-$1) 4
0 0 0 .25 .25 .25 Gamma L 2 (2*$1) 2 2 (2*$1) 3
.25 .25 .25 0 0 .5 L X 3 (2*$1) 2 3 (2*$1) 3 3 (2*$1) 4
0 0 .5 0 .25 .5 X W 4 (2*$1) 2 4 (2*$1) 3 4 (2*$1) 4
0 .25 .5 .25 .25 .25 W L 5 (2*$1) 2 5 (2*$1) 3 5 (2*$1) 4

Columns 1–3: the reciprocal reduced coordinate of the starting q point along the
dispersion path

Columns 4–6: the reciprocal reduced coordinate of the end q point along the
dispersion path

Column 7: the label of the starting q point along the dispersion path
Column 8: the label of the end q point along the dispersion path
Column 9: multi-sets of data, each set containing three columns wherein the first

column is the index of the data group (separated by two blank lines
following the convention of gnuplot) in the experimental data file, the
second column tells gnuplot which column is being considered and how
to transform the column into the q point following the convention
of gnuplot, and the third column tells gnuplot which column
of experimental data will be used as the frequency data. This can save a
lot of time if you can learn to use it. The calculated phonon dispersions
are contained in the file vdis.out.

Note: Care should be taken with the suffix of the yourdisfile file. The suffixes .fcc,
.bcc, .hcp, and .tet2 are reserved for fcc, bcc, hcp, and tetragonal crystals only. For these
crystals, YPHON internally converts the q vector of the primitive unit cell into that of
the conventional unit cell.

For the cases of bcc and fcc crystals, most neutron scattering data are reported with
respect to the cubic conventional cell instead of the primitive unit cell. YPHON does
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the conversion internally, assuming that you defined the shape of the primitive unit cell
of the fcc crystal in the POSCAR file as

0 .5 .5
.5 0 .5
.5 .5 0

and you defined the shape of the primitive unit cell of the bcc crystal in the POSCAR file as

�.5 .5 .5
.5 �.5 .5
.5 .5 �.5

For the case of an hcp crystal, YPHON assumes that you defined the shape of the
primitive unit cell of the crystal in the POSCAR file as (note that c in the third line
below is the relative lattice parameter in the c direction)

0.8660254037844 �.5 0.
0.0000000000000 1. 0.
0.0000000000000 0. c

For the case of a tetragonal crystal, YPHON assumes that you defined the shape of the
primitive unit cell of the crystal in the POSCAR file as

1.0 0. 0.
0. 1.0 0.
0.5 0.5 c

If you do not use the suffixes .fcc, .bcc, .hcp, and .tet2 for the yourdisfile file, YPHON
will define the direction of the wave vector using the reciprocal lattice vector of the
primitive unit cell. The reciprocal lattice vector is printed out as the last three lines, like
for example

�0.000000000000 �0.362182366065 �0.000000000000
�0.313659560187 �0.181091751042 �0.000000000000
�0.000000000000 �0.000000000000 �0.192811598003

You can refer to these (only the direction is important) to define the direction of the
phonon dispersion calculation.

For the dispersion calculation, we strongly recommend that one should refer to the
web site www.cryst.ehu.es/ for the definition of the KVEC, i.e. the k-vector types and
Brillouin zone for a specific space group.

A.7 Troubleshooting

Make sure that the Linux command search PATH has been modified correctly to
include YPHON.

Make sure Python is installed correctly, otherwise pos2s will not work.
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After your VASP.5 job is done, always have a look at the OSZICAR file to make sure
the VASP.5 calculation finished normally.

Before running YPHON, always check the superfij.out file for data completeness
and correctness. Nowadays the Linux clusters are not that stable, and sometimes
very weird results can be observed as a result of certain problems due to RAM, disk
space, node sharing by different Linux processes etc. Of course, the most frequent
problem is that your job has run over the allowed time limit in your VASP.5
batch jobs.
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Appendix B: SQS templates

