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Preface

Felix qui potuit rerum cognoscere causast

Virgil

The quest for understanding the laws of Nature constitutes one of
man’s most basic urges and lies at the origin of all discovery.
Another is the urge to harness the discoveries to practical ends
which is the mainspring of technology. These two attributes are
clearly visible in the development of the science and technology of
dielectrics over the last century. In the present monograph I am
primarily concerned with the first role — the understanding of the
laws of dielectric relaxation — while being hopeful that beneficial
consequences of this better understanding for the technology of
dielectrics will follow.

A growing understanding of Nature leads to the introduction of a
greater order into a previously rather confused picture and to the
establishment of an organic unity in the complex range of empir-
ically known phenomena. This unifying order produces a strong
aesthetic appeal — an ordered and unified system is beautiful and
the happiness to which Virgil alludes in the motto quoted above
is a powerful motivation for scientific work.

This monograph proposes such a unifying and ordering treatment
of the richly varied subject of dielectric relaxation. It will be left
to the reader to judge the extent to which this objective is achieved.

Although I have to accept the sole responsibility for the opinions
expressed in this monograph, it is my pleasure to acknowledge
invaluable help from many individuals, especially from my immedi-
ate colleagues in the Chelsea Dielectrics Group. Among them I
would wish to mention Professor Robert Hill whose contribution
can be measured by the number of references and acknowledge-
ments in these pages. Both he and Dr Len Dissado have developed
the new many-body theory of dielectric relaxation in continuing

t Happy is he to whom it was given to understand the causes of things.
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contact with the experimentalists working in our laboratory. The
names of many Research Students and Visitors appear in acknowl-
edgements, and I am particularly indebted to Mr John Pugh whose
help with the development and the running of the Frequency
Response Analysers in our laboratory is much appreciated.

This work would not have been possible without continuing support
and understanding from successive Principals of Chelsea College
— Dr Malcom Gavin, Dr David Ingram and currently Dr Charles
Phelps; from the Head of the Physics Department Professor E J
Burge and from my many Colleagues in the Department. Many
aspects of this work were developed in close association with Pro-
fessor Robert Lacoste of the Laboratoire de Génie Electrique at the
Université Paul Sabatier in Toulouse. Essential material support
was provided by Chelsea College, by the Science and Engineering
Research Council as well as by other bodies. More detailed acknow-
ledgements of this support, together with the account of current
work in progress may be found in successive Progress Reports of
the Chelsea Dielectrics Group which are available on request.

The loving understanding shown by my wife for the innumerable
hours of painstaking work is also acknowledged — without it this
monograph would never have seen the light of day.

Andrew K Jonscher

Chelsea Dielectrics Group
April 1983



Useful Physical Constants

magnitude of electronic charge e =1.602X 107 C
speed of light in free space ¢ =2998 X 10° ms™
permittivity of free space & = 107/4mc*

=8.854 X 10™*  Fm™
mass of electron m =09.109 X107 kg
mass of hydrogen atom my = 1.673 X 107¥ kg
Boltzmann’s constant k =1381x10%  JK™!

=0.862 X 107* eVK™
thermal energy at 300 K kT =1/40 eV
Avogadro’s number L =6.023 X 10% mol™
atomic excitation energy 1 eV = 2.305 X 10* calorie mol™

Debye unit of dipole moment 1D = (1/3) X 107* Cm-

approximately equal to charges*e at a distance of

0.2A=92X10"m.






CHAPTER 1
INTRODUCGCTION

1.1 DIELECTRICGS AND INSULATORS

The use of electrical insulation is as old as the science and technology
of electrical phenomena; it goes back at least a century and a half,
while the recognition of specifically electrostatic manifestations of
electrification goes back to antiquity. Systematic investigations of
dielectric properties may be traced back to the 1870’s.

The accumulated experimental and theoretical material is vast and
from an early stage on it was possible to discern two essentially
complementary approaches to this wide-ranging subject — the study
and development of insulators and of dielectrics. In this classifi-
cation, insulators are materials used to prevent the flow of current
where it is not desired, especially in the context of electrical and
electronic engineering, and the principal interest in them lies in
achieving the lowest possible electrical conduction coupled with the
maximum resistance to destructive breakdown in high electric fields.
Other factors such as long life, low cost, chemical inertness and the
ability to withstand elevated temperatures may be added to the
long list of technical specifications which must be met by modern
insulating materials working sometimes under extreme external
stresses. It is understandable that engineers and materials scientists
searching for insulating materials suitable for specific applications
were less concerned with the detailed physical mechanisms gov-
erning the behaviour of these materials, provided that their char-
-acterisation in terms of clearly defined parameters could be achieved
reliably and simply. This order of priorities remains true to this
day and the chief emphasis in electrical insulation science falls on
the synthesis of materials and their characterisation.

By contrast with the insulation aspect, dielectric phenomena are
at once more general and more fundamental — after all, insulators
are dielectrics — and are concerned more intimately with the micro-
scopic mechanisms of dielectric polarisation and include, especially,
the transient behaviour under time-varying electric fields. Much
of the available experimental evidence and a good deal of the
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theoretical treatments of the subject would be of little interest to
the electrical engineer searching for insulating materials.

The question of why insulators should possess their peculiarly
desirable properties distinguishing them from both metals and
semiconductors had to await the development of the band theory
of solids in the 1930’s when the distinction between metals, semi-
conductors and insulators was formulated in terms of the relative
disposition of the conduction and valence bands and of the position
of the Fermi level between them (Kittel 1976, Smith 1978). Insu-
lators were considered to be materials with negligible numbers of
thermally generated carriers of electronic nature. We now know
that a small number of charge carriers, while important, is not the
only criterion of acceptable insulating behaviour — the other require-
ment is their mobility which has to be low in good insulators. This,
in turn, had to await the development of the modern theory of
low-mobility hopping conduction in the last twenty years, or so
(Mott and Davis 1979).

Two of the most important dielectric concepts to be developed
concerned the induced and orientational polarisation in external electric
fields. The first treatment of the static response by Clausius and
Mossotti in the 1870’s represents one of the earliest attempts to
approach a many-body situation in an elementary way and it may
be said to have been a century ahead of its time!

The other decisive development came in the early years of this
century with Debye’s theory of dynamic dielectric response of freely
floating dipoles, such as might be found in dipolar liquids. This
opened up a new era of investigations of the frequency- and
time-dependence of the dielectric response of materials where two
separate tendencies became evident as time went on. The principal
interest of chemists and some physicists lay in the study of the
dynamics of molecular motion in polar materials and the dielectric
response represented an excellent tool for this work. The behaviour
ofinsulators in alternating electric fields or under impulse conditions
was of interest, although for different reasons, to electrical engineers.
At the level of transient phenomena, the distinction between insu-
lators and dielectrics becomes rather blurred, but it is significant
that engineers were for a long time using the notion of the anomalous
charging current which is cbserved when a step-function field is
applied to a dielectric — as we shall see later, the very essence of
dielectric behaviour was called anomalous as if it ought not to be
there!
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This division of interest in dielectrics between electrical engineers
and chemists is clearly discernible to this day, with the addition
of electrochemists whose principal interest lies in ionic conductors
and, more recently, a strong group of solid state physicists working
on the alternating current conduction in amorphous electronic semi-
conductors. The result of this state of affairs is a far reaching
fragmentation of dielectric studies. between groups which do not
collaborate with one another, often do not see any community of
interest among themselves and which use separate and different
methods of evaluation, analysis and measurement. An example of
this may be seen in the preference for the use of dielectric loss by
chemists, loss tangent by electrical engineers and alternating current
conductivity by physicists. Many examples of these differences will
be found in the present treatment which seeks to integrate the
various separate approaches.

One very general feature of the science of dielectrics, especially at
“low” frequencies below the microwave range, is the comparative
scarcity of new physical concepts during the last half-century — and
this despite a very rapid growth of the understanding of many other
aspects of solid state physics. We shall be able to see in the course
of the development of the theory of dielectric processes that this
topic throws important fresh light on the understanding of hitherto
little known aspects of the theory of solids.

We shall be able to show that the time- and frequency-dependence
of the dielectric response -of solids is uniquely sensitive to certain
relatively weak many-body interactions which largely dominate this
response in wide ranges of frequency and time and also in relatively
wide ranges of temperature. This influence of many-body inter-
actions is much stronger in transient dielectric processes than in
any other form of static behaviour and this probably accounts for
the prevailing lack of appreciation of these phenomena in solid
state physics. The only other branch of relatively modern physical
theory where similar processes have been studied for some while
is the theory of amorphous solids and spin glasses and many of the
ideas advanced in the present work derive from that subject.

1.2 THE NATURE OF DIELECTRIC RESPONSE

We have already mentioned the fact that the dielectric response of
many materials has been of immediate interest to scientists and
technologists for a long time and this accounts for a great wealth
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of experimental data which are available for interpretation. Fur-
thermore, advanced forms of modern measuring equipment are on
the market and are being extensively used in many centres for the
study of dielectric materials. What is more problematical is the
precise physical and chemical characterisation of these materials
and this represents one of the principal difficulties in assessing the
value of the available experimental data and in drawing any gener-
alised conclusions from them.

The awareness of this problem is the more acute among material
scientists since the development of the technology of semiconductors
and also of many other materials has drawn attention to the often
critical influence of even minute quantities of impurities and of
structural defects on the physical properties of these materials. In
relation to these, dielectric materials represent very poorly char-
acterised systems with a very large content of impurities and
imperfections. The question is legitimately raised, therefore, to what
extent is it possible to assess the value of any experimental infor-
mation obtained on such unreliable materials?

The present work nevertheless undertakes precisely such a gener-
alised assessment and draws far-reaching conclusions from experi- .
mental data, justifying this action by certain aspects of this experi-
mental information which were not perhaps sufficiently well
appreciated until now. One of these aspects is the apparent “uni-
versality” of the form of the dielectric response which has been
known for three-quarters of a century under the name of the
Curie-von Schweidler law (von Schweidler 1907). This law states
that the discharge or depolarisation currents of a wide range of
dielectric materials follow the power law of time dependence

i(t) oct™" (1.1)
instead of the exponential relation which would correspond to the

simplest first-order differential equation decay characterising the
Debye mechanism.

We shall show, on the basis of many examples, that this law is
indeed a “universal” one and it is only weakly influenced by the
detailed physical and chemical characterisation of the materials to
which it applies.

Another unique advantage of the experimental information on
dielectric relaxation is the unrivalled range of the dynamic variables
of time and frequency to which it applies. This wide range is further
enhanced by the principle of time-temperature or frequency-tem-
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perature super-position which enables data taken at different tem-
peratures to be related to one another, thereby increasing the range
- and reliability of these data.

The breadth of the dynamic range is illustrated with reference to
Figure 1.1 which shows the entire conceivable time and frequency

time
domain
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Figure 1.1 A schematic representation of the entire physically accessible range of
time and of frequency on a logarithmic scale extending from frequencies corre-
sponding to nuclear energies of the order of GeV, to the age of the universe, 10"’ s.
The energy scale is given in electron—volts. The ranges of inertial, phonon and
quantum processes are indicated, and the lower frequency region is marked as
“many-body interactions” in anticipation of arguments to be presented later in
this work. The diverging lines indicate the increasing importance of time and
frequency domain measurements. VLF stands for Very Low Frequency. The
distinction between many-body relaxation processes and irreversible ageing
phenomena is not meant to be rigid.

range, from frequencies corresponding to nuclear energies of
10 GeV, down to the reciprocal age of the Universe — a total of 40
decades. If we now note that the behaviour at frequencies in excess
of some THz is dominated by inertial and by phonon and quantum
processes which fall outside the scope of the present treatment, and
if we note that the practical lower end of frequency measurements
is 107 Hz, we have a total of 17 decades of “low” frequency in
which to study the dielectric behaviour. This range may further be
extended to twenty or more decades by the time-temperature
superposition mentioned above. We are therefore in the uniquely
favourable position of being able to cover experimentally up to
two-thirds of the total logarithmic range of times and frequencies
corresponding to the sub-quantum range.

The width of the dynamic range has as its consequence the pos-
sibility and the need to interpret the data in terms of sufficiently
general theoretical models — while almost any model would do over
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one or two decades, it becomes much more difficult to “fudge” the
interpretation when one has ten or more decades at one’s disposal.

1.3 THE PURPOSE AND SCOPE OF THE PRESENT
TREATMENT

The subject of dielectrics is so rich in content and so varied in
scope, ranging from theory through experimental studies to tech-
nological applications, and the resulting literature is so voluminous,
that it is essential to define clearly the purpose and scope of the
present work, so as not to repeat material which is well covered in
other texts.

At the most elementary level it is possible to distinguish between
the static or steady state response to a steady electric field and the
dynamic response to time-varying electric fields. One particular
aspect of time-dependent behaviour relates to the decay of polar-
isation from an initial steady state to zero after the sudden removal
of an initial polarising field. In the case of inertia-less systems in
the “low-frequency’ sub-quantum limit defined in Figure 1.1, this
decay is referred to as dielectric relaxation and this will later be shown
to be intimately connected with the response of dielectrics under
~ sinusoidally varying electric fields.

With regard to the static response, it is possible to state that the
quantitative relationship between the polarising field and the result-
ing polarisation can only be calculated for the simplest cases, and
is usually restricted to relatively dilute dipolar systems in which
dipole-dipole interactions are not significant. In the great majority
of practically important dielectric materials, it is not possible to
test the relationship between static field and polarisation in terms
of any specific model since we lack the essential knowledge of such
numerical parameter as the density and magnitude of the dipolar
species responsible for the dielectric behaviour. To that extent,
therefore, the analytical treatment of the static response is of limited
practical significance.

The situation is quite different in the case of the dynamic response
or relaxation phenomena, since there it is possible to discern the
applicability of a remarkable “universality” of the dynamic behav-
lour in virtually all dielectric materials, regardless of their physical
and chemical properties and regardless of the nature of the pola-
rising species, be they dipoles, hopping electrons or ions. The
principle of universality of the dynamic response of dielectric relax-
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ation, whether in the “time-domain” or in the “frequency domain”,
was first formulated on the basis of extensive experimental evidence
and has resulted in a new classification of all types of dielectric
response, including not only typical dielectric materials but also
many others which are not normally regarded as such (Jonscher
1977, 1980). This, in turn, has led to a new theoretical approach
which forms the subject of the last Chapter of the present Mono-
graph and which provides, for the first time, a unified theoretical
interpretation of dielectric data which were hitherto considered to
require separate and very different treatment according to the type
of material concerned. This unified approach has also led to the
development of fresh insights into such related topics as the “1/f
noise” and the physical basis of dielectric loss. It has also provided
a consistent foundation for some of the widely used techniques in
the interpretation and presentation of dielectric data, such as the
“normalisation” of results obtained at different temperatures.

With the deepening understanding of the physical processes gov-
erning the frequency-domain spectral shape of dielectric relaxation
it became possible to provide more reliable interpretation of the
different forms of these spectra than was possible up to now, and
we are devoting some attention to this aspect of dielectric studies.
In particular, we show that some of the widely accepted “‘inter-
pretations™ or conclusions drawn from dielectric spectra are not
justified in the light of the present analysis.

We begin in Chapter 2 with a brief discussion of some fundamental
concepts relevant to the dynamic behaviour of polarisation, includ-
ing the mathematical formulation of time- and frequency-domain
analysis. Chapter 3 gives a detailed discussion of the often neglected
topic of presentation of dielectric data, which provides a key to the
proper evaluation of experimental results. In particular, we show
the importance of using the log—log representation of the real and
imaginary components of dielectric susceptibility against frequency,
as opposed to the prevailing method of plotting the linear suscep-
tibility against logarithm of frequency. The reason for this choice
becomes evident in the light of the predominance of power-law
relationships, which become straight lines in the log-log presentation,
while forming non-descript curvilinear contours in the sem1-10g=
arithmic representation.

Chapter 4 discusses the dynamic response of idealised physical
models, partly to familiarise the reader with the methods of
approach and partly to show him the extent to which such idealised
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models can represent the observed behaviour of dielectric solids.
Chapter 5 then presents a wide selection of experimental infor-
mation relating to the frequency domain, culminating in our general
classification of the various types of dielectric response. This syn-
optic presentation covers not only traditionally recognised dielectric
materials, but also many examples of dielectric response observed
in systems such as semiconductor p—n junctions, amorphous elec-
tronic semiconductors, fast ionic conductors and so on, the avowed
objective being to show the full breadth of the spectrum of materials
which obey the universal principle. Some of the data given in our
review were originally presented in different forms, e.g. as complex
impedance plots or as complex permittivity plots and we had to
adapt them to our purposes, as far as was possible, to maintain a
unified form of presentation.

Chapter 6 gives the complementary information on the time-domain
response of dielectric materials — this is much less comprehensive
than the frequency domain data because the measurement tech-
niques are less well developed, but the data included provide some
specific illustrations for example, for the effects of non-linear behay-
iour arising from injection of charge carriers.

Up to this point we have very deliberately avoided any form of
interpretation of the experimental data — we wished to let the facts
speak for themselves without thrusting premature conclusions on
the reader’s mind. This is part of our endeavour in the present
‘work:

to see dielectrics as they really are, and not as we’d like them to be.

Chapter 7 then gives a very brief discussion of the existing treat-
ments of the interpretation of dielectric data — the express object
here is not to enter into details which are available in many excellent
texts, but rather to point out the inadequacy of the accepted
interpretations in the face of the accumulated experimental
evidence.

The presentation of the new many-body interpretation of the di-
electric behaviour is then given in Chapter 8. We have left this
discussion to this late stage because we wished it to be based firmly
on a wide range of experimental evidence and also on the conclusion
regarding the inadequacy of other treatments — one does not lightly
advance a completely new approach to a well established subject!
However, our entire approach is based on the conviction — and we
assert that there is scope for conviction in science — that where
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Mother Nature presents us with an overriding uniformity of behav-
iour in a wide range of physical situations, a fundamental unifying

principle is very likely to be found behind an apparent multiplicity
- of different behaviours.

Throughout the treatment we limit ourselves to the region below
the microwave range, since this is where the “low-frequency”
universal response is seen clearly without interference from quan-
tum and inertial phenomena. Apart from this restriction, however,
we have not consciously tried to exclude any experimental evidence
as being “inconvenient” or, in some way, contradicting the uni-
versality we strive to establish.

The exclusion of inertial and quantum effects does not imply that
we think that many-body processes do not have a role to play there
— they most certainly do, but the range of experimental information
is not sufficiently wide and the influence of many-body processes
not sufficiently strong to make it worth including these in the
present treatment.

The present Monograph inevitably builds on the achievements of
past generations of workers in this field. We rely heavily on the
understanding of the microscopic processes of dipolar orientations
in solids and in liquids contained in many excellent classics such
as Bottcher and Bordewijk (1978), Frohlich (1955), von Hippel
(1954), Smyth (1955), Daniels (1967), McCrum et al (1967), to

mention but a few.

In order not to make our treatment unduly long, we limit severely
any detailed discussion of the nature of the various chemical aspects
of the subject. We dwell only briefly on the subject of static behav-
iour, mainly on the basis of the fact that understanding of this
aspect has not advanced in the last twenty years, or so, and there
is no fresh evidence which we can bring to reader’s attention.

We do not cover specifically ferroelectric phenomena, although we
do quote some frequency response data for ferroelectric materials.
There is ample specialised literature on this subject and we are
only concerned with it to ‘the extent of the dynamic behaviour.
Likewise we leave aside the important subject of anisotropic di-
electrics with their tensor properties, which is covered in specialised
textbooks e.g. Zheludev (1971), again mainly on the basis of the
fact that the specifically dynamic aspect of response is either not very
sensitive to anisotropy, or is not sufficiently well documented. We
do make some references to such cases as have come to our notice
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but these are often concerned with strongly anisotropic materials,
e.g. layer compounds. We are not dealing with the specialist topic
of hyperpolarisation below optical frequencies, once again because
there is little evidence of specifically dynamic behaviour under
conditions of electric fields which are sufficiently high to give rise
to significant non-linearity of dielectric response.

While hopping electronic and ionic charges enter very prominently
into our discussion of the dynamics of dielectric response — we
emphasize this aspect more than do typical dielectric texts — the
subject of direct current flow and, more specifically of current flow
under high fields where Poole-Frenkel, Poole and Schottky processes
become dominant is left out of consideration. Adequate references
to this field may be found in Mott and Davis (1979) and also in
Jonscher and Hill (1975).

We say nothing about electrets (Sessler, 1980) and the related topic
of thermally stimulated depolarisation (van Turnhout 1975).

The role of contacts and surfaces on dielectrics is certainly very
important, not least because it is known to give rise to injection of
charge carriers and may lead to unexpected processes taking place.
Unfortunately, it must be said that our systematic knowledge of
these phenomena is only relatively recent (Davies 1969, Lederer
et al 1980, Barnes et al 1981) and most of it derives from the
extensive studies of semiconductor surfaces and interfaces from
which we argue by analogy.

An important aspect of the technology of dielectrics is ageing,
especially under thermal and electrical stress in the context of
electrical insulation. We indicate in Figure 1.1 that the realm of
ageing phenomena is not clearly separated from that of dielectric
relaxation which is of principal interest to us in the present work.
A distinction which we propose to introduce, however, is that
relaxation is reversible while ageing is not and we shall leave this
matter at that.

A comment is called for regarding the restriction of the present
treatment to the response of solid dielectrics, to the exclusion of
liquids and of gases. The latter form a class in their own right in
view of their low density and consequently the absence of significant
inter-particle interactions. Liquids, on the other hand, share with
solids the close proximity of particles and the importance of chemical
bonds, and their dielectric properties are also to some extent influ-
enced by the same many-body interactions as in the case of solids.
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~ On the other hand, for a variety of reasons, liquids approximate
more closely to the classical Debye model than do solids and our
arguments concerning the universality of non-Debye responses
would have been somewhat clouded — though not invalidated — by
the inclusion of liquids at this stage. Solids represent in this respect
a more favourable medium in which to establish the principle of
many-body interactions, although later it will be possible to see
that the same phenomena are also applicable to some extent in
liquids.

Throughout the present work we are trying to place the main stress
on conveying the physical meaning of the phenomena taking place
in solid dielectrics. We believe that this form of exposition is of
most direct benefit to the reader, who is interested not only in
knowing how dielectrics behave, but principally in the reason why
they behave in this particular manner. In this exposition, we regard
mathematics as an indispensable tool for the derivation of theor-
etical principles and for the quantification of relationships, but we
do not wish to elevate the mathematical arguments to the level of
ends in themselves. Wherever possible, therefore, we employ the
simplest mathematical treatment, rather than the most rigorous
one, while striving to preserve the correctness of the results obtained.
In this manner, the interested reader may turn to more specialised
works for a complete and rigorous mathematical exposition, while
the reader concerned mainly with the physical argument will be
satisfied with the knowledge that a mathematical derivation is
possible.

For the same reason we avoid also the derivation of formulae that
are more complicated than what we can actually exploit in the
course of the arguments developed in the present text. We do not
wish to burden the reader with a voluminous compendium of
formulae which have been derived at one time or another, but
whose usefulness from our point of view is very limited. This applies
particularly to the many rather formal expressions which are being
used in the literature and whose physical significance is very slight.

While giving the principles on which the measurements on the
time- and frequency-domain behaviour are based, we do not provide
any detailed description of the techniques of dielectric measure-
ments themselves, which constitute a highly specialised branch of
knowledge. The equipment available is now at a very advanced
level of development and it would be futile to try to give justice to
this complex field in the present treatment. The relevant information
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may be obtained from specialist literature but at present increas-
ingly from manufacturers’ instruction manuals.

On the other hand, as already stated, we do provide an extensive
treatment of the methods of dealing with the data once these have
been collected. This part of the analysis is much less familiar to
many workers in the field of dielectric measurements and there are
very few texts dealing with this aspect of analysis (Jonscher 1978,
Hill 1981, Hill and Dissado 1982).

Very up-to-date reviews of several branches of the field of dielectric
studies may be found in a recent volume of conference proceedings

(Goodman 1980).
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- CHAPTER 2

The Physical and Mathematical Basis of
Dielectric Polarisation

2.1 CHARGES, DIPOLES AND CHEMICAL BONDS

At the atomic level, all matter consists ultimately of positive and
negative charges balancing each other microscopically or macro-
scopically: the former corresponding to overall charge neutrality, the
latter giving rise to local space charge, but even in that condition one
expects to find the net charge over a given volume or sample to be
zero. As examples we may note that a neutral gas consists of atoms
or molecules which, while neutral, contain electrons in the outer
orbits which may be detached completely if sufficient energy is
supplied to the system, e.g. in the form of thermal excitation or
through the absorption of a light quantum, thus ionising the atom
or molecule and leaving a positively charged ion and the detached
electron. The positive ion and electron may recombine again to yield
the neutral molecule and the processes of ionisation and recom-
bination may come to an equilibrium with a certain density of the
charged species being maintained — this is the case of a plasma
which is neutral overall but which contains these mobile charges
in addition to any neutral particles that may be present.

A situation closely analogous to the gas plasmas arises in the case
of many solids (Platzmann and Wolff 1973), where the valence
electrons of a metal may be considered to constitute a cloud of
negative charge which is neutralised by the fixed positive charge of
the atomic cores constituting the lattice itself. Similarly, in intrinsic
semiconductors the electrons and holes are present in equal densities
and constitute a free carrier plasma, while in extrinsic semicon-
ductors the donors or acceptors provide the fixed neutralising charge
distribution for the free electron or hole charge densities,
respectively.

Even though the positive and negative charges do not separate
completely in space to give two separate free particles of opposite
sign, the charge distribution within a neutral molecule may be
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distorted to create a local molecular charge imbalance in which the
“centres of gravity”’ or the first moments of the positive and negative
charges, *¢, become separated by a finite distance [, thus creating
a dipole with a dipole moment [t = ¢l. This concept of a dipole differs
fundamentally from that of the plasma, in that the charges are not
capable of being separated beyond the distance / which may be
fixed or may related to the magnitude of the locally prevailing
electric field, E.

The case of fixed [/ corresponds to situations in which the charge
separation is caused by chemical interactions between dissimilar
atoms constituting the molecule, e.g. HCl, where the different
electron affinities of the atoms give rise to the appearance of net
charges on each atom, in this instance H* — C1~. The situation
leads to the creation of a permanent dipole whose dipole moment is
dominated by the strong intramolecular interactions and is not
seriously affected by external factors such as electric field and
temperature. The dimensions of the dipole moment are [u] = G.m.
A convenient non-SI unit frequently used in the literature to give
numerical values of dipole moments is one Debye (D)

1D = (1/3)-10* Cn

which is equivalent to two charges of *¢ of magnitude cqual to the
electronic charge separated by a distance of 2.08 - 107

The other type of dipole arises in atoms or molecules in which no
significant charge separation occurs as a result of chemical inter-
actions and in which the separation takes place between the outer
valence electrons and the atomic cores. In these cases we assume
that the dipole moment is proportional to the electric field according
to the relation u = aF, where «is the polarisability of the molecule.

With this definition, the dimension of polarisability is [a] =
sometimes quoted in more convenient units of A® =107 m’. ThlS
induced dipole moment which is proportional to the electric field
adds vectorially to any permanent dipole moment that a molecule
may possess.

The formation of permanent dipoles and the polarisability of mol-
ecules are very intimately linked with the nature of the chemical
bonds between atoms in molecules. In non-metallic solids these
bonds may be covalent or ionic, corresponding, respectively, to the
limit of negligible charge transfer and of complete charge transfer
between atoms. Thus, a diatomic molecule consisting of identical
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atoms, e.g. H, or Ny must necessarily be covalently bonded since
symmetry precludes any charge transfer. The corresponding situ-
ation arises in non-metallic elemental crystals, e.g. silicon or dia-
mond, where the bonds are completely covalent and no charge
transfer takes place between atoms. These bonds are strongly
directional and their polarisability is naturally different according
to the orientation of the polarising field with respect to the direction
of the bonds — (see Section 2.3¢).

Classic examples of completely ionic bonds are to be found in solids,
such as the alkali halides NaCl, KCl, etc. where the charge transfer
between the positive cations Na* and the negative anions Cl~ is
complete, leading to the formation of completed valence shells in
both species. The bonding forces in such solids are predominantly
the Coulombic attraction between oppositely charged nearest neigh-
bours, balanced by the strong repulsion as ions approach more
closely than is allowed by their effective ionic radii

All compound solids consisting of dissimilar atoms, e.g. ZnS, SiO,,
BN, have partially covalent and partially ionic bonds, in which the
charge transfer is finite but not sufficient to produce completed
outer valence shells in the constituent ions. In addition to the
induced polarisability of the individual ions, ionic solids are also
polarisable by virtue of the relative shifts of the positive and negative
sub-lattices from their equilibrium positions.

In addition to the electron-sharing covalent bonds and the
electron-transferring ionic bonds, or some intermediate forms,
non-metallic solids may exhibit a third form, the van der Waals
bonds in which neither sharing not transfer of electrons takes place.
These bonds are formed between atoms or molecules which are
essentially chemically inert, such as the noble gas solids, e.g. solid
argon, or molecular gas solids, e.g. solid hydrogen or nitrogen. In
these solids a relatively weak interaction arises from the closely
approaching electronic clouds. The resulting polarisability is essen-
tially that of the constituent molecules themselves.

A very important class of solids exhibiting both covalent and van
der Waals bonds are the molecular solids such as polymers and many
organic solids in which large molecules, sometimes very large
macro-molecules, are strongly covalently bonded internally and are
then linked by the van der Waals forces between themselves. This
strong disparity between the covalent and van der Waals bonds in
molecular solids means that molecular motions are relatively easy,
compared for example with wholly covalently bonded materials.
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The process of cross-linking polymers amounts to replacing some
of the weak van der Waals intermolecular bonds by strong covalent
bonds. This evidently increases the mechanical rigidity of the
polymer.

2.2 DIELECTRIC POLARISATION

The relative shift of the positive and negative charges in matter is
referred to as dielectric polarisation. There exist many examples where
finite polarisation is present even in the absence of an-external field
— for example the permanent polarisation in ferroelectrics and in electrets,
but we shall not be concerned with those in detail in the present
treatment. Our interest will be devoted entirely to the phenomenon
of polarisation produced by an electric field, both through the
orientation of any permanent dipoles and through the induced
polarisation of individual atoms or ions.

We may write the general relation between the polarisation P and
the field E as:

P = gyxFE + higher terms in E (2.1)

The first term proportional to the field is of dominant importance
in most systems, & is the permittivity of free space and X is the
susceptibility. The higher terms give rise to phenomena known as
hyperpolarisation but we shall not be discussing them in detail, except
in a few cases where non-linearities of the dielectric response arise
in a particularly strong manner.

The polarisation P is directly related to the surface charge which
appears on a polarised medium. Consider now a planar capacitor
consisting -of two parallel metallic electrodes at a distance w apart,
as in Figure 2.1 and let the space between the electrodes be empty
initially. If a voltage Vis applied between the electrodes, this gives
rise to a uniform field E = V/w, and charges £Qp, = *&FE appear
on the plates as a consequence of Gauss’ law. Let now the space
between the electrodes be filled with a material medium of suscep-
tibility x which becomes polarised in its own right, contributing a
surface charge Q, = P, so that the total charge on the electrodes
becomes the sum of the contribution of free space and of the
contribution due to the material medium polarisation:

Q=0 +QU=8a(l+x)E=¢0)E
This equation defines the static permittivity £0) of the material,
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Figure2.]1 Schematicrepresentation of the distributions of surface charges induced
on two metallic electrodes at a distance w, due to the presence of a single point
charge ¢ at a distance x from one of the electrodes. The electrodes are assumed
to extend to infinity in the plane normal to the plane of the paper.

in terms of the contributions of the free space and of the material
medium itself. Later in the present work we shall extend the concept
to the frequency dependent permittivity which will be related in
an identical manner to the frequency dependent susceptibility of
the materials in question.

Some authors favour the use of a different parameter, defined as
the dielectric modulus

M=1/e=E/Q

which is valid also in the case of frequency-dependent behaviour.
While it remains essentially a matter of taste which of these par-
ameters one prefers, since they uniquely define the properties of
the materials, we find that the permittivity is the more directly
physically meaningful quantity, since in virtually all situations it
is the field that constitutes the independent variable and the charge
is the dependent variable, and not the other way round.

Although it is possible to devise experimental measurements which
would give an indication of the value of P in the interior of a
dielectric, this is not at all an easy and certainly not an accurate
method of determining the dielectric polarisation. By far the most
important experimental procedure for determining the polarisation
below the microwave range of frequencies consists in the deter-
mination of the electric current resulting from a rate of change of
polarisation with time, :

i(t) = dP/dt (2.2)
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If it is then desired to know the total polarisation, it is necessary
to integrate the current over the entire range of time. This method
of measurement rests on the unique relationship between the polar-
isation in the volume of the material and the charge Q induced on
the surface. The principle is best explained with reference to Figure
2.1 which shows a pair of planar parallel electrodes at the same
potential containing, initially, no matter in the space between them.
Assuming now that a charge ¢ is introduced at some point between
these plates and also assuming that the area of the electrodes is
large in comparison with the square of their separation w, it may
be shown that the charges induced on the two electrodes are:

Q= gx/w Q2=g(w—x)/w_ (2.3)

so that the sum of these charges is equal to ¢g. The proof of this may
be obtained in a number of ways, one of which runs as follows
(Scaife 1973). Assume that a planar sheet of charge of area density
Q is introduced in the plane x between parallel plates extending to
infinity in the plane y-z normal to x. We postulate that the charge
densities induced uniformly over the entire area of the plates by
the sheet at x are
Q=bg Q=(1-b)g

where the parameter b is as yet undetermined. This amounts to no
more than the assumption of linear dependence between ¢ and Q,,
Q,, together with the statement that the sum of induced charges
cannot exceed the primary charge. Since the field between the sheet
of charge and the plates is given by Q,/& to the right and by
—Q.,/ & to the left of the plane x, and since the potential of the two
plates is the same, it follows that the parameter b has the value
x/w. The next step of the argument rests on the principle of super-
position which states that the charges induced at some boundary
electrode under the action of a given distribution of charges in
space represent the sum of the effects of point charges from which
the distribution is composed. Since the sheet of charge corresponds
to a uniform density of point charges, the induced charges corre-
sponding to every single point charge are in the same ratio and this
proves the expressions (2.3).

If we now assume an arbitrary volume distribution of point charges
¢: at coordinates x;, the aggregate effect of these on the plates is

Q,= 2 gix:/w = M, /w
Qo= 2 (1 — x/w) = My/w

(2.4)
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This summation, which in the limit of a continuous distribution of
charge p(x) may be changed into an integration over the coordinate
x, amounts to the statement that the total charges induced on the
plates by a volume distribution of charge are equal to the respective
Sirst moments M of that distribution taken with respect to the opposite
plate. We note that, since we are here asking for the total charges
and not for their distribution on the plates in the plane y-z normal
to x, the positions of the volume charges in the y—z plane are not
relevant to this calculation.

If now the two plates are not at the same potential but have a
potential difference ¥ between them, creating in the absence of the
volume charge a uniform field E = V/w, this field gives rise to
‘induced charges *&V/w and these are superimposed on any
charges induced by the presence of a volume charge distribution.

It follows, therefore, that any change in the first moment of charge
distribution with time results inevitably in a corresponding change
of the induced charges and this change is immediately detectable
as a current in the circuit connecting the two plates. This measure-
ment provides the basis of the experimental determination of the
first moment of the distribution.

Consider now the-case of an overall neutral medium containing a
distribution +p*(x) of positive space charge and a distribution —
p~(x) of negative space charge, each amounting to the same total

magnltude of charge Q:
Q= f p* (x) dx
0

Each of these distributions has its own first moment M* defining
its “centre of gravity”:

= M/Q = (1/0Q) f‘“x,oi L (2.5)

as shown in Figure 2.2. So long as the two distributions are exactly
equal, there is no net charge on the plates, since the induced charges
arising from the opposite charge distributions cancel one another
exactly. If, however, due to an external field giving rise to a
displacement of the positive and negative charge distributions in
opposite directions, the centres of gravity s* and s~ should become
displaced with respect to one another, then the charges induced on
the plates will be '

Qi=—Qy= (M'—M)/w=Q(s* —5 ) /w= QAs/w (2.6)
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Figure 2.2 Diagram a) represents two arbitrary but equal distributions of positive
and negative space charge, p*(x) = p~(x), over a planar insulating region of
thickness w. s* denotes the common centre of gravity of the distributions. In
diagram b) the two distributions have been slightly displaced with respect to one
another, as might be the case under the influence of an applied electric field E
indicated by the arrow. As is the resulting displacement of the respective centres
of gravity s*. The resulting induced charges of opposite signs on the electrodes,
+(, are of equal magnitude.

where As is the extent of the displacement of the centres of gravity
of the positive and negative charge distributions.

Now Q being the total charge contained in the respective positive
and negative distributions, we note that QAs is a dipole moment,
which is exactly equal to the moment that would arise if two point
charges =Q were displaced by a distance As. We now assume that
the plates have unit area in the y—z plane, so that Q, and Q, become
charge densities per unit area, and we call these charge densities
the polarisation. It then follows from eqn (2.6) that
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polarisation is the dipole moment per unit volume and is equal
to the charge per unit area on a boundary normal to the
polarisation.

We conclude that a finite relative displacement of positive and
negative charges produces a dipole moment throughout a given
volume of space in which these charges are present and the effect
of this dipole moment is to produce a charge density at the external
boundaries, assumed to be normal to the displacement, which is
equal to the dipole moment per unit volume. The dipole moment
is a vector in the direction of the relative displacement of the two
charges, and so is therefore the polarisation, although for our
purposes it will be sufficient in the majority of cases to regard it
as a scalar quantity, since the treatment will be restricted to one-
dimensional problems. The convention is to represent the dipole
moment as a vector directed from the negative to the positive
charge, as shown in Figure 2.5.

{ g

K=qt
~q
Figure 2.3 Schematic representation of a permanent molecular dipole consisting

of two charges *¢ at a distance [, giving the dipole moment u=gl. It is a
convention that the dipole moment vector points from the negative to the positive

charge.

In anisotropic crystalline media, or partially crystalline media such
as oriented polymers, the dipole moment induced in the system is
not necessarily oriented in the same direction as the electric field
vector — the medium has in this case to be described by a tensor
susceptibility (Nye 1957, Zheludev 1971).

Instead of thinking in terms of the dipole moment arising from the
relative bodily displacements of two initially balaneing charge dis-
tributions of opposite signs, we shall achieve the same end result
if we consider the local rotations of a number of permanent dipoles
or the creation of the corresponding density of induced dipoles; the
dipole moment per unit volume is the summation of the individual
dipole moments. :
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So long as there is no net volume space charge in the system, the
two induced charge densities at the electrodes are the same in
magnitude. This condition would not apply, for example, in an
insulator into which a net space charge was injected from one
electrode, as in space charge limited flow (Lampert 1965).

2.3 POLARISATION IN STATIC ELECTRIC FIELDS

We now propose to obtain the relationship between the polarisation
and the electric field implied by eqn (2.1) and we shall do so in the
first instance for the case of a static, i.e. time-independent field,
leaving the practically more important ¢ase of time-varying fields
to Section 2.5.

The basic physical fact to be borne in mind when discussing
polarisation is that

polarisation arises from a finite displacement of charges in
a steady electric field

and this is to be contrasted with the complementary physical
phenomenon of electrical conduction which is characterised by the fact
that

conduction arises from a finite average velocity of motion of
charges in a steady electric field.

Our discussion in Section 2.1 clearly shows that dipoles of both the
permanent and the induced type are examples of polarising species
which are incapable of leading to a continuing conduction current
in a static electfic field, since the charges in question cannot be
completely separated or dissociated under normal conditions. A
dipole could only become dissociated in a field that would be
sufficiently large to break the strong bonding forces of the neutral
dipolar molecule and this is not normally possible in solids and
liquids where various forms of electrical breakdown take place at

much lower fields, 10%~10° V/m.

As an example consider the fact that typical molecular bonding
energies are of the order 1-10 eV, with typical spacing in molecular
dipoles of the order of a few times 107°m. The field required to
break the dipole would therefore amount to 10-10" V/m.

We now give the elementary derivation of the expressions for the
polarisation in specific cases of dipolar systems.
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a) Orientational polarisation — freely floating dipoles

This is the classical type of polarisation originally treated by Debye
(1945) and it refers to polar molecules which are freely floating in
a dielectrically inert non-polar fluid. There are therefore no restoring
forces tending to impose a preferred direction, only the randomising
influence of thermal agitation. :

Consider a set of N non-interacting dipoles, each of dipole moment
U, at a temperature T and in the presence of an external field E.
The total energy of the dipole is made up of the thermal energy
plus the electrostatic interaction energy:

W= kT — WE cos 6 (2.7)

where  is Boltzmann’s constant and 6 is the angle between the
dipole and the field. The resulting torque is:

B(6) = —W/30 = —uk sin 6 (2.8)

The distribution function of dipoles throughout the spherical angle
is isotropic in the absence of the field, while in the presence of the
field we introduce the Boltzmann factor exp(—W/kT'), using eqn
(2.7):

g(6) = (N/4m) exp(UE cos O/kT) (2.9)

where the factor 47 is introduced for normalisation. We now make
use of the low feld approximation, WE < kT, which will be justified
later on. In this limit we may expand the exponential term and
obtain

2(6) = (N/4m) {1 + (WE/KT) cos 6} (2.10)

in which the first term corresponds to the isotropic distribution in
the absence of a field and the second term represents the small
perturbation favouring small angles 6.

In order to obtain the average dipole moment we take the average
of pcos 6 over the entire solid angle:

. Jg(6) sin Bcos 6d6

BB (6) sin 646
the integration extending from 0 to 2. Substituting a = uE/kT and
changing the variable cos 8 = u, we find using the exact expression

(2.9):

(2.11)

P L, u exp(au) du

P exp(au) du (2.12)
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which can be evaluated as follows:

A= u(cotha—1/a) = uL(a) (2.13)

where L (a) is the Langevin function which has the limiting approx-
imate forms:
L(a) =a/3 fora<l (2.14)
and
L(a)=1—1/a fora>1 (2.15)

This function is sketched in Figure 2.4 and shows the linear depend-
ence on ¢ and therefore on the field E in the limit of “low” fields,
when the average dipole moment becomes

fi=2E/SkT  for uE <kT (2.16)

This means that the dielectric susceptibility defined by eqn (2.1)
is proportional to the inverse temperature, which may be explained
physically as arising from the increasing randomising influence of
thermal vibrations at higher temperatures opposing the alignment
of the dipoles by the field. This prediction should be very easily
verifiable experimentally and should provide a means of distin-
guishing between this and other mechanisms of polarisation.

Figure 2.4 shows clearly the tendency to saturation arising at
sufficiently high fields and illustrates the principle that any dipolar
mechanism must, in this limit, reach a complete alignment of
dipoles. The corresponding higher terms in eqn (2.1) would there-
fore be negative, although physical situations can arise where they
are positive. The most important example of the situation where
complete alignment of dipoles takes place is in ferroelectrics, in
which this is due to the intermolecular forces and not to the field
(Burfoot 1967).

L(a)
1_ — — — e ——— .
1-1/a
Ry
0 : E)

Figure 24 The shape of the Langevin function L(a) given by eqn (2.18), showing
the initial slope equal to /3 and saturation for large values of the argument a.
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In all other situations, where the equilibrium distribution of dipole
orientations is random because there is no ordering force in the
absence of an electric field, the effect of a field is to cause partial
orientation according to eqn (2.13), but the magnitude of the
argument of the Langevin function, which is given by the ratio of
the electrical energy of the dipole to the thermal energy, is very
small. A dipole moment of 1 Debye placed in a field of 10° V/m,
which approaches the magnitude of a typical breakdown field in
solids, gives a = 0.083 at room temperature. This shows that even
in this extremely high field the alignment of ordinary molecular
dipoles is only small. However, much larger values of ¢ may be
attained with certain molecular dipoles, which have very high dipole
moments and correspondingly high moments of inertia, cf. Figure
6.4.

The dielectric susceptibility of our model of N non-interacting dipoles
becomes therefore, in the limit of weak orientation,
_

36kT

%(0) (2.17)

where the notation x(0) signifies the zero-frequency limit, i.e. the
static conditions. We note that in our convention the susceptibility
% is a dimensionless parameter and it is also a scalar in the case
of isotropic media.

The practically more important case of interacting dipoles will be
discussed in Section 2.4.

b) Molecular polarisability — induced dipole moment

We have already described the principle of induced electronic
polarisation which essentially reflects the tendency for the outer
electronic clouds to be displaced with respect to the internal atomic
cores by external fields. Alternatively, in the casé of ionic polaris-
ation, we-.are envisaging the mutual displacements of the positive
and negative sublattices, resulting in a net induced dipole moment.
The characteristic feature of both these types of polarisation is their
relative independence of temperature, since the forces opposing the
displacements are not themselves strongly temperature dependent.

The polarisation arising from the distortion of the outer electronic
shells by an external electric field is always present in atoms and
molecules, whether permanent dipoles exist or not, and whether
they are being oriented as freely floating or remain “rigid”. Thus
induced molecular polarisability may be assumed, in the first
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approximation, to be simply additive to' the orientational polaris-
ation and we may therefore write:

2(0) = ek

serg Ve (2.18)

where N; and N, denote, respectively, the number densities of
permanent dipoles and of polarisable molecules which may, of
course, be the same.

In ordered systems, such as crystals, the vectors of molecular and
orientational polarisation may not coincide and they may have to
be added vectorially.

¢) Orders of magnitude of dipole moments cmd polamabzi.‘me.r

It is instructive to look at the orders of magnitude of the dielectric
parameters and to relate these to the structure of the molecules in
question. We begin with the polarisabilities of isolated atoms which
are shown in Figure 2.5 on the basis of numerical data from a
collection by Teachout and Pack (1971), where we present a log—
log plot of the polarisability against the atomic number. In this
somewhat unfamiliar representation we see the remarkable regu-
larity of the distribution of points. The lowest polarisabilities —
of the order of 0.3 to 3 A® — correspond to the noble gases with their
completely filled electronic outer shells effectively screening the
nuclei from the influence of external fields. At the other extreme,
the Group I elements, alkali halides, have the highest polmsabﬂltles
of the order of 30 As presumably due to the highly polarisable
~ single electron in the outermost orbit. The intermediate elements
follow in regular sgquences between these extremes, with relatively
few irregularities, *such as Al and Si.

Elemental ions have polansablhtlcs corresponding closely to the
isoelectronic elements ie. Na* with = 0.2 (all values will now
be quoted in A?) resembles Ne with 0. 3, K* with 1 is close to
Argon, and so on. Li* with 0.04 is almost a factor of 100 down on
Li and 5 down on He. Negative ions have correspondingly higher
polarisabilities.

These polarisabilities should correspond in some measure to the
actual polarisabilities of ions in solids.

By contrast with isolated ions or atoms, the polarisabilities of
molecules are much larger, in view of the much larger dimensions
of their electronic clouds which are therefore easily “deflected” by
external fields. Typical bond polarisabilities are shown in Table
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Figure 2.5 The logarithm of the static atomic polarisabilities plotted against the
logarithm of the atomic number, showing the periodicity and regularity of the
relationship. Data from Teachout and Pack (1971).

2.1, which gives separate data for longitudinal and transverse
polarisabilities and also the average value. '

Taking next the polarisabilities of complete molecules, these reflect
closely the geometrical shape of the molecules and we have to
specify three values corresponding to the three principal axes of
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TABLE 2.1

Polarisabilities of chemical bonds parallel and normal to the
bond axis and also the mean value for all three directions in
space, O, = (ap+ 2a.)/3, in units of A8, From Denbigh

(1940).
Bond o) oy o Comments
H—H 0.93 0.72 0.79
N—H 0.58 0.84 0.75 NH;
C—H 0.79 0.58 0.65 aliphatic
Cc—Cl 3.67 2.08 2.61
C—Br 5.04 2.88 3.60
c—C 1.88 0.02 0.64 aliphatic
c—CG 2.25 0.48 1.07 aromatic
C=C 2.86 1.06 1.66
C=0 2.00 0.75 1.20 carbonyl
TABLE 2.2

Polarisabilities of molecules along three principal axes
of symmery in units of A%,

Molecule % ap as
H, 0.934 0.718 0.718
(o]} 2.32 1.21 1.21
N;O 4.86 2.07 2.07
CCly 10.5 10.5 10.5
CHCly 6.68 9.01 9.01
HCIL 3.13 2,39 2.39

¥

TABLE 2.3

Dipole moments of chemical bonds
and of molecules expressed in Debye

units.

Bond 1.3.10% (Cm)
C—H 0.4
O—H 1.51
c—C 0
c—0 0.74
=0 2.3
Molecule
H,O 1.84
CO, 0
HCl 1.08
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symmetry. Table 2.2 gives a selection of data from which we note
the clear indication of molecular symmetry.

Passing now to the permanent dipole moment of bonds and mol-
ecules, we list in Table 2.3 some typical values expressed in units
of Debye, and we note that all symmetric molecules, such as
O=C=0 or CCl,, or symmetric bonds between identical atoms,
must have zero dipole moments.

It is instructive to make a comparison of the relative contributions
of the induced and orientational polarisabilities. Take the HCI
molecule with a mean induced polarisability ¢, = 2.64 107 m® and
a permanent dipole moment of 1.08 D =3.6010°Cm. In an
external electric field of 10’ V/m, which is a fairly high field, the
resulting induced dipole moment would be W= ok =2.3
107 Cm, which is four orders of magnitude smaller than the
permanent moment of a single molecule.

However, the mean induced moment is not affected by the rotational
motions of the molecules, because the electronic response is suffic-
iently rapid to follow the direction of the field regardless of the
molecular rotations. The net orientational dipole moment per mol-
ecule is *E/(3kT), so that orientational polarisability is

@ = 12/kTey=1.210"% m?

which is 50 times larger than the induced polarisability (at 300 K).

Very similar considerations would apply to a polar bond, such as
G =0, the induced dipole moment would be much smaller than
the permanent moment, but once again the ability of the bond
moments to follow the field is severely restricted in a solid, making
the effect of the induced polarisation correspondingly stronger.

Having made this comparison between the induced and permanent
dipole moments we now propose to calculate the ionic polarisability
resulting from the relative displacements of the sub-lattice of the
positive and negative ions in the crystal. The electric force per ion
in a field £ is ¢£. With an interatomic spacing «¢ in an assumed
cubiclattice, the force per unit areais F' = ¢E/a® If the displacement
resulting from the force is Ag, the dipole moment becomes
p = eAa. The relation between strain and stress is Ae = asF, where
s is the elastic compliance. We thus obtain for the dipole moment
in a field E, u = s¢*E/a, which gives a polarisability

- w=sq*/ag
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Taking numerical values for the electronic charge, the interatomic
spacing of 2 107 m, and a value of compliance appropriate to NaCl
s=210""m?/N, we obtain a polarisability for Na Cl a=3
1072 m® which is some two orders of magnitude higher than typical
bond polarisabilities in Table 2.1.

d) Polarisation by hopping charge carriers

Induced and permanent dipoles represent one extreme form of
polarisable species in which the two component charge systems are
very intimately linked together, even to the point of partial inter-
penetration, and cannot normally be dissociated into separate
charges without the application of extreme constraints. At the other
extreme we may place completely free charges such as electrons in
. metals, or electrons and holes in crystalline semiconductors, where
these charges are free to move without constraint throughout a
given volume of the solid. We shall return later to a more detailed
discussion of these processes which give rise to direct current
conduction but which may, under certain boundary conditions,
also lead to polarisation. At this moment, however, we shall intro-
duce the concept of a class of charged species intermediate between
dipoles and free carriers.

These are hopping charge carriers which are characterised by the
fact that they spend most of the time in localised sites where they
are subject only to relatively very small thermal vibrations, but
occasionally they make a big jump or hopping transition to some
neighbouring localised sites which may be one or many atomic
spacings away. The concept of hopping movement has been very
familiar for a long time in connection with ionic conduction, since
ions move essentially only by hopping, whether by the interstitial
or vacancy mechanism. A relatively more recent development is
the extension of this concept to electronic charges which has found
particular application in amorphous and disordered non-metallic
solids, such as glasses and amorphous semiconductors (Mott and
Davis 1979, Jonscher and Hill 1975). In such strongly disordered
solids the normal concept of band conduction by free charge carriers
do not apply and we find instead that electrons become localised
and can only move by hopping between localised sites. If these sites
form a continuous connected network the charges may be capable
of traversing the entire physical dimensions of the sample and
therefore give rise to direct current conduction that would be
indistinguishable from free carrier conduction were it not for a
much lower mobility — typically by many orders of magnitude —
than for the corresponding free band conduction. It is inevitable,
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however, that there exist “easier” and “more difficult” hops and
that charges execute many reciprocating transitions between pairs
of sites linked by easy transitions before making “forward” jumps
to other sites involving more difficult transitions.

The probability of a hopping transition may be determined by the
combined effect of the distance between the two sites and the
potential barrier that has to be overcome — the transition may be
a thermally assisted hop over the potential barrier or a tunnelling
transition through the barrier — the latter requiring negligible
activation energy. An elementary two-site situation is represented
in Figure 2.6 in the form of a potential double well separated by
an internal barrier and with infinitely high walls outside, indicating
negligible probability of escape for the particle. We assume that
the double well accommodates one charge which may occupy either
of the two wells, the compensating charge of opposite sign is situated
in the neighbourhood, possibly between the two wells and is

4

e—r —=
! g

Figure 26 A double potential well representing the potential energy of a particle
which may take up one of two “preferred” positions 7 and j, with the respective
energies W? and W5 . The distance between the two sites projected in the direction
of the electric field is r. In the presence of an external electric field the equilibrium
energies are perturbed to W; and W and the equilibrium energy difference /g
becomes Wj. Ry and Rj; are the transition rates between the two wells.
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Figure 2.7 The effect of introducing 2 monovalent Li* ion in place of a divalent
Ni** ion in a NiO lattice. The Li* ion looks like a negatively charged site and
charge balance is restored by removing an extra electron from one of the neigh-
bouring Ni ions, thereby making it look like a singly positively charged site which

may move in the neighbourhood of the immobile Li ion. The oxygen ions are not
shown.

assumed to be rigidly fixed. A physical model corresponding to this
situation may be given by a substitutional monovalent cation in a
divalent cationic lattice, e.g. Li* in a NiO lattice, which causes one
of the neighbouring Ni** ions to recharge to Ni*** for neutrality,
Figure 2.7. However, the extra positive charge may occupy any one
of several neighbouring sites and may be considered to execute
hopping transitions between them. A different example is given by
a non-bridging oxygen ion in a glass network which may occupy
one of two or more energetically preferred positions in the lattice.

Returning to the double well diagram of Figure 2.6, we may define
the time-averaged probabilities of occupation in equilibrium, f7
and f7 in terms of the energies W{ and W7 of the two wells:

S f2= exp(WIET) (2.19)

where we have defined W; = W, + W, and the superscripts ° denote
the equilibrium values in the absence of an externally applied
electric field. The condition that the particle with a charge ¢ should
certainly be in one of the two wells is

fitfi=1 (2.20)
under all conditions, i.e. even in the presence of an electric field.

In the presence of an external electric field E, the separation of the
energy wells becomes

Wy= W3+ ¢Br (2.21)

where 7 is the projection of the vector connecting the two wells in
space along the direction of the electric field.
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This gives rise to a redistribution of the occupation probabilities
between the two wells and we write:

F=R=f5  f=RS (2.22)

and we make the assumption -that in the steady state the actual
probabilities f; and f; are governed by the same Boltzmann equation
(2.19) with the new energy W; given by (2.21).

Writing for brevity, by analogy with (2.12), ¢Er/kT = a, we obtain
after simple calculations

S fﬂf""l";;f— =fifja (2.23)

the last approximate equality being valid for small values of
a<1. In the presence of N identical non-interacting wells the total
polarisation is given by P = Ngrf' which leads to the static
susceptibility

Xo= SkTeﬂjﬂfo (2.24)

where the factor 3 in the denominator comes from averaging the
projections of the randonly oriented vectors r on the direction of
the field and the bar denotes averaging over the factors X f° if these
are different for the different wells.

Bearing in mind the fact that ¢gr may be regarded as the dipole
moment of the hopping charge, we note the similarity of this
expression to the dipole orientational polarisation given by eqn
(2.17), the physical difference being that in the latter the dipole
changes its orientation smoothly by free rotation in the fluid
medium, while the orientation of the hopping charges is determined
by the spatial dispositions of the allowed localised sites favoured
by the structural properties of the medium and represented by the
potential wells. The distribution of the hopping charges between
the allowed sites is influenced by the applied field. We note that
the factor f f* would become 1/4 if'all the initial levels were at the
same energy.

It is important to note that the transition of a charge ¢ from site
i to site j is physically and mathematically indistinguishable from
the corresponding rotation of a dipole through the angle m. We
shall also find their time-dependent behaviour to be identical.



34 DIELECTRIC RELAXATION IN SOLIDS 24

2.4 EFFECT OF PARTICLE INTERACTIONS

The treatment described up to the present moment specifically
assumed that the polarisable particles and the dipoles present in
the system may be treated as being entirely non-interacting, where
the effect of N particles per unit volume may be equated to the sum
over all particles of their individual contributions that would have
been obtained had each of them been present in isolation from all
others. It is well known, however, that this approximation is com-
pletely inadequate in describing the behaviour of assemblies, espe-
cially in the case of condensed matter where inter-particle distances
are very spall and interactions between them cannot be neglected.
We are dealing, in effect, with many-body interactions, or with interactive
many-body systems, and this requires very special techniques which
were not well-developed until comparatively recently. There have
arisen, therefore, over the years a number of approximate
approaches to the treatment of the static polarisability which
attempted, with varying degrees of success, to take account of
many-body interactions.

Historically the first and, to this day fundamentally the only existing
one, was the approach adopted independently by Mossotti in 1850
and by Clausius in 1879 which leads to the so-called Clausius-
Mossotti formula. In essence, this approach and most of the sub-
sequent ones, tries to represent the “reaction” of the neighbouring
dipoles on the given dipole by a suitable “internal field”. The result
of this procedure is to modify the expression (2.18) for the static
susceptibility x(0) to the following form:

x(0) _ &0)—& _ Ny N
x(0)+3 ¢£(0)+2& 9gkT 3

We note first that in the limit of very dilute systems in which the
susceptibility is much smaller than unity, this expression becomes
identical with (2.18). Secondly, however, we note that as y,—
the left-hand side becomes equal to 3, so that the value of the
parameter (NW*/3&kT) =3 corresponds to a “dielectric catas-
trophe”’, where the cooperative interaction causes the susceptibility
to go to infinity. Clearly this is not a physically plausible result, it
resembles in a certain way the ferroelectric behaviour and it suggests
that the choice of the internal field has been physically incorrect.
Although this expression was never intended to be applied to the
condensed state of matter, with its much higher particle densities
than in a gaseous state, its application was nevertheless extended

(2.25)
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to the limit of highly compressed gases and eventually to liquids,
especially with certain modifications introduced by later workers.
Debye noted in 1912 that the induced component of the polarisability
corresponding to the second term in eqn (2.18) satisfies the
Lorentz—Lorenz condition known since 1880 for the refractive index,
in view of the rapid response time of this polarisability, which
implies that the response at optical frequencies is dominated by
induced polarisation and the contribution of the orientational pro-
cesses is negligible. Under those conditions, Maxwell’s equations
state that the relative dielectric permittivity may be equated with
the square of the refractive index, so that the Clausius—Mossotti
relation becomes:

n2~'1=N,,,a
n+ 92 3

Lorentz—Lorenz

so that by setting n* = €./ &, the original Clausius—Mossotti equa-
tion may be wriiten in the following form, with the contribution
of the orientational polarisation of the permanent dipoles set out
separately:
e0) —&  Ea— & _ Nyt
e(0) +2¢ &ot+ 28 96T
This was further modified by Onsager (1936) who refined the local
field argument and obtained the relation:
£0) —& &~ &
g0) +2& €.+ 28
__ 3&(0) (& + 2&) Ny
[2€(0) + &.][€(0) + 28] 9 kT

Debye

Onsager

Yet further refinements were introduced by Kirkwood (1939).

We do not propose to enter into any detailed discussions of these
various formalisms which are treated in considerable depth in
standard texts on dielectric theory referred to in Chapter 1. While
they may be applicable to highly purified liquids in which charge
carriers make a negligible contribution to dielectric polarisation,
it is an established fact that most solid dielectrics do not obey any
such expressions at sufficiently low frequencies on account of an
entirely different phenomenon which will be discussed later in this
book under the heading of low-frequency dispersion. This means
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that as the temperature is increased — and this may mean room
temperature in many cases — the low-frequency permittivity does
not obey the 1/7 law demanded by the orientational component
of the Debye and other expressions, but instead shows a steady rise
with temperature which must be ascribable to the charge carriers
present in these materials — mostly ions, but possibly also electrons.
This renders any meaningful measurement of the low-frequency
dielectric permittivity very difficult so that any comparisons with
theory become equally doubtful. An impression of the extent of this
effect may be obtained by looking at the extensive tables of per-
mittivity data compiled by Westphal and Sils (1972).

It is too early to reach firm conclusions with regard to the extent
of validity of the local field approach. This approach may be
regarded as a means of taking into account the interactions of other
dipoles by modifying the local field acting on a given dipole in
question, so that, using the polarisability of an isolated atom, one
obtains the correct value of susceptibility for the ensemble. One
might suspect that this is not the best approach and that one should
regard the external field as producing the same additional contri-
bution to the instantaneous local field configuration, but that the
appropriate polarisability or dipole moment should be that for the
particle as part of an ensemble which would naturally be different
from that of an isolated particle.

From the point of view of the present treatment this argument does
not figure very prominently for the reasons mentioned above.

2.5 TIME-DEPENDENT DIELECTRIC RESPONSE

The static response of dielectric systems'to a steady electric field
represents only one facet of the complete problem and, for practical
purposes, a relatively insignificant one. Much more important
experimentally, technologically and theoretically, is the time-depen-
dent response to time-varying electric fields. The experimental
~ significance stems from the availability of a vastly larger volume
of data — in addition to the usual variables of temperature, com-
position, pressure, etc. we now have the time, or the corresponding
frequency range which in many cases covers the range of between
four and ten orders of magnitude. This, 4s we shall see, offers an
excellent opportunity to compare the data with theoretical expres-
sions and to see much more clearly than was the case with the static
response, if there is agreement between them. The principal object
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of the present monograph is the discussion of this time- and
frequency-dependent response and we shall see later that the
exploitation of the available experimental data has led us to a
significant theorerical advance on the whole subject of many-body
interactions in solids.

The technical significance of the time-dependent response is evident
if we envisage the fact that most electrical applications of dielectrics
involve the use of step-funtion, delta-function or sinusoidally var-
iable electric fields, in comparison with which the purely static
conditions represent only a limiting situation.

The most obvious physical reason for the time-dependence of the
dielectric response is the inevitable “inertia” of all physical processes
— no material system is capable of following arbitrarily rapidly
varying driving forces. Whether this inertia is due to the mechanical
inertia of the masses that have to be transferred from one position
or orientation to another, or whether it is the outcome of more
general rate processes, the net result is that the time dependent
polarisation P(f) is not the same function as the time-dependent
driving field E(Z).

By contrast with material systems which necessarily exhibit delayed
responses, the response of free space is instantaneous and therefore
the mduced charge & E arising from the response of free space does
follow the field instantaneously. If we take a system consisting of
two plane parallel electrodes at a distance w, with the space between
them filled with a dielectric material, and if we apply a time-
dependent voltage V(t) to the electrodes, giving rise to a spatially
uniform field E(f) = V(t)/w, then the charges induced at the elec-
trodes will be given by the sum of an instantaneous or “prompt”
free space contribution and the delayed material polarisation:

D(t) = &E + P(f) (2.26)

Here D(t) denotes the dielectric induction, sometimes called dielectric
displacement, and it gives the total charge density induced at the
electrodes.

In order to put the analysis of the time dependence of the dielectric |
response on a proper mathematical basis we have to define the
dielectric response function f(t) which characterises the response of the
dielectric medium to specified electric excitations. Quite generally,

we may define three fundamental time-dependences of the exciting
electric field:
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the delta function, 6(¢)

the step function, 1(¢), which is the integral
of the former, and

the harmonic function, sin f or cos wt.

We may note here that whereas the unit step function and the
harmonic functions are dimensionless, the delta function has to have
the dimension of time, since it represents the mathematical limit
of the product of a physical constraint — in this case the electric
field, acting over a period of time A{, such that the product
EAt = const as At— 0.

Any arbitrary time-dependence may be synthesised from delta-
functions, step-functions, or by way of Fourier integral transfor-
mation from harmonic functions.

We now define the response function in terms of the time dependence
of polarisation under delta-function excitation of strength (EA¢)

P(¥) = & (EA?) f(2) (2.27)

In view of the physical significance of the response function, we
conclude immediately that causality demands that there should be
no reaction before action and therefore

f()=0 fort<0 (2.28) |

Equally, since we are only considering systems in which the polar-
isation is induced by the applied electric field, i.e. there is no
permanent or persistent polarisation, we require that

lim f(#) =0 (2.29)
We shall later find one other condition, namely that the integral
o f(¢) dt should be finite.

In order to proceed with the synthesis of the total time-dependent
polarisation from a series of delta-function excitations correspond-
ing to an arbitrary time-dependent field, E(f), we must make the
fundamental assumption of the validity of

the principle of superposition — that the response to consecutive
 elementary excitations is the sum of the responses to the
individual excitations.

This principle presupposes that the response of the dielectric system
is linear in the exciting amplitude, which is implicit'in eqn (2.27)
and that this is extended to the time-dependent response.



25 PHYSICAL AND MATHEMATICAL BASIS 39

‘f(’d

)
At Fa M

E(t-

t-t

/“/.__
‘“‘\/} f

Figure 28 The principle of the derivation of the convolution integral (2.30), in
terms of the summation of contributions of “delta-function-like’ impulses E (¢ —
7)d7T at times T before the instant ¢ at which the observation is made. (1) is an
arbitrary response function and E(¢) an arbitrary time-dependent electric field.

The derivation of the time-dependent polarisation proceeds now as
follows. With reference to Figure 2.8, let f(¢) be a general response
function and let the time-dependent field E(t) be considered as a
series of “delta functions™ of strengths E(¢)d¢, then response P(t)
at time ¢ is given as the summation of the responses f(7) E(t — 7)d7
integrated in the time variable 7 “backwards” to infinity or as far
as the exciting signal extends. We therefore obtain the fundamental
relationship:

P(t) = eﬂf FfDE(t— 1)ft (2.30)
0

Now, in view of the property (2.28) we may extend the lower limit
of integration down to — and this brings the integral into the
form of convolution or Faltung integral of the functions f(¢) and E(¢).
The physical sense of this integral is that the dielectric system
retains the “memory” of its past history and this may extend in
practice to times as long as hours, days or even longer. '

The significance of the convolution integral (2.30) will be made
clearer by considering the effect of specific waveforms of the applied
field E (), particularly when they represent once-off transients. The



40 DIELECTRIC RELAXATION IN SOLIDS 2.5

most elementary of them is the step function, £, 1(¢), defined by:
E()=0 for <0
E(t)=E, for t>0

In this case the integral of eqn (2.30) becomes:
P(t) = EOEOJ’f(r)dr (2.81;
0

The dielectric induction is given by

D) = sUEu{l(t) + J; ‘ f(r)dr} (2.32)

and the resulting current flowing in the system is:
i.(t) = dD(t)/dt + 0oEy = &dE(t)/dt + dP(¢t)/dt + ooE,
= gE.{6(t) + f(t)} + 0uEo

The delta function is due to the instantaneous response of the part
of the total charge which is due to the step-function electric field
itself, in other words it represents the response of “free space”
contained in the volume of the dielectric material. The polarisation
P(t), by contrast, arises from the response of the material medium
and it cannot follow the step-function field.

(2.33)

The term 0,E, on the right is included to take care of any direct
current conductivity 0, of the system, which would give rise to a
steady current at infinite time. The time response given by
eqn (2.33) is normally dominated by the function f(¢) which is seen
as the time-dependence of the polarising current.

This provides an important means of determining the function f(¢)
experimentally as the response of the dielectric to the step-function
charging field. This approach is much preferred to the possible
alternative of measuring the polarisation response to a delta-func-
tion exciting field.

It is important to have a clear idea of the nature of this polarising
turrent — it arises from the tendency of the polarising species in the
material to respond in a delayed manner to the exciting field, and in
this sense this current characterises the most important property
of the dielectric system. On the other hand, this current has nothing
to do with the mechanism of dc conductivity which is characterised
by the parameter 0 and it is completely wrong to regard the term
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in {} in eqn (2.33) as a time-dependent conductivity or, as is
sometimes done in engineering textbooks, as the reciprocal of a
time-dependent resistivity — to do so confuses two completely dif-
ferent processes:

the polarisation current AP (t)/dt characterises the adjustment
of the polarising species to a step jfunction field and it must
go to zero at infinitely long times — no charges may leave the
dielectric system or enler it from the outside as a result of this
process;

the steady conduction current, or direct current (d.c) arises
Jrom continuous movement of ‘‘free” charges across the
dielectric material from one electrode to the other and this
current does not change in any way the “centre of gravity”
of the charge distribution in the system.

An immediate consequence of eqn (2.31) is that the polarisation
after an infinitely long charging time, i.e. under a steady electric
field E, is given by

P() = Py = &5, f Tf@)dt=ex(O)E,  (2.34)

according to, the definition of the steady state susceptibility. This
result shows that the integral of the function f(¢) must be finite
since the steady state polarisation must remain finite.

