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Preface

This book gives an elementary account of thermal physics. The subject is
simple, the methods are powerful, and the results have broad applica-
tions, Probably no other physical theory is used more widely throughout
science and engineering,

We have written for undergraduate students of physics and astconomy,
and for electrical cogineering students generully. These ficlds for our
purposes have strong commtnon bonds, most sotably a concem with Fermi
gases, whether in semicounductors, metals, stars, or uuclel, We develop
methods (not original, but not eastly accessible elsewhere) that are well
suited to these fields. We wrote the book in the first place because we
were delighted by the clarity of the "new” methods as compared to those
we were taught when we werg students oursefves, '

We have not emphasized several traditional topics, some because they
are no longer useful and some because their reliance on classical siatisti-
cal mechanics would make the course more difficult thun we believe a
first course should be. Also, we have avotded the use of combinatoriaf
methods where they are unnecessary.,

Notation and uvnits; We generally use the SI and CGS systems in
parallel. We do not use the calorie. The kelvin temperature T is refated to
the fundamental temperature 7 by 7 = k7, and the conventional entropy
S is related to the fundamental entropy o by § = ko0 The symbol log
will depote natural logarithm throughout, simply because In is less ex-
pressive when set in type. The notation (18) refers to Equation (18) of
the current chapter, but (3.18) refers to Equation (18) of Chapler 3.

The book is the successor to course notes developed with the assist-
ance of gras by the Universtty of Cafifornia, Edward M. Purcell con-
tributed many tdeas to the first edition. We benefited from review of the
second cdition by Seymour Geller, Paul L. Richards, and Nicholas
Wheeler. Help was given by Ibrahim Adawi, Bernard Black, G. Domo-
kos, Margaret Geller, Cameron Hayne, K. A. Jackson, S. Justi, Peter
Kittel, Richard Kirtler, Martin ], Klein, Elien Leverenz, Bruce H. J.
McKellar, F. E. O’Meara, Norman E. Phillips, B. Roswelt Russell, T. M.
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Preface

Sanders. B. Stoeckly, John Verhoogen, John Wheatiey, and Eyvind
Wichmann., We thank Carol Tung for the typed manuscript and Sari
Wilde for her help with the index. _

An clementary treatment of the greenhouse effect in the Earth’s atmo-
sphere was added in 1994 on page 115, following an argument suggested
by Professor Richard Muller. A page on alonic gas expedinents on the
Bose-Einstein condensatton was added to page 223 in 2000,

For ‘instructors who have adopted the course for classroom use, a

solutions manual is available via the freeman web site (http://whfreeman.
com/thermalphysics).

Berkeley and Santa Barbara Charles Kittel

Herbert Kroemer



Note to the Student

For minimum coverage of the concepts presented in each chapter, the authars
recommend the following exercises. Chapter 2: 1, 2, 3; Chapter 3: 1,2, 3, 4, 8,
11; Chapter 4: 1,2, 4, 5,6, 8; Chapter 5: 1, 3, 4,6, 8; Chapter 6: 1,2,3,6,12,
14, 15; Chapter 7: 2, 3,5, 6, 7, 11; Chapter 8: 1,2, 3, 5, 6, 7; Chapter 9: 1, 2, 3;
Chapter 10: 1, 2, 3; Chapter 11: 1,2, 3; Chapter 12: 3,4, 5; Chapter 13: 1, 2,
3,78, 10; Chapter 14: 1,3, 4, 5; Chapler 15: 2, 3,4, 6.
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Introduction

L T T S,

Our approach to thermal physics differs from the tradition followed in beginning
physics courses. Therefore we provide this introduction 10 set aul what we are
going ta do m the chapters that follow. We show the main lines of the logical
structure: m this subject all the physics comes from the logic. In arder of their
appearance, the leadmg claracters in out story aretheentropy, the temperature,
the Boltzmann factor, the chemical potential, the Gibbs factar, and the disiribu-
tion functions. K

The entropy measures the number 6fquzmmm states accessible to a system,
A ctosed system might be in any of these quantum states and {we assume} with
cqual probabiiity. The fundamental statistical element, the fundamental logical
assumption, is that quantum states are either accessible ar inaccessible to the
system, and the system is cqually likely to be in any one accessible siate as in
any other accessible siate. Given g accessible states, the cniropy is defined as
¢ = logg. The entropy 1hus defined will be a function of the energy U, the
number of particles N, and the volume V of the system, because these param-
cters ener the determinalion of g; orher paramcters muy cater as well, The
usc of the logarnhat is a mathemalical convenience: it is easier to write 10°°
than exp(10%°), and it is more natural for two systems to speak of 6, + o, than
of g,9,.

When twa systems, cach of specificd energy, are brought into thermal contact
they may transferenergy; ther tatal energy remams constant, but the constrats
an therr individual energics are lifted. A transfer of energy m onc direction, or
perhaps i the other, may increase the product ¢, ¢, that measures the uumber of
accessible states of the combined systems. The fundamental assumption hases
the outcome in favor of that altocation of the total energy that maximizes the
number of accessible states: more is better, and more hkely. This statement is
the kernet of the taw of increase of entropy, which is the general expression of
the second Jaw of thermodynamics,

We have brought two systems into thermal contact so that they may transfer
energy. What 1S the most probable outcome of the encounter? One system witl
gain energy at the expense of the other, and meanwhile the total entropy of the
two systems will tncrease. Eventually the entropy will reach a maximum for

 the given total energy. It is not difficult to show (Chapter 2) that the maxintum

!
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is absined when the value of (Co/CU)y  for one system is equal to the value of
the same guantity for thesecond system. This equality property for two systems

imbermal contactis just the property we expect ofthe icmperature. Accordingly,
we define the fundamental femperature 7 by the relation

Sl (e ,
T = (?L"’ .\.‘,V. {}

The use of 1 v assures that energy will flow from high 7 to low 73 no more com-
plicated relwion s needed. It will follow! that Whe Kclvin temperature T s
dircetly proportional to ¢, with 1 = k7T, where &y 1s the Boltzmann constant.
The conventionat entropy Sis given by § = ko,

Now cansider @ very sunple esample of the Boltvmam factor treated in
Cligner 3. et sacd] systan with osly nwo stines, one at enerpy il nne i
cnargy e, be placed in thermal contact with a targe system that we call the
reservoir. The rolal energy of the combined systoms is Uy; when the smalt
system is in the stae of cnergy 0, the reservoir has encrgy Uy and will have
gtlUs) states accessible to 1it. When the small sysiem is in the state of energy &, the
reservoir will have enerey Uy —~ £and will have g(U, — &) states accessible to
it. By the fundamental assum;‘jiion, the ratio of the probabutity of finding the
small system with energy £ to the probability of finding it with energy O is

Pl gllo - 0 explofly ~ o] 2)
P{0) B gtlUo) B eh’p[ﬁ‘(Ua}] ’

The rescrvotr entropy o niay be expanded i a Taylor serics:
(g — &) > o(Ug) — e(CoicUg) = 6{Ug) — &'t , (3)

by the definition {1} of the temperature. Higher order terms in the expansion
may be dropped. Cancellation of the term exp[a(U,)], which oceurs in the
numerator snd denominater of {2) after the subistitution of (3), leaves us with

Ple) PO} = expl—¢f1) {4}
This is Boltzmanu’s result. To show its use, we calculate the thermat average

energy (&) of the fwo stite system tn thermal contact with a reservoir at tem-
perature 1

(6 = SaPle) = 0PO) + cPb) = - \p\%)%i% ’ 6)
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where we have imposed the normalization condition on the sum of the prob-
abilities:

P@+P@:L_ (6)

The argument can be generalized immediately to find the average energy of a
harmoote oscillator at temperature 1, and we do this in Chapter 4 as the first
step in the dertvation of the Planck radiation law.

The most important extension of the theory is {o systems that can transfer
particles as well as encrgy with the reservoir, For two systenis tn diffusive and
thermat contact, the entropy will be a maximum with respect to the transfer
of particles as well as to the transfer of encrgy. Not only must (So/cU)yy be
cdent! for the two systems, but (Ca/0N]y ;. must also be equal, where N refers to
the muber of pasticles of o piven species. The new equadity comtition is the
veension tor the introduction of 3 pew quantity, the chomicat potennad J:

R LA 1
: (aw)&y' o

For two systems in thermal and diffusive contact, 1, = 7, and ji; = p,. The
sign in (7) is chosen to ensure that-the direction of particle flow as egutlibrium
ts approached is from high chemical potential to low chemical potensial

The Gibbs factor of Chapter 5 ts an extenston of the Boltzmano factor and
allows us to treat systems thad can transfer particles. The simplest example ts
system with two states, one with 0 particles and 0 energy, and one with [ particie
and cnergy & The systemn s in contact with a reservoir at tempearature t and
chemical potential g. We extend (3) for the reservoir entropy:

al{lUy ~ e:Ng — 1) = o{Ug:Ng) — eldaf0Uy) — 1 -{Ca/ON,)

H

o{Ug;Ng) ~ &% + pfr. {3)
By analogy with (4}, we have

P(Le)/P0,0) = exp[(p —~ e)/r] . {9}
for the ratio of the probability the system 15 occnpiéd by | parsicte at cner2y €

to the probabilily the systent ts unoccupied, with cnergy 0. The result (9) after
normalization ts readtly expressed as

H
explle - wye] + 1

Plg) = (10}
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This particular result is known as the Fermi-Dirac distribution function and
ts used particularly in the theory of metals to describe the electron gas at low
temperature and high concentration {Chapter 7).

The classical distribution funciion used in the derivation of the ideal gas law
t5 just the limit of {10} when the oceupancy Pl £} is much less than [:

P{lg) =~ expl{p ~ &)/} (11}

The properiies of the {deal gas are developed from this result in Chapter 6.

The Helmholtz free energy F = U — 1o appears as an tmportant computa-

tional function, beecause the relation {(6F/ét)yy = —o offers the eastest method

for finding the entropy, once we have found out how to calculate F from the
energy cigenvalues {Chapter 3). Other powerful tools for the calculation of
thermodynamic functions are developed o the {ext. Most of the respainder of
the text concerns applications that are uscful in their own right and that Hlun-
nate the meaning and uhlity of the principal thermodynamie functions.

Thermal physics conneets the world of everyday objects, of astronomical
objects, and of chemicul and biologicul processes with {he world of mojectltar,
atomic, and elcetronie systems. It unites the two parts of our world, the micro-
scopic and the macroscopic.
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Chapter 1} States of a Madel System

But although, as a mauer of history, statistical mechanics owes its origin 1o
investigations i thermodynmuics, it seems eminently warthy of an independent
development, both on account of the elegance and simplicity of its principles,
and because it yields new results and places old truths in a new light in
depariments quite outside of thermodynaniics.

J W Gibbs

A theory is the more impressive the greater the simplicity of its prentises, the
more different kinds of things it relates, and the more extended its area of
applicability, Therefore the deep impressiou that classical thermodynamics made
uporn me, It is the only pliysical theory of universal comtent which I amn convinced

wifl never be overtheown, within the framework of applicability of its basic
conceps.

A. Einstein



Chapter 1: States of a AModel System

Thermal physics is the fruit of the union of statistical and mechanical principles.
Mechanics tells us the meaning of work ; therma! physics tells us the meantng of
heat. There ate three new guantities in thermal physics that do not appear in
ordinary mechanics: entropy, temperature, and free encrgy. We shall motivate
their defimtions in the first three chapters and deduce their consequences
therealter,

Our potnt of departure for the development of thermal physics is the coneept
of the stattonary guantum states of a systern of particles. When we can count
the quantum states accessible (o a system, we know the entropy of the system,
for the entropy is defined as the logarithm of the number of states (Chapter 2).
The dependence of the entropy on the energy of the systemn defines the tempera-
ture. From the entropy, the temperature, and the free energy we find the pressure,
the chemical potential, and all other thermodynamic properties of the system.

Fora system in a stationary guantum state, alj ebservable physica] properties
such as the energy and the number of particies are independent of the time. For
brevily we usually omit the word stationary; the Quanium states that we treat
are stalionary except when we discuss transport processes in Chaprers 14-15.
The systems we discuss may be composed of a single particle or, niore often,
of many particles. The theory is developed to handle general systems of inter-
acting particles, but powerful simplificalions can be made in special problems
for which the interactions may be neglacted.

Each quantum stal¢ has a definile encrgy. States with ideatical energies are
said to belong to the same energy level. The multiplicity or degeneracy of an
energy level is the number of quanium stales with very nearly the same enerpy,
It is the number of quanium states that is important in thermal physics, not
the number of encrgy levels, We shall frequently deal with sums over all quantum
states. Two states at the same energy must always be counted as two states,
not as ove fevel

Let us ook ar the gquantmn states sad coergy levels olseveral atosmic systeis,
The simplest 1s hydrogen, wih one clectron and one proton. The Juw-yurg
encrgy levels of hydrogen are shown in Figure 1.1 The zero of ¢nerpy s the
figure is taken at the state of lowest enerpy. The number of quantum stales
belonging to the same energy level is in parentheses. In ilie fignre we overlook
that the proton has a spin of 1/ and has two independent orientations, paralle]
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Figure 1.1

Low-lying encrgy levels of atomic hydrogen, lithium, and boron. The
encrgies are given in electron volis, with ¢V = 1602 x (0~ % erg, The numbers in

parentheses give the number of quantum states having the same energy, with no account

raken of the spin of the nucleus. The zero of energy in the figure is takea for couvenience
at the lowest energy state of each atom.

or antiparallel to the dircction of an arbitrary external axis, such as the direction
of a magpetic field. To take account of the two orientations we should double
the values of the multiplicities shown for atomic hydrogen,

An atom of lithium has three electrons which move about the nucleus. Each
electron interacts with the nucleus, and each clectron also interacts with alf the
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Figure 1.2 Energy levels, multiplicities, and quantum numbers
n,, 1, 1, of a particle confined to a cube,

other electrons. The energies of the levels of lithinm shown in the figure are the
collective energies of the entire systemn. The epergy levels shown for boron, which
has five electrons, are also the energies of the entire system.

The energy of a system is the total energy of all particies, kinetic plus potential,
with account taken of interactions between particles. A quantum state of the
system s a state of all particles. Quantum states of a one-particle system are
called orbitals. The low-lying energy levels of a single particle of mass A con-
fined to a cube of side L are shown in Figure 1.2. We shall find in Chapter 3
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that an orbital of a free particle can be characierized by three positive integral
quantum numbers n,, 1, .. The encrgy is

h? (; b | 2 | I
£ W\ 1 57+ A} {1}

The muliiplicities of the levels are indicated in the figure. The three orbitals
with (i, 0 equal 1o (4,1,1), (1,4,1), and {1,1,4) all huve n,® + n,z + ”:2 = {8;
the corresponding energy level has the multiplichy 3.

To describe the statistical properties of a system of N particles, it {s essential
1o know the set of values of the encrgy £,(N}, where £1s theenergy of the quantum
state soflthe NV particle system, Indices such as s may be assigned o the quantum
states in any convenient arbitrary way, but two different states should not be
assigned the same index.

It is a good idea to siart our program by siudying the properties of simple
model systems for which the energies £,{N) can be calculated evacily. We choose
as a model a simpic binary system because the general siatisiical propertics
found for the model system are believed to apply equally well to any realistic
physical system. This assttmption leads to predictions that always agree with

experiment. What general statistical properties are of concern will become clear
as we go along.

-

BINARY MODEL SYSTEMS

The binary model system is illustrated in Figure 1.3. We assume there are N
separate and distinct sites fixed in space, shown for convenience on a line.
Attached 10 each site is an elementary magnet that can point only up or down,
corresponding to magnetic moments J-a. To understand the system means 10
count the states. This requires no knowledge of magnetism: an element of the
system can be any site capable of two states, labeled as yes or no, red or blue,
occupied or unoccupicd, zero or one, plus one or atinus one. Tie sites are
numbered, and stics with different numbers are supposed not to overlap in
physical space. You might oven tunk of thie sites as numbered parking spaces in
a car parking fot, as in Figure 1.4, Cach parking space has two shates, vacant or
cccnpied by one car.

Whatever 1he nature of our objects, we may designate the two states by
arrows that can only point siraight up or straight down. 1f the magner points

up, we say that the mabncuc moment is +m. [l the macnc{ points down, the
magnitic moment s~ '



Binary Model Systems

I 2 3 4 5 & 7 8 9 10
Number of the site

Figure 1.3 Model system composed of 10 elementary
magnets at fixed sites on a line, cach having magnetic
moment :tm. The numbers shown are artached Lo the sites;
cach site has its own magnet, We assume there are no
iateractions among the magnels and there is no externat
magnelic field. Each magnetic moment may be oriented in
twa ways, up or down, so that there are 2*® distinet
arrangements of the 10 magnetic moments shown in the
figure. If the arrangements are selected in 8 random process,
the probability of finding the particular arrangement shown
is 17219, :

Figure 1.4 State ofa parking ot with 10 numbered parking
spaces. The @5 denote spaces occupied by a carj the O
denote vacant spaces. This particular state is equivalent 1o that
shown in Figure L3,

Now consider N different sites, each of which bears a moment that may
assuine the values +on Each mowment may be oriented in (wo ways with a
probubility independent of the oricatution of all other wnomams. The ol
sinber of arrangements af the N moments i 2 % 2 x 2 x -2+ 2= 2% A
state of the systam i speciticd by giving the oricntation of the moment o1 each
site; there are 2Y stirtes. We may use the following sintple notatiou for i single
stzite of the system of ¥ sites:

rrnang .-, (2}
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Figure 1.5 The four diflercn slales of a

systemn of two elements numbered [ and 2,

where each element can have two conditions.

The efement is a magnel which can be in

condcition 1 or condition | 12 1

#\,}“"‘“’_—"-

P It vy e

The sites themselves are assumed 1o be arranged in a definite order. We may

numberdhem n sequence from left to right, as we did in Figure 1.3, According
to this convention the siate {2) also can he wrilten as

' T:izlsl-a.lsiﬁl'risigfza"'— (3}

Both seis of symbols (2) and (3} denote the same staie of the system, the state
in which the magnetic moment on site 1 ts +m; on site 2, the moment is +m;
on sile 3, the moment is —ni; and 50 (ornth.

It 15 noi hard to convince yoursell that every distinet state of the system is

‘contained in a S}mbol:c product of N factors:

(h+ 10+ L) + L) O+ L) 0

The multiplication rule is defined by

e+ G+ D=t + T+ L+ Ll %)

The function (4) on multiplication generates a sum of 2¥ terms, one for each of
the 2¥ possible siates. Each termisa product of N individual magnetic moment
symbaols, with one symbol for each elementary magnet on the line. Each term
denotes an independcm state of the system and is a simple product of the form
italy - Ty, for example.

For a system of two elementary magnets, we muliiply {1, + 1 Oby iz + 1)
to obiain the four possible siates of Fipure 1.5:

G+ 1002+ 1) = Tede + Tole + Lide o+ Lela ' {0)

The sum is not a state but is & way of listing the four possible states o!'t!lt. systen.
The product on the left-hand side cfthe equation is c.z!led a generating !'uucnon'

Coi gcncraics the states of thc syster.
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The generating futietion for the states of a sysiemn of tlirce magnets is

Iy + L + 10 + 1)

This expression on multiplication generates 2° = § different states:

Three maghcis up: T1i:1s

Twomagnetsup: 1.1l TilaTs a1
Onemagnet up:  T,.0:0y 1itals LelaTs
None up: Lilals.

The total magnetic moment of our model sysiem of N magnets each of
magnetic moment i will be denoted by M, which we wilt relale to the energy

in a magnetic field. The value of M varies [rom Npito — Nm. The sei of possible
values is given by

M= Nm, {N—2m, (N-—4d&m (N - 6w -, — N {7

The set of possible values of M is obtained if we start with the siate for which all
magnels are up{M = Nm)and reverse one at a time, We may teverse N magneis
10 obtain the ultimate state for which all magnets are down {M = — Nm).
There are N + ! possible values of the total moment, whereas there are 27
states. When N » 1, we have 2¥ » N + 1. Thete are many more siaies than
values of the lotal moment. If N = 10, there are 2'° = 1024 states distributed
among 1} different values of the total magnelic moment. For large N many
different states of the system may have the same value of the total moment M.
We will calculate in the next section how many states have a given value of M.
Only one state of a system has the moment M = Nunr; that state is

T 11t (8)
There are N ways to fonn a state with oﬁc magnet down:
U111t | ©)
is one sucle stite; another is
| uﬁ_--:tm. P (10)



Chapter 1: States of a Alode! System

and the other states with one magnet down are formed from (8) by reversing
any single magnet. The states (9) and {10) bave total moment A = Nmy — 2.

Enumeration of States and the Multiplicity Function

We use the word spin as a shorthand for elementary magnel. Jt is convenient to
assume that N is an even number. We need a mathematical expression for the
number of states with N; = N + s magnets up and N, = {N — s maguets
down, where s1s an int¢ger. When we lurn one magnet from the up to the down
orientation, N + s goes 10 §N + s — 1 and N — 5 goes 10 IN — 5 + L

The difference (number up ~ number down) chauges fronr 2s to 28 — 2. The
difference

NT“N;=25 {II)

is called the spimexcess. The spin excess of the 4 states in Figure 1.5152,0,0, -

from left to night. The factor of 2 in {I1) appears to be a puisance at tlns staﬂc
but it will prove to be convenient, '

The product mn {4) may be wriften symbohcaily as

L+ DY
We may drop the site labels {the suBécripts) from {4) when we are interested
only in how many of the magnets in a state are up or down, and not in which

particular sites have magnets up or down, [t we drop the labels and neglect
the order in which the arrows appear In a given product, then (5) becomes

(4 + DF =11+ 21 + I3

further,
(0 + D% =111+ 3110 + 3100 + [l
We find (] + [)Y for arbitrary N by the binomial expansion

(x 3 Y = XY+ Ne¥hy ANV - YT e Y
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“We may write the exponents of x and y in a slightly different, but equivalem,
form by replacing r with 4N — s:

(x.+ }s)N w i}if ____i\” ‘ih'ir: AN—3 “3}
W ON F AN = |

With 1his result the symbolic expression {{ + [)¥ becomes

, N}
W =4 e ANt N
G+ 0= Do oo 1T (14)

The coefficient of the term in 13¥7* §11¥°* {5 the number of states having
Ny = {N + 5 magncts up and N, = 1N —~ 5 magnets down. This class of
states has spin excess Ny ~— N; = 25 and net magnetic moment 2sm. Let us
denote the number of states i this class by g{/N,s), for a systen: of N magnels:

QT

ToXn)

‘r\_ \SJ/"\. — Ni “» A;!
sl NS = T TN T T NN 13
LY . . _ .
Thus (I14) is writlen as
i¥
0+ DV = 3 g{Ng) [+ i (16}

1= 4N

We shall call g(N,s) the nudtiplicity function; it is 1the number of siates having
the same value of s. The reason for our definition emerges when a magnetic
field is applied to the spin system: in a magnetic field, staies of different values of
s have different values of the ¢nergy, so that our g is equal to the multiphicity
of an energy level tn a magnetie field. Until we introduce a magnehc field, atl
states of the model system have the same enecrgy, winclt may be taken as zero.
Note from (16) that the total number of states is given by

[E A

Y gINg) = (1 1Y = 2N (17)

Ll i1

Examples related to g{N,s) for § = 10 are given m Figures 1.6 and 1.7. For a
cotn, "heads” could stand for “magnet up” and "tails” could staud for “magnet
down.”
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210 210

Fiptere 1.6 Number of distinet arrangements
of 5 4 sspins upand 5 — s spins down,
Vulues of g{N sy arc for N = 10, whoe 25 is
the spineseess N1 — N1 The total nusber of

stiles i 130 120

5
2% = ) g{10s),
=%

The values of the g's are taken from a 1able of
the biromial coefficienis.

10 j3d]
| }

i
l 81 —~aj 0246 810
R 1 R S

Spint excess 25

Binary Alloy System

To illustrate that the exact nature of the two states on each site is irrelevant (o
the result, we consider an alternate system-—an alloy crystal with & distinet
sites, numbered from 1 through 12 in Figure 1.8. Each site is occupied by either
an atom of chemical species A or 2n atom of chemical species B, with no provi-
ston for vacant sites. In brass, A could be copper and B zinc. In analogy to (3),
a single state of the alloy system can be writlen as

AB;B3ABABBBAAGAL . o (18]
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30

10 o ]

In™

0123456780910
Number of heads

Number of times in 100 throws
a eiven number of heads occurred

Figure 1.7 An experiment was done tn which 10 pennizs
were thrown {00 times. The number of heads in each
throw was recorded.

t 2 3 4
Figure 1.8 A binary alloy sysiem of two
chemical components A and B, whose atoms
5 6 7 3 occupy distinct numbered sites.
9 i0 it iz
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Every distinct state of a binary alloy system on N sites is contained in the
symbolic product of N factors: ) |

(Al + 81){A1 + BI)(AJ + Bs) T (A.v +BN) ’ {19}
in analogy to {4). The uverage composition of 2 binary alloy is specified con-
ventionaily by the chemical formufa A, -, B,, which means that out of 2 total
of N atows, the number of A atoms is N, = (1 —x)N and the number of B
atoms is Ny = xJV. Here x lies between O and 1.

The symbolic expression .

Aspfay N g (20)
3 ,xQ{N-_f)!!l! ' -

i5 analogous 1o the result (12). The cocficient of the term in AY ™' B' gives the

number g{N,1} of possible arrangements or states of N — ¢ atoms A and 1
atoms B on & sites:

SN | Nt

g(N,1} = N T NN ; @

which is identical to the result (15} for the spin model system, except for notation,

Sliarpness of the Multiplicity Function

We know from common experience that systems held at constant temperature
usually have well-defined properties; this stability of physical properties is a
major prediction of thermal physics. The stability follows as a consequence of
the exceedingly sharp peak in the multiplicity function and of the steep variarion
of that function away from the peak. We can show explicitly that for a very
farge system, the function g{.N,s) defined by (15) is peaked very sharply about
the value s = 0. We look for an approximation that atlows us 1o exaniine the
form of g{¥.5) versus s when N » | and |s| « N. We caunot ook up these
values in tables: conusnon tables of factorials do not go above N = 100, and we
may be tuterested tin N = 1079, of the order of the number of atoms in a solid
specimen big enouch to be seen and felt, An approximation is clearly aceded,
and a good one is avatlable,

tt is convenient to work with logg. Fxcept where osherwise specificd, alf
logarithms are uinderstood to be log base ¢, written here as log. The international
standard usage is In for log base ¢, but it is clearer to write log when there i3 no
ambiguity whatever, When you confront a very, very large nmnber such os
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2% where N = 109, it is a simplification to look at the Jogarithm of the sumber.
We take the logarithm of both sides of (15) 1o obtain

logg{N,s) = log NI — log(}N + s)i — log(3N ~ 35)}, {22)
by virtue of the characteristic property of the logarithm of a product:

logxy = logx + logy; log(x/y) = logx — log yu {23}
\Vith the notation

NMi=iN+s; N =iN -3 (24)

for the number of magnets up and down, (22) appesrs as

fopg(N,s) = log N! — log Ny! — lag N, L {25)

We evaluate the logarithm of Niin (25) by use of the Stirling approximation,
'according to which . - | v 2y feGo f\ﬁ@f)

NT o (2aN)VINNexp[ ~N + 112Ny + -+, (26)

for N » 1. This result is derived in Appendix A. For sufficiently large N, the
terms L{12N) + - - in the argument may be neglected in comparison with N.
We take the logarithm of both sides of {26} to obtain

log N1 dlog2n + (N + HlogN — N. (27)

Simitarly
log N ! = dlog 2 + (N, + DlogNy ~ Ny (28;
log Nyt x dlog 2 4 (N + Ylog N, — Ny (29)

After rearrangemenyt of (27},
log N1 = Llog(2a:N) J.-'r_.\’, + 4 4+ N+ DlogN — (Ve N (B4

wherewehave used N o= Ny o0 N We sabtract (28) and (29) from {3U) to obiaas
for (25):

logg = Hog(1/2xN) — (N, + Dlog(N/N) — (¥, + Dlog(N,/N). (31)



Chapier ! : States of a Madel System

‘This may be sirplified because

logtNy/N) = log b1 + 25/N) = —log2 + log(l + 25/N)

= —log2 + (25/A) — (25%/N7) REE

Fa

by virtue of the expansion log{l 4+ x) = x — 4x? + - -, valid for x « 1.
Ssimilasly,

log(N/N) = Tog}{l — 29/N) = —log2 — (25/N) — (2sYN?).  (33)
On substitution in {31) we obtain

logg = tlog(2/aN) + Nlog2 — 2s¥/N. - {34)

We write this result as

|\9{N,S) = g(N,O) éxp(-—@s%\’) . | - {35)

where

- g{N,0) = (2faN)22", (36)

Such a distribution of values of s 1s called a Gaussian distribution. The integral*

of (35) over the range ~ 0 10 + o for s gives the correct value 2¥for the total

number of states, Several useful integrals are treated in Appendix A.
The exact value of g{N,0) is given by {15} with s = 0;

N0 e o

* The replacement of g sym by an integral, such as 3 ...} by [f.. M5, usuatly does not intraduce

significant errors. For exampte, the rayio of :
oo X
SoedN AN to [Tsds = )
=0

is cqual to I + {I/N}), which approaches 1 as ¥ approaches o,
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Fipure 1.9 The Gaussian approximation to
the binomial coefficiens g(100,5) plotied on &
finear scaie. On this scale it is not possible to
distinguish ow the drawibg the approximatior
from the exact values over the range of 5
plotted. The entire range of 5 i from - 5010
4 . L + %0, The dashed lines are drawn from vhe
S points at /¢ of the maximum valug of g,

20100, 5) X 10°**
[229

L ota

| s v 2o it et i i e S0
R PR )

For N = 30, the value of g{50,0) is 1.264 x 10'%, from {37). The approximate
value from (36)is 1.270 x 10'*, The distribution plotied in Figure 1.9 is centered

in 2 maximum at s = 0. When 5* = N, the value of g is reduced to e ™1 of the
maximum value. That is, when '

s/N = {IJ2NY?2 {38}
the value of g is ™ ' of g(N,0). The quantity (1/2N)'/? s thus a reasonable mea-
sure of the fractional width of the distribution, For N = 10?2, the fractional
width is 0f the order of 1071, When N is very large, the disiribution is exceed-
iugly sharply defined, in a relative sense, It is this sharp peak and the continucd
sharp variation of the multiplicity function far from the peak that will lead toa
prediction that the physical properties of systems in thesmal equilibrium are
well defised. We now consider one such propesty, the mean value of s,
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AVERAGE VALUES

The average value, or mean value, of a function f (s) taken over a probabitity
distribution function P{s} is defined as

= gffA‘}P(s} , (39)
provided that the dislribﬁtion function is normalized 10 unity;
| ) Pis) = L {40)
Tlie binomia} dislribu!ioﬁ {15) has tlse property {17) that
Y gNs) = 2Y {41)

and is nol normalized {0 unity. If all states are equally probable, then P(s) =

giN,s)/2%, and we have ), P(s) = 1. The average of f{s} over this distribution
will be ' ' -

<D = ¥ f15) PIN.S). (42)

e

Consider lte function f{s) = s%, In the gpproximation that led 10 (35) and
{36), we replace in (42) the sum }_ over s by an integra! [ -+~ ds between ~ oo
and + 0. Then '

(/N2 2 fds 52 exp(— 25%/N)
() = —————t ey :

= (2/nN)1 (N2 fj’mdx N
— QN (NP ()
whenes
(% = AN 9D = N. @)

The quantity {({25)*) is the mean square spin excess. The root mean square
Spin exXCess 1S

QoHr=JN, . @
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and the fractiona! fluctuation in 2s is defined as

tz
= .{,@i?h = _,‘1___ ) (45)

N \/ N

The larger N is, the smaller is the fractional fluctuation. This means that the
central peak of the distribution function becomes relatively more sharply
defined as the size of the system increases, the size being measured by the
number of sites N. For 10%° particles, # = 10°'9, which is very small.

Encrgy of the Binary Magnetic System

The thermal propertics of the model system become pliysieally relovit when
the clementary maguets are placed it a magnetic tield, for thien the energics of
the different states are no longer all equal. ITthe energy of the system s specified,
thesy ouly the states having this encrgy may occur. The energy of Inferaction
of a single magnetic moment ni with a fixed external mapnetic Yield B is

("= —ni- B - {40)

This is tlie potential energy of the magnet m in the field B.
For the model system of N clementary mmgnets, each with two allowed
orientations in a uniform magnetic ficld B3, the total potential energy U is

X

U= YU, = ~B- B . —MB, 47
C :‘-_-Z'z : Zm’ ﬂ\\_" )

i=1

using the expression M for the toial magietic moment 2sm. 1n this example the
spectritm of values of the encrey U is discrete. We shall sec later that a con-
tinuous or quasi-continuous spectrum will create no difliculty, Furthermore,
thie spacing between adjucent energy levels of this model s constant, as m
Figure 1.10. Coustant spacing is a special feature of the particular model, but
this feature will not restrict the generality of the argumnent that is developed in
the following sections.

The value of the evergy for moments that inferact only with the exteseal
magnetic ficld ¥ comrlacly determined by the value of 5. This functional
dependence s LaGicatea by writtng U(s) Reversing a single moment lowers
2s by ~ 2, lowers the total magnetic moment by —2m, and niuses the energy
by 2mB. The energy difference batween adjacent levels is denoted by Ag, where

Ag = Uls) — U(s + 1} = 2mB. - (45}
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P Uisy/mB £(s) log g(s}
a§ m——— 0 1 o
e S JUST: 2.30
3 ——— 46 45 3.8
2 ———— g4 120 4.79
-l ———— 42 210 5.35
0 ———— 9 252 © 553
gl ————  _2 210 535
42 ———— 4 - 120 479
43— 6 . 45 338l
4§ ———— g 1D 2.30
$§ s 10 1

Figure 1,10  Energy fevels of the modet system of 10
magnetic nioments 4 in & magoetic ficld 8. The levels
are labeled by their § values, where 25 is the spin excess
and {N + 5 = 5 + 313 1he pumber of up spins. The
encrgics U{s] sud muhiplicitivs g{s) are shown, TFor this
problem the eavegy levels sre spaced cquusity, with
sepasition Ac = 2Zind} between adpscent levels,
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Example: Multiplicity function for havmonic ascillators,  The problem of thie binary model
system is the stmplest problem for which an exact solution for the multiplicity function is
kuown. Another exactly solvable problem is the harmonic oscillator, for which the solution
was originally given by Max Planck. The origina! derivation is often felt to be not entirely
simiple, The begtnntng student need not werry ubout this derivation. The modern way to
do the problem is given in Chapter 4 and s simple,

The quantum states of a haamonic oscillator have the energy eigenvalues

g = shw , {49)

where the guantum number s is a positive integer or zero, and w is the angular frequency of
the oscillator. The number of states is jufinite, and the multiplicity of cach is one. Now
comsider a system of N such osciflators, all of the same frequency. We want to find the
namber of ways in which a given total excitation cnergy

N
&= Y shw = nhw {50

t=1]
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can be distributed among the oscillators. That is, we want the multiplicity function g{¥,n)

for the N oscillators. The oscillator multiplicity function is not the same as the spin multi-
plicity function found earlier,

We begin the analysis by going back to the multiplicity function for a single oscillator,
for which g(1.n) = 1{ocall values of the guantum number s, here identical to u. To solve the
problent of (33) below, we necd a function to represent ar penerate the series

4]

i gllayt® = ) o (s1)

n=Q

ALY run from: 0 o co. Here ¢ is just a temporary tool that will help us find the result
[53), but ¢ does not appear in the final zesult. The answer is

1 2}
i Zﬂ-::“ , {52)

provided we assume §if < 1. For the problem of N oscillators, the generating function is

(Tjﬁ)ﬂ = (i i‘)N = i giN.me" 5

s=0

becuuse the nuniber af wiys a term 1 ctit appeiar in the N-fuld product is previsely the

nummber of ordered ways in which the integer 1 can be foaned as the sum of N non-aegnive
tepces.

We ubuerve that

g{N .1

(—p A dr

LY »
k(2o

==~;§;N(N+1)(N+2}---{N+n*l}. (54)

lim—i*(i) Y glNse
=1

Fhus {or the system of oscillators,

(N +n— 1}

gl = o T

(55)

This resubt will be needed in solving a problem in the next chapter.
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SUMMARY

1.

The mull:phuly function for a system of N magnels w:Ih spin excess 2s =
N — N; is

Nt N}

In the limit s/N « 1, with N » 1, we have the Gaussian approximation
g(N,s) = (/=N  exp( - 25%/N).

tfall states of the mode! spin system are equally likely, the average value of
stis

(s = J'i ds s*g{N,5) / J*_:ffs g(Ns) = N,

in the Gaussian dppro\tm.alaon

. The fractiona! fluctnation of s? is dm_f‘ned as (s’}””/N and is equal 10

12NY2,

The energy of the model spin system in 2 state of spin excess 25 is
Uls) =c—2smB ,

where m is the magnetic moment of one spin and B is the magnetic field.
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Entropy and Tempemture
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Note on problems: The method of this chapter can be used Fo sobve some problems, as iluaraged
by Problesns 1. 2, and 3 Beeause much simpler methods are developed in Chapesr »osud Laer,
we do nul empliasize problen solving a1 this stage.
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One showld not imagine that wo gases in a 0.1 lier container, initially inmixed,
will niix, then again after a few days separate, then mix again, and so ferth, On
the contrary, oie Sinds . ., that not wntil a time enormously long campared to

10" years will there by awy noticeable unmixing afthe gases, Otte may
recognize that this is pracucally equuafem 10 pever.

L, Bolizmann

i we wislt to find in rational mecltanics an a priori foundatiou for the principles
of thermodynaics, we tst seek nrechanical definitions of temperature and
entrapy.

J. Y. Gibbs

The general connection between evergy and temnperanire may only be established
by probability considerations. { Two systemis] are in siatistical equilibrivun when
a transfer of energy does nol Increase the probability.

M, Planck



Fundamental Assumplion

We start this chapter with a definftion of probability that enibles us to
define the average value of a physicu! property of a system. We then consder
systems in thermal cquilibrium, the definition of entropy, and the definition of
temperature. The second law of thermodynamics will appear as the law of
merease of entropy, This chapter ts perhaps the most abstract tn the book. The
chapters that follow will apply the concepis to physical problcms.

FUNDAMENTAL ASSUMPTION =~ = &

The fundamental assumption of thermal physics 15 that a closed system is equally
likely to be tnany of the quantun states uccessible to {t. Al accessible quantum
states are assumed to be equally probable-—there is no reason to prefer some
accessible states over other accessible states.

A closed systers will have constant energy, a constant number of particles,
constant volume, and constant values of all external parameters that may
influence the system, including gravitational, electric, and magnetic fields,

A quantum state is accessible if its properties arc compatible with the physical
specification of the system; the energy of the state must be in the range within
which the energy of the system is specified, and the number of particles must be
in the range within which the number of particles is specified. With large systems
we can never know either of these exactly, but it will suffice to have SUJU « 1
and SN/N « 1.

Usitsual properties of a systemn may sometimes make it tmpossible for
certain states to be accessible during the ime the system is under observation.
For example, the states of the crystalling form of Si0, are inaccesstble at low
temperatures in any observation that starts with the glassy or amorphous
form: fused silica will not convert to quartz in our lifetime in a low-tempcerature
experiment. You will recognize many exclusions of this type by common sense.
We treat all quantum states as accesstble unless they are excluded by the
spectfication of the system (Figure 2.1} and the time scale of the measurement
process. States that are not accessible are said to have zero probability.

Of course, it is possible to specify the configuration of a closed system to a
point that its statistical properties as such are of no interest. 1f we specily that the



Chapter 2; Entropy and Temperature

Vigure 2.0 A purely synibolic diagrim: coch solid spet

represents an accessible quanium state of 2 closed sysiem. The

fundumental assumpiion of statistical physics is tirat a closed

system is equatly lkely to be in any of the quantum siptes

accessible 10 il The emipty clrcles represent some of the siales

that are not accessible becattse their properlies do noi saissfy
the Spccmuzlton of the system. JLovC "M 73 ol

system s exactly tn a s}dltonary quantum state s, no statistical aspect is [eft i
the problem.

r.

PROBABILITY

Suppose we have a closed system that we know is cqually likely to be in any
ofthe g accessible quantum states. Let s be a general state label (atd not one-half
the spin excess). The probability P(s) of finding the system in this state {8

P(s) = /g (1)

if the state s is accessible and P[s) = 0 otherwise, coussstent with the fun.
damental assumption. We shall be conceraed later with systems that are not
closed, for which the energy U and particle nwnber N may vary. For these
sysiems P(s) will not be a constant as in {1}, but will have a fubctional dependence
on Vandon N.



Probubility

The sum Y P(s) of the probability over all states is always cqual to unity,
because the total probubility that the system is in some state is unity:

. _ 5
Y P(s) = | =)

The probabilities defined by (1) tead to the definition of the average vatue of
any physical property. Supposc that the physical property X has the value
X (s} when the system is in the state 5. Here X might denote mugnetic moment,
energy, square of the energy, charge density near a point v, or any property that
can be observed wien the systent is in a quantum state. Then the average of the

observatiotis of the quantity X taken over a system described by the proba-
hilitics P(s) 1s

(XD = T X(IPLs), {3)

3
—d

This equation defines the average value of X. Here P(s) is the probabitity that

the system is in the state s. The angular brackets ¢---) are uscd to denote
average value, '

For a closed system, the average valuc of X't Fryves »0 - . = o7 70

Xy =Y X(s)i/g) (4}

1

because now all g accesstbie states are equally fikely, with P(s}) = {/g. The
average i1 (4) is an elementary example of what may be called an ensentble
average: we tmagine g similar systems, one in each accessible quantum state.
Such a group of systems constructed alike ts called an ensemble of systetis. The
average of any property over the group is called the ensenible average of that
PrOperty. 5. i e

An ensemble of systems is composed of many systettis, all constructed alike,
Each system in the ensemble is a replica of the actual system tn one of the
quantum states accessible to the system. If there are g accessible states, then
there will be ¢ systems tn the cusemble, one system for cach stute. Eachisysiem
tn the ensemble ts equivatent for all practical purposes to the actital system.
Each system satisfics all external requirements placed on the original system
and tn this sease {5 "jusf as good” as the actual system. Every quantum stale
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Fipure 2.2 This ensemble « througly § represents a sysiein
of {0 spins with encrgy —Sm#l and spin exeess 25 = 8.
The motuiplichy N ) is 9110,4) = {0, so that the
represeitative casemble must cordain 16 systems, e
order In which the various systems in the ensemble dre
listed has no sighificance,

accessible to the actital system 8 represented in the ensemible by one system m @
sfatonary quantum state, as in Figure 2.2. We assume that the ensemble
represents the real system—this ts implied in the fundamental assumption.

. ] ] W e e et mmee e e vm e e e e
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Y

Example: Construction of an ensemble, We construct in Figure 2.3 an ensemble to
represent a closed system of five spins, caclt system with spin excess 2s = 1. The energy of
¢ach in a magnetic field is —mB. {Do not confuse the use of s in spin excess with our

frequent use of s a5 a state index or fubel} Each system represents one of the multiples of

N



Most Probuble Configuration
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Figure 2.3 The ensembie represents s system with N = 5 spins and sprn excess 2y = |

e e _ Figure 2.4 With A = Sand 25 = §, a single
‘i f i f o f i f f systam may represeil the enseinble. This is not

a typical siluation,

guasiium states at this enetay, The number of sud stares is given by the multipliciy funciion
{(1.15): '

81
U(ﬂ”} = '.“ _” = 10,

The 10 systewns silown i Figare 2.3 ptake up the cusemble,

If the envray i e tasguetic Gekd were such that 2s = 5, then o single system comijirises
the ensesble, as i Figure 24, Tn zero asygsetic field, all cnergics of aft 2% = 2% = 32 sates
are equal, and the new enscmble must represent 32 systems, of which | system has 25 = §;
§ systems have 2s = 3; |0 sysiems have 25 = [ {0 systems bave 25 = —1; § systems
have 25 = ~3; and | system has 25 = ~§.

{. o e e et e e ,h_*--..v.o-.q.._.--.r-,-w- s Tl it TR L L R ]
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Most Probable Configuration

Let two systems £, and 8, be brought into contact so that encryy can be
trunsferred freely from one to tite other, This is called thermal contaet (Figure
2.5). The two systems in contact form a larger closed system 8 = 8, + 3,
with constant energy U = U, + U,. What determines whether there will be a
nct flow of energy from one system to another? The answer Icads 1o the concept
of temperature. The direction of energy flow is not simply a matter of whether
the energy of one system is greater than the energy of the other, because the
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Two closed Uy
systams not &,
in contach &,

Insutation

U, C U
The systems ure in X, U+ U= U; + U,
thermatl contact 3
SN -

losulation T hetmal conducior allows
eachange of encrgy

Figure 2.5 Establishment of thermal contact between two sysiems 3, and §,.

systems can be dilferent an size and constiiution. A consiant total encrgy can be
shared in many ways between two sysiems,

The most probable division of the total energy is that for which the combined
system has the maximutm number of accessible states, We shall cnumerate the
accessible states of two model systems and then study what characterizes the
systems when in thermal contact. We first solve in detail the probiein of thermal
contact between two spin systems, | and 2, inantagoetic field whidiisintroduced
in order to define the encergy, The nuinbers of spins N, N, may be different, and
the values of the spin excess 2s,, 25, may be differeat for the two systems. All
spins have magnetic moment m, Tlie actual exchange of energy might take place
via some weak (residual) coupling between the spins near the interface between
the two systerns. We assume that the quantum states of thie total systein 8 can
be represented accurately by a combination of any state of 8, with any state of
3, We keep N, N, constant, but the values of the spin excess are allowed to
change. The spin excess of 4 state of 1he combined system will be denoted by 2s,
where s = 5, + 5,. The energy of the combined system is dirccily proportional
to the total spin excess:

U(.‘S} = Ui{s]} +4- Uz(Sz} = ""2}”3{5! + 52) = “—'21'”83. (5}

Thetotal number of particles is N = N + N,.



Most Probable Confipuration

We assume that the energy splintings between adjacent energy levels are equal
to 2l in both systems, so that the magnetic energy given up by system | when
one spin is reversed can be taken up by the reversal of one spin of sysietn 2 in
the opposite sense. Any large physical sysiem will have cnough diverse modes of
energy storage so that energy exchange with another system is always possible.
The value of s = 5, + 5, is constant because the wta] encrgy is constant, bul
when the two systems are brought imo thermal contact a redisiribution is
permitted in the separate values of s,, 5, and thus in the energies U,, U..

The multiplicity function g(N,s} of the combined system & is related to the

product of the multiplicity functions of the fudividual systems 8, and %, by
the relation:

g{N,s} = Eg{(Nhsl)gI(NlrS = 5}, {6)

where the multiplicity functions g,, g, are given by expressions of the form of
{1.15). The range of 5; {n the summation {s from 3N, to N, if N, < N,.
To see how (6} comes about, consider first that configunition of the combined
systetn for which the first system has spin excess 2s; and the second systetn has
spin excess 2s,. A configuration is defined as the set of all states with specified
values of 5, and s,. The first system has g(N .5, ) accessible states, cach of which
may occur togerher with any of the g,{N,.s;} accessible states of ihe second
system. The total number of states in one configuration of the combined system
is given by the product g,(Ny,5.)4,(N,,s,) of the multiplicity functions of &,
and 8,. Because s, = 5 - 5y, the product of the g’s may be written as

G1(N 35,92 N2s ~ s¢) (7

This product forins one teym of the sum (6},

Different configurations of thie combined system are characterized by diflerent
values of sy. We sum over all possible values of s, 10 obtain the towl number of
siates of all 1he configurations with fixed s or fixed energy. We thus oblain (6),
where g{N,s) is the number of accessible states of the combined system. In the

sum we hold s, N,, and N, constant, as part of the specification of thermal
contaci '

The result (6} is 2 sum of products of the form (7). Such a product will be a
maximum for some vilue of s5;, say §,, 10 be read as "s; hat” or “s; caret™.
The configuration for which g,g, 1s a maximurm is called the most probable
enutfiguration; e number of states in it is

ga(Nx.fx)Q_;(Nz.S - 5 - _ (8)
= k+5 '::’;L- R

K= hoine Loio€
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Theratal equitibrium

Fipnre 2.6 Schemic represenlation of the dependence of the
cotsfipuration mohtiplicity on the division of 1he tolaf energy
between two sysiems, 8, and 8,.

I the systems are large, the maxiinum with respect to changes in 5; will be
extremely sharp, as in Figure 2.6. A relatively small number of configurations
will dominate the statistical properties of the combined system. The most
probable configuration alone will describe many of these properties.

Such a sharp maximurm is a property of every realistic type of large system
for which exact solutions are available; we postulate that it is a general property
of all large systems. From the sharpness properly it follows that ‘ﬂqc{uations
about the most probable coufiguration are small, in a sense that we will define.

The important result follows that the values of the average physical properties
of a large system in thermal contact with another large system are accurately
described by the properties nf the most probable configuration, thie configura-
tion for which the number of accessible states is 2 maximum. Such average
values (used in either of these two senses} are called thermal equilibrium values.

Because of the sharp maximum, we may replace the average of a\physicai
quantity over all accessible configurations (6} by an average over only lﬁc rmiost
probable configuration (8). In the example below we estimate the error involved
in such a replacement and find the error 10 be negligible.



Alost Probable Configurarion

Example: Two spin systems fn thevpral contact.  We investipate for the modal spin sysiem
the sharpness of the product (7} near the maximum (8) as follows. We form the product of
the mulliplicity funciions for g, (N,,5,) and g,{¥,.5,), both of the form of {1.35):

25,0 2s5,7%
DN 31)9xN 1.52) = g1(0)g {0y exp| —— — S22} (9}
Nl J'\t 2

where ¢1{0) denotes g;(N,.0) and g,(0) denotes g,{N..0). We replace s, by s — 5y:

25,0 s — 51
GiiN s JgdN 7 s — 5)) = g;fo}ggfolﬂp(““ﬁ“ ey *}—) {10}

.-

This product® gives the number of states accessible to the combined system when the spin
excess of the combined system is 25, and the spin excess of the first system is 2s,.

We find the maximum value of {10} as a function of s, when the total spin excess 2s isheld
constant; that is, when the energy of the combingd systems i constany. it is convenient
to use the property that the maximum of fog y{x} occurs at the same value of x as the
maximum of y{x}, The calculation can be done either way. From (10},

28,2 2s — 5,1
log g (N y.s3)g AN 5 — 51) = log g, {03g.:{0) — Nt - S b (it}
t %)

This quantity is an extremum when the first derivative with respect to s, I8 zere. An ex-
tremum may be a maximum, a minimum, or a point of inflection. The extrenums s a

maximum i the second derivative of the function is negative, so that the cutve bends
downward.

At the exiremum the first derivative s

3 43‘ 4{5 - 51)
£y ? e s s s o,
65! ]Ogg;{f\hsj)gz(les 51)} N, + N, { )

where Ny, Ny, and s are held constant as 5, is varied. The second derivative ¢%/8s, % of

Equation {§1}is
oL, 1)
!V; NZ

* The product function of two Gaussian functions Is always a Gaussiaa.,
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and Is negative, so that the extremum is a maximum. Thus the most probable configuration
of the combimned system is that for which (12) is satisfled:

ET S “)

The two systems are in equitibrium with respect 10 interchange of energy when the fractional
spin excess of systent | s equal to the fractional spin excess of system 2.
We prove that nearly all the accessible stales of the combined systems salisfy or very

nearly saisly (13). 1f 5, and §; denote the vatues of 5, and s, at the maximum, then (13}
is writien as

\6:,3 o2 £ i, 5
2 = riakas e T 2 (1}
) {S_(__\S Ny M, N
7z To find the number of siates in the most probable configuration, we insert (14} in 9} to
3 E obin
FEA
. - - - -
“ (Q"iﬁh)mx = gl{si)gl{s - 51) ﬁ 91{0)92{0) CXP(“" 251.{N)" “5)
— .
5’ To investigate the sharpness of the maximum of gy, at a given value of s, introduce J
~,  such that
2
g -

5, = 8, +0; k=8 4 {16)
Here & measures the deviation of sy, 5, from their values §), §; a! the maximum of g,g,.
Square 5y, 55 to form

51 = .‘?12 ‘i’ 2-;“5 *f‘ {52; 522 = 522 - 2.;:-1(5 4 51 ¥

which we substitute in (9) and (15) to obtain the number of states

Vs = (o) x| -1 28 458207
gV 1,509:6AN 1520 = {§1g ) pmax OXP ‘Nt" N, N, N

We kiow from (14} that §,/N, = £,/N,, so that the numtber of states ia a configuratio of
deviation & from cquidibrivim s

. . 207 282
giIN LS+ 8)gaN25r = 0) = (9102)man €XP T (17)
Ny N,

As 8 numericat example in which the fractional deviation from equitibrium is very smail,
fet Ny o= N, = 102 and § = 10"% that 15, 5/N, = 107 Then 28% N, = 200, and the
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product gig; is reduced to ¢ 7% = 10717% of its maximum vatue. This is an extremely
farge reduction, so that gyg, s truly a very sharply peaked function of s;. The probability
that the ftactional deviation witl be 1072 or furger is found by integrating {17} ftom
& = 10" puttoa value of the order ol s or of N, thereby including the area under the wings
of the probabitity distribution. This is the subject of Problem 6. Ar upper limit to the
integrated probability is given by N x 1077 = 1071%2, siill very small. When two
systems are in thermal contact, the vahues of 5, 5, that occur most often will be very close to
the vadues of §;, §; for which the product g,¢; {s a maximum, 1t ts extremely rare to find
systems with values of 5y, 5, pereeptibly different from £, §,.

Witat does it mean to say that the probability of lutding the system with a fractional
devintionfarger titan 6 N, = 107 % isonly 107 '*? of the probability of finding the system
i1 equilibrium? We ntean that the system wilf never be found with a deviation as much as
t partin 10°°, smak as this deviation scetns. We would have to sample 10°°2 similar systems
to iave 4 reasonabic chance of success tn such an experimet. If we sumpte one systeat every
7 s, which is pretty fast wark, we would ftave to smaple for 108 s, The ape of the
universe is only 10°% ¢ Therefore we say with geeitt surety that tiee devintion deseribed will
naver be observed. The estimate is rough, but the miessage is correct. The quotation frem
Boltsmann given at the beginning of this chapter is rebevant fere.

We hay expect 1o obsene substantind fructionnd deviations oudy in the propertics of a
smeell systems in thermat contact with a farge system or reservoir. The encrgy of a small
syslem, say a system of 10 spins, in thermal contact with a targe reservoir may undergo
fluctuations that are large in a fractionaf sense, as lave been observed in experiments on the
Brownian metion of smatl particles in suspension in Hiquids. The average energy of a smail
systens ist contact with a farge sysiem caut always be determined accurately by observaiions
at one tinie on a farge number of identicud smul sysiems or by obscrvitions an one small
sysiem over a tong period of time.

B im T T e ey ey ey
i "

e e A o ma et

ST e TR e Y
2 R S

THERMAL EQUILIBRIUM

Thie result for the number of accessible states of two model spin systems in
thermal contact may be generalized to any 1wo systems in thermal contact, with
constant tofal energy U = U, + U,. By direct extension of the carlier argu-
ment, the multiplicity g(N,U) of the combiited system is:

GNU) =Y g, (N U g NLU — UY) (19)
Ly

summied over all vatues of U, < U. Here g,(N,,U,) is the number of itccessible
states of systeny 1 at epergy U A configuratiost of the combined systeny is
specified by the value of U, 1ogether with the constams U, Ny, N;. The number
of accessible siates in a configuration s ilte product g, (N, U )g2AN, U — U,)
The sum over wil configuranions gives g{N,U).
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The largest term in the sum in (18} governs the properties of the total systens
 thermal equilibrium. For an extrernum it 1s necessary that the differential® of
g(N,U} be zero fOr an infinitesimal exchange of energy:

égl (gi
l'g = e ] .}- A
‘ (601)“(2!!{}1 gl(ﬁUl N:fvz

i

0; dU, + 40U, = 0. (19)

We divide by ¢,9, and usc the result dU, = ~dUJ,| to obtain the thernal
equilibrium condition:
I 691) I ( f"gz)
. = — < , (20a)
g (5U1 N G2\Vy/y,
which we may write as
GU[ Ny 0U1 My

We define the quantity g, called the entropy, by -

a(N,U) = logg(N,U) , 1 (21}

where 6 Is the Greek letter sipma. We now write (20) in the feaf form

(EEJ_) - (ffia) , 22)
aUl My BUZ N3

* The nolation

()
5Ul Ny \

means that N; is held constant in the differentiation of g {N,,U,) with respect to U . That is, the
partiat derivative with respect to Uy is defined as

ig_‘}_ = lim g (N Uy + 8Uy) — g(NLU,y)
¢ty /)y, aui-o AU,

- For example, if glx,5) = 3x‘j, then {2g/éx), = t2x’y_aﬂd (Pg/dy), = Ix*



Temperuafure

This is the condition for thermal equiiibrium for two systems in thermal

contact. Here ¥, and N, may symbolize not only the numbers of particies, but
all constraints on the systems.

TEMPERATURE

The last equality {22} leads us nnmediately to the concept of temperature. We

know the everyday rule: in thermal equilibrium the temperatures of the two
systems are equal:

Tl = T:. (23}
This rule must be equivalent to {32), so that T must be a Tunction of (Fa/fU)y.

If T denotes the ahsolute temperature in kelvin, this function is simply the
inverse relationship

i O .
EREOR A i _ 24

The proportionality constant &, is o vniversal constant called the Boltzanan
constant. As determimed experimentilly,

k, = 1381 x 1072 joules/kelvin

i

1.381 x 1071 erps/kelvi (25)

We deler the discussion to Appendix B because we prefer 10 use a more natural
teruperature scale: we define the fundamental temperature t by

| _ (% o
T (au)g' (26)

This temperature differs from the Kelvin temperature by the scale factor, kg:

(27}

Because o is a pure number, the fundamental temperature 1 has the dimensions
- ofcnergy. We can use as a lemperature scale the energy scale, m whatever unit
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may be employed for the latter—jouie or erg. This procedure is much simpler
than the introduction of the Kelvin scale in which the unit of temperature is
arbitrarily selected so that the triple point of water is exactly 273,16 K, The triple

point of water is the unique temperature at which water, ice, and water vapor
coexist. -

Historically, the conventional scale dates from an age in which it was possible
to build accurate thermometers even though the relation of temperature to
quantum stiates was as yet not understood. Even at present, it ts still possible to
measure temperatures with thermometers calibrated in kelvin to a higher
precision than the accuracy with which the conversion factor &y Bisellis known—

about 32 parts per million. Questions of practical thermomerry are discussed in
Appendix B. '

o e B e it G
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Conunent. n 126} we defined the reciprocal of 1 as the pariial derivative iCa ¥ U),. It is

permissible to take the reciprocal of both sides 10 write

¢ = (EUfRo)y. | )

The two expressions (26) and {28} have a slightly different meaning. in {26), the entropy ¢
was given as a function of the independent yariables U and N as ¢ = o{UN). Hence 1
determined from (26) has the same independen: variables, 1 = t(UN). In {28}, owever,
differentiation of U with respect 10 ¢ with N consiant tnplies U = Ufe,N), so that t =
1{¢,N). The definition of temperaiure s the same in both cases, but i is expressed as a
function of different independent variables, The question “What are the independent
variables?” arises frequently in thermal physics because in some experiments we conirol
sone variables, and in other experiments we controt other variables.

PR T !
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ENTROPY

The quantity s = logg was introduced in (21) as the entropy of the system: the
entropy is defined as the logarithn of the number of states accessible to the
system. As defined, 1he enrropy is a pure nuntber. In classical thenmodynamics

tle entropy Sis dehined by
1 ¢S
v f e Y 29
T (cu)_\,. - { )
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1, cold
s.(initial)

Entropy

Figure 2.7 ifthe femperature r, is higher
thin t, the transfer of 2 positive amount of
encrgy dU from system 1 10 system 2 will
increase the total entropy a4, + o, of the
combined systems over the iniial value

g (initiad) + olinitiat). In other words, 1he
finat system will be in 2 more probable

P condition if energy flows from the warmer b
/ 1o the cooler body when iliermat contact 18
{ U{' 5U U, + &U established. This is an example of the faw of

X a,({m:ﬂ) ©aa(final) increasing entropy.

Esl:.rgy transfer

1{ﬁndi} -;— a. (ﬁndi) > o (initial) 4 g, (lnm.ﬁ)
As a consequence of (24), we see lhat S and ¢ dre connected by a scale factor:
i
kyo (30)
1

We will call § the conventional entropy.

The more states that are accessible, the greater the entropy. In the definition
of o{N,U) we have indicated a functional dependence of the entropy on the
number of particles in the systemn and on the energy of the system. The entropy
may depend on additional independent variables: the entropy of a gas {Chapter
3Y depends on the vohime.

In the carly history of 1thermal physics the phiysical significance of the eniropy
was not konown. Thus the author of the article on thermodynamics in the
Encyclopaedia Britamiica, }1th ed. (1905}, wrote: “The utiliy of the conception
of entropy .. . is hunited by the fact that it does not correspoud directly to any
directly measurable pliysical property, but is merely 3 mathcomatical function
of the definition of absolute temperature.” We now know what absolute physical
property thie entropy mcasures, An example of the comparison of the experi-
mental determination and theoretical calenlation of the entropny s discussed in
Chanter 6.

Consider the total entropy chitige Ae when we remove a positive amount of
encrgy AU from 1 and add the same amount of energy to 2, as in Figure 2.7,
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The total entropy chinge is

- [fay Ca, A N
Ag = (U) (—AU) + (CUZ)X:{AU] == ( . +r)au. (31

~

2

When 1; > 1, the quantity in parentheses on 1hie righi-hand side is positive,
so that the lotal change of entropy is positive when the direction of energy flow

15 from1 the system with the higher temperature to the system with the lower
femperature,

por e e
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Example: Entropy increase on heat flow,  This example miskes use of the reader’s previous
famitiarity with heal and specific heat.

{a} Leta 10-g specimen of copper at a temperature of 350K be placed in thermal contact
with an identical specimen al a temperwure of 290 K. Let us find the quantity of encrgy
transferred when the iwo specimens are placed in contact and come Lo equilibrium at the
final temperature T, The specific heat of metaltic copper over the lemperalure range 15°C
to 100°C is approximaiely 03891 g7 P K1, according Lo a standard handbook.

The enerpy increase of the second specimen is egual Lo the energy foss of the first; thus
the energy increase of Lhe sccond specimen is, in joules,

= (389 K™ I|T, — 290K) = (389 I K )350K ~ T,

where the lemperatures are in kelvin. The final temperature afier contact is

T; s %{350 4+ 200)K = 320K.
Thus

= (389K "1)(—-30K) = —117J,

and
AU, = —AU, = L7

{b) What is the change of entropy of the two specimens when a transfer of 0.1 has
taken place, almost immediately after initial comact? Notice that this transfer is a smalk
fraction of the final energy transfer as calcufuted above. Because the energy transfer con-
sidered is smal, we may suppose the specimens are approximately at their initial tempera-
tures of 350 and 290 K. The entropy of the first body is decreased by

: ~0.11] -
: R e i 6 0"'JK L
.. AS,. 350K' 23 I



Law of Increase of Entrapy

The entropy of the second hody is increased by

. 0.1 - g~
AS; = 5{:}6“}?{ = 345 x 107 IK L

The {otal eniropy increases by

AS) + AS; = (—286 + 345) x 107*JK"! = 059 x 107*JK "1,

In fundmmental units the increase of entropy is

059 x 107 059 x 107*J K
Ag = =2 X 20 ST X 043 % 10%° »
7 ky (38 % By T 0 10T G

where k;, is the Boltzmann constant. This resuft mcans that tie ntnber of accessible states
of the two systems increases by the factor explAc) = expl0.43 x 1019

T o g e S ¢ TR T mhms e kTS T M Ty s e

Law of Increase of Entropy

We can show that the tofal citropy always increases when two sysiems arc
broughi into thermal contact. We have just demonstrated this in a spectal case,

IT the total energy U = U, + U, is constant, the 1otat multiplicity after the
systems arc in thermal contact is

g{lU) = g (Ug U — Uy}, (33)
Iy .

by (18). This expression contains the term g,(Uyg)g{l — U,o) for the initial
muitiplicity before contact and many other terms besides. Here Uy, is the
initial energy ofsystem 1 and U — U, is the initial energy of system 2. Because
all terms in (33) are positive numbers, the muitiplicity is always increased by
establishmeni of 1hermal contact belween two systemns. This is a proof of the
law of increase of entropy for a well-defined operajion.

The significant effect of conlact, the effect that slands oul even afer iaking the
logarithm of 1he multiplicity, is not just that the number of terms in tic summa-
tion is large, but that the largest single term in the summation may be very, very
much larger than the initial muliiplicity. That is,
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Figure 28 A system winli two purts, | oand 2, is prepared ot vero e
with U; = Oand U, = U. Exchange of energy takes place between two
paris and preszntly the sysiem will be Tound in o close io the most
prababie configuration. The emropy increases as the sysiem aitaius
configurations of increasing multiplicily or prebubiiny. The entropy
cventually reaches the entropy ¢{U} of the most prohable configuration.

may be very, very rauch larger than the injtial term

gi(U ro)ga (U = Usol. (35)

Here U, denotes the value of U, for which the product g,g, is a maximum.
The essential effect is that the sysiems after contact evolve from thetr initial
configurations fo their final configurations. The fundamental assumption
implics that evolution iu this operation will always fake place, with al accessible
- final states equuily probable.
The statement

inal = IDg(G:Qz}m;x = Ginillal = i'3?:(91!5'2)0 (36)

is 2 statement of the Iaw of increase of enlropy: the entropy of a closed system
tends 1o remain constant or Lo itcrease when a constranyt inicrnal to the system
is removed. The operation of establishing thermal contact is equivalent to ihe
removal of the constraint that U,, U, each be constaut; after contact only
Uy, + U, need be constant.

The evolution of the combined system 1owards the finat thermal equitibrium
configuration takes a certain time. {0 we separate ithe two systents before they
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Figure 2.9 Operations thiat iend 1o increase the entropy ol a system,

reach this configuraiion, we will obtain an imtermediate configurasion with
inicrmediate energics and an interniediate eniropy. b is thercfore meaningfut to
view the entropy as a funciion of the time that fras elapsed sfice removal of the
constraint, called the time of evoluwtion in Figure 2.8.

Processes that tend to increase the eniropy of a systein are shown in Figure
2.9; the arguments in support of each process will be developed in the chapiers
that follow,
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For alarge system® (in thermal conjact with another large system) there will
never occur sportanecusty significaut differences between the actual vatue of the
entropy and the vatue of the entropy of the most probable configuration of the
system. We showed i1liis for ifie modet spin system in the argument leib\\-‘ing {(t73:
we used “never” in the scnse ol not once in the entire age of the universe, 10'%s.
Wc can only find a significant difference beiween the actual entropy and the
entropy of the most probable cortfiguration of the macroscopic system very
shority afier we tiave chinged the nature of the confact between two systenss,
which implics that we had prepared the system initially in some special way.
Special preparation coutd consist of lining up all the spins in one systesn parallet
to one another or collecting alt the molecules in the air of the room into the
system formed by a smail volume in one corner of the room. Such exireme
situgtions never arise naturally in systemis telt undistorbed, but arise from
artificial operutions perforucd on the systen.

Consider ihe gas i a room: the gas in onc hatf of the room might be prepared
initiatty witli a low vatue of the average eniergy per motecule, while the gas in ihe
other hall of the room might be prepared initially with a higher vatue of the
average energy per molecule. If the gas in the two balves is now allowed to
interact by removal of a pastition, the gas molecules will come very gnickly’
to a most probable confizuration in which the molecules in both halves of the
room have the same average energy. Nothing else will ever be observed to
happent. Wewill never observe tte system to Ieave the most probable configura-
tion and reappear tater in the initial specially prepared configuration. This is trie

even {hough the equations of motion of phiysics are reversible in time and do not
distinguish past and fviure.

LAWS OF THERMODYNAMICS

When thermodynamics is siudied as a nonsiatistical subject, four postulales
are introduced. These posiulates are called the taws of thermoedynamics. in
essence, hese laws are contained within our statistical formulation of thermal
physics, but it &5 useflulf to exhsbit them as separate siatements. :
Zerothfaw, I two sysiems are in thermal equilibrium with 2 third system,
{hey must be in thermal equilibrium with each other. This law is a consequence

* A large or macroscopic system may be faken 1o be one with more than 10'% or 10'? atoms.
' The cateulation of 1he time required for the process is [argely a problem in hydrodynamics.
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of the condition (20b) for equiltbrium in thermal coniact:

(ilﬁg:ﬁ) _ [floggs) | 510891. _ [floggs
UL Ja, Uy Jx) Uz Juy  \ dUs Jy)

tn other words, vy = ryand 1; = 13 imply 1y = 1,.

First faw.  Heatis a form of encrgy. Thislaw is no more than a slatement of
the principle of conservation ol energy. Chapter 8 discusses what form of energy
heat is.

Seccond law.  There are many equivalent stalemenis of ithe second law, We
shall use the statisiical statement, which we have called the law of increuse of
entropy, applicable when a constraint internal to 2 closed system is removed. The
commonly used statement olthe faw of increase ol entropy is: il a closed system
is in ot confrguration that is pot the equilibrium conliguration, the most probable
conscquence will be that die eatropy of the systein will increase monolonically
in successive instants of tinie™ This ts a tooser stafemien] fin The one we gave
wilh Eq. (36} above,

The traditiona! thermodynamic stateinent is the Kelvin-Planck lTormulation
of sccond faw of thermodynamics: *t is impossibie for any cyclic process to
occur whose sole effect is the extraction of heal from a reservoir and the per-
formance of an equivalent amount of work.” An engine that violates the second
law by extracting the cnergy of one heat reservolr is satd to be performing
perpelual motion of the second kind. We will see in Chapter 8 that the Kelvin-
Planck formulation is a consequence of 1he statistical statement,

Third law. The entropy of a system approaches a constant valuc as the
temperature approaches zero. The earliest statement of thistaw, due to Nerust, is
that at the absolute zero the entropy difference disappears between all those
configurations of a systein which are in mternal thermal equitibrium, The third
faw follows from the statistical definition of the entropy, provided that the
ground staie of the system has a well-defined multiplieity. If the ground stale
muitiplicity is g(0), the corresponding entropy Is o{0) = logg(0) as 1 — 0.
From a quantum point of view, the [aw does not appear to say much that is
not implicit in the definition of entropy, provided, however, that the system is
in its fowest sct of quantum states at absolule zero. Except for glasses, there
wottld not be any objection to affirming that ¢{0) is 2 small number and «(0)
is essentially zero. Glasses have a frozen-in disorder, and for them o(0) can be
substantial, of the order of the number of aloms N. What the third law tells us
in real life 1s that curves of many reasonable physical quantities plotted against
must come in flat as r approaches 0.
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Entropy as a Logarithm

Several useful properties follow from 1he definition of the eniropy as the loga-
rithm of the number of accessibie states, mstead of as the number of aceessible
states itseif. First, the entropy of two independent systelns is the sum of 1the
scparale entropies.

Sccond, the entropy is entirely insensitive—for all practical purposes—to
the precision dU with which the encrgy of a closed system is defined. We have
never meant to imply that tite system energy is known exactly, a circumstance
that for a discrete spectrum of energy eigenvalues would make the pumber of
accessible stales depend erraticatly on thie coergy. We have shinply niot paid
much allentton 1o 1he precision, whcther it be determined by the uncenainly
principle U 8{time} ~ A, or determined otherwise. Define D{U) as the number
of accessible states per unit cuergy range; ©(U) can be a suilable smoothed

average centered at U, Then g{U) = D(U)3U is the aumber of accessible
staies in the range U at U, The eniropy is

a{U) = log DIL}IU = log D{U) + logsU. 37

Typically, as for the system of N spins, the total pumber of states will be of the

order of 2¥. If 1he total enerey is of the order of N times some average onc-
particle energy 4, then D(U) ~ 27/NA. Thus

. o{U) = Niog2 — log NA + logsU. (38)

Let N = 109, A = 107" * erg; and U = 107" er
o(U) = 0.69 x 10%° —~ 1382 — 23 (39)

We see from this exam ple that the value of the entropy is dominated overwhelm-
ingly by the value of N; 1he precision SU is without perceptible effect on the
resuft, In the problem ofx\' lree particles in a box, the number of stales is propor-
tional 10 something like UYSU, whence ¢ ~ Nlogl + fogdU. Again the

termt in N is dominant, a conclusion independent of cven the syslem of units
used [or the energy.
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Evxample: Perpetuad motion of the second kind.  Eutly bt our study ol physics we came 10

padersiand e bnposabitity of s perpetust motion machine, a muchine that will give forth
maore enerey thasn i1 absorhbs.



Summary

Equally fmpossibie {s a perpetual motion: maching of the second kind, as it is calfed, in
which heat is extracied from part of the environment and defivered to another part of the
envirenment, the difference in temperature thus established being used to power a heat
cagine that delivers mechanical work available for any purpose it no cost 1o us. In brief, we
cannot propel a ship by coeling the surrounding ocean Lo extract the energy necessury to
prepel 1he ship. The spontaneous transfer of energy from the low temperature occati (o a
higher temperature boiler on the ship would decrease the tow! entropy of the combined
systerns and would thus be in viclation of the law of increase of citropy.
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SUMMARY

1. The fundamental assuinption is that a closed system is equally jtkely to be
in any of the guantum siates accesstble o i,

. 1 P(s) is the probability that a system is in the state s, the average value ol a
guanlity X' is

(XY = Y X(5)Pls).

. Anensemble of systems is composed of very many systeins, all constructed
akke.

4. The number of accessible states of the combined systems 1 and 2 1s m\\" .
N
g(s} = }:9;(51}92(5 - i}, %\\ é’
3 > (\(\
R @h\
where sy + 57 = &

5. The entropy o(N,U) = logg{N,U). The relution S = kpo connects the
conventional entropy § with the fundamental entropy o.

6. The lundamental temperature 1 is defined by
i/t = (Co/C Uy .

The relation ¢ = k7 connects the fundamental temperature and the con-
ventioual temperature.

7. The law of increase of entropy states that the cntropy of a closed sysiem
tends to remain conslant or o increase when a constrainnt tnternal (o the
system is removed.
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The thermal equilibrium values of the physical propertics of a system are
defined as averages over all states accessible when the system is in contact
with a large systeny or reservoir. If the first system also is large, the thermal
equilibrium properties are given accuraicly by cousideration of the states in
the most probable configuration alone.

PROBLEMS

1. Entvopy and tempevatnre,  Suppose gtU) = CU™2 where € is & constant
and N is the number of particles. {a) Show that U = Nt (b) Show that
(¢1a/oU Ny is negative. This formy of gf U bcvoally applies wo anideal pas,

2. Paramagnetisni. VFind the equilibriom vadue a1 lemperitiure 1 of the fac-
lional magnetizalion

M Nm o= 2(s>/N

“of the system of N spins each of magnetic moment min a magnetic feld B, The

spin excess is 25, Take the enlropy as 1he logarthithm of 1he muhiplicity g{(N,s)
as given i (1.35):

Cols) = logg(NO) — 25N (40)

for |s| « N. Hinr: Show that in this approximalion

o{U) = 64 — U 2m*BN , (41)

wilh g = log g{N.0). Further, show that 1/t = U BN, where U denotes
{UY, the thermal average energy.

3. Quantura harntonic oscillator. (a) Find the entropy of a set of N osciflators
of frequeney w as a function ofthe 10tal quantum number n. Use the muhiplicity
funciion {1.55) and make 1he Slirling approximalion log N! = NiogN — N.
Replace N — 1 by N. (b) Let U denote lhic tolal energy nhw of the oscillators.
Express the entropy as o{ U N). Show tisat the total energy at temperature v is

Nhe
i 42
explhwft) — 1 “2)

This is the Planck result; it is derived again in Chapter 4 by a powerful method
that does not require us to find the muhliplicity functi‘c_}u.



Problems

4. The meaning of “never)” U has been said* that “'six monkeys, set to strum

uwninielligently on 1ypewriters for millions of years, would be bound in time
to write alt the books in the British Museum.” This statemens s nonsense, for
it gives a misleading conclusion about very, very large mumbers. Could alt the
monkeys in the world have typed out a single specified book in the age of the
universe?!

Suppose that 10'® monkeys have been scated at typewriters throughout the
age of the universe, 10'8 5. This number of monkeys is about three times greater
than the present human population® of the earth. We suppose that a monkey
can hit 10 typewriter keys per second. A typewriter may have 44 keys; we
dceept lowercase letters in place of cupital letters, Assunning that Shakespeare’s
Huamlet bas 10* characters, will the mostkeys hit npon Hamler?

{a) Show that the probability that any given scquence of 10* characiers

typed at rindom will come aut in the correet sequence {the sequesiee of Hder)
s ol the order of

{1!3)!00 oo = [0~ b6t 345

where we have used log,, 44 = 1.6434S,

{b) Show that the probability that a monkey-Hantler will be typed in the nge
of the universe is approxinately 107184318 The probabitity of Hamler is
therefore zero in any operational sense of an event, so that the original statement
at the beginning of this problem is nonsensc: one book, muclt less a Hbrary,
will never occur in the total Klerary production of the monkeys.

5. Additivity of entropy for two spin systems, Given two systems of Ny =
N, = 10*% spins with multiplicity funictions g,(N,.s,) and g,{N,s — s,), the
product §;9, asa function of 5, is relatively sharply peakedat s, = §;.Fors; =

§, -+ 10" the product g4, is reduced by 107'7* frown its peak value. Use the

Gaussian approximation to the multiplicity function: the form (17) may be
useful.

{a) Compute §192/(91g2)mex fOr 5¢ = §; + 10*" and 5 = 0.
(b} For s = 10?°, by what factor must you multiply (g9}, t0 make it

equal 10 ), g1(N5;)g:(N4s ~ s¢): give the factor to the nearest order of
magnitude,

* I Icans, Al ysterions usiverse, Cambridge University Press, 1930, p. 4. The statemest §s attributed
to Huxley. :

* For a related mathematico-1ieary study, sec “The Library of Babel,™ by the fascinating Argentine
writer Jorge Luis Borges, in Ficciohes, Grave Press, Evergreen paperback, 1962, pp. 79--88.

} For every person now alive, some thirly persons have ence Hved. This figure is quoted by A. C.
Clarke in 2081, We are grateful to the Population Reference Bureau and to Dr. Roger Revelle for
explanations of the evidence. The cumulative number of man-seconds s 2 x 1077 i we take the
average lifetime as 2 x 10° 5 and {he number of lives as | x 10°1, The cumulative number of
man-seconds i niuch less than the' number of menkey-seconds (1074 taken in the problem.
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{c) How large is the [ractional error in the entropy when you ignore this
factor? ' .

6. Integrated deviation. For the example that gave the result (17), calculate
approximately the probability that the {ractional deviation from equilibrium
3/N, is 107 '% or larger. Take N, = N, = 10°*, You will find it convenient to

use an asymptotic expanston for the complementary error function, When
x» i, o

2xexp{x?) Lnexp(th)dr 2 | 4 small terms,
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The faws of therniodynamics may eastly be oblatned from the principles of
statistical mechanics, of which they are the incomplere expression.

Grhbs

He are able to distinguish in mechanical terms the thermal action of one system
on another from that which we call mechanical in the narrower sense ., . 50 as
to specify cases gf thermal action and cases of mechanical action.

Glbbs



In this chapter we develop the principles that permit us 1o calcufate the values
of the physical properties of a system as a funciion of the temperature, We
assume that the system 8 of interest tq us is in thermaf equilibrium with a very
large system |, called the reservoir, The system and the reservoir will have a
common femperature t because they are in thermal contact.

The total systern 61 + 3 is a closed system, insulated from ol external
influences, as in Figure 3.1, The total energy Uy = Ug + Uy is constant. In

particular, 1f the system is in a state of cnergy ¢, then Uy ~ &, is the encrgy of
the reservoir.

Total sysiem Reservoir -
. e
" Constant energy Uy Uy e
System
X
&
- L.

Fignre 3.1 Representation of a closed total system decomposed into a
reservoir 3 in thermal contaal wirh a systein 8,

BOLTZMANN FACTOR

A central problem of thermal physics is to find the probability iltar the system
S will be in 4 speaific quantum state s of encrey ¢, Tlus probability 1s propor-
tional to the Boltzinann factor, -

When we specify that 3 shiould be in the state s, the number of accessible
states of the total system is reduced 1o the number of gecessible states of the
reservoir &, at the appropriate encrgy. That is, the number gq, 5 of states

58
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Figure 3.2 The change of entropy when the
reseevoit eansfers energy e to the system. The

Entropy of the reservoir

€1
{ ] fractional effect of the transfer on the reservoir
1 { is small when the reservoir is large, becunse a
II { Larpe reservoir witl hase w high entiopy,
1l

1
14
v
t
Uy, ~ ¢ 1t Y

it

Encrgy of the reservoir ——-

accessibleta® + 8 15

gﬁxlagfﬂ! . [1)

because for our present purposes we have specified the state of § .

If the system energy is ¢, the reservoir energy is Uy ~ ¢,. The number of
states accessible to the reservoir in this condition isgg{Uy — g),asin Figure 3.2,
The ratio of the probability that the system is in quanium stale 1 al energy
gy to the probabihty that the system is in quantum state 2 at energy £, is the
ratio of the two multiplicities:

Ple;) _ Multiplicity of ® atenergy U ~ ¢, galUo — &)
Ple,)  Multiplicity of R at energy Uy — ¢, g4(Us — £1)

This result is a direct consequence of what we have cailed the fundamental
assumption. The two situations are shown tn Figure 3.3. Although qoestions
about the systemn depend on the constitution of the reservoir, we shall see that
the dependence is only on the temperature of the reservolr.

