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PREFACE 

This is a thoroughly revised version of my earlier (1986) book with the 
same title. About half the content of the previous book is kept essen-
tially unchanged, and one quarter is rewritten and updated. The rest is 
replaced by completely new and extended material. 

Materials science is a field with a steadily moving research front, 
dealing with the most modern methods and materials. At the same 
time, it rests on classical physics or elementary quantum mechanics 
that was developed a long time ago. There is also a certain amount 
of fashion in the choice of research problems. Many important areas 
of materials science were most intensely studied in the 1960's and 
1970's. For instance, the investigation of phonon spectra by inelastic 
neutron scattering and the experimental study of properties of electrons 
in elemental metals peaked at that time. More recent research focuses 
on, e.g., new materials produced by means of "molecular engineering", 
and computational materials science through ab initio electron structure 
calculations. Another trend is the ever growing interdisciplinary aspect 
of both basic and applied materials science. There is an obvious need 
for reviews that link well established results to the modern approaches. 
One of the aims of this book is to provide such an overview in a specific 
field of materials science, namely thermophysical phenomena that are 
intimately connected with the lattice vibrations of solids. This includes, 
e.g., elastic properties and electrical and thermal transport. 

Traditional textbooks in materials science or condensed matter 
physics often quote results in special and very simplified cases. This 
book attempts to present the results in such a form that the reader 
can clearly see their domain of applicability, for instance if and how 
they depend on crystal structure, defects, applied pressure, crystal 
anisotropy, etc. The level and presentation is such that the results can 
be immediately used in research. Derivations are therefore avoided. 

V 



VI Preface 

In the selection of references one aim has been to give credit to pio-
neering papers, even though one often does give an explicit reference to 
that work in today's research. Another aim has been to quote papers that 
are easily accessible or of such a character that they will normally be 
quoted in later works and therefore are useful as a starting point in cita-
tion searches. No doubt I have failed to identify many important papers, 
and I apologize in advance to those authors for my lack of knowledge. 
Many of the figures in the book, providing illustrating examples, are 
taken from work done by me or in my research group. That is often 
for the practical reason that I already have a computer file with those 
figures, and it does not mean that the work of others has been ignored. 

Finally, the reader I have in mind may be a graduate student in con-
densed matter physics, metallurgy, inorganic chemistry or geophysical 
materials. S/he could also be a theoretical physicist moving in the di-
rection of applications, or a scientist in an industrial research laboratory 
who has to go beyond the level of undergraduate textbooks. In fact, I 
have been more or less involved in all these areas, and that reflects the 
style and choice of topics in this book. 

Goran Grimvall 
Stockholm, December 1998 
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CHAPTER 1 

BONDING CHARACTERISTICS 

1. Introduction 

Silicon and tin are elements in the same column in the Periodic 
Table. Silicon is known as a semiconductor, and tin is known as a metal. 
However, this does not imply the general rule that when silicon atoms 
form a condensed phase, one gets a semiconductor, and correspond-
ingly for metallic tin. In fact, when silicon melts it becomes a metal, 
not very much different from liquid tin. And when ordinary (white) tin 
is cooled below 13 °C the stable solid phase changes from a metallic 
tetragonal structure to a semiconducting phase (gray tin) with the dia-
mond structure, i.e. the same structure as that of semiconducting silicon. 
The dynamics of the structural change in tin is very slow, since a large 
energy barrier must be overcome, but the transition temperature (13 °C) 
is thermodynamically well defined. 

Carbon is the first element of that column in the Periodic Table that 
contains Si and Sn. Its different properties are even more remarkable. 
Thermodynamically, the most stable solid phase at ambient conditions 
is graphite, with a lattice structure of hexagonal symmetry. The chemi-
cal bonding between the layers of carbon atoms is so weak that graphite 
is used as a solid lubricant. But when the carbon atoms form the dia-
mond structure, the result is a material at the top of the hardness scale. 
A third form a solid carbon arises when C6o-molecules are stacked like 
balls in a lattice to form fullerenes. Many other molecules, for instance 
C72, can also be formed. 

The three examples C, Si and Sn, show how different structural 
arrangements of the atoms of an element can lead to very different 
properties. Iron is another element that occurs in different lattice struc-
tures. Below 1184 K, it has a body-centred cubic (bcc) lattice, and it 
is ferromagnetic below the Curie temperature Tc = 1043 K. Between 

1 



2 Ch. 1. Bonding characteristics 

1173 K and 1660 K, the stable iron phase has a face-centred cubic 
(fee) structure, and then it returns to a bec lattice before melting at 
1808 K. Many of the thermophysical properties of iron change very little 
when the lattice structure goes from bec to fee and back to bec again. 
For instance, the discontinuities in the average frequency of the atomic 
vibrations and in the electrical resistivity are less than a few percent. 