Having reached the steady state polarisation P, after an infinitely
long (in practice “sufficiently long”) time, we may now reduce the -
field abruptly to zero and observe the depolarisation current is(t)
resulting from the return of the partially oriented polarising species
back to the random arrangement which they have in equilibrium
in the absence of field. Applying the principle of superposition, we
may regard the downward going step function as the superposition
of a steady value E, extending from — to + in time and of a
negative going step function starting at time ¢ = 0. Since the charg-
ing current at infinite time consists of the dc value given in
eqn (2.33), the discharging or depolarisation current is given by
the negative polarisation current, including the negative going delta
function, if this can be resolved experimentally.

The depolarisation current does not include the direct current and
it represents therefore a more convenient form of measurement of
the function f(¢) than does the charging current. The principle of
superposition implies, however, that if the polarisation current had
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not been allowed to reach zero because of an insufficiently long -
charging time then the discharge current will show the effect of the
continuing polarisation superimposed on the depolarisation current.
This has serious practical implications and is dealt with as an
example in Section 6.1 where we discuss the dielectric response to
a square-wave field excitation.

2.6 FREQUENCY-DOMAIN RESPONSE

We shall see later that many aspects of dielectric response, especially
in the presence of non-linear processes, are more easily understood
in terms of the response to time-dependent signals. However; there
exists a very powerful alternative approach which offers very cohn-
siderable theoretical and practical advantages, provided that we
are dealing with linear systems, and this is the determination of the
response to harmonic excitation, 1.e. sinusoidal waves. The theor-
etical advantage of this approach will be seen from the analysis
that follows. The practical advantage lies in the fact that most
engineering applications of dielectrics involve response to harmonic
signals of definite frequencies and also, most importantly, very
powerful measuring techniques exist which enable us to make
measurements with such signals, using frequency as a parameter,
with very high accuracy. The principal reason for this is that the
measurement of the response at a given frequency can be made
under tuned circuit conditions with a very narrow range of fre-
\mencies being taken into account, thus minimising the noise in
the system. All alternating current bridges operate on this principle
and the resulting technical refinements are such that very high
precision measurements can be made with equipment that is rela-
tively standard and is commercially available. By contrast, time-
domain measuring equipment has to be specially built since the
demand for it is not sufficient to enable commercial developments
to be made at reasonable prices, and the noise limitations inherent
win the wide-band measurement prove severe.

The mathematical basis for the treatment of the frequency domain
response, as we call the study of the response as a function of
frequency, rests on the Fourier transformation of a given function
of time G (t), defined by the Fourier transform:

FIG(1)] = () = (27) f x G(1) exp(—iwt)dt  (2.35)

The Fourier transform gives the frequency spectrum 4(w) of the
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time-dependent function G (f) —it tells us the amplitudes and phases
and frequencies of the sinusoidal waves which make up the given
time signal.

The crucial role of the Fourier transformation appears in the context
of the convolution integral (2.30) defining the time-domain response
of polarisation to an arbitrarily time-varying exciting field. It can
be shown, see Appendix 2.1, that the Fourier transform of the
convolution integral is given by the product of the Fourier trans-
forms of the two functions under the integral. In the specific example
of eqn (2.30) we may write:

P (w) = &ox(w)é () (2.36)

where P (w) and € (w) are the Fourier transforms of the time-
dependent polarisation and field, respectively, as defined by
eqn (2.35), while the frequency-dependent susceptibility is defined as the
transform of the response function f(t):

(@) = 1 (0) — iy (@) = f " f(0) exp(—iwn)dt  (2.37)

The susccptlblllty is a complex function of the frequency, reflecting
the fact that it gives information not only about the amplitude but
also about the phase angle of the components of the po]ansatlon
The real part x'(w) gives the amphtude of polansatlon in phase
with the harmonic driving field, the imaginary part x”(w) gives
the component in quadrature with the field. We may regard the
real and imaginary components as the cosine and sine transforms
of f(¢), respectively:

= j " £(6) cos(we)dt (2.38)
¥ () = J; " £() sin(wt)dt (2.39)

It follows, therefore, that x' () is an even function of frequency,
while " () is an odd function in the double-sided frequency spectrum
from minus to plus infinity. This mathematical concept of the
extended frequency spectrum has no physical significance and we
will normally only use the positive half of this interval, but the use
of the extended interval has certain advantages in that the various
formulae may take a more symmetric appearance, as shown below.
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We therefore have the properties:
x'(0) =y (), x"(0)=—x"(-0) (2.40)

and therefore this means that the real part can have a finite value

at the zero of frequency. In fact, from eqn (2.38) and (2.34) we
obtain:

% 0= [ fla (2.41)

which is the static value of the susceptibility. Similarly, the odd
character of the imaginary part 1mpl1es that it must vanish in the
limit of zero frequency:

2"(0)=0 (2.42)

Equations (2.38) and (2.39) may be inverted by carrying out the
reverse transformation which gives f(¢) in terms of either )’ (@) or
X" (@):

£ = @) [ () cos(@tyao
0 (2.43)

= (2/m) j x" (@) sin(wt)dw
0
This completes the relationships between the characteristic response

function in the time domain and the frequency-domain response
of the dielectric susceptibility and it shows that, in principle, the

. knowledge of either of these enables the other to be calculated using

the Fourier transform technique. Given a set of experimental data
points in the frequency or time domains, it is possible to obtain the
corresponding other function by numerical integration.

We now return to the physical significance of the equation (2.36),
replacing the convolution integral in the time domain by a simple
product of two functions in the frequency domain. The frequency
dependent susceptibility x () defines the response of the dielectric
material to a harmonic excitation at the frequency w, and it can
be readily measured by exciting the system at the particular fre-
quency and determining the response. In this manner, one may
sweep the desired frequency range and obtain the complete func-
tional relationship. In view of the principle of superposition, the
response to more complicated waveforms can be obtained by a
simple summation of the appropriate frequency components from
the spectrum of the incoming signal.
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In our treatment of the frequency-domain response we have intro-
duced the distinctive script symbols &, €, 9 to denote the Fourier
transforms of the time—domain and therefore physically immedi-
ately meaningful field quantities D, E, I, in order to stress the fact
that 9@ (w) is an entirely different function of its argument than is
D (t). This distinction was initially introduced for purely didactic
reasons, with a view to facilitating the discussion and to stressing
the physical significance of what was being performed at the ana-
lytical level. In practice, one seldom distinguishes the time— and
frequency—domain responses by separate symbols and from now
onwards we propose to write D (¢) and D (w) etc., since no confusion
is likely to arise once the reader has been forewarned.

2.7 PERMITTIVITY, CONDUCTIVITY AND LOSS

Consider now Maxwell’s equation defining the current in terms of
the direct current conductivity and of the displacement current:

I=0,E+aD/at (2.44)

Taking the Fourier transform of both sides of this equation we get
for the corresponding frequency-domain response

I(w) = gE(w) +iwD (w) (2.45)

where we have made use of the property that the Fourier transform
F[aD/ot] =iwD. We now use eqn (2.26) for D (t), noting that
eqn (2.36) gives the transform of P(¢), and we obtain:

(@) ={oo +iwa[1 + ' () = ix" (@) IE(@) (g 45)

={00 + &wy" (@) + iwe[1 + x' (0) 1 }E(w)
—_— -
in phase quadrature

We now see the significance of the real and imaginary components
of the complex susceptibility: the real part gives the component of
displacement current which is in quadrature with the driving field, and
therefore does not contribute to power loss, while the imaginary
part gives the component of current in phase with the driving field, and
therefore contributes to power loss. For this reason we refer to -
x" () as the dielectric loss.

We note that the frequency-domain response of the dielectric
medium may be written in terms of the dielectric permittivity e(w)
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which is defined by the expression:
D (w) = g(w)E(w) = &[1 + x' (o) — ix" () ] E(w) (2.47)

The real part of permittivity consists of the contributions of free
space—which is necessarily real, since there can be no loss associated
with free space — and of the real part of the susceptibility of the
material medium itself. The imaginary component of the permit-
tivity is entirely due to the material medium. In the case, which
is very typical, where the material medium has several polarisation
mechanisms coexisting and not significantly interacting between
themselves, we may express the permittivity as the sum of the
contributions of the individual mechanisms:

g(w) = 80{1 + E:X: (w) — iEﬁ, %1 (w) } =¢ (w) —ig" (w) (2.48)

where the summation extends over all the separate polarisation
mechanisms labelled with the index [. -

The physical interpretation of the frequency—domain dielectric
induction D (w) is that its real part gives that component of the
total induced charge at the plates which is in phase with the driving
field E(w) at the frequency w, and this component includes the free
space contribution. The imaginary component of D(w) gives the
component of charge that is in quadrature with the driving field
E(w). In the same way, we may regard the complex dielectric
permittivity as the complex ratio of the induction and field at a
given frequency, with the free space contribution &, appearing in
the real part only.

Since dielectric measurements are concerned for the most part
with the movement of charge, i.e. with the electric current, it follows
from eqn (2.46) that the dc contribution 0, must appear in the
result, since the measuring instrument cannot discriminate between
true dielectric response which does not contain 0y and the effective
which does.

If we write eqn (2.46) in the form

I{w) = iwé(w) E(w) (2.49)

where &) denotes the effective permittivity as measured by the

instrument, we see that
&w) = € (w) — i{e" (w) + oo/ W} (2.50)
=&{l +x' (0) —i[x" (@) + 0o/ &w] }
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The significance of the last term in egn (2.50) is that the dc con-
ductivity makes a contribution to the apparent dielectric loss meas-
ured by a bridge or other instrument, which diverges towards zero
frequency. This is not a #rue dielectric response, since it is not
accompanied by any contribution to the real part of the permittivity
and it arises because no instrument can distinguish between true
dielectric and dc transport processes. This distinction is vital,
however, for the interpretation of the physical processes involved,
since as we shall see later, direct current conduction and dielectric phenomena
are essentially separate and, for the most part, independent processes. A
behaviour in which €” (@) o 1/ while € (w) — const as w—> 0 is
therefore, conclusive evidence that the dominant process is direct
current conduction in the material in question in the relevant
frequency range.

2.8 KRAMERS-KRONIG RELATIONS

We conclude the present Chapter with a brief derivation of a very
important relation connecting the real and imaginary parts of the
complex susceptibility and known as the Kramers—Kronig relations.
We do not propose to give a fully rigorous derivation, which relies
on the properties of the functions of complex variables and uses
contour integration in the complex plane of frequency, taking into
account certain fundamental properties of the susceptibility func-
tion. Instead we will only give a simplified “proof”’, leaving it to
the reader to follow up more specialised literature for the full
treatment (Landau and Lifshitz 1962). :

The Kramers—Kronig relations are ultimately a consequence of the
principle of causality — the fact that the dielectric response function
satisfies eqn (2.28). Now one look at equations (2,38) and (2.39)
is sufficient to convince us that both ¥’ (@) and x" (@) are derived
from the same generating function f(¢) and that it should be possible
in principle to “eliminate” this function and to express X' (®) in
terms of x" (w).

We proceed as follows. First we prove the following transformation:

© sin xt = sin(x — )¢
f i dx=coswt]£ Md[(x—w)z]

o X — W e (x— )t
. ® cos(x — w)t __
+ sin th[_de[(x QJ)t]
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where the integrals denote the Gauchy principal value, i.e. they
ignore the imaginary contributions arising from integration through
the pole at ¥ = w. The first integral is equal to 7, the second
vanishes so that we obtain;

(1/7) F Sln’j)dx = cos ot (2.51)
—m X

The integral on the left is known as the Hilbert transform of the
function sin xf. We now substitute this into (2.38):

x' (@) = (1/7) K f(t) E, ;’if";idx de

= (1/m) {:x—iaj_waf(t) sin xt dt dx

In these manipulations we have extended the integration of
eqn (2.38) to —o which is permissible in view of the causality
principle. The second integral in this expression is equal to
x" (@) in view of eqn (2.39), so that we may finally write:

1 (= x"(x)
! =—4 =—=(q 5
x (@)=~ £ (2.52)
and similarly:
1 (=
X" (00) = —— X—(x)d (253)

TW)ew X, — @

These are the Kramers—Kronig relations which express the value
of either x” () or X' (w) at a particular value of the frequency @
in terms of the integral transform of the other throughout the entire
frequency range (—, ®). In view of what was said above about
the even and odd character of these functions, we may change the
range of integration to (0, ) and thus obtain the one-sided
Kramers—Kronig integrals:

() =2
f ~ wg (2.54)
5§ () = xf (“’a)f dx (2.55)

Comprehensive tables of Hilbert transforms may be found in Zables
of Integral Transforms (Erdelyi 1954).



2.8 PHYSICAL AND MATHEMATICAL BASIS 49

We shall find that the Kramers—Kronig relations have a funda-
mental significance for our approach to the interpretation of the
dielectric behaviour of solids. They are also very useful in certain
experimental situations where they may enable the values of one
of the functions to be obtained from those of the other when for
some reason the measurements of them are impeded. This will be
discussed later.

One very immediate consequence of the Kramers—Kronig relations
is their evaluatior. for the case of zero frequency:

X' (0)= J% fo mxdex = i J' Z X"(x)d(nx)  (2.56)

This relates the polarisation increment for a given polarisation mech-
anism or combination of mechanisms, to the area of the loss curve
plotted against the logarithm to the base e of the frequency. This
immediately shows that a mechanism leading to a strong polaris-
ation must inevitably give rise to correspondingly high losses some-
where in the frequency spectrum, Figure 2.9.

) Xlw)

X(0) [—-—.

Figure 2.9 The significance of the relation (2.56) between the polarisation incre-
ment x(0) and the area under the curve of x"(w), in linear scale, against the
logarithm of frequency.

log w

The same conclusion may be expressed in a different way: it is
impossible to have a loss-free dielectric material of finite suscep-
tibility. It is possible to extend this even further and to state that
it is impossible to have a dispersion-free dielectric material, i.e. one
which shows frequency-independent real and imaginary parts. This
follows from the fact that the Hilbert transform of a constant is
equal to zero, as is clear from the inspection of the integrals in
question.
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We conclude therefore that a variation of the dielectric par-
ameters with frequency — known as dispersion — is an essential
property of all dielectric materials.

On the whole, most dielectric responses are characterised by the
fact that their loss is significant only in certain restricted ranges of
frequency, sometimes two or three decades, sometimes rather more,
as indicated schematically in Figure 2.10. One of the consequences
of the Kramers—Kronig relations is that the regions of negligible
loss make a negligible contribution to the integral (2.52), in other
words X' (w) is almost independent of frequency outside the regions
of significant loss, remaining constant below the lossy region and
rapidly decreasing to zero above it. This means that, in the presence
of several substantially non-overlapping loss processes, the regions
between the successive loss peaks are characterised by an almost
constant value of the dielectric permittivity which is determined by

lix’ér

€.(0)

Wyt Wp2 w3 logw

Figure 2.10 An illustration of the manner in which the real part of the total
dielectric permittivity, shown here as the relative permittivity & =¢' (w)/& is
made up of contributions of all loss processes at frequencies higher than the
frequency in question. Three processes are shown, denoted by the subscripts
a=.1, 2, 3, the last one being a resonance process, and they are assumed to be
reasonably well separated in frequency. The real part of thé susceptibility
X«(w) of every process adds to the sum of the contributions of all higher processes
which define the “high frequency permittivity’’ €« for that process. The dielectric
decrement Ay (®), as defined by eqn (3.40) is also indicated for the first process.
Note that the real part of the permittivity remains flat in regions where losses are
negligible. The ordinate scale is shown to be linear in this case to bring out more
clearly the additive properties of the contributions to &.
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the total area under all the higher-frequency loss peaks, as derived in
the eqn (2.56) and shown in Figure 2.10.

This being the situation, it is often possible to define, for the purpose
of the study of a limited region of frequency, a “high frequency
permittivity”’ €. consisting of the free space contribution & and of
the contributions of all the other polarising processes at higher
frequencies, so that eqn (2.48) may be written for any such chosen
polarisation mechanism az

&(0) = €wa T Eo{a(w) — ixu(w)} (2.57)

To the extent to which €., can, in fact, be sensibly defined in any
given situation, i.e. to the extent to which higher-lying loss peaks
are sufficiently far removed in frequency from the region under
investigation, it is possible to obtain the susceptibility X.(®w) by
subtracting €. from the measured values of the real part &' (w).

The constant value of €. is not included in the result of
Kramers—Kronig’s transformation from yx"(w) = &"(w)/ &, since
the Hilbert transform of a constant is zero, and neither is the
singularity op(w) arising from the presence of dc conductivity
recovered from the Kramers—Kronig transformation of the real part
¢ (w) or ' (w), because dc conductivity does not contribute to the
real part of the permittivity.

These considerations highlight the significance of Kramers—Kronig
transformations in the processing and interpretation of experimental
data, which are frequently obscured by the presence of the dc
conductivity in the loss results at low frequencies and of the &, term
in the €' (@) data at high frequencies. Both these perturbing influ-
ences may be removed by using the Kramers—Kronig transfor-
mation from the other data which are not affected (Lovell 1974).

A program for numerical computation of Kramers—Kronig trans-
forms has been developed by Lovell in BASIC and is given in
Appendix 2.2. This program converts the directly measured data
on the real part of the capacitance, C' (w), into the coresponding
frequency-dependent conductance G (w) = wC" (w), and C' and C”
are related to the permittivity components & and €” by the same
geometrical factor. In order to make the fullest possible use of the
finite range of measured frequencies, the program extrapolates the
measured results by one decade at either end, thereby giving more
reliable data within the measuring window. It should be appreciated
that this procedure may lead to errors near the ends of the range
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if the true response should show some unexpected change of trend
just outside the measurement window, but long experience in the
Chelsea Dielectrics Group has shown no perceptible complications
arising from this source. It should be noted that the program
accepts data and outputs the computed values at constant intervals
on the logarithmic frequency range, as is customary to record these
data in practice.
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APPENDIX 2.1

FOURIER TRANSFORM OF THE CONVOLUTION
INTEGRAL

Define the Fourier transforms

Ff(t) = x(w)

and
FE(t) =% (w)
“ Then

%{ f " F(DE(t - r)dr}

—e

= [ ew(-ion{[” s@B(- vacla
= f : f(r){ E, exp(—iwt)E(t — 'r:)dt}dz
- f :f(-y) exp(_—iarﬂ){ j :exp[—ia)(t— 7)E(t— r)dt}d’c

= f_ Zf(r) exp(—iw7)dt f_ " E(s) exp(~ias)ds

= x(0)%(w)
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APPENDIX 2.2

COMPUTER PROGRAMS FOR KRAMERS-KRONIG
TRANSFORMATION C— G AND G— C

DATA FORMAT

ALL DATA FROM DIELECTRIC MEASUREMENTS ARE RECORDED ON B8-HOLE PAPER
TAFPE USING THE STANDARD ASCI CHARACTER SET. INFORMATION THUS RECORDED
INCLUDES A HEADER CONCERNING THE SAMFLE TYFE: AFFLIED AC AND DC FIELDS
AND FREQUENCY RANGE INSTRUCTIONS. THE DATA FOLLOWSr EACH FDINT BEING
RECORDED IN TERMS OF FREQUENCY (HZ)» CAPACITANCE (FF)y CONDUCTANCE (MHD)
AND TAN DELTA. A TRAILER IS USED TO INDICATE DATA TERMINATION.

THE FROGRAMME IS PRIMARILY FOR USE WHERE THE FREQUENCY IS INCREMENTED
LOGARITHHMICALLY .

INFUT ROUTINE
LINMES 10y 11 AND 12 INPUT THE HEADER.
LINES 16 AND 17 PERMIT THE OPTION OF EXCLUDING UNDESIRED DATA.
LINES 30 TOD 55 INFUT THE DATA.
LINE 33 DETECTS THE TRAILER AND TRANSFERS CONTROL TO THE ANALYSIS
COMMENCING AT LINE &0,

OUTFUT ROUTINE (TO PAFER TAFE FUNCH)
LIME 12 OUTPUTS THE HEADER.
LINE 2&6 OUTFUTS A "DATA" STATEMENT.
LINES 1794 TO 1798 OUTPUT THE TRANSFORMED DATA.
LINE 412 APFENDS THE TRAILER.

A4 SIMPLIFIED INPUT ROUTIME MAY BE SURSTITUTED WHICH MEEDS ONLY
FREQUENCY AND CAFPACITANCE OR CONDUCTANCE INFORMATIOM AS FOLLOWS -

DELETE LINES 10r11,12,16517+30 TO 40,
FOR THE C TO G TRANSFORM:- \
INSERT 30 N=0

32 N=N+1

34 INPUT #1iX

36 IF X<0 THEN &0

38 INFUT #1:1Y

40 REM

42 GOTOD 32

&0 REM
IN THE TRANSFORM FOR G TO C LINE 40 SHOULD BE CHANGED:-

40 Y=Y/2/PI/X
INFUT DATA MAY BE IN EITHER ASCENDING OR DESCENDING FREGUENCY ORDER.
THE PARAMETER X DEFINES FREQUENCY (HZ).

) Y DEFINES EITHER C (F) OR G (MHO). Y>0 IS NECESSARY.

INPUT IS TERMINATED WHEN & MEGATIVE FREGUEWCY IS ENCOUNTERED.

# COMPATIBLE PUMCH OUTPUT ROUTINE MAY ALSD BPE SUBSTITUTED!-—
DELETE LINES 12,26y412,1794,1796 AND 1798.
FOR THE C TO G TRAMSFORMI-
. INSERT 2é PRINT NLN(2)7 "DATA"FNLN(2)F \ PRINT #2!RPT(100:0)7%
412 PRINT #2IFMT("A®")—-1 \ PRINT #Z2IRPT(50,0)}
1794 PRINT #2IFMT(*A*")U
1796 PRINT #2iH2
IN THE TRANSFORM FOR G TO C LINE 1796 SHOULD BE CHANGED:-
1796 PRINT #21H2/1E12
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1 PRINT "KRAMERS KRONIG TRANSFORM C TO G*
3 DIM NS(200)

4 DIM F(100)sY1(100),Y2(100)

S DIH Q{S0)sV(S50),A(S50)+sRB(S50)C(50)

S DIM Q(50)yV(50)sA(50) »B(50)C(S0)

& DIM D(S0)E(S0)

? I=1

10 INPUT #1:Z%

11 IF Z$="DATA" GO TO 1é

12 PRINT Z$ \ PRINT #2i1Z$ \ GO TD 10

16 PRINT "INPUT DATA SETS TO BE OMITTED 7 (ENTER © TOD TERMINATE) " \ N9=0
17 NP=N$+1 \ INPUT DS(NP) N\ IF DS(N?I>0 THEN 17 \ DS(N?)=1000 \ N%=1

18 PRINT

20 PRINT "FREQUENCY RANGE OF OUTPUT DATA*
21 PRINT * MIN i \ INPUT F3
22 PRINT * MAX " N\ INPUT F2

2Z PRINT *FPOINTS/DECADE "7 “ INPUT T1

28 PRINT NLN(2) 5 "DATA®FNLN(2)F N\ PRINT #2!"DATA"iNLN(2)FRPT(40,0)7%
"27 PRINT * F (HZ) Cc F) G/W (F)"
28 PRINT * GIVEN COMPUTED® §NLN(2)#
30 FOR N=1 TO 200

32 INPUT #1!Zs

33 IF SEG$(Z$,1,3)="FIN" GO TO &0

#4 IF Z$<>"0DK* GO TO 32

40 INPUT #11Z%

42 IF DS(N9)=I GO TO 53

44 X=VAL(SEG$(Z%s1,13))

A5 Y=VAL(SEG$(Z$r16+27))

Y=Y%1.,00000E~12

IF Y<=0 THEN N=N-1 \ GO TO 55

BENI=LOG(X) \ V{NI=LOG(Y)

1 GO TO 54

NP=NP?+1 \ N=N-1

I=I+1

NEXT N

N=N-1

IF Q(N)>RQ(1) THEN 95

FOR I=1 TO N

| D(I)=Q{N+1-1)

E(I) =V (N+1-T)

NEXT I

i FOR I=1 TO N \ QCI)=D(I) \ V(I)=E(I) \ NEXT I
I=0

GO TO 130
Q{N+1)=Q(N-2)
VIN+1L )=V (N=2)
Ni=INT((N+2)/2)
FOR J=2 TD Ni

AZ2=0 \ B2=0 \ C2=0 \ I2=0
J1=2%.)-Z

K=2%J-1

FOR I=J1i TO K

L=I+1

=I+2

IF (L=J1)»2 THEN L=L-3

IF ((M-J1))>2 THEN M=M-3
AZ=AR2FVCI R (QLY=Q (M)
B2=R2-V(I)¥%(Q(L)"2-Q(M)"2)
C2=C24+V (D) ¥Q(LI¥Q (MR (Q(LI-Q (M) )
D2=024Q¢I) 2% (Q(L)—Q{M) )
&5 NEXT I
ACJY=AZ/D2
B(J)=B2/D2
C(J)=C2/n2
NEXT J
Hi=5

E IF INT(N/2)%2=N GO TO 120
0
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305 No=1

310 K=1

315 S1=0 \ 82=0 \ 83=0 \ §4=0

320 L=K+Mi-1

325 POR I=K TO L

330 S1=514G(I) N\ S2=524V(I) \ B3I=8S3+Q(I)72 \ S4=S4+Q(I)¥V(I)
335 NEXT I

340 R=M1

345 A(NS)=0

350 B(NS)=(R%S54~-51%52)/(R¥§3-61"2)
355 C(NS)=(S2-B(N35)*S51)/R

340 IF NS*1 GO TO 385

365 No=N1+1

370 K=N-Mi+1

375 GO TO 315

385 Yi=1

395 FOR IS=1 TO Ti

400 S=I5-1

405 F=F3XY1%107(S/T1)

410 IF F<=F2 GO TO 420

412 PRINT #2INLN(2)3*FIN KK C TO G"#NLN(1S)FRPT(100:0) ¢
414 PRINT RPT(10,7)#NLNC(L)F*FIN KK C TO G*"#NLN(15)3}
4146 END

420 IF F<.S¥EXP(Q(1)) THEN STOP
425 GOSUER 1000

430 NEXT IS

435 Y1=10%Y1

440 GO TO 395

1000 REM

1010 U=F

1020 Si=.8%U

1030 T=1.25%U

1040 X=LDG(S1)

1050 Y=LOG(T)

1060 V=LOG(U)

1070 Ni=INTC((N+2)/72)

1080 I=0 N\ J=0 \ M=0

1090 FOR K=1 TO N1

1100 R=Q{2%¥K-1)

1110 IF K=N1 THEMN R=Q(N)

1120 IF I=0 THEN IF X<R THEN I=K
1130 IF J=0 THEN IF Y<R THEN J=K
1140 IF M=0 THEN IF V<R THEN M=K
1150 IF J»0 GO TO 1200

1160 NEXT K

1170 IF I=0 THEN I=N1i+1

1180 IF J=0 THEN J=N1+1

1190 IF H=0 THEN H=Ni+1

1200 Q1=Q(1)-2.303

1210 N3=Ni+1

1220 IF I*1 THEN Q1=Q(2%I-3)

1230 IF I=N3 THEN QL=Q(N)

1240 H2=0

1250 Ui=@1 N\ U2=X \ P2=I \ GOSUEB 2000
1260 Q2=Q(N)+2.303

1270 IF J4N3 THEN Q2=Q(2%.J-1)

1280 IF J=N1 THEN Q2=Q(N)

1290 Ul=Y \ UZ=Q2 \ P2=J \ GOSUE 2000
1300 DEFFNZ(IsX)=EXP(A(I)XX"2+B(I)¥X+C(I))
1320 C1=FNZ(IsX)

1330 C2=FHNZ({JrY)

1350 F1=T{C2~C15/(T-81) .

1360 G=(CLRT-C2%S1)/(T-81)

1370 P=(T-U}/{U-81)

1380 R=(T+U)/(U+E1)

A2.
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1380 R=(T+U)/(U+51)
1390 H2=H2-UXF1XL0G (FXR)/2-GXLOG(F/R)/2
1400 J=J+1
1410 IF J»>N3 GO TO 1520
1420 FOR K=J TO N3
1430 Q2=Q(N)+2,303
1440 IF K<N3 THEN Q2=Q(2%K-1)
1450 IF K=N1 THEN Q2=Q(N)
1460 Q1=Q(2%K-3)
1470 IF K=N3 THEN Q1=Q{N)
1480 U1=Q1 \ U2=02 \ P2=K \ GOSUE 2000
1490 IF K<0 GO TO 1520
1500 NEXT K
1510 REM
1520 I=I1-1
1530 IF I<1i GO TO 1430
1540 FOR K=1 TO I
1550 L=I-K+1
1560 Q1=Q(1)-2,303
© 1570 IF K<I THEN Q1=Q(2%L-3)
1580 Q2=Q(2%L-1)
15920 IF L=N1 THEN Q2=R(N)
1600 U1=Q1 \ U2=Q2 \ P2=L \ GOSUE 2000
1610 IF K<0 GO TO 1430
1620 NEXT K
1430 FOR K=1 TO 2
440 IF K=1 GO TO 1490
1650 A3=R(N)>+2.303
1640 L=N3Z
1670 T=.5
1480 GO TO 1720
1690 Q3=0(1)-2,303
1700 L=1
1710 T=—.5
1720 G=FNZ(L»Q3)
1730 FO=EXF(Q3)
1740 H=LOG(AES( (F0-U)/(FO+U)))
1750 H2=H2+HXGXT
1755 NEXT K
1760 B=FNZ(M,V)
1 4780 H2=H2x%,63842
, 1790 PRINT FMT(*E*r10)UsGsH2
Y1792 G=6k1.,00000E+12
P 793 H2=H2%2%FIXU
i, 1794 FRINT #21%0K*
L3794 PRINT #2:FMT(E"»13)Us" "56G#" "FH25" "FOFNLN(2)+
1 4798 PRINT #2:!RPT(20,0)%
| 4800 RETURN
1 8000 REM
,BOL0 DEFFNW(Xy T)=EXP (AT AKX 24B (1) RX+C (1) )/ (U/EXP (X —EXP (X) /U)
V#0020 L2=INT((U2-UL)%100/2.303)
' 030 IB=INT(L2/4)%2
1 2040 IF I2<4 THEN I2=4
2050 Wa=I2
2040 K2=I2-1
2070 H3=(U2-U1)/u2
080 T2=U1
090 E2=0
2100 02=0
110 FOR JB8=1 TD K2 STEF 2
120 D2=024FNW(T2,F2)
130 E2=E2+FNW(T2+H3,F2)
2135 T2=T24+2%H3
140 NEXT J8
14% H&é=0 \ HB=0
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? Hé=0 N\ H8=0

0 H1=(4XEZ2+2%02~-FNW{ULlyP2)+FNW(U2,P2) )XHI/3
0 H2=H2+H1

5 IF ABS(H1)<1,00000E-04%ABS (H2) THEN K=-1
0 REM

0 RETURN

RINT N\ PRINT "KRAMERS KRONIG TRANSFORM G TO C" N\ FPRINT
IM D5(200)

IM QCS0)yV(S0) rACS0) yB(S0) ,C(S50)

IM D(S50)yE(S0)

RINT #2iRPT(200,0)7

=1

INFUT #11Z%

IF Z$="DATA" GO TO 16

FRINT Z$ \ PRINT #2!Z$% \ GO TO 10

FRINT *INPUT DATA SETS TO BE OMITTED 7 (ENTER O TO TERMINATE)" \ N9=0

NP=N?+1 \ INPUT DS(N?) \ IF DS(N?)>0 GO TO 17 \ DS(N%)=1000
FRINT

PRINT *FREQUENCY RANGE OF OUTFUT DATA"

PRINT * MIN *i N\ INFUT F3

FRINT * MaX *# N\ INPUT F2

FRINT "POINTS/DECADE *# “\ INPUT T1

PRINT N\ PRINT "VALUE OF C INF., TO BE ADDED (FFS) "# \ INPUT C%

PRINT NLN(2)7"DATA"FNLN(2)7 N\ PRINT #2!"DATA"iNLN(2)FiRPT(40:0)}
FRINT * F (HZ) C (F) G/W (F)*

FRINT " COMPUTED GIVEM" i NLN(2) 7

FOR N=1 TO 200

INPUT #11Z$

IF SEG$(Z$¢1,3)="FIN" GO TO &0

IF Z$<>"0K* GO TO 32
INFUT #11Z%

IF D5(N?)=I GO TO 53
X=VAL(SEG$(Z$,1+13))
Y=VAL(SEG$(Z$y2%y41))
Y=Y/ (2KFPI¥X)

IF Y<=0 THEN N=N-1 \ GO TO 55
RINI=LOG{X) \ VIN)=LOG(Y)
GO TD 54

N9=NP+1L \ N=N-1

I=I+1

NEXT N

N=N-1

IF Q(N)>QC1) THEN 95

FOR I=1 TO N
DOI)=Q(N+1-1)

E(I)=V(N+1-I)
NEXT I
FOR I&1 TO N N\ QCID=D(I) N\ W(I)=E(I) \ NEXT I
I=0
Hi=0 \ H2=0

IF INT(N/2)%2=N GO TO 120
GO TO 130

Q{N+1I=Q(N-2)
VIN+1 Y=V (N-2)
Ni=INT((N+2)/2)

FOR J=2 TO N1

AZ=0 N\ B2=0 \ C2=0 \ D2=0
J1=2%J-3

K=2%J-1

FOR I=J1l TO K

L=I+1
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190
200
210
220
230
240
250
260
265
270
280
270
295
300
305
310
315
320
325
330
335
340
345

L=I+1

M=I+2

IF (L-J1)»2 THEN L=L~3

IF ((M=J1)}>2 THEN H=H-3
AZ=A24V (T ¥ QL) -Q (M) )
B2=R2-V(I)¥%(Q(L)"2-Q(H)"2)
C2=C24V( (D) *Q (L) XR (M) X (Q{LI-Q(M))
D2=D24+Q(I)"2%(QA(L)-Q (M) )
NEXT I

AlJ)=A2/D2

B{J)=B2/D2

C(J)=Cz2/D2

NEXT J

Mi=5

NS=1

K=1

51=0 \ 8§2=0 \ 83=0 \ 854=0
L=K+Mi-1

FOR I=K TO L

S1=G14QC¢I) \ B2=82+V(I) \ SI=G3+R(I)"2 \ S4=84+Q(I1)*V(D)
NEXT I

R=M1

A(NS)=0
B(NS)=(R*¥S4-51%82) / (R¥83-51"2)
CINS)=(82-B(NS)%XS1) /R

IF NS»1 GO TO 3BS

NS=N1+1

K=N-M1i+1

GO TO 315

Yi=1

FOR IS5=1 TO Ti

§=I5-1

F=F3xY1%10"(8/T1)

IF F<=F2 GO TO 420

PRINT #2iNLN(2)7"FIN KK G TO C*"FNLNC1S);RPT(10050) %
FRINT RPT(10s7)FNLNCL)S"FIN KK G TO C*FNLN(15) 7
END

IF F<,S¥EXP(Q(1)) THEN STOP
GOSUE 1000

NEXT IS

Yi=10%Y1

GO TO 395

REM

U=F

S1=.8%U

T=1,25%U

X=L0G(s1)

Y=L.0G(T)

V=L0G(U)

N1=INT((N+2)/2)

I=0 \ J=0 \ H=0

FOR K=1 TD N1

R=Q(2%K-1)

IF K=N1 THEN R=Q(N)

IF I=0 THEN IF X«<R THEN I=K
IF J=0 THEN IF Y<R THEN J=K
IF M=0 THEN IF V<R THEN M=K
IF J>0 GO TO 1200

NEXT K

IF I=0 THEN I=Ni+1

IF J=0 THEN J=N1+1

IF M=0 THEN M=N1i-+1
Qi=0¢1)-2,303

NE=N1+1

IF I»1 THEN Q1=Q(2XI-3)
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IF I»1 THEN Q1=Q(2XI-3)

IF I=N3 THEN Qi=Q(N)

H2=0

Ul=01 \ uU2=X \ P2=I \ GOSUE 2000
R2=Q(N)+2,303

IF J<N3 THEN Q2=Q(2%.J-1)

IF J=N1 THEN Q2=Q(N)

Ui=Y » U2=Q2 \ P2=J \ GOSUEB 2000
DEFFNZ(I» X)=EXP(A(TIIRXT24B(I)RX+C(T))
C1=FNZ(IsX)

C2=FNZ(JrY)

Fi=(C2-C1)/(T-81)
G=(C1¥T-C2%81)/(T-81)
P=(T-U)/(U-81)

R=(T+U}/(U+51)
H2=H2+F1X(T-51)+HUXF1XLOG(P/R) /24+GX.0G(FPXR) /2
=J+1

IF J»N3 GO TO 1520

FOR K=J TOD N3

Q2=0(N)+2,303

IF R<N3 THEN Q2=Q(2%K-1)

IF K=N1i THEN G2=Q(N)

Q1=0(2%K-3)

IF K=N3 THEN Q1=QJ{N)

Ul=@1 \ U2=02 \ F2=K \ GOSUE 2000
IF K<0 GO TO 1520

NEXT K

REM

I=I-1

IF I<1 GO TO 1740

FOR K=1 TO I

L=T-K+1

Q1=0(1)-2,303

IF R<I THEN Qi=Q(2¥L-3)
Q2=0(2%L-1)

IF L=N1 THEN Q2=Q(N)

Ul=G1 \ U2=02 \ P2=L \ GOSUE 2000
IF K<0 GO TO 1760

NEXT K

G=FNZ(M»V)

H2=H2%.63662

FRINT FMT(*E"»10)UsH2+6
H2=H2%1.00000E+12

G=GX2XPIXU

PRINT #2:"0OK"

PRINT #2!FMT("E"»13)Us" *iH27" "#G#* "FOFNLN(2)7

FRINT #2IRPT(20r0)F

RETURN

REM

DEFFNW (X I)=EXPCACTYRX™24B(TIRXHC (1) )/ (1-U"2/EXP (2%X) )

L2=INT( (U2-U1)%100/2,303)
I2=INT(L2/4)%2

IF I2<4 THEN I2=4

W2=12

K2=12-1

H3=(U2~U1) /W2

T2=U1

E2=0

02=0

FOR JB=1 TO K2 STEF 2

02=02+FNW (T2 P2)

E2=E2+FNW ( T24H3,P2)

T2=T2+2%H3

NEXT J8

Hé=0 \ H8=0

H&=0 \ H8=0
Hi=(AXEZ+2K02~FNW (UL, F2)4+FNW (U2, P2) YXH3/3
H2=H2+H1

IF ABS(H1)<1.,00000E~0AXABS(H2) THEN K=—1
REM

RETURN

A2,
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CHAPTER 3

Presentation of Dielectric Functions

3.1 INTRODUCTION

The dielectric functions, f(¢) in the time domain and the complex
frequency domain function (), represent the most basic form of
information about the dielectric properties of a substance and they
form the basis of most interpretational analysis on experimental
data. However, even at this fundamental level there are various
options open to the presenter of data, depending upon the nature
of the particular response: for example it may be advantageous to
plot the frequency dependent conductivity o(w) instead of dielectric
loss and it may be desirable to plot €' (w) instead of x'(®). What
is even more important, however, is the often complicated process
of arriving at the basic information implied by these functions,
which presupposes the uniformity of the measured sample, i.e. the
absence of separate regions characterised by different dielectric
properties. The presence of inhomogeneities may complicate very
considerably the appearance of the raw data, as they are obtained
from the measuring system used in their determination and failure
to recognise properly the origin of these complications may lead to
erroneous and highly misleading conclusions from experimental
data. It is therefore necessary to discuss in detail some of the
problems involved here.

There exists, however, the further difficulty that through a process
of slow and often erratic evolution over the decades, there have
arisen a number of separate, sometimes not very logical, conventions
regarding the presentation of information acceptable in a particular
experimental context. This has the disadvantage, that the users of
a particular convention may be perfectly familiar with the signifi-
cance of certain features, for example of a complex impedance plot,
but someone not so familiar may find it very difficult to understand
the meaning and the interpretation of data in these particular forms.
What is more, a critical analysis of particular time-honoured meth-
ods of presentation often reveals serious drawbacks which actually
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“hamper proper interpretation and we shall attempt to point those
out in the course of our discussion.

Dielectric data have one distinctive feature compared, for example
with most other physical data relating to steady state situations —
they involve the variables of time or frequency, in addition to any
variables such a temperature, pressure, composition etc which apply
in all material measurements. This means that one is dealing with
a very large volume of data and their proper handling and pres-
entation is particularly important. In addition, the availability of
Fourier and Kramers—Kronig transformations presents further val-
uable opportunities for checking internal consistency of the data
and for obtaining the maximum amount of information but, once
again, they entail the ability to handle and store the required
information.

The aim of the present Chapter is to give a critical introduction
into these various methods of presentation and of handling of data
and to acquaint the reader with the most important difficulties and
pitfalls. It is not our object, at the present stage, to enter into the
details of the actual physical interpretation of the data which will
have to await the final chapters of this monograph—at this stage
we intend to equip the reader with the optimal tools for the proper
presentation of the information that may be at his-disposal.

3.2 ADMITTANCE, IMPEDANCE, PERMITTIVITY

In the frequency range below 1 GHz which we have chosen for the
present treatment for reasons explained in Chapter 1, measurements
are carried out almost exclusively on samples in the form of two
terminal devices consisting of two metallic or otherwise conducting
plates with the dielectric medium filling the space between these
plates. Figure 3.1 a) shows a rather arbitrarily shaped block of
dielectric material with two conducting areas of equally arbitrary
shape and area. We may now define the capacitance of this device
in terms of the ratio of the charge Q induced on the plates to the
voltage V applied between the plates:

C=dQ/dV (3.1)

This definition is completely general, regardless of the geometry of
the device used and is independent of the homogeneity and linearity
of the material under investigation. It is valid, for example, for a
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b)
a)

G
W

Figure 3.1 Capacitor structures. Diagram a) represents a general configuration
of an arbitrarily shaped dielectric body with two metallic electrodes partially
covering the surface at opposite faces of the dielectric block. Although the capaci-
tance may be determined exactly and the frequency dependence of the dielectric
parameters may be measured, it would be difficult to ascribe exact values to the
* dielectric permittivity because of the complicated shape. Diagram b) shows a more
regular planar geometry of thickness w and with a guard electrode G surrounding
the measuring electrode of surface area A, to avoid leakage currents along the
surface and to eliminate fringing fields which would distort the uniform field
pattern and would lead to errors in the correct assessment of the geometrical factor
A/w. This would give an incorrect value of the dielectric permittivity, but it would
not affect its spectral behaviour as funetion of frequency.

dielectric system of such completely indeterminate geometry as an
electrolytic capacitor in which one metallic plate has been deeply
etched to form intricate tunnels or alternatively consists of a sintered
body of metallic powder in order to enhance the effective area of
the capacitor. The other “plate’ consists of either solid or liquid
electrolyte filling the intricate voids in the base electrode. The
dielectric medium in this case consists of a thin film of anodically
produced oxide whose exact thickness is unknown. We are thus
faced with a largely unknown geometry, which does not in any way
preclude the usefulness of the device as a capacitor. Another exam-
ple of an unusual geometry is represented by a p—n junction in a
semiconducting material-(cf Section 4.8) — here the junction area
defines a space charge region from which free carriers have been
swept away leaving behind a dielectric medium to which contacts
are made by “plates” represented by the neutral semiconducting
material on the n- and p-sides. In this particular instance, the



3.2 PRESENTATION OF DIELECTRIC FUNCTIONS 65

charge is not induced “‘on” the electrodes but appears as an exten-
sion of the space charge region and the system is strongly non-
linear in the applied bias. It is also true to say that there is no
direct way of determining the thickness of the dielectric region,
although indirect methods may be used.

Although irregularly shaped samples such as those shown in Figure
3.1 a) may sometimes be used, it is far more convenient and
advisable to use samples of well defined geometry, such as the
parallel-plate structure shown in diagram b), with two plates of
area A adjacent to a planar slab of thickness w, usually with the
additional stipulation that the lateral dimension of the electrode is
much larger than the distance w, so that fringing effects may be
neglected. These arise because the field is only well defined in the
area well removed from the edges and therefore quantitative deduc-
tions about the value of the permittivity and loss can only be made
on samples in which these fringing fields are negligible.

Subject to the stipulation that 4 > w? assuming that the dielectric
material between the plates is homogeneous and that the electrodes
make an Intimate contact with this material, and also that the
material has a linear response with respect to the amplitude of the
applied voltage, we may Wwrite the expression for the electric field
E = V/w, the total charge is given by Q = A9, where 2 is the'charge
density per unit area of the plate. Making use of the fact that the
dielectric induction D represents the total charge density induced
on the electrodes by a field E, we may write

Q=49 =AD = AeE= eAV/w (3.2)
which with eqn (3.1) gives the expression for the capacitance:
C=¢elAlw (3.3)

In this manner, a measurement of the capacitance which is readily
performed in terms of the measurement of the physical quantities
of charge and of voltage, leads directly to the determination of the
dielectric permittivity. If the applied voltage is a steady voltage 7,
the capacitance so obtained is the steady state capacitance C;. If,
on the other hand, the applied voltage is an alternating signal at
afrequency w, then the measured capacitance is a complex quantity
whose real and imaginary parts correspond directly to the real and
imaginary components of the complex permittivity:

C(w) = C' (@) — iC"(w) = (A/w){e () — id"(®)}  (3.4)

C' (w) corresponds to the ordinary capacitance, while the imaginary
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component C”(w) represents the dielectric loss component. In many
engineering applications it is customary to define the loss angle &
by which the phase of the inducation D(w) lags behind the driving
voltage E(w). The tangent of this loss angle is given by the relation:

tan 8 = C"(w)/ C' (0) = &' (w)/ € (o) (3.5)

The practical significance of tan J is that it represents the ratio of
the energy dissipated per radian in the dielectric to the energy stored
at the peak of the polarisation. It also gives a direct indication of
the sensitivity required of the measuring system for the assessment
of any particular material. However, for the purpose of the critical
discussion of the interpretation of dielectric data this quantity is
not very significant, since it represents the ratio of two
frequency-dependent components which does not convey as much
information as the separate plots of the component parts. We shall
not therefore use tan d in our discussion unless we are forced to do
so by the absence of other information. In low-loss materials, where
the dispersion of the real part of the permittivity is neghglble in
view of eqn (2.56), it is evident that the frequency dependence of tan &
is the same as that of €'(w), although the absolute values are
different.

One practical advantage of tan § as a figure of merit of a dielectric
material consists in its independence of the geometry of the
sample —it is the ratio of two parameters which both contain the
same geometrical factor. In situations in which the geometry of the
sample is not known, for example in a semiconductor p-n junction
or an electrolytic capacitor, so that & (w) and £'(w) cannot be
determined separately, tan J remains the only characteristic which
can be reliably obtained.

It is convenient for some applications to define the geometrical
capacitance of a capacitor in terms of the value of capacitance that
would be obtained with the same geometry but with the dielectric
medium being replaced by free space (vacuum):

Co= A/w (36}

so that the ratio of the measured capacitance to the geometrical
capacitance gives the ratio of the true complex permittivity to the
permittivity of free space, known as the relative dielectric permittivity;

&(w) = C(w)/Cy= e(w)/ & (8.7)

the real part of which is known as the dielectric constant.
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It is customary to describe alternating field and current response
in terms of phasors or rotating vectors in the complex plane — see
Appendix 3.1 — and we propose to do so in the following discussion.
In those terms the ratio of the current to the voltage is known as
the admittance:

Y() = I(w)/ V(o) (3.8)

and this is, in general a complex quantity, indicating a phase shift
¢ between the two phasors. Physically this ratio is best understood
in terms of a fixed reference voltage driving a current through a
system, which may be represented by a component I' in phase with
V and another component I" in guadrature with V, as shown in Figure
3.2. This may be represented by the equivalent circuit of Figure

iwCV

Iﬂ

v

Figure 3.2 'The phasof diagram of a current J which is leading the voltage ¥ by
an angle ¢. ¥ is the admittance of the system and it may be represented by the
equivalent circuit of Figure 3.3.

3.3 showing the parallel connection of a conductance G, and a
capacitance Cy, with the same voltage V driving the current

I(0) = {G(w) + iwC(w)} V(w) = Y(w) V(o) (3.9)

where the conductance and capacitance are assumed to be ideal or
Jrequency-independent or purely real. In the case of G, this means that

C

G -
Figure 3.3 A parallel combination of an ideal, frequency-independent capacitance

C and conductance G which may represent the system in which the current is as
shown in Figure 3.2.
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there is no dielectric loss associated with it, since any loss that may
be present in a real capacitor would be represented by the con-
ductance G. We see, therefore that an ideal capacitance has an
admittance vector pointing at right angles, the current is in full
quadrature with the driving field or voltage. For a slightly imperfect
capacitor the condition is that the loss current is much smaller than
the displacement current, G, < w(C, and we note that §=

/2 — ¢.

It is equally important to define for other purposes the reciprocal
of the admittance which is known as the impedance

Z(w) = 1/¥(w) = V(w)/I(w) (3.10)

which represents, therefore the voltage resulting from the flow in a
system of a reference current, Figure 3.4,, and corresponds to a series

I/iwC

VH

I

Figure 3.4 The phasor diagram of a voltage ¥ which is leading the current J by
an angle ¢. Z is the impedance of the system and may be represented by the
equivalent circuit of Figure 3.5.

s

Figure 3.5 A series combination of an ideal capacitor C and a resistor R which
may represent the system in which the voltage is as shown in Figure 3.4

R-C circuit, as shown in Figure 3.5, for which we may write:
V(w) = {Ro+ 1/iwCo}(w) = Z(w) I(w) (3.11)

It is clear, therefore, that the admittance representation is the
natural way of describing physical phenomena in which two mech-
anisms exist in parallel, so that the same voltage — or field — drives
two components of current through the system, while the impedance
representation is particularly suitable for those situations in which
two physically different regions are in series with one another, so
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that the same reference current causes two separate voltage drops
across separate regions. A typical example of the former situation
is the presence of a finite dc conduction mechanism in parallel with
the dielectric polarisation which is inevitably present in all
materials. The second, series combination is found in all systems
where a barrier region is present adjacent to a bulk conducting or
semiconducting material — the barrier is depleted of charge carriers
and appears as a capacitance, while the bulk looks like a series
resistance.

Since Z(w) is the inverse of ¥Y(w), it follows that the transformation
of one into the other may be achieved either analytically or graph-
ically, following the rules of inversion, cf Appendix 3.2. Thus eqn
(8.9) is represented as a straight line in the complex Y diagram,
and its inversion is therefore a semicircle of diameter 1/G, in the
complex Z plane, Figure 3.6. Similarly, the series circuit represented

Y!l

Y iwC
o

1~

0 o 0 /G

Figure 3.6 'The locus of the tip of the admittance vector ¥ for the parallel circuit
shown in the inset is represented by a vertical straight line going through the real
axis at ¥’ = G. Its inversion into the impedance plane is a circular arc centred
on the real axis and cutting this axis at the origin and at Z’' = 1/G. The arrows
indicate the direction of increasing frequency.

by eqn (3.10) corresponds to a straight line in the complex Z plane
and it inverts into a semicircle in the Y plane, Figure 3.7. The
corresponding analytical expressions are given below:

— 1 — it _ series R-C :
Y= ICOCU m, T= Ro Gn circuit (312)
1 — it :
7= (]-/GU) ﬁ;&; T= GO/GO ﬁafallef G—C (8.13)

cireuit
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0 R 0 1/R

Figure 3.7 The locus of the tip of the impedance vector Z for the series circuit
shown in the inset is represented by a straight line, while its inversion into the
complex admittance plane represents a circular arc centred on the real axis and -
cutting it at ¥* =0 and ¥’ = 1/R. The arrows indicate the sense of increasing
frequency.

It is immediately evident that the “wrong” representations are
much more complex than the “natural” ones and this is one of the
reasons for trying to find what is the most appropriate representation
for any particular situation. We shall return to the treatment of
more complicated situations later but for the present we propose
to make one further transformation.

We may always define a complex capacitance C*(w) = C'(w) —
iC" () such that the current is given by:

I(w) =i0C* (w) V(w) (3.14)
from which we infer that with the definition (3.9):
C*(w) = Y(w)/iw = (A/w){e' (w) —ie'(w)} (3.15)

thus the effective capacitance is related to the admittance by eqn
(3.15) and this constitutes the basis for the determination of the
effective permittivity of a dielectric system from the measurement
of admittance. We must bear in mind at all times, however, that
the dielectric permittivity can only be reasonably defined for a
homogeneous material, so that if there is reasonable presumption that
the sample in question is not homogeneous, say that it consists of
two or more regions in series, then there is no point in transforming
the admittance data directly. into permittivity.

With reference to egn (3.12) we note that the effective capacitance
or a series R—C circuit is:

1 1 —iwT
G*_COI-i-ian:_ °1 + 0%? (

T=RCo)  (3.16)



3.3 PRESENTATION OF DIELECTRIC FUNCTIONS m

The significance of this result will become clear in the context of
the discussion of the physical models giving the Debye response in
Chapter 4.

It is well known that the expression (3.16) represents in the complex
plane the semicircular contour as shown in Figure 3.8, which gives
the plot of the real against the imaginary part of C*.

Cﬂ

Figure 3.8 The complex capacitance plot, as defined by eqn (3.16) for a series
R-C circuit. The imaginary component C"(®) has its maximum value at a
frequency @ = 1/RC.

3.3 MORE COMPLICATED EQUIVALENT CIRCUITS

Having acquired some acquaintance with the handling of the equiv-
alent impedance, admittance and complex capacitance or permit-
tivity of a few very simple ideal circuits consisting of elements that
did not show any mmherent frequency dispersion in their own right,
we are now in the position to look at a few more complicated circuit
combinations. It should be very clearly understood that this exercise
is not undertaken in the spirit of trying to interpret every observed
dielectric response of real materials, as has been only too often the
case in the literature on dielectrics. The sole object here is to
familiarise the reader with the significance of the existence of series
and parallel physical mechanisms and with the effect which these
are likely to have on the observed response of dielectric systems,
since it is only possible to interpret the physical response of individual
processes and it therefore becomes imperative to disengage them
from one another by suitable manipulation of the respectlve
diagrams.

Thus, if presented with a suspected series combination of physical
mechanisms, it is advisable to plot the complex Z diagram to see
if a clear division into two separate regions is evident. This will
always be the case if the series element is a resistance and it may
be possible for a series capacitance.
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The following examples will also help to illustrate the respective
advantages of plotting the frequency-dependent capacitance and
conductance, depending upon the presence or absence of conduct-
ance in the limit of zero frequency. They will also stress the import-
ance of using the correct representation in order to obtain the
simplest form of results — this is exactly equivalent to the use of the
correct coordinate system, e.g. cartesian, spherical polar, cylindrical
etc in solving analytical problems involving specific geometries.

i) Series R—C in parallel with Ce,

It will be shown in Section 4.5 that the response of a series R-C
circuit is identical with that of an ideal Debye mechanism. The
parallel frequency-independent C.. here corresponds to any physical
process present together with the Debye process, which has no
dispersion in the frequency range of interest — this may be the free
space capacitance, or it may correspond to fast responding processes
with dispersion at much higher frequencies, e.g. the induced polar-
isation. The complete response is shown in Figure 3.13d). The
natural form of representation here is the complex Y diagram which
consists of a semicircle corresponding to the R—C case and of a
vertical “spur” representing the capacitive contribution iwC.. The
addition of these two must be carried out vectorially in the complex
Argand diagram, taking into account the frequency dependences
of the two components. This depends in the present instance upon -
the ratio G/ C., if this is large, then the semicircle is almost com-
pletely traversed with increasing frequency before the vertical spur
makes a significant contribution, if the ratio is close to unity, the
semicircle does not become well developed.

The Z diagram corresponding to this circuit is rather complicated
and we do not give it here as it is not the natural form of represen-
tation. On the other hand the complex C* or €is very simple, since
it represents a semicircle corresponding to the R-C circuit, offset
by C.. The ¢'(w) diagram is exactly as in the case of the series
R-C circuit, the reason being that the presence of the parallel free
space capacitance does not in any way affect the loss arising from
the Debye combination. On the other hand the C'(w) diagram
shows the limiting capacitance C..

i1) Resistance in series with parallel G-C combination

This is a very common situation in which a barrier with some
conductance across it is placed in series with a bulk conducting
region of resistance Ry. The natural form of representation is the
Z diagram, while the ¥ diagram would be rather complicated. Since



3.3 PRESENTATION OF DIELECTRIC FUNCTIONS 73

dc conduction path is now evidently present down to zero frequency,
the convenient parameter is the effective conductance, G(w),
together with the real part of the effective capacitance, ¢’ (w). The
full expressions for these are easily shown, in the limit of a small
series resistance, to be:

1+ *?/b
G(w) = G, [T ot (3.17)
b :RoG‘g<1
1 1:=R[,Cu
¢ (w) = Com (3.18)

and the frequency dependence is shown schematically in Figure 3.9
together with the significant points in terms of the basic circuit

parameters.
R G o)
log ({w) v =
log Gle) m Eilﬁ.
. Ciw)
1/R,
C
2b°C
-G,

by 1/

Figure 3.9 The admittance components G(w) and C'(w) corresponding to the
series — parallel combination of frequency-independent components Ry, Co and G
shown in the inset. The assumption R Gy = & < 1 implies that the series resistance
has a much smaller value than the reciprocal “loss” conductance Gy. The relaxation
time is defined as 7= Ry Cyp. The dotted line gives the equivalent loss component
C" = G(w)/w which is lowered with respect to its proper level for clarity. ’

As an illustration we also give the plot of the imaginary part of the
effective capacitance, which in the high-frequency region represents
an ordinary loss peak:

C" (@) = Cywr/(1 + w?)

while at low frequencies it becomes dominated by the conductance
component G,/ .
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At this point it is advisable to note a few general rules regarding
the relationship between the imaginary part of the capacitance and
the effective conductance:

C"(0) = G(w)/w (8.19)

and the same rules relate to the corresponding bulk parameters

g(w) = o(w)/w (3.20)

Rule 1:
A loss peak in C"(w) or €'(w) corresponds to a region of
G(w) o< o followed by a saturated value of conductance.

Rule 2:

A strong dispersion of loss at “low” frequencies, with C"(w)
or €'(w) proportional to I/ w while C' or € remains inde-
pendent of frequency, corresponds to de conduction.

ii3) Capacitance in series with parallel G-C combination

This represents an important representation of the physically often
occurring situation in which the bulk region characterised by the
parallel dc conductance and capacitance is bordered by a “barrier”
region in which the dominant element is the capacitance C,. Since
the bulk capacitance Gy corresponds to the physical dimensions of
the entire sample, while the barrier may be presumed to be much
thinner than the sample as a whole, it is reasonable to assume that
in most physically realisable situations C,> ;. The “natural”
representation now is the impedance diagram, shown in Figure
3.13f) which corresponds exactly to the admittance diagram in c).
As the barrier capacitance becomes dominant, so the circular arc
is traversed more fully before the “spur” region is entered with
decreasing frequency.

The complex admittance now becomes, in the limit of dominant
barrier capacitance:

T= G/ Gy

Y(w) = Go(1 + iw7) C> G, (3.21)

which is shown in Figure 3.13f) and which is identical in form to
the Z diagram and also to the ¥ diagram for the combination shown
in diagram d). The expressions for the real and imaginary com-
ponents of the effective permittivity, in the limit of high barrier
capacitance, become:
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I+ian'= 1 + 70’ — 1071
1+ iww f 1 = Pot?
withr = C,/Co> 1

&(w) = G,

(3.22)

The loss peak occurs at w, = 1/r7= G,/ C,.

The remarkable similarity between the dielectric response of the
circuit combinations represented by the diagrams d) and f) in
Figure 3.13 should be noted, in the limit of sufficiently separated
frequency responses of the two component parts.

i) Two parallel circuits in series

This is a generalisation of the circuit to cover the possible existence
of two different regions, each characterised by a dc conductance
and a capacitance and is shown in Figure 3.10. Quite clearly, the
cases shown in Figure 3.13b) to f) represent limiting cases of this
more general configuration.

The case of arbitrary values of the two sets of parameters, C); and
G, is complicated and we shall only be concerned with the limiting
case corresponding to

C] < Gg Gl > G2 (3.23)
Co/ Ci=1>1; Tp= Cn/Gp
The physical significance of this choice of parameters is that region
1 corresponds to the relatively conducting volume of the sample
and region 2 represents a highly capacitive but weakly conducting

barrier — in fact we are adding a finite conductance to the previous
example of a non-conducting barrier.

The impedance may be written exactly in the form:

1/G, + 1/G,
1 +iorn 1 +iwt

Z(w) = (3.24)

which represents the vectorial summation of two semi-circles in the
complex plane. In the limit represented. by the conditions (3.23)
the two semicircles are well separated and are as shown in Figure
3.10, with the smaller arc corresponding to the presumed volume
response, the larger arc describing the barrier.

Our assumptions involve the following inequalities:

T < <7,
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C=C
T4 2 &, GG,
"volume” “bappiep” ' . 2
G,/C,
g
65/
- "barrier”
"volume" Yew=0,/C, © w-g) &
biogGe 110,
o Glew)
Cleo)
G(0)
' logw

Figure3.10 The complex impedance representation and the frequency dependence
of the effective parallel capacitance and conductance of the series — parallel
combination of resistors and capacitors shown at the top. The impedance diagram
is drawn for the case of a clear separation of the time constants, Gi1/C1 2 Ga/ Cy,
which produces the clear separation into two semicircles. The descriptions “vol-
ume” and “barrier” denote a physically plausible assignment of the two regions
if €} < G, and G, < Gy, in which case the two regions may be presumed to be
physically connected in series. The exact expressions for the limiting values at
zero and at infinitely high frequencies are as follows:

GG, .\ _ GG+ GGy
¢0) =% "ra =) =~ ¥ G’
_ GG+ GiGy _ GG

CO="Gg7er @=grq

The shape of the frequency response graphs should be taken to be schematic only.

and the positions of the frequencies corresponding to the reciprocals
of these relaxation times are. indicated in the impedance diagram.
The inversion of this expression into the admittance plane gives:
(1 +ion)(1 +iwt)

1 +iwtr

Y(w) = G,
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but the exact shape of this expression is not easily envisaged. It is
more significant that the high frequency region corresponding to
the smaller arc in the impedance diagram corresponds to the vertical
line

while at very low frequencies we are inverting the arc in the
impedance plot near 1/Gy:

The C(w) and G (w) plots appear approximately as shown in Figure
3.10. The important point, however, is that the investigation of the
high-frequency arc, corresponding to the “volume” response is
easily achieved by inversion into the admittance plane and hence
by direct determination of the parallel conductance and capaci-
tance. On the other hand, if we wish to look in detail at the
behaviour of the barrier, it is advisable to invert the impedance
with respect to the point 1/G, on the real axis, i.e. to invert the
quantity

since the inverse of this is again a straight line in the admittance
plane.

This is an important general rule which should be applied to all
measurements where there is the suspicion that the behaviour is
governed by the interaction of two series elements — the first step
should be to represent the original experimental data as the imped-
ance diagram and check if there is evidence of a clear separation
into.two series regions. If this is the case, then these regions should
be inverted separately into the admittance plane, each with respect
to the point at which the high-frequency data extrapolate to the
real axis, Figure 3.11 a).

Having used the impedance diagram to resolve any unwanted series
elements, whether resistive or otherwise, which hamper proper
analysis of the remaining data, it may be advisable to use the
admittance plot to eliminate any parallel dc conductance G, that may
be present, as shown in Figure 3.11 b). The remaining element may
then be considered to be a generalised capacitance C(w) consisting
of both real and imaginary components. The reason for removing the dc
conductance is that the latter has nothing to do with the dielectric
properties properly speaking and the interpretation of the results
would be hampered by the resulting singularity near the origin of
the frequency scale.
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Rs

" Y= wC'
4 7z ) wC (w) ¢ (wl

Vs
G{ml

'= GU + wC"(w)

N-\.

Rs

Figure 3.11 a) The use of the complex impedance diagram to determine a series
resistance R; that is independent of frequency and is placed in series with a circuit
containing conductance and capacitance, which may themselves be frequency
dependent.

b) The use of the complex admittance diagram to separate out the direct current
conductance Gy from the complex ac properties represented by an equivalent
parallel circuit.

v) Distributed R—C line

Our discussion so far has been concerned with lumped-component
networks which are well suited to represent a wide range of physical
situations and their understanding is basic to the interpretation of
most dielectric data. We shall leave until a later Section the dis-
cussion of even more complicated lumped component networks,
leading to the contentious issue of continuqus or semi-continuous
distributions of simple networks. At this point we propose to intro-
duce one special form of distributed network — the uniform distri-
buted R-C line, Figure 3.12. This may correspond, for example,
to the case of a capacitor in which one or both electrodes have a
high sheet resistance. In order to conform to’the one-dimensional
geometry assumed in the present derivation it is necessary to have
a stripe geometry, the other likely form of geometry with a circular
electrode of high sheet resistance and a central contact to this
electrode would require more complicated solutions involving Bessel
functions, but the principle of the analysis remains the same.

One reason for the treatment of the linear case is that this gives an
exact analogy of the physical process of diffusion, either of heat

(Carslaw and Jaeger 1959) or of injected charge carriers, cf Section
4.9.

With reference to Figure 3.12, assume that the resistance per unit
length in the x direction which measures the distance from the
external contact is 7 and is constant everywhere, while the capaci-
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Figure 3.12 A distributed R-C line of infinite length, with a parallel conductance
Gy showing the currents and voltages at a distance x from the origin. The effective
impedance and admittance diagrams are shown, with zero and finite values of Gj.
The real and imaginary components of the effective permittivity are equal and
both depend on frequency as w2,

The dotted contour corresponds to the presence of a finite dc conductance Gy
which causes a rapid rise of € o« 1/w. The distributed R-C equivalent circuit
shown is an exact representation of the physical processes of diffusion of either
heat or of particle densities.

tance per unit length is ¢. We then have the following differential
equations for the voltage and current increments at the coordinate
x:

dV=—I(x)rdx
dI = —V(x) iwe dx

which lead to the differential equations for voltage and for current:
EV/det = AV (x) withA = (1 +i)(re/2) e
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giving
V(x) = Vi(cosh Ax — B sinh Ax) (3.25a)
and
I(x) = —(1/7) dV/dx = —(V,A/7)(sinh Ax — B cosh Ax) (8.25Db)

Here V, is the input voltage to the line and the constant B depends
on the boundary conditions at the far end — in the case of an
infinitely long line B = 1. The current into the line is therefore:

Iy =V, AB/r
and this gives the input admittance into an infinitely long line:
Y(w) = (1+1)(c/2r) 20" o< (i)™ (3.26)

The complex admittance diagram is also shown in Figure 3.12 and
is represented by a straight line at an angle 7/4, implying that the
real and imaginary parts of the admittance are equal. If there is
a parallel dc conductance, the admittance diagram becomes dis-
placed and the impedance diagram then becomes a semicircle
inclined at the angle 7/4.

The importance of this example, apart from its direct relevance to
a class of physical phenomena, lies in the fact that it represents the
first “breakaway” from the uniform Debye-like type of response
offered by lumped-component R-C networks. The complex per-
mittivity is obtained from eqn (3.26):

e(w) o (i)™ . (8.27)

which is also shown in Figure 3.12. This is remarkable in two
respects: the real and the imaginary parts are equal and there is
no sign of any loss peak — the real and the imaginary components
increase indefinitely towards low frequencies.

This type of behaviour will be found highly relevant in the context
of our subsequent discussion of dielectric properties of a wide range
of materials..

34 SUMMARY OF SIMPLE CIRCUIT RESPONSES

We now bring together in Figure 3.13 the dielectric responses of
simple networks consisting entirely of frequency-independent components,
resistance, capacitance and, in one case, inductance. We begin with
the series R—L—C circuit, anticipating the result of a more detailed
analysis of the harmonic oscillator, which represents its mechanical
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Figure 3.13 Schematic representations of the properties of simple circuit combi-
nations of ideal, frequency-independent elements of capacitance C, conductance
G or resistance R, and inductance L, as shown in the first column. The second
column gives the complex impedance plot Z, the third the complex admittance
plot ¥ and the fourth the complex capacitance plot C*. The fifth column gives the
corresponding plots of log G’ (®) (solid lines) and log C"(w) (dotted lines), against
log w. Comments refer, where appropriate, to simple physical significance of the
various models. Arrows indicate the sense of increasing frequency. Where more
than one contour is shown, these refer to varying ratios of the respective components
or time constants.
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equivalent, to be found later in Section 4.2. The importance of this
circuit and of its mechanical equivalent lies in the fact that it is the
only circuit which shows the phenomenon of resonance, as distinct
from the relaxation behaviour shown by all the others.

The physical difference between relaxation and resonance lies in
the fact that the latter corresponds to an oscillatory time domain
response, where the discharge current changes sign periodically,
and this is associated with the presence in the system of two
complementary forms of energy storage. In the R-L-C circuit the
capacitance stores electrostatic energy while the inductance stores
the magnetic energy, in its mechanical counterpart, the compliance
stores potential energy, the inertia stores kinetic energy. In the case
of an electromagnetic wave we have electrostatic and magnetic
energies in the components of the electric and magnetic fields of
the wave. These two energies may interchange, producing periodic
oscillations which are damped to the extent to which the dissipative
processes, represented by the resistance R gradually reduce the
total energy of the system.