Ithe reservoirs are very large, the multiphicities are very, very farge mmtbers,
We write {2) tn terms of the entropy of the reservoir:

Ple,) = SQ[E&(UQ - 51)]

Fley) ~ explog{Us — oy ~ CPLoello = ) = eullo =] )
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“® ) _ A 11
Energy U, — ey Enc.rgj{. Uy~
galUg — &) stales gally — &) states
3 ' 3
State | State 2
Energy ¢, Energy e,
{a). (b)

Figure 3.3 The syslem in {a), (b) is in quantum state 1, 2. The reservoir
has gad Ug =~ £}, qu{U.j -~ g,) accessible quaniwm states, i (@) and (b
respectivety,

With
Aog = agllUy ~ &) — ae{Ug ~ &3}, {4}
the probability ratio for the two states 1, 2 of the system is simply

P(e,)

Ple) = exp(Aog) {3}

Let us expand the entropics {n (4) in a Taylor series expansion about o4{Ug).
The Taylor series expansion of f(x) about f(xp) 1s

N AN
fixo + a) = Jlo) + a( dx); i ( ) Feel(©

Thus

6 (Ug— &) = o6Ug) — eldoa/dU)yy + -
' = og(Ug) — gft + -, N

where 1/t = (8og/8U )y gives the temperature. The partial derivative is taken



Partivion Function

at energy Uy, The higher order terms in the expansion vaanish in the limit of
an infinitely large reservoir.®

Therefore Ao 4 defined by (4) becomes

Aoy = ~(g — £5)/T. (8}

The final result of (5) and (8) s

E(EL) = ﬂghfjfﬂ {9)
Ple,) _exp(f—szf-r)'

A term of the form exp{—¢/t) is known as a Boltzmaan factor. This result is
of vaust witity. It gives the ratio of the probability of inding the system iu a
stngle quautum state | 1o the probubitity of finding the system in a single
quantun state 2,

-

Partition Function

it {s hetpful to consider the function .
Z(x) = ) exp(~ef1) . (10}

calfed the partition function. The summation is over the Boltzmann factor
exp(—e,/1) for all states s of the system. The partition function is the pro-
portionality factor between the probability P(e) and the Boltzmann factor
exp{~—e/1):

s 4. W e (i)

We see that ) P(g,} = Z/Z = 1: the sum of all probabilities is unity.
The result (11) is one of the most useful results of statistical physics. The
average energy of the system is U = (&) = ) ¢,P(s,), or

U Z__E%L:iﬂ = P@log Z/31). (12)

* We expand o(Ug ~ g)and nol g(U, — ¢} because the expansion of1he tauer quantity immediatety
gives convergence difficulties.
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The average energy refers to those states of a systern that can exchange euergy
with a reservoir, The notation {---> denotes such an average vatue angd is
called the thermal average or ensemble average. In (12) the symbot U is used
for (&) in conformity with common practice; U will now refer to the system
and not, as earlier, to the system + reservoir,
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- Exawmnple: Encrgy and heut capacity of @ two state systews. We treal a sysient of one parti-
cle with two stutes, ong of energy 0 and oue of crergy ¢ The particle is i thermal contagt
will a reservorr at temperature v. We want 1o find the energy aund thie heat cupacily of the

system as a function of the temperature 7. The pariition function for the 1wo stajes of
she particle is

Z = exp{—0/1} + exp{—gft) = 1 + exp{—s/r). {13}

The average energy Is

- _eexp(—-gn) - exp{~¢/7)
U = = e ey {4

This function is plotted in Figure 3.4.

If we shift the zera of enefgy and take ke energies of the two states as —4e and + 3,
instead of as 0 and g, the results appear diffzrently. We have

Z = exple/27) + exp(us‘f?r)_ = 2cosh{ef27) , {15}



Parition Function

and

”<£>. {~- 1a)cxp(a/2r} + {3 a}txp(ﬁsf”’r) 3' sinh{e/27)
z _ ’cosh(sf’r}
= —lgtanh(e/2c). {16}

The heat capacity C,. of 2 sysiem at consiant volume is defined as

Cy = 1(éofit)y {17a)

which by the 1hermodynamic identity (34a) derived below is equivalent 10 the aliernate
defisition

Cy = (8U/dt),., {170}

Wehold ¥ constant because the values of the cnergy are calculated for a sysiemata specified
volume, From (14) and (I7h),

6 H e\ explefn)
Oy = b i T3 4 VA7 S g

Cr _ “F exple/t) + 1 (1’) {exple/r) + 1} (182)
The same resull follows from {16].

In conventional units Cy is defined as T(ES/2T), or (42T ), whence

2 -
{conventional) Co =k ( ) mdwlw {18b)

In fundamental upits 1the heal capacity is dimensionless; in conventional unils it has 1he
dimensions of encrgy per kelvin, The specific heat is defined as the fical capacity per uniy
iss,

Thebhump inihe plot of heal capaciy versus lemperajure in Figutre 3.4 calied a Schonky
anomaly. For r » ¢ the heat capacity (18a) becomes

Cp = (g/21)2. (19}

Notice that Cp o ©7% in 1his high temperaure Hmit. Ine the fow temperaiwre Emi the
tesmperaiure is small o comparison with he energy level spacing e For v « & we have

Cy = {eft) exp(—gf). (20}

The exponential lactor exp{— £t} reduces €, rapidly as ¢ decreases, becauseexp{—~1/3} =+ 0
as x - Q.

—
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Definition: Reversible process, A process is reversible if carried out in such a

way that 1he sysiem is always infinitesimally close to the equilibrium condition.
For example, if the entropy is a function of the volume, any chauge of volume
must be carried out so stowly 1hat the entropy at any volume V is closcly ¢qual
10 the equilibrium entropy o{V). Thus, the entropy is wel defined at every
stage of a reversible process, and by reversing the direction of the change the
systern will be returned to its initial condition. In reversible processes, the
condition of the system is weit defined at all times, in contrast to irreversible
processes, where usualty we wilt not know what is going on during the process.
We cannot apply the mathematical methods of thermal physics to systems
whose condition is undefined.

A volumce chauge that feaves the system in the same guantum state is an
example of an isentropic reversible process. H the system always remains in the
saine state the entropy change will be zero between any two stages of the pro-
cess, because the number of states in an ensemble {p. 31} of similar systems does
not change. Auy process in wiich the entropy change vanishes is an isentropic
reversible process. But reversible processes are not limited to isentropic pro-
cesses, and we shall bave a special interest aiso tn isothermai reversible processes.

Kw-—-.-_u_._ﬂ--.,.:_———Tv,-..\— [
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Consider a system in the quantum state s of energy g, We assume g, to be a

function of the volume of the sysiem. The volume Is decreased slowly from V

to ¥V — AV by applicalion of an externa} force. Let the volume change take

place sufficienily siowly that the system remains in the samme guantum state s

throughout the compression. The “same” stale may be characterized by its

quantunt numbers (Figure 3.5) or by the numiber of zeros in the wavefunciron.
The energy of the state s after the reversible volume change ts

eV — AV) = 5(V) — (de,JAVIAV + -+ (21)

Consider a pressure p, applied normal to all faces of a cube. The mechanical
work done on the system by the pressure in a contraction {Figure 3.6} of the
cube volume from Vto V — AV appears as the change of encrgy of the system:

U = AV) = UV) = AU = —(dg,f[dVIAV. . (22)
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Figure 3.5 Dependence of eserpy on volume, for the ebergy fevets of a free
particte confined 30 a cube. The curves are labeled by #? = w2 + n? + 0.k,
as in Figure 1.2. The niubiplicities § are also given. The volume change here
is Isolrepic: a cubé femaing a cube. The encrgy range dc of tie stales
represented in an ensembie of systems will inereasz in a reversibie
colnpressian, but we know fromn the disvwssian in Chapler 2 that yhe widih
of the energy range itself is of na practical importance. {Lis she change in
the average encrgy Hhat is important.
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Here U dcnot{:_; the energy of the system. Let A4 be the area of one face of the
cube; then

A{Ax + Ay + Az} = AV . . {23)

if all increments AV and Ax = Ay = Az are taken as positive in the compres-

ston. The work done in the compression is

AU = pA(dx + &y + Az) = p,AV 24

so that, on comparison with {22),

ps = —de,JdV ' {25}

ts the pressure on a system in the state s.
Weaverage (25) over all states of the exnsemble to obtain the average pressure

{p), usually written as p:
' ct/
= iy 26
? (5%’), : l (26)

where U s {&>. The entropy o is held constant u1 the dertvative because she
number of states in the ensemble is wchanged in the reversible compression
we have described. We have a colicetion of systems, cach in some ste, and
cach renlains i this state in the compression.

The result (26) corresponds to our meehanical picture of the pressure on o
system Jhat is maintained in sowne specific state. Appendix D discusses the
result more deeply. For applications we shall need also the later resuht {30} for
the pressure o a system suaditaived at coustant temperature,

We look for other expressions {or the pressure. The nunber of states and thus
the catropy depend enly on U and on V, for a fixed number of particles, so
that oaly the two variables U and V describe the system. The differential of

the entropy is
fa Ca
la(UV} = { < | dU e | dV. 37
da(U, 1V} (E'U)yr + ({_V)L'f (27}

This gives the differential change of the entropy for arbitrary fndependent
differential chuns o JU and dV. Assume now that we sclect dU and d¥ inter-
dependently, 1n such a way that the two terms on the right-hand side of (27)



Thermodynamic fdengity

cancel. The overall entropy change do will be zero, If we denote these inter-
dependent values of JU and d¥ by (U}, and {(§¥},, the entropy change will

be zerp:
co
0 = (GU) GU), + ( )(m | (28)

After division by {8V},
&a\ (6U}, oo
e [0} W e heallh I} 29
(5U)v(5V}a * (EV)U )

But she ratio {(SU),A8V), is the partial derivative of U with respect to V at
constant o

BULNSV), = (2Uj2V),. {30}

With this and the definbion /r = (fofc U}y, Eq. (29} becomes

@@ @
-] u .

Ry (26) the lefi-hand side of (311 §s equal to ~ p, whenee

i
: [¥]

Thermodynamic Identity

Consider again the diffcrential (27) of the entropy; substitute the new result for
she pressure and the definition of 7 to obtain

da u‘U + Pav, {33}

or

tdo = dU + pdV. {34a)
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This useful relation will be called the thermodynamic ide.ntity. The form with N
vanable \\_’iﬁ appear in {3.38}. A simple transposition gives

dU = tda — pdV, or  dU = TdS — pdV. (34b)

if the actual process of change of state of the system is reversible, we can
identify tdo as the heat added to the system and - pdV as the work done on
the system. The increase of energy {s caused in part by mechanical work and

in part by the transfer of heat. Heat is defined as the transfer of energy between
two systems brought into thermal contact (Chapter 8},

HELMHOLTZ FREE ENERGY

The function

FzU -1 . (35)

is called the Helmholtz free cnergy. This function plays the part in thermal
physiCs at constant temperature that the esergy U plays in ordinary mechanical
processes, which are always understood to be at constt entropy, because no
ternal changes of state are uflowed. The free encrgy tells us how to bulunce
the conflienng demands of a system for minimum ¢nergy and maxhnum en-
tropy. The Helmbholtz frce energy will be a minimun for a system £ m thermal
contact with a reservoir ®, f the volume of the system s constant,

We first show that F is an extremum in equilibrium ot constant 1 and V.
By definition, for infinitesimal reversible transfer from 6l to 8,

dF, = dU, — 1do, (36)

at constant temperature. But 1/t = {8o4/cUs )y, so that dUjy = tdo at con-
stant volume. Therefore {36} becomes

dFy =0, (37}

which is the condition for F to be an extremum with respect to all variations
at constant volume and temperature. We like F because we can cajculate it from
. the energy eigenvalues g, of the system {see p. 72).
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Conunent. We can show that the extremum is a minimuni. The total encrgy is U =

Ug + U, . Then the tosal entropy is

O =0y + 6y = gl — Uy} + a4{Uy)
2 05{U) — Ugldag XU x + as(Usg) (38)
We know that

(Con/cUghx = Y1, (39)
so that {38) becomes

g = au{l'} - Fy/r, 30}

where Fy = Uy — 1oy i the free cnerpy of the system. Now o,{L'} is consiant; and we
recoll that g = 64 + gy in equilibrium is a maximum with respect to Uy . 1 follows from
{30yha Fy mus) be a minimum with raspect o U when the system is in ihe most probable

configuration. The free energy of the system at coastant ¢, ¥ witt increase for any departure
from the cguilibrivm couﬁgnralion.

ey

Cae T T L L T

Examplc: ﬁh’m‘mmn properiy of the free cnergy of a paramagactic spstem, Cousider the
maode! system of Chapter 1 with Np spins up aud Ny spins down. Let N = Nr + Ny
the spin excess is 25 = Ny ~ N, The cotropy in the Stirling approximation is found
with the hetp of an approximate form of (1.3t}

als) = -(—i—N + s) iogG7 + ;\) (lN - 5)105({ - Ii\,) (41}

The caerpy in s mugietic field B (s ~ 2unh, where m is the magoetic moatent ofun chemen-
tury mugnet. The free enezgy function {to be catled the Landau function bt Chapler 10) is
Folr,s,8) = U8B ~ 1o(s} or '

i i i 5
F{1,5B) = —2smB + GN + s}log(é« + %) + (EN — s)rlog(-z— . }\}—)
| (42)

~ Arthe minimum of F{1,5.B) with respect to s, this funciion becomes equatio the equilibrium
frec eqergy Fir,B). That is, F{r.{s),B} = F{r,B), because {s) is a function of r and B, The
minimum of F, with respect to the spin excess occurs when

N+23

2. @)

(CFifis)ep = 0 = -2an + tlog -
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Thus in the magnetic field B 1he thermal equilibrium vatuc of 1he spin excess 25 s given by

N 4 (;.’.szw ' ) B E‘fg!anft) -1\ _
o in (25} .ex.p(2mB/r}. (25) = N(cxp{msz,fr) " i) . (44)

or, on dividing numerator and denominator by exp(mB/),
(2s) = N tanh{mB/r). (43)

The magnetization 3 is the magnetic moment per unit volume. 1f n is the number of spins
per unil volunie, the magnetization in thermat equilibrium in the magnetic field is

= {2s)nyV = nartanhifmB/): (46}

The free epergy of the system in equilibrium can be obtained by substituting (45) in {42).
It is casier, however, to-obtatn F directly from the partition function for one magnet:

Z = exp{(mB/t} + exp(—mB/1} = 2cosh{mB/1}. 47

Now use the relation F = -’—IﬂogZ as derived below, Multiply by N {o obtain the result
for N magnets. (The magnetization is derived more simply by the method of Problem 2.}

| PR T e kel N S S
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Differential Relations

The differential of Fis
dF = dU ~ tde — adt ,
or, with use of the thermodynamic identity (34a),

dF = —odt — pdV (48}

for whiich

b f8F aF \
(é?),, = - (a_v"), = &

These relations are widely used.

The frec energy F in the result p = —(GF/¢V), acts as the eflective Crergy
for an isuthermal change of volume; contrast this result with (26), The result
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may be written as

cl/ fols ] '
R R ) A

by use of F = U - 10. The two terms on the right-ltand side of (50) represent
wliat we may call the energy pressure and the entropy pressure. The energy
pressure —{¢U/dV), is dominant in most solids and the entropy pressure
t{do/dV), is dominant in gases and in clastic palymers such as rubber (Problem
10). The entropy contribution is testinony of the importance of the entropy:
the natve feeling from simple mechanics that —JdU/dV must telt everything
about the pressure is seriously incomplete for a process at constant temperature,
because the entropy can change in response to the volume change even i the
cucrgy is independent of volume, as for an ideal gas at constant temperature,

T, M WA S O AR I L St 13, T AR D A s O SO MR A A P SR |

 Maswell relation. e can now detive one of a group of useful thermodynamic relations
called Maxwell relations. Form the cross-derivatives ¢2F/C0V v and 62 F/¢t ¥, which must
be equat 10 each other. 1t {ollows from (49} that

{(Ca/CV), = (ép/cT)y , (31

a relation that is not at all obvious, Other Maxwell refations will be derived later at
appropriate poinis, by similar arguments. The methodology of obtaining thermody-
namic relations {s discussed by R. Gitmore, 1. Chem. Phys. 75, 5964 {1981},
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Calculation of F from Z

Because F = U — to and ¢ = —{CF/dr),, we have the differential equation
F=1U}*+% r(éF;‘c';’;r);,, or -2 C(F/T)fdt = U, (52)
We show that this cquation s satistied by
Flt = —logZ | (53)
where Z_;Is the partition functiou. Ou substitution,

QIO = -ClogZ (o=~ U (34)
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by (12). This proves that

——

F = ~rlog Z-J {55)

satishies the required differential equation (52).
it would appear possible for F/r to contain an additive constant « such that
F = —tlogZ + ar. However, the catropy miust reduce to logg, when the
iemperature is 50 tow that only the g, eoincident states at the lowest energy £,
are occupied. In that limit togZ — loggy — £o/t, 50 thal g = —&F/ét —
S(rlog Z)/Ct = log g, only if 2 = 0.
We may write the result as

L

Z = exp{—Fft}, (56}

and the Boltzmann factor (11) for the occupancy probability of a quanium
state s becomes

expl{—¢, r}

P(ss}'w — = exp[(F - 3753 R (57)

IDEAL GAS: A FIRST LOOK

One atom ina box. We calculate the partition function Z, of ong atom of

mass M free to move tn a cubical box of volume V = L3 The orbitals of the
free particle wave equation —(h?/2MV"Y = g are

Bix,y,2) = Asin{ngnx L)sin{nny/L)sinlnzfL) | (58)

where i,, 1, I, are any positive integers, as in Chapter 1, Negative integers do

not give independent orbitals, and a zero does not give a solution. The energy
values are : :

E, = ;jw( ){zl o o) _ (59}

We neglect the spin and all other structure of the atom, so that a state of the
system is entirely specified by the values of iy, 11, 1.
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The partition function is the sum over the sttes (39);

Zy =3 Z Z{BXp[ ~-.1'12nr3(n,‘2 + a2+ 20N (60)

Be Ry, Ay

Provided the spacing of adjacent energy values is small in comparison with t,
we may repluce the summations by integrations:

Zy = f:" dn, fom dn, J-: dnexpl—-a’(n? + n? + 1Al (o)

The notation «* = A*a?/2M Lt is introduced for convenicnce. The exponential
may be written as the product of three factors

exp{—a’n exp(~ 1’!1}."}}:)(;)(“ “ny

so that

3

<, ' 3 «© . '
Z, = (L duxcxp(-—az_nf}) = (UH}J(L dxexp(“xz}) = ."3"‘2-"8:3 '

whenee

14
2= e = ¥ = ol (62)
m Jerms of [he concentration n = {/V.
Here
E
ng = (Mrj2mh?)? ! ‘ (63)
-

is called the quantum concentration, It is the conceniration associated with one
ittom i a cube of side equal to the thermat average de Broghic wavelength,
which is a length roughly equal to {/M > ~ B{(M )72 Here (&) is a theumal
average velocity, This coneentration will keep turning up in the thermal physics
of gases, in semiconductor theory, and in the theory of chemical reactions.

For hetium at atmospherfc pressure at room lemperature, n = 23 X
10'%cm™ and ny 2 0.8 x 10**cm ™2 Thus, nfug = 3 x 1075 which s very
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small compared 10 unity, 50 that heliom is very dilute under normal conditions.
Whenever #/ng « 1 we say that the gas is in the classical regime. An idcal fas
ts defined as a gas of noninteracting atoms in the classical regime,

The thermal average energy of the alom in the box is, as in {12),

Y s,exp{—e. /1)
U S = (3 log Z,/07) (64

because Z, " ! exp{—¢,/1) is the probability the system is in the state n. From (62),

logZy = —3log{i/t) + terms independent of 7,

s0 that for an ideal gas of one atoin

U =31 {63)

If © = kT, where &y is the Boltzmann constant, then U = kg7, the well-
known result for the energy per atom of an ideal gas.

The thermal average Ocmpmcy of a free particle orbital satisfies the in-
cquality ‘.

Zi T Vexp(—gft) < 2y = ng ,

which sets an upper limit of 4 x 107° for thte ocCupancy of an orbital by a
hehiuie atom at standard concentration and temperature. For the classical

regtme to apply, this occupancy must be « 1, We note that g, as defined by (59)
15 always positive for a free atom,

T T e Y T by e (3 Ty rar “re I T - PRGN sa¥ L T ERGcH
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Frample: Natoms in @ box, There follows now a tricky argument that we will use
temporarily untit we develop in Chapter 6 a powerful method 10 deal with the problem of
many soninteracting identical atoms in a box. We first treat an ideal gas of N atoms in a
box, alf awms of different species or different {sotopes. This is a simple extension of the
one uiom result. Wa then discuss the major coreection factor that arises when atl atoms are
identical, of ihe same isotope of the sume specics.
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vt 2 3 | v

Figure 3.7 An .Y particle system of free particles with one particle in cach
of .¥ bores. The encrgy s N Himes that for one particle in one box,

Figure 3.8 Atoms of different species in g
singte box,

<+ e
o
50 p

If we have dne atom in each of N distinct boxes (Figure 3.7), the partition funciion is the
product of the separate one alom partition functions:

Zy e = ZAN Z4 @) Zi(N) (66)

because the praduct on the right-hand side includes every independent state of the N
boxes, such as the stale of energy

E(EY 4 £ q2) (N (67)

where 2 f. .. .5 denote the orbitel indices of sMoms in the successive boxes. The resull {66)

also glves the partition funcuon of N sominteriacting atons all of diffeccul species in a
single box {Figtre 3.5}

LAY LL0) Z,(#} -+ £,

this being the same problem because the energy cigenvatues are the sume as for (67). M 1ke
miasses of all these differen atoms happened 1o be the same, the 101l partition [unction
would be Z,* where Z, is given by (62},

When we consider the more cammon problem of N idenucal panticles in one box, we
have 1o correct Z,% because it overcounts the distinel stales of the ¥ identical pacticle
systent. Partictes of a single species are nol distinguisbable: electrons do not citrry registias
lion puntbers. For tno fabaled particles ® uud » in a single box, the s1ate £40) + & +)
and 1he state g,{«) + £,0@ pare distined states, and both combinations roust be counted in
he parution function. But for two Wentical partcles 1he state of epergy ¢, + g5 0 i

idenical slare a8 £ + ¢, and oaly oue enttry s to be made tn the state suwn in the partition
funciion.
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If the orbital indices are alt different, each entry will ocour N1 times ia Z,”, whereas the
entry should occur onty once if the panticles are identical, Thus, Z, ™ overcounts the states by
a factor of N1, und the coceect partision lunciton for N ideniical partictes is

(68)

in the classical regime. Here ng = (3M1/22h%)*? from {63).

There is a step in the argument where we assunte that all ¥ occupied orbitals arc always
different orbitats. It is no simple matter to evaluate dirceily the error introduced by this
approximation, but laler we witl confirm by another method the vadidity of (68} in the
chiussicad regime # <« ng. The N [acior changes the resuit for the entropy of the ideal gas.

The entropy is an experimentally measurable quantity, and it lias been confirmed that the
N1 lactor is correct i this low concentration hinnt,
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Energy. The energy of the weal gas fol!ows from the N particle partition
function by use of {12} '

= NBlog Zy/d1) = INT , {69)
conststent with (65) for one paricle. The free encrgy is
F= —tlogZy = —tlogZ," + tlogNL. {70)

With the earlier result Z; = ngV = (Mt/2zk*)¥*¥ and the Stirling approxima-
tion fog Nt = NlogN — N, we have

F = —tNlog[{(M:22h%)¥?¥] + tNlogN — N. {11y

From the free energy we can caleulate the entropy and the pressure of the tdeal
gas of N atoms. The pressure follows from (49):

p = —~{&FfaV), = Nt/V, -7y

or

pV = Nt , | (13)
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which is called the ideal gas taw, In conventional nnits,
pV = Nk,T. ' (749
The eatropy fotlows from (49):

o = ~{(F[0t) = NI1og[{Mt/22°P V] + 4N ~ NlogN + N, (75}

or

o = N[loglug/m} + 3], {76}

with the concentration n = N/V, This result 1s known as the Sackur-Tetrode
equation for the entropy of a monatomic tdeal gas, 1t agrees with experiment.
The result involves i through the term ny, 50 even for the classical ideal gas
the entropy invelves a quantum concept. We shall derive these results again o
Chapler 6 by a direct method that does not explicitly involve the N1 or identical

particle argument. The energy {69) also foltows frorm U = F + 1o; with use of
{71) and (76} we have U = N1,
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Example! Equipartition of energy. The energy U = INt from (69} is ascribed to a contri-
bution ¥t rom each “degree of freedom™ of euch panicle, where the number of degrees of
freedom is the number of dimensions of the space in which the atoms move: 3 in this
exarmaple. In the classical form of statistical mechauics, the partition function contains the

kinetic energy of the pasticles in an integral over the momentum components p,. p,, p.-
For one free particle

Zy fffﬁxp[“ (> + p,2 + p.2Y2MJdp dp dp. an

a result simitar to {64). The limits of integration are + o for each component, The thermal
average energy may be calculated by use of (12) and is equat 1o 3. .

The result ts generatized (n the classical theory. Whenever the hamiltonian of the system
is homogeneous of degree 2 in a canonical momentum component, the classical limit of the
thermat average kinetic energy associated with that momentum wilt be {z. Further, if the
hamiltonian is homogeneous of degree 2 in a position coordinate component, the thermal

.average potential epergy associated with that coordinate will also be §r. The result thus
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Figure 3.9  Meat capacity at constant volume of one molecule of B, in

the gas phase. The vertical scale is in fundamenta) units; o obfain a value
i conventional units, multiply by &,. The contribution from the three
transiational degrees of freedom is §; the contribution at high temperatyres
from the two rotational degrees of freedom is 1 and the contribution

from the potential and kinctic encegy of the vibrational tetion in the

high tempurature imit is 1, The classical limits are attained when

T » refevast energy level separations,

applies to the harmounic oscillator in the classical kmit. The quantum sesults for the har.
menic osciflator and for the diatomic rotator are derived in Problems 3 and 6, respectively.
At high temperatures the classical limils are altained, as in Figure 35,

E—-—‘-vv-*— — - .

e D e Ly 3

- ey, PR s g AR R SRR DT T ROGARYAH |
ot B g e AT 13 ottt 1 e it T i bk e e T i i Db o e

Example: Entropy of mixing, 1o Chapter | we calculated the number of possible arrange-

mcnts of A and B in a salid made up of ¥ —~ 1 aloms A aad tatoms B, We found in (1,20}
for the number of arratigements:

GV = (79)
LE =N ,

The entropy associated with these acranpements is
c{N,1) = logg{N,1) = log N1 — log(N — 1)} ~ logtf, {79)

and is ploticd in Figere 310 for ¥ = 20, This contribution ta the il entropy of an alloy
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Figure 3,10 Mixing entropy of a random binary alloy as a function of
the proportions of the constituent atoms A and B. The curve ploucd
was calcufated for a total of 20 atoms. We see that this entropy s 2
maximum when A and B are present in equal proportions (x = 0.5},
and Lhe enlropy Is zero for pure A or pure B.

system iscalted the entropy of mining. The result (791 ttay be pul in a more convenient form
by use of the Sticling approximation:

o(Nt) =~ NlogN ~ N — (N ~ log{N — 1) + N — 1 — rlogt + {
= NlogN — (N —~ Nlog{N — 1) — ttogs
= (N = log{t ~ ¢N) — tlog{t/N)

ot, with x = t/¥,

a{x) = ~N[{l — x)log(l ~ x) + vlogx]. (50}

This result gives the entropy of mixing of an a'foy A, . B, weated as a random (haato-
peneous) solid sofution. The proble is Juscloped in detad in Chapier 1L

We ask: Is the homtlogencous solid solutiort the equilibrium condition of 2 mivture of A
and B aloms, or is the equilibrium a Lwo-phase system, such as a mixture of erystailies of
pure A and crystattites of pure B? The complete answer fs the basis of mucls of the scizpce
of metat{urgy: the answer will depend on the temperawre and on (he leratomi inter-
action encrgies Uq, Uag. and Uy Litthe special case tst the (neraction energies betw zen
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AA, BB, and AB neighbor paics are all equal, (he homogeseous solid solution will have a
lower free enezgy than e corresponding mixture of crystaliites of the pure elements. The
free energy of the solid solution A, _,B, is

F = Fp = to{x) = Fy + Nt[{} ~ x)log{l -~ x) + xtogx], {8

which we musl compare with

Fe={l - xX)JFg + xFy = F, - {82)

for the mixture of A and B crystals in the proportion {1 — x} 10 x. The entropy of mixing
is always positive—all enlrapies are positive—so that the sofid solution has the lower
free energy in this special case. : :

- There is a tendency for al least a very smalt proportion of any element B 1o dissolve in
any other element A, even il a strong repulsive ettergy exists between a B atom and the
surrounding A atoms. Let this repulsive energy be denoted by U, a positive quantily. I a
very small proportion ¥ « { of B aloms is present, the tola) repulstve eoergy is xN U, witere
aN is the number of B aloms. The mixing cniropy (80} is approximutety

o= ~xNlogx _ (83)

in this limil, so that the frec energy is

F{x) = N(xU + 1xlogx) , {34}
which has 2 minimum when
CFléx = N{U + tlogx 4+ 1} =0, (85}
or
x = exp(~ 1)exp(~ U/ (86)

This shows there is a nn{urat impurity content in all erystals.

g
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SUMMARY
1, The factor
Ple) = exp{~s,/t}/Z

is the probability of fiuding a system in a state s of encrgy £, when the systetn
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is in thermal contact with a large reservoir at temperature 1. The number of
particies in the system is asswmed constant,

2. The partition function is
Z = Y exp{~efi).
3. The pressure is given by

p = ~(RU/EV), = 1c/éV)y.

4. The Helmltoliz {ree encrgy is defined as F = U ~ 1o, It (s a mittimum (n
equilibriutn for a system held at cottstant ¢, ¥,

5.0 = —(FF/ety;  p= —(@Fj2V),

6. I = —vlogZ. This restltis very ttseful in cilenlutions of F and of quantities
suclt as p and o derived frowm F.

1. For an tdeal monatomic gas of N atoms of spin zero,
Zy = (igVVUNT,

if 1= N/V « ny. The quantum concentration ng = (Mr1/2xh?)*2, Further,

pV = N1; o = Nlloglug/n) + 31 Cy =

[

N.

8. A process is reversible il the system remains infinitesimally close to the
equilibrium state at all times during the process.

PROBLEMS

1. Free energy of a two state systens,  {(a) Find an expression for the free
energy as a function of 1 of a system with two states, one at encrgy 0 and one
alenerpy & {b) From the free ettergy, fiud expressious for tte cnergy ind catropy
of the systemn, The entropy is ploited in Figure 3.1

2. Mapgnette suseeptibility. {0} Use the partition function to fiud an exuet
expression for e tauguetizdion A7 and the susceptibiluy x = dMAIB as a
functiou of temperature and magnetie field for the modet system of magnetie
moments n a magnetic ficld. The result for the magnetization 8 M =
mrtanimB/z}, as derived in (46} by another method. Here n is the particle
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Figure 311 Enropy of a lwo-state system as s funclicn
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Figure 3,12 Plot of the 1o1al magactic momenl as a function
of u 8’1, Natice that 31 tow mB;t the moment is o Yucar funclion
of e/ r, but at lugh w8 r the mament tends 1o salurate.

canceptration. The result is plotted in Figure 3,12, (b} Find the free energy and
express The result as a funciion only of 7 and the parameter x = At {¢) Show
that the susceptibility 15 y = mn®/t in the Hmit B «< ¢

wd 3. Free energy of a harmonic oscillator. A one-dimensional harmonic oscil-
lator has an wfinite series of equally spaced ¢nergy states, with g, = she, where



Problenis

2 /
/ :
o
o
E-i
5
]
00 I 2 3

y{;'ﬁu A

Figure 3.13 Entropy versus temperature for harmonic
oscillator of ffequency w,

s is a positive integer or zero, and w is the classical frequency of the escillaror,
We have chosen the zero of enerpy at the state s = 0. {4} Show that for 4
harmonie oscillatar the frec energy is

F=tlon[l — exp{~hw/ft}]. (N

Note that at high temperatures such shat 1 » ho we may expand the argument
of the logarithm to obtain F = t)og{fwa/r). (b) From (87) shiow that the entropy
is

hey/'
= B I ¥ —_— — ! . 88
e T og[t — exp{—hwyt}] {88}

The entropy is shown in Figure 3.13 and the heat capacity in Figure 314

4. Enervgy fluctuations, Consider a system of fixed volume in thermal contact
witlt a reservoir. Show that the mean square fluctuation in the eucryy of the
sysiem is

e = &3y = U Crh. (89)

Here U is the conventional symbol for (&), Hins: Use the partition function 2
to relate &U/¢r 10 the mean square fluctuation. Also, muliiply out the term
{- )% Note: The temperature t of a system is a quantity that by defintiion does
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% 1.0 -
Fiure 314 Heal capacity versus temperature é
fuor hugmonic oscillator of frequency ar The - /
Tiosicontal seale s in units of 1 i, which is 9 0.5
identical with 7 8., where 8, ts called the o
Elnstcln temperature. In the high femperuture 2
Liasit €y — kg, 07 | in fundamentat unns. This %"
vatuz is known as the classical valuz. At low =
. - - [P it =
femperatures Cp decreases exponentially. = (}O 05 n s
B S
ﬁw - |‘9£

not fluctuaie 1 value when the system is in thermal contact with a reservoir.
Any other atniude would be inconsistent with our definition of the temiperasure
of a system. The cnergy of such a systemt may {luciunte, but the temperature

doss wot. Some workers do not adhiere to a rigorous definition of temperature.
Thus Landou and Lifshitz give the result

Aty = 1%/Cy : (90)

but this should be viewed as just another form of (89) with At set equal 10
AU/C,. We know that AU = C, Ar, whence {90) becames ((AU)Y) = t7°Cy,
which is our result (89}

5. Overhauser effect. Suppose that by a suitable external mechanical or
electrical arrapgement one can add ae to the energy of the heat reservow
whenever the reservoir passes to the system the quantum of energy ¢. The net
increase of energy of the reservoir is (x —~ 1}e. Here « is some numerical facior,

posttive or tiegative. Show that the effective Boltzmann factor for this abnormal
system is given by

P(e} e« exp] ~{1 — a)e/t]. 91

This reasoning gives the statistical basis of the Overhauser effect whereby the
nuclear polarization in a magnetic field can be enhanced above the thermal
equilibrium polarization. Such a condition requires the active supply of energy
to the system from an external source. The system is not in equilibrium, but is
said 10 be in a steady state. CI. A. W. Overhauser, Phys, Rev. 92, 411 {1953).

6. Rotation of diatomic melecules, 1In our first look at the ideal gas we con-
sidered only the translationatl encergy of the particles. Bul molecules can rotale,
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with Kinetic energy. The rotational motion is quantized; and the energy levels
of a diatomic molecule are of the form

eljy = jj + tjeo (92}

where j is any posilive integer including zero:j = 0, t, 2, ..., The multiplicity
of exch rotational fevel Is g{j) = 2/ + 1. (a} Find the partition function Zg{1}
for the rotatioual states of one molecule, Remember that Z is a sum over all
states, not over all fevels—this makes a dilference. (b) Fvaluate Z (1) approxi-
maely for v » g4, by converting the sum to au integral. (¢) Do the same for
T« £g, by truncating the sum after the second term. (d) Give expressions for
the energy U and the heat capacity C, as functions of 7, {n both litnits. Observe
that the rotational contribncion to the heat capacity of a dintomic molecule
approaches 1 {or, iy conventional units, k) when v o gg.fe) Sketeh the behavior
ot U{z) and Clx), showing the Himiting bci1;1x*i§ts forr — wand r — 0

7. Zipper problem. A zipper hus N links; cachy Ik has o state i which it is
closed with energy 0 and o siate in which i1 is open with cnergy . We require,
however, that the zipper can oaly unzip from the keft end, and that the link
anmber s can only opent f alt Hnks to the feft (1,2, .. .8 — 1}are nlrcady open.
{a} Show that the panition Tunctiou cagt be sumnted in the form

7 = L:_C}PL:,SM(\ * Vase] 93)

{b) In the Himit ¢ » 1, find the average number of open links, The wodel is a
very simplified model of the unwinding ol 1wo-siranded DNA molecules—see
C. Kittel, Amer. J. Physics 37, 917 (1569}

8. QOuantuin concentration. Consider one particle confined to a cube of side
L;the concentration in effect isa = 1/L7, Find the kinetic energy ol the particie
wheu i1 the ground orbital. There will be a value of the eoticentration for which
this zero-point quantum Kinetic energy is equal to the temperature 7. (Al this
concentration tlie occupancy of the lowest orbital is of the order of unity; the
towest orbital always has a higher occupancy than any other orbital ) Show that
the concentration 11, thus defined is equal to the quantum concentratton n,
defined by {63), withiu a facior of the order of unity.

9. Pargition function for two spstems. - Show  that the parution function
Z(1 + 2} of two independeut systems I and 2 in thermal contact at a cominon

temperature ¢ is equal 1o the product of the partitfon functions of the separate
systems:

2t +2) =2z, (94)
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10, Elasticity of polyhers. Thethermodynamicidentity for a one-dimensional
systein is '

Cda = dU ~ fill ' (95)

when f is the exicrnal force exeried on the line and Ji is the extension of the
line, By analogy witli {32) we form: the derivative to find

__{ _ (féﬂ) , (96)

The direction of the force is opposite to the conventional direction of the
pressure. _

We constder a polymeric chaim of N links each of length p, with each link
equally likely 10 be directed 10 the right and 10 the left, {a) Show that the number
of arrangements that give a head-to-1ait length of [ = 2jslp &s

2Nt
g(N,~3) + g(N,s) = IN + 9 GN — 9 on
{b) For Is} « N show that
all) = la}g[ig(_ﬂ,(_}}] - P2Np?, {98)
{¢) Show 1hat the force at extenston [ is
[ = lt/Np*. {99)

The force is propertional to the temperature. The force urises because the
polymer wants 1o curl up: the entropy is higher in a random cofl than in at
uncoiled configtiration. Warnming a rubber band makes it contract; warniing a
steel wire makes it expand. The theory of rubber clasticliy {5 discussed by
H. M. James and E. Gul, Journal of Chemical Physies 11, 455 (1943); Journal
‘of Polymer Scietice 4, 153 {1949); see also L. R. G, Treloar, Physics of rubber
elasticity, Oxford, 1958.
H. Oue-dimensionaf gas. Coasider an ideal gas of N particles, each of nass
Al confined to a one-dimensional tine of length L. Find the entropy at tempera-
ture r. The particles have spin zero.
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[We consider) the disiriburion of the entergy U among N oscillarors of frequency
v If U is viewed as divisible withour Hmftt, then an infintie nuntber of
disiributions are possible, We consider however—and iliis is the essential poird
aof the whole caleulation—U as made up of an entlrely determtined number of
finite equal paris, and swe make use of the natural constant h = 6.55 x 107%7
erg-sec. THis consiani wlen ntidtiplied by the comnion frequency v of the
osclllotors gives the elententt of energy e inergs .. ..

M. Pianck

e et e b
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Plauck Disiribulion Funciion

PLANCK DISTRIBUTION FUNCTION

The Planck distribution dcscribesﬁx’c spectrum of the electromagaetic radiation
in thermal equilibrium within a cavity. Approximately, it deseribes the emission
spectrum of the Sun or of metatheated by a welding torch. The Planck distribu-
tfon was the first application of quantum thermal physics. Thermal electro-
magnetic radiation is often called black body radiation. The Planck distribution
also describes the thermal energy spectrum of lattice vibrations in an clastic
solid.

The word “mode™ characterizes a particular oscillation amplitude pattern in
the cavily or in the solid. We shall always refer to w = 2af as the frequency of
the radiation. The characteristic feature of the radiation problem is that & mode
of oscillation of frequency w may be excited only in units of the quantum of
energy hw. The energy &, of the state with s quanta in the mode {s

& = shw , (1)

where s is zero or any positive integer [Figure 4.1). We omit the zero point
energy thw.

These energies are the same as the energies of a quantum harmonic oscillator
of frequency w, but there is a diffcrence between the concepts. A harmonic

‘ I = 4
4z
§=3
l Figure 4.1 States of an oscillator that
3 represeats a mode of frequency w of an
5s=2 electromagnetic field. Whea the oscillato
! the orbital of energy shw, the state is equ
2 to s photons in the mode.
£
I s=0
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oy, L3y

£ = flw, £ = fiw,

Wy

£ = zﬁwu' £ = Zﬁk‘b

Figure 4.2 Reprosentation in one dimensiog of two clectromagnetic
modaes 2 and b, of frequency o, and w,. The umptitude of 1he clectro-

maenetic freld s suggested in the figures for one photon and two photon
occupancy of each mode, '

osciliator is a tocalized osciliator, whereas the electric and magnetic énergy of
an electiromagnetic cavity mode is distributed throughout the interior of the
cavity (Figure 42} For both problems the energy eigenvalues are integral
muitiples of /ey, and this is the reason for the similarity in the thermal physics of
the two problems. The language used to describe an excitation is different: s for
the oscdiatos 15 called the quantum number, and s for the quantized electro-
magnetic mode s called the number of photons in the mode.

We first calculate the thermal average of the number of photons in a mode,
when these photons are in thermal equilibrium with a reservotr ata temperature
t. The partition function {3.10} is the sum over the states (1)

Z = icxp{-—shw/r}. : (2}

%G

This sum {s of the form Z,\", with x = exp{—hw/1). Because x is smaller than 1,

the infinite series may be summed and has the value /{1 - x}, whence

i
T 1 ~exp(—hwjt) )




Planck Law and Sicfan-Boltemann Law

The probability that the system is in the state s of energy shw is given by the
Bohzntann f{actor:

Pls) = QEE%SMQ ()

The thermal average value of 5 is
sy = ¥ sP(s) = Z™ 'Y sexp(— shwfx). (5)
§s=0

With y = he/r, the summation on the right-hand side has the form:

id
me Y exp{ — 51)

}:s exp—11) iy
ty ~

ot *gﬂ) ) St
T ody\t=expt—1y) [ - exp(-at)

From {3) and (S) we find’

_expl-y)
S = T enplon)
Or
i
(s> (6)

= explhw/) — 1

RS

This is the Planck distribution functiott for the thermal average number of
photons (Figure 4.3) iit a single mode of frequency w. Equally, it 18 the average

nuinber of phoneons in the mode. The result applies to any kind of wave field
with energy in the fornt of ().

PLANCK LAW AND STEFAN-BOLTZMANN LAW

The thermal average energy in the mode i3

hien

(&) = (syhw = Wp(ﬁw{r} _

(7}
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1.0

Firure 4.3 Planck distribution as a function
of 1he reduced temperatuee 1 hw, Here (s{w))
is the therniat averaee of the number of
pliotans in the mode of frequency w. A plot of

Csfen)> + 4 0s also given, where 4 is the effective 03
zerd point occupancy of the mode; the dushed

e s the classical asymiptole. Note that we /’/ slw)
write : d
7
{3y + } = §eoth{hwmi2z). e
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e
'
0 I
0 0.5 t.0
7 g e

The high temperature limit ¢ » hw is often called the classical limit. Here

exp{hiw/t}) may be approximated as 1 + foy/r + -+, whence the classical
average energy is ' -

e = 1. ' {8)

There is an nfinite number of electromagnetic modes within any cavily. Each
mode n has its own {requency w,. For radiation confined within a perfectly

conducting cavity in the form of a cube of edge L, there {5 a set of modes of the
form

E, = Ex[,.sin wt coslngmx/LYsin{nay/L) sinfrnz/L) , {9a)
E,=E, siﬁmtsin{:txnx/L) cos{n,.n'y/L) sin{nnzfL) | {9b}
E, = E4 Sin wt sin{ix/L)sin{ngy/L) cos{n,nz/L). 8¢

Here E_, E, and E, are the three electric fietd components, and E,q, E;p and
E.o are the corresponding amplitudes. The three components are not indepen-
dent, because the field must be divergence-free:

J0E, 0E, ¢E
i et X 3 I =D,
- div E ax T oy Er o (10
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When we {nsert (9} into (10} and drop all commion factors, we find the conditiot

‘Ezoﬂ; "*}“ E)‘O”)“‘

+ E;Oﬂ: = EB' n = 0. (11)

This states rhar the field vectors must be perpendicular o the vector n with
the components n,, », and i, so that thic electrotuagnetic field in the cavity is a
transversely polarized ficld. The polurization direction is defisred as the direction
of Eq.

For a given triplet u,, n,, #, we can choose two mulually perpendiculiur
polarizarion directions, so rhat rhere are $wo distinet modes {or cach iriple
T T, I

O1i substitution of (9) in the wuve equution

52 2 41 N1g

of 0 I o S P

] (SRR V' S, C 12)
( 2 oy J:z)'__ s \._pf' {

i
-
-

with ¢ the velocity of light, we find
e A N T T ALY (13

This determines the {requency w of the mode in terms of the triplet of integers
ny, 1, . we deftne

g (4ot n (14}

then the frequencies are of the form

w, = nrcfk. {15}

The total cnergy of the photons in the cavity is, from (7),

| haw, )
U " L b < T "o

The sum is over the triptet of integers u,, n,, n.. Positive integers alone wilt
deseribe all independent modes of the form (9). We replace the sum over .,

n,, 1, by an integral over the volume clement du, di, du, in the space of the mode
indices. That is, we set

Z{_" “ ") = %J.:-imrz duf--+y, (7
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where the factor § = (})? arises because onty the positive octant of the space is
involved, We now multiply the sum or integraf by a factor of 2 because there are

two Independent polarizations of the c%cctmmagnctlc fietd (two indcpendent
sets of cavity modes). Thus -

U

< b
T f din? e
G explhw /1y — 1

= 1 '
= (r1} 3 e
(n i:‘.‘/l.}j; dnn el =1 " {18)

with {15} for w,. Standard practice is to transform the definite integrat to one
over a dimensioniess variable. We set x = nhen/Lt, and (18) becomes

= (2 hef/ L)L mhe) fﬂ" T — (19}

The definite integral has the value 2*/15; it is found in good standard tables
such as Dwight (ctted in the general references). The energy per unit volume is
T -

VETRST | (20)
m__..__w__._.__..__,. TN
with the volume ¥ = L2 The result tHat the rad:an{ energy density is propor-
Lional fo the fourth power of the temperalure is known as the Stefan-Boltzmana
faw of radiation.
For many applications of this theory we decompose (20} into the spectral
density of the radiation. The spcetral densily is defined as the energy per unil

voluie per unit frequency range, and is denoted as u,. We can find #,, from
(18} rewritlen in terms of w:

3

B or (47
U V '4’: f' R 21
/ —-femzw—-n_,c}_];cu (21}

cxp(hw/x_“} Y

50 that the spectral density is

I: w

= ——— 22
fo = 33 Pexplhoy/y — 17 [ (=)

R z
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Figure 4.4 Plol of X3 f(¢* ~ V) with x = hw/z. This
funclion is involved in the Planck radiation law for the
spectrad density n,. The temgperature of a black body may
be found from the frequency we,, at which she radiant
energy density is @ maximum, per unil frequency range.
This frequency is direcily proportionat 1o the femperature,

This result is the Planck radiation Iaw; it gives the frequency distribution of
thermal radiation (Figure 4.4). Quantum theory began Itere.

The entropy of the thermal photons can be found {rom the relation (3.34a)
at constant volume: do = dU/fr, whence from (20,

4nty 2
u’a = W T If"b
Thus the entropy is
o(t) = (A2 V45X tihe). (23}

The constant of integration is zero, frorn (3.55) and the relation between Fand o.
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A process carried out at constant photon eatropy wilt have V1 = constaut.
The mecasurement of high 1emperatures depends on the flux of radiant energy.
front a small hole in the wall of a cavity maintained at the temperature of
interest. Such a hole is said to radiate as a black body-—which means that the
radiation emission ts characteristic of a thermal equilibrivm distribution. The
cnergy flux density J; is defined as the rate of energy emission per unit arca,
The flux density is of the order of the energy contained in a column of uait
area and length equal to the velocity of light times the unit of time. Thus,

Jy = TcUtzyV] % (geometrical factor). o (24}

The geometrical factor is equal to §; the derivation is the subject of Problem 15,
The final result for the radiant energy flux is

cU(t) arad
Jy =
Y4y T sonie? (25)

by use of (20} for the energy density U/V. The result is often written as

Jy = o, T | (26)

the Stefan-Boltzmann constant _
gy = ntkg* /6003 c? (26a)

has the vatue 5670 x 1078 Wm ™2 K™% or 5670 x 10" ergem ™3 s K™%,
{Here g is not the eatropy.} A body that radiates at this rate s said o radiare
as a black body. A small hole in a cavity whose walls are in thermal equilibriuvm
at temperature T will radiate as a black body ar the rate given in (26). The rate

is independent of the pltysical constitution of the walls of the cavity and de-
pends only on the temperature,

Emission and Absarptidn: Kirchhoff Law

The ability of a surface lo emit radiation is proportional to the ability of the
surface to absorb radiation, We demonstrate this relation, first {or a black body
or biack surface and, second, for a surface with arbitrary properties. An object
is defined to be black in a given {requency range if all electromagnetic radiation
incident upon it in that range is absorbed. By this definition a hole in a cavity is
btack if the hole {s small enough that radiation incident through the hole will
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reflect enough times (rom the cavity walls 10 be absorbed in the cavity with
negligible loss back through the hole,

The radiant energy flux density J; from a black surface at lemperatuye 1 is
equal to the radiant energy flux density J, emitted from a small hole in a cavity
al the same lemiperature. To prove tus, let us close the hiole with the black
surface, hereafier catled the object. in thennal cquilibrium the thennal average
cuergy flux from the black object to the interior of the cavity must be cqual,
but opposite, to the thermal average energy flux from the cavity to the black
object.

We prove the following: If a non-black object at temperature 1 absorbs a
fraction @ of the radiation incident upon ft, the radiation flux emitted by the
object will be a times the radiation flux emitted by a black body at the same
tanperature. Let a denote the absorptivity and e the emissivity, where the
cimissbity is defincd so that the radiation flux emitted by the object is e tinies
the flux emitted by a black body at the same {ém{)"{:ra%urc. The object must emit
at the same rate as it absorbs f equilibribim 1s to be maintained. It follows that
a == e. This is the Kirchholf Iaw. For the special case of a perfect reflector, a is
zero, whence ¢ is zero. A perfect reflector does not radiate.

The arguments can be gencralized to apply to the radiation at any frequency,
as between w and w + dw. We insert a filter between the object and the hole in
the biack body. Let the filtcr reflect perfectly outside this frequency range, and
let it transmit perfectly within this range. The flux cquality argtuticnts now

apply to the transmitted spectral band, so that afw) = e{w) for any surface
in thermal equilibrium.

Estimation of Surface Temperature

One way to estimate the surface temperature of a hot body such as a star 15
from the frequency at which the maximum emission of radtant energy takes
ptace (sec Figure 4.4). What this frequency is depends on whether we look at the
energy flux per unit frequency range or per unit wavelength range. For u,,, the
energy density per unit frequency range, the maximum is given from the Planck

law, Eq. (22), as
3
4 (WWL..__“) =0,
dxl\expx — 1

3 - 3exp{—x) = x.

ar
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This equation may be solved numerically. The root is

g fhaT = Ny > 282, | 27)

as in Figure 4.4,

Tty e i T B ]
M-—“-——..‘ﬂt ST R F

B A 3

R T sk T

Example: Cosivic black éoa‘y background radiasion. A major recent discovery is that the
universe aceessible to us s {illed with radiation approximatefy like that of a hlack body
at 29K, The exisience of 1his radiation (Figure 4.5 is imporiant evidence for big bang
cosmologicsl models which assure 1ty the universe is eapanding und cooling wisls sime,
This sudiazion s feft over from an carly cpocks whet the universe wiss composed primagily
of cleclrons wsd protoas 31 it leasperaisre of shout 000K, The plesma of elechions snd
profons inferacied slrosply with cleciromsagnesic radiation 41 all imporianl frequencics,
so thai the matier ayd e bluck body radition were iy shesnsal cquitibicion, By 1he e
ihe universe hisd cooled 10 3000 K, e niaiter was pringarily in she forny of isomic liydrogen.
This imeracts with blsck body rudiation only al the freguencies of she Bydrogen spevirad
tincs. Most of 1he black body rudintion coergy thus was effecively decowpled from the
matter. Thereafller she radialion evolved with 1ime in a very sunple way: 1se phioton gas
was cooled by expansion al constanl enitopy 0 a iemperalure of 2.9 K. The pholon gas will

" remain at conslant entropy if lhe frequency of each mode is towered during the expansion
of the universe with 1he number of photons in eact mode kcpt constanl. We show in {38}
below thal ihe cofropy is conslant if the numbu of pholens in ¢ach mode is constant—the
occupancies determine the eniropy.

Afler the decoupling 1he evolulion of maner inle heavier atoms (which are organized
inlo galaxies, stars, amd dust clouds) was more comphicated than before decoupling.
Etectromagnetic radialion, such as slarlighl, radiated by the matter since the decoupiing
is superimposed on thie cosmic black body radiation.

R g T T g

ELECTRICAL NOISE

As an iinportant example of the Planck law in one dimehsfon, we consider the
spontaneous thermal Huctuations in voltage across a resistor. These fluctuations,
which are called noise, were discovered by J. B. Johnson and explained by
H. Nyquist.* The characteristic properny of Johnson noise is that the mean-
sguiare noise Voltase is proportional 1o the valve of the resisiance R, as shown
by Figure 4.6. We shall see that (V7)) is also direatly proportional to the tem-

* H. ‘\ugum Phys Rev. 32, JHO{3928); a deeper discussion is given by C. Kittel, Elemvusiry sratis-
tical physics, Wiley, 1938, Sections 2710,
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Figure 4.5 Fxperimenlal measurements of Lhe spectrum of the cosmic black
body radiation. Observations of the flux were snade with microwave helerodyne
receivers at frequencies beiow the peak, were deducad from optical measuremenis
of the spectrum of inlerstettar N molecutes neur lhe peak, and were measured
with 4 bulloon-barne infrared specirometer al frequencics above the peak.
Couriesy of P. L, Richards.

ncrature rand the bandwidith Af of the cireuit. (This section presunics a knowh
edge of clectroniugnetic wave propagation at the niermediate fevel)

The Nyquist theorem gives a quantilative expression for the thermal nowse
voltage generated by a resistor in thermal equilibrium. The theoreu is therefore
seeded 1n any estimate of the limiting signul-to-uoise ratio of an experimental
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Figure 1.6 Voitage squared versus resistance for various
kinds of conductors, including electrobytes. Afler
. Bb. Johnson,

apparatus. In the original form the Nyquist theorem states that the mean

square voltage across a resistor of resistance R in thermal equilibrium at
temperature t is given by

(V¥ = 4RTAf (28)

where Af is the frequency* bandwidth within which the voliage fluctuations
are measured; all frequency components outside the given range are ignored.
We show below that the thermal noise power per unit frequency range defiverzd
by a resistor to a matched load is ¢; the factor 4 enters where it does because in
the circuit of Figure 4.7, the power delivered 10 an arbitrary resistive load R’ is

g SYOR
DR = (29)

which at match (R’ = R) is {V2)/4R.

* in this section the word frequency refers to cycles per vait time, and not to radians per unit tine
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Noise generalor

I -
\\J_‘/ - Fiter
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resislance)

Figure 4.7 Equivalent circuil for a resistance R with
a generator of thermal noise that delivers power to a
load R'. The curreal

Vv
I = ——5-
Ry K

50 that the mean power dissipaled in [ilc: foud is
_ . (YHR
P (HR =

& . R+ R
which is a maximum with respect {o R when R” = R,
ta this condition the foad s said to be malched o the
pawer supply. At match, # = (V*)/4R. The filter
enables us {o Hmit the frequency bandwidih under
consideralion; that is, the bandwidih to whicli the mean
square volge fluctuation applies,

Consider as in Figure 4.8 a lossless transmission line of lengih L and charae.
teristic impedance Z, = R terminated at each end by a cesistance R Thus the
line is matehed at each end, in the sense that all enecgy traveling down the line
will be absorbed without refiection in the appropriate resistance. The entire
eircuit is maintained at temperature 1.

A transmission line is essentially an electromagnetic system in one dimension.
We follow the argument given above for the distribution of photons in thermal
equilibrium, but now in a space of one dimension instead of three dimensions.
The trausmission line has two phioton modes (one propagating in each direction}

of frequeney 2rf, == 2na/L from {i5), so that there are two modes in the fre-
guency range

§f = c'/L, : (30)

where ¢’ is the propagation velocity on the line. Each mode has energy
hen
e (G31)
expllienfty — 1 - o
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Figure 4.8 Transmission live of length L with : Z =R

maiched [erminalions, as conceived for the
derivation of the Nyguist theorem, The _

characteristic impedance Z, of the [ransmission R ' §R
line has the vaiue R. According (o the '

fundamiental theorem of transmission Hnes, the
terminal resistors are matched to the line wien
(heir resistance has the same value R,

in equilibrium, according to the Planck distribution. We are usually eoncerned
with circuits in the classical limit hw « 1 so that the thermal energy per mode

“is 1. It follows that the energy on the line in the frequency range Af is

2CASISf = 2L Af/c. (32)

The rate at which energy comes off the line in one direction is

-1 Af. ' ' : - (33)

The power coming off the lime at one end is all absorbed in the terminal
impedance R at that end; there are no reflections when the terminal impedance
is matched to the line. In thermal equitibrium the load must emit energy to the

Hine at the same rate, or cise its temperature would rise. Thus the power input
to the load is

P = (IR = 1Af , (34)

- but V = 2RI, so that (28) is obtained. The result has been used in low tempera-

ture thermometry, itt temperature regions (Figure 4.9} where it is more cott-
venient 1o measure {V?*) than 7. Johnson toise is the noise across a resistor
when 1o dc current is flowing. Additional noise (not discussed here} appears
when a de current flows.

PHONONS IN SOLIDS: DEBYE THEORY

So I decided to calculate the spectral distribution of the possible free vibrations
for a contivuous solid and to consider this distribution as a good enough
approximation to the actual distribution. The sonic spectrunt of a lattice must,
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0.3
N 0.2 Fipure 4.9 Mean square noise 1 oltage
“X“‘ ) flucruations observed experimentully from a
gy 3 6} resistor in the mixing chamber of a
N dilution refriperator as a function of magnetic
:3__: 0.1 temperaiure indicated by a CMN nowder
' thermometer. After R R, Gilfard, R, A. Webb,
and J. C. Wheatley, I, Low Temyp Physics 6,
533(3972).
0
0 H0 200 300
T a8 mK

of course, deviate front this s soon as the warelengtly becames comparable to
the distanices of the atoms. . .. The only thing which had to be one was to
adjust to the fuce that evevy solid of finite dimensions contains a finite munber
of atoms and therefore has a finite munnber of free vibrations. . . . At low enough
temperatutes, and it perfect analogy to the raddiation law of Stefon-

Boltmnann . . ., the vibrational euergy content of « solid will ¢ proportiotal
to T4
P. Dchye

The energy of an elastic wave in a solid is quantized just as the energy of an
clectromagnetic wave in a cavity is quantized. The quantum of energy of an
clastic wave 18 citlied a phonon. The thermal average number of pltonons tn an

elastic wave of frequency o is given by the Planck disteibution function, just
as for photons:

)y = (35)

explho/t) — 1

We gssume that the frequency of an chastic wave is independent of the amplinnle
of the elastic strain. We want to find the cnergy and heat capacity of the clustie
waves in soltds. Several of the resulis obtained for photons may be corried
over to phonons, The results are stimple if we assume that the velocaties of ull
elastie waves are equal—independent of frequency, direction of propagniion,
and direction of polarization. This assumption is not very accurate, but it helps
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account for the general trend of the observed results in many solids, with a
minimum of compultation.

There are two important features of the experimental resulis: the heat capacity
of a nonmetallic solid varies as t* at low temperatures, and at high temperatices
the heat capacity is independent of the temperature. In metals there is an extra
contribution from the conductiton clectrons, treated in Chapter 7.

Number of Phonon Modes

There is no limit to the number of possible’electromagnetic modes in a cavity,
but the number of elastic modes in a finite solid is bounded. If ihe solid consists

of N atoins, each with three degrees of freedom, tite total number of modes is
3N, An elastic wave hus three possible polarizations, two transverse and one
longitudinal, in contrast to the (wo possible polarizations of an electromagnetic
wave. In a transverse elastic wave the displacement of the atoms 1s perpendicular
to the propagation direction of the wave; in a longitudinal wave the displace-

ment ts parallel to the propagation direction. The sum of a quantity over all
modes may be written as, including the factor 3,

Z("‘)ﬂ%J“;K!Ildﬁ(“') , : ' {36}

by extension of (17). Here n is defined in terms of the triplet of mtegers i, 5y, 1.,

exactly as for photons. We want to find s, such that the total number of
¢lastic modes is equal to 3N:

;3;‘[;““ dun’ di = 3N, (37}

In the photon problem there was no corresponding limitation on the total

number of modes. It is customary to wrile ny, after Debye, for n_,,. Then (37)
becomes

drenpd = 3N;  np = (6N/n)'3 - {38)

The thermal energy of the phonons is, from (16),

U= Y () =) {sohw, mimﬁ ) {(39)
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or, by (36} and (38),
(40}

By analogy with the evatuation of (19), with the velocity of sound v written in
place of the velocity of light ¢,

]
- ] At |5 g X
U = (3nhof2L)(zLinht) J‘G e (41)

where x = »hivnfLe. For L? we write the volume V. Here, with (38}, the upper
limit of integration is

xp = mheap/le = he(6a*N, VY3, (42)
usuatly written as
‘\-D = U/T - kﬁﬂ!‘t . (43}

where ¢ is called the Debye temperature:
0 = (fw/kg)(G2 NV, (44)

The result (41) for the energy is of special interest at low temperatures such
that T « 0. Here the limit x; on the integral is much larger than unity, and v,
may be replaced by Infinity. We note from Figure 4.4 that there Is hutle contri-
bution to the integrand out beyond x = I0. For the definile integral we have

-3 4
a X b4
AX i {45)
J‘G x expx —1 I3
as earlicr. Thus the cnergy in the low temperatuze [imit is

IRANTY 3NLT?

uir) = Stkg0y T 5907 e}

proportional to T The heat capacity is, for t < kg or T « 8,

G\ 120°N [t )
I J— T o § e | 4 v
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Figure .10 Low lemperature heal capacily of solid argon, ploted against
T? 10 show the excetient agreement with the Debye T law. The value of 8
from these dma is 92 K. Caurtesy of L. Finegold and N. E. Phillips,

It conventional units,

cU 1203 Nky (T
WO Dbt SRSl ALY S B a7
Cr ({}T)y 5 (0) (#70)

This result is known as the Debye 7% law.* Experimental results for argon are
plotted in Figura 4.10. Representative experimentat values of the Debye tem-
perature are given in Table 4.1, The calculated variation of Oy versus 7/8 is
plotted in Fioore 411 The high temperature Himit T » 8 is 1he subject of
Problem 11, Several related thermodynamic functions for a Debye solid are
given in Tabic 4.2 and are plotted in Figure 4.12.

* £ Debye, Anpainder Phiysik 39, 789(1902); M. Born and T. v. Kirmdn, Physikalische Zeischrift
(3,297 (19125 14,65 (31913,
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|
/
/
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o /
Ficure .11 Hceat capacity €, of a solid, (= 3
gecording 10 the Debye approximation. The =
vertical scale is in Jmol™* K™% The E
horizonial scale is the 1emperature o
normalized to the Debye iemperature 0. The o 10
region of the T2 law is below 0.10. The i@
asymptotic value al high values of TG is =
24843 Jmot 7P KL e S
G
0 0.2 0.4 0.6 0.8 .0 1.2
L
[/
Table 4.2 Values of &, 8, U, and F on the Debye 1In:6ry, inunits I mot ™V K !
0T Cy S = kyo .4 110
0 249043 o “
0.1 2493 90.70 2403 - 6668
0.2 24 89 1143 113.6 - 25}
0.1 2483 6334 142 — 137
0.4 2475 56.21 53.5 - 87
4.5 24.61 50.70 41.16 —-60.3
0.6 24.50 46.22 329 —44 1
0.7 2434 4246 271 ~33.5
038 2416 39.22 228 —26.2
09 2396 3638 19.5 ~209
1.0 23714 3387 1682 ~ 1705
1.5 2235 2449 9.1 ~123
2 20.39 18.30 55 -~ 364
3 16.53 10.71 236 - 1.21
4 12.53 6.51 1.13 -(0.45
3 9.20 4.08 0.58 — {323
6 6.23 2.64 0.323 -G.118
7 476 i 0.187 ~(.066
8 345 1.22 0114 ~0.039
9 2.53 0.874 0073 ~0.025
10 1.891 0.643 0048 ~0.016
15 0.576 0.192 0.0096 -~ {.0032
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SUMMARY

i. The Planck distribution function ts

: 1
(57 = exp(hw/t} — 1

for the thermal average number of photons in a cavity mode of frequency o
2. The Stefan-Boltzmann law {s

U o,
e T e ¥
20 T

for the radiant energy density in a cavity at temperature 1.
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3. The Planck radiation law is

L _ .m3
mle explhoft) —~ 1

Uy

for the radiation energy per unit volume per unit range of frequency.

4. The ftux density of radiant energy is Jy = o, T*

, where oy is the Stefan-
Boltemann constant kg /60h% 2, '

. The Debye low temperature limit of the heat capacity of a diefectric solid
is, tn conventional uniis,

I2RNEkg [TV
G, (1Y

where lhe Debye teniperature
= (hejkg)(6n2NJV Y3,
PROBLEMS

L. Numnber of thermal photons.  Show that the number of photons Z(s,,) in
equilibeium at tempersiure 7 in a cavity of voluine V is

N = 2.404n" 2V(zfho)>. (48)

From (23) the entropy is ¢ = (4r°V/435)(r/hc)?, whence ¢/N = 3.602. It is
believed that the total number of photons in the universe is 10% targer than the
total nuwber of nucleons (protons, neutrons). Because both entropics are of
the otder of the respective number of particles (sec Eq. 3.76), the photons
provide the dominant contribution to the entropy of the universe, although
the particles dominaie J:c total epergy. We believe that the entropy of the

photons is essentially constant, so that the enteopy of the untverse is approxi-
mately constant with time,

2. Surface temperatare of the Sun.  The value of the total radiunt caergy Hux
density at the Earth frown the Sun normal {o the meident rays is called the solar
constant of the Earth. The observed value integrated over all emission wave-
lengths and referred to the mean Earth-Sun dissance is:

solar contstant = 0.136]s tem ™2 (49)



Problems

(a) Show that the total rate of energy generation of the Sun is 4 x 10%6 Js %,
(b) From this result and the Stefan-Boltzmann constant o, == 5.67 x
10712 3574 em™? K™%, show that the effective temperature of the surface of the
Sun treated as a black body is T = 6000 K. Take the distance of the Farth from
the Sun as 1.5 x 10'* cm and the radius of the Sunas 7 x 10'%cm.

3. Average temperature of the intevior of the Sun.  (a) Estimate by a dimen~
stonal argument or otherwise the order of magnitude of the gravitational self-
energy of the Sun, with Mg = 2 x 1033 gand Rg = 7 x 10'% cm. The gravi-
tational constant G i36.6 x 107 % dynecm? g~ 2 The sell-encrgy will be negative
referred to atoms at rest at infinite separation. {b} Assume that she total thermal
kinetic energy of the atoms in the Sun is equal to - § times the gravitational
encrgy. Thisis the result of the virial theorein of mechanics. Estimate the average
temperature of the Sun. Take the number of particles as 1 x 10%7. This estimaie
gives somewhat too low a temperature, because the density of the Sun §s far
from uniform. “The range in central temnperature for different stars, excluding
only those composed of degenerate matier for which the law of perfect gases
does not hold (white dwarfs} and those which have excessively small average
densities (giants and supergiants), is between 1.5 and 3.0 x 107 degrees.”
(O. Struve, B. Lynds, and H. Pillans, Efementary astronomy, Oxford, 1959.)

4. Age of the Sun. Suppose 4 x 10°% Y5~} {s the total rate at which the Sun
radiates energy at the present time. (3) Find the total energy of the Sun available
for radiation, on the rough assumptions that the energy source is the conversion
of hydrogen (atomic weight 1.0078) to helium {atomic weight 4.0026) and that
the reaction stops when 10 percent of the onginal hydrogen has been converted
to heliuni. Use the Einstein relation E = (AAf)c?, (b} Use (a) to estimute the
life expectancy of the Sun. Jt is belicved shat the age of the usiverse is about

10 x 107 years. (A good discussion is given in the books by Pen.bies and by
Weinberg, cised in the general references))

5. Susface temperature of the Earth. Calculate the semperature of the surface
of the Earth on the assumpiion sthat is a biack body in thermal equilibrium
rerddiates as much thermal ridiation as it receives from the Sun. Assume also
that the sueface of the Barih is at a constant semperature over the day-night

cycle. Use T = S800K; Rg = T x 10'%cnt; and rthe Earth-Sun distanee of
15 x 10" em.

6. Pressure of thermal vadiation. Show for a photon gas that:

(a) P = m(fU/{A‘V) == mZSﬁ n’{{} iy (50)
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where 5,15 the number of phiotons in the mode j:
(b) dofdV = —w/3V; "

{c) p= Uj3V. (52)

Thus the radiation pressure is equal to 4 x {energy density).

(d) Compare the pressure of thermal radiation with the kinetic pressure of a
gas of H aloms at a conceniration of t molecm ™ characteristic of the Sun.
At whal temperature (roughly} are the two pressures equal? The average
temperature of the Sun is believed to be near 2 x 107 K. The conceniration is
highly nonuniform and rises to near H0molecm ™2 al the center, where the
Kuetic pressure is considerably higher than the radiation pressure,

7. Free energy of a photon gas.  {a)} Show that the partiiion junction of a
photoen gas is given by

Z =TTl — exp{~he, 0], _ (53)

where e product is over the modes 1. (b) The Helmholtz free enargy is found
direclly from {33) as :

F= 1) logft — exp(—hw,/1)]. (54)
Transform the sum to an integral; integrate by parts to find

F = g2 VT /450303, (55)

8. Heat shields. A black (nonreflective) plane at lemperature T, is paraliel
to a black plane at temperature Ty. The net energy flux densily in vacuum be-
tween the two planes is Jy = o5{T,* — T}), where o, is the Stefan-Boltzmann
constant used in (26). A third black plane is inserted between the other two and
is altowed to come to a steady state temperature T,,. Find T, in terms of 7,
and T;, and show that the nct energy flux density is cut in half because of the
presence of this plane. This is the principle of the heat shield and is widely
used to reduce radiant heat transfer. Comment: The result for N independent
heat shields floating in temperature between the planes T, and 7} is that the
net energy flux density is Jy = g5{T,* — TN + 1)

9. Photon gas in one dimension. Consider a transmission line of length L on
which electromagnetic waves satisfy the one-dimensional wave equation
v?32Efex? = ¢*E/ér2, where E is an electric field component. Find the heat
- - capacity of the photons on the line, when in thermal equilibrium at temperature



Problews

. The enwueration of modes proceeds in the usual way for one dimeunsion:

1nke the solutions as siunding waves with zero amplitude a1 cach eud of the
line.

10. Heut capacity of intergalactic space.  Intergalactic space is belicved to be
occupied by hydrogen atoms in a counceniralion =1atomm™>, The space is
also oceupied by thermal radiaiion al 2.9 K, from the Primiiive Fireball. Show
that the ratio of the heat capacity of matter to that of radiation is ~ 147°.

t1. Heat capacity of solids in high temperarwe Emit. Show (hat tn (e Himi
T » 0 the heat capacity of a solid goes lowards e Hmit Oy — 3Nky, (n
conventional units. To obtain higher accuracy when T is only moderately

targer than 8, the heat capacity can be expanded as a power series in 1T, of
the form

Cy = 3Nky x [1“—'25",@«}. (56)

Determine the first nonvanishing term in the sum. Check your resuit by inserting
T = 0 and comparing with Table 4.2.

[2. Heat capacity of photons and phonons. Consider a dieleciric solid with a
Debye temperature equal to 100K aud with 10?? atomsem ™3, Estimate the
lemperature at which the photon contribiition to the heat capacity would be
equal to the phonon contribution evaluated at | K,

13. Energy fluctuations in a solid at Jow temperatures, Consider a solid of N
atoms in the tetnperature region in whicl the Debye T law is valid. The solid
18 in thermai contact with a heat reservoir. Use the results on energy fluctuations

from Chapter 3 to show that the root mean square fraciional energy fluctuation
F is given by

| 3
F? = (e - OO = -0—33(%) X (57)

Suppose that T = 1072K; 0 = 200K ;and ¥ = 10'* for a particle 0.01 cni on
a side; then & & 002, At 107° K the {ractional fluctuation in encrgy is of the
order of unily for a dielectric particle of volume I em?..

I4. Heat capacity of lignid *He at low temperatures.  The velocity of longitu-
dinal sound waves in liquid *He at temperatures below 0.6 K is 2.383 x 10%cm
s™!. There are no transverse sound waves in the liquid. The density is
0.145gem ™3, {8} Calculate the Debyc temperature. (b} Calculate the heat
cilpacity per gram on the Debye theory and compare with the experimental
value Cy = 00204 x T2,inJg™! K=, The T* dependence of the experimental
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value suggests that phonons are 1he most important excitations in liquid *He
below 0.6 K. Note that the experimental vatue has been expressed per gram of

liquid. The experiments are due to J. Wiches, C. G. Niels-Hakkenberg, and
H. C. Kramcers, Physica 32, 6251957

I5. Angular disyribution of radiant energy flux. (a) Show that the spectral
density of the radiant cnergy flux that arrives in the solid angle d$2 is
cti,c0s @ « d/4n, where 0 is the angle the normal to the unit area makes with
the inctdent ray, and v, is the energy density per unit frequency range. (b) Show
that tite sum of this quamity over all incident rays is Leu,,.

16, Image of a radiant object, Let a lens image the hole ih a cavity of area
Ay on a black object of arca A,4. Use an cquilibrivim argument to relate the
product 4,0, 10 4,0, where Q,; and ( are the solid angles subtended by the
fens as viewed {rom the hole and from the object. This getieral property of
focusing systems is casily derived from geonietrical optics, It is also truc when

difiraction is importanl. Make the approximation that all rays are ncarly
parallel {alt axtal angles smali).

17, Entvopy and occupancy. Weargtied in this chapter that the entropy of the
cosmic black body radiation has not cltanged with time because the number
of photons in each mode has not changed with time, although the frequency of
each mode has decreased as the wavelength has increased with the expansion
of the universe. Establish the implied connection between entropy and oc-
cupattcy of the modes, by showing that for on2 mode of frequency w the entropy
is @ function of the photon occttpaticy-{s) otily:

g = {5+ Dlogds + 1) ~ {5 log(s). {58)
It is convenicnt to start from the partition function.

18, Iscntropic expamsion of photon gas, Consider the gas of plotons of the
thermal equilibriutn radiation in a cube of volume V at teatperature r. Let the
cavity volume increase; the radiation pressure performs work during the expan-
sion, and the temperature of the radiation witl drop. From the result for the
entropy we know thtat 1¥13 is constant in such an expatsion. {a} Assume that
the temperature of thte cosmic black-body radiation was decoupled from the
terperature of tle matter when both were at 3000 K. What was the radius of
the universe at that time, compared to now? I the radius has increased lingarly
with time, at wltat fraction of the present age of the universe did the decouplitg

take place? (b) Show that the work doue by thte photons during the expansion
is

W e (27 45307V (e — 1))

Thie subscripts i and f refer to the initial and final states,



Prablems

19 Reflective heat sticld and Kircllioff's law,  Consider a plane sheet of mate-
rial of absorptivity o, cmissivity e, and rellectivity 5 = 1 — . Let the sheet be
suspended between and parallel with two black shects maintained at tempera-
tures ¢, and 7. Show that the net flux density of thermal radiation between the
black sheets is (I — r) times the flux density when the intermediate sheet is
also black as in Problem 8, which means witha = e = 1;r = 0. Liquid helium

dewars are oflen insulated by many, perhaps 100, layers of an aluminized
Mylar film called Superinsulation.

SUPPLEMENT: GREENHOUSE EFFECT

The Greenhouse Effect describes the warming of the surface of the Eanh
caused by the interposition of an tnfrarcd absorbent layer of water, as vapor
and in clouds, and of carbon dioxide in the atmosphere between the Sun and
the Earth. The water may contribute as much 90 percent of the warming
effect.

Absent such a laycr, the temperature of the surface of the Eanh is
determined primarily by the requirement of energy balance between the flux
of solar radiation incident on the Earth and the flux of reradiation from the
Earth; the reradiation flux is proportional to the fourth power of the tempera-
ture of the Earth, as in (4.26). This energy balance is the subject of Problem
4.5 and leads to the result T = (Ro/2 D) T, where T is the temperature
of the Earth and 715 that of the Sun; here Ry is the radius of the Sun and D,
is the Sun-Earth distance.

The result of that problem is 7 == 280 K, assuming 75 = 5800 K. The
Sun is much hotier than the Earth, but the geometry (the small solid angle
subtended by the Sun) reduces the solur Hux density incident at the Earth by a
factor of roughly (1/20)%.

We assunte as an example that the atmosphere is a perfect greenhouse,
defined as an absorbent layer that transmits all of the visible radiation that
falls on it from the Sun, but absorbs and re-emits all the radiation (which hes
in the infrared), from the surface of the Farth. We may idealize the problem
by neglecting the absorption by the layer of the infrared portion of the
tncident solar radiation, because the solar spectrutn lics almost entirely at
higher frequencices, as evident from Figure 4.4, The layer will cmit energy flux
[, up and I, down; the upward {flux will balance the sotr gux I, su ihat
Iy = I The net downward flux will be the sum of the solar fux {5 and the
flux 7, down from the layer. The latter increases the net thermal flux theident
at the surface of the Earth. Thus '

L= I+ 1, =21 (59

where I, is the thermal flux from the Earth in the presence of the perfect
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greenhouse effect, Because the thermal flux varies as 79, the new temperature
of the surface of the Earth is

Tpe = 2T = (1.19) 280 K =~ 333 K, (60)

so that the greenhouse warming of the Earth is 333 K — 280 K = 53 K for
this extreme exampie.* '

* For detailed discussions see Climate change and Climate c}mrxge i 992 Cambndgc R, 1590
- &nd 1992 J. T, Houghton et al, editors. :
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We considered in Chapter 2 the properties of two systems in therma! contact,
and we were led naturally to the definition of the temperature. If1he two systems
have the same temperature, there is no net energy fow between them. If the
temperatures of two systems are different, energy will flow from the system
with the higher temperature to the system with 1he lower lemperature.

Now consider systems that can exchange particles as well as energy. Such
systems are satd to be in diffusive (and thermal) contact: molecules can move
from one systcm to the other by ditfusion Hirough a permeable interface. Two
systems are i ¢quilibrium with respect to particle exchange when the net
particle flow is zero.

The chemical potential governs the flow of particles between the systems, just
as the 1emperalure governs the flow of energy. H two sysiems with a single
chemical species are at the same temperature and have the same value of the
chemical poteniial, there will be no net particle flow and no net energy flow
between them. I the chemical potentials of the two systems are different,
particles will flow from the system at the higher chemical potential to the
system at the lower chemical potentiall As an example, the chemical potential
of electrons at one terminal of a storage battery is higher than at the other
terminal. When the terminals are connected by a wire, electrons will fow in the
wire from high to low chemical potential.

Consider the establishment of diffusive equilibrium between two systems
&, and 8, that are in thermal and diffusive contact. We maintain 1 constant
by placing both systemis in thermal contact {Figure 5.1) with a large reservoir
. We found earlicr that for a single system & in thermal equilibrium with a
reservoir &, the Helmholtz free energy of & will assume the minimuimn value
compatible with thie common temperature ¢ and with other restratnts on the
system, such as the volunte aund the number of particies. This result applics
equally to the combined 3, + 3,:in equilibrivm with ®, In diffusive equilib-
rtim between 8, and 3;, the paiticle disuibution Ny, .V, betweert the systems
makes the ol Helndioltz free energy

F=F +F,=U, + U, ~ o, + o) (1)

a minimum, subject to N = N, + N, = constant, Because N is constant, the
Helmboltz free encrgy of the combined system is a minimum with respect to
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Figure 5.1 Example of lwo systems, $, and 8, in thermal coslact with each other
and wilh a large reservolr @, forming 2 closed total system. By opening the valve,
8, and 3, can be brought in dilfusive contact while remaining at the commen
emperature . The arrows at $he valve have been drawn for a net particis transkey

from 8, 108,.

vapiations ON, = —JN,. At the minimum,

s0 1t at equilibriung

(!F = (EF;/E}N:)rI!Arl 4 ({‘.{F_z/a.i\'rz)‘dNZ - 0 . {2]

with ¥, ¥, also lield constant, With dN, = —dN,, we have
dF = [(EF/eN}), — (€F2/éN) JdNy = O, 3)
(€F/ENY), = (CFL/EN ). )

DEFINITION OF CHEMICAL POTENTIAL

Wa define the chemical potential as

JL’LQJA:O

AU

u(r,V,N) = (ii) .
¥

5
cN ©)

e
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where p1s1he Greek letier mu. Then

——
ity =

expresses 1he condition for diffusive cquilibrivm. I jry > jiz, we see from (3)
that 4F will be negative when dN, is negamive: When particles are transferred
from &, to 3,, the value of dN; is negative, and «N, is positive. Thus the
free energy decreases gs purticles Row from 8, to 355 1hat is, particles flow
from the system of higl chemical potential to the system of low chemical

potential. The strict definition of jt is tn terms of a diffiercuce aud oot a dertva-
tive, because particles are not divisible;

ﬁ(j:,V,N] = F{r,V,N) - F{r,V,N — 1). {6).‘

The chemical potential regulates the particle transfer between systems in _
contact, and it is {ully s important as the temperature, which regulites the
energy transfer. Two systems that can exchange both energy and particles are
in combined thermal and diffusive equitibrium when their temperatures and
chemical potentials are equal: 1, = 195 sty = Hy.

A difference i chemical potential acts as a driving force for the transfer of

particles just as a dilference in temperature acts as a driving force for the transfer
of energy.

If several chemical SpeCleS are present, each has its own chemical potential.
For spectes j,

e gty

B = (CF/CN )y v,

N

where in the differentiation

e numbars of all particles are held constant except
for the species J.

e e— e 4 e s e o TE # SRR S e e T R i 4 8 T i Sy s i
Y R O e L T R

Example : Chemical potential of the ideal gas.