B.1 16-atom SQS for fcc structure with composition A0.25B0.75

fccsqs16_25_75
1.00

2.000000 2.000000 �4.000000
0.000000 �6.000000 �2.000000

�8.000000 2.000000 �2.000000
AA BB
12 4
D

0.500000 0.875000 0.125000 AA
0.250000 0.187500 0.312500 AA
0.000000 0.500000 0.500000 AA
0.500000 0.625000 0.375000 AA
0.500000 0.375000 0.625000 AA
0.750000 0.812500 0.687500 AA
0.000000 0.250000 0.750000 AA
0.250000 0.937500 0.562500 AA
0.750000 0.562500 0.937500 AA
0.250000 0.687500 0.812500 AA
0.500000 0.125000 0.875000 AA
0.000000 0.000000 0.000000 AA
0.750000 0.312500 0.187500 BB
0.250000 0.437500 0.062500 BB
0.000000 0.750000 0.250000 BB
0.750000 0.062500 0.437500 BB

B.2 16-atom SQS for fcc structure with composition A0.5B0.5

sqsfcc16_50
1.00

4.000000 �2.000000 �2.000000
0.000000 4.000000 �4.000000
4.000000 6.000000 6.000000

AA BB
8 8
D

0.250000 0.250000 0.250000 AA
0.250000 0.750000 0.250000 AA
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0.750000 0.500000 0.250000 AA
0.250000 0.000000 0.750000 AA
0.000000 0.250000 0.500000 AA
0.500000 0.750000 0.000000 AA
0.000000 0.500000 0.000000 AA
0.000000 0.000000 0.000000 AA
0.500000 0.500000 0.500000 BB
0.750000 0.000000 0.250000 BB
0.500000 0.000000 0.500000 BB
0.250000 0.500000 0.750000 BB
0.000000 0.750000 0.500000 BB
0.750000 0.250000 0.750000 BB
0.750000 0.750000 0.750000 BB
0.500000 0.250000 0.000000 BB

B.3 16-atom SQS for bcc structure with composition A0.25B0.75

bccsqs16_25_75
1.00

4.000000 �8.000000 0.000000
0.000000 �8.000000 4.000000

�8.000000 0.000000 �8.000000
AA BB
12 4
D

0.750000 0.750000 0.375000 AA
0.250000 0.250000 0.125000 AA
0.625000 0.625000 0.562500 AA
0.875000 0.875000 0.687500 AA
0.125000 0.125000 0.312500 AA
0.375000 0.375000 0.437500 AA
0.750000 0.750000 0.875000 AA
0.000000 0.000000 0.000000 AA
0.250000 0.250000 0.625000 AA
0.500000 0.500000 0.750000 AA
0.125000 0.125000 0.812500 AA
0.375000 0.375000 0.937500 AA
0.000000 0.000000 0.500000 BB
0.500000 0.500000 0.250000 BB
0.625000 0.625000 0.062500 BB
0.875000 0.875000 0.187500 BB

B.4 16-atom SQS for bcc structure with composition A0.5B0.5

sqsbcc16_50
1.00

�2.000000 �6.000000 �10.000000
�2.000000 10.000000 6.000000
6.000000 2.000000 �2.000000
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AA BB
8 8
D

0.000000 0.500000 0.500000 AA
0.500000 0.000000 0.500000 AA
0.250000 0.000000 0.750000 AA
0.000000 0.250000 0.750000 AA
0.250000 0.250000 0.500000 AA
0.750000 0.000000 0.250000 AA
0.500000 0.750000 0.750000 AA
0.750000 0.250000 0.000000 AA
0.500000 0.250000 0.250000 BB
0.250000 0.500000 0.250000 BB
0.750000 0.750000 0.500000 BB
0.000000 0.750000 0.250000 BB
0.750000 0.500000 0.750000 BB
0.000000 0.000000 0.000000 BB
0.500000 0.500000 0.000000 BB
0.250000 0.750000 0.000000 BB

B.5 16-atom SQS for hcp structure with composition A0.25B0.75

hcpsqs16_25_75
1.00

1.657150 2.870268 5.220900
�3.314300 0.000000 5.220900
6.628600 �11.481071 0.000000