By contrast, the other types of circuit consisting only of capacitances
and conductances, cannot transfer energy to another form and they
therefore give in the time domain a continuous decay without
overswing into the other sense of current flow. Correspondingly,
there is no change of the real part of the susceptibility which would
imply that the system is swinging in antiphase with the driving
signal.

We note that all the relaxation networks, except that corresponding
to the distributed R-C line in diagram h) and the trivial case of

parallel C—G in diagram c), give one form or another of a Debye
response with some direct current conduction in some cases.

These schematic diagrams show clearly that to every equivalent
circuit corresponds a “natural” form of representation giving a very
simple description of the dielectric parameters, while other, less
“natural” representations lead to considerable complications and
the resulting difficulty of interpretation. This should be clearly
borne in mind when approaching any dielectric data which do not
appear to convey a reasonably simple message — one should strive
to find if their appearance can be significantly simplified by adopting
a different form of representation.

We shall see later that the great majority of dielectric materials do
not show any of the simple responses of the Debye or diffusive types
described above. Nevertheless, an examination of their impedance
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and admittance graphs before analysing the data in further detail
provides a valuable means of eliminating unnecessary confusion
and should always be recommended, since the presence of series
combinations of dissimilar regions is always a distinct possibility,
whatever the detailed nature of the response of the individual
regions may be.

One very important consideration should be mentioned with regard
to the form of presentation of experimental data. The object of any
graphic presentztion may be said to be two-fold. At the simplest
level, the object is to convey the general visual impression of the type
of response obtained, especially where a rapid appraisal is needed
to check if the response falls into one of well recognised characteristic
forms. This is, therefore, almost a “fingerprinting” approach which
conveys all the required information to the trained observer looking
for a given pattern. Because this is a rapid and familiar procedure,
it is often used and it has its proper place, especially at the level
of technological assessment of materials.

There is, however, a second, deeper level of assessment, where one
is concerned with a serious physical interpretation of the phenomena
observed experimentally and one goes beyond the “fingerprinting”
approach outlined above. At this level, one is no longer satisfied
merely with the determination of a simple equivalent network, or
with some empirical mathematical expression, but one is seeking
the significance of the observed behaviour at the level of physical
mechanisms. To do this effectively, however, one has to go through
the process of proper representation of the experimental information
in order to obtain the most out of it.

As an example, take the impedance representation of the parallel
circuit shown in Figure 3.13 c). Experimental data presented in
this form may appear to fit a semicircular contour rather closely,
but the eye is not very sensitive to small departures from a circular
shape and a much more critical test would be to represent the data
in the admittance plot, where any departures from a straight line
would immediately become evident. We shall be showing examples
of this type of analysis in the following Chapters.

3.5 LOGARITHMIC IMPEDANCE AND ADMITTANCE
PLOTS

The availability of very wide ranges of frequency and of time
variables in dielectric measurements has long been accepted as
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necessitating the use of logarithmic representation, at least for the
abscissa of the various plots, even if the ordinates were still plotted
linearly, as is generally done in the literature. This was the only
meaningful way of representing the whole available ranges of data
on a single graph. In addition, we have stressed the value of
representing the ordinates in the logarithmic scales as well, for
reasons of clarity and conformity with the prevailing power-law
dependences of dielectric parameters on frequency. As an example,
we note that even the classical Debye response is much more
sensitively assessed when presented in the log—log scales, in which
the loss consists of two straight lines with slopes =1 and a transition
region, rather than a curve in the semi-logarithmic representation
which is difficult to appraise visually.

All these arguments become even more strongly applicable to the
representation of the complex admittance and impedance, both of
which may span as many decades of absolute values as there are
decades of frequency available. For instance, in the case of two
parallel circuits in series, as in Figure 3.13 g), the diameters of the
two circular arcs may be in the ratio of several powers of ten and
it becomes completely impracticable to represent them both mean-
ingfully on the same linear plot. For this reason, the Chelsea
Dielectrics Group have introduced the method of logarithmic plot-
ting of the complex Z and Y diagrams which offers significant
advantages in several respects. Since, however, the procedure is
unfamiliar to most people, it is advisable to dwell briefly on the
logarithmic representations of the simple circuits and to explain
some of the implications. Once the reader has become familiar with
this approach, other more compllcatcd problems will not represent
serious difficulties.

The most important contour occurring in Figure 3.13 is a circular
arc with its centre on the real axis and passing through the origin.
Denoting the real part by # and the imaginary part by y, we may
write the equation of an arc of diameter a
= 2ax+ =0
while the region near the origin may be expanded
»= (a0

which gives

log » = 3 log x + const (3.28)
We note also that the point (0, 0) has the logarithmic coordinates

(—oo, —oo)
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This means that the part of the circular arc next to the origin is
represented in the logarithmic plot by a straight line of slope %
extending to infinity downwards to the left. Now bearing in mind
the nature of the logarithmic scale, the part of the circle beyond
the peak becomes strongly compressed in the horizontal direction
and the point (2a, 0) recedes to minus infinity. The shape of the
circular arc in Jogarithmic coordinates is shown schematically in
Figure 3.14.

Y A
yoex 2 .
0 b 23
log y A
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EX
logx
logh lg2a

Figure 3.14 The linear representation of a circular arc passing through. the origin
and of a displaced arc, such as may correspond to an impedance or an admittance
diagram. The lower diagram gives the corresponding logarithmic representation,
showing the slope #in the first case and rapidly dropping characteristic wherever
the linear plot cuts the x-axis at a finite value.

However, if the circular arc does not pass through the origin, then
the shape of the logarithmic graph is changed as shown in Figure
3.14 with the left part of the arc becoming a vertical line at the
appropriate abscissa. It is evident, therefore, that two non-over-
lapping circular arcs, as in Figure 3.13g), will be represented by
a combination of the former two shapes. An actual example of this
type of response is found in Figure 3.15 showing the effect of the
amplitude of the applied signal on the dielectric response of a
sample which clearly has a barrier region in series with the bulk.
At low signal amplitudes the barrier impedance dominates the
behaviour and we se€ the ratio of the diameters of the barrier and
volume regions as almost 1000. Despite this very large ratio, the
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Figure 3.15 The logarithmic representation of the complex impedance plot facil-
itating the display of a large range of values of Z on one diagram. Data refer to
a sputtered film of STAG glass with Al electrodes. The series barrier impedance
“collapses” as the signal amplitude increases. RMS signal shown in volts, fre-
quencies in Hz. Inset shows the representation of a matching equivalent circuit
with the indicated parameters. From Jonscher and Frost (1976).

small volume response is perfectly resolved on the logarithmic scale,
although the linear representation would give this region larger
than the diameter of the dot. As the signal amplitude increases, so
the barrier becomes less important, because of its strongly non-
linear response, and the successive impedance plots show the dra-
matic collapse of the barrier impedance, while volume impedance
remains unchanged within experimental resolution.

It should be noted that with modern digital equipment, this type
of plotting of experimental data is made as easy as the linear
presentation.

If the circular arc is not straight but is inclined to the horizontal,
as in Figure 3.12, then the initial part of the arcis well approximated
by a straight line, so that the slope of the logarithmic plot becomes
+1 before it reaches the peak. -

Since

dlogy xdy
dlogx ydx
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it follows that the apex of the semicircle in linear coordinates
corresponds directly to the apex in the logarithmic presentation.
This may help to locate the point at which @ = 1/7.

3.6 THE RESPONSE OF A “UNIVERSAL” CAPACITOR

We now anticipate the results of our survey of experimental data
which will be presented in Chapter 5, by introducing the concept
of a power-law frequency response of dielectric relaxation found in
a very wide range of dielectric materials, at least in the frequency
range above any loss peaks that may be discernible. This can be
expressed by the relationship for the complex capacitance C,(w)
and the corresponding susceptibility:

x(@) = G,(w) = B(iw)"’
= B{sin(nm/2) — i cos(n7/2)}w*™?  (3.29)

in which the exponent n defines the frequency dependence. This
power law relation is unique in that the real and imaginary com-
ponents of the complex susceptibility are the same functions of frequency
and therefore remain in a constant frequency-independent ratio.
This implies that the power law of eqn (3.29) is the only function
remaining invariant under the Kramers—Kronig transformation,
except for a multiplicative constant. The condition for this is that
the exponent should fall in the range

0<n<l (3.30)

Eqn (3.29) neglects the contribution C. which should normally be
added to the real part of this expression in order to make it
correspond to the complete dielectric permittivity of the material
in question.

We shall find in Chapter 5 that the response of real materials covers
the entire range of the exponent n given by eqn (3.30), with the
values in the upper half of this range corresponding to typical Aigh
frequency behaviour, while values of n below $ may be observed
at Jow frequencies under certain conditions. In the present discussion
we are not concerned with the physical significance of the universal
relationship, our sole purpose is to describe the type of response
to be expected under a range of situations likely to be encountered
in experimental conditions, so that the reader may be prepared
when he finds them.
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One immediate consequence of eqn (3.29) is that the ratio
C" (w)
=" (w ) = cot(n 3.31
o) G =X @V (@) =cot(am)  (831)
is independent of frequency, in complete contrast with, for example,
the series R—C circuit response, eqn (3.16) which is the same as the
ideal Debye response and for which the ratio is given by wt.

This means that the plots of log )’ and log ¥ vs log @ are two
parallel straight lines with the appropriate logarithmic separation
corresponding to eqn (3.31), Figure 3.16.

JlogC Ec,,m! o< (iw)"!
.
C'l)
o e - Jtimrz
~
n>1/2

logw
Figure 3.16 Schematic representation of the frequency dependence of the real and
imaginary components of the capacitance of a “universal capacitor”, in the
double-logarithmic scales. Three cases are shown, with the exponent less than,
equal to and greater than half. The real part of the capacitance, less any value
of C that may be appropriate, is shown by the solid line, the imaginary part by
the chain-dotted line. Negligible dc conductance is assumed.

We note that if $ <n <1, the real part of susceptibility is higher
than the imaginary part, while if 0 <7 < } the converse is true. In
the special case of n = 1 the two components are equal and this is
the case already discussed in Section 3.3v) corresponding to a
distributed R—-C line and also corresponding to the diffusive bound-
ary condition to be discussed in Section 4.9. We also note that the
limiting case of n—> 1 gives frequency-independent dielectric loss and
real part, with the further implication of a vanishingly small loss. We
shall see later that this is a special condition which is found experi-
mentally in very low loss materials. Finally, the other limiting
condition, n—> 0 corresponds to both )'(w) and x' (w) falling with
frequency approximately as l{co in complete contrast with the
parallel dc conductance shown in Figure 3.13c), where the real
part is constant with frequency. This limiting condition will also
be found to correspond to a very well defined physical situation,
even though it has not until recently been recognised as such.
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It should be cleerly understood that the two limiting conditions for
the exponent n being equal to unity and zero, respectively, corre-
spond to mathematical singularities and are not physically admis-
sible, although they may be approached experimentally within the

margin of error.

The ac conductivity corresponding to the universal relation is given
by the power law, following eqn (3.20):

o(w) = aw"+ 0y (3.32)

where we have added the dc conductivity which may be present
in any given material. We shall see later that the " law is very
frequently observed in a wide range of materials, in keeping with
its “universal” character.

The sine and cosine Fourier transforms of the universal law are
(Erdelyi 1954):

F. (") = I'(n) cos(nm/2)t™

(3.33)
F, (1) = I'(n) sin(nmw/2)¢™"

which shows that the time-dependence of the relaxation current
after the sudden removal of a polarising field follows the power law
t™ which is widely observed in practice and is known as the
Curie—von Schweidler law (von Schweidler 1907) this should be
contrasted with the purely exponential law which is the Fourier
transform of the Debye law eqn (3.16).

Returning to eqn (3.29) we note that the complex susceptiblity plot
corresponding to the universal response represents a straight line
inclined at an angle (1 —n)a/2 to the horizontal, Figure 3.17, at
least in the high-frequency region in which this universal law is
applicable.

"

E

s +e, -~
o
,:1.-nl‘“n

&y €

]

Figure 3.17 A schematic representation of the high-frequeney end of the complex
permittivity (Cole-Cole) plot for a universal material behaviour, given by
A(iw)" ' + €. The dotted contour indicates the effect of the presence of a loss
peak at lower frequencies. -



90 DIELECTRIC RELAXATION IN SOLIDS 3.6

.

The complex admittance becomes, from eqn (3.15):
Y(O)) . .B(la))"l +iw C. + Gg (334,)
= G, + B{cos(nw/2) + isin(nm/2)} + iwC.

which is shown schematically in Figure 3.18 both in linear and in
logarithmic representations. The expression in { } represents a
straight line in the linear representation with an angle n71/2 to the
horizontal, while the contribution of the C. term becomes pro-
gressively more significant as the frequency increases. A dc con-
ductance G, is usually present, especially in the more conducting
materials such as ionic conductors.

14 jlog ¥

Y logY”

Figure 3.18 The complex admittance diagrams in linear and logarithmic coor-
dinates for a universal capacitor with a constant capacitance C» and a conductance
Go in parallel. The linear diagram corresponds to a straight line inclined at an
angle n7t/2 to the horizontal and shows a departure at high frequencies due to Ce.
The logarithmic diagram is a line at unit slope and at a distance corresponding
to the ratio tan(ns/2) from the line ¥’ = Y". In order to obtain a straight line it
is necessary to subtract Gp from the real part, otherwise the dotted contour is
obtained.

We now consider the complex impedance representation. The
inversion of the { } term in eqn (3.34) is a straight line with the
same slope, remembering that we are conventionally plotting the
complex conjugate of the impedance, i.e. we plot Z in the upper
half plane, instead of the lower. If we take the dc conductance into
consideration, but ignore the C. term, we find that the complex
impedance locus becomes a semicircle inclined to the horizontal at
the angle (1 — n)7/2 as shown in the Appendix. We may write:

Y= G, + B(iw)" = Gofl + (is)"} (3.35)
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where the variable s = w(B/ Gy)"". The complex impedance is there-
fore given by the semicircle shown in Figure 3.19. We shall see
many examples of this type of inclined circular impedance diagram
especially for ionic conductors.

7"

) g

Figure 3.19 The complex impedance diagram of the system shown as admittance
in Figure 3.18. To :he extent to which the admittance may be represented by a
straight line, the impedance diagram is a circular arc inclined to the real axis. An
example of this type of response is shown in Figure 5.36.

As an illustration of the various types of dielectric response, we
plot in Figure 3.20 the logarithmic impedance diagrams for a series
R—C circuit, a semicircular diagram corresponding to the parallel
G-C circuit and the universal response for the limiting cases of
Z"> Z' or very low loss capacitance and Z” < Z' or almost pure
conductance, with the intermediate diffusive case for which
Z"=2Z' The completely different character of the universal
response should be noted. We also include the inclined circular arc
diagram corresponding to the parallel combination of a universal
capacitor and a dc conductance.

Consider next the series combination of a universal capacitor,
represented by the expression

C. () = B (i)™

with an ordinary resistance R. This is the direct counterpart of the
“Debye element” of Figure 3.13 b). It is easily shown that the
effective complex capacitance of this combination is given by:

1/C* = (1/ B) @' "sin(nmw/2) + i[@R + (1/ B) &' ~"cos(n7/2) ]

Despite its apparent complexity, this expression gives simple results
in the limit of low and high frequencies, in relation to (RB) ™%, At
low frequencies we find that C* becomes equal to C,, in other
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R logZ'

Figure 3.20 A schematic representation in the logarithmic coordinates of the

“impedance plots for various combinations of resistive elements with ideal or
universal capacitances. The ideal components are denoted by the subscript “0”.
The dotted line Z' = Z" represents a reference — above it the loss component is
less than the capacitive component, while the reverse is true below this line. The
difference between the semicircle centred on the real axis and the inclined circular
arc should be noted. The values of the exponent n corresponding to the various
characteristics shown are indicated.

words the series resistance does not have any effect, as might have
been expected from elementary considerations. At high frequencies,
the expansion of the result gives the approximate relations:

_ sin(nr/2)
= BRo

which shows that the imaginary part goes as 1/, just as for the
ideal capacitor in series with the resistor, but the real part goes as
@~'""which becomes equivalent to the Debye combination Fig 3.13
b) when the exponent becomes equal to unity.

c* i/ (wR)

The complete frequency response is shown in Figure 3.21, where
the diagram a) gives the schematic presentation while diagram b)
gives the calculated response for a series of different values of the
exponent n. We note that as n approaches unity, in the limit of a
loss-less capacitor, the response approximates to that given in
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5

20 b -0 -5 0 ogw
Figure 3.21 The frequency response of circuits involving universal lossy capacitors
of the type C, = B(iw)"'. Diagram a) gives the response of a series combination
of G, with a resistor R, diagram b) gives a numbéer of calculated frequency
dependences for a range of values of the exponent 7. Diagram c) gives the response
of a series— parallel circuit shown, with two universal capacitors, one of which
corresponds to a series barrier region, while the other forms the equivalent of a
volume region with its parallel conductance G,. The values of parameters assumed
in the calculation are as follows: B,=1, G,=107%, n,=0.85, B,=1, n,=0.4.
At very low frequencies the volume behaviour is dominated by the conductance
and the response is that of a series combination of C; and G,, which is therefore
closely similar to that seen in Figure 3.21 a). At intermediate frequencies the
series resistance gives rise to a slope of —1 — n; for ' and a slope of —1 for C". At
still higher frequencies the volume capacitance becomes important against the -
volume conductance and the slope becomes that corresponding to the volume
parameter n,. Finally, at very high frequencies the more steeply falling barrier
capacitance becomes once again dominant against the less dispersive volume
capacitance. Thus the very low and very high frequency behaviour have a common
slope —1 + n;. While the values of frequency corresponding to the varicus regions
are purely arbitrary, the example illustrates the need to have a very wide frequency
range if the true behaviour of complicated equivalent circuits is to be properly
recognised.
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Figure 3.13 b). The individual diagrams are displaced vertically for
clarity and the position of the ordinate value 1, corresponding to
a loss-less capacitor value, is indicated on each diagram.

Diagram c) represents the behaviour of a series combination of one
universal capacitor with a value of exponent 7,, which might cor-
respond to a barrier region, and a parallel combination of another
universal capacitor with exponent n, and with a parallel conductance
G,, representing the volume region of a sample, corresponding to
a generalisation of the circuit of Figure 3.13f). We note that at
frequencies @ < @, =(G,/B;)"™ the response is dominated by the
barrier capacitance Cj; in the interval @, < 0 < w, = (G,/B,)™ the
series resistance 1/G, with (; dominates; in the interval
w, < 0 < w3 =(B;/B,)"™ ™ the volume capacitance predomi-
nates, while at high frequencies @3> w; the barrier capacitance
becomes smaller than the volume capacitance and therefore again
dominates the response. The series resistance interval is completely
analogous to that shown in Figure 3.21 a).

The complementary combination with a series resistance, corre-
sponding to Figure 3.13e) is shown in Figure 3.22 which also shows
the corresponding logarithmic impedance plot. Two cases are shown
— corresponding to a finite volume conductance and to zero volume
conductance for direct current. The volume capacitor is, of course
lossy, and there is always-a finite alternating current conductivity.

It is relevant to point out at this stage the difference in behaviour
between the series connection of a dispersive capacitance, as in
Figure 3.21 ¢), and the presence of a parallel dispersive mechanism
within the same bulk material which may be characterised by its
own parallel conductance and high-frequency capacitance. This is
especially important in those situations where the capacitance in
question is strongly dispersive, with the exponent n close to zero,
and therefore has rapidly rising ¢’ and C" towards low frequencies.
Specific examples of this type of behaviour will be found in Section
5.6.

It is clear from an inspection of Figure 3.21 that the presence of
a series dispersive capacitor with a more weakly dispersive bulk
results in the appearance of a bulge in the plot of C'(w) which
departs significantly from parallellism with C"(w) with its slope
close to —1 and only becomes parallel at lower frequencies. By
contrast, the presence of a parallel bulk dispersive mechanism
manifests itself by a completely parallel run of ¢’ (w) and C"(w),
as seen for example in Figure 5.45. A good contrast between the
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two types of behaviour is found in Figure 5.43 where the humid
sand shows a typical parallel behaviour, while sand soaked in water
shows series behaviour.

{ (G =107°) \
- 04 ok o-12 \\
-10- | ‘
- 2
_‘2 -
1 JEX: log 22
0 2 4 6 8 logw
'_%0 _S 6 T T T ‘é T

Figure 3.22 The response of a circuit consisting of a series resistance R,, corre-
sponding to some external or other resistance, and a ‘“‘volume” capacitance
C, =B, (iw)' ™™, with a parallel conductance G,. The main plot gives the frequency
dependence of the capacitances C’' (w) and C"(w) for the circuit, the inset shows
the log-log plot of the complex impedance. The figures on the impedance plot
give values of the logarithms of the frequency @ for the particular choice of
parameters B, = 1, R, = 10, G, =0 and 1075, n, = 0.8. The slopes of the various
components of the plots give the power laws of the frequency dependence. The
complex impedance plot shows that the ratio Z"/Z’ is greater than unity, cor-
responding to the assumed value of 7, > %.
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3.7 REPRESENTATION IN THE COMPLEX
PERMITTIVITY PLANE

We have already mentioned the complex capacitance plot in con-
junction with Figure 3.8 for a series combination of an ideal capac-
itor and a resistor which, as we shall see later, correspond to the
classical Debye type of response. The corresponding complex per-
mittivity plot, differing from the complex capacitance by a geo-
metrical factor, has been widely used since its introduction by R
H and K S Cole (1941) and is known under the name of Cole—Cole
representation. The complete equivalent circuit corresponding to
a physically realistic dielectric of Debye characteristics would con-
tain a further ideal parallel capacitor C. to represent the free-space
capacitance or the value of permittivity at sufficiently high fre-
quencies where the losses are negligible. This is shown in Figure
3.23 and we note that by shifting the origin of the complex plane
to the point &, we are able to express the complex susceptibility
x* by the same diagram.

In those cases where the material in question behaves in a manner
resembling closely the Debye behaviour, the complex permittivity
plot approximates a semicircle and this gives a relatively rapid
means of characterising the response, which is given by the complex
relation:

g(0) — €.

&) = g, + -
(@) 1 +iwt

(8.36)
where £(0) is the static permittivity and €. the permittivity at
“infinitely high” frequencies, the latter being due to all processes
with much higher response rates than the mechanism under con-
sideration at the moment. 7 is the relaxation time of the Debye
process.

From the presentation of the experimental data in Chapter 5 it will
be evident, however, that the behaviour of most dielectric materials
departs in varying degrees from the Debye response and it became
necessary to modify the empirical expression representing the
Cole—Cole plot. One such modification was proposed by Cole and
Cole (1941) and it is given by

1 .
1 + (lw7) '~

where the parameter a denotes the angle of tilt of the circular arc
from the real axis, —eqn (3.37) denotes the mathematical operation

E(W) — €x < (3.37)
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Figure 3.23 The frequency dependence of the real and imaginary components of
the susceptibility x of an ideal Debye system corresponding to eqn (3.36). The
loss peak is symmetric in the log @ representation and has a characteristic width
at half-height Ap = 1,144 decades. The lower diagram shows the corresponding
complex ) diagram, as well as the change of coordinates to convertit to the complex

permittivity £diagram.

of tilting the complex plane graph by am/2. It is clear therefore,
that this parameter has no physical significance whatever, it is a
purely empirical factor to describe the appearance of the experi-
mentally obtained Cole-Cole plot.

While the Cole-Cole expression correctly maps sinall departures
from the ideal Debye response, it is not adequate to represent more
severe forms of non-Debye béhaviour and this has led Davidson
and Cole (1951) to propose the following modification:

1

W (3.38)

s(éo) — £, o<

which gives a pear-shaped form of diagram which has an angle of
tilt of the tangent to the plot given by (1 — B)7/2, Figure 3.25. This
formula corresponds reasonably well to a number of actually
observed dielectric responses. Once again, the parameter 8 has no
direct physical significance.
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Figure 3.24 The frequency dependence of the real and imaginary components of
the susceptibility y corresponding to the Cole-Cole expression (3.37), with the
lower diagram showing the complex plane representation. Note the parallelism
of the real and imaginary parts at frequencies above the peak, implying a constant
ratio %" (w)/x' (w). The loss peak is symmetric but is broader than the Debye
peak.

There are many examples of dielectric behaviour which cannot be
mapped by either of these last two expressions, both of which
contain only one adjustable parameter to describe the shape of the
complex plot. For this reason, a further generalisation has been
introduced by Havriliak and Negami (1966), consisting in a com-
bination of both Cole—Cole and Cole-Davidson expressions:

1
&(w) — &a {1 + (iwt)' o}k

(3.39)

This two-parameter formula is capable of fitting many of the
observed results, but its enthanced flexibility cannot be usefully
exploited by the complex plane plot as such, since this is in itself
an inherently insensitive way of presenting dielectric information,
especially in regions of the frequency spectrum away from the loss
peak itself. Moreover, the very fact that this plot represents the
dielectric information in a form in which the frequency is an implicit
variable, restricts the usefulness of the procedure as a complete
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Figure 3.25 The frequency dependence of the real and imaginary components of
the susceptibility corresponding to the Cole-Davidson expression (3.38), with the
calculated complex plane representation in the lower diagram with 8= 0.6. The
loss peak is asymmetric, its low-frequency branch is proportional to @. The slope
of the high-frequency branch depends on 8 and the relation " (w)/ ' (w) = const
applies. The figures refer to the values of the dimensionless frequency parameter
x= 0T

means of characterising the data. Far more important, from our
point of view, is the frequency—domain representation and it is
worth noting here that the original Cole-Cole expression (3.37)
corresponds to a broadened but symmetric loss peak in the log-
frequency representation, since we may write the following approx-
imate relations:

Ay (@) =x(0) ~ (@) o<sin(am/2) (wr)'

X' (@) < cos(awm/2) (wT)*~*
X (@) =tan(am/2) )" (@) < (wT) *! for wr>1 (3.41)

The first equation (3.40) defines the dielectric decrement Ay' (o),
which is always proportional to the dielectric loss in all fractional
power laws. The Havriliak-Negami expression gives the respective
limiting behaviours:

X' (@) o1 — (1 —B)sin(am/2)(w7) '~

X' (@) = (1 — B) cos(aw/2)(wT) '~

for wr<1 (3.40)

wr<l (3.42)



DIELECTRIC RELAXATION IN SOLIDS

100

TABLES3.1

The summary of various spectral functions and their power-law exponents* (from Hill and Jonscher (1983) ).

exponent for @ < @, exponent for w & w,
Process Susceptibility function Ay (w) %" (o) %' (w) 1 ()
One parameter
Debye (1 + i/ o)™ 2.0 1.0 -2.0 -1.0
Cole—Cole (1941) (1 +{io/wp}t=*)™ 11— 11— a—1 a—1
Fuoss=Kirkwood (1941)1 2(w/ @p)7(1 + {w/ w,}) ! % ¥ —y -y
Davidson-Cole (1951) (1 + iw/w,)~* 2.0 1.0 -B -B
S L(As) |exp(~iAn/2)[
Williams—Watts (1970) =1(s—1)! oty 2.0 1.0 —-A —-A
Two parameter .
Havriliak-Negami (1966) {1 + (iw/wy)t=2}P 11—« 11—« —B(1 — @) -B(1 — a)
Jonscher (1975) {(of @)™ + (0 w)' ="} m m n—1 n—1
Hill (1978) @™ (@ 4 @)~ (mtl=n/2 m m n—1 n—1
Dissado-Hill (1979) (1 + io/w,)*"
X —n 1l —m 2=
MBT ml-m2=a Ev m m n=1 n=1

* All the spectral parameters @, §, A, ¥, m and n are fractional and positive.
1 The Fuoss—Kirkwood relationship gives only the imaginary component.
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and

X' (0) = tan(n7/2)x" () = (07)"
where wr>1 (3.43)
n=a+ f— of

This shows two different logarithmic slopes at low and high fre-
quencies. The Cole-Davidson expression corresponds to =0 in
these formulae, which means that the low-frequency slope is unity
and the high-frcquency slope is f— 1. The Cole-Cole formula
corresponds to = 0.

We have mentioned already the principal limitations of the complex
plane representation as the loss of explicit frequency information
and the loss of accuracy in the assessment of the response at longer
distances from the loss peak frequency. The most important limi-
tation, however, is the absence of any particular physical model
which is capable of explaining the postulated forms of dependence,
so that the exercise of fitting the various parameters amounts to
purely formal “fingerprinting” of the response and cannot lead to
an elucidation of the underlying physical reality since the par-
ameters « and f are not based on the physics of dielectric
interactions.

Several other empirical expressions have been proposed to represent
the dielectric relaxation function, either in its entirety or the ima-
ginary component only. Among these may be mentioned the
Fuoss—Kirkwood (1941), Williams—Watts (1970), Jonscher (1975)
which is given by eqn (5.3), and Hill (1978). We shall see later in
Chapter 5 that only those having two parameters, & and f3, m and
' n in the exponents can represent the majority of experimentally
determined relaxation functions.

Table 8.1 gives a summary of these various functions and the
exponents in the corresponding power law relations for Ay’ (w) and
X' () in the limits of the “high” and “low” frequency approxi-
mations. The Table also gives the analytical expression derived by
Dissado and Hill (1979) from their many-body model of dielectric
relaxation, which is discussed in Chapter 8.

3.8 REPRESENTATION OF THE TEMPERATURE
DEPENDENCE

The dielectric permittivity is a complex function of at least two
variables — frequency and temperature, although pressure may be



102 DIELECTRIC RELAXATION IN SOLIDS 3.8

Figure 3.26 A schematic diagram of the three-dimensional relation €' (@, 1/T) for
the limiting case of an ideal Debye response (a) and for the temperature—dependent
but frequency—independent “non-Debye’ response — diagram b). The measure-
ment of the temperature dependence at a constant frequency would give very
sitnilar results in both cases, from which it could be inferred tnistakenly that the
material is Debye-like in each case. From Jonscher (1978).
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another physical variable. A complete representation should there-
fore comprise two “three-dimensional” plots of x'(w,7") and
X' (@, T) but these are cumbersome and are therefore seldom
employed, although modern computer graphics enable one to plot
third-angle projections in two dimensions.

The prevailing method of representation consists therefore in plot-
ting the frequency dependence with temperature as parameter or
vice versa. In the special case of an ideal Debye response charac-
terised by an exponentially temperature dependent relaxation time
“the eqn (3.16) may be written in the form:

1
(@) < T rmm exp(WI T

(3.44)

where 7. is a suitable pre-exponential factor and W is the activation
energy. From this expression it is clear that the susceptibility is the
same function of frequency as it is of the exponential of W/kT, or
in another representation,. the same function of log.w as of W/kT.
It makes no difference, therefore, whether one is plotting the fre-
quency response or the temperature response in the appropriate
coordinates, one obtains an identical loss peak which moves to
higher temperatures with increasing frequency, or conversely, to
higher frequencies with Increasing temperature. This is shown in
the schematic representation of Figure 3.26.

The problem becomes rather more serious if the response is not of
the Debye type, since there is then no a priori way of relating the
temperature dependence to the frequency dependence in any
unambiguous manner and in these circumstances it is far more
meaningful to plot the frequency dependence with temperature as a par-
ameter, than the other way round.

It is found quite generally that the frequency dependence does not
change very drastically with temperature, at least over temperature
ranges over which the material does not alter its structure in any
significant way. This means that it is often possible to normalise the
data for different temperatures by shifting the frequency spectra
laterally into coincidence obtaining sometimes a single “rhaster
curve’ which gives a complete description of the behaviour when
accompanied by the locus of the translation point (Hill and Dissado
1982).

The technique consists in taking a family of loss spectra in log-log
representation, with temperature as parameter, Figure 3.27 a), and
placing a tracing paper over it. An arbitrary point “A” is marked
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a) Dielectric loss peaks for polyethylene terephthalate (5% crystalline) in the
lower temperature region (after Ishida et al 1962).

b) The normalised loss curve obtained by lateral displacement of the loss curves
in diagram a). The dotted line represents the locus of the marker point ‘A’ in -
diagram a). The theoretical shape of a pure Debye loss peak is also indicated.
From Jonscher (1975).

on the original sheet, although it may be advantageous to record
its coordinates of frequency and loss amplitude for future reference.
The log fand log x" axes are then marked on the tracing paper and
the corresponding scales are traced. Taking the set of data corre-
sponding, say, to the highest temperature, the experimental points
are traced on the tracing paper, together with the position of the
reference point ‘““A”. The tracing sheet is next translated laterally
and vertically, parallel to itself, until the data for the next temperature
run overlap as closely as possible with the first set of data, they are
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then recorded on the tracing sheet and the new position of the
reference point is marked. This procedure is repeated as many
times as there are temperature runs, until a complete master curve
is obtained. When the spectral shape of the loss characteristic does
not change significantly with changing temperature, the master
curve is uniquely determined. Its spectral range is larger than the
measurement range by the amount of the shift of the reference point
along the frequency axis, so that the resulting curve contains much
more information than any single temperature run. Moreover, the
density of data points on the master curve is significantly higher
than on the original temperature runs, thus increasing the reliability
of the information contained in the master curve, as may be seen
in Figure 3.27 b).

The locus of the reference point “A” gives information about the
frequency dependence — the horizontal translation — and the ampli-
tude dependence— the vertical translation, of the loss spectra, while
the knowledge of the scaling of the axes provide complete infor-
mation about the absolute values of the loss spectra for any tem-
perature. The information provided in a master curve and in the
reference point locus enables, therefore, the complete reconstruction
of the original data.

Very many sets of experimental data may be satisfactorily nor-
malised into reasonably single-valued master curves, thereby prov-
ing that the spectral shape of the loss characteristics remains invariant
with temperature. This property implies that the complete
frequency- and temperature-dependence of loss may be represented

by the product
X' (0, T) = x(0)F[w/w,(T)] (3.45)

where x(0) denates the temperature-dependent amplitude factor and
Flw/w,(T)] is the spectral shape function of the normalised frequency
w/w,, where w,(T) is the temperature-dependent loss peak fre-
quency which is usually strongly temperature dependent and may
show the characteristic activated or Arrhenius behaviour implied
by eqn (3.44):

@,(T) = voexp(—W/ET) (3.46)

with an energy of activation . By plotting the lateral translation
of the reference point, which is already on a logarithmic scale,
against 1/7 it is possible to determine whether this simple behav-
iour is, in fact, obeyed or whether a more complicated temperature
dependence prevails, and there are many instances of this situation,
as will be seen in Chapter 5.
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It is common to find the normalisation procedure carried out in
semi-Jogarithmic representation, in which case it is not generally
possible to obtain more than a reasonable coincidence of the
immediate neighbourhood of the loss peak itself, since the shape
of the curved contours of loss does not admit of satisfactory nor-
malisation of the “wings” of the peak. One is therefore in a position
to determine the activation energy of the loss peak frequency and
also the amplitude dependence on temperature, but little can be
said about the spectral shape F(w/w,).

We conclude, therefore, that the normalisation in the log—log rep-
resentation, leading to the derivation of the product rule, eqn (3.45),
corresponds to the natural behaviour of dielectric systems and this
procedure is strongly recommended.

We have concentrated so far on the loss component, x” (), of the
complete dielectric response since this shows more pronounced
features than the corresponding real part of the susceptibility,

"(w), being odd and even functions of frequency, respectively. It
is clear, however, that the real part contains in principle the same
information as the imaginary part and parallel normalisation of the
real data may considerably strengthen the process of data pres-
entation and interpretation, especially if there are complicating
features in the acquisition of such data. It may happen, for instance,
that the dielectric behaviour is overshadowed by a strong direct
current conduction which masks the loss behaviour by the G/ ®
term. In this situation the processing of the real part is the only
way forward towards a sensible interpretation of data. Examples
of this will be seen in Chapter 5.

It is important to note that the real part of susceptibility must be
obtained from the measured permittivity — or capacitance — data,
by subtracting a suitable value of €. or C. and this requires some
judgement. If, as is often the case, the loss characteristic follows
a well defined power law, then it is a simple matter.to determine
the Kra.mcrs~Kromg—compat1ble position of the real part at the
highest frequency in any one loss curve. It is then possible to
determine the value of €. required to bring this point to its proper
position, and to use this value in subtracting from all other &' (@)
points at lower frequencies for the same temperature run. The reason
for restricting this operation to one temperature is that the value
of €. may be temperature dependent. One repeats this operation
for the other temperatures, in each case aiming to place the cor-
responding highest-frequency point in the Kramers—Kronig-com-
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patible position with respect to the loss curve. Having obtained the
set of €. values for the various temperatures it is then possible to
normalise the resulting x' (@) curves, using the same displacement of
the reference point as for the loss normalisation.

Justas €. may obscure the behaviour of the real part of susceptibility
so the presence of a dc conductivity may mask the low-frequency
behaviour of dielectric loss. The term 0,/ @ is usually unmistakable
and it may be relatively simple to subtract the corresponding values
from the measured loss, in order to obtain a “true” loss response.
However, there are sometimes problems in determining exactly
what value to subtract, since the resulting shape of the rising part
of the loss peak is very sensitive to that. By subtracting too low a
value of 0y/ @ one obtains a very shallow loss peak which may turn
up again towards low frequencies, by subtracting too high value
one obtains a steeper peak which may become negative. The evalu-
ation of the dielectric decrement Ay’ (w) may help here by defining
the slope of the rising part of the loss curve.

One may attempt to normalise the loss data even without sub-
tracting the dc conductivity where this is present, but it should be
clearly understood that the lateral shift of the characteristic with
the —1 slope does not correspond to any physical change of fre-
quency, since no such frequency shift can arise from the temperature
dependence of 0, (7). It is fortuitous that with the slope of —1 in
log—log representation, the lateral shift is exactly the same as the
corresponding vertical shift, which should have been effected. The
activation energy determined from the lateral shift does correspond,
therefore, to the proper activation energy of the dc conductivity.

The use of the real part of the susceptibility in the processing of
experimental data becomes particularly important in cases where
the loss appears to show a —1 slope that might be interpreted as
dc conductivity, but the real part likewise shows signs of rising
steeply towards low frequencies. This is the case of strong low-
frequency disperison, which will be described in detail in Section
5.6 and which should be clearly distinguished from the genuine dc
conduction, for which the real part does not show any dispersion.

If more than one loss process is in evidence in a given set of
experimental data, normalisation procedures may still be appli-
cable, especially if the range of temperatures and frequencies avail-
able is sufficiently large, but one should clearly bear in mind the
fact that two separate processes are likely to have different values
of the corresponding activation energies or, more generally, have
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different temperature dependence if they are not simply activated.
In this case, the separate parts, e.g. two loss peaks, or a loss peak
and a dc process, will “move” at different rates in the lateral
direction with varying temperature, so that normalisation is only
possible over restricted frequency ranges corresponding to the dom-
inance of one of these processes at a time. The resulting normal-
isation curve becomes therefore diffuse in the regions corresponding
to transitions from one process to the other and it is impossible to
be very precise in determining the exact frequency shape in these
situations. Examples of this will be seen in Chapter 5.

In cases where the shape function itself changes either continuously
or discontinuously with temperature, normalisation can at best
determine the variation of the loss peak frequency and amplitude
with temperature, no other conclusions can be drawn. The physical
significance of this type of behaviour will be discussed in Chapter
8.

Properly used, the normalisation technique represents one of the
most powerful analytical tools at the disposal of the students of
dielectric behaviour. It can greatly strengthen the reliability of
experimental data and may extend very significantly the range of
frequencies available for interpretation of data. It should also be
mentioned that the same normalisation procedures may be used
in cases where the external variable is not temperature but, for
example, pressure, humidity, composition or other variable which
affects the rate processes in the system under study. Examples of
this will be shown in Chapter 5.

The evaluation of activation energies is facilitated by the use of the
expression for W in terms of the change A(10°/T") per one decade
of the frequency shift:

W=0.198/A(10°/T) eV (3.47)

if, as is customary, the reciprocal temperature scale is expressed
in terms of 10%/TK™.

Temperature is not the only external variable which influences the
relaxation spectra in the manner described above. Exactly similar
effects may be seen with pressure, the increase of which slows down
the rate processes, without affecting the shape of the spectra. An
example of this is shown in Figure 3.28 and relates to data obtained
by Williams et al (1972) on a blended copolymer Acrilonitrile-
Butadiene. T'wo sets of measurements were carried out at different
temperatures, each at four different pressures. All data normalise
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very satisfactorily into a single master set of curves for the real and
the imaginary components of the susceptibility which form a
Kramers—Kronig-compatible set. These data show, in particular,
that the shape of the response remains invariant under the effects
of both temperature and pressure, and that the effects of rising
pressure may be nullified, as far as the loss peak frequency is
concerned, by an increase of temperature.
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Figure 3.28 Normalised susceptibility plots for 40% Acrilonitrile-Butadiene poly-
mer from data by Williams et al (1972), taken at two temperatures of 266.2 and
290.1 K, each over arange of pressures. The normalisation shows that temperature
and pressure have exactly equivalent effects, the influence of an increased pressure
may be cancelled by a rise in temperature. In all cases the shape of the loss and
real part of susceptibility remains invariant. Plotting of data and normalisation
by R M Hill from the original measurements.

Another external variable which may influence the response of
certain dielectric systems is humidity, the effects of which are
illustrated, together with a normalisation procedure, in Figure 5.43.

The application of normalisation procedures to the alternating
current conductivity in the frequency domain is illustrated in Figure
5.41, while the complementary process of normalising time—domain
data on relaxation current is shown in examples in Chapter 6. A
special case of non-linear voltage dependence of current is shown
in Figure 6.13, where the normalisation results in the derivation
of a single master curve. In this particular instance the variables
are the time for the “kink” and the amplitude of the current.
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Figure 3.29 A computer graphic representation of the dependence on frequency
and on temperature of dielectric loss in a tantalum foil electrolytic capacitor. From
Meca (1981).

A powerful and visually very effective way of presenting experi-
mental information on dielectric loss and polarisation consists in
three-dimensional computer graphics in third angle projection,
which can be generated automatically from numerical input data
with frequency and, say, temperature, as variables. An example of
this method of presentation is shown in Figure 3.29 which refers
to loss in a tantalum foil capacitor. This method enables a rapid
appraisal of a complex situation to be made more easily than can
usually be done with a family of two-dimensional curves.
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APPENDIX 3.1

TIME DOMAIN, ROTATING VECTORS AND
FREQUENCY DOMAIN

We should always remember that

Mother Nature works with real
quantities in the time domain

It may be convenient mathematically to define complex quantities
such as the dielectric susceptibility and to speak of rotating vectors
in the complex plane, but these are only mental images of real
physical processes proceeding in real time. It is therefore instructive
to work through the time domain formulation and arrive at the
frequency domain formalism in order to better appreciate the sig-
nificance of the various steps involved.

Let the applied field be given by the harmonic relation:
E = E;cos wt (1)

- where E; denotes the magnitude of the field at its peak. Taking
eqn (2.26) and adding the free space contribution which is always
exactly in phase with the applied field, we get:

D(t) = gL () + P(t)
= &‘OE,,[COS wt + jmf(t) cos @(t — 's)dr]
0
Expanding the cosine terms and using the definitions (2.38), (2.39)
and (2.48), we get:
D (t) = [&' (w) cos wt + &' (w) sin wt] E, (2)

which is a purely real quantity, as it should be because it denotes
a physical entity in real time. The corresponding current density
is obtained from eqn (2.44) in the form:

I(t) ={[0y + we" (w)] cos wt — we' (q)) sin wt}E, (3)

Note that sin w? lags behind cos w¢ by an angle 7/2, —sin wt leads.
Hence D (t) has a component lagging behind E (¢), the current leads
E(t).
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- We now note with reference to Figure 3.30:
cos wt = R e
—sin wt = R ie™*

where R denotes “the real part of”.

elw!

wt
-sinwto cos wf 1

Figure 3.30

We may therefore write in our convention:

I(t) = R[0p + we" (w) +iwe' (w)] e Eq

A3l

(4)

The quantity in the square braces is complex and we may define

a complex quantity:

Iy = [0y + w€' (w) + iwe' (0)] Eq

()

where E; is a purely real quantity. The ratio 1,/ E, is shown in
Figure 3.31. This corresponds exactly to the notation in eqn (2.46)
which referred to the components of a Fourier spectrum. The angle
¢ denotes the angle by which the phase of the current leads that

of the applied field.

1/

{*)

iwe fw)

we'lw)

Figure 3.31

The current density may therefore be represented by the symbolic

- expression:

I(It) =R [, e"]

(6)
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The widely accepted rotating vector or “phasor’ notation represents
real time-dependent quantities as real parts of vectors in the complex
plane rotating with an angular speed w (radians per second).

The vector in the bracket of (6) is shown in Figure 3.32. By dropping
the R symbol and the term exp(iwt) we find that we may regard
eqn (5) as expressing the current-field dependence in the phasor
notation.

1)
Figure 5.32

In this notation the time-dependence is implicit in the equations
but the term exp(iwt) has been dropped. This amounts to fixing
the rotating vector diagram in space, eqn (5), and the corresponding
diagram gives all the necessary information. The current is referred
to the phase of the driving field.

In the frequency domain we are concentrating attention on the
square bracket in (5), since the frequency dependent parameters
- €' (w) and €' (w) are uniquely related to the real-time dependence
of the dielectric system under step-function excitation, f(f).
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APPENDIX 3.2

INVERSION IN THE COMPLEX PLANE

Consider the locus of the complex number:

»=1+ (i5)" = 5] exp(ig)
represented by a straight line 4 inclined at an angle &= n /2 and

passing through the point 1 on the real axis, Figure 3.33. Drawing
a circle centred on the normal to the line 4 and passing through

imaginary

Figure 5.53

the coordinates 0 and 1 on the real axis, the point of intersection
of the line y with the arc of the circle defines a vector z whose
magnitude is given by the similarity of triangles as:

|z =1/]yl

Since z has the same angle as y, it follows that z is the complex
conjugate of the reciprocal of y. In our convention, we are plotting
in any case the complex conjugate, since it is more convenient to
plot impedances in the upper half plane.



PRESENTATION OF DIELECTRIC FUNCTIONS 115

REFERENCES TO CHAPTER 3

Carslaw H S and Jaeger ] C 1959, Conduction of Heat in Solids, Clarendon Press,
Oxford

Cole K S and Cole R H 1941, J. Chem. Phys. 9, 341

Davidson D W and Cole R H 1951, J. Chem. Phys. 19, 1484

Dissado L A and Hill R M 1979, Nature Lond. 279, 685

Erdelyi A 1954, Tables of Integral Transforms Vol. II, McGraw-Hill, New York

Fuoss R M and Kirkwood J G 1941, J. Amer. Chem. Soc. 63, 385

Havriliak S and Negami S 1966, J. Polymer Sci, Pt C, 14, 99

Hill R M 1978, Nature Lond 275, 96

—— 1981, J. Mat. Sci. 16, 118

Hill R M and Dissado L A 1982, J. Phys. C: Solid State Physics 15, 5171

Hill R M and Jonscher A K 1983, Contemporary Physics 24, 75

Ishida Y, Matsuo M and Yamafuji K 1962, Kolloid Z. u. Z. . Polymere 180, 108

Jonscher A K 1975, Colloid Polymer Sci. 253, 231

1978, Thin Solid Films 50, 187

Jonscher A K and Frost M S 1976, Thin Solid Films 37, 267

Meca F 1981, PhD Thesis (University of London)

von Schweidler E 1907, Ann. d. Physik (Leipzig), Series 4, 24, 711

Williams G and Watts D C 1970, Trans. Far. Soc. 66, 80

Williams G, Watts D C and Nottin J P 1972, J. Chem. Soc. Far. Trans. II
68, 16




CHAPTER 4

The Dynamic Response of Idealised Physical
Models

4.1 INTRODUCTION

It will be instructive to present now the mathematical treatment
of the frequency response of some simple physical models of
dielectric polarisation — partly as an illustration of the method of
treatinent and as an exposition of the physical significance of specific
features of the dielectric functions. We begin with the treatment of
the harmonic oscillator and we show the adaptations of the basic
model to cover various physical situations, including the case of
free charge carriers, and we follow this with a treatment of the
floating dipoles — the original Debye model — and of hopping charge
carriers such as ions or localised electrons in solids. We also include
an analysis of certain semiconductor phenomena which are directly
relevant to dielectric processes, namely Schottky barriers, p—n junc-
tions and generation-recombination processes. We conclude with
a discussion of the diffusive model which represents a departure
from the one-particle models considered hitherto and may be
regarded as a simple example of many-particle cooperative systems.

4.9 THE HARMONIC OSCILLATOR

The simplest model of a harmonic oscillator is given by a charge
—e¢ with a mass m bound elastically to an equilibrium position with
a force constant A and subjected to damping constant ms. This
mechanical model represents rather well the situation in a free
atom, where the outer electron shell is readily displaced with respect
to the positively charged centre consisting of the atomic nucleus
proper with the relatively strongly bound inner shell ‘electrons.
Denoting by » the displacement from the central equilibrium pos-
ition and postulating a harmonic electric field of amplitude E and
frequency @ we may write the equation of motion:

my" + msy' + Ay = —e E exp(iwt) (4.1)
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where the primes denote differentiation with respect to time. We
may solve this equation for the displacement by standard methods
and noting that the polarisation of N identical non-interacting
oscillators is given by P = —eNy, so that dividing by the amplitude
E of the field we obtain the following expressions for the real and
imaginary components of the complex dielectric susceptibility

Q2 — o? 1—
! i 2 = B2
2@ = Y o et et D (I= A+ B (+2)
() = OF W g B
2@ = & et it D (=2t R

where

(4.3)

x=w/Q k=s/Q :
~and (4.4)
Q, = (AN/ egm) ™

is known in a different context as the plasma frequency, i.e. it is the
natural frequency of oscillation in a free gas plasma, while

Q= (A/m)™ (4.5)

is the natural frequency of oscillation of the harmonic oscillator in
the absence of damping. A brief discussion of the plasma oscillations
is given in Appendix 4.2.

Figure 4.1 shows the plots of x'(®) and of x" (w) for three values
of the damping constant £ = s/Q.

The general shape of these graphs confirms the even and odd
character of the real and imaginary components, respectively. The
real part shows an initial rise with frequency, before reaching a peak
and going: through zero to negative values at frequencies in excess of
the natural frequency €2. The physical significance of this behaviour
is that for w> Q the displacement is in antiphase with the driving
field, due to the effect of the inertia of the oscillator. The region of
strongest dispersion is necessarily accompanied by a peak in the
imaginary component — a very general type of behaviour resulting
directly from the Kramers—Kronig relations. The initial rise in
%' (w) is referred to as anomalous dispersion, since it corresponds to
. a trend that is exactly opposite to that found in all other systems
in which inertia is not the dominant influence, i.e. in which relaxation
rather than resonance is the basis of the behaviour.
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Figure 4.1 The graphical representation of the real and imaginary components
of the complex susceptibility given by eqns (4.2) and (4.3), respectively, for three
values of the damping coefficient £, plotted against the logarithm of the normalised
frequency ». The ordinate scale is quasi-logarithmic, it is expressed as sinh™!y
which becomes logarithmic for large values of the argument but is linear for small
values, changing sign in the normal way and is therefore preferred to the simple
logarithmic representation.

The effect of the damping constant is clearly seen— for k = 10 there is no anomalous *
dispersion and no negative undershoot of the real part at high frequencies. The
maximum value of loss is given by B/k. As with all resonance phenomena, the
width of the loss peak increases with the increase of damping.

Instead of solving the equation of motion (4.1) with a harmonic
driving force, we may apply a delta-function transient, in which
case the time—dependent solution is found to be:

S(t) = (w;/ @) exp(—st/2) sin(t) (4.6)
where
o= (A/m) — s*/4 (4.7)

We note that this is, in fact, the dielectric response function, being
the response of the displacement, i.e. polarisation to a delta-function
excitation. Figure 4.2 shows the functional form of this response,
which is a damped harmonic oscillation, as might be expected from
the nature of the problem.
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Figure 4.2 The time—domain response of a damped harmonic oscillator under
delta-function excilation, given by eqn (4.6), together with the corresponding
equivalent circuit.

It may be easily checked that the time— and frequency—domain
responses calculated in this manner do, in fact, represent Fourier
transforms of one another, while the real and imaginary components
are a Hilbert pair.

One characteristic feature of the function f(#) may be mentioned
here. The initial rise is linear with ¢ and this means that the
behaviour is dominated by inertial effects — only later on do the
restoring forces and the damping process come into action.

It is worth pointing out that the response of the damped harmonic
oscillator is exactly analogous to that of a series circuit containing
capacitance, conductance and resistance, as shown in the inset of
Figure 4.2. Denoting the charge on the condenser by ¢, we may
write down the equation of the time dependence of charge:

L'+ Rq' + Cg=V(t) (4.8)

where V(¢) is the driving voltage. We note by comparison with
eqn (4.1) that the electromechanical analogues are

mass —inductance

damping — resistance or conductance
restoring force — capacitance
mechanical displacement — charge

More detailed discussion of the application of these models to the
properties of solids may be found, for example, in Ward (1971).

Excellent examples of these resonances are found in solids. An
analysis of the dynamics of a perfect lattice of atoms of ions held
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together by elastic forces shows that the motions of individual atoms
or ions can be resolved into simple harmonic component oscillations,
with damping arising from thermal effects (Elliott and Gibson 1974,
Smith 1978, Kittel 1964).

Particularly important from our point of view in the present context
are those vibrations in which the neighbouring atoms or ions in a
unit cell move in antiphase with respect to one another. These optic
modes of vibration have a fairly well defined frequency which is of
the order 10" Hz and they are of two basic types — those where the
motion is along the line joining the equilibrium positions of the
particles, called longitudinal optic (LO) modes, and those where the
oscillations are in the plane normal to the line of centres, called the
transverse optic (T'O) modes. The latter couple particularly strongly
to the transverse electromagnetic waves in materials which are
wholly or partially ionic, since these motions create oscillating
dipoles which are driven by the electric field of the electromagnetic
wave. The resulting strong absorption at the frequency of the TO
mode can be observed as a very narrow resonance when the per-
turbing thermal vibrations have been reduced by lowering the

100} ! T T T T T T
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Figure 4.3 The real and imaginary parts of the dielectric permittivity of KCI at
7K, shown linearly against frequency. The measurements were taken using the
technique of Dispersive Fourier Transform Spectroscopy in which the sample
forms part of a Michelson interferometer and the measurement determines the
complex refractive index 7= €% TO and LO denote the transverse and longi-
tudinal optic modes, respectively, as explained in the text (Parker et al 1979).
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Figure 4.4 The oomls;lex plane susceptibility plots for a damped harmonic oscil-
lator, following the equation

x=1/(1 — 2 +ike)

where k is the damping coefficient. Diagram a) corresponds to a weakly damped
oscillator with £ = 0.1, such as the one shown on the top of Figure 4.1. The inset
shows in greater detail the part corresponding to small values of the frequency
parameter x. Diagram b) gives the extremities of the characteristic corresponding
to the same oscillator, together with the complete plots for more strongly damped
oscillators, with £ = 1 and 10, which gradually approach the ideal Debye behaviour
corresponding to infinitely strong damping. The latter is shown by the dotted
line,

temperature. Figure 4.3 shows the response of the ionic crystal KCl
at 7K in the form of frequency-dependence of &' (w) and &"(w)
in the far infrared region of the spectrum. The sharpness of
the resonance may be compared with the theoretical curve of
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Figure 4.1, but the different modes of presentation of both vertica!
and horizontal scales should be noted — Figure 4.1 is logarithmic,
Figure 4.3 linear.

It may be instructive to see the complex plane Cole—Cole plot for
an inertial system with variable damping, to compare it with the
corresponding plots of the various relaxation models. The analysis
is given in Appendix 4.1 and the plot is shown in Figure 4.4. For
small damping, £ = 0.1, diagram a), which corresponds to Figure
4.1 and 4.2, the plot is almost circular, except near the real axis,
where the response is shown on an enlarged scale in the inset. Plots
for increasing values of the damping coefficient are shown in dia-
gram b), and it is clear that the response goes over into the Debye
response which corresponds to infinitely strong damping.

4.3 AN INTERTIALESS SYSTEM WITH A RESTORING
FORCE

The omission of inertia is always justified in the limit when damping
or viscous or resistive forces dominate. This is equivalent to the
omission of inductance from our electrical circuit and corresponds
physically to the linear analogy of Debye’s “floating” dipoles which
will be discussed in Section 4.5.

To obtain this limit, we set m = 0 while choosing the damping
constant in such a way that
ms/A=1 (4.8
which is a time constant and remains finite. We also retain a finite
value of the product ms, so that s tends to infinity. We now re-write
eqn (4.7) in the form:
ot = — (s 4){1 — 4(A/s*m)}

where the second term in { } tends to zero, so that we may expand
the bracket giving:
s 1
o=i{—— 4.9
i(3-3) (+9)

Using this expression in eqn (4.6), expanding sin(a?) in terms of
exponentials of an imaginary argument and making use of eqn
(4.8) it is easily shown that the response function becomes a pure
decaying exponential:

) =S exp(—17) (&.10)
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An analogous operation on eqn (4.2) and eqn (4.3) gives in the
present limit the following expressions for the complex
susceptibility:

x(0)

where the static value of the susceptibility is given by:
x(0) = &N/ g A (4.12)
while the real and imaginary components are
1
X (@) =x0) 1 =x (4.13)
" _ T
X'(0)=x0O) T = (4.14)

These response functions correspond exactly to eqn (3.36) and they
are shown in Figure 3.33 in the logarithmic representation. We
note that the width of the loss peak at half maximum height is equal
to 1.144 decades and the loss peak is symmetric in the logarithmic
frequency representation.

We note further that the real and imaginary parts of the suscep-
tibility may be represented in parametric form by eliminating w7
between equations (4.13) and (4.14):

{x —3x(0) P+ x = {x(0)/28 (4.15)

which represents a semicircle in the complex y-plane of radius
3%(0) centred on the real axis and going through the origin, as
shown in Figure 3.33. This is a characteristic plot for the expo-
nentially decaying response function. The frequency corresponding
to the loss peak, i.e. to the highest point on the semicircle is the loss
peak frequency:

w,=1/7 (4.16)

We note in the case of a viscous system with negligible inertial
effects that the real part of the susceptibility is a monotonically
decreasing function of frequency — there is no anomalous dispersion
as in the inertial case.

The purely exponential decay of polarisation given by eqn (4.10)
shows that the polarisation obeys the first-order differential equation

dP/dt=—P(t)/7 (4.17)



124 DIELECTRIC RELAXATION IN SOLIDS 4.4

which implies that the rate of decay of polarisation after the removal
of the electric field is proportional to the instantaneously remaining
polarisation in the system. It follows that the polarisation current
under step-function charging or discharging is given by the relation:

&N
i(t) = gk

Solrexp(—t/_‘c} (4.18)

and the integral of this gives the initial polarisation
P(0) = (¢ N/A)E,

in agreement with the expression (4.12) for steady state
susceptibility.

We note that the response function given by eqn (4.10) implies a
step rise at ¢ =0 under delta-function excitation, which is the
expected response of an inertialess system.

44 FREE CHARGE CARRIERS WITH COLLISIONS

As the next special case consider an oscillator with inertia and
damping but without any restoring force. The case corresponds to
a free charge carrier for which there is no definite “equilibrium”
position. We now set A =0, so that from eqn (4.7) o= is/2, and
the application of eqn (4.6) would give

S(8) = (0o/&){l — exp(—st)}

where
0y = wj/s = &N/ms (4.19)

However, we note that this form of the response function is inad-
missible since it corresponds to a finite value as {— © which is
contrary to the basic property of the response function that it should
vanish for infinitely long times since there can be no permanent
polarisation as a result of the excitation by a delta function. Since,
however, a free carrier with a finite mass receiving a delta-function
impulse must show a finite displacement because there is no res-
toring force, we “correct” the response function by subtracting the
constant value from the expression in { } thus giving

f) = —(00/ &) exp(—st) (4.20)

The remarkable feature of this result is the negative sign of the
response function which is otherwise identical in form to the expo-
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nential dependence given by eqn (4.10). It follows therefore that
the dielectric susceptibility has the same frequency dependence as
(4.11) but the signs of the real and imaginary components are
negative. Thus free carriers make a negative contribution to the real
and imaginary components of the dielectric permittivity. However,
although negative loss and negative conductivity imply power gain,
there is no net gain since the conductivity must include the direct
current contribution, so that the total alternating current conduc-
tivity is:
% _ Ty

?+ £ 1+ 0?5

olw) =0, — (4.21)
This gives the well-known result which may be determined more
directly by considering the dynamics of free charge carriers and
which shows that the ac conductivity is always positive but decreases
rapidly above the collision frequency s, as shown in Figure 4.5.

The negative contribution to the real part of the dielectric permit-
tivity is
X (0) = —w}/ (0* + §) (4.22)

but this value should be understood to subtract from the appropriate
positive contribution &, to the permittivity arising from other
polarising mechanisms present in the material, as well as from the
permittivity of the free space. It follows that free carrier systems
may have a negative permittivity at sufficiently low frequencies, if

&Wi/ > € (4.23)
The total permittivity is

£ (W) = €- — i/ (*— 5°)

and if condition (4.23) is satisfied then this becomes zero at a
frequency given by

o, = {&w}/ e — £} = w, (4.24)

the second approximate equality being applicable when the prin-
cipal polarisation mechanism is free charge polarisation and when
wj; > 5% Both these conditions are normally met in metals and the
negative permittivity at low frequencies implies that electromag-
netic waves cannot propagate below the plasma frequency, since
the refractive index, n = €%, becomes purely imaginary.
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[ €' (w):

0..'.'

Figure4.5 Thedielectricresponse ofa free-carrier system with a collision frequency
5, plasma frequency @, and dc conductivity dp. & is the permittivity due to
fast-responding processes, including the free space contribution &. The upper
diagram shows the real part of the permittivity, which becomes negative below
a frequency w; given by eqn (4.24). Electromagnetic waves cannot propagate
below ;. The lower diagram shows the corresponding ac conductivity o(w).

4.5 DIPOLES FLOATING IN A VISCOUS FLUID

We now return to the model of dipoles floating freely in a viscous
medium as proposed originally by Debye in 1912, to account for
the observed behaviour of many dipolar liquids and described
briefly in Section 2.3a) in the limit of steady state response. To
treat the transient case, we apply a method of analysis developed
for this purpose by chye (1945). The orientations of the individual,
non-interacting dlpole.s in the assembly are given by the positions
of “representative” points formed by the intersections of dipole
vectors with the surface of a sphere, the dipoles being assumed to
occupy the centre of this sphere, Figure 4.6. Under equilibrium
conditions the representative points cover the sphere uniformly,
giving a uniform distribution over the spherical angle, g,(6) =
N/4m, from eqn 2.9. Under the action of a perturbing electric field
the representative points move on the surface of the sphere and
have to satisfy a continuity equation which may be written as

follows:
dg/dt=0dg/at+V -® = —g,/T (4.25)
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unit

spher represgnfaﬁve
point
-~ G E

Figure 4.6 The coordinates 8 and ¢ of the representative point on a unit sphere
defining the orientation of a dipole moment p situated at the centre of the sphere.
E is the direction of an externally applied electric field.

where @ is the “flux” of the representative points, g, is the pertur-
bation of the distribution function from its equilibrium value g, and
T is the relaxation time of the perturbed distribution.

The flux ® has only one component in the spherical polar coor-
dinates defined by (r, 6, ¢):

@ = {0, g(6)vs, O}
where v, is the velocity determined by the torque E and the viscosity
coefficient 7:
“ v = d6/dt = 12 (6) = —nuEsin 6
where we have used eqn (2.8).

The divergence in spherical polar coordinates appropriate to our
present situation is given by:
1 -9
- P =———{g(6) sin 6d6/dt
V-® e Gae{g( ) sin 6d6/di} (4.96)

= — ?}'LLEi in?
sin 606 &0 sin* &

Taking the limit of small perturbations, g, < go = N/4, we obtain
from (4.25) the following equation for the small perturbation:

9% _ N __&
at 29'.7WECOSB T
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which has the following small-signal solution in an alternating
electric field:
N uk 1
| 8O = T T T 107 ®
where we have made the following substitution in order to make
the result accord with the steady state solution (2.10):

onr=1/kT (4.28)

This condition relates immediately the relaxation time T to the
viscosity 7 of the fluid in which the dipoles are “floating” and since
7] is normally thermally activated with an energy W, we may also
write:

(4.27)

1/7= w,= vexp(—W/kT) (4.29)

where v is a suitable frequency and we have equated 1/7 with the
- loss peak frequency.

We are now able to carry out the averaging over all dipolar orien-
‘tations exactly as in eqn (2.11) and obtain by analogy with eqn
(2.15) in the limit of low fields the following expression for the
complex susceptibility: '
N,u 1
x(w) =

N 36kT1 +iwT

(4.30)

The steady state value of this in the limit of zero frequency is the
same as in (2.17), while the frequency dependence is the same as
for the inertialess harmonic oscillator.

Equation (4.30) represents the classical Debye equation for the
frequency response of freely-floating non-interacting dipoles which
are being aligned by the field and also suffer randomising collisions
by the medium in which they float.

Since the maximum amplitude of the frequency factor in eqn (4.30)
is equal to 3, the loss peak amplitude is given by

X" (@) = 3x(0) = (W*N/3eok) (1/T) (4.31)

Taking now into account eqn (4.29) which applies to thermally
activated loss peak frequency with the activation energy W, we may
derive the relation between the loss peak amplitude and the loss
peak frequency:

X" (@) = $2(0) = —const . log[@, (7] (4.32)
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Hence in a Debyé system a plot of the linear loss peak amplitude
against the logarithm of the loss peak frequency should yield a
straight line, as shown schematically in Figure 4.7 a).

However, even if the loss peak frequency were not thermally acti-
vated with a unique energy W, as may be the case with some so-
called o peaks in polymers and glasses, cf. Section 5.3 and Figure
5.19, eqn (4.31) is still valid within the approximations used and
we would expect a linear plot of the logarithm of the loss peak
against the logarithm of the absolute temperature, Figure 4.7 b).

XTwp) () ﬁfg M) )

log w,(T) log T

Figure 4.7 The relationship between the loss peak frequency and the loss peak
amplitude expected for a Debye system with a simply activated loss peak frequency,
diagram a). Even if the loss peak frequency is not simply activated, e.g. in an &
loss process, the temperature dependence of the loss peak a.mplitude should be
as shown in diagram b).

4.6 CHARGE HOPPING BETWEEN TWO POTENTIAL
WELLS

The dynamic response of a charge hopping between two potential
wells can be obtained by reference to the static analysis in Section
2.3¢) and to Figure 2.6. While the static case could be solved
exclusively with reference to the Boltzmann equilibrium between
two energy levels and was not in any way affected by the actual
transition probabilities R; R; between these wells, the dynamic case
has to take these into account.

Under equilibrium conditions the actual transition rate is given by

= IR} = fI R} (4.33)
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With the application of a field the barrier for jumping out of well
i changes by —¢rE/2 and that for jumping out of well j by
+¢7E/2 so that we may write the approximate expressions, expand-
ing the exponentials as in (2.23):

Ry=Ry(1+a/2); Ry=R(1—a/2)

while the occupation probabilities change by * f' as in (2.22). The
net rate of change of occupancy is therefore given by:

—df'/dt=Ry(f7 + )1 —a/2)

—Ri(f7 — )1+ a/2)
Bearing in mind eqn (4.33), defining

11
R+ Ry == (4.34)
J

and neglecting higher order terms in small quantities we obtain
the following equation for the rate of change of the occupancy:

a__f
- —+nra (4.35)

which is solved in the small-signal approximation at a frequency
.

i R
(lw+1/7)f kTE

from which we obtain the susceptibility for N double wells

_ N 1 .
@) = 57 ™ T+ ior (4:36)

This gives the same static result as eqn (2.24) and, once again,
shows the same Debye frequency dependence.

In view of what had been said about the equivalence of charges -
hopping between two wells and dipoles jumping between preferred
orientations, one expects an identical frequency dependence from
a set of jumping dipoles if their re-orientations occur between two
preferred directions.
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4.7 DIELECTRIC PHENOMENA IN SEMICONDUCTORS
i) Semiconductor materials

Electronic and ionic semiconductors do not normally show sig-
nificant dielectric behaviour below the THz frequency range which
we have set as a limit for our considerations. The reason for this
lies in the effect of their dc conductivity g; on the dielectric loss,
the 0y/ @ term dominating at low frequencies, thus making dielectric
measurements difficult if not impossible. For example, a “transistor
quality” silicon sample with 0, = 10°Q™"'m™ would give a loss
0o/ @ equal to the real part of the permittivity at 200 GHz, while
even “high-resistivity” semiconductors with ¢, =107 Q' m!
would still be difficult to measure below a MHz.

Dielectric phenomena appropriate to free carriers — the fall of
conductivity according to eqn (4.21) or, in suitable conditions the
change of sign of the dielectric permittivity according to eqn (4.24)
leading to total reflection of incident radiation — are well known
but they.fall in the infra-red region of the spectrum, in view of the
high values of the collision frequency s.

While this is true of the bulk behaviour of semiconductors, impor-
tant dielectric phenomena arise at interfaces between semiconduc-
tors and metals, where predominantly insulating Schottky barriers
may appear, or even more 1mportant1y at p—n junctions. In these
regions the equilibrium carrier densities which are present in the
bulk are removed due to favourable potential energy configurations
and the remaining semiconductor lattice has essentially dielectric
properties. These effects have been known since the beginning of
the science and technology of metal-semiconductor rectifiers in the

'1930’s and they form an important branch of present-day semi-
conductor science.