In (3.70) we showed that the free energy
of the monatomic tdeal gas is

| F= —~t{NlogZ, —logN!], {8)
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where
Zy = nul’ = (Mo 2nh*)> Y {9}

1s the partition function for a single particte. From {8),

d

(10)

o= (CFJENY - = —«t[k}gzi Ty log N!].
{8

Il we use the Stirling approsimation for A and assume that we can differentiate the
factorial, we Tid

! ! -
{—{;} ogN'T = :;1\; [loe /27 4 ¢N + DlogN — N
;-..—lag-'\'~i-(1f'\-’~z-—‘.-}-—1~-w-l::h)gN-%——*i (11}
e N 2N

which approaches log N for large values of N, Henice the chemical potential of the ideal
pas is

o= —flogZ, - log Ny = tlog(N/Z),

or, by (9),

== TEQE(;!/HQ] , {12a)

1
'

where n = N/V is the concentration of particles and ng = (M¢/2zh%)*? s the quantum
conceniration defined by (3.63}

Ifweuse p = F{N) — FIN - 1}from {6}as the definition of y, we do not need to use the
Stirling approximation. From (8) we obtain g = —[log Z, — log N}, which agrees with
{12). The result depends on the concentration of particles, not oa their total numher of on
the system volue sepurately. By use of the ideal pas law p = nr we can write {12} as

jt = tloglp/ngh {12b)

The chemical potential increases as the concentration of particles increases. This is what
we expect intuitively: particles flow frarm higher to lower chemicul potential, from higher to
lower concentration. Figure 5.2 shows the dependence on concentration of an ideal gas
composed pf electrons oy of heliung atoms, for two temperatures, the boiling temperature
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Figure 5.2 The concentration dependence of i, {n units of 1, of an ideal 235
compased of elecirats or helium atoms, 1t 4.2 K and 300 K. To be in the classical
regime with 71 « 1y, a gas must have a value of — st least 7. For electrons this is
satisfied ouly for concentrations apprecishly less than these in metals, as inthe

range of ypical semiconductors. For gases it is always satisfied under normal
comdiiians.

of liquid helimm at stmosplicric pressure, 4.2 K, and room wmperature, 300 K. Atomic
and molecular pases aiways have negative chamica potentials ynduer physivally realizable
condiions: at classical coneemirations such that ning <« 1, we see from (12) that g is
negative,

Internal and Total Chemical ?otcnlial

The best way to understand the chemical potential is to discuss diffusive
equilibrium in (he presence of a polential siep (hat acls on lhe parlicles. This
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Figure 5.3 A potcntial step between twe
systems of charped particies can be ¢stablished

-
AV

o1

by applying a voltage between the systems. For
thic volage polarity shown, the polential
enerpy of positive pagdicies with chargeg » U
fn systemy &, would be raised by gAY with
respect 1o &,. The potential energy of negative

to 3;.

problem has wide applicalion and includes the semiconductor p—u junction
discussed in Chapter 13. We again cosnsider [wo systems, 8; und 3,, al the
same lemperalure and capable of exchanging particles, but not yel in diffusive
equilibrium. We assume that initiatly 1y > jr;, and we denote the initial non-
equilibrium chemnical poleatial difference by Au(initial) = py — g, Now let a
difference M potenlial energy be established between the two systems, such
vhat the potentiat energy of cach particle in sysiem 8, is raised by exactly
Agp(mitzl) above us innial value. If the particles carry a charge g, one simple

way 1o establish this polential siep is to apply between thie [wo systems a voltage
AV such that

gAYV = g{l, — W) = Aplinial) , (13)

with the polarity shown in Figure 5.3. A difference in gravilational potential
also can serve as a potential difference: when we raise a system of particles each
of mass M by the height I, we establish a potential difference Mgh, where g is
the gravitational aceeleration.

Onee a patential step is present, the potentiad energy of the patricles produced
by this step is included in the energy U and in the free energy F of the system,
If in Figure 5.3 we keep the frec energy of system 3, fixed, the step raises the
free encrgy of 8, by Ny ApGinitial) = Nyg AV relative to its initinl vaiue. In
the language of cuergy stittes, to the encrgy of cach stte of 8 the potential

o - I Y7 . L1
energy N Ap(initial) has been added. The FREidn of the potential b:ypfkr
spociiied by (13) rafses ibe chemical potentiat of 3¢ by Ap(initiat), to make the
fet chemical potential af $p cqual tothar of S8y

i (fnal) =y (initial) + [,o(initial) — py{initial)]

= y(initial) = ps{fiual), (14)

particies would be lowered in 8, with respact
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When the barrier was inserted, g, was held fixed. Thus the barrier gAV =
po{iotsal) — gy (initial) brings the two systems into diffusive equilibrium.

The chemical potential is equivalent to & true potential encrgy: the
difference in chemical potential between two systems is equal to the
potential barrier that will bring the two systems into diffusive equiltbrium.

This statement gives us a feeling for the pliysical effect of the chemical poten-
tial, and it forms the basis for the measurement of chemical potential diflerences
between two systems, To measure p, — p,, we establish a potential step
between two systems that can transfer particles, and we determine the step
height at which the net particle transfer vanishes.

Only differences of chemical potential have a physical meaning. The absolute
value of the chemical potential depends on the zero of the potential energy
scale. The ideal gas result (12) depends on the choice of the zero of energy of a
free particle as equal to the zero of the kinetic cnergy.

When external potential steps are present, we can express the total chemical
potential of a system as the sum of two parts:

HO= g = Hey + - (15)

Here p,, is the potential encrgy per particle in the exteril potential, and i,
ts the internal chemical potential® defined as the chemicai potential that wouid
be present if the external potential werg zero. The term g, may be mechanicul,

clectrical, magnetic, gravitational, ete. in origin. The cquilibrium condition
iz = u,; can be expressed as

Apul = "Apial' (16)

Unforiunately, the distinction between exiernal and internal chemical poiential
sometimes is not made th the literature. Some writers, particularly those working
with charged particles in the fields of electrochemistry and of semiconductors,
often mean the internal chiemical potential when they use the words chemical
potential without & further quabifier.

The total chemical potential may be called the etectrochemical potential if
the potential barriers of interest are electrostatic. Although the term electro-

* Gibbs called o the potential and Hin the intrinsic potenifal. He rccogmzc.d that 2 voltmeter mea-
" sures diﬁcrcnccs in ;.t. :
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Sysiem (2)

—

Figure 5.4 A model of vhe variation
almasplieric pressuee with abiftude: |
voluines of gas at dilferent heights in
gravitmional field, in thermal and dif
conticl.

System {1)

]

.~

chemical potential Is clear and unambiguous, we shall use “total chemical
potential.” The use of “chemical potential” without an adiective should be
avorded ut situations in which any confusion abotit s meaning could oceur,

- Rt T T [ W e s

Example: Variation of barometric pressure with altitude,  The simplest example of the
dilfusive equilibrium belween systems in differenl exicrnal poleutials is 1lie cquitibriom
between fayers at differcnt heights of she Eacth's atmosphices, assumed 10 be sothermal.
The el wriasplicre is in hnperkdt equidiboium: it is constantly upse) by metearolopicat
processes, borh in the form of macroscopic air movemenis sud of strong scmperature
gridients from cloud formation, and beciuse of hew iuput from the pround. We may
mike st approsimaie model of she sumosphere by tresving the differem i layers as
systenis of tdend guses in thermal and diftusive equilibrium with eachi other, in differaun
externul potentials (Figure 5.4) Hwe place the zero of the poienttisl energy ar ground level,
the potential energy per molecule at height it is Myl where M is the particle mass and g the

gravitational acceleralion. The internal chemical potential of the parlicles is given by (12}
The total chemical poleniiai is

p = tlog(n/ngy) + Mgl {17}
In equilibriwin, this must be independent of the hci.\_:}ﬂ; Thus
tlog{n(ld/ng] + Mgh = riog[n(0)/ne] ,

and the concentration u(h) at height /i satisfies

n{h) = n{O)exp(— Mgh/1). _ | | {18



136

—
03t \\
-i_
0»2 \ SYRPEEN Y S————
e K
5 01
: \
£n !
w . 2 085 ¥
Flgure 5.5 Decrease of atmospheric pressure 5,
with ahitude. The crosses represent the average =
atmosphere as sampled on rocket flights. =
The connecting siraight line has a slope : 402 \
corresponding 1o 4 temperature T o= 227 KU 5 o+
£ 00t A

Chapier 5: Clemical Potential and Gibbs Distribution

LO¢ T

0.005F \

0.002

0,_0010 W 20 30 40 50
teight, in kim

The pressure of an ideal gas is proportional 1o the concentration; therefore the pressure
at ahitude b is

pUy = p(0)exp(— Mgh/c) = p(Qyexp(~— /i) (19)

This is the burontelric pressure equation. Tt gives the dependaitce of the pressure on aliitude
it an isothermat aunosphere of a single chemical species. At the characieristic height b, =
1/Mg the stmospleric pressure decreases by the fraction ¢7f = 0.37. To estimate the
characteristic fieight, cousider an isothermal atmosphere composed of nitrogen mofecufes
with a nofeculir werght of 28, The mass ofan N,y molecute is 48 % 107 g, At tentpera-
ture of 290K the vafue of 1 2 £,T 1540 x 107 Verg. With g = 980 cnis 72, the chunic
tepste bioight b is 8.5km, approximately § miles. Lighter moleceles, Hy and He, will
extend farthier wp, bat these fuive fargely escaped from the wamspheres sce Probiom 2.

Becawse the Barilt's snosphicre s not avenratedy isatheenst, sgh) fias 1 agorc cotplicated
behavior. Figure $.5 is a logantfunic plat of pressure data between 10 and 40 kilometers,
taken on rocket flights. The data poinss fal near a straipht fine, sugpesting roughly iso-
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thermal behavior. The straight tine connecting the data points of Figure 5.5 spans a pressure

range plin)ptn) = 1000:1, over an altitude range from f; = 2knuto fr; = 48km. Now,
from (19},

r{fil) = i fg "
p{hz) c {hz !I) {.4'.,}

sothatthe slope of the line is AMfg/fr, which leadsto T = 1k, = 227K, The non-intersection
of the observed curve with the point & = 0, pth)/pl0) = 1,is caused by the higher tempera-
ture at fower alisiudes,

The atmosphere consists of more than one species of gas. In atomic pereent, the com-
position of dry air at sca fevel is 78 pet Ny, 21 pet O, and 0.9 pet Ar; ather constituents
account for fess than Q.1 pat cach. The wuter vapor content of the atmosphere may be
appreciable: at T = 300K {27°C), a relative humidity of 100 pet correspouds 1o 3.5 pat
H ;0. The carbon dioxide coneentration varics sbout & pominal value of 0.03 pet. In an
deal static isothermal atmosphere gaclt gas would be in equilibrium with tiself. The con-
centration of each would fall off with 3 separate Boltzmann factor of the form exp(—~ Mgh/t),

with M the appropriate molecular mass. Because of the Jbhiferences in nass, the diffesent
consttuents sl off at different raies.

- T s I T PR d_.__.‘._--..._-\..:,-...h_.-..-;..f:..__._.. R Rt Y

Example: Chemical potcntial of mobile magnetic particles in a magnetic field. Consider
a system of N identical particles cach with a niagnetic moment i, For stmplicity suppose
each toment 18 directed either parallel | or antiparalle! | 10 an applied magnetic ficld B.
Then the potential energy of a T particle is — mB, and the porential energy of a § particle

+mB. Wemay treat the pasticles as belonging to the two distinct chemical specics labelled §
and |, one with external chemical potential p,, (1} = —mBand the other with pi,, {{} = mB.
The particles T and | are as distinguishable as 1wa different isotopes of an clement or as twa
different eloments; we speak of T and | as distinet species in equilibrium with each other.

The internal chemical potcnmls of the particles viewed as ideal gases with concentrations
iy and ny are

el ) = tloglm/ngl;  madl) = tloglngng) (21

where ny = (M1 224%)% is the same for both species.
The total chemical potentials are

. ; '
Faud 1) = tlog(mfug) — w8, {224
tall) = tloglaug) + . {5
If the aupoetic fold vavies sunamtode over the volmne of the systa, the ooernteation
1 it vary over the valumne ineider fo ntaintain g cotstant total chemscat pes - aad (1)

over the volume (Vigure 5.6). (The total chienuecal potential of a species s contstant wdepen.
dent of position, of there is free diffusion of pacticles within the volurie ) Because the two
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Figure 5.6 Dependence of the chemical potential of a gas of magnetic
particles on the concentration, at several values of the magnetic field
intensity. Hn = 2 x 107 cm”? for B = 0, then at a point where 8 = 20
kilogauss (2 sk} the concentration will be 2 x 10% cm ™3

species in equilibrium have cqual. chicmical potentials,
) = consiant = g {}) (23)
The desired solutions of{22i and (23) are casily seen by substitution to be:
n(By = {n{Oyexp(mB/t);  ny(B) = n{O)exp(—mB/), {24)

where u(0} is the total concentration my + n; at a point where the field B == 0. The total
concentralion at a poinj at magnetic field B s

H{B) = 1n,{B) + i(B) = $n{0) exp(mB/t) + exp{—mB/1}};

n(B} = n(Q)cosh(mB/) ~ n((})(i 4 i?;{iw 4 e ) {25}

The result shows the tendency of magnetic particles to concentrate in regions of high
magnetic fcld intensity. The functional form of 1he resolt Is not limited 1o atoms with twe
magnetic orieatalions, but {s apphicable 1o fine feeromagnetic particles tu suspension in a
colloidat solution. Such suspensions are used in the laboratery in the study of the magnelic
flux structure of superconductors and the domain structure of ferromagnetic materials, In

engineering, the suspensions are used to test for fine structural cracks in high strength steed,
such as turbine biades and aircraft landing gear. Whenthese are coated with a ferromagnetic
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suspension and placed in a magnetic field, the particke concentration becomes enhanced at
the sniense fields af the edyes of the crack.

In the preceding discussion we added to p,, the internal chemical potential of the
parbicles. tf the particles were ideal gas atoms, 1, would be given by (12} The logacithmic
form for g, 15 not restricted to ideat guscs, but is a consequence of the conditions that the
particies do not interact and that thetr concentration 1 sufcientiy fow. Hence, {12) applies
to macroscopic particles as well as to atoms thut satisfy these assumptions. The oniy
difference ts the valac of the guantuns concentration ny. We can therefore write

M. = Tlogi + constant | (26}

where the constiunt (= — viog ng) does not depend on the concentrstion of the puctjdes,

1 S s e e eim e

+

Example: Battevies,  Ownc of the most vivid exasples of chemical potentiuts and potential
steps is the ckatrochemical battery. §n the famifiat fead-acid battery the negative electrode
consists of metudlic fead, Pb, und the positive electrede is a fayer of reddish-brown lead
oxide. PO, o a Pb subsieale. The cleairodes are immersed in difuled sutbaric acid,
FE,SCh,, which s partially jonized into H* ions (protons} and SO, 77 ioas {Figure 5.7}
it is the tons that mattes,

fn the dischiarge process both the metaftic Pb of the negative electrode and the PhQ,
of the positive clectrode are converted to fead suifsse, PhSO,, via tse two reactions:®

Negutive electrode:
Pb 4+ SO,”~ — PbSO, + 2¢7; (27a)

Positive electrode:
PbO, + 2HY 4+ H,S0, + 2¢~ — PbSOG, + 2H,0. (27b}

Because of {274} the negative elecirode acls as a sink for SO, tons, keeping the inteenal
chemical potential p{SO,™ 7} of the suifate tons at the surface of the negative electrode
jower than inside the clectrolyte {see Figure 5.7b). Simitarly, because of (27b) the positive
¢lectrode acts as a siak for H* ions, keeping the internal chemical potential p(iH ") of the
hydrogen ions fower at the surface of the positive electrode than tnside the electrolyte. The
chemical polential gradients drive the {ons towards the electrodes, and they drive the
efectrical currents duriag the discharge process.

if thc baltery terminals are not counected, electzons are depleted from the positive
electrode and accumulate in the negative clectrode, thereby charging both. As a resuit,
electrochemical potential steps develop at the electrode-clectrolyte interfaces, steps of
exuctly the correct magnitude to equalize the chemicat potential sicps and to stop the
diffusion of tons, which stops the chemical reactions from proceeding {urther. ifan external
current is permitied to flow, the reactions resume. Electron flow directly through the
electrolyte is negligible, because of & neghgible electron concentration in the electrolyte,

* The reactions given are ncl reactions. The actual reaction steps are mote complicaled,
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figure 3.7 o} The feusd-acad bavlery consists of a P and a PhQ, clectrode immetsed in
partiatly lontred 11,50,. Oue SO; 7 ion converts one Pb atom nto PSSO, + 2¢7;
two H ™ fons plus one un-ionized H,50, molecule convert one PO, molecule mio
PHSGy + 2H,0, vossuming two electrons, {b) The electrochenncul polentsals for SO~
and H" before the development of interital potential barriers that stop the ditfusion

and the chemical reaction. {¢) The electronztic powentiad ¢{x) afier the formanion of the
barrier. :
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During the charging process the reactions opposite 1o {37a,b) take place, because now an
extersad voltage is spphied that genetales clectrosialic poremial steps 1 the surfisce of she

clectrude of such sksgaitude s 1o reverse Uie sipn of 12 (lotst) chenical polentist gradicms,
sad benee tie dircction of ion How,

We denote by AV, and AV, the diffesences in clectrostutic polentind of the negative and

positive clecirodes relative to the common clectrolyie. Because the sulfate fons carry two
negative charges, diffusion wilt siop when '

~2gAV. = Au(SO," 7). {28a)

Diffusion of the 1™ ions will stop when

+qAV, = Au(H*). (28b)

The two polentials AV_ and AV, are called half-cell potentinls or ballcell EMFs
{tlectromotive forces); their magnitudes are known:

AV, = —Q04voli; AV, = 4+16volt.

The total clectrostatic polential difference developed acress one full cell of shic banery,
as required 1o stop the diffusion reaciion, is

AV = AV, — AV. = 20volt, a (29

This is the open-circult voltage or EMF of the battery. It drives the ¢lectrons from the nega-
ttve seniminal 10 the positive lerminal, when the 1wo are connected.

We have fgnored {ree electrons in the electrolyie. The poleatial steps tend to drive
elecrrons from the negative elecirodes into the clectrolyte, and from the clecirolyie tuto the
positive electrode, Such an electron current is present, but the magnitude is so small as to be
practically negligible, because the concentration of elecirons in the clectrolyte is many
orders of magnitude less than ihat of the ions. The only effective electron flow path is
through thie external connection between the electrodes.

Chemical Potential and Entropy

In (5} we defined the chemical potential as a derivative of the Helmbholtz frec
energy. Here we depive an alteruate telation, needed later:

{UVINY ’a .
£ e Ty . {30}
T &N o

Tlis expresses the ratio pfr as a derivative of the eatropy, similar to the way
Jtwas defined in Chapter 2,




Chapter 3: Chemical Potential and Gibbs Distribution

To derive {30}, consider the entropy as a function of the independent variables
U, ¥, and N, The dilferential

' o ' &o - {Ca :
da = dU — iV — ) 4N 31
¢ (CU)y ot (av)uly‘ N (51\’);,:,»- 1)
gives the differential change of the entropy lor arbitrary, independent differential
changes dU_dV, and dN. Let dV = 0 for the processes under consideration.
Further, select the ratios of do, dU, and dN tn such a way that the overall

temperature change dt will be zero. If we denote these nterdepeitdent values
ofda, dU, and dN by {60),, {81}, and {dN},, then dr = 0 when

a o
(o0}, = (6U)J5UL + (5 )(5N)

After division by (5N},

oy OO ()
(SN), 3U J« (6N). © \&N/,

The ratio (56)./(6N), is (Fa/3N),, and (U} JBN), is (3U/3N),, alt at constant
volume. With the original definition of 1/, we have

Su ou da
= [ =y . 33
I(aw),.y (aN),,,, + I(aN)U.,, (33)

This expresses a derivative at constant U in terms of derivatives at constant <.
By the original definition of the chemical potential,

{ 8F al éo
= | 25 I (el - = 34
# (BN)“V (aN)s.r r(‘aN):-V ‘- o9

and on comparison with (33} we obtain

4= —1(00/dN)g (35)

The two expressions {5) and {35) represent two different ways to express the
. same quantity p, The difference between them is the following. In (5), F isa
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Table 5.1  Summary of relations cxpressing the remperaiure

- 1, the pressure p, and the chemical potential i in 1erms of
partiad derivatives of the ewiropy o, the encrey U, and the free
enerpy F,with ¢, U, and F given as functions of their nawurat
independent variables

s{U.V,N} Ule,V,N) o, VN
. 1 (E_fg: =Y r is independent
T clU e n fo .8 vanabie
P (:1) (f-; - (E
” t \eVew ? eV iox PEer N
) I (Es) (E‘U) : (EF)
& t \eN/yx =N % N FEAER e

function of its natural independent variables 1, V, and N, so that p appears as
a function of the same variables. In (31} we assumed ¢ = o(U,V,N), so that
(35) yields p as a function of U, ¥, N. The quantity p is the same in both (5)
and {33}, but expressed in terms of different variables. The object of Problem 11
1s to find a third relation for u: '

p‘{ai V,N) = (6U/6N)UV ' {36)

and in Chapter 10 we derive a relation for g as a function of 1, p, and N. Table 5.1

compiles expressions {or 1, p, and p as derivatives of o, U, and F. All forms
have their uses,

Thevmodynamic identity.  We can gencralize the stalement of the thermo-

dynamic identity given in {3.34a} o include systems in which the number of
particies is aliowed to change. As in {31},

Fale] fe éa
U el — e N.
da (JU)V’N:IU + (:ﬁ‘ V)U’Nd]/ + (E’N)U‘,-‘“ (37}

By use of the definition {2.26) of 1/1, the relation {3.32) for p/r, and the refation
(30} for — pift, we write do as |

~do = dUft + pdVjt ~ pdNJr. (38)
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This may be rearranged to give

4 e

1

dU = 1de ~ pdV + udN , {3%)

which is a broader statement of the thermodynamic identity than we were able
to develop in Chapter 3.

GIBBS FACTOR AND GIBBS SUM

The Boltzmann factof, derived in Chapter 3, allows us to give the ratio of the
probability that a system will be in a state of energy £, (o the probability the

systern will be in a state of energy ¢,, for a system in thermal contact with a
rescrvoir at temperature z;

na ;fm’
r P(Es) C-“P(“Erjf) (40)
P exp(—ext) |
This is perhaggs the best kn{)wn resuiz of statistical mechanics. The Gibbs factor
is the generalization ofthe Boltzmann factor to a system in thecmal and diffusive
contact with a reservoir at temperature 7 and chemical potential u. The argu-
ment retraces much of that presented ixxthaptt“.r 3.

We consider a very large body with constant energy U and constant particie
number Ny. The body is composed of two parts, the very large reservoir 8 and
the system &, in therma!l and diffusive contact {Figure 5.8}, They may exchange
particles and energy. The contact assures that the temperature and the chemical
potential of the system are equal to those ol the reservoir, When the system lias

. N particles, the reservoir has Ny — N particles; when the system has energy ¢,
the reservoir has energy Ug — & To obtain the statistical properties of the
systemn, we make observations as before on identical copies of the system +
reservoir, one copy for each accessible guantun: state of the combination. What
is the probability in a given observation that the systens will be rouud to con-
tain N pamcles aud to be in a state s of energy g,7

The state 5 is @ state of a System having some specified nuntber of particles.
The energy g, 1s the cnergy of the state s of the N-particle system; sometimies
we write only g,, if the meaning is clear. When can we write the cnergy of a
system having N particles in an orbital as N times the euergy of one particle
in the orbital? Ouly when interactions between the particles are neglected, so
that the particles may be treated as independent of each other.
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= i iy —

Reservoir System
& 8
o Insulation

Vipwe 5.8 A system ut thermaf aod diffusive contact widt
a fnrpe reservotr of energy and of particles. Tite total system
A + 315 insudnted from the external world, so that the
total encrgy and the total number of particles are constant.
The temperature of the system s cqual 1o tie lemperature
of the reservoir, and the chemical poteutial of the sysiem is
equal to the chemical potential of 1he reservolr. The system
iy be as small as one atom or it may be macroscopie, bu

the reservolr is always to be titought of as niuch larger than
tlte system.

Let P(N,e,) denote the probability that the system has N particles and is in
a particular state s. This probability is proportional to the number of aceessible
stales of the reservoir when the state of the system is exactly specified. That

is, if we specily the state of &, the number of accessible states of @ + 3 is just
the nuntber of aecessible states ol &

gldt + 8) = gl®@) x L {41

The factor 1 reminds us that we are Joaking at the system 3 i a single spacified
stafe, The g{a) states of the rescrvoir have Ny — N particies and bave energy
U, - &,. Because the system probabitity P{V e} is proportionid to the mumber
of accessible states of the reservoir,

P(N,g,) oo g{Ng — N,Uy — ¢&,). {42}
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Figure 5.9  The reservoir is in thermmat and diffusive contact with the system. in {a} the
sysiem is in quantum state I, and the reservoir has g{iv,

— N Uy — g} states accessible
to it. In (b} the system {s in quantum state 2, and the reservoir has g{iNg — Ny, Ug ~ 3]

stafes accessible 1o it. Because we have specified the exact state of the system, the total
number of stutes accessible to A+ 8 is just the nunber of states accessible to @Y.

Here g refers to the resetvoir alone and depends on mc numbl,r of particles
in the reservoir and ot the cnergy of the reservoir.

We can express (42) as a ratio of two probabilities, one that the system is in
state 1 and the other that the system is in state 2:

(NI)F}} g\(Nﬂ - N-“Uo - a'i)‘ {43}
P(Nz)ﬂz} giNg — N,Ug — &3}

where g refers to the state of the reservoir. The situation is shown in Figure 5.9.
- By definition of the entropy

g{NO)UO) == t’:JL'p[cI{No,UG)] 3 {44}
so that the probability ratio in (43} may be written as

P{Nhsl) - CXP[G(NG = NhUG - 81)_1_ (45)
P(N e} CXP[G{NO -~ N, Ug 52)],

or

P(N¢,)
‘P_{HNZ)EI)'m exp[q(Ng B NhUO - 5(} - G{No - NZIUO " 62)]

=explds) S L
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Here, Aa is the entropy difference:
86 = a(Ny = NyjyUp = &) ~ a(Ng — NpUg = £5). (47
The reservoir is very large in comparison with the system, and Ac may be

approximited quite accurately by the first order terms in a series expansion in

the two quantities N and e that relate to the system. The entropy of the reservoir
becomes

fa {a
o(Nog — NUy - &) = o(NoUg) = N[} — e[} + . @Y
&Ny Ju, o /x,

For As defined by (47} we have, to the first orderin Ny — Ny and ing, — &,

‘o o fa
Ag = (N, — N} —— - ny Lyl — ] . 43
G (N, ﬂ({-}Nu)Uu (¢, Fz}((-}un)”n (+9)

We know that

il

1
T

2a '
S , (50a
(E U D)NQ )

by our original definitions of the wemperature. This is writien for the reservoir,
but the system will have the same temperature, Also,

e

o [ e 50b
T - (51’\’0)(:0 ' ( )

by (30).
The entropy difference (49) is

Ag =

(N, ~ Nyu __ (8; — E3)
T T ’

(51)

Here Ao refers to the reservoir, but Ny, N,, &, £, refer to the system. The central
result of statistical mechanics is found on combining (46) and (51):

P(N,e,) _ exp{(Npt — 5:)/’]’
P(Nze2)  exp[(MNap — 7))
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The probability is the ratio of two cxponential factors, cach of the form
exp[{Nu ~ £)ft]. A term of this form is calied a Gibbs factor. The Gibbs factor
is proportional to the probability that the system is in a stale s of energy &,
and number of particles' N. The result was first given by J. W. Gibbs, who
referred to it as the grand canonical distribution.

The sum of Gibbs factors, taken over ali states ol the sysiem for all numbers

of particles, 1s the normalizing facior that converts relative probabilities to
absolute probabilities: '

[r4]

E 1) = Z Z exp[{Ny — Es(h';)/f] = Z exp[{Np — gyv) 7} (53)
i N=0 4Ny ASN
.

This 1s called the Gibbs sum, or the grand sum, or the grand parition function,
The sum is to be carried out over alt states of the system for all numbers of
particles: this defines the abbrevintion ASN. We have written g, as gz 0
emphasize the dependence of the state on the number of particles . That s,
£y, 18 the energy of the state (N} of the exact N-pariicle hamiltonian. The
term N = 0 must be included: if we assign its energy as zero, then she first
term in 3 will be L. - :

The absolute probability that the system will be found in a state Ny, ¢ is
given by the Gibbs {actor divided by tire Gibbs sum:

PN &y) = E@g&%:ﬂ}fﬂ (54)

Tlris applies 10 a system that is at lemperature v and chemical potemial g The
ratio of any two P's is consistent with our central result (52} for thre Gibbs
* factors. Thus (52) gives the correet relative probabilities for the states Ny, &

ard N, £,. The sum of the probabilities of all states for all irumbers of particles
of the system is unity:

S expllNp — £, 7] 3
T P(Ne) = Y P(Me) = O =Y =1,
LI = g P 3 3

by the definition of F. Thus (54) gives the correct absolute probubiliny.”

(55}

JRS———

© Readers interested iy probability theory will find Appendix C on the Poisson Jdistributior to be

particudardy helpfl. The muthod used there 10 derive the Pobsson distribution depends on the
Cobbs sum. See abo Problem 16,13
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Avcrage vilues over the sysiemts n diffusive and thermal contiet with a
reservoir are casily found. 1f X(N,s) is the valuc of X when the system has N

purticles and is in the quantum state 5, then the thermal average of X over all
Nandallsis '

Y X (NS exp[(Npe —~ £)/7]
(XY = T X(Ns)P(N,e,) = 259 e (56)
ASN &

We shall use this result 1o calculate thermal averages.

)U}\.‘}

Number of particles, The number of particles in the system can vary beeause

the system is in diffusive contact with a reservoir. The thermal average of the
numnber of particles in the system fs

Y Nexp{(Ny — g/}
(NYy = 238 5 . (57

agcording .10 {56). To obtain the numerator, each term in the Gibbs sum has

been multiplied by 1he appropriate value of N. More convenient forms of (N}
can be obtaited from the definition of 3 :

¢k 1 _ 5
E{tﬂ == Y Nexp[(Nu — &)/}, (58)

ASN

whence

Ny = LCF _ [O1ed (59)
& cu cf

The thermal average number of particles is casily found from the Gibbs sum
& by direct use of (59). When no confusion arises, we shall write N for.thc
thermal average ¢N). When we speak later of the occupancy of an orbital,
J ot ¢fy will be writien interchangeably for N or {ND.

We ofien emuploy the handy notation

{ A = explpfty . I (60)
)

where 1 is called the absolute activity. Here £ is the Greek letter lambda. We
see from (12) that for an ideal gas 4 is directly proportional to the concentration.
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The Gibbs sum is wriiten as

3=Y VAN expl~ef0) = T i¥expl=afd) (61)

ASN

and the ensemible average number ‘uf particles {(57) is-
. €
(N) = d=logg. (62)

This relation is useful, because in many actual problems we determine 2 by

finding the vatue that will make (N} come out equal te the given number of
particles.

Energy, Thethermal average energy of the system is

Y e exp[H{Nu — &)
U= () = A8 ,
SIS ._

where we have temporarily iut-rodu'ced the notation f§ = 1/r. We shall usually
write U for {e). Observe that

(63)

. t ¢ 3
(Np = &)y = (N — U = (}ri{% = :1;,} g & . (64)
so that (59) and {63) may be combined 10 give
X N
) L R CT R o T

A simpler expression that is more widely used in caleulations was obtained in
Chapter 3 tn terms of the partition function Z.

T T T T T T e e e vt v
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Example: Occupancy zevo or gne. A ted-blooded example of a sysiem that miny be
occupied by zero molecules or by one molecule is the heme group, which may be vacani or
may be occupied by one O, molecule~and never by more than one O, molecule (Figure
5.10). A single hemie group occurs in the proiein myoglobin, which is responsible for the
red color of meat. {f¢ is the energy of an adsorbed molecule of O, refative to O at rest at
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NBO, : .- _ Figtsre.S:tO Adsorption of an O, by a heme
g where £ s the energy of an adsorbed O, retal
1o an O, at infinite separation from the site.
{f energy mvust be supplicd 10 detach the O,
0 from the heme, then ¢ will be negative,

Mb

infindte distance, then the Gibbs sum is

F =1+ rexp(—zeh). (66)

1f energy must be added 10 remove the atom from.tlic heme, ¢ will be negative. The term
10 the sum arises ffom occupancy zero; the term Zexp( - £,1) arises front single occupancy.
These are the only possibilitics. We have Mb + O, or MbO, presemt, where Mb denotes
myoglobin, a protein of motecular weight 17000,

Experimental results for the fraciional occuepancy versus the concentration of oxygen
areshown in Figure 5.tt. \We compare the observed oxygen saturation curves of myogiobin
and hemoglobin in Figure 5.12. Hemoglobin is the oxypen-catrying component of blood.
11 is niade up of four molecular strands, each sirand nearly identical with the single sirand of
myoglobin, and each capable of binding a single oxygen molecule. Historically, the ¢lassic
wark on ihie adsorpiion of oxygen by hermoglobin was dene by Christian Bohir, the father of
Niels Bohr. The oxygen saturation curve for hemoglobin (Hb) hias a slower rise at low
pressures, because the binding energy of a single O, 1o a molecute of Hb is lower than for
Mb. At higher pressures of oxygen the Hb curve has a region 1hat is concave upwards,
because the binding encrgy per O, increases after the first O, is adsorbed.

The O, molecules on hemes are in equitibrium with the O, in the surrounding liquid, so
that the chemical potentials of O, are equal on the myoglobin and in solution:

{MBOY) = 405}, AMBO,) = AO2) (67)

where 4 2= exp{y/r). From Chapter 3 we find the value of 2 in terms of the gas pressure
by the relalion

4 = njng = plng. {63)

We assume the ideat pas result applies to O, in solulion. At constant temperature 2{0,} is
directly proportioual to the pressure p.

The fraction f of Mb occupicd by O, is found from {66} o be

Aexp(—efr) 1

/= 1+ rexp{—gft) B E.-“_exp(sjr) + 17

(69)



Figute 311 The reaction of 3 myoutobin
(Mb) molecule with oxygen mauy be viewed as
the adsorption of a ntolecute of O, at a site
on e targe myogiobin molecute. The

results foliow a Langmuir isotherm quite
accutately. Each myoglobin molecule can
adsorb one O, molecule. These curves show
the fraction of myogtobia with adsorbed O,
as a funciion of the partial pressare of O,
The curves are for human myoglobin in
solution. Myoctobin is found n mivscles: it s
responsible for the color of steuk. Afler AL
Rossr-Funellf and E. Antosini, Archives of
Drochenttsiry and Biophysies 77, 4738 (1938).

Fioure 542  Suturation curves of O, bound
to myostobin (M) and bemoglobin {(Hb}
molecules tn solutfon th wiler, The partiat
pressuce of Q, is ploted #s the horizonial

axis. The vertical asis gives vhe fraction of

the molecules of Mb which has one bound

0, motecule, or the fraction of the sirands of
116 which hiave one bound O, molecule.
Hemoyglobin has & mucl kisger change n
orygen contemt in the prossure range bewween
the arterias and the veins, This crcumstance
facilitates the acton of the heart, viewed as 2
pumip. The curve for myoglabin huas the
prediaed Torm for the reaction Mb + O+
MBO,. Tle curve for Bentoglobin fras &
different form because of imeraciions beiween
O, molecules bound o the four sirands of the
Hb molecule, The drawing is afier . 8. Fruton
and 8. Simmonds, General biochemistry, Wikey,
1961, : '
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which fs the same as the Fermi-Dirc d1str1buuon function derived in Chapter 7. We
subsiftute {68) in {69} to oblain

i
. (70)
qu‘c/p] cxp(r/r} 1 ngrexple/t} + p '
or, with py = Borexple/t),
P
f= (1)
Po t p

whore py is constapl with respect Lo pressure, but depends on the temiperature. The rosult

(713 is known as the Langmuic adserption isotherm when used 1o describe the adsorption of
gases on rhe surfaces of solids,

R bt LR T T B P T L T T e e
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Example: hupurity atom fonization in a semiconductor., Atoms of numerous chemical
elements when present as impurilies in a semiconductor may tose an gleciron by ionizalion
1o 1he conduciion band of the semiconductor crystal. In the conduction band the eleciron
moves about much as if it were a free particle, and the electron gas in 1he conduclion band
may often be treated as an ideat gas. The impurily alams are smalt sysleras § in thermal
and diffusive eguilibrium with the targe reservoir formed by the rest of the semiconductor;
1the atoms exchange electtons and energy with the semiconducior.

L&t [ be the ionization energy of 1he impurily atomt. We suppose that one, but only one,
eleciron can be bound to an impurily alom; either orientalion 1 or § of 1he cleciron spin
is accessible. Therefore the system § has three allowed states—one without an clectron,
one with an eteciron atlached with spin 1, and one with an electron attached with spm |
When & has zero efecirons, the impurity atom is ionized. We choose the zero of energy of 8
asthis state; the other Iwo states therefore have the common energy € = — F The accessible
stiates of 8 are summarized below,

State muosher Description N £
1 Electron delached 0 0
2 Electron atlached, spin | i -1
3 Vlevieon attached, spin | 1 —1

The Gibbs sum zs given by

& =1+ 2exp[(p + D] (72)
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The probabitity that 8 {s tonized (N = O)is

N . 1
Pt d) = PIO0) = — = . 73
(fonized) 09 3 14 2explip + I/] )
The probubitity that 8 is neutral (un-tonized) is
P(neutral) = P(11,~ 1) + P(i}, -1}, {(14)

which is just 4 - P{00L

SUMMARY

1. The chemiicat potentiat ts defined as plr,V N} = (CF/(N), » und may also be

found from g = (CU/EN),, = —t(f6/TN); . Two systems are in diffusive
cquittbrivm if o = p,.

. The chemical potenttal ts made up of two parts, external abd mnternal. The
external part s the potential encrgy of a particte in an external ficld of force.
The wternal part 15 of thermal origta; for at wdeat mosatonie gas plint) =

tlog(i/ng), where # is the concentration and sy = (M¢/2rh*)? s the quan-
tum concentrahon,

3. The Gibbs factor

P(Ng) = exp[(Np ~ e} V3

gives the probabitity that a system at chemical potential p and temperature
will have N particles and be {a a quantum state s of energy e,.

4, The Gibbs sum :
3" = X eXp[(Nﬂ - 53(.\’:)/"]
ASN

is faken over alt states for ali numbers of particles.
5. The absolute activity 1 is defined by 2 = exp(y4/1).

6. The thermat average number of particies is

-

5
(_:\).m).;ﬁlog__g-.



Problens
PROBLENMS

1. Centrifuge. A circular cytinder of radius R rotales about the tong axis with
angulbir velecily w. The cylinder contains an ideat gas of atoms of mass M al
temiperature 1. Find an expression for 1the dependence of the concentration
u{r) on the radit disiance r from the axis, in terms of #(C) on the axis. Tuke
i as for an ideat gas.

2. Molecules in the Earth's atmosphere, 1 n is the concentration of motecules
at the surface of the Earth, M the mass of & molecuie, and g the gravitational

acceleration at the surface, show that at constant emperature the tod nunber
of molecudes {n the atmosphere is

4 )

N o= 471:1{}{}6:&11{mh-fg!{,/t}xfx dertexp(MgRifrn) | {753
with # measured from e conter of dhie Pageh; liere B is the vdios of vhe Easeh,
The puegr] diverges ae dhe apper Bimit, so thar N cannor be bounded and the
armospliere canhot be in equilibrinm. Molecules, purddcularly light molecules,
are always escaping from che atmosphere.

3. Porentiul enorgy af gas in graeitational fickl,  Consider a cohunn of aroms
cach of mass Af at tempernture 7 in a unform gravimational field y. Find the
thermal average poleatial energy per aton. The thermal average Kinetic energy
density Is independent of height. Find the toral heat capacity per atom. The
total heat capacity Is the sum of contributions from the kinctic energy and from
the potential encrgy. Take the zero of the gravitational energy at the bonom
h = 0 of the column. Integrate from i = Oto h = 0.

4. Active traasport, The concentration of potassivm K™ ions in the ineernal
sap of a plant cell (for example, a fresh water alga) may cxceed by a factor of 10*
the concentration of K¥ ions in the pond water in which the cell is growing.
The chemical potential of the K* ions is higher in the sap because their con-
centration a2 Is higher there. Estimate the difference in chemical potential at
300 K. and show that it is equivalent to a voltage of 0.24 V across hie cell wall.
Take u as for an ideal gas. Because the values of the chemical potemials are
different, vhe ions in the cell and in the pond are notin diffusive equilibnuin, The
plant cell membrane is highly impermeable (o the passive leakage of lons
vhrough it Important questions in cell physics include 1hese: How is1he high
concentration of tons built up within the celi? How is inetabolic energy applied
10 energize the aciive ion transpon?

5. Maguctic concentration, Determine the ratio ay/r for which Figure 5.6 15
drawn. If T = 300K, how many Bohr magnetons gy = ehf2mc would the

particles contain to give a magnetic concentration effect of the magnitude
shown? . R - " ' '
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6. Gibbs s for @ ewo level system.  (a) Consider a system that may be un-
occupied wph enerygy zero o1 occupicd by one particle in ehher of two states,
one of cnergy zero and one of energy ¢ Show that the Gibbs sum for this system is

F =1+ 24+ lexp(—sfr) . {76}

Our assumption excludes the possibility of ene particle inn cach state at the same
time. Notice thatweinclude in the swinaterm for N == Qas a particularstate of a
system of a vanable aumber of particles.

{b) Show that the thermal average occupancy of the system is

(NS = li*m"i;’r_llf;"ﬁ&) 7

{cj’ Shew that the thenmal average occupancy of the state atenergy € s

(N} = zexp(—ef1}/3. (78)

{(d) Find an expression for the thermal average energy of the system,

{e) Allow the possibility that the orbital at G and atemay be occupied each by
one particle at the same thme: show that :

3 =1+ i+ Lexp(—¢/1) + A2 exp(>gfty= (1 + At + Zexp(—¢/n)] (79

Because 3 can be factored as shown, we have in effect two independent systems.

7. States of positive und negative fonization. Consider a lattice of fixed hy-
drogen atoms; suppose that each atom can exist in four states:

Sm.fe Number of electrons Energy
Ground H -~ 1A
Positive ion ) .
Negative fon 2 18
Excited 1 1A

Fiad the condition that the avenwe nmnber of clectrons per atom be minty.
The condition will involve 8, 2, and 1.

8. Curbon monoxide puisoning. W carbon wmonoxide potsoning the CO
replaces the Oy adsorbed ot hentoglobu (b niolecndes w the blood. To show
the eifect, consider a model for which each adsorption site on a hemie fnay be’
vacaitt or may be occupicd either with energy g, by one molecule O, or with
energy £, by one molecule CO. Let ¥ fixed hieme sites be in cquilibrium with
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O, and CO in the gas phases at concentrations such that the activities are
2O, =1 x 107% and #HCO) == 1 x 1077, all at body temperaiure 37°C.
Neglect any spin multiplicity factors. {(a) First consider the system in the absence
of CO. Evaluate ¢, such that 90 percent of the Hb sites are occupied by O,.
Express the answer in eV per O,. (b) Now admit the CO under the specified
conditions. Find ez such that only 10 percent of the Hb sites are occupied by O,.

9. Adsorption of O, in a magnetic field. Suppose that at mest ene O, can be
bound to a heme group (see Problem 8), and that when 2(0;) = 107° we have
90 percent of the hemes occupied by O, Consider O, as having a spin of |
and a magnetic moment of 1 3. How strong a magnetic field is needed to change
the adsorption by { percentat T = 300K .7 {The Gibbs sum {n the limit of zero

magnetic field will differ from that of Problem 8 because there the spin mubi-
plicity of the bound state was neglected.}

10, Concentration fluctuations. The number of particles is not constant in a
systens in diffusive contact with a reservoir. We have seen that

Ny = = (C%) . (80}
ul¥ _
from {59). (é} Show that
2 a2
(N?Y = ;ch 1

The mean-square deviation {(AN)?) of N from (N} is defined by
(ANPD = (N = (D)) = (N — 2UNDAND 4 (ND? = (VP —~ (N7,
I L AL L 32
I
(5) Show that this may be written as

UANYEY = 1@(ND/en. (33)

T Clizpger 6owe opply aliis resolf e the ided os to Bod that

S AU (54}

is the mean square [racrional fuctuation in the population of an idenl gas in
diffusive comtact with a reservoir. IT <N is of the order of 107% atoss, then the
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fractional fluctuation is exceedingly small. In such a system the aumber of
panicies is well defined even though it cannot be rigorously constant because
diffusive contacr js allowed with 1he reservoir, When (V) is low, this relation
can be used in the experimenial determination of the moleculur weighe of targe
molecules such as DNA of MW 10% ~ 10'°; see M. Weissman, H. Schindler,
and G. Feher, Proc. Nat, Acad. Sci. 73, 2776 {1976).

I1. Egquivalent definition of chemical potential.  The chemical potentinl wis
defined by (3) as (¢F/EN)Y, .. An equivalens expression listed in Table 5.1 is

1= (CUJEN), . (s5)

Prove that this relation, which was used by Gibbs to define p, is equivalent to
the defimtion {5} that we have adopted. It will be convenient to make use of the
resitlts (31) and (35). Our reasons for trealing {5} as the definition of g, and {85} as
a mathematical consequence, are two-fold. In practice, we need the chennical
potential more often as a funciion of the temperarure tihan asa funaion of the
entropy o. Operationally, a process in which a particle is added to a system
while the temperature of the system is kept constant is a more natural process
than one in which the entropy is kept constant; Adding a particle to a system at
a fimte {emperature {ends {o increase ifs entropy unless we can keep each systewn
of the ensemble in a definite, although new, quantum state. There is o natural
laboratory process by which this can be done. Henee the dafinition {3y or {(8),
in which the chemical potential is expressed as the change in free energy per
added particle under conditions of constant temperagure, 15 operationadly the
simipler. We point out that (85) will not give U = uN on integrition, besiuse
p{N,0,V}is a function of N; compare with {9.13).

12, Ascene of sap in frees, - Find the maximum height (o which water may rise
in a tree uuder the asswnplion that the rools stand in a poot of walter and the
uppermost feaves are i air conlaining waier vapor af a refutive humiday r =
0.9. The temperature is 25°C. If the relative huinidity is r, thie actual concentra-
tion of water vapor in the air at the uppermost leaves is rry, where ng is the

concentration in the salurated air thal stands immedialely above the pool of
water, = ' :

13, Isentvopic expansion. (a) Show that the entropy of an :deal gas can be
expressed as a function ouly of the orbital occupancies. (b} From this result

show that T¥*? is constant in an isentropic expansion of an ideal monatomic
gas. '

14, Mulriple binding of O,. A hemoplobin molecvle can bind four O,
molecules. Assume thal ¢ is the energy ofeach bound O, relative to O, at rest at
infinite distance, Lel 1 denote the absolute aclivity exp{j/1) of the free Oy {in
solution). (a) What is the probability that one and only one O, is adsorbed on a
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hemoglobin molecule? Sketch the result quaditatively asa function of £, {b) What

{s thie probability that four and only four O, are adsorbed? Sketcht this resulf
also. ’

135, External chemical potemiial, Consider a sysiem at temperature 1, with
N atoms of mass M ia volume V. Let (0} denote the value of the chemical
poteqitig! at the surface of the earth, {a) Prove careflully and hogestly that the

vilue of the total chetnfcal potential for the identical system when {ranslated
10 altitude k ts

plhy = p{0) + Mgh

where g is the acceleration of gravity. (b} Why {s this result different from that
applicable to the barottietric equation of an isothermal agmosphere?
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Example: Spin Entropy in Zero Magnetic Field
Reversible Isothermal Expansion

Reversible Expansion at Constant Entropy
Sudden Expansion into a Vacuum

SUMMARY

PROBLEMS

Derivative of Fermni-Dirac Function

1.
2. Symmetry of Filled and Vacant Orbitals
3. Distribution Function for Double Occupancy Statistics
4, Energy of Gas of Extreme Relattvistic Particles
5. Integration of the Thermodynamic Identity for an ldeal Gas
6. Entropy of Mtxing
7. Relation of Pressure and Energy Density
$. Timec for a Large Flugtuation
9, Gas of Atows with Internat Degree of Freedom
10, Isentropic Relations of tdeal Gas
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Chapter 62 1deal Gas

The ideal gas is a gas of noninteractitg atoms it the limit of low concentration.
The timit is defined below in termis of the thermal average value of the number
of particles thitt occupy an orbital The thermal average occupancy is called the
distribution function, usually designated as f{e,7,1), where ¢ is the encrgy of
the orbital.

An orbital is a stale of the Schrddinger cquation for only one particle. This
tetmn Is widely used particularly by chemists. If the interactions between particles
are weak, the orbital model atlows us to approxifate sn exact quuntum stale
of the Schradinger equation of a system of A particles in terms of au approxi-
mate guantum state thut we construct by assipsing the N particles to orbitils,
with each orbilal i solution of a one-particle Schrédinger cquation. There are
usually an infinite number of orbitals availuble for occupancy. The term
“orbital” is used even when there is no analogy to a classical orbit or to a
Bobr orbit. The orbital model gives an exact solution of the N-particle problem
only if there are no inieractions between the particies.

It is & fundamental result of quantum mechanics (the derivation of which
would lead us astray here) that all species of particles fall into two distinet
classes, fermions and bosons. Any particle with hatf~integral spin ts a [ermion,
and any particle with zero or integral spin is & bosen. There are no internie-
diate classes. Composite particles follow the same rule: an atom of *He is
composed of an odd number of particles—2 electrons, 2 protons, I neutron—
each of spin §, so that >He must have half-integrat spin and must be a {fermion.
Anatom of *He has one more newtron, so there are an even number of particles
of spin {, and *He must be a boson.

The fermion or boson nature of the particte species that make up a wpany-
body system has a profound and important elfect on the states of the system.

The results of quantum theory as applied to the orbital modet of noninteracting
particles appear as occupancy rules:

I. An orbital can be occupicd by any integral number of bosons of the same
spectes, including zero.

2. An orbital can be occupied by Oor { fermion of the same species.
The second rule is a statement of the Pauli exclusion principle. Thermal averages

of occupancies need not be integral or hall-integral, but the orbital occupancies
of any individual system must conform to one or the other rule.



Ferun-Dirac Disteibution Function

The two different occypancy rules give rise to two different Gibbs sums for
cach orbital: there is a boson sutn over all integral vatues of the orbital occu-~
pancy N, and there is a fermion sum in which N = O or N = 1 only. Different
(ibbs sums lead to different quantutn distribution functions f{ezr,z) for the
thermal average occupancy. If conditions #re such that f « 1, it will not matter
whether the occupancies N = 2, 3, ... are exclnded or are aliowed. Thus when
f « I the fermion and boson distribution functions must be sitmtlar. This limit
i which the orbital occupancy is small in comparison with utity is calied the
classical regime,

We now treat the Fermi-Dirac distribution function for the thernut] avérage
occupuncy ef an orbital by fermions and the Bose-Einstein distribution function
for the thermal average occupancy of an orbital by bosous. We show the
cquivalence of the two functions in the it of low occupaney, and we go on
to tredt the propertics of a gas in this Hnut-tn Chapter 7 we treat the propertics
of fermio und bosob guses in the opposite Thnit, where the nature of the
pariicles is absolutcly cructal for the properties of the gas.

FERMI-DIRAC DISTRIBUTION FUNCTION

\We consider a system composed of a single orbital that may be occupled by a
fcrmion. The system is placed in thermal and diffusive contact with a reservoir,
as in Figures 6.1 and 6.2, A real system may consist of a large number Ny of
feramions, but it is very helpfil to focus on one orbital and cult it the system.
All other orbituts of the real sysiem are thought of as the reservoir. Our problem
is to find the thermal average occupancy of the orbital thus singled owt. An
orbital can be occupicd by zero or by one fermion. No other occupancy 1s
aflowed by the Pauli exclusion principle. The encrgy of the system will be taken
to be zero if the orbital is unoccupied. The energy is ¢ if the orbiial is cccupied
by onc {ermion.

The Gibbs sum now is simple: from the definition in Chapter 5 we have

&= 1+ dexp(~gft. (1)

The term | comes {rom the configuration with occupancy N = 0 and energy
g = 0. The term 4 exp(— /1) comes when the orbital is accupied by one fermion,
sothat N = 1 and the energy is & The thermal average value of the occupancy

ol the orbital is the ratio of the term in the Gibbs sum with N = 1 to the entire
Gibbs sum:

_ dexp(—egfty !
(N(ED_._"II + L exp(—&/t) T AT texplefr)y + 1 _ : @
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We consider as the system a single orbiial that may be occupied at most by one
e system s in thermut and dilfusive countact with the reservoir al temperature 1. The

energy ¢ of the occupied orbital might be the kinctc encrgy of a free clectron of a defipite
spin orientation and confined (o a fixed volume. Other allowed quantum states may be
considered as forming the reservoir. The reservorr will contain Ny fermions if the system is

unoccupted

and Ny — 1 {ermions if the system is occupied by one fermion,
We introduce for the average oecupancy the conventional symbol f(g) that
denotes the thermal average number of particles in an orbital of energy e:

Sle) = (N(&). (3)

Recall from Chapter 5 that 2 = cxp(yy/t), where g is the chemical potential.
We may write (2) i the standard form

l

Je) = exp{{e ~ p)/r} + 1

(4)

4
il
1
t
|

This result is known as the Fermi-Dirac disiribution funciion* Equation (4)
gives the average number of fermions in u single orbital of chergy &. The value

* This diskribution funchion was discovered independentty by E. Fermi, Zeitschrilt fGr Physik 36
902 {19261, and P. A. ML Dirac, Procecdmgs of e Royal Sotic:} of London A112, 661 (1926).
Both worbers drew on Pauti's paper of ihe preceding year in which lhe exctusion prmczpic was
discovergd. The paper by Birac is conceracd with e new quanium mechanics and CORERAS 3
pencral statement of the form assumed by the Pauli priaciple on this theory.
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Reservoir

System

{a)

Figure 6.2 {a) Tlie obvious mcthod of viewing a syslem of noninteracting panicles is
shown here. The encrpy levels each refer to an orbital that is a solution of a single-
particle Schradinger equation. Thc total cnergy of the system is

Eog = Z Naan ’
where N, is the number of particles in the orbital n of energy £,. For fermions N = 0
or 1. (b} It is much simpler than {a), and egually valid, to treat & single orbutal as the
system. The system in this scheme may be the orbitul u of energy £,. All other orbitals
are viewed as the reservoir. The 1otal energy of this one-orbitad system is Nz, where
N, is the number of particles in the orbital, This device of using one orbital as the
system works because the purticles are supposed to interact only weakly with each
other. If we think of the fermion system associated witls the orbital n, these are two
possibilitics: either the systent bgs O particles and encegy 0, or the systam has { parige
and energy £.. Thus, the Gibbs sum consists of only {wo terms:

F =1+ ilexp{—~e,ftl

The first term arises frem the orbital occupancy N, = 0, and the second terut arises
from N, = L

of f always lies between zero and one. The Fermi-Dirac distribution function
is plotted in Figure 6.3,

In the field of solid siate physics the chemical polential i {5 often called the
Fermi level. The chemical potential tisually depeuds on the temperature. The
value of g a1 zero temperiture &s often written as gg; thal s,

it = 0) = p(0) = gp. {3}

We call gy the Fermi energy, not to be confused” with the Fermi level which

* {n ihe semiconductor Heerature the symbol ¢, is often used for g at any temperajure. and & 18
then called the Fennd tevel.
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Figure 6.3 Plot of the Fermi-Dirac distribution function f{e) versus & — p it units of
~the temperature v, The vatue of fle) gives the fraction of orbitils at a given cnergy

which are occupicd when the systeny is in tiermat cquitibriunn When tse sysian Is

heated from absobute zero, fermions are transferred from the shaded region ate/p < 1

0 the shaded region at ¢/ > 1. Feor conducyon electrons in a metal, y might
correspotid 1o 30 000 K.

is the temperature dependent p{r). Consider a system of many independent
orbilals, as in Figure 6.4. At the temperature t = O, all orbitals of energy below
the Fermi energy are occupted by exactly one fermion each, and all orbitals
of higher energy are unoccupied. At nonzero temperatures the value of the
chemical potential g departs from the Fermj energy, as we will see in Chapter 7.

If there is an orbital of encrgy equat to the chemical potential {¢ = g, the
orbital is exactly half-filled, in the sense of a thermal average:

Sle=y) = 5T {6)

Orbitals of lower energy are more than hatf-filled, and orbilals of higher energy

are fess than hatffitted. .

We shall discuss the physical consequences of the Fermi-Dirac distribution
in Chapler 7. Right now we go on to discuss the distribution function of non-



Bose-Einstein Distyibution Function

£y

3

i

SooCN

mteracting bosons, aud then we establish the tdeat gas taw for both fermions
and bosons in the appropriate mit.

BOSE-EINSTEIN DISTRIBUTION FUNCTION

A boson is a particle with an integral value of the spin. The occupancy rule
for bosons is that an orbiwal can be occupied by any number of bosons, so that
bosons have an essentjally different quatity thao fermions, Systems of bosots
cian have rather different physict properties than systems of fermious. Atoms
of *He are bosons; atoms of 3He are fermions. The remarkable superfluid
properties of the low temperatuse {T < 2.17 K} phase of liquid heliutw can be
attributed to the propenijes of a boson gas, There is a sudden increase in the
fluidity and in the heat conductivity of liquid *He below this temperature. In
experitnents by Kapitza the flow viscosity of *He below 2.17K was found to
be less than 1077 of the viscosity of the Hquid above 2.17K.

Photons (the quanta of the electromagnetic field) and phonons {the quanta
of elastic waves in solids} can be considered to be bosons whese number is
not conserved, but it is simpler to think of photons and phonons as excitations
of an oscillator, as we did in Chapter 4,

We consider the distribution function for a system of noninteracting bosons
in thermal and diffusive contact with a reservoir. We assume the bosons are
all of the same species. Let ¢ denote the energy of a single orbital when occupied
by one particle; when there are N particles in the orbital, the encrgy is N,
as in Figure 6.5. We treat one orbital as the system and view all other orbitals

157

Reservoir Figire 6.4 A convenicnl pictorial way to
think of a system composed of independent
orbitals that do not Interact withy eacly osher
but (nleract with 3 coaunon reservair,
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Fipure 6.5  Fneray-level scheme for non-
interacting bosons. Here ¢ {s the energy of
an orbital when occupied by one particle; Ao
Ne is the energy of the same orbuial when —
occupied by N particles. Any number of bosons
can occupy the same orbital. The lowest level
of this orbital contributes a term [ o the
grand sum; the next highest lovel contributes

4 exp(—¢/t); and the subsequent contributions 3¢
are 22 exp{— 2c/1); 22 expl— 3eft): it exp(— dg/t); Nl

. %
and soon. The Gibbs sumis 3 = | + : !

exp{—eft) + 22 eap(—2e/t) + -+

Chapter 82 Ideal Gas
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as part of the reservoir. Any arbitrary sumber of particles may be in the orbital.
The Gibbs sum taken for the orbital is

3= Y Aexp(~Nejt) = i [Lexp(—gn]. N
. N=O B e _ :

The upper limit on N should be the total number of particles in the combined
system and reservoir. However, the reservoir may be arbitrarily large, so that

N may run from zero to infinity. The series (7) may be summed in closed form,
Let x = lexp{—gfz); then B

by i !

- N S, .
3- B N%‘Q‘k B | —x o .}.CXP(‘“E/I) (S}

provided that Acxp(—»z/ﬂ < 1. In all applications, Jexp(—¢/t) will satisfy this

mequality s otherwise the number of bosons in the system would not be bounded.

The thermal average of the number of particles in the orbital is found from
the Gibbs sun: by use of (3.62):

. 0 d < 1 _
fie) = dzlosd = —aggtosll =) = o ©)
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]
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Bose-Finstein Disteibution Function
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Figure 6.6 Comparisan of Bose-Finstein and Fermi-Dirac
distribution functions. The classical regime is attained for

(e ~ p) » 1, where the two distributions becone nearly identieal.
We shalt see in Chapter 7 that in the degenerate regime af low
temperature the chemical potential y for a FD distribution is
poshive, and changes to negative at high temperature.

This defines the Bosc-Einstein distribution function, {f differs mathematically
froni the Fermi-Dirac distribution funciion only by having —1 instead of +1
inthe denominator. The change can have very significant physical consequences,
as we shall sec in Chapter 7. The wwo distribution funictions are compared in
Figure 6.6. The ideal gas represents the limit e — g » rin which the vwo disiri-
bution functions are approximately equal, as discussed below. The choice of the
zero of the energy ¢ is atways arbitrary. The particular choice made in any
problem will affect the vatue of the chemicat potentiat g, but the value of the
difference € — 42 has to be independent of the choice of the zero ofz. This point
is discussed further in {20) betow,

A gas is n the classical regime when the average number of atoms in cach
orbital is much less than one. The average orbital occupancy for a gas at roam
temperature and atmospheric pressure is of the order of only 107¢, safely in the
classical reghme. Differences between fermions (half-integral spin) and bosons
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Table 6.1 Comparison of the orbital occupancies in the classical
and Hie quantun regimes

Cluss of

Thermal averige oocupaticy
Regime parhicle of sy orbital
Classicul Fermijon Atways much fess than one,
Boson Always niuch less than one.
Quantum Fermion Close 1o but less than one.
Boson Orbital of lowest energy has

anr occupancy much greater than one.

arise onty for accupancies of the order of one or more, so that in the classicul

regirae their equitibrium properties are identical, The quantum regime is the

opposite of the classical regime. These characterisiic features are summarized
in Table 6.1. '

CLASSICAL LIMIT

An ideal gas is defined as a system of [ree noniuteracting particles in the classical
regime, "Free™ means coufined in a box with nio restrictions or external forces
acting within the box. We develop the properties of an ideat gas with the use
of the powerful method of the Gibbs sum. in Chapter 3 we treated the ideal gas
by use of the partition funciion, but the idenical particle problem encountered
there was resolved by a method whose validity was not perfectly clear.

The Fermi-Dirac and Bose-Einstein distribution functions in the classical
thmit lead to the identical result for the average number of atoins in an orbital
Write f{e) for the average accupancy of an orbital at energy e Here & is the
energy of an orbital occupied by one particle; it is not the energy of a system of

N particles. The Fermi-Dirue (FD) and Bose-Einswin {BE) distribution fusc-
tions are

fe) = : (1)

exp[{e — )/t £ 1°
where the plus sign is for the FD distribution and the minus sign for the BE

distributios. In order that f() be much smaller thun unity for all orbitals, we
mus} have in this classical regime

exple~ @/ » L, . (1)
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for alt &, When this incquatity is satisfied we may neglect the term +1 i the

denominator of (11). Then for eithier fermions or bosons, the average occupancy
of an orbitat of enerpy o s

-
JE) = expl{pe ~ o)f1] = sexp(—¢gf1) I RIS

with 2 = exp(u/t). The Hmiting result {13) is called the classleal distribution
functiott. It 5 the hmit of the Fermi-Dirac and Bose-Einsiein distribution
functions when the average accupancy f(e) is very small in comparison with
unity. Equation {13), atthougl called classical, is siilt a result for particles
described by quantum mechanics: we shatt find that the expression for 2 or u
always 1nvolves the guantum constant h Any theory which contains i camtot
be a classical theory. S~

We use the classical distribution functlon Sle} = zexp(— &/} to study the
thermal propertics of the ideal gas. There ure many topics of importance: the
entropy, chemical potential, heat capacity, the pressure-volume-temperature
refation, and the distribution of atomic velocities. To obtain results from the

classical distribution function, we need first to find the chemical potential in
terms of the conceniration of atoms.

Chemical Potential

The chemieal potential is found from the condition that the thermal average
of the total number of atoms equais the number of atoms known to be present.
This number must be the sum over all orbitals of the distribution function f{z,):

N =(NY =) fe), {(14)

where s is the index of an orbital of energy ;. We sturt with a monatomic gas
of N identical atoms of zero spin, and later we include spin and molecular
modcs of motion. The total number of atoms is the sum of tie average number
of atoms in each orbital. We use (13} m (14) to obtain

N = iy exp(—g/t). .(IS)

To evaluate this sum, observe that the summation over free particle orbitals

is j\IS[ the partition function Z, for a smglc free atom in volume V, whence
;Z
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In Chapter 3 it was shown that Z; = nnV, where ny = (Mt/2nh?)¥? 1s the
quantum concentration. Thus

N =iZy=ingV: i NV = njn, (16)

in terms of the number dcnsity n = N}V, Finaily,

L}. = exp{p/t) = nfng ,_J’I (17

which is equal to the number of atoms in the quantum volume 1 fitg. In the
classical regine n'tig s « 1. The chemical potential of the ideal monatomic

gas 18
T— _— .
p = tlog(n/n q (18)

Q

in agreement wuh (5. lh} obtained in another way. The result may he written
out to give

u = tflogN — togV = $logt + 3log{2ah?/M)]. (19)
We see that the chemical potential increases as thic concentration increases and
decreases as the temperature increases.

b e

Comment: The simple expression (18) for tlie chemical potentiaf can be subject 1o severad
modifications. We mention four exanples.

{a) If the zero of the encrgy scale is shified by an energy A 50 that the zero of the kinetic
energy of an orbital falls 41 gy = A Instend of at gy = D, then

= A + tlog(n/ng). (20)

{b) H the atoms have spin §, the number of arbitals a the sum in (13) i multipticd by the
spitt npuliplicity 28 + 1. For spia }itis doubled: the value of the partition (unction Z;
is doubted; ng will be replaced evesywhere by 2ng, and the right-hund side of {18}
wifl have on added term ~tlog 2, The effect of the spin on {he enfropy is Ircated
below.

(¢) I the gas is not monatemic, the internaf energy states associated with rotational and
vibrational motion wifl enter the parfition function, and the chemnical potential will
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have an added term —tlog Z,.,, per (48) below, where Z,, is the par%i%ion function of
the internal degrees of freedom of one molecute.

{d) 1f the gas is nonideal, the yesult for 4 may be considerably more compticated; see

Chapter 10 for the retatively szmplc van der Waals approximation to 4 gas of inter-
acting atoms.
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Free Energy
The chemical potential is related 10 the free energy by

(CF/oNYy = 1t (25

according to Chapter 5. From this,

F(N,V) = J?JN;J(N;,V} = zf:aN[iogN +], (22)

where the integrand is found in brackets in (19). Now [dxlogx = xlogx — x,
sa that : :

= NiflogN — 1| — logV — $logt + $log(2rh?/M}] , (23)

F = Nr{log(n/ng) — lﬂ {24}

The free energy increases with concentration and decreases with temperature,

or

...-“-..-4...;- D
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Comment: The integral in (22) should stricily be a sunt, because V is a discrete variable.
Thus, [tom (5.6),

N
FNGVY = Y u(N) (25)

NTa
which differs from the integrat only in the lerm in fog N in (19), for

N
YlogN =log{l x 2 x 3 x -+ x Nj=logh!

A=l

' (26)



Chapter 6: Ideal Gas

where the integral gave Niog N — N in (23). But for farge N the Stirling approximation

log Nl = NlogN —~ N,

(27}
may be used, and now (25) is the same as (23).
T T L B T L T o L e T T I T T TTITIIE T
Pressure
The pressure is related to the free energy by (3.49):
p= —{CEICV ) x (28}
With (23} for F we have
p= NV, pV = Nt , (29}
which is the ideal gas law, as derived in Chapter 3.
Encrgy
The thermal energy U isfound from F = U ~ ¢, 0r
. ; ¢ F
U=F + 10 =F ~1({Ftlyy = —IZ(T ——) (30}
. gt T V.N
With (23) for F we have .'
| ; F AN
(.i a) = -, (31
€0 T /px P4
so that for an ideal gas -
(32)

The factor 3 arises from the exponent of ¢ in ny because the gas is in three
dimenstons; if ny, were in one or two dimensions, the factor would be { or 1,
respectively. The average kinetic energy of translational motion in the classical
limit is equal to $r or 3k, T per translalional degree of freedom of an atom,

The principle of aqmparmmn ofenergy among degrees of freedom was d:scmscd
in Chapter 3, :



Heat Capacity

A polyatomic molecule has rotational degrees of freedom, and the average
energy of cach rotational degree of freedom is v when the temperature is high
in comparison with the energy differences belween lhe rotalional energy levels
of the mrolecule. The rolalional energy is kinctic. A linear molecule has two

degrees of rolational freedom which can be exciled; a nonfinear molecule has
three degrees of rotalional freedom.

Enlropy
The entropy is related to the free encrgy by
| o = —{(3F/30)y 5 (33)

From {23} for F we have the entropy of an ideal gas:

o = N{logln,/m + 3. (349

This is idenlical with our carlicr result {3.76). In the classical veghme mng is
<« 1, s0 thal logne/n) is positive. The result {34) is known as Ihe Suckur-Telrode
eyuation for the ubsolute entropy of a nronatomic ideaf gus. 1t is imponam
historically and is essential in the thermodynamics of chemicul reactions. Even
though the equation contains &, the result was inferred from experinients on
vapor pressure and on equilibrivm in chemical reuclions fong before the
quantum-tuechanicul basis was fully understood. 1t was a greal challenge to
theorctical physicists to explain the Sackur-Tetrode equation, and many un-
successful attempts to do so were made in the early years of this century, We
shall encounter applications of the result in later chapters.

The entropy of the ideal gas is directly proportional to the number of pacticles
N if their concentration » is constant, as we see from {34). When two identical
gascs at identical conditions are placed side by side, each system having entropy
@y, the total entropy is 2¢, because N is doubled. If a valve that connects the
systems is opened, the entropy is unchanged. We see that the entropy scales as
the size of the system: the entropy islinear in the numnber of particles, at constant
concentration. If the gases are not identical, the entropy increases when the

valve is opened (Problem 6).
Heat Capacity

The heat capacity at constant volume is defined in Chapter 3 as

Gy = 1000ty | (35)
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We can calculate the derivative directly from the cntropy (34) of an idcal gas
when the expression {or 11, 15 written out:

AN 3Ni AL
0t Jyy  Cr\20 0BT T

From this, for an ideal gas

Cp = IN , : (36}

or C,, = 3Nk, in conventional units.

The heat capacity at constant pressure is larger than Cp because additional
heat must be added to perform the work needed to expand the volume of the
gas against the constant pressure p, as discussed in detatl in Chapter 8. We use
1he thermodynamic identity rde = dU + pdV to obtain

- [ea 2U\ vy -
&= <(5), = (%), + +(&); 7

The ¢ncrgy of an 1du1l gas depends oniy on lirc temperature, so that (2U/r},

witl have the same value as{GU/ér),, which is just Cp by the argument of (3.17b).

By the ideal gas law V = Nt/p, so that the term p(@V/dr), = N. Thus {37)
becomes

= C].- + N {383)

in fundamental units, or
C, = Cy + Nk (38b)

in conventional units. We notice again the different dimensions that heat
capacities ave in the two systems of units. For one mole, Nkj is usually written
as R, calied the pas constant,

The resuits {38a,b) are written for an ideal gas without spin or other internal
degrees of freedom of a molecule. For an alom C, = §N, so that

C,=IN+N=IN . (38¢)
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in fundamental units, or
C, = §Nkg (38d)
in conventional units. The ratio C,/C,, is written as y, the Greek letter gamma,
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Example; Experimentaf tests of the Sackur-Tetrode equation. Experimental values of the

entropy are ofien found from experimental values of €, by numerical integration of (37)
to give at constant pressure

G(t} ~ 6{0) = ﬁ: {C /). {39}

Here ot0) denotes 1he cniropy at the lowes! temperature atiained in the measurements
of C,. The third law of thermodynamics suggests that o{0} may be sct equal fo zcr0 unless
there are mullipheities not removed at the Jowest temperature attained.

We can caleulate the entropy of 2 monatomic ideal gas by use of rhe Sackur-Tewrode
equation {34} The value thus caleulated at a selected temperature and pressure may be
compared with the experimental value of the eatropy of 1he gas, The experimenial value
is found by summing 1he following contributions:

Enlropy increase on heating solid from absolute zero to the melling point.

2. Entropy increase in the solid-to-liquid transformation (discussed in Chapier 103
3 Entropy increase o hearing Tiquid fromy meling paint to e bodling point.

4, Entropy increase in the liquid-to-pas transfermation,

5.

Fniropy change on heating gas {rom the boiling point to 1he selected temperature and
pressure.

There may further be 2 slight correction 1o (34) for 1the noaideality of 1he gas. Comparisons
of experimental and theoretical values have now been carried out for many gases, and very
satisfaclory agreement is found betweess \he 1wo scis of vahses.®

We pive delails of the comparison for neon, afler the measurements of Clusius. The
enlropy is given in terms of the conventional enropy S = kyo.

I. The heat capacily of 1he solid was measured from 12.3 K to the melting point 453K
under one stmosphere of pressure, The heat capacity of 1he solid below 123K was
estimated by a Debye faw (Chapter 4) exirapolation to absolute zero of the mezsure-
ments above 123K, Theentiopy of 1he solid at1he melting point is found by numesical
integration of {dTC,/T) 10 be

Sog = 14.29Tmol K1,

* A chassic study is "The heat capacity of oxygen from 12 K to its boiting point and its heat of
vsporization. The entropy from speelioscopic data,” W. F. Glavgue and H. 1., Johpston, Journal of
the American Chemical Sociely 51, 1300 {1929}
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Table 6.2 Compurison of experimental and
cufculmred values of the eatropy at 1he bailing
paint wider one almosphere

Entropy in Smol ™ K °

Gas Typnin K Experimental  Calculated

Ne .2 96.40 96.45
Ar 87.29 129.75 125.24
KNr 11993 144.56 145.06

SOURCE: From Landoft Borusein lables, 61h ed., Vol. 2.
Part 4, pp. 394--399.

The heat input reguired to meht the solid a1 24.55 K is obscrved 10 be 335 Jmol "1 The
associpled entropy of awlling is

I35 Fmol !

AS 222 me
2455K

= (364 mol VKN

mizlling =

3. The heat capacity of the tiquid was measured from the melling point to the boiling
" pointof 27.2 K under one atmosphere of pressure. The entropy increase was found 1o be

Asliqum = 3.85Jmol 'K,

The heat input required to vaporize the liguid at 27.2K was observed o be 17611
mol ™!, The associated enmiropy of vaporization {s

B 1761 Jmol~1

AS\;pu:ixalinn - 72K

= 64,62 mol " K™%

The experimenial vatue of 1he entropy of neon gas at 27.2K at a pressure of one aimo-
sphere adds up to

Sg;u = Jgalid + Asmctling + ASlh:;uind + ASvapmizalion = 96'40'}1—“02#‘ K'bi"
The calculated value of the entropy c_ﬁfncon under the same conditions is
S = 9645Tmol KT,

from the Sackur-Tetrode equation. The excellent agreemeni with the experimental value
gives us confidence tn the basis of the entire theoretical apparajus that led to the Sackur-
Tetrode equation. The resull (34) coutd hardly lave heen gucessed; to find i verified by
obscrvation is a real experience, Results for argon and krypton are given in Table 6.2.
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Chemical Potentiat of ¥deal Gas with
Internal Degrees of Freedom

We constder now an ideal gas of tdentical polyaiomic molecules. Each molecule
has rotattonal and wvibrational degrees of freedom in addition to the transta-

tionat degrees of freedom. The total encrgy £ of the motecule ts the sum of two
independent parts,

& = £ + Eini ] (4(})

where ¢, refers to the rotational and vibrattonal degrees of frecdom and ¢,
to the transhational motion of the center of mass of the molecule. The vibrational
encrgy problem fs the harmonic oscillator problem treated earlier. The rota-
tional energy was the subject of Problemi’3.6.

In the clussical reghne the Gibbs sum for the orbital nis

g = 1 + dexpl—g /1), {41}

where terms {n higher powers of 4 are omitted because the average occupaticy
of the orbital n is assumed to be « 1. That is, we neglect the terms in & which
correspond o occupancies greater than unity. In the presence of internal energy
states the Gibbs sum assoctated with the orbital n becomes

& =1+ 1Y exp[~(ea + s3], (42)
or
& =1 + dexp{—g,/1)Y expl—g,/1). (43)

int

The summation is just the partition function of the internal states:

Ziay = 3, eXpl—2,,/7) (44)

int

which is related to the internal free energy of the one molecule by Fi, =
~1logZ,,,. From {43} the Gibbs sum 15

& =1+ AZ, exp(~£,/1). (45)
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The probability that the transiational orbital 1 is occupled, irrespective of

the state of internal motion of the molecule, is given by the ratio of the term
in 4 to the G_ibbs sum g

— ;'-Zim'f:xp{*“fnh) -~ -
) = T s s Az epl= ) (46)

The classical regime was defined earlier as f{e,) « 1. The result (46) is entirely
analogous to {13} for the monatomic case, but iZ,, now plays the role of 1.

Several of the results denved for the monatomic ideal gas are different for
the polyatomicideal gas:

{a} Equation{{7) i_‘qr A. i replaced by

1
5w afingZin) 1 (47)

¢

- with ng defined exactly as before. (We shall always use ny as defined for the
monatomic ideal gas of atoms with zero spin} Because 4 = exp{y/t) we
have ' o

3

NH__._W_;,_.,.__,_._,-"__.«—W._._“W_,-«M}
| ] g = tllogifng) ~ l0g Ziu,] { (48)

(b} The free encrgy is increased by, for N molecules,

Fin = =Nt log Zinye | (49)
H

{c} The cotropy is increased by

I G = —{CF i /Cthy jl (50)

The former result U = 3Nt applies 10 the translational energy alone.
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Example: Spin entropy in zero magnetic ficld.  Consider an atom of spin 1, where I may
trepresenl both electronic and nuclear spins. The internal partition funciion associmied



Reversible Isothermal Expansion

with the spin alone is
Lo =021+ 1), _ (51)
this being the aumber of independent spin states. The spin contribution to the [ree energy is

Fiag = —tlog(2l + 1), (52)

A

and the spin entropy is

G = l0g(2F + 1), {53)
by (50}). Theeffect of the spin entropy on the chemical potentialis found with the help of (48):

o= t[log{n/ng) — log(2! + 1)1 {54)
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Reversible Isothermal Expansion

Consider as a2 model example [ x 10?2 atoms of *He at an injtial velume of
10* cm? at 300 K. Let the gas expand slowly at constant temperature until the
volume is 2 x 10°cm?®. The temperature is maintained coustant by thermal
contact with a large reservoir. In a reversible expansion the system at any
instant Is in 1ts most probable configuration,

What is the pressure after expansion?
The final volume is twice the initial volume; the final temperature is cqual

to the initial temperature. From pV = Nt we see that the final pressure is
one-half the mitial pressure,

What is the increase of entropy oun expansion?
The entropy of an ideal gas at constant temperature depends on volume as

a{V} = NlogV + constant , (55}

whence

6y — gy = Nlog(Vy/¥,) = Nlog2 = (I x 102*)(0.693) = 0.069 x 1073, {(56)

Notice that the entropy is farger at the larger volume, because the system has

more accessible states tn the larger volume than in the smaller volume at the
same temperature, '
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Direction of mation of

pIton in cxpansion

n
Weights

FIEAE

]_ Piston

Heat flow Gas C | Heat flow

st

i N

Figure 6.7 "Work is done by the gas in an isothermal
expansion. Here the pas dovs work by raisiug the weights,
Under 1sothermal conditions p¥ is constant for un ideal gas,
so that the pressure must be reduced 1o affow the volume to
expand. The pressure i reduced by removing the load of
weights a litthe at a time,

How much work is done by the gas it the expansion?
When the gas expands isothermally, it does work against a piston, as in
Figure 6.7. The work done on the piston when the volume is doubfed is

% pdV = J'Z‘(M/V)JV = Ntlog(Vy/V,) = Ntlog2. (57)

We evaluate Nt directly as4.14 x 10%erg = 41.4J. Thus the work done on the
pistontis, from {57),

Nzlog2 = (414 1}{0.693) = 28.7]J. {58}

The assnmption that the process is reversible enters in {57) when we assume
that a knowtedge of V atevery stage determines p at every stage of the expansion.

We define W as the work done on the gas by external agencies. This is the
negative of the work done by the gas on the piston. From (58),

o wWe—[pv=-871 (59
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What is the change of energy i1 the expansion?

The energy of an ideaf monatomic gas is U = 3Nt and does not change in
an expansion at constant temperature. However, the Helmholtz free encrgy

decreases by Nrlog2, which is the work done. The connection is discussed in
Chapter 8.

How much heat flowed o the gas from tle reservoir?

We have scen that the encray of the ideal gas remained constant when the
gas did work on the piston. By conservation of energy it is necessary that a
flow of energy in the form of heat into the gas occur from the reservoir through
the walls of the container. The quantity Q of heat addced 10 the gas must be

equal, but be opposite In sign, to the work done by the piston, because
0 4 W = 0. Thus

Q=287), _ (60)

from the result {59).

Revcrsiblg Expansion at Censtant Entrdpy .

We considered above an expansion at constant temperature. Suppose instead
that the gas expands reversibly from 1 x 107e¢m® to 2 x 10°¢m? in an in-
sulated container, No heat flow to or from the gas is permitted, so that § = Q.
The entropy is constant in a system isolated from the reservoir if the expansion
process is carried out reversibly (slowly). A process without a chunge of entropy
is called an isentroplc process or an adiabatic process. The term “adiabatic™
has the specific meaning that there is no heat transfer in the process. For
simplicity, we shall stick with “isentropic.” .

What is the temperature of the gas after expansion?
The entropy of an ideal monatomic gas depends on the volume and the
emperature a8
o{t,V} = N{logt*? + logV + constant} , 6
so that the entropy remains constant if
logz¥?V = constant;  ©*?V = constant. (62}

In an expansion at constant entropy from ¥, to ¥, we have

oMV, = 1,32, (63)

for an ideal monatomic gas. -
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We use the ideal gas law pV = Nt to obtain two alternate forms. We insert
V= Nt/p into (63) and cancel N on both sides to obtain

512 512 - .
T T :
AL SR S (64)
Pt P2
Simitarly, we insett r == pV/N in (63} to obtain
p 31,512 = p RS or W = p, VSR (65)

Both (64) and {65) hold only for a monatomic gés.
It is the subject of Problem 10 to generalize these results for an ideal gas of

molecules with internal degrees of motion {rotations, vibritions). We obtain
for an {sentropic process

== TJ. sz_.,[ ((]6)
— -{'-2?!{'; -—‘np'z . : {67)
= p Wyt (68

Here y = C,/Cp 15 the ratio of the heat capacitics at constant pressure and
constant volume.

With T = 300K and V,/V; = 4 we find from {63):
T, = (300K} = 189K, (69)

This is the final temperature after the expansion at constant entropy. The gas
is cooled in the expansion process by

Ty, — T, = 300K — 189K = 111K (70)

Expansion at constant entropy is art important method of refrigeration.

What is the chunge it extergy it the expansion?

The energy change s calculated from the temperature change (70). For an
ideal monatomic gas

Uy ~ Uy = Colty — 1,) = 3Nty ~ 1)), (71)



Sudden Expansion iato a Vacuum
or, in conventional units,

Uy = Uy = WNky(T, — T)

i

31 % 107)(1.38 x 10"‘6crgf~_{“’)(-1'111<)
= ~23 x 10%erg = —23J. (72)

The energy decreases i an expansion at constant entropy. The work done by
the gas 15 equa! to the decrease in energy of the gas, which is U/, — U, = 231

Sudden Expansion into 2 Yacuum

Let the gas expand suddenly into a vacunm from an initia} voliine of 1 liter to
a linal vohane of 2 liters, This is an excellont exmnple of an irveversible process.
When i hole is opened in the partition to permit the expansion, the first moms
rusht through the bole and strike the opposite wail 1 no heat flow through the
walls is permitted, there is no way for the atoms to lose their kinclic energy.
The subscquent low may be turbulent (Irreversible), with differein purts of the
gas at different values of the encrgy density. Irreversible energy flow between
regions will eventually equalize conditions throughout the gas. We assume the
whole process occurs rapidly engugh so that no heat flows in through the walls.

How nuech work is done it the expansion?