From a fundamental point of view, an account of all characteristics 
of a material follow from a quantum mechanical treatment of its elec-
tronic structure. In this book we will not start from such a basic level, 
but instead we assume that the lattice structures, the frequency spectra 
of atomic vibrations, etc. are known. Based on such a framework, the 
emphasis is on how temperature enters various physical properties. In 
such an approach, one also has a need to discuss some properties which 
refer to a static lattice at 0 K, for instance various bonding energies. We 
begin with those aspects. 

2. Bonding and bulk modulus 

Consider a certain crystal structure, with characteristic linear dimension 
X, where X can be a lattice parameter, the distance between the centres 
of nearest-neighbours, the cube root of the molar volume etc. The total 
energy U(X) often varies with X as shown schematically in fig. 1.1. This 
curve determines three quantities which have a direct physical interpre-
tation. The position of the minimum, X^, gives the equilibrium lattice 
parameter (or atomic volume etc.). The curvature at the minimum is 
related to the bulk modulus K, 

K = -V(dp/dV) = V(d2U/dV2) = V(d2U/dX2)(dX/dV)2, 

(1.1) 

where V is the volume of the sample and p is the pressure. In the last 
equality, the derivatives are evaluated at X^n. The depth of the minimum 
gives the crystal binding energy £/bind; 

C/bind = U(X -> 00) - UfrrfJ. (1.2) 

As an illustration, we write the energy U as a sum of a repulsive and an 
attractive term, 

U(V) = AV~m -BV~n. (1.3) 



Bonding and bulk modulus 

U(X.)/Ucoh 

Fig. 1.1. A schematic picture of the total crystal energy U(X) as a function of a lattice 
parameter X, here exemplified by the Lennard-Jones (1924) 6-12 potential. 

Normally, the repulsive term has the most rapid variation with V, i.e. 
m ^> n. At the equilibrium volume V — VQ we get 

(dU/dV) = -mA/Vm+l +nB/Vn+l = 0 

i.e. mAV£ =nBV^. That yields, at V = V0, 

£/. bind 

and 

K 

= - ( l - - ) 

Am(m — n) 
1 77m+2 

B 

V( 
Bn(m — n) Bmn Am 

V, n+2 yn+l v; m+1 * 

(1.4) 

(1.5) 

(1.6) 
o 

In the last steps of eqs. (1.5) and (1.6) it was assumed that m » n. 
The interpretation of these results is that the binding energy usually is 
dominated by the attractive term, i.e. it can be approximated by B/VQ 
that only contains parameters B and n from the attractive term. Anal-
ogously, the bulk modulus can be approximated by Am2/ V0

m+1 and is 
thus dominated by the repulsive term. There is also a rule of thumb that 
£4ind a nd K covary. From eqs. (1.5) and (1.6) we get, 

t/bind^ KVo/(mn). (1.7) 

This relation is not a mere coincidence (see a related discussion in 
Chapter 19 (§10) concerning dimensional analysis and Buckingham's 
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n-theorem). The bulk modulus is further discussed in Chapters 3,4 and 
13. 

In the rest of this book we will often be interested in the volume 
per atom (the atomic volume) £2a, rather than the specimen volume. In 
particular, this is convenient in the treatment of alloys and compounds, 
containing atoms of different sizes. The atomic volume is an averaged 
quantity, defined here as the total volume V of a specimen, divided by 
its total number of atoms N, 

Q& = V/N. (1.8) 

The molar volume of a compound with r atoms per formula unit is thus, 

Vmol = rNAQ^ (1.9) 

where NA = 6.022137 • 1023 mol"1 is Avogadro's constant. 

3. Cohesive-related energies 

There are no absolute values of energies in physics—only energy dif-
ferences between two states, one of which can be a reference state that 
is given by a definition or convention. If U(k —> oo) refers to separated 
neutral atoms of the elements, [/bind agrees with the normal definition 
of the cohesive energy. However, if we consider a lattice of NaCl it 
would be natural to let [/bind refer to infinitely separated ions Na+ and 
Cl~ rather than neutral atoms Na and CI. Some authors would call that 
quantity the cohesive energy. It is larger than the conventional cohesive 
energy by the electron ionisation energy of Na atoms minus the electron 
affinity of CI atoms (cf. the example below). 