AA BB
12 4
D

0.000000 0.000000 0.250000 AA
0.500000 0.500000 0.125000 AA
0.583333 0.916667 0.062500 AA
0.000000 0.000000 0.500000 AA
0.500000 0.500000 0.375000 AA
0.083333 0.416667 0.437500 AA
0.083333 0.416667 0.187500 AA
0.583333 0.916667 0.312500 AA
0.000000 0.000000 0.750000 AA
0.500000 0.500000 0.625000 AA
0.083333 0.416667 0.687500 AA
0.083333 0.416667 0.937500 AA
0.583333 0.916667 0.562500 BB
0.583333 0.916667 0.812500 BB
0.000000 0.000000 0.000000 BB
0.500000 0.500000 0.875000 BB
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B.6 16-atom SQS for hcp structure with composition A0.5B0.5

hcpsqs16_50
1.00

1.717000 �2.973931 �5.390800
�3.434000 �5.947862 0.000000
�8.585000 2.973931 �5.390800

AA BB
8 8
D

0.958333 0.625000 0.541667 AA
0.750000 0.250000 0.250000 AA
0.250000 0.250000 0.750000 AA
0.958333 0.125000 0.541667 AA
0.500000 0.000000 0.500000 AA
0.708333 0.375000 0.791667 AA
0.000000 0.000000 0.000000 AA
0.708333 0.875000 0.791667 AA
0.750000 0.750000 0.250000 BB
0.458333 0.625000 0.041667 BB
0.250000 0.750000 0.750000 BB
0.500000 0.500000 0.500000 BB
0.208333 0.375000 0.291667 BB
0.458333 0.125000 0.041667 BB
0.208333 0.875000 0.291667 BB
0.000000 0.500000 0.000000 BB

B.7 64-atom SQS for L12 structure with composition (A0.25B0.75)B3

sqs l12 (Al,Ni)Ni3 0.25
1.00

3.580000 3.580000 �7.160000
3.580000 �3.580000 �7.160000

�14.320000 0.000000 0.000000
AA BB
4 60
D

0.250000 0.250000 0.875000 AA
0.250000 0.250000 0.125000 AA
0.000000 0.000000 0.250000 AA
0.000000 0.000000 0.000000 AA
0.750000 0.750000 0.875000 BB
0.750000 0.750000 0.625000 BB
0.750000 0.750000 0.375000 BB
0.750000 0.750000 0.125000 BB
0.500000 0.500000 0.750000 BB
0.500000 0.500000 0.500000 BB
0.500000 0.500000 0.250000 BB
0.500000 0.500000 0.000000 BB
0.250000 0.250000 0.625000 BB
0.250000 0.250000 0.375000 BB
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0.000000 0.000000 0.750000 BB
0.000000 0.000000 0.500000 BB
0.000000 0.500000 0.750000 BB
0.625000 0.625000 0.687500 BB
0.875000 0.375000 0.812500 BB
0.000000 0.500000 0.500000 BB
0.625000 0.625000 0.437500 BB
0.875000 0.375000 0.562500 BB
0.000000 0.500000 0.250000 BB
0.625000 0.625000 0.187500 BB
0.875000 0.375000 0.312500 BB
0.000000 0.500000 0.000000 BB
0.625000 0.625000 0.937500 BB
0.875000 0.375000 0.062500 BB
0.750000 0.250000 0.625000 BB
0.375000 0.375000 0.562500 BB
0.625000 0.125000 0.687500 BB
0.750000 0.250000 0.375000 BB
0.375000 0.375000 0.312500 BB
0.625000 0.125000 0.437500 BB
0.750000 0.250000 0.125000 BB
0.375000 0.375000 0.062500 BB
0.625000 0.125000 0.187500 BB
0.750000 0.250000 0.875000 BB
0.375000 0.375000 0.812500 BB
0.625000 0.125000 0.937500 BB
0.500000 0.000000 0.750000 BB
0.125000 0.125000 0.687500 BB
0.375000 0.875000 0.812500 BB
0.500000 0.000000 0.500000 BB
0.125000 0.125000 0.437500 BB
0.375000 0.875000 0.562500 BB
0.500000 0.000000 0.250000 BB
0.125000 0.125000 0.187500 BB
0.375000 0.875000 0.312500 BB
0.500000 0.000000 0.000000 BB
0.125000 0.125000 0.937500 BB
0.375000 0.875000 0.062500 BB
0.250000 0.750000 0.625000 BB
0.875000 0.875000 0.562500 BB
0.125000 0.625000 0.687500 BB
0.250000 0.750000 0.375000 BB
0.875000 0.875000 0.312500 BB
0.125000 0.625000 0.437500 BB
0.250000 0.750000 0.125000 BB
0.875000 0.875000 0.062500 BB
0.125000 0.625000 0.187500 BB
0.250000 0.750000 0.875000 BB
0.875000 0.875000 0.812500 BB
0.125000 0.625000 0.937500 BB
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B.8 64-atom SQS for L12 structure with composition (A0.5B0.5)B3