Mo means of doing external work is provided, so that the work done is zero.
Zero work is not necessarily a characteristic of all irreversible processes, but
the work is zero for expansion into a vacuum.

What is the temperature after expansion?

No work is done and no heat is added in the expansion: I¥ = 0, @ = 0, and
U, ~ U, = 0. Because the energy is unchanged, the temperature of the ideal
gas is unchanged. The energy of a real gas may change in the process because
1the atoms are moved farther apart, which affects their interaction energy.

Wiat s the change of entropy in the expansion?

The Increase of emropy when the vohune is doubled at constant temperatire
15 given by {(56):

Ac = gy —~ 6, = Nlog2 = 0.069 x 10%, {13}

For the expansion into a vacuum @ = €.
Expansion into 4 vacuum i5 10t a reversible process: the system is not in the
most probabile (equilibrivim) configuration at every stage of the expansion. Only
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Table 6.3 Summary of ideal monatomic gas expansion experiments

U, — U, | Gy =~ Uy W g
Reversible v, t, | v
isothermal g Nlog — -~ Ntiog —* Nilog -2
expansion g f i
Reversibie TAETS pAnY
isentropic m%f\’r,l:i - (;—}) ] 0 M%NIII} - (—}) } 0
expansion z £
Irreversible - v,
expansion into 0 Nlog— 0 0
vacum if

the initial configuration before removal of the parntition and the final con-
figuration after equilibration are most probable configurations, At intermediate
stages the distribution in concentration and kinetic energy of atoms between
the two regions into which the system is divided does not correspond fo an

equilibriuny distribution. The central results of these calculations are sum-
marized in Table 6.3,

SUMMARY: STEPS LEADING TO THE IDEAL
GAS LAW FOR SPINLESS MONATOMIC GAS
(8} fle) = dexp(—¢f7) Occupancy of an orbital i the
classical Bmit of fle) « L

N . . .

(b} A = @ Given N, this equation determines
Z exp(—gp/r} ' A in the classical limit.
B2/ nn \? . .
{c) e, = AN Energy of a free particle orbital of
: guantum number n in a cube of
volume V.,
(d) Yexpl—e, /1) = J;:z J-du n2exp(—eft}  Transformation of the sum to an
" ' intcgral.

(e} A= NingV Result of the integration (d) after

subsitution in (b).

() ng = (Mt/2nh?)*? Definition of the quantum

concentration.



Prohlems

{g)} 1= tlogl'ny)
{h}y F = jti’s\’p(.‘\’,r,i"} = Nrtfloglnng) — 1]
() p= —{CF/cV) y = NV

PROBLERMS

1. Derivative of Fermi-Divac function.  Show that —&f/dc evaluated at the

Fermi level € = g has the value (41)7 1. Thus the lower the temperature, the
steeper the slope of the Fermi-Dirac function.

2. Symumnetry of filled and vacant orbitals. let ¢ = u + &6, so that flg) ap-
pears as f{u + 5). Show that :

A+ & =1 '__Iif[‘.ﬂ — &) (74)

Thus the probability that an orbital & above the Fermi level is occupied is equal

to the probability an orbital § below the Fcrm; levelis vacant. A vacant orbital is
someiimes known as & hole,

3. Dfs!rfbutfonfunctftmfor double occupancy suaristics.  Let usimagine a new
mechanics in which the allowed occupancies of an orbital arg 0, 1, and 2. The
values of the energy associated with these occupancies are assumed to be 0, ¢,
and 2, respectively.
{a) Derive anexpression for the ensemble average occupancy {(N), when the
system composed of this orbital is in thermal and diflusive conract with a
reservoir at temperature t and chemical potential g
(b} Return now to the usual quantum mechanics, and derive an expression
for the ensemble average occupancy of an energy level which is doubly de-

gencerate; that is, two orbitals have the identical energy & If both orbitals are
occupied the total energy is 2e.

4. Energy of gas of extreme relativistic particles. Extreme relativistic parti-
cles have momenta p such that pc » Mc?, where M is the rest mass of the
particle. The de Broglie refation 2 = h/p for the quantum wavelength continues
to apply. Show that the mean energy per particle of an extreme relativistic ideal
gasis 3rife = pe,incontrastio 3x for the nonrclativistic problem. {An interesting
varicty of relutivistic problems are discusscd by E. Fermi in Notes on Thermo-
dynomics end Sretistics, University of Chicago Press, 1966, paperback)

3. Iutegration of the therutodyaauic ideutity for an édeal gas.  From the ther-
modynamic identity at constant number of particles we have

_dU | pdv 1fau U pdV.
o P (B (av)‘”’ -
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Show by integration that for an ideal gas the entropy is

where g, is & constant, independent of 7 and V.

6. Entropy of mixing. Suppose that a system of V atoms of type A is placed
in diffusive contact with a system of N atoms of type B at the same temperature
and volume. Show that after diffusive equitibrium is reached the total entropy
is increased by 2N log 2. The entropy increase 2N log 2 is known as the entropy
of mixing. If the atoms are identical (A = B), show that there is no increase in

entropy when diffusive contact is established. The difference in the results has
been called the Gibbs paradox.

7. Relution of pressure and energy demsity.  (a) Show that the average pres-
sure in a sysiem in thermal contact with a heat reservoir is given by

Z {0 /0V )y expl -2, /7)
p= —= 5 , (7N

where the sum is over all states of the system. (b) Show for a gas of free particles

that .
fegy - 28
2y = 2L 7
(EV)H o3V (78)

as a result of the boundary conditions of the problem. The result holds equalty
whether ¢, refers to a state of N noninteracting particles or to an orbital. {c} Show
that for a gas of free nonretativistic particles

p=2UpV, ()

where U/ is the thermal average energy of the system. This result is not limited
to the classical regime; it holds equally for fermion and boson particles, as
long as they are nonrelativistic,

8. Time for a large fluctuation. We gquoted Boltzmann tohe effect that two
gases ina 0.t liter container wil nnmix only in a time enormously long compared
to 10" "™ vears, We shall investigate a related problem: we let a gas of atoms of
*He occupy a container of volume of 0. Iter at 300 K and a pressure of 1 atm,
and we ask how long it will be before the atoms assume a configuration in
witich all are in one-half of the container.

- (a) Estimate the number of stares accessible to the system in this initial
condition.



Problems

(by The gas is compressed isothermally to a volume of Q.05 liter. How many
states are accesstble now?

(¢} Forthe syslcm in the 0.1 liter container, esumale the v'due of the ratio

number of states for whicli all atoms are in one-half of the volume
number of states for which the atoms are anywhere in the volume’

(d} If the collision rate of an atom is = 10!%s~F, what is the total number of
collisions of all atoms in the system in a year? We use this as a crude estimate
of the frequency with which the state of the system changes.

{e} Estimate the nunber of years you would expect to wait before all atoms
are in one-half of the volume, starting from ilie cquilibrium configuration,

9. Gus of atoms with futernal degree of freedom.  Constder  ap ideal mon-
atomic gas, but one {or which the atom has two internal encrgy stales, one an
grergy A above the other. There are N atoms in volume V at temperiture 7.
Find the (o) cliemical potendialy (D) Hree cnerpy; (o) entropy; () pressure;
(¢} hieat capaceity at constant pressure,

10. Isentropic relations of ideal gas.  {a) Show that the differential changes for
an idcal gas in'an isentropic process satisfy

dp dv dr dp y ot
et AT - = i et e 2= ), {80
; + % : " {y 1] 0; + e {80)

where y = C,/Cy; these relations apply even if the molecules have internal
degrees of freedom. (b) The isentropic and isothermal bulk inoduliare defined as

B, = - V{{p/cV),; = - Y (@plaV),. (81)

Show that for an ideal gas B, = yp; B, = p. The velocity of sound in a gas s
given by ¢ = (B,/p)'**; there is very !m?e heat transfer in a sound wave. For an

ideal gas of molecules of mass M we have p = pr/M, so that ¢ = (yr/A)'/%
Here p is the mass density.

11. Convectire isentropic equilibrimmn of the atmosphere.  The lower 10-15km
of the atmosphere—the troposphere-—is ofien in a convectve sicady state
at comstant entropy, not constant temperature. Tn such equibbrivm pi ks
independent of altitude, where y = C,,'C,.. Use the condition of mechanieal
equilibrium in a uniform gravitationa! feld to: (@) Srow that d7/dz = coustant,
where » is the altitude. This quantity, important in meteorology, is called the
dry adiabatic lapse rate. (Do not use the barometric pressure relation that was
derived in Chapter § for an isothermal atmosphere.) (b} Estimate JT/dz, in
“C per kin, Take y = 7/5. (¢} Show that p x¢ p?, where p is the mass density.
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if the actual temperature gradient is greater than the isentropic gradient, the
atmosphere may be unstable with respect to convection.

12, Ideal gas in two dimensioas. (a) Fiud the chemical polential of an ideal
monatomic gas in two dimensions, with N atoms confined to a square of area

4 = L* The spin is zero. (b) Find an expression for the energy U of the gas.
{c} Find an expression for the entropy o. The temperature is 1.

13. Gibbs sum for ideal gas. (a) With the help of Zy = (ngV)'/N! from
Chapter 3, show that the Gibbs sum for an ideal gas of identical atoms

15 & = explingV). (b) Show thut the probability there are N atoms it the gas
in volume V w diffusive contact with a reservoir is

P(N) = (N)Pexp(~(ND)/N! (82)
which is just the Poisson distribution function {Appendix C). Here (ND is the
thermal average number of atoms in the volumie, which we have evaluated
previously as (N) = J¥n,. (c) Confirm that P(N) above sausfies

YPNy=1 and T NP(N)=(ND.

N

Y4, Meal pas caleulations. Consider one mole of an ideal monatomic gas at

JO0K and 1latm. First, let the gas expand isothermally and reverstbly to twice
the tnitial volume; second, let this be followed by an isentropic expansion ffom
twice to four times the initial volume. {a) How much heat (in joules) is added 10
the gas in each of these two processes? (b) What is the temperature at the end of
the second process? Suppose the first process is replaced by an irreversible
expansion into a vacuuin, to a total volume twice the initial volume. (¢) What
is the increase of entropy in the irreversible expansion, in joules per kelvin?

!5, Dicsel engine compression. A diesel engine is an internal contbustion
engine in which fuel is sprayed into the cylinders after 1he air charge has been
so highly compressed that it has aytained a temperature suffictent {o ignite the
fuel. Assume that the air in the cylinders is compressed isentropically from an
initial temperature of 27°C (300 K. If the compression ratio is 15, what is the

maximum lemperature in °C to which the air 1s heated by the compression?
Takey = 1.4. ' :
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ltis a fundamental result of quantum theory that all particles, including atoms
and molecules, are either fermions or bosons. They behave alike in the classical

regime tn which the concentration is small in comparison with the quantum
conceniratjon,

n << g = (M2l (H

Whenever n > 1y the gas is said to be in the quantum regime and is called a
quaniutn gas, The dillerence in physical properties beiween a quanium gas of
fermions and one of basans is dramatic, and both are unlike a gas in the classical
regime. A Fermi gas or liquid has o high kinctic energy, low heal capucity, fow
magnetic susceptibitity, low interparticle collision rate, and exerts a high
pressure on the container, ¢ven at absolute zero, A Bose gas or liquid has a
high concentrution of particles i the ground orbital, and diese particies—
called the Bose condensate—may act as a superfiuid, with practically zero
viscosity. _ o

For many systems the concentration i is fixed, and the temperature is the

important variable. The quantum regime obtains when the temperature is
below

1o = (2ah M4, (2

defined by the condition n = ny. A gas in the quantum regime with © « 1
i$ often said to be a degenerate gas®.

1t was realized by Nernst that the entropy of a classical gas diverges as logt
as v -+ 0. Quantum theory removes the difficulty: both fermion and boson
gases approach a unique ground state as r — 0, so that the entropy goes to
zero. We say that ithe entropy is squeezed out on cooliug a quantum gas (see
Probleins 3 and 8).

In the classical regime {Chapter 6) the thermial average number of particles
in an orbital of energy ¢ is given by

fle) = exp{{u — &)l {3)

* tiere we have the second distinct osage of the wotd “degenerate” n statistical physics. The first
usage was introduced in Chapter t, where we catled an encrgy level degenerase of more than one
state has the same cuorgy,

1182
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With the result for g appropriate to this regime,

fle) = (::/J:Q}exp(—zft) . {4)

with the usual choice of the origin of g at zero for theenergy of the lowest orbital.
The form (4) asstres us that the average occupancy of any orbital is always
< u/ng, which 1§ « I, consistent with our original picture of the classical regime.

A fermion 1S any particle—elementary or composite—with a half-integral
spin. A fermion is limited by the Pauli exclusion principle to an orbial occu-
pancy of G or I, with an average occupancy anywhere between these Himifs. Al
low temperatures it is clear that many low-lying orbitals will have one fermion
in cach orbital. At absolute zero all orbitals with 0 < & < £ will be occupied
with / = L. Here £, is the encrgy below which there are just enough orbitals
to hold the number of particles assigned to the systein. This energy is called the
Feruti encrgy. Above oy all orbituls will hiive [ = Quat v = 0. As 1 increases thie
distribution function will develop a high euergy tail, as in Fignre 7.3

Bosons have integral or zero spin. They may be elementary or composite;
if composite, they niust be niade up of an even number of elementary particles
i thiese liave spin 4, for thiere is no way to arrive ut an iuteger from un odd
aumber of halfintegers. The Pauli principle does not apply to bosons, so there
is no limit on the occupancy of any orbital, At absolute zero the ground
orbital—the orbital of lowest energy—is occupied by all the particles in the
system. As the temperature is increased the lowest single orbital toses its popula-
tion only slowly. and each excited orbital—any orbital of higher energy—will
contain a relatively small number of particles. We shall discuss this point
carefully. Above t =1, the ground orbital loses its special feature, and its
occupancy becomes much like that of any low-lying excited orbital.

FERMI GAS

A Fermi gas is called degeuerate when the temperature is low in comparison
with the Fermi energy. When the inequality 1 « gy is satisfied the orbitals of
energy lower than the Fermiencrgy ep will be almost entirely occupied, and tlie
orbitals of higher energy will be almost entirely vacant, An orbital is occupied
fulty when it contains one fermion. A Fermi gas is said to be noudegenerate
when the temperature is high compared with the Fermui energy, as in the classical
regime treated in Chapter 6.

The importam applications of the theory of degencrate Fermi gases juclude
conduction electrons in metals; the white dwarf stars; liquid *He; and nuclear
matter. The most striking property of a fermion gas is the high kinetic energy
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Figure 7.1 {a) The encrgies of the orbitals n = {, 2, ..., 10 for an eleciron
confined 10 a line of length L. Each level corresponds to two orbitals, ane for
spin up and one for spin dowa. (b} The ground statc of a system of {6 clectrons.
Orhitals above the shaded region are vacant in the ground slate.

of the ground state of the systern at absolute zero. Suppose that it is necessary
to accommodate N noninteracting electrons in a length L in one dimension.
What orbitals will be occupied in the ground state of the N electron sysiem?
In a one-dimensional crystal the quantum number of a free electron orbital of
form stin{unxfL} is a positive integer #, supplemented by the spin quantum
number i, = -+ ¥ for spin up or spin down.

If the system has 8 electrons, then in the ground state the orbitals with
n= 1,2, 3, 4and with n, = +4{ are filled, and the orbitals of higher n are
empty. Any other arrangement gives a higher energy. To construct the ground
state we fill the orbitals starting from n = | at the botiom, and we continue
filling higher orbitals with electrons until all N electrons are accommodated.

The orbitals that are filled in the ground state of 2 system of 16 electrons are
shown in Figure 7.1,



Ground State of Fermi Guas in Three Dimensions

Ground State of Fermt Gas in Three. Dimensions

Let the system be a eube of side L. and volume ¥ = L3 The orbitals have the
form of (3.58) and their energy is given by {3.59). The Fermi energy &4 is the
energy of the highest filled orbital at absolute zeto; it is deteemined by the

requirement that the system in the ground state hold N electrons, with cach
orbital filled with one electron up to the encrgy

hl niie 2
b 2:11( L ) )

Here n; is the radius of a sphere (in the space of the integers n,, 4,, n,) that
separates filled and empty orbitals. For the system to hold N electrons the
orbitals must be fitled up to 11, determined by

N=2x}x %}E T g ﬁ,,n’; T = N/ {(6)

The factor 2 arises because an electron has two possible spin orientations. The
factor § arises because only triplets 1, n,, n, in the positive octant of the sphere

in 1 space are to be counted. The volume of the sphere is dzn’/3. We may
then write {3} as

W 3rNNREOR L s
T | s = = 1p. 7
°F 2m ( vV ) 2m (3°n) B )

This relates the Fermi energy to the electron concentration N/V = 1. The
so-calted “Fermi temperature” 1, Is defined as 1, = &.
The total energy of the system in the ground state is

’ L] 3 h ? ]
Ug=2Y% e, =2x}x 4nfa‘:1:;;:=an ==-’5~(~) J"dmr‘ . (8

nEny 2m\L/) Jo

with g, = (h*/2m)}(mu/L%. In(8} and (9}, n Is an integer and is not N/V. Consistent
with {6}, we have let

27} = 25)dn) [dna? (9 o

in the conversion of the sum into an integral. Integration of (8) gives the total
ground state kinetic energy:

- (h\? s 3h [\
B sy e _— e—————— st == N Fl 20
Yo = Tom (L o 0 AR 4o
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Figure 7.2 Total ground state energy U, of one mole of
cleclrans versus mlumc

using (3} and (6). The average kinetic encrgy per particle is Ug/N and is $ of
the Fermienesrgy e, At constant N the energy increases as the volume decreases
(Figure 7.2), so that the Fermi crergy gives a repulsive contribution 1o the
binding of any material; in most metals and in white dwarf and neutron stars
i 15 the most importamt repulsive interaction. That is, the Fermi encrpy tends
to increase the volume. It is balunced in mctals by the Coulomb attraction
between clectrons and ions and in the stars by pruvitational atrraction.

Density of States
' Thermal averages for indepandent particle problemns have the form

(X) = 3, JlegtadX, (11

where it denotes the quantum orbital; X, 1s the value of the quantity X in

the orbital n; and f(g,,t4) is the thermal average occupancy, called the dis-

tribution function, of the orbial n, We often express (X as an integral over the
orbital energy £. Then (11} becomes

Xy = [de DielfleeggXie) (12)
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where the sum over orbitals has been transformed to an integrat by the sub-
stitution

Y629 - [de Dle: -, (13)

Here Dig)de is the nutmber of orbitals of energy between ¢ and £ + de. The
quantity D{e} is nearly always called the density of states, although it is more
accurale 1o call it the density of orbitals because it refers to the solutions of a
one particte problem and not to the states of the N particle system.

Consider an example of the calculation of (e} We sec from {7) thal the
number N of free electron orbitals of energy less than or equal lo some ¢ is

Nie} = (V3a{2mh 232342 {14)
for volume V. Take the logarithm of both sides:
tog N = 2loge + constant, : {15}

and take differentials of log N and loge:

3
=3 (16)

The quantity dN = [3N/2:)de is the number of orbitals of energy between ¢
and ¢ + e, so that

D{e} = INde = 3N[e)f2e {17)
is the density of orbitals. The fwo spin orientations of an electron have been
counted throughout this derivation because they were counted in [6). We can

write D{e) as a function of ¢ alone because

N{eYe = (V3a0{2m/hH)¥ 32 {18)

from {14}. Then {17} becomes

{19
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Figure 7.3 Density of orbitals as a function

of energy, for a free electron gas in three
dimensions. The dashed curve represents the
density f{e}B{e) of occupied orbitals at a finite
teinperature, but such that 7 is small in
comparison with ep. The shaded arca represents
tht occupied orbisals at absolute zero.
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When multiplied by the distribution function {Figure 6.3}, the density of
orbitats D{e) becomes D(e) f{e), the density of oceupied orbitats {Figure 7.3). The
total number of electrons in a system may now be written as

N = j: =D e ) | (20}

where f{g) is the Fermi-Dirac distribution function described in Chapter 6. In
problems where we kuow the total number of particles, we determiine p by
requiring that the total number of particles caleulated from (20} be equai to the
correct value. The total kinetic energy of the electrons is

U = Eﬁ deeDe} et (21)

F

If the system is in the ground stale, all orbitals are hilled up to the energy &ép,
above which they are vacant. The number of electrons is equal (o

N = J';r:fs Dz} , {22)

and the energy is

U{_,' = J:Fds «D(e). | {23)
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Heat Capacity of Electron Gas

We derive a quantisasive expression {or the heat capacity of a degencrase Fermi
gas of electrons in three dimensions. The calculation is perhaps the most im«
pressive accomplishment of the theory of the degenerate Fermi gas. For an
jdeal monatomic gas the heat capacity is 3N, bus for elecirons in a mesal very
much lower values are found. The calculation that follows gives excellent agree-
ment with the experimensal resulis. The increase in the toial energy of a system

of N clecirons when heated from 0 1o 1 is denoted by AU = Ult) — £40),
whence

AU = ﬁ) * de e D) fle) — f;"dsm(.s). (24)

Here f{e) is the Fermi-Dicac function, and ©(0) is the number of orbitals per
upit energy range, We nultiply the identity

N = ﬁ]w de f{eyDie) = J:r de D{c) {25}

by &5 to obtain

(jo" + j ‘”) deexf16)D(e) = ﬁ}"dm;{)(a). {26)
We use (26) to rewrite (29) as

AU = [7dele ~ enfeDie) + [ deter = (1 ~ f0]D. (29)

The first integral on the right-hand side of (27) gives the energy needed to take
electrons from ¢ to the orbitals of energy £ > ¢, and the second intcgral gives
the energy needed to bring the elecirons to & from orbilals below gp. Both
contributions 1o the energy are positive. The product f{e)Dle)de in the firsy
integral is the pumber of elecirons elevated 10 orbitals in the energy range
de at an cnergy e The facior {1 — f{g}] in the second iniegral is tlie probability
that an electron has been removed from an orbital ¢. The function AU is plotied
in Figure 7.4. In Figure 7.5 we ploi the Fermi-Dirac distribution function versus
g, for six values of the temperature. The electron concentration of the Fermi
gas was taken such that g;/ky = 50000 K, characteristic of the conduction
electrons in a metal.

The heat capacity of the electron gas is found on differentiating AU with
respect to r. The only temperature-dependent ternd in (27} s f{e), whence we
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Figure 74 Temperature dependence of the energy of > . : y.
a noninieracting fermion gas in three dimensions. The g 0.5
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Figure 7.5 Fermi-Dirac disiribution function a1 varicus temperaiures, for

Tr = £5/ky = 50000 K. The resulis apply 1o a gas in three dimensions. Th

number of particles is constani, independent of iemperature. The chemical

each iemperaiure was calculated with the help of Eq. (20) and may be read
- graph as the energy at which f = }. Couriesy of B. Feldman. -
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Figure 7.6 Plot of the chemical potential p versus temperature t fora
gus of noninteracting fermions in three dimensions, For conventence in
plotting, the units of ; and 1 are 0.763¢;.

¢an group terms to obtain

Co = aw Jmcla (¢ ~ &) %@(s}. (28}

dr o

Atthe temperatures of initerest in metals v/e, < 0.01, and we see from Figure 7.5
that the derivative Jdf/dt is large only at encrgies near &, It is a good approxi-
mation to evaluate the density of orbitals D{g) at g and take it outside of the
integral: .

= ﬂy

Ca = Dley) jo dele ~ o) 7. (29)

Examination of the graphs in Figures 7.6 and 7.7 of the variation of g with ¢

suggests that whent « gy we ignore the temperature dependence of the chiemical

potential p in the Fermi-Dirac distribution function and replace p by the
cotistant €. We have then:

df & - gp explle ~ gpl/t] 10
&S T fple— s 7 o
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We set

x = (e~ eft,
and it follows from {29} and {30} that ~ -

e.t

— = .2
C. = 1Dleg) f":m dxx T

We may safely rep!ﬁoc the fower limit by — oo because the factor
integrand is afready negligible at x = —gg/1 if we are concerned
temperatures such that ex/t ~ [00 or more. The integral* becomes

F :

1 x 3 er i ﬁ
! J‘_xd,\.\ m{e‘ +‘"‘“‘”§}z =7

* The inlegral is not clementary, but may be evaluated from ilie mors familiar result

#: X ﬂz
f dx T R s
2 e+ 1 12a

on differeniintion of both sides with respect to 1he parameler a,
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whence we have for the heat capacity of an electron gas, when t « 1p,

Cy = %-n?‘D{'e;)'r. ‘ | (34)

In conventional units,

Cov = 5 Dephs® T, (35)

We found that the deusity of orbitals at the Fermi encrgy is
Dleg) = IN[2ep = IN/2tg {36}
for a free electron gas, with 1 = £.. Do not be deceived by the notation t,:

itis ot the temperature of the Fermi gas, bug only a conve nicnit reference point.

For t « 1 the gas is degenerate; for 1 > 1 the gas is in the classical reginte.
Thus {34} becomes

Ca = 1 Nt/1p. | _ (37)

[n conventional units there is an extra factor kg, so that
Coy = Nk TITy | (38)

where kT = gp. Again, T¢ is not an actual temperature, but only a ceference
point,

We can give a physical explanation of the form of the result (37). When the
specitnen §s heated from absolute zero, chiefly those electrons in states within
an ¢nergy range 7 of the Fermi level are excited thermally, becase the FD
disteibution function is affected over a region of the order of v in width, illus-
tratect by Figures 7.3 and 7.5. Thus the iumber ofexcited electrons isofthe order
of Nt/ep, and each of these has its energy increased approximately by 1. The
total electronic thermal energy is therefore of the order of U, & Nt¥/ep. Thus
the elcctronic contribution to the feat capacity is given by

Ce’ = ({Uel/df ~ NT;E.;“ ~ I\?T/TF » (39)

which is directly proportional to 1, in agrecment with the exact result (34) and
with the experimental results.
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Table 7.1 Culculuied Fermi energy puraineters for {ree elecirons

Conduciion

Fermi
electron o Fermi teraperatune
concemiraion Velocity energy Ty = £r kg,
Ni¥ incm™? gr,incms? £ in eV inK
Li 46 x 1032 13 x 10® 4.7 55 % 10¢
Na 2.5 13 bR 17
K 1.3 (.85 A 14
Rb 108 0.79 18 21
Cs 0.56 0.73 1.5 13
Cu 850 1.56 70 8.2
Ag 5.76 _ 138 55 64
Au 590 1.39 5.5 64

Fermi Gas in Metals

The alkali metals and copper, silver, and gold have one valence electron per
atom, and the valence electron becomes the conduction electron in the metal.
Thus the concentration of conduction electrons is equal to the concentration
of atoms, whith may be evaluated either from the density and the atomic
weight or from the crystal lattice dimensions.

If the conduction clectrons act as a free fermion gas, the value of the Fermi
energy e may be calculated from {7):

= (232 {40}

Values of n and of & are given in Table 7.1 and in Figure 7.8. The electron
veloCity vp at the Fernu surface is also given {n the table; it is defined so that
the kinetic energy is equal (0 £73

dmep? = g, - {41}

where ntis the mass of the electron. The values of the Fermi temperature Ty =
ep/ky for ordinary metals are of the order of 5 x 10%K, so that the assumption
T « Tg used in the derivation of (35) is an excellent approximation at room
tempetature and below,

The heat capacity of many metals at constant volume may be writlen as
the sum of an electronic contribution and a lattice vibration contribution. At
tow temperatures the sum has the form

Cy =yt + AT, L 4y
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Figure 7.9 Experimental heal capacity values for potassivm, plotied as C/ T versus
T2 Afier W. H. Lien and N. E. Philtips, Phys. Rev. 133, At370 (1964},

where y and A are constants charaeteristic of the material. Here y = N/,
from (37), and the lattice vibration term Az1? was discussed in Chapter 4, The
electronic term is linear in 7 and is dominant at sufficiently low temperatures.

It is helpful to display the experimental values of the heat capacity for a given
material as a plot of Cft versus 7%:

Cyft =7 + AT? (43)
for then the points should fie on a straight line. The intercept at v = 0 gives

the value ofy. Such 2 plot is shown for potassium in Figure 7.9. Observed values
of y are given in Tables 7.2and 7.3.
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Table 7.2 Experimenial and {ree eleciron elecironic
heat capacities of monovalent metals

o y{exp), - 7, (free electron}, .
Meial  mImol 'K™? mimol K32 Y/te
Li 163 _ 0.75 217
Na = 1.38 1.14 121
K . 208 1.69 1.23
Rb -~ 241 197 1.22
Cs 3.20 236 1.35
Cu 0.695 0.50 1.39
Ag 0.646 0.65 1.0G
Au 0.729 0.65 1.13

wottis The values of yand o arcin mdmot P K8,
sounct: Courtesy of N, L Phidlips..

Tabfe 7.3 Experimentat values of clectronic heat capacity constany y of melafs

I 1

Li. | Be B C IN |
1.63 | 0.17
Na | Mg | Al |si {p
138 | 1.3 : . 135

— e —— PP N IR LI —l—v- ‘‘‘‘‘  I—— e e
K Ca | 5¢ Ti Y Cr (Mpyil Fe | Co | Nt jCu 1Zn (Ga Ge ) As
2081 29 [ 10713351926 140 1920 | 498 | 473 1 702 [ 0.695] 0.64 {0596 0.19
Rb | S |Y {2t {Nb {Mo {Tc |Ru |Rh {Pd {Ag {Cd [in |Sn |Sb
241 1 36 11021280 1779120 j— )33 149 } 942 (064610638169 | 1.78 jo.n
Cs Ba | La Hi Ta W Re Os i Pt Au Hg 1T Pb 1B
3209 27 $10. 1216159 113 {23 124 131 {68 j0729] 179 {147 | 29% |0.008

ROTE: The value of 7 is in mI mot 7P K72,
source: From compilalions furnished by N E, Phillips and N. Pearlman.

White Dwarf Stars

White dwarf{ stars have masses comparable to that of the Sun. The mass and
rudius of the Sun are '

Mg =20 x 1032 g,  Rg =70 x10%com. (44)

The radii of white dwarfs are very small, perhaps 0.01 that of the Sun. The
density of the Sun, which is a nornial star, is of the order of 1g cmi 3, like that
of water on the Earth. The densities of white dwarfs are exceedingly high, of the
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order 0f 10 10 107 gem ™3, Atoms under the densities prevalent in white dwarfs
are entirely jonized into nuclej and free electrons, and the clectron gas is a
degenerate gas, as will be shown below.

The companion of Sirtus was the first white dwarf to be discovered. In 1844
Bessel observed that the path of the star Sirius oscillated slightly about a straight
line, as if it had an invisible companjon. The companion, Sirjus B, was discovered
near its predicted position by Clark in 1862. Themass of Sirius B wasdetermined
to be 2.0 x 10**g by measurements on the orbits. The radius of Sirius B is
estimated as 2 x 10%cm by a comparison of the surface temperature and the

radiant energy flux, using the properties of thermal radiant energy developed
in Chapter 4.

The tmass and radius of Sirlus B lead to the mean density

A 2 x 10%g

T a— I e e T A M “‘J- 45
p= P RRTILraWE 0.7 x 10°gem {45)

This extraordinarily high density was appraised by Eddington in 1926 i the
following words: “Apart from the incredibility of the result, there was no
particular reason o view the calculation with suspicion.” Other white dwarfs
have higher densities: that named Van Maanen No. 2 has a mean density
100 times higher.

Hydrogen atoms at a density of 108 gcem ™ have a volume per atom equal to

!

V, = ~ 2 x 107 3%cm? peratom
47 (10 molem ™36 x 10?7 atoms mol ™) % P

or 2 x 107® A peratom. The averuge nearest-peighbor separation is then of
the order of 0.01 A, as compared with the internuclear separation of 0.74 Aina
molecule of hydrogen. Under conditions of such high density the atomic
electrons are no longer attached to individual nuclei, The etectrons are ionized
and form an electron gas. The matter in the white dwarfs is held together by
graviiational attraction, which is the binding force in all stars.

In the interior of white dwarf stars* the electron gas is degenerate; the
temperature is much less than the Fermi cnergy 5. The Fermi onergy of au
clectron gas at a concentration of 1 x 10*®eleetrons cm™? is given by

ep = (0220){(3r )3 2 05 x 107 %rg = 3 x 107 eV, {16)

* A pood discussion of while dwarf stars is given by W. K. Rose, 4s:mphlms Hoft, Rinehar, and
Winsion, 1973,
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Table 7.4  Fermi enerpy of desenerate formion pases
{characteristic vatues)

Phase of maiier . Particles Tein K
Liquid *He atoms 0.3

Motgal : clecirons 5 % ot
White dwarf sturs etectrons 3x 0
Nuclear matter nuckeons 3 x !
Neuirosn stars neutrons 3 x 102

about 10 higher than in a typieal metal. The Fermi temperature £,/ky of the
electrons is = 3 x 10% K, as in Table 7.4. The actual temperature m the interior
of a white dwarf is believed to be of the order of 10" K. The electron gas in the
interior of a white dwarf is highly degenerate because the thermal energy is much
tower than the Fermi energy. '
Are the ¢lectron energies in the relativistic regime? This question arises
because our theory of the Fermi gas has used the nonrelativistic expression

p?/2m for the kinetic energy of an electron of momentum p. The cnergy equi-

valence of the rest mass of an electron is

gg = me® m {1 x 10777g)}3 x 10%cins™ P = 1 x 107%erg. {47)

This energy is of the same Orde} as the Fermi energy {46). Thus relativistic

effects will be significant, but not dominant. At higher densities the Fermi gas
is relativistic. '

MNuelear Matter

We consider the state of matter within nuclei. The neutrons and protons of
which nuclear matter is composed form a degenerate fermion gas, at least
qualitatively. We estimate here the Fermienergy of the nucleon gas; The radius
of a nucleus that contains 4 nucleons is given by the empirieal relation

"R &= {1.3 x 10783cm) x A3 {48)

Aécording to this refation the average volume per particle is constant, for the

volume goes as R3, which is proportional to 4. The eoncentration of nucleons
tn nuclear matter is

A
= % 0. ¥em—3d 49
_“ T $n{1.3 x 107 em)4 0.11 x 10 o o .( )

o ——
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about 10% times higher than the concentration of nucleons in a white dwarf
star. Neutrons and protonts are not identical particles. The Fermi encrgy of
the neutrons need not cqual the Fermi energy of the protons. The concentri-
tion of one or the other, but not both, enters the famdiar relation

X!

I
B = g (3nin)23. (30

For simplicity et us suppose that the number of protons is equal to the
nuntber of neutrons. Theit

i9 -3
Bocotons = Mpeutesns ~ 0.05 x 107 em (51}

¥

as obtained from {49) on dividing by 2. The Fermi cnergy is
gp = (317 x 10731 & 043 x 10 *erg & 27 Mev. (52)

The average kinetic cnergy of a particle in a degencrate Fermi gas is 3 of the
Fermi energy, so that {n nuclear matier the average kinetie energy is 16 Mev
per nucleon.

BOSON GAS AND EINSTEIN CONDENSATION

A very remarkable effect occurs in o gas of noninteracting bosons at a certain
transition temperature, below which a substantial fraction of the total number
of particles in the system will occupy the single orbital of lowest energy, called
the ground orbital. Any other orbital, {ncluding the orbital of second lowest
energy, at the same temperature will be occupied by a relatively negligible
number of particles. The total occupancy of all orbitals will always be equat to
the specified number of particies in the system. The ground-orbital effect is
called the Einstein condensation. |

There would be nothiag surprising to us in this result for the ground state
occupaney if it were valid only below 107 1% K. This temperature is comparable
with the energy spacing between the lowest and next lowest orbitals in a system
of volume I cm?, as we show below. But the Eiustein condensation temperature
for a gas of fictitious noninteracting helium atoms at the observed density of
liquid hélium is very much higher, about 3K. Helium is the most familiar
example of Einsteln condensation in action.

Chemieal Potentiat Near Absolute Zerg

The key to the Einstein condensation is the behavior of the chemical potential
of a boson system at low temperatures. The chc_micai potential is responsible
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for the apparent stabilization of a large population of particles in the ground
orbital, We consider a system composed of a farge number N of noninteracting
boscns. When the system is at absolute zero al} particles occupy the lowest-
cncrgy orbital and the systcm is in the state of minimum encrgy. 1t is certainly
not surprising that at v = 0 all particles should be in the orbital of lowest
cnergy. We can show that a substantial fraction remains in the ground orbital
at low, although experimentally obtainable, temperatures.

If we put the energy of the ground orbital at zero on our energy scale, then
from the Bose-Einstein distribution {function

o i
5,1} = {53
S(e) explie - pifxl ~ ¢ )
we ohtan the oceupancy of the ground orbital at ¢ = 0 as
0 = e (54)
o exp(~—pf1y ~ 1

When v+ 0 the occupancy of the ground orbital becomes equal to the total
number of particles in the system, so that

) | DR 1 T
! 03 = N~ i e 2 =t e,
:?:;ﬂ‘ %) ‘er; exp{—pfry -1 1 —{p/t)~1 I

Here we have made use of the series expansion exp{—x) = | — x ++--. We
know that x, which is p/r, must be small in comparison with unity, for otherwise
the total number of particles N could not be large. From this result we find

N = —1/y; o= —tfN {55}

st - 0. ForN =102t T = 1K, wehave p = ~14 x 107*%erg. We note
from (33} that

1
=explp/fdixl ~ 7 (56}

as 7 ~ 0. The chemical potertial in a boson system must always be lower in

cicrgy than the ground state orbiral, i order thar the occupancy efevery orbital
be non-negative. '
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Example: Spacing of lowest and second lowest orbituls ef free atoms.  The energy of an
orbitul of un atom free to move in a cube of volume V¥ = L3 s

}
2;{( ) {n? + nr o+ n*) . {57

where a,, n,, », are positive inlegers. The energy {I11) of the lowest orbital is

2z
e(m)pi”—ﬁ()(wwz), (58)

and the energy {28 1) of one of the soi of next towes! orbilals is

fi k3
The lowest excitation energy of the aloni s
; h* fn\?
Ag = g(211) — g(§ 1} IX o[- 60
@) ~ el =3 x 5 M( ) (60)
HA{*He) = 6.6 x 16" gand L = lcm,
= (8.4 x 1073%)(9.86) = 2.48 x 1073 erg (61)

In temperature units, Aetky = 1.80 x 10714 K.

Fhis sptitting is extremely small, and f2 is difficult to conceive that {t can play an imporiant
part tn a physical problem even at the lowest reasonably accessible temperatures such as
I mK, whicth is 1077 K. Howdéver, at the 1 mK temperalure {35) gives p= ~1.4 x
1074 erg for N =107 artoms, referred to the orbital [S8) as the zero of energy. Thus p is
much closer {o the ground orbiial than is the next lowest orbiial (59), and exp{[«(111} ~
pl/e} is much closer to 1 than is exp{{e[211) — p)/t), so that (I 11) dominates the dis-
{ribution function.

The Boltzmann factor exp{~ Ag/7)al ImK is

exp(~18 x 107 = 1 ~ 1.8 x 1071 (62)

which is esseniially unity. By {4) we would expect that even if 2 = #, thte occupancy of the
first excited orbital would only be of the order of 1, However, the Bose-Eitsteit distribution
gives an cndirely ditferent value for 1heé ovcupancy of the tirst exciied orbinal;

I I
Jbe) = expl(de — p)fe] ~ 17 exp(Be/r) — !

te¢

. {63)
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because Ae » p Thus the occupation of the first exgited orbiial 1 mK b

[ = T8 % To-iT =5 x 10‘0 : (64)

so that the fraction of the N particles that are in this orbital is £,V = § x 101%10%7 >
5 x 1072 which is very smalt. We see that the occupancy of the first excited orbiral a1 low
temperatures is relatively very muck lower than would be expected at first sight {rom the
simple Bohzmann factor (62). The Bose-Einstein distribution is quite strange; i favors a
sifuation in which the greatest part ol the population is left in the ground orbital at suffi-
cienily low temperatures. The particies in the ground orbiial, as long as their numberis » |
are calted the Bese-Einstein condensate. The atoms in the condensate act quize differentty
from the atoms in excited siates.

How do we understand the existence of the condensate? Suppose the atoms were
governed by the Plunck distribution (Chapier 4), which makes no provision for holding
constant the total number of particles; instead, the thermal averapgs number of photons
increases with temperature al 77, as found in Problem 4.1, 11 the laws ofnazure restricied the
1okt humber of photons to o vilue N, we would suy et the ground orbitul of the plivton
gas contained the differeace Ny = N — Nr)between the number alfotted and the nuynber
thermally excited, The N, nenexcited photons would be described as condensed into tlic
ground orbital, but Ng becomes cssentially zcro at a temperature 1, such that aft N pholons
are excited. There s no actual constraing on the total number of pholons, koweves, there
is a cons{raint on the toful number N of material bosons, such as *1e wloms, in o sysiom,
This coasirdnt 15 the origin of the condensution into the grouad orbital. The difference
between the Flanck distribution und the Bose-Einstein distribution is that the lonner will

conservé the {otud aumber of panticles, independent of remperature, so that nonexcited
aloms are rcal!y in thé ground state condensate.

e e i it g e e
| TR S R TR T R

e aw m  e o b e

Orbital Occupancy Versus Temperature

We saw in (19) that the number of free particte orbitals per unit energy range is

32 .
Dle) = (‘?4) g2 | (65)

for a particle of spin zero', The total number of atoms of hetium-4 in the ground
and excited orbitals is given by the sum of the occupancies of all orbitals:

N =T fo= No(®) + N = No(0) + [ deD@fied. (66)

We have separated the sum oves 1 into two parts. Here No(t) has been written
for f(07), the number of atoms in the ground orbital at temperature v. The
in{cgrgl in (66) gives the number of atoms N {1} in all excited _orbitais, with
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Fizure 7.1 Plot of ihe boson distribution funciion for two temperatures, with sufficient
particles present to ensure A = |, The inicgral of the distributjon tinmes the density of
states gives the number N, of particles in exciled orbitals; the rest of the particles present

arc condensed inlo the ground state orbital. The value of Ny is too large 1o be shown on
the plot.

f{e,7) as the Bose-Einstein distribution function. The integral gives only the
number of atoms in excited orbitals and excludes the atoms in the ground
orbital, because the function B{e) is zero at £ = 0. To count the atoms correctly
we must count separately the occupancy N, of the orbital with ¢ = 0. Although
only a single orbital is involved, the value of Ng may be very large in a gas of
bosons. We shalt call Ny the number of atoms in the condensed phase and N,
the number of atoms in the normal phase, The whole secret of the result wluch
follows is that at low temperatures the chemical potential p is very much closer
in energy to the ground state orbital than the first excited orbital is to the
ground state orbital. This tloseness of p to the ground orbital loads most of
the population of the system into the ground orbital {(Figure 7.10).
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The Bose-Einstein distribution function when written for the orbilal at
g = 0is

Nof) =gz, (67

as in {54), where 2 will depend on the temperature 7. The number of particles
in all excited orbitals increases as ¢3/%:

VoMY e £
NG = () [ .
o 4n’ (h’) J‘ﬂ e A" Vexplefr) ~ 1

or, with x = g/t,

VMV re XM |
Ng(l').»— m(“’;l—f) T J‘o dx m (68)

Nolice the factor 1% which gives the temperature dependence of N,.

At sufficiently low temperatures the number of particles in [he ground stale
witl be a very large number. Equaltion {67} tells us that Z must be very close to
unity whenever Ng is » L. Then 2 is very accurately constant, because a mac-
roscopic value of N, forces 7 to be close 10 unity. The condition for the vakdity
of the calculation is that Ng» 1, and 1t is not required that N, « N, When
¢~ 7 in the integrand, the value of the mtegr,md is inscnsitive to smatl devia-
tions of 4 from 1, so that we can set £ = "1 in (68), although not in (67).

The value of the integral* in (68) is, when A =

« \HE )
[ ax g = 1306n (69)

* To evaluale the inlegral we wrile
< ‘*x et}
N e - - ¥ 4
J‘O d J. 1 —e"F Z‘ J.
- ( L '“‘JM) .fuﬂ dy y'te™,
4=

The infinf1z sum is easily evaluated auenericaly 10 be 2612, The inlegrat aay be transformed with
¥ hi lO gl\ ]

2 J‘o‘ el expl{—1?) = §/n.
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Thus the number of atoms in excited states is

1306V /2M\M? |
No= 222l 20TV o6
. 3 (nhz) 26120,V , (70)

where ng = (M1/2nh*)¥? is again the quantum concentration. We divide N, by
N to obtain the fraction of atoms in excited orbitals:

NN = 2612nV/N = 2612ny/n. (7N

The value 4 > [ or 1 — [/N which led to (7}) is valid as long as a large
number of atoms are in the ground state. All particles have to be in some
orbital, either in an excited orbital or in the ground orbital. The number in
excited orbitals is relatively insensitive to small changes in A, but the rest of
the particles have to be in the ground orbital. To assure this we must take 2
very close to } as long as N is a large number. Even 107 Is a large number for
the occupancy of an orbital. Yet within At/ = 1078 of the transition, where
7 Is defined by (72) below, the occupancy of the ground orbital is > 10" atoins

cm "2 at the concentration of liquid *He. Thus our argumment is highly accurate
at Arfry = 1075, '

Einstein Condensation Temperature

We deflue the Einstein condensation temperature® 1 as the temperature for
which the number of atoms in excited states is equal to the total number of
atoms. That is, N {r;) = N. Above 17, the occupancy of the ground orbital is
not a macroscopic number; below 1, the occupancy is macroscopie. From (70)
with N for N, we find for the condensation temperature

2aht N\
g m | : (72)
M o\2612V
Now {71) maty be written as
) 73
1’\“.;’1\; = {T/TE}“ - t ( )

where N is the total number of atoms. The number of atoms i1t excited orbatals

varies as t>% at temperatures below g, as shown in Fignre 7.11, The calenlaked
value of Ty for atoms of *He s 23K,

e

* A. Eipstein, Akademic der Wissenschafion, Berlfn, Siczungsbericlne §934, 2615 1925, 3.
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Figure 711 Condensed boson gas: temperature dependence
of the proportion Ng/N of aioms in the geound orbilal and
of the praporiion N /N of aloms in all exciled orbilals, We
have [abeled the two components as normal and superftuid
to agree wilh the cuslomary desceription of Hguid helivm.

The slopes of all three curves are intended to be zero at t =0,

The nuinber of particies in the ground orbital is found frow {73):
No =N~ N, = N[1 ~ (t/tx¥*]. {74)

We note that N may be of the order of 10?2, For ¢ even slightly less than 1z 2
large number of particles will be in the ground orbital, as we see in Figure 7.11.
Wehave said that the particles in the ground orbital below T form the condensed
phase or the superfluid phase.

The condensation temiperature in Kelvin is given by the nnmerical relation

L Toin K) = (115/V2PM) (75)

where ¥, is the molar volume in em® mol™! and M is the molecular weight.
For liquid hielium Vi = 27.6cm*mol™? and M = 4; thus T = 3.1 K.



Liquid *He
Liguid *He

The calculated temperature of 3 K is suggestively close to the actual temperature
of 217K arwhiclt a transition 10 a new state of matier is observed to take place
in liquid helium (Figure 7.12). We believe that in liquid “He below 2.17K there
is a condensation of a subsiantial fraction of the atoms of *He into the ground
orbilal of the system. This is different from the condensation in coordinate
space that occurs fit the condensation of 2 gas to a liquid. Evidently the inter-
atomic forces that lead to the liquefaction of *He at 4.2 K under a pressure of
one atmosphere are too weak to destroy tlie major effects of the boson con-
densation at 2.17K. {n this respect tlte liquid behaves as a gas, The condensa-
tion into the ground orbital is certainly connected with the properties of bosons.
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Figure 7.12  Heat capacity of liquid *He. The sharp
peak near 2,17 K is evidence of an inspottant transition
in the nasure of the liguid. The viscosity of the liquid
above the transition iemperature §s 1ypical of normal
liquids, whereas the viscosity below the irgnsition as
determined by rate of flow through nacrow slits is
vanishingly small, at [east 10° times smaller than the
viscosity above the transition. The transiiion is often
called a lambda transition merely because of thie shape
. of ihe graph. Afier Keesom et al.
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The condensation is normally not pennitied for ferinions, but pairs of fermions
inay act as bosons, as in the superconductivity of electron pairs (Cooper pairs) -
In metals. A different type of transition to complex phases ‘,v'iih superfluid
properties has been observed in liquid *He below 3mK., Atoms of *He have
spin 4 and are fermions, but pairs of *He atoms act as bosons.

We can give several arguments in support of our view of tiquid helium as a
gas of noninteracling particles. At first sight this is a drastic overstmplification
of tlie problem, but there are some important features of liquid helium for
which the view is correct.

{a) The molar volume of liquid *He at absofuie zcro is 3.1 times the volume
that we calculate from the known interactions of helium atoms. The interaction
forces between pairs of heliunt atoms are well known experimentally aud
theoretically, and from these forces by standard elementary methods of solid
state physics we can calculite the equdibrium volume of a static lattice of
heltum atoms. In a typical calcutation we find the molar volume to be 9cm?
mol ™!, as compared with the observed 27.6 cm? mol 1. Thus the kinetic motion
of the hefium atoms has a large effect on ihe liquid siate and leads to an ex-
panded structure in which the atoms to a certain extent can move freely over
appreciable distances. We can say that the quantum zcro- pozm motion is
responsible for the expansion of the molar volume.

(b} The transport properties of liquid hiefium in the normal state are not very
different {rom those of 4 normal classical gas. In particular, the ratio of the

thermal conductivity K to the product of the v iscosity i times the heat capacity
per unit mass has the values

K 26, at 28K
J;CF 12, at 40K

These values are quite close to those observed for normal gases at room
temperature—sce Table 14.3. The values of the transport cocfficients them-
selves in the liquid are within an order of magnitude of those calculated for the
gas at the same density. Normal fiquids act quite differently.

{c) The forces in the liguid are retatively weak, and the liquid does not exist
above the critical temperature of 3.2 K, which is the maximuni boiling point
observed. The binding cnergy would be perliaps ten times skronger in the
cquilibrimm configuration of a suaic tattice, but the expunsion of e molar
volume by the quantum zero-point motion of the atoms & responsible for tlie
reduction in the binding energy 1o the observed value. The value of the critical
femperature is dircctly proportional 1o the binding energy.

{d} The Hquid is stable ut absolute sero ab pressures mder 25tk abuve
25 atm the solid is wiore stable. '



Liguid *He

fan
Ln

&
Wy

[N
wn

&

Rate of mass flow,
in units of 107%™t

\ e /’*uc
N LT
0 ] ]
i 2 3 4
T, in K——v

Lh

Figure 7.13  Comiparison of rales of flow of liguid *He and
tiquid *He uuder gravily through a fine hole. Notice the suddea
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988 (1949).

The new state of matter into which liquid *He enters wien cooled below
2.17K has quite astonishing propertics. The viscosity as measured in a flow
experinient® is essentially zero (Figure 7.13), and the thenual conductivity is
very high. We say that liquid “He below the transition temperature is a super-
fluid. More precisely, we denote liquid *He below the transition temperature
as Hiquid He 1], and we say that liquid He 11 is 2 mixture of normal Buid and
supcrfluid components. The normal fluid component consists of the helivn
atoms in thermally excited orbitals, and the superfluid coniponent consists of
the heliwm atoms condensed into the ground orbital. It is kuown that the
radjoactive boson ®He in solution in liquid *He does not take part in the
superflow of the latter; neither, of course, does the fermion *He in solution in
*1fe ke part in the superflow,

We speak of liguid *He ahove the iransition temperathye as lquid He L
There is no superflnid componeit in liquid He 1, for here the grapd orbiral
oceupancey is negligible, Dol uf 1ie sate order of muagnitude as the vecapancy

* tn other arrungements there may be an effeckive viscosily: this is brue of a disk osciflading in biquid

*He ut any finite temperature below the condepsation Jemperature, For a combination of two

Mty of ditferen viscositios, some cxperiments meisuie 1he average vbyasity, wsd dtlics expetiments
weasure the average of By, or the averapge Huidily,
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of the system. Note thu helivm 8 a Hguid at
absofue zero a1 pressures below 25 aim. The
liquid-vapor boiling curve is not included in

this graph us it would merge with the wro | Liquid He 1
pressuse fine. Afrer C. A, Swenson, Phys. Rev.
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of any other low~!yfng orbital, as we have seen. The regions of pressure and
ternperature in which liquid He { and I exist are shown tn Figure 7.14,

The development of superfiurd properties is not an aulomatic conscquence
of the Einstein condensation of aloms into the ground orbiral. Advanced cal-
culations show that it is the existence of some form (almost any {orn) of inter-

action among atoms that leads to the development of superfluid properties in
the atoms condensed i the ground orbital.

Phase Relations of Helium

The phase diagram of *He was shown in Figure 7.14. The liquid-vapor curve
can be followed from the critical point of 5.2 K down to absolute zero without
any appearance of the solid. Al the transition temperature the normal liquid,
cailed He I, makes a transition to the form with superfluid properties, called
He Il. A temperature called the A point js the triple point at which {iquid He {,
liquid He 11, and vapor coexist. Keesom, who first solidified helium, found {hat
the solid* did not exist below a pressure of 25 atm, Another triple point exists

* Aninlescsring discussion of solid helium is given by B. Bertram and R. A, Guyer, Scientific Amesi-

can, Augusl 1967, pp. 8593, Solid *He c:usls in lhrcc crysral structises accardmg ro the conditions
~of rcmpcramrc :md psessure. . A :
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Figure 7.15 Phase diagrams for liquid *He, (a) in
Lelvin and {b) In miltikelvin. In rhe region of negalive
stope shown in {a) on the phase boundary the solid has
a higher entropy than the lquid, and we have 1o add
heat 10 the Hauid 1o solidify it. Superfluid propertics
appear in {b) in1he A and B phases of liquid *He. The
A phase is double-—in a magnetic field the phase divides
inlo fwo componenls with opposite nuclear magnetic

momenis,

at 1.743 K here the solid is in equilibrium with the two Hquid modifications,
He [ and He II. The two triple poinis are connecied by a line thal separates the

regions of existence of He 1 and He .

Thephase diagram of *He differs in a remaskable way from the phase diagrani
of *He. Figure 7.15 exhibits the importance of the fermion nature of *He. Note
the negative slope of the coexisience curve at low temperatures. As explained
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in Chapter 10, the ncgamc siope means that the entrap) of the hqmd phase
is fower than the cntropy of the solid phase,

Quasiparticles :md Supcrﬂcidity, “He

For many purposes the superfluid component of liquid helium I behaves as
if it were a vacuum, as if it were nof there at all, The N atoms of the superfluid
are condenscd into the ground orbital and have no exeitation energy, for the
ground orbitul by defiition has no excitation energy. The superfluid has energy
only when the center of mass of the superfluid is given a veloeity relative to the
laboratory reference frame—as when the superfitiid is set into flow relative to
the laboratory.

The condensed component of N, atomns will flow with zero viseosity so long
as the flow does not ereate excitations in the superfluid—that is, so long as no
atoms make transitrons between the ground orbitul and the excited orbitals.
Such transitions might be caused by eollisions of helium atoms with irregu-
larities in the wall of the tube through which the helium atoms are fowing,
The transitions, if they occur, are a cause of energy loss and of momentum
loss from the moving fluid, and the flow is no! rcs:smnceless if sm:h collisions

‘can occur,
The criterion for superfluidity mvolves the energy and monientum relation-

ship of the excitations in liquid He 11 If the excited orbitals were r&tily hke the
orbilals of free atomns, with a free partielé reluation

g = tMp? = %?(ﬁk]z {76)

W

between the energy ¢ and the momentum My or ik of an atom, then we can
show that supcrfiuidity would not be expected. Here k = 2x/wavelength, But
‘beeausg of the cxistenee of interactions between the atoms the low energy
excitations do not resemble free particle excifations, but are fengitudipal sound
waves, longitudinal phonons (Chapter 4). After all, it is not unreasonable that a
fongitudinal sound wave should propagate in any liquid, cven though we have
no previous experience of superliquids,

A language has grown up o describe the low-lying eacned states ol'a system
of many atoms. These states are called elementary excitations and in their
particie aspect the states are called quasiparticles. Longitudinal phonosts are
the elementary excitations of Hguid He [1. We shall give the clear-cut experi-
mewtal evidence for this, but first we derive a necessary condition for super-
fluidity. This condition will show us why the phonon-iike nature of the
elementary excitations leads to the superfluid behavior of Hquid He I,
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We consider in Figure 7.16 a body, perhaps a steel ball or a neulron, of
mass Af, falling with velocily ¥ down a column of liquid helium at rest at
absolule zero, so that initially no elemcealary excitations are excited, If the
metion of the body gencrates elemenltary excitations, there will be a damping
force on the body. In order to generate an elemenlary excilation of energy ¢,
aud momentum Ak, we must satisfy the law of conservation of energy:

.%'J\IUVI = %x‘h’ul’”z + £y (77]

where Vs the velocity of tie body after creation of the elementary excitation,
Fucthermore, we must sanisfy the faw of conservation of momentun

.'l'u(ev = Af{_}\p + hk. {78]

The two conservation kaws cannot always be satisficd at the sanie bme cven
if the direction of the excitation created in the process is unrestricted. To show
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this we rewrite (78) as

MY — bk = MV
and take the square of both sides:
MV — 2MBY <k + W32 = A2V

On multiplieation by 1/2;\}’0 we have

IMoV? — BV -k + = W22 = MoV, (79)
2{ IO
We subtract {79) from {77) to oblain
. |
Y« k — ¥ Pk =g, _ {80)

o

There is a lowest value of the magnitude of the velocity V for which this
equation can be satisfied. The fowes! value will occur when the dlrecllon of k
is paralicl tothat of V. This critical velocity is given by

2M Rkt
V, = minimum of hkn —, _ (81)

The condition is a litle simpler to express if we let the mass M, of the body
become very large, for then

V = minimum of &, . . {82)
hk

A body moving with alower velocity than ¥, will not be able to create excitations
in the liquid, so that the motjon will be resistanceless. The viscosity will appear
to be zero. A body moving with higher velocity will encounter resistance
because of the generation of excitations.

There ts a simple gepmetrical construction for (82) We make a plot of the
energy £, of an elementary excitation as a function of the momentum Ak of the
excitation. We construct the straight tine from the origin which just touches
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the curve from below. The stope of this line is equal to the criticat velocity. if

£, = W*k¥2af, as for the excitation of a free atom, the straight line has zero
slape and the crilicat velocity is zero:

Frec aloms: V. = minimum of hk/2Af = 0. (833

The energy of a low energy phonon in liquid He I is g, = hw, = hek in the
frequency region of souind waves where the product of wavelengh and frequency
is cqual to the velocity of sound v, or where the circular frequency o, is equal
to the product of v, times the wavevector k. Now the critical velocity is

Phonons: Ve = minimum of fr k/hk = v, {84)

The critical velocity V. is equal to the velocity of sound if (84) is valid for all
wavevectors, which it is not in liquid helium 11, The observed critical flow
velocitics are indecd nonzero, but cousiderably 16wer tlun the velocity of sound
and usually lower than thie solid straight line in Figure 7.1 7, presumably beeause
the plot of g versus ik may turn downward at very high ik

The actual spectrum of elementary excitations in liguid helium 11 has been
determined by the observations on the inclastic scattering of slow ncutrons.
The experimental results are shown in Figure 7.17. The solid straight line is the
Landau critical velocity for the range of wavevectors covered by the neutron
experiments, and for this line the eritieal velocity is

V.= Afhkyg = 5§ x 107 ems™! {(85)

where A and k, are identified on the figure.

Charged ions of ltelium in solution in liquid helium H under ecrtain expert-
mental conditions of pressure and temperature have been observed* to move
almost like free particles and to have a limiting drift veloeity near S x 10*cms™!
closcly equat to the caleulated value of (85). Under other experimentat condi-
tions the motion of the ions is limited at a lower velocity by the ereation of
vortex rings. Sueh vortex rings are transverse modes of motion and do not
appear in the ongitudinal modes covered by Figure 7.17.

Qur result (84) for a neeessary condition for the critieal velocity is more
gencral than the ealeufation we have given. Our caleulation demonstrates that
a body wilt move without resistance through liquid He 11 at absolute zero if
the velocity V of the body is less than the critieal velocity V.. However, at

* L. Meyer and F. Reif, Phys. Rev. 123, 72711961]; G. W. Rayficld, Phys. Rev. Letiers 16, 934 (1966).
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Figure 7.17 Encrgy ¢, versus wavevector k of elemeatary
excitarions in fiquid hetium at $.42 K. The parabatic curve rising
from the otigin represents the theoretically calenlated curve for
ftee helnin aloms at absolute zero. Tiie open circdes correspond to
the enzrgy and momentum of the measured exciiations. A smooth
curve has beea drawn through the points. The broken curve

tising hinearly fron the origin is the theererical phonon brimch
witlt a velocity of sound of 237 m 571, The solid straigit line gives
ihe eriviesd velocity, 1 appropriaie units: The fine gives the mini-
mum of £,/ over the region of £ covered {n these experiments. Afier
D. G, Henshaw and A. D, B. Woods, Phys. Rev, 121, 1266 {19611

temperatures above absolute zero, but below the Fiustein temperature, there
will be a normat fluid component of elemeatary excitations that are thermally
excited. The normat fluid component is the source of resistance o the mouon
of the body. The superflow aspect appears first in experiments in which the
tiquid flows oul throught a fine tube ta the side of 2 coatainer. The normal
fiuid componcn! may remain behind ia the conainer wiile the superfluid
component leaks oul without resistance. The derivation we have given of the
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crtical veloaity also holds for this situation, with V as the velacity of the super-
fluid relarive to the walls of the tube; Mg is the mass of the fluid. Excitalions

would be created above V] by the inleraction betweea the flow of the liquid
and any mechaaical irregularity in the walls,

Superfuid Phases of "He

Three superfluid phases of liquid *He are kaowa* (Figure 7.15b), but—ia
contrast to liquid *He—with traasition temperatures of oaly a few miilikelvia.
The superfluid phases are believed 1o be qualitatively similar 1o the super-
coadncting state of eleclrons in metals, where pairs of particles in orbitals agar
the Fermi surface formi & type of bound state kaowa as a Cooper pair. Such a
pair is qualitatively like a dialoniic molecule, bul the radius of the molecule
is ntuch larger thaa the average intereleciron spacing in a metal or the average
iterparticle spacing in liquid *He. ' '

In mesallic superconductivity the two electroas that form a Cooper pair are
in a noamagnelic (singlet) spin state. In the superfluid states of liquid *He the
uvo atoms that form a pair are ia the triplet spia states of the two *He auclei,
so that three magnetic superfluids are possible, correspoading 1o spin orienla-
ions M, = |, 0, aad —1, or mixtures of these three states. The magnctic
superfluids have been explored experimentally, and both the magnetic and
superfieid properties have been confirmed.

SUMMARY

1. Compared o a classical gas, a Fermi gas at low temperature las high kinctic
encrgy, high pressute, and low lieat capacity. The entropy of the Fermi gas
is zero in the ground slate. The energy of the highest filled orbital in the
ground state of a free particle gas of ferations of spia § is

o W /3NN
RV U B

2, The total Kineilc energy ia the grouad state is

UU = %.”VEF-

* For elemensary revizws, see J. C. Wheatley, Physics Today, Fobruary 1976, p. 322 AT Legpen
Piyysics Budletin 25, 311219751 wnd 1, R, Hook, Physics Bullctin 29, 513 (1978}, For deeper reviews
see J.C Wheatley, Res. Mod, Phys 47,415 119753 and A I Legges, Rev. Atod. Phys. 47, 3311973}
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3, The density of orbitats at g7 is

Bes) = 3N/2es.
4, The heat capacity of an c!cctroﬁ gasatt « 1¢ is
Ca = 3'Olesir = Nijtr
in fundamentat units,
5. For a Bose gas at t < 1 the fraction of atoms {n excited orbitisis is
NN = 2.6?311'(2;'11 =~ {t/te)* %

6, The Einstein condensalion lemperature of a gas of noninteracting bosons is

- ki N \*°
ETOM \ael2v)

PROBLEMS

1. Density of orbitals in one and two dimensions. {2) Show that the density
of orbitals of a free electron in one dimension is

Dyle) = (Lim)2m/hle)t? (86)

where L is the length of the line. (b} Show that in two dimensions, for a square
of area A, '

D,{e) = Amjnp? , - (87)

independent of &

2. Energy of refarivistic Feviui gas.  For electrons with aa energy & » mc?,
where 1ty {S the rest mass of the electron, the eaergy is given by £ = pc, where
p is the momeatum. For electrons ia a cube of volume V = L* the momentum
is of the fortn (xh/L), multiplied by (n,2 + n? + 0.2}V exactly as for the

noarelativistic limit. {a) Show that in this extreme relativistic limit the Fermi
energy of a gas of N electroas is given by

gp = hne(3u/r)t? (88)
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where n = N/V. (b} Show that the tolal energy of the ground state of1he gas is
Uy = 3Ne;. _ (59)
The general problem is treated by F. Jiitiner, Zeltschrift far Physik 47,542(1928).

J. Pressure and entropy of degenevate Fernid gas, {a) Show that a Fermi
eleetron gas in the ground stale exerts a pressure

“(3;{1)133 hl N 543
T 5 m\V 001

In a uniform decrease of the volume of a cube every. orbital has its cnergy
rajsed: The energy of an orbital is proportionat 1o /L7 or to 1/V**, (b} Find

an ¢xpression for e chtropy of 2 F e.ruu electron gas in tlie region r « ¢,
Notijce that o — Qast — Q. Cos

4. Chewiical poremial versus temperature.  Explain graphicaily why theinitial
curvature of g versus v 1s upward for a fermion gas in one dinicasion and
downward in three dimensions (Figure 7.7). Hint: The D,(e) and Dyle) curves
are different, where D, is given in Problem {. It wiil be found useful 1o set up
the integral for N, the number of parlicles, and 10 consider from the graphs
the behavior of theinlegrand between zero lemperalure and a finile leniperalure.

5. Liguid *He as a Fermi gas. The alom *Hehasspin I = and is a fermion,
{a} Calculate as in Table 7.1 the Fermi sphere paramelers vy, &, and Ty for
*He al absolute zero, viewed as a gas of noninteracling fermions. The density
of the liquid is 0.081 g cm ™. (b} Calculate the heat capacity at low temperalures
T « Tgand compare with the experimental value Cy, = 2.89NkyT as observed
for T < 0.1K by A. C. Anderson, W. Reese, and 1. C. Wheatley, Phys. Rev,
130, 495 (1963); see also Figure 7.18. Excellent surveys of the properlies of
tiquid *He are given by J. Wilks, Properties of Hquid and selid helii, Oxford,
1967, and by 1. C. Wheatley, “Dilute solmions of *He in *He al low tem-
peralures,” American Journal of Physics 36, 181 -210 (1968). The principles
of refrigeralors based on *He-*He mixtures are reviewed in Chapter 12 on

cryogenics; such refrigerators produce steady temperatures down to 0.01 K
in continuously acting operation.

6. Mass-radius relationship for white dwarfs. Consider a white dwarlof mass
M and radius R. Lel the elecirons be degenerate but nonrelativistic; the protons
are nondegenerate, (@) Show that the order of magnitude of the gravitational
selfenergy is —GM?/R, where G is the gravitational constant. (If the mass
densily is constant within the sphere of radius R, the exact potential energy is
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Figure 7,18 Heat capacity of iquid *He and ofa § percent solution of
*He in fiquid *He. The quantity plotied on the vertical axis is C/T, and
‘the horizonlal axis is T. Thus for a Fermi gas in the degenerale temperature
fegion the theorelical cusves of C/T at conslan! volume are horizontal.
The curve for pure 3He is taken at constant pressure, which accounts fof
the slight slope. The curve for the solufion of e in liguid *He indicates
that the *He iu solution acts as a Fermi gas; the degenerate region at low -
lemperature goes over to the nondegenerate region a1 higher temperature.
The solid line through the experimental points for the solution is drawn
for Ty = 0.331 K, which agrees with the calculalion for free atoms H the
effective mass Is taken as 2,38 times the mass of an atom of *He. Curves
afrer J. C. Wheatley, Amer. J. Physics 36 {1968).

—3GA?/5R). (b) Show that the order of magnitude of the kinctic energy of the
clectrons in the ground state is

}11;\}5!3 3;1;\!5”

L
ni? iR

where 1 is the mass of an eleetron and My, is the mass of a proton, {c) Show
that if the gravitationa! and kitictic energies are of the same order of magnitude
(a5 required by the viria! theorem of mechanics), MYPR = 10°%gY 3 ¢m.{d)ifthe
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Figure 7.19  Heal capacity of an
Einsfein pas uf constant volume.

Heat capacity, in units of N
{

mass is'equal 10 that of the Sun {2 x 10°%g), what is the dénsily of the while
dwarf? {e) It s believed thar pulsars are siars composed of a cold degenerate
gas of neuirons. Show that for a neutron star MY3R =~ 107 g™ em. Whal ie

the vatue of the radius for a nevtron star with a mass equal 1o that of the Sun?
Express the result tn km,

7. Ploton comdensation, Consider a science fiction universe in which the
number of photons ¥ is eonstany, at a concentration of 10°%cm ™3, The number
of thermally excited photons we assume is given by the resull of Problem 4.1,
which is N, = 2404V /r?h3c, Find the critical temperature in K below whnch
N, < N.The excess N — N, will be in the plioton mode of lowest frequency;
the excess might be described as a photon condensate in which there is a large
concentration of photlons mn the lowest mode. In reality there is no sucl principle

that the total numbcer of photoas be constany, hence there is no photon
condensuie,

8. Encrgy, heat capacity, and cntrapy of degencvate bason gas.  Find expres.
sions as a finction of temperatore mn the region v < ¢y for the enctgy, heat
capacity, and entropy of o pas of NV nonistericting bosons of sput zero confnied
to i volume ¥. Put the definite integra! in dimensionless fornr; it need not be
evaluated. The calculated heat capacity above and below 1 15 shiown in
Figure 7.19. The experimental curve was shown i Figure 7.12. The dilference
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belween the two curves is marked: 11 1s ascribed 10 the effect of interactions
between lhe atomns.,

9. Boson gas in one dimension. Calculate the inlegrat for N, (7} for a otic-
dimensiona!l gas of noninteracting bosons, and show that the mtegral does
nol converge. Thus result suggests that a boson ground stale condensate does
nol form in one dimension. Take 4 = 1 for the calculation. (The problem should
really be treated by means of a sum over orbitals on 2 finite line)

1. Relativistic white dwarf stars, Consider a Fernii pas of N electrons each
of rest mass m in a sphere of radius R. Conditions in cerlain white dwarls are
such thal the greal majorty of elecirons have extreme relativistic kinelic
energies £ > po, where p is the momentum. The de Broglic relation remains
-2 = 2alifp. Problem 2 gives the ground stale kinetic energy of the N elecirons
on the assumption lhat £ = pc for alf electrons. Treat the sphere as a cube
of equal volume. {a} Use the slandard virtal theorem argumemnt {0 predict the
value of N. Assume tha! the whole star is jonized hydrogen, bul neglect the
kinetic encrgy of the protons compared 1o that of the electrons. {(b) Estimale
the value of N. A careful treatment by Chandrasekhar leads nol to a single
value of N, bul 10 a limit above which a stable white dwar{ cannot exist: see
D. D. Clayton, Principles of siellur evolwiion and nucleosynthesis, McGraw-Hill,
1968, p. 161; M. Harwy, Astrophysical concepts, Wiley, 1973,

11. Fluctuations in a Fermi gas.  Show for a single orbital of a fermion system
that :

CANYE) = (NHE ~ KNDY, ey

if {N) is the average number of fermions in that orbital. Notice that the
fluctuation vanishes for orbitals with energies deep enough below the Fermi
encrgy so thut (N) = 1. By definition, AN 3 N —~ {N).

12. Fluctuatious in a Bose gas. 16 {N) as i (11} {s the average occupancy
of a single orbital of a4 boson system, then {from {5.83) show that

QAN Y = (NH(L + (ND). ' 92

Thus if the occupancy is large, with (N> » |, the {ractional fluctuations are
of the order of unity: ({AN)Y*Y/{NY? = 1, so that the actual fluctuations can
be enormous. It has been said that “bosons travel in flocks.” The first edition
of this text has an elementary discussion of the fuctuations of photons.

13, Chentical potential versus concentsation. {a) Skeich carefully the chemical
potential versus the number of particles for a boson gas in volume ¥V at
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temperasure 7. Include both classical and quantwm regimes. (b) Do the sisne

for a system of fermions.

14. Two orbital boson systent. Cossider a system of N bosons of spin zero,
wilh orbitals at the single particle energics 0 and e, The chemical potential is
i, sad the temperature is 7. Fiad r such that die thermal average population
of the lowest orbital s twice the population of the orbital al €. Assume
N = 1 and make what approxtmations are reasonabie.

If the atonis in a gas have integral spist {counting the sum of ¢lectronic
and nuclear sping), they can form a boson condensate when the gas is cooled
below the Einsiein condensation temperature 7, given by (72):

1 = QRuRAMYNIZ.E12V)Y, _

For atoms in the vapor phase the Einsteiit condensation temperalure s very
low because the nurmber densitics are very low: In {1995) early successful
expesiments were carried out at Boulder, MIT, and elsewhere. Such expen-
mests, which are extraordinarily complex, nark the exciting forefront of the
quantum gas field. A large lterature on BEC experiments and theory is on
the Web, _

One set of experiments (MIT) started. with a beam of sodium atons
exiting an oven at 600K at a concentration NIV of 10 cm~). What happens
next is the result of a number of clever tricks with laser beans directed on
oste pirt or another of the beant of aloms, First the atoms ar¢ stowed by onc
fuses bewsst frosi as exit velocity of 800 u1 7% to about 30 m s~L Tiis is
stow enouglt for 10% gtonts to be trupped widin a nugncto-optical rap.
Fusther tricks, includisig eviaporation, reduced the temperature of the gas to
2 uK, the ultralow temperature 7 at whiclt the condensate was fonmed. The
coticesiiration al 7g was again 10 atomsfem?,

The stomss 11 tie comdensed phase are i the ground orbstal and expand
-ty slowly ogce released from the trap, The atoms in excited states wiove

refatively rapidly out of their steady-siate positions. The positions of the
awoms can be recorded as a funciion of time after release, using a laser beam.
The number of atoms in exciled orbitals is in good agreement with the 7°
law, {73). With this technique the signawre of Bose-Einstein condensation is
the sudden appearapce of a sharp peak of atomis as the temperature is
decreased through 7. The peak comes from light scattered by atoms in the

condesisate; the wings of the line from light scattered by atoms In excited
orbitals,






Chapter 8

Heat'and Work

ENERGY AND ENTROPY TRANSFER:
DEFINITION OF HEAT AND WORK

HEAT ENGINES: CONVERSION
OF HEAT INTO WORK

Carnot Inequality

Sources of lrreversibility

Refrigerators

Air Condrioners and Heat Pumps
Carmot Cycle _
Example: Carnot Cycle for an Idea] Gas

Encrgy Conversion and the Second Law of Thermodynamics
Path Dependence of Heat and Work
Irreversible Work

Example: Sudden Expansion of an Ideai Gas

HEAT AND WORK AT CONSTANT -
TEMPERATURE OR CONSTANT PRESSURE

Isothermal Work
Isobaric Heat and Work

Example: Electrolysis and Fue! Cells
Chemical Work

Example: Chemical Work for an Jdeal Gas
Magnetic Work and Superconduclors

SUMNIMARY

PROBILEMS

et Pump

Absorption Refrigerator

Photon Curnol Engine

Heay Engine-—Refngerator Cascade
Therpai Pollulion

Rooem Air Conditioner

AN ARSI

227

223
228
23l
233
235
238
237

240
240

232

243



B T

Chapter 8: Hear and Work

7. Light Bulb i a Refrigerator

259
8. Geotliermal Energy 259
9. Coohng of MNonnwtallic Solidto T'= 0 239
10, lrreversible Expansion of a Fermi Gas 259

Note: In (and only in) the discussion of energy conversion devices that operate in cycles, we shall
defibe alt coergy, entropy, and heut fransfers as positive, whelher the flow is (1o of out of the device,
This coaveation avolds nesdiess difficuflies willy afgebraie signs. The ferm “reversibie” includes
processes for which the combined entropy of ihe inferacting systems remains consfant.
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ENERGY AND ENTROPY TRANSFER:
DEFINITION OF HEAT AND WORK

Heat and work are two different forms of energy transfer. Heat is the transfer
of energy 10 a system by thermal contact with a reservoir. Work is the transfer
of energy to a system by a chiange in the external parameters that describe the
system. The paramelers may include volume, magnetic field, clectric field, or
gravitational potential. The reason we distinguish heat from work will be clear
when we discuss enefgy conversion processes.

The most important physical process in.a modern encrgy-intensive civiliza-
tion is the conversion of lreat into work, The Industrial Revolution was made
possible by the steam etigine, which converts heat 10 work. The internal com-
bustion engine, which seems to dominate man as tnuch as it serves him, is a
device 10 convert heat 1o work. The problem of understanding the limitations
of the steam engine gave rise 1o much of the development of thermodynamics.
Encrgy conversion remains one of the central applications of thermal physics
because most electrical energy is generated from heat.

Tlie fundamental difference between heat and work is the difference in the
entropy transfer. Consider the energy transfer 48U/ from @ reservoir to a system
with which the reservqér”%n thermal contact at temperalure t; an entcopy
transier do = dU/raccompanies the energy transfer, according 1o the argument
of Chapter 2. This energy transfer is whal we defined above as heat, and we see
it is accompanied by entropy transfer. Work, being energy transfer by a change
m external parameters-——such as the position of a piston—-does not transfer any
entropy to the system. There is no place for entropy 1o come from when only
work 18 pérformed ot transferred,

However, we must be careful: the total energy of two systems brought into
conlact is conserved, but their total entropy is not necessarily conserved and
may increase. The entropy transfer between 1wo systems in thermal contact is
welldefined only if the entropy of obe system inereases by as much as theentropy
of the other decreases. Let us restrict ourselves for the present to reversible
processes such that the combined entropy of the ipleracting systems remains
eonstant. Later we will generalize the diseussion to irreversible processes which

are processes in which the total entropy of the two systems increases, as in the
heat flow exampte in Chapter 2.
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We can give a quantitative expression to the distinction between heat and
work. Let dU be the energy change of a system during a reversible process; dg
is the entropy change, and 1 is the lemperature. We define .

40 = tds | 0

as the heat received by tlte system inthe process. By the principle of conservation
of criergy,

dU = 4w + 40, _ (2)

which says that thie encrgy change is caused partly by work done on the system
and partly by heat added to 1he system from the reservoir. Then

AW = U - 40 = dU — tda (3)

is the work performed on the system in the reversible process, Qur reasons for
designating hicat and work by 0 and 419 rather than dQ and d1¥ are explained
below, For do = 0, we have pure work; for JU = tdg, pure heat.

HEAT ENGINES: CONVERSION
OF HEAT INTO WORK

i e -
Carnot inequality. Heat and work Have different roles in energy conversion
processes because of the difference in entropy {ransfer. Constder {wo conse-
quences of the difference:

{a) All types of work are freely convertible into mechanical work and into
each other, because the entropy transfer is zero. An ideal electrical motor,
without mechanical [riction or electrical resistanee, is a device to convert
electrical work into mechanical work, An ideal electrical cenerator converts
mechanical work into electrical work. Because all forms of work are [reely
convertible, they are thermodynamically equivalent to each other and, in
particular, equivalent to mechanical work. The term work denotes all types of
work. .

{b) Work can be completely converted mlo heat, but the inverse is not irue:
licat cannot be completely converted into work. Entropy enters the systent with
the tieat, but does not leave the system with the work. A device that generit(es
work from heat must necessarily strip the entropy [rom the heat that has been
converted {0 work. The entropy removed from the converted input eat cannot
be permitted to pile up mnside the device indefinitely; this eniropy must ulti-
mately be removed from the device. The only way to do this is to provide more

g
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Figure 8.1  Eniropy and eniergy {fow in any contitiously operating
reversible device generaling work fromn heat. The entropy outilow
must equal the eatropy inflow,

input heat than the amount converted to work, and 1o gject the excess input
heat as waste heat, at a temperature lower than that of the input heat {(Figure 8.1).
Because dQ/ds = 1, the reversible heat iransfer aceompanying one unit of
etitropy is given by the temperature at which the heat is transferred. It follows
that only part of the input heit need be cjected at tlie fower temperatire 1o
carry away all the entropy of the input lieat, Only the difference betwocn tuput
and output lieat can be converied to work, To preveat the accumulation of
eittropy there must be sonte output heat; therefore it is impossible {0 convert
all the input heat to work!

A prohibition agaiust unlimited entropy accumulation in a device does not
mean entropy cannot accumulate temporarily, provided that it is ultimately
removed. Many practical encrgy-conversion devices operate in cycles, and the
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1 ,.1\ N/b‘lifn’f
entropy contained in the device varies pericdically with time. Such a cyclic
device is called a heat engine. The internal combdston engine is an example:
The entropy contained in each cylinder is at a minimum near the beginning of
the intake stroke and a mavimwn near the beginning of the exhaust stroke.
There is a value of the entropy eontent to which the device returns eyclically;
the entropy does not pite up indefinitely.

What [raction of the tnput heat Q, taken in during one cyele at the fixed higher
temperature T, ¢aN be converted into work? The input entropy associated with
the input heat is 6, = Q,/7,. To avoid confusing signs, we define in this discus-
sion all energy, beat, and entropy flows as positive whether the flow is into or
out of the system, rather than following the usual convention according to
which a flow is positive into the system and negative out of the system. If Q, is
the waste heat leaving the system per cycle af the fixed lower temperature 1,

the output entropy per eycle is oy = Q,/7,. In a reversible process this cutput
entropy is equal to the input entropy:

Ty = 6y of Qftu = O/t s B ' {#)
: SO that

Oy = {r/1,)0:- {5)

The work generated during one éyele of a reversible process is the difference
between the heat added and the waste heat extracted:

We @, -0 = [1 - (Tl/th}]Qb e — Qh (6)

The ratio of the work generated to the heat added in the reversible process is
called the Carnot efficlency:

' y - T, - T
e = LA T Sl ) St Y (N
Q.': ey Ty . Tﬁ:

This quantity is named in honor of Sadi Carnot, who derived it in 1824. Tt was
a remarkable feat: the concept of entropy had not yet been invented, and

Carnot's derivation preceded by some 15 years the recognition that heat is a
form of energy.

- The Carnot efﬁcmncy is the highest posmble value of the energy conversion
- efficiency i = W/Q,, the output work per unit of input heat, in any cyclic heat
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Figure 8.2  Entropy and encrgy flow in a real heat engine containing
irreversibilities that generule new entropy {nside the device. The
entropy outflow af the lower temperature is farger than the eatropy
inflow at the higher temperature.

engine that operates between the temperatures t, and 1,. Actual heat engines
have lower efficiencies because the processes taking place within the device are
not perfectly reversible, Entropy will be generated inside the device by irrevers-

ible processes. The energy-entropy flow diagram is modified as in Figure 8.2,
We now have three inequalities

0'3 2 Tns {8)
0, = Ot ©)
v-o-astiomka o
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The actual energy conversion efficiency 5 obeys the Carnot inequality

= W0, S 1 = (n/o) = ne. | (1

We can have i = only in the limit of reversible operation of a dev;ce that
takes in heat at 1, and ejects heat at ;.