To a very good approximation these semiconducting barrier regions
may be considered as ideal, i.e. loss-free capacitors, except for the
dc contribution of any leakage currents that may be present. This
is how they are being treated in most textbooks and scientific papers
dealing with their dielectric properties, for example as blocking
capacitors in semiconductor contacts, as voltage-dependent capaci- .
tances in p—n junctions and as spurious blocking barriers in ionic
conductors. On closer examination, however, it becomes clear that
these barrier regions may exhibit important dielectric properties
in their own right, showing a dependence of loss and polarisation:
on frequency which departs considerably from that expected on the
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‘basis of simple considerations. Several examples of this will be
shown in Chapter 5 and is for this reason that we are giving in the
present Section a brief treatment of the fundamentals of semicon-
ductors designed to provide a background to their dielectric proper-
- ties. There can be no question of giving a comprehensive treatment
of this wide subject within the scope of the present monograph, so
that the interested reader who is not familiar with semiconductor
physics should turn to specialist texts, for example Henisch (1957),
Smith (1978), Grove (1967), Sze (1969), to mention but a few. Our
discussion will be concerned predominantly with electronic semi-
conductors — the case of ionic conductors may be treated anal-
ogously, while more detailed considerations will be found in special-
ist literature, especially on the so-called fast ion conductors
(Vashishta et al 1979) which show dielectric behaviour discussed
in Chapter 5. It should be noted that all ionic conductors have
hopping localised charge carriers, not free carriers as in electronic
semiconductors.

A barrier region depleted of electronic charge carriers responds
primarily as a dielectric material with -a purely real permittivity
£» which is determined by the lattice itself. However, there may be
present in this lattice other, more slowly responding processes,
which therefore contribute to the dielectric loss in the system. Of
these precesses, the removal and replenishment of the equilibrium
charge densities take times of the order of the space dmrge relaxation
time T, = &/ 0, cf. Appendix 4.2, and this is typically in the MHz
to GHz region, so once again it may be considered to be rather
fast. The two really slow processes are charge generation and recom-
bination and the complementary process of charge trapping and detrap-
ping. These processes will be considered in some detail because of
their importance in p—n junctions. In the case of ionic lattices, there
may also be present slowly hopping charge carriers of the type
considered in Section 4.6.

In order to provide a minimal amount of background information
for the non-specialist reader, we begin with the concept of electronic
semiconductors. These are non-metallic solids in which the chemical
valence bonds are fully saturated, in the sense that no more electrons
can be accommodated in the bonding process. Typical bonds are
either covalent or ionic, or a mixture of the two. An important
conclusion of the band theory of solids is that energetically the
. valence electrons occupy all available levels within a band of ener-
gies which is known as the valencé band, and is shown as the shaded
region in Figure 4.8. A full valence band does not contribute to the
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Figure 4.8 The energy band diagram of a homogeneous semiconductor with an
energy gap AW, donor density Np at a level Wp, acceptor density N, at Wy,
intrinsic level W; and a Fermi level Wr at an energy difference ¢kT" above Wi
W, and W, denote the edges of the conduction and valence bands, respectively.

The free carrier densities of electrons and holes are ny and po, respectively. The
position of the Fermi level indicates an n-type semiconductor.

electrical conductivity of the solid, since the electrons occupy all
available levels and an external electric field cannot change their
energies and cannot therefore impart any net momentum to them.
This is the reason why materials with completely filled valence
bands and no other electrons in the system are insulators.

Above the top of the valence band there is a region in which no
free electron can exist — this is known as the forbidden gap — of width
AW =W,— W, i.e. the difference between the top of the valence
band and the bottom of the next-higher allowed conduction band, also
shown in Figure 4.8. The width of the forbidden gap is related to
the strength of the chemical bonds in the solid — it is larger in
diamond, 5.5 ¢V, than in silicon, 1.1 eV and in germanium, 0.7 eV.
In compound materials it is large in ionic solids with high difference
of electronegativities, such as alkali halides, and it decreases with

increasing atomic number, for example NaCl has a larger gap than
KBr.

It is a fundamental property of semiconductors and insulators that
their conduction band is normally completely empty at the absolute
zero of temperature. This means that there are no electrons available
to move in the conduction band and the material is therefore an
insulator, in complete contrast with metals in which conduction is
possible because no excitation is required to bring carriers into the
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conducting levels there. In a perfect semiconductor free of lattice
defects and of extrinsic impurities, the only way in which an electron
may be removed from the valence band and placed in the conduction
band is by excitation across the forbidden gap. This may be achieved
by thermal excitation or it may take place through the absorption
of a light quantum of sufficient energy. In either case; there will
now be conduction by electrons in the conduction band, and by
the missing electrons in the valence band which behave as positive
charges and are referred to as holes. We will not be concerned
further with the photoconductive process which results when the
excitation is by photons and will discuss only the thermal excitation
which produces equal densities of intrinsic carriers

n= (NN)2exp(~AW/2KT) (437

where N, and N, are known as the effective densities of states in the
conduction and valence bands, respectively, and are of the order
10* — 10® m™. At room temperature the exponential factor
amounts to 107° with AW =1¢€V, e.g. in silicon, and 107 with

3 eV, so that materials with forbidden gaps above that range contain
negligible amounts of intrinsic carriers and are therefore insulators,
at least in the absence of impurities.

However, the intrinsic densities are only of importance in materials
containing correspondingly low densities of extrinsic impurities and
defects and most semiconductors contain such impurities in much
larger quantities. Such impurities may perform several different
functions. Some impurities contain one electron more in their val-
ence shell than the regular lattice atom for which they substitute
— for instance P in Si, or Te substituting for As in GaAs. This extra
electron does not take part in bonding of the atom in question and
it is easily split off and becomes free to move in the conduction
band. Once there, it behaves as a virtually free electron, suffering
occasional collisions with the lattice but being able to follow exter-
nally applied electric fields. The atom from which the electron
became detached remains as a positively charged centre in the
lattice. The energy required to ionise the non-isoelectronic centre,
known as the donor, is much smaller than the energy AW required
to break the bond in the regular lattice and to produce the intrinsic
-excitation. These shallow donors are therefore shown in the prox- -
imity of the conduction band in Figure 4.8. Typical energies may
be 0.01 — 0.05 eV and they are comparable with thermal energies
at normal temperatures. This means that in the presence of a
density Np of such donors, the electron density in the conduction
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band increases to an equilibrium value n, which may reach N at
sufficiently high temperatures and which certainly exceeds n; by
many orders of magnitude.

A different type of impurity may contain one electron less than is
required for normal bonding, e.g. B in Si, and this leaves the valence
band short of one electron. This missing electron may not be
localised at the impurity atom which gave rise to it, but may become
excited into the valence band, by allowing one of the valence band
electrons to drop into the missing bond attached to the impurity,
thereby rendering the impurity atom negative. The resulting hole
is then free to contribute to conduction in the valence band in an
exactly analogous way to an electron in the conduction band. The
impurity giving rise to the appearance of a hole is called an acceptor,
since it accepts an electron from the valence band, thus creating
a hole. A density N, of acceptors increases the hole density g,
beyond the intrinsic value 7; to the limit of N, at sufficiently high
temperatures.

The equilibrium densities 7, of electrons and p, of holes are governed
by Fermi-Dirac statistics which defines the occupation probabilities
of all levels, those corresponding to conducting or propagating
states as well as those of localised states such as donors and
acceptors. The occupation probability of a level at energy W is
defined by the Fermi-Dirac distribution function

B 1
g(W) = 1+ exp[(W — We)/kT)]

where Wris defined as the Fermi level and corresponds to that energy
at which the probability of occupation by an electron is 3. The
occupation probability falls off exponentially above the Fermi level,
since the probability of an electron having sufficient energy to be
there is decreasing rapidly. Likewise, the probability of finding a
hole, i.e. an unoccupied level, 1 — 4, falls off exponentially as the
energy W decreases below Wy, indicating that electronic states are
almost fully occupied there.

(4.38)

In an intrinsic semiconductor the Fermi level falls almost mid-way
in thee forbidden gap, to provide equal occupation probabilities for
holes in the valence band and for electrons in the conduction band
— there is a slight departure from mid-gap position because of an
asymmetry of the two bands. Denoting the energy level taken by
the Fermi level in an intrinsic semiconductor by W, we may define
the position of the Fermi level under all conditions in terms of a
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dimensionless energy parameter ¢ = (W — W,)/kT, as indicated
in Figure 4.8, and the equilibrium densities of electrons and holes
are then obtained in the form:

n=mexpP  po=mexp— ¢ (4.39)
which leads to the relation:
nopo = ni = (N.N,) exp(—AW/kT) (4.40)

Since the density of one carrier species, either electrons or holes,
depending upon the prevailing density of donors or acceptors, is
liable to be much higher than the intrinsic value 7, it follows that
the other density is correspondingly smaller, although it always
remains finite. Thus we refer to the majority and minority densities
of carriers in the free bands, and we denote semiconductor materials
as n-type if .the majority carriers are electrons arising from the
preponderance of donor impurities, and as p-type if the majority
carriers are holes arising from dominant acceptor impurities. It is
evident that the Fermi level is situated below the intrinsic level in
p-type materials and above the intrinsic level in n-type materials.

Electrons in the valence band and holes in the conduction band
are referred to as ““free’ carriers in the sense that they are able to
propagate in these bands with relatively little hindrance from “col-
lisions” with impurities and with vibrational states of the lattice,
known as phonons. These collisions determine the effective mobilities
u. and w, of electrons and holes, defined by the expression for the
net drift velocity v for electrons and holes in a field E:

v, = —wk 03 = Pk

Mobilities are considered as positive numbers and are measured
in units m?/Vs. Typical values in crystalline semiconductors are
0.1 and 0.03 for electrons and holes in silicon, respectively, 0.76 for
electrons in gallium arsenide and 0.36 and 0.18 for electrons and
holes in germanium, respectively. The resulting electron and hole
conductivities are additive, since electrons move in the opposite
sense than holes, as is implied by the velocity relations, but they
carry the opposite sign, so that the conductivity does not depend
upon the sign of the relevant carriers. We may write therefore the
expression for the electrical conductivity in static electric fields:

0h = e(tin + ps) (4.41)

To this dc conductivity may be added any ac contribution arising
from dielectric loss processes which may be present in the material,
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for instance dipolar or hopping charge contributions. The value
given by eqn (4.41) corresponds directly to that given by (4.19) if
we note that the mobility is given by the relation u = ¢/ms for each
carrier species separately. The frequency dependence of this con-
ductivity is given by eqn (4.21).

Many non-metallic solids, whether they be characterised as semi-
conductors or semi-insulators according to the value of the con-
ductivity, do not conduct by free carriers but by discontinuous
hopping movements of charge carriers between preferred localised
sites. One form of such transport was considered in Section 4.6
where the charge was assumed to be confined to two sites only, so
that it could not contribute to dc conductivity and behaved exactly
like a dipole. However, there is no reason to suppose that most
charges are so confined and they may execute consecutive hops
between sites arranged in a three-dimensional array, with either
equal or different probabilities of individual hops. Such hopping
charges can contribute to dc conductivity as well as giving a finite
ac efféct. Their mobility in static fields is much lower than the free
band mobilities, generally less or much less than 107° m?/Vs, and
with values as low as 107'° being known. A general treatment of
this widely developed subject may be found in Mott and Davis
(1979). Here we wish to stress the fact that hopping motion is #he
only possible form of transport for all forms of ionic conductors, since
ions cannot propagate in “free bands’ — their masses are much too
high for this to happen. The band structure as such is therefore not
applicable to ionic conduction, but the concept of conductivity is
and ionic conductivity is indistinguishable from electronic in simple
experimental situations, except for their contrasting response under
alternating field.

i) Schottky barriers and p—n junctions

Having given a very brief outline of the bulk properties of semi-
conducting materials, we are now in a position to describe some
of the interfacial phenomena which are of considerable interest in
the context of dielectric properties. An interface between a metal
and a semiconductor represents a discontinuity in the stiuctural
sense—one crystal lattice being replaced by another with completely
different electronic properties — but it also represents a discontinuity
in the potential distribution compared with the bulk semiconductor.
These potential discontinuities have a fundamental influence on
the electrical behaviour of the interface.

There are several physical causes why the Fermi level at the interface
between a semiconductor and a metal, or a semiconductor and a
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dielectric, should not lie at the same position with respect to the
conduction and valence band edges as in the bulk, where its position
is dictated by the impurity content of the material. Among these
reasons may be quoted the difference of work function or contact
potential difference, the presence of interfacial states which play
the role analogous to bulk states in the material, or accumulation
of ionic charges to which the interface represents an impenetrable
barrier. Detailed discussion of these phenomena may be found in
tife references quoted earlier, in particular in Henisch (1957), Grove
(1967) and Sze (1969). For our present purpose it is sufficient to
describe the result of two basically different types of potential
mismatch which can be found in semiconductor — metal contacts,
and they apply with suitable modifications also to dielectric-metal
interfaces as well.

The interface may be such that the Fermi level tends to come closer
to the band edge than in the bulk material, as shown in Figure 4.9
for both n-type and p-type material. In this case there is an increase
of the respective majority density near the interface, favoured by
the potential profile in which the negative charges seek positions
of lowest energy, positive charges seek positions of highest energy.
It should be intuitively evident that this type of contact would
assure good continuity of charge flow from the metal to the semi-
conductor and vice versa — it would act as an okmic contact. The

inter-
face
n - type
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. . WF
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Figure 4.9 The band structure of an chmic contact in n-type (top) and p-type
(bottom) semiconductors. The band configurations refer to the proximity of an
interface and they correspond to separate situations.
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conductance of a system comprising a block of semiconductor and

“two such contacts would be determined mainly by the bulk semi-
conductor, since the two contacts would not constitute any sig-
mificant additional resistance to the flow of charges.

An opposite type of mismatch may arise and produce the situation
shown for an n-type semiconductor in Figure 4.10. The material
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Figure 410 The potential energy diagram (a) and the distribution of the free
carrier density (b) in a metal-semiconductor-metal sandwich with blocking con-
tacts due to Schottky barriers of heights V; and V; and widths [, and [, respectively.
The application of an external bias ¥ changes the potential and density distributions
as shown by the dotted lines. The density n(x) is shifted laterally by distance
Al. Shading in b) denotes space charge.

From Jonscher (1976)

has a uniform density N of shallow donors extending up to the
interface and this determines the bulk conductivity, but the rising
potential in the interfacial barrier region causes an exponential
fall-off of the density of free electrons, following eqn (4.39) which
is still applicable to this situation. This leaves behind the exposed
positive charge of the donor levels, which are no longer neutralised
by the electrons emitted from them, as in the bulk material. The
barrier heights V; and V), at either contact are determined under
equilibrium conditions by the interfacial factors mentioned above
and they need not be the same, if the structure is not symmetric.
The thicknesses [, and [, of the two barrier regions are determined
from the solution of Poisson’s equation for the space charge regions,
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which under certain simplifying assumptions become:
Ly = (2eV)5/eN)" (4.42)

Taking a dielectric constant & = 10, corresponding to silicon, and
assuming a barrier height of 1 eV, which would be typical of many
interfacial situations, we obtain the barrier thicknesses correspond-
ing to typical impurity densities as shown in Table 4.1. The lowest
impurity density quoted corresponds to highest purity materials

TABLE 4.1

Impurity density 10® 102 10®  10®  10¥m™
Barrier widthat 16V 107 10 107 10  10~°m

normally available in semiconductors, and hence also in typical
dielectrics. One is therefore unlikely ever to find barrier thicknesses
in excess of 10 um and values ten times smaller are more typical
of high-purity materials. At the other extreme, 10” m™ approaches
10% of the total atomic density in a solid and it may be considered
typical of the conditions prevailing in ionic solids near a blocking
electrode, with the resulting barrier width of 1 nm which amounts
to no more than three atomic spacings. Such a barrier would have
a capacitance of 0.1 F/m?

Depletion barriers are known as Schottky barriers after the German

physicist who first explained the operation of metal-semiconductor
rectifiers in the 1930’s.

If an external potential difference Vis applied to the system shown
in Figure 4.10, there is negligible current flow so long as V<V,
in view of the blocking nature of both electrodes to the transport
of electrons. There is therefore a negligible potential drop in the
bulk material and the entire potential ¥is accommodated by making
one of the barriers slightly higher, the other slightly lower. This
results in a shift of the entire charge density distribution by an
amount A/, so that the centre of gravity of this distribution moves
by the same amount. Application of eqn (2.6) gives the change of
the induced surface charge at the metal electrodes per unit area as:

AQ = *xeNAl(a—1,— 1) /a= EteNAIl (4.43)

where the approximate equality applies when the thickness a of the
semiconductor slab is much larger than the combined widths of
the two barrier regions, which is usually the case. In this approx-
imation the result does not depend upon the thickness of the neutral
semiconductor and is determined solely by the change of the barrier
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widths, which are related directly to the changes of the barrier
heights AV, = —AV, and are given by:

V=AV,+ AV, = eN(l, + 1,)Al/ & (4.44)

There is no s1gn1ﬁcant potential drop in the bulk material in view
of the absence of current flow. Since the effective capacitance is
given by the ratio AQ/V, we obtain the following expression for
the capacitance of the system per unit area:

E
£1+£2

C= (4.45)
This capacitance is, of course, exactly that of the two barriers in
series and may be regarded as the capacitance of a parallel-plate
condenser with separation between metallic plates equal to [, + [,
and with the permittivity equal to that of the semiconductor.

Our derivation of this capacitance presupposed a negligible voltage
drop in the interior of the sample, which would be true in the case
of steady state voltage and with negligible carrier transport through
the barriers. A different situation arises with sinusoidally varying
voltage signal, when the displacement current required to charge
the barrier capacitances becomes significant and requires a driving
field in the bulk of the material. We now have the ordinary series
combination of the capacitance given by eqn (4.45) with the resist-
ance of the bulk of the semiconductor. The complex capacitance
of this series R — C combination has a frequency dependence ident-
ical to that of an ideal Debye system.

It should be noted that the barrier capacitance described above
corresponds to a perfect dielectric region of thickness I, + /, and
permittivity € placed in series with a conducting material. The only
departures from this ideal model which are implied in the system
considered here are the effects of the dc conductance G, through
the barriers, which would contribute a term of the form G,/ as
the loss component. There are so far no other loss processes in the
system, since the dielectric behaviour of the barrier itself would be
expected to be dominated by the lattice response of the semicon-
ductor which only becomes significant at very high frequencies.

The concept of a Schottky barrier is easily extended to a semicon-
ductor structure in which the complete transition from n-type to
p-type material occurs within a single-crystal block of semicon-
ductor, which has been doped with predominantly donor type
impurities on one side of a plane and with predominantly acceptor
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type impurities on the other side. The resulting situation is shown
in Figure 4.11 in which the energy bands make a gradual transition
from their equilibrium position in the p-type material to their
equilibrium position in the n-type material. The result is exactly
equivalent to the juxtaposition of two Schottky barriers of opposite
curvatures and the junction plane in which the impurity profile is
changing suddenly from donor to acceptor doping is the point at
which the two barriers are fitted to give continuous potential and
field contours.

The distributions of charge carriers in the neighbourhood of the
p—n junction formed in this way is also shown in Figure 4.11. A
region depleted of both carrier species is created, its total width /
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Figure 4.11 Equilibrium relations in a p—n junction. The upper diagram shows
the spatial distribution of donor and acceptor densities changing abruptly in the
junction plane. It also shows the distributions of the majority electrons, n(x) on
the n-side and of the majority holes, p(x) on the p-side. The shaded areas denote
the net space charge arising from the un-neutralised donors and acceptors where
the free charge carriers have been swept away. The lower diagram shows the
corresponding energy band configuration with the widths I, and I, of the space
charge region on the two sides. Circles denote donors, squares acceptors, black
symbols denote occupation by electrons. The Fermi level Wris constant throughout
‘the system in equilibrium.
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being the sum of the two widths [, and [, on both sides of the
junction. The same considerations apply as in the case of the
Schottky barrier regarding the resulting capacitance, with the
important difference that a p—n junction normally shows very much
lower leakage currents than a metal-semiconductor contact, pri-
marily because of the absence of a discrete interface. This makes
true dielectric loss measurements on p-n junctions much easier

than on Schottky barriers.

It should be noted that both p—n junctions and Schottky barriers
represent capacitive elements whose widths, and therefore capaci-
tances, are dependent on the magnitude of any applied steady bias
— both are also asymmetric structures, which are sensitive to the
polarity of the applied bias. One such polarity — that making the
p-type region positive and/or the n-type region negative causes a
reduction of the barrier height and a rapidly increasing current
with bias — this is the jforward bias, while the opposite polarity
results in the flow of very small “leakage” current and is called the
reverse polarity.

The diffusion potential ¥ of p—n junctions and Schottky barriers
tends to decrease with rising temperature due to the shift of the
Fermi level towards the middle of the forbidden gap. Typical values
in silicon p—n junctions are 0.5V at 300 K and almost 1.0V at
77 K — the latter being nearly the value of the energy gap.

i1) Charge generation/recombination processes

Our discussion of the barrier and junction phenomena was so far
concerned exclusively with the presence of shallow donor and
acceptor levels supplying free carriers in the bulk regions and
constituting the fixed space charge in areas from which free charge
carriers have been swept away by potential barriers. The responses
of these shallow levels to externally applied potentials may be
considered to be rapid on the time scale of signals of interest to us
in the present context — they are certainly shorter than 1 ns. Like-
wise, the speed of adjustment of the free charges themselves is

dictated by the space charge relaxation time discussed in Appendix
4.2.

We now have to consider the effect of deep localised levels within the
forbidden gap. These are always present in all materials since they
arise from lattice defects which do not act as shallow donors or
acceptors and they may also be due to certain impurities, such as
transition metals in silicon or germanium. These deep levels are
shown schematically in Figure 4.12 at a single energy W, — the
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subscript “t” stands for trap or trapping level — and they have a
density N, which may be appreciable in comparison with the donor
and acceptor densities. An electron falling into one of these deep
levels from the conduction band may become #rapped or immobilised
in it for a significant length of time, and likewise an electron falling
from one of these levels into a hole in the valence band may
effectively trap that hole until it becomes released by re-excitation
of an electron from the valence band into the trap state.

Figure 4.12 shows four types of transitions between the valence and
conduction bands and the deep levels. R, corresponds to electron
transitions into the traps, R, is the opposite process of excitation
from the traps into the conduction band. Likewise, R, corresponds
to electron transitions from the traps into the valence band holes,

W
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Figure 412 The band diagram of a semiconductor with a single level of deep
traps of density N; which communicate with the conduction and valence bands
through the rates R, etc. shown by arrows. The occupancy of these levels is
determined by the positions of the Fermi level in the system. The density of empty
states is py, that of full states 7.

while R, is the opposite process of excitation of electrons from the
valence band into the localised traps. We note that R, followed by
R, gives rise to the generation of an electron—hole pair, while R,
followed by R, causes the recombination of an electron and a hale,
i.e. their annihilation, Although generation and recombination may
occur directly between the conduction and valence bands, the
presence of deep levels enhances this process very considerably —
by many orders of magnitude, because it makes it easier for the
charges to obtain the smaller amounts of energy that are required
for an indirect transition via a localised level.
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The equilibrium densities of electrons in the traps, 7, are given by
the Fermi-Dirac statistics, eqn (4.38)

n, =N,/(1 +¢¥), po=N,—n=NJ/(1+e?) (446)

Define the density
. p] = Nu e_n (4’4’?)

corresponding to the density of holes that would be present in the
valence band if the Fermi level coincided with the trapping level.
The equilibrium hole density then becomes:

po=N, eV =pe¥ (4.48)

The two equilibrium transition rates to and from the valence band
may now be written in terms of certain rate constants r, andr, and
of the products of the numbers of carriers, which are available for
making the flrarlsmons and of numbers of empty spaces into which
these transitions can be made:

Ry, =rn.p, RY=nN,p, (4.49)

The two rates must be equal in equlhbnum so that the constant .
r, may be eliminated:

1+e¥
T; -er = ?‘ﬁwpo/ﬁ fo = rupom = vpg e-—-w (4’.50)

Similar considerations apply to the other two rates so that we may
write finally:

R?ﬂ = iruﬂ.l«ubo RE&‘ = uﬁo 5—wpm

(4.51)
RY=rpam,  RiL=rne¥n,

The equilibrium situation described by these relations may be
perturbed in one of two different ways, both of which will be
relevant to our considerations. The first of these consists in injection
of excess_carrier densities, for example by photo-excitation or by
the application of a forward bias to the p—n junction — both processes
increase the densities of minority and majority carriers by the same
amount, An = Ap, so that neutrality is maintained (Jonscher 1960).
The presence of these excess densities causes an increase in both
downward rates Ry and R,, without, to a first approximation, altering
the upward rates R, and R,, at least in the case which is known
as the Schockley—Read model where the occupancy of the trap level
is assumed to remain unchanged in the presence of injection. In
this limit, which reflects quite closely the actual behaviour of many
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semiconductors, we obtain the following differential equations for
the rates of change of carrier densities:

dn _ dAn

dt d¢

which after some simplifications, taking into account eqns (4.51),
gives

=Rnc_Rc¢:?}£?3mﬂoﬂw_ﬁm(m+An)] (4’52)

dAn/dt = —r.pAn= —An/T (4.53)

which defines a time constant 7 known as the lifetime of injected
carriess.
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Figure 4.13 The energy band diagram of a p—n junction containing one deep trap
level of density N, and energy W), with an applied reverse bias V. The perturbation
of thermal equilibrium gives rise to removal of electrons from traps near the edge
of the n-type material, and to their addition to the traps near the edge of the p-
type material. Trap occupancy is complete below the electron Fermi level W, -
and is zero above the hole Fermi level Wg, with intermediate filling in the range
between these two levels, as shown in the lower diagram. The effect of a slight
further increase of bias is shown by the shaded regions which indicate the removal
and addition of electrons to traps. The arrows indicate the excitations and sub-
sequent transport of an electron and a hole.
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The physical significance of this result is that, in the approximations
used in this model, the rate of decay of excess carrier densities is
proportional to these excess densities themselves. This means that
the recombination process would give an exponential time decay if
the source of injection, e.g. the light, were to be suddenly turned
off, and the rate constant is 1/7.

Typical values of lifetimes vary between tens or hundreds of micro-
seconds in transistor quality silicon and germamum and some
nanoseconds in materials such as GaAs.

If instead of injecting carriers one were to.remove them from some
region, one would induce the opposite process of carrier generation
which would tend to restore equilibrium disturbed by the removal
process. This situation occurs typically in a p—n junction that has
been biased in the reverse direction, as shown schematically in
Figure 4.13. Here carrier generation takes place in the space adja-
cent to the space charge region and also, with a different time
constant, in the space charge region itself (Sah, Noyce and Shockley
1957, Jonscher 1960). Under steady state bias this gives rise to the
reverse leakage current of the p-n junction which appears like a
constant conductance G, across the junction capacitance. If a small
alternating signal is superimposed on the steady bias, with a fre-
quency @, then the generation process is modulated by that signal,
since the edges of the space charge region move in step with the
applied signal as the width of the space charge region is modulated.
The resulting alternating generation/recombination process follows
a time and frequency dependence which is obtained by solving the
recombination equation (4.53) with a suitable harmonic driving
term at the frequency . Using the phasor convention we obtain
for the generation/recombination rate resulting from the modulation
of the width of the space charge region the equation:

Hw) = ny/ (1 +iwT) (4.54)

where s, is a suitable rate constant depending upon the magnitude
of the space charge modulation, i.e. on the small signal voltage
applied to the system, and also on the absolute magnitudes of the
recombination rates and the configuration of the barrier profile.

Now consider the effect of a single generation process within the
space charge region of the p—n junction on the external circuit.
Figure 4.14 illustrates the physical situation. A generation process
occurring at a certain time #, creates an electron—hole pair which
is separated by the prevailing electric field in a time which might
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-

Figure 4.14 An illustration of the effect of generation of an electron—hole pair ir
the space charge region of a reverse biased p—n junction. The rapid transport of
the two carriers gives rise to an effect equivalent to a sudden switch of a dipole
between opposite orientations. The dipole moment is el regardless of where in the
space charge region the generation process takes place.

be estimated as being the width of the space charge region divided
by a suitable velocity. The latter we shall assume to be of the order
of 10°m/s, i.e. the maximum attainable drift velocity of carriers,
so that with a typical width of 1 um the separation time is of the
order 107 !'s.

This individual generation process, which is delayed with respect
to the agency producing it, i.e. the voltage applied to the junction,
by the mean time T produces an effect exactly equivalent to a
sudden switching of a dipole in a system with jumping dipoles, as
described in Section 4.6.

-The response of the capacitance of the space charge region of the
p— junction is therefore determined by the following processes:

i) the adjustment of the free carrier densities at the edges of the
space charge region — this takes place with a time constant
given by the space charge relaxation time 7, Appendix 4.2, -
generally falling in the nanosecond to picosecond range.

ii) the dielectric response proper of the lattice itself — this is dom-
inated by the atomic and ionic relaxations in the infra-red range
of the spectrum, i.e. tera-hertz frequencies.
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iii) the response of the generation-recombination processes, deter-
mined by their lifetime which falls in the microsecond to nano-
second region, corresponding to frequencies in the megahertz
to gigahertz range.

Only the last mechanism is likely to be of interest in the frequency
range with which we are concerned here and the resulting frequency
dependent complex capacitance C(w) of a p—n junction contains
therefore a frequency-independent component C.. arising from all
the fast processesi) and ii), and an additional frequency-dependent
component which obeys exactly the same frequency law as the
classical Debye process in the physically entirely different context
of dipolar phenomena:

Clw)=C.+AC/(1 +iw7) (4.55)
This is the conclusion of our analysis of generation/recombination
processes in semiconductor p—n junctions, on the assumption of a
simple recombination process obeying an exponential dependence
on time. This conclusion is not influenced by the precise choice of
the recombination process — it would be valid for any linear recom-
bination process, whether it involved a single intermediate deep
_centre or several of them, or even if the recombination occurred
directly between the conduction and valence bands in a bimolecular
manner— the latter provided that the excitation level was sufficiently
low. The sole requirement in the present situation is that the
individual generation/recombination events should be completely
independent of one another, so that the processes in question are
non-interactive, the result of a large number of events occurring

randomly is equivalent to the simple summation of their individual
effects.

We note that a steady generation rate, such as would arise from .
the presence of a constant bias on a junction, results in a steady
current representing the summation of an infinite series of impulses
shown in Figure 4.14. This therefore gives rise to a constant con-
ductance G, in parallel with the capacitance of the junction. Even
if the signal is not constant but varies in time at a rate which is
slow in comparison with 1/7, this still gives an alternating current
exactly in phase with the signal, i.e. a purely real conductance. A
rise in conductance corresponding to the proper “dielectric” effect
of the generation rate would only be expected at frequencies
approaching 1/7 and higher.

This means that a p—n junction in which the recombination time
was of the order of 1 microsecond would only show “dielectric”
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effects at Megahertz frequencies. Experience shows that junctions
show such effects at much lower frequencies — down to Hertz region
or below, and another mechanism has to be invoked to explain
these phenomena.

iv) Trapping phenomena

This second mechanism is likely to be found in a different type of
action that may be found in deep levels shown in Figure 4.12, if
these levels show substantial transition rates to one band only. If,
for example, the only interaction is with the conduction band, then
the centre becomes an electron trap, since once an electron enters it
from the conduction band it can only become re-excited back again,
remaining in a trapped condition in the meantime. Since re-exci-
tation requires a supply of energy, while recombination downwards
disposes of energy, the mean trapping times are much longer than
average recombination times, sometimes by many orders of mag-
nitude. Such slow electron traps, and their counterparts in com-
munication with the valence band, the hole traps, would therefore
provide very slow responses to external stimulation and we shall
discuss their role in a little detail.

- The process may be seen in relation to a reverse biased p—n junction
in Figure 4.13. Here a single deep trapping level is shown which
is completely occupied on the n-side, since it lies deep below the
Fermi level, and is completely empty in the region of p-type material
where it is high above the Fermi level. In the presence of a reverse
bias, the Fermi level becomes split into two “quasi-Fermi levels”
which have the property that between them the occupancy of the
centre is not dictated by their relative positions with respect to
these Fermi levels, but is somewhere intermediate between full and
empty, as shown in the lower diagram of Figure 4.13.

At any given reverse bias, including zero bias if required, there is

a definite occupancy of these deep levels throughout the space

charge region. If the bias is now increased, by the addition of a

small-signal voltage, the space charge width increases slightly,

thereby causing an adjustment of the occupancy of some of the

levels at the planes in which the quasi-Fermi levels cut through the

deep levels. The lower diagram in Figure 4.13 shows that some of
‘these levels on the n-side have their electrons removed from them

by excitation into the conduction band, where their effect is exactly -
the same as that of generated electrons in Figure 4.14. Likewise,

if there were some hole traps on the p-side, they would need to.
have some holes removed, or electrons added to them in the new

situation. '
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In order to obtain a quantitative estimate of the rate of removal
of electrons from deep traps as the Fermi level changes position
with respect to them, we shall assume that the situation is spatially
uniform, instead of being confined to a small volume near the plane
where the Fermi level crosses the trap level — this will not affect the
time dependence of the processes in question, only their absolute
magnitude. :

Writing in the general case of transitions to and from the conduction
band only, and making use of equations (4.47)—(4.51) we have the
following rates:

R,= TP, (4-56)
R = 1.0, (pu/ me)n, = rmm, €% (4.57)

where 1, is an equilibrium position of the Fermi level around which
there are small fluctuations, 1 = Y, + ¥,. We assume that the free
carrier density in the conduction band follows very rapidly any
changes of the Fermi level, so that n=mn, e™" =n,(1 — ¢,). The
rate of change of trapped electron density is found to be:

dn,/dt = [(NI - n:)(l - QPIJ - nfﬁ%]fﬂo

and writing for the trapped density n, = n, +n,, we obtain after
simple transformation, taking into account the cancellation of the
equilibrium rates, the following equation for the small-signal
trapped charge density as a function of the small-signal variation
of the position of the Fermi level:

dn;/dt = —n, /75— Y,/K (4.58)
where
1/t =rn,(1 + e%) (4.59)
and
1/ K=ra,p, (4.60)

The rate equation (4.58) is of the same form as the recombination
equation (4.53), except that it includes the driving term, while
eqn (4.53) was obtained for the time-decay of density after the
removal of injection. The general solution of this equation is of the
same form as (4.54), except for the different magnitude of the
trapping time constant 7, compared with the recombination time
7. We are interested in values of 9 close to zero, i.e. the Fermi level
is crossing the trap level. Assuming 7, to be of the same order of
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magnitude in both cases, we note that with the Fermi level at the
trapping states, the free carrier density 7, is much smaller than the
density p, in the recombination case in p-type material. This shows
that the trapping time 7, is much longer than the recombination
time 7, as was indicated on the basis of qualitative arguments.

This analysis proves that the effect of trapping states obeying the
simple relations assumed in the present case is to give the same
frequency dependence as the ideal Debye process, but the time
constant may now be very long, i.e. the phenomena in question
would be expected to be observable atlow and very low frequencies.

It may be noted that the recombination times and trapping times
described above are likely to be strongly temperature-dependent,
in view of the thermal nature of the recombination and trapping
processes 1n question.

We shall see in Chapter 5 examples of junction response which
confirm the existence of loss processes and which show strong
temperature activation of the trapping rates, but which also depart
strongly from the ideal Debye response, indicating clearly that the
simple exponential time dependence is not consistent with experi-
mental observations.

48 DIFFUSIVE TRANSPORT

We conclude this review of the principal simple models of dielectric
response with an example of a behaviour that is not normally
associated with the subject of dielectrics, but which illustrates
several interesting physical principles. While the models discussed
“hitherto were essentially one-particle models in which the effect of
an assembly of particles was the summation of the effects of the
individual particles in the assembly, the next model to be considered
is in a sense a “cooperative” one, in that it requires the presence
of a definite distribution of particles in space and in time. This
constitutes an essential novely of this model in comparison with
the other ome-particle models which all gave a Debye type of
response, with the exception of the free electron model.

Lhere are many situations in physics and in physical chemistry in
which charge carriers are introduced into a volume of material -
under conditions of complete neutrality, i.e. there exist two types
of charge carriers of opposite signs and one is always available to
neutralise the effect of the other. A well known example of this type
of behaviour is found in a forward-biased p—n junction which injects
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minority carriers into extrinsic regions of opposite types on both
sides of the junction. Since the majority carriers are always present
in significantly larger numbers than the injected minority carriers,
their supply to the injection region is unrestricted and neutrality
is always maintained. This means that the transport of the injected
densities occurs by a nearly-field-free diffusive mechanism in which
a gradient of the density of both carrier species, n(x, t) has to be
established in order to produce the flow of the particle current
J(x,t). The diffusion current in one dimensional case is:

Jj(x,t) = —D an(x,t)/0x (4.61)

while the continuity equation for charge flow in the absence of
recombination may be written in the form

an/ ot = —aj/0x = Dd*n/dx* (4.62)

where D is the diffusion coefficient for the charge carriers. As
boundary conditions we take a slab of semiconductor of thickness
w with the injecting contact at ¥ = 0 and an ohmic contact main-
taining zero excess density at ¥ = w. The density at the injecting
contact is assumed to consist of a steady value due to a static bias
and a small-signal component of frequency w:
n(0, t) = n(0) + n' exp(iwt) (4.63)
The steady state solution due to the density n(0) is given by the
condition of continuity divj = 0, which means that
no(x) = n(0)(1 — »/w) (4.64)

as shown in Figure 4.15. This density gradient gives rise to the
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Figure 4.15 The distribution of density of injected excess charge carriers, e.g.
electrons in a forward-biased p—n junction, or ions in an electrolyte next to an
electrode, showing the steady state distribution by the faint line and the distribution
under an alternating signal by the thick line.
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steady state (dc) current which in the present instance is given by:
= Dn(0)/w (4.65)

which is independent of both space and time variables, since we
assume that there is no recombination.

The time-dependent component is obtained as a solution of eqn
(4.62) in view of the linearity of the system which admits additivity
of solutions. Because of the harmonic time dependence we replace
the time-derivative with i@ and obtain the small-signal equation:

0*n'/0x* = (iw/D)n" = n' [/ L* (4.66)
where we have defined the complex “ac diffusion length”

= (D/iw)"* = (2D/w)"?/ (1 + i) (4.67)

The solution for n’ is of the general form:

=n'(0){cosh(x/L) + A sinh(x/L)} (4.68)

where the constant 4 has to be determined to obtain n' (w) =
Differentiating this expression with respect to distance we obtain
the small-signal current at the injecting contact:

7'(0) =n'(0)A/L=A(w/2D)*2(1 +i)n'(0)  (4.69)

The important conclusions for the present are that the current may
be expressed in the form:

j' (@) = const 0”(1 +1) V' (4.70)

where we have postulated the existence of a linear relationship
between the small-signal applied voltage V' and the density n' —
a very reasonable assumption under small-signal conditions. We
may therefore finally obtain the effective susceptibility of the system
using eqn (3.15):

x() m%x (1 — i) ™2 o< (i) 2 (4.71)

This result is remarkable in that the frequency dependence of the
dielectric susceptibility is proportional to @™ and also the real
and imaginary components of the susceptibility — and of the
admittance — are equal. This is a complete departure from the
Debye response and the full significance of this will become apparent
later in the context of a2 more general type of frequency dependence.
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For the presen: we shall mention that the peculiar frequency
dependence of diffusing charge carriers derives from the very specific
“inertia” of the diffusion process — the fact that a density gradient
has to be established before the current can flow and this gives rise
to very slow responses. A schematic representation of the instan-
taneous density distribution in the case of an alternating small-
signal boundary condition superimposed on a steady gradient is
shown in Figure 4.15. Very good illustrations of the importance of
attenuation of alternating diffusive flow are to be found in heat flow
problems which are governed by identical relations. It is therefore
interesting to note that the diurnal heat cycles do not penetrate
more than a few centimetres into the ground, while even the very
slow and severe summer—winter temperature cycles hardly go
beyond a metre. Further discussion of this may be found in Carslaw
and Jaeger (1949).

Although we have carried out the analysis on the specific example
of a forward biased p—n junction, very similar considerations apply
to interfacial electrochemical processes, where ionic species disso-
ciate at the electrodes and diffuse into the neutral bulk of the
electrolyte — a process recognised by Warburg as early as 1890,
with the result that this type of admittance is known in electro-
chemical circles as the Warburg impedance. Furthermore, similar
behaviour may also be found in solid electrolytes — materials with
exceptionally high ionic mobilities which have attracted a good
deal of attention recently, cf. Section 5.5¢).

4.9 CONCLUDING COMMENTS

Our discussion of the frequency response of idealised physical
systems has revealed a number of features which it would be
instructive to highlight at the present moment in the development
of the argument. Any system which can be described by a first-
order linear differential equation of the type

dy/d¢t = —y/T + aforce term

must necessarily lead to a Debye-type response in the frequency
domain and to an exponential relaxation on sudden removal of a
polarising force. In these sytems the rate process is proportional
to the perturbation itself and there is a restoring force present in
the system tending to re-establish the equilibrium. Our inertialess
system with restoring force, floating dipoles, charge between poten-
tial wells and all forms of recombination and trapping processes



156 DIELECTRIC RELAXATION IN SOLIDS 4.9

in which there is linear rate of return to equilibrium, all show the
same type of response.

Departures from the classical relaxation law arise when there are
inertial forces at play, since they imply a second-order differential
equation, and where there are diffusive — i.e. collective — effects,
since a second-order equation is also involved.

The case of free electrons also departs from the standard relaxation
because there is no physical restoring force in that situation.

It is worth stressing here that, while a number of departures from
the classical relaxation law has been described, these represent very
well defined frequency- and time-dependences, so that there is no
scope for “fitting” any arbitrary functions in terms of these laws,
for example when the experimental data take the form of broadened
and asymmetric loss peaks. The only way to “fit” the data in terms
of these elementary laws would be to assume superposition of
several such laws, and this is being done in the context of
Debye-like relations in the approach which uses a Distribution of
Relaxation Times, Section 7.2.

While one may attempt to model a broadened loss peak in terms’
.of summations of ideal Debye responses with a range of relaxation
times, it would be very difficult to represent a loss process with a
fractional power law of exponent different from 3 by a superposition
of diffusive processes which necessarily have exponents $ exactly.
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APPENDIX 4.1

THE COMPLEX SUSCEPTIBILITY OF AN INERTIAL
SYSTEM WITH RESTORING FORCE.

It is interesting to obtain approximate expressions for the complex
plane plots of the susceptibility of an inertial system with restoring
force, as given by eqns (4.2) and (4.3), so as to be able to compare
them with the more familiar inertialess (Debye) and similar plots.
Taking
1
X0 = o i
with £ <€ 1 signifying small damping, and taking x close to unity,
wesetz=1—x<1 ‘
x(z) = (2z + ik — ikz) ' = (2z + ik) ™"

This corresponds to the nearly circular part of the plot in Figure
4.4 which crosses the imaginary axis at " = 1/k. For small values
of x <k <€1 we may write:

x(@) = (1— 2+ ike)" =1+ o — ikx

which corresponds to the part shown in the inset. Finally, for very
large values of x we find:

x(0) = (=« + ikx) "' = —(1/2*) (1 + ik/x)
which gives the negative branch close to the origin.

Corresponding plots for larger values of the damping coefficient &
are also shown and it is clear that the Debye response corresponds
to the limit £ — oo, '
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APPENDIX 4.2

RELAXATION OF “FREE*” CHARGE

The presence of excess free charge in a material gives rise to a local
high electric field which tends to “blow up” that charge, thus giving
a rapid dispersion of space charge. An approximate analytical
treatment of this situation may be obtained as follows.

Let the space charge be p, arising, for example, from injection of
majority electrons into the solid, or a thermal fluctuation locally,
or any other means. The continuity of particle current is obtained
from Maxwell’s equation

j+aD/at= curl H (A4.1)
and from Poisson’s equation
divD=p (A4.2)

By taking divergence of (A4.1) and noting that divcurl=0 we
obtain

divj = —dp/ ¢ (A4.3)
Now set

j=0E= oE (A4.4)

where 0 is the local equilibrium electrical conductivity. We may
then write

divj = div(oE) = oy div E = (0,/ €)p (A4.5)

The approximation used here assumes that the injection of excess
charge does not alter significantly the conductivity g;. We then
obtain from (A4.3) and (A4.4) the relation:

ap/at=—(o,/€)p= —plT,
which implies an exponential decay of any space charge
p= poexp(—t/T) (A4.6)

where 7, is the space charge relaxation time.
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Up to the present moment the analysis involved the decay of a
disturbance of density in a strongly damped or collision-dominated elec-
tron gas. This condition is implied by the use of the conductivity
equation (A4.4) which states, in effect, that the velocity of charges
is proportional to the force acting on them — a typlca.l viscosity-
limited behaviour.

Consider next the case of a free carrier gas in which collisions may
be neglected on the time-scale under discussion. This may corre-
spond to a truly free-carrier gas, e.g. a rarefied plasma, or to a
solid state electron gas in a metal or a semiconductor, where
collisions occur at a rate of 10" s™, but in which we are interested
in the response to electric fields at optical frequencies of 10"°s7.

Under these conditions metals behave as almost free carrier systems
(Platzman and Wolff 1973).

In this case we put j = eNv in the continuity equation (A4.3) and
write the equation of motion in the absence of collisions:

_ dv/dt = eE/m
After simple manipulations we obtain
*plott = —Qip (A4.7)

which implies that any disturbance of space charge produces an
undamped oscillatory response

p = poexp(i€2,?) (A4.8)

where , is the plasma frequency referred to in eqn (4.4). The
physical significance of this result is that a density fluctuation
producing a local space charge causes opposing electric fields to
build up which in due course repel the excess charge, but in doing
so cause it to “overshoot”, i.e. to produce a space charge elsewhere.
The absence of collisions means that this phenomenon is not
damped, at least not in the first approximation.
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CHAPTER 5

Experimental Evidence on the Frequency
Response

5.1 INTRODUCTION

The reader is by now familiar with the background of the theory
of dielectric relaxation, at least in its more idealised manifestations,
to be able to appreciate the nature of the dielectric properties of
real materials. The present Chapter gives a broad review of the
dielectric response of a wide range of materials with the object of
giving the reader an unbiased impression of the true behaviour, as
distinct from the idealised model responses, because only in this
way will he ‘be able to appreciate the limitations of the latter..
Accordingly, this chapter will be uncommitted with regard to
interpretation of data — no attempt will be made to pass value
judgements on the significance of the results — the emphasis will
be on a clear presentation of the results in a unified manner. This
should enable comparisons to be made between different sets of
data, many of which may not have appeared in the same context
previously. This point is very important, because tradition and
custom have contributed to often strangely ineffective ways of
presenting dielectric information which then admit of many different
interpretations, thereby compounding certain misconceptions
regarding the significance of these results.

Thus, for example, the common way of plotting the frequency
dependence of the real and imaginary components of permittivity.
consists in using the linear € and € against the logarithm of
frequency, while the much more informative plot is the log-log
representation, since as we shall see, these functions often give the
power law dependence which is immediately recognisable in the
logarithmic presentation while giving a rather meaningless cur-
vature in the semi-logarithmic plot. Similarly, the widely used
complex permittivity diagram, known as the Cole-Cole plot, is very
insensitive to the detailed frequency dependence of loss; especially
in the vital regions further away on either side of the loss peak
frequency.

"
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Wherever possible, we shall attempt to give the real and imaginary '
components of the susceptibility for one particular mechanism, since
this gives the best chance of having a meaningful picture.

The presentation of the experimental information is arranged
according to the following plan. We begin with.examples of dielectric
response approximating as closely as possible to_the ideal Debye
behaviour and from there we proceed to cxarnples of increasingly
strong departures from this ideal behaviour, while still remaining
with materials in which there exist recognisable loss peaks. The next
class of responsé types will be characterised by a complete absence
of dielectric loss peaks and will show instead a region of strong
dispersion of both the real and the imaginary parts of the suscep-
tibility. This type of behaviour will be identified with a well defined
mechanism which is completely different from the commonly
accepted Maxwell-Wagner interfacial mechanism that is being
invoked in such cases.

We shall also have the occasion to present examples of dielectric
losses which are virtually independent of frequency over extended
ranges. These losses will again be identified with certain physical
conditions.

In our presentation we shall depart in one more respect from
traditionally accepted conventions: our selection of examples will
not be made with reference to any particular material or class of
materials but will use examples of a given type of response drawn
from the entire spectrum of materials. The intention here is very
definite: to convince the reader that the dielectric response of very
different solids shows certain similarities which will help us deci-
sively at a later stage in determining the true nature of the physical
mechanisms involved.

_Indeed, it may be said that to the extent to which our entire
approach to the dielectric response of solids has contributed to a
better understanding of the physical principles underlying this
response, this was possible because of the synoptic approach we
have taken, unfettered by the accepted models or by preconceived
ideas as to how dielectrics should respond, instead of how they do respond.

An important point to be noted here concerns the extent to which
it is necessary to understand in detail the physical and chemical
structure and general behaviour of these often very different
materials in order to be able to appreciate their dielectric response.
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The view taken in the present work is that this is not necessary
insofar as these various materials follow a common pattern of dielectric
behaviour. For this reason we refrain from a detailed presentation
of the general properties of ferroelectric materials, liquid crystals,
fast ionic conductors or, for that matter, of water, each of which
would form the subject of a major review in its own right. The
examples of their dielectric behaviour which are quoted here do
not necessarily lend themselves to a clear interpretation within the
classical systems of dielectric theory and we shall propose to give
some interpretation in the light of the new theory in Chapter 8.

5.2 NEAR-DEBYE RESPONSES

There exist very few examples indeed of the ideal Debye response
in condensed matter generally, let alone in solids. One of the more
sensitive tests of conformity to Debye consists in a detailed analysis
of the frequency dependence of the real part of the susceptibility at
frequencies in excess of the loss peak frequency @,. The test relies
on the fact that Debye behaviour shown in Figure 3.23 gives a clear
divergence of the real and imaginary components, whose logarith-
mic slopes are —2 for ' (w) and —1 for x“(w). This Kramers—
Kromg compatible result represents a singularity of dielectric behay-
iour, and departure, however slight, towards power-laws of the type
! with n# 0, demands as a consequence of Kramers—Kronig
relations that both should follow the sgme frequency dependence,
giving a frequency-independent ratio, Figure 3.24

$'(@)/% (0) = cot(n/2) 0<n<1 (5.1)

"This result has nothing whatever to do with any particular physical
mechanism or interpretation — it is the consequence of the principle
of causality, on which Kramers—Kronig is based and its applicability
testifies to the self-consistency of the results obtained experi-
mentally.

The requirement here is the availability of very accurate data for
€' () from which a suitable value of &, may then be subtracted
to give ¥’ (@). This procedure is not as arbitrary as may appear at
first sight, since it would not be possible to obtain a spurious “fit”
to 1/a? instead of 1/, or vice versa, over any significant frequency
range.

The nearest approximation to the Debye response which we have
found in the considerable range of experimental material investi-
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Figure 5.1 An example of an “ideal” Debye response in a ferroelectric single
crystal of Cesium dihydrogen phosphate (CsHyPO,) which undergoes a ferro- °
electric transition at around 156 K. The data are normalised from measurements
at five spot frequencies of 1.0, 12.0, 72.4, 251.2 and 1,000.0 MHz and in a
temperature range between 151 and 172 K. In the measuring range the values of
the permittivity € were so high that it was not necessary to subtract the &. The
solid points give the locus of the reference point (¢f. Section 3.8) and the slope of
the chain-dotted line at temperatures around the Curie temperature T¢ = 156.0 K
is drawn parallel to the loss slope of —1. The significance of this result will be
discussed in Chapter 8, but for the present it is sufficient to point out the agreement
between the normalised points (open circles) and the theoretical Debye response
drawn as solid lines. It should be noted that there does not appear to be any
departure from the —2 slope of &' (w). The logarithmic scales are purely arbitrary,
the only significant information is the magnitude of the decades. From experimental
data by Deguchi et al (1982), normalisation by R M Hill, reproduced by permission.

gated both in-house and from published literature data is shown
in Figure 5.1 which relates to the response of a ferroelectric single
crystal, Cesium dihydrogen phosphate and the data have been
normalised from measurements taken at five spot frequencies and -
over a range of temperatures on either side of the Gurie temperature.
The more detailed significance of the shape of the normalisation
trace and the reasons for this particular behaviour of ferroelectrics
will be discussed in Chapter 8, for the present we point out the
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close agreement with the Debye response, suggesting that to the
extent of the accuracy of the available data there is no departure
from it.

A good example of the situation in which the experimental data
reveal a clear departure from Debye response is shown in Figure
5.2 giving the data for single crystal CaF, doped with Er to the
extent of 1 part in 10* (0.01%) (Fontanella et al 1978). Each tri-
valent Er ion replacing for the divalent Ca ion requires the intro-
duction of an extra interstitial F~ ion to preserve charge neutrality
and the Er***—F~ pairs represent dipoles whose orientation changes
abruptly as the interstitial F~ ions take up any one of the equivalent
nearest-neighbour positions surrounding the Er*** ions. The
experimental data coyvering a range of temperatures were fitted by
choosing the best value of &, to subtract from the real part of the
permittivity. This fit shows unmistakably that the relation (5.1) is
well maintained beyond the loss peak and separation between the
real and imaginary parts gives a good indication of the departure
from unit slope.

Itis worth noting that the doping density of 1 partin 10* corresponds
to a mean distance between the dipoles of 22 lattice spacings which
would suggest a weakly interacting system — almost independent
dipoles. Measurements on crystals with an even lower concentration
of 1 part in 10° gave a lower loss, indicated by the dotted line in
Figure 5.2 but the resulting accuracy of the real part was insufficient
to enable one to derive a reliable fit for the high-frequency limit.
This result suggests that attempts to produce true Debye-like
responses by “diluting” the dipolar species in order to remove
interactions do not give conclusive results since the magnitude of
the loss decreases more rapidly than the strength of the interactions.

A similar analysis of data for water at 20°C is shown in Figure 5.3
relating to data from Mason et al (1974). Measurements on water
are available with a considerable accuracy and the paper quoted
gives carefully statistically weighted data to obtain the most reliable
pattern of behaviour. The best values of the exponents in the
presumed expressions @™ below the loss peak and w™' above the
peak are given, showing clearly departures from the true Debye
relation. We note that water is considered to be one of the classic
Debye dielectrics so that the demonstration of this departure from
true Debye behaviour, however slight, constitutes a significant
result.
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Figure 5.3 The “best fit” to the values of the dielectric permittivity of water at
20°C plotted as the real and imaginary parts of the susceptibility, subtracting the
value & = 3.8 & from the real part £ (). Data from Mason et al (1974), plotting
by R M Hill. Note the frequency scale is in GHz. The slopes shown are consistent
with the values of the real and imaginary components, particularly beyond the
loss peak where the self-consistency of the two curves provides an additional fitting
criterion.

The loss spectrum of ice at several temperatures normalised to a
common peak is shown in Figure 5.4. The comparison with the
theoretical Debye shape shows the very slight deviation towards
broader peak response, although this mode of presentation does not
easily admit of a quantitative evaluation of the departure. It is
clear, however, that the peak tends to progressive broadening with
decreasing temperature, in common with many other materials.

A different mode of presentation of similar data is shown in Figure
5.5 where the Gole-Cole plots are shown for a range of temperatures
and for the orientation of the field parallel and perpendicular to

Figure 5.2 The dielectric response of CaFy rcpresented as the real and i imaginary
components of the susceptibility against frequency. The data obtained at various
temperatures are normalised and the loci of the displacement points are shown,
together with the corresponding activation diagrams plotted against 1/7. The
values of €. used in the normalisation procedure are shown in the upper diagram
as functions of temperature, indicating an almost linear rise with 7, very similar
for both samples. The upper diagram refers to a sample doped with Er to 1 part
in 10% the lower 1 part in 10°. The dotted peak in the upper diagram represents
the relative position of the loss peak in the less heavily doped sample. The more
heavily doped sample shows clear departure from the Debye relation in the sense
of Figure 5.1, the data for the purer sample cannot be judged with certamty
because of the limitations of sensitivity.

Data from Fontanella et al (1978) presentation by Jonscher (1980a). © The
! Institute of Physics.
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Figure 5.4 Normalised plots of the dielectricloss of ice against frequency at several
temperatures. The solid line is the theoretical curve for a Debye relaxation. O,
parallel to the c-axis at 238.1 K, @ do. at 201.5 K, A perpendicular to the c-axis
at 235.9 K, A do. at 202.6 K. f, signifies the loss peak frequency, &y, the loss peak
ampl:itude.

From _]'oha,rl and Jones (1978). Reproduced from the Joumal of Glaciology by
permission of the International Glaciological Society.

the c-axis. The plots become progressively more circular as the
temperature increases and at the same time a low-frequency “spur”
appears which is due to some form of charge carrier transport —
probably of the Warburg diffusive type.

Many examples of slightly broadened loss peaks, manifesting them-

selves as slightly tilted Cole—Cole plots shown in Figure 5.6 for the

case of triglycine sulphate, are found in ferro- and anti-ferro-electric

materials in the region of “giant dispersion”, usually at GHz fre-
quencies. The behaviour is very similar on both sides of the Curie

temperature and the loss peak frequency is seen to increase as the

temperature moves away from the Curie temperature.

This type of response is closely similar to that shown in Figure 5.1
but in that case the semicircle would be centred on the real axis
— the Cesium dihydrogen phosphate behaves like a more perfect
material than the TGS shown in Figure 5.6.
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Figure 5.5 Complex plane plots of the relative permittivity and loss of ice at
several temperatures. The left half is for measurements with the c-axis oriented
parallel to the electric field, and the right half for that oriented perpendicular to
the field. Numbers besides the filled data points are the frequencies in Hertz. The
plots have been progressively shifted upwards as indicated by the axis.

Johari and Jones (1978). Reproduced from the Journal of Glaciology by permission
of the International Glaciological Society.

A remarkable example of near-Debye behaviour is the dielectric
response of a p—n junction in silicon from which deep-level-forming
impurities had been carefully removed. Figure 5.7 shows the data
for ¢’ (w) plotted linearly and C" (w) against frequency, for a range
of temperatures. The normalisation of the loss data is also shown
and so is the plot of the activation energy which is a straight line,
indicating that the activation energy does not change in the tem-
perature range under study. The rise of loss at high frequencies is
virtually independent of temperature and it corresponds to the
effect of the series resistance of the diode. The loss peak amplitude
increases slightly with increasing temperature, which is consistent
with the fact that the width of the space charge region decreases
due to the fall of the diffusion potential V. The reduction of the
dispersion of capacitance with falling temperature is due to the
gradual movement of the loss peak out of the frequency window.
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Figure 5.6 Complex permittivity diagrams for Triglycine Sulphate (TGS) below
and above the Curie temperature. The frequencies indicated are in GHz. The
inclination of the lines of centres of the circular arcs gives a measure of the
departures from the ideal Debye behaviour.

From Pawlaczyk (1977).

The high-frequency capacitance is strongly temperature dependent
due to the variation of the diffusion potential causing a narrowing
of the space charge region with increasing temperature, as outlined
in Section 4.7. At the lowest temperatures there appears a relatively
frequency-independent loss and this corresponds to the remarkably
low value of the loss angle of 107* radians — approaching that of
the best insulators. The relaxation time at 265 K is of the order of
10 ps, which is eminently compatible with minority carrier recom-
bination, without the need to invoke deep trapping levels.
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We note that in the case of p—n junctions it is more appropriate to
give the dielectric data in terms of the complex capacitance rather
than as the complex permittivity, since the width of the space
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Figure 5.7 The frequency dependence of the complex capacitance of a silicon
p—n junction believed to contain few deep trapping levels. Diagram a) shows the
real part C' () plotted linearly against log f, diagram b) gives the corresponding
loss G(w)/w, both for a range of temperatures. Diagram c) gives the normalisation
of loss, with the locus of the translation of the representative point “A” in b), with
the Debye contour shown by the chain-dotted line. Diagram d) gives the plot of
the logarithm of the peak frequency against reciprocal temperature, indicating the
presence of a single well defined activation energy of 0.27 eV. Loss data at high
frequencies show clear evidence of series resistance of approximately 50 Q which
is consistent with the construction of the device. '

From C K Loh (1978).
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charge region is not known independently, quite apart from the
fact that many devices are encapsulated and it is not possible to
obtain their area.

A remarkable example of anisotropy of the dielectric response is
shown in Figure 5.8 giving the complex & plot for a liquid crystal,
i.e. a molecular liquid in which the molecules have a considerable
degree of coordination. With the electric field parallel to the mol-
ecules the response resembles closely that of a ferroelectric, with
the important difference that the frequencies for the “giant disper-
sion” are much lower in the liquid crystal, the plot is indistinguish-
able from a Debye semicircle. The perpendicular orientation, on
the other hand, gives much lower absolute values of the permittivity
and a very distorted complex plane plot. The frequency range of
the loss peak is also quite different in the two cases. This suggests
that different dipoles, or different configurations of dipoles, may be
responsible for the two situations and that the interactions between
these dipoles must be different.

o

T=27°C

2
Figure 5.8 The complex plane diagram of the permittivity of the smectic phase
of a liquid crystal, with frequencies given in MHz. The permittivity parallel to .
the orientation of the molecules gives a classical Debye plot, that normal to the
molecules gives a broad and asymmetric plot.

From Druon and Wacrenier (1977).
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5.3 BROADENED AND ASYMMETRIC DIPOLAR LOSS
PEAKS

We have started our presentation of the experimental evidence in
the frequency domain with a description of some of the examples
resembling rather closely the Debye response, although we have
noted that the ideal Debye response is hardly ever found in solids.
Moving now towards the more generally observed types of behav-
iour we find a continuous variation of the breadth of the loss peaks,
which may be expressed in terms of the slopes of the two branches
in the logarithmic presentation. We shall not be concerned very
much with the classification of these in terms of the Cole—Cole,
Cole-Davidson and Havriliak—-Negami representations, since these
correspond to no more than a purely formal classification.
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Figure 5.9 Dielectric loss data for tricyclohexyl carbinol, normalised for a wide
range of temperatures. The data above 176 K were measured in the range
10°-10" Hz (Meakins 1956), those for 90 and 78 K were measured at frequencies
below 10°Hz (Johari and Dannhauser 1969). The leading slope m of the high-
temperature, high-frequency data is 1.0. A very definite change of slope occurs
on going to lower frequencies and lower temperatures.

Plot by courtesy of R M Hill.

We begin our presentation with two examples of peaks in which
the leading low-frequency edge has a slope of unity, within experi-
mental error, since this case corresponds to an important limiting
case in our theoretical interpretation. Figure 5.9 shows the nor-
malised data for Tricyclohexyl carbinol, taken over a wide range
of temperatures and in the relatively high frequency range
10°~10" Hz. The two lowest temperatures, which also correspond
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to lower measuring frequencies, show a marked broadening of the
leading edge, but the high-frequency, high-temperature behaviour
has a slope of exactly unity. Our second example refers to butyl
stearate and covers a range of almost ten decades of frequency,
Figure 5.10, with two clearly discernible loss peaks. The high-
frequency peak gives a sudden change of the leading slope to unity
at around 10°Hz, while litdde can be said with any assurance
regarding the trailing edge. The significance of these results will
be discussed in Chapter 8.

0 b
o~
/ .\
16! F =10 Fn=03
" . & .
% ./ \. ..f
- /m=0-6 /
-~ . .
102 |- * \,1-n=o-e /-
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]0‘3 ] ] 1 1 ] ] ] ! 1 1 !
10 10° 10° 100 108 10/°
Frequency (Hz)

Figure 5.10 The dielectric loss spectrum for butyl stearate at 20°C for a very wide
range of frequencies (Dryden 1957). Two distinct loss peaks are seen, both broader
than Debye, but the slope m = 1.0 should be noted on the leading side of the
high-frequency peak, at 10° Hz.

Plot by courtesy of R M Hill

a) Polymeric materials
Many of our examples will refer to polymeric materials which are
characterised by the presence of a phase transition at the so-called
~glass transition temperature, 7,. At temperatures above T, the
material behaves in a liquid-like manner, with a very high viscosity,
but showing a measure of quasi-crystalline order. Below 7}, on the
other hand, the system becomes “frozen in” and the behaviour is
more solid-like. At 7, we find a sudden change in many properties,
-e.g. heat capacity and thermal expansion and the dielectric behav- -
iour changes likewise, with the so-called « loss peaks above T,
being relatively narrower, those below 7, known as the f3 peaks
being relatively much broader. The two types differ also in their
temperature dependence, as will be discussed below.
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The dielectric loss spectrum of the « peak of polyvinyl acetate in
a range of temperatures is shown in Figure 5.11 where the real and
Imaginary components are plotted on a linear scale against the
logarithm of frequency. Apart from the strong rise of loss at low

b log )
\ X
0.951 ’\
LN
\,
x\x.
AN
0.90— . -
2,50 25 g7

" Log f less)

Figure 5.11 The frequency dependence of the real and imaginary components of
the relative permittivity of polyvinyl acetate covering a range of temperatures in
the o relaxation region above 7,. Note semilogarithmic plotting. From Ishida et
al (1962). The diagram on the right gives the variation of the low-frequency limit
of the real part with temperature in logarithmic representation, indicating that.
the data are consistent with a 1/T dependence. ¢f. Figure 4.7.

By permission of Dietrich Steinkopff Verlag, Darmstadt.

frequencies and high temperatures due to the onset of ionic dc
conduction the loss peaks show a slightly broadened shape, a strong
shift of the peak frequency w, with temperature and a relatively
much weaker decrease of amplitude with increasing temperature.
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The latter is also confirmed by a slight decrease of the low-frequency
permittivity £(0), which is plotted as a function of 7'in a logarithmic
representation to show that, within the limited accuracy of our
data, the response is consistent with the 1/7" behaviour expected
of Debye-like, i.e. thermally disordered systems. This treatment is

equivalent to that described in Figure 4.7, where loss peak amplitude
was plotted.
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Figure 512 Loss data from Figure 5.11 plotted logarithmically, upper diagram,
and normalised with respect to temperature, lower diagram. The locus of nor-
malisation shows a very slight drop, consistent with the temperature dependence
observed in Figure 5.11, but the logarithmic presentation reduces the sensitivity
of this amplitude shift. Tht normalised plot suggests the onset of a second process
at the high-frequency low-temperature end of the spectrum.

From Jonscher (1975). By permission of Dietrich Steinkopff Verlag, Darmstadt.
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We now turn to the presentation of the same data in the logarithmic
representation, which we prefer, shown in Figure 5.12 as loss data
and the corresponding normalisation. In this presentation the tem-
perature dependence of the amplitude cannot be assessed with
sufficient precision, but the normalisation of the shape is much
easier and so is the proper assessment of the nature of the frequency
response away from the peak. We note that the peaks become
slightly broader and a high-frequency “tail” develops as 7'decreases.

The corresponding data for polydian carbonate are shown in Figure
5.13 where we note that a very good normalisation is possible giving
a single master curve, with an almost temperature-independent loss
peak amplitude, witnessed by the horizontal locus of the displace-
ment points.

a)

s
4
-
-

3
log (f/&.)

Figure 5.15 Dielectric loss peaks for the « relaxation in polydian carbonate for
a range of temperatures, based on original data from Ishida and Matsuoka (1965).
The normalisation shown in the lower diagram proves that all the points, except
possibly those for the lowest temperature, fall on a single normalising curve.

Figure reproduced from Jonscher (19?5) By permission of Dietrich Steinkopff
Verlag, Darmstadt.
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Not all peaks normalise to a single master cruve, showing a shape
which is independent of temperature. Examples of varying shape
are shown in Figure 5.14 and 5.15 in which both slopes below and
above the loss peaks become smaller with decreasing temperature.
Both these show a clear increase of amplitude with temperature.

0,50

0,25

0,104
0,05+

0,025

0,010 -

1. frSon,
ﬂé o
o c/ 2,1 decades \:i* .
¥,

o +
o o*x\n\-a‘
no o?Q? ?‘oo\ "'.3(

Al

<
8
o117/

locus of point A -
Q== ~Um— —y— — .0 — = —O-——

' t T 1 1 t t f i
B -2 -1 o 1 2 3

5 &
log (#/£,)

£

Figure 514 The dielectric loss peaks for the & relaxation of poly n-butyl meth-
acrylate after Ishida (1969). The normalisation shows a very large secondary loss
process at the lowest temperatures, with a corresponding strong decrease of
amplitude, manifesting itself as a sudden rise of the locus of the representative
points. The secondary process does not normalise with the same shift as the main
peak, indicating that its activation energy is different.

From Jonscher (1975). By permission of Dietrich Steinkopff Verlag, Darmstadt,



5.3

EXPERIMENTAL EVIDENCE ON FREQUENCY RESPONSE

179

Do o
o oGBS ﬁ%’:}kﬂ\mqa
ety { “\faa,a
et °\,\ 17,3

47 B—a o
N AN
e A

g\x\ / o B \'\. 83,5
— ,9/ ,V/ 9‘-‘)&( A\A
/ x"“x.\_ \m__a-s?,?
7/ e 17,7
A®
1 T T 1] 1 T
1 2 3 5
log f(Hz)
X Xy
b) -——b—Q#LkgW'—
+ Q‘I &
v é“ 'Y
o8 x
o % 4%
T03 e ﬁx 3
x 17,7°C Ce A% %y
o a 57,7
o e 835°C
407 ©1025°C
vi173°C
0730,3°C
+ 140,8°C
" : L 003 | : - .
Y N B R I
1031 (F/fa)

Figure 5.15 Dielectric loss data for polyethyl methacrylate taken from Ishida and
Yamafuji (1961). The normalisation shows a very strong variation of the low-
frequency slope — the exponent m — and a less pronounced variation of the
high-frequency slope — exponent 1 — n, with a correspondingly strong variation
of the loss peak amplitude. The consistent increase of loss peak amplitude with
rising temperature should be noted — a trend in complete contrast to that shown
in Figure 5.11.