sqs l12 (Al,Ni)Ni3 0.50
1.00

3.580000 7.160000 3.580000
3.580000 0.000000 �3.580000

�10.740000 7.160000 �10.740000
AA BB
8 56
D

0.125000 0.500000 0.875000 AA
0.750000 0.500000 0.750000 AA
0.125000 0.000000 0.375000 AA
0.875000 0.000000 0.625000 AA
0.000000 0.000000 0.000000 AA
0.500000 0.500000 0.000000 AA
0.750000 0.000000 0.250000 AA
0.875000 0.500000 0.125000 AA
0.000000 0.500000 0.500000 BB
0.250000 0.000000 0.750000 BB
0.375000 0.500000 0.625000 BB
0.625000 0.000000 0.875000 BB
0.250000 0.500000 0.250000 BB
0.500000 0.000000 0.500000 BB
0.625000 0.500000 0.375000 BB
0.375000 0.000000 0.125000 BB
0.375000 0.750000 0.875000 BB
0.250000 0.500000 0.750000 BB
0.375000 0.250000 0.875000 BB
0.250000 0.750000 0.500000 BB
0.125000 0.500000 0.375000 BB
0.250000 0.250000 0.500000 BB
0.500000 0.250000 0.750000 BB
0.375000 0.000000 0.625000 BB
0.500000 0.750000 0.750000 BB
0.625000 0.750000 0.625000 BB
0.500000 0.500000 0.500000 BB
0.625000 0.250000 0.625000 BB
0.875000 0.250000 0.875000 BB
0.750000 0.000000 0.750000 BB
0.875000 0.750000 0.875000 BB
0.000000 0.750000 0.750000 BB
0.875000 0.500000 0.625000 BB
0.000000 0.250000 0.750000 BB
0.375000 0.250000 0.375000 BB
0.250000 0.000000 0.250000 BB
0.375000 0.750000 0.375000 BB
0.500000 0.750000 0.250000 BB
0.375000 0.500000 0.125000 BB
0.500000 0.250000 0.250000 BB
0.750000 0.250000 0.500000 BB
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0.625000 0.000000 0.375000 BB
0.750000 0.750000 0.500000 BB
0.875000 0.750000 0.375000 BB
0.750000 0.500000 0.250000 BB
0.875000 0.250000 0.375000 BB
0.125000 0.250000 0.625000 BB
0.000000 0.000000 0.500000 BB
0.125000 0.750000 0.625000 BB
0.250000 0.250000 0.000000 BB
0.125000 0.000000 0.875000 BB
0.250000 0.750000 0.000000 BB
0.625000 0.250000 0.125000 BB
0.500000 0.000000 0.000000 BB
0.625000 0.750000 0.125000 BB
0.750000 0.750000 0.000000 BB
0.625000 0.500000 0.875000 BB
0.750000 0.250000 0.000000 BB
0.000000 0.250000 0.250000 BB
0.875000 0.000000 0.125000 BB
0.000000 0.750000 0.250000 BB
0.125000 0.750000 0.125000 BB
0.000000 0.500000 0.000000 BB
0.125000 0.250000 0.125000 BB