The Carnot inequality is the basic linitution on any heat engine that operates
in & cyclic process. The result tells us that it is impossible to convert all input
heat into work. For a given temperature ratio 7,/1, the highest conversion
efficiency is obtained under reversible operation. The limiting efficiency in-
creases with increasing 1,/t, but we attain 100 percent efficiency only when
/1 = 0. _

The low-temperature waste heat of any heat engine must ultimately be
cjected into the enviroament, so thal 1, cnnot be below the environmenta]
ternperature, usually about 300 K. High cfliciency requires an input teinperature
T, high compared 10 300 K. The usable tamperatures in practice are unfogtu-
nately limited by various materials coustraints. In power plant steam turbines,
which are expected to operate continvonsly for yeurs, the upper temperature
is currently mited to about 600 K by pévblems with the strength and corrosion
of steel With 7, = 300K and 7, = 600K, the Carnot elficicncy is 5 = §, or
50 percent. Losses caused by unavoidable irreversibilities reduce this clliciency
typically to about 40 percent. To obtuin kigler elhucnucs is a probletn in high
temperature metallorgy.

Sources of irreversibility,  Figure 8.3 iHlustrates several common sources of
irreversibility:

{a) Part of the tnput heat O, may flow directly to the low temperature, by-

passing the actual energy conversion process, as in the heat flow into the
cybnder walls during the combuostion cycle of the internal combustion

engine,

(b) Part of the temperature difference 1, — 1, ity not be available as tem-
perature difference in the actud onergy conversion process, because of
the temperature drop across thenmal resistances in the path of the heat
flow.

{c) Partofthe work gencrated may be converted back to heat by mechanical
{friciion.

(d) Gas may expand irreversibly without doing work, as in {hie irreversible
expansion of an wdeal gas injo a4 vacutnn,



Refriperators

| R
o S

Thermal resistance

winhout work or heal

/ Net work
Fleag
bypass ! D )

Friction loss

Thermal resistance

-

T

l ' freeversible vxpaasion

Fisure 8.3 Four sources of irreversebiiity in heal enpines: heal flow
bypassing the energy conversion process, thermal resistance in the path
of the heat flow, frictional losses, and enizopy generation during
trreversible expansions.

Refrigerators

Refrigerators are heat engines in reverse. Refrigerators consume work 1o nrove
frewt from a low temperature r, to a higher lemperature 1,. Consider the energy-
fatropy flow diagram of a reversible heat engine in Figure 8.1. Because no
calropy is generaled inside the device, its operalion ean be reversed, with an
BXact reversal of the energy and entropy fMuns. Equatlons (4) through (6)
®main valid for the reversed flows.
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The encrgy ratio of interest in a refrigerator 1s ot the cnergy conversion
efliciency (7), but the ratio y = O,/ of the heat extractad st the low tem-
perature to the work consumed, This ratio is called the coefficient of refrigerajor
performance; its limiting value in reversible operation is called the Carnot
coefficient of refrigeraror performance, denoted by 7o, Donot confuse 3 = /1
with i = W/Q, for the energy conversion efficiency of a heat engine; although

n < Ialways, ycan be >1 or <1. From Eq. (5)and W = Q, ~ @, the work
consumed 1s

—~ 1
W= Qh”leEi‘ th-

K

(12)

The Carnot cocfficicnt of refrigerator performance is

no |
— Qf — T — .!..._,_,,. l 23
}C - (n/)rev B T — T B Ta - Ti‘ I ( }

This ratio can be larger or smauller than unity.

Actual refrigerators, like actual heat engines, always contain irreversibilities
that generate entropy inside the device. In a refrigerator this exeess enlropy is
ejected at the higher temperature, as in the encrgy-entropy flow diagram of

Figure 8.4. With the convention that alt energy and enteopy flows are positive,
we now have '

Oy Z Gy s {14)
in place of (8). Funher,
Oy 2 (n/10; (15)
and
W= 0= 02 /) = 100 = 210 = 0, ()
so that |

7= 0 < ?c-‘1 (17}



Air Conditioners and Heal Pumps

Figure 8.4 Entropy and energy Aow in a relrigerator.

The Carnot coeflicient y. is an upper ltmit to the actual coefficient of refrigerator
performance 7, just as the Carnot efficiency 5. is an upper [imit to the actual
energy conversion efficiency 5 of a heat engine.

Both heat engines and refrigerators are subject to restrictions imposed by the
law of increase of entropy, but the device design problems are totally different.
In partieular, the design of refrigerators to operate at the temperature of liquid
helium or below is a challenging problemn in thermal physics (Chapter 12).

Air Conditioners and Heat Puinps

Air conditioners are refrigerators that cool the inside of a building or an auto-
mobile; the heat is ejected to the outside environment. If we intcrchange the
inside and outside connections, an air conditioner can be used to heat a building
during the winter, Such a device is called a heat pump. If 7, — 1, « 7, a heat
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pump can heat the building with a lower consustiption ofenu"gy Ih'm by direct
“heating {Problem ).

The limitations on thie use of heat pumps are largely economical, They are

much more costly to install and to niaintain than are simple heaters or furnaces.

Heat pumps make economic sense primarily in elimatic conditions in which
air conditioning is required anyway.

Carnot Cycle

The derivation of the Carnot energy conversion efficieney and of the Carnot

coefficient of refrigerator performance made no statement about how to

realize a process by which work is generated from heat, or about how refrigera-

tion is achieved. The simplest and best known such process ¢s the Carnot eycle,

In the Carmnot cycle a gas—or another working substance—is expanded and

conmpressed in four stages, two isothermal and two iscml:opic, as in Figure 8.5,

At point 1 the gas has the temperature 1, and the entropy o The gas is expanded

at constant t unts} the entropy has increased to the value oy, 2t point 2. In the
sccond stage the gas s further expanded, now it constant g, until the lempérat_ur{:

has dropped to the value 1, at point 3. The gas is compressed isothermally to

noint 4 and then compressed isentropically to the griginal state 1. We write g4 -
and oy, for the low and high values of the entropy contained in the working
stbstance, to distinguish these values from o, and &, which are the eatropy

Jlows per eycle at the low and high lcmf:;:ruturcs 1, and 1,. For the Carnot cycle,
Oy = Oy = dy ~ 04

The work done by the system in onc cycle is the arca a of the rectangle in
Figure 8.5:

W o= {Th e f;}(ﬂ'}; - G’L} R (18)

which follows from

SgdU = =-(:]Srd.:r - (J;pdl/ ,

where fpd ¥ is the work done by the system in one cyele. The heat tuken up
1 = 1, during the first phase is

O, = tloy — o) (19)

We combine {18) and (19) to obtain the Carnot efficiency e, Any process

described by Figure 8.5 1s calh.d a Carnot cyele, regardless of the working
substance.
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Fipure 8.5 A Carnot ¢ycle, lor the conversion of heat info work,
illustrated as a plot of ¢niropy versus temperaturs, for an arbitrary
working substance. The cycle consists of {wo expansion phases

{t - 2and 2 ~ 3)and two compression phases {3 — dand 4 — 1)
One of the expansion and one of the compression pliases ar¢
tseibermal{l — 2 and 3 — 4}, and onc phase of each kind is
isentropic {2 -+ 3 und 4 - 1}, The nct work done is the areit of the

loop, The heat consunied at 1, is the area surrounded by ihe
broken line.

The Carnot cycle is a point of reference to indicate what could in principle
be done, rather than what in fact is done. All energy conversion cycles need a
hight temperature input and a low temperature output of heat, but often the
heat inputs and outpuis are not well-defined reservoirs at constant temperatures.
Even wlhere such reservoirs exist, as in steam turbines, there is invarbly o
temperature difference present between the working substance and the reser-
voirs. The heating and cooling processes are never truly reversibie.
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Example: Cucnot cycle for an ideal gas. We carry an jdeal monatomic gas through a
Carnot cycle. Initially the gas occupies a volume ¥ and is in therniat equilibrium witll g
feservoir 8, at the high temperature 7,. The 2as is expanded fsotheemially to the volume
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t;, as in Figure £.6a. In 1he process the gas absorbs 1he heal O, fom @, and delivers i as

wark 15, 1o an exlernal mechanical syslem connecled to 1he pislon. For an ideal pas the
Heat absorbed from the reservoir is

0, = W, = jpdl’ = th_['dwv = Nt,log(15/1%). (20)

This work is indicated by the area labeled 127" Nexi, the gas'is disconnecled from B, and

furlher expanded, now isentropically, uniil the temperalure has droppui to the low fem-
peralure 1, Inihe process the addilional work

Wy = Uly) — Ult) = IN(t, ~ 1) {21}

1s detivered by the gas. The volume ¥, at the end of the iseniropic expansion is relaied 10
¥V, by

TIVJZ:E, =T, Vzna s or Vifly = (H/T:}a;z . (22)

from {6.63). Afler poing 3 the gas is brought into contact with a femperature reserveir G

at the temperature 1, aad then compressed isolhermaily {Figure 8.61} 1o the volume V
chiosen 10 saiisly

VIV, = ()Y = WY . @

so thai VifV, = 157V, To accompilsh this compression, the work

Wy, = Ntlog{V,/Vy) = N1 dog(V,/Vy) (24)

musi be done on the gas, This work is ejecied to &, as heai:

Oy = Wi, (25)

Finalty, the gas is disconnecied from 61, and recompressed iseniropicatly uniil its tempera-
ture has risein to the initial temperaiure 1,. Because of the choice {23) of V,, the gas volume

at this point has refurned o its initial value ¥}, and the cycte is completed. In this last slage
the work o

Wy = %N(Th - T) _ (26}

is performed on the gas; this cancels the work W, done by the gas during the isentropic
expansian 2 —+ 3, by {21).

The net work delivered by the gas during the cycle is given by the difference in shaded
areas in Figures 8.6a and 8.6b, which is the enclosed area in Figure 8.6¢. The isentropic
curves in the p-¥ diagram are steeper than the isothermal cugves, so that the area of the
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Fipure 8.6 The Carnot cycle for an ideal gas, as a p-V plot. An ideat gas is expanded
and recomprassed in four stages. Two of then are isothermal, at the temperaturc 1, and
1{t, > ;). Two of them are isentropic, from 1, 10 1, and back. The shaded areas show
(a} the work done during the two expansion stages, {b) the work done during the two
compression stages, and {c} the net work done during the cycle.
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loap is finile and is cqual (o the area of the rectangle in Figure 8.5. We have

W= :Wsl + ﬁle - ;-YM - ;V.u = Wy, — Wi,
N(Yh — 1jlog(¥/ V). - S (27)

B

The heat absorbed from &, was given in {20), so that W/Q, = (T, — 1,)/7, which is just
the Camot relaton (7).
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Energy Conversion and the Second Law of Thermodynamics

The Carnot kmils oo the conversion of heat into work and on the performance
of refrigeralors are direct consequences of 1he law of inerease of entropy. The
second law of thermodynamics usually is formulated without mention of
entropy. We stated the classical Kelvin-Planck formuiation in Chapter 2:
"1t is impossibie for any cyclic process to occur whose sole effect is the extraction
of heat from a reservoir and the performance of an equivalent amount of work.”

All reversible energy conversion devices that operaic between the same tem-
peratures have the same energy conversion efficiency 7 = W/Q,. Were this not
$0, we could combine two reversible devices with different effictencies, 17, < 17,
in such a way {Figure 8.7) that device 1 with the lower efficiency {s operated in
reverse as a refrigerator that moves not only the entire waste heat Q,, from the
more efficient device 2 back 1o the higher temperature 1;, but an additional
amount Q{in) of heat as well. The overall result would be the conversion of
the beat Q(in) to work 1¥{ont), without any net waste heai. This would require
the annihilation of entropy and would violate the law of increase of entropy.

Now that we hiave established that all reversible devices that operate beiween
the same temperatures have the same energy conversion cfficiency, 1t is sufficient
10 calculate this efficiency for any particular device to find the common value.
The Carnot cycle device feads to 5. = (1, — 1))/1, for the common value.

Path Dependence of Heat and Work

We have carcfully used the words heal and work to characterize energy transfer
pracesses, and not ta claracterize properiies of the system nself. It is not
meaningful {0 speak of the heat conlent or of the work content of a systen.
“We ook at the Carnot cycle ance more: Around & closed loop in the p-V
plane, a net amnount of work is gcneralcd by the systcm, and & net amount of
heat is consumed. But the system—on being taken once around The loop—is
returned to precisely the initial condiion; no properly of the system has
changed. This tseans that there cannot exist two functions Q{e, V) and W{o,V)
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Oy = 1y + Q) + Qlin)

@y = ¥} + Oy + W{oul)
- 0 = Q(in) ~ H#{out)
O

,f" ___________________

!

i

t .
! Device | Device 2
5 I S AL Y (7 == 172)
2 I : )
s A
; H ¢ Hout) = (45 — 70,
§z | W, = 1,0, = 0in)
'“""‘tit O = -0 O, Q. = {1 ~ 7,30,

Qin) = (7?2 - T?I)Qa _

Figure 87 If two different reversible crergy convession devices operating between the
same temperaltures 1, and , could have different energy conversion efficiencies (i, > i,
it would be possible to combrng them into a single device with 100 pol elficisny by
using the less efficient device { as a refrigerator that moves not only the entire winsie
fhiear @, of the more cliicicnr device 2 back to the higler remperature, but an additioby
“amount Q(in) of heat as well. This additfonat heat would then be completcly converted

lo work.

such that the heat 8, and the work 1§, required (o carry the systen from a
state {o,,12) 10 a state (o}, 14) are given by the differences in @ and 1V

Qab ;"- Q(Ub-lif) - Q(Gdll/:l); ”l:b "':: ”,(GbaI’;) — ;V(':Ta’ I’:?}

If such funciions exisied, the net transfees of heat and of work arcund a closed
loop uecessarily would be zero, and we have shown that the transfers are not
fero.

The transfers of heat and work between state (1) and state (b) depend ov tie
path taken between the two states. This path-depeadence is expressed wlen
we say that heat and wark are not state functions. Unlike temperature, cntropy,
and free energy, licat and work are not inlrinsic atirtbutes of the systenr. The
tnerements 4@ and 8 that we introduced tn {1) and (2) cannot be ditlerentials
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Figure 8.8 Two irreversible processes in which meclanical or electrical potential
encrgy is used Lo heat a system.

of mathematical functions Q(a,V) and W(.V). For this reason we designated
the tncrements by dQ and dW, rather than by dQ and dW. Without the path
dependence of heat and work there would not exist cyclical processes that
permit the generation of work {rom heat.

Irreversible Work

We consider the energy transfer pracesses of Figure 8.8. In each process &,
15 a purely mechanical or electrical system that delivers pure work with zero
entropy chiange. The energy transferred to 8, is converted to heat, either by
mechanical friction or by electrical resistance. The final state of &, is the
same as if the energy had been added as heat in the first place. The entropy
of 8, is increased by do, = dU,/r. This entropy is newly created entropy.
Processes in which new entropy is created are irreversible because there is
no way to reverse the process in order to destroy the newly created entropy.
I{ newly created entropy arises by the conversion of work to heat, we say that
irreversible work has been performed. _

H we took only at the net change in a system, there is no way to tell whether
the process that led to this change was reversible or irreversible. For a change
dU in energy and do in entropy, we can define a reversible heat 40, , and a
reversible work 4W,,, as the amount of heat and work that would accomplish
this change in a reversible process. If part of the work done on the system 1§
irreversible, the actual work required to accomplish a given change is larger
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than the reversible work,

iyl

1y

> g1y, ' {28)

By conservation of coergy

dU = (1 ;l:rn:\l' + inrf\:v = J;Vw\' + JQ"-‘" ?

so that

‘TQIH«:\- < (TQI\:\" (2’{)}

The actual heat transferred i the irreversible process must be less than the
reversible heat. -

~

- = ke e memar

e B i g bt At

Example: Sudden expansion of an ideal gas.  As an example of an irreversible process we
consider ence more the sudden expansion of an ideal gas info # vacuum, Neither heal nor
work is transferred, so that AU == 0 and dt = 0. The finaf state is identical with the state
that resulis from a reversible isothermal expansion with the gas in Thermal equilibrium

with a reservoir. The work #,,, done on the gas in the revesible expansion from volume
¥, 1o Vyis, ffom {6.37), )

1V, = —Ntlog(Vy/V,). (30)

The work done on the gas is negative; the gas does positive work on the piston in an amount
equal to the heat transfer into the system:

The entropy change is equal lo @, /1, of
oy — oy = — W/t = Nlog(Vo/V). {32)

In the irreversible process of expansion into the vacuum this entropy is newly created
entropy because neither heat nor work fows into the syslem from the outside: 1Y, =
Qirr:«I = 0. From {3l, we Dbiain '

i/zjirl'c\f > IMlnﬁ" Qiﬂ'cv < Qrc\f » (33)

tn agreement with {28) and (29).
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Figure 8.9 Systems between which only work but no
heut is transferred need not be at the same temperatuse
for the process 1o be reversible.

In our discussion of irreversible work we assumed that the new entropy

is created inside the system during the delivery of work to the system by other

- systetns. This is not the only source of irreversibility in energy transfer. Pure
heat transfer, not involving any work, is irreversible if il takes place between
two systems havitg different temperatures. We worked out an exampie in

Chapter 2. In this process heal is transferred from a syslem at t, to 8 system
at the lower temperature 1,. We have .

dUy = dQy = tydoy; dU; =dQ; = tydey; 4@, + 4@, =0, (34)

The newly created entropy is

doy, = {doy + doy) = dQy/v, + dh/t,

Ts
= {1ty — Y, =

“ap.. (35)

172

The heat flow 15 from high to low temperature: @2, s ncg}atm. Ty =~ Tp IS
negative, so that do;,, > 0.

The cnergy transfer between two systems with different tcmperatun:a need
nol be trreversible f anly work but no heat s transferred (Figure 3.9).

All actual energy trausfer processes are invariably somewltat irreversible,
but reversible processes remain the backbone of the theory of thermal physics,
They constitute a natural linut, which 15 the equilibrium liniit of vatushing
entropy generation. We shalt assume hereafter that the words heat and work,
without a further qualifier, refer to reversible processes.



Heat and Work at Constant Temperature ar Constant Pressure

HEAT AND WORK AT CONSTANT TE'\IPERATURE
OR CONSTANT PRESSURE

Isothermal work. We show that the total work performed on a system in
a reversible isothermal process is equal 1o the increase in the Helmholiz free

energy F = U — 1o of the system. For a reversible process dQ = tdo = d{1g),
because dt = 0, so that

AW = dU ~ dQ = dU ~ d(0) = dF. (351

Thus in such processes the Helmheltz free energy is the natural energelis
function, more appropriate than the energy U. When we treal an isothertaf
process in terms of the {{elmholiz free energy, we automatically iclude the
additional work that is required to make up for the heat transfer from the
system 10 the reservoir. Often the heat transfer s the major pant of the work:

for the ideal gas the energy U does not change in an isothermal process, and
the work done is equal 10 the heat transfer.

Isobaric heat and work. Many energy transfer processes—isothermal or not—
take place at constant pressure, particularly those processes that take place
in systems open to the atmosphere. A process at constant pressure is said 1o be
an Isobaric process. A simple cxamiple is the boiling of a liquid as in Figure 8.10,

R .

Figure 8.10  When a liquid boils under wimospheric pressure, the vapor
displacing the atmosphere doues work against the atmospheric pressure,
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where the pressure on the piston is the external atmosplheric pressure. If the
system changes s volume by dV, the work —pdV = —d{p¥) is part of the
total work donc on the system, If positive, this work is provided by the euviron-
ment and is in this sense “free’ I negative, the work is delivered to the
environment and is not extractable from the system for other purposes. For
this reason it is often appropriate to subtract —d{pl} from the total work. We
thus obtain the effective work performed on the system, defined as

AW = dW + d(pV) = dU + d(pV) — dQ = dH ~ d4Q , 37

where we have defined a new function

H=U+ pV, (38)

called the enthalpy which plays the role in processes at constant pressute that
the energy U plays in processes at constant voluipe. The term pVin (38) is the
work required to displace the surrounding atmosphere in order to vacute
the spate to be occupied by the system. Implicit in these definitions is the idea
that there are other kinds of work besides thut Jue to volume chianges.

Two classes of the constaat pressure processes are particutarly important:

{a) Processesm whichno clicctiveworkisdone. The heat transfer s 7Q = o/,
from (37). The evaporation of a liquid {Chapter 10) from an open vessel 1s
such a process, because no effective work is done, The heat of vaporization
is the enthalpy difference between the vapor phase and the liquid phase.

{b) Processes at constant temperature and constant pressure, Then d0 =

tdo = d{tg), and the effective work performed on the system is, from (36) and
37, '

dW’* = dF + d{pV) = dG , 5 {39)
where we have defined another sew function

G=F4pVe=U+pV -1, ; (40)

the Gibbs free energy. The eflective work performed in a reversible process
al constant temperature and pressure is equal to the change in the Gibbs
free energy of the system. This is particularly useful in chemical reactions
where the volume changes as the reaction proceeds al a constanl pressure.

The Gibbs free encrgy is used extensively in Chapter 9, and the enthalpy is
used in Chapter 10,
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Exanlple: Electrolysis and fuel cells.  Electrolysis is a process 1l is bolly isorhermal and
1sobaric, Consider an clecirolyle of dilule sutfuric acid ju which are inynersed platinum
electrodes 1t do not react with the acid {Figure 844} The sulfuric acid dissociales inlo
H* and 80,77 ilons:

H,S0, @ 2H™ + SO, . (41}

Wihen & current is passed through the cefl the hydrogen joits move to the negative cleairode
where they tuke up electrons and form molecular hydrogen gas:

2H? + 2e™ — H,. {42)

The sulfate tons move to the positive electrodes where they deecompose water with the
refease of molecutar oxygen pas and cleclyons: .

SO, 4+ H,0 - H,S0; +10, + 2e". (43)
The sum of the above three steps is the net reaction equativn i the ecll;
H,0 — H, + 10,. _ (44)

When carricd out slowly in a vessed open to The almosphere, the process is at conslanl
pressufe and constunl fainperature. A neghaible part of the elearricut inpul power goes inlo

I

Figure 8.11 An electrolysis cell. An electrical current passes through an etectrolyte, such
as dilute sulfuric acid. The overall result is the decomposition of water into gascous
hydrogen and oxygen. The process is an example of work being done at constant
temperature and constant pressure.
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resistance feating of the electrolyte. The effective work required to decompose 1 mole of
water is related 1o the molar Gibbs free energies of the reactants®

W= AG = GH,0) ~ G(Hy) - §G(0). -~ (45)

Chemical tables list the Gibbs free energy difference AG as —237kJ permole at room
temperature, :

In electrolysis this work is performed by a current / that flows under an external voltage
V- H 1 5 the time required to decompose one mole of water, @ = I x s 1he tota] charge
{not the hest?) fowing through the cell, and we have

W= 0V, - (46)

According to {43), there are two electrons involved in decomposing one water molecule,
hence :

Q= —2N e = —193 x 10°coulomb. (47)

We cquate (46} 1o {45) 10 obtain the condition for electrolysis 1o take place. This requires a
minumum voltage

V= ~AGAN,e. (48)

or 1.229 volts. A voltage Tasger than ¥ ntust be applied 1o obtain g finite curreut fow,
because ¥, alone merely reduces to 2ero the polemial barricr between the systems on 1he
two sides of the reaction equation (44). When ¥ > ¥, the excess power (¥ — V) x { will
be dissipaled as heat in the clectrolyte. .

If ¥V <V, the reaction {$4) will proceed from right to 1efl provided pascous hydrogen is
available at the positive electrode and gaseous oxygen at the negative electrode. In the
simple setup of Figure 8.11 the gases are permitied to escape, and for ¥V < ¥, nothing will
happen wt all. {1 is possible, however, to construct the electrodes as perous sponges, with
hydrogen and axygen forced through under pressure {Figure 8.12). Such a device produces s
valtage ¥ between the electrades and, if the clectrodes are connected, extesnal current wilt
flaw. This arrangenwnt is catled a hydropen-oxygea fuel cell, Fuet cells were used as power
sources on board the Gemint and Apolla* spacecraft and incidentally produced deinking
water for the astronauts.

The principal technological limitation of fuel cells is their low cucrent per unit electrode
atea. In the Apollo cell the current deasity was only a few hundred mAjem?; hence large
clectrode arcas are required 10 produce reasonable currents, The current-voliage charac-
tecistic of an electrochemical cell in is two operating ranges as fuel cell and as clectrolytic
cell are shown in Figure 8.13.
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* The Apotio fuel celfs wsed Niand PO raber shan Ptas clectrodes, and KOH ravher than H,50,
as clecirolyte, For a detailed description, and moce information on fuct cefls, the reader is referred

to J. O. ML Bockeis and $. Seinivasan, Fuel cells: Their electrochensstry, McGraw-Hill, New York,
1959,
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Figure 812 A {ucl cell is an clectrolysis cefl operated in
reverse, with hydrogen and oxygen supplied as fucls. The
fuels are foreed under prossure throngh poraus clectrodes
separated by an electrolyte. The hydrogen und exygen react
1o form waier; the excess Gibbs free energy is delivered
cutsije as clectricat energy. Water forms at the posttive
electrode and is removed there.
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Figure 8.13 The currcat-veltage characteristic ofan electrolylic
cell or fuel cell, indicating the two operating ranges.
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Chemteal Work

Work performed by the transfer of particles to a system is called chemical
work, because it ts assoctated with the chemical potential.

When particles are transferred, the number of particles in the system is one

of the independent varfables on which the energy U depends. If U = U{g,V,N),
thet for a reversible process

dU = tda — pdV + pdN | (49)

by thie thermodynamic identity of Chapter 5. Here we have replaced the partial
dertvatives by thetr familiar equivalents {Table 5.1). By our definttion of heat,
the tdo lerm represents the transfer of heat and the —pdV and pdN terms
represent the performance of work, alf understood 10 be reversible:

dW = —pdV + pdN. {50
The - pdV term is mechanical work; the udN term is the chemical work:
AW, = pdN. N )

If there is no volume change, dV = 0. All the work is chemical,

In particle transfer there are usually two systems involved, both in contact
with a heat reservoir, and the total chemical work is the sum of the contributions
from both systems. In the arrangement of Figtire 8.14 a pump transfers particles
from system 3, to system 8,. The chemical potentials are gy and p,. U

dN = dN, = ~dN, is the number of particles transferred, the total chemical
work performed is

AW, = dW,, + dW,y = p,dN; + g dN, = (g — p)dN. (52

The work that must be supplied to the pump is 44, if there is no volume work
{dV, = d¥, = 0}, and if all proccsses are reversible.

The result {52 gives an additionst meaning of the chemical potential. We
summarize the propertics of the chemical potential: '

{a} The chemical potential of a system is the work required to transfer one
particle into the system, from a reservoir at zero chemical potential.

(b} The difference in chemical potential between two systems is equat to the
net work required to move a particle from one system to the other.
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Figure 8.14  Chemical work is the work performed when particles are moved
reversibly from one system 1o another, with the two sysiems having different
chemical potentiuls. I 1hie two volusmes do not change, the work is pure
chemical wark; the amount per particle is the difference in chemica! potentials,

(¢} 1fthe two systems are in diffusive equitibrium they have the same chemical
potentizl; no wqu is rcqu:red to move a particle fromn one system to
the other.

{d} The difference in internal chcmzcai potential {Chapter 5} between two

systems i €qual but opposite to the potential barrier that maintains the
systems in diffustve equilibrium.
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Exanmple: Chemical work for an ideal pas.  We consider the work per particle required to
move reversibly the atoms of a monatomic ideal gas from 8, with concentration i to 8,
with concentration 1, > a,, both sysiems being al the same 1emperatore {Figure 8.5 If
dV =, the work confains only a chemical work term, whiclt can be caleulated fom the
difficrence in chemical potential, no matter how the process is actually performed. The
chemnical potential dilferertce between two ideal gas systems with dilferent concentrations is

— iy = 1{log (nzan) - log(n, o)} = tloglay ) {33}

This resutt is cqual 10 the mechaniail work per partivle reguired 10 contpress the gas
isothernially from the concentration o, to the contcentration #y. The work required 1o
compress N particles ofiun ideal gas rostaa initial volume ¥ 10 a Baal volumie 1 is

W o= —IpdV o= uNtIdV}Vﬂ Nzilog{V/Vy) = Nrlog{n,/n).  (59)

Henee the mechanical work per particle is riog{n,/n), identical to the resutt (53). The
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Figure 8.15  lsothernmal chestical work. The amounnt of chemicat work per paricle
does not change if the process is performed isothermally with both sysiems in
thermal equilibrivin with a common tarpe reservoir.

idensly of the chemicat work with the isothermal compression ssork tlustrates the cqul—
lence or cony cruhlhly of diferem kinds of work.
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Magnetic Work and Supefcdnducwrs

An important forn of work is magnetic work. The niost irtportant application
of magnetic work 1§ to supcrconductors, and this application is treated here.

Below some criticul temperature T, that is usuvally less than 20K, many
electrical conductors undergo a Iransilion from their normal state with a finile
glectrical conductivity to a superconducting slale with an apparcntly infinite
conductivity.

Superconductors cxpel magnetic fields from their interior. If the super-
conductor is first cooled below the critical temperature and then inserted mto a
wagnetic field, we might expect that the infinite conductivity would shield the
mterior from the penetration by a magneuc field, However, the expulsion occurs
even il 1he superconductor is cooled below T, while in a magnetic field (Figure
8.16). This active expulsion, colied the dMetssaer effect, shiows that supercon-
duciivity is more 1than an infinite conductivity. The Meissner effect is causaed by
shelding currents that are spoutancously gencrated near the surface, in a layer
abont 107 cm thick. The magnetic field expulsion is not always complete.
Superconductors are said to be of type 113f the expulsion is incomplete, but stilt
nonzero, 1 a range of liclds above some low ficld. We shall restrict ourselves
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Figure 8.16  Messsner elfect in a superconducting sphere cooled
in a constant applied magnetic fickd; on passing below the

transition teaiperature the ties of duciion B are ¢jected rom
the sphere.
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here 1o 1he discussion of type I superconductors, for which the field expulsion
is complete up to a definite field and zero thereafler.

A sufficiently strong magnetic ficld will destroy supcrconductivity. The
critical field required to do this depends on the temperature and on the super-
conductor. For type I superconductors the ficlds are usunlly a few bundred
gauss {Figure $.17). In some niobium and vanadium compounds of type I,
critical fields of several hundred kilogauss have been observed.

The Mcissner magnetic effect shows that the normal and the superconducting
states wre different thermodynamic phases of the same metal, just as ice and
fiquid water arc different phases of H,O, except that in the supercondncting
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transition it is the electronic system rather than the crystal structure of the metal
that undergocs a phasc transition.

The superconducting state is a distinct shermodynamic phase, as confirmed
by differcnces in the heat capacity of the normal and the supcrconducting states,
The heai capacuy (Figure 8.1 8) exhibiis a pronounced discontinuity al ihe onset
of superconducitvity at ¢ = 1,; wien superconductivity is desiroyed by a
maguetic field, the discontinuity disappears. The stable phase will be the phase
with the lower free encrgy. Below 1 = 1, in zero magnctic field the free energy
of the superconducling phase is lower than that of the normal phasc. The free
energy of the superconduciing phase increases in the magnetic field, as we show
below. The free energy of the normal phase is approximately independent of
the ficld. Eventually, as the ficld is increased, the free energy of the super-
couducting phase will exceed that of the normal phase. The normal phasc 15
ihen the stable phase, and superconductivity is destroyed.

The increase of the free energy of a superconductor in a magnctic field 15
calculated as the work required to reduce the magnetic Reld to zero in the interior
of the superconductor; the zero value is required to account for the Meissner
effect. Consider a superconductor in the form of a long rod of uniform cross-
section inside a long solenoid that produces a uniform field B, as in Figure 8.19.
The work required to reduce the field to zero inside the superconductor is
equal 1o the work required to create within the supcrconductor a counteracting
field — B that exactly cancels the solenoid field. We know from elcctromagnetic
theory that the work per unit volume required to create a ficld B is given by

(SNH ' W JV = B2 {55a)
OF b
(CGS) ' W/ V = B*/8n. {55b)
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Figure 8.20 The free eneroy densiny Fyof a
nonmagnetic pormal metal is aﬁpmximu‘miy
independent of the injensity of the applied
magnetic fisld B,. At a temparature © < 1, the
meial is a superconductor in zero magnelic
field, so ik Fo{r 0 is lower thun Foir.0n An
apphicd magneiic ficld incredses F by B2 2y,
in ST units {and by 8,2/8x in CGS unis), so
wal Fgle,B,) = Fslr.0) + B, 210. 1 B, is.

Yarges than ihe critical field B,, e free energy |

density is lower in the normal siale than in

the superconduciing siaie, und oow 1he normal
siule §s 1le stable stale, The oripin of 1he .
veoeal scale iy the drawing is a1 F12.0). The
figure equally applics 10 Ugund Uy att = 0,

This is the amount by which the free cnergy density in the bulk superconductor
is raised by application of an external maguetic ficld, in an experiment at con-

stant temperature.

There is no comparable frec energy increase for the normal conductor,

Free encrpy density

Normal siate

o ) W RS

g

Apphied magnui¢ field B, —=

beeanse there is no screeniug of the applied field. Thus

(s1) [Falt) — F@WY = B0kl
or
{CGS) [Fali) = Fa)ljv = B 1) 8= {S6b)

In a plot of the free ecnergy density of both phases versus the magnetic ficld
{Figure 8.20), the free cnergy of the superconducting phase will ultimately rise
above that of the normal phase, so that in high fields the specimen will be in the
normal phasc, and the superconducting pliase is no tonger the stable phase.
Tlis is the explanation of the destruction of superconductivity by a criticul
magnetic ficld B,. '

With increasing temperature the free encrgy difference between normal and
superconducting phiase decreases as ¢ -+ 7, and the critical magnetic ficld
decreases. Everything else being equal, a high stabilization eueegy in a type |
superconductor will Jead to both a high eritical temperature and a high critical
ficld. The highest critical fields sre found amongst the supercoiductors with the
highest eritical temperatures, and vice versa. '



Problems
SUMMARY

1. Heat is ihe transfer of energy by ihcrmal contact with a reservoir, In a
reversible process J0 = 1de,

2. Work is the transfer of energy by a chahgc in the external parameters that
describe the system, The entropy transfer in a reversible process is zero when
only work is performed and no heat is transferred.

3. The Carnot energy conversion efficiency, ye = {r, ~ 1J/7; 15 the upper
hmit to the ratio W/Q, of the work generated to the heat added.

4, The Carnot cocflicietit of refrigerator performutice, y¢ = 1p/(t, — 1) is the

upper Himit to the ratio @,/ of the heat extracted to the work consumed

5. Thetotal work performicd on u system at constant tentperature in @ reversible

process is equal to the change in the Helmboltz free cnergy F = U — 10
of the system.

6. The effective work performed on a system at constant temiperature aud

pressure in a reversible process is Lqu.sl to lhe change in the Gibbs free
energy G = U — 10 + pl.

7. The chemical work performed o a systerm in thc reversible transfer of AV
particles to the system is gdN.

8. The change in the free energy density of a superconducior {of type I} caused
by an external magnetic field B is B*/2, in SIand B%8x in CGS.

PROBLEMS

1. Heat pump. (a) Show that for a reversible heat pump the ehergy required
per unit of heat delivered inside the building is given by the Carnot efficiency (6):

v T, = T}

—— T }I =
O ¢ Ty

What happens if the ficat putip is not reversible 7 (h) Assume that the clectrionty
counsumed by a reversibie ltedt purep must itsel be gentraica by a Camot enpis,
operating between the temperatures 1, and 7, What is the ratio Q,,,/Qy, of tie
heat consumed at 1y, to the heat delivered at r,? Give sumernical values for
Ty = 600K, T, = 300K; T, = 270K. {¢) Draw an encrgy-culropy flow
diagram for the combination heat engine-heat punip, stwilar to Figures 8.1,
8.2 and 8.4, but involving no external work at alf, only energy and entropy flows
at thiree temperatures,
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2. Absorption refrigerator. In absorption refrigerators the encrgy driving the
process is supplicd not as work, but as heat from a gas flume at a temperature
T > 1,. Mobile hame and cabin refrigerators may be of this type, with propane
fuel {a) Give an energy-entropy flow diagram similar to Figures 8.2 and 8.4 for
such a refrigerator, involving no work at alf, but with energy and entropy flows
at the three temperatures 1,, > 1, > 1, {b) Calculate the ratio Q,/Q,,, for Yhe
heatextractedal t = T where 0, isthecheatinputat r = 1, Assumereversible
OpLi‘EHIOI'I
3. Photon Carnot engine.  Consider a Carnot engine that uses as the working
substance a photon gas. (a) Given 1, and 1, as well as V, and V,, deternine
Vyand V. (b) Whatis the heat Q, taken up and the work donie by the gas during
the first isothermal expansion? Are they equal to each other, as for the ideal gas?
{c) Do the two Isentropic stages cance] each other, as for the ideal gas? (d) Caleu-
tate the total work done by the gas during one cycle. Compure it with the heat

taken up at 7, and show that the energy conversion efhicicney is the Carnot
efficicncy.

4. Heat engine—refrigeraror cascade.  The efficiency of 2 heat engine is to be
improved by lowering the temperature of its low-temperature reservoir to a
~ valuet,, below the environmental temperature 1, by means ofa refrigerator. The
refrigerator consumes part of the work produced by the heat engine. Assume
that both the heat engine and the refrigerator operate reversibly. Calculate the
ratio of the net {available) work to the heat Q, supplied to the heat engine at

temperature 1,. Is it possible to obtain a higher net cncrg} conversion efficiency
it this way?

5. Thermal pollution. A river with a water temperature 7, = 20°C is to be
used as the low temperature reservoir of a large power plant, with a steam
temperattire of T, = 500°C. If ecological considerations fimit the amount of
lieat that can be dumped into the river to 1500 MW, what is the largest clectrical
output that the plant can deliver? If improvements in hot-steam technology

would pcrrmi ratsmg T, by 100°C, what effect would this have on the plant
capacity ?

6. Room aiv conditioner, A room air conditioner operates as a Carnot cycle
refrigerator betwecn an outside temperature T, and a room at a lower tempera-
ture T,. The room gains heat from the outdoors at a rate A(T, — T); this heat
is removed by the air condifioner. The powcr supplied to the cooling unit is P.
{a) Show that the steady state teibperature of the room is

= (Ty + PR24) = [(Ty + PP2AY — T,2]'

{b) If the outdoors is at 37°C and the room is maintained at 17°C by a cooling
power-of 2kW, find the heat loss coefficient 4 of the room in WK™, A good
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discussion of room air conditioners is given by H. S. Lefl and W. D). Teeters,

Amer. J. Physics 46, 19 {1978). In a realistic umit the cooling coils may be at
282 K and he outdoor heat exchanger at 378K,

7. Light bulb inareﬁ-fgémror. A 100W light bulb is left burning inside a

Carnot refrigeraror that draws tO0W. Can the refrigerator cool below room
temperajure?

8. Geothermal energy. A very large mass M of porous hot rock is to be
unilized to generate electricity by injearing water and utilizing the resulting hot
steam to dnve a turbine. Asa result of heat extraction, the temperature of the
rock drops, according to 40, = —MCdT,, where C is the specific heat of the
rock, assumed to be fempetature independent. If the plant operates at the Carnot
limit, calculare the total amount B of electrical energy extractable from he
rock, if the temperature of the rock was initially Ty, = T, and if the plant isto
be shin down when1he temperature has diopped to Ty, = T ;. Assumc that the
lower reservoir temperature T, stays cotistant. ~

Attheend of the calculation, give a nunterical value, in KWh, fae A = 101 ¥ kg
(about 30km?®), C=1Jg ' K™, T;=600C, 7,=110C, T;=20C
Waich the units and explain #ll steps! For comparison: The toal electricity
produced in the world in 1976 was between 1 and 2 times 10'* kWh.

9. Cooliug of nonmetallic solid to T = 0. We saw in Chapter 4 that the heat
capacity of nonmetallic solids at sufficiently fow temperatures is proportional
0 T3, as C = aT>. Assume it were possible to cool a picce of such a solid to
T = 0 by means of a reversible refrigerator that uses the solid specinen as its
(varying!) low-temperature reservoir, and for which thie high-temperature
reservoir has a fixed temperature 7°, equal to the {nitial temperature T of the
solid. Find an expression for the electrical energy required.

10, Itreversible expansion of a Fermi gas. Consider a gas of ¥ noninteracting,
spin 4 fermions of mass Af, initially in a volume ¥, at temperature 1; = 0. Let the
gas eapand irreversibly into a vacuum, without doing work, to a final volume
¥;. What is the temperature of the gas after expansion if ¥, is sufficiently large
for the classical limit to apply? Estimate the factor by which the gas should be
expanded for its temperature to settle to a constant final vatue. Give numerical
values for the final temperature in kelvin for two cases: (a) a particle mass equal
to the clectron mass, and NJV = 10%2em ™3, as in metals; (b) a particle mass
equal to a nucleon, and N/V = 103 as in white dwarf stars.
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Chapter 9: Gibbs Free Erergy and Chemical Reactions

GIBBS FREE ENERGY

The Helmholiz free energy £ mtroduccd in Chapier 3 desceibes a system at
constant volume and temperature, But muany experiments, and in particular
many chemical reactions, are performed at coustunt pressure, often one atmo-
sphere, It is useful to introduce another function to treat the cquitibrium

configuraiion at constant pressure and femperature. As in Chapier 8, we
define the Gibbs free encrpy G as

Gz=U-— 10+ pVW. (1)

Chemists often call this the free energy, and physicists often call {t the
thermodynaruic potential. '

The niost important property of the Gibbs [ree energy is that it s a mmimum
for a system & in equilibrium at constant pressure when in thermal contact
with a reservoir 81, The dilferential of G is

dG = dU -~ 1do — ade + pdV + Vip.

Consider a system {Figure 9.1) in thermal contact with a heal reservoir &,
at temperature T and in mechanical contact with a pressure reservoir (1, that
maintains the pressure p, but cannot exchange heat. Now dr = 0 and dp = G,
so that the differentiat dG of the system in the equilibrium configuration becomes

dGs = dUg — tdoy + pdVs | (2)
The thermodysamic identity (5.39) is
wdey = dUyg —~ pdNg + pdVy, {3

5o that (2) becotnes 4G5 = pdN,;. But dN¥y = 0, whence

dGy = 0, 4
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Heat reservolr

0t

Heal reservoir

&,

Figure 9.1 A system in thermal equilibs
with a heat reservoir and in mechanical
] equifibrium with a barystat or pressure

FT

Plunger to
equalize pressu

Pressure reservoir
aty

e

resecvoir which matatains & constant pie
on the system. The barystat is thermally
insulated.

which is the condition for G to be an extremum with respect 1o system varia-
ttons at constant pressure, temperature, and particle nuniber. These are, there-

fore, the natural variables for G(N,1,p).

That the extremum of G4 must be a mintmum, rather than a maximum,
follows direcity from the minus sign associated with the entropy i {1): Any
irreversible change taking place entirely within 8 will increase ¢ and thus

decrease Gy
With (2),

dG = pdN - adr 4+ Vdp. (5)

The differentiat {5) may be written as

&G &G
= {2 av o [
4G (EN),_pd + (6*:

cG
) P (féu) . ©)
Nop p N1t

Comparison of {5) and {6) gives the relations

(6G/aN),,

{8G/et)y,

H

uo (M
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{CGicply, = V. 9

Three Maxwell refation
see Problem 1. '

Inthe Gibbsfreeenergy G = U ~ to + pVthevariables r and p are intensive
quantities: they do not change value when two tdentical systems are put together,
But U, ¢, ¥V, and G are linear in the number of particles N their value doubles
when two identical systems are put together, apart from interface cffecrs, We
say that U, o, V, N and G are extensive quantities. Assume that only one particle
spectes is present. 1f G is directly proportional to N, we must be able to write

s may be obtained from these by cross-differentiation;

G = No(p3) , ' (10)

where @ is wdependent of N because it is a function ouly of the intcasive
guantities pand t. H two identical volumes of gas at equal pressure and tempera-
ture, cach with N molecules, nre put togethier, the Gibbs free chergy

G = INg(p,1) + tNp(p1) = Nolp)
does not change in the process. llt {ollows from ..this arguuﬁnt that
(2G/aNY,. = (p,1) (1)
We saw 1 {7) that
(EGINY,, = 1, (12)

so that @ must be identical with g, and (10) becomes

G(N,p,t) = Nulp.1). {13

Thus the cheusical potemial for a single-compounent system is equal 1o the
Gibbs free encegy per particle, G/N. Lot G for an ideal gas, sec (21) below.

If more than one chiemical species is present, (13) is replaced by a sum ovef
all species:

G=YNy. (14)
j ' .
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The thermodynamic identity becomes
o = dU + plv - SudN; (15)
and (5) becomes

We shall develop the theory of chemical equilibria by exploiting the property
that G = Y Ny is a minimum with respect to changes in the distribution of
reacting molecules at constant 7, p- No new atoms ¢come into the system m a

reaction; the atoms that are present redistribute themselves from one molecular
species to another molecular species,

{"j - - o et v e R
[ VA i S e S A S A RO [RSEPRRIPI SR SRR TR IR |

Exumple: Compurison of G with Foo et us see what is difurent ahout 1he two relstions

(¢F/eN).p = u(N,0.V) {an

and : _ _
(CG/ON), , = pl1,p). (1%)
We found in {6.18) that for an ideal gas
(N5, V) = tlog(N/Vng) | (19)
so that p{N,r,¥) is not independent of N and therefore we cannot write £ = Np(e,¥) as

the integral of {1 7).
Thai is, £ is not direcily propertional 10 N if the system Is kept at constant volume as the

nuinber of particles s increased. Instead, from {6.24),
F(r,V,N} == Nt[log(N/Vig) — 1} (20}

But yhe Gibbs free energy for the ideal gas s

Glo,p,NY = F + pV

i

Nt{loglpfrag) — 1] + Nt
Nriog(p}rne) ' {21}

i

by use of the ideal gas law in (he form N7V = p/r. We readily ideatily ia (21) the chemical
potential as

plr.p) = vlog(p/ing) , (22)
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by reference to the resuh G = Nulep). We see that N appears unavoidably in ple,VYin
(19}, but not 11 u{z,p) in {22). The chemieal potential is the Gibbs {ree energy per particle,

but it s nol the Helmholtz lree energy per particle. Ofcoursc,\.\t. are free 1o write g ns either
{19)or [22}, a§ 13 convemient,
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EQUILIBRIUM IN REACTIONS
We may write the equation of a chemical reaction as

}'iAi + ‘“‘IAZ + e + }’IA( == 0 + (23)

or
Tvd; =0, 24
i

where the A; denote the chemical species, and the v; are the coefficients of the

species in {he reaction equation. Here v is the Greek letler nu. For the reaction
H, + Cl; = 2HCI we have

Al == Hz; Az = Clz; As = HCI; ¥, = I; }’2 = I; }’3 = -2
' ' (2%)
The discussion of chemical equilibria is usually presented for reactions under

conditions of constant pressure and temperature. In equilibrium the Gibbs free

energy s a minimum with respect to changes in the proportions of the reactants.
The differential of G is

4G = $ N, — adt + Vip. (26)
i

Heze p; 1s the chemical potential of species j, as defined b.y py = {8G/ON ), . Al

constant pressure dp = 0 and at constant temperature dr = 0; then {26) red uces
10

dG = Y pdN,. 27
] .

The change in the Gibbs free energy in a reaction depends on the chemical

potentials of the reactants. In equilibrium G is an extremum and dG must be
610, . '
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The change dN in the number ol molecules of specics j is proportional to the
coeflicient vy in the chemical equaiion " v,A; = 0. Wemay write dNin theforn

AN = v, ' (28)

where dN indicates how many times the reaction {24) 1akes place. The change dG

in {27) becomes
i

I equilibrium dG = 0, so that

Yo =00 (30)
i

This is the condition for cquthbnum in a transform at{on of matter at constant
pressufe and temperature.®

Equiiibrtum for Ideal Gases

We obtain a simple and useflul form of the general equilibrium condition
Y vy = 0 when we assume that each of the constituents acts as an ideal gas.
We utilize (6.48) to write the chiemical potential of species f as

;= t(logn; — logey , (31)
where #; is the concentration of species jand
c; = ng,Z (in) (32)

which depends on the temperature but not on the concentration. Here Zj(int)
is the internal partition function, {6.44). Then (30) can be rearranged as

Ev, logn; = E\* loge; ' (33a)

* Hui the resull is more general: once equitibsium is reacked, 1he reaction does nol proceed furiher,
and there is no furither change in the thermal average values of the congenirations. The velume at
equillbrium will be known, a9 that the sonditlon (30) apptics 2 well when ¥ and ¥ arc sperified as
when p and ¢ arc specified. | :
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0r as
3 logn = ¥ loge,™. ' | {33b)
; : . . _
The left-hand side can be rewritten as
Y tog n't = tog{fn, {33¢9)
i i
and the right-hand side can be expressed as
tog ['fe, = log K(x). (33d)
i

Here K(1}, called the cquifibrium eonstant, is a function only of the tatiperastre.
With (32) we have

K{1) = H“QJ ‘eXp[-wv‘Fj(im);'z] L (34)
because the internal _ffec energy is F j(im)'z —-tiog Z{m). From {33¢,d} and
{34) we have . ' '

ﬂu = K{1), (335}

knownas thelaw of mass action. The result says that the indicated product of the
concentrations of the reactants is a function of the temperature alone. A change
in the conceniralion of any one reaciam will force a change in the equitibrium
concentration of one or more of the other reactants.

To calculate the equilibrium constant K{t) in (34), it is essential to choose in
a consistent way the zero of the internal energy of each reactant, We need’
consistency here because the value of each partition function Z{int) depends
on our choice of the zero of the energy cigenstates, The dilfferent zeros for the
different reactants must be related 10 give properly the cnergy or free energy
difference in ihe reaction, ft is not diflicult to arrange this, but it docs not
happen without a conscious effort on our part. For a dissociation reaction such
as H, = 2H, the simplest procedure is to choose the zero of the internal encrgy
of each composite particle (here the H; inolecule} to coincide with the energy
of the dissociated particles (here 2H) at rest. Accordingly, we place the energy
of the ground state of the composie particle at — Ep, where E, is the encrgy
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required tn the reaction to dissociate the composltc particle into its Lonslllucn!s
and is taken to be positive,
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Example: Equiibrium of atemic and moleculor bydrogen.  The siatemen of ihe law of
mass aciion for the reaciion H; = 2Hor H

2 = JH = 0 for the dissociation of molecular
hydregen imo atomic hydrogen is

[H}(H]? = (M) K{r). {36)

Hese {1, ] denoles the cancentration of molecutar hydrogen, and [H] the concentraticn
of stomic hydrogen. L follows iha

{H] _ !

S 37
[E'Iz] [Ei ]UZKHZ‘ { }

that is, the relmive concentration of atomic hydrogen at a given temperalure is inversely

proportional 10 the square 1001 of 1he concentration of molecular hydrogen, The equitib- -
ritsm conslant K is givea by

log K = logny(H,) — 2lognptH) —~ F(H)/t, (38)

in 1erms of the internal free energy of H,. per molecule. Spin faclors are absorbed in F{H,).
Here the zero of energy is \aken foran H alom at rest. The more tighnly bound is H,, the
more negalive is F(H,), and 1he higher is K, leading 10 a higher proportion of H; inihe
mixture. The energy to dissociate H, i 4.476 eV per motecule, al absotule zero.

Iy may be said 1hal 1he dissociation of molecular hydrogen in1o atomic hydrogen is an
exampte of entropy dissocialion: The gain in entropy associated witls the decomposition
of 1, imo two independent particles compensales the Joss in binding encrgy. it is believed
that most of the hydrogen in intergalactic space is present as H and ot H,: The reaction
equitibrium is throws i the direction of H by the low values of she concentrution of H,.
Hydrogen is very dilute in inlergalactic space.
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Example: ptf and the {unization of water.  la liquid water she {onizalion process
H,0+~—H" + OH~ (39)

proceeds 10 a shight exsent. Al room temperatuie the reaction cquiiibriunt 1§ desciibed
approxinuely by she contceniration product

[H*OH"] = 107" mol?!™¢ (40)
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where Lhe janic concentralions are given in moles per liter, Ia pure waler [H*] = [OH"] =
167 mol1"'. An acid is said lo act as a prolon dosor. The concentration of H* ions is
increased by adding an acid 10 the water and the concentration ol Ol ™ jons will decrease
as required 10 maintain the product {H” 1 O "] constant. Similarly, the concentration
‘of OH™ ions can be increased by adding a hase Lo the water, and the H* concentration will
decrease uccordingly. The pliysical state of water is more complicated than the equation
of the ionizalion process suggesls—the H” ions are not bare profons, bul are associated
with groups® of H,0 molecules. This does not significantty affect the validity of the reaction
equation.

1t s ofien convenient 16 express the acidily or atkalinity ol & solution in terms of the phi,
defined as

[
pH = ~log{H"] | {4y
) 1

The pH ola solution is the negalive of the togarithm base ten of the hydrogen ion concentra-
tion in moles per liter ol solution. The pH ol pure waler is 7because [H'] = 107 " moli™ %,
The slrongest acidic sotulions have pH near 0 or even negative; an apple may have pHl ~ 3.
Human blood plasma has a pH of 7.3 1o .5, it is stightly basic.
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Example: Kinetic model of mass activn.  Suppose thal atoms A and B combine to form a
molecule AB. We suppose that AB is fonmed in 2 bialornic collision of A and B. Let 5,
ny, n,y denote the concentrations of A, B, and AB respectively. The rale of change of s 5 s

dnygfdt = Ciang — Dy, {42)

where Lhe rate constant C describes the formation ol AB in a collision of A wilh B, and Lhe
rale conslant D describes the reverse process, the thermal decay ol AB inlo its componest

aloms A and B. {n thermal equilibrium the cancentralions ol all constitufents are conslant,
so that diiy 'dt = 0 and

Chpny = Ditgg; nanpfiag = D/C, {43)

a function of temperature only. This result is consistent with the law of mass action that we
derived earhier by slandard thermodynamics.

Suppose AB is nol formed principally by the bimolecutar cotlision of A and B, but is
formed by some calalytic process such as

A+E«AE; AE+Be<—AB+E. {44)

* The dominant specics present is most likely 1t*- 41,0, a complex of 4 water molecules surround-

ing one proton. A review is given by M. Eigen and L. De Masyer, Proc. Roy. Soc. tLondon) AT,
. 505 (1958). - S : T ' S
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Here E is the catalyst which is returned to its original state a1 the end of the sceond step.
S0 long as Wic intermcdiate product AE 15 so shont fived that nio sipuificant guantty of A
is tied up as AE, the ratio s, /s in cquilibrium must be the same us if AB were formed in
the direct process A + B« AB 1treated above. No matter by whal route ihe reaction
actually proceeds, the equilibrivm must be the same. The rates, however, may differ.

The eguality in equitibrium of the direct and fnverse reaction rates is caled the principle
of detatled balunece.
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Comnuent: Reaction rates,  The law of mass action expresses Lhe condilion satisfied by Lhe
concentralions once a reaction has gone to equilibrivm, i 1elis us notling aboul how fast
e reaction proceeds. A reaction A + B = C may evolve encrpy Af as it procecds, but
before the reaction can occur A and B may have Lo negotiule a potential barrier, as in
Figure.9.2. The barsier heighi is called the sciivation encrgy. Only molecules on the high
energy end of their energy distribution will be able 1o react; others will nel be able {0 get
over Lhe polential hill. A catalyst speeds up a reaction by offering an allernate reaction patle
with a lower encrgy of activation, but it does not change the squilibcium concentrations,
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A+B—C

Activation
encrgy

Potential energy

A+B

Schematic coordinate

Figure 9.2 The quantity AH measures the encrgy evolved in the reaction
and determines the equilibrium concentration ratio [A]{B]/{C]. The
activation encrgy is the height of the potential barsier to be negotrated
before the reaction can proceed, and it determines the rate at which the
reaction takes place.
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SUMMARY
1. The Gibbs frce encrgy

G=U-~—10+pV

is a minimum in thermal equilibrium at constant temperature and pressure,
2 {CGfotdy, = ~o; (CGlipy, = V; {CG/EN), = 1.
3‘ G(T!pr) &= N}I(f,p)

4. The law of mass action for a chemical reaction is that

Hrz}v"‘ = K{1),

a function of the temperature alone.

PROBLEMS -

1. Thermal expansion rear absolute zero. (3) Prove the three Maxwell rela-
1ons

(EVfar), = ~(Gafop), , (452)

{(V/ON}, = +{Ou/op}x , (45b}
(&/d0)y = —(00/ON),. (45¢)

Strictly speaking, (45a) should be written
(fVict),n = —(Cofip)en

and two subscripts should appear similarly in (45b) and {45¢). 1t is comtnon to
omit those subscripts that occur on both sides of these equalitses. (b) Show wilh
the hielp of (45a) and the third Juw of thermodynamics tlat the volume coefii-

csent of thermad expansion
1 fcV
=y (5{) (46)
F

approaches zerp as v -+ .



Problems

2. Thermal fonization of hydregen. Consider 1he:§_ formation of atomic hy-
drogen in the reaction e + H' = H, where ¢ is an electron, as the adsorption

of an eleciron on & proton H*. {a) Show that the ethbnum coaceniraliotis
of the reactanis satisfy the relation

(e](H*1/(H] = ng cxp(mf}i'r) : (@7

where I is the energy required {o fonize atomic hydrogen, and ng = (mr/2sh%)*?3
refers to the electron, Negleet the spins of the particles; this assumption does
not affect the final result. The resvlt is known as the Saha equation. If all the
electrons and protons arise from the {onfzaiion of hydrogen atoms, then the

conceniration of protons is equal to that of the e!cctrons, and the electron
coticentratton is given by i

fe] = [H]muQuz Cxp(mf/?‘f)- (48)

A similar problem arises in semiconductor physii:b in connection with the
thermal fonization of tmpurity atoms that are donors ofclectrons.
Nolice that: |

{1) The exponent involves L snd not /, which sh&ws that this is not a simple
“Boltzmann factor™ problcm. Here [ is the xomzai;on energy.

(7) The eleciron concentration is pmpornmml to the square root of the
hydrogen atom concenlration.

{3} Hf we add excess electrons to the system, then thc concentration of protons
will decrease. : -

(b} Let {H{exc)] denote the equilibrium concentrauon of H atoms in the
first excited electronic state, which is 2f abave the ground stale. Compare
{ H{exc)] with{2] for conditions at the surface of the Sun with{H] = 102 cm ™
and T ~ SO00K. i

|

3. lonization of donor mzpurrtres in semiconductors. |A pentavalent impurity
(called a donor) intraduced in place of a tetravalent szlzcon atomn in crystalline
sd:u)n acts like a hydrogen atom in free space, but with e*/e playing the role of
¢® and an effective mass * playing the role of the eleciron mass m in the
description of the fonization cncrgv and radius Qﬁ the ground state of the
impurity atom, and alsa for the free electron. For silicon the dietectric tOt‘;tht\t
€ = 11,7 and, approximately, nt* = 0.3 m. If there nre 10°7 donors per an’,

estimate the concentration of conduction electrons ai 100 K.
!

4. Biopolyner growth. Constder the chemical equrhbnum of a solution
of lincar polymers made up of identical units. The basic reaction step is
monomer + Amer == (N + 1)mer. Let Ky denote lhe equilibrium constant for
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this reaction. (a) Show {rom the law of mass action that the concentrations - ]
satisfy

N+ = QTR KK - Ky - | (;39)

(b} Show from the lheory of reactions that for ideal gas conditions {an ideal
solution):

_ .I}‘Q(N)HQ(I) i _
N = ;“!Q‘—M—"'{N T }) CXP[(FN+1 -— FN Fl]/‘f) (50)
Here
no(NY == (Znh?/M Ty~ 3% | {5H

where My ts the mass of the Nmer molecule, and Fy is the free energy of one
Nmer molecule. {c) Assume N » 1, so that ny(N) = n(N + 1), Find the
concenlration ratio {N + t]/[N] at room temperature if there is zero free
encrgy change in the basic reaction siep: that {5, iff AF = Fy,, — Fy — F, = 0.
Asstime {1] = 10*®cm™?, as for amino acid molecules in a bacterial colt. The
molecular weight of the monomer is 200, {d) Show thut for the reaction {o goin
tie dircction of long molccules we need AF < —0.4¢V, approximaiety, This
condition ts nof satisfied in Nature, but an tugentous pathway is followed that

simulates the condition. An elementary discussion is given by C. Kittel, Am. J.
Phys. 40, 60 (1972).

5. Pavticle-antiparticle equilibrium. {(a) Find a quantitative expression for the
thermal equilibritm concentration a = ¥ = p~ in the particle-antiparticle
reaction A* + A” = 0, The reactants may be electrons and positrons; protons
and antiprotons; or electrons and holes in a semiconductior. Let the mass of
either particle be M; neglect the spins of the particles. The minirmum energy
release when A combines with A™ s A. Take the zero of the energy scale as the
energy with no particles present. (b) Estimate i in cm™? for an electron {or a
hole} in a semiconductor T = 300K with a A such that Ajr = 20, The hole is
viewed as the antiparticle to the electron. Assume that the electron concentration
is equal to the hole concentration; assume also that the particles are in the
classical regime. (¢} Correct the result of (a) to let each particle have a spin of §.
Particles that have aatiparticles are usually fermions with spins of 4.
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Phase Transformations
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Note: In the first section s denotes ¢/N, the entrapy per atom. In the section on ferromagnetism,

# i the magnetic moment of an alem.
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VAPOR PRESSURE EQUATION -

The curve of pressure versus volume for a quantity of matter at constant
temperature is determined by the free energy of the substance. The curve is
called an {sotherm. We consider the jsotherms of a real gas in which the atoms
or molecules interact with one another and under appropriate conditions can
associate together in a liquid or solid phase, A phase 15 a portion of 2 system
that is uniform jn composition.

Two phascs tnay coexist, with a definite boundary between them. An isotherm
of a real gas may show a region in the p—¥ plane in which liquid and gas coexist
in equilibrium with cach other. As in Figure 101, part of the volume contains
atoms in the gas phase. There are isotherms at low temperatures for which
solid and lquid coexist and isotherms for which solid and gas coexist. Everything
we say for the liguid-gas equilibrium holds also for the solid-gas equilibrium
and the sohid-liquid equilibrium. ' '

Liquid and vapor® may coexist on @ section of an isotherm only if the
temperature of the isotherm lies below a critical temperature r.. Above the
critical temperature only a single phase—the fluid phase-—exists, no matfer
how great the pressure. There is no more reason to call this phase a gas than
a Hquid, so we avoid the issue and callit a §uid, Values of the critical temperature
for several gases are given in Table {0.1.

Liquid aud gas will never coexist along the entire extent of an isotherm
from zero pressure to infinite pressure; they coexist at most only along a
section of the isotherm. For a fixed temperature and fixed number of atoms,
there will be 2 volume anbove which all atoms present are in the gas phase.
A smalldrop of water placed in an evacuated seuled bell jar at rootn temperature
will gvaporate entircly, feaving the bell jar illed with H, 0O gas at some pressure.
A drop of water exposed to air not already saturated with moisture may
evaporate eatirely. There is a concentration of water, however, above which
the atoms from the vapor will bind thewmselves into a liquid drop. The volume
rclations are suggested by Figure 10.1.

The thermodynamic conditions for the coexistenee of two phases are the
conditions for the cquilil)ri'um of two systems that are in thermal, diffusive,

* Vapar is 4 term uscd for a gas when the gas is in equitibgum with its liguid or sobd form.



Vapor Pressure Egquation

Curve aken at
constiln! emperuture
L
=)
.,
o

\ b LIQUID 4 gas ]

R

Liquid - Liquid + gas ' Gas

Fignre 10.1  Pressure-volume isotherm of a reaf gas at a
temperature such that liquid and gas phases may coexist, that
is, T < 7. In the two-phase region of quid + gas the pressure
is constant, but the volume may change. At a miven semperatuore
there is anly a single value of the pressure for which a Liquid
and its vapor are in equilibrium, H at this pressure we move the
piston down, soimne of the gas is candensed o liquid, but the
pressure remains unchanged as long as any gas rewmains,

Table 10.1  Critical temperatures of gases

T‘. in K Tr' in K
He 52 H, 332
Ne¢ 44.4 N, 126.0
Ar £51 0, 154.3
Kr 210 H,0 6471
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and mechanical contact, These condilions are that 1, = 1,0 p, = a3 py = p,
or, for liquid and pas,

TZ = Tg; )ul. = ;uy; p} = pg ¥ (}}

where the subscripts [ and g denote the liquid and gas phases. Note that the
chemical potentials of the same chemical species in the two plases must be
equal if the phases coexist. The chemical potentials are evaluated at the common
pressure and common temperature of the lguid and:gas, so that

1D = py{p0. - @

At a general point in the p-t plane the two phases do pot coexist: If g, < p
the liquid phase alone is stable, and if y, < p the gas phase alone is stable.
Metastable phases may occur, by supercooling or superheating. A metastable
phase may have a transient existence, sometimes brief, sometimes long, at a

temperature for which another and niore stable phase of the same Subslance
hasa iower chemzcai potential, -

Derivation of the Coexistence Curve, p Versus ¢

Let po be the pressure _for.which two phases, Hquid and gas, coexist at the
temperature ro. Suppose that the two phases also coexist at the nearby point
po + dp; 1o + dr.The curve in the p, T plane along which the two phases coexist

divides the p, t plane into a phase diagram, as given in Figure 10.2 for H,0.
1t is a condition of coexistence that

.“g{POoTO) = Ui ool {3
and also that

plpo + dp, 1o + de) = pmipo + dp, T4 “Ii‘.d'f}- (4)

~

Equations (3} and (4) give a relationship between dp and dr.
We make a series expansion of each side of {4) to obtain

A 3, _
;_"a{PﬂJﬂ) + ("é};’)"fp +(.§;. ;k +

| a, d, |
- a BNt 4 -, (5
. _.{leplg,fo_) + (ap )'R"P + ( ar), T + . (5)
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In the limit as dp and dr approach zero,

: AN 2
(F{Eﬁ) dp + (-—&9) dt = (?{5) dp + (1&) de,
p / ét J, ép /. &t /,
by (3} and (5). This result may be rearranged to give

) _ (2,
dp er), A0t /,

de (O o)
dpJ. \0pj

Figure 10.2  Phase diagram of H,0. The
- ratationships of the chemical poteniials g, ),
and g in the solid, liquid, and gas phases are

(6)

0!

which is the differential equation of the coexisicnce curve Oor vapor pressure

curve,

The derivatives of the chemical potemiat which occur in (7) may be expressed
in terms of quantities aecessible to measurement. In the treatment of the Gibbs

279

shown. The phase boundary hiere between ice
and water is ot exscily verticsd; the slope is
actually negative, slthough very lurge. After
International Critivad Tubles, Vol. 3, and P. W
_ Bridgman, Proc. Am. Acad. Sci.47, 44} {1912
h Gasﬂ for the scveral forms of ice, see Zemansky,
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free energy in Chapter 9 we found the relations

6=nNup; (22} =vi () =-a ®)
ap [n.c CT /N

With the definitions
v= VIN, sz o/N {9}

for the votume and entropy per molecule in each phase, we have

1 /G R éuy I (66 ¢ ‘it
v v (@) 5, (3

. an

Here 5, ~ s, is the ncrease of entropy of the system when we transfer one
molecule from the liquid to the gas, and v, — py is the increase of volume
of the system wlien we transfer one tnolecule from the liquid to the gas.

It is essential to understang that the derivative dp/dr in (11 15 not simply
taken from the equation of state of the gas. The derivative refers to the very
special interdependent change of p and 1 in which the gas and liquid continue
to coexist. The number of molecules in each phase wilt vary as the voluine is
varied, subject only to N, + N, = N, a constant. Here Ny and ¥, are the
aumbers of atolecules in the liquid and gas phases, respectively.

The quantity s, — 5 is related directly to the quantity of heat that must
be added to the system 10 transfer one mojecule reversibly from the liguid
to the gas, while keeping the temperature of the system constant, (If heat is
nof added to the system from outside in the process, the temperature will

decrease when the molecule is transferred to the gas) The quantity of heat
added in the transfer s

dQ = (s, ~ 51}, ()

by virtne of the connection between heat and the change of entropy in a
reversible process. The quantity

L= s, ~5) R : (13)
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defines the latent heat of vaporizatlon, and is easity measured by elemenfary
calorimetry.

We tet _ .
. . AD = I'.‘gl — I} (14}

denote the change of volume when one molecule is transferred from the tiquid
to the gas. We combine (11}, (13), and (14} to obtain

v tAv (15)

This is known as the Clausius-Clapeyron equation or the vapor pressure equation
The derivation of this cquation was a remarkable early accomplishment of

thermodynamics. Both sides of {15) are eusily determined experimentally, and
the equation has been verified 1o high precision.

We obtain a particularly useful form of {13} if we make two approximations;
{a) We assume that v, » g the volume occupied by an atom in the gas

phasc is very much larger than {a the liquid (or solid) phase, so that we may
replace Av by v,:

Av Z v, = V{’Nr {16}

At atmospheric pressure v,/r, = 107, and the approximation is very good.
(b} We assume that the ideal gas law pV, = N, applies to the gas phuse,
so that {16) may be written as

Av = t/p. (17

With these approximations the vapor pressure equation becomes

dp L d L

TR gl "

where L is the latent heat per molecule. Given L as a fanction of temperature,
this equation may be integrated to find the coexistence curve.
If, in addition, the tatent heat L is independent of temperature over the

temperature range of interest, we may take L = L, outside the integral. Thus
when we titegrate (18} we obtam
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whence

logp = —Lg/t + constant;  plr) = peexp(— Lo/} . (20}

where p, is a constant. We defmed Lg as the latent heat of vaporization of
one molecule. If L, refers instead to one mole, then

p(T} = poexp(—Lg/RT} , 21}

where R is the gas constant, R = Ngkg, where Ny is the Avogadre constant, For

water the latent heat at the liquid-gas transition is 2485 J g™! at 0°C and 2260
J g™ 1 at 100°C, a substantial variation with temperature.

The vapor pressure of waler and of ice is plotied tn Figure 103 as logp
versus 1/T. The curve is linear over substantial regions, consistent with the
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2000
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Figure 104 Vapor pressure versus temperature for *He. After H. van Dijk

et af, Journal of Research of the Nauonai Bureau of Standards 63A, 12
{1959).

approximate result (20). The vapor pressure of *He, plotted in Figure 10.4,
is widely used in the measurement of temperatures between I and SK.

The phase diagram of *He at low temperatures was shown in Figure 7.14,
Notice that the Hquid-solid eoexistence cueve is closely horizontal below 1.4 K,
We infer from this and (11) that the entropy of the tiquid is very nearly equal
to the entropy of the solid in this region. It is remarkable that the entropies
should be so similar, because a normal liquid is much more disordered than a
solid, so that the entropy of a normal tiquid is considerably higher than that
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of 2 normal solid. But *He is a quantum liquid. For another quantum liquid,
‘He, thie slope of the liquid-solid eurve is negative at low temperatures
{Figure 7.15), and in this region the entropy of the liquid is less than the entropy
of the solid. The solid has more accessible states than the tiquidt Liquid *He
has a relatively low entropy for a liquid because it approximates a Fermi gas,
which generally has a low entropy when 7 « 1, because a large proportion
~of the atoms have their mometta ordered into the Fermi sphere of Chapter 7.

Triple point.  The triple point ¢t of a substance is that point p,, 7, in the p-1
plane at which all three phases, vapor, liquid, and solid, are in equilibrium.
Here g, = = p,. Consider an equidibriuvm mixture of liquid and solid phases
enclosed in a volume somewhat larger than that occupied by the mixture
alone. The remaining volume will contain only the vapor, in equilibrivin with
both condensed phases, and at a pressure equal to the common equilibrium
vapor pressure of both phases. This pressure is the triple point pressure.

The 1riple point temperature is not identical with the melting temperature
of the substance at aimospheric pressure. Melting temperatures depend
somewhat on pressure; the {riple point iemperature s the melting temperature
under the common equilibrium vapor pressure of the {two condensed phases.
. For water the triple point temperature is 001K above the atmospheric
pressure melting temperature: T, = 0.01°C = 273.16 K. The Kelvin scale is
defined such that the triple point of water is exactly 273.16 K; see Appendix B.

Latent heat and enthalpy.  The latent heat of a phase {ransformation, as from

the liquid phase to the gas phase, is equal {o T times the enfropy difference
of the two phases at constant pressure. The latent heat is also equal to the
difference of H = U + pV between the two phases, where H is called the
enthalpy. The differential is dH = dU + pdV + Vdp. When we cross the
coexistence curve, the thermodynamic identity applies:

o = dU + pdV — (g, — pJdN (22)
On the coexistence curve g, = ;. Thus at constant pressure
L= 1Ag = AU + pAV = AN = H, -~ H,. 23

Values of # are tabulated; vhey are found by integration of the heat capacity
41 colslant pressure:

2o\ 5 % 2
= o(2) < (E) (5 - (5 e
1/, or J, ot o &t /,
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or

H=[Cpd. | e
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Exampler Model system for gas-solid equillbrfum.  We construct a simple model 1o de-
scribe a sotid in equilibrium with a gas, as in Figure 1Q.5. We can easily derive the vapor
pressure curve for this model. Roughly the same model would apply to a tiquid,

Imagine the solid to consist of N atoms, each bound as a harmenic oscillator of fre-
quency o to a fixed center of force, The binding energy of each atom In the ground state is
ta; that 15, the energy of an atom in {ts ground state is — ¢, referred 10 a Iree atom at rest.
The energy states of a single oscillator are shn — £y, where # is a positive integer or zero
{Figure 10.6). For the sake of simplicity we suppose ihai each atom can oscilfaie only inoi.e
dimension. The result for oscillators in three dimensions is lek as a problem.

The partition Iunction ol a single oscillaior in he solid is

B B B expleqe/t)
Z, = %:cxp[ (nhar — gg)/t] = expleo/) gexp(wnhm/r} = T exp(— s
' (26)
The Irce energy F, is
Fy=U;~10,=—1logZ,. (27

The Gibbs fre¢ encrgy in the solid is, per atom,

Gy= Uy — 10, + poy = F, + pu, = . (28)

Figure 10.5  Atoms in a solid in cquitibriom
with atomis in the gas phase. The equilibriun
pressure is a lusiction of temperature. The
energy ol the atoms in the solid phase is lower
than in the gas phase, but the entiopy of the
atoms lends 1o be higher iz the gas phase. The
cquilibrium configuration is deterniined by the
cownterpliay of Hic hwo offeas. Al fow
tesnperature miost of e aroms sre ke sofid;
at high temperatuee atl or most of the aloms
muay be in the gas,
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les of an atom bound as a
tor of frequency w. The ‘o
ssumed 1o be £, below that of a
in 1he gas phase.

Ground sfte ofF
bound alous

e — £g
Jhw — g
2w ~ kg
Hu — £y

The pressure in the solid is equal to that of the gas with which it is in contacy, buthe
volume v, per atom in the solid phase i much smaller than the volume ¢, per atom in the

gas phaset o, « p,.

If we neglect the term po, we havc for thc chem;cal polcnual of {he sohd TR

the absolule activity is

= F,, whence

= e..xp()u,/z) 2 exp(F/t) = exp{~log Z,}

[

kY

.21, = exp(~£o/)[1 ~ exp(~he/1)] (29)

We make the ideal gas approximation to describe the gas phase, and we take the spin of

the atom to be zero. Then, from Chapter 6,

=Pk (2’”“2)“. (30)
ng g, 13 Mz
The gas is in equilibrium wi_th the solid when 4 = 1,, or
h'= .r.nQ exp(~go/1)[1 ~ exp(—hw/)} (30
I we insert ng from (3.63): -
(32)

R i Vi A |




Van Der Waals Equation of State

VAN DER WAALS EQUATION OF STATE

The sitnplest model of a liquid-gas phase transition is that of van der Waals, who
modified the ideal gas equation pV = Nt to take into account approximately
the interactions between atoms or molecules. By the argument that we give
below, he was led to a modified equation of state of the form

{p + Na/V}(V — Nb) = Nt , (33

known as the van der Waals equation of state, This is written for N atoms in
volume V. The g, b are interaction conslants to be defined; the constant a is
a measure of the long range attractive part of the interaction between two
molecules, and the constant b is u mcasure of their short range repulsion
{IMgure 10.7). We shull derive (33} with dhie help of the geaera! relation p =
~{2F[V} 5. We shall then treat the thermodynamic propertics of the model
in order to exhibit the liquid-gas transition.
For an idcal gas we have, from (6.24), -

Fl(ideal gas} = ~Nt[loglng/n) + 1. (34)

The hard core repulsion at short distances can be treated approximately as
if the gas had available not the volume V, but the free volume V ~ Nb, when
b is the volume per molecule. We thercfore replace the concentration n = N/
in (34) by NV ~ Nb). Thus, instead of (34), we have

F = —Nt{log{ny(V — Nb}/N] + 1}. (35)

To this we now add a correction for the intermolecular attractive forces.

Potential encrgy, ¢

287

Figure 10.7 The tutcraciion energy between
two molecules consisis of a short range
repulsion plus a long range aviracon. The
short range repulsion can be described

l o, approximalely by saying (ha( each molecule

\// has a hard, bupenetrable cote,
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Mean Field Methed

There exists a simple approximate method, called the mean field method, for
taking into account the effcct of weak long range interactions among the
particles ofa system. The most widely known applications of the method are to

gases and 10 ferromagnets. Let ¢(r) denote the potential energy of interaction

of two atonis separated by a distance r. When the concentration of atoms in

the gas is », the average value of the total fnteraciion of all other atoms on
the atomatr = O1is

ﬁ."_dvfp(r)n - ﬁ," dY o) = ~2na , (36)

where —2a denotes the value of the integral {dV o(r). The factor of two is a
useful convention. We exclude the hard core sphere of volume b from the
volume of integration. In wriling (36) we assume that the concentration » Is
constant throughout the volume accessible to the niolecules of the gas. That is,
we use the mean value of n. This assumption is the essence of the mean beld
approximation. By assuming uaiform concentration we ignore the increase
of cohcentration in regions of strong attractive potential energy. In modern
language we say that the mean ﬁe!d method neglects correlations between
interacting miolecules. :

From (36) it follows that the intcractions change the energy and the free
energy of a gas of N molecules in volume V by

AF = AU = ~}(2Nna) = —N2afV. (37
The factor § is contmon ta self-energy problems; it arranges that an interaction
“bond™ between two molecules is counted only once in the total energy. The

exact number of boads is 4N(N — 1), which we approximate as N2,

We add (37) to (35) to obiain the van der Waals approximation for the
Helmbiohiz free energy of a gus:

F(vdW) = — Nellog[nV — NB)/N] + t} = Nio/V. {38)
The pressure is

Nt N*a
Vv — Nb V2

p = —(@F/iV).y = (39)
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>§3/ _ forces that ad on molecules near the boundary
- of a volume Y. The van der Waals srgument
suggests that these forees contribule an internal
~Q_ :}{D pressure Nla/V? which is to be added 10 the
external pressuce p, so that p + N2/V?1 should
}:’/ be used as the pressuce in the gas law,

B - |
- é : } . Figure 10.8 Directions of intermolecular
e

O
¥
Q O
|14 : o Figure 10.9 The comtainer of volume ¥ has N
o @ b 0 molecules, cach of volume b, The voluihe not
"1 occupied by molecules is ¥~ Nb. Intuition
& : : suggests that this free volume should be used in
O thie gas law in place of the container volume V.
G
e (&
€

(p + Nia/V)(¥ —~ Nb) = Nt ,

(40)

der Yaals equation of state. The terms in @ and b are interpreted m
10.8 und 10.9.

Points for the van der Waals Gas

ne the quantities

p. = aj27b%; Vo= 3Nb; = 8a/27b. (41)
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Figure 10.10 The van der Waals equation of stale near
the cratical temperature. Courtesy of R. Cahn.

In terms of these quantities the van der Waals equation becoes

- fp 3 Voot 81
.(}II * (VIKF) (E - 5) =3 (42)

This equation is plotted in Figure 10.10 for several temperatures year thc

temperature 1., The equation may be written in terms of the dimensionless
variables : '

p=plpe Pe=wviv.  t=1, (43)

a%

o3 N 8. &z 3
e i T - - = m— 44
(‘”_ pz)(’? 3) 3t PEY TR 9

This result is known as the law of corresponding states. In terms of §, V, %
. all gases look alike—if they obey the van der Waals equation. Values of a
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and b are usually obtained by fitting to the observed p, and .. States of two
substances at the same , V, 7 are called corresponding states of the subsiances.
Real gases do not obey the equation to high accuracy.

At one point, the critical point, the curve of p versus ¥ at constant 7 has a
horizontal point of inflection. Here the local maximum and minimum of the

p—V curve coincide, and there is no scparation between the vapor and liquid
phases. At a horizontal point of inflection

an 2
(P) -0, (ﬂ_ﬁ.) -0, (45)
v/ \evry,

These conditions are satisfied by (44} if p= 1; ¥ = 1; T = 1. Wecall p, ¥,

and £, the critical pressure, critical volume, and critical temperature, respectively.
Abave 1, no phase separation exists.