From Jonscher (1975). By permission of Dietrich Steinkopff Verlag, Darmstadt.

An example of the contrast between the v and 8 peaks in the same
material-is shown in Figure 5.16 relating to polychloroprene where
the much broader nature of the f§ peaks is apparent. Again the
amplitude of the a peak is almost independent of temperature,
while the f§ peak is increasing.

An example of an almost perfect normalisation to a single master
curve is shown in Figure 3.37 relating to the low-temperature peak
in polyethylene terephthalate, where the loss peak amplitude again
shows a definite increase with temperature.

The following discussion of the broadened loss peaks will be facil-
itated by a reference forward to eqn (5.3) which defines the
power—law relations below the loss peak frequency, ¥’ (@) «< @™ and
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Figure 5.17 The dielectric loss spectrum of poly-isobutylene for a range of tem-
peratures and a wide range of frequencies. Note that because the tan § < 1073, the
dispersion of & (@) is negligible and the tan & plot is effectively the same as the
€' (w) plot, except for a constant factor €.

From Stoll et al (1972). By permission of Dietrich Steinkopff Verlag, Darmstadt.

Figure 5.16 Dielectric loss data for polychloroprene in the high- and low-tem-
perature regions, corresponding to « and ' relaxations, respectively. Data from
Matsuo et al (1965).

The high-temperature data in the upper diagrams normalise to an almost perfect
master curve with a marked asymmetry. The lowest temperature data suggest the
presence of a secondary loss peak descending from higher frequencies.

The lower-temperature data in the lower diagram reveal a very broad and
asymmetric peak, whose width at half-height is 6 decades, whose amplitude
increases strongly with rising temperature. The leading slope decreases markedly
at the lowest temperatures.

From Jonscher (1975). By permission of Dietrich Steinkopff Verlag, Darmstadt.
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Figure 518 Activation energy diagrams, obtained by plotting the logarithm of
the loss peak frequency f,, or the amount of the horizontal shift of the normalisation
locus, against the reciprocal temperature, 1/7. The lower temperature peaks for
a range of polymeric materials are shown in the diagram on the left, which also
gives lower activation energies whose values are given on the diagram in
electron-volts. The plots corresponding to higher-temperature peaks are shown
in the right-hand diagram and the activation energies are also indicated. The plots
are displaced horizontally and vertically for clarity, the diagrams on the right also
have different scales of the abscissa.

From Jonscher (1975). By permission of Dietrich Steinkopff Verlag, Darmstadt.
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above the loss peak frequency, ¥’ (@) < @', where m and 7 are
constants for any particular characteristic and they fall in the range
(0, 1). |

We conclude our presentation of the dielectric response of dipolar
polymeric materials at temperatures other than in the cryogenic
range, which will be discussed separately, with an example of a
rather complex behaviour of polyisobutylene, Figure 5.17. The
amplitude of the main loss peak is almost independent of temper-
ature while the shape narrows very significantly with increasing
temperature, making normalisation rather unceértain. A further
complication is the presence of a secondary loss mechanism which
produces a peak with a different activation energy from the main
one, so that the secondary peak is on the high-frequency slope of
the main peak at low temperatures and appears on the Jow-fre-
quency slope at high temperatures.

The temperature dependence of the & and f3 peak frequencies for
a range of polymeric materials is shown in Figure 5.18 in the form
of the usual activation plot of log w, against 1/7, the slope of which
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Figure”5.19 The frequency of the loss peak for the c}ﬂorobenzene—cis—decalip
system showing a glass transition and demonstrating the different types of acti-
vation plots for the o and 8 peaks.

From Johari (1976),
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may be interpreted as the activation energy. The 8 peaks give, on
the whole, well defined straight line plots, indicating a single acti-
vation energy the value of which falls in the range 0.5-0.7 ¢V. In
the case of the o peaks there is, in general, a tendency to curved
plots, with the slope increasing with decreasing temperature. The
values of the activation energy obtained by drawing the tangent to
the plot appear unreasonably high in some cases and an alternative
viewpoint makes physically much more sense. Figure 5.19 shows
the complete plot of the loss peak frequency against temperature
for Chlorobenzene—cis-Decalin. mixture which is a glass-forming
substance with 7, = 131 K. It is clear from this plot that the f3
peaks follow the classical Arrhenius relation, eqn (4.29) with a well
defined activation energy, but the critical temperature 7, implies
a catastrophe in which the frequency w, tends to zero, giving an
artificially high slope which cannot, however, be interpreted as an
activation energy in the conventional sense. It is interesting to note
that at very high temperatures the response falls on the projection
of the 3 relaxation from lower temperatures.

It may be intriguing to note the relatively narrow range of activation
energies of the f processes, between 0.5 and 0.8 eV, approximately.
An explanation of this was proposed by Hill (private communi-
cation) in terms of the physical processes which determine the
conditions of measurements. Taking the pre-exponential factor v
in the expression defining the loss peak frequency

w, = vexp(—W/kT) (5.2)

as 102 Hz, corresponding to typical lattice vibration frequencies,
we obtain the numerical expression for the logarithm

log @, = 12 — 5.04 W (10°/ T)

where W is the activation energy expressed in electron-volts. Taking
a typical frequency “window” available to most experiments
between 10Hz and 1 MHz, and a typical temperature range
between —50 and 200°C we obtain the shaded area in Figure 5.20
as the experimentally accessible region. With these data, we see
that loss peaks with energies in excess of 1 eV will not appear except
at much higher temperatures or lower frequencies, while those with
energies less than 0.4 eV will not be reached until much lower
temperatures and higher frequencies. To that extent we may say,
therefore, that the observed values of activation energies are self-
selecting through the nature of the typical experimental conditions.
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Figure 5.20 An illustration of the reasons for the apparently narrow range of
activation energies found in the low-temperature peaks of dipolar materials,
including polymers. If the activation energy can be expressed by a relation of the
form of eqn (5.2), with v corresponding to a typical lattice frequency of 10'* Hz,
and if the available temperature and frequency “window” is as indicated by the
shaded region, the observable activation energies fall in the range 0.3-1.0 eV.

Courtesy R M Hill.

b) Other dipolar systems

There are very many dipolar systems, ‘with either molecular dipoles
or with hopping ionic species which give the effect of dipolar
behaviour by being confined to hopping between nearest neighbour
positions around a fixed site. These materials are often more ther-
mally stable than polymers, in that they do not show the phenomena
of glass transition, so that their dielectric loss peaks are more easily
normalised into a single master curve, sometimes covering a wide
range of temperatures.

" Figure 5.21 shows a compilation of loss peaks of a wide range of
materials, the broader lower-temperature ones on the left, the
narrower higher-temperature ones on the right. Some of these are
glass-forming systems undergoing the glass transition process sim-
ilarly as in polymers, e.g. 3-methyl-3-heptanol, others are mixtures
of organic liquids and included in the collection is also the low-
temperature response of silica glass—Suprasil in the range 4.2 K
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Figure 5.2 Two compilations of dielectricloss data for a range of dipolar materials,
plotted logarithmically and normalised for the temperatures indicated as numbers
(in K) at the corresponding lowest frequency points. The individual plots are
displaced vertically and horizontally for clarity. The set in a) gives the broader,
lower-temperature peaks, that in b) the narrower higher temperature peaks. The
chain-dotted lines indicate the slopes corresponding to m = 1. The shapes of ideal

Debye responses are shown. The numbers on the right of each diagram refer to
literature data in Table 5.1.

The logarithmic plots and normalisations by courtesy of R M Hill.

down to 24 mK. The principal object of showing these loss peaks
is to emphasize their powér—law character on either side of the loss
peak, manifesting itself through the linear regions, where there is
no overlap of inore than one mechanism. The very broad peaks in
a) tend to an almost frequency-independent behaviour, while in
other cases there is evidence of either a second low-frequency
process or another higher-frequency process taking over. The
low-temperature Suprasil response illustrates the very wide range”
of power—law below the loss peak — this type of result can only be
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obtained at very low temperatures, since at higher temperatures
the onset of direct current conduction masks the low-frequency
dielectric behaviour. A wide range of frequencies can be covered
easily if the exponent m becomes small because of the small variation
of loss.

It is noteworthy that none of the responses shown in these diagrams
give a low-frequency slope steeper than +1.0 and a high-frequency
slope steeper than —1.0. The significance of these values will become
clear in the context of the theoretical discussion of Chapter 8.

A special class of dielectric systems are ferroelectrics, whose special
properties include the persistence of polarisation in the absence of
external electric field and the existence of a critical temperature,
the Curie temperature 7;, above which the ferroelectric ordered




188 DIELECTRIC RELAXATION IN SOLIDS 5.3

phase goes over into the disordered paraelectric phase. We saw the
“giant” dispersions in these materials in Figures 5.1 and 5.6 where
the behaviour approximated closely to the Debye response. We
now show another example of ferroelectric behaviour in the vicinity
of T, represented as a normalised plot of the real and imaginary
- components of x(w) for AgNa(NO,), in Figure 5.22. The remark-
able feature of this response, as also in Figure 5.1, is the shape of
the locus of the displacement point which follows the not hitherto
seen, let alone understood trajectory, consisting of two almost
parallel lines which are also parallel to the high-frequency slope of
the loss peak. Starting below the Curie temperature, where the
material is ferroelectric, the amplitude increases and the frequency
decreases as we approach 7; and the opposite trend sets in above
T;. Many more examples of this behaviour have been found and
the full significance of these results was only recently brought out
by the work of Dissado and Hill (1979, 1980) and will be discussed
‘in Chapter 8.

¢) Dipolar response at cryogenic temperatures

One of the most striking features of the dielectric response distin-
guishing it sharply from most forms of steady state response, such
as transport of charges, is the persistence of dielectric loss down to
the lowest temperatures in the milli-Kelvin range. This behaviour
is somewhat unexpected and it might not have been noticed, let
alone studied in detail, were it not for the technological interest.
aroused some years ago in the development of cryogenic electrical
machinery and cables. At the same time, the full theoretical sig®
nificance of these phenomena only became clear in the context of
the new “universal” theory which will be discussed in Chapter 8.

The behaviour of many dipolar materials at cryogenic temperatures
resembles that at higher temperatures, except that the relationship
between the loss peak frequency and amplitude and the temperature
does not follow the same pattern (Phillips 1970, Carson 1973). Yet
other materials show a completely frequency‘ independent loss
which will be discussed more conveniently under Section 5.7.

Figure 5.23 shows the data-for two samples of slightly oxidised
polyethylene, the first in the range 1.24—17.1 K which shows a
simple normalisation, the second in the lower range 0.029-4.2 K
in which there is clear evidence of a critical temperature around
0.2 K. In the first case the peak amplitude increases steadily with-
decreasing temperature while the peak frequency decreases. In the
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Figure 5.22 Normalisation of the real and imaginary components of the permit-
tivity of AgNa(NOy); below and above its Curle temperature, showing that the
locus of the normalisation points follows two almost parallel lines with slopes close
to the high-frequency slope of the loss curve.

Data from Gesi (1972), normalisation and plotting by courtesy of R M Hill.

second case the behaviour is complicated by the existence of the
critical temperature. Both peaks are slightly broader than Debye,
their width at half-height is A = 1.5-1.7 times the Debye width of
1.144 decades. They are also slightly asymmetric.

Figure 5.24 shows a remarkable example of the response at 4.2 K
for a “pure” sample without antioxidant, which gives a completely
“flat” loss at a very low level, and also the response of two samples
with different types of antioxidant which both give very distinct
loss peaks of almost symmetric nature and approximately twice the
Debye width. The presence of antioxidant in this context may be
associated with the introduction of some dipolar impurities into the
normally non-polar polyethylene and it may also give rise to some
cross-linking of polymer chains.

Very interesting features of low-temperature response appear in
Figure 5.25 relating to 2,4,6, tri-tert-butyl phenol (Isnard and
Gilchrist 1980) which are normalised and scaled at 51.7 K by R
M Hill. The high-frequency slope 1 — n is almost independent of
temperature, but the low frequency slope m shows a sharp dip, see
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introduce additional dipoles into the material.

From Thomas and King (1975).
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1 — n and m plotted in the inset as functions of temperature.

Data from Isnard and Gilchrist (1980). Plotting by R M Hill.

inset, indicating a discontinuity of behaviour. The dielectric
response reveals itself as a very sensitive probe into structural
details of the material under conditions where no other measuring
technique might be able to reveal any significant changes.

Our last example of the low-temperature dipolar responses concerns
the class of materials known as clathrates, in which molecular
“cages” consisting of H,O molecules arranged in pentagonal
dodecahedra and similar structures, contain individual “guest”
molecules which may be polar and which are confined in an almost
spherically symmetric potential. In principle, one would therefore
expect these dipoles to be almost free to rotate and to behave like
ideal Debye systems, except for the interactions between the neigh-
bouring dipoles. In fact, the behaviour departs very strongly from
the Debye pattern. Figure 5.26 shows three examples of response
at low temperatures, drawn in the form of complex € plots which
mndicate a region at high frequencies with the universal frequency
dependence, resulting in a straight line tail to the complex plane
plot.
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From Gough et al (1973).

A very recent survey of the low-temperature properties of dielectrics
may be found in Phillips (1981).

d) Characterisation of dielectric loss peaks

Our survey has shown that the prevailing form of frequency depend-
ence of the dielectric loss peaks may be represented by the empirical
law combining two power-laws, respectively below and above the
peak frequency w, (Jonscher 1975a)

1
. o

#O ol oy (ol
in which the exponents m and 1 — n fall in the range (0, 1) and the
peak frequency is generally temperature dependent with either a
simple activation law, eqn (5.2) or with some more complicated
relationship. The applicability of this empirical relation is limited
at low frequencies by the onset of direct current conduction, while
at the higher frequencies perturbing processes are often visible
arising from the presence of some series resistance in the measuring
system, or from the overlap of some other loss processes.

(5.8)

The question of overlap of different dielectric processes raises some
. very important questions of principle. It is often argued that since”
the dielectric response of many materials is complicated by the
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presence of multiple peaks and other features, there is no point in
trying to find a “universal law” which would represent the response
in a more satisfactory manner than the simple and arbitrary super-
position of Debye mechanisms, to be discussed in Chapter 7. We
have to leave it to the reader’s judgement whether the empirical
law (5.2) does or does not represent a useful approximation to the
behaviour of most materials and whether it may be used as a “basic
element” for the construction of more complicated spectra by a
superposition of two, or possibly three separate such mechanisms.

Our point is that this law is capable of representing the observed
behaviour of many dielectrics in a remarkably wide range of fre-
quencies — spanning as many as eight to ten decades in some cases,
“allowing for the normalisation process. The strong presumption
arises, therefore, that this power law does accurately reflect a very
fundamental process and its physical implications should be further
examined since, if it could be shown to correspond to a well defined
physical mechanism, it would represent a significant step forward
to the meaningful interpretation of the processes of dielectric polar-
isation. This does not, in any sense, preclude the possibility that
in any given material there may be more than one single “universal”
process in operation — indeed, it is most surprising that so many
different materials appear to be dominated by one single “universal”
law (5.3) in the entire available frequency range.

In order to advance our understanding of the physical implications
of the universal law it is instructive to study the incidence of the
values of the exponents m and n throughout the spectrum of
. materials. Figure 5.27 shows a plot of these exponents for 100
dipolar materials (Hill 1981a) using the two exponents as coordi-
nates in a square array. Where the exponents vary with temperature,
the characteristics of the most well-defined spectrum were taken.

The top right-hand corner with m =1 and 1 —n =1 corresponds
to the ideal Debye characteristic. The diagonal corresponds to
symmetric peaks, for example those given by the empirical Cole—
Cole expression, eqn (3.37) and the Fuoss-Kirkwood (1941)

expression:
e
(0%)*+ (07)~

¢ _ = ¢ sech(aIn %) (5.4)

which corresponds to our universal law with equal exponents.
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The top side gives points compatible with the empirical Cole—
Davidson formula (3.38) and also with the frequency-domain trans-

- form of the Williams-Watts (1970) law:
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Figure 5.27 A plot of the characteristic exponents m and 1 — n defined by eqn
(5.3), for one hundred dipolar materials. Each material is represented by a point
with coordinates m and 1 — n, numbers refer to the Table 5.1 which gives literature
references. Where it has not been possible to label the points internally, an external
label is given relating to a solid contour. The Debye process corresponds to the
top right-harid corner marked D, the Cole-Davidson expression corresponds to
m =1 on the top side marked C-D, while the Cole-Cole:symmetric characteristic
corresponds to the diagonal G-C. Where the exponents m and n show a variation

with temperature, the “best” characterised values are shown.
From Hill (1981a),
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It is evident that the behaviour of a great majority of the materials
shown in Figure 5.27, which are generally representative of all
dielectrics with dipolar loss peaks, do not conform to any of the
“single parameter” functions and that recourse must be had to
two-parameter representations, with two independent parameters,
such as the exponents oand f in the Havriliak—-Negami law (3.39),
or our exponents m and 7.

It should be noted that most of the data falling on the top side of
the square, i.e. showing the value m =1 for the low-frequency
branch of the spectrum, correspond to measurements taken at very
high frequencies in excess of 10°® Hz, such as those shown in Figures
5.9 and 5.10. This point will be taken up in Chapter 8.

We conclude, therefore, that the behaviour of real dielectric
materials indicates unmistakably the presence of at least two separate
and independent processes, characterised by the exponents m and n,
both falling strictly within the ranges (0, 1). A satisfactory theory
of dielectric response must be capable of explaining this general
feature in terms of recognisable physical processes and must be
able to do so largely independently of the detailed physical and
chemical nature of the materials involved, as is clear from the list
in Table 5.1 explaining the types of materials for which coordinates
are given.

54 THE DIELECTRIC BEHAVIOUR OF p-n
JUNGTIONS

We have outlined in Section 4.8 the principles of the frequency-
resporse arising from generation-recombination processes in semi-
conductors, with particular reference to the behaviour of semicon-
ductor p—n junctions. In these rather unusual “dielectric’ systems
the inherent delay in the response with respect to the applied signal
arises not from the presence of identifiable dipoles in the space
charge region — in fact, it is very difficult to see how dipoles having
the desired low-frequency response might arise — but from the delay
in the generation or de-trapping of charge carriers at the edges of
the space charge region, as shown in Figures 4.13 and 4.14.

Despite the great technological importance of p—n junctions and -
~despite the fact that their capacitive properties have been well
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recognised for many decades, there is relatively little experimental
information on the dielectric spectrum of their loss and polarisation
as functions of frequency. Recent work shows, however, that p—n
Junctions have very characteristic responses and their study has
contributed significantly to an improvement of our theoretical
understanding of the nature of the trapping and recombination
processes in semiconductors.

We have already shown the results of measurements on a relatively
“pure” p—n junction, which gave an almost Debye-like spectrum,
Figure 5.7. In the present Section we shall augment this picture
with several spectra of different p—n junctions which depart very
drastically from the Debye behaviour but which nevertheless give
the same general pattern of “universal” response found in dipolar
materials, eqn (5.3). This remarkable similarity of behaviour with
a very different basic physical process underlying it encourages a
critical reappraisal of the relevant theory.

Figure 5.28 gives the complex susceptibility spectra of a silicon
rectifier diode. The loss data are as measured, with strong evidence
of de conduction at low frequencies and higher temperatures. The
data have been normalised with respect to temperature, and the
locus of the displacement points is shown on the same diagram,
together with the relevant activation plot which gives an activation
energy of 0.48 eV in the higher temperature region.

- Once outside the influence of the dc conduction processes, the
spectrum shows a well-defined power law with m = 0.18 and this
is followed beyond the peak by a relatively steep power law with
n=0.42 extending for at least three decades. The corresponding
activation energy at the lower temperatures is 0.35 eV.

The real part of the susceptibility was obtained from the C’(w)
data by requiring that the high-frequency part should be compatible
with the very well defined power law for the loss, eqn (3.31). This
gave values of C.. for the different temperatures — we note that the
capacitance of 2 p—n junction depends on temperature not only
through the dependence of the permittivity, but also, and to a large
extent, through thé temperature dependence of the width of the
space charge region, so that we cannot determine the absolute
values of &(w) or x(w). It is clear from the examination of the real
part of ¥’ (@) that it saturates very slowly towards low frequencies,
which is characteristic of the behaviour of systems with small values
of the exponent m, in accordance with the known properties of the
relevant Kramers—Kronig transforms, eqn (3.40) (Hill 1981b). It



202 DIELECTRIC RELAXATION IN SOLIDS 54

is also clear that there is no evidence of another lower-frequency
process setting in the region dominated by the dc conduction — this
is important, because it proves that the dielectric response of this
particular junction follows a single law given by eqn (5.3) over a
range of ten decades of frequency. This is the more remarkable since
the normalisation procedure has shown the presence of a variation
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Figure 528 The dielectric spectrum of the real and imaginary components of the
susceptibility of a silicon p—n junction diode, taken over a range of temperatures.
Since the thickness of the space charge region is not known precisely, the data
correspond to %' (w) o= C'(w) — Cw and x"(w) = A" (w), where G is a suitably
chosen value which gives a Kramers—Kronig compatible frequency dependence
for the real and imaginary parts at frequencies in excess of the loss peak frequency.
The data for the real part )' (w) are displaced vertically for clarity — their proper
position with respect to the imaginary part is shown by the chain-dotted line. The
locus of the normalisation points shows that the amplitude of the loss peak increases
with increasing temperature. The chain-dotted line superimposed on the diagram
is the activation energy plot of the horizontal shift of the normalisation points
against a 1/7 scale (not shown), giving two extreme values of activation energies.
The steeply rising loss at low frequencies corresponds to the dominance of direct
current conduction.

From Charoensiriwatana (1982).

of the activation energy, as witnessed by the rising slope of the
activation plot in Figure 5.28. These measurements were supple-
- mented by a detailed study of the dependence of the dielectric
response on the applied steady bias, which has the effect of changing
the width of the space charge region and also altering the distri-
bution of localised charges in the space charge region. Figure 5.29
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gives the results, processed in a similar manner as above, for 0, 2,
5 and 10 volts 1everse bias. Measurements with forward bias are
not practicable because of the dominant direct current conduction
in this mode.
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Figure 529 The effect of a steady reverse bias on the loss spectrum of the diode
shown without bias in Figure 5.28. The data for individual temperatures have
been normalised similarly as in Figure 5.28. The plots corresponding to the real
and imaginary components are displaced with respect to one another for clarity,
but the individual plots for. different biases are in their correct relative positions
within each set. The positions of the loss peaks in the frequency scale are correctly
given, indicating a slight decrease of the loss peak frequency with increasing bias.
The normalisation points are indicated at the bottom of the diagram, they are the
same for the real and imaginary components and they are referred to a common
point for all four biases at 298 K. The regular shift of the temperature points with
increasing reverse bias indicates that the activation energy is increasing. The
dotted line in the loss plot shows the correct position of the real part for zero bias.
The general conclusion is that the spectrum of relaxation does not change with
reverse bias, apart from a slight shift in frequency and a change of amplitude, the
latter due to changing width of the space charge region.

The short horizonal lines on the loss plots indicate the corresponding positions
of Ce which provide a measure for the effective width of the space charge region
at each bias. There s little variation of Cw (0)/ C (— V) for different temperatures.
The implication is that xm/C« decreases with increasing bias, while yn/x" does
not, since they must remain Kramers—Kronig compatible.

From Charoensiriwatana (1982).
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The very interesting result of these measurements is that the shape
of the loss spectrum does not depend on bias — the normalised data
show a parallel shift with respect to the zero-bias response. What
is significant, however, is the reduction of the amplitude of loss and
that by a larger factor than the corresponding reduction of C.
which may be presumed to depend on the thickness of the space
charge region. The absolute reduction of the ratio of loss amplitude
to C. is consistent with the interpretation of the process as a series
combination of a lossy region near the edge of the space charge
region and a relatively loss-free but voltage-dependent capacitance
of the main space charge region itself.

A completely different semiconductor system is represented by a
GaAs/GaAlAs double heterostructure laser diode junction whose
loss spectrum for a wide range of temperatures is shown in Figure
5.30 a). Here the high-temperature low-frequency response is clearly
dominated by the direct current conduction processes which one
would expect in these junctions with their high density of deep
levels and very short life-time of the order of 10™°s. As the tem-
perature decreases towards 50 K the low-frequency part of the
spectrum collapses until the loss becomes nearly flat and at 35 K
there appears a rising part of a new loss peak which becomes even
more pronounced at 4.6 K.

These data were further processed together with the real part of
the capacitance using a computer and a Visual Display Unit to
obtain the best possible self-consistent set of data by subtracting
a dc conductance from the low-frequency loss and a C. from the
high-frequency C'{w) data. The result is shown in Figure 5.30 b)

Figure 5.30

a) The dielectric loss data for a GaAs/GaAlAs double heterostructure laser diode,
taken over a wide range of temperatures and presented without subtraction of the
dc component which dominates the high-temperature behaviour.

Note the flattening of the response at 50 K and the appearance of a loss peak at
4.6 K.

b) The same data after a self-consistent adjustment of Gy and C. to obtain 2
Kramers—Kronig compatible set of normalised curves. The real and imaginary
components are displaced vertically for clarity. The locus of the displacement
points and the activation diagram are also plotted.

* The tailing off at high frequencies is a reflection of the flattening of loss at low
temperatures in a).

Note the continuous variation of the activation energy.

Charoensiriwatana (1982).
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in the form of the normalised response for the very wide temperature
range 77-294 K. The first impression is the success of the self-
consistent treatment in uncovering the loss peak from underneath
the “mountain” of dc conduction loss. The second surprise is the
similarity-of the overall pattern of the response to the silicon junction
— the steeper high-frequency slope than the low-frequency slope,
- confirmed here again by the slow saturation of the real part. The
presence of a secondary high-frequency process is evident here and
this is consistent with the evident tendency to a flat response at
lower temperatures. One further interesting feature is the large
range of activation energies which fall from 0.25 eV at the higher
temperatures to 0.075 eV below 100 K.

Our survey of the dielectric properties of p—n junctions concludes
with the data of a silicon n* — p junction bombarded with 0.7 MeV
electrons. This treatment is known to create a considerable amount
of lattice disorder, resulting in the appearance of deep levels with
well defined activation energies. Figure 5.31 shows the loss dat&
normalised for temperatures in the range 80-293 K showing three
distinct loss peaks in addition to the dc conduction. The activation
plot superimposed on the main diagram gives the activation
energies.

This diagram illustrates very clearly the problem arising with
normalisation in the presence of several partially overlapping pro-
cesses — it is impossible to obtain a completely consistent normal-
isation across the entire spectrum and one has to concentrate on
the individual principal features, in the present instance the loss
peaks, leaving the valleys between them rather less well defined.
The loss peaks are .not sufficiently well separated to enable their
slopes to be determined with assurance, only the n exponents of the
outer two peaks could be obtained and they are in the region of
0.4.. This shows that the peaks are significantly broader than the
Debye shape, but they are not as wide as those seen in Figure 5.28
and 5.30. Their activation energies compare well with data obtained
independently on material treated in the same manner, for example
using the technique of Deep Level Transient Spectroscopy (DLTS).

It is appropriate to comment here on the relative merits of the
“dielectric spectroscopy technique described above, alternatively
known as admittance spectroscopy, and the other techniques of
DLTS and Thermally Stimulated Capacitance (TSCap).

Both these latter techniques are much more rapid and require less
sophisticated equipment than the admittance spectroscopy, but
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Figure 5.31 The dielectric loss spectrum after normalisation for a silicon n* — p
junction bombarded with 0.7 MeV electrons showing, in addition to the low-
frequency direct current conductivity manifesting itself by the 1/f slope, three
distinct loss peaks whose activation energies are indicated. The diagram contains
two separate plots which are superimposed on one another — the normalised loss
versus logarithm of frequency plot with its associated locus of the diaplacement,
and the plot of the same displacement zersus 10°/T which gives the activation -
energies. In a plot covering four differently activated processes in 15 decades of
normalised frequency, it is impossible to obtain a uniform normalisation through-
out, due to the overlap of mechanisms. The normalisation has therefore cenéged
on the loss peaks, leaving the valleys less well defined. The high-frequency slopes
of two of the peaks are indicated, both corresponding to the exponent n = 0.4.
The peaks are not sufficiently well separated to enable the exponents m to be
determined with any accuracy, neither can the middle peak be characterised with
certainty.

From Favaron 1982.

they are capable essentially of giving the activation energies and
the capture cross sections of the deep centres, while not revealing
anything about their spectral properties. As a rapid means of
characterising deep centres these methods are therefore adequate,
their limitations have been well presented by Favaron (1982). On
the other hand, the dielectric admittance spectroscopy reveals
information about the frequency or time dependence of the dynamic
behaviour of deep traps which, as we have seen, departs very
significantly from the classically accepted exponential or Debye
model. This information could not be obtained normally from the
other techniques, because they inherently lack the necessary band-
width and yet the lack of this type of information has contributed
to the wide acceptance of the simple exponential model which is
implicit in most theoretical treatments of recombination- and trap-
ping processes. Studies of the kind shown above open the way,
therefore, to a fresh appreciation of the need to develop a more
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realistic dynamic model of recombination and trapping processes
in semiconductors, a model which would account for the fractional
power law relaxation which resembles in many respects the dipolar
relaxation seen in all dielectrics.

Anticipating the discussion of strong low-frequency dispersion in
Section 5.6 it is worth noting that none of the many types of p-n
junctions studied in the Chelsea Dielectrics Group has shown any
sign of dispersion of the real part C'(w) even at the lowest fre-
quencies and highest temperatures investigated. The significance
of this will become clear in the discussion of Chapter 8.

5.5 DIELECTRIC RESPONSE WITHOUT LOSS PEAKS

In our discussion so far we have covered the various types of
dielectric response involving loss peaks, with the implication that
the loss ‘becomes arbitrarily small towards very low frequencies, in
agreement with the general requirement that the loss should go
through zero at zero frequency as required by eqn (2.42). We now
come to an essentially different type of response which is found in
many dielectric systems and which we shall come to associate with
the presence in the material of partially mobile charge carriers.
Here no loss peaks are observable down to the lowest measurable
frequencies and instead the response goes over into a steeply rising
branch towards low frequencies. This might be expected in the
presence of a dc conductivity, which would give a contribution of
the form 0/ w, eqn (2.50), while leaving the real part independent
of frequency. We shall see, however, that a further, hitherto not
well understood phenomenon is often apparent at low frequencies
in charge-carrier-dominated systems in which both the real and the
imaginary part of the complex susceptibility rise steeply towards
very low frequencies.

When dealing with charge carrier systems it is often preferable to
plot the ac conductivity instead of the dielectric loss, as explained
i Chapter 3 and we shall use both loss and conductivity plots,
according to circumstances. The principal consideration will be the
criterion of “true” dielectric response — if the phenomenon in
question is ordinary direct current conduction not accompanied by
a strong dispersion of the real part of the permittivity, then the
conductivity plot is preferred and corresponds more closely to the
physical situation, but if there is evidence of simultaneous strong
low-frequency dispersion of the real as well as the imaginary part
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then the process in question is a genuine dielectric pheomenon and

the loss plot is preferred to give more direct comparision with the

real part. We mention here that the concept of charge carriers

making a contribution in their own right to the dielectric polaris-

ation is unfamiliar to some people who regard charge carriers as

only being capable of producing direct current conduction and to

be specifically excluded from all consideration in the context of
dielectric behaviour. We shall argue later in some detail that this

attitude is necessarily restrictive and runs plainly counter to good

experimental evidence as well as to good theoretical arguments, but

for the present we merely wish to ask the reader to keep an open
mind and let the facts speak for themselves, remembering the

discussion in Chapter 4 where hopping charge carriers were shown to

possess Debye-like dielectric properties.

a) Charge carriers in dielectric materials

It is desirable at the outset of this discussion to say a few words
about the physical properties of charge carriers in dielectric
materials. We are familiar already with the concept of free charge
carriers — electrons and holes — in semiconductors which move in
conduction and valence bands, respectively, with mean free paths
between collisions spanning many interatomic spaces. These free
charge carriers have large thermal velocities even in the absence
of an external field and their drift velocity even in the presence of
the highest attainable fields is at most comparable and usually very
much smaller than the thermal velocity. The dielectric response of
free charge carriers was described in Section 4.4 and we concluded
that their dielectric effects only become significant at frequencies
of the order of the reciprocal collision time, which fall in the
10-100 GHz range. This means that the dielectric effects of free
charge carriers are negligible in the frequency range which we are
predominantly concerned with in the present context.

When discussing semiconducting materials, therefore, we shall not
be concerned with any free charge carriers that may be present in
them, except insofar as these may give rise to such a high dc
conductivity that dielectric effects may not be easily measurable.
On the other hand, low-frequency dielectric responses are to be
expected from any localised charge carriers that may be present in
a semiconductor, especially in conditions where the effects of the
free charge carriers are not dominant, for example at sufficiently
low temperatures or in the space charge regions of p—n junctions.

Localised charge carriers may contribute to dielectric relaxation in
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two fundamentally different ways which both result in a delayed
response of current to the applied field. On the one hand, these
carriers may suffer a delayed release from the localised levels into
the free band where they take part in the ordinary conduction
process — this is the generation—recombination process described
in Section 4.8. On the other hand, these localised charges may be
displaced from their original positions by the action of an external
field by means of hopping transitions between localised levels, not
involving excitations into the respective free bands. This hopping
conductivity corresponds to an extension of the two-potential-well
model described in Section 4.6 to many interconnecting wells form-
ing an extended network of possible paths that the charge may
follow. The main point to bear in mind is that these hopping
transitions have very different probabilities according to the relative
distances between the localised sites and to their separation in
energy, so that certain easy transitions will be executed many times
in both directions, as in a two-well system, while the more difficult
ones are only traversed relatively less frequently. This shows clearly
that a hopping charge carrier shows both dielectric characteristics,
insofar as it behaves like a jumping dipole in its reciprocating
motions, and simultaneously conducting characteristics resulting from
its extended hopping over many sites. The point to note here is
that the dielectric properties are determined by the easiest transi-
tions, while the conducting properties are determined by the most
difficult transitions which limit the free percolation of charges from
one electrode to the other.

The appearance oflocalisation in a solid is very intimately connected
with disorder, such as structural or compositional defects. In crys-
talline semiconductors any such point defects give rise to localised
states which, if their energy separation from the edges of the
conduction and valence bands is sufficiently large, act as effective
traps for electrons or holes, cf. Section 4.7. If the density of these
traps is sufficiently large for tunnelling between them to be possible,
transport may occur in these states by thermally assisted tunnelling,
i.e. hopping. '

The density of these traps increases with increasing disorder and
a limiting situation is attained in the case of completely disordered .
or amorphous materials, in particular in amorphous semiconductors
which have received a considerable amount of attention in recent
years.

Localisation may also take place under conditions of apparent
structural order if the medium is sufficiently strongly polarisable
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torespond to thepresence of a charge by a significant local distortion
which leads to a lowering of the potential energy of the carrier with
respect to the undistorted medium. This is referred to as the “carrier
digging it own potential well” and the resulting quasiparticle con-
sisting of the charge carrier and its surrounding distortion is known
as a polaron. Polarons are necessarily localised and may move by
hopping when sufficient energy becomes available for their exci-
tation out of the local potential well.

We may mention one other contributory factor to the establishment
of localisation and this derives from the nature of the chemical
bonding in many dielectric materials of the organic type. In these
molecular solids described briefly in Section 2.1 the weak van der
Waals bonds between neighbouring molecules give rise to very
narrow allowed bands, with correspondingly high effective masses
of the resulting charge carriers and this, together with the presence
of disorder, contributes further to the process of localisation.

Whatever the detailed physical reasons, the fact remains that most
commonly used dielectric materials, including virtually all polymers
and the majority of glasses and ceramics, do not show any evidence
of the presence of free charge carriers, which would give rise to
much higher levels of dc conductivity than are actually observed.
The inference is that the only carriers that may be present are
necessarily very low mobility carriers, such as hopping electronic
charges inevitahly are. Needless to say, ionic charges are by their
very nature hopping carriers, since the concept of a free band for
ions has no physical sense, and their mobilities are correspondingly
extremely low, even in materials with very high ionic conductivities
such as the so-called “fast ion conductors”.

b) Alternating current conductivity of hopping charges

Interest in the ac conductivity of hopping charge carriers first arose
through the studies by Pollak and Geballe (1961) on compensated
silicon — that is material containing both donor and acceptor
impurities — at temperatures close to the absolute zero. Under these
conditions the only possible mechanism of conduction is by hopping
between neighbouring donors or acceptors and this provides one
of the most thoroughly studied materials for this type of conduction.
Pollak and Geballe found that the ac conductivity obeyed the
empirical law of frequency dependence given by the power law of
eqn (3.32), with the exponent n in the region 0.7-0.8. For several
years this result remained essentially a curiosity until the rise of
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interest in the properties of amorphous semiconductors has led to
the realisation that the same power law relation applied to many
other materials thought to conduct by hopping electrons.

A collection of data relating to the ac conductivity of a number of
materials is shown in Figure 5.32, where log o(w) is plotted against
-log @ with individual sets of data denoted by a letter of the alphabet
being displaced with respect to one another for clarity, while retain-
ing a common frequency scale. It is immediately clear that the
power law of eqn (3.32) is generally obeyed with the exponents n
falling in the range 0.6 <z <1, with three exceptions — the two
materials under f and the very high frequency region of m, these
will be discussed later. We note that at the lower end of the
frequency range many of the materials show a flattening of the
characteristic towards what might be mistaken for the dc conduc-
tivity, although closer examination will reveal the absence of com-
_plete saturation in most of the cases under consideration. This
_incompletely saturated low-frequency conductivity will be discussed
in more detail in the context of Section 5.6.

Some further general features may be mentioned. The temperature
dependence of the lower frequency response is much stronger than
that of the high-frequency end. The exponent 7 either remains
constant or decreases slightly with increasing temperature. While
some data extend only over a limited range of frequency, say, 3—4
decades, others are much more extended and there is no doubt
that, on the whole, the power law relation is very well obeyed, and
certainly no other simple law could fit the observed facts nearly as
well.

We now consider the significance of the slopes n exceeding unity,
as in cases f and m. The implication of this is that the dielectric
loss is rising with increasing frequency, while for n <1 it is falling.
Thus we conclude that the response of anthracene and f3 carotene
under f corresponds to a very shallow loss peak superimposed on an
almost constant background extending over many decades of frequency.
Similarly, the high-frequency part of the response of As,Ss under
m corresponds to a sharp, nearly Debye-like rising loss above
10 GHz — a feature already familiar from several other high-fre-
quency data for polymeric and other materials. '

As regards the range of materials shown in Figure 5.32, they
represent a wide selection of structural, chemical and physical
properties. The include classic examples of electronic hopping sys-
tems, e.g. the single crystal silicon at very low temperatures a), or
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the chalcogenide glasses 1), the classic example of an ionic con-
ductor, b), as well as many materials that are not evidently either
one or the other. Their common feature is that, unlike the materials
characterised by the presence of loss peaks, they invariably show
a gradual transition towards dc or very slowly varying conductivity
at low frequencies.

While it is clear that all the materials shown in Figure 5.32 follow
the frequency despendence given by the power law (3.32), and this
is remarkable in itself, we next present the same information on
common log o(w) as well as log w scales, Figure 5.33. The most
surprising conclusion from this is that the ac component of the
conductivity for all these very different materials has an absolute
value within at most four decades, while the majority of materials
fall within two decades. The chain-dotted lines drawn correspond
to frequency-independent losses (n = 1) of " = 10~ and 10, respec-
tively. Compared with this relatively very narrow spread of absolute
values of the ac conductivity, the dc conductivity is seen to span
a range of well upwards of 10 decades — as might be expected for
this very varied selection of materials.

Itis also clear that the temperature dependence of the dc component
of conductivity is much stronger than that of the ac component,
the latter being relatively insensitive to temperature.

Having noted the “giant dispersion’ found in ferroelectric materials
at sufficiently high frequencies, Figures 5.1, 5.6 and 5.22, where a
nearly-Debye-like response is found, it is interesting to note that
the same materials show a completely different behaviour at lower
frequencies. Figure 5.34 gives the data for the frequency dependence
of the real and imaginary components of the susceptibility for the
same triglycine sulphate as in Figure 5.6 but in the frequency range
between 10 and 10°Hz and in the temperature interval —10 to
+70°C which includes the Curie temperature, 7, = 50°C. The cor-
responding temperature dependence of the real and imaginary parts
of the permittivity is shown in Figure 5.35 and shows the familiar
rapid rise of & and €' as T, is approached from either below or
above. While this temperature behaviour is completely classical, .
the frequency response shown in Figure 5.34 is quite unfamiliar
and follows the universal law both above and below 7.

¢) Fast ionic conductors
We now look at the dielectric behaviour of fast ionic conductors
(Vashishta et al 1979) which owe their properties to the existence
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Figure 5.32 A complilation of ac conductivity data for a range of materials
presented on a common log f basis in Hertz, but displaced vertically for clarity.
Data sets denoted by one letter are on a common log o scale.
a) Single crystal silicon in the impurity hopping range of electrons, 3.0 K (bottom),
4.9,8.0 and 12.0K (Pollak and Geballe 1961).
b) Single crystal § alumina at 77 and 87 K — a classical fast ion conductor by
Na™* ions (Grant et al 1977).
¢) Glow-discharge deposited amorphous silicon, 84-295 K (Abkovitz et al 1976)
d) A range of chalcogenide glasses at 293 K (Roberts and Polanco 1972).
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e) Single crystal anthracene with 1 M saline solution as contact, 294 K (Abkovitz
et al 1975).

f) Single crystal anthracene (crosses) and f carotene (dots) at 294 K (Hughes
and Pethig 1975).

g) Trinitrofluorinecne (TNF) — Polyvinylcarbazole (PVK) — a molecular glass
with relatively “free” hopping motion by electrons (Abkovitz et al 1974).

h) A range of P;O5—FeO-CaO glasses at 300 K (Murawski and Gzowski 1974).

i) A glass of the ccmposition VoOs—P2Os at three temperatures (Sayer et al 1971).

j) Evaporated amorphous silicon monoxide at 211-297 K (Frost and Jonscher
1975).

k) A O9-layer stearic acid film between an Al and a Au electrode, 300 K, in the
dark (squares) and with ultra-violet light (crosses) (Careem et al 1977).

1) Three samples of amorphous films at 300 K. Top to bottom AsgSes, Se and
AsyS;. Measurements believed to correspond to bulk properties without inter-
ference from electrode processes (Lakatos and Abkovitz 1971).

m) Two samples of SezSes at 300 K with the frequency range extending to far
infra-red and showing a steeply rising region above 10 GHz (Strom and Taylor
1974).

Log o

e Log f

Figure 533 The ac conductivity data from Figure 5.32 placed on a common log
0/ (Q cm) ™! scale and showing the remarkably narrow range of absolute values
of ac conductivity for very different materials, all obeying the universal law (3.32).
The upper and lower chain-dotted lines correspond to frequency-independent loss,
respectively, ¥ = 10 and 1072 This is a corrected version of a diagram originally
published. by Jonscher (1977).

From Jonscher (1977). Reprinted by permission from Nature Vol 267, p 678.
Copyright © 1977 Macmillan Journals Ltd.

Reprinted by permission from Nature Vol 267, p 673. Copyright © 1977 Macmillan
Journals Ltd.
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Figure 534 The real and imaginary components of the susceptibility of Tnglycme
Sulphate in the “low” frequency region in a range of temperatures below and
above the Curie temperature, 7, = 50°C. The continuous lines represent the best
fit through the experimental loss points, the chain-dotted lines are in Kramers—
Kronig-compatible positions for x'(w). The values of €= have been determined
to place the points of the real part € (@) — €=. The various sets of data are
displaced in both the vertical and the horizontal directions for clarity, the frequency
scales are drawn accordingly. Note that the universal power law relation applies
both above and below T..

From Jonscher and Dube (1978).

of “redundant” lattice vacancies arising not from disorder, as would
be the case in ordinary ionic conductors, but are an intrinsic
property of their structure. This greatly facilitates ionic movements,
since it is not necessary to create vacancies by thermally displacing
ions from their normal positions. We shall begin by reference to
Figure 3.19, showing an inclined circular arc impedance diagram
often found in ionic conductors. This was shown to be a consequence
of the universal response of these materials, (Jonscher 1975b/
1978a), although it was not normally so interpreted. Figure 5.36
gives experimental data for f PbF; with good circular arcs inclined
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10 1

o1

Figure 5.35 The temperature dependence of the real and imaginary components
of the permittivity for Triglycine Sulphate, plotted against the logarithm of
T — T.. The significance of the symbols is explained in the inset. The triangles
denote the values of €. obtained from Figure 5.34, the implication being that the
loss process shown in Figure 5.34 makes only a small contribution to the total
permittivity.

From Jonscher and Dube (1978).

at an angle of 0.33 rad, giving o= 0.21. In addition to these circular
arcs, however, we also note the presence of very definite inclined
“spurs” corresponding to the lowest frequencies — these are the
beginnings of a second set of inclined circles which, very fortunately
for the interpretation of data, are well separated in frequency from
the former. The equivalent circuit of this is shown as a series
combination of two parallel circuits representing the volume and
barrier regions — the latter being identified with the low-frequency
“spurs” in the impedance diagrams. The conductances G, and G,
represent the dc¢ mechanisms and the fact that the barrier region
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Figure 536 The complex impedance plot for 8 PbF, taken from the original paper
by Reau et al (1975) — diagram a). The equivalent circuit of this system is
represented in diagram b) and consists of a series combination of volume and

barrier admittances with their universal capacitors G,(®) and conductances G.
Numbers indicate frequencies in Hz.
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Figure 537 The complex admittance plots for the circular arcs corresponding to
the high-frequency parts of the impedance characteristics of Figure 5.36. The
straight lines are drawn through the lower-frequency points, the deviations at
higher frequencies are due to the effect of the frequency-independent component
C. as’ explained in Figure 3.18. The numerical values of the exponent n are
determined from the slopes of these lines.

From Jonscher and Reau (1978).
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has a non-zero conductance is proved by the evident curvature of
the spurs. It is essential to note that the equivalent circuits can
only correspond to.the observed data if the two capacitors are taken
to be “universal” in the sense of the definition (3.29), an ideal
frequency-independent capacitor could not under any circum-
stances represent the data. In accordance with the procedures
outlined in Chapter 3 we now invert the high-frequency circular
arcs into the admittance plane, which may be done without any
further complications since the impedance arcs go through the
origin and may therefore be expected to invert into inclined straight
lines, as is seen in Figure 5.37. This figure shows clearly the
advantages of the admittance representation, compared with the
impedance plots: the eye is more sensitive to small departures from
a straight line than from a circle. It is now clear that the inclination
of these admittance plots does vary with temperature, which was
not clear from the apparent position of all the centres of arcs on
one line in figure 5.36. It is also clear that the highest frequency
points do not fall on the extrapolation of the lower straight lines
— they lie distinctly higher and this is due to the effect of C.. It is
also clear that the parallel dc conductance increases rapidly with
rising temperature, as indicated by the intercepts on the real axis.

We may now take the analysis of these data one stage further by
plotting the frequency dependénce of the dielectric parameters —
the most meaningful representation in the final analysis. With
reference to eqn (3.34) we note that the determination of the -
dielectric loss, which corresponds to the real part of Y (w) is com-
plicated by the presence of the large value of Gy which makes the
exact determination of the true dielectric loss component rather
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Figure 538 The real part of the relative dielectric permittivity of the volume
region of a sample of f PbF; determined from the imaginary part of the admittance
in Figure 5.37. The locus of the point “A” gives an activation energy of 0.25 eV,
which is almost half of the activation energy of the dc conductance Go(T).

From Jonscher and Reau (1978).
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uncertain. By comparison, the determination of & is completely
unambiguous from the imaginary part of Y (w) and only the sub-
sequent determination of the susceptibility may be affected by the
finite contribution at high frequencies from the &.. The results of
this determination, and of the subsequent normalisation of &' (®)
is given in Figure 5.38 which clearly falls into two parts — one
corresponding to the universal response with a value of the exponent
n=10.9, and the low-frequency part which shows a rapid dispersion
of the type to be described in the following Section. There is a
certain discrepancy between the value of n “determined in this
manner and the values indicated in Figure 5.37 and it may be that
the reason for this is the inevitable complicating influence of €.
which may not be apparent in Figure 5.38 but which would cause
a distortion of the plot in the sense of smaller slope, or larger values
of n.

In the determination of the absolute values of &' (@) we have used
the geometrical capacitance of the sample and we note the relatively
high values of &, which is rather typical of many ionic conductors.

The same experimental data offer a rather unique opportunity of
analysing the low-frequency “‘spur” region of the impedance dia-
gram, corresponding to some form of barrier region which is in series
with the volume of the sample. A detailed presentation of all
available data, not all of which were presented in Figure 5.36 for
clarity, is shown in the form of the admittance diagrams in Figure
5.89 a) in linear representation. The consecutive plots are displaced
with respect to one another along the real axis, but they all go
through the origin for the temperatures 40-80°C, indicating that |

- there is no measurable parallel barrier conductance and once again
showing the greater precision of the admittance plot, compared
with the impedance which seemed to indicate the presence of some
curvature. The exponent has consistently the value n = 0.62 which

'is very definitely smaller than the corresponding bulk values. The
data for the highest temperatures give a larger scope since there
are more points, even though they are not all shown in Figure 5.36.
A logarithmic admittance plot giving all points is shown in Figure
5.39 b) after the subtraction of the now measurable parallel con-
ductance of the barrier region. The offset from the line ¥; = Y, is
clearly visible, although an exact determination of the exponent n
is not possible from this graph.

Having shown that the barrier region itself also corresponds to a
universal capacitance, with a different value of #' from the bulk
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Figure 559 The inversion of the “spur” data into the admittance plane to reveal
the “universal” character of the barrier region capacitance. Diagram a) corresponds
to the lower temperature data and is plotted in linear coordinates, its slope defining
the value of the exponent n through the relation slope ="tan(nm/2). There is no
evidence of dc conductance in these data. Diagram b) is in logarithmic coordinates
and corresponds to the higher temperatures, after the subtraction of the dc
conductance. The numbers in a) denote frequencies in Hz.

From Jonscher and Reau (1978).

material, it is possible to go one step further and evaluate the
absolute value of that capacitance for various temperatures. Further
details of this type of analysis and of the physical conclusions which
may be drawn from it may be found in the paper by Jonscher and
Reau (1978) from which these data were taken.

We have taken the example of 3-PbF, to show what can be done
with experimental data covering a sufficiently large range of fre-
quencies and temperatures. The important conclusions from this
analysis are as follows:

1) the response of typical ionic conductors follows the “universal”
pattern, exactly as for electronic conductors,

ii) both the volume and the barrier responses may be described
in terms of universal properties, although the values of the
exponents 7, and n, are not normally the same.

This presentation of the dielectric response of ionic conductors will
be concluded with an entirely different result relating to sodium
B-alumina. This is one of the favourite ionic conductors which has
a layer structure of chemical composition Na,O - 11 Al,Os with the
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Na* ions relatively free to move in the planes defined by the Al,Os
spinel blocks. The conductivity within the planes is therefore high
and is due entirely to Na* ions, while normal to these planes there
is virtually no conductivity, either electronic or ionic.

When measured with metallic electrodes normal to the planes of
high conduction, the samples present typical impedance diagrams
characteristic of a series R~C combination, where the resistance is
that of the bulk material and the capacitance is due to the contact

barrier which is not completely transparent for sodium (Hooper
1977).

While these measurements in the planes of high conductivity are
important for assessing the bulk conductivity of the material, it is
interesting to look at the behaviour normal to the planes, since it is
in this direction that genuinely dielectric processes may be observed.
Figure 5.40 shows the data in the form of a normalised plot of the
real and imaginary components of the susceptibility, the former
having been obtained from the real part & () in the usual manner
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Figure 540 The dielectric response of single crystal sodium betha alumina,
measured normal to the planes of easy conduction, where there is no detectable
dc conductivity, in the temperature range 20-300 K. Normalisation was carried
out for all temperatures for which the loss peak is visible, the lowest temperature
data corresponding to frequency- and temperature-independent loss are repro-
duced without normalisation. There is no visible change of the loss peak amplitude
between 88 and 300 K. The real part was obtained by subtracting for each
temperature a suitable value of & (7)) to obtain Kramers—Kronig compatible
behaviour with the imaginary part. The continuous line through the points
corresponding to X' (@) — where it can be discerned between the data points -
corrésponds to the numerically computed Kramers—Kronig transform from the
line drawn through the ¥’ ().

From Deori et al (1983).
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by subtracting at each temperature a suitable value of €. (7T) to
make the response compatible with the loss component. A very
wide range of temperatures has been covered and this gives rise to
a total frequency range of eleven powers of ten. There is no trace
of dc conductivity even at the highest temperatures used in the
present study. The normalised loss peak is almost exactly symmetric
and very broad and there is evidence of a low-frequency process
which gives a plateau with some temperature dependence. It is
remarkable that at temperatures below 50 K the loss peak disap-
pears and the loss becomes almost independent of frequency and
also independent of temperature between 20 and 50 K. The mean
activation energy obtained by plotting the horizontal translation
of the normalisation point against the reciprocal temperature is
0.17 eV. For comparision, it may be noted that the dc conductivity
activation energy is 0.13 eV for a similar material (Hooper 1977),
but the two processes are completely different. It is believed that
this loss peak arises from some finite moisture content in the material
— its amplitude becomes smaller as the sample is dried (Deori et
al 1983). The implication is that an ion such as OH™ or H* can
take up one of two equivalent positions, giving rise to a dipole-like
peak which finally disappears when the thermal energy becomes
insufficient to excite the motion.

It would be easy to quote many more examples of the universal
response without loss peak, i.e. going over into what appears to be
direct current conduction at sufficiently low temperatures, but we
will change the emphasis of presentation before proceeding further.
The power-law frequency dependence given by eqn (3 32) which
we repeat below

o(w) = 00(T) + o(T)r™ (5.6)

with an emphasis on the temperature dependence of the various
parameters is very familiar when the exponent lies in the range
0.6 <n<1 and is often identified with the presence of hopping
conduction by electrons. This view is frequently found in studies
of a very wide range of compounds, some of them organic, where
the authors measure the ac conductivity and uncritically conclude
that the dominant mechanism is electronic hopping, while there is
no other evidence to support such a statement and often there is
ample evidence that this cannot be the case.

The following section will take up the detailed discussion of a
limiting case of the value of the exponent 7.
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5.6 STRONG LOW-FREQUENCY DISPERSION

There exist many examples of a very slowly varying conductivity
at low frequencies, of the type already mentioned in connection
with the data shown in Figure 5.32. Although this is a very widely
observed behaviour, it had not been recognised as a specific type
until very recently (Jonscher 1978b). One example of this type of
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Figure 541 The upper diagram shows the frequency dependence of the conduc-
tivity of a STAG chalcogenide glass for a range of temperatures. The slight kinks
at the higher temperatures are the result of the overlap of the response of a barrier,
as shown in Figure 3.15, but the main body of the data relate to bulk response
of the glass. The lower diagram shows the result of normalisation with the locus
of the representative point “A” now having unit slope. The arrows indicate the
positions of the points on the assumption of a simple activated process.

From Jonscher and Frost (1976).
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response is shown in Figure 5.41 relating to a sample of chalcogenide
glass composed of Silicon, Tellurium, Arsenic and Germanium
(STAG), over a range of temperatures. Particularly at the lowest
temperature, the power-law relation is clearly discernible and the
value of the exponent is 0.24 — much lower than the classically
accepted range described above.

This example of the normalisation of ac conductivity rather than loss
and susceptibility shows the different sense of translation of the
data between different temperatures. The locus of the representative
point now has a unit slope in the logarithmic plot, where it would
have been horizontal in the loss normalisation. This comes from
the relation between conductivity and loss o(w) = we’ (w).

Another good example of strong-dispersion may be seen in Figure
5.42 giving the frequency dependence of the conductivity and of
the real part of the permittivity for single crystal alumina — Al,O,.

1 1 1 1 ?0'-7 | | 1 1 1
v o owt o ow o ow Cw o w ow vt w w
FlHz)— fiHz)—

Figure 542 The frequency dependence of the electrical conductivity and of the
relative permittivity over a range of temperatures for single crystal alumina. The
strong dispersion of permittivity and the slowly variable ac conductivity at low
frequencies should be noted.

From Kizilyalli and Mason (1976).

Here the “low” temperature is 873 K, “high” 1632 K, so we are
dealing with ionic conduction and this is further supported by the
fact that the low-frequency conductivity is significantly enhanced
by the pressure of oxygen in the ambient. While the “low” tem-
perature data show a relatively “‘conventional’” power law relation
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with n = 0.63, especially at low oxygen pressures, the tendency to
“almost dc’’, i.e. nearly frequency-independent conductivity
becomes evident with rising temperature.

In view of eqns (8.20) and (3.31), we note that the frequency
dependence of conductivity of the form " necessarily entails the
“universal” form of frequency dependence of both x'(w) and
x"(w) on @', whatever the value of n in the range (0,1). We
conclude, therefore that small values of n entail strongly
frequency—dependent susceptibility, i.e. strong dispersion of the
dielectric parameters. This is clearly borne out in the case of Figure
5.42 by the accompanying plot of the real part of the permittivity
which shows a strong dispersion by up to two orders of magnitude
at low frequencies. This proves conclusively that the phenomenon

in question is not simply dc conductivity.

An unusual dielectric result is shown in Figure 5.43 a) giving the
results of measurmeents on loose sand with varying levels of
humidity of the air surrounding it. The inset shows a family of
characteristics of €"(w) which clearly consist of two regions of
frequency dependence, one being the almost flat universal law with
n close to unity and the other showing a very strong dispersion with
small values of the exponent. The lower diagram shows that it is
possible to normalise the data very satisfactorily and the dotted
line gives the locus of the representative point “A” as the humidity
varies. The corresponding diagram for the real part is also shown,
but it has been displaced because of the confusing overlap that

Figure 5,43 Dielectric measurements on loose sand with varying humidity content.
Diagram a) refers to the same sample of sand compressed between planar metallic
electrodes with air of variable humidity circulating in the container. The inset
shows the family of plots of £'( @) for a range of humidites indicated as % relative
humidity, while the main diagram shows the normalisation of these results with
humidity as parameter, together with the locus of the displacement of the reference
point “A”. The same diagram also shows the corresponding data for the real part
&' (w) normalised with the same displacements as €'(w) but translated vertically
for clarity, only the two slopes being drawn in Kramers—Kronig compatible
positions. The high-frequency part shows n = 0.8, the low-frequency part n=
0.22. Diagram b) gives similar results for a sample at the highest humidity of 95%
and the same sample soaked in liquid water. The two diagrams give a very clear
contrast, with the humid sand corresponding to a superposition of two parallel
mechanisms with the respective values of n = 0.07 and a much higher value at
high frequencies. The sand-water mixture shows typical series behaviour as
illustrated in Figure 8.21c), with n= 0.5 at low frequencies.

Original data Shahidi et al (1975), Shahidi (1977), presentation Jonscher (1978b).
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would result from the fact that the real part is higher than the
imaginary part for n >4 while the opposite is true for n <$. This
example shows very clearly, on the one hand, that the low frequency
dispersion forms a natural extension of the high-frequency universal
regime and, on the other hand, that normalisation is possible with
humidity as well as temperature as the variable parameter. This
means that the 7ate processes in both cases are influenced in a similar
manner. Diagram b) shows similar data for the same sample of
sand placed, respectively, in 95% humidity air and soaked in water.
The former is similar to diagram a), with the strongly dispersive
region characterised by a value of # = 0.07 and an almost perfect
parallellism of € (@) and €'(w) at low frequencies, giving way to
a less dispersive behaviour at higher frequencies for which insuf-
"ficient data exist to enable one to determine the value of n. The
sample soaked in water shows the behaviour characteristic of series
combination of a strongly dispersive capacitor with a less dispersive
“bulk” behaviour, as illustrated schematically in the low-frequency
part of Figure 3.21 c) — our experimental range is insufficient to
reveal the presence of a final strongly dispersive region.

The phenomenon of strong low-frequency dispersion is particularly
noticeable in ionic conductors and it is shown very clearly in Figure
5.44 giving the dielectric loss for a one-dimensional tunnel structure
of the Hollandite type in which potassium ions are relatively freely
mobile. At the lowest temperatures shown in this diagram, 77 K,
the behaviour is a classic example of the universal type, with a
value of the exponent n = 0.85, while at the higher temperatures
there is clear evidence of a loss peak being superimposed on the
general universal trend. At temperatures in excess of 223 K we find
the onset of a strong dispersion which is shown in more detail in
Figure 5.45 where we see clearly that both € (@) and €'(w) follow
the same trend, thus excluding the possibility that this is simply
the effect of the onset of dc conduction. The diagram of Figure 5.45
a) represents the result of normalisation of data for several different
temperatures, both the real and the imaginary data being nor-
‘malised with the same frequency shifts, with the resulting activation
energy being closely similar{ to the dc activation energy. It should
be noted that the real and imaginary components have been dis-
placed with respect to one another vertically for clarity. It may also
be noted that the real part of £(@) does not normalise well through-
out the entire frequency range, indicating that the two processes
are physically quite distinct — the normalisation here has been
carried out with particular attention to the low-frequency response.
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Figure 544 The frequency dependence of the dielectric permittivity and loss of
the ionic conductor Hollandite of the composition K;gMgosTi7101s in a range of
low temperatures. The loss for 77 K follows a singlc universal law with » = 0.85
over seven decades of frequency, the corresponding &' data deviate slightly at high
frequencies due to the influence of &». At 123 K a clear loss peak is superimposed
on the universal trend, moving with increasing temperature to higher frequencies.
At the highest temperatures strong low-frequency dispersion sets in which is shown
in more detail in Figure 5.45.

From Jonscher et al (1979a).

Figure 5.46 shows the dispersion in a semiconductor-doped glass
which in its pure state has a relatively flat loss. The high temperature
of measurement means that electronic and ionic conduction is well
developed and the dispersion is seen to extend over seven decades
of frequency and of loss. The loss has a constant slope corresponding
to the value of n = 0.050, within experimental error, over the entire

-range of measurement and the capacitance behaves consistently
with Kramers—Kronig relations.

The unique character of this strong low-frequency dispersion should
be clearly borne in mind — it does not represent any simple effect
of a series barrier, such as has been shown in Figure 3.13 f), which
would have given a slope of —2 for the log C'. This unique character
is clearly seen in the effect which this type of dispersion has on the
complex impedance diagram (Jonscher 1978a) which is not that
of a spur that could be attributed to a series capacitance, as in
Figure 5.36. The complex impedance diagram for the same sample
is shown in Figure 5.45b) where we note the very gradual transition
from a strongly inclined arc which is not circular, into a very diffuse
and strongly inclined spur, without any clear-cut transition between
the two.
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Figure 545 The dielectric response of the same Hollandite sample as in Figure
544 at high temperatures. Diagram a) shows the normalised data for both
g (w) and €'(w), displaced with respect to one another in order to avoid the
confusion from crossing-over. The correct position of the loss data with respect
to the real part is shown by the chain-dotted line with the reference point’ “A”
indicated in its correct position. There is some discrepancy in the' normalisation
of the high-frequency data of loss. The inset shows the temperature dependence
of the translation frequency, with a simple activation energy of 0.95 eV. Diagram
b) shows the complex impedance plots for two temperatures in the strongly
dispersive range, showing the effect of strong dispersion on the appearance of the
complex impedance. The usual inclined circular arc becomes completely distorted
into an almost horizontal line. No “fitting” of a circular arc could credibly be
performed in this type of situation. Neither is it possible to assign any dc con-
ductivity to this diagram.

From Jonscher et al (1979a).

We now refer to the point first raised in Section 3.6 and alluded
to in the present discussion — the distinction between a strongly
dispersive barrier region placed physically in series with a less
dispersive bulk region, and a homogeneous region in which two
physical processes with different values of the exponent 7 are present
in parallel. This is shown schematically in Figure 5.47 as two
equivalent circuits with the corresponding frequency dependences
of their effective complex permittivities. The presence of a distinct
“bulge” in the &' (w) plot is evidence of the series combination, as
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Figure 546 Low-frequency dispersion in a semiconducting glass, 8iO; doped with
SnO; and SbyO; intended for use as a conducting glaze. Measurements taken at
800 K. The straight line drawn through the loss data G/w gives n = 0.050 over
seven decades of frequency. The line drawn through the C' corresponds to the
Kramers—Kronig compatible position with respect to the loss.

From Doyle (1981).

shown in Figure 3.21 c), the parallel plots of &' () and €'(®) being
evidence of parallel volume processes. These series and parallel
combination are not easily picked out on the impedance and
admittance plots, since the shapes of their respective components
are strongly distorted, as may be seen in Figure 5.45b).

It should be remembered that the separate processes with different
values of the exponents # have in general different activation ener-
gies. This is evident from their different physical character, the
strongly dispersive region being closely akin to dc conduction, with
substantial charge movements in the material, the high-frequency
regime being due to more “dipole-like” localised hopping of charges,
if not to molecular dipoles as such. This difference of activation
energies may pose problems in normalisation procedures, since the
only topographically distinctive point in the spectrum of Figure
5.47Db) is the transition between the two dispersive regions. It is
easy to. bring consecutive spectra corresponding to different tem-
peratures into coincidence by horizontal translation, but there is
no a priori reason to assume that this is the correct procedure.
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Figure 547 The distinction between the series and parallel combination of a
strongly dispersive region and a less dispersive process. The series combination
a) corresponds to the presence of a physically separate barrier of highly dispersive
properties in series with a bulk region with less dispersive character. The parallel
combination b) corresponds to the subsistence within a single volume of the
material of two differently dispersive mechanisms, of which the more strongly
dispersive one dominates at low frequencies, while the less strongly dispersive
becomes important at higher frequencies. The transition frequency is denoted by
e, in conformity with the analysis.

Moreover, horizontal or approximately horizontal translation yields
a much more definite normalisation to steeply rising or falling
spectra than to nearly frequency-independent spectra. This may
explain the apparent success of a single translational normalisation
of such complex spectra as in Figure 5.43 — it does not prove that
the two components of the dispersion have the same activation
energies or humidity dependence.
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Two further points should be made about the strongly dispersive
and near-dc behaviour. The first is that normalisation by the shift
~1in frequency is manifestly inappropriate when dealing with the dc
limit, where the entire change of the spectrum is due to amplitude
variation of the dc conductivity. However, since the slope of the
corresponding loss component G,/ ® is rigorously —1, horizontal
translation gives exactly the same logarithmic shift as does the
vertical translation, so that the determination of activation energies
remains valid, and that is the only physically significant parameter
that can be derived from this procedure. It follows, however, that
the case of strong low frequency dispersion should be treated
similarly as predominantly an amplitude shift, although further
research is needed to determine this point with more certainty.

The second peint concerns the simultaneous presence of strong
low-frequency dispersion and direct current conductivity. The dif-
ference between the respective frequency dependences is too small
to be detectable in most cases and the only indication that dc
conductivity may be present is an abnormally high ratio of loss to
real part of permittivity, since dc conductivity does not contribute
to &' (w).

We shall leave a detailed discussion of the interpretation of the
physical significance of the strong dispersion until a later chapter,
at the present time suffice it to say that the behaviour is very widely
observed in many materials, especially at elevated temperatures,
examples may be found in Wesphal and Sils (1972). The fact that
this behaviour forms a natural limit of the universal behaviour
suggests strongly that it should have a similar physical interpret-
ation and this point will be taken up in Chapter 8. In the meantime,
it might be observed that the existence of this type of behaviour
has been recognised for many decades under the name Maxwell-
Wagner phenomena, relating to interfacial polarisations between
a bulk sample and the electrodes, or within grains —real or imagined
— within the bulk of 'the material. Such processes are essentially
combinations of resistor-capacitor networks (Volger 1960, Haberey
and Wijn 1968) and it is difficult to see how they could explain the
good power-law relations actually seen in these situations, in terms
of accidental combinations of barrier parameters. This point will
be taken up in Chapter 7.

What is most remarkable in these results is the very wide range of
values of the effective permittivity that is being measured, without
any sign of tailing off towards the lowest frequencies to give a
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limiting value. This poses some fundamental questions regarding
the nature of the prevailing dielectric response. One particular
problem is the possible role of interfacial electrochemical reactions
— a subject that is far from well understood at present.

One important test should be carried out, wherever possible, with
regard to the linearity of the dielectric behaviour in terms of the
applied electric field. Briefly, most bulk dielectric processes are to
a good approximation linear, so that doubling the signal amplitude
doubles the current and therefore leaves the capacitance and con-
ductance readings unchanged. However, barrier phenomena, of which
Figure 3.15 was a good example, tend to be very non-linear and
become less important as the applied voltage per barrier becomes
significant compared with the thermal energy £77e. This test is
easily carried out if there are only two, or very few barriers in series,
as in Figure 4.10, but the position becomes difficult when there are
large numbers of “grains” with possible interfacial barriers in series,
since then it may become difficult to apply a sufficiently high overall
voltage to satisfy the thermal energy criterion. One might argue
that a material consisting of very many very small grains is
macroscopically “homogeneous” and we cannot, therefore, detect
its microscopic inhomogeneity by this method.