B.9 64-atom SQS for L12 structure with composition A(A0.25B0.75)B2

sqs l12 Al(Al,Ni)Ni2 0.25
1.00

3.580000 7.160000 3.580000
3.580000 0.000000 �3.580000

�10.740000 7.160000 �10.740000
AA BB
8 56
D

0.125000 0.500000 0.875000 AA
0.750000 0.500000 0.750000 AA
0.125000 0.000000 0.375000 AA
0.875000 0.000000 0.625000 AA
0.000000 0.000000 0.000000 AA
0.500000 0.500000 0.000000 AA
0.750000 0.000000 0.250000 AA
0.875000 0.500000 0.125000 AA
0.000000 0.500000 0.500000 BB
0.250000 0.000000 0.750000 BB
0.375000 0.500000 0.625000 BB
0.625000 0.000000 0.875000 BB
0.250000 0.500000 0.250000 BB
0.500000 0.000000 0.500000 BB
0.625000 0.500000 0.375000 BB
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0.375000 0.000000 0.125000 BB
0.375000 0.750000 0.875000 BB
0.250000 0.500000 0.750000 BB
0.375000 0.250000 0.875000 BB
0.250000 0.750000 0.500000 BB
0.125000 0.500000 0.375000 BB
0.250000 0.250000 0.500000 BB
0.500000 0.250000 0.750000 BB
0.375000 0.000000 0.625000 BB
0.500000 0.750000 0.750000 BB
0.625000 0.750000 0.625000 BB
0.500000 0.500000 0.500000 BB
0.625000 0.250000 0.625000 BB
0.875000 0.250000 0.875000 BB
0.750000 0.000000 0.750000 BB
0.875000 0.750000 0.875000 BB
0.000000 0.750000 0.750000 BB
0.875000 0.500000 0.625000 BB
0.000000 0.250000 0.750000 BB
0.375000 0.250000 0.375000 BB
0.250000 0.000000 0.250000 BB
0.375000 0.750000 0.375000 BB
0.500000 0.750000 0.250000 BB
0.375000 0.500000 0.125000 BB
0.500000 0.250000 0.250000 BB
0.750000 0.250000 0.500000 BB
0.625000 0.000000 0.375000 BB
0.750000 0.750000 0.500000 BB
0.875000 0.750000 0.375000 BB
0.750000 0.500000 0.250000 BB
0.875000 0.250000 0.375000 BB
0.125000 0.250000 0.625000 BB
0.000000 0.000000 0.500000 BB
0.125000 0.750000 0.625000 BB
0.250000 0.250000 0.000000 BB
0.125000 0.000000 0.875000 BB
0.250000 0.750000 0.000000 BB
0.625000 0.250000 0.125000 BB
0.500000 0.000000 0.000000 BB
0.625000 0.750000 0.125000 BB
0.750000 0.750000 0.000000 BB
0.625000 0.500000 0.875000 BB
0.750000 0.250000 0.000000 BB
0.000000 0.250000 0.250000 BB
0.875000 0.000000 0.125000 BB
0.000000 0.750000 0.250000 BB
0.125000 0.750000 0.125000 BB
0.000000 0.500000 0.000000 BB
0.125000 0.250000 0.125000 BB
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B.10 64-atom SQS for L12 structure with composition A(A0.5B0.5)B2

sqs l12 Al(Al,Ni)Ni2 0.50
1.00

0.000000 3.580000 7.160000
7.160000 0.000000 0.000000
0.000000 10.740000 �7.160000

AA BB
24 40
D

0.125000 0.000000 0.625000 AA
0.125000 0.500000 0.625000 AA
0.375000 0.000000 0.875000 AA
0.375000 0.500000 0.875000 AA
0.000000 0.000000 0.000000 AA
0.000000 0.500000 0.000000 AA
0.250000 0.000000 0.250000 AA
0.250000 0.500000 0.250000 AA
0.500000 0.000000 0.500000 AA
0.500000 0.500000 0.500000 AA
0.750000 0.000000 0.750000 AA
0.750000 0.500000 0.750000 AA
0.625000 0.000000 0.125000 AA
0.625000 0.500000 0.125000 AA
0.875000 0.000000 0.375000 AA
0.875000 0.500000 0.375000 AA
0.125000 0.250000 0.125000 AA
0.375000 0.250000 0.375000 AA
0.625000 0.750000 0.625000 AA
0.875000 0.750000 0.875000 AA
0.750000 0.250000 0.250000 AA
0.750000 0.750000 0.250000 AA
0.000000 0.250000 0.500000 AA
0.000000 0.750000 0.500000 AA
0.250000 0.250000 0.750000 BB
0.250000 0.750000 0.750000 BB
0.500000 0.250000 0.000000 BB
0.500000 0.750000 0.000000 BB
0.125000 0.750000 0.125000 BB
0.375000 0.750000 0.375000 BB
0.625000 0.250000 0.625000 BB
0.875000 0.250000 0.875000 BB
0.312500 0.250000 0.562500 BB
0.437500 0.000000 0.687500 BB
0.312500 0.750000 0.562500 BB
0.437500 0.500000 0.687500 BB
0.562500 0.250000 0.812500 BB
0.687500 0.000000 0.937500 BB
0.562500 0.750000 0.812500 BB
0.687500 0.500000 0.937500 BB
0.187500 0.250000 0.937500 BB
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0.312500 0.000000 0.062500 BB
0.187500 0.750000 0.937500 BB
0.312500 0.500000 0.062500 BB
0.437500 0.250000 0.187500 BB
0.562500 0.000000 0.312500 BB
0.437500 0.750000 0.187500 BB
0.562500 0.500000 0.312500 BB
0.687500 0.250000 0.437500 BB
0.812500 0.000000 0.562500 BB
0.687500 0.750000 0.437500 BB
0.812500 0.500000 0.562500 BB
0.937500 0.250000 0.687500 BB
0.062500 0.000000 0.812500 BB
0.937500 0.750000 0.687500 BB
0.062500 0.500000 0.812500 BB
0.812500 0.250000 0.062500 BB
0.937500 0.000000 0.187500 BB
0.812500 0.750000 0.062500 BB
0.937500 0.500000 0.187500 BB
0.062500 0.250000 0.312500 BB
0.187500 0.000000 0.437500 BB
0.062500 0.750000 0.312500 BB
0.187500 0.500000 0.437500 BB