Gibbs Free Energy of the van der Waals Gas

The Gibbs free energy of the van der Waals gas exhibits the characteristics of
the liquid-gas phase transition at constant pressure. With G = F + pV, we
have from (38} and (39) the result '

V 2
GV = i 2 Neltoglng¥ — NBYNT + 1), (36

This equation gives G as a function of ¥, 1, N the natural variables for G are
/i 1, N. Unfortunately we cannot conveniently put G into an analytic formas a
function of pressure instead of volume. We want G{r,p,N) because we can then
abtain pft,p}as G{z,p,N}/N by (9.13). It is g that determines the phase coexistence
relation g1, = g,. The results of numerical calculations of G versus p are plotted
in Figure 10.11 for temperatures befow and at the critical temperature, At any
temperature the lowest branch represents the stable phase; the other branches
represent unstable phases. The pressure at which the branches cross determines
the transition between gas and liquid; this pressure is called the equilibrium
vapor pressure. Results for G versus 7 are plotted in Figure 10.12,

Figure 10.13 shows, on a p-V diagram, the region V < V] in which only the
liquid phase exists and the region ¥ > ¥, in which only the gas phase exists.
The phases coexist between ¥, and ¥,. The value of ¥, or ¥; is determined by
the condition that p(r,p) = p,(1,p) along the horizontal line between ¥ and
¥,. This will occur if the shaded area below the line is equal to the shaded area

et









Chapter 10: Phase Fransformations

— .40

T = (.95

~0.44 -
G/N, / |

1
]
Gas },/Vapor pressure
|
1
i
i

048 frmrmet
//
1
67 0.8 0.9
- plp—
(a)
~0.3

. 7=t Ald/
_ . i

G/ N I /\\-Criticai point
04 - _ : |

0.5
0.8 : 0.9 £0 N
P/Pc =

{b)

Figure 10.31 {2} Gibbs free energy versus pressure for van
der Waals equation of state: ¢ = 0.957,. Courtesy of R. Cahn,

{b) Gibbs {rec energy versus pressure for van der Waals equation of
statel v = 1.

above the line. To seg this, consider

dG = ~adv + Vdp + pdN. (47)

We have dG = Vdp at constant  and constant total number of particles. The
difference of G between V) and V; is

G, G,= [¥dp, - (48)
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Figure 10.13  isotherm of van der Waals gas at a
temperaiure below he critical temperature, For volumes
less than ¥, only the fiquid phase exists; {or volumes
above ¥, only the gas phase exists. Between ¥, and ¥,
the system in stable cquilibrium lies along the coexistence
line and 1s an inhomogeneous mixture of two phases. The
tiquid and gas phases coexist. The proportion of the
lguid and gas phases must be such that the sum of their
volumes equals the volurhe ¥ that is available.

but the integral is just the sum ofthe shaded areas, one negative and one posijtive.
When the magnitudes of the areas are equal, G (1,p} = G{r,p} and pfr,p} =

1{r,p) along the horizontal coexistence ling drawn in the figure. In equilibrium
we require g, = ;.

Nucleation. Let Ap = p, — i, be the chemical potential difference between
the vapor surrounding a small liquid droplet and the liquid in bulk (an infinitely
large drop). If Ay is positive, the bulk liquid will have a fower free energy than
the gas and thus the Hguid will be more stable than the gas. However, the
surface free energy of a liquid drop is positive and tends 1o increase the free
encrgy of the liguid. At small drop radii the surface can be dominant and the
drop can be unstable with respect to the gas. We calculate the change in Gibbs

freeenergy when a drop of radius R forms. Ifn, is the concentration of molecules
in the liquid,

AG = G, ~ G, = Z(@n/ )R Ap + 4Ry (49)
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where 7 is the sucface free energy per unit area, or surfice tension. The fiquid
drop will grow when G, < G,. An unstable maximum of AG is attained when

dAG/R =0 = —4zR%m A + 8zRy , {50)

or

R, = 2y/n, Ap. {s1)

This is the critical radius for nucleation of a drop. At smaller R the drop wiil
tend to evaporate spontancously because that will fower the free energy. At
farger R the drop will tend to grow spontaneocusly because that, too, will lower
the free energy.

The free energy barricr {Figure 10.14) that must be overeome by a thera!

fluctuation in order for a nucleus to grow beyond R, is found by substitution of
{5})in (49):

(AG), = (160/3)[7}/mX AW ]. | (52)

I we assume that the vapor behaves fike an ideal gas, we can use Chapter 5
1o express Ap as

Ap = tlog(p/p.,) .

where p is the vapor pressure {n the gas phase and p,, the equilibrium vapor
pressure of the bulk liguid (R — o). We use y = 72ergem™? to estimate R,
for waterat 300K and p = Lip, tobel x (07 %cm.

Ferromagnetism

A ferromagnet has a spontaneous magunctic moment, which means a magaetic
momexnt even in zero applied magnetic field. We develop the mean field apprexi-
mation to the temperature dependence of the magnetization, defined as the
magnetic monient per unit volume. The central assumption is that each magnetic
‘atony experiences an effective field B proportional to the magnetization:

Bp = iM | (53)

where 2 is a consfant, We take the external applied field as zero.
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Figure 10.14  Excess free energy of drop relfative o gas, as
function of drop radius R, botd in reduced units. The gas is
supersaluraled because the fiquid has the lower free energy for
this curve as drawn, bul the surface encrgy of smat drops creales
an energy barrier thal inhibils the growth of nuclei of the liguid

phase. Thermal fluctuations evenlually may carry nuclei over the
barrier. '

Consider a system with a concentration n of magnetic atoms, each of spin

and of magnetic moment . In Chapter 3 we found an exact result for the
magnetization in a field B:

M = nptanh{uB/z). . {54)

In the mean field approximation (53) this becomes, for a ferromagnet,

M = ngranh(uiM/fy, (55)
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Figure 10,15  Gruphical solution of Eq. (56) for the
reduced magnelizalion m as a funclion of temperalure.
Ttie reduced magnetization is defined as m = A/ny The
lefi-hand side of Eq. {56} is pltotted as a sieaight ling m
with unil slope. The right-hand side is lanh{m/s} and is
plotted versus m for three different values of the reduced
lemperalure T = t/mu®d = 1/t The three cusves
correspond to Lhe lemperatures 2, 1., and 0.51,. The
curve for 7 = 2 inlersects Lhe straight fine i only af
m ={), as appropriale for the paramagnelic region {there
is no exlernat applicd magneiic field). The curve for = |
{or © = 7.} is langewt to Lhe siraight tine ot althe origing
this temperature marks ihe onsel of ferromagnelisul. The
curve for 1 = 0.5 s in 1he ferromagneric region and
imersects the straight Yine m al aboul m = 0.94 nj As
t ~ Q the inleccept moves up 1o m = 1,so that all
magnetic momenls are fined up al absolule zero.

a transcendental equation for M. We shall sce that solutions of this equation
with nonzero M exist in the temperature range between 0 and .. To solve (55)
we write it tn terms of the reduced maguetization m = M/ny and the reduced
temperature ¢ = t/np?l, whence

m = tanh{m/). o (56)

We plot the right and left sides of this equation separately as functions of n,
as in Figure 10.15. The intercept of the two curves gives the value of m at the
temperature of interest. The critical temperature is ¢ = I, or 7, = nyi*d. The
curves of M versus t obtained in this way reproduce roughly the features of the
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~experimental resulis, as shown in Figure 10.16 for nickel, As 7 increases the

magnetization decreases smoothly tozero at T == 1, called the Curie temperature.

LANDAU THEORY OF PHASE TRANSITIONS

Landau gave a systematic formulation of the mean field theory of phase transi-
tions applicable to a large varicty of systems exhibiting such transitions. We
consider systems at constant volume and temperature, so that their Helmholiz
free energy F = U — ¢ is 2 minimum in equilibrium. The big question is, a
minmum with respect to what variables? Itis not helpful 1o consider all possible
variables. We suppose here that the system can be described by a single order
parameter §, the Greek xi, which might be the magnetization in a ferromagnetic
system, the dielectric polarization in a ferroelcctric system, the fraction of
superconducting electrons in a superconductor, or the fraction of neighbor A-B
bonds to total bonds in an atoy AB. In thermal equilibrium the order parameter
will have a cerlain value & = &glr). In the Landau theory we imagine that §
can be independemly specified, and we consider the Landau free energy function

F, (&) = UEn) ~ wlér) . (537

where the encrgy and entropy are taken when the order parameter has the
specified vatue £ nol necessarily &g. The equilibrium value {y{r} is the value of
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¢ that makes Fy a minimuem, at a given ¢, and the actual Helmholiz free energy
F(z) of the system at 7 15 equal to Lthat minimum:

Fi) = Flfor) < Fifén) - 30 & # & O (58)

Plotted as a function of € for conslant ¢, the Landau free encrgy may have more
than one mmimuni. The lowest of these determines the equilibrium state. In a
first order phase transition another minimum becomes the lowest minimum as
T is increased.

We restrict ourselves 10 systems for which the Landau function is an even
function of £ m the absence of applicd fields. Most frromagnetic and ferro-
electric systems are examples of this. We also assume that F (£,1) is a sufficiently
well-behaved function of £ that it can be expanded in a power series in &—

something that should not be taken for granted. For an even function of &, as
assumed,

FUET) = go(t) + 302(0E7 + 30.(0)" + dgeln)E® + - (59)

The eatire temperature dependence of Fi(§,7) is contained in the expansion
coefficients gq, g, g5, gs- 1 hese coefficients are matters forexperiment or theory.
The simplest example of a phase transition occurs when g,(1) clianges sign at

a temperature 1o, with g, positive and the higher terms negligible. For simplicity
we take g (r) Hnear its 1:

gAt) = (tr — to)x . (60)

over the temperature range of interest, and we take g, as constant in that range.
With these idealizations,

F (&) = golt) + fx(r ~ 1o)d% + g (61)

The form {60) cannot be accurate over a very wide temperaturg range, and 1t

certainly fails at low temperatures because such a linear dependence on teni-
perature is not consistent with the third law.

The equilibrium value of £ is found at the minimum of F {{;1) with respect
10 &

@F/EE) =t ~ 12 + g:3” = 0, {62)

which has the roofs

E=0 and & = (1~ r)efgs) (63)
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With « and g, positive, the root £ = 0 corresponds to the minimum of the free
energy function (61) at temperatures above 1o; here the Helinholtz {ree energy is

F(O = golt). (64)

The other root, £ = (:zf@)(ro - 1} corresponds to the minimum of the free
encrgy function at temperatures below 14; here the Helmholtz free energy is

F(z) = golz) ~ (27/4g3)r ~ o)™ (65)

The variation of F(1) with temperature is shown in Figure [0.17. The variation
of Fy{&;1) as a function of &? for three representative temperatures is shown in
Figure 10.18, and the temperatnre dependence of the cquilibrium value of £ 18
shown in Figure 10.19, .-

Our model describes a phase transition in whiclt the value of the order parame-
eter goes continuously 10 zere as the temperature is increased to ty. The entropy

Curve of
- minimum
free energy

Free energy F{7)

Region of order Reoi r
parameter £ >0 tggz_(::noo

no order

T ——

Figure 10.17 Temperature dependence of the free energy
for an ideatized phase transition of the second osder,
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Figure 10.18 Landau free energy function versus ¥2 at
representalive tomperatures, As the {emperalure drops below
the equilibriom vidue of & gradually increascs, uas defined by thic
position of the minimum of the frec cocrgy.
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¥igure 10,19 Spontaneous polarization versus
emperature, for a second-order phase transition. The
curve is not realistic at low temperatures because of the
“use of Eq. (60): the third law of Ihennodyna:mcs rcqmrcs
- that df/dt — OaSt -0
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— 3F/dt is continuous at 1 = T4, 50 that there is no latent heat at the transition
temperature 1o. uch a transition is by definition a second order transition.
Transitions with a nonzero latent heat are called first order transitions; we

discuss them presently. The real world contains a remarkable diversity of

sccond order transitions; the best examples are ferromagnets and super-
conductors.

. - . - N — ot P T e b e g e
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Example: Ferromagners. In the mean field approximation, ferromagnets satisfy the

Landau theory, To show this, consider an atom of magnetic mament g in a magnetic field B,
which we shall set equal to she njean field 2M as in (53} The interaction etiergy density is

UMY = =M B = LA (66)

where the factor § is common to self-energy problems. The entropy density is given approxi-
matcly by Problem 2.2 as

G(M) = constant — M*2ip? . (67)

m the regime in which M « . Thus the free energy funclion per unit volume is

F (M)} = constant — {M? (/ - Trw) + lerms of higher order. (68}
Ly

At the transition temperature the coeflicient of M? vanishes, so that

Tg = n‘z:}). . {69}

in agreement with the discussion foljowing (36).

| Wi e Vg 3 b e i s e
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First Order Transttions

A latent heat characterizes a first order phase transition. The liquid-gas transi-
1ion at constant pressure s a first order transition. [n the physics of solids first
order transitiotis are common in ferroelectric crystals and in phase transforma-
tions in metals and alfoys. The Landau function describes a first order 1ransition
when the expansion coefficient g4 is nczative and ¢, is positive. We consider

FUEn) = golt) + St ~ 108 ~ Ygu(0|E* + Sgec® + -+ (70)
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T >,

Landau [ree encrgy

Figure 10.20 Landau free energy function versus &% ina
first order transition, at representative temperatures. Al 7,
the Landau function has equal minima at ¢ = Oand ata
finite & as shown, For ¢ below r, the absolute minimum is at
larger valucs of &; as v passes through v, there is a
digconlintous change in the position of the absolute
minimum. The arcows mark the minima,

The extrema of this function are given by the roots of 8F./¢f = 0 as in
Figure 10.20:

alt ~ to)¢ = lg{0)|7 + geé® = 0. {7%)
Either § = Qor
alt — 1o} ~ lg{the? + ge® = O {72)

At the transition temperature 1, the free energies wilf be equal for the phases
with ¢ = 0 and with the root & # 0. The value of 1, wili not be equal to 1o,
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pendenceof font — 1, fora
phase transition.

-80 —-60 —40 20 O 20 40

7 —~ 1, in K

and the order parameter & (Figure 10.21) does not go continuously to zero at
1. These results differ from those in the second order phase transition treated
carlier, where & wetll to zero continuously at vy = 1. A first order transfor-

mation may show hysteresis, as in supercooling or supersaturation, but no
hysterests exists in a second order transition. -

SUMMARY

L. The coexislence curve in the p-t plane between two phases tust satisly the
Clausius-Clapeyron equation:

dp L

dv ~ tAv’

where L s the fatent heat and Av is the volume difference per atom between
the two phases, - '

2. The latent heat [ = H, ~ H,, where H = U + pV is the enthalpy,
3. The van der Waals equafion of state 1s

{p + N*a/V*V — Nb} = Nz
4. In the Landau free energy function
| Fed = UG - wolEa),
the energy and entropy are taken when the order parameter has the specified

value , not necessarily the thermal equilibrium value &,. The function Fy
1s a2 minimum with respect to £ when the system is in thermal equilibrium.



Problems

5. A first order phase transition is characterized by a latent heat and by
hysteresis.

PROBLEMS

1. Entropy, encrgy, and enthalpy of van der Waals gas. (a} Show that the ¢n-
tropy of the van der Waals gas is
o = Niloglny(V - NDYNT + 3} {73)
{b} Show that the engrgy is
U = %Nr:— NV, (74)
{¢) Show that the enthalpy H = U + pVis
H{z,V} = ‘%N.T + N3tV - 2N V; ) {73)
Hep) = SNt + Nbp — 2Nup/r. {76}

All results are given 1o first order in the van der Waals correction tenms o, A,

2. Caleudation of dT[dp for water, Calculate from the vapor pressure equa-
tion the value of dT/dp near p = 1 atm for the liquid-vapor equitibrium of

water. The heas of vapotization at 100 Cis 2260 g~ . Express the result in
kelvin/atm.

3. Heat of vaporization of ice. The pressure of water vapor over tee 15 3.88 mm
Hg at - 2°C and 4.58 mm Hg at 0°C. Estimate in Jmol ™! the heat of vaporiza-
tion of ice at —1°C.

4. Gas-solid equilibrium. Consider a version of the example (26)-{32} in which
we let the oscillators in the solid move in three dimensions. {a} Show that in the
high tetnperature regime (t » fiw) the vapor pressure is

MY
p= (‘2‘;{) Tuzcxp("%/ﬂ {77

{b} Explain why the latent heat per atom is gy — 3.

5. Gas-solid equilibrium. Consider the gas-solid equilibrium under the ex-
treme assumption that the entropy of the solid may be neglected over the tem-
perature range of interest. Lef —g, be the cohesive energy of the solid, per atom.



Chapter 10: Phase Transformations

Treat the gas as ideal and monatomic. Make the approxunation thaf the volume
accessible fo thie gas is the volume V of the container, independent of the much

smaller volume occupied by the solid. (a) Show that the total Hcimhe!tz free
energy of the system is

Foe=Fi+ Fy= ~Ngg + Nallog{N,/Vug) ~ 17, {78)

where the total number of atoms, N = N, + N, ts constant. (b} Find the mini-
mum of the free energy with respect to N, ; show that in the equilibrium condition

N, = nyVexp{—ey/1). ' {79)
{c} Find the cquilibrium vapor pressure.

6. Thermodynamics of the superconducting transitivn,  (a) Show that
(o ~ ogf¥ = 5o = Sl (50)

in St units for B,. Because B, decreases with increasing temperature, the right
side is negative. The supcrconducting phase has the lower entropy: it is the more
ordered phase. As t — 0, the entropy in both phases will go 1o zero, consistent
with the third law. What does this imply for the shape of the curve of B, versus £?
(b Atr = r_, we have B, = 0und hence o¢ = oy. Show thitt this resulf hus the
following consequences: (1) The two free cuergy citrves do tet cross at £, buf
merge, as shown int Figure 10.22. (2) The two encrgies are the same: Uglt) =
Uu{r). (3) There is no latent heat associated with the fransition at 1 = 7.
What is the fateng heat of the transition when carried out tn a magnetic field,

at t < 1.2 {¢) Show that Cy and Cy, the heat capacities per unit volume, are
refated by

T fﬂ( )

AC = C5— Cy = 2;r0 Tdit

(81)

Figure 8.18 is a plot of C/T vs T?* and shows that 'y decreases much faster

than linearly with decreasing 1, while Cy decreases as y1. For r « 1, AC 18
dominated by Cy. Show that this anplies

d*B
;= _'—1" Bc Ic - (82)
Ho dt (=4 .
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Fipure 10.22  Experimental values of the [ree energy as a function of
temperature for aluminum in the superconducting state and in the normal
state. Below the transition temperature T, = 1.180 K the free energy is fower
in the superconducting state. The two curves merge at the transition
temperature, so that the phase transition is second order {there is no latent heat
of transition at T.). The curve F; is measured in zero magnetic field, and Fy is

nreasured in @ magnetic field sufficient to put the specimen in the nomal slate.
Courtesy of N. E. Philtips.

7. Simplificd model of the superconducting transition.  The B{r)curves of most
superconduciors have shapes close to siaple parabolas. Suppose that

Bz} = B:G[l - (Tfr()z]‘ (83)

Assume that Cg vanishes faster than Hnearly as 7 —» 0. Assume also that Cy is
finear in 1, as for a Fermi gas (Chapter 7), Draw on the results of Problem 6 to
caleplate and plot the t dependences of the two entropics, the two heat capacities,
and the latent heat of the transition. Show that Cefr )/Cy{td = 3.

8. First grder crystad fransformation,  Cousider a crystal thatcan exist in either
of two_structures, denoted by o and . We suppose that the « slruclure is the
siable low temperature form and the 8 structure is the stable high temperature
form of the substance. If the zero of the energy scale is taken as the state of
scparated atoms at infinity, then the energy density U(Q) at r = 0 will be
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negative. The phase stable at 1 = 0§ wilt have the lower value of U{0); thus
U,(0) < U0} If the velocity of sound 1, in the f phase is lower than v, in the
« phase, corresponding to lower valucs of the clastic moduli for f, then the
thermal excitations in the f§ phase will have larger amplitudes than In the o
phase. The larger the thermal excitation, the larger the entropy and the lower
the {ree energy. Soft systems tend to be stable at high temperatures, hard
systems at low. (@) Show from Chapter 4 that the free energy density contnbuted
by the phonouns in a sohid at a temperature miuch lessthan the Debye temperature
is given by ~n?t%/300h%, in the Debye approximation with v taken as the
velocity of all phonons. {b) Show that at the transformation temperature

S = (303 UA0) — ULO)Ae, ™% — v, %) (84)
There will be a ﬁmte real solution il v; < r,. This example is a simplified model
of a class of actual phase transformations in solids, (c) The fatent heat of trans-

formation is defined as the thermal energy that must be supplied to carry the
system through the transformation, Show that the latent heat for this model is

L=4[Uy0 - Vo). (85)

n (84) and (85), U refers to unit volume.
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Binary Mixtures
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ENERGY AND ENTROPY OF MIXING

Example: Binary Alloy with Nearest-Neighbor Interactions
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Chapter 11: Binary Mixtures

Many applications of materials science, and large parts of chemistry and
biophysics, are concerned witlt the properties of multicomponent systems that
have two or more phases in coexistence. Beautiful, unexpected, and important
physical effects occur in such systems, We treat the fundamentals of the subject
in this chapter, with examples drawn from simple situations,

SOLUBILITY GAPS

Mixtures are systems of two or more different chemical specics. Binary mixtures
have only two constituents. Mixtures with three and four constituents are called

ternary and quaternary mixtures, If the constituents arc atoms, and not mole-
cules, the mixture is called an alloy.

A mixture is homogeneous when its constituents are intermixed on an ateniic
scale to form a single phase, as in a solution. A mixture is heterogencous when it
contains two or more distinct phases, such as oil and water, The everyday
expresston "oit and water do not mix” means that their mixture does not form
a single homogeneous phase, i}

The properties of mixtures differ from the properties of pure substances. The
melting and solidification properties of mixtures are of special interest. Hetero-
geneous mixtures may melt at lfower temperatures than their constituents.
Consider a gold-siticon alloy: pure Au mehis at 1063°C and pure Si at 1404°C,
but an alloy of 69 pct Au and 31 pet Si melts {(and solidifies} at 376°C. This is not
she result of she formation of any low-melting Au-Sicompound: microscopic
investigation of the solidified mixture shows a two phase mixture of almost
pure Au side by side with almost pure Si {Figure 11.1). Mixtures with such
properties are common, and they are of practical importance precisely because
of their lowered melting points.

What determiges whether two substances form a homogeneous or a hetero-
geneous mixture? What is the composition of 1he phases that are in equilibrium
with each other in a heterogeneous mixture? The properties of mixtures can be
understood from the principle that any system at a fixed temperature will
evolve to the configuration of minimum free cnergy. Two substances will
dissolve in each other and formn a homogeneous mixture if that is the configura-
tion of lowest free energy accessible to the compogents, The substances will
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Figure 11.1 Heterogencous gold-sificon alloy. When a mixture of 69 pct Ag and 31 pat
St is melted and theq solidified, the mixture segregates into a phase of almost pure Au
{tight phase) coexistent with a phase of almost pure Si {dark phase). Magnificd about
800 times. The composition given is that of the lowest-melting Au-Si misture, the

so-called eutectic mirture, a concept explained fater in the text. Photograph courtesy
of Stephan Justi.

form a heterogencous mixlure if the combined free energy of the two separate
phases side by side is lower Than the free energy of the homogeneous mixture:
then we say That the mixtuee exhibits a seiubility gap.
A helerogeneous mixture will melt at a lower temperature than the separate
substances f 1he free energy of the homogencous melt is lower than the com-
bined free energies of the two separate solid phases.

Throughout 1his chaptes we assunie for simplicity that the external pressure
may be neglected. and we sel p¥ = 0. Then volume changes do not tnvolve
work, and the appropriate free energy Is the Helmboliz free energy F rather
than the Gibbs free energy G. We will usually simply speak of the free encrgy.

We discuss bimary mixtures of constituents that do not form well-defined
compounds with each other. Our principal interest is in binary altoys. Consider
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Many applications of materials science, and large parts of chemistry and
biophysics, are concerned with the properties of multiconiponent systems that
have two or more phases in coexistence. Beautiful, unexpected, and important
physicat effects occur in such Systems. We treat the fundamentals of the subject
in this chapter, with examples drawn {rom simple situations.

SOLUBILITY GAPS

Mixtures are systems of two or more diffesent chemical species. Binary mixtures
have only two constituents. Mixtures with three and four constituents are calted
ternary and quaternary mixtures. If the constituents are atoms, and not mole-
cules, the mixture is called an aloy.

A mixture is homogenecous when its constituents are intermixed on an atomic
scale 1o form a single phase, as in a solution. A mixture is heterogeneous when it

‘contains iwo or more distinct phases, such as oil and water. The everyday
expression “oil and water do not mix” means that theilr mixture does not form
a single homogeneous phase.

The properties of mixtures differ from the properties of pure substances, The
mehting and solidification properties of mixtures are of special interest. Hetero-
gencous mixlures may melt at lower temperatures than their constituents.
Consider a gold-silicon alloy: pure Au melts at 1063°C and pure Si at 1404°C,
but an alloy of 69 pet Au and 31 pet Si melts (and solidifies}at 370°C. This is not
the result of the formation of any low-melting Au-Si compound: microscopic
investigation of the solidified mixture shows a two phase mixture of almost
pure Au side by side with almost pure Si (Figure 111}, Mixtures with such

properties are common, and they are of practical importance precisely because
of their lowered melting points.

What determines whether two substances form a homogeneous or s hetero-
geneous mixlure? What is the composition of the phases that are in equilibriumt
with each other in a heterogeneous mixiure? The properties of mixtures can be
understood from the principle that any system at a fixed temperature will
evolve to the configpuration of minimum free energy. Two substances will
dissolve in each other and form a homogeneous mixture if that is the configura-
tion of lowest {re¢ energy accessible to the components, The substances will
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Figure 11.1 Heterogeneous gold-silicon atlay. Whea a mixture of 69 pet Au and 3{ pet
Siis melted and then solidified, the mixiure segregates into a phase of almast pure Au
{light phasc) coexisten: with a phase of almost pure Si {dark phase). Magnificd abow
800 1imes. The composition given is that of the fowesl-melting A u-Si mixture, the

so-called eutectic mixture, a concept explained {ater in the texi. Phatograph courtesy
of Stephan Jusi,

form a heterogengous mixture il the combined [ree energy of the two separate
phascs side by side {5 fower than the [ree energy of the homogencous mixture:
then we say that the mixture exhibils a solubility gap.

A helerogeneous mixture witl niclt at a fower temperature than the scparate
substances il the [rce energy of the homogencous inelt is lower than the com-
bined free energies of the two separate solid phases.

Throughout this chapter we assume for simplicity that the external pressure
may be neglected, and we set pV = 0. Then volume changes do not involve
work, and the appropriaic frec energy is the Helmboltz [rec energy Forather
than the Gibbs [ree energy G, We will usuatly simply speak of the frec energy.

We discuss binary mixtures of constituents that do not lorm wel-defined

compounds with each other. Our principal injerest is in binary alloys, Consider
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a mixtnre of N, atoms of substance A and Ny atoms of substance B. The total
number of aloms is

N = Ny + Ny, | m
We express the camposition of tlie system in terms of the fraction v of B atoms:
x = Ng/N; [ - x = N,/N. {2}

Suppose the system forms a homogencous solution, with an average free energy
per atom grven by '

f = FJN. (3)

Suppose further that f{x) has the functional form shown in Figure [ 1.2, Because
this curve contains a range in which the seeond derivative d*f/dx? is negative,
we can draw a line tangent to the curve at two points, at x = x, and X = x,
Free energy curves of this shape are common, and we will see tater what may
~cause this shape. Any homogeneous mixture in the composition range

\, < X < X ' ' {4y

is unstable with respect to two -:;eﬁar'éiié phases of composition x, and x,. We
shall show that the average Iree energy per atom of the segregated mixture is
given by the point { on the straight line connecting the points @ and 5. Thus in ihe

entire composition range (4) the segregated system has a lower free energy than
the homogencous system,

Proof; The [ree energy of a segregated mixture of the two phases a and f is

Fa= Nflx)+ Naoflxp) (5)

where N, and NV, are the total numbers of atoms in phases x and j, respectively.
These numbers satisly the relations

Nyt Np= Ny XN, + N = Ny : (©)

which may be solved for N, and N

Ny= 205N, Ny = RN, (7

‘Yﬁ — '\': \:ﬂ i .‘c‘
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Figure {1.2  Frec energy per alom as a function of composition, for a
system with a solubitity gap. i the [ree energy per atom of a
homegeneous mixture has a shape such that a tangent can be drawn
that touches the curve at two differeat peints x and B, the composition
range between the two points is unstable. Any mixture with a
composition in this range will decompose into two phases with the
composition x, and x,. The free energy of the two phase mixture is
given by the point i on the straight line, below the point A,

From (5) we obtam

A NN R R 100 IR

! Xg - X,

for the free energy of the two phase system. This result is Hinear i x and s 2

straight line in the f-v plage. fwe set x = X, or v, we see that the line does go

througlt the points o and f. Thus f; in the interval between x, and x; 13 given by
the point { on the straight hine connecting x and 8.
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We have not yet made use of the assumption that the straightline is tangent to
J(x) at the points x and J, and therefore our result holds for any straight line
that has two points x and 8 in common with f(x). But for a given value of x, the
lowest free energy is obtained by drawing the lowes( possible straight tine that
has two poiats in common with f(x), on opposite sides of x. The lowest possible
steaight line is the two-point tangent shown. The compositions x, and X, are
the himits of the solubility gap of the system.

Once the system has reached 1ts lowest free energy, the two phases must be in

diffusive equitibrium with respect to both atomic species, so that their chemical
potentials satisfy

Haa = Bap; Hg: = igg. (9)

We show in Problem 1 that y, and ujg are given by the intercepts of the two-
point tangent with the two vertieal edges of the f(x) plotat x = Gand x = 1,
as in Figure 11.2.

ENERGY AND ENTROPY OF MIXING

The Helmbholiz free cncfgy FelU-1 has contributions from the c_ncrg}; and
~from the entropy. We treat the effect of mixing two components A and B on

both terms. Let 1, and uy, be the energy per atom of the pure substances Aand B,

referred fo separated atoms at mfinity. The average energy per atom of the
constituents is

u = (u Ny 4 usNg)/N = 1, 4 (g — 1,)x, (10

which defines a straight line in the u—x plane, Figure 11.3, The average energy
per atom of the homogeneous mixture may be larger or smaller than for the
scparate constituents. In the example of Figure 11.3, the energy of the homoge-
neous mixture is larger than the encrgy of the separate constituents. The
energy excess ts called the energy of mixing. .

If the ~ 1o term in the free energy is negligible, as at 7 = 0, 4 positive mixing
energy means that a homogenzous mixture is not stable. Any such mixture will
then separate tnto two phases. But at a finite temperature the ~ 1o term tn the
free energy of the homogeneous mixture always tends 1o lower the free energy.

Theentropy of a mixturecontains a contribution, called the entropy of mixing,
that 1s not present tn the entropies of the separate components. The mixing
eniropy arises when atoms of the different species are interchanged in position;
this operation generates a different state of the system. Because of such inter-
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Figure 113 Energy per atom as a function of composition
in 3 sysicm with a positive inixing energy. A simple

example for which a solubility gap may oceur is that ofa
system in which the energy per atom of the homogeneous
miziire (s greater than that of the separate phases, so that
d*ufdx? < 0 for att compositions. The mixing cnergy is the -
difference berween the u(x} curve and the straight line,

changes a mixture has more accessible states than the two separate substances,
and hence the mixture has the higher entropy.

In (3.80} we calculated the mixing entropy oy of a homogeneous alioy
A, _.B. to find

oy = ~N[{1 — x)log{l — x) + xlogx], (11

as plotted in Figure 11.4. The curve of oy, versus x has the important property
that the slope at the ends of the composition range is vertical. We have

|~ X

——2 = fog(l ~ x) — logx = log ; (12)
dx

which goesto +was x —» f0and 1o —coas x - L.
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Figure 11.4 Mixing catropy. In any mixture of two constituents an
interchange of two atoms of different species leads to a new state of the

system. The lagarithm of the number of states related in this way is the
mixing entropy.

Consider now the quantity

Jobx} = u(x) — {0 — o )t/N , (13)

which is the free energy per atom without the mixing entropy contribution. The
non-mixing part of the entropy, ¢ — oy, is usually nearly the same for the
mixture as for the separate components, so that {o ~ oy)r is nearly a linear
function of the composition x. If we assume this, the fi{x) curve has the same
shape as the u{x) curve, but offset vertically.

If we add the ntixing entropy contribution —1o/N to fo(x), we obtain at
various temperatures the f(x) curves shown in Figure 11.5. In drawing the
figure we have ignored the teinperature dependence of folx) itself, because for



Energy and Entropy of Miring

J
{

i

H

{

{

H

i

{

t i

! !

{

2 1

; _ Y

0 X, . Xa. 1

X -

Figere 11.5 Free energy per atom versus composition, at three
temperatures. The curve f; is the free energy per atom without the
ntixing entropy contribution. For iilustration a parabolic composition
dependence is assumed, and the lemperature dependence of fy is
neglected. The three solid curves represent the free energy including
the mixing entropy, for the temperatures 08 ¢, 1.0 1, and 1.2 1y,
where t,, is the maximum temperature for which there is a solubitity
gap. The phase separation at 0.8, is apparent,

our argument this is irrelevant. Three important deductions follow from the
construction of the f{x) curves:

(a) At all finite temperatures f(x) turns up at both ends of the composition
range, because of the itfinite stope of the mixing entropy contribution.

(b} Below a certain temperature t,, there is a composition range within which
the negative second derivative of the fy(x) curve is stronger than e
positive second derivative of the —rta,, contribution, thereby making it
possible to draw a comnton tangent to f{x) at two different values of x.

c) Above 1y the curve ltas a positive second derivative at all compositions.
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We conclude that the A-B systent with positive mixing energy will exhibir a
solubtlity gap below the temperature ,,. The composition range of the gap
widens with decreasing temperature, but the gap can reach the edges of the
composition range only as v — 0. At any finite temperature there is a finite
solubility of A in B and of B in A, a result obtained earlier in Chapter 3. The
new resuft is that the mutual solubiluy is limited only below 1), Positive
mixing &nergies arise in different ways. We now discuss three examples.

o YT T sl g e T e T T P LS s P AL S A B a g e
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Example: Binary alloy with nearest-neighbor interactions, Consider an alloy A _,B, in
which the attractive interaction between unlike atoms is weaker than the attractive inter-

action between like atoms. For simplicity we speak of the interactions as bonds. There are
theee different bonds: A~A, A~B, and B-B. Let u,,, 1.y and up, be the potential eneegies of
cach bond. These binding encrgies will usually be negative with respect 10 separated aloms.

We assume the atoms are randomly distributed among the Iattice sites. The average
energy of the bonds surrounding an A alom is

U, = (1 M X)UAA + XUAB., (14)

where (L — x)isthe propottion of A and x is the proportion of B, This result is wiiten in the
mean field approximation of Chapter L0. Similarly, for B atoms,

iy = (1~ xX)upp + Xigy, (13)

The total encrgy is obtained by summing over both atom types, feach atom has p nearest
neighbors, the average energy per atom is

u = 3p[(1 — Xhupy + xugl _
= 3p[(l — ) uap + 2x{1 ~ xJuap + x*upg - (16}

The factor § arises because each bond is shared by the two atoms it connects. The resulf (16)
can be writlen as

b= "P[(l ~ Xupa + Xigp] + Uy (17)
Herte

-

Hyr

x{l -~ x)[“u; - %(HAA + “aa)} (18)

is the mixing energy. On m:s mode! the mixing energy as a function of x is a parabola, as in
Figure 11.5.
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A solubility gap occurs whenever d’f/dx* < 0, that is, when

dhue  dPuy d*s _ dlay l
Al T S TFEETRT (2
From {18},
diu
“H“;?A{ = = 2plug — 3y, + Ugll (20)
From (12),
1 dlay T T 21
N dx? x{1 - x) 4 -
The equad sign holds for x = 1, Wih these results {19) yiclds
Ty = %P[“Ag — ${an + tga)] {22}

as the lower 1imit of the temperature for a solubility gap.

There are many seasons why mixed bonds inay be weaker than the bonds of the separaie
constituents. 1f the constituent atoms of an alloy differ in radius, the difference introduces
clastic strains that saise the encrgy. Water and oil “do not mix” beciuse water molecules
carry a laege electric dipole moment that leads to a strong electrostatic attraction befween
water molecules. This attraction is absent in water-oil bonds, which are only about as
strong as the weaker oil-oil bonds.
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Example: Mixture of two solids with different crystal structures.  Consider a  homoge-
neous crystatline mixture of gold and silicon. The stable crystal structure of gold is the face-
centered cubic structure in which every atom is surrounded by twelve equidistant nearest
neighbors, The stable crystal structure of sificon ts the diamond structure in which every
alom is surrounded by only four equidistant nearest neighbors, H in pure Au we replace a
small fraction x of the atoms by Si, we obtain a homogeneous mixture Au, ., Si, with the
fce erystal structure of Au. Similarly, if in pure Si we replace a small fraction 1 — x of the
atoms by Au, we obtain a homogencous mixture Au, .., Si;, but with the diamond crystal
siructure of 8i. There are {two dijfferent free cpergies, one for each erystal structure (Figure
LL.6). The two curves must cross somewhere in the compasition range, or else pure Auand
St would not crystallize in different structures. The equilibrium curve consists of the lower
of the two curves, with a kink at the crossover point. Such a system exhibits a solubility
gap on either side of the cressover composition. The curves shown in the figure are sche-
malic; in the actual Au-5i system the unstable range extends so close to the edges of the
diagram that it cannot be represented on a {ull-scale plot extending from x = 0 to x == 1.
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Figure 11,6 Free cnergy versus composition for crystalline
llomogencous mittures for which the wo constituents of the
mixture crystaliize in ditferent erystal structures. Two different
free energy curves are involved, one for each erystal structure,

Different crysta) structures for the pure constiluenis sre an important cause of solubility
gaps in crystaliine solid mixiures. Qur argument applics fo mixtures of 1his kind, provided
the two struciures do not yransform continuously inta ¢ach otlier with changing consposi
tion, This is a taci assumption in our discussion, un assumption hot always satisficd when
the two crystal structures ure closely similar. The other assumption we make throughout
this chapter is that no stable compound formation should occur. In the presence of com-
poungd formation the behavior of the nixture may be more complex,
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Example: Liguid *He-* He wixtures at low semperagures. . The most interesting liguid trix-
ture with a solubility gap is the misture of 1he two hefium isotopes *He and *He, atoms of
the former being fermions und of the Lutter bosons, There §s a sotubility gap in the mixture
below 0.87 K, as in Figure 11.7. This property is ugitized in the helium dihintion refrigerator
(Chapter 12). The mixing encrgy must be positive to have a solubility gap. The origin of the
positive mixing cnergy i the foliowing: *He atoms are bosons. At suificiently low tempera-
tures almost it *1c afoms occupy the around stage orbitul of the system, where they have
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Figure 117 Liquid mixtures of *He and *He.

zero Kinectic energy. Almost the entire kinetic energy of the mixture is coniribuied by the
3He atoms, which are fermions. The energy per atom of a degenerate Fermi gas increases
with concentration as o*3, as in Chapter 7. This encrgy has a negative second derivative
Fepent o @tu/éx?, which by (19} is equivalent {o 2 positive mixing energy.
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Plase Diagrams {or Simple Solubtlity Gaps

A phuse disgram represents the temperature dependence of selubitity gaps, asin
Figure 11.8. The two compositions x, and v, arc plotted horizontally, the
corresponding temperature vertically. The x, and x; branches merge at the
maxjmum temperature ty, {or which a solubility gap exists. Ata given tempera-
ture any mixture whose overail composition fulls within the raage enclosed by
the curve is unstable s 2 homogeneous mixture. The phase diagrams of actul
mixtures with solubility gups may be more complex, according to the aclual
form of the free energy relation f{x), but the underlyimg principles are the same.
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Figure 11.8 Phase diagram for a binary system with a solubility
gap. A homogeneous mixture of composition x will be unstable af
temperature 7 if the point {x.7} falls below the stability boundary
curve, The misture will thes form two separate phases of the
compositions given by the intersections of the stability boundary
curve with the horizontal line for temperature 1. The stabitity
boundary curve shown here was calculated quantitatively for the
system of Figure 1t.5, with a parabolic f{x).

PHASE EQUILIBRIA BETWEEN LIQUID
AND SOLID MIXTURES

When a small fraction of a homoge neaus liquid mixture freezes, the composition
of the solid that forms is almost always different from that of the liquid. The
phenomenon is readily understood from the {ree energies {or liquid and solid
mixtures. We consider a simple model, under two assumptions; {a} Neither the
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solid nor the liquid has a solubility gap. (b) The melting temperature 1, of pure
constituen! A is fower than the melting temperature 73 of pure constituent B.
We consider a temperature between 1, and 15,

The frec encrgies per atom, fi{x) for the solid and S} for the tiquid, are
shown qualitatively in Figure 11.9a. The two curves intersect at some com-
position. Let us draw a tangent common !o both curves, touching ffat x = x;
and f, at x = x;. We can define three composition ranges, each with difierent
taternal equilibria:

{a} When x < xy, the system in equilibrium is 2 homogeneous liquid.

(b} When x; < x < x4, the system in equilibrium consists of two phascs, a
solid phase of compesition xy and a Hquid phase of composition x,.

(c) When x > x5 the system {n equilibrium {s a homogeneous solid.

The compositions xs and x; of a solid and a liquid phase in equilibrium are
temperatare dependent. As the temperature decrenses the free entergy of the
solid decroases more rupidly than that'of the Houid, The tangential points in
Figare 11.92 move to the left, This behavior is represented by a phase diagram
similar to the carlier represeutation of tite equilibrium composition curves for
mixtures with phase separation. In Figure FL9b the curve for x is catled the
liguidus curve; the curve for x5 {s the solidus curve,

The phase diagrams have been determined experimentally for vast numbers
of binary mixtures. Those for most of the possible bipary alloys are known.*
For most metal alloys the phase diagrams are mere complicated than Figure
11.9b, which was drawn for a simple system, germanium-silicon.

When the temperature is lowered in a binary Hquid mixture with the phase
diagram of Figure 11.9b, solidification takes place over a finite temperature
range, not just at a fixed temperature. To see this, consider a liquid with the
initial composition x,, shown in Figure 11.10. As the temperature is lowered,
solidification begins at t = t1,. The composition of the solid formed is given
by x5, so that the composition of the remaining liquid is changed. In the
example x;¢ > X, so that the liquid moves towards lower values of x, where the
solidification temperature is lower. The temperature has to be lowered if
solidification is to continue. The composition of the liquid moves along the
liquidus curve until the solidification is completed at T = 7. The solid formed
is nonuniform in composition and is not in equilibrium. The solid may homoge-
nize afterward by atomic diffusfon, particularly if 1he temperalure remains
high for a long time. But for many solids atomic diffusion is 100 stow, and the
inhomogeneity remains “frozen in” indefinhely,

* The siandard tabutatlons are by M. Hansen, Constlution of binary nffoj_;s, McGraw-Hikl, 1933;
R. P. Etliott, Constitution of biriary alloys, firsi supplement, McGraw-Hill, 1965; F. A. Shunk,
Constitution of binary afloys, second supplement, McGraw-Hill, 1969,
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Figure 119 Phase cquilibrisem berween liguid and solid mixtures, ta

ihis example neither phase exhibiis a solubility gap. We assume

T, < 1 < 1y The upper figure (u) shows the free encrpies for he two phiscs;
the lower figure {b) shows the corresponding phase diagrany. The curves x;.
and xg in the phase diagram are calied the liquidus and the solidus curves,
The phase diagram is the Ge-Si phase diagram, with T, = 940°C and

Ty = 1412°C, : ' :

324
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Figure 1110 Most liquid mixtures do not solidify af a sharp

~ temperafure, but over a finite temperature range from 1, t0 1. The
higher-melting constituent precipifates first, thereby enriching the

* lower-melting constituent in the fiquid phase and thus lowering the
solidification \emperaiuce of the liquid.

Advanced Treatment: Eutectics, There are many binary systems in which the
tiquid phase remains a liquid down to temperatures significantly betow the
lower melting temperature of the constituents, The gold-silicon alloy is such a
system: a mixture of 69 pct Au and 31 pet Si starts to solidify at 370°C. At other
compositions solidification starts at a higher temperature. When we plot the
temperature of The onset of solidification as a function of alloy composition,
we obtain the two-branch liquidus curve in Figure T1.11, Mixtures with two
liguidus branches are called cutectics. The minimum solidification temperature
is the eutectic temperature, where the composition is the eutectic composition.

The solidified solid at the eutectic composition is a two phase solid, with
nearly pure gold side by side with nearly pure siticon, as in Figure 1 1.1, In the
solid Au-Si mixture there is a very wide solubitity gap. The low mching point
occurs for the cutectic composition because the free enerpy of the hothogeucous
melt 1s lower than the frce energy of the two phase solid, for temperatures at
or above the cutectie temperature,

Such behavior is common among systems that exhibit a solubility gap iu the
solid but not in the Kquid. The behavior of eutectics can be understood from the
free cnergy plots in Figure 11.12a. We assume fi{x) for the sotid as in Figure 11.6,
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Fipure11.11 Euleciic phase diagrarﬁ of gold-siticon alloys. The iiqtidus consisis of two
branches 1hai come fogerther a1 the euteciic temperature T, = 370°C, The horizonial

£

fine and 1he experimenial dala poinis a1 370°C indicale thal throughoul the entire

composiiion range the mixiure does not complete its solidification unti the cutectic
lemperature is reached.

corresponding to different crystal structures o and 8 for the two pure con-
stituents. Figure 11.12a is constructed for a temperature above the cutectic
temperature but below the melting 1emperature of cither consiiiuent, so that
the free energy of the liquid reaches below the common tangent to the solid
phase curves. We can draw two new {wo-point fangents that give even lower free
energics. We now distinguish five different composition ranges:

(a) and (¢). For x < x,5 0r X > x;5, the equitibrium state of the system is a
ltomogeneous solid. In the first range the solid will have the crystal structure «;
in the second range the structure is j.

{c). Forx,; < x < x4, the equitibrium state is 2 homogeneous liquid.

(b} and {d). For x,5 < x < Xp OF x5 < x < xﬂg, a liquid phase is in
equilibrium with a solid phase.

As the temperature is lowered, f,s and fj; decrease more rapidly than f;,
and the range of the homogeneous liquid becomes narrower. Figure }1.12b
shows the corresponding phase diagram, including the two solidus curves.
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Figure 11.12  Free eniergics (1) and phase diageam (b} in 2 simple eufeciic
sysiem.

At the eutectic temperature 1, the free energy of the liquid phase is tangential
to the common tangent to fs and fp5, as in Figure 11.13. The composition at
which f; touches the tangent is the eutcctic composition. At T < 1, the free
energy f; lies above the tangent, atthough f; may be below the free energy of
a homogeneous salid.

A mixture of composition equal to the eutectic composition solidifics and
melts at a single temperature, just like a pure substance. The solidification of
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/1

Figure 1113 Free cncrgics in a ewsectic system at t = t,and at t < 7,

compaositions away from the euleciic composition staris at a higher temperature
and ends at the eutectic temperature. Melting starts at the culectic temperatute
and ends at a higher temperature.

The minimum properly of the melting temperature of cutectics is widely
utilized. The Au-Si eutectic plays a ldrge role in semiconductor device tech-
nology: the cutectic permits low temperature welding of electrical contact
wires made of gold to sificon deviees. Lead-tin alloys exhibit a eutectic (Figure
1114} at 183°C to give solder a melting temperature below that of pure tin,
232°C. According to whether a sharp nielting temperature or a melting range is
desired, cithier the exact eutectic composition {26 pet lead) or a dilferent com-
position is employed. Salt sprinkied on jce melts the ice becausc of the low
eutectic temperature —21.2°C of the H,0~NaCl eutectic at 8.17 mol pet NaCl

The solldus curves of cutectic systems vary greatly in charucter. For the
Pb~Su system {Figure 11.14) dhe solid phases in equilibrivn with the waclt
cotitain un appreciable fraction of tite mivority constiuent, and this fraction
fncreases with decreasing temperature. In other systems this fraction may be
small or may decrease with decreasing temperature, or both, The Au-Sisystem
is an example: The relative concentration of Au in solid Si in eqeiiibrium with
an Au-SimcH reaches a makimune value of only 2 x 107 %around 1300°C, and
it drops off rapidly at lower lemperature.

In our discussion of the free energy curves of Figures 11.12 and 1113 we
assurmed thay the composition at which the liquid phase free encegy touches the
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tangent to the solid phase curves lies between the compaositions x,5 and x;s.
In some systems this point lies outside the interval, as if either f,s andf, or f35

and f; were interchanged s Figure 11.12a. Such systems are calied pesitectic
systems,

SUMMARY

1. A mixture exhibits a solubility gap when the combined free energy of two

separate phases side by side is lower than the free energy of the homogeneous
mixture.

2. The mixing entropy arises when atoms of difierent species are interchanged
in position. For the altoy A, _ . B,, we have
gy = —N[{1 — x}og(l — x} + xlogx].

. The mixing energy for nearest-neighbor interactions is

Uy = px{l — x)[u,p — Yoaa + uanl]
for p nearest neighbors,

. The liquidus Is the composition curve x; versus 1 for a liquid phase in
equilibrium with 2 solid. The solidus is the compaosition curve Xg VErsus 1
for a solid phase in equilibrium with a fiquid.

. Mixtures with two branches to the Tiquidus curve are called eutectics. The
minimum solidification temperature is called the eutectic temperature.

PROBLEMS

1

1. Chemical potentials in two-phase equilibriunt.  Show that the chemical po-
tentials yt, and py of the two atomic species A and B of an equilibrium two
phase mixture are given by the intercepts of the two-point tangent in Figure 11.2
with the vertical edges of the diagram at x = Gand x = 1,

2. Mixing energy in *He--*He and Pb—Sn mixtures. The phase diagram of lig-
uid *He-*He mixtures in Figure 11.8 shows that the solubility of *He in “He
rematns finite (about 6 pct) as t — 0. Similarly, the Pb-Sit phase diagram of
Figure 11.14 shows a finite residual solubility of Pb in solid Sn with decreasing



Problems

. What do such finite residual solubilities intply about the form of the function
ufx}?

3. Segregation cocfficient of impuritics. Lot Bbean impurity in A, with x <« 1.
tn this i the noo-mixing parts of the free energy can be expressed as imear
funcuons of x, as fo{x) = fol0) + xfu'(0), Tor botht figuid and solid phases.
Assume that the liquid mixture {s in equilibrium with the solid mixture. Culculate
the equilibrium concentration ratio k = xg/xy, called the segregation coefficient.
For many systems & « [, and then a substance may be purified by melting
and partial resolidification, discarding a small fraction of the melt. This principle
is widely used {n the parification of materials, as {n the zone refining of semi-
conductors. Give a numerical value fork for fo' — f5, = 1eVand T = 1000 K.

4. Solidification range of a binary alloy. Consider the solidification ofa binary
alloy wiik the phase diagram of Figure 11.10. Show that, regardless of the
initial composition, the melt will always hecome fuily depleted in component B
by the time the last remnant of the meft solidifies. That is, the solidificarion
will not be complete until the temperature has dropped to Ta.

5. Alloying of gold into silicon. (2) Suppose a 1000 A layer of Au is evaporated
onto a Si erystal, and subsequently heated to 400°C. From the Au~-5t phase
diagram, Figure 11.14, estimate how deep the gold will penetrate into the

silicon crystal. The densities of Au and Si are 19.3 and 2.33gcm ™2, (b) Redo
the estimate for 8060°C,
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Chapter 12; Cryogenics

Cryogenics s the physics and technology of the production of tow temperatures.
We discuss the physical principles of the most important cooling methods,
down to the lowest temperatures,

The domtinant principle of low temiperature generation down to 10mK is the
cooling of a gas by letting {t do work against a force during an expansion. The
gas employed may be a conventional gas; the free electron gas in a semicon-
ductor; or the virtual gas of *He atoms dissolved i liquid *He. The force
against which work is done may be external or internal to the gas. Below

[0mK the dominant cooling principle {s the {sentropic demagnetization of a
paramagnetic substance,

We discuss the cooling methods in the order in which they occur in a
laboratory cooling chain that starts by liquelying helium and proceeds from
there to the lowest laboratory temperatures, usually [0mK, sometimes [ pK.
Household cooling appliances and automobile air conditioners utilize the
same evaporation cooling method that is used in the laboratory for cooling
Hauid helium below its boiling temperature, to about [ K.

COOLING BY EXTERNAL WORK
IN AN EXPANSION ENGINE

In the sentropic expansion of a monatomic ideal gas from pressure p, to a
lower pressure p,, the temperature drops according to

Ty = T}(Pz/ﬁ)m; _ {1

by (6.64). Suppose p, = 32atm; p, = latm; and T, = 300K; then the tem-
perature will drop to T, = 75K. We are chiefly interested in helium as the
working gas, and for heltum (1) is an cxcclicn{ approxination if the cooling
process is reversible.

The problems in implementing expansion cooling arise from the partial
trreversibility of actual expansion processes. The problems are compounded
by the nonexistence of good low temperature lubricants. Actual expansion
cooling cyctes follow Figure 12.1. The compression and expansion parts of
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Flgure 12.1  Simple expansion refrigerator. A working gas s
compressed; the heat of compression is gjected into the
gnvironment, The compressed room lemperature gas is
precooled further in the counterflow beat exchanger. [t then
does work {n an expansion engine, where it cools to a
temperature below that of the working volume. Afier exiracting
heat from the warking volume, the gas returns to the compressor
via the heat exchanger.
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the cycle are separated. The compression is performed at or above room
temperature. The hot compressed gas s cooled to near room temperature
by ejecting heat into the environment. The gas {s further precooled in @ counter-
flow heat exchanger by contact with the cold return gas strcam at the low
temperature of the cooling foad. The gas is then cooled to its lowest icmperature
in the expansiot engine, usually a low friction turbine. The cold gas extracts
heat from the cooling load and then returns to the compressor via the heat
exchanger. The heat exchanger greatty reduces the cooling requirenients im-
posed on the expansionengine. The design of the heat exchanger is as important
as the design of the ¢xpansion enginc.

The work extracted by the expansion engine is the enthalpy differcnce
between the input mnd output gas: The total energy flowing into the expunsion
engine is the {nernat cnergy U, of the gas plus the displacement work p ¥,
done by the compressor, where both Uy and ¥ refer to a given mass of gas.
The total energy leaving (he engine with the gas is the energy U, of the gas

plus the work p,; V, required to move the gas against the pressurc 72. The work
extracied by 1he engmc is the difference

(UL V) - (U ¢ paVy) = Hy — H,,. 2

For a monatomic ideal gaﬁ U= jNt and pV = Nr, hence H = 3Nt The
work performed on the engine by the gas is

W o= IN(t; = 1)) (3)

The counterflow heat exchanger is an enthalpy exchange device: it S an
expansion ¢ngine which extracts no external work.

Most gas liquefiers use expansion engines to precool the gas close 1o its
liquefaction temmperature. It is impractical to carry the cxpansion cooling to
the point of liquefaction: the formation of a liguid phase inside expansion
eggings causes snechanical operating difficulties. The final liguefaction stage
{s usually a Joule-Thomsou stage, discussed below. Helum and hydrogen
liquefiers usually eontain two of more expansion engines at successive teni-
peratures, with multiple heat ¢xchangers.

The principle of cooling by 1sentropic expansion of an {deat gas is Jpplmbiu
to the electron gas in seniconductors. When electrons flow from a semi-
conducior with high electron concentration into a semiconduetor with a Jower
clectron concentration, the electron gas expands and does work against the
potential barricr hetween the two substances that equalizes the two chemical
potentials. The resulting clectronic cooling, called the Peltier cffect, is used
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down to about 195K quite routinely; in multistage units temperatures down
10 135 K have been achicved, :

Gas Liquefaction by the Joule-Thomson Effect

Interinolecular attractive intcractions cause the condensation of all gascs. At
temperatures slightly above the condensation temperature the intcractions are
strong cnough that work against them during expansion causes significant
cooling of the gas. If the cooling is sufficient, part of the gas will condense.
This process is Joule-Thomson lguefaction.

The practical inplementation is simple. Gas at pressute p, 18 forced through
a constnction called an expansion valve info space with a lowcr pressure p;,
as in Figure 12.2. The work s the difference between the displacement work
—p, d¥, done on the gas in pushing it through the expansion vaive and the
displacement work +p, d¥; recovered from the gas on the downstream side.
Here dV, is ncgative and d¥; 1S positive,

The overall process is at constaut enthalpy. To see this, notice that the
expansion valve acts as an expansion engine that extracts zcero work. With
IV = Qin (2), we have H, = H; in the Joule-Thomson cffect. For an ideal gas
H = $N7,s0 that 1; = 1, in the expansion. There is zero cooling effect for an
ideal gas. o o

{n real gases a small temperature change occurs because of the internal
work done by the molecules during expansion. The sign of the temperature

Pu ¥y I s

—~L

T
Expansion valve

Figure 122 The Joule-Thomson effect. A gas is pushed
through an expansion value. If the gas is nouideal, vhere will
be a temperature change during the expansion because of work
done against the intermolecular forces. {f the temperature is
inftially below a certain inversion temperature, 1, the gas
will cool on Joule-Thomsen expansion.
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Table 121 Liquefaction dats for Jow boiling gases

Ty 7, Tonn AH, VW AHY,
Gas | K K K . k¥mol o’ fmol wait heliter
CO, 195 304 {2050) 252 - 223 314
CH, 112 191 {1290y B.18 344 66
0, 90.2 155 &893 6.82 281 67
N, 13 126 821 5.57 346 45
H, 204 33.3 205 0.90 286 8.7
‘He 418 525 51 0.082 320 o
He 3.20 ] 335 23 0025 | 508 0.14

noTe: T, = aimospheric-pressure boiling Temyperaiure; T, = critical lemperaturg: Ty, = Joule-
Thomson inversion lemperalure; AH = molar lateny heat of vaporization; ¥ = molar volume of
the liquid. The lasy coluinn, AH/Y, indicales Lhe heat in walls that can be laken up for a rufrigesunt
consumption of 1 liter per hour; T,,, values in parentheses are van der Woals values culculated
from T, and not racasured value,

Curbon dioxide solidifics when cooled al atmospheric pressure. beciuse its 1riple point accurs
sbove almospheric pressure. Solid CQ) s hnowt as dey ice. Methane, Ci,, is 1l priocipal caa-
stituenl of natural gas, which is liquefied ia huge quaniilies for shipping as LNG fugl Liguid

oxygen and ailrogen are separaled in 1he liquefaction of air. For helium, we give dala hoth for the
common isotops “He and for *He.

change during a Joule-Thomson expausion depends on the iuitial temperature.
All gases have an Inversion temperature 1, below which such an expansion

cools, above which it heats the gas. Inversion temperatures for coinmon gascs
are listed in Table 12.1.
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Fxarple: Junfe-ﬂ:omsan effect for van der Waals gas. We found in (10.75) that
= Nt + (N/V)bt — 29) ()

for a van der Waals gas, where a and b are positive constants. The last two terms are the
corrections caused by the short range repulsion and the tong range atiraction. The correc-
tions have opposile signs. The tolal correciion changes sign al the lemperature

Tiavw = za,'lb == 24112) (5}

where 1, is the critical Lcmpcra:urc defined by {10.46).

The lemperature 1,,, is the inversion lemperature. For 1 < 1, the enthalpy at fixed
temperature increases as the volume increases; here in expansion the work done against the
alleaclive interactions between molecules is dominani. In & process at consiant enthalpy
this increase is compensaled by a decrease of the $MNt lerm, thal is, by cooling the gas. For



Gas Liquefaction by the Joule~-Thomson Effect

T > 1y, the enthalpy ai a fixed remperature decreases because now the work done by the
strong shorl range repulsive inleractions is dominnni: at the higher lemperalure the
wiolecules penetrase farther inlo the repulsive region,
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Linde cycle. 1In gas liquefiers the Joule-Thomson expansion is combined wilh

a counterflow heat exchanger, as shown in Figure 12.3. The combination is
calted a Linde cycle, afier Cart von Linde who used such a cycle in 1895 to
hiquely air starting {rom room temperature. Ih obr discussion we assume that
the expanded gas returning from the heat exchanger is at ihe same lemperature
as the compressed gas entering it. We neglect any pressure difference between
the output of the heat exchanger and the pressure above the lguid.

H

To and {rom compressor
or procooling stuypes

-+—--Heal exchanger

Figure 12.3 The Linde eycle. Gas
by cambining Joule-Thomsoen expa
a counlerflow heat exchanger.
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Figure 12.4  Performance of helium ligueficrs operating by the Linde cycle,
a8 a funciion of the inpui pressure, for an ou!pul pressure of 1 alm and

for various values of the input lemperature. The solid curves give ihe
liquefaciion coefficient, The broken curves give 8y, = H,, — H,,, the
internat refrigeration load available a1 4.2 K if the toad is placed inside the
tiquefier and the siill cold helium gas boiled off by 1he load is retunited
throwih the lieal exchanger rather 1han boiled off into the atmosphere.

See Problum 3. Afier A, 1. Croft in Advantced cryegenics (C. A, Bajiey, ed .},
Plenum, 1971, p. 187



Eraporation Cooling s Pumped Helium, t0 0.3 K

The combination heat exchanger-expansion valve is a conslam enihalpy
arrangement, Let one mwle of gas emer 1he conibinmiion; suppose that the
fraction 4 is ligucfied. Constant enthulpy requires 1hat

o= 2Hyq + {1 = DHo,. | (6)

Here Hy, = H(T,,p,.} and H,, = H{T,.p..} are the enthalpies per mole of
gas at 1he input and oulput pressures, b01h al 1he common upper temperature
of the heat exchanger. Hy, is 1he enthalpy per mole of liquid at its boiling 1enm-
perature under the pressure p,,,. From (6) we obtain the fraciion

}1{}“‘ - I'.{i“ ?
Huu‘ - H 3 ‘ )

kg

o=

calted the tiquefaction coefficient.
Liquefaction takes place when H_,, > H,,; thai is, when

H(Tipoud > H{Twpua)- ()

Only the enthaipies at the input temperature of the heat exchanger matier. i
the Joule-Thomson expansion at this temperature cools the gas, liquefaction
will take place.

The three enthalpies in (7) are known experimentally. Figure 12.4 shows the
Hquefaction coefficient calculated from them for helium. The liquefaction
coeflicient drops rapidly with increasing 7, because of the decrease of the
numeralor in (7} and the increase of the depominator. To obtain useful ligue-
faction, say 4 > 0.1, inpul temperatures below one-third of the inversion
temperature are usually required. For many gases this requires precooling of
the gas by an expansion engine, The combination of an expansion engine and
a Linde cycle is called a Claude cycle. The expansion engine is {nvariably
preceded by another heat exchanger, as in Figure 12,1,

Evaporation Coolingr Pumped Helium, 0 0.3 K

Siariing from Hquid hehum, the simplest rouie Jo fower temperatures is 'y
evaporation cooling of Ihe lquid helium, by pumping away fetimn vapor. 12
tarent heat of vaporization ofthe liquid hietium is extracted along with the vap.:,.
The heat extriiction causes the further cooling: work is done against the mter-
Atomic forces i cavsed the heliuni to liquefy i the first place. I Joule-
Thomson cooling the initial staie is a gas, while in cvapamuon cooling 1he
intial state is 4 liquid.



Chapter I2: Cryogenics

Table 12.2  Temperalures, in kelvin, at wh

ich the vapor pressures of *Heand
*He reach specified valtues ' ' '

p (o) 07 §pd 102 10°1 S T 100
‘He 0.56 0.66 0.79 098 1.27 1.74 264
*He 0.23 028 0.36 047 0.66 1.03 . 1.79

The lowesi temperalure accessible by evaporalion cooling of liquid helium
Is a problem in vacuum technology (Chapier 14). As ihe iemperalure drops, the
equilibrium vapor pressure drops (Table 12.2) and so docs the rate at which
helium gas and its heat of vaporization can be extracted from the liquid helium
bath.

Evaporation cooling is the dominant cooling principle in everyday cooling
devices such as houschold refrigerators and freczers and in air condilioners.
The only difference is in the working substance.

Heltum Dilution Refrigerator: Millidegrees -

Once the equilibrium vapor pressure of liquid *He has dropped to 1073 torr,
classical refrigeration principles lose their utility. The temperature range from
0.6K to 0.01 K 1s dominated by the helium dilution refrigerator, which is an
evaporation refrigerator in a very clever quantum disguise.*

We saw in Chapter 7 that *He atoms are bosons, while *He atoms are fer-
mions. This distinction is not important at temperatures appreciably higher
than the superfluld transition temperature of *He, 2.17 K. However, the two
sotopes behave as altogether different substances at lower temperatures. Below
0.87K liguid *He and *Hc arc immiscible over a wide composition range, like
oil and water. This was discussed In Chapter 11 and is shown in the phase
diagram of *He—*Hc mixtures in Figure 11.7. A mixture with composition in
the range labeled unstable will decompose into two separate phases whose
compositions are given by the two branches of the curve enclosing that area.
The concentrated *He phase floats en top of the dilute *He phase.

As T — 0, the *He concentration of the phase ditute in *EHe drops to about
6 pet, and the phase rich in *He becomes essentially pure *He. Consider a liquid

* For good reviews, see . S. Beits, Conlemporary Physics 9.97(1968); 1. C. Wheatley. Am. J. Phys.
36, (8L (1968); for a general review of cooling lechniques below 1 K see W. J. Huiskamp and O. V.
Lounasmaa, Repts. Prog. Phys. 36, 423 {{973); O. V. Lounasmaa, Experimental principles and

methods below { K, Academic Press, Now York, 1974, A very elementary account is O, V. Lounasmaa,
Scioniific American 221, 26 (1969), - : . : : ’ '



Helium Dilurion Refrigeratar: Millidegrees

SHe
|- “evaporation”

+ AHe g 4He ™ it

Figure 1315 Cooling prmciple of the helium dilution refrigerator. Liqﬁid
*He is w cquilibrium with a *He-*He mixture. When *le is added to the

mixiure, *He evaporuies from the pure *He fluid and absorbs heat in the
process.

-~

*He~*He mixture with more than 6 pet *He at a temperature in the millidegree
range, near the bottom of Figure 11.7. At these temperatures almost all the *He
atoms have condensed into the ground state orbital. Their entropy is negligible -
eompared to that of the remaining *He atoms, which then behave as if they were
present alone, as a gas occupying the volume of the mixture. If the *He concen-
tration exceeds 6 pet, the excess cotdenses into concentrated liquid *He and
latent heat is liberated. If concentrated liquid *He is evaporated inio the *He
rich phase, the latent heat is consumed. The principle of evaporation cooling
can again be applied: this is the basis of the helium dilution refrigerator.

To see how the solution of *He can be employed to obtain refrigeratiot,
consider the equilibrium between the concentrated *He liquid phase and the
ditute >He gus-tike plutse (Figure 12.5). Suppose tuu the *He*He rutio of
the dilute phase is decreased, as by dilution with pure *He. In order to restore
the equilibrium concentration, *He atoms will evaporate from the concentrated
*He liquid. Cooling wilt resull.

To obtain a cyclic process the *e~*He mixture must be separated again.
Thie most comnioh method is by distitlation, using the different equitibrivm
vapor pressures of *He and *He (Table 12.2). Figure 12.6 shows a schematic
diagram of a refrigerator built on these principles. The diagram is highly
oversimptified. in particutar, in actual refrigerators the heat exchanger between
the mixing chamber and the still has an elaborate multistage design. Analternate
method* to separate the *He-—*He mixture utilizes the superfluidity of *He
below 2.17K. For a varicty of practical reasons it is less commonly uscd
alzhough its pcrformancc is exccllant -
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Helium Difutlon Refrigerator: Millidegress

Figure 12.6 Helium difution refrigeralor. Precooled tiquid *He enlers a mixing
chamber at the lawer end of [he assembly, where cooling tukes place by the quasi-
cvaporation of the *He atoms inlo the denser *He-*He mixed phase underneath,
The quasi-gas of *H aloms dissolved in fiquid *He then diffuses throligh a counterflow
heal exchanger into a still. There the *He is distifled fom the *He-*He mixture
sclectively, and is pumped off, To oblain a vsclul *He evaporation and circutation
rate, heat must be added (o the still, 1o rafse is temperature to about 0.7 K, at which
temperature the “He vapor pressure is stitf much smaller. Thus, the *He does not
circulate 1o any appreciable extent; the *He moves through a nearly stationary
background of *He. The pumped-off *He is returned 10 the system and is condensed
int a condenser that is cooled to about § K by contact with a pumped *He bath. The
constriction below the condenser takes up the excess pressure generated by the
circulation pump over the pressure in the stitl. The liquified *He is cooled further,

first in rthe still, then in the counterfiow heat exchinger, before re-entering the mining
chamber,

The helium dilution refrigerator has a low temperature litit. In the conven-
tional evaporation refrigerator this limit arose because of the disappearance of
the gas phase, but the quasi-gas phase of *He persists down to 1 = 0. However,
the heat of quasi-vaporization of *He vanishes proportionally to %, and as a
result, the heat removal rate from the mising chamber vanishes as % Tlz
practical low temperature limit is about 10 mi, In one representative deviee®
a temperature of 8.3 mK has been achieved: the same davice was capable of
removing 40 xW at 80 mK. .

Temperatures below $mK can be aclieved by single shot operation. 1If, in
the design of Figure ] 2.6, we shut off the *He supply after some time of operation,
there is no need (o cool the incoming ?He itself] and the temperature of the
mixing chamber drops below its sieady state value, until afl 3He has been
removed from the chamber.

The dilution refrigerator is not the onfy coofing method in the millikelvin
range that utilizes the peculiar properties of *He. Aa alternate method, known
as Pomeranchuk cooling, utilizes the phase diagram of *He, as shown in Fig-
ure 7.15, with its negative slope of the phase boundary between liquid and
solid 3He, The interested reader is referred to the reviews by Huiskamp and
Lounasmaa, and by Lounastnaa, cited carlicr.

* N. H. Pennings, R. de Bruyn Ouboter, K. W. Taconis. Physica B 81, 101 {1976), and Physica B
84, 102 (1976} - o _
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ISENTROPIC DEMAGNETIZATION:
QUEST FOR ABSOLUTE ZERO

Below 0.01 K the dominunt cooling process is tie isentropic (adiabatic) demuag-
netization of a paramagnctic substance. By this process, temperatures of [ mK
have been atutined with elcctronic paramignetic systems and | pK with nuclear
paramagnetic systems, The method depends on the fact that at a fixed (empera-
ture the entropy of a system of magnetic moments is lowered by application of a
magnetic feld—essentially because fewer states are accessible to the system
when the level spirtting is large than when the level splitting ts small. Examples
of the dependence of the cmmpy on the magnetic field were given in Chapters 2
and 3.

We first apply a magnetie field By at constant temperature ty. The spin excess
will attain a value appropriate to the value of B, /ty. If the magnetic ficld is then
reduced to B, without changing the entropy of the spin system, the spin excess
will remain unchanged, which means that B,/r, will equal By/1,. If B, « B,
then 1; « t,. When the specimen is demagnetized isentropically, entropy can
flow into the spin system only from the system of lattice vibrations, as tn Fig-
ure 12.7. At the temperatures of interast the eotropy of the lattice vibrations is
usually negligible; thus the entropy ofthe spin system will be essentially constant
during isentropic demagnetization of the specimen.

t 'a
! 1
I
l -
! @ Lattice
E =2
T ] e
oy 1 Total ; E
Spin { Spin
Laitice . Fime —— '; TiMme —e
Before New cguilibrium Before ‘ New equilibrium
Time af which  Time at which
magnetic field - magnetic field
is removed is removed

Figure 12.7  During isentropic demagnetization the total entropy of the s
specimen is constant, The initial entropy of the lattice should be small in

comparison with the entropy ofihc spxn sysiem in order 10 obtain slgmﬁcani
ceoling of the lattice, .
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Figure 12.8  Entropy for a spin § system as a function of temperalure, assuming
ap internal random magnetic field 8, of 100 gauss. The specinien is magnetized
isothermally along ah, and is then insulated thermudly. The external nlagnetic
field is furned off ulong be, 112 order to keep the figure on a ressonable scule

the initia] temperntire T, and the external magnetic field are Jower thun would b
ysed in practice.

The steps carried out in the cooling process are shown in Figure [2.8. The
field is applied at temiperature t; with the specimen in good thermal contact
with the surroundings, giving the isothermal path ab. The specimen is then
insulated (As = 0) and the field removed; the specimen follows the constant
entropy path be, ending up at temperature ;. The thermal contact at t, is
provided by helium gas, and the thermal contact is broken by removing the
gas with a pump.

The population of a magnetic sublevel is a function only of mB/r, where m
is the magnetic moment of a spin. The spin-system entropy is a function only
ofthe population distribution; hence the spin entropy is a function only of mB/r.
If B, is the effective field that corresponds to the diverse local interactions among

the spins or of the spins with the lattice, the final temperature ¢, reached in an
isentropic demagnetization experiment is

t; = 1,(B,/B), ©)

where B is the initial field and 1, the Initial temperature. Results are shown in

Figure 129 for the paramagnetic Sait known as CMN, whtch denotes cerous
magnesium nitrate,
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Figure 12,9  Final magnctic field B, versus final
temperature T for magnetic cooling of cerous magnesium
nitrate. In these experithents the magnetic ficld was no
removed cntirely, but only to the indicated values, The
fuitia] ficlds and temperatiirés were identical in alt runs.
After unpublished results of 5 S, Hilkand § H. Milner,

as cited by N, Kurtl, Nuova Cinento (Supplemento) 6,
1109 (1957).

The process described so far is a single shot process. 1t is easily converted

into a cyclic process by thermally discounecting, in one way or another, the

demagnetized working substance from the load, reconnecting it to the reservoir
at 1, and repeating the process.®

Nuclear Demagnetization

Because nuclear magnetic moments are weak, nuclear nragaetic interactions
are much weaker than similar clectronic interactions. We expect to reach a
temperature 100 times lower with a nuclear paramagnet than with an clectron
paramagnet. The initial temperature of the nuclear stage in a nuclear spin-

* C. V. Heer, C. B. Barnies, and J. &3, Daunt, Rev. Sci. Inst. 25 1088 11954); W. P. Prag, 5, &
Rosenblum, W. A. Steyert, and J. A, Barclay, Cryogenics 17, 381 (1977}



Nuclear Demagnetization
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Figure 12.J10  Nuclear demagnetizations of copper
ruclel in the metal, starting from 0012 K and various
ficlds. After M. V. Hobden aud N. Kurtic Phil, Mag.
4, 1902 1195

cooling experiment must be lower than in an electron spin-cooling experiment.
Ifwestartat B = S0kGand Ty = 0.0t K,thenmBjkyT, =~ 0.5, and theentropy
decrease on magnetization is over 10 percent of the maximum spin entropy.
This is sufficient to overwhelm the lattice and from (9) we estimate a final
temperature T, = 1077 K. The first nuclear cooling experiment was carried
out by Kurti and coworkers on Cu nuclei in the metal, starting from a first
stage at about 0.02 K as auained by electron demagnetization cooling. The
lowest femperature reached in this experiment was 1.2 x 107® K. The results
in Figure 12.10 fit a line of the form of (9): T, = T(3.1/B) with B in fauss, so
that B, == 3.1 pauss. This is the eifective interaction field of the magoetic mo-
ments of the Cu nuelei. The motivation for using nuclei in a metal rather than
in an insulator is that conduction electrons help ensure rapid thermal contact
of lattice and nuclej at the temperature of the first stage.

Temperatures below [ uK have been achigved in experiments in which the
cooling load was the system of nuclear spins itself, particulatly in expiriments
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that were combinations of cooling experiments and nuclear magnetic resonatice
experiments.*

SUMMARY

. The two dominant principles of the production of low tentperatures are lhe
cooling of u gus by fetting it do work against a force during an expansion
and the isentropic demagnelization of a paramagnetic substance.

Joule-Thomson cooling is an irreversible process in which work is done
against interatomic attractive forces in a gas, His used as the last cooliug
stage 10 hquelying low-boiling gases.

In evaporation cooling the work is also done against the interatomic forces,
but staring from the liquid phase rather than the gas phase. Using different
working substances, evaporation cooling forms the basis of houschold

cooling devices, automobile air conditioners, and laboratory cooling devices
{irr the range 4K down to {0mK).

The helium dilution rdrtgcrator is an empomiion coo!mg device in which
the gas is the virtual pas of *He atoms dissolved in *He.

Isentropic demagnetization utilizes the lowering of the temperature of a
system of magnetic moments, when an exiernal magnetic field is reduced in
strength. The ntagnetic moments may be electronic or nuclear moments.

By using nuclear nioments, icmperatures in the microkelvin range may be
achieved.

PROBLEMS

1. Helium as a van der Waals gas. (a) Estimate tite liquefaction coefficient 2
for helium by treating it as a van der Waals gas. Select the van der Waals
coefficients a and b in such a way that for onc mole 2Nb is the actual molar
volume of liquid helium and that 2u/b is the actual inversion temiperature.
Use the data in Table 12.1. Approximate the denominator in {7) by setting

Houl ...... H!iq = AH + %(rin - Tliq) ) (IO)

* See, for example, M. Chapciher M. Geidman V. H Chau and A. Abragam, Appi Phys 41,
849 {]970} .

¢



Problems

where AH is the latent heat of vaporization of liquid helium. (Explain how this
approximation arises if one treats the expanded gas as an ideal gas), The
resulling expression gives 2 as a function of the molar volumes 1, and V.
Converl to pressures by approximating the 1's via the ideal gas jaw. (b) Insert
numerical vitues for T = 15K and compure with Figure 12.4,

2. Ideal Carnot liguefier.  {(a) Calculute the work 1V, that would be required to
liquely one mole of a monstomic ideal gas if the liquefier opernied reversibly.
Assume that the gas is supplied at room temperiture To, and under the sanie
pressure pg it which the fiquelicd gas is removed, typically 1 atmosphere. Let
T, be the boiling temperature of the gas at shis pressure, and AH tic kstent heat
of vaporization. Show that under these conditions

T To—T T~ T
W o= 3RT ng %10t b I A )
L= 3RT, % (()g T, 7o :%- T, X Al (11}

To derive (11) assume that the gas ts first cooled at fixed pressure pg from T4
to T, by means of a reversible refrigerator that operates between the fixed
upper {emperature Ty, = T, and a variable lower temperature equal 1o the gas
temperature, Initially T, = Ty, and at the end T, = T,. After reaching T, the
refrigerator extracts the latent heat of vaporization at the fixed JIower tempera-
ture T,. (b} lusert Ty = 300K and values for T, and AH characterisuic of
helium. Re-express the result as kilowatt-hours per liter of liquid helium.
Actual helium liquefiers consume 5 to 10k\Wh liter.

3. Claude cycle helinm liqucfier. Consider ahelium liquefier in which I mots™?
of gas enters the Linde stage at 7, = 15K and at a pressure p, = 30aum.
(a) Calculate the rate of Hquefaction, in liter hr™*. Suppose that all the liquefied
hielium is withdrawn to cool an external experimental apparatus, reieasing the
boiled-off helivm vapor into the atmosphere, Calevlate the cooling toad in
watts sufficient to evaporate the hielium at the rate it is liquefied. Compare this
with the cooling load obtainable if the liquefier is operated as a closed-cycle
refrigerator by placing the apparatus into the liquid collection vessel of the
liquefier, so that the still cold boiled-off helium gas is returned through the heat
exchangers. {b) Assume that the heat exchanger between compressor and ex-
pansion engite {Figure 12.1} is sufficiently ideal that the expanded return gas
that leaves {t with pressure p,,, is at essentially the same temperature 7, as the

compressed gas entering it with pressure p,. Show that under ordinary liquefier
operation the expansion engine must extract the work

”’; = }{(Tﬂpc) '"" -H_(Timpin)

m (i ™ 2)[H(Tc7paul) ™ H(Tin-poul)] = %;‘ R(Tc - .Tin) Y (12)
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per mole of compressed gas. Here Ty, Pins Pour 8nd 4 have the same meaning
as in the Linde cycle section of this chapter. Assume the expansion engine -
operales Isentropically between the pressure-temperature pairs {p,T.) and
(pm,Tm) From(12) and the given values of(p;,, T;,), caleulate (p,, T,).(c) Estimate
the minimum compressor power required to operate the liquefier, by assu ming
that the comipression is isothermal from p,,, 1o p. at temperature T, = 50°C.
Combine the result with the cooling loads calculated under (a) into a coefficient

of refrigerator performance, for both modes of operation. Compare with the
Carnot fimit.

4. Evaporation cooling limit. Estimate the lowest temperature T, that can
be achieved by evaporation cooling of liquid *He if the cooling load is 0.1 W
and the vacuum pump has a pump speed § = 102 lilers ™!, Assume that the
helium vapor pressure above the boiling helium is cqual to the equilibrinm
vapor pressurg corresponding 1o Ty, and assume that the heliom gas wirms
up to room teatperature and expands accordingly before it enters the pumnp.
Note: The molar voluaie of an idedd gas at room Iemiperature and atmospheric
pressure (760 torr) is about 24 Hiers. i{met the calculation for a much smaller

heat Joad (107 W) and a fuster pump {10° iucr s7 4. Puntp spccd is defined in
Chapter 14.

5. Initial tempcmru}-e Jor demaguetization cooling, Cdnsider a paramagnetic
sait with a Debye temperature (Chapter 4) of 100K, A magnetic field of 100kG
or 10 tesla fs available in the laboratory, Estimate the temperature to which the
sait must be precooled by other means in order that significant magnetic codling
may subsequently be obtained by the isentropic demagnetization process. Take
the magnetic moment of 4 paramagnetic ion to be 1 Bohr magneton. By signifi-
cant cooling we may understand cooling to 0.1 of the initial temperature.
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Semiconductor Statistics
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Note: This chapler is wrilien for studenls wilh a professional interest in semiconductors. We assume

familizrisy wilh conduction and valence bands; electrons and holes; donors and acceplors. The
notation is that;

E]
i

. = concenlralion of conduchon electrons;
concenlsation of holes;

=
it

=
i

i = value of a, or n, for an inlrinsic semiconductor;

=
#

= eficclive quantum concenlration for condudlion cleclrons;
, = effective quanlum copcentralion for holes,

=
i

In the semiconductor lileralure n, and n, ate called 1he effective denstiies of states for the conduction

and valence bands. Notice (ha we use p for the chemical polential or Fermi level, and we use fi for
carrier mobitities. .
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ENERGY BANDS; FERMI LEVEL;
ELECTRONS AND HOLES

The application of the Fermi-Dirac distribution to electrons in semiconductors
is ceuntral to the design and operation of all semiconductor devices, and thus
to much of modern electronics. We treat below those aspects of the physics
of semiconductors and semiconductor devices that are parts of thermal physics.
We assume that the reader is familiar with the basic ideas of the physics of
electrons in crysialline solids, as treated in the texts on solid state physics
and on semiconductor devices cited in the general references. We assume the
concept of energy bands and of conduciion by electrons and holes. Our principal
aim is to understand the dependence of the alt-important concentrations of
conduction ¢electrons and of holes upon the impurity concentration and the
temperature. ' o

A semiconductor is a system with electron orbitals grouped into two cnerg}
bands separated by an energy gap (Figure 13.1). The lower band is the valence
band and the upper band is the conduction band.* In 2 pure semiconductor a

= ( all valence band orbhals are occupied and ait conduciion band orbuals
are empty. A full band cannot carry any current, so that a pure semiconductor
at r == 0 is an insulator. Finite conductivity in a semiconductor follows either
from the presence of clectrons, catled conduction clectrons, in the conduction
band or from unoccupied orbitals in the valence band, catled holes.