An alternative test which is often more satisfactory is the repetition
of the measurement on another sample with a different nominal
thickness. If the processes in question are bulk phenomena, the
impedance will rise in proportion to the thickness, if there are
dominant interfacial processes, there will be no change in the
impedance, and therefore in the capacitance parameters. The dif-
ficulty lies in the fact that samples of different thicknesses may not
be easily available and this test is therefore difficult to apply in
many experimental situations.

A certain way of testing the linearity of the response is to check the
applicability of the Kramers—Kronig relations — these would not
be expected to apply to non-linear systems. By this test, most of
the examples of strong dispersion quoted above were linear to a
fair extent. However, there is always the unresolved problem of the
quantitative consequences of nonlinearity on the applicability of
Kramers—Kronig and Fourier transformations, while they should
not apply in the strict mathematical sense, it is established experi-
mentally that a measure of “tolerance” exists which it is difficult
to quantify exactly. As always in the case of interfacial phenomena,’
extreme caution is called for in the interpretation of the results.
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5.7 FREQUENCY-INDEPENDENT LOSS

The opposite extreme of the dielectric response compared with the
strong low-frequency dispersion described in Section 5.6 is the
limiting case of the exponent n tending toward unity, ie. a virtually
frequency-independent loss. While theoretically this limit is forbid-
den, just as is the case of n =0, there are many experimental
situations in which the loss is so weakly dependent on frequency
as to be virtually frequency-independent. Just as the strong low-
frequency dispersion had not been recognised until recently as an
identifiable case in its own right, so neither is the frequency-inde-
pendent loss recognised as a definite type of dielectric response
possessing its own physical significance. This is fully understandable
within the framework of the “old” dielectric philosophy, based
heavily on the Debye approach, in which the notion of the power
law as a universally applicable principle was at best an embarrassing
fact, without any theoretical standing in its own right. However,
once we accept that the universal power law is not only an experi-
mental fact, but also has a plausible theoretical justification, the accept-
ance of the limiting conditions becomes much easier and, indeed,
inescapable and it is in this spirit that we propose to treat the
following discussion.

We have already shown in Figure 5.24 an example of a very “flat”
or frequency-independent loss observed in a high-purity polyetliyl-
ene at very low temperatures. There are many examples of similar
behaviour, at all temperatures but, in general, below the range
where significant dc conduction and other charge movements take
place. Figure 548 shows the loss data for a range of hot pressed
ceramics, covering a particularly wide range of frequencies extend-
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Figure5.48 The dielectric loss of hot pressed ceramics in a wide range of frequency
ee e e SN, OCOCOO 5wt % MgO{‘Siqu. and xxxx Sialon SipAlyO4Ny, all at
room temperature. A clear tendency to low-frequency dispersion is visible, superimposed
on a virtually frequency-independent loss at higher frequencies, including microwave data

. at 10 GHz. '

Based on data of Therp and Sharif (1977), presentation Jonscher (1980b).
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ing up to 10 GHz. Apart from a slight dispersion at lower frequencies
which is not sufficiently pronounced to enable one to make a firm
interpretation, the general trend is evidently towards a flat response.

A very interesting class of dielectric systems is represented by
Langmuir films of long-chain molecules, -typically fatty acids, which
may be transferred as coherent monolayers from a water surface
on to solid substrates. A recent series of reviews may be found in
a special issue on Langmuir Films of Thin Solid Films (Barlow,
1980).

Each monolayer is approximately 2.5 nm thick — for the case of
stearic acid which has a carbon chain of 18 carbon atoms — and
films may be built up from monolayer thickness to 40, and more
layers, thus ranging from thicknesses in which electron tunnelling
is the dominant mechanism of transport, to virtually “bulk”
samples. Langmuir films have good dielectric properties and they
are particularly suitable for the study of the effect of high electric
fields, since small voltages are sufficient to produce such fields in
relatively very thin samples.

Detailed dielectric measurements exist.on Langmuir films covering
a wide range of film thicknesses, frequencies and temperatures. By
way of example, Figure 5.49 gives the dielectric loss data for a 9-
layer stearic acid film — chemical formula CH,;(CH,),;COOH -
between aluminium electrodes. Two distinct regions of response
are visible — at the lower frequencies the response is of the “uni-
versal” type with values of the exponent equal to 0.6-0.7, while at
the higher frequencies the response becomes virtually flat. It is also
significant that the temperature response in these two regions is
quite different, as may be seen by the crossing over of the various
curves.

A more detailed impression of the temperature dependence of loss
at two fixed frequencies is shown in Figure 5.49b) where three
temperature peaks are discernible and these may be correlated with
known phase transformations in the stearic acid lattice. It is also
interesting to note that at least one of these temperature peaks is
virtually independent of frequency. In order to investigate this
phenomenon further, a detailed study was made of the loss in a
different sample over a more restricted frequency range but using
a more sensitive measuring instrument. The results of this study
are also shown in Figure 5.49 c) where the frequency plot shows
an intricate pattern of intersecting curves without apparent order.
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Figure 549 Dielectric loss data for multilayer stearic acid films between Al
electrodes.

a) Loss data for a 9-ayer film over a range of temperatures showing two distinct
ranges of frequency- and temperature-dependence.

b) The temperature dependence of this loss at two constant frequencies of 15.9
and 159 Hz, both in the frequency-independent region of diagram a), showing
three loss peaks, one of which at least is independent of frequency

¢) More detailed loss measurements on a 13-layer sample between 100 and 320 K.
Note the extended loss scale, showing that the loss is almost independent of
frequency.

d) The same data represented as contours of constant loss against log w/2s7 and
1/kT, showing the presence of two loss peaks, one at the higher temperatures
which is independent of frequency and a lower-temperature one moving in a
manner similar to the activated peak in Figure 3,36 a),

From Carcem and Jonscher (1977).



238 DIELECTRIC RELAXATION IN SOLIDS 5.7

However, a much more meaningful picture emerges when a contour
map is drawn of constant loss against log @ and 1/T, where it is
evident that there are two loss peaks, one virtually independent of
frequency — it runs substantially parallel to the frequency axis,
while the other crosses the frequency-temperature plane diagonally.

This question of temperature dependence is of considerable sig-
nificance for the evaluation of experimental data. In the classical
Debye system the relaxation time 7 is given by the relation (4.29),
z(md t)he susceptibility is a function only of the product wt, cf. eqn
4.30):

x(@) = x(wr) = x(exp(log w + W/KT)) (5.7}

so that contours of constant loss correspond to log w + W/kT =
const. The three-dimensional plot of loss against temperature and
frequency is therefore as shown schematically in Fig. 3.26 a) where
it is clear that the contour along the line of constant W/kT with
log w as variable is identical with a contour along a line of constant
frequency with W/kT as variable.

Provided, therefore, that the dielectric material in question obeys
the Debye characteristics, it is equally valid to take the data as
functions of frequency with temperature as a constant parameter,
or with variable temperature at a. constant frequency. Since
measurements at constant frequency are often easier than measure-
ments at constant temperature, requiring much less specialised
electronic equipment, it has become customary among workers in
the field of dielectrics to take only the contours along constant
frequency, with temperature as a variable. If, as is often the case,
these variable temperature data showed a well developed loss peak,
the inference was made, explicitly or implicitly, that the material
follows the Debye characteristics.

The results of Figure 5.49 show conclusively that this is a completely
unjustified assumption, in that many, perhaps the majority of
dielectric systems obey completely different temperature/frequency
relations which may be represented schematically by the diagram
of Figure 3.36 b) which corresponds directly to the lower part of
the contour map in Figure 5.49 where the entire temperature peak
runs parallel to the frequency axis. We may note at this juncture
that the behaviour of ferro-electrics shown in Figures 5.34 and 5.35
represents a very similar aspect of frequency-temperature depend-
ence — the temperature dependence is now in the form of a sin-
gularity at the Curie temperature, while the loss is almost flat in
frequency, corresponding to the universal law.
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Returning now to the data shown in Figure 5.49a) we note that
the two separate regions of frequency dependence characterise two
different physical mechanisms, of which the low-frequency one may
be regarded as being primarily associated with charge carriers
present in the material, giving values of the exponent in the typical
range 0.6 < n < (.8, while the high-frequency regime is more closely
linked with the properties of the dielectric lattice and is typified by
a nearly frequency-independent loss. We shall have further occa-
sions to note this type of behaviour.

The frequency-independent loss corresponding to values of the
exponent n close to unity and hence, through eqn (3.31), to low
values of tan 8. For this reason one expects to find this behaviour
especially in low-loss materials and an example of this is shown in
Figure 5.50 giving data for several samples of low-loss polyethylene
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Figure 550 Examples of almost frequency-independent losses in a range of poly-
ethylenes at room temperature, covering five decades of frequency in the audio
and radio ranges. The loss scale is linear and the variation over the frequency
range does not exceed a factor of two.

From Reddish (1962).

over five decades of frequency. Polyethylene is a non-polar material
and loss peaks init are due to additives and impurities, These data
are plotted on a linear scale, so that we conclude that loss changes
by less than a factor of two in five decades of frequency, which is
very flat indeed.

As against this, we find that the temperature dependence of loss
is relatively much stronger as may be seen in Figure 5.51, also for
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polyethylene, down to 10 K. Here the data cover two decades of

frequency and in this range loss changes by up to a factor of three,
while the temperature dependence covers a factor of ten.
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Figure 551 The temperature dependence of dielectric loss between 10 and 300 K
for various frequencies of polyethylene with antioxidant, showing the relatively
much stronger variation with temperature than with frequency at a constant
temperature.

Unpublished data, by courtesy of the Director, Laboratoire de Genie Electrique
de Toulouse, CNRS, Universite Paul Sabatier Toulouse.

A general feature of the “flat” dielectric loss in frequency is that
itis also independent of temperature to a large degree, except where
the temperature changes the structure of the material, as in the
case shown in Figures 5.49 and 5.51. This remains true even when
the loss is not completely flat, with n around 0.9. One rather extreme
example of this type of behaviour is shown by the ionic conductor
hollandite already mentioned earlier. Figure 5.52 shows the data
taken in the temperature range extending down to 5.4 K, showing
that the response becomes virtually temperature independent below
77 K and this remains true even for the strongly dispersive region
at very low frequencies.
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It is relevant to point out the experimentally observed fact that all
the available evidence regarding the lowest loss materials, of the
order of a few microradians loss angle, points invariably to the
existence of an essentially flat loss in frequency, rather than any
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Figure 552 The frequency dependence of the complex dielectric permittivity of
the ionic conductor of the hollandite family K;sMgosTi7.1016 in the log-log rep-
resentation, with temperature as parameter. The temperature range overlaps that
in Figure 5.44 but extends down to 5.2 K. The symbols for the lowest temperatures
are X 77K, O 60K, * 30K, A 5.2 K. The upper diagram represents the real
part, with the horizontal line corresponding to the value 70, the lower diagram
represents the imaginary part.

From Deori and Jonscher (1979). © The Institute of Physics.

particular loss peaks. Any loss peaks due to the presence of what
we might call “extrinsic” impurities are invariably superimposed
on an irreducible flat spectrum of loss which may be presumed to
be due to the “intrinsic” lattice dipoles or charges.
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5.8 SUPERPOSITION OF DIFFERENT MECHANISMS

We conclude our presentation of the experimental evidence on
frequency domain behaviour of dielectric materials with a brief
discussion of the effects of superposition of different dielectric mech-
anisms arising from the presence in one sample of more than one
process with overlapping activity in frequency. Many examples of
such overlap may be quoted and we propose to mention here three
cases — the superposition of the “pure lattice” response with, respec-
tively, dipolar species added to the material, and ionic or electronic
charges injected into the system. The dipolar admixtures are most
readily introduced by suitable diffusion, since dipoles cannot be
drifted in an electric field, and the most common impurity here is
moisture which can also dissociate into positive and negative ions.

The effect of the addition and subsequent removal of water in
polyethylene is shown in Figure 5.53 — water is seen to introduce
a strong loss peak whose width only slightly exceeds the Debye
width. The underlying trend is an almost frequency-independent
loss which is characteristic of pure polyethylene.
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Figure 553 The effect on dielectric loss of successive drying of a sample of
polyethylene quenched in water at 95°C, with drying times and water content
indicated. The large initial peak due to water molecules disappears, leaving behind
a very flat loss at the level of 20-40 p radians.

From Ayers (1979).
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Figure 554 The frequency dependence of the imaginary part (z) and the real
part (b) of the dielectric loss of a 15-layer film of stearic acid sandwiched between
two aluminium electrodes, measured at 343 K, for applied signals of amplitude
2.0 X 10% (O), 1.3 x 10° (W), 1.2 X 10° (O), 8 X 107 (@), 6 % 107 (+), 1.6 x 107
(A) and 2.6 X 10° ‘A) Vim™. The straight lines in (a) and the ultimate low-
frequency curve in () have the slope —1. The loss data were corrected for series
resistance effects while the x’'(w) data were obtained by subtracting the same
value of & from all the data measured experimentally. The x'(®) curves in (b)
are displaced with respect to one another by § of a decade to avoid overcrowding
and the straight lines are drawn in corresponding positions, to show that there
is no significant effect of electron injection on the “high-frequency™ response.

From Jonscher et al (1979b). (© The Institute of Physics.

Ionic and electronic charge carriers are very easily introduced into
dielectrics by means of injection from electrodes or, in the case of
electrons, by direct electron bombardment. The current under-
standing of contact charging of insulators is still relatively rudi-
mentary (Rose—Innes 1981), but it is evident that contact potential
differences between the electrodes and the bulk dielectric inevitably
lead to electron injection Davies (1969) much as in the case of
metal-semiconductor contacts. The important difference in com-
parison with the Jatter is the absence of high densities of donor and
acceptor impurities in typical dielectrics.

Ionic carriers, on the other hand, are more readily removed from
solids than introduced into them in view of the difficulty with which
they traverse interfacial barriers.
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Figure 5.55 The frequency dependence of the dielectric loss, expressed as G/27f,
ofa sintered tantalum electrolytic capacitor measured under an alternating voltage
signal of 0.2 V and with a steady bias of 0 (O), 0.10 (@), 0.50 (A), 0.75 (W), 1.0
(O), 1.5 (V), 2.0 (), 3.0 (A), 5.0 (V) and 9.5 (®) V. As the steady bias
increases, so the dielectric loss at low frequencies decreases rapidly to reach a
steady value following the universal law with the exponent n = 0.87,

From Jonscher et al (1979b). © The Institute of Physics. o

Examples of the opposite effects on dielectric loss and polarisation
of the injection of electrons and of the removal of ions are shown
in Figures 5.54 and 5.55. The former relates to stearic acid mul-
tilayers and shows the rapid increase of the low-frequency dispersion
as the signal amplitude on the film is increased, while the latter
shows the rapid drop of loss in a tantalum oxide electrolytic capac-
itor as the bias is increased. In both cases the ultimate trend is to
a simple power law frequency dependence with a relatively small
slope — exponent n not very different from unity.

Our last example shows how different superimposed polarisation
processes may be separated by subtracting data taken over a range
of frequencies at different temperatures. This technique can only
work, of course, if some of the overlapping mechanisms have a
weaker dependence of temperature than others, since only then is
it possible to separate out the temperature-dependent element.
Figure 5.56 gives the results of such measurements on a multilayer
film of stearic acid, taken at 91, 293 and 325 K. Apart from a series
resistance limitation at high frequencies, there is some evidence of
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Figure 556 The dielectric response of a three-layer stearic acid film between
aluminium electrodes at three temperatures: 1-293 K, 2-91 K and 3-325 K. The
upper diagram shows the capacitance C'(w), the middle diagram the loss
G(w)/wand the lower diagram gives the incremental complex capacitance AC' (@)
and AG(w)/w obtained by subtracting the 91 K data from the 325 K data. The
two straight lines are drawn in the Kramers—Kronig compatible ratio, showing
agreement over seven decades of frequency, even though the original data show
some complicating features.

From Millany and Jonscher (1980).

a low-frequency dispersion which manifests itself by a power-law
dependence with n»=0.66, but on the whole the trends are not
clearly defined. However, by subtracting the data taken at 91 K
from those taken at 325 K one obtains a complete elimination of
all other trends which do not apparently depend. on temperature,
i.e. the series resistance and the “flat” low-temperature loss, and
we are left with the pure power-law with n = 0.66 for both the real
and the imaginary components of incremental susceptibility,
extending now over seven decades of frequency and with the correct
Kramers—Kronig ratio.

This technique promises to be very effective, especially where
measurements are being collected in an automated fashion and are
available on tape or other digital output.

We complete this review of the frequency—domain information with
an example of the dielectric relaxation spectrum of Poly-vinylidene
difluoride (PVDF) taken over the temperature range 213-373 K
and shown in Figure 5.57 as a normalised graph of loss. We have
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Figure 557 An extended relaxation spectrum of loss in
polyvinylidene difluoride, measured in a wide range of
temperatures and normalised over an effective frequency
range of 20 decades. The spectrum shows all the relax-
ation types discussed in the present Chapter, from strong
low-frequency dispersion, through loss peaks with vari-

10 15

able slopes to virtually flat loss at low temperatures and
high frequencies. The detailed structure of the peak region
is shown in the inset on an expanded ordinate scale.
Temperatures in Kelvin are indicated on the locus of the
representative point. Note the very narrow temperature
range over which the peak shape is changing rapidly.

From measurements by Bodakian (1982).
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chosen this example because it shows in one material the entire
range of differen: forms of spectral response reviewed so far. At the
highest temperatures and lowest frequencies there is clear evidence
of strong low-frequency dispersion, with the value of n = 0.27 over
more than four decades of frequency. Our data are inconclusive
with regard to the presence of a loss peak at the lowest frequencies,
although other similar measurements failed to show the presence
of a loss peak. There then follows a region of very low dispersion
with n = 0.90 which goes over gradually into a distinctive loss peak
whose leading slope varies between almost zero and 0.18, as may
be seen more clearly in the inset where the scale of ordinates has
been considerably expanded. There is likewise a definite variation
of the high-frequency slope, but the overall value of n = 0.97 appears
to be the limiting low-temperature feature. The rise of the displace-
ment locus at lowest temperatures indicates that the loss peak
amplitude has been decreasing in this range. In this case it appears
that the loss peak becomes so shallow that it ultimately gives way
to a virtually flat loss. It should be noted that the entire frequency
spectrum compiises twenty decades of frequency.

59 SURVEY OF FREQUENCY RESPONSE
INFORMATION

The extensive review of the frequency response data for a very wide
range of materials given in the present Chapter was intended to
give the reader a good grasp of the actual performance of real dielectrics,
as opposed to the response expected from idealised models of
dielectric systems which was presented in Chapter 4. It must be
clear by now that the actually observed response bears very little
relation to the idealised models which lead one to expect little else
than the ideal Debye or the diffusive law which looks like the
universal law for the special case of n =%.

With such extensive departures from some idealised model response,
the question may naturally arise whether the model is at all appli-
cable, or whether it is only applicable to certain limiting situations,
while the great majority of real-life situations are governed by some
entirely different models. The main message of the present work
is that this is indeed the case, that a completely fresh approach
should be made to the interpretation of the dielectric response of
solids, because the old-established approaches are incapable of
explaining any but the very few cases which approximate to the
ideal response.
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Our approach to the theoretical interpretation of the observed data
will be made much easier if we can form an overall picture of the
real response of materials and, in particular, if we can deduce from
this picture certain general rules of behaviour, because any such
general rules would strengthen our conviction that we had a valid
model. We therefore propose to summarise the results of our survey
of dielectric properties with a view to deriving a general pattern of
behaviour.

Our summary is presented in Figure 5.58 which gives a schematic
represenation of the various response types, both as plots of log ¥’
and log ) against log @ and also as plots of the complex }. On the
right is the — practically non-existent — ideal Debye response, and
then moving towards the left are the symmetric, the slightly asym-
metric and the strongly asymmetric broad peaks, all relating to the
dipolar materials. We list some examples of systems which exhibit
the particular types of response. Still further to the left we have the
response of hopping charge carrier systems which is characterised
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“Lattice” Superposition Hoppi
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all solids at “high” shrong dispersien glasses below glasses above
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Figure 558 The gcneral classification of all types of dielectric responses found in
solids. The upper row gives the diagrammatic representation of the log x' (w)
(chain-dotted line) and log x’(w) (solid line) against log @, the lower row glves
the corresponding complex susceptibility plots. Typical materials giving the various
types of response are indicated. The extreme right gives the practically non-
existent case of the Debye response, moving to the left we find increasingly broader
loss peaks for dipolar systems, further to the left the charge carrier responses
corresponding to the strong low-frequency dispersion and to dc conductivity. On
the extreme left is the limiting case of “flat” frequency- and temperature-inde-
pendent loss.

From Jonscher (1980b).
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by the absence of loss peaks and which may show a very strong
dispersion at low frequencies. This low-frequency dispersion follows
the same universal law as the higher-frequency response, but with
a much smaller value of the exponent n. There is, finally, the other
extreme of response in the form of a practically frequency inde-
pendent )’ and ) which we have identified with the residual
response of dielectric lattices.

We stress the fact that this is the first complete classification of all
experimentally observed types of dielectric response in the frequency
range below the microwave region of the spectrum and extending
down to the lowest attainable frequencies of 107*-107° Hz. It takes
into account not only the generally accepted dipolar response, but
also the equally important charge carrier responses of both hopping
electronic and ionic nature. This extension of the range of the
polarising species might not be acceptable to some dielectrics
specialists who tend to regard with suspicion any charge carriers
as allegedly contributing only to dc conduction. We have proved
experimentally that this view is unduly restrictive and that hopping
charge carriers do give rise to genuinely dielectric responses, as we
have defined them in Chapter 2. However, the final justification
for the inclusion of charge carriers among the polarising species
will be found in the experimental observation that they follow ke
same law of frequency dependence as the classical dipolar species above
the loss peak frequency.

We are now able to state that, above the loss peak frequency, where
such exists, all dielectric systems obey the universal law;

X (@) « x' (0) < ™! (5.8)
with the exponent in the range
0<n<l1 (5.9)

and with the consequence that the real and imaginary parts of the
susceptibility are in a frequency-independent ratio:

X' (@)/x (@) = cot(nrm/2) (5.10)
which has the very simple physical significance that the ratio of

energy lost per radian
energy stored

= cot(n7/2) (5.11)
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The universal law might otherwise appear completely arbitrary and
it would probably not have been selected as a very obvious choice,
except that, as we have seen in many instances, it is extremely well
obeyed experimentally — so well, in fact, that there can be no doubt
that it represents the best empirical approximation to the true
response. This universal law also has two unique features, not
possessed by any other fuhctional relation./The first of these is the
constancy of the ratio (5.10) which is the consequence of the fact
that the universal law is the only functions that remains invariant,
except for a constant, under Kramers—Kronig transformation. The
second will be discussed in Chapter 8 in the context of the time-
domain response of many-body systems when it will be made clear
that this particular relation is, in fact, the only possible relation to be
obeyed by interactive many-body systems.

The range of validity of the universal relation extends from fre-
quencies at which the quantum and phonon effects become dom-
inant, which means in practice below the infra-red region of the
spectrum, down to either the loss peak frequency in dipolar systems
or to the onset of the strong low-frequency dispersion in charge-
carrier-dominated systems. Subject to this limitation of its range,
the universal relation is obeyed under extremely general conditions,
viz.

in all physical structures: single crystal, polycrystalline,

amorphous and glassy;

all types of chemical bonding: covalent, ionic, molecular;

all types of systems: inorganic, organic, biological

all possz’ble polarising species: dipoles, hopping electrons,

polarons, ions;

all geomemcaf configurations: ﬁom bulk to narrow interfacial

regions, molecular thickness films, planar and intricate geo-

metries, continuous and discontinuous media.

The universal law also covers the entire range of the exponent n
which is mathematically allowed for this type of relation to be valid
as a Kramers—Kronig-compatible system. The discovery of the two
extreme values of n corresponding, respectively, to the strong
low-frequency dispersion and to the frequency-independent loss has
thus completed the classification to coincide with what will be
shown in Chapter 8 to be the theoretically admissible range..

Dipolar systems obey the same universal law at frequencies above
the loss peak frequency @, and their response below this frequency
is governed by a second power law, corresponding to the relation
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(5.3):
X (w) <"
x’(a))Z){(O}—%(w/a}p)”ms(mﬂ) 0<m<l (5.12)

= x(0; — const. ¥' (w)

The discovery of this second power law valid below the loss peak
frequency will be found later to have been very important in the
development of the new theory of the dielectric response based on
the many-body interactions.

We thus have a complete picture of the experimental situation
relating to the dielectric response of the complete range of solids
and this picture is subsumed by two power laws, with either positive
or negative exponents, and by a thermally activated transition
frequency between the respective regions of applicability of these
power laws.

We have also seen that the effect of temperature, to a first approx-
Imation, is to translate the entire frequency response bodily in the
direction of increasing frequency with rising temperature — the
.shape of the frequency response being relatively less strongly
affected. The behaviour at very low temperatures represents a
special case, the most surprising feature of which is that there
remains a remarkably high level of loss, or of dielectric “activity”
down to the lowest temperatures at which any dc conductivity
would have been completely frozen out.
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CHAPTER 6

Experimental Evidence on the Time
Response

6.1 THE ROLE OF TIME-DOMAIN MEASUREMENTS

Chapter 2 introduced the notion of the essential equivalence of
time— and frequency—domain responses in linear systems, where it
was shown that the time-dependence of current in response to a
step—function field and the frequency dependence of the dielectric
susceptibility in response to sinusoidal excitation were connected
by the Fourier integral transformation. To that extent, therefore,
there is no fundamental difference between the two types of measure-
ments so far as linear dielectric systems are concerned and the
choice between them must rest on two types of considerations:

i) the convenience of the measuring process, and
ii) the study of departures from linearity in the dielectric response
of the materials in question.

On the first point, it should be noted that, in principle, time—
domain measurements have the advantage of requiring one single
sweep to determine the entire corresponding frequency range which
might, for its part, require a large number of spot measurements
in the frequency spectrum. The argument runs therefore, that it is
more “‘economical’® on time to measure in the time domain and to
transform into the frequency domain. There are, however, some
very serious drawbacks which to a large extent invalidate this
simple reasoning.

The first of these is the availability of equipment which is well
developed commercially for the frequency domain measurements
in the form of an extensive range of alternating current (ac) bridges
covering a wide span of frequencies from the sub-audio, of the order
of 1 Hz, to the microwave, 10-30 GHz, and extending even further
into the terahertz region in the form of open resonators. The
fundamental advantage of these frequency domain techniques lies
in the fact that they all work on a suitably narrow band of frequency
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at any single measurement, by using tuned circuits or otherwise
synchronous detection over many cycles, with the effect that the
signal-to-noise-ratio is very substantially improved in comparison
with wide band detection. The result of this is that measurements
of dielectric loss angle — the most significant criterion of measure-
ment — can be made easily at the level of 100 u radians, they are
possible with advanced methods down to 10 g rad and can be made
under extreme conditions down to very few @ rad.

This level of sensitivty is not achievable in the time domain, for the
simple reason that the measurement is made under wide band
conditions, since in the very nature of the experiment one has to
determine the response of a dielectric system over a very wide range
of time. The practical implication of this is that one is severely
limited in the available signal-to-noise ratio of the system. A possible
remedy is to go back to the principle of repeated scans, by accu-
mulating data over a number of “shots’ and averaging, which can
be-done easily with modern electronic signal-processing equipment,
but that immediately vitiates the alleged advantage of “speed” of
measurement. An even more precise but much more time-wasteful
method would be to employ some ‘“box-car-detector” principle,
where a large number of step-functions are applied and the response
is scanned by passing a “‘strobe” which measures only in a selected
time interval. This latter method is most useful in systems with
short response times — microseconds or less, but it becomes unwork-
able in the type of dielectric measurements with which we are
concerned in the present monograph.

The significant point to be noted here is that we are confronted
with the principle of information collection — in order to extract a
certain amount of information out of the inevitable background of
noise one requires a minimum amount of time to enable repeated
sampling to be carried out, whether this be in the form of sinusoidal
signals or repeated step functions.

To this should be added the further point that the technical per-
fection of commercially available ac bridges is very high in view
of the many decades of development work that has been done on
them. Compared with that time-domain equipment has to be
“tailor-made” for the specific purpose in hand and it is difficult to
obtain ready-made systems. Furthermore, the limitation of time—
domain measurements by the required risetimes and response times
of the signal and of the detection equipment, respectively, sets an
upper limit on the effective frequency range that can be employed.
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The same considerations apply in reverse for the frequency—domain
operation — the difficulty of generation and detection of sinusoidal
signals increase very rapidly below the 1 Hz limit down to which
the ordinary bridge techniques are applicable. Although equip-
ments exist on the market which are capable of measuring in the
frequency domain down to 107-107° Hz, the potential advantage
of time—-domain techniques increases as one moves toward these
very low frequencies.

One limitation of the speed with which time—domain measurements
can be carried out arises from the “memory” retained by all
dielectric systems and arising from the fact that, in principle, the
dielectric response function f(¢) defined by eqn (2.27) extends to
infinity and it is only a matter of practical considerations how far
should one wish to extend the experiment in any given situation.

To illustrate this point, take the case of the ““universal” response
defined by eqn (3.33) and assume that we apply to the system in
question a square wave of duration 7, which represents the practical
limit of what should have been an infinitely long step function.

logiff)  E)
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=T f
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-2 0 2 logi/T)
Figure 6.1 An illustration of the effect of a finite charging time T, simulated by
two superimposed step functions starting at —7 in the positive sense and at 0 in
the negative sense. The resulting d_ischa.régc current which would be obtained for
a material showing a pure power law ¢7°% consists of one branch with the correct
exponent, for t<€ 7, and this is followed by a second branch with the slope
—1-0.8 at times much longer than T.
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Aftér this “‘charging time” 7, the sample is short-circuited, i.e. the
field in the sample is zero again, assuming all the time that the
system is linear and therefore free from space charge and other
effects which might tend to distort the field in the interior. We now
note with reference to the diagram in Figure 6.1 that the square
wave of finite duration 7" may be represented by two step functions,
one positive starting at ¢ = —7 and the other negative of the same
amplitude starting at £ = 0 the overall response being determined
by the principle of superposition according to which the first step
function is assumed to act for an infinitely long time and the effect
of the second one is superimposed on that of the first.

The current is given therefore as the sum of two terms:

i) (T+t)™—1t" (6.1)
and in the limit of short times, t << T
i(t) <t (6.2)

since the first term is negligible in comparison with the second in
(6.1). On the other hand, in the limit of long times, ¢ > T, we have

i(t) cct™{(1 + T/t)™— 1} =nTt " (6.3)

We conclude, therefore that the discharge current at times that are
short compared with the preceding charging time follow the genuine
characteristics expected of the material in question, but at times
long compared with the charging time the slope of the logarithmic
plot of the discharge current becomes much steeper than the genuine
characteristics.

The conclusion is that in order to study the discharge characteristics
of a material with a view to determining its dielectric response, it
is necessary to charge the material prior to the beginning of the
discharge process for at least fen times longer than the maximum
desired time of the discharge measurement. Apart from serious
errors that may arise if this condition is not fulfilled, these require-
ments mean that the time taken for an experiment is much longer
than the actual measuring time itself. The same conditions apply
to the opposite process of charging current measurement: the
material must be thoroughly discharged for at least ten times as
long as it is intended to measure the charging current for. A more
detailed discussion of this will be found in Appendix 6.1.
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We now return to the problem of non-linearity which is very
important in relation to the study of the dielectric properties of real
materials. Although it is very convenient to make the assumption
of linearity in order to simplify the analysis of the results of measure-
ments, it remains an experimental fact that very few systems are
truly linear either in the presence of high electric fields or at high
temperatures, where charge movements may take place on a sig-
nificant scale. Under these conditions the measurement of the
dielectric response by any synchronous or narrow band method
invariably rejects all information relating to the non-linearity, since
the detected signal consists only of the fundamental frequency of
the driving signal and leaves out all higher harmonics which might
give an impression of the extent of departure from linearity.

It would be possible, in principle, to study non-linear behaviour
by looking directly at the second or third harmonic — depending
on the nature of the system, but this becomes possible where the
dominant, i.e. the real part of the susceptibility becomes significantly
non-linear, whereas the non-linearity of the much smaller loss com-
ponent of the characteristic has to become very strong in order to
show any significant effect on the production of higher harmonics
(Le Sueur and Jonscher 1972, Jonscher 1973).

The most direct manner of investigating the non-linearities of the
dielectric response consists therefore in the measurement of the
time-domain response, since this method probes directly the
response according to the principle, already mentioned in Section
2.6, that

“Mother Nature works in the time domain®

Any non-linearities that may be observed are therefore far easier
to interpret, since they represent the natural response of the system
to specific driving conditions and we shall see examples of this later
in this Chapter.

We wish to mention here the fact that the non-linearity of the real
part of the dielectric permittivity can normally only be observed
at very high electric fields, so that the observation of any significant
phenomena is limited to very high frequencies, in the optical range,
where breakdown does not intervene, or alternatively to very short
pulses in, for example, liquids. We shall not be concerned with this
class of phenomena in the present treatment.
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An extreme limit of non-linear behaviour is found in the case of
ferro-electrics where domain switching changes the state of polar-
isation in a discontinuous manner, but once again this class of
response falls outside the scope of our work.

One special aspect of dielectric non-linearity is represented by the
process of charge injection and transport in insulating materials
and we shall have occasion to study this in some detail, especially
as this represents a rather important aspect of the behaviour of
many materials.

It is worth mentioning that the time-domain response offers a
particularly easy way of testing for non-linearities by simply varying
the amplitude of the applied step field. The results can be very
conspicuous while the corresponding frequency—domain measure-
ments with variable amplitude of the signal generally tend to be
much less sensitive. We shall show several examples of this type
of behaviour.

Non-linearity of dielectric response is best tested experimentally in
frequency—domain measurements by taking a reading at a given
signal amplitude and repeating this reading at a higher value of
the amplitude — if the reading remains the same, the system may
be said to be linear, if not, non-linearity is evident.

It is relevant to note here that the applicability of Kramers—Kronig
relations is restricted to linear systems and yet experience shows
that these transformations appear to be relatively ‘“‘tolerant” to
finite amounts of non-linearity in the systems under study. One
contributory factor to this apparent insensitivity is that the
frequency—domain measurement tends to “linearise’ the system by
taking only the fundamental frequency result and rejecting higher
harmonics. Data for the real and imaginary components of the
susceptibility evaluated in this manner may then show a remarkable
‘degree of agreement with their Kramers—Kronig transforms —
neither are faithful representations of the response of a non-linear
system, but they remain self-consistent expressions of the linearised
response. On the other hand, the Fourier transformation between
the frequency— and time-domain responses may not, be equally
satisfactory, since the time—domain behaviour contains the non-
linearity which may have been eliminated from the frequency—
domain data.

It will be clear to the reader that the available experimental data
relating to the time-domain response of the dielectrics are much
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less numerous than the corresponding frequency—domain infor-
mation. This is due to the fact, already stressed earlier, that equip-
ment for the measurements in time domain is far less standardised
and less well developed than the frequency domain equipment.

6.2 THE SIGNIFICANCE OF LOSS PEAKS IN THE
TIME-DOMAIN

"The universal relation in the time domain, f() « ¢™, which rep-
resents the Fourier transform of the frequency—domain response in
which both the real and the imaginary parts of the susceptibility
are proportional to @', cannot be valid in the entire time range
from zero to infinity. Its limitation at very short times is evidently
set by the inevitable inertial processes which require that f(¢) o< ¢
Likewise, the universal relation with n < 1 would correspond to an
infinitely large total charge in the system at infinitely long times,
and this is physically inadmissible. It is therefore physically necess-
ary that the function f(¢) should vary more rapidly than with a
logarithmic slope —n, where n <1. Now consider the empirical
expression derived from our survey of the experimental data for a
very wide.range of dipolar materials and given by eqn (5.3). At
frequencies much in excess of the loss peak frequency w, this
becomes the universal law, @"~', while at frequencies much below
the loss peak frequency we have the other power law @”. Each of
these laws separately transforms into ¢™ and ¢™"!, respectively,
according to eqn (3.33), and it is possible to show that the combined
equation gives, in fact a combination of these two laws in such a
manner that as short times ¢t <1/w, the former law applies which
corresponds to the Aigh freqiiency response, while the lowhﬁ‘cquency
response transforms at long times t>1/w, into t™ '. Thus the

Figure 6.2 Equivalent time— and frequency—domain representations of dielectrié
behaviour giving a loss peak. Diagram b) shows the time-domain dependence for
the case of a universal response with the exponents in eqn (6.4), m=k—1=0.2,
0.3 and 0.5, n = 0.7. An exponential dependence corresponding to a Debye behav-
iour is also shown on the same time scale. Diagram a) gives the numerically
Fourier-transformed time-dependent relation, showing the corresponding lo
peaks.

The vertical scales are arbitrarily displaced.

From Jonscher (1975). Reprinted by permission from Nature, Vol. 256, p. 566.
Copyright © 1975 Macmillan Journals Ltd.
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complete time—domain response may be represented by the approx-
imate relation:

S(t) o< i(t) o< +1 (@ (6.4)

which in the logarithmic representation consists of two straight
lines, one at short times with a slope —n and another, at long times,
with a slope —1 — m, as shown in Figure 6.2. It becomes evident,
therefore, that the physical significance of the loss peak in the
frequency—domain lies in the existence in the time domain of two
physically separate and consecutive processes. The loss peak frequency
represents the reciprocal time at which a transition from one process
to the other takes place in the time domain (Jonscher 1975).

We stress this interpretation because it was, to our knowledge, the
first attempt to interpret the loss peak as the outcome of an interplay
of two separate physical processes taking place sequentially in the
time domain, and not in terms of some single or combined
Debye-like loss peaks in the frequency domain. We shall show later
that the new interpretation of the dielectric behaviour shows rig-
orously that this is precisely what happens and that there are two
entirely different classes of relaxation processes which dominate in
the respective time ranges.

We now note the close similarity between Figures 6.1 and 6.2 b)
despite the fact that they are due to entirely different physical
causes and this shows the importance of allowing sufficiently long
charging and discharging times before the measurements in order
to avoid possible mistakes}.

(

The fact that there exists a direct relationship between the presence
of a loss peak in the frequency domain and the corresponding
transition in the time-domain from a region of slopes less than
minus one to a steeper slope, acquires a special significance in the
case of the classical Debye relaxation process. There, the exponen-
tial characteristic function is represented in the logarithmic plot as
a continuously curving line the slope of which passes through minus
one at ¢t = 1/ w,, as may be seen in Figure 6.2. Now the exponential
law is the result of a single, “homogeneous” decay process;
eqn (4.17), so that in this particular case the presence of a loss peak
is the necessary consequence of the single exponential law. In all
other cases of non-exponential decay we have to invoke the presence
of two separate processes in order to interpret a loss peak.
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6.3 THE HAMON APPROXIMATION

The experimentally established existence of the universal relation
in the frequency domain, and more generally of the two regions of
_power law in eqn (5.3) makes it possible to develop an approximate
procedure for the evaluation of the Fourier transform from the
frequency to the time domain (Hamon 1952). We know from eqn
(3.33) that the time-domain response corresponding to the universal
law is proportional to ¢, where the exponent s is introduced for
generality in place of n or m+ 1. Taking a sample of area A4,
thickness w and hence the geometrical capacitance Gy, = A&/w, let
the measured current response to a voltage step of amplitude ¥, be
given by the relation

I(t) =Kt~ (6.5)

where the constant K is determined from the experiment. Taking
now the definition of the current response given by eqn (2.33) and
ignoring the delta-function and the dc contributions as irrelevant
for the present purpose, we may express the current density i(¢) in
response to a field step E; in terms of the current /(f) in response
to a voltage ¥, and obtain from eqn (6.4): -

A =Gt (6.6)

Using the definition of dielectric loss given by eqn (2.39) and its
inverse relation (2.43), we may write:

K
Gﬂ Vg

(@) = F(t7) ===T(1 —s) cos(sm/Qa'™  (6.7)

where we have made use of the Fourier transforms (3.33) in which
we have replaced @ by ¢ and n — 1 by —s which is permissible,
since the Fourier transformation works both ways.

Define now a time ¢ in termis of the reciprocal frequency w,
w = 27f= 1/t, so that eqn (6.6) may be written in the form:

I'(1 — 5) cos(sm/2)

() (6.8)

This expression relates the dielectric loss at a radian frequency
1/t or a frequency 1/27 in Hertz, to the charging or discharging
current [(¢) at the time £
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It should be noted that this relation is valid not only in the usual
range of the exponent 0 <s < 1, corresponding to the loss at fre-
quencies above ®,, but remains valid also in the range of positive
slope of the loss curve below @, where we may put formally
m = s — 1, which means that the range of the exponent covering
this part of the loss curve is 1 <s < 2. Defining the parameter

a=T1(1—ys) cos(smw/2) (6.9)

we find the numerical dependence of a on s as shown in Figure 6.3,
so that for s = 0 corresponding to the strong low-frequency disper-
sion a = 1, for s = 1 corresponding to a flat loss ¢ = /2, while for
positive slopes corresponding to the rising part of the loss curve a
increases rapidly beyond m = 3. Figure 6.3 shows also a sketch of
the corresponding loss characteristic with the slopes drawn at
appropriate points of the abscissa.

a=I1-s)cos(sn/2)

/

Figure 6.3 The dependence of the parameter a in the Hamon approximation, eqn
(6.9), on the exponents 5, n=ys and m = s — 1, given on the abscissa. The inset
represents a logarithmic plot of the loss-frequency dependence which has the
property that the slopes m and 1 —»n drawn at the respective frequencies have
values corresponding to the values of the exponent s at the same abscissae. This
enables an estimate to be obtained of the parameter a depending upon the local
slope of the logarithmic loss-frequency plot.

We note that from approximately m =% on the positive slope to
s = —1 on the negative slope, i.e. over the entire range of negative
slopes and up to m =% on the positive slope, the parameter a
changes by a little over a factor of 2. Furthermore, eqn (6.8) remains
valid even though the exponent s is not a constant but changes
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slowly with frequency giving a curved loss-frequency plot in the
logarithmic representation, where we may establish local relations
between loss and polarisation current of the form:

npy, =2t
X" (f) me A7 xfI(I/an) (6.10)
or the equivalent expression:
U — a
X" (1/27) g ALY (6.11)

Provided that the exponents m and » fall in the range indicated, the
parameter a may be set equal to a constant value of the order of
unity with a relatively small error. This means that most loss
characteristics may be obtained from the corresponding polarisation
currents I (¢), by plotting tI(t) logarithmically against 1/27tt, and this
then becomes a plot of x"(f) with the appropriate scaling factor
a/ GV, with the parameter a set to a value between 1 and 1.5,
according to the nature of the loss curve. This procedure is known
as the Hamon approximation and is very useful for a rapid appraisal
of loss data from the polarisation currents, or vice versa.

EQuation (6.11) shows that the loss peak occurs at the frequency
w, = 1/, where t, is the time at which the logarithmic slope goes
through the value d(log¢)/d(log ) = —1, as shown in Figure 6.2.

6.4 EVIDENCE FOR INERTIAL EFFECTS

We have already mentioned in the context of eqn (4.6) that the
effect of inertial phenomena on the time-domain response is the
presence of a linear rise with time at short times, to be followed
later by a steady decay towards zero. It is virtually impossible to
obtain experimental evidence fo these processes in the case of solids,
since the inertial regime corresponds to frequencies of the order of
the optical and far-infrared region, i.e. times in the pico-second
range and below. We propose instead to give a very elegant example
of this type of response obtained with biological macromolecules
with correspondingly high inertia, floating freely in a viscous fluid
medium. The experiment consists in the application of a delta-
function force and in the monitoring of the alignment of the mol-
ecules at later times, in accordance with the definition of the
characteristic function f(¢). However, the experiment is not carried
out in the conventional manner by the application of a short pulse
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of a sufficiently strong electric field, since this would inevitably lead
to the dielectric breakdown of the sample, but instead a giant laser
pulse of very short duration is applied and this causes an alignment
of the dipoles not through the direct action of the electric field, since
this is oscillating very rapidly and the permanent dipoles simply
do not have a chance to follow, but through the generation of induced
dipoles which then tend to align the molecules in the general
direction of the oscillating field because of the inherent anisotropy
of these large molecules. Since the induced dipoles respond rapidly
even on the scale of the frequencies corresponding to the visible
light of the laser, the energy of alignment is proportional to the
square of the field and there is only an alignment and no oscillations
result from this cause. The dipole moment of the resulting polar-
isation is then probed with a steady beam of low-intensity laser
light which simply measures the resulting birefringence and pro-
vides a direct measure of the instantaneous polarisation of the
sample.

Figure 6.4 shows the results of such measurements on Tobbaco
Rattle Virus and it is clear that the rising part of the inertial
response persists long after the disappearance of the exciting giant

pulse.
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Figure 64 A.demonstration of inertial effects in large biological molecules by
means of laser-induced birefringence of a solution of Tobacco Rattle Virus (TRV)
at a wavelength of 488 nm. The upper trace a) shows the birefringence of TRV,
the lower trace b) shows the fixed — Q YAG laser pulse of approximately 8 kW
maximum power. Both traces on a time scale shown by the arrow.

From Jennings and Coles (1974). Reprinted by permission from Nature, Vol. 252,
p. 35.

Copyright © 1974 Macmillan Journals Ltd.



6.5 EXPERIMENTAL TIME RESPONSE 267

6.5 LONG-TIME BEHAVIOUR IN LOW-LOSS
POLYMERS

The time—domain technique was perfected by W Reddish and his
group in the 1950’s and they used it extensively for the determination
of the dielectric loss in a wide variety of low-loss polymers at
frequencies down to 107 Hz, by Fourier transforming from the
time data. The technique enabled the frequency spectrum to be
extended by several decades, compared to what was technically
feasible by bridge and other techniques at that time (Hyde 1970).

The results of some early measurements on oxidised high-density
polyethylene are shown in figure 6.5 a), where the current response
is plotted in the manner familiar in electrical engineering circles,
as log(E/i) since it is customary to refer to “time-dependent
resistivity”’, even though this concept has very little physical sig-
nificance. The data were measured at several temperatures and the
normalisation of these results is possible by lateral shifting in the
normal manner. However, since the normalisation of loss peaks
corresponds to nearly horizontal displacements, the normalisation
of current plots must correspond to displacements along the slope
unity in the logarithmic representation, since the loss is related to
the product of ¢ and () from eqn (6.11). The frequency or time
activation energy is then obtained from the horizontal component of
the logarithmic displacement plotted against 1/7. If the locus of
the displacement point has a slope —1 then the corresponding loss
peak amplitude is constant in temperature.

The use of the time—~domain measurements as an extension of the
range of bridge measurements in the frequency—domain is illus-
trated in Figure 6.6 giving the extended dielectric loss spectrum of
PMMA in a range of ten decades. The lowest two decades are
transformed from the time-domain, the upper 43 decades are meas-
ured directly, while the middle range of 33 decades shown dotted
in the figure is interpolated. This type of contour map of loss with
temperature and frequency as variables corresponds directly to the
three-dimensional representation of Figure 3.29 and the loss contour
shows a peak changing with frequency and temperature in a manner
consistent with the presence of an activation energy.

The implication of the transient response of the charging currents
for the determination of direct current conductivity is discussed in
Appendix 6.2.
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a) Time-domain data of a brand of polyethylene, Marlex 50,
slightly oxidised. The data refer to a range of temperatures and
they are plotted in the customary engineering representation
as log(E/j), where j is the current density, against log z. The
solid line indicates unit slope and “A” represents a reference
point for the normalisation in diagram b).

From Reddish and Barrie (1958).
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b) The same data as in a) normalised by lateral shifting and
inverted to give a normalised plot of log(j/E) which corre-
sponds to our manner of presentation. The locus of the nor-
malisation points runs parallel to the slope —1, which is also
drawn to show the position of the normalised loss peak. The
fact that the normalisation runs parallel to this slope of —1
implies that the loss peak does not change its amplitude with
frequency.
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Figure 6.6 Contour map of dielectric loss in Polymethyl methacrylate (PMMA)
plotted with frequency and temperature as variables, covering ten decades of
frequency and a range of 250 K. The two lowest decades were obtained by Fourier
transformation from the time-domain measurements, the upper 44 decades are
direct bridge measurements, The dotted contours denote interpolated values.

From Reddish (1962).

6.6 DETECTION OF NONLINEARITIES BY TIME-
DOMAIN MEASUREMENTS

We showed in Section 2.5 that the time-domain response of a linear
system to rising and falling step functions is symmetric and that
the difference between the charging and discharging currents should
be equal to the time-independent direct current, if this is
measurable:

i(8) = iat) = i (6.12)

It is a measure of nonlinearity of most dielectric systems that this
expression is hardly ever satisfied and instead the difference between
theé charging and the discharging currents depends on time and
may even become negative.

An example of this type of behaviour is shown in Figure 6.7 where
results of time—domain measurements of charging and discharging
currents are shown for a sample of stearic acid under various
conditions of the amplitude of the applied step and of temperature.
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log t (s)

Figure 6.7 The logarithmic representation of the charging currents, i(¢) — full
symbols — and discharging currents, i3 (f) — open symbols — for Al — Stearic Acid
— Al sandwich structures. Curves a)-d) relate to a sample of 11 monolayers
thickness, curves e) to 13 monolayers. The temperature and average field were
as follows.

Curves a b c d e

Average 68 68 1.1 91 48  XI107V/m
field

T 250 300 300 300 320 K

The currents are scaled by. the applied voltage ¥ and successive sets of curves are
displaced vertically by one decade with respect to one another for clarity. The
chain dotted lines on curves b) and d) represent the correct relative positions of
the lower-stress characteristics given by lines a) and c), respectively. The con-
ductance scale refers to curve a).

Jonscher and M A Careem (1975).
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While at the lowest temperatures and fields the charging and
discharging currents cannot be resolved to any satisfactory degree
at short times and itis therefore impossible to verify the applicability
of eqn (6.12), at least there is no evidence of it not being applicable.
The situation is changed completely, however, if either the tem-
perature or the amplitude of the field is raised sufficiently when we
observe complete crossing over of the charging and discharging cur-
rents at short times, which is completely incompatible with the
response of a linear system. It was suggested in the context of that
study that the phenomenon of crossing over is due to the injection
of space charge into the dielectric during the charging process,
leading to gradual accumulation of excess charge density near one
or both electrodes, according to the nature of the interface. When
the field is removed abruptly at the commencement of the discharge
process, the initial discharging current consists of the true depo-
larisation current with the current due to the withdrawal of the
previously injected charges superimposed on it. While the polar-
isation current is not expected to be non-linear within the range
of practically attainable field amplitudes, in view of the essential
linearity of the dielectric response already mentioned earlier, the
process of injection is evidently strongly non-linear and responds
easily to such factors as temperature and field.

Very good examples of non-linear dielectric systems are found
among ionic conductors or materials in which the element of ionic
conduction is at least appreciable. One of the most interesting
examples of this type of behaviour is found in electrolytic capacitors
which consist of a very thin anodic oxide layer on a suitable metal
substrate such as aluminium or tantalum, with the top electrode
consisting of either a solid or a liquid electrolyte. Here ion transfer
between the electrolyte and the anodic oxide layer may take place
relatively easily, leading to strong transient phenomena, while in
the long term the steady current is negligibly small. Figure 6.8
shows a collection of charging and discharging currents in a tan-
talum electrolytic capacitor over a range of temperatures between
230 and 393 K.. Each pair is displaced vertically with respect to the
preceding one to avoid the confusion of many overlapping curves
and to emphasize the relative positions of the charging and dis-
charging currents. It is noticeable that the phenomenon of crossing
over is most pronounced at intermediate temperatures. At the
lowest temperature the charging and discharging currents are
almost indistinguishable except at the longest times, while the
chargmg current is significantly higher through most of the range
of time at the highest temperature.
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log(i/V)

Figure 6.8 Charging and discharg-
ing currents in a tantalum electro-
lytic  capacitor (®®®e® and
00000, respectively) drawn as
sets of pairs corresponding to dif-
ferent temperatures at a constant
voltage step amplitude. Each set
is displaced vertically by one dec-
ade with respect to the previous
one for clarity.

The crossing over of #(t) and 7,(t)
should be noted, especially in the

intermediate range of tempera-
tures.

From Meca and Jonscher (1979).
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Figure 6.9 Charging and discharg-
ing currents in a tantalum electro-
lytic capacitor (®e®e®® and
00000, respectively), drawn as
pairs corresponding to wvariable
step amplitude and at a constant
temperature of 296 K. Each set is
displaced with respect to the pre-
vious one by one decade for clarity.
At low voltages the short-time
slope is —i, the slope changes
gradually with increasing voltage.
Maximum crossing over occurs at
medium voltages.

From Meca and Jonscher (1979).
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Different aspects of nonlinearity appear in Figure 6.9 showing a
corresponding collection of data with the amplitude of the applied
step voltage as parameter, at a constant temperature. Here the
voltage covers a range of 200:1 and we note the complete change
of the nature of the response. At low voltages the initial part is well
represented by the ¢72 relation which could be presumed to cor-
respond to some diffusion process, while the later stages of the
polarisation and depolarisation currents are steeper than —1. The
corresponding frequency—domain response would therefore consist
of a loss peak with the high-frequency behaviour being dominated
by the @™ dependence. As the voltage amplitude increases, the
crossing over becomes initially more pronounced, while the clear
distinction between the slopes —1/2 and slopes steeper than —1
gradually becomes blurred. This might be interpreted as showing
the diminishing contribution of diffusion in high driving fields. It
is remarkable, however, that even at the highest voltages there is
no evidence of direct current conduction at very long times.

As an illustration of the extent of agreement between the time— and
frequency—domain measurements in the linear regime we show in
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Figure 6.10 The frequency dependence of the dielectric loss G/w for a 50 uF
electrolytic capacitor based on a sintered tantalum powder body. The full symbols,
marked by fin the inset, for all six temperatures were obtained directly in the
frequency domain, the open symbols (¢) are Fourier transformed data from
time—domain measurements using the smallest available step amplitude. The rise
at high frequencies is due to series resistance, probably from the electrolyte.
From Meca and Jonscher (1979).
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Figure 6.10 the superposition of directly measured frequency—
dependent loss, in the form of G (w)/w for the same capacitor and
of the Fourier transformed time—domain data, both taken at the
lowest amplitudes. The agreement of the data in the region in which
their frequencies overlap is very good and shows both the extent
of linearity and the reliability of the Fourier transformation itself,
which in this case was performed numerically. No such agreement
could be obtained with higher amplitude responses.

Non-linear response may also be studied by superposing a rising
or falling step on a steady bias maintained for a very long time
before and after the application of the step. The bias has the effect
of “conditioning” the system by either injecting or removing any
charge carriers and the step subsequently “samples™ the condi-
tioned system. Figure 6.11 shows the results of such measurements
and it should be noted that the discharge currents corresponding
to different bias voltages are here represented in their correct relative
positions, i.e. they are not displaced as in the other figures but
represent the genuine influence of bias on the level of the discharge
current which is seen to fall by nearly an order of magnitude as the
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Figure 6.11 The effect of a steady bias superimposed on a step on the discharging
currents of the same capacitor as shown in Figure 6.10. Measurements were taken
at 296 K. The meaning of the symbols is explained in the inset, step of 7.5 V with
bias of 0.5 V indicates the change from 8.0 to 0.5 V to obtain the discharge curve.

From Meca and Jonscher (1979).
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bias increases. Despite this very strong effect on the amplitude of the
current, the time—dependence does not appear to change to any
significant extent.

6.7 CONTRIBUTION OF CHARGE CARRIERS TO THE
DIELECTRIC RESPONSE

The role of charge carriers in the determination of the dielectric
response of solids was already mentioned in the context of Chapter
5, especially in relation to the low-frequency dispersive phenomena.
Time—domain measurements are especially important in the study
of these effects, but their influence on the frequency dependence of
the dielectric loss is also significant. The reason for the strong
influence of charge carriers on non-linearity lies in the fact that
their injection and removal are strongly non-linear, while the
response of the dipolar “lattice” of the material remains essentially
linear within the attainable range of voltages.

The reflection of the phenomena shown in Figure 6.11 on the
frequency domain response.is shown in Figure 5.55 giving the loss
measured under a small alternating signal superimposed on a steady
bias applied to the same electrolytic capacitor. Increasing bias has
the expected effect of lowering the loss and it is interesting to note
‘the changing nature of the frequency dependence, from the appar-
ently diffusion — dominated power law with n =3, to the lattice~
dominated exponents n = 0.87 at a bias sufficiently high to cause
the removal of ionic charges.

The removal of charge carriers, especially ionic ones, from dielec-
trics is a well-known phenomenon and is used to ‘“‘clean’ materials
from charges introduced by earlier treatments. It is evident, how-
ever, that the effectiveness of this method depends critically on the
properties of the contacts applied to the material, since these have
to “block™ the passage of the charges in question in the presence
of an eéxternal bias. If this is not the case and the contact injects
‘charges at sufficiently high voltages, then the effect on the dielectric
response is to increase the loss, or the corresponding ac conductivity,
and simultaneously to increase the real part of the susceptibility,
in a manner typical of strong low-frequency dispersion. An example
of this is shown in Figure 5.54 relating to stearic acid multilayers
with aluminium electrodes. The conductance at low frequencies is
visibly not saturated, while at the highest voltages the behaviour
appears to be dc dominated, but the strong dispersion of x' (w)
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shows a contribution of the low-frequency dispersive behaviour. It
may be inferred that aluminium contacts to stearic acid are capable
of injecting charge carriers, probably electrons which would be
expected to be more readily introduced than ions across
metallic—dielectric interfaces.

An interesting and as yet insufficiently elucidated aspect of the
time—domain response concerns the comparative behaviour of the
polarising current under conditions of dark discharge and of the
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Figure 6.12 The dark discharge currents (solid symbols) and the photo-decay
currents at constant voltage (open symbols) after the removal of an ultraviolet
illumination. The readings were taken at 0.5, 1.0, 1.5 and 2.0 volts and at two
temperatures of 260 and 280 K. The left-hand current scale refers to the lowest
set of currents, all other sets are displaced vertically for clarity and the markers
on the right indicate the position of 107 A, The strict parallellism between the
dark and photo-discharge currents should be noted.

Jonscher and Buddhabadana (1978).
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decay of photoinduced current after the cessation of illumination
that had produced photocurrent under steady state conditions.
Experiments carried out on stearic acid multilayers have shown
that the two currents decay in an identical manner, despite the fact
that the initial and boundary conditions are completely different
in the two cases. Figure 6.12 gives the results of such measurements
and the accompanying Table 6.1 summarises the initial and bound-
ary conditions applicable in both situations. Since in the dark case
itis reasonable to expect the depolarisation current to be dominated
by the dipolar contribution, while in the photodecay case the
influence of injected charges must be appreciable, it follows that
there exists a strong “coupling” between the charges and the lattice
which forces the two decay processes to conform to the same law.

TABLE 6.1
The boundary and initial conditions applicable to the dark discharge and to the photo-
relaxation.

Parameter Dark discharge Photo-decay
Initial field substantially uniform significantly influenced by
distribution injected space charge

Polarisation in
steady state

mainly due to dipoles,
with some contribution
from any dark injected
charge carriers at higher

in addition to the dipolar
contribution, there is a
significant polarisation due
to the photo-generated

voltages and charge distribution
temperatures
change of potential from finite to zero no change
final field zero field substantially uniform
distribution .
the change of mainly dipolar relaxation mainly mobile charge
polarisation arises redistribution
from

Jonscher and Buddhabadana (1978).

The time— and frequency—dependent phenomena accompanying
the injection of space charge into dielectrics are very intimately
related to the corresponding steady state processes, in particular
the well-known subject of space-charge-limited currents (Lampert
1965). We do not propose, however, to draw closer links between
the static and transient cases, since there appears to be little
information of significance which could be brought into this dis-
cussion from the experimental angle. On the whole, space-
charge-limited currents correspond to an increase of the effective
capacitance by, at most, a factor of two, and there must therefore
be a corresponding increase of loss.
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6.8 OTHER CHARGE CARRIER PHENOMENA

Our review of the time-domain response of dielectrics would be
incomplete withcut the mention of several other phenomena which
influence the movement of charge carriers in dielectrics and which
become especially visible in the time-domain measurements. Some
of these may be regarded as somewhat marginal to the strict topic
of dielectric response of solids, others may not be sufficiently well
understood at the present time to warrant a detailed discussion in
the present context.

a) Charge injection and surface potential

The fact that any contact between two materials, be they both
dielectrics or one dielectric and the other a metal, leads to charge
transfer between them is well known and has been widely studied.
The immediate evidence of charge injection is obtained from the
build-up of potential at the surface which can be easily measured
by suitable capacitive probes. The surface charge, once left to itself,
tends to decay gradually by drift into the interior of the material
under the action of its own electric field (Davies 1969, Hill 1975,
Rose-Innes 1981).

This may be used to study the mobility of charges in low-mobility
solids. A rather little understood part of this process is the fact that
the charge collected on subsequent breaking and making of the
contact tends to increase, apparently indefinitely, thus making it
difficult to explain the phenomenon simply in terms of contact
potential difference.

Accumulations of surface charges may give rise to fields that are
sufficiently high for surface breakdown to occur in extreme
conditions.

b) Energy loss arising from the movement of charges

The fact that a charge carrier moving through a lossy dielectric
should lose energy in the process of changing the local polarisation
of the surrounding medium is intuitively obvious and yet it does
not appear to have received much detailed attention (Frohlich and
Platzman 1953, Jonscher 1980).

Yet it is apparent that this type of interaction between a moving
charge carrier and the surrounding lattice must bring about a
strong coupling, of which some evidence had already been seen in
Figure 6.12. It is to be expected that the growing understanding
of the dielectric processes will lead to the elucidation of this impor-
tant problem.
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¢) Dispersive charge flow

This subject has acquired considerable importance in recent years
in the context of charge transport in amorphous semiconductors
and semi-insulators (Pfister and Scher 1977, 1978, Scher 1977).
The fundamental difference in comparison with charge transport
in crystalline materials lies in the fact that, while in the latter the
movement of an injected pulse of charges in a steady electric field
produces a steady drift of the pulse with the appropriate drift
velocity, subject only to a slight broadening of the pulse by diffusion,
in amorphous and other low-mobility solids the identity of the pulse
becomes completely smeared out, apparently through very heavy
trapping of charges and their very slow release under thermal
excitation. Thus while the concept of transit time arises naturally
in crystalline solids as the time when the current due to the charge
motion decreases rapidly to zero, in thie second case we have no
obvious stage which could be identified with the transit of any
particular charges. Instead, the current-time dependence shows a
type of relationship shown in Figure 6.13 and this type of behaviour
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Figure 6.13 Time response of the decay current in a sample of poly-vinyl karbazole
(PVK) after perturbation by an electron beam pulse, with variable voltage across
the sample. The results for different voltages have been normalised in the usual
manner, with the symbols connected by the chain-dotted line corresponding to

the displacement of a representative point, with the respective values of the voltage
indicated. The two exponents of the power law are shown as —0.22 and —1.61.

From measurements by Hirsch (1979) plotting and normalisation by courtesy of
R M Hill.
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is known under the name of dispersive transport. The current-time
dependence is of the power—law type, consisting of two branches
separated by a distinct kink which tends to be identified with a
“transit time” in the system although the dependence of this time
on the amplitude of the electric field causing the drift is not simply
inverse, as would be the case in ordinary drift. What is very
interesting and intriguing is that the power—law dependence
observed in dispersive flow resembles strongly the time-domain
response of dielectric polarisation in the absence of drift, Figure
6.2 b). The full significance of this similarity is not clear and many
workers do not believe that any relationship exists, but further
studies may reveal that the process is another manifestation of
charge-lattice coupling.

d) Charge carrier systems with strong dispersion

Itis very interesting to observe the time—domain response of systems
with strong low-frequency dispersion of the type discussed in Section
5.6, especially attimes long compared with the reciprocal frequency
at which the transition occurs from the strongly dispersive regime
to the less rapidly varying power law, cf. Figures 5.43 and 5.45.
Since this regime obeys the same universal power law of frequency
dependence, @', but with an exponent n close to zero, the Fourier
transform into the time domain, eqn (3.33) is valid and indicates
a very slowly decaying power law .for the current, i(f) o< ¢™.
Time—domain measurements would immediately indicate the pres-
ence of any non-linearities in this behaviour, as well as the eventual
behaviour of current at very long times.

There are very few experimental data available for this regime, but
Figure 6.14 shows a set of charging and discharging currents in a
fast ionic conductor of the hollandite type, for a range of amplitudes.
At short times the response appears like the tail end of a normal
power law with values of the exponent in excess of 3, and with the
amplitude approximately linear in the applied potential. This is
followed by a range of some three decades of time in which the
current appears to be independent of time — a “‘quasi—dc” regime
— once again linear in voltage, until finally the current begins to
drop more rapidly.

It is highly significant that both the charging and the discharging
currents follow identical paths in the first two regions, indicating
that the processes in question are reversible, including the low-
frequency dispersive region. At 1V amplitude, the two currents
remain identical even in early stages of the final drop, the charging
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Figure 6.14 Direct plot of the charging and discharging currents in a sample of
a fast ionic conductor of the hollandite type. The graph was obtained on-line as
the experiment proceeded and the three sets of characteristics correspond to the
stated values of the step voltage applied to the sample. The charging and dis-
charging currents are indistinguishable at shorter times and tend to separate at
progressively longer times as the amplitude decreases. The behaviour is linear at
short times and becomes strongly non-linear at long times.

Unpublished data from Chelsea Dielectrics Group.

current becoming apparently constant only at the longest times. At
the two larger amplitudes the discharge current becomes distorted
and the charging current shows a complex structure. At this stage
the system is strongly non-linear in the applied voltage.

This kind of time-domain experiment is most instructive in the
study of strong low-frequency dispersion and the advantages of
time—domain measurement are particularly clear.

6.9 CONCLUSIONS REGARDING TIME-DOMAIN
EVIDENCE

When compared with the frequency—domain information, time—
domain data are evidently much less abundant and less reliable in
terms of accuracy, mainly because of the less well developed equip-
ment which is available for this type of work. Where the dielectric
systems under study may be said to be linear in their response with
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respect to the amplitude of the exciting electric field, so that the
ratio i(¢)/ V(t) remains constant, the validity of the Fourier trans-
formation is assured and the time-domain evidence should rep-
resent a fully complementary set with respect to the frequency—
domain data. To that extent, it is merely a matter of experimental
convenience which method is being used. Our experimental evi-
dence shows, however, that the application of even modest voltages
to a.dielectric capacitor system may result in perceptible departures
from linearity, such as the “crossing over” of the charging and
discharging currents which clearly point to the presence of some
injection processes that would be very likely to remain completely
undetected by frequency—domain measurements. Likewise, at very
long times, there is evidence of processes setting in which may not
be simply the direct current conduction limit in the case of charging
currents and which represent the equivalent of the strong low
frequency dispersion showing as a slowly falling current at long
times.

We have already pointed out the value of the time-domain rep-
resentation in the understanding of the true nature of the dielectric
loss peaks in the frequency domain — as the transition between two
sequential processes of different physical nature. This is an impor-
tant element in our understanding of the new approach to the
dielectric response of solids — not as an accidental superposition of
Debye-like processes, but as a well defined sequence of physical
processes which are characterised by a very specific form of time
dependence (Jonscher 1975).

The Fourier transform of the universal law (5.8) obeyed at fre-
quencies in excess of the loss peak frequency w, is

i(f)ct™  0<n<l, t<1/w, (6.13)

and this is the well-known empirically established Curie—von
Schweidler law formulated over seventy years ago (von Schweidler
1907).

On the other hand, the Fourier transform of eqn (5.12) valid below
W, is:

i(t) oc gt 0<m<l; t>1l/w, (6.14)
so that these two power laws determine the time-domain response

of dipolar systems in which a loss peak is seen in the frequency
domain.
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Furthermore, the behaviour of carrier-dominated systems with their
strong low-frequency dispersion below a frequency @, may be
described by the same type of power law as eqn (6.13) but with a
very small value of n. It may be advantageous for the purpose of
subsequent discussion to introduce the notation n =1 — p with p
close to unity, to denote the low-frequency dispersion regime, in
which case the long-time response of charge carrier systems will be
denoted by

()t p=1; > o, (6.15)

corresponding to a very slowly time-varying current, as shown in
Figure 6.14.

The complete representation of the univer§al dielectric response in
the time—domain, covering both-dipolar loss peaks and the strong
low-frequency dispersion associated with the charge carrier dom-
inated systems may be represented in the unified form of the
depolarisation current as a function of time:

i) <t 0<s<2 (6.16)

with the exponent s taking values in different ranges at “long’ and
“short” times, respectively, as shown in Table 6.2.

TABLE 6.2

The values of the exponent s in the universal relation i(#) o= ¢
corresponding to various physical polarising systems and to
“short” and “long” times, respectively.

Svste “short” times “long” times
HElo t<1/w, t> 1w,
Dipoles s=1l+m
— s=p
Charges s=1—p p=<1
Near-Debye s—0 s— 2
Debye exp(—wyt)

These universal dielectric relationships are shown schematically in
Figure 6.15 which distinguishes between charge carrier and dipolar
systems and also between “short” and “long” times. Several points
need stressing in this connection.