B.11 24-atom SQS for fcc structure with composition A1/3B1/3C1/3

ternary fcc sqs ABC
1.00

12.000000 4.000000 �4.000000
�12.000000 4.000000 �4.000000

0.000000 2.000000 2.000000
AA BB CC
8 8 8
D

0.166667 0.083333 0.250000 AA
0.239583 0.197917 0.125000 AA
0.125000 0.125000 0.250000 AA
0.052083 0.010417 0.125000 AA
0.145833 0.229167 0.250000 AA
0.083333 0.166667 0.250000 AA
0.072917 0.114583 0.125000 AA
0.031250 0.156250 0.125000 AA
0.229167 0.145833 0.250000 BB
0.218750 0.093750 0.125000 BB
0.156250 0.031250 0.125000 BB
0.187500 0.187500 0.250000 BB
0.114583 0.072917 0.125000 BB
0.197917 0.239583 0.125000 BB
0.020833 0.104167 0.250000 BB
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0.093750 0.218750 0.125000 BB
0.208333 0.041667 0.250000 CC
0.104167 0.020833 0.250000 CC
0.177083 0.135417 0.125000 CC
0.062500 0.062500 0.250000 CC
0.250000 0.250000 0.250000 CC
0.135417 0.177083 0.125000 CC
0.010417 0.052083 0.125000 CC
0.041667 0.208333 0.250000 CC

B.12 32-atom SQS for fcc structure with composition A0.5B0.25C0.25

ternary fcc sqs A2BC
1.00

4.000000 4.000000 8.000000
4.000000 4.000000 �8.000000

�4.000000 4.000000 0.000000
AA BB CC
16 8 8
D

0.250000 0.187500 0.062500 AA
0.062500 0.187500 0.250000 AA
0.062500 0.187500 0.125000 AA
0.250000 0.062500 0.062500 AA
0.062500 0.125000 0.062500 AA
0.125000 0.187500 0.062500 AA
0.250000 0.250000 0.250000 AA
0.062500 0.062500 0.250000 AA
0.125000 0.125000 0.250000 AA
0.062500 0.125000 0.187500 AA
0.125000 0.187500 0.187500 AA
0.125000 0.250000 0.250000 AA
0.187500 0.062500 0.250000 AA
0.062500 0.250000 0.187500 AA
0.187500 0.125000 0.187500 AA
0.125000 0.250000 0.125000 AA
0.250000 0.125000 0.250000 BB
0.250000 0.187500 0.187500 BB
0.250000 0.062500 0.187500 BB
0.250000 0.250000 0.125000 BB
0.187500 0.187500 0.125000 BB
0.062500 0.250000 0.062500 BB
0.187500 0.062500 0.125000 BB
0.187500 0.250000 0.187500 BB
0.250000 0.125000 0.125000 CC
0.187500 0.187500 0.250000 CC
0.062500 0.062500 0.125000 CC
0.125000 0.125000 0.125000 CC
0.125000 0.062500 0.062500 CC
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0.187500 0.125000 0.062500 CC
0.125000 0.062500 0.187500 CC
0.187500 0.250000 0.062500 CC