Two different mechanisms give rise to conduction elecirons and holes:
Thermal excitation of electrons from the valence band to the conduction band,
ot the presence of impurities that change the balance between the number
of orbitals in the valence band and the number of etecirons avaitable to fill them,

We denote the energy of the top of the valence band by e, and the energy
of the botiom of the conduction band by ¢,. The difference

g, = £ — £, (1}

is the energy gap of the semiconductor. For typical semiconductors g, is beiween
0.1 and 2.5 electron volts. In silicon, g, =~ 1.1 eV. Because t = 1/40 ¢¥Y atroom

* We treat both bands as single bands; for our purposcs it does nol malier thai bo:h may be groups
) o(b:mds with addxuona! paps wlihm each group.
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Figure 13.1 Enerpy band struciuie of & puse semiconductor of insulslor.
The electron orbllals occur in bands which exlend through the crystal..
Alt = O3l orbitals up 10 the lop of the valence band are filled, and the

conduction band is empty, The encrgy interval between the bands is called
the energy gap. :

temperature, we usually have g, » <. Substances with a gap of more than about
2.5¢eV are usually msulators. Table 13.1 gives the energy gaps for selected
semiconductors, together with other properties nesded later.

Let n, denote the concentration of conduction electrons and n, the con-
centration of holes. In a pure semiconductor the two will be equat:

n, = Mg, ' (2)

if the crystal is clectrically neuiral.

Most semiconductors as used it devices have been intentionally doped with
unpurities that may become thermudly tonized n the semiconductor at room
wemperature. Inmipurives that give an electron to the crystal {and become
positively charged in the process) are called donors. Impurities that accept
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Table 13.1 Band struclure dala of some imporiant semiconductors

_ Density-ef-states Dieleciric
Enetgy Quantum concentrations - effective masses, conslanis,
gaps al of elecirons and holes in unils of the relative to
300K al 300K {ree eleclron mass vacuum
£g ., Hye mrfm oyt fm €/
eV em”? cm™?
Si t.14 27 x 10 11 x 10 1.06 0.58 1.7
Ge 0.67 1.0 x 101°? 5.2 x (o8 0.56 035 15.8
GaAs. 143 46 x 1047 1.5 x 16'° 0.07 .71 1313
laP £.35 49 x tot? 6.9 = [ote 0073 0.42 12.37
InSb 0.18 46 x 10" 6.2 x 108 0.015 (.39 17.58

an electron from the valence band {and become negatively charged in the
process) are called acceptors.

et n,* be the concentrution of positively charged donors and a,” the
concentration of negatively charged aceeptors. The difference

A=t ~n" _ (3)

is called the net ionized donor concentration. The efectrical neutrality condition
becomes

Mo =t = A= n," —n,~ {4)

F

which specifies the difference between electron and hele concentrations.

The electron concentration may be calculated from the Fermi-Dirac dis-
tribution fanction of Chapter 6:

i
explle — p/r] + 17

Jde) = (5)

where p is the chemical potential of the electrons. The subscript e refers to
electrons. In semiconductor theory the eleciron chemical potential 15 always
called the Fermi level. Funther, in senuconductor theory the character g is
almost always reserved for the electron and hole mobilities, and the Fermi
level is designated by g, or by {. To avoid confusion with the Fermi energy
of a metal which we designated as ¢ and which stands for the Fermi level
in the limit T — 0, we shall matntain our previons usagc of the fetter p for the
chemical polcnhai at any femporature,
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Given g and 1, the number of conduction clectrons is obtained by summing
the distribution function f{e) over all conduction band orbitals:

N, =3 fle {6}
4]
The number of holes is
Ny=3 [ - fle] =) 48, | (7
¥ vt

where the summation {s over all valence band orbitals. Here we have introduced
the quantity

1
| 8
expllu—g)ft] +1° &)

Sle) =1~ fle) =

which is the probability that an orbital at energy ¢ is unoccupled. We say
that the unoccupied orbital is “occupied by a hole™; then fi{e} is the distribution
function for holes just as f,{e} is the distribution function for electrons. Com

parison of (8) with (5} shows that the hele occupation probability involves

# — £ where the electron occupation probability involves & — .

The concentrations n, = N /V and n, = N, /V depend on the Fermi level.
But what is the value of the Fermi level? It is determined by the electrical
neutrality requirement (4), now wrilten as nfu} — np) = An. This is an

implicit equation for u; Lo solve the equation we must determine the functional
dependences n{y) and n,{u).

Classieal Regime

We assuine that both electron and hole concentrations are in the classical
regime defined by the requirements that f, « 1 and f, « 1, as in Chapter 6.
This will be true if, as in Figure 13.2, the Fermi level lies inside the energy gap
and is separated from both band edges by energies large enough that

exp[—{e ~ pt] « 1 expl—(u — &,¥1] « 1, (9)

To satisfy (9) both {g. — g) and (g — ¢,) have to be positive and af least a
few times larger than 7. Such a semiconductor Is called nondegenerate. The
inequalities (9) place upper limits on the electron and hole concentrations and

are satisfied in many applications. With (9} the two OCCupa{IOIl probabdmes
- f{e) and fi{g) reduce to classical distrtbutions:
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Flpure 13.2  Occupancy of orbiials at a fistite temperature, aceording lo the Fermi.
Dirac distribution function. The canduction and valencs bands may be represented
in terms of temperature-dependent effective numbers N, N, of degenerate orbilals
located at the two band edges &, €,. The n,, h, are the correspoading quanium
conceniralions.
) = exp[—(e = WAL A > exp[-(a — K1 (10)

We use (8) and (10} to write the total number of conduction electrons in the
form

Ne= c).jﬁfﬂ'ﬁp[—(8 = py/t] = exp[—{e - .u)/f]{z_;exz}[-ﬂ(e - ECJ/r]} ,

or

Ne=Newp[-6-w/d, ()
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where we define
N. = Sexpl (e - s/} oy
o B S o

Here £ — g, is the energy of a conduction electron referred to the conduction
band edge &, as origin, .

The expression for N, has the mathemuatical fomt of a partition function
for one electron in the conduction band. In Chapter 3 we evaluated a similar
sum denoted there by Z,, and we can adapt that result {o the present problem
with an approximute modificalion for band siructure effects, Because of the
rapid decrease of exp{ —{e ~ g)/1] as ¢ increases ubove its minimum value
at &, only the distribution of orbitals withint a range of a fesv v above ¢, really
matters in lhe evaluation of the suin in (12). The orbitals high in the band
make a neghigible contribution. The inportut poind is that near the bund edge
the electrons behave very much like free particles. Not only are the electrons
mobile, which causes the conductivity of the semiconductor, but the energy
distribution of the orbitals near the band edge usuatly differs from that of free
particles only by a proportionality factor in the encrgy and eventually in the
sum for Z,. N ' .

‘We can arrange for a suitable proponionality factor by use of a device
called the density-of-states effective mass. For free particles we caleulated the
partition function Zy in {3.62), but fbi- zero spin. For particles of spin § the
result is larger by a {actor of 2, so that {12) becomes

Ne= Z) = 25V = 2/ 2nlP Y. (13}

Numerically, this gives -

NV = 2509 x 1019 x (T/300K)2em ™3, (14)

where T 1s mn kelvin., :
The quantity N, lor actual semiconductors exhibits 1he same temperature

dependence as (13), but differs in magnitude by a proportionality facior. We
express this formally by wriling, in analogy 1o (13),

N, = Z(Jf:e*rﬂr:hz)mV , {15)

where /m.* is called the densiiy-of-states effcctive mass for electrons. Experi-
mental values are given in Table 13.1. The introduction of effcctive masses
is more than a formality. tn the theory of electrons In crystuls it is showit that
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the dynamical behavior of electrons and holes, under the influence of external
forces such as electric fields, is that of particles with effective masses different
from the free electron mass. The dynamical masses usuaily are different from
the density-of-states masses, however,

We define the quantum concentration », for conduction elecirons as

n, = NV = 2m>1/2nh?)¥3, {(16)

By (11) the conduction clectron concentration n, = N,/V becones

ne = nexp[ —{e, ~ p)rl. (7

The carlier assumiption (9) is equivalen to the assumption that n, « n,, so
that the conduction electrous act as an ideal pas. As an aid to memory, we may
think of N, as arising from N, orbilals at ¢, with the Fermi level at g1, Warning:

In the semiconductor hteraturc 1, is in\dmbly called the eil’cctne density of
states of the conduction band.

Similar reasoning gives the number of holes in 1hc valence band:
Ny =y exp[ —(x - &}/1] = Nyexp[—{n - &)/1], (18)
Vi
with the definition
= 3y exp[—(e, — &)/t]. {19)
VB

We define the gquantuni concentration n, for holes as

n, = N JV = 2m*t2nh?)?, {203

where m,* is 1he density-of-states effective mass for holes. By (18) 1he hole
cohcentration ny, = N, /V i

S ST

n, = n,expl —{(p - g)/t}

(21
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Like (17}, this gives the carricr concentration in terms of the guantum con-
cenlralion and the position of the Fermi level relative to the valeuce band

edge. In the semiconductor literature p, is called the effective density of states
of the valeuce band, -

Law of Mass Action

The product n n, is independent of the Fermi level 50 long as the concentrations
are in the classical regime. Then

nty = nexpl —(e, — &)t} = naexpl—g,/1), (22a)

where the energy gap ¢, = ¢, — £,. In a pure semiconductor we have 1, = 1,
and the common value of the two concentrations is called the intrinsic carrier
conceatration n; of the semiconductor. By (22a},

ny = (n.,) 2 exp(—e,/21). (22b)

The Fermi level independence of the product n, means that this product-

retains its value even when n, # n,, as in the presence of electrically charged
impurity atoms, provided both concentrations remain in the classical regime.
We may then write (22a) as

(22¢}

The value of the product depends only on the temperature. This result is the
mass action law of semiconducioss, similar to the chemical mass action law
(Chapter 9).

Intrinsie Fermi Level

For an intrinsic semiconductor n, = n;, and we may equate the right-hand
sides of (17) and (22b):

neexpl — (e — p)ft] = (nn,)'"? exp( —£,/21) (23)

Insert g, = &, — ¢, and divide by n, exp(—¢/1}:

explu/z) = (u/ng P explle. + e)2e].



Donors and Acceptors

We take logarithms to obtain
po= e e + drlogln/n) = $Ge + &) + drloglm®/m*),  (29)

by use of (16) and (20). The Fermi level for an intrinsic semiconductor lies near

the middle of the forbidden gap, but displaced from the exacl middle by an
aniount that is usually small.

n-TYPE AND p-TYPE SEMICONDUCTORS

Doners and Acceptors

Pure semicouductors are an idealization of litile practical interest. Semicon-
ductors used in devices usually have impurities intentienally added in order to
increase the concentration of either conductian electrons or holes. A semicon-
ductor with imore conduction electrons than holes is called n-type; 2 semi-
conductor with more holes than electrons is called p-type. The letters nand p
signify negalive and positive 1najority carriers. Consider a silicon crystal in
which some of the Si atoms have been substituted by phosphorus atotms.
Phosphiorus is just {o the right of Si in the periodic table, hence each P has
exactly one electron more than the Si it replaces. These extra electrons do not
fit into the filled valence band; hence a Si crystal with some P atoins wilt contain
more codduction ¢lectrons and, by the Liw of mass action, fewer holes thiit &
pure Si crystal. Next consider aluminum gloins, Aluminum is just {o the left
of §iin the periodic table, hente Al has exactly one clectron fewer than the St
it replaces. As a result, Al atoms incrcuse the nuinber of holes and decrease the
number of conduction eleCtrons.

Most impurities in the same columns of the periodic table as P and Al wil
behave in St just as P and Al behave. What matters is the number of valence
electrons relative to Si and not the total number of electrons on the atom.
Impurities {from other columns of the periodic table will not behave so simply.
Simitar reasoning can be applied to other semiconductors, for example GaAs,
For the present we assume that each donoratom contributes one electron which
may enter the conduction band or fill one hote in the vatence band. We also
assume that each acceplor atom removes one efectron, either from the valence
band or from the conduction band. These assumptions are calied the approxi-
mation of fully ionized impurities: all impurities when ionized are either posi-
tively charged donors DY or negatively charged acceptors A7

The electrical neutrality condition {4) told us that

An=n, —m=n' - . . (25)

i
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Because n,, = n, 2, fmm the mass action law, we sce that {25) leads to a quadratic
equation for n,

2

ni — A = nlt (26)

The posiive root is

n, = H{(An)? + m2]V7 4 An}, (275)

and because n, = n, — - A we have

Iy = %{[(AHJI + 435;3]”1 ~ An}, (27b)

Most often the doping concentration is large compared to the intrinsic con-
centration, so that either n, or 1, is much larger than ny

lan] » . (28)

This condition defines an extrinsic semiconductor. The sqnarc roots in (27)
can then be exp;mded ' '

[([1\:1)2 + 421 = JAnlt + Qu/An)?] 2
> JQJIE + 2:1;2;"!3.11!. (29)
In an n-type semiconductor An is positive and (27) becomes
n, o A+ nAiAn = An: m, = ntfAn « n, (30)

In a p-type semiconductor Ay is negative and (27) beconies

n, 2 nlan «ong o ony = A+ ad A = 1A, (31)

The majority casrier concentsation in the extrinsic Hmit (28) is nearly equal to

the magnitude of An, while the minority carrier concentration is inversely
proportional to {An.

Fermi Level in Extrinsic Semiconductor

By use of the mass action law we caleuluted the carrier concentrations without

having to calculate the Fermi level fiest. The Fermi lcvel is obtained from n, or
m, by solving (17) or {21) for p:
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been neglecied. ’

po= g, — tlog(ngn) = . + tiog{n. 'n). {32}

We may now use (27) to find g as a function of temperature and doping level
An. Figure 13.3 gives numterical results for $i. With decreasing temperature the
Fermi level in an extrinsic semiconductor approaches either the conduction of
the valence band edge.

Degenerate Semiconductors

When one of the carrier concentrations is increased and approaches the quan-
tum concentration, we may no longer use the classical distribution (10} for that
carrier. The calculation of the carrier concentration now follows the treatmernt
of the Fermi gas in Chapter 7. The sum over all occupied orbitals, which b
equal to the number of clectrons, is wrilten as an tntegral over the density of
states timies the distribution function:

N = f LD . (33)
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whaere for free particles of mass i the density of states is

;/ p) 32 .
ﬁ(a):@-(}—:-}‘-) g'r2, C(34)

Thay is, D(g)de is the number of orbitals in the energy interval (s,e + de). To

make the transition to conductidn electrons in semiconductors we replace N
by n,Vimby m?* and ¢ by £ - £. We obiain

5 o= 1 [2m, 5\ J‘m de(e ~ g)'? 1
TSR AR « b+ explle — pye} (35)

Letx = (g ~ e)lrandyg = (u — £)/r. We use the definition (16) of 1, to obtain

: pi o u’xx”z
“s;nc == J(PI) = o1 4 exp[x o~ ;})-

(36)

The imegral‘ 1(n)in (36) is known as the Fermi-bfréc inz'cgral.
When g, — p > 1 we have —x » 1, 5o that exp{x — #) >» 1. In this limit

w i, = J;E e j " fxe it = % 2= expllu — edfx) (37)

the familiar resolt for the ideal gas,

tn semiconductors the electron concentration rarely exceeds several times
the quantum concentration n,. The deviation between the value of g from (35)
and the approximation (37) then can be expanded into a rapidly converging
power series of the ratio r = n./n,, called the Joyce-Dixon approximation:*

n ~ logr = }Er - (”1% - —‘g)r Yo rendn. (8

Figure t3.4 compares the exact refation {36) with the approxtmatlons (37) and
38).

*W._B. Joyce and R. W, Dixon, Appi. Phys. Leit. 31 354{29??). If the right side of {38} is writien
as ¥ A7, the first four coeflicients are A, = 353553 x 1078 A, = —4.95009 x 1073 43 =
148386 x H07Y; A, = — 442563 x 1075
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When n, is no longer small compared t0 i1, the expression of the mass action
law must be meodified. In Problem 4 we ask the reader 1o show ihat

ny, = it expf - n,fﬁnc + {39)

If the gap {tself depends on the carrier concentrations, the value of 1; 10 be used
here will depend on concentration,

Impurity Levels

The addition of imipucities to a semiconductor moves some orbitals from the
conduction or valence band into the energy gap, where the orbitals now appear
as localized boutd states. We consider phosphorous in a silicon crystal, If the
P atom has released its extra electron to the Si conduction band, the atom
appears as a positively charged ton. The positive fon attracts the clectrons in
the conduction band, and the {on can bind an electron just as a proton can
bind an electron mn a hydrogen atom. However, the binding energy in the
semiconductor i§ several ordecs of magnitude tower, mostly because the binding
eriergy is to be divided by the square of the static dielectric constant, and
partly because of mass effects. Table 13.2 gives the jonization energics for
column V donors in Si and Ge. The lowest orbital of an electcon bound to a
donor coreesponds to an energy levél Ag, = 5, — & below the edge of the
conduction band (Figure 13.5). There is one set of bound orbitals for every
donor, :

A paratie] argument applies to holes and acceptors. Orbitals are split off
from the valence band, as in Figure 13.5. For each acceptor atom there 1s one
set of bound orbitals with an ionization energy A, = ¢, — ¢,, ofthesamcorder
as Ag,. Tonization energies for colunin 11 accéptors in Siare listed in Table 13.2.

In GaAs the ionization energies for alt column VI donors except oxygen are
close to 6 meV. For zing, the most imporiant acceptor, Ag, = 24meV. Some

Tuble 13.2  loglzation cpergics of colutily V donors and
colwmn HI acceptors i 8i and Ge, in meV

Donors Acceplors
P As Sb n Al Gu I

45 49 39 43 ST . . 83 15
Cie 12.0 12,7 .6 104 13.2 0.8 112

SN W
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Figure 13.5 Donor and accepror impurity tevels in the cncrgy
gap of a semiconductor.

impurities genecate orbitals deep inside the forbidden gap, sometimes with
multiple ocrbitals corresponding to different lonization states. '

Occupation of Doenor Levels

A donor level can be occupied by an clectron with either spin up or spin down.
Hence there are two different orbitals with the same energy. However, the
occupations of these two orbitals are not independent of each other: Once the
level is occupied by one electron, the donor cannot bind a second electron with
opposite spin. As a result, the occupation probability for a donor level is'not
given by the simple Fernyi-Dirac distribution function, but by a function
treated in Chapter 5. We write the probability that the donor orbital is vacant,
so that the donor is ionized, in a form slightly different [rom (5.73):

1

f(D ) = 1 + ZCKP[(}I - Ed}fr].

(40)

Here gy is the enerpy of a singly occupicd dotor orbita] relative to the ongin
of the energy. The probabitity that the donor orbital is occupied by an clectron,
so thitt the dottor 1s iteatral, is given by (5.74):

1

JiD) = I + Yexpl{ey ~ il

1)
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Acceptors require extra thought. In the jonized condition A™ ol the acceptor,
each of the chemical bonds between the acceptor atont and the surrounding
semiconductor atoms contains a pair of electrons with antiparatlel spins. There
is only one such state, hence the fonized condition contributes only one term,
expf{u — £)/t], to the Gibbs sum for the acceptor. bt the neutral condition A
of the acceptor, one clectron s missing from the surrounding bonds. Because
the missing electron may have either spin up or spin down, the neutral condition
is represented twice in the Gibbs sum for the acceptor, by a term 2 x | = 2,

[Hence the thermal averape occupancy is

oo explip = £y l
AT m e TR _ 42
SO = Y eplin = el ~ T3 2ol — el O
The neutral condition A, with the acceptor orbita! unoceupied, occurs with
probability
A . 2 i (43)
S = el = e T 1+ dexpllp - /e

The value of An = n,% —

n,” is the difference of concentrations ol D* and A ™,
From {40} or {42} we have e ' '

. : ny -

Pt (DY) s e 44)
. ity D7) P 2expfp — 2t} (

. f

T o » Ah T 2 . 45

Fla maflA7) b+ 2exple, — p)t] )
The neutrality condition {4) may be rewritten as
n" = e+ ny" o= oy +ongt o= at, (46)

This expression may be visualized by a logarithmic plot of 1™ and 1™ as fune-
ttons of the position of the Fermi level (Figure 13.6). The four dashed lines
represent the four terms in (46); the two solid lines represent the sum of all
positive and all negative charges. The actual Fermi level occurs where the total
positive charges equal the total negative charges.

For my* =~ n,” » u;, as in Figure 13.6, the holes can be negleeted; for
n,” ~ 1y » w; the electrons can be neglected. If one of the two impurity
species can be neglected, the majority carder concentration can be calculated
in closed form. Consider an a-type semiconductor with no acceptors. The
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neutrality point in Figure 13.6 is now given by the intersection point of the ™
curve with the n, curve, If the donor concentration is not too high, the inter-

section will be on the straight portion of the n, curve, along which the approxi-
mation (17) holds. We rewrite this as

explu/t} = (n,/nYexple/t); {47

expl{u — g)/1] = {ue/nyexpfe, —~ et} = n,/_ue* , - 48)
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where

ne* = noexpl ~ (g = et} = nexp(—Ag,ft) . {49)

fs the electron coneentration that would be presént in the conduction band if
the Fermi level coincided with the donor level. Here Ae, = ¢, — &, is the donor
onization energy.

We insert (48) into (44) and set n, = ng* to obtain

n, :
. 50
e =10 ) {(50)

n2 + tnnd = fun® (51)

This ts a quadratic éqnation in it,; the positive solution is
ne = S L+ B fn ]V - 1), (52)

Forshallow donor levels, n,* is large and close to .. ifthe doping is sufficiently
weak that 81, « n.*, the square root may be expanded by use of

(I + x)‘.’_f ::;. 1 + fx =P, (53)

for x « 1. With x = 8u,/n* we obtain

Mg 2 hg e 2n 0% mm (D). (54)

The second term in the parentheses gives the st order departure from complete
tonization. For example, for P in Si at 300K, we have Agy = 174t from
Table 13.2, so that n,* = 0.175n, from {49). If n, = 0.01n,, Eq. (54) predicts

that 11.4 pct of the donors renain un-ionized, The limit of weak fonization is
the subject of Problem 4.
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Exarple: Seod-insadating gallinm arsenide,  Could pure GaAs be prepared, it would have
an intrinsic carrier concentration al room temperature of , € 187 cm ™% With such a tow
concehteation of carriers, {0777 less than a maal, the conducrivity would be claser 1o an
tnsutmior than 1o a conventional semiconductor. Entrinsic GoAs would be useful as an
insulating substrate op which to prepare thin fayers of doped GaAs as needed for devices.
There does not exist a fechnology to purify any substance to 107 bnpuritics per em’



prrJuncrions

However, it Is possible to achieve near intrinsic carrier concentrations in GaAs by doping
with high concentrations {16'*-10"7 ¢m ™) of oxygen and chromium 1ogether, two impu-
rities that have their impuricy levels near the middle of the ¢nergy gap. Osygen enters un
As site and is a donor in GaAs, as expecied from the position of O in the periodic table
refative 1o As; the energy level® is about 0.7 eV below ¢,. Chromium is un accoptor with an
crergy fevel about 0.84 eV below ¢,

Consider & GaAs crystal doped with borh oxygen and chromium. The ratio of 1ii2 two
concentranions is not critical; anything with an O:Cr ratio berween about 1:10 and 10:1
will do. Ifthe concentrations of all other impurities are sniall compared with thoese of O and
Cr, the position of the Fermi level witl be governed by the equilibrium berween elec ons
on O and holes on Cr. The construction of Figure 13.6 applied to thiis system shows that
over the indicared concenlration ratio range the Fermi level is pianed 1o a rangs baiasen
1.5¢ above the O fevel and 1.5t below the Cr level. With the Fermi level pinned near the
middle of the energy gap, the crystal must act as nearly inrrinsic.

Gallium arsenide doped in this way is called semi-insularing GaAs and is used exicnisively
as a liigh-resistivity 110 10 10'° Q em} substrate for GaAs devices. A similar doping pro-
cedure is possible in 1nP, with iron taking the place of chromium.

Cmem L s b e e e 2

P ——

p-n JUNCTIONS

Semiconductors used in devices are almost never uniformly doped. An vader-
standing of devices requires an understanding of nonuniforinly doped <zmi-
conductors, particularly of structures called p-nt junctions in which the doping
changes with position from p-type to n-type within the same crystal. We consider
a semiconductor crystal inside which the doping changes abruptly at x = 0
from a uniform donor concentration n, to a uniform acceptor concentration
n,, as in Figure §13.7a. This is an example of a p-# junction. More complicated
device structures are made up from simple junctions: a bipolar transistor has
two ciosely spaced p-u junctions, of the sequence p—-p or h~p-f.

p~at junctions contain a built-in electrostatic potential step V¥, even in the
absence of an externatly applied voltage (Figure 13.7b). With no externally
applied voltage, the elecirons on the two sides of the junction are mn diffusive
equilibriam, which means that the chemical potentials (Fermi levels) of the two
sides are the same. Because the position of the Fenini fevel within the band
structure depends on the local doping, constancy of the Fermi level forces a
shift in the clectron encrgy bands in crossing the junction {Figure 13.7¢). The
shift is e, The potential step of height e ¥, is an example of the potental step
required o equalize the total chemical potential of two systems when the
intrinsic chemical potentials are unequal, as discussed 10 Chapter 5.

* R Zucca, L AppL Plys. 48, 1987 (1977). The encegy assigamen! is somew hat uncerlain,
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Figure 13.7 A p-n junciion. (a) Doping disiribution. 11 is assumed
that the doping chunges abrupily from n-type to p-type. The two
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buill-in votiage V¥, establishes diffusive equilibrium between the
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concentrations. (¢} Energy bands. Because the Fermi level must be
constamt throughout the structure, the bands on the two sides are
shifted relalive to each other. {d} Space charge dipole required to
-generate the buill-in voltage and to shifi the energy bands.



p-n Junctions

We assuine that the two doping concentrations ny, #, lic in the extrinsic but
nondegeneraie range, as defined by

n; € Ny <K Mg WK N, K& N, (55)

if the donors are fully ionized on the n side and the acceptors fully ionized on
the p side, then the electron and hole concentrations satisfy

n, = g W, =M, {(56)

one on the n side and the other on the p side. {We have dropped the superscripts

-+ from ng, 1,.) The conduction band energies on the n and p sides fotlow from
(i7y:

Eq = 1 — Tloglngn); (57
Lop = = tloz',(nc,,fn;.) = — tlog(n?/nn), (58
by {22¢). Hence
eVyi = &, ~ . = tloglng/n?) , | {59)
or |
el = o, — tloglun,/ma). (60)

For doping concentrations n, = 0.0t and n, ~ 0.0tn,, we find e¥; >~ g, ~ 921,
which is 0.91 eV in siticon at room temperature.
A step in electrostatic potential is required to shift the band edge energies on

the two sides of the junction refative to each other. The electrostatic potential
o(x) must satisfy the Poisson equation

| o p
{SH EE T {61)
where p is the space charge density and e the permittivity of the semiconductor.
Space charge must be present whenever @ varies. In the vicinity of the junction
the charge carriers no tonger neutratize the impurities as in the butk materiat.
The space charge must be positive on the n side and negative on the p side
{Figure 13.7d). Positive space charge on the n side means that the electron
coucentration is less than the donor conceniration. indeed, as the conduction

i
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band edge is raised relative to the fixed Fermi level, (17) predicts an exponential
decrease of the eleciron concentration n,,

~ Takethe origin of the electrostatic potentialat x = ~ co,sothat @{—~ o) = 0.
Then gAx) = £ (a0} — ep(x), and (17) becomes

n(x) = nyexplep(x)/c]. (62)

The Poisson equation {6.1) i5

dl

¢ p e en
T TITE [y — nfx)] = m—-é—‘i[I — explew/t)]. (63)
Multiply by 2de/dx to obtain
do By d [fdp\? 2eny d T
2-~--—u——---r-.:..-.—-—- e TR e e — *, N 64
de dx? dx (d.\' e dx1¥ 7 ¢ CXP(HP/I}}‘ (64)
Integrate with the initial condition g(~«) = 0
dp\* 2en Tt . S
At the interface x = 0 we assume that'
—p(0) = V, » t/e, {66)

where ¥, is that part of the built-in electrostatic potential drop that occurs on

the n side. The exponential on the right-hand side of (65) can be neglected, and
we obtain

E = [QengeV, - yea)l'? (67)
for the x compoucnt of the electric ficld E = — dip/dx at the interface. Similarly,
E = [(2en,fe)( v, — tje} ]V, {65}

where ¥, is that part of the built-in efectrostatic potential drop that occurs on

the p side. The two E ficlds must be the same; from thisand from ¥, + V, = Vs
we find

%0 _ 172
E = (; e (P 2rfe)) . (69)
' € Hy + Ny /-



Reverse-Blased Abrupt p-n Junction

The ficld £ is the same as if on the n-type side all clectrons had been depleted
from ihe junction to a distance

' ¢k 2¢ Yoo/ on, PRG
W = (E}I';M - T/é')) ==( e (V- 21’/9)) . {70)

e ngn, + 1)

with no depletion at [x| > w,. The distance w, is used in sericonductor device

theory as a measure of the depth of penetration of the space charge transition
Iayer into the y side.

Similarly, on the p side,

¢F 2 Vo Ne oy 112

e "a{ﬂa + nd}

The total depletion width w, + w, is

2€ 0, + ny ML UV~ 2t/e)
N . R T Y w 72
4 ( PRy (?L. 25, e}) E (72)

Hwe assumen, = n, = 10 cm ™3¢ = 10¢,; and ¥,; — 2t/e = | volt, we tind
E =425 x 10*Vem™ and w = 470 x 10 %cm.

Reverse-Biased Abrupt p-n Junction

Let a voltage V be applied to a p-u junction, of such sign that the pside is at a
ncgative voltage relative to the u side, which means that ¥ raises the potential
encrgy ofthe electrons on the p side. This voltage will drive conduction electrons
from the p side to the n side, and holes from the a1 side to the p side. But the
pside in bulk contains a very Jow concentration of conduction electrons, and the
n side contains a very fow concentration of holes, consistent with thie niass
action Jaw. As a result, very little corrent flows. The distributions of clectrons,
holes, and potential are approximalely 1he same as if the built-in voltage were

increased by the applied voltage, Figure 13.8, The ficld at the interface is now
given by

€, 41y

nly "
E = (3‘3 M I+ ¥y - 2:,"9]) ) (73)
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E.{X ) 1

Figure 13.8  Reverse-biased p-n junction, showing the guasi-Fermi
levels g, and pp.

and the junction thickness is given by

)+ ¥ - Zr/e])”z = 3_{V| + 12; - 2!/&].

_ (-Z_SH‘.*‘ H P (74}

e mhy

In the semiconductor device literature we often find (73) and (74) without the
term 2t/e, because certain approximations have been made about the space
charge and field distribution; we have solved the Poisson equation with the
correct electron distribution {62).



Curremt Flow: Drift and Diffusion

NONEQUILIBRIUM SEMICONDUCTORS
Quasi-chgi Le\‘c_ls |

When a semuconductor is Hfluminaled with light of quantum energy greater
than the energy gap, clectrons are raised from the vatence band to the conduc-
tion band. The clectron and the hole concentrations created by ilumination
are Jarger than their equilibsium concentrations. Siinilar nonequilibrium con-
centrations arise when a forward-biased p-n junction injects clectrons info a
p-lype semiconductor or holes into an n-type semiconductor. The electric
charge associated with the injected carrier type atfracts oppositely charged
carriers from the external electrodes of the saniconductor so that both carrier
concenirations increase.

The excess carriers eventually recombine with each other. The recombination
titnes vary greatly with the semiiconductor, from less than 1079 s to longer than
107 s. Recombination times in high purity Siare near 1073 5. Even the shortest
recombination times are much longer than the times {~ 107%s) required at
room temperature for the conduction electrons to reach thermal equilibrium
with each other in the conduction band, and for the holes to reach thermal
equilibrium with each other in the valence band. Thus the orbital occupancy
distributions of electrons and of holes are very close to equilibrium Fermi-Dirac
distributions in each band separately, but the tofal number of holes is not in
equilibrium with the total number of electrons.

We can express this steady state or quasi-equilibrium condition by saying

that there are different Fermi levels ji, and p, for the two bands, called gquasi-
Fermi fevels:

t
ﬂ{e.r} == )
f col{s — n,
+ expl{e — p)/t] 75)
JAex) = :

I+ explle — wY/d
Quasi-Fermilevels are used extensively in the analysis of semitconductor deviees.
Current Flow: Drift and Diftusion

If the conduction band quasi-Fermi level is at a constant energy throughout a
semiconductor crystal, the conduction electrons throughout the erystal are in
therinal and diffusive equilibrium, and no electron current witl flow. Any
conduction electron flow in a semiconductor at a uniform temperature must be
caused by a position-dependence of the conduction band quasi-Fermf level.
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If the gradient of this level is sufficiently weak, we may assume that the con-
tribution of conduction elecirons 10 the total electrical current density is

proportional to this gradient:
J, o grad .. {76)

Here J, is an electrical current density, not a particle flux density. Because each
electron carries the charge —e, we have

.}; = {~¢} X {electron flux density), (7%

where the electron flux density is defined as the number of conduction clectrons
crossing unit arca in unit time. The close connection of (76) to Chm’s law is
treated in Chapter 14. Because the flow of particies is from high to tow chemical
potential, the conduction electron flux is opposite to grad g, but because
electrons carry a negative charge, the associated electrical current density is
in the direction of grad p,. We view grad g, as the driving force for this current.

Fora given driving force, the current density is proportional to the concentration |
n, of conduction electrons. Thus we write '

Jo = gn.grad g, _ {78)

where the proportionality constant /i, is the electron mobility. The symbol J,
should not be confused with the conduction band quasi-Fermi level, g,
If the electron concentration is in the extrinsic but nondegenerate range,

ny € ong Ko, - (79)

the cottduclion band quasi-Fermi level is given by (15}, which can be written
in lerms of the eleclron concentration as

Mo = £+ tlog(n,/n) | (80}

Thus {78) becomes

J, = [, grads, + [ rgradn,. - {8D)

A gradient in the conduction band edge arises from a gradient in the electrostatic
potential and thus fron: an ¢lectric field:

gradg, = —egrado = ¢k, _ | (82}
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We introduce an electron diffusion coeflicient D, by the Einstein relation

D, = ;?er/e ,_l' . (83)

discussed in Chapter 14, We now write (78) or (81) in the final form

J, = ein E + eD, gradn,. {84)

There are two different contributions to the current: one caused by an electric
ficld and one caused by a concentration gradient.

Analogous results apply 1o holes, with one diffcrence. The valence band quasi-
Fermi fevel is uot thie chiemical potentiad for holes, but is the chemicud poteistial
for the clecirous in the valence band. Holes sire missing eleclrons; s bofe current
to the right is really an electron current to the left. But holes carry a positive
ratlicr than a negative cliarge. The two sign reversals capcel, and we may view
grad p, as the driving force for the coniribution J, of holcs to the total elecrical
current density, We write, analogously to {78),

Jy = g, grad g, (85}

Carrying through the rest of the argument leads to

Jh 7'—--“' J“effhﬂhg el eBh gi"&d “-’t {S{])

as the analog of (84), with the Einstein relation D, = fi,t/e. Note the different
sign in the diffusion term: Holes, like electrons, diffuse from high to low con-
centrations, but hole diffusion makes the opposite conlribution to the electric
current, because holes carry the opposite charge.

Y S N - e e s ey
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Example: Injection faser. The highest nonequilibrium carrier concenirations in semi-
conductors oceur in injeclion fasers. When by efectron injection the occupation f(e) of
the towesy conduction band orbital becomes higher than the occupalion f{e} olthe highest
valence band orbiral, the populition is said 1o be inverted. Lascr theory tells us ghag light
with a quantum energy £, - £, = &, can then be amplified by stirnuiuled emission. The
condition for population inversion is that

fLed > fle) {37)

With thie quasi-Fermii distributions {75} this condition is expressed as

Hom > 6= 6 = 6 (38)
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Eleciron flow
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Figure 139  Double-heterosiructure injection laser. Elecirons fow from the
right into the active layer, where they form a degenerate eleciron gas, The
potential barrier provided by thie wide energy gap on the p side prevents the
elecirons from escaping to the left. Holes flow frorn the kefi itio the active

layer, but cannot escape to the right. When {88} is attained, taser action
becomes possible.

For laser action the quasi-Fermi levels must be separated by more than the energy gap.
The condition (88) requires that at least one of the quasi-Fermi levels [ie inside the band
to which it refers. This is 2 necessary, but not a sufficient condition for laser operation.
An important additionat condition is that the energy gap is a direct gap rather than an
indirect gap. The distinciion is treaied {n solid state physics texis. The most imporiant
semiconductors with a direct gap are GaAs and InP.

The population inversion is most casily achicved in the double beterostructure of Fig-
ure 3.9; here the lasing semiconducior is embedded between two wider-gap semiconductor
regions of opposite doping. An example is GaAs ensbedded tn AlAs. In such a strncture
there is a potential barrier that prevents the outfiow of efectrons to the p-type region, and
an opposilc poleatial barrier that prevenis the ouiflow of holes to the ndype region,
Except for the current caused by the recombination iselfl the cleciros in the aciive fuyer
are in diffusive equilibrium with the electrons in the m contact, and the efectron quasi-
Fermi level in the active Layer fines up with the Fermilevel in the n contact. Similarly, the
valence band quasi-Fermi level lines up with the Fermi fevel in the p contuct. Inversion
can be achieved if we apply a bias vollage larger than the vollage equivalent of the active
fayer encrgy gap. Most injection lasers utitize this double heterostyucture principle.
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Current Flaw: Drift and Diffusion
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Example : Carr:'er recombingtion througk an impsrity Jevel,  Electrons and holes can re-
cormbine either by an efectron falling dircaly inlo 2 hote with the emission of a photon,
or they can recombine through an impurity level in the energy gap. The impurity process
is dominant in siticon. We discuss the process as an instructive exainple of quasi-equitibeium
semiconducior statistics. Consides an impurity recombination orbital at energy ¢, in
Figure 13.10. Four trapsition processes are indicated in the figure, We assume that the

rate R,, at which cenduction electrons fall into the recombination orbitals is described by
a law of the form

= (1 — fan ., (89)
where f, 15 the fraction of recombination orbitaks alrcady occupied by an eleciron {and

lience not availabic). and 1, is a characteristic Time consiant for the capiure process, We
assumne the reverse process proceeds af the rate

R = fuft) , (90}

wherey, 1 the time constant for the reverse process. We take R, independent of the con-
cemranon of conduttion elecirons, because we assume that 1, « 1. T hc time constamnis £,

e S A o — o P i e ar
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Figure 13.10  Electron-hole recombination through
impurity recombination orbitals at g, inside the energy
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and r,” are related, because in equitibrivm the two rases R,, and R, musi cancel Thus

= (,1_:_:{5 fk) - ©1
.f; i G '
with £, and n, evaluated in shermat equilibrivm, which means we use {17) for #,. We ignore

sthe spin multiplicity of the recombination levels. With the equilibrium Fermi-Dirac
disteshution for f,, we have

n

-

1

—

+
L3

(1 = LS = exp[ —(u — & }r]. (92)
Thus {91) becomes

n, n n*
B cnpl (e = o] =
e E 4

93}

£

L]
{,
whete 1, is defined as the conduciion eleciron conceniration that would be present if the

equilibrimm Fermi fevel poin (17) coincided with the recombination level 1 (92) and {93}
arc inseried into {89) and (90), the net electron recombination rale hecomes -

Ro= Ry = Ro=> [0~ fin~fns] 09

The analogous recombinasion rate for holkes is obtained by the substitutions

- Re! Hey ne*t !e —* Rh! nhr nh*r !h;
and

Lot~ f 1= f /. (95)

Here 1, 15 the lfetime of holes in the Hmit that all recombination cenlers are occupied by
elecirons, and " is, by definition,

> = mexpl ~ (e, - 8,)/1] = n/nt. (96)
With these substitutions the net hole recombiuation rate is
Ry = [fr”h =~ {f - .f;)”h*]f"h' : @7

In steady starwe the two recombination rajes must be equat: R, = R, = R. Equations (94}
and {97) are 1wo equations for the two unknowns f, and R, We elimmaic , to find

ny —
T gy Y e

(9%)



Summary

This is the basic result of the Hall- Shackicy Read recombination theory.® Applications
are deve!oped in Problems 10 and {1},

et e R

SUMMARY

1. In semiconductors the efectron orbilals are grouped into a valence band
{completely occupied at £ = 0 in a pure semiconductor) and a conduction
band {complelely empty at r = 0 in a pure semiconductor), separated by
an energy gap. Electrons in the conduction band are called conductiz»
electrons; empty orbitals in the valence band are called holes.

. The probability of occupancy of a2 band orbital with energy ¢ is governed
by the Fermi-Dirac distribution function

1

fler = I + expffe ~ wy/t]

Here p is the chemical poteﬁtiai of the electrons, calted the Fermi level,

3. The energetic location of the Fermi level in an eleclrically nentral semi-
conductor is governed by the neutrality condijtion

n, - ny, = An.

Here n, and n, are the concentrations of conduction elecirons and holes,

and An is the excess Concentration of positively charged impuritics over
negatively charged impurities.

4. A semiconductor is said to be in the classical regime when n, « 1, and
n, « n,. Here

., = ing ¥t/ 2ah?y?

are the quantum concentrations for electrons and holes; m,* and n1,* arce
effeclive masses for elecirons and holes, In the semiconductor hiteralure,

n, and u, are catied the effective densitites of states for the conduction and
valence bands.

* R.N. Halt, Phys. Rev. 87, 387{1952); W. Shockley and W. T. Read, Jr., Phys. Rev. 87, 835(1932).
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3.

6.

In the classical r'cgimc

n

i

I _ncexp[*{sc - ,U),!T:I *
m = nexpl~(n — e)fe] .

if

where £, and g, are the energies of the edges of the conduction and valence
bands.

The mass action law states that in the classical regime the product
na, =t = na,expl—g,/1)

is independestt of the iinpurity concentration. The tntrinsic concentration

n, 1s the common value of i, and 1, in an intrinsic (= pure} semiconductor,
The quantity -

is the encrpy gap..

A semiconductor {s called n-type when negative charge carriers {=con-
duction electrons} dominate; it is called p-type when positive charge
carriers (= holes) dominate. The sign of the dominant charge carricrs is
opposite to the sign of tic dominant ionized {ntpurities.

A p-n junction is a rectifying semiconductor structure with an internal
transition frotn p-type 1o n-type. A p-n junction cottains iuteruul electric

fields even in the absence of an applied voltage. For an abrupt junction the
field at the p-n interface is

~ {2e nn, 2
E= ("“e"‘ ‘;;::‘;'“;; [{lVi “+ V;u) - ?-T/E]) N

Here € 1s the permittivity, n, and », are jonized acceptor and donor con-
centrations, and |V} and ¥j; are the applied and the built-in reverse bias.

The ejectric current densities due to electron and hole flow are given by

J, = einE + eD,gradn, ,

‘}p = EﬁhnhE —— ED,,gmd H,,.

- Here I, and [i, are the clectron and hole mobilities, and -



Problems

D, = j, r/e D, = ;zbt/e

" are the electron and hoie diffusion c:ocfﬁc:ems

PROBLEMS

1, Weakly doped semiconductor. Calculale the electrot and hole concenira-

tions when the net donor concentration is small compared to the intrinsic
concentration, |An! « ;.

2, Intrinstc conductivity and minfmumn conducrrwry The electrical conduc-
nv:ly is .

.

g = e{”ﬂae + ”hﬁh} * (99}

where Ji, and ji, are the electron and hole mobilities, For most semiconductors
i, > [, (8} Find the net jonized impurity concentration An = n,* — n,~ for
which the conductivity {s a minimum. Give a mathematical expression {or this
minimum conductivity. (b} By what factor is it lower than the conductivity ofan
intrinsic scmicondnctor? {¢} Give numerical values at 300 K for Si for which the
maobilites are fi, = 1350 and f, = 480em? V™ s~ and for InSb, for which

mc mobilities are ji, = 77000 and Ji, = 750em? V™ ¥s7), Calculate missing
data from Table 13.1.

. 3. Resfstivity and impurity concentration. A manufaCturcr specifies the re-
sistivity p = 1/o of a Ge crystal as 20 ohm cm. Take Ji, = 3900 cm? V™1 s~
and i, = 1900 cm? ¥ ™! 57!, What is the net impurity concentration a} if the
crystal is n-type; b} if the crystal is p-type?

4. Mass action law for high electron concentrations. Derive (39), which is the
form of the law of mass aclion when », is no longer small compared to 2.

5. Electron and hole concentrations in InSh. Calculate n_, ny, and y — g, for
n-type InSb at 300K, assuming n,* = 4.6 x 10'%cm™? = n,. Because of the
high ratio n,/n, and the narrow energy gap, the hole concentration is not
negligible under these conditions, nor is the nondegenerate approximalion
n, « n_ applicable. Use the generalized mass action law (39). Solve the tran-
scendental equation {or i, by iteralton or graphically.

6. Incomplete ionization of deep impurities. Find the fraction of ionized
donor imprities if the donor fonizalion energy is large enough that Ae, is larger
~ than tlog(n/8n,) by several times 1. The result explains why substances wsth

large mpunly tonization energies remam msuiaiors, even if impure.
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7. Built-in field for expontential doping profile. Suppose that in a p-type
semiconductor the jonized acceptor concentration at x = x; is n,” = n, « n,
and falls off exponentially 10 a value n,” = n, » n; at x = x;. What is the
built-in clectric field in the interval (x,,x,)? Give numerical values for n,/ny =
10° and x; — x; = 107 %cm, Assume T = 300 K. Impurity distributions such
as this occur in the base region of many n-p-n transistors, The built-in field
aids in driving the tnjected electrons across the base.

8. Einstetn relation for high electron concentrations. Use the Joyce-Dixon

approximation (38) to give a series expansion of the ratio D,/jfI, for electron
concentrations approaching or exceeding i1,

9. Injection laser. Use the Joyce-Dixon approximation to caleulate at 77 =

300K the electron-hole pair concentration in GaAs that satisfies the imversion
condition (88), assuining no ionized impurities.

10. Mfiaority carrier lifetime.  Assume both eleetron and hole concentrations
in a semiconductor are raised by éir above their equilibrium values. Define a net
minority carrier lifetime t by R = dn/1. Give expressions for 1 in terms of the
carrier concenirations n, and ny; the energy of the recombination level, as
expressed by n,* and n,*; and the titne constants 1,and 1, in the limils of very

small and very large values of dn. Under what doping conditions {s t indepen-
dent of di?

11. Electron-hole pair generation. 'Inside a reverse biased p-n junction both
electrons and holes have been swept.out. (a) Calculate the eleciron-hole pair
generation rate under these conditions, assuming n,* = n,* and 1, = 1, = L
{b) Find the factor by which this generation rate is higher than the generation
rate in an n-type semiconductor from which the holes have been swept out,

but in which the clectron concentration remains equal to i, ™ » n,. (¢} Give a
numerical value for this ratio for Si with n,* = 10%%em ™3
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f ant conscious of being only an individual struggling weakly against the stream
of time. But ir still remains in my power to contribute in such ¢ way thar, when
the theary of gases Is again revived, not too niuch will have 1o be rediscovered.

L, Boli zmamn



Kinetic Theory of the Ideal Gas Law

In this chapter we give a kinetic derivation of ilie ideal gas law, the distribution
of velocities of gas molecules, and transport processes in guses: diffusion,
thermal conductivity, and viseosity, The Bolizmann transport equation is
discussed. We also treat gases at very low pressures, with reference o vucuum

pumps. The chapter is essentially elassical physies because the quantunt theory
of transport is diffieult,

KINETIC THEORY OF THE IDEAL GAS LAW

We apply the kinetie method to obtaim an clementary derivation of the idcal gas
law, pV = Nt. Consider molecules that strike a unit area of the wall of a
container. Let v, denote the velocity component normal to the plane of the wall,

as in Figure 14.1. If 2 molccule of mass A is reflected specularly (mirror-like)
from the wall, the change of moniet tul of the molecule is

- 2Me). (n

This gives an impulse 2M|v:| to the wall, by Newton's second law of motion. The
pressure on the wall is

momenium cliange\ /mumber of niolecules Slf‘iLi!i& 12)
P per molecule unit area per unit e

Let a(v,}dv, be the number of molecules per unit volume with the z coniponent
of the veloeity between v, and v, + dv,. Here {a{v)dv, = N/V = n. The
number in this velocity range that strike a unit area of the wall in unit time is
a{v v, dv,. The momentym change of these molecules is — 2Mr_a{vr, du,, 0
that the total pressure is

P = fumZMvzzﬂ{l‘;)dU: = M fj;vzza{p:)(h::_ | ‘3)

The integral on the right is the thermal average of v,? times the concestration,
“so that p Mn(v,z) The average va!uc of in is %1: by cqusparm;on of
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Pressure
change of momentum of 2 v v
ity v which 1s reflected from
ntainer is —2Mlp.l. r axis
L.
energy (Chapter 3). Thus the pressure is
p=nM{?) =nt = (N/V)r; pV = N (4)

 This is the ideal gas law.

The assum ption of specular reflection is convenient, but it is zmma{crzal to the
result. What comes into the surface must go back, with the same distribution,
if thermal equilibrium is 1o be maintained.

Maxwell Distribution of Velocities

We now trausfarm the encrgy distribution function of an ideal gas into a
classical velocity distribution function, Often when we snean “speed” we shall
say “velocity™, as this is the tradition in plysics wlien no confusion is caused.
In Chapter 6 we found the distribution fustction of an ideal gas 1o be

fle) = dexpl—e./t) : (5}

where f{e,) is the probability of ocenpancy of an orbital of encrgy

B (n\?
£y = 21‘1‘ (“’") (6)

in a cube of volunte ¥ = L3 The average number of atoms with quantum
nuniber between ¢t and nn 4 din is (the nuntber of orbitals in this range} x (the
probability such an orhital is occtipied). The number of orbitals in the positive



Maxwell Distribution of Velocities

octant of a splzerrcal shell of thickness rhi is L{4mn?}dn, whence the des;red
product is

(%mzzdu)f(a) {m/n exp(— g, /0)dn, | {7

We take the spin of the atom as zero.
To obtain the probability distribution of the classical velocity, we must
find a connection between the quantum number n and the classical velocny

of a particle in the orbital ¢,. The classical kinetic energy $Mo? 15 related to the
quantum energy (6} by

1My? .,.ﬁu fﬂz L--—jfw;r fr*-A—!-—I:v 8}
ML ML T ohm '

We consider a system of N particies in volume V. Let NP{t)dv be the number of
atoms with velocity magnitude, or speed, in the range dv at v. This is evaluated
from (7} and (8) by setting dn = (dnjdv)dy = (MLfhaydv. We liave

o o
NPy = §aln? exp(—e,/7) "Eg iy
i

il

r! 3
%m(t L) v? exp(— Mo?/21)de. (9)
i

From Chapter 6 we know that 2 = nfng = (N/LY2nh¥/M1)YY2, so that the
fuctor standing to the left of v? becomes

\'r 3'1;3 3 A 32
AN PALL m\(;!) . (101

AR Y T ar

Thus

P(} = dn(M2a0¥ vt exp(-- MrY20) (th

This 15 the Maxwell velocity distribution (Figure 14.2). The quantity P(rkle s the
probability that a particle has its speed in iy at r, Numerical valoes of the roet
mean square thermal velocity and the mean speed are given in Table 141,
using the results b, = (3t/M)VY2 and © = (SynAN)Y? from Problem L.
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Table t4.1 Molecular velocities 21 273K, in 10*cms™?

- Gas e z Gas o L. . €
H, . {8.4 169 O, 4.6 4.2
He t3.t 12.1 Ar : 4.3 40
H,0 62 - 57 Kr 2.86 2,63
Ne 58 53 Xe 2217 209
N, 4% 435 Freeelectron 1100, 1013

Experimental verification. The velocity distribution of atoms of potassium
which exit from the slit of an oven has been studied by Marcus and McFee*
The curve in Figure 14.3 compares the experimental results with the predicuon
of (12) below; theagreement is excetfent. We need an expression f{or the velocity
distribution of atoms that exit from a smalf hole' inan oven. This distribution is
dificrent from the velocity distribution within the oven, because the flux through
the hofe 1volves an extra factor, the vetocity component normat to the walt,
The exit beam is weighted in favor of atoms of high velocity at the expense of
those atTow velocity. In proportion to thetr conccmration in the gven, fastatoms

* P M. Marcusand I, H. Mr:Fec, Recent research in molecular beams, ed. 1. Esterman, Academic
Press, 1959,
In such experiments a round hole is said fo be small if the diameter is ess {han 2 mean free path

of an atom in the aven. I the hole is not smalt In this sense, The Bow of gas from it will be gover ned
by the taws of hydrodynamic flow and not by gas kinclics.
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Figure 14.3  Meusured transtnisSion points and calonlated
Maxwell transmission curve for potassium atoms that exit frem
ant oven at a temperature 157°C. The horizontal axis is the transit
time of the utoms [ransmitted, The intensity is in arbitrary units;
the curve attd the points are normalized to the same maximunt
value. After Marcus and McFee. - '

strike the walls more often than slow atoms strike the walls. The weight factor
is the velocity cotponent vcos § normal 10 the plane of the hole. The average
of cos § over the forward hemisphere is just a numerical factor, namely 4. The
probability that an atom which teaves the hole will have a velocity between
vand v + dv defines the quantity Py,.{v)dv, where

Phum(v) o vPMuwa!i o 93 ﬂxp("— }"’IUZ/ZI) 3 (l 2)

with Pyy,..n given by (11). The distribution (12) of the transmission through a
hole is called the Maxwell transmission distributiot.

Collision Cross Sections and Mean Free Paths

We can estimate the collision rates of gas atoms viewed as rigid spheres. Two
atoms of diameter d will coflide if their centers pass within the distance d of
cach other. From Figure 14.4 we see that one collision will occur witen an atom
has traversed an average distance

[ = Ynnd*, (13)
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Figure 144 (a) Two rigld spheres will collide
if their centers pass within a distance 4 of each
caclr other. (b} An arom of diameter 4 which’
travels a long distance L will sweepouta
valume rd?L, in the sense that it will eollide
witlt any atom whose center lies within the
volume. If # is the concentration of atoms, the
average number of aroms in this volume is
ard*L. This is the number of collisions. The
average distance between collisions is

L t

J—I-rm = and?’

where n is the number of atoms per unit volwne. The length { s catled the mean

free path: it is the average distance traveled by an atom between collisious. Qur
result neglects the velocity of the target atoms.

We estimate the order of magnitude of the mean free path. If tlie atomic
diameter d is 2.2 A as for heliu, then tlie collision cross section o, is

o, = md? = (31422 % 1078%em)? = 152 x 1075 em?. (14}

The coucentration of molecules of an ideal gas at 0°C and | atm 15 given by the
Losclhmidt nunsher

ne = 2.60 x 101%atomsent™?, (13)

defined as the Avogadro number divided by the molar volume at 0°Cand [ alm.
The Avogadro number is the number of nwlecules in one mole; tlie molar
volume is the volunic occupied by one mole. We contbine (14} and (15) to obtain
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the mean free path under standard conditions:

! - | 1 . |
1 TN e I . - -3
ndlny {152 x 107 cm?)(2.69 x 10°%¢m ) 244 x 1077 em. (16a)

This length is about 1000 times larger than the diameter of an atom. The
associated collision rate is

Vs 107 Cmis™t -
—"“i-‘- o] m = 10“) 3 1. “6!3}

At a pressure of 107%atm or | dyneem ™2, the concentration of tlom: 's
reduced by 107 and the mean frec path is increased to 25cm. At 1074 anu tie
mean free path may not be small in comparison with tlie dimensions of any
particular expenimental apparatus, Then we are in wliat is called thic highvacurm
region, also called the Knudsen region. We assume below that the mean froe
palh is small mn contparison witlt the relevant dimension of the apparatus,
cxcept in the section on laws of rarefied gases.

TRANSPORT PROCESSES

Consider a systern not in thermal equilibrium, but in a nonequilibrium steady
state with a constant fow from one end of Hie systews lo the ollter. For example,
we may creute a sleady stale moncquilibrium coundition in « System by placing
opposite ends in thermal contact with large reservoirs at two dilferent temperas
tures. If reservoir 1 is at the higher temperature, energy wit! {low through the
system {rom reservoir 1 to reservoir 2. Energy flow in this direction will increase
the total entropy of reservoir 1 + reservoir 2 + system, The lemperilure
gradient in the system is the driving force; the pliysical quantity that is trans-
porled through the specimen in this process is encrgy.

There i a linear region 1n mosl (ransport processes in which the flux is
directly proportional to the driving foree;

flux = {coeflicient} x {dtiving force} , {7
provided the force is not too farge. Such a relation is called a Hinear phenonie-
nological law, such as Ohm's law for the conduction of clectricity. The definition

of the flux densily of 2 quantity 4 is:

Jx = fux density of 4 = net quanlity of A4 transported across
uril ared m unt tnze. (18)
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FPartiele Diffusion

The net transport is the transport in one direction minus the transport ia the
opposite direction. Various transport laws are suminarized in Table 14.2,

Particle Diffusion

In Figure 14.5 we consider a system with one end in diffusive contact with a
reservolr at chemical potential py; the other end is in diffusive contact with a
reservoir at chemical potential y,. The temperature is constant. If reservoir 1
is at the higher chemical potential, then particles will flow through the system
from reservoir 1 to reservoir 2. Particle flow in this direction will increase the
total entropy of reservoir 1 + reservoir 2 4 system,

Consider particle diffusion, first when the difference of cltemical potential is
caused by a difference in particle concentration. The flux density J, is the
number of particles pitssistg Uirowgh a'ustit grea tn unil thne, The dejving force

of isothermal diffusion Is usually taken s the'gradient of the particle concentra-
tion along the system;

<3, = —Dgrad 1, (19}

The reiauon ts called hck's faw; herc Dis ihe purticle diffusion constant or
diffusivity, :

Purticles travel freely over dsszances of the order of the mean {ree path |
before they collide. We assume that {n a collision at position z the parucles
come into a local equilibriun condition at the local chemical potential p(z) and
focal concentration s{z). Let ], be the 2 component of the wiean {ree path. Across
the plate at z there is a particle flux density iu the positive z direction equal to
dn{z — L)%, and a flux density in the negative z dircction equal to —4n{z +
IJE,. Here s{z — 1.} means the particle concentration at z — I, The net particle

Reservoir 1
#1

Figure 14.5 - Opposite ends of the system are in diffusive
contacl with reservoirs at chemical polenuals ug and y; Thc
., lemperature is conslant evcrywhcre '
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flux density is the average over ali dicections on a hemispliere of

. J L[i‘i z — f) _— ” + })](‘ =3 v—;{f{g— ("lr_ ) (20)

We want 1o express the average value of ¢l tn terms of €. Here I, = fcos(
ts the projection of the mean free path, and ¥, = Zcos & Is the projection of the
speed on the z axis. The average is taken over the surface of a hemisphere,

because all forward directions are equally fikely. The element of surface area
1s 2nsin @ df. Thus

2r F“cosz{?sin gd0
By =Tt = 7 (21)
_ In
50 that
s it )
Jn jc}dz' . (2 )
{23}

The particle diffusion problem is the mode! {or other transport prablems. In
particle diffusion we are coneerned with the transport of particles; in thermal
eonductivity with the (ransport of energy by particles; in viscosity with the
transport of momentum by particles; and in electrical conductivity with the
transport of charge by particles. The linear transport coefficients that describe
tle processes are proportional 1o the particle diffusivity D.

" Lel p, denote the concentration of the physical quantity 4. if A is a quanuty
Iike charge or inass that has the same value for alf the molecules, then the flux

density of 4 in the z direction 15
J5 = pa(iy (24

wliere (v, is the mean drift velocity of the purticles in the 2 direction. The dnift
velocity is zero in thermal cquifibrium,

If 4 is 2 quantity like energy or momentum that depends on the velocity of
a molecule, then we always find a sinuilar expression:

S L), 23)



Thermal Canductisity

-

where f, is a factor with magnitude of the order of unity, The exact value of £,
depends on the velocity dependence of A and may be calculated by the method
of the Boltzinann transport equation treated at the end of this chapter. For
simphicity we set f, == { in this discussion. By analogy with (19) for particie
diffusion, the phenomenoclogical law for the transport of 4 is

J; = —Dgradp, , {26)
with the particle diffusivity D given by (22).

Thermal Conductivity

Fourier's law

J, = —Kgradt {27)

describes the energy flux density J, in terms of the thermal conduetivity K and
the temperature gradient (Figure 14.6). This form assumes shat sheve is a net
transport of energy, but not of particles. Another term must be added if addi-

“tional energy is transported by means of particle ﬁow as when electrons flow
under the influence of an electric field.

The energy flux density in the z direction is

JE = pir, (28)
where {v,> is the mean drift velocity; p, is the energy density. This result is

valid within a factor of the order of unity, as discussed. By analogy wish she
diffusion equaiion, the right-hand side is equal to

—*D(Ip“/a’\ = - D{d¢p,/Ex)dt/dx). {29)

: R "‘:? N
Ruservoir ¢ *t Reservoir 2

G
Ty LR L

Systém

Figure 14.6  Opposite ends of the system are in shermal
coutiuct with reserveirs atl lemperatures ry and 1.
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This describes the diffusion of energy. Now @p,/Ct is just the heat capacity
per unit volume, denoted by C,.. Thus

J, = ~DC,gradr; : (30)

on comparison with (27) the thermal conductivity is

] _
1 K = DCy = §C, 7l (31)
1

The thermal conductivity of » gas is independent of pressure until at very low
presstires the mean {ree path becomes limited by the dimensions of the appara-
tus, rather than by intermolecular collisions. Until very low pressures are
attained there is no advantage to evacuasing a Dewar vessel, because the heat
Tosses are independent of pressure as long as (31) applies,

Viscosity

‘Viscosity is a measure of the diffusion of momentum parallel ta the flow velocity
and fransverse to the gradient of the flow velocity. Consider a gas with flow

veloaity i the x direciion, wish sthe flow velocity gradient in the z direction. Tiu:
viscosity cocflicient 1 is defined by

X, = “-*.'—“ = J.(p.) (33
Here v, is the x conponest of the flow velocity of the gas; p, dessotes the x
component of momentum; and X is the x composent of the shear force exerted
by the gas on 2 unit arca of the xp plase normal to the z direction. By Newto’s
second law of motion a shiear stress X, acts on the xy plane if the plane receives
a net flux density of x momentum J_(p,), because this flux density measures the
rate of change of the momentum of the plane, per unit area. '

In diffusion the particle Bux density in the z ditection is given by the number
density n times the mean drift velocity (r.) in the z direction, so that J,* =
ndv> = — Ddnfdz. In the viscosity equation the transverse momentum density
is nMu,; Its flux density in the z direction is (#Mv,){v.>. By analogy with (26)
this fux density equals - Dd{nMv,)/dz, within a factor of the order of unity.
With p == nM as the mass density,

Jdpd = pre, = —Dpdofds = —ndefdz (33)



Viscosity

Thus, with D given by (23),

(34}

gives the coefficient of viscosity. The CGS unit of viscosity is called the poise.
Themean free path is/ = 1/rd*n from {13), where d is the motlecular djameler
and a is the concentration. Thus the viscosity may be expressed as

g = Mmmﬁ , (35)

which is independent of the gas pressure. The independence fails at very high
pressures when the molecules are nc_a‘_r_iy always in contact or at very low
pressures when the mean free path is longer than the dimensions of the
apparatus,

Robert Boyle in 1660 reported an early observation on thc pressure inde-
peudence of the damping ofa pendulum inair:

Experl'meu! 26..., We observ’d also that when the Receiver was fidl of Air,
the included Peaduluns contimdd its Recursions about fifteen mitnates (or a
guarter of an hour} befare it left off swingiay. and 1hat after the exsuclion of
the Air, the Vibration of the same Pendulum{being fresh put into motion)
appear'd not (by a niinutes Watch) 1o last seusibly longer. So that the event of
this experbment being other thatt we expecled, scarce afforded us any olher
salisfuction, than that of our not having osiitled (o try it

Although at first glance mnplausible, this result is readily understood, With
decreasing pressure the rate of momentum-transfer collisions decreases, btit
each colliding particle comes from farther away. The larger the distance, the
larger the momentum difference; the increasing momentum transfer per collision
cancels the decreasing collision rate.

1t is casier to measure the viscosity than the diffusivity. If D = n/pas predicted
by (34}, thep K Is related to n by

K = ’Iér/P- {36)

The observed values of the ratio Kp/pC, given in Table 14.3 are somewhat
higher than the value unity predicted by our approximate calculations. Im-
proved calculations of the kinetic coefficients K, D, 5 take account of minor,
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Table 14.3  Experimental values of K, D, . and Kp/mC, at 0°C and ( atm

Gas K, inmWem™'K™' ° D inem?s”?

n. in ppoise  Kpmly

He 1.50 - 186. 2.40
Ar 0.8 0.158 2t0. 2.49
H, 1.82 1.28 84, 191
N, 0.26 — 167 1.91
0, 0.27 — 189. 1.50

wotE: Values of the theamat conduciivisy arc a5 300 K.

but difficult, eflects we have neglected; sce the works cited 1n the general
references.
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Comment.  The diffusivity of gas stonss is directly proportional to their viscosity. The

dilfusivily of a parlicle suspended in a hquid or gas is a different problcm: the viscosty of
the solvent opposes the diffusion of the suspended particle, We find D o« /g, where D

- refers to Lhe particles and ) refers to the liquid. The Stokes-Einstein relation for suspended
particles is D = t/6agR, where R is the radius of itz sphere in suspension.
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Comment,

The quaniily v = gfp is miicd L!n: kinematic uscomy, i (34) hotds, v shouid

be cqual to the diffusivity D. The ralio n/p eliters into hydrodynamic theory and into the
Reynold's number ctiterion for taniinar flow.
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Generalized Forces

The transfer of entropy from one part of a systen to another is a consequernce
of any transport process. We can relate the rate of change of entropy to ihe

flux density of particles and of enerpy. By analogy with the thermodynamic
identity at constaut volume,

do = 2du - Pun - (37)
T T

we write the entropy current density J, as

f
J,:;JUHEJHJ . (38)



Generalized Forces

Let & denote the eatropy deasity; let é6/¢t denote the net rate of change of
entropy density at a fixed position r. Then, by the equation of continuity,

83/3t = g, ~ divJ,. (39)

In a unit volume clement the net rate of appearance of entropy is equal to the
rate of production g, minus the loss — div J, attributed to the transport Current.

In a transfer process U and N are conserved. The equation of continuity for
the energy density u is

% e divd,; (40)

the equation of continuity for the particle concentration s is

?}{“ ~divJ,. (1)

Let us take the divergence of J, in (38):

divd, = %dIvJ“ + J, - grad(1/7)
— (g/0)divd, — J, - grad (/7). {42)

Let (37) refer to unit volume; we take a partial derivative with respect {0 time
to obtain the net rate of entropy change:

o le_aa (43)
ct T ! T of .

We use (40)~(43) to rearrange {39) in a form suggestive of the ohnie power
dissipatioh:

g, = J, - grad{i/c) + J, - grad{—/r}, 49

414
s ﬂ'ju'Far + Jn'Fn- (45)

Here F, and F, are generalized forces defined by

F, o= grad(l/z); F, = grad(— /1), - E6)
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Ems{eln re!aimu

In an sothernial process F, in (46) may be written as F, = {—1/7)grad y or,
it terms of the Internaf and exteraal parts of the chemical potential, as

Fn = »—{};’r)[grad Hine T+ gradym] (4?}

For an ideal gas p,,, = tlogln/ng), so that grady,, = (cn)grad n;

: for an
electrostatic potential grad y,,, = g grad @ = ~ gE. Thus
F, = —(l/0{wn 'gradn ~ gE] {48)
Now the particle flux density also has two terms, written as
J, = —D,gradn + niE , (49

where D, is the diffusivily and j is the mobility, which is the drift velocity per
unit efectric field. The ratig of the coeflicients of gradn to F is B,/af in (49)
and 7/ng in (48). These ratios must be equal, so ihat

which is cafled the Einstein refation between the diffusivity and the mobility
for a classical gas.

PRI

T e L e T iy
AT B O el LA -

Comment. We gain an advantage, for reasons relaled 10 the thermodynamics of irrevers-

ible processes, if we use F, and F, in (46} as the driving forees for the linear transport
processes. We weite |

J, = .Lan + Ly,F,; J, = Ly F, + LyF, {51)

The Onsager relation of irreversible thermodynamics is that

Li{B) = Ly(-B) | (52)

where B is the magnelic field intensity. If B = 0, then L, = L always. For (52) to hold,
the driving forces F must be defined as in (46). Othet definitions of the forces are petfectiy
valid, such as the pair grad 1 and grad n, but do not necessarily lead lo cocfficients L that

salisfy the Onsager relation. For a derivation see the book by Landau and Lifshilz cited
in the general references,
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Kinetics of Detailed Balance

KINETICS OF DETAILED BALANCE

Consider a system with two states, one at energy A and onc¢ at energy —A. In
an ensemble of N such systems, N* are at A and N™ are at — 4, with N =
N*' 4 N7.Toestablish thermal cquilibrium there nrust exist some mechanism
whereby syslems can pass belween the two stales. Consider the tate equalion
for transjtions into and out of the upper state:

dN*fdt = aN™ — N7, (33)

where o, § may be functions of the temiperature, The transition rate from — to
+ is directly proportional to the number of systems in the — state. The transi-
tion rate from + to — is dircctly propogtional to the number of systems in the
+ stale.

In thermal equilibrium ¢AN* /ity = 0, which can be satisfied only if
«/B = (N*I/(NTY = exp(—24/1) , t54)

the Boltzmann factor. This result expresses a relution between x(r) and f(1) that
must be satisfed by any and every mechanism that assists in the transitions. As
an example, suppose that the transition + - — proceeds with the excitation
of a harmonic osciflator from & state of energy se to a state of energy (s + Dg;
in the inverse process — ~» + the oseillator goes from se to (s ~ 1)e. In the
quantum mechantcal theory of the oscillator it is shown that

Probls—~s+ 1) s+41

T Prob(s—os—1 s

£

for the excitation and de-excitation of the oscillator, a result derived in most
texts on quantum theory. The value of {5) is found from the Planck distnbution:

_ 1 . . _ expfe/T)
e B LA A ey iy

so that, with € = 2A to conserve energy,
aff = {s3/{s + 1D = exp(~—2A/7). (33)

This satisfies the condition (54).
The principle of detailed balance emerges as a generalization of thisargument:
in thermal equilibrium the rate of any process that leads to a given state must



Chapter 14 Kinetic Theory

equal exactly the rate of the inverse process that leads {rom the state. One
~common application of the principle is to the Kirchhoff law for the absorption
and emission of radiation by a solid, already discussed in Chapter 4: radiation
of a wavelength that is absorbed strongly by a solid will also be emitted

strongly-——otherwise the specimen would heat up because it could not come into
thermal equilibrium with the radiation.

ADVANCED TREATMENT:
BOLTZMANN TRANSPORT EQUATION

The classical theory of transport processes is based on the Boltzmanan transport
cquation. We work 1n the six-dimensional space of Cartesian coordinates r and
velocity v. The classical distribution function f{r,v} is defined by 1he relation

S (r,v)Jr dv = number of particles in drdv. (56)

The Boltzmann equation is derived by the following argunent. We consider
the cflect of a time displacement Jt on the distribution funetion. The Liouville
theorem of classical mechanics tells us that if we follow a volume element along
a flowline the distribution is conserved:

S+ dee oy + dv) = fltny) 57

in the absence of collisions. With collisions

Sl dar 4 dey + ds) — Jitry) = 180 imsions {58)
Thus

dt(éf/ét) + dr - grad, f+ dv- grad, f = d{Ef/01) oy (59)

Let a denote the acceleration dv/dr; then

t Cfiet + veograd, f+ a- grad, [ = (&f/f0n- {60)
This is the Boltzmann transport equation,

In many problens the collision term (5f/ét),,, may be treated by the introduc-
tion of a relaxation time 7 {r,v), defined by the equation

@& létn =~ ~ folfre I ()



Particle Diffusion

Here f; is the distribution function in thermal equilibrium. Do not confuse 1,
for relaxation time with r for temperature. Suppose thal a noncquilibrium
distribution of velocities is set up by external forees whieh are suddenly removed.
The decay of the distribution towards equilibrium is then obtained from (61) as

=L _ S-S

. , (62)
et 1,

if we note that éf5/dr = 0 by definition of the equilibrium distribution. This
cquation has the solution

(f ~ Jo)y =S = Ja)y=pexp{~1/z,). (63)

It is not exeluded that ¢, may be a function of rand v.

We combine (56), (60), and {61) to obtain the Boltzmann trausport cquation
1 the relaxation time approximation:

-

%{ + o grad, f+ v- grad, = mf“:_:[g. (64}

T

In the steady state ¢f/¢t = 0 by definition.
Particle Diffusion

Consider an isothermal system with a gradient of the particle concentration.

The steady-state Boltzmann transport equation in the relaxation time approxi-
mation becomes

vedffdx = —~{f = fo)ft» (65)

where the nonequilibrium distribution fuaction f varies along the x direction.
We may write (65) to first order as

fi = fo = vrdfefde, (66)

where we have replaced &f/dx by dfp/dx. We can ficrate to obtain higher order
solutions when desired. Thus the second order solution is

fl = fO - U:Tcrbrl/dx = f(l = rxrr‘%:"‘dx + szrzz szﬂﬁ"x}-‘ (6.‘?)

The fteration is necessary for the treatawent of nonlinear effects,
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Classical Distribution
Let f; be the distribution function in the classical Hmit:

Jo = expl{u ~ e)/t), (68)
as in Chapter 6. We are a1 liberty 10 take whatever normalization for the

distibution function is most convenient because the iransport equation is

linear in f and f;,. We can take the normalization as in (68) rather than as in
(56). Then

dfyfdx = (dfpfdp){dp/dx) = (fo/O){dpfdx), (69)
and the first order solution (66) for the nonequilibrium distribution becomes

S = fo ~ Wt S/ dufdx), (10)

The particle flux density in the x direction is

;-:',,x*ft‘-xf‘i}(a)zls..,'__- . "(?1)_

where D(c)1s the density of orbitals per unit volume per unit energy range:

. 2MNYE .
as in {7.63) for a particle of spin zero. Thus

15 = [o./iDede ~ tdx) [(0.5 foloDe)de (1)

The first integral vanishes because v, is an odd function and f; is an even func-
tion of v,. This confirms that the tet particle flux vanishes for the equitibrium
distribution f,. The second integral will not vanish.

Before evaluating the second integral, we have an opportunity to make use
of what we may know about the velocity dependence of the refaxation time 7.
Only for the sake of example we assume that 7, {s constant, independent of
velocity; r, may then be taken out of the integral:

9= ) [0 T



FerpiiDirae Distribution

The integral may be written as

2
3 [0 ey = oy [Eae) o Deps = noat (75)

because the integral is just the kinetic energy density 3nt of the particles. Here
{foDle)de = n is the concentration. The particle flux density is

35 = (i MY dfdx) = —(xa/MY(dn/d) (76)

because i = tlogn ++ constant. The result {76) is of the form of the diffuston
equation with the diffusivity

D = raM .= Ky, (77

Another possible assumption about the relaxation time is that it is inversely

proportional to the velocity, asin 1, = [/v, wherethe mean free path !is constant.
Instead of (74) we have

S = (dyfdx)(if) f (0,20} Dle)dlz (78)

and now the integral may be written as
1 f oy De)ds = i, (79)

where ¢ 1s the average speed, Thus

JF = —Yenfr)dudx) = —ednjdy) , (60}

and the diffusivity is

o
i
=

=

Fermi-Dirac Distribution

The distribution {unction is

1
Toxplle - A+ U

Jo (82)
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To form dfy/dx as in_ (.69} we need the dt;ivaiive dfo/dn. We argue befow that

| dofdn = 8 < 1) | | (83)

at low lempcraiures T « ;1 Here § is the Dirac dcl{.a f;un;:iioﬁ, which has the
property for a gencral function F(g) that

| :f_me{z)é(s — e = F). | (84)

Now consider the integral [F F(){dfy, di)de. Atlow temperatures dfo/du is very

large for & = u and Is small elsewhere, Unless the function F(e) is very rapidly
varying near g we may take F(g) outside the integral, with the value F(u):

Jo Fexdfopdute ~ Fip) [ Who/ddds = ~ Fo) [ (fotde)s
= —FRLAI = FUAO) (85)

where we have used dfy/dp = ~dfy;de. We have also used f; = O fore = co.
At low temperatures f(0) = 1; thus the right-hand side of (85) is just F(,u)
consistent with the delta function approximation, Thus

dfgfdx = o(e — p)dpfdx. (86)

The particle Sux density is, from (71)y-

Ja* = =) [ 2,700 ~ WD, @

where 1, is the relaxation time at the sugface g = g of the Fermi sphere. The
integral has the value

$ee? 0 2e)) = nfm : {88)

by use of D) = 3n/2e; at absolute zero, from {7.17), where ¢ = L g?
defines the velocity vy on the Fermi surface. Thus

J5 = e mdpldx, (89)
At absolute zero u(0) = (R 2m)(3a%n)* ) whence

dufdx = [FO2m)32)23 ' \dnfdx

i

2ep mydn dx ' _ ~{99)
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so that (87} becomes

S5 = Qe dojds = ~Jofndnds. ()

The diffusivity is the cocflicient of difdx:
D m%crzt‘ . {52}

closely similar in form to the result (77} for the classical distribution of velocities.
In {92} the relaxation time is to be taken at the Fermi energy.

We see we can solve transport problems where the Fermi-Dirac distribution
applies, as in metals, as easily as where the classical approximation applies.

Electrical Conductivity

The isothermal electrical conductivity o follows from the result for 1he particle
diffusivity when we multiply the particle flux density by the particle charge g
and replace the gradient du/dx of the chemical potential by the gradient
qdg/dx = ~qE, of the exiernal potential, where E, is the x component of the
electric field intensity. The electric current density follows from {76}):

J, = (ng?r/mE; o = uglrfm , {93}

{or a classical gas with relaxation time r.. For the Fermi-Dirac distribution,
from (89},

3, = {ng?e/m)E; @ = ng’r/m. (84

LAWS OF RAREFIED GASES:

Thus far in this chapter the discussion of transport has assumed that the
molecular mean free path is short in comparison with the dimensions of the
apparatus. At a gas pressure of 107 %atm at room temperature, the mean free
path ofa molecule is of the order of 25 em. The diameter of a luboratory vacuum
system connection may be of the order of 25 an, thus of the order of the meun
free path. We may usefully draw a line here and denote pressures lower than
1 x 107 %atm as high vacuum. This pressure is approximately 0.1 Nm™* or
I x 107%kgem™ or 7.6 x 10" *mm Hg or 7.6 x 107 *torr. The Kaudsen
region of pressures is understood to be the region in which the mean free path
is much greater than the dimensions of the apparatus. A knowledge of the
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behavior of gases in this pressure region is important in the use of high vacuum
pumps and allied equipment.

The ;crminology recommended by the American Vacuum Society is expressed
in termis of torr, where 1 torr = Imm Hg = 1,333 x 107 *bar = 133.3Nm™?

1333dynecm™?; here I bar = 10%dynecm™? = 0.987 standard atmospheres.
Then:

high vacuum 107107 % torr

very high vacuum 1079107 % torr

ultra high vacuum  below 1077 torr.

Flow of Molecules Through a Hele

Inihe Knudsen regime we do not need to solve a hydrodynamic flow problem
in order to get the rate of efffux of gas molecules through a hole, because the
molecules do not see cach other. We have mercly fo caleulate the rate J, at

which molecules strike unit area of surfacc per unit fime. We Fmd for tlsc flux
density : :

95

where r is the concentration and ¢ is the tnean speed of a gas molecule. To
prove (95}, consider a unit cube confaining n molecules. Each molecule strikes
the +z face ofthe aube 42, times per unit time, so that fn unit time 4u¢, molecules
strike unjt area,

We solve for 7, in terins of € Because ¢, = ¢cos 0, we require the average of
cos 8 over a hentisphere: 7

n J 2 088 sin do

{cosfy = -
2 j "2 sinBde

i
—. 96)
3 {
Therefore 2, = 4%, and (95) is obtained. The expression (95} for the flux forms
the basis for many calculations of gas flow in vacuum physics in the Knudsen
regime,

If A is the area of the hoie the to:a! particle ﬂux which is the aumber of
molecules per unit time, is

O =tAnE = nS, B 1
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where

S = bae 98

The conductance S of the hole is defined as the volume of gas per unit time flowing
through the hole, with the volume taken af the actual pressure p of the gas, The
conductance i$ usually expressed in liters per second. For the average air
molecule at 7 = 300K we have ¢ ~ 4.7 x 10*¢ms™!; for a circular hole of
10 cm diameter, (98) keads to a conductance of 917 liter/sec, roughly 1000
liter/sec,

For a hole with a given conductance the total pacticle flux is proportional to
the concentration n or, because p = i1, to the pressure p:

P .
B o= L8 = (v9)
T I '
Here we have defined the quantity
Q=pS, (100)

sometimes called the throughput, which is widely used by vacuun physicists as
a convenient measure of the flow, The guantity Q s numerically {not dimen-
sionally) equal 10 the gas volume flowing per unit time, but referred to the
volunte af unit pressure, in whatever units are used to express pressure. Yacuum
physicists like to express pressure in forr, hence they usually express flux in
torr-liters per second. From the ideal gas law one finds that 1 torr-liler at
300 K is equivalent to 535 x 1073 mole or 3.22 x 10*? molecules.

Qur calculations have expressed the flow of gas through a hole iito a perfect
vacuum. With gas on both sides, the net flux from side [ to side 2 will be

AD = L4{n, 8, — m,E;) = A(Plfl E%E) (101}
T

The condition for zero net flux is

P _nf_ [u\" | (102)
Pz T3 €y T2 ’ _ :

using the proportionality of & to t*2, In the Knudsen regime equal pressures
do not imply zero net flux i the temperatures on the two sides are different.
At equal pressures gas will flow from the cold side to the hot sujc zero gqs
flow rcqulrcs a hlgher prcssurc on thc hot mde
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Iz, = t,, Eq. (101) can be written

: o U B .
AD = (ny — 13)§ = ;(P: ~ pa}S = o AQ, _ {103)
where _
AQ = p S~ p,8 =0, ~ Qs (104)
R, N S O e LU AL NN AoV R o S A A S S P M M A LA L S

B e i el . |

Example: Flow through a long tube, We assume that the molecules which strike the inner
wall of the tube are re-emitted in al} directions; that is, the reflection at the surface is
assumed to be diffuse. Thus when there is 2 net flow there is 2 net monentuin transfer to
the tube, and we must provide a pressure head (o supply the momentuin transfer. Let o be
the velocity component of the gas molecules parattel to the wall belore striking the wall,
We estimate the momentum transfer to the wali on the assumption that every collision
with the wall transfers momentum M ). The rate of ttow down the tube is rACw), where
A is the area of the opening. The rate at which molecutes strike the wall s, from (95)

fnLdag, _ - {108)

where d is the diameter and L the length of the tube. The momentum transler to the tube
raust equal the force due to the pressure differeatial Ap:

Lk dn eMCu = A Ap. (106)

We solve for the flow velocity {u) to obtain

Ap 1 44 Ap I 4
<u>3p p

Ap 1 44 _Ap 1 4 07
n Ménld n Me L (107
The net flux is
Ad  Ap .
- = Ap e e § 108
AD = n{udA = Ap LT s {103}
where
T Ad
. L ad 109)
S = v AG/Ap = L= r | {

is the conductance of 1he 1ube, defined analogously to 1he conductance of a hole, Eq. (97)
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A more detailed caleulation, with averages over the velocity distribution taken more
carefully, leads 10 a conductance differing frony (109} by a fuctor §/3n:

8 tdd 2

= . 110
3z MEL  3AfeL (119)

The conductance of a tube cannot be larger than that of a hole with the same area. From
{98}, (110}, and (121] below,

32 twd 44
SIS m L e,
SuavelSnore 3¢ MEtL 3L (111)

This ratio will be Jacger than unity for 3L < 44. In writing {106} we assumed implicitly
that cvery molecule hits the tube wal, This will 00t be trug for a short tube. For our result

to be valid we must suppose that the tube is long encugh to make the ratic {111} be small
compared fo unity, which means

L » 3d. (112)

Using our earlier example for the conductance of a hole, we find that the conductance of
a tube I meter fong and 10 cm in diameter {s about 122 liter/sec, for air at 300 K.