6.9 EXPERIMENTAL TIME RESPONSE 285

log A&

| x“slrung dispersion

Figure 6.15 The two alternative forms of the universal dielectric response of solids
in the time domain, corresponding to the two types of polarising species which
may be present. Both follow the same power law at “short” times with a logarithmic
slope smaller than —1, while at “long” times dipolar systems give a steeper power
law and charge carrier systems obey a much slower time dependence, as shown
by the dotted lirie. The exponential Debye response is shown for comparison.

a) The presence of two power laws

We have shown on the basis of convincing experimental evidence
both in the frequency and in the time—domain, that the universally
observed form of dielectric response which is followed in all dielectric
systems, regardless of their detailed physical and chemical proper-
ties, consists of fwo power laws which follow sequentially in the two
regions of time. There is an intermediate law joining these two
regions, the precise form of which cannot be easily obtained from
the available experimental data and which will be described in
detail in the theoretical discussion in Chapter 8.

We note that it is not possible to give an adequate representation
of the dielectric response on the basis of a single mechanism only,
corresponding to the use of a single parameter, e.g. in the Cole—
Cole, Cole-Davidson and Williams—Watts expressions.

b) The temperature dependence of the universal law

All experimental evidence clearly points to the fact that the critical
transition time 1/, in dipolar systems or 1/, in charge carrier
systems are strongly temperature dependent, showing for the most
part some form of activated behaviour with a well defined activation
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energy, although more complicated forms of dependence are seer
in the case of the « relaxation processes in polymers and also in
the response at very low temperatures.

By contrast with this strong temperature dependence of the tran-
sition time, the exponents m and 7 or $ determining the power law
behaviour are relatively very weakly temperature dependent. The
only strong dependence may occur in the vicinity of any transition
temperatures such as between the glassy and supercooled liquid
states in polymers.

¢) Limiting forms of response at “zero” and ““infinite” times

The power law ¢™ diverges at zero time and it is essential to note
the physical limitation of its validity at sufficiently short times
which ensures that the mathematical singularity does not arise.
This limitation is provided by several processes which are not
covered by the existing experimental evidence, on which our
empirical laws are based. One of them is the presence of quantum
processes, involving either phonon or photon interactions which-
become apparent in the frequency range in excess of THz and -
which would manifest themselves in the frequency—domain by
strong loss peaks and dispersions of the real part, while their
time—domain counterpart would be an oscillatory dependence with
some damping. The second limitation, which would be expected
to be observable in a similar range of frequencies and times is the
presence of inertial effects which are again experimentally inacces-
sible. There is a third limitation, based on the strict theoretical
treatment of the model explaining the power laws, and this will be
discussed in Chapter 8.

Theimportant conclusion at the present moment is that the presence
of a singularity at zero time in the universal relation (6.16) is not
a bar to its validity -at longer times, since the power law is not
intended to apply at arbitrarily short times. The power law describes
extremely well the behaviour of dielectrics in a very wide range of
times and there is no need to insist that the same law should necess-
arily be valid at arbitrarily short times, since the theoretical treat-
ment to be given in Chapter 8 takes care of the short-time effects.

A more serious difficulty arises with respect to the carrier response
corresponding to the dotted line in Figure 6.15. This clearly leads
to a divergence of the total charge stored in the system and this is
physically impossible. Experimental evidence shown in Figure 6.14
indicates that the nearly flat behaviour is followed by a steep drop
which eliminates this problem of infinite charge, and we do not at
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present understand sufficiently well the full implications of this
behaviour. With regard to the corresponding frequency—domain
response, all the examples shown in Chapter 5, and most examples
known to us, show a continuing rise of &' and & down to the lowest
attainable frequencies so that at the present time we have to accept
that insufficient experimental basis exists for pronouncing defini-
tively on the long-time behaviour in carrier systems. However, once
again, this does not invalidate the experimentally well established fact
that the behaviour described does exist and is seen over wide ranges
of both time and frequency.

d) The Debye “singularity”

We stress again the singular nature of the classical Debye response,
which does not correspond to any mathematical limit of the uni-
versal law but represents a completely different form of law relating
to completely different physical circumstances. The Debye law was
derived on the assumption of non-interacting dipolar or charge carrier
species. Experimentally we have shown beyond reasonable doubt
that this form of behaviour does not exist in real systems and we
therefore conclude that this basic assumption is not satisfied in
condensed matter. Our theoretical treatment in Chapter 8 will
propose a completely different interpretation in terms of many-
body processes, which are not only plausible but manifestly inevi-
table in condensed matter. Furthermore, we note that attempts to
move away from interaction, for example by diluting the polarising
species to the point where their interactions might become negli-
gible, does not lead to experimentally verifiable Debye behaviour,
since the magnitude of the signal becomes too weak to measure
with precision, Figure 5.2.

¢) Time—domain response of the polarisation

Our discussion of the time-domain response of dielectrics has
concentrated so far on the step-function response of the depolar-
isation current which is given by the response function f(¢). This
choice is dictated by the practical consideration of convenience of
measurement — it is far easier to measure the current than the
polarisation. Nevertheless, it is important to have a clear idea of
the behaviour of the polarisation itself, since this is the primary
physical variable, rather than its time derivative which is the
polarisation or depolarisation current.

Assuming that the universal law given by eqn (6.18) is valid in the
entire physically accessible time range, we may write the following



288 DIELECTRIC RELAXATION IN SOLIDS 6.9

expressions for the polarisation in the charging mode:
P(2) ZsQEOJ:f(t) dtzl—g—nt"" (6.17:
and in discharge:
P(t) = &E, ff(t) dt = const — 1—‘31:1-« (6.18)

We note that this formulation involves a divergence of the polar-
isation at infinitely long times but this is not a serious problem for
the present discussion.

The functional dependence of ¢' " is shown schematically in Figure
6.16 for a range of values of the exponent n. The limit n— 0
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Figure 6.16 The function #™" for a range of values of the exponent n. The
approximation #7"=1+ (1 — ) In ¢ is valid for values of n close to unity, over
a wide range of values of ¢.

corresponds to strong low-frequency dispersion, with its tendency
for the polarisation to grow indefinitely. The other interesting limit
is that of the “flat” loss, n— 1, in which the polarisation under
step—function charging builds up rapidly to an almost constant
value and changes little- thereafter.

The limit n = 1 represents a singular solution for which the polar-
isation should show a logarithmic time dependence, since

3
fdt/c=mt—lna (6.19)
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and this form of relaxation law is often seen in different contexts,
especially in disordered systems.

While eqn (6.19) may represent a mathematical singularity within
the family of solutions (6.17) for all values of n # 1, it is interesting
to investigate in more detail the transition from the power law
(6.17) to the logarithmic law (6.19) as the exponent approaches
the critical value 1. To this end write

l—n=a<1
Equation (6.17) now becomes:
' P(t) = At*/ o (6.20)
But
Int*=ahnt=In[l+@*—1)]=r—1 (6.21)

the last approximation being valid for t*=1, or Int <1/
From (6.20) and (6.21) we obtain the relations for charging

P(t)ocmi}+lntocl+a’1nt (6.22)

and for discharging
"P(t) < const — &In ¢ (6.23)

We have thus derived the required relationship between the power
law and the limiting logarithmic time dependence, showing that
within the states range of time in which eqn (6.21) is valid, the
logarithmic law may be indistinguishable from the power law
solution.
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APPENDIX 6.1

THE MINIMUM DURATION OF CHARGING AND
DISCHARGING

In order to estimate the effect of finite charging times on subsequent
discharge, and vice versa, let us assume that the material under
study has a simple universal characteristic f(t) o< ¢{™ throughout
the experimentally accessible range of time. We take the exact eqn
(6.1) and we calculate the time ¢, at which the logarithmic slope
S reaches a given value.

g= dlog i(z) _ —nl — !
~dlogt 1 —2z
where

z=t/(T+1t)

Setting this equal to —1 we solve numerically and obtain the values
of ¢, given in Table 6.3. The significance of this time is that, had
the measurements been continued beyond #, the presence of a loss
peak in the frequency—domain would have been inferred from the
change of slope.

We may impose an even more stringent condition, that the slope
should not change from the correct value —n by more than, say,
10 or 20%. These times are also given in the Table.

All values in the Table are given in terms of the ratio 7/¢, etc, i.e.
the ratio of the minimum charging time required to the desired
duration of discharge measurement. The same considerations apply
to the measurement of charging currents.

TABLE 6.3

n T/t T/ tiow T/ tage,
0.95 21.4
0.9 10.8 12.3 .
0.8 5.3 17.8 7.2
0.7 3.3 28.4 10,6
0.6 2.6 52 17.3

0.5 1.6 118 33
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APPENDIX 6.2

TIME-DOMAIN RELAXATION AND
DC CONDUCTIVITY

The time-domain relaxation according to the power lawi(f) oc t™
may interfere with the determination of dc conductivity 0; of a
material, since a considerable delay may have to be allowed after
the application of a bias voltage before the relaxation current falls
below the steady state value of the current appropriate to the dc
conductivity. To obtain a quantitative estimate of this effect we use
equation (2. 33) omitting the delta-function which is normally lost
in the measuring process:

1:,(1&)/}.!7U &f(t) + o

The present analysis applies predominantly to low-loss materials,
for whichn =1, " (w) = const, tan § = &x"/&. < 1, with the result
that e== ¢..

Equation (6.8) gives in these circumstances:

X" (w) = (1.5/&) ti(t)/ E; = const

where the current here is the depolarisation current, not including
the dc component, i.e. it is equal to & f(¢).

The implication of this is that
i(8)/Eo= & f(t) = g)" (w)/t= €xtan &/t

so that finally
z,(t)/En € tan 6/t + oy

Assuming the value &, = 107" F/m, we obtain the diagram of Figure
6.17 which shows that, according to the particular combination of
tan § and 0 it may be necessary to wait for a significant length of
time before a reliable measurement of ¢, can be made.

The above analysis applies to the limiting case of n =1, corre-
sponding to a frequency-independent loss. In the situation where
this is no longer the case, the same analysis would still be applicable



292 DIELECTRIC RELAXATION IN SOLIDS A6.2

log aff)

—134 ogtand
-2 loga,
-14

. N\ B
161 &s\ =
. \\\

4 log (t/s)

=T
—_

Figure 6.17 The “time-dependent conductivity”, o(t) = i(¢)/E, in (Qm)™ for
low-loss materials with a dc conductivity ¢, assuming that the exponent n of the
universal law is equal to unity and that the real part of the permittivity is
independent of frequency and is € = 107" F/m. In order to attain the dc con-
ductivity indicated it is necessary to wait for a time that is sufficiently long to
enable the corresponding discharge current to fall below the dc wvalue. The
parameter is tan 8 which for the low-loss materials in question is equal to the
angle & itself (in radians).

if one took for tan d the value appropriate to the frequency corre-
sponding to the longest time at which the measurement is being
made.
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CHAPTER 7

Previously Accepted Interpretations

7.1 INTRODUCTION

The review of the experimental evidence relating to a wide range
of dielectric materials, summarised in Figure 5.58, shows clearly
the wide variation of types of dielectric response, whether involving
loss peaks or strong low-frequency dispersion, whose only common
feature is the presence of power—law relations between the loss and
the frequency. The corresponding time—domain representation
likewise involves power—law relations for the charging and dis-
charging currents and it has been recognised as the generally
observed type of behaviour since the beginning of the present
century.

We saw'in Chapter 4, on the other hand, that the response of most
ideal physical systems involved a Debye-type exponential depend-
ence on time and the corresponding Fourier transform into the
frequency domain, with the exception of the resonant response and
of the diffusive system. This concept of the Debye relaxation has
somehow dominated the dielectric thinking for a very long time,
despite the evident discrepancies in relation to -the experimentally
observed behaviour. It is surprising, perhaps, that in view of these
discrepancies so much effort should have gone in the past into
attempts to adapt the Debye philosophy to suit physical reality,
rather than into devising essentially new methods of approach.

The purpose of the present Chapter is to give a brief review of the
most important currently accepted interpretations of the dielectric
response of materials, as a preparatory step to the introduction of
our own alternative approach It is not proposed to dwell in detail
on the various theories, since they have been adequately presented
elsewhere — a very recent and comprehensive review may be found
in Bottcher and Bordewijk (1978), several other classic texts are
listed in Chapter 1. Instead, our aim will be to present a critical
appraisal of these various theories, pointing out in what respects
they fall short of the requirements imposed by the 1nescapable
experimental evidence.
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A newcomer to the subject of dielectric relaxation might be excused
the feeling of a certain surprise at the multiplicity of different
models, all trying to explain what might strike him as the fairly
common patterns shown in Figure 5.58. This feeling of surprise
arises, however, only after a thorough review of all experimental
evidence covering a wide range of materials. In fact, however, most
dielectric studies in the past have been carried out in comparative
isolation between the different branches, usually centred on groups
of materials such as polar liquids, ceramics, glasses, low-loss poly-
mers, ionic conductors, amorphous electronic conductors etc. It is
not difficult to see how, within a narrow sector of materials and of
types of response, a method of presentation and of interpretation
becomes accepted which looks plausible enough. Reference across
these self-imposed subject boundaries was rendered the more dif-
ficult for the acceptance in these various groups of different and
often incompatible methods of presentation of data. A typical
example is the acceptance of the complex permittivity plots in the
context of polar liquids and the equally exclusive use of complex
impedance plots by fast ionic conductor workers. Departures from
straight circular arc plots are then explained by both groups in
terms of distributions of relaxation times, while our analysis shows
that these two modes of response rely on physically entirely different
mechanisms. Furthermore, experimental data were often confined
to relatively narrow ranges of frequency, making the “fitting” of
more or less arbitrary theories fairly easy. Only by looking at a
frequency range of more than, say, five or six decades, consisting
of the actual measuring range extended by normalisation of data
from different temperatures, can the extent of agreement or its lack
be properly assessed.

Not the least cause of a lack of common appreciation of the nature
of the dielectric response was the prevailing habit of plotting the
data semi-logarithmically, which meant that the all-pervasive
power—law relations were being missed, all loss peaks looking as
somewhat broadened versions of the Debye shape, but without any
sense of order appearing. Only by plotting the data in a log—log
representation, as we are doing, can the true universality of behav-
iour be seen without difficulty.

Even the acknowledged wvalidity of the Curie—von Schweidler
time-domain law for many dielectric materials was not sufficient
to prompt a serious enquiry into the possible alternative explanation
of the power—law relation, eqn (6.13).
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For the purpose of our discussion we shall divide the various theories
into the following broad categories:

a) distributions of relaxation times (DRT"s);

b) distributions of hopping probabilities;

c) correlation function approaches;

d) local field theories;

e) diffusive boundary conditions — Warburg impedance;
f) interfacial phenomena and the Maxwell-Wagner effect;
g) transport limitations at the boundaries.

These will be briefly discussed in the following sections.

7.2 DISTRIBUTIONS OF RELAXATION TIMES (DRT’s)

These theories (Garton 1946, Frohlich 1955, Macdonald 1962a, b,
1963) are among the earliest and, in some ways, the least sophis-
ticated attempts to interpret evident departures from the ideal
Debye behaviour, and although they are not regarded as a pana-
ceum by the more critical workers, their hold on the more popular
front is very strong, to the point where for many people the DRT
is a self-evident explanation not requiring closer justification. The
attraction of DRT"s lies in the eminent plausibility of the fact that
there should exist a distribution of relaxation times in any solid
material, since there is likely to be some non-uniformity of local
situations of the individual dipoles or charges, Furthermore, the
assertion of a DRT is impossible to prove as being either right or
wrong — there is usually no independent way of showing whether
a particular form of DRT is applicable in a given case. This places
the proponents of this approach in a favourable position and any
argument usually does not get very far.

Mathematically the summation of Debye responses Correspondlng
to a distribution of relaxation times is carried out in terms of
integration of a function g(7) defining the distribution:

= g(7)

7.1
o 1 +iwT (7.1)

x(w) =
This may be regarded as a special form of integral transform,
analogous to Fourier, Laplace or Hilbert transforms, through which
one function, in this instance the Debye function given by eqn
(4.11), is transformed into a different function, the desired empir-
ically observed response function y(w), with the aid of a suitable
kernel which in this instance represents the physical concept of the
distribution of relaxation times.
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Figure 7.1 A schematic representation of the significance of the existence of a
distribution of relaxation times in the application to the interpretation of a

“non-Debye” loss peak in a dielectric material. The distribution could be discrete
or quasi-continuous.

This operation may be represented graphically by the construction

shown in Figure 7.1 relating to the frequency domain, or by the

corresponding time-domain representation .shown in Figure 7.2. It

is evident that within very wide limits, any sufficiently slowly

varying function of frequency x(®) may be represented by the

integral in eqn (7.1), so that virtually all forms of relaxation behav-

iour can be “explained” by this means. On the other hand, it would

be impossible to represent in this way resonance phenomena such -
as that shown in Figure 4.1.

4 logift)

observed
response

exponential

log .

Figure 7.2 A schematic illustration of the distribution of relaxation times in the
time-domain corresponding to a fitting of exponentials of the form exp(—w,t) with
a range of loss peak frequencies w, to simulate a given response.
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In the limit of sufficiently wide loss peaks, the functional form of
g(7) follows reasonably close that of ¥(1/w), as may be seen from
an examination of Figure 7.1. Considerable efforts went in the past
into the mathematical inversion of eqn (7.1), which would yield
the analytical form of g(7) for a given input function y(w). In the
case of analytical expressions for (), no exact analytical procedure
exists analogous to the inversion of Fourier or Laplace integrals,
while approximate procedures for treating empirically given sus-
ceptibility functions are available. It is important to bear in mind,
however, that any effort spent on this operation is only justified to
the extent to which it is thought that the information obtained in
this manner has specific physical significance and justification.
Merely to obtain a distribution of relaxation times as a means of
characterising a given susceptibility function does not advance the
true understanding of the situation, since this DRT function cannot,
by the nature of its derivation, contain any more information than
does the experimentally determined susceptibility function from
which the analysis started.

A complete physical interpretation of the situation, as distinct from
the purely mathematical formulation of the problem in terms of
eqn (7.1) would now require a discussion of the reasons for this
particular form of distributions of relaxation times in any given
material and it is here that difficulties start. There are many good
reasons why distributions of relaxation times should arise in solids,
the most obvious being the presence of inhomogeneities both on
the macroscopic and on the microscopic or atomic levels. Thus,
considering a particular polymeric material, it is evident that not
all dipoles present in it are likely to find themselves in exactly the’
same environment, with some being more free to rotate than others.
Similarly, the dipoles present even in single crystal and well ordered
materials may find certain orientations more favoured than others
and certain transitions between these orientations may be easier
than others. These variations of local transition probabilities would
reflect themselves not only in the variation of the absolute values
of the relaxation times 7, but also in the corresponding variations
of the activation energies W and of the pre-exponential factors v
in eqn (4.29). The importance of the variation of activation energies
arises in connection with the temperature dependence of the di-
electric susceptibility, as may be seen from the following consider-
ations. -

With reference to Figure 7.1, we note that as the temperature
changes, the variation of the individual relaxation times causes a
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shift of the respective loss peaks on the logarithmic frequency axis
with the relevant activation energies. We may now consider two
extreme situations. Either all activation energies are the same and
the entire distribution of relaxation times is caused by a variation
of v, in which case the response at different temperatures is shifted
bodily in frequency, without any change of shape, implying that
normalisation is complete, as for example in Figures 3.27 and 5.21.
Alternatively, the variation of 7 is caused entirely by the variation
of the activation energy W, in which case the resulting response of
dielectric loss would suffer a change of shape with varying tem-
perature. Of these two, the later hypothesis is more plausible, since
there does not appear to exist any very good physical reason why
the “attempt-tojump” frequency v should vary, in some cases over
many decades with the same activation energy.

A much more likely physical behaviour would consist in an inter-
dependence between the values of » and of the energy W, as shown
in Figure 7.3 which illustrates the so-called compensation rule which -
applies to many activated processes and which requires that the
smallest values of the activated quantity have the highest activation
energies. The consequence of this type of behaviour would be a
narrowing of the loss peaks with increasing temperature, which is
in qualitative agreement with some of the observed responses
(Jonscher 1977).

) log (1/7)
‘--_- ----_-_-_--_--_‘—l—-
\\\\\““‘ —__-_'_"""-'---_._
\\ :y\
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6‘/00

[
1=ATING,
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Figure 7.3 The physical significance of the “compensation tule”, linking the
pre-cxponential factors » and the corresponding activation energies I in eqn
(4.29). To obtain a range of relaxation times 7(T) at any given T one has to take
different and corresponding values of energies and pre-exponential factors,



300 DIELECTRIC RELAXATION IN SOLIDS 7.2

Attempts have been made in a few specific cases where the crystal
structure was known with sufficient detail to enable the calculation
of transition probabilities to be made, to obtain the shape of the
spectrum from first principles (Lauritzen 1958). A measure of
agreement was obtained with experimental data, with one or two
peaks and in a limited range of frequencies in the 10°-10° Hz range.
In the light of the discussion to be given in Section 8.4, this type
of calculation may be said to refer to the principal thermally-
activated transitions, while saying nothing about the many-body
relaxations which determine the spectral shape of the loss peak
outside the region of the loss peak frequency. To that extent,
therefore, these calculations may be said to leave the central problem
of large deviations from the Debye shape out of consideration.
Certainly no attempt to calculate from first principles the shape of
a really broad peak has come to our notice.

With reference to the time-domain representation of Figure 7.2, we
may write down an analogous expression to (7.1) in terms of a
distribution of loss peak frequencies, h(S2):

) = J; exp(— Q1) h(Q) dQ (7.2)

which is immediately recognisable as the Laplace transform of
k(). The inversion of this function to give the required distribution
h(Q) for a given response function f(¢) is relatively simple, since
tables of inverse Laplace transforms are readily available (Erdelyi
1954) and it is certainly much simpler than the corresponding
inversion of eqn (7.1) which involves manipulation of Stietjes inte-
grals (Bottcher and Bordewijk 1978, p. 523).

Comparing the definitions (7.1) and (7.2) and using the Fourier
transform relation (2.37) it is easy to show that

h(w,) = w;'g(1/w,) (7.3)

which is dimensionally correct since £(7) has the dimensions of
reciprocal time, while £(®,) is dimensionless.

To illustrate the principle, consider first the trivial case of a Debye
response for which the function f(¢) = exp(—w,t). Inspection of
eqn (7.2) shows that the distribution function is a delta function
centred on the required frequency w,, i(¢) = 6(Q — w,), which is
physically self-evident. Taking next the limiting form of a “flat”
response in frequency, the required response function is f(¢) = 1/t,
the inverse Laplace transform of which is k(w,) = const, corre-
sponding to a “flat” 'distribution in frequencies ®,.
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Next note that in our representation on a logarithmic time axis, the
contributioas to the current f(log ¢), with equal logarithmic inter-
vals in loss peak frequency @,, must have the “strength” or ampli-
tude given by

h(w,) dw, = const dw, < w, dw,/w, = w,d log w,

so that the amplitude should go as w, or as 1/¢ Comparable

relations would be obtained for other forms of distributions. In the-
general case of the universal fractional power law time dependence

¢ the inverse Laplace transform of this is @"™'/T'(n) o< A(w,). The

corresponding distribution in logarithmic intervals is therefore:

k(log w,) o< wj o< t™

Thus the logarithmic frequency distribution follows the time-
dependence of the relaxation current, as shown schematically in
Figure 7.2.

One of the principal difficulties in assessing the validity of the DRT
approach consists in the impossibility of proving that a given form
of g(7) is -actually wrong, while equally, the protagonists of this
approach cannot prove that their distributions are in fact correct.
The most that can be said is that a given experimental result is
compatible with the presence of a certain DRT, which does not imply
in the least that this is the correct solution.

Our main argument against the DRT philosoply rests essentially
on the universality of the dielectric response of so many different
materials, all giving the same type of lower-law dependence on
frequency and on time. Any serious proof of the validity of DRT’s
should, therefore, give a more general justification of the universality
in terms of these distributions and should explain the independence
of the response from the detailed physical properties of these very
different media. No such generalisation has ever been proposed, to
our knowledge, and for this reason we regard this approach as not
objectively acceptable in the face of the experimental evidence at
our disposal. This does not alter the fact that many people in the
applied area of dielectrics science, especially in Engineering, are
- very attached to this type of interpretation.

7.3 DISTRIBUTIONS OF HOPPING PROBABILITIES

Just as a localised electronic or ionic charge hopping between two
or more preferred sites represents an exact counterpart of a dipole
.jumping between preferred spatial orientations, so the dipolar DRT
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approach has an exact counterpart in the equivalent theories which
consider the observed results as arising from corresponding dis:ri-
butions of hopping probabilities. These theories became especially
popular in the context of amorphous and glassy electronic semi-
conductors (Pollak 1971, Austin and Mott 1969, Scher and Lax
1973, Butcher and Morys 1973, Butcher and Ries 1981) but they
are also being invoked in the context of ionic semiconductors.

While the level of mathematical sophistication applied to these
hopping theories is higher than that found in the dipolar DRT’s,
the same fundamental objections apply to both — the approach is

" essentially a one-particle treatment and there are no means of
determining the expected distributions from first principles or from
independent experimental evidence. Once again, if these distri-
butions were really responsible for the observed behaviour shown,
for example in Figure 5.33 for very different materials, it would be
necessary to carry out a generalisation of the theory to explain why
the same form of behaviour is seen in all.

The uncritical acceptance by many workers of the distributions of
hopping probabilities goes to the point where it is confidently stated
that the presence of a power—law frequency dependence of con-
ductivity following eqn (3.32) with the exponent in the range
0.6 <n < 0.8 constitutes in itself a proof of the applicability of the
hopping mechanism. This simplistic view ignores the fact that many
other materials exist which are not hopping electronic conductors
and which show exactly the same type of frequency dependence.

One class of hopping materials which obey the same type of fre-
quency dependence are the ionic conductors, especially the so-
called fast ion conductors, examples of which were given in Chapter
5. Once again, the generally accepted “theories” relating to the
behaviour of these materials invoke more or less well defined “dis-
tributions” of some parameters, even though the interpretations in
question are mainly concerned with the interpretation of inclined
circular arcs in the complex impedance plane, as shown in Figure
5.36. We have shown that this type of behaviour is exactly equivalent
to our “universal” dielectric response and it would therefore be
very surprising if the same type of distribution of relaxation times
were found in these as in the electronic hopping conductors.

One important point relating to all forms of distribution functions
of either dipolar or particle relaxation times is the fact that, with
the entire body of experimental evidence in mind, we never see any
indication of a finite range of relaxation times. The reason for this
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is that the summation of Debye-like response functions covering a
finite range of relaxation frequencies between, say, €, < w, < £2,,
should produce a dependence of loss as x" (@) o= @ for @ < Q, and
x"(w) < 1/o for o> Q,. This type of behaviour is conspicuously
absent even in dielectric measurements covering many decades of
frequency.

Under the general heading of distributions of probabilities and
relaxation times one should mention the fact that the purely
empirical expressions due to Cole and Cole, eqn (8.37), and to Cole
and Davidson, eqn (3.38), are often “explained” in terms of not
clearly specified distributions of some parameters, without any
particular attempts being made to specify the physical nature of
these distributions. The numerical values of the exponents « and
f are sometimes taken to be “measures” of the width of the dis-
tributions involved. Needless to say, these arguments cannot be
regarded as serious interpretations in any physically rigorous sense
— at best they may be considered as means of qualitatively char-
acterising the type of response.

7.4 CORRELATION FUNCTION APPROACHES

The correlation function is a mathematical expression of the
time-evolution of the perturbation arising from an initial disturb-
ance of a dipole from its equilibrium orientation, p(0). If u(¢) is the
orientation at a time ¢, then the correlation function is defined as
the average over all dipoles of the product:

C(t) = (u(0) . u(t) )/ 1 (7.4)

The analysis of correlation functions has been carried out exten-
sively, often at a high level of mathematical refinement (Glarum
1960, Cole 1965, Nee and Zwanzig 1970, Williams 1972, Cole 1973,
Fulton 1975). An excellent recent review may be found in Cole
(1980).

Correlation function approaches may be divided into two basic
types, one being purely descriptive, i.e. describing the nature of the
time-dependent function in eqn (7.4) by means of some mathe-
matical approximation, without at the same time producing any
specific justification of this on physical grounds. This aspect is not
very helpful in the understanding of what determines the physical
nature of dielectric relaxation.
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A second type of approach begins from first principles for a given
physical model and it may be said to represent a rigorous analysis,
within the limitations of the necessarily simplified model which is
postulated at the outset. Some recent studies are concerned with
numerical solutions of systems not admitting of closed-form ana-
lytical solution. It turns out, however, that those models that are
tractable analytically or even numerically, relate only to one-particle
processes, i.e. to auto-correlations, where the dipole in question is
assumed to interact only with itself. Once any form of many-body
interactions is introduced through cross-correlations between dif-

ferent dipoles, the mathematical difficulties become insurmount-
able.

One method of treating many-body interactions within the scope
of correlation function approach consists in the application of the
Ising model to linear-chain systems (Bozdemir 198la,b). This
method leads to finite distortions from the Debye shape and to
considerable modification of the single-particle relaxation
frequencies.

Once again, however, the general conclusion from these various
approaches is that, while they may successfully describe slight
departures from the Debye ideal, they do not give any proper
insight into the more serious departures and they are unable to
account for the observed universality of response.

7.5 LOCAL FIELD THEORIES

A very considerable amount of theoretical effort has gone over the
years into the proper formulation of the local situation arising at
the site of a particular dipole or charge under the influence of an
external electric field and also taking into account the interactions
of the neighbouring dipoles or charges. Most of this work is con-
cerned with the static polarisation, where the various theories
described in Section 2.4 attempt to represent the physical situation
in terms of closed-form mathematical expressions.

For all their possible usefulness in the treatment of static behaviour,
the application of local field theories to polarisation response in
time-varying electric fields has not led to any striking agreement
with the empirically determined behaviour. While slight departures
from the Debye model could be explained on this basis — as also
on the basis of several other theories, it is difficult to see how more
serious departures could be treated in this way. Accordingly, we
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do not propose to give any more detailed treatment of this subject,
especially since it is difficult to find such treatments in most standard
dielectric textbooks.

7.6 DIFFUSIVE BOUNDARY CONDITIONS

Section 4.8 gave the description of the diffusive transport in the
particular example of a forward-biased p—n junction. Very similar
considerations apply to the case of an interface between an elec-
trolyte and an electrode, provided that there exist two mobile carrier
species of opposite signs, so that neutrality may be preserved in the
presence of a density gradient (Jonscher 1975, 1978).

The great advantage of the diffusive model (Warburg 1899, 1901,
Mitoff and Charles 1972) lies in the fact that, uniquely amongst
all the other physical models, it provides a power-law type of
dependence of frequency and on time, breaking away drastically
from the ubiquitous Debye relationship predicted by all the other
models. The half-power law so obtained is at least in the same
general category as the universally observed fractional power—law
and this accounts for some of the attraction this model has, especially
in the context of fast ion conductors.

These advanteges notwithstanding, it has to be stated that the
usefulness of this mode] is severely limited by the fact that in
practice the particular value of the exponent n = % is the exception
rather than the rule and that the model itself is quite rigid in not
admitting any significant departures from this value. For example,
there is no way in which one can envisage any form of superposition
of several diffusive mechanisms to give an overall effect of an
exponent departing from 3. We therefore conclude, that while this
model may well represent a plausible means of interpreting the
dielectric properties of a narrow class of materials which both satisfy |
its physical assumptions and give the particular power—law with
n = %, it has to be said that it cannot provide a generally applicable
model to explain the behaviour of the great majonty of carrier-
dominated dielectrics.

Under the heading of diffusive models we mention another attempt
to combine the diffusive process with dipolar phenomena, proposed
by Glarum (1960) who postulated the existence of a “triggering”
mechanism for the dipolar reorientations. According to this model,
the dipole could not undergo a transition from one orientation to
another without the intervention of a “defect” executing a random
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diffusive motion. It is not clear what the nature of this defect might
be, nor what is the precise form of triggering, but for our present
purposes it is sufficient to state that the only result of this process
is to introduce the half-power law into the dipolar processes, so
that this theory cannot be considered to constitute a significant
addition to the catalogue of generally applicable processes.

7.7 INTERFACIAL PHENOMENA AND THE MAXWELI~
WAGNER EFFECT

Strongly dispersive behaviour at low frequencies had been noted
for a long time in many dielectric materials and it has attracted a
considerable amount of attention, especially on the part of electrical
engineers. The simplest form of interfacial effect is represented by
a capacitive layer arising near an electrode as a result of the
formation of a Schottky barrier which is less conducting than the
bulk material of the sample. The effect of this on the dielectric
behaviour of the structure as a whole has already been described
in Chapter 3, where strong dispersions were shown to be possible
if the ratio of the bulk capacitance to the capacitance of the barrier
is sufficiently small. However, the frequency dependence of this
series combination is seldom in agreement with the observed
behaviour of strong dispersion, which may be typically of a
power—law form with an exponent of the order of —1, as shown in
Chapter 5. The often used interpretation consists then in assuming
a whole series of such barrier phenomena (Volger 1960, Haberey
and Wijn 1968), or even a complete series-parallel array of
barrier-volume effects, such as might arise if the material consisted
of grains separated by more insulating inter-grain barriers.

This kind of inhomogeneous medium effect is known under the
general name of Maxwell-Wagner effect (Maxwell 1954, Wagner
1918) and it can be developed into a whole distribution of interfacial
effects, providing a direct counterpart to the distributions of
Debye-like relaxation times in the volume of a dipolar material.
This model therefore, has all the superficial attractions, as well as
all the drawbacks of the distribution theories — an apparent plau-
sibility coupled with the virtual impossibility of proving conclusively
that it is either right or wrong. We believe that the experimental
evidence for the power—law dispersion with exponents approaching
the value —1 is sufficiently well established to require here again
a more general form of interpretation explaining why a power—law
should be found other than by a purely accidental combination of
barrier parameters.
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7.8 TRANSPORT LIMITATION AT THE BOUNDARIES

This approach is concerned with a different aspect of interfacial
processes, this ime with the partial limitation of charge movements
across interfaces between electrodes and the electrolyte or between
different parts of an inhomogencous material (Macdonald 1974,
1976). It therefore represents an extension and a refinement of the
simple Maxwell-Wagner model, allowing for partial transmission
of charge species, typically ions rather than postulating completely
blocking barriers. These models were studied in conjunction with
ionic conductors which resemble closely very dense liquid electro-
lytes. Apart from considerable mathematical difficulties arising
from the need 10 handle several simultaneous differential equations
with boundary conditions, describing the motions of the various
species, there is the inherent difficulty of knowing independently
the various transmission parameters which effectively constitute
disposable parameters.

It would appear that these models are capable of explaining the
response of same strongly interface-dominated systems in which
the bulk material possesses a sufficiently high electrical conductivity
to appear effectively like a pure resistance in series with a barrier.
On the other hand, it would not be possible by this means to
explain the fractional power—law behaviour of bulk ionic conduc-
tors, such as those shown in Figures 5.36 and 5.45 which are typical
of many other cases.

7.9 THE NEED FOR AN ALTERNATIVE APPROACH

We have given this brief account of the various hitherto accepted
interpretations of the form of frequency dependence of the dielectric
response in order to demonstrate to the reader that many theoretical
approaches have been developed over the years in attempts to
account for the large variety of observed types of dielectric response.
They suffer, however, either from lack of plausibility or from a very
restricted range of applicability to specific systems, or finally they
are incapable of accounting for the more serious departures from
the Debye behaviour observed experimentally.

Of the reasons for these shortcomings we have already mentioned
the far-reaching fragmentation of dielectric research into specialised
areas not communicating with one another and also a rather unin-
formative way of presenting dielectric data in a manner which fails
to bring out the important features of the behaviour. These twin
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reasons account for the lack of any overall integrating approach to
the treatment of dielectric relaxation, since there did not appear
to exist any strong reason for attempting such an approach. We
believe that the classification given in Chapter 5 and based on a
far-reaching analysis of a wide range of materials is fundamental
in focussing attention for the first time on the universality of the
dielectric response which not only does not follow Debye, but
instead follows a very well defined power-law relationship. Once
this universality became apparent, the quest for an all-embracing
theoretical interpretation became imperative, since it was too much
to expect that the various sectional models which might even be
plausible in their respective contexts should all give the same
universal law.

In addition to the universality of the frequency dependence of the
dielectric susceptibility there was also the evidence of the persistence
of strong dielectric activity down to the lowest temperatures, which
clearly calls for the existence of dominant non-activated processes,
i.e. some form of tunnelling phenomena which would be applicable
to heavy ions.and dipoles as well as to electrons. This alone would
have called for a serious re-examination of the currently accepted
models, since they all involve thermally activated processes or, at
most, electronic or protonic tunnelling.

Our search for an alternative approach to the interpretation of the
dielectric relaxation phenomena in solids was based, therefore, on
the conviction that the observed universality of response, expressed
in terms of power-law relations in frequency and in time, required
a more generally applicable and physically uniform theoretical
framework than the largely fragmented approaches described
above. This conviction went deeper than the mere concept of
“elegance” of a generalised theory replacing a multitude of speci-
alised ones — it was rooted in the concept that a simple experimental
result demands an equally simple physical model which is not based
on a range of more or less arbitrary assumptions.

We shall be showing in Chapter 8 that the new many-body model
of dielectric relaxation has all the advantages of simplicity and
generality demanded by the situation and that it is capable of
explaining within a single framework the totality of experimental
results.
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CHAPTER 8

The Many-body Universal Model of
Dielectric Relaxation

8.1 THE CONDITIONS FOR THE OCCURRENCE OF
THE UNIVERSAL RESPONSE

Chapter 5 established the applicability of the universal power—law
of the frequency dependence of the complex susceptibility, eqns
(5.8)—(5.12), quite regardless of the physical and chemical proper-
ties of the very different systems under examination. Chapter 6
gave the experimental evidence for the corresponding time domain
response, eqn (6.16).

The universal law was found to be valid over large ranges of
frequency and time and also over remarkably wide ranges of tem-
perature, including cryogenic temperatures. Since the universal
power law is so evidently insensitive to the many material properties
which one would imagine should determine the dielectric response,
it is pertinent to ask which features of the polarisation processes
are common to all materials exhibiting the universal behaviour.
This would provide an important indication as to the direction in
which one has to look for a physical interpretation of the dieleciric
response in condensed matter.

A search for a common explanation is all the more imperative since
the ubiquitous fractional power law is not an evident solution of
a differential equation corresponding to some familiar mechanism,
and yet its very universality suggests strongly that a generally
applicable mechanism is at play.

The first common property which is evident in all systems under
consideration is the inevitable presence of interactions arising from
the close proximity of atoms and molecules in condensed matter.
It has been realised that this close proximity of interacting species
gives rise to far-reaching consequences, hence the efforts over the
years to develop local field theories, correlation functions
approaches and so on. Strangely, however, the full logic of this
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realisation has never been pursued and this is the reason why all
these theories are in effect approximations based on adjustments
to one-particle treatments. Consequently, they could never account
for any but the relatively slight departures from the ideal Debye
responses.

While it is true that almost any departures from Debye behaviour
can be explained in terms of distributions, we have pointed out
elsewhere the lack of physical plausibility of these approaches. At
the same time the essential difference has to be stressed between
superpositions on one-particle relaxations and inferactive relaxation
processes. The former give ordinary summation of behaviours in
linear systems, the latter modify in a very profound way the one-
particle responses in a cooperative system.

The importance of many-body interactions as the dominant and not
merely a modifying influence in dielectric relaxation was recognised
in the early stages of the present investigations (Jonscher 1975)
when it became clear that a common mechanism was required for
a wide range of apparently disjointed situations. This has resulted
eventually in the development of the rigorous quantum-mechanical
.theory by Dissado and Hill (1979, 1980) an outline of which will
be presented in the following sections.

The second common feature of all solid dielectrics is the abrupt or
discontinuows nature of the dipolar or charge carrier transitions
between their preferred “stationary” orientations or positions. This
is in complete contrast with the smooth transitions of the classical
Debye dipoles which were presumed to be “floating” in a continuous
viscous medium. It is also very different from the motion of “free”
charge carriers in crystalline conductors which move with a constant
velocity over mean free paths covering many interatomic spacings
and undergo abrupt changes of velocity in random collisions, while
their positions change continuously. Abrupt transitions occur even

in liquids, so that some of the conmderanom prESented below apply
there as well.

Smce the particles undergoing sudden transitions are charged, these
transitions involve equally sudden changes of potential which may
be “seen” by neighbouring particles which in their turn respond
and so on. The interactive nature of the system implies, therefore,
that any sudden individual transition of a charge or a dipole bnngs
about a series of “‘chain’ responses stretching both in time and in
space well beyond the time and position of the initiating transition.
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These two criteria of the universal response — the presence of
many-body interactions and the sudden nature of the individual
transitions — are completely general and may be presumed to be
largely independent of the detailed physical and chemical nature
of the materials in question. Thus, the potential variation resulting
from a transition is the same whether the charges in question are
dipolar, ionic or electronic. Furthermore, the short-range order in
most solids is basically similar regardless of the detailed nature of
the long-range order. Equally general is the property implicit in
this model that there exist two very different time scales corre-
sponding, respectively, to microscopic and macroscopic processes.

In this classification, microscopic transitions are the very rapid
oscillations of individual dipoles or charges and these would be the
only processes at play in a non-interactive medium. Because of
particle-particle interactions, however, these microscopic oscilla-
tions slowly transmit themselves, or “leak out”, to other regions
of the medium which adjusts itself slowly to the rapid microscopic
movements. ‘

The interactions in question may be direct between the active
‘particles, dipoles or charges, for example through Coulombic inter-
actions, or alternatively they may take place through the inter-
mediary of the “inert” matrix or lattice in which the active species
are embedded. This transfer of excitations through the lattice is
facilitated by the intimate interplay between dielectric polarisation
and strain in the lattice—strain relaxation following very similar
laws as dipolar relaxation, as will be mentioned later in Section
8.6. -

The comparatively recent realisation of the importance of these
interactive processes for dielectric relaxation coincided in time with
the development of a growing theoretical understanding of coop-
erative processes in such branches of physical science as critical
phenomena, magnetic interactions and the properties of disordered
solids.

8.2 A DESCRIPTIVE APPROACH TO MANY- BODY
INTERACTION

Many-body interactions represent one of the less well developed
branches of physics and the reason for this is as much a lack of
evident sense-perception experience of these phenomena which
would make it easy to construct “mechanistic”’ or “ball-and-stick”



8.2 MANY-BODY UNIVERSAL MODEL 313

models, as also the considerable level of mathematical difficulty in
the theoretical treatment. For example, the idea of dipolar rotation
or of hopping motion of a charge carrier is intuitively self-evident,
sometimes to the detriment of a deeper understanding, since a
deceptively simple model appears to explain the entire situation
and it requires a considerable mental effort to rise above this level.
Even a par exellence non-classical process such as quantum mechan-
ical tunnelling of a single particle can be readily visualised as the
familiar “burrowing’ of a mole underground. We are far less sure
of our conceptual grip on the physical situation in the otherwise
well known' case of screening in a gas of free charges, such as
electrons or ions where each individual charged particle is envisaged
as being surrounded self-consistently by all the others avoiding that
_particular particle, in view of their mutual repulsion> While there
is no difficulty in visualising this avoiding of one particular particle,
to extend the model mentally to all particles simultaneously requires
a consicerable stretch of imagination.

The problem of applying many-body theory to dielectric relaxation
is not made easier by the remarkable and unexpected fact that
many-body interactions seemed not to affect, significantly, the
working of such well established theoretical subjects as the band
theory of solids which is expressly a one-electron approximation.
We may say that most solid state phenomena can be understood
in terms of this simple theory and where there is a suspicion that
something is lacking, the remedy usually consists in adjusting some
of the many parameters at one’s disposal, so as to make the simple
theory “fit”” the data. Evident cases of complete breakdown of the
one-electron theory are plasmon phenomena which do not fit at all
into the model and have to be treated separately (Platzman and
Wolff 1973).

An early indication of the need for many-body theory was provided
by the analysis of heavily doped crystalline semiconductors (Fistul
1969). However, in this as in many other situations where many-
body processes were thought to be important, there existed the
serious difficulty of obtaining a sufficiently strong basis of experi-
mental facts to guide the theoreticians and to provide an incentive
to develop a new approach.

In this respect, the totality of dielectric phenomena in the frequency
and time—domains provides a unique wealth of evidence which is
not parallelled in any other branch of physics, as we saw in the
earlier chapters. This means that in our case it is not possible to
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“fudge” the theory by a judicious choice of disposable parameters
if one wants to take a truly general viewpoint. For this reason
dielectric relaxation provides a uniquely suitable vehicle for the
development of many-body theory, since no other approach could
be shown to be adequate to the task.

a) The screened hopping model

The lack of an intuitive understanding of many-body phenomena
makes it desirable to develop various forms of approaches to the
description of such systems which may advance our understanding
of their dynamic response. The first such model, to our knowledge,
was based on the requirement of generality of the energy criterion,
eqn (5.11), which is applicable in the region of dielectric relaxation
beyond the loss peak frequency (Jonscher 1975a).

From a strictly theoretical standpoint this “theory” is very sim-
plistic, almost naive in approach and it cannot provide much
quantitative information to aid the detailed interpretation of the
universal behaviour. However, its advantage lies precisely in the
fact that it uses relatively famﬂlar concepts and the basic validity
of these concepts makes a better understanding of more complex
models correspondingly easier.

The basic argument starts from the proposition that if a model can
be found satisfying the universal criterion (5.10), which is itself a
direct consequence of the universal power law relationship (5.8)
beyond the loss peak frequency, then there is no need to solve any
particular differential equations describing the dynamic response
of the system under consideration. This is because the Kramers—
Kronig relations are valid quite generally regardless of the detailed
physical nature of the processes governing the behaviour, and these
relations uniquely satisfy the requirements for self-consistency of
the solution in question. In this way the energy criterion (5.11)
uniquely determines the frequency response of the system, without
the frequency dependence having to be derived explicitly.

This argument may strike some people as unacceptable since they
are used to solving specific differential equations to obtain definite
physical laws. Some even assert that a physical law cannot be valid
if it is not a solution of a differential equation describing the system
in question. A little reflection should suffice, however, to convince
the reader that such an argument is- mistaken, since there is no
obvious rule why it should be necessary to impose such a restriction
on the validity of physical laws.
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The basis of the screened hopping model is the well established -
fact that assemblies of charged particles exhibit the phenomenon

of self-consistent screening, which is seen in gaseous plasmas and

also in free electron gases in semiconductors and metals. The

phenomenon itself is par excellence a many-body process and the

generally accepted simple derivation of the Debye screening radius

7p is not in doubt. The screened Coulomb potential of any one

particle of charge ¢ in an assembly of density NV in a medium of

dielectric permittivity € is given by the relation:

W(r) = (g/4mer) exp(—1/rp) (8.1)
with a Debye screening distance defined by
p = (ekT/§*N)"?

where 7 is the distance from the particle in question. The unscreened
Coulomb potential corresponding to a bare particle in an infinite
neutral medium is given by the pre-exponential factor in eqn (8.1).
The presence of the exponential term implies that by virtue of
Gauss’ law the particle is surrounded, self-consistently, by a screen-
ing charge of magnitude —g, so that at distances 7> rp the charge
in question is “invisible’ in the assembly.

We now propose to apply this simple concept to assemblies of
localised charges which spend most of the time on defined localised
sites and only from time to time make abrupt transitions under
thermal excitation. These charges could be electrons or ions, or
they could represent the individual charges of dipoles of finite length
— as all physical dipoles necessarily are.

The situation here is similar to that obtaining in free carrier plasmas,
mutual interactions tend to screen charges from one another through
repulsion of like and attraction of oppositely charged species. The
fundamental difference in comparison with free charges is that
localised charges are not entirely free to adjust their positions, and
therefore their local density, in a fully self-consistent manner with
respect to the local potential. The analysis takes this into account
by postulating that instead of complete screening by a charge
—g, we now have incomplete screening by a charge —(1 — p)g, where
# is a screening parameter which may take values between 0 and 1.

Figure 8.1 shows the situation of a localised charge ¢ occupying
one of two allowed sites i and j and being surrounded by the
opposite screening charge. If now the charge hops over to the other
site in a time that is very short in comparison with other time
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~(l-pi

Figure 8.1 The screened hopping model in which a charge is constrained to hop
between two localised sites i and j at a-distance ry apart. The charge ¢ is screened
by an opposite charge —(1 — p)q, diagram a). When the charge jumps discontin-
uously to the other site, the screening charge is momentarily left behind, diagram

b), following relatively slowly in a time T, untl a new steady state is established,
diagrams c) and d). The time dependence of the polarisation resulting from this
sequence of events is shown in diagram e).

From Jonscher (1975a). Reprinted by permission from Nature, Vol. 253, p. 717.
Copyright © 1975 Macmillan Journals Ltd.

constants of the system, then the screening charge is momentarily
left behind since it cannot follow such a rapid movement and this
is shown in diagram b). There then follows a relatively slow transfer
of the screening charge to the new site, diagram c), until a new
equilibrium is established, d). The rate of transfer of the screening
charge is determined by the natural rate of transitions for localised
charges between individual sites, since the screening of any one
hopping charge is effected by other similar hopping charges. We
define a screening time T, which is not to be confused with the
Debye relaxation time with which it has nothing whatever in
common. We do not even unp]y that the time dependence is in any
“sense exponential — the exact time dependence of this screening is
immaterial for the purpose of the present argument, the only
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important point is that the time scale of 7, is very much longer than
the actual transit time of the charge between the two sites. The latter
is of the order of the reciprocal lattice frequency for ionic transitions,
i.e. =10™s, while for electrons it is shorter still.

We now consider the polarisation arising from the abrupt transfer
of the charge followed by the slower movement of the hopping
screening charge. Diagram 8.1 e) shows that the initial polarisation
is gry, where 7y is the distance between the sites ¢ and j, while the
final polarisation is pgry, after the complete transfer of the screening
charge. Noting that this entire process takes place in an electric
field £ which may be considered constant on the time scale of these
events, the work done by the field is Egr, while the energy finally
stored in the system is Epgr;. The energy loss or dissipation arising
from this process is due to the fact that the screening charge has
to move 4gainst the applied field £ under the influence of the strong
local interactions with the hopping charge. Since the same energy
loss is involved in each and every hopping transition, we obtain the
energy ratio:

energy lost per transition 1 —
gy P -
energy stored

= cot(n/2) (8.2)

the last equality being the consequence of the energy criterion
(5.10). This relation establishes a direct connection between the
screening coefficient p and the exponent 7 in the power law (5.8).
The limit p = 0, i.e. also n = 0, corresponds to complete screening,
as in a free charge system, while p =1 and n =1 corresponds to
the absence of screening, as would be the case with immobile
charges which are unable to follow local changes of potential.

The functional relationship between the parameters n and p is
shown in Figure 8.2 which shows how the full range of the exponents
n between O and 1 can be obtained, in agreement with the empirical
observations, by varying the screening parameter p, which here
represents in a simplified way the strength of many-body interactions
between charges and dipoles in the dielectric system under
consideration.

Our screened hopping model involves three characteristic time
scales, in addition to the practically instantaneous actual hopping
transitions: the natural frequency v with which the charges jump
in equilibrium between the sites, the screening adjustment time
7, and the frequency @ of the applied electric field. Since the time
7, is determined by the individual transitions, it is reasonable to
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Figure 8.2 The relation between the exponent 1 — 2 in the universal law and the
screening parameter 1 — p in the model, as given by eqn (8.2). Small values of z
correspond to “full” screening, values of n close to unity correspond to “weak”
screening.

suppose that 7,> 1/v. We may therefore distinguish the following
three ranges of behaviour depending upon the relative value of the
operating frequency w:

a) w<1/7,<v Particles and screening mobile, universal
response governed by the energy criterion;

b) 1/7,< @w<wv screening cannot follow the movement of par-
ticles and the system behaves in a similar man-
ner to the Debye model below the relaxation
frequency;

c) I/, <v<w thesystem cannot follow the field, the response
drops off as in the Debye model beyond the

relaxation frequency.

A careful analysis of experimental data for a wide range of materials
shown in the present Review fails to reveal the presence of any well
developed Debye “tail”” up to frequencies in excess of some 10 GHz
where quantum and phonon effects take over. We conclude, there--
fore, that the regions b) and c) are not visible and this implies that
the frequencies 1/7, and v fall above the 10 GHz limit. This seems,
in any case, perfectly reasonable in terms of the likely orders of
magnitude of atomic and molecular frequencies.

The arguments presented above should be valid equally for elec-
tronit and ionic charges and we would expect little change with
‘the variation of the nature of the short-range order in the material.
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‘They should be valid regardless of the nature of the chemical bonds

involved. They could also be readily transferred to the dipolar
situations in which the dipoles have finite lengths — as is the case
with all physically realistic dipoles. These dipoles can screen one
another in exactly the same manner as do hopping charges, except
possibly that the screening may be weaker than in charge carrier
systems. )

We therefore have a simple qualitative model which has the required
property of satisfying the energy criterion and which is generally
applicable to a wide range of physical and chemical conditions.
This model explains the observed universal frequency dependence,
without any reference to distributions of parameters. This does not imply
that we deny the existence in physical systems of distributions of
energies, relaxation frequencies etc., it only suggests that these
distributions are not necessary as such to explain the universal
dielectric response. The variation of the exponent n with temper-
ature and with the type of material may be understood in terms
of the variation of the screening parameter p: systems with more
“mobile” carriers would have smaller values of n, i.e. stronger
dispersion with frequency in view of a more effective screening,
systems with weaker screening, e.g. induced as compared with
permanent dipoles, would have values of n closer to unity, i.e. a
flatter frequency response.

The esscnha] features of our model are stated once more:

i) the existence of screening as an expression of many-body interactions;

it) the existence of two distinctly separate time scales — the practically
instantaneous transition time for the individual hopping movements and
the relatively much longer screening adjustment time T,.

It turns out that the second of these features is also required in the
rigorous theory and this supports the value of the screened hopping
model as a qualitative guide to a better understanding of the
polarisation processes.

Whatever its advantages, the screened hopping model suffers from
the fundamental limitation that it is not capable of describing the
appearance of the loss peak — for this we require the rigorous theory
which will be described in Section 8.3. It was suggested, however,
at that early stage (Jonscher 1975b) that the loss peak may be the
manifestation of the existence of two separate and independent
relaxation processes operating sequentially in the time-domain, one
dominating at times shorter than 1/w,, the other at longer times.
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This suggestion foreshadowed in a sense the findings of the later
exact theory.

b) The role of disorder in the dielectric response

We shall be arguing that the role of many-body phenomena in
determining the nature of the dielectric response of solids is inti-
mately bound with the inevitable presence of a finite amount of
disorder in all orientationally polarisable media (Jonscher et al
1980). We note that only orientational polarisation mechanisms
show the relatively slow responses which are characterised by the
universal behaviour, while the induced polarisation is normally
dominated by inertial processes and its response times are typically
in the range of 107"s.

A perfectly ordered crystalline array does not admit of any tran-
sitions by any of its constituents without the prior creation of point
defects—perfect order is rigid. By contrast, disordered media are
much more flexible since, by their very nature, there is no unique
disordered configuration. This means, therefore, that a disordered
system is capable of rearrangements of the type envisaged in Figure
8.5 b), which involves small adjustments of positions or orientations
of large numbers of particles. These small adjustments requiring
negligible energies for their induction are known under the name
configurational tunnelling.

A considerable body of theoretical understanding of disorder has
been accumulated in the context of studies on amorphous' and
glassy solids, particularly semiconductors. The concept of disorder
being implicit in orientational polarisation in dielectrics is much
less well established and we wish to discuss it briefly here.

Two types of disorder have to be considered in the present context
— positional disorder of individual particles or the corresponding
orientational disorder of dipoles, and the resulting energy disorder
in the surrounding matrix. The two are intimately connected by
the fact that the energy of a system is directly related to the
orientational or positional arrangement of its constituent parts. One
of the fundamental difficulties and limitations of the theory of
disordered solids lies in the virtual impossibility of describing
exactly, or even statistically, the state of the system. It turns out,
however, that our understanding of the dielectric polarisation can
be advanced sufficiently even on the basis of such imperfect infor-
mation as we possess, using very general concepts of disorder.
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Positioral and orientational disorder arises very naturally in con-
nection with orientational polarisation — they are inseparably linked
with it, since by definition this type of polarisation consists in partial
ordering of a randomly oriented or positioned array of dipoles or
charges, At one extreme we have a perfectly ordered array of
dipoles, completely oriented in the sense of ferroelectric interactions,
where the only possible reorientation is the complete reversal of
the entire domain — a strongly non-linear process which we are not
considering in the present work. Any linear polarisation mechanism,
on the other hand, involves slight reorientations of dipoles by an
ordering effect of the external electric field which is opposed by the
disordering tendency usually due to thermal vibrations.

Even if we had a perfectly ordered sub-lattice of dipoles in a
“matrix”, these dipoles would by themselves and in the absence
of an external field be randomly oriented, except in the ferroelectric
case below the Curie temperature. The disorder would become
even more profound if the dipoles became randomly positionally
distributed in the matrix, which is by far the most common situation
in real solids. We now have to consider the effect of the orientational
disorder on the constituent dipoles themselves and on the surround-
ing marrix. Since interactions- between dipoles depend on their
mutual orientations, there is a range of these interactions to which
any particular dipole is exposed on account of the random orien-
tations of its neighbours. Each dipole experiences, therefore, a
slightly different environment and has a correspondingly slightly
different energy from the others.

This position is even further complicated by the interactions
between any particular dipole and the surrounding matrix in which
itis embedded. These interactions influence the energy of the dipole
and also influence the matrix through the strains introduced by the
presence of the randomly oriented dipole. The resulting disorder
in the matrix further influences other dipoles in the neighbourhood,
and so on. This shows the physical impossibility of having macro-
scopically well defined energy levels in a dipolar system, even
though each microscopic level is well defined within its environment.

The presence of point defects, whether randomly distributed or not,
leads in turn to a second level of disorder — that arising in the
neighbourhood of each such defect as the result of the local strain:
introduced by the defect. This strain affects significant numbers of
nearest neighbours, changing their energetic and spatial charac-
teristics — we note that for a simple cubic lattice the number of
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neighbours up to the third-nearest to any particular site is 26, while
going up to the sixth-nearest neighbours, i.e. up to a distance of
2.45 lattice spacings, we include 72 lattice points. Thus this type
of strain disorder has far-reaching consequences and involves large
numbers of sites per defect, Once the presence of such disorder has
been envisaged, it is easy to see that the number of possible con-
figurations involving slight displacements of atoms from their proper
lattice sites becomes very large and thus the probability of con-
figurational changes by transitions involving very small energies
is correspondingly high.

It should be clearly borne in mind that a real solid finds itself at
any temperature in a state of dynamic equilibrium in which the
constituent atoms of the lattice execute small oscillations around
their equilibrium positions and the tunnelling transitions between
different configurational states should be regarded as resulting from
this dynamic situation.

We conclude from this brief discussion that a dielectric system is
necessarily disordered and this, in the presence of interactions,
leads to the high probability of configurational tunnelling by dipoles
or charged particles, without any need for these transitions to be
thermally excited. A simple illustration of these transitions will be
given later in the context of Figure 8.5.

¢) The correlated states .

An isolated parabolic potential well has sharply defined stationary
energy levels corresponding to the ground state and to the excited
states of a particle confined to that well. A pair of such wells in
sufficiently close proximity to give rise to interactions, shows a
splitting of the unperturbed energy levels, as shown in Figure 8.3.
By a direct extension of this argument, we may conclude that a
large number of interacting potential wells develops quasi-continu-
ous bands of levels, the lowest of which has a width in energy which
will be denoted by 2L. The density of these correlated states is high
and they may be regarded as describing the movements of the
centroids of assemblies of particles, rather than of individual par-
ticles in a non-interacting system. Since these levels are the result
of particle interactions, they do not fit into the conventional model
of energy bands in solids, which by the assumptions made in its
derivation is restricted to single-particle systems. There is therefore
no way in which these bands of correlated states can be placed in
the conventional picture of solids involving the valence band, the
conduction band and the localised levels arising from imperfections.
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Figure 8.3 Diagram a) shows a single parabolic potential well with its stationary
energy levels. Diagram b) gives the corresponding picture for a double well in
which interaction splits the levels into pairs, with the ground state splitting being
2{ and increasing rapidly for higher levels.

—l

One characteristic difference between single-particle and many-
particle excitations is the magnitude of the respective energies.
Single-particle excitations are typically of the order of 1 eV and
may span the range from 10 eV for the excitation of an electron
from the valence into the conduction band in diamond or in
covalently bonded carbon chains in polymers, down to milli-eV for
the excitation of donor and acceptor levels in extrinsic semicon-
ductors. The energies of many-body excitations are, by contrast,
much smaller, of the order of milli-eV at most or smaller.

The physical origin of the narrow band of correlated states is
therefore to be found in the weak but finite interactions which cause
small variations in the energies of interacting particles as the result
of movements of other particles — the system is “soft” or “flexible”,
none of the energies are uniquely defined in any absolute sense,
everything depends on the movement of everything else.

While the energy span 28 of the band of correlated states is small,
their total number and therefore their density in energy is very
large, since they correspond to the order of density of dipolar
particles per unit volume.

An important property of correlated states is their inaccessibility to
thermal excitations, which means that the distribution in energy is
sharply cut off, as shown in Figure 8.4, in which respect they differ
completely from the familiar distributions of electrons and other
particles showing thermal spreads of energy. The reasons for this
inaccessibility to thermal excitations may be found in the character
of these states which represent interactions befween particles and not
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Figure 84 The density in energy of correlated states, showing the “occupancy®
of these states in equilibrium and the effective width of excitations over which the
density is approximately independent of energy.

excitations of individual particles themselves. On the one hand,
this means that the excitation energies are much smaller than the
typical values of the thermal energy £7, so that single phonon
interactions are not possible. On the other hand, thermal motions
are less effective in influencing the mutual interactions between
particles, while acting primarily on assemblies of these particles.

The excitations of the correlated states occur through the sudden
transitions by individual charges of dipoles in the assembly when
they hop or “jump” between preferred orientations or positions.
These hopping motions leave the remaining charges in instanta-
neous positions of non—equlhbnum, just as in the screened hopping
model the jump leaves the screening charge in a non-equilibrium
position. In terms of the diagram of Figure 8.4 this excitation
amounts to an upward shift of the population within the narrow
band, giving rise to the storage of the excitation energy as will be
discussed in Section 8.6.

d) “Large” and “small” transitions

As pointed out above, a perfectly ordered system is completely

“rigid” and admits of no rearrangement of the constituent atoms

or ions until a degree of disorder has been introduced, for example

by the creation of a vacancy or an interstitial defect and this requires

a considerable amount of energy. Once a vacancy has been created,

further motion of atoms is relatively easy by a neighbouring atom

hopping into the vacancy, which is therefore translated to another -
site, and so on. This hopping motion requires energies typically in
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the order of 1 €V to take the particle over potential barriers hindering
its motion in the lattice. The resulting steady state — direct current
— conductvity for ionic transport is of this type, while hopping
electronic conduction in compensated crystalline semiconductors
is similar, except that transitions between full and empty levels
involve very low activation energies because of the high dielectric
permittivity of the medium and the low effective masses of charge
carriers in shallow states.

An entirely different situation arises in disordered systems in which
the constituent particles do not have firmly assigned positions in
the lattice and where the energies and positions of the individual
“particles are affected by their neighbours. The resulting metastable
situation leads to many alternative configurations of particles having
very similar energies and transitions from one configuration to
another may take place with very little energy input and with only
very small adjustments of the positions of individual particles.

The situation reflects some of the features of a “milling crowd”, as
distinct from parade order in a military unit. In the crowd, there
is no fixed arrangement of individuals and a fluid-like motion of
the whole is possible without any single member moving a long
way from a given position. The many-body interactive character
of the motion is emphasised by the mutual jostling of individuals
in the crowd, since no one can move without affecting the positions
of his nearest neighbours.

We shall be referring to the first type of transitions in an otherwise
ordered array with defects as large transitions, while the mutual
slight rearrangements of particles in a disordered system will be
called small transitions. Since in the latter case many particles are
moving in a concerted manner, the total effect of many such small
transitions may be equivalent to that of a single large transition.
Where the particles carry opposite charges forming an overall
neutral assembly, their mutual motions produce a changing dipole
moment and they correspond therefore to dielectric relaxation. If
a system has reached a state of equilibrium in the presence of a
steady electric field, the removal of this field will give rise to a
relaxation towards a new steady state via transitions changing the
total dipole moment per unit volume.

The two types of transitions are shown schematically in Figure 8.5
in which the upper diagram corresponds to a “large” transition in
an ordered array with one vacancy on a “square’ site. This vacancy
corresponds to a certain dipole moment calculated in terms of the
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difference between the “centres of gravity’’ of the distributions of
“square” and ‘“round” charges. The dipole moment is indicated
by the arrow at the top. A transition by a neighbouring “square”
particle into the vacancy creates a change in the dipole moment
as indicated by the lower arrow in diagram a).

DoDoDO oDoO al
oooo oOoOoO
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Figure 8.5 A schematic illustration of “large” transitions occurring in an ordered
array with a vacancy, diagram a), and of “small” transitions occurring in a
“disordered” array in which the constituent species — round and square symbols
— are slightly displaced as shown by the vertical lines, with respect to the “lattice”
positions. The rearrangement of these displaced particles in the sense shown in
the lowest line gives the same change of dipole moment as the large transition in

a).

Diagram b) shows a hypothetical “disordered” lattice in which the
“square” and “round” particles occupy positions slightly displaced
in opposite senses from the regular positions in a). These small
displacements of oppositely charged particles in opposite senses
create a net dipole moment indicated by the upper arrow in b) and
equal in magnitude to that in a). If now the individual particles
were to take up new “disordered” positions corresponding to dis-
placements in opposite senses with respect to the “lattice” positions,
the sum of all these small transitions would amount to the same
change of dipole moment as the single large transition in a). In this
way a disordered system may produce a large change of dipole
moment without a single particle making a large transition.

Since the small transitions in narrow bands of energy have the
fundamental property that they require negligible energies, they
are referred to as configurational tunnelling, by analogy with quantum
mechanical tunnelling of individual electrons, which: also does not
require any input of energy. The essential difference lies in the fact
that in quantum mechanical tunnelling a light particle, such as an
electron, makes a relatively large transition, while in-configurational
tunnelling large numbers of particles, which may be very heavy,
make very small transitions.
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8.3 THE INFRA-RED DIVERGENCE MODEL

a) The inapilicability of exponential relaxation in time

Our survey of experimental evidence presented in Chapters 5 and
6 has clearly shown the inapplicability of the simple exponential
law of relaxation in virtually all condensed matter systems, and
particularly in solids. The exponential relaxation in time and its
frequency—domain equivalent of Debye relaxation apply only to
non-interacing linear relaxors, i.e. those for which the potential
energy is a quadratic function of displacement. The fact that this
type of relagation is virtually non-existent in nature points to the
inapplicability of these assumptions in condensed matter. The
physical reasons for the presence of interactions are intuitively
evident and they have been outlined in the preceding sections —
their origin lies in the interactions between the individual dipoles
or charges and the “lattice’ or matrix in which they are embedded.
The implication is that any movement or relaxation of any one
dipole or charge affects other neighbouring dipoles or charges, so
that in an interacting system

nothing can move without everything else being affected.

Once this is the case, it becomes physically impossible to have
exponential relaxation processes and one has to search for alter-
native mechanisms that would lead to the observed universal power
law which replaces the idealised exponential process.

The impossibility of exponential relaxation may be demonstrated
on a more mathematical basis by the following argument, adapted
in a simplified form from Dissado and Hill (1983a). Let a(t) be a
displacement of a particle on the I-th site at time ¢. The relaxation
of that particle after the removal of the external constraint is
governed by the differential equation taking into account non-linear
interactions in the system:

da:(t)/dt: (iwe '}’r)af Ear t)ar Vu'

where Vj is the coupling potential between displacements at sites
land I', w, is the natural frequency of oscillation at site / and ¥; is
the corresponding damping coefficient. In the absence of coupling
between different sites, i.e. in a non-interacting system, the solution
of this equation is purely exponential with damping determined by
the magnitude of w,/y,. However, with a finite amount of coupling
the exponential solution is: impossible.
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b) Physical concepts in infra-red divergence

There exists a class of many-body interactions known in theoretical
physics under the name of infra-red divergence (IRD) and mani-
festing themselves as X-ray edge anomaly, phonon-broadening of
infra-red absorption spectra, Cerenkov radiation and Bremsstrah-
lung (Duke and Mahan 1965, Ferrel 1969, Yuval and Anderson
1970, Hopfield 1969, Mahan 1974). The common features of IRD

phenomena are:

a) the presence of a sudden large excitation — an X-ray photon
or infra-red photon being absorbed — which perturbs the
potential or the Hamiltonian of the system;

b) the existence of lower-energy excitations which form a con-
tinuum over a band of energies and whose density of states
in energy satisfies a condition defined later in the Appendix.
They are the electron-hole pairs near the Fermi energy of the
conduction band in metals, or the plonon spectrum of the
semiconductor in which the IRD occurs.

For the purpose of the present treatment it is sufficient to state that
the time-evolution of the relaxation of the system after the sudden
excitation follows the IRD law ¢™ where the exponent n depends
on the detailed parameters of the system, but is always smaller than
unity. A simple derivation of the properties of IRD is given in
Appendix 8.1.