B.13 80-atom SQS for ABO3 structure with composition A0.5B0.25C0.25

Title: by James
1.00

0.000000 3.904000 7.808000
7.808000 0.000000 0.000000
0.000000 11.712000 �7.808000

AA BB O Ti
8 8 48 16
D

0.750000 0.500000 0.750000 AA
0.625000 0.500000 0.125000 AA
0.500000 0.500000 0.500000 AA
0.875000 0.500000 0.375000 AA
0.000000 0.000000 0.000000 AA
0.250000 0.000000 0.250000 AA
0.625000 0.000000 0.125000 AA
0.875000 0.000000 0.375000 AA
0.375000 0.500000 0.875000 BB
0.000000 0.500000 0.000000 BB
0.250000 0.500000 0.250000 BB
0.125000 0.500000 0.625000 BB
0.750000 0.000000 0.750000 BB
0.375000 0.000000 0.875000 BB
0.500000 0.000000 0.500000 BB
0.125000 0.000000 0.625000 BB
0.562500 0.250000 0.812500 O
0.937500 0.250000 0.687500 O
0.187500 0.250000 0.937500 O
0.875000 0.250000 0.875000 O
0.500000 0.250000 0.000000 O
0.125000 0.250000 0.125000 O
0.062500 0.250000 0.312500 O
0.437500 0.250000 0.187500 O
0.812500 0.250000 0.062500 O
0.375000 0.250000 0.375000 O
0.750000 0.250000 0.250000 O
0.312500 0.250000 0.562500 O
0.687500 0.250000 0.437500 O
0.625000 0.250000 0.625000 O
0.250000 0.250000 0.750000 O
0.000000 0.250000 0.500000 O
0.687500 0.500000 0.937500 O
0.312500 0.500000 0.062500 O
0.187500 0.500000 0.437500 O
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0.562500 0.500000 0.312500 O
0.937500 0.500000 0.187500 O
0.437500 0.500000 0.687500 O
0.812500 0.500000 0.562500 O
0.062500 0.500000 0.812500 O
0.562500 0.750000 0.812500 O
0.937500 0.750000 0.687500 O
0.187500 0.750000 0.937500 O
0.875000 0.750000 0.875000 O
0.500000 0.750000 0.000000 O
0.125000 0.750000 0.125000 O
0.062500 0.750000 0.312500 O
0.437500 0.750000 0.187500 O
0.812500 0.750000 0.062500 O
0.375000 0.750000 0.375000 O
0.750000 0.750000 0.250000 O
0.312500 0.750000 0.562500 O
0.687500 0.750000 0.437500 O
0.625000 0.750000 0.625000 O
0.250000 0.750000 0.750000 O
0.000000 0.750000 0.500000 O
0.687500 0.000000 0.937500 O
0.312500 0.000000 0.062500 O
0.187500 0.000000 0.437500 O
0.562500 0.000000 0.312500 O
0.937500 0.000000 0.187500 O
0.437500 0.000000 0.687500 O
0.812500 0.000000 0.562500 O
0.062500 0.000000 0.812500 O
0.687500 0.250000 0.937500 Ti
0.312500 0.250000 0.062500 Ti
0.187500 0.250000 0.437500 Ti
0.562500 0.250000 0.312500 Ti
0.937500 0.250000 0.187500 Ti
0.437500 0.250000 0.687500 Ti
0.812500 0.250000 0.562500 Ti
0.062500 0.250000 0.812500 Ti
0.687500 0.750000 0.937500 Ti
0.312500 0.750000 0.062500 Ti
0.187500 0.750000 0.437500 Ti
0.562500 0.750000 0.312500 Ti
0.937500 0.750000 0.187500 Ti
0.437500 0.750000 0.687500 Ti
0.812500 0.750000 0.562500 Ti
0.062500 0.750000 0.812500 Ti
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SQS approach, 138
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modeling, 157
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supercell method, 133
surroundings, 1
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irreversible, 4
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