[
13
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Speed of a Pump

The speed ofa pump is defined similarly to the conductance ofa hole orofa tube;
it is defitied as the volume pumped per unil time, with the volume taken at the
intake pressure of the pump. The same symbol S is used as for conductance;
sometimes the conductance of an aperture or a tube is referred 10 as its speed,
The product @ = pS for a pump is often called the throughput of the pump.

If a pump of speed §, evacuates a vacuum system through a tube of conduc-
tance S, the effective pumping speed S, of the combination is given by

1 ! 1

e (113)
S5 '

fust as for the conductance of two electrical conductors in series.

Proof: Let p, denote the pressure at the input end of the tube, and let p,

denote the puntp intake pressure at the output cnd of the tube, Contuuity of
flux requires that

plscl'r == (pl - pI)S: = PJS;: ' . “ 14)
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so that

py S, S &8, Lo |

A R RN S N . B {5

Pz Serr S “AS + S ( )
equivalent to (113}

The relation (113) for S, explains why in high vacuum sysicms the connce-
tions batween the pump and the vesse! to be evacuated must be as short and of
as large a diameter as possible. A long and narrow connecting tube makes poor
use of a high speed pump. Further, the speed of the pump iself cannot be farger
than the conductance of its own aperture.

How rapidly does a pump with effective speed § evaguate a volume V7 From

the ideal gas law pV = Nt, and from the definition of pump speed analogous
to Eq. (99) we find

= —, 16
de V dt 4 ¥V (116)

If the pump speed is independent of pressure, this differential equation has the
- selution

pl1) = pl)exp(—tf14); 1o = V/S. {(1in
For a volume of 100 liters connected to 4 pump with a speed of 100 liter/sec, the
pressure should decrease by 1'e per scgond.

Any user of vacuum technology soon discovers that the pumpdown of a
vacuum sysiem proceeds much more slowly in the high and ultrahigh vacuum
regions than expected an the basis of pumping speed and system volume. The
desorption of surface gas predominates—often by many orders of magnitude—

over volume gas. The surface emits adsorbed molecules as fast as the pump
evacuates rmofecules from the volume.

SUMMARY

1. The probability that an atom has velocity in dv at v is

P{o)do = 4z(M/2rc)* 20 exp(— Mv¥/21)dv ,

the Maxwell velacity distribution.
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2. Diffusion is described by
J, = ~—Dpgradn; D = {&l,
where € is the mean speed and [ is the mean frec path.

3. Thermat conductivity is described by

J, = —Kgradv; K =4iC.@,
where Cy refers to unit volume.

4. The coeflicient of viscosity is given by

oy
n= 3pcl,
where p is the mass density.

5. According to the principle of detailed balance, in thermal equilibrium the
rate of any process that leads to a givenstate must equal cxactly the rate of the
inverse process that leads from the state. '

6. The Boltzmann transport equation in the relaxation time approximation is
¢ -
-~{+cz-grad,f+v-grad, fmwlrw-l?,

o 1,

7. The clectrical conductivity of a Fermi gas is

g = nqzr,/m ,
where 7, 1S the relaxation time.
PROBLEMS

1. Mean speeds in a Maxwellian distribution. (a) Show that the root mean
square velocity v, is

Vpms = {0 M% = (/MR (118)

lows that

Because {v?) = {p,*y + (o, + ¢0,?y and (v,?y = (v, 2y = (v, it fol-

(0,27 = (/M2 = v, /342 )
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The results can also be obtained directly from the expression in Chapter 3 for

the average kinetic energy of an ideal gas. (b) Show that the most probable
value of the speed v, is

L

b = (21/M)V2, (120)

By most probable value of the speed we mean the maximum of the Maxwell

distribution as a function of v. Notice that v,,, < v,,,. (c} Show that the mean
speed T is

7= ﬁ:’ dovP(e) = (Bt/nM)2, (121)
The mean speed may also be written as {Ju]). The ratio

b, fE = 1.086. (122)

(d) Show that 7, the mean of the absolute value of the z component of the
velocity of an atom, is

o= oy =de =@yt )

2. Mean kinetic energy in a beam.” (2} Find the mican Kinetic energy in a beawr
of molecules that exits from a smatl hole in an oven at temperature 7. {b) Assume
now that the molecules are cottimated by a second hole farther down the beam,
so that the molecules that pass through the second hole have only 4 small
velocity component normal to the axis of emission. What 15 the mean kinetic
energy 7 Connnent: The molecuies in the beam do not collide and are not ia real
thermal equilibrinm after they have exited from the oven. The gas keft in the
oven s depleted with respect 1o fast molecules, and the residual gas will cool
down if it is not reheated by heat flowing in through the watls of the oven.

3. Rativ of theyinal to elecrrical conductiviry.

Show for a classical gas of
particles of charge ¢ that

Kito = 3/2¢* , ot  KiTe = 3k*2q" (129
inconventional units for K and T- This is known as the Wiedemana-Franz ratio.
4, Thermal conductivity of metals. The thermat conductivity of copper at

room temperature is largely carried by the conduction electrons, one per atom.
The mean free path of the electrons ag 300K is of the order of 400 x 107 8 cm,
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The conduction electron concentration is 8 x 10?2 perom?. Estimate (a) the
electron contribution 1o the heat capacity; (b) the electronic contribution to the
thermal conductivity; () the electrical conductivity. Speeify units.

5. Boltunann equation and thermal conductivity, Consider a medium  with

temperature gradient de/dx. The particle concentration is constant. (a) Employ

the Boltzmann transport equation in the relaxation time approximation to
find the first order nonequilibrium classical distribution:

. 3 £ dr
gt — — — —— &
f=f vxrc( 5 + zl)f" Te {125)
(b) Show that the energy flux in the x direction is

L of 3¢ £ ,
J, = -({—j§)r, f{x (—FE + F)J‘;,‘D(E)dz . {126)

where v.* = 2¢/3m. {c) Evaluate the integral to obtain for the thermal conduc.
tivity K = Sotrfm.

2

6. Flow through a tube. Show that when a Hquid flows through a narrosw tube

under a pressure difference p between the ends, the total volume flowing through
the tube in unit time is

V = (na*/34L)p (127}

where i is the viscosity; L is the fength; a is the radius. Assume that the flow is
laminar and that the flow velocity at the walls of the tube is zero.

7. Speed of a tube.  Show that for air at 20°C the speed of a tube in biters per
sceond is given by, approximately,

124°

Sr =173 (128)
L+ 3d

where the length L and diameter J are in centimeterss; we have tried to correct

for end effects on a tube of finite length by treating the ends as two halves ofa
hole in series with the tube.
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Propagation
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HEAT CONDUCTION EQUATION

Dispersion Relation, o Versus k

Penetration of Temperature QOsciliation

Development of a Pulse

Diffusion with 2 Fixed Boundary Condition at x = 0
Time-Independent Distribution

PROPAGATION OF SOUND WAVES IN GASES

Thermal Relaxation _
Example: Heat Transfer in a Sound Wave

SUMMARY

PROBLEMS

1. Fourier Analysis of Puise

2. Diffusion in Two and Three Dimensions

3., Temperature Variations in Soil

4. Cooling of a Slab

5. p-n junction: Diffusion from a Fixed Surface Concentration
6. Heat Diffusion with Internal Sources

7. Critical Size of Nuclear Reactor
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Chapter 15: Propagation

‘The purpose of this terininal chapter Is to bring within the compass of the text
the most important problems in the propagation of heat and the propagation
of sound, both classical subjects that are part of an education in thermai physics,

HEAT CONDUCTION EQUATION

Coustder first the derivation of the diffusion equation, which is found front the
Fick faw (14.19) for the particic flux density:

J, = —D,gradn , (h

where D, is the particle diffusivi

ty and n the particie concentration. The equation
of coutinuity, ' o ' :

oY
‘R .
%%dwh:&, (2)

assures that the number of particles is conserved. Because div grad = v
substitution of (1) in (2) gives

Qj} = [ Vi (3)
&t

This partial differential equation describes the tinse-dependent diffusion of the

particie concentration n.

The thermal conductivity equation is derived sinstfarly. By (14.27-14.30) we
have in a homogeneous medium

J, = —Kgradr. (4)

The equation of continuily for the energy density is

Cl o dvd, =0, - (5)
Jal3 :



Dispersion Relation, v Versus X

where C is the heat capacity per unit volume. We combine (4} and (5} 1o obtain
the heat cenduclzon cquaz;en -

——— 2 =1 #
=DV D=k (6)

This cquation describes the time-dependent diffusion of the temperature. The
equation is of the form of the particle diffusion equation (3). The quantity D,

is called the thermal diffusivity ; for a gas it is approximately equal to the particle
dhffusivity, as in (14.23).

- - Mt ittt e AT i T ok 4R e i e R s T L b Ty S VN S O
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Cwnment,  The eddy curreat equation of electromaguetic theory* has the sume form as
¢3) and (6). 4T B is the magoctie ficld itnensity, then

-

B ,

* The constant D, may be calied the magnatic diffusivity and in SI is equal to ifou;in CGS,

Dy = ¢Ydnow 1t has the dinteasions engih)? (timel™ ' and is direcily proportional 10 1he
{skin depth)® rimes the frequency. When we have solved onc eguation, say {3), we have
sofved three probiems,

s
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Dispersion Relation, @ Versus k
We look for solutions of the diffusivity equation
DV = (Ot (8)

that have the wavelike formn

0 = Ogexplith-¢ — wi}], %)

with w as the angular frequency and k as the wavevector, Plane wave analysisis
an excellent approach 10 this problem, even though it will turn oul that the
Jdiffusion waves or heat waves are so highly damped 1hat they are hardly waves

* See, for example, W. R. Smythe, Static and dynamie electricity, MeGraw-10il 3rd ed, 1968, p. 269,
This book has an unosaally fufl reatment of eddy corrent problems.
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at all. Substitute (9) in (8) to obiain the relation between k and 1o

Dk = jw. {10)

A relation wi{k) for a plane wave is called a dispersion relation.

Penetration of Temperature Oscillation

Consider the variation of temperature in the semi-infinite medium z > 0 when
the temperalure of the plane z = 0 is varied periodically with time as

0{G,t) = fycoswr (11}

which is the real part of 8yexp(~iwt), for real ;. Then in the medium z > 0
the lemperature is

0(z,8) = G, Refexpli(kz — wi}]}
= O Re{exp[i**w/D)' "z - iwt]} , E (12)

where Re denotes real part and 2 = (i — 1)//2 Thus, with & = (2!)/@}“{ '

B(z,¢} = O, Relexp{~z/8)exp{i(z/8) — iwt]}
- fyexpl~zfd}coslwit — z/8). {13}

The quantity § = (20/w)"/? has the dimensions of a length and represents the
characteristic penetration depth of the temperature variation: at this depth the
amplitude of the oscillations of f is reduced by e~ !. The characteristic depth is
called the skin depth if we are dealing with the eddy current equation. The

wave is highly damped in the medium—the wave amplitude decreases by 7!
in a distance equal to a wavelength/2x.

If the thermal diffusivity of soil is takenas D = 1 x 10" 2cm?s™ ! , then the

penetration depth of the diurna! cycle of heating of the ground by ahc sofn and
cooling of the ground by the night sky {w = 073 x 107 *s '} is

L{diurnal) = 2D/w}'"™ ~ Scm.
For the annual cycle, |

L{annual} =~ I m.



Development of a Pulse

A layer of {0cm of canh on top of a celfar will tend 1o average out day night
virindions of surfuce tentperature, but e symmuer/winier variation @ the top
of 1he celfitr requires several nielers of carth, Actual vitfues of the thermad
difusivity arc sensitive to the composition and condilion of 1he soif or rock.
Notice that a figure of merit for celinr consiruction involves e thermad
dilfusivity, and not the conductivity alone.

Development of a Pulse

In addition to the wavelike solutions of the form (9}, the diffusion equation has
several other useful forms of solutions. We confirm by inseriion in (8) that

0(x.1) = (4nDr)~ P expl~x*/4D1) (14)

is a sofution. The proportionaiity factof has been chosen so that

[T %00c0dx = 1. (15)

The solution (14} corresponds to the time development ofa pulse whichat¢ = 0 .

has the form of a Dirac delta function 3(x}, sharply localized at x = 0, and zero
eisewhere.

The pulse might be a temperature pulse, as when a puised laser or pulsed
electron beam heats a surface briefly. Let @ be the quantity of heat deposited on
the surface, per unit area. The temperature distribution is then given by

Hx,0) = (2Q/Cﬂ(4nb!)“”2 exp(~x1/4Dt) , (16)

where €, is the heat capacity per unit volume of the material. The function is
plotted in Figure 15.1. The factor 2 arises because all heat 1s assumed to flow
inwards from the surface, while for the solution (14) symmetrical flow was
assumed. Another example of the application of (14} is the diffusion of impurities
deposited on the surface of a semiconductor, to form a p—u junction inside the
semiconductor.

The pulse spreads out with increasing time. The mean square value of x is
" given by '

(xS = f.\'IO(X,!):I‘,Y/IU(.\',E){I‘N = 200, an

after evaluating the Gayssian integrals, The root mean square value is

Xl = GV = DOV oy
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0.4
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Figure 15.1  Piot of spread ol temperature pulse with lime, for 42D = |,
from Eq. (16). At r = 0 the pulse is a deha function.
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Comment,  This resuit shows that the width of the distribution increases as 1'/3, which is

a general characteristic of diffusion and random walk problems in one dimension. It 1s
quite unitke the molion of a wave pulse in 3 nondispersive medium, which is a medium
for which w = rk, where v is the constant veloaity. The connection with Brownian motion
or the random walk problem follows il we let ¢, be the duration of cach step of & random

walk; then 1 = Nig, where N i the number of steps. h foliows that
Xelt) = QD) NI (19}

so that the rms displacement & propacticnal to the square root of the number of steps.

This is the resuh observed in studics of the Bzm\man wmotion, the random motion of
suspensions of small particles in liquids.
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Time-Independent Distribution

Diffusion with a Fixed Boundary Condition at x = 0

It a solution of (8} is differentinted or integrated with respect to any of its
independent variables, the result may again be a solution. An important example
is obtained by integrating (14} with respect to x;

O{x,1) = (4xDr)~¥ fo * AN’ exp(—x"3/4D1)
U ope,
xﬁfo dsexp{~s*y=derfu, (20}

where v = x/(4D6)%, Here we have introduced the error function defined by

2

erfu = —— | ds exp{ —s2). {21}
==l

Tables of the error function are readily available. The error function has the
propertics

erf(0) = 0;  lim erf(x) = L. (22)

. xeeay

Of particular prac{ical interest is the diffusion of heat or of particles into an
infinite solid from a surface at x = 0, with the fixed boundary condition 0 = 0,

at x = 0and § = 0atx = co. (For { < 0 we assume § = 0 everywhere.) The
solution is

0(x,0) = 0,[1 ~ erf(x/(4D1)"")]. (23)

Again we sce that the distance at which 0(x,r} reaches a specified value is propor-
tional 1o (4D1)'3. The application of this solution to the dilfusion of impurities
into a semiconductor s discussed in a problem.

Time-Independent Distribution

Let us look at a solution of (8) that is independent of the time. The diffusivity
equation reduces to the Laplace equation

Vi = 0. (24}

Consider a semi-infinite medinm bounded by the plane z = 0 and extending

along the positive z axis. Let the temperature vary sinusoidally in the boundary
plane:

0(x,5,0) = Oy sin kx. {25)
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The solution of (24) in the medivm is

0(x,y,2) = O sin kxexp(~— kz). - {26)
The temperé{u:e variation is" damped.expon.cmially with the distance from the

boundary plane. The temperature distribution in the time-independent problem
must be maintained by constant heat sources on the boundary plane z = 0.

PROPAGATION OF SOUND WAVES IN GASES

Resulis developed earlier in this book can be applied to the study of sound waves
in gases. Thermal effects are important in this problem. Let ép{x.1) denote the

pressure assoeiated with the sound wave; the form of the wave may be written
as

dp = dpgexplithx — )], {27}
where k is the wavevector and ¢ is {hs an gular frequcncy The wave propaga tes
in the x direction. :

We suppose the equation of state is that of an idcai gas:

pV = Nt , or = ptiM | {28)

where p = NAI/V is the mass density, and M is the mass of a moleeute. The
force equation referred to unit volume is

p gu e _ i?.’?: _p ot (29)
dt Toax T T Madx  Moax

Here u is the x component of the velocity of 2 volume element. The motion is
subject to the equation of eontinuity

op/ét + div{py) = 0, {30)
or, in one dimernsion,
- Op/ot + &pw)/ox = 0. {31)

The thennodynamic_:_ﬂidcmi{y is

dU + pdV = tdo (32a}
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which can also be writ{en

bl e T 3
AR T {32b)

If we assume {pending discussion below) that there is no entropy exchange -
during the passage of a sound wave, Eq. (32b) becomnes

Colr/en) + (p/VIEVIE) =0, {33)
where € is the heat capacity at constant volume, per unit volume. We can re-

write the second term in terms of 8/t becaunse p = NM/V and (1/V)(V/E1) =
~{1/p)(@p/6r). Now the thermodynamic identity appears as

Colde/d) ~ (pfpYEpter) = . (34)
1.et us define the Ifractionai deviations s, 0 by
g = poll + 3); 1= 10l + 0) , | (35).
where pQ, 1 are the. deﬁsi{y and tembcralure in the absence of tlie sound wave,

We assume that i, 5, § have the form of a traveling wave: expfitkx — wn)}. The
three equations {29), {31}, (34} that govern the motion now become

—fwpu + ik{{tpa/M)s + {pro/M0] = O; {36)
—iwpgs + tk{pots + pu) = O 37
—iwryCyll + f{p/plpes = O. {38)

We assume that at sufficiently small wave amplitudes it is a good approxima-
tion to neglect in these equations terms in the squares and cross products of
u, s, and 8. Forexample, pu = pg{l + s)u becomes poit if the cross product suis

acglected. The equations thus reduce to, with the subscripts dropped from
pandz,

wit — {krfM)s — (kA = 0, {39)
ws — ku = 0; {40)

Tépg - p§ = (; orCofl ~ ns =0, {41}
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where n is the concentration. Tliese equations have a solution only if
w = (re/Myk, S @

where y = (C, + n)jC, = C,/Cy in our units. The velocity of sound is

o l v, = dofck = yt/M)I2, (43)

This result applics to nionatomic gascs from the lowest frequencies up to high
frequencies Jimiied only by the requirement that the acoustic wavelengih shoutd
be much larger than the mean free path of the atoms, This requirement is the

criterion for the applicability of the hydrodynamic approach embodicd in the
force equation {29}

Thermal Relaxation

With polyatomic gases {43} is valid at Jow frequcticics, but as the frequency is
increased there is a transition freguency region above which the velocity of
- sound increases. The transition region belween low frequency and high fre-
quency propagation is associated with refaxation effects. _
Therma! relaxation describes the establishment of thermal equilibrium in a
system. Energy dissipation results when all parts of a system are not at the same
temperature; the dissipation is strongest when the period of the heating and
cooling half-cycle in the sound wave s comparable with the time required for
heat exchange between the different degrees of freedom of the sysiem. In
polyatomic gases under standard conditions there are time delays of the order
of 107 %s in the transfer of energy between the internal vibrational states of a
molecule and the external trausiation states.
Letthe heat capacity C; and temperature 7; = t4{1 + 8;)1efer 1o the internal

- states, while Cy and v = 1ol + 8) refer to the transiational states. Then (34)
becomes

Cycry/ct) + Cp(St/cty — (p/pfdpfcey = O, (44)
or, in place of (38),
—itotgC 0y = iwt,Cud + iolp/pipes = 0. {43)

Suppose that the {ransfer of energy between the internal and exiernal states has
the characteristic time delay £, such that

6?1]’5! = "'{r - TI)Z!C' f .. : [46)
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oy

iy = {0 — 91)/.10. | _ @7

Here tg s called the relaxation time, There will be separate refaxation times for
the rotational-translational transfer and the vibrational-translational transfer,
We combine (39}, (40), {45) and {47) 1o obtain the dispersiou relation

C;.r + C; -+ {Q).fgCV

k2 = w(M ,
M) e T T,

{48)

where Cy, C, refer to the translational staies alone. 1n the low frequency Hmit
i << L and

k? = w?{A/1) %”—.——Egl = wHM/fyo1) £49)
P i

where y, is the low frequency Hmit of the total lieat capacity ratio (C, + €}/
{Cy + Cy). The low frequency lhmit of the velocity of sound is

0,(0) = {pot/M)2. | (50)

In the high frequency limit wry » 1 and

k= oMINC/C) = My 0. {51

Here y,, refers only to the translational states; at high frequencies the internal

states are notexcited by the sound wave. The high frequency Hmit of the velocity
of sound 1s

(@) = (o 1/ M (52)

Values of 3, are given in Tabk 13.1; if no internal states at alf are excited,
= = 3

The wave is attenuated when L is complex; the imaginary part of k gives the
pressure attenuation coefficient «. Front {48) it is found that the maximum
absorption per wavelength occurs when w = 2r/1y and Is given approainusely
by

(53)

(:(‘;‘)max = o —F
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Table 1531 Rano C, Gy = ¥ for gascs

Gas : Temperature, “C ¥
- Alr : L7 1.403
H,0 o0 1.324
H, L5 1410
0, ~ (8L 1450
LS 1400
200 L3%6
2000 1.303
CO, & L.304
Ar ' 15 1.668
He - 180 L660

NOTE: For a monaiomic ideal gas, C/Cy = §/3 = L667,as
for Ar and He. For a diatomic gas al & temperature high
enoueh 10 excite the rolavional rnotion, €0 = Ti5 = 140,
as for O, and H; al room temperature; at temperalures
sufficiently high te excite also the vibrational motion,
CofCo = §IT = 1.286, a8 for O; al 2000°C. The values given
ate of 75, applicable Lo stalic processes and 1o sound waves
in the lmit of low Kequencies. For very high frequency
Csound waves onply the transtational motion is l:xcned znd
'1 = 5.3 s apphicable.

For CO; gas at the relaxation frequency of 20kHz under standard conditions
the intensily is observed to decrease by 1/e in about 4 wavelengths—a massive
absorption, in agreement with theory.
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Example: Heal transfer in a sound wave, Equation {33} expresses the isentropic assump-
tion: the equation neglecis the thermal conductivity which gives rise to some transler of
thermal energy within the sound wave between successive warm and cool half cycles. The

assumption thatde = 0must be reodified to take account of heat flow, The heat conduction
equilion {6} may be Wrillen as

K $fext = tdgfcr {(54)

where § is the entropy densily, Then {34) becomes

Cy(ﬂ/af) ~ {plpX@pfan) = K(2*c/ox?) ,

or

~jaCyl + fwps = ~Kek*d. . - - (55)



Summary

When we use this in place of {41), the dispersion relation otk becomes

¢o + Wk
K = wi(Mfe )(C : Iwa ) (56)

with W = K/w. Atlow frequencies WY is much smalier than &), so that the sound velocity
is equal to the isentropic result v, = (y,7/ANE 3, as before. The condition 1V&* « &, is
essentially the condition | « 2, where { s the molecular mean fiee path and A is the wave-
iength of the sound wave. The atienuation of the pressure oscillation is given by the imag-

inary pant of the wavevector kand is denoted by 2. The cesult from (56) in the low frequency
region Wi « €, is that

« = {75 — DpKo’2¢°C, , (57)
where f‘ refers 1o unit volume.
SUMMARY
1. The heat conduction equation is the partial differential equation that folows

- when the phenomenological transport equation (here the Fourier faw) is
combined with the equation of continuity. We obtain

uwDW D, = K/C.

af I. /

2. The time-dependent diffusion equation and the eddy current equation have
the same {orm, so that their sofutions may be translated from the solutions

of the heat conduction equauon, these being often more familiar mn the
literature.

3. Frequently it Is useful to construct solutions in the form of superpositions
of plane waves of the form

6 = Boexplilkr ~ wi)l.

The differentiat equation then gives' the relation between w and k, called the
dispersion relatron of the problem,

4. The propagation of sound waves in gases depends on the rate of exchange of
energy between the transfational, rotational, and vibrational motions of a
molecule. A low frequency sound wave is described by isentropic, and not
isothermal, parameters—a result that seems paradoxical at first sight.
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PROBLEMS

1. Fouricr analysis of pufse. Consider a distribution that at the initial time

1 = 0 has the form of a Dirac defta function §(x). A delta function can be

represented by a Fourier integral:

0(x0) = S(x) = 5‘; [ dkexptik). (58)
At later times the pulse becomes
e T P
O(x,1) = 3 f_m dkexplitkx — wi}], {59}
or, by use of (10},
O(x,1} == f% f_nm dkexp{ikx — DK%} ' {60)

Evaluate the integral to obtain the result (14). The method can be extended to

describe the time development ofany distribution griven att = 0. I the d;strzbu« '

tion is f{x,0), then by the definition of the delta function

f(x,0) = Id-x’j'('x’,O)é(x — X'}, (61)
The time development of S(x ~ x'}is
Bx ~ x'1} = (4nD1)"Yexp] —(x — x)24Dt] , (62)

by (14). Thus at time ¢ the distribution f{x,0) has evolved to

fl) = (dnDy)™t f dx’ f(x' Oyexpl —(x — x)2/4Dr]. (63)

This 15 & powerful gesteral solution.

2. Diffusion fn two and three dimensions.

{a) Show that the diffusion equation
ut two dimensions adinits the soluiion

0,0) = (Ca/t)exp(—r/4D1) (64)

and in three dimensions

0:(t) = (C,/t¥?)exp(—r*/4D1). _ (65)

A e At

T TP e



Problems

(b} Evaluate the constants C; and . These solutions are analogous to (14)
and describe 1he evolution of a delta function at ¢ == 0,

3. Temperature vaviations in soil. Consider hypothetical clinuite in which
boih the duily and the annual variations of the temperature are purely sinusoidal,
with amplitudes 0, = 10°C. The mean annual temperature 0y = 10°C. Take
the thermal diffusivity ofthesoittobe | x 1072 em? s~ . Whatis the minimum
depih at which water pipes should be buried in this climate?

4. Cooling of a slab. Suppose a hot slab of thickness 24 and initial uniform
temperature 8,y i suddenly immersed into waler of temperature 8§, < 0,,
thereby reducing the temperature at the surface of the slab abruptly to 8, and
keeping it there. Expand the temperature in the slab in a Fourier serics. Afier
some time all but the fongest wavelengtlt Fourier component of the temperature
will have decayed, and then the teiuperature distribution becomes smusodal,
Alier what 1ime will the temperature difference between the center of thie slab
and s surface decay to 0.0! of the initial difference 8; — 057

5. p-n junczr‘ﬂn- diffusion froor a fixed surface concentration.  Suppose a sili-
con crystal is p-type doped with a concentration of i1, = 10'®cm™* of boron
atoms. If the crystal slab is heated in an atmospherc containing phosphorus
atoms, the latter will diffuse as donors with a concentration n,(x) into the semi-
conductor, They will form a p-ur junction at that depth at which a, = u,.
Assume that the dillusion conditions are such that the phosphorus concentii-
tion at the surface is maintained at m,(0) = 10'7cm ™3, Take the diffusion
cocfficient of donorstobe D = {0”H em?s ™', What is the value of the constant

C in the equation x = C1}/?, where x Is the depth of the p-n junction and 1 is
the 1ime?

6. Hear diffusfon with intcrnal sources,  When internal heat sources are pres-
ent, the continuity equation (5) must be modified to read

-

CZ v div), =g, (66)
ol

where g, is the heat generation rate per unit volume. Examples include Joule
heat generated in 2 wire; heat from the radioactive decay of trace elements
inside the Earth or the Moon. Give an expression for the temperature rise at the
center of (a) a cylindrical wire and (b) the spherical Earth, on the assumption
that g, is (ndependent of position and is constant with time,

7. Critical size of nuclear reactor. Extend the considerations of the preceding
probletn to particle diffusion, and asstune that there is a act particle generation
rate g, that is proportional to the local particle coneentration, g, = /1y, where
16 1s a characteristic titne constant. Such behavior describes the neutron genera-
tion ia a nuclear reactor. The value of 1, depends on the concentration of ***U
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nuclei; if no surface losses took place, the neutron concentration would grow
as exp(t/te). Consider a reactor in the shape of a cube of volume L* and assume
that surface losses pin the neutron surface concentration at zero. Show that
Eq. (3), if augmented by a generation term g, = nfly, has solutions of the form

n(N,p,5,1) o exp(t/t;)coslk x) cos(k,y) cos(k.2) , (67}

where kL, kI, and k.L are integer multiples of n. Give the functional depen-
dence of the net tme constant r; on k,, k,, k, and 15, and show that for at least
one of the solutions of the form (67) the neutron concentration grows with img
if L exceeds a critical value L, . Express L,; as a function of D, and tg. In

actual nuclear reactors this increase is ultimately halted because the nentron
generation rate g, decreases with increasing temperature,



Appendix A

Some Integrals Countaining
Exponentlals
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THE GAUSS INTEGRAL

Let

_{oﬂfj exp{—xHdx = 2j exp{—x*}dx. (1)

The following trick is used to evaluate Io. Write {1} in terms of a different
inlegration variable:

Iy = f;: exp(— y3ydy. (2}

Muluply (1) and {2) and convert !he result toa doubie integral:

I? mf_:em(—x*}dxr exp(—y )dy *“f f exp ~ {x* + y*)dxdy.
| (3)

This is an mntegral over the entire \——_} pldne Convert to polar coordinates r and

@, as shown in Figure A.l, Then, x* 4 y* = 72, and the area element dA =
dx dy becomies dd = rdr dep:

I02 == J.:R[J.fa exp{— ;-2) r{fr]d(p = 27 J.: expi— rz) rdr.

Because of dlexp(~r?)] = —2exp(~— ri)rdr, the integrat over riselementary
I, = —-«nfd[exp{—r’)] = —-[nexp(—-r’)] = 7.
r=0

Thus

fo = f::exp("fldx = 2_}?&[3(-*3:2) dx = =2, o)




Some Integrals Contafuing Expanentials

dA >’,

rz!fp/
area element dA = ridrdp, s :’\
\ \
r /\:\dr(/
dp ™\
qJ
GENERALIZED GAUSS INTEGRALS,
AND GAMMA FUNCTION INTEGRALS
Integrals of the form
I, = 2 J.;x’“cxp(w—xi}dx, (m > —1}, (5)

where nineed not be an integer, may be reduced to the widely tabulated gamma
function I°(z), by the substitutions x* = y, 2dx = y~ dy:

I, = J.:y"g“"',;fy =T+ 1), u={m~— 1)y (6)

The integral in (6) may be viewed as the definition of I'(z) for noninteger positive
values of 2.

The gamma function satisfies the recursion relation

C{n + 1} =ub (). (7}

It is easily obtained for n > 0 {rom (6) by integration by parts, and it is used [0
extend the definition (6) of T(2) to negative values of z. By using {7) repeatedly
it 18 always possible to reduce I'{z)

for arbitrary argument to a value in the
ntervitl 0 < 2 < . : o



The Stirling Approximation
Form = 0,1t = ~4; from (4):

I = fowy”*e“’dy = [(§) = =l/2, (8)

Ifmisaneveninteger, m = 2/ > 0, n is a half-mteger, and u = { — &, then we find
by repeated application of (7), with the aid of (8), that

Ty =2 J;ﬁx”exp(w—xz)dx = fomyl"ie-r dy

=T+ =0-Px@-Dx-xixixa )
Form = {,n = 0:
I = ZJ.:.'(cxp{“xz)dx - J':e“rdy = () = (10)

1 is an odd integer, m = 2! + 1 > 1, ais an integer, 1 = 1 2 0, and we find
sum!dr!y, with the aid 01’(10)

f,,,,r:z_[' ¥ Lexp( x)d\ J.ye Y dy
= et x (I — 1) x-- % 2x 1 =]1 (11}

The gamma function for positive Integer argument is simply the {actorial of
the integer preceding the argument.

THE STIRLING APPROXIMATION

For large values of n, n! can be approximated by

l ! t l
!~ 12yn - SR
nt o 2 cxp— n + o (n )

ar

112

1 1
togn! = Log2n + (n + Nlogn — n + Tom + 0(— ) (12b)

Here the term [/12n is the first term of an expansion by powers of 1,n, and
. . . . . 12
0(1/n%) slands for omitted higher order terms i this cxpansion, of order 1/
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or higher. In practice, even the term 1/12n 1s usually omitted. Its principal role
is to check on the accuracy of the approximation, If the effect of the 1/12n-

correction introduces only a change below the desired accuracy, :he entire
expression has the desired accuracy.

To derive (12) we write, in accordance with (1),
nl = J‘o‘“fe“*dx = J‘:‘ exp[ f(x)]dx 13
where

J(x} = nlogx — x, {14)

We make the substitution

x=n4ynt =0l + yn”Y, de = nidy (15}

Then
. _.f(x) = nlogn —~ n + g(}_r) . (16)

where
é(y) = nflog(t + yn™ %) — yn ¥} | (17)

With these,

exp/(9] = e explg)] (18
.. n! = ntlpre-n J.wm exp[g(y)]dy. (19}

The function g{y) has its maximum at y = 0; g 0) = 0 Using the Taylor
expansion of the Iogamhm

log(t + ) =5~ 32+ 4> ~ &s* + -, (20)

with § = (yl/n)i."z, Wc cxfmnd g(j')-

_ 1}’2 1 }’2 iz .
9‘”“"[“5?*‘3(}“ N

2
!
2
-
R -
=,

e



The Siirling Approxiihation

In the limit 1 — <0, 5 —» 0, and aH but the frst term in (21} vanish, and the
integral in (19} becomes

Joexplal) iy = [ % expl—y 20ty = 2m)2 (22)

with the aid of (4). H (22} is inserted into (19} the result is identical to (12a) except

for the correction term 1/12n. Its derivation is a bit tedious. We work with
fog nt and wriie

A !
logn! = lIog"n + {1 + {jlogn — n + —— + O(n ) (23a)

Ifwereplace nbyn — 1,
log(n — 1)t = Ylog2n + (1 — $log(n ~ 1} — (0 — 1}
+ A + 0(-}7) {23b)
n—1 n* _ :

We subtract (23b} from (23a):

nl
logn! — logln — 1M = log( ) = logn
= {(n 4+ {logn — {(n — Hlogln — 1} — 1
i
+ é""— %i!"“* 4 0(“—3") . {24)
n n -1 n

where all omitted terms are now at least of order 1/n% The two terms i 4
can be combined:

A . A A A 1
—— P A AL s 25
n n—1 nin — 1) re (na) (25)

1£ this is inserted into (24), we find

| ;?“ {n %)log

1
1 - O_(E?f)j R
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For large n the logarithm may be expanded according to (20), with s = —1/n:

‘no 1 1 1 1 1
¥ e TR e ¥ — e b o e s i 4] . 27
tog n—1 . IOE(I n) n + piie + in? * (u") 7
S SRR T T B SO 4
(2 = 2) IOgn -1 I+ 28 2n + 3n? 4n? + n?
g 0f 2 | (28)
- 121? w -

If this is inserted in (26) we see that 4 = /12

We are often interested not o n! but only in loga!, and only to an accuracy
such that the relative error between an approximate value of loga! and the
true value decreases with increasing o, Such an approximation is obtained by
neglecting all termis in (12b) that increase less rapidly than linearly with a:

logn! =~ nlogn — n.

(29)
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Temperamre Scales
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DEFINITION OF THE KELVIN SCALE

Numerical values of temperature®! are not expressed in practice in terms of the
fundamental temperature r, whose unit is the unit of energy, but on the (absolute}
thermodynamic temperature scale 7', the Kelvin scale, whose unit 1s the kelvin,
symbol K. The kelvin was defined in 1954 by international agreement as the
fraction 1/273.16 of the temperature T, of the triple point of pure water. Hencs,
by this definition, T, = 273.16 K, cxactly. This temnperature ts 0.01 K above the
atmospheric-pressure {reezing point of water (the ice poinl), To = 273.15K.
The triple point is more easily and accurately reproducible than the ice poinl.
The triple point cstablishes itself automatically in any clean evacuaied vessel
that is partially backfilled with pure water and cooled until part but not alt of
the water is frozen, leading to an equilibrium between solid ice, liquid water,
and the water vapor above the ice-water mixture.

The Celsius temperature scale ¢ is defined in terms of thc Kelvin scale, by

i

t=T - 2735K. (D)

Temperatures on this scale are expressed in degrees Celsius, symbol *C. Tem-
perature differences have ihe same value on both Kelvin and Celsius scales.

The conversion factor kg between the fundarnental temperature 7 and the
Kelvin temperature,

1= kyT (2)

* We appreciale the assistance of Norman E. Phillips in 1he preparalion of this appendix,

' The ullimate survey of the siale of development of precise femperature measurements is ihe
procecdings of an international symposium taking place every few years under the tithe Temperature,
its measurement and control in science and indusiry. The proceedings are published under the sime
ltie. Yol 1; C. O, Fairchild, editor; Reinhold, 1940, This volume is targely obsolete. Vot 20 B C.
Walle, editor; Reinltohd, 1955 Althuugh o longer refiecling 1he state of the art, 1his volume is still
y.cful for f1s thorough mlroductory discussions of principles of various methods of temperature
measurements, not all of which ace repeated in the later volumes. Vol. 3 (3 panlsy: C. M. Herzfeld.
editor; Reinhold, [962 Perhaps the miost usclul volune becanse of its ftrodoctory discussion of
principles of varfous melhads of temperature measurements. Yol 4¢3 parts): H. H. Plamb, edilor;
Inslrumeny Society of America, Pitisburgh, (972, Mos1 usefu! for represenling the state of e arg

- of various melhods of lemperature measurerments; contains less inlroductory review matefial
than Vol 3.
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is called the Boltzmann constant. Its numerical value must be determined
experimentally; the best current value* is

kg = (1.380662 -+ 0.000044) x 107 SergK ™, (3)

The value of the Boltzmann constant is delermined with the aid of certamn
model syslems whose struciures are sufficiently simple thut one can caleulate
the energy distribulion of the quantum states, and {rom it the entropy as a
funclion of the energy, ¢ = a(U). The fundamental lemperalure as a function

of the energy is t{U) = ((6/cU)™!. Examples of model systems used in 1he
determinalion of kg are the following:

() Ideal gas. lu the limit of low particle concentration all gases behave as
ideal gases, satislying pV = NkyT.One obisins ky by measuring the pV product
of a known amount of gas at a known kelvin temperalure 7, extrapolated to
vanishing pressure, The determination of the number of particles N invariably
involves the Avogadro constanl N4, independently known.

(b)Y Black boudy radiation, Wec can obtain &y by filting the meusurced specteal
distribution of a black body of kuown Kelvin temperature 7T to the Planck
radiation law (Chapler 4). Because this law involves t through the ratio I/t =
fiw/kyT, this determination requires the independent knowledge of Planck’s
consant.

(&) Spin paramagnetisin, In the limit of vanishing interaction the magnetic

moment M of a syslem of .V spins in 2 magnetic ficld B, at temperature 7, is
given by Fq. (3.46). Various paramagnetic salts, such as cerous magpnesium
nitrate {CMN) are good approximations to noninteracting spin systems if the
temperature is not too low. By filling measured values of M as a function of B/T
to (3.46) we can determine lhe ratio m/ky, where m is the intrinsic magnetic
moment of the eleciron, known independently. Usually only the low-field
portion is used, in which case the number of spins must also be known, which
involves again N . Precision results require correction for weak residual spin
interactions, similar to corrections for particle interactions in a gas.

The ky value given in (3) is a weighted average of several determinations.
With an uneertainty of about 32 parts per million, it is one of the least accurately
known fundamental constants, Most of this uncertainty is due to the difficulty
of the measurements and to the nonideality of the systems used for these

measurements. About 5 parts per million are due to the limited accuracy with
which fiand N4 are known.

* E. R. Cohen and B. N. Taylor, 1. Pf:y:. Chens. Reference Data 2, No. 4 (1973).



Primary and Sccondary Thermonteiters

When expressing temperature as conventional Kelvin temiperature T rather

than fundamental temperature 1, it is customary to absorb the Bolizmann
conslanl into the definition of a conventional entropy S,

= kgo. (4}

The relation #Q = tdo beiween reversible heat transfer and entropy transfer
then becomes

4aQ = TdS. {5}

PRIMARY AND SECONDARY THERMOMETERS

Any accurately mecasurable physical '_propcriy X whose value is an accuraiely
known function of the temperature, X = X{(1), inay be used as a thermometric
pununeter 10 meusure the temperature of the sysiem possessiug the property
X and of uny systen in thermua! gquilibrivm with it Uscd to tlis wiy, the
systent with ke property X is a thermoemeter. The principles underlying
the most commendy used thrermonmcters are lsted g Tubles Bl wid B2 The
thermerneters listed in Table B.2 are called secondary thermometers, defined
as thermometers whose temperature dependence X{T') must be calibrated
empirically, by comparison with anothier thermoincter whose calibration is
already known. The calibration of all secondary thermonigters must ultimately
be traceable to a primary thermometer. But once calibrated, secondary ther-
moineters are casier to use and are more reproducible than the primary ther-
mometers available at the same temperature,

Any calculable modet system that can be used to deterniine the value of the
Boltzmann constant k, can be used as a primary thermometer, and the three
model systerns discussed above are the most important prunary thermometers
{Table B.1).

The preeision and accuracy of thermometers vary greatly. Precision is
expressed by the vartation AT observed when the same temperature is measured
at different times with the same tnstrument. Accuracy is expressed by the
uncertainty AT with which the thermometer reproduces the true Kelvin scale.
Secondary thermometers based on electrical resistance measurements may
achieve a precision of 1 part in [0 The precision of thermometers based on
mechanical pressyre measurements {s much poorer, particularly at low pres-
sures. For example, helium vapor pressure thermometers at the lower end of
their useful range have a precision of about 1 part in 10% The accuracy of
secondary thermometers is limited by the accuracy of the primary thermometers
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Thermodynamic Thermometry

Tabte B.2  Principles of the most imiportant sccondary

thermometers -
' : . : Usefut range
Physical property in K

Thermoelectric voliage of thermocouples® 400~1400
Thermal expansion of liquid 1n glass 200400
Electrical resistance :

metals* ' 14-700

semiconductors {germanium)?! 0.05--77

comimercial carbon resisiorst 0.05-20
Vapor pressure of liquefied gas

*He 1-52

Ste : 0.3-3.2

rotE: The lemperature ranges are approximate ranges of wide uiility,
not ultimate limits,

* Uscd as interpolating instrument in the 1PTS.
* Widely used as cryogenic laboratory thermometer; each specimen
must be individually calibrated to detiver usable accuracy.

used to calibrate them. The accuracy of primary thermometers is limited hy
their relatively poor precision and by residual variations between different
thermemeters. As a rough esiimate, the preseni-day accuracy of primary
thermometers is about ! part in 10* above 100K, aboui ! part in 107 around
1K, and about ! part in 102 near 0.0 K,

THERMODYNAMIC THERMOMETRY

It ts possible to perform primary thermometry without relying on the theoreti-

cally known properties of stmple model systers, by somehow utilizing the
relation {5). We give three examples,

{a) Carnot eycfe. Cousider a Carnot cycle operating between o known tem-
perature 1) and the unknown temperature T, Because of entropy conservation
the beat truusfers at the two temiperatures satisfy Q,/7, = Q,/T,. The yn-
known teniperature can be determined by ureasuring ilte ritio of the two et
transfers. The method is tot very practical.

{bY Magnetic colorimetry.  Suppose a paramagnetic substance (s initially at a
known temperature 7', i a magnetic field B|. Let the snbstunce be cooled by
sentropic demagnetization to the unknown temperatare 7. Hf now a known
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small amount dQ of heat is added to the substance, its entropy is ratsed by
dS = dQjT,. The substance is then isentropically re-magnétized, and the
magnetic field B, i determined at which the temperature has returned exacily

to T. The Held B, will be found slightly different than B,:B, = B, + d8B.
Entropy conservation requires

dS = dQ/T; = S(T,,B;) — S(T\,B,) = (65/6B)dB. (6)

From the thermodynamic ideatity for the Helmholiz free encrgy {or a tagnetiz-
able substance,

dF = —8dT — MdB , {7}

one obtains, by the usual cross-differentiation, th.e Maxwell refation
(€8/8B)r = (OM[GT)g. {8)
We insert (8) tnto (6) to find the expression for the unknown lemperature:
T, = @QUBGMET) O

ThequantitiesdQat T = T,anddBatT = T, areknown, and the temperature
derivativeof Ml at T = T, and B = B, is easily measured. The method makes
no assumptions about the ideality of the paramagnetic substance, and it has
therefore been used extensively at low temperatures.

(©) Clausius-Clapeyron thermometry. The melting temperature T, of a sub-

stance varies with pressure p according to the Claustus-Clapeyron cquation of
Chapter 10:

AT, Jdp = T, AV/AH , (10)

where AV s the volume change during melting, and AH the latent heat of

fusion. If both quantities have been measured as funciions of pressure, {10} can
be integrated:

Ty/T) = ex p_[; (AV/AH)p. | (11)

If T, and p, are known, a measuremen{ of the pressure p, at which the unknown
temperature T, is the equilibrium melting temperature permits calculation of
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T, from (11). By utilization of the strong temperatute dependence of tha
solidification pressure of liquid *He, the method has been used as an alternative
t0 magnetic thermometry at low temperatures.

INTERNATIONAL PRACTICAL TEMPERATURE
SCALE (IPTS)

Many known phase equilibrium temperatures can be reproduced far more
precisely than the accuracy with which their exact location on the Kelvin scale
can be determined by primary thermometry. To facilitate practical thermometry,
a number of easily reproducible phase equilibrium temperatures have been
determined as accurately as possible and have been assigned best values to
define an International Practical Temperature Scale (1PTS). On the IPTS the
selected equilibrivim points are treated as if their temperatures were knowr to be
exactly equal to their assigned values. Intermediate temperatures are determined
by a preciscly specified interpolation procedure that is chosen to reproduce the
true Kelvin scale as accurately as possible. The present version of the scale is
TPTS68, adopted in 1968 by international agreement, covering temperatures
from the triple point of hydrogun {13.81K) up\\-drd * Table BB gives the
assigned temperatures for IPTS68. -

In the range between [3.81 K and 903.89 K, whicli is the melting point of
antimony, a platinum resistance thermometer is used as the interpolaling
instrunient, In the range from 903.89 K to 1337.58 K, the melting point of gold,
a platinum-platinum/rhodium thermocouple is used. Above 1337.58 K black
body radiation is used.

Below 13.81 K no precisely defined procedure has been agreed, In the ringe
between 52K and 1381 K various scales based on the vipor pressure of
hydroget are o practical use. Below 5.21 K, the crilieal point of *He, down to
about 0.3K, the 1958 and 1962 helium scales* are widely used as de facto
extensions of IPTS68. The 1958 *He scale relates the vapor pressure of *He to
the temperature T the 1962 *He scale uses the vapor pressure of “He.

As the accuracy of ptimary temperatuse measurements inproves, €rrors in
practical scales such as IPTS becomne uncovered, leading eventually to revision

of the practical scales. Table B.3 lists some errors now believed to exist in
TPTS68.

* See, for example, American fnstitute of Physics handbook, 3vd ed., McGraw-Hill, 1972; Scction 4
Heat, M. W, Zemansky, cditor. Confains compleic original references.
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Table B.3  Assigned {emperalures of the Internavional
Practical Temperature Scale of 1968

. Equilibrium poiny Fege 1 Tea— T,
Substance Type in K inK
hydrogen t 13.4t
hiydrogen 5 {250 torr) 17.042
hydrogen b - 1028
neon b 27.402
oxygen r 54.361
oxygen b 90.188
waler ! 213.16 exact
watcr b 37315 0025
tin I 505.4181 0.044
ine I3 £92.43 0.066
silver I 123508
goid f 1337.58

i

roTE: Except for the triple poinis and the (7.042 K point, all
equilibria are those al a pressure of one standard aimosphcre,
Po = 101325 Nm™? {=T76010rr). The 17.0421K poind Is the
boiling point of hydrogen at 25Gtorr. The notations 1, &, and
[ in 1he sccond column cefor to triple points, beiling points,
and freezing polits.* The last column contains estimates of
errars kaown to exisl, from Physics Today 29, No. 12, p. 19
(Dee. 1976). .

* AY duta from the American tustitute of Physics hendbook,

Ird ed., McGraw-Hill, 1972; Section 4: Heat, M. W, Zemansky,
edilor,



Appendix C
Poisson Distribution
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The Potsson distribution law is a famous result of probability theory. The result
ts useful n the design and analysis of counting experiments in physics, biology,
operations rescarch, and engineering. The statistical methods we have developed
lend themselves to an elegant derivation of the Poisson law, which is concerned
with the occurrence of small numbers of objects in random sampling processes.
It ts also called the law of small numbers. If on the average lhere 15 one bad
penny in @ thousand, what is the probability that N bad penntes wil be found in
a piven sample of one hundred pennies? The problem was first considered and
solved in a remarkable study of the role of luck in criminal and civil law trials
tn France in the early nineteenth century.

We derive the Poisson distribution faw with the aid of a model system that
consists of a large number R of independent tattice sites in thermal and diffusive
contact with a gas. The gas setves as a reservoir. Each lattice site may adsorb
zero or one atom. We want to find ihe probabilities

PO), P(1), P(2), ..., P(N),...

thatatotal of 0, 1,2,..., N, ..., aloms are adsorbed on the R sites, i we are
given the average number (N of adsorbed atoms over an ensemble of similar
syslems.

Consider a system composed of a single sie. [t is conveuntent to set the binding
energy of an atom to the site as zero. The identical form {or the distribution is
found if a binding energy is included in the caleulation. The Gibbs sum s

3;““*‘2, (I)

where the tern 2 1s propothioui! to the probability the site is occupied, and
the term 1 is proportional to the probabiliry the sie is vacant. Thus the absolute
probability at the site s occupied fs

f o= ;’.. {2)

P+ 2

The actual vatue of A i determined by she condition of the gas in the reservoir,
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because for diffusive contact between the Iattice and the reservoir we must have
A{fatrice} = A{pas), ' 3
by the argument of Chapier 5. The evaluation of J(gas) for an ideal gas was

given tn Chapter 6.
We now extend the treatment to R independent sires. Then

G = G127 Fr =1+ O~ (4)

By the argument ysed in Chapter 1 we know that the binomial expansion of
(O + @)% or (1 + A)® counts once and only once every state of the system of
R sttes. Each site has two alternative states, namely O for vacant or @ for

occupied, which corresponds in the Gibbs sum to the term | for 1° and the
term 4 for A%,

In the low-occupancy limit of f « | we have f = 7, whence
(Ny = fR =R o (3)

is the average total number of adsorbed atoms. The Poisson distribution is
concerned with this low-occupancy limit. We can now write (4) as

| PRYE [ CNDNR
3’:0:[&(1’}"“?) “(1+“‘§’")- ' (5)

Next we let the nuniber of sites R increase without limit, while iolding the
average number of occupied sites {N) constant. The Poisson distribution is

conecerned with infrequent events! By the definition of the exponential function
we have

R
iim(l + 9\2) = expdNY, N
TRew R
so that
(ARY"
Fiot = eXp{N} = exp(JR} = T (8)

The last step here is the expansion of the exponential function in a power series.
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The term in 2% in F,, Is proportional to the probability P(N) that N sites
are occupied. With 1he Gibbs sum as the normalization factor we have in the
fumil of turge R:
JARY L 2-“'R"’§'xp{~;m
PINY = o ¢ e e Lt UER T
W =g NT er
or, because 4R = (N) from (5),
NYNexp(— (N
P(N) = M (10)
NI
This is the Poisson distribution faw. = -~
Particular interest attaches to the probability P(0} that none of the sites
is occupied. From (10} we find, with (N)° = l and Ot = |,
- P(O) = exp(—(NY);  log P(0) = —(N). {i1)
“Thus the probability of zero oceu pancy {s simply related to the average number
(N} of occupied sites. This suggests a simple experimental procedure for the
determination of {N): just count the systems that have no adsorbed atoms.
Values of P(N) for several values of {(N) are given in Tablke C.1, Plots are
given in Figure C for {N) = 05, 1, 2, and 3.
N3 exp{— (N
Table C.1  Values of the Poisson distribution function P{N) ~= uj%wu
{N)
0.1 0.3 03 0.7 09 1 2 3 4 5
PO} 09048 07408 06065 04966 04066 03679 01353 00498 00183  0.0067
Py 00805 02222 03033 63476 03659 03679 02707 01494 00733 00337
FP(2) 0.0045 00333 00758 . 0217 01647 01839 02707 02240 01465 00842
P(3) 00002 00033 00126 00284 00494 00613 01804 02240 01954 01404
P4 00003 00016 00050 00ttt 00153 00902 01680 01954 04755
P(5) 00002 00007 00020 00031 00361 01008  0.4563  0.4755
P(6) 00008 00003 00005 00120 00504 04042 0.1462
P{T) 0.0001 00034 00216 00595  0.1044
P{8) ' 00009 00081 0.0298  0.0653
PO _ 00002 00027 00132 00363
P(10) : 00008  0.0033

00181
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Fipure C.1  Poisson distaibution, P versus N, for severaf values of {N).
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Example: Incorrect and correct counting of states. {a) The Gibbs sum for the R sites is Hat

IR W UL L (12)
Why no1?
{b} The correct suni is

RR—1), . X

G =L+ A =1 4 RA 4 s TR ;
) =0

where

R

JRN) = o FT R

is the binomia} coeflicient, Nole that g(R,N) is e number of independent states of the
systent for a given number of adsorbed atoms N. The Gibbs sum is a sum over alf stales.

L i it bt ey A
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Example: Elementary derivation of P(0). 1.1 a lotal of R bacteria be distributed at
randetn among L dishes, Each dish is viewe J as a syslem of many siles 10 which a bacteriam
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may atlach. The L dishes represent an ensemble of L identical sysiems, The average number
of bacteria per dish is

(NY = R/L. (14)

Each time a baclerium is distributed, the probability that a given dish will receive thal
bacterium is I/L. The probability the given dish wilt not recejve the bacterium is

3
(1 -——E) (15)

The probabilily in R tries 1hat the given dish will receive no baclesia is

P(O) = (1 - %)R (16)

because the factor (15) enlers on each try.
We may wrie (16 as

OV
= LA : 17
P(0) _(; R) . (17
by use of Ny = RfL. We know that in the limil of farge R,
. NY\®
exp(~ (N>} = lim (I - SMEZ) ) {18}
R~

by the definition of the exponentiaf function. Thus for R » 1and L » { we huve

P{O} = exp(— (N>} '- (19}
in agreement with (11).

. TR A e 2 e ok ey gty e e et
L.

R
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PROBLEMDS

1. Random pulses. A radioactive source emits alpha particles which are
counted al an average rate of one per second. {a}) What is the probability of
counting exactly 10 alpha particlesin Ss?{b)Of counting 2 in 1 57 (¢} Of counting
nou¢ in 55?7 The auswers to (a} and (b) are not identical,
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2. Approach to Gaussian distribution. Show that the Poisson function P(N} =
{NY¥exp(~(ND)/NT closely approaches a Gaussian function in form, for
large (N>, That 15, show when N is close to ¢(N') that

P(N) = Aexp[~ BN — (N,

where 4, B are quantities 10 be determined by you. Hint: Work with log P(N};
use the Stirling approximation. In the Gaussian form both 4 and B are functions
of (N3>; in the development of the Poisson function you may find 4, B are

functions of N, but the two forms of A, B are closely equivalent over the range in
which the exponential factor has significant values.
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Pressure
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Let a pressure p, be applied normal to the faces of a cube filled with a gas or-

liquid in quanium state s. By elementary mechanics {Chapter 3} the pressure
is equal 1o

By = dex/dV ¥ {I}

where U, is the energy of the system {n the state 5. We can also write the pressure
as

ps = —{dU/dV}, 2
where {dE V), denotes the cxpccléliOh value* of UV over the state 5 at
volume V. It is important that we can calculate p by (2) which is at a fixed
volume with no ambiguity about the identity of the selected state s. whereas
{1}involves following the state through two volumes. ¥ and ¥ + 4V, with some
possible doubt whether the state remains the same. The ensemble average
pressure p is the average of p, over the states represented in the ensemble:

p = {p> = —{{dUjdV}) ' 3

Because the number of states in the ensemble is constant, the entropy is constant,
so that the dertvative is at constant entropy. We may therefore write

oU
r-~(av); ®

The result (4) uses the energy of the system expressed as U(s,V, .. .); that is,
as a function of the volume V and the entropy 6—not the temperature 7. It is

the entropy and not the temperature that is to be held constant in the
differentiation.

* The equivalence of {1) and {(2) is an exampls of the Helimans-Feynman theorem of quanfum
mecharics, according 1o which 1he derivative of 1he hamillonian ¥ and snergy sigenvalus U with
respect o a parameler 4 are related by dU/dA = (Jdo/dA>. The derivation may be found on
p. 1192 of C. Cohen-Tanndudji, B. Diu, and F. Laloé, Quantum mecharics, Wikey, 1977, sce also
E. Merzbacher, Quantum mechanices, 2ad ed., Wilcy, 1970, p. 442.
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Negative Temperature
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The result of Problem 2.2 for the entropy of a spin system as a function of the
energy in a magnetic field is plotted here in Figure E.1. Netice the region in
which (d6/¢U)y is negative {Figure E.2). Negative r means that the population
of the upper state is greater than the population of the lower state. When this
condition obtains we say that the population is inverted, as ittustrated in
Figure E3.

The concept of negative lemperature is physically meaningful for a systemn
that satisfies the following restrictions: (a) There must be a finite upper limit to
the spectrum of energy states, for otherwise a system at a negative temperature
would have an infinite energy. A freely moving particle or a harmonic oscillator
cannot have negative temperatures, for there {s no upper bound on their energies.
Thuts only certain degrees of freedom of a particle can be at a negative tempera-

D2

e
on

//(ET?A

Entropy o
[
o

0.2

T = +0 B W T o= ....0
0 L L {
0 0.2 0.4 0.6 0.3 10

Energy U~

Figure E.I  Entropy as funciion of energy for a iwo staie system.
The separation of the states is ¢ = [ in this example. [n the
lefi-hand side of the figure do/¢ U is positive, so thal tis positive.
On the right-kand side £0/¢U is negative and ¢ i$ negative,
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Figure E.2  Temperature versus energy for the two
state system, Here
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Notice thial the energy is notl a maximum al ¢ == + o,
but is a maximum a1 ¢ = —Q.

ture: the nuclear spimi orfentation in a magnetic field is the degree of freedon:
most commonly considered i{n experiments at negative temperatures. (b) The
system must be in internal thermal equitibrium. This means 1he states must have
occupancies in accord with the Bolizmann factor taken for the appropriate
negative temperature. (¢} The states that are at a negalive temperature must be
isolated and inaccessible to those states of the body that are at a positive
tompérature.

The ordinary translational and vibrational degrees of {reedom of a body
have an entropy that increases without limit as the energy increases, in contrast
to the two state or spin system of Figure E.1. If ¢ increases without himig, then t
is always positive. The exchange of energy betsween a system at a negative
temperature and a system that can only have a positive temperature (because of
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Figure E3  Possible spin disiributions for various positive and
negative temperatures. The magoeiic field is direcied upward. The
negative spin lemperaiures cannot st indefinitely because of weak
coupling berween spins and 1he lattice. The lattice can onty beat a

“positive temperature because its enesgy level specirum is unbounded
on10p. The downward-directed spins, as at T = 1, turn over ong
by one, 1hereby feleasing energy 1o 1he lanice and approaching
equitibrium wirh the Jutiice ai 2 common positive temperature. A
nuclear spin sysiem at negalive lemperature may refax quie slowly,
over a time of minutes or hours; durfng this time experiments at
negative temperatures may be carried out.

an unbounded spectrum) will lead always 1o an equilibrivm configuration in
which both systems are at a positive temperature.

Negative temperatures correspond to higher energies than positive tempera-
tures. When a system at a negative temperature is brought into contact with a
systent al a positive temperature, encrgy will be transfefred from the negative
temperature 10 the positive temperature. Negative temperatures are hoteer
than positive lemperatures,

The temperature scale fromcoldtohotruns + 0K, ..., +300K, ..., +w K,
—wK, ..., =300K, ..., —0K. Note that if a system a1t — 300K is brought

into thermal contact with an identical system at 300K, the final equilthbrium
temperature is not 0K, butis + w K.

Nuclear and electron spin systems can be promoted to negative temperatures
by suitable radio frequency techmiques. If a spin resonance experiment is
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carried cut on a spin sysiem at negative temperature, resonant emission of
energy is obtained instead of resonant absorption.* A negative temperature
system is usefu! as an rf amplifier in radio astronomy where weak signals must
be amplified. '

Abragam and Proctor' have carried out an elegant series of experiments on
calorimetry with systems at negative temperatures, Working with a LiF crystal,
they established one temperature in the system of Li nuclear spins and another
1erﬁpcra:urs i the system of F nuclear spins. In a strong staiic magnetic field
the two thermal systems are essentially isolated, but in the Earth's magnetic
field the energy levels overlap and the twosystens rapidly approach equilibrium
among themselves (mixing). It is possible to determine the temperature of the
systems before and after the systems are allowed to mix. Abragam and Proctor
found that if both systems were initially at positive temperatures they attained
a common positive temperature on being bronght tnte thermal contact. I boih
systems were prepared imitially at negative lemperatures, they attained a
common negalive temperalure on being brought into thermal contact. If
prepared one at a positive temperature and the other at a negative temperature,
then an intermediate temperature was attained on mixing, warmer than the
mitial positive temperature and cooler than the nitial negative temperaiure.

FURTHER REFERENCES
ON NEGATIVE TEMPERATURE

N. F. Rainsey, “Thermodynamics and statistical meclianics at negative absolute
temperature,” Physical Review 103, 20 {1956).

M. J, Klein, “Negative absolute temperature,” Physical Review 104, 389 {1956).

* E. M. Purcell and R. V. Pound, Physical Review 81, 273 (1950} :
VA Abragam and W. G. Procior, Physical Review 106, 160 (1957); 169, 1441 (1958},
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Boalmunn 1sansport equation, 408, 4214

Bara, M., t06
Bose-Einstein condeusaie, 202
Rose-Einstein disirihution, {57, 159
Bosen, 152
Boson gas, 199
condensation, 205
-degenerate, 221
fuctuation, 222
one dimension, 222
Boson sysiecm, 223
Bridgman, P. W., 219

CMN, 348, 448
Carbon monoxide poisoning, 146
Camot coefficient,

refrigerstor performance, 234
Camot cycle, 236

ideal gas, 237

thermodynamic thermametry, 449
Casnot efficiency, 230
Carnot eagine, photon, 258
Carpot inequality, 228, 232
Carnot hquefier, 354
Carrier concentration, intrinsic, 362
Carrier Lifctime, 388
Currier recombination, 383
Catalyst, 271
Celsins temperature scale, 445
Centrifuge, [45
Cerium magnesium nitrate, 348, 448
Chapellier, b1, 350
Chandrasekhar limit, 222
Characteristic height, atmosphere, 126
Chad, V. H., 350
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Chemical cquilibria, 266
Clu.mu..;l potenusl, 1138, 119, 148, 1561

and entropy, 131

equivalent definition, 148

external, 149

tdeal gas, 120, 169

tnternal, 122, 124

mobtle magnene particles, 127

near absolute zero, 199

toral, £232, 124

two phitse cquilibrinsh, 330
Chemical reaction, 286
Cheutical work, 250

wdeal gas, 251
Classical distribution, 410

function, 161
Classical fimit, 160
Classical regime, 74, 153, 159, 358
Claude cycle, 341

hefium liquefier, 351
Clausius-Clapeyron equation, 281
Clayton, D. D., 222
Closed system, 29
Coeflicient, refrigerator pcrformancc, 234
Coefficient, viscosity, 402
Coexistence curve, 278
Cohen, E. R., 446 .
Cohen-Tannoudji, C., 459
Collision cross sections, 395
Collision rates, 395
Conceatration fluctuations, 147
Condensed phase, 203
Conductance, hole, 415

tube, 416
Conduction band, 355
Conduction electrons,

semiconductors, 355
Conductivity, eleetrical, 413, 421

intrinsic, 387

thermal, 401, 421
Configuration, mos{ probable, 33, 35
Convective isentropic equilibsium, 179
Coohing, demagnetization, 352

evaporaiion, 341

external work, 334

nonmetallic solid, 259

of slab, 437
Cooper pair, 250, 257
Corresponding states, law of, 290
Cosmic background radiation, 98
Counterflow heat exchanger, 336

- Critical magnetic field, 253

Critical point, 291
van der Waals gas, 289
Critical radius, nucleation, 295
Critical size, nuclear reactor, 437
Crilical temperatate, 276
gascs, 277
Croft, A L., 340
Cryogenics, 333
Crystal transformation, 307
Crystalline mixture, 319
Curie temperaiure, 258
Cycle, Carnot, 236

DNA niolecule, 85

Daunt, 1. G., 348

de Bruyn, R, 345

De Maeyer, L., 270
Debye T? taw, 106

Debye temperature, 103
Debye theory, 102
Degencrate Fermi gas, 219
Degenerate gas, 182

Degenerate semiconductors, 158, 365

Demagnetization, cooling, 352
isentropic, 346
nuclear, 348 -
Decnsity of orbitals, 187, 218
Density of states, 186
effective, in semiconductors, 360
effective mass, 360
Detailed balance, kinctics, 407
principle of, 271
Deviation, integrated, 54
Diatomic molecules, rotation, 84
Diesel engine, 130
Differential refations, 70
Diffusion
current flow, 379
equation, 437
fixed boundary, 429
heat, 437
internal heat sources, 437
pariicle, 399, 405
p-n uaction, 437
Dilfustve equilibriam, 120
Dilfusivity, 399, 428, 437
Ditution refrigerator, helium, 342
Dispersion relation, 425
Distribution, classical, 161, 410
Bose-Einstein, 158
Fermi-Dirac, 154, 411
Diu, B., 459
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Denor, 356, 363

fevels, 369
Donor impurities, tonization, 273
Doping concentrations, 375
Doping profile, 383
Dry adiahatic lapse rate, 270

Earth, distance from Sun, !
Eddy current equation, 425
Effective density of states, 361
valence band, 162
Effective mass, 360
Effective work, 240
Efficiency, Carnot, 230
Eigen, M., 270
Einstein condensation, 199
temperature, 2035
Einsteln relation, 406
high electron concenteations, 388
Einstein temperatyre, solids, 84
Elasticity of polymers, 86
Electrical conduclivity, 413, 421
Electrical noise, 98
Electrochemical battery, 179
Electrolysis, 247
Electron-hole pair generallcn, 388
Election mobility, 380
Elementary excitations, 212
Eitiott, R. P., 323
Emissivity, 97
Energy, conversion, 240
conversion efficiency, 230
degenerate boson gas, 221
equipartition, 77
Fermi gas, 185
fiuctuations, 83, Fi3
geothermal, 259
ideal gas, 76
magnetic, 252
mean kinette, 420
mixing, 314, 330
thermal average, 140
transier, 227
two state sysmm, 62
van der Waals gas, 305
Encrgy gap, 355
Enscinble, averape, 31, 62
construction, 32
systems, 31
Eqnthalpy, 246, 284
van der Waals gas, 103

Entropy, 43, 45, 52
accumulation, 229
and cheniical potential, 131
conventionat, 45
-degenerate boson gas, 221
degencrate Fermi gas, 219
free enerpy, 165
heat flow, 44
law of increase, 54
as logarithm, 50
of mixing, 78, 118, 314
and occupancy, 114
and temperature, 32
transfer, 227
van der Waals gas, 305
Equation of continuity, 424
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Equation of state, van der Waais, 287, 289

Equtlibria, chemical, 266
~-phase, 322

" Equilibrium, hydrogen, 269

pas-solid, 283, 205
particle-antipacticle, 274
reactions, 266
two phase, 330
vapor pressure, 291
Equilibrium constant, 268
Equipartition of energy, 77
Error function, 429
Eutectic, 325
Evaporation cooling, 341
limit, 352
Expansion, cooling, 334
engine, 3134
Feruti gas, 259
irreversible, 13
isothermal, 171
Extensive quantities, 264
Extreme refativistic particles, 7
Extrinsic semiconductor, 364

Feher, G, 148
Fermi energy, 133, 183
Fermi gas, 183
fluctuations, 222
ground siate, 185
irreversible expansion, 259
Kquid helivm-3, 219
metals, 194
refativistic, 218
Fermi level, 155, 357
intrinsic, 362
extrinsic semiconductor, 364
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£33, 177, 41
Fernti-Dirac integral, 366
Fermion, 52 .
Ferromagnetism, 293, 302
Fick's law, 399
First law, 49
First order transition, 102
Flow, throvgh hole, 415
through tube, 416, 421
speed, 422
Fluctuations, Bose gas, 222
concentration, 147
encrgy, 83, 113
Fermi gas, 2122
time of, |78
Flux density, 397
Fourter analysis, 436
Fourier’s law, 401
Free energy, 163
Gibbs, 248, 262
harmonic oscillator, §2
Helmhohz, 68
paramagnetic system, 69
photon gas, 112
two state system, Bi
‘Free energy function, Landau, 298
Fruton, J. S, 142
Fuel cell, 247, 248
Fundamental assumption, 29
Fundamenta! temperature, 41

Gallium arsenide, semi-insulating, 372
Gamma [unction integral, 440
Gas constant, 166 _
Gas, critical temperatures, 277
degencrate, 182
degenerate boson, 221
degenerate Fermi, 219
tdeal, 72
liqueflaction, 337
one~dimensional, 86
potential energy, 145
guantum, 182
rarched, 413
sound waves, 430
Gas-solid equilibrium
Gauss integral, 439
Gaussian distribution, 20
Geoeralized lorces, 404, 403, 458
Geueration, clectron-hole patr, 358
Geothermal encigy, 259
Giaugue, W., 167
Gibbs factor, 134, 138

Gibbs [ree encegy, 246, 262
van der Waals gas, 294
Gibbs sum, |34, [38, 146
ideal was, 169, 180
two kevel system, 146
Giffard, R. R., |03
Goldman, M., 350
Grand canonical distribution, §38
Grand partition function, 138
Grand sum, [38
Greenhouse effect, 115
Guyer, R. A, 210

Halfcell potenlials, 131
Hall, R. N., 385
Hall-Shock ley-Read theory, 383
Hunsen, M., 323
Harmonic oscitlator, 52, 82
free encrgy, 82
muliiplicity function, 24
Harwit, M., 219
Heat, 44, 68, 227, 240
definition, 227
 isobaric, 245
path dependence, 240
vaporization of ice, 305

-_ Heat capacsty, 63, 165

degenerate boson gas, 221
electron gas, 189
intergalactic space, 113
hquid helium-4, F13
photons and phonons, 113
solids, 13
two state system, 62
Heat conduction equation, 424
Heat engine, 228, 230
refrigerator cascade, 258
Heat exchanger, counterflow, 338
Heat flow, 44
Heat transfer, sound wave, 434
Heat pump, 233, 257
Heat shield, 112
reflective, LI5S
Heer, C. V., 348
Helium dilution relrigerator, 342
Hefium kquefier, 351
Helinholiz free energy, 63
Heme group, 140
Hemoglobin, 141
Heushaw, D. G, 216
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Holes, 177, 155

conductance, 415

gquantum concentration, 361
Hook, J. R, 217
Huiskamp, W. [, 342
Hydrogen, equilibrium, 269

IPTS, 451
fce, heat of vaporization, 305
Ideal gas, 72, 74, 160, 169
caleulations, 180
Carnot cycle, 237 _
chemical potential, 120, 169
chenmicat work, 251
encrgy, 16
Gibbs sum, 180
internal degree of freedom, 179
iscntropic relations, 179
Kelvin, 446
law, 77
law, kinetic theory, 391
one-dimensiopnal, 86
sudden expansion, 243
thermodynamic identity, |77
two dimensions, 180 '
Impurity atom ionization, 143
tmpurily level, 368, 383
carrier recombination, 383
Increase of entropy, law of, 45
Inequalily, Carnot, 232
Injection laser, 181, 388
Integeals comaining exponentials, 439
Intensive gquantiies, 264
Intergalaciic space, heat capacity, 113
Internal chemical potential, 122, 124
International Practical Temperature
Scale, 451
Intrinsic conductivily, 387
Intzrinsic Fermi level, 362
Inversion temperatuse, 336
lonization, deep impuritics, 388
donor impurities, 273
tmpurily aglom, 143
thermal, 273
water, 769
frreversibilily, sources, 232
Irreversible thermodynamics, 406
Irreversible work, 242
Isentropic demagnetization, 346
Isentropic expansion, 114, 148
Iseatcopic process, 173
Isentropic relalions, ideal gas, 179
isobane process, 245
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1sotherm, 276

Langimuir adsorption, 143
Isothermal work, 245
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loule-Thomson effect, 337
van der Waals gas, 338
Joyce, W. B., 366
Joyce-Dixon approximation, 366
JGttner, F., 219

Kelvin temperature, 41

scale, 445
Kinematic viscosity, 404
Kinetic model, mass action, 270
Kinctic theory, ideal gas law, 391
Kinctics, detailed balanece, 407
Kirchhoff law, 96, 115
Klein, M. J., 463
Knudsen regime, 397, 413
Kramers, H. C., 114
Kury, N, 348, 349

Lalo, F., 459
Lambda poinl, helium-4, 210
Laudau free energy function, 258
Landau funciion, 69, 298
Landau theory, phase transitions, 298
Langmuir adsorption 1sotherm, 143
Laser, injeclion, 381, 388
Lalent heat, 281, 284
enthalpy, 284
inceease of entropy, 45
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Law of corresponding states, 290
Law of mcrease of entropy, 45
!aw of mass action, 268, 362, 182
Laws of rareficd gases, 413
Laws of thermodynamics, 48, 49
Leff, H. 5., 259
Legeeyt, AL 3., 217
Lein, W. H., 155
Linde cycle, 339
Liouville theorem, 408
Liguid heliem 11, 209
Liquid helivm-3, 217
superfluid phases, 217
Ligquid helium-4, 207
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Liquid *He~*He mixlure, 320
mixing epcrgy, 330
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Lounasmaa, O. V., 342

Low orbital free atoms, 201

Low temperature therinometry, 448
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McTee, 1. H., 394
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Magnetic energy, 252
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mobile magnetic particles, 127
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in superconductors, 253

Magnetic susceptibility, 81

Magaetic system, 23

Magnetic work, 252
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Muarcus, P. M., 394

Mass action, law, 268, 270, 362, 387

Maxwell distribution of velocities, 392, 419

Maxwell velation, 71, 272
Maxwell transmission distribution, 395
Maxwell velocity distribution 393
Mean field method, 288
Mean free path, 395
Mean speeds, Maxweilian distribution, 419
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Meissner effect, 252
Merzbacher, E., 459
Metastable phases, 27§
Meyer, L., 215
Mikier, J. H., 348
Minority carrier lifetime, 358
Mixing, energy, 314, 330

entropy, 78, 178, 314
Mixlure, binary, 310
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liquid *He-*He, 320

phase equilibria, 322
Mobile magnetic particles,

chemical potential, 127
Mobility, electron, 380
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Monkey-Hamlet, 53
Mosl probable configuration, 33, 35
Multiple binding of O4, 148
Muitiplicity, 7 -

Mutliplicity function, 15, 18

harmonic oscitfalor, 24
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Negative temperature, 460
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Niels-Hakkenberg, C. G, 114
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Nonequilibriom semiconductors, 379
Normal phase, 203
Nuclear demagnetization, 348
Nuclear matter, 198
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crisical radius, 295
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Onsager relation, 406
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Paramagnetic system, 69

Paramagnetism, 52, 446
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Paniicle diffusion, 399, 409
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Path dependence, 240
Pauli excluston principle, 152
Pehiier effect, 336
Penetration, temperalure oscillation, 426
Pepnings, M. H., 345
Peritectic systems, 330
Perpetual motion, 50
pH, 269
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Phase diagram, 321
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Photon, Carnot engine, 258
condensation, 271
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“thermal, 10
Photon gas, 112, 114
free encrgy, 112
isentropic expansion, 114
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Pillans, H., 11!
Planck distribution function, 89, 81
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p-n junction, 373
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Poisson cquation, 375
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Pound, R. V., 463
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Pressure, 64, 164
degencrate Fermi gas, 219
thermal sadiation, 111
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Proctor, W. ., 463
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randem, 357
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Purcell, E. M., 463
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conduction electrons, 361
holes, 361

Quantum gas, 132

Quantum segime, 182

Quasi-Fesmid level, 379

Quasiparticle, 212

Radiant epergy fux, 114
Radiant object, 114
Radiation
black body background, 98
thermal,
Ramsey, N. F., 463
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Recse, W., 219
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degenerate, 358, 365
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extrnsic, 364
impurity atom ionization, 143
n- and p-type, 363
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nonequifibrium, 379
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Shunk, F. A, 323
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Soil, temperature variations, 437
" thermal diffusivity, 427
Solar coastant, 110
Solidification range, 331
Solidus curve, 323
Solubility gap, 310, 311
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Sound wave, heat transfer, 434
propagation, 430
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Speed, pump, 417
tube, 422
Spin entropy, 170
additivity, 53
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Spin system, 10, 37, 52
Srinivasan, S., 248
Stefan-Boltzinann constant, 96
Stefan-Boltzmann faw, 91, 94
Steyert, W_ A, 318
Stirling approximation, 19, 441
Stokes-Einstew relation, 404
Struve, Q., 111
Sudden expausion, ideal gas, 243
vacuum, 175 '
Sun
age, i1l
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surface temperature, |10
Superconducting transition, 306
Superconductor, 252
magnetic work, 252
Supercooling, 278
Superfiuid phases, 217
Superfiuidity, 212
Superheating, 278
Supednsulation, 19
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Taconis, K. W, 345
Taylor, B. N, 436
Teeters, W. D., 259
Temperature, 41
eritical, 274
Eartlt’s surface, 1]
estimation of surface, 97
fundamental, 41
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negative, 441
oscilfation, 426
scales, 345
Sun’s average, 1}
Sun’s surface, 10
varations in sotl, 437

Temperature oscillation, penctration,
426, 437
Thermal average, 62
Thermal conductivity, 401, 421
metals, 421 ' :
Thermal contact, 33, 37
Thermal diffustvity, 425
soil, 427
Thermal equilibrivm, 36, 39
values, 36
Thermal expansion, 272
Thermal tonization of hydrogen, 272
Thermal photon, 110
Thermat pollution, 258
Thermal radiation, 111
Thérmal relaxation, 432
Thermodynamic identity, 67, 133, 177
Thermodynamic refations 71, 272
Thermod ynamic thermometry, 449
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transition, 306
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Throughput, 413
Torr, 414 _
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second order, 304
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Transport processes, 357
Treloar, 1. R. G., 86
TFriptc point, 284
Two stale system, 62, 8]
free energy, 81
Ireat capacity, 62
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Vacuum physics, 413
Yalence band, 355
effective density of states, 362
van der Waals gas, critical points, 289
energy, 305
enthalpy, 305
equation of state, 287, 289
Gibbs free energy, 291
helum, 350
Joule-Thomson effect, 338
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Vapor pressure equation, 276, 281
Vaporizatton, Jatent heat, 28}
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Wilks, J., 219
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irreversible, 242
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Unit conversions
Energy
13 =107 erg -
tcal = 4.184 ]

leV = 1.60219 x 107'°J = 1.60219 x 1072 erg = 23.061 kcal mol™?
P kWh = 36 x 10°]

1 BTU = 1055}
Power
IW=1Js"'=1 10 ergs™!

Php = 746 W = 550t 1bs™!

Pressure

1Pa=1Nm"? = 001 mbar = 107 % bar = 10 dyniem ™2
_ = 7501 x 1073 mm Hg or torr
Tbhar = 108 dynem™% = 103 N m~2 = 750 mm Hg
tmm Hg = 1 torr= 1333 Nm~? = 1333 dyn cm ™3
{ atm = 760 mm Hg = 1.013 x 105 Nm™? '
= 1,013 x 10%dyncm™? = 1.013 bar

* At 0°C where the acceleration of gravily has the standard valuc 980665 m s™%,



Table of Values

 Quantity Symbol Yalue CGs 51
Velocity of light c 2997525 10 %cms™! 10%ms™*
Proton charge e 160219 — 1078 ¢

4.80325 1074 %su -

Planck’s constant h 662618 107 ergs 10735

B o= h/2n 1.05459 10"  ergs 10737
Avogadro's number N 602205 x 103 mol™! — —
Alomic mass unit amu 1.66057 1073 g 107 kg
Electron rest mass m 9.10953 1072%g 107 kg
Proton rest mass M, 1.67265 107 g 107 kg
Proton massfelectron mass M im 18342 e e
Reciprocal fine structure /= 137.036 — -
~ constamt heje?
Electron radius ¥ fmc? r, 281794 107 em 19 ¥ m
Electron Compton ., 3.86159 107 em 107 m

wavelength kfme _ '
Bohr radius k¥ /me? T 5.29177 10"%em 107 m
Bohr magnelon eh/2mc Ha 927408 107 ergG! T
Rydberg constant me*/2h? R, or Ry 2171991 107 erg 10714
13.6058 eV

1 efectron volt eV 1.6021% 107 Yerg 07

eV /h 2417197 x 10 Hz — —

eV/he 8.06548 i0*cm ! i0*m™!

eV/k, 1.16045 x 10°K — —
Boltzmann constant ky 1.38066 10" ¥ergK™? IR
Permittivity of free space £ — i 1 fanc?
Permeability of free space Mo — 1 4r x 1077
Molar gas constant Nk, R 831441 107ergmol ' K™ Jmot P
Molar volume ideal gas, at 2241383 10° e mol 1 197 m? mol

Ty = 27315K,

po = 101325 Nm~? = Laim

Source: E. R. Cohen and B. N. Taylor, Journal of Physical and Chemical Reference Data 2(4), 663 (1973).