This power—law of relaxation applies to any interacting system in
which the potential energy diagram contains quartic, i.e. 4th order
terms, arising from the interaction, as in Figure 8.3 b), in addition
to the usual second order terms, Figure 8.3 a). The higher order
terms result in a Hamiltonian containing contributions of a non-
linear form which are at the origin of IRD (Hohenberg and Halperin
1977, Patashinskii and Pokrovskii 1979).

The condition defined in the Appendix which the density of states
should satisfy for IRD to be possible, need not strictly apply over
the entire range of energies 28. It would be sufficient for it to be
satisfied over a limited range of the most likely transitions. For one
particular case, in which this condition implies a constant density
of states, this is shown in Figure 8.4 where the nearly constant
density in the middle range should still be sufficient to give the
power—law behaviour with sufficient approximation for excitations
of small magnitude with respect to the total width 28,
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The application of IRD processes to dielectric relaxation was first
proposed by Ngai (Ngai 1979, 1980a, b, Ngai et al 1979, Ngai and
White 1979] who developed a detailed argument for the existence
of low-energy excitations in the form of correlated states in most
materials showing the universal dielectric behaviour.

An equivalent argument was carried further by Dissado and Hill
(1980, 1981a) who took into account the experimental fact that the
complete power law response of dipolar systems was characterised
by two independent exponents m and n, as shown in Figure 5.27,
corresponding evidently to two physically separate processes.

The exponent 7 is given by (see Appendix 8.1, eqn A8.13):
n=|7,/2L (8.

where V;is the average excitation potential arising from a sudden
hopping transition of a charge or dipole. Since only excitations
which are smaller than the width of the band of states 2 are
effective, this immediately shows why the exponent n has to fall in
the range 0 <7z <1 in agreement with experimental observations.
The significance of the other exponent m will be discussed below.

The development of the Dissado & Hill (D & H) model is an
example of a successful collaboration between experimental and
theoretical teams, each bringing its own specific contribution. With-
out the theory, the empirical classification of Figure 5.57 and the
corresponding time—domain information would remain an inter-
esting but not very satisfying compilation of information. On the
other hand, the development of theory was only made possible by
the continuous interaction with experimentalists whose data helped
to guide the theory at important cross-roads, to take the correct
route. The point is that, like so many other physical processes,
dielectric relaxation is so complicated that it is virtually impossible
to develop a factually correct and theoretically tractable model,
because too many parameters are uncertain and only a continuing
comparison with experiment enables the correct choices to be made.

This was well illustrated by the initial approach to the problem of
universality of the dielectric response — so long as one was restricting
attention to specific groups of materials in narrow ranges of fre-
quency, it was possible to develop otherwise plausible models fitting
the particular situations, but a more general inspection of the
empirical classification soon dispelled the illusion that one was
dealing with physically realistic models. This has led to the for-
mulation of our general conditions for the occurrence of the universal
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behaviour, Section 8.1, and these in turn have led directly to the
model of IRD. The next essential point to be considered were the
deviations -from the {™ law or the corresponding deviations from
the "' law at low frequencies and also the strong low-frequency
dispersion.

¢) The Dissado-Hill model of “large” and “‘small” transitions

This model is based on a combination of single-particle and
many-body transitions shown in the energy diagram of Figure 8.6
which represents the potential energy of an assembly of a large
number of interacting dipoles or charged particles in a two-level
system. The large excitation energy A corresponds to the “large”
transitions of single particles from the orientation or position cor-
responding to one of the two preferred states, to the other allowed
position or orientation. The bottoms of the potential wells are split
by an energy 2B, which is determined by the local conditions and
also by the externally applied field E. Even more importantly,
however, the splitting depends on the actual occupancies of the two
minima, i.e. on the net dipole moment M

By=B+ kT.M+ QE (8.4)

where 7, is the Curie-~Weiss interaction parameter of the system
and Q is the magnitude of the dipole moment corresponding to the
transition of a charge from one minimum to the other. The shading
of the bottoms of the two potential wells represents the correlated
states of width 2§ shown in Figure 8.4. The model envisages three
types of transitions denoted, respectively, by the arrows q, a’, b and
¢. Transitions a and &’ correspond to the large single-particle tran-
sitions over the barrier height A, with thermal excitation in the
case a and with partial tunnelling in case a’. Transitions # and c,
on the other hand, are configurational tunnelling small transitions
which do not involve thermal assistance. These various transitions
will now be discussed separately.

d) Analysis of “Large” transitions

These transitions take one particle over the potential barrier and
the dipole moment is given in terms of the difference between the
occupancies of the two minima. In the case of equilibrium the
dipole moment is given in the Curie~Weiss form

_ _[BHETM,
M, = ta.:nh(—-———ﬂ-]h )

With the equilibrium perturbed, for example by the removal of a
polarising field, the rate of change of M is determined by the relation

(8.5)
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(Brereton and Davies 1977):
dM B+ kT, B + kT,
el Ll B iy Y = MeFe )
” Vy cosh( T M){ ténh( e M) } (8.6)

in which 7, is a thermally activated frequency of transitions: _
va = vocxp(—A/kT) (8.7)

exactly as in the classical Debye model, ¥, being the natural jumping
frequency of the order of 10" s™".

The temperature parameter 7, defining the strength of the inter-
action through eqn (8.4) may, in general, depend on the temperature
T and we are not at the present moment in a position to describe
this dependence in a comprehensive manner. However, ‘the par-
ticular case in which this parameter is independent of temperature
corresponds to the situation where 7, defines a transition temper-
ature in the system of dipoles and this dipole alignment transition will
be shown to possess very interesting properties about which the
Dissado—Hill theory can make specific predictions which are clearly
verifiable by experimental data. This situation will be discussed
further in Section 8.4 c).

Equation (8.4) is non-linear in M and this property will find
application in the treatment of large-signal responses corresponding
to very high electric fields (Dissado and Hill 1981b), but for the
purpose of the present calculation of the linear response defining
the dielectric susceptibility this expression may be linearised by
defining the small-signal departure M’ from the equilibrium value
M,, with M= M, + M’

aM’ d B+ kT,
M dM{(COSh kTM)

N
(0 v ) e
kT M=M,

the derivative being taken at M = M,. The result of this differen-
tiation may be written in the form:
dm’
—=—w,M' N
=0, (®.9)
where the rate constant @, is given by

W, = V4 cosh(%) (1 —%(1 - M’})) (8.10)




332 DIELECTRIC RELAXATION IN SOLIDS 8.3

The solution of this equation gives the classical Debye result with
the relaxation frequency given by eqn (8.10) which differs rather
significantly from the classical Debye value (8.7). The resulting

rate of relaxation in the time-domain is:

Si(t) === —w,exp(—w,t) M (0) (8.11)

where M'(0) is the initial deviation from equilibrium caused by
the field. This value is obtained by differentiating the dipole moment

with respect to'the parameter B which is influenced by the external
field E:

M'(Q) = Ed(3M./ 3B) sgen, (8.12)

and this gives the expression for the initial value of the dipole
moment:

_Ed_ 1-M
KT 1—(1— M2)T./T

M’ (0) (8.13)

Equations (8.10)—(8.13) give the complete description of the relax-
ation process arising from the large transitions over the potential
barrier A. We note that this transition rate is of the Debye form
with the important modification that the relaxation frequency
depends on the interaction parameters B and T, and that the initial
value M’ (0) is given as a function of the equilibrium value M, and
of T..

¢) The small flip transitions

These transitions are denoted by the arrow & in Figure 8.6 and
they represent a tunnelling mode between different configurations
giving a net change of the total dipole moment. They are therefore
polarisation relaxing transitions of the type envisaged earlier by
Ngai et al (1979). At times which are long in comparison with the
reciprocal width § of the band of states, expressed in units of
Planck’s constanth, i.e. for {t > 1, second-order perturbation theory
leads to the result that the relaxation proceeds according to the law

Jfa(8) o< cos(nm/2) (&) ™ (8:14)

where the exponent 7 is given by eqn (8.3) and depends therefore
on the magnitude of the excitation potential ¥ in relation to the
width 28 of the correlated states band.
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positional

coordinate

Figure 8.6 The potential energy diagram of a many-body two-level system rep-
resenting the energy of a large number of interacting systems. The two wells
correspond to the preferred orientations or positions. The splitting of the bottoms
by 2B is shown, the shaded regions represent the energy states of width 2§
resulting from particle interactions. Arrow a denotes large thermally assisted
transitions over the barrier A, arrow &' is the same with tunnel assistance. Arrows
b and ¢ refer to configurational tunnelling transitions of the flip and flip—flop types,
respectively.

From Jonscher et al (1980).

These transitions are denoted by the arrow 4 in Figure 8.6 and
transitions. As pointed out before, the interparticle interactions
broaden the pairs of states into a band the maximum width of
which is fixed by the relevant phonon frequency, i.e. for a
double-minima by the phonons within an individual well. Excita-
tions of the band can span the entire range of values from zero to

2¢C.

The flip transitions constitute the dominant relaxation mechanism
at relatively short times, 1/{=10""s < ¢ < 1/w,, since it will be
shown later that this mechanism dominates until the time 1/w,,
which falls typically between nanoseconds and milliseconds. The
flip transitions set in, therefore, much before the Debye process of
large transitions has time to develop and they are responsible for
the Curie-von Schweidler law found in most dielectric materials.
They occur entirely within the band of correlated states and they
do not couple their energy to the phonon bath — they excite instead
the correlated states themselves which store their energy until it
can be imparted to the large transitions and only then be transmitted
through them to the phonon bath.
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The flip processes are independent of the thermally excited large
transitions and they are competitive with the latter, so that the joint
probability is the product of the rates (8.11) and (8.14) and this
is the theoretically correct result, not the sum of probabilities as
might be expected at first glance.

We also note that the alternative way of interpreting the physical
significance of the value of the exponent 7 is to related it to the
extent of correlation of the individual flip transitions between them-
selves: a fully correlated system corresponds to n—> 1, a completely
uncorrelated system to n— 0. We note therefore, that the latter
case corresponds to the post-peak behaviour in the Debye system
which is evidently applicable to uncorrelated dipoles. Fully cor-
related flip transitions, on the other hand, correspond to a very
“rigid” system in which no single transition can occur without
being accompanied by all the other dipoles flipping as well — this
process therefore has an inherently low probability and corresponds
to the “flat” low-loss response described in Section 5.7.

It should be pointed out that the ¢™ law, if carried to zero time,
would give rise to a singularity which would be physically impos-
sible. However, the full solution of the IRD problem gives for times
t <1 a finite solution, as shown in the Appendix 8.1, and an initial
decay of Gaussian form with zero gradient at zero time. It should
be noted that this analysis ignores the inertial effects discussed
briefly in Section 4.2. Experimental confirmation has been obtained
of the existence of the oscillations at very short times, corresponding

to microwave and far-infra-red frequencies (Dissado and Hill
1983a).

J) Fluctuations or flip-flop transitions

We have already pointed out that the IRD response given by eqn

(8.14) and corresponding to the flip transitions cannot continue

indefinitely, since this would lead to a physically inadmissible result.

We therefore require a different physical mechanism that would -
give the response of the system at times much longer than 1/w,

and would be related to the exponent m in the empirical law of
dipolar response.

Dissado and Hill have proposed that this mechanism is given by
local fluctuations of the dipole moment which retain the average
value of the total polarisation and which may be regarded as
synchronous transitions in opposite senses at different points in the
system, giving zero net change of dipole moment. These are called
by them the flip-flop processes and they are denoted by the pair of
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arrows ¢ in Figure 8.4. Since they are cooperative processes of
essentially similar type to the flip transitions, they must follow an
essentially similar power law analogous to (8.14) which will be
written in the form (7¢)™, where 7 is a frequency in the range
10°~10"° 57! (Joffrin and Levelut 1975) and the exponent  is defined
by analogy with eqn (8.3) in terms of the mean excitation potential
for flip-flop transitions, V

m=|Vy/2n|? (8.15)

while 27 is seen in the present context as corresponding to the
width of correlated states involved in the flip-flop transitions. As
in the case of flip transitions, the exponent m may be considered
as characterising the degree of correlation of the flip-flop transitions
among themselves, the value unity corresponding to complete cor-
relation, the value zero to uncorrelated transitions.

The decay of these excitations is followed by restoration processes
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Figure 8.7 Schematic representation of the fluctuation processes represented by
the exact expression of which eqn (8.16) is an approximation for nt > 1, normalised
to their time-independent average value and denoted by y(f). The diagram assumes
for simplicity that at zero time all systems were at their average value. The
diagram on the right shows the distribution function g(y) of ».

From Hill et al (1981). © The Institute of Physics,
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which follow the law {n(¢ — #)}™ where ¢ is the time for the onset
of the restoration process. The time development of these fluctuation
processes may be simplified to the form

Silt) =am(t—n)" (8.16)

A schematic representation of this time development is shown in
Figure 8.7 which brings out clearly the decay and the recovery
processes, the latter being spaced at equal intervals of the initiation
times 4. The fluctuating base line marked (7¢ )™ for brevity rep-
resents the complete solution of the equivalent of eqn (A8.14)
exhibiting an oscillatory behaviour. We note that the time average
of the fluctuation processes over any time period ¢ is independent
of time

(1/¢) Juttl"’"(t— t)"dé¢, =T(1 —m)I'(1 + m) = constin time

and the fluctuations shown in Figure 8.7 are normalised to that
average value. Also shown on the right of that figure is the distri-
bution function of these fluctuations.

Similarly as for the flip transitions, the flip-flop processes do not
couple to the thermal bath, they merely redistribute the energy
within the correlated system, the final transfer to phonons occurring
through the large transitions which are thermally activated. How-
ever, the flip-flops cause a redistribution of the excitation energy
between different points in the system and in this manner they
influence the ultimate excitation of the large momentum- and
energy-dissipating transitions.

g) The complete analytical development of relaxation

The total rate of change of polarisation, which is the depolarisation
current 7(¢) flowing upon a sudden removal of a steady polarising
field, and which is therefore related to the time-dependent char-
acteristic dielectric function f(¢), has to be calculated by taking the
average of the joint probabilities of £ (¢) and f;(¢) over the fluc-
tuations f; (¢). In the rigorous solutions developed by Dissado and
Hill, which neglect only the inertial effects, phonon and quantum
excitations, the complete solution is given by the plots shown in
Figure 8.8 where the normalised current response is plotted log-
arithmically against time for two values of the exponent n, one in
the middle range n = 0.5, the other for the upper reaches, n = 0.9.
The entire time dependence falls into five regions. At times short
compared with the reciprocal frequency {™' the behaviour is Gaus-
sian, clearly avoiding the singularity which would result if the
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Figure 8.8 The complete time-dependence of relaxation current after step-function
field excitation, for two values of the exponent n. This solution is well-behaved
at zero time, although it ignores inertial effects, showing a Gaussian time depend-
ence, and this is followed by an oscillatory region at times of the order of 1/&.
There then follow two power-law regions, the Curie~von Schweidler law ™" and
the final £7'°™, separated by a narrow exponential range.

From Hill and Jonscher (1983).

Curie—von Schweidler law ™ were to continue to zero time. This
is followed by an oscillatory region at times in excess of
1/£=10""s, or so, the flip processes establish themselves with
some transient behaviour before the onset of the classical Curie—
von Schweidler power law ™ That part of the response may be
studied in more detail on the basis of approximate solutions which
neglect the early stages of the time development, which is derived
as follows:

F(t) < i(t) = d_ﬂ%g = —w, cos(n/2) M'(0) EI(£) (8.17)

where the entire time-dependence is subsumed in the factor I(t)

given by '
j exp{—w,(t— )} (¢t — t,)" " dty
— [i]

J’ (£ = &)™ de,
0

1(2)
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= exp(—wt) 7 Fi (1 —m; 2 — m; w,t)
T(1+m— n)
T@-nT(+m)

inwhich ;F;( ; ; ) istheconfluent hypergeometric function and
I'(x) is the Gamma function.

(8.18)

Equation (8.18) gives the time-dependence of the depolarisation
current after the transient stage at very short times shown in Figure
8.8 which does not concern us directly in the present work. The
behaviour of the material in this approximation is specified by three
parameters, ,, m and n which are the three empirically determined
factors in the complete description of the dielectric relaxation pro-
cess. Each of these has its specific physical significance and, in
principle, is capable of being calculated if the physical condition
of the system can be specified with sufficient accuracy, which is
hardly ever the case in practice.

The general expression (8.18) may be Fourier transformed into the
frequency domain, giving the complex dielectric susceptibility as
the product of two factors:

x (@) = x(0) F(w/w,) (8.19)
in which the amplitude factor is given by
%(0) = @jcos (w/2) &N d[M (0)/E]  (g9q)
I'(l+m=n)

(1 =n) (1 +m)

while the entire frequency dependencé is represented by the shape
factor which is a function of the reduced frequency x = w/w,

Flx) = (1+ix)" ' Fi(1—nl-m2—mn(1+ix)™) (8.21)
in which ,Fy( , ; ; ) isthe Gaussian hypergeometric function.

Equation (8.19) provides the theoretical justification for the fre-
quently used normalisation procedure for the dielectric polarisation
which is the basis of Chapter 5, a justification which is notably
absent in earlier theories of dielectric polarisation. Provided that
the parameters m and n remain independent of temperature, the
normalisation results in a single master curve, as is seen in many
examples in Chapter 5, while cases of temperature-dependent m
and 7 result in normalisation plots consisting of several separate,
not completely overlapping curves.
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Equations {8.18) and (8.21) provide the complete description of
the time- and frequency-dependence of the dielectric response and
the amplitude of these responses is given by the corresponding
terms in egns (8.17) and (8.20). We now propose to describe some
of the most important consequences of these general formulae,
which give remarkably simple relationships in certain specific cases.

The expansion of the hypergeometric function (8.18) provides the
following ranges of time-dependence:

i(¢) ot for 1/{<t<1/w, (8.22)
i(t) < exp(—w,t) t=1/w, (8.23)
i(t) <™t t>1/w, (8.24)

and these are exactly the relations obtained on the basis of experi-
mental data for a very wide range of dipolar materials, Figure 6.15.
The corresponding expressions for the real and imaginary com-
ponents of the complex dielectric susceptibility are as follows:

X (0) = ¥'(w) tan(nmw/2) < "' > 0> w, (8.25)
20) « (1 +iw/w,) o=w, (8.26)
%(0) — ¥ (w) < ¥'(w) = v w<w, (8.27)

These expressions again correspond to the empirically determined
dielectric behaviour of all dipolar materials.

The time-dependent relaxation process following a sudden removal
of a polarising field may be considered as a succession of four
consecutive stages, each of which is dominated by a particular type
of transition. The very first stage covering a period of up to times
of the order t<1/{=10""s represents the delay necessary to
establish the flip processes and corresponds to the initial stages of
the time-evolution of the IRD process. This period may be domi-
nated additionally by quantum phenomena and falls outside the
range of dielectric responses which are the subject of the present
study. Secondly, the ¢™ law itself is a result of the small flip
transitions whose probability of occurrence is much higher at this
stage than that of the flip-flop transitions on account of the very
large number of dipoles requiring to make a transition in the early
stages of the relaxation. The flip transitions dominate the behaviour
up to times of the order 1/w, which represents the “natural” delay
time for the onset of the Debye-like large transitions dominating
the relaxation process at this third stage. Both the flip and the
thermally excited large transitions cause a relaxation of the dipole
moment. However, at times ¢> 1/w, the fourth stage sets in
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which the state of polarisation approaches equilibrium and the
“directional” processes of the second and third stages give way to
fluctuations corresponding to the flip-flop transitions which, by
themselves, do not give rise to any further change of the dipole
moment but instead they redistribute the energy locally and thereby
slow down the moment-altering transitions which complete the
relaxation process according to the t™! law.

It is important to bear clearly in mind that all three types of
transitions take place all the time, at various relative rates, as may
be inferred from eqn (8.18). The various stages of response described
above correspond to the dominance of the respective processes, but
not to the exclusion of the others.

8.4 THE CONSEQUENCES OF THE DISSADO-HILL
THEORY

a) The significance of the loss peak

The immediate conclusion from the expressions presented in Section
8.3 is that the three fundamental processes denoted by a, b and ¢
in Figure 8.6 govern three separate stages of dielectric relaxation
in the time domain after the onset of the flip transitions at times
of the order of 1/, or the corresponding three ranges of frequency.
It is very gratifying to find that the classical Debye process is
retained in the new formalism as an integral part of the relaxation
process, but a part governing only the response in the immediate
neighbourhood of the loss peak frequency @, or the corresponding
time. This means that the loss peak itself remains very closely
associated with the Debye process, even though its numerical value
may be modified in comparison with the classical value through
the various terms in eqn (8.10). The importance of this conclusion
lies in the fact that it preserves the validity of the very large body
of theoretical and experimental work which associates the loss peak
frequency with specific vibrational and relaxational processes in |
dielectric materials with predominantly dipolar polarisation
mechanisms.

On the other hand, the new theory makes it clear that the validity
of the “pure” Debye process is strictly limited in both frequency
and in time and that the “wings” of the response on either side of
the loss peak frequency are determined by other processes which
are definitely many-body in nature and which give rise to the
characteristic power-law relations in both time and frequency. It
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is clear, moreover, that these power laws are established as specific
manifestazions of many-body processes and that they do not require
any distri>utions of Debye-like processes for their justification.

This reasoning does not in any sense preclude the existence in
materials of more than one Debye-like process of large transitions,
each with its own characteristic activation energy and amplitude
and with its associated many-body “wings”. We have shown in
Chapter 5 examples of dielectric responses having more than one
loss peak, separated by larger or smaller frequency intervals. How-
ever, where a “monolithic” or “simple” loss peak exists in any given
frequency range in a particular material, there we may assert with
some assurance that there exists only one dielectrically active thermally
exicted process, while others may be present but for some reason
are not dielectrically effective.

b) The temperature dependence of the loss peak

The classical Debye—Langevin dipolar response given by eqns (4.30)
and (2.13] requires that the loss peak amplitude should decrease
linearly with the logarithm of the loss peak frequency. While this
type of behaviour is sometimes seen in dipolar materials, for example
in the case of the « peaks in polymers, there are many examples
where it is clearly not applicable and where one has to invoke a
different process. If the loss retains its spectral shape as well as its
amplitude with changing temperature, then the integral of loss in
the log-frequency space is invariant and this means that the polar-
isation increment x(0) is also invariant with temperature, eqn
(2.56). The implication of this is that a given field produces in the
steady state a constant polarisation, regardless of temperature. This
can be understood in terms of the polarisation being limited by
non-thermal forces, for example by elastic constraints, instead of
being limited by thermal agitation, as in the classical Debye process.
At the same time, and very characteristically, the rate processes
returning the system back to equilibrium after the removal of the
field remain thermally activated, often with very simple single-
energy processes, governed by large transitions over the barrier in
Figure 8.6 which determine the loss peak frequency w,. This type
of behaviour is seen in the data shown in Figures 5.13, 5.16 and
5.17 for dipolar materials, and is also clearly seen in p—n junctions
in which the nature of the loss process is quite different. The
temperature-independent dielectric increment in p—n junctions is
due to the fact that the density of generation-recombination centres
in the space charge region is constant with temperature.
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- There exist numerous cases in which the loss peak amplitude
increases with increasing temperature, for instance in polymeric f3
peaks, as shown in Figures 5.16 and 5.21 a). A proper understanding
of these phenomena would require further developments of our
theoretical analysis, with special reference to the interplay between
dielectric and mechanical relaxations.

¢) Dipole alignment transitions

‘This special case of dielectric response is referred to by Dissado
and Hill (1979, 1980) as the situation in which the characteristic
temperature 7, is itself invariant with temperature which is by no
means an obvious theoretical condition but which means physically
that the material shows a critical temperature T,. An examination of
eqn (8.20) shows that the following relation applies between @, and
x(0):

x(0) = (w,/ §)"cos(nmw/2) N . d*(1 — MZ)/(kT)

X {1 = (T./T) (1= M)} (1/m)T(1 —n) (8.28)

The detail in this expression is a consequence of the particular
Curie-Weiss mean field approximation used by Dissado and Hill.

Itis possible to identify two regions of behaviour in this expression.
Where the activation factor implicit in @, dominates the behaviour,
which is the case well away from the transition temperature 7, the
relation becomes

x(0) < affy T away from T, (8.29)
while in the region close to the transition temperature we have:
%(0) o< w;'**  Tcloseto T, (8.30)

Eqns (8.29) and (8.30) constitute clear theoretical predictions which
are verifiable experimentally and, by their very nature they could
not result from any arbitrary combination of relaxation times, or
any other specific previously proposed theory of relaxation. An
illustration of this type of response is shown in Figure 5.22 and in
Figure 5.23a). Another example showing the complete range of
relationships (8.29) and (8.30) as given in Figure 8.9 which relates
to a ferroelectric ceramic (Brown 1981). There are many other
examples of this type of behaviour. Sometimes more than one
critical temperature exists, leading to the appearance of several
separate branches in the x(0) — w, relationship, as for example in
Rochelle salt which is the first ferroelectric material to be recognised
as such and which is remarkable by the fact that it has two
ferroelectric Curie temperatures at 249 and 291 K, being ferroelec-
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Figure 8.9 The relation between the loss peak amplitude and frequency, plotted
in logarithmic scales, showing excellent agreement with egns (8.29) and (8.30).
The material is a doped ferroelectric ceramic based on lead zirconate and titanate.
The sample in question showed a value of the exponent n = 0.35, and the slopes
of the displacement locus are +0.37 away from the critical Curie temperature and
—0.65 near T,. The temperatures at which measurements were made are shown
next to the characteristic points. The normalisation was carried out on the real
part ¥' (@) because a high dc conductivity masked the loss response.

From Brown (1981).

tric only in the narrow temperature interval between these. Figure
8.10 gives the normalisation of data originally obtained by Sandy
and Jones (1968). This normalisation clearly shows four branches
corresponding to eqn (8.30) and there are insufficient experimental
data to delineate the other branches corresponding to temperatures
further away from the critical temperature.

It is interesting to dwell briefly on the case gwen by eqn (8.30) for
which the displacement of the characteristic point in normalisation
procedure runs parallel to the high-frequency branch of the loss
peak. This is the response expected of systems undergoing dipole
alignment transitions, but it is probable that'some other systems
may also exhibit this type of behaviour, as is almost certainly the
case for the low-temperature response of polyethylene shown in
Figure 5.23a).
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Figure 810 Normalised susceptibility plot for the dielectric loss in Rochelle salt
which is a ferroelectric material with two Curie temperatures and with ferroelectric
properties only between these temperatures. The two minima in the datum point
trace correspond to 253 and 298 K giving rise to the four branches of the char-
acteristic plot with the slope n — 1. The values found for this sample are m = 1.0
and n = 0.05. The plot is scaled at the temperature of 318 K.

From Hill and Jonscher (1983).

The frequency domain response is shown schematically in Figure
8.11a) and the corresponding time—domain response in diagram
b). The implication is that the short-time n-process is temperature
independent in its polarisation rafe, which is the depolarisation
current, and that the,duration of this stage of the depolarisation
process is determined by the temperature-dependent loss peak
frequency. Since the polarisation increment Ay(0) is determined
by the area under the (lmear) loss curve on log(frequency)axis, the
total initial polarisation increases with falling temperature, as the
loss peak frequency decreases, as required by eqn (8.30). We do
not at present understand the full implications of this simple phys-
ical conclusion, but it appears to be significant.

d) The exponents m and n

The Dissado—Hill theory associates these exponents with the degree
of correlation between the flip-flop -transitions for m and between
the flip transitions for n. In each case the value of unity corresponds
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Figure 8.11 Schematic representation of the consequence of the loss amplitude
and frequency response described by eqn (8.30), for the behaviour in the frequency
domain, diagram a), and in the time domain, diagram b). In the time domain the
initial rate of change of polarisation is independent of temperature.

to fully correlated transitions, the value zero to uncorrelated tran-
sitions. The value m = 0 corresponding to completely uncorrelated
. flip-flops resembles mathematically the case in which there are no
flip-flop transitions at all, i.e. where the final stages of the relaxation
process follow the exponential term in eqn (8.23). The Fourier
transform of this gives the Davidson-Cole behaviour corresponding
to eqn (3.38) in which the loss below the peak frequency is pro-
portional to @. Thus the cases m =0 and m =1 give the same
frequency response below the peak, although the latter is very
unlikely to happen on physical grounds.

One particular case of the absence of flip-flop transitions occurs
when the frequency of the large transitions determining the loss
peak is sufficiently high, so that the flip-flop process does not have
time to develop at all. This occurs under conditions where
w,>1/n=10°—10"s™! and it accounts for most of the points on
the upper edge of the diagram in Figure 5.27.
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The case n = 0 corresponds again to completely uncorrelated flip
transitions and it represents the limiting case of a Debye system.
The other extreme of n = 1 corresponds to a fully correlated system
in which every flip transition causes some other flip transition to
occur, so that the system may be regarded as very “rigid” and
therefore difficult to excite. This is the situation in the experi-
mentally determined limit of “flat” low level loss the physical cause
of which is the inherently low probability of flip transitions in a
highly correlated system, while mathematically the low loss is a
direct consequence of the Kramers—Kronig transformation, eqn
(8.2) in the limit of —> 1. The existence of flat loss as the limiting
form of dielectric behaviour in solids, but not in liquids (Reddish
1978, Lynch 1978) may be understood in terms of the essential
rigidity of solids, favouring strong correlations between flip tran-
sitions after the removal of thermally activated large transitions. -
In liquids, on the other hand, the continual thermal fluctuations
destroy any vestigial structures that may exist and this makes strong
correlation extremely unlikely, so that high-purity liquids may show
dielectric losses descending below the limit of detection of the best
available equipment.

_ Where a frequency-independent loss is seen with values of the slope
close to zero, representing the residual loss process in low-loss
materials, one may have a number of possible situations. In pre-
dominantly dipolar materials one may be dealing with the case of
both exponents m and 1 —n tending to zero, corresponding to
strongly correlated flip transitions and, therefore, correspondingly
weakly correlated flip-flop transitions. It is very likely that the
generally limited accuracy of experimental measurements will make
it difficult to discern the presence of a small peak superimposed on
a broad flat background. Some of the data in Figure 5.21 and those
in Figure 5.50 may fall into this category.

An alternative possibility is that one is dealing with only the limiting
case of a flip process, in which case the loss peak with its activated
processes must be presumed to lie outside the available frequency
“window”, for instance as in Figure 5.48.

At the present time we do not yet have any exact theoretical guide
to the temperature dependence of the exponents n and m. We know
from experience that they may show a temperature dependence
tending to smaller values of m and 1 — n with decreasing temper-
ature, as may be seen in Figures 5.15 and 5.16. A very interesting
situation is seen in Figure 5.25 relating to very low-temperature
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data, where 1 — n decreases slightly with increasing temperature,
while m showvs a distinct minimum.

Very markec and abrupt changes of the exponents may be seen in
systems undirgoing a structural change, for.example the 8 to «
transition or going through the glass transition temperature in
glassy systens such as polymers. The more “solid-like” or rigid
structure below 7, shows a flatter loss peak than the more
“liquid-like” above 7.

These observations point clearly to the close relationship between
short-range structural order and the values of the exponents. So
long as the order remains unchanged with varying temperature,
the exponenis remain constant, if the order changes slowly or
abruptly, the exponents reflect this immediately. To that extent,
therefore, there is little point in looking for any general rules
regarding the temperature dependence of these exponents — what
is more relevant is to ask for their dependence on the structural
order.

The dependence of the exponents m and n on the structurall};
determined correlations of flip and flip-flop transitions is shown
schematically in Figure 8.12. :

) logX*

: log @
Figure 8.12  the effect of temperature on the loss spectrum of a dipolar material,
as a consequence of changing correlations of flip and flip-flop transitions resulting
from varying short-range order. The non-interacting Debye response is shown as
a singular case. The emphasis in this diagram is on the shape of the spectral
distribution, its amplitude and loss peak frequency have been normalised in the usual
manner.

From Jonscher (1981).

In this context it is interesting to note the considerable stability of
the shape of p—n junction loss characteristics over large intervals
of temperature. This may be understood by the stability of semi-
conductor structure, with complete absence of phase transitions
and other perturbing phenomena.



348 DIELECTRIC RELAXATION IN SOLIDS 8.4

The very different behaviour of ferroelectrics at “high” and “‘low”
frequencies requires comment. In the region of the ‘“‘giant” dis-
persion shown in Figures 5.1, 5.6, 8.9, 8.10 and also to some extent
in Figure 5.8 relating to a liquid crystal, the response is nearly
Debye-like since in this frequency region the whole strongly coupled
dipolar system behaves like a single molecule which does not suffer
any interactions with other parts of the system. By contrast, at
much lower frequencies, such as are shown in Figure 5.34, the loss
arising from the “‘giant” dispersion of the ferroelectric transition
has become so small that other, disorder-dominated processes dom-
inate, giving the “universal’” response. In either case, the amplitude
of the loss process is governed by the co-responding high-frequency
permittivity and the frequency dependence remains similar on
either side of the Gurie temperature.

This sensitivity of the exponents m and n to the structure of the
material represents one of the principal diagnostic uses of dielectric
measurements — the shape of the loss spectrum representing a
sensitive tool for the detection of order changes.

¢) The temperature dependence of “flat” loss

One of the more intriguing aspects of the temperature dependence
is the case of the “flat” loss showing a clear peak in temperature,
as illustrated schematically in Figure 3.36 and in the experimental
data of Figures 5.49 and 5.51. One concludes that even though the
flat loss represents a manifestation of the temperature-independent
flip transitions, the amplitude of the loss, due to these transitions is
sensitive to the temperature through the sensitivity of the structure
to temperature.

f) The narrow range of ac conductivities

We have noted with reference t6 Figure 5.33 the remarkably narrow
range of the absolute values of the alternating current conductivity
which covers barely four orders of magnitude in a remarkably wide
range of dielectric and semiconducting materials. This we have
contrasted with the much wider range of the corresponding direct
current conductivities which cover many powers of ten between the
more highly conducting materials and the relatively more insulating
ones. This behaviour of dc conductivity is not surprising in view
of the wide variation of the available carrier densities and of their
mobilities in the various materials. In this context, however, the
narrow range of ac conductivities is rather surprising.

A possible explanation of this behaviour may be found in the
concept of the limiting “flat” loss in all materials, arising from the
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“lattice” cortributions and corresponding typicaly to loss tangents
of the orderof 107, This loss would give a freqiency dependence
of conductivity proportional to @, parallel to thechain-dotted lines
in Figure 5.8 and the contribution of charge camiers may become
negligible in comparison with this loss in the¢ more insulating
samples. Th: inference here is that the magnitides of the lattice
losses themstlves do not vary greatly in most muterials.

8.5 CLUSTERING AND STRONG LOW-FREQUENCY
DISPERSION

The inherent disorder which is associated with all dielectric
materials hasalready been stressed in Section 8.2)) and this feature

_has far-reaching consequences for the dielectric polarisation in all
materials. The point is that an apparently disordered material may,
in fact, contain regions of relatively greater order, separated by
regions of less order and this type of structure is widely encountered
in many disordered materials. Examples of this type of structure
may be found in glasses (Goodman 1975), in liquids (Hodgkinson
1976, Cohen and Jortner 1974) and in ceramics and their presence
is either suspected or considered very likely in many other contexts.
Itis well known that the various granular regions may have different
physical properties, e.g. the electrical conductivity, permittivity and
also mechanical properties. It would be evident, therefore, that the
presence of such non-uniformities might reflectitselfon the dielectric
relaxation of solids. We know already how sensitive the relaxation
process is to local order and variations of the local order would be
felt in the response of a material.

This subject was put on a quantitative basis by Dissado and Hill
(1983a, b), Hill and Dissado (1982) who have extended the
approach to the concept of a cluster which is defined as a region of
coherence of molecular excitations within a larger body of a solid.
A cluster in this sense does not entail any particular structural order
falling within its boundaries — it is defined by the range of inter-
actions of the type involved in polarisation relaxation. On the basis
of detailed experimental information, Dissado and Hill suggest that
cooperative imteractions in dielectric relaxation involve a certain
correlation - lengtth & over which the correlations of excitations are
stronger than outside that length. These correlation lengths deter-
mine the scale: of “granularity” of the medium, i.e. its sub-division
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into clusters, with different relaxation properties of polar species
within the clusters and relaxations caused by inter-cluster exchanges
which are rather less strongly correlated than the former. The
analysis of intra-cluster relaxation follows exactly the same path as
that presented in Section 8.3 for the flip processes determining the
short-time or high-frequency relaxation of a dielectric medium.
Inter-cluster relaxations, characterised by a weaker interaction, are
associated in the case of dipolar materials, with the flip-flop or
m-processes determining the low-frequency or long-time relaxation.
These processes limit the time-range of the intra-cluster relaxation
and impose the {77 regime in the time domain, after the expo-
nential relaxation process, Figures 6.15 and 8.8.

In dipolar polarisation the interacting clusters correspond to bound
charges, giving rise to loss peaks as a consequence of averaging
over the fluctuations. By contrast, in charge carrier polarisation the
interacting clusters are formed of quasi-mobile charges and the result-
ing different interaction with the field causes an effective interchange
of t and # in eqn (8.16), thus leading to the change from m to
—p in the expressions for the total current and for the complex
susceptibility. This leads directly to the replacement of the loss
peak by strong low-frequency dispersion.

The frequency at which the transition from the intra-cluster n
process to the inter-cluster p process takes place is referred to as
w, and the presence of strong dispersion tends to suppress the loss
peaks from dipolar interactions, except in rare situations where
dipolar and carrier processes are present simultaneously and the
peak coincides with @..

The magnitude of the exponent p is related to average energy of
intercluster interactions, just as the magnitudes of m and n were
related to the energies of their respective excitation bands. In
general, theory suggests that the magnitude of p should be close
to unity, in agreement with a large body of experimental evidence.

This development of the understanding of the relaxation processes
connected with quasi-mobile charge carriers brings to its conclusion
the outline of a unified theory of relaxation in solids. Charge-
transport-dominated clusters provide a link between the dipole and
dipole-like charge relaxations, on the one hand, and the ultimate
dc conductivity, on the other hand. Strong low-frequency dispersion
is an essential link in this complete picture.
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8.6 ENERGY RELATIONS IN THE MANY-BODY
THEORY

a) Stored energy n the static and transient regimes

When a dielectric medium is polarised to a statis polarisation Py
in a steady elecric field E;, the energy density stored in the system
is

Wo = $Eo P, = $x(0) E} = $P¢/ x(0) (8.31)

As the system it subjected to depolarisation, so that P(¢) — 0, the
energy of the system is also reduced to zero but there is no way in
which the instantaneous energy remaining in the system can be
related to the instantaneous value of the polarisation, even though
the entire frequency spectrum of the dielectric susceptibility be
known. The reason behind this somewhat surprising result is that
the instantaneous polarisation depends on the entire past history
of the sample, so that it is not sufficient to know the instantaneous
value of P(£) but one has to specify the time “path” on which this
value was reached.

Even more importantly, however, we know very little about the
actual mechanisms which determine the transfer of energy stored
initially in the polarisation to the heat bath and eventually to the
outside heat sink. To take a simple example, a dielectric being
charged “infinitely slowly” up to a polarisation P, suffers a van-
ishingly small loss of energy to the lattice, since the system is in
quasi-equilibrium at all times and no loss of energy is involved —
the total energy expended by the external source is equal to the
stored energy W,. If now the system should be equally slowly
discharged by reducing the field to zero at a very slow rate, the
entire energy W, would be transferred back to the source in the
form of the discharge current working against the instantaneous
applied field.

Going over next to the time-dependent regime in which finite rates
of charging and discharging are applied, it is intuitively evident
that a loss of energy is being necessarily incurred as a result of the
changing polarisation. In the case of sinusoidally varying applied
fields of a frequemncy , this manifests itself as a phase lag between
the applied field and the resulting polarisation. In the case of a
Debye dielectric, the phase lag corresponds to a constant time lag
7= 1/w, regardless of the applied frequency, so that the phase lag
increases as the frequency increases, ¢ = tan™'(w7) = w7. This
constant time lag is, in fact, not so much a physical necessity, as
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rather a direct consequence of the assumptions underlying the
Debye process, namely the postulated existence of a constant time
delay implicit in the differential equation (4.17).

In complete contrast with this classical Debye behaviour, the “uni-
versal” response beyond the loss peak frequency gives a constant
phase lag ¢ = tan™' (1 — n)m/2 = (1 — n)7w/2, independently of fre-
quency. This is the basis of the statement that the energy lost per
cycle is a constant fraction of the energy stored in the system at the
peak of the cycle, which is such a remarkable property of the
universal mechanism of polarisation. This property was used as the
basis of the screened hopping model and we consider it-as a
fundamental feature of considerable theoretical significance.

The implication of this property is that the harmonic change of
polarisation from a maximum value to zero entails a constant loss,
regardless of the frequency at which this change takes place. The
simplest way of thinking of this at the molecular level is to see it
in terms of every single transition incurring a constant amount of loss of
energy.

A characteristic feature of the harmonic drive is that the instan-
taneous polarisation and the driving field are in quasi-equilibrium,
except for the, usually small, phase lag. An entirely different situ-
ation arises when the material is driven under step-function exci-
tation by either charging or discharging — the latter corresponds
to a sudden short-circuiting of a charged capacitor. Under these
circumstances there {s a major instantaneous imbalance between the
prevailing polarisation and the field. This means that there is likely
to be a much larger loss of energy in the process of changing the
polarisation from zero to a finite value or the other way round —
we would expect both amounts to be the same, in view of the
“symmetry” of the charging and discharging operations.

Taking the discharge first, a system charged initially in a steady
field E, has the stored energy which is given by eqn (8.31). If now
the field is suddenly reduced to zero by applying an ideal short-
circuit to the capacitor, the entire stored energy has to be dissipated
internally, since there is no means-of coupling it out in view of the
assumed zero resistance in the external system. This means that
the energy lost in suddenly reducing the field to zero is equal to the
total initially stored energy. Takirig now the opposite situation,
where a step-function voltage is applied to an ideal capacitor without
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any series indwtance or resistance, the energy expended per unit
volume in the harging process is given by

w=[TiEd=am [ f0 4= B0 (832

which is exactly fwice the stored energy given by eqn (8.31). This
result is fully onsistent with the previous one for the discharge,
since the energr lost is the same in both (Jonscher 1978).

The implication of these results is that a charging process in which
the charging or discharging current varies as f(¢) leads to the
maximum energy loss — as much is lost as is stored. Any slower
charging process gives rise to a lower level of loss implied by the
loss angle in harmonic charging, where the ratio of energy lost per
cycle to energy stored may be as low as 107 or 107 in low-loss
materials.

The very high level of loss involved in rapid changes of polarisation
in lossy dielectric media is highly relevant in the process of energy
loss by moving charges which represents one of the less well under-
. stood aspects of charge transport in dielectrics (Frohlich and Platz-
man 1953, Jonscher 1980).

b) Transfer of energy to the heat bath

We are now in a position to look in some detail at the mechanism
of energy transfer between the polarising species — dipoles or hop-
ping charges — and the heat bath of the dielectric lattice. In the
case of the Debye mechanism this transfer occurs by direct exchange
of energy of the charges whose movements are slightly delayed with
respect to the field by the inherent delay time 7. The energy loss
is a direct consequence of the time lag inherent in the Debye process.

With the Dissado—Hill model of many-body interactions the situ-
ation is essentially different, since the primary process is the constant
energy loss per transition implicit in the universal law, while the
phase lag adjusts itself accordingly so that the external circuitis capable
of supplying the required energy. We may therefore look at the
individual types of transitions shown in Figure 8.6, with a view to
ascertaining their respective loss processes.

Starting with the large transitions taking place over the barrier
A, which may or may not be partially tunnel-lowered, these tran-
sitions have a diirect coupling to the phonon bath in exactly the
same way as in the classical Debye transitions — they are of the
same nature and their energy loss is determined solely by the actual
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time delay of each individual transition with respect to the driving
electric field. At frequencies close to the loss peak frequency this
delay is the same as in the Debye case, but at oither frequencies the
delay is larger below the peak and smaller abowe it. The important
point to note is that these transitions provide the major channel of
energy transfer to the lattice.

A completely different situation arises in the: case of the small
configurational tunnelling transitions of the flip type. These tran-
sitions do not couple directly to the heat bath, but they excite the
correlated states by creating an instantaneous imbalance resulting
from the very rapid transitions in a system which cannot adjust
instantaneously to a new situation. This is equivalent to the raising
of the occupied states within the band of correlated states shown
_in Figure 8.4. Each transition causes a raising of the energy of a
state by the amount nf and the combined effect of many such
transitions occurring in the initial stages of the discharge process
during the ™ stage of relaxation described in Section 8.3f) is to
store an appreciable amount of energy in the system of correlated
states. This energy can only “leak out” to the lattice through the
intermediary of the “large” transitions which do not begin to set
in appreciably before the characteristic time 1/w,, but the effect
of the large transitions continues until considerably longer times
than in the purely Debye system, since they must eventually dis-
charge the entire energy to the lattice but at the slower rate dictated
by the m process. The energy storing action of the m and =
transitions is an essential feature of the model and is at the basis
of the broader loss peaks.

The role of the flip-flop transitions in the dissipation of energy lies
in their action of transferring the energy of the correlated states
from one position to another in the system, thereby facilitating the
excitation of the energy-dissipating large transitions. The flip-flop
transitions themselves dissipate neither energy nor dipole moment
in the system as a whole.

Turning attention for the moment to the operation in the frequency
regime at a constant frequency in excess of the loss peak frequency,
we note that this regime is dominated by the flip transitions which
give rise to the @' law. While driving the systemat this frequency,
we are not allowing the large transitions to take glace appreciably,
since their natural frequency is much lower. The only energy loss
takes place therefore through the finite coupling >etween the exci-
tations of the correlated states and the large tramsitions which are
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thus induced to occur prematurely. In this regime, the actual value
of the driving frequency is of little significance in determining the
coupling to the large lossy transitions. A given amplitude of polar-
isation, corresponding to a given number of polarising transitions
predominantly of the flip type, excites therefore a given number of
correlated states and these can only lose their energy through the
large transitions. This is the physical reason for the observed
constant ratio of energy lost per cycle to energy stored at the peak,
which is also the necessary cause of the “universal” @"' frequency
dependence.

The more strongly correlated a system, the larger the exponent 7,
the smaller the probability of exciting the highly correlated flip
transitions. A strongly correlated system is also a highly “rigid” or
perfect system in which there are few defects through which the
thermally excited large transitions may be taking place. This is,
therefore, the limiting condition of a flat loss found in low-loss
systems.

¢) Dielectric and mechanical loss

A relationship between the dielectric and mechanical loss peaks has
long been known to exist (McCall 1981) and it has been associated
with the common role of the Debye-like transitions which define
the principal energy transfer processes — the difference between
dielectric and mechanical losses being primarily the different form
of “drive” — electrical in one case, mechanical strain in the other,
while the active species is the same, namely the lattice dipoles.

An essentially different relationship has been derived by Hill and
is described in Hill and Jonscher (1983). The principal line of
argument is as follows. Given that the energy stored in the flip
transitions is a fraction n of the maximum energy, the energy lost
in the process of excitation is 1 — n. If now the energy that is lost
electrically were entirely converted into mechanical energy and stored
as such, then the mechanical storage is equal to electrical loss. One
would expect, therefore, that the mechanical relaxation process in
a comparable frequency range should be governed by power law
relations with exponents which are given by:

ng+ n, =1 (8.33)
and similarly for the flip-flop processes
mgtm,=1 (8.34)
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TABLE 8.1

Relationships between the dielectric and mechanical cotrelation parameters (from Hill and Jonscher 1983).

Material Mechanical Dielectric Sum Reference
Chlorocyclohexylacrylate m 0.57 0.42 0.99 Heijboer (1972)
n 0.28 0.75 1.03 Heijboer (1972)
Poly-n-octylmethacrylate m 0.11 0.84 0.95 Strella and Chinai (1958)
n 0.27 0.62 0.89 Dannhauser et al (1958)
Poly-n-hexylmethacrylate m 0.28 0.9 1.18 Strella and Chinai (1958)
n 0.38 0.65 1.03 Ghild and Ferry (1957a)
Poly-n-butylmethacrylate m 0.25 0.71 0.96 Strella and Zand (1957)
n 0.3 0.71 1.01 Child and Ferry (1957b)
Trio-o-tolylphosphate n 0.55 0.4 0.95 Shears et al (1974)
Di-n-butylphthallate n 0.5 0.45 Barlow and Erginsav (1972)

0.95
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where the subscripts d and m denote dielectric and mechanical
relaxation, respectively. This prediction is of a much more fun-
damental natwe and covers a wider range of frequencies than the
loss peak relatonship previously known and it is therefore very
interesting to mte the extent of agreement with experiment. There
exist relatively very few data relating to both electrical and mechan-
ical losses on specific materials and even fewer cover sufficiently
wide frequency ranges to enable the exponents m and n to be
determined wita any accuracy.

Table 8.1 shows all known data compiled by R M Hill, giving the
values of the respective exponents and also their sum. It is most
remarkable that the agreement with the theoretical prediction
should prove to be so good in all cases which could be traced. This
result offers a significant support for the veracity of the theoretical
treatment presented here and it also suggests that very similar
considerations govern the mechanical responses as do the dielectric
ones. This opens up exciting new prospects for considerable
advances in the understanding of the mechanical relaxation pro-
cesses which hitherto have always been considered on very similar
lines to the Debye-based dielectric theory.

8.7 THE DYNAMICS OF TRAPPING AND
RECOMBINATION IN SEMICONDUCTORS

The results of dielectric spectroscopy of p—n junctions in semicon-
ductors were presented in Chapter 5 alongside other specifically
dielectric data and the surprising conclusion from these was the
far-reaching similarity of the results for dipolar and
recombination/trapping systems, in view of the fact that the physical
mechanisms responsible for the relaxation processes are completely
different in both cases. The near-Debye response shown in Figure
5.7 relating to a high-purity p—n junction with very few deep levels
gives a relaxation time of the order of 1 us at 300 K, which may be
presumed to represent a very likely value of the recombination time
of electron hole jpairs in silicen. We do not have sufficient experi-
mental evidence to infer that recombination processes necessarily
give near-Debye responses, but there is no doubt that the examples
of a less pure silicon diode shown in Figure 5.28 and the very
similar response of GaAs shown in Figure 5.30 reveal far-reaching
departures from the Debye ideal, suggesting strongly non-expo-
nential, power-law processes. In these two instances there is little
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doubt that the relaxation times correspond to deep trapping rather
than straight recombination processes. Other examples such as in
Figure 5.31 show less drastic but still significant departures from
Debye response in irradiated junctions.

The general conclusion from these and other measurements that
the trapping processes in semiconductors do not obey exponential
time developments and follow instead power laws is confirmed by
a wider review of luminescence and photoconductivity in solids —
all these depart very strongly from the exponential laws and very
often follow power laws instead (de Polignac and Jonscher 1983).

There is little doubt that many-body interactions play some role
in the transition of electrons to and from deep levels — several
phonons are inevitably involved, and in addition there may be some
interaction between neighbouring centres, especially in view of the
effect of rapid “dipolar flip” arising from the sudden translation of
the liberated charge in the conduction or valence band, as described
by Figure 4.14. However we do not at the present time possess a
theory capable of explaining this type of trapping dynamics and
it remains to be hoped that the establishment of certain experimental
facts will give rise in due course to some relevant theoretical studies,
just as has been the case with the entire question of dielectric

relaxation described in the present work. ‘

These considerations may be placed on a more analytical basis by
noting that the detrapping current in a p-n junction may be
expressed as the rate of detrapping of charge carriers in Figure 4.18.
This means that the number density of trapped charges is the
equivalent of polarisation in a dipolar material. We may therefore
write the following formal expression for the trapped charge density
after a delta-function light or other form of excitation

An(t) = A(LAE) k() (8.35)

which is written by analogy with the corresponding polarisation
equation (2.27) and where 4 is the normalising factor expressing
the strength of the light coupling to charge carriers, while LAt is
the strength of the delta function. The response to an arbitrary
time-dependent illumination may then be written by analogy with
eqn (2.30) as

An(?) =_Arh(r)L(t- 7) dv (8.36)

of which the Fourier transform into the frequency domain may be
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written in the form analogous to (2.36):
A(w) = Ak(w) L(w) « H (0) — iH" () (8.37)

where A(w) ard L(w) are the Fourier transforms of A(¢) and L (t),
respectively, the latter being the amplitude of the driving light or
other exciting signal. The complex nature of the Fourier transform
(8.37) means :hat the response of trapped charges is delayed in
phase with respect to the driving sinusoidal signal.

Under conditiens of step-function excitation we obtain the transient
response

An(t) = AL, f k(7)dv  in charging (8.38)
0

An(t) = A L, f “h(7)dr in discharging (8.39)
and !

An(w) =4 Lorh(r) dv
0
under steady state illumination (8.40)

If the response function %(t) is purely exponential then the corre-
sponding frequency—domain response is analogous to Debye, as in
the case shown in Figure 5.7, while serious departures from that
shape imply that the response function is of power—law type. These
equations form the basis for the experimental determination of the
response function of trapping processes at deep levels in semicon-
ductors and semi-insulators.

A similar analysis may be applied to the frequency-dependent
response of a photoconductor, in which case the important difference
consists in the fact that photoconduction is proportional to the
carrier density and not to the rate of change of density. Thus.
photocurrent is in this instance analogous to the dielectric
polarisation.

Finally, once again it is possible to extend the analysis to the
luminescent response of phosphors and similar materials, where
the light output is proportional to the rate of change of carrier
density which makes it therefore analogous to depolarisation current
and to the current in a p—n junction.

The advantages of the frequency-domain method of measuring the
photoconductivie or luminescent response of deep traps are based
on the same comsiderations as those of the determination of the
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dielectric response function, as explained in Section 6.1. The infor-
mation contained in, for instance, Figures 5.28 or 5.31 could never
have been obtained by conventional processes of time—-domain
measurement in view of the limited range of amplitudes which are
normally accessible to measurement.

8.8 DIELECTRIC DIAGNOSTIGS OF MATERIALS

After our review of experimental data both in the time and frequency

domains and after our theoretical discussion of the interpretation

of the universality of dielectric behaviour in a very wide range of
materials, it remains to sum up the salient points of the approach |
presented in the present Monograph. We ask the question: What

does dielectric measurement give as tangible evidence of value to

the experimenter, the theoretitian, the fundamental scientist and

the applications-oriented engineer?

As regards fundamental polarisation processes, we are able to
distinguish immediately between dipolar and charge-carrier-dom-
inated processes, in terms of the division in Figure 5.58 into charac- -
teristics showing loss peaks and strong low-frequency dispersion,
respectively. If the dielectric response is clearly dominated by loss
peaks, with possibly a dc component at the lowest frequencies but
without any strong low-frequency dispersion, then the conclusion
must be that the dominant process is a dipolar polarisation, whether
this be due to molecular dipoles, e.g. in polymers, or to ionic dipoles
created by strongly bound ionic species, as for example in Calky,
Figure 5.2.

The activation energy of the loss peak frequency may be analysed
by the normalisation techniques and it may be interpreted in the
usual manner in which loss peaks have always been interpreted in
classical dielectric approaches, corresponding in the present case
of the “large” transitions in Figure 8.6. The dipolar species cor-
responding to the activation energies and to the frequencies noted
in this part of the study may then be associated with the classically
developed arguments for the various types of transitions in dipolar
materials — with the various molecular conformations in, for exam-
ple, polymeric or ionic solids being associated with specific par-
ameters. To that extent, the study of the loss peak frequency itself
provides no more information than the classical approaches, with
the possible reservation about the interpretation of the precise value
of the frequency and of the amplitude, none of which is well
understood in terms of classical theories either.
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The next impatant point in the new approach to dielectric diag-
nostics is the-sjectral shape of the frequency dependence of loss and
polarisation. The sheer quantity of information contained in this
spectral shapeis potentially much larger than that contained in
the loss peak fiequency and amplitude, provided that we are able
to make use ofit. Here, the presence of well-defined exponents m
and 7 helps comiderably in the interpretation of data, since if simple
power laws ar¢ not discernible the conclusion must be that com-
plicating overlips between different mechanisms take place and
discussion is difficult. However, the values of m and n provide
valuable information about the structural relations in the system
under study, the values corresponding to nearly Debye-like behav-
iour indicating a considerable degree of liquid-like disorder in the
system, with the consequent lack of correlation between flip and
flip-flop transitions. At the other extreme, the relatively very “flat”
loss peaks testify to the presence of relatively ordered systems, in
which a considerable “rigidity” of structure prevents uncorrelated
transitions from taking place, with solid-like behaviour and rela-
tively low loss.

An important aspect of interpretational analysis of data is the
invariance of the exponents m and n with temperature or pressure
in certain ranges of these variables. This clearly indicates that the
short-range order in the relevant range remain invariant, retaining
the spectral shape of the response. Where, on the other hand, this
spectral shape changes with variation of temperature or of other
variables, then the conclusion must be that phase transitions take
place, involving a sudden or gradual variation of the short-range
order, as the case may be.

We have stressed in the present approach the separation of
frequency- and temperature-dependence of dielectric response — the
presence of loss peak in temperature at constant frequency was
shown not to prove that the material shows Debye-like response,
only a frequency sweep can prove this point conclusively.

The low-temperature limit of dielectric behaviour is of particular
interest in our aLpproach since this can only correspond either to
tunnelling transitions of relatively very light protons, or to many-
body configuratiional tunnelling in systems involving much heavier
entities.

We now come to the interpretation of the “post-peak” response of
dielectrics, at frexquencies in excess of the loss peak frequency. The
fact that this shows generally a well-defined power law of the type
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given by eqn (5.8), does not, per se prove that one is dealing with
hopping electrons, or even more generally with other charge carriers
such as ions. This is the great misunderstanding which is widely
found in the literature, where the presence of a power—law of this
type was often taken to mean the dominance of hopping electronic
conduction. Quite apart from the fact that this law does not dis-
tinguish between electronic and ionic charge carriers, in the absence
of clear loss peak evidence it cannot even rule out the role of dipoles
as the dominant polarising species. There are many examples in
the literature where an insufficient frequency range fails to reveal
the presence of a loss peak, so that only the power law is in evidence
and this is then taken as proof of hopping electronic conduction.

Just as a loss peak is the ultimate proof of a dipolar process, so the
charge carrier response is finally confirmed by the presence of
strong low-frequency dispersion. Once again, this should be clearly
distinguished from the dc conductivity — the latter is independent
of the polarising dipolar species and is always present in all polar
materials at sufficiently high temperatures. The former shows that
charge carriers of either electronic or ionic nature are hopping in
the system and their collective interactions lead to strong low-
frequency dispersion. We may distinguish here between “bulk” and
“barrier” responses if the data enable a sufficiently clear conclusion
to be reached between Figures 5.47a) and b). Neither of these
behaviours, however, is compatible with any “classical” type of
dielectric response, unless one is prepared to accept the purely
accidental combinations of Maxwell-Wagner parameters.

The existence of the “flat” frequency-independent dielectric loss,
with its connotation of a logarithmic time-dependence of polaris-
ation, eqn (6.23), will continue to puzzle us for some time yet — the
exact physical significance of this remarkable.form of dielectric
response is not easy to grasp.

One powerful tool of experimental analysis easily available with
modern Frequency Response Analysers is the ability to subtract
data obtained at different temperatures or in other similar situa-
tions, where the superposition of two different mechanisms may be
clearly demonstrated on the basis of data which do not otherwise
suggest any such simple result, as in Figure 5.56.

The adaptation of dielectric techniques to the study of the dynamic
response of trapping centres in semiconductors, photoconductors
and phosphors opens up one of the potentially richer fields in solid
state physics. Here the theoretical interpretation is less well
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advanced than n the dipolar and charge carrier polarisations, but
the availability of good experimental data should s:imulate the
corresponding heoretical effort. In the meantime, it is already
becoming clearthat these measurements reveal material features
which are not radily accessible to other methods of measurement
and are not ever suspected to exist— e.g. in semi-insulating gallium
arsenide. If, or: day, a unified theory could embrace dielectric
polarisation and trapping processes in semiconductors, this would
represent a major advance in our understanding of the physics of
the solid state. Iven without such a unified theory, however, the
fact that the dymamics of trapping processes can be shown to follow
power laws in time and in frequency, instead of the normally
assumed exponential relations, is itself of considerable significance.

The absolute viues of the loss peak amplitudes or of the low-
frequency dispersive processes continue to defy detailed analysis
— but neither are they capable of being treated in the classical
approaches, excluding the simplest Debye one which is so seldom
seen in practice. This aspect, together with the closely related
absolute magnitude of the steady state polarisation, x(0), represent
a continuing challenge to our theoretical understanding of many-
body processes in solids.

One other area of considerable interest is the interaction between
charge carriers and the dielectric matrix in which they are moving,
as outlined in Section 6.7. This is not only relevant to low-field
transport in dielectric materials, but becomes vital in the context
of a physical approach to the causes of dielectric breakdown.

8.9 CONCLUSIONS

The purpose of the present Monograph was to establish, on the
basis of wide-ranging experimental evidence, the principle of uni-
versality of dielectric behaviour, with its specific power-law depend-
ence on frequency and on time, and to present an interpretation
of this behaviour in terms of the newly formulated many-body
theory of dielectric relaxation. In the course of our treatment of
this subject we have tried to convince the reader that the experi-
mentally observeid behaviour is not compatible with any of the
hitherto accepted theories of dielectric response. The principal
encouragement tio the formulation of an alternative approach
stemmed from the very existence of universality of behaviour which
covered all matemrials showing dielectric-like behaviour, whether
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they be-of the traditionally accepted kind or not. This universality
accommodates a wide range of specific behaviours, some of which
depart from the classical Debye response to the extent of being
completely unrecognisable.

The behaviour of all real-life systems invariably departs to a finite
extent from that of simplified or idealised models which may have
been introduced as an aid to comprehension and analysis of a given .
situation. In some cases the departures of the actual behaviour
from ideality are sufficiently small to be treated as perturbations
and corresponding small modifications may be introduced into the
idealised model to take account of this. These modifications may
then provide a means of improving our understanding of the phy-
sical reality governing the response of the process in question. As
examples of this we may quote the introduction of localised impurity
levels which perturb the band structure of nearly perfect semicon-
ductors, or small deviations from Ohm’s law in the conduction of
electric current.

A stage may be reached, however, where the perturbation becomes
as important as, let along stronger than, the original ideal effect
itself. Under these conditions, successive approximations to the
idealised theoretical solution are no longer convergent and the’
system becomes intractable by the perturbation method. At this
point, it may be necessary to develop from the beginning a com-
pletely fresh approach which attacks the essence of the non-ideal
system directly and does not presuppose at all the existence of any
ideal system. To follow the examples quoted earlier, the modern
approach to completely disordered and amorphous solids attempts
to tackle disorder itself, and the theory of high-field conduction
attacks the non-linear flow as such.

This is exactly the situation in the theory of electric polarisation
in near-Debye systems, where it is possible to introduce small
perturbations of the ideal Debye model by means of correlation
functions or by superposition of two or more simple non-interacting
Debye relaxors. By the time one is trying to explain the behaviour
‘of systems departing from the ideal by as much as many of the
examples in the review of Chapter 5, the method becomes increas-
ingly questionable in its validity and, in particular, in its physical
plausibility, for example in the case of very wide distributions of
relaxation times. The approach adopted in the present treatment
starts, therefore, from the proposition that the ideal Debye behav-
iour does not exist other than as a mathematical abstraction and
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that the essenceof all relaxation phenomena in condensed matter
lies in the inferactve nature of the movement of the polarising species.

Thus, instead of tking the usual approach of looking at the departures
from the ideal Déye response, we have taken the opposite approach
of seeking a diret explanation of the power—law benaviour in its
most general forn. The resulting many-body theory has proved to
be fully able to zcount for most of the different manifestations of
the universal response and has done this within a single framework
whose generalityis such that it can be adapted to all solid and
even liquid situaions.

It is noteworthy that some of these types of responses could not
reasonably be acounted for in terms of the established theories,
for instance the imiting situations of flat loss with =1 and of
strong low-frequency dispersion with n— 0, the variety of low-
temperature behaviours and the recombination and trapping laws.

Using the available very rich material of experimental data relating
to dielectric behaviour of solids, it became possible to develop and
to refine the new many-body theory to the point where it can not
only look at the entire range of strictly dielectric responses, but is
capable of moving into new areas of solid state physics. The reason
for this is that many-body interactions are indeed ubiquitous in
condensed matter, but their effects tend to be rather subtle and
their experimental determination is not always feasible on a scale
which enables a detailed theory to be developed. However, once the
outline of the theory has been developed on the basis of the uniquely
sensitive dielectric data, its application can proceed much more
easily in other branches of physics. In this manner it became
possible to interpret the ubiquitous “1/f noise” (Hill et al 1981),
to look afresh at the age-old problem of dielectric breakdown as a
~ cooperative phenomenon, to formulate a new approach to the
transport of charges in semi-insulating materials, to interpret the
shape of NMR spectra, the behaviour of magnetic systems (Dissado
and Hill 1981c) and the non-exponential recombination laws
(Jonscher et al 1982). In this way, a new and rich source of insights
into the theory of condensed matter is-being opened up.

Asis often the case, the direct approach to the dominant mechanism,
interactions in the present case, results in a greatly simplified
physical model in «comparison with the results of multiple approx-
imations which do not lead to any physically plausible conclusions.
Even though the mathematical treatment of the interactive system
may not be very familir to the majority of people concerned with
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the study of dielectrics, the physical model is essentially simple anc
the concepts involved become easily comprehensible once the initia.
obstacle of unfamiliarity has been removed.

It must be said that one can never be absolutely sure that a particular
model, however otherwise plausible and theoretically rigorous, is
the unique true model. The question of the ultimate acceptability of
a theory lies in the creation of a consensus of opinion in the relevant
professional circle that the balance of probability lies on the side
of that theory. One of the essential elements in creating this con-
sensus is the simplicity and the generality of the model in question,
since the principle that

Mother Nature prefers simplicity
is a powerful guide to correct solutions.

On this note we leave the reader to form his own opinion about the
plausibility and generality of the present many-body model of
dielectric polarisation — let him weigh up the evidence presented
here, and any other evidence of which he is aware, and let him
then set it against the present theory and against the other theories
that he knows of. A consensus will thus be formed without fear or
favour or prior commitment.
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APPENDIX 8.

THE INFRA-RED DIVERGENCE

In the followirg we give a simplified treatment of the infra-red
divergence based on a derivation by Hill (Jonscher and Hill 1982).

The vibrational Hamiltonian in the ground and excited states of
a centre in an insulating crystal can be written in terms of creation
and annihilation operators as (Hopfield 1969):

By = 2 Erl (A8.1)
b = 2 Edta,+ 2 ) (d + a) (A8.2)

where E; is the energy eigenvalue of the i-th state and A is the
first-order interaction energy between the states i.

On the application of a sudden electromagnetic pulse, such as
might arise from the sudden reorientation of another dipole, each
oscillator either remains in the ground state, or is excited with a
probability (A/E;)?. The mean number of oscillators is then:

N=2 (h/E)*= j FH(E). ;(E) dE

where the summation over the levels i has been extended to an
integral over energy, N(E) is the density of states per unit energy
and £ is the upper limit of these states.

(A8.3)

The mean energy is
B} ¢ 52
E=2 (B/E) :f w

from which the distribution function of emission energy can be
determined as

(A8.4)

¢(E)dE = }*(E) . N(E) dE (A8.5)

In the particular case in which g(E) = A . E, i.e. it is proportional
to E, we have from (A8.3) and (A8.4):

=AL
N=4 f c% (A8.7)
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so that the mean energy is well defined but there is a logarithmic
divergence in the number of excited states of oscillators at zero
energy.

In second-order perturbation theory a logarithmically divergent
number of low-energy excitations gives a time development of the
response of the system to the pulse which is cooperative. The
response in terms of the time-dependent current under step-function
field excitation is given by the Fourier transform:

i(t) = CXP[Z (Al E))? [exp(—iE;t) — 1]} (A8.8)

which in the limit of small energy differences and with the particular
distribution function given by (A8.5) can be re-written in the

integral form:
@] —e™
exp{ —A f dx} (A8.9)
0

X

which is equivalent to
exp{—A[y + In(ilt) + E; (i8t)]} (A8.10)

where E; is the exponential integral and 7y is Euler’s constant. The
ratio of the average energy of excitation to the width of the available
energy range is

E/E=A
which if we set A = n gives
Ini(¢) = —n[y+In(ilt) + E,(1&)] (A8.11)

as obtained by Dissado and Hill (1980). In that derivation the
characteristic parameter n was defined in terms of the average value
of A; which is given by

(/=2 R=E (A8.12)

and hence using (A8.6)
n=(A)/C (A8.13)
The derivation presented here emphasises that the correlation index

n is the average energy of excitation within the band and is identical
to the parameter defining the density of excitation states.

Returning to eqn (A8.11) we note that the polarisation current is
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given by:
i(t) = Re{(ift) " exp[~nE, (i{t)] e ™} (A8.14)

denoting the real part of the expression in { }. The first factor in
this expression gives the familiar power law which dominates for
large values of the argument:

i(t) o< ()™ ; &=10 (A8.15)

while the second factor modulates this power law with an oscillatory
function in the intermediate range of arguments, 1 < & < 10, and
for short times the solution tends to a constant and finite value

i(t) <exp(—nl?/4) ; &<l (A8.16)

The exact solution at short times gives the correct physical behav-
iour corresponding to a finite response instead of the divergent ¢
.law. We have already commented on the fact that this solution
- ignores inertial effects. It is noteworthy that the function shows
strongly oscillatory behaviour for large values of the exponent .
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