Another important quantity referring to binding energies is the en-
thalpy of formation, e.g. the formation of NaCl from the elements Na 
and CI in their standard states. The standard reference state of an el-
ement is normally chosen to be in the most stable structure of that 
element at 298.15 K (25 °C), and at a standard pressure. Thus the stan-
dard state of Al refers to a solid in an fee lattice, that of Hg to a liquid 
while that of CI refers to the diatomic gas CI2. The standard pressure 
was long chosen to be 101,325 Pa (1 atm) but is now recommended 
to be at the slightly different value of 105 Pa (1 bar). Other reference 
temperatures than 298.15 K are occasionally used. 
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Thermodynamic quantities of a standard state are usually identified 
by the superscript °, for instance H° for the enthalpy and S° for the en-
tropy. When one wants to make it clear which temperature the standard 
state refers to, one may use the notation 7/298 15 or //°(298.15), S298 15 

etc. Other notations for standard states are also used, for instance °H or 
H+. 

The enthalpy of formation (previously often called heat of forma-
tion) of a compound is defined as the enthalpy difference between the 
compound and the constituent elements, all in their standard states. It is 
often written A//f° (or, e.g. AfH°). For instance, 

A#f°(NaCl) = #°(NaCl) - #°(Na) - ]-H°{C\2). (1.10) 

This quantity is negative since the NaCl compound is energetically more 
stable than the separated constituents. Obviously, the standard enthalpy 
of formation of an element in its standard state is zero. 

The reader is warned that the conventions and reference states cho-
sen by some authors for quantities called binding energies, cohesive 
energies and enthalpies (energies) of formation may not be those that 
are used by others. In particular, experimental values usually refer to 
298.15 K or some other finite temperature, while theoretical results 
usually refer to 0 K. 

Example: cohesive-related energies of NaCl One of the most com-
plete tables of thermodynamic data (Barin 1989) gives i/29815(Na) 
= #298.i5(cl2) = 0, //2°98.15(NaCl) = -411.120 kJ/mol, #2°9815(C1) = 
121.286 kJ/mol and #2°98'15(Na, gas) = 107.300 kJ/mol, where the last 
two terms are for a monatomic CI and Na gas, respectively. Another 
source (Tosi 1964) gives the cohesive energy £/COh(NaCl) = 764.0 kJ/mol 
(relative to separated ions). Furthermore, the ionisation energy for Na 
-> Na+ + e~ is £ion = 495.8 kJ/mol, and the electron affinity for CI 
+ e" -* CI" is £aff = 348.7 kJ/mol (Emsley 1989). We now write 
^bind(NaCl) as the result of a process where solid NaCl is separated 
into solid Na and a gas of CI2, then further separated into monatomic 
gases of Na and CI, and a final step with ionisation of the gas atoms. 
Thus, C/bind(NaCl) = -#2°98.15(NaCl) + #2°98.15(C1) + #2°98.15(Na, gas) + 
£ion — #aff = 786.8 kJ/mol. However, this value assumes that the (infi-
nitely dilute) gases of Na+ and Cl~ ions have the temperature 298.15 K, 
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and hence a total enthalpy 2(5#772) = 12.4 kJ/mol, where R is the 
gas constant. Subtracting this from 786.8 kJ/mol we get [/bind = 774.4 
kJ/mol at T = 298 K, in good agreement with the value [/con = 764.0 
kJ/mol from Tosi (1964). In fact, the calculation by Tosi follows exactly 
the steps of this example, but with slightly different data. 

In order to predict the actual crystal structure of a solid (at T = 0 K), 
one has to compare binding energies [/bind (or cohesive energies [/con 

etc.) for all conceivable lattice structures, and find the lowest [/bind- In 
practice, a comparison is often limited to the most likely structures, such 
as fee, bcc, hep and tetragonal lattices in the case of metals. At finite 
temperatures one should compare Helmholtz or Gibbs energies (see 
Chapter 7 for a treatment of temperature induced structural changes). 
An additional complication, that is often neglected in calculations, is 
that of dynamical instability. For instance, a bcc lattice may have a 
minimum in [/(A) when A corresponds to a certain value of the lattice 
parameter, but a further lowering of U may occur if the lattice is sheared 
(Chapter 4, §3). Therefore, one should consider U(k\, A2,.. •, A„), 
where the parameters A; describe all possible atomic configurations in 
a unit cell containing any number of atoms. Figure 1.1 corresponds to a 
minimum when U is a function of only one A,,-, but it does not say if this 
is a true minimum or, say, a saddle point in the complete A space. 

It is instructive to express some characteristic energies in the unit 
^B?fus per atom, where 7fus is the melting temperature. Table 1.1 gives 
values for the cohesive energy [/coh = //(gas) — H(solid), relative to 
separated neutral atoms (Al, W, GaAs, TiC) or ions (NaCl), and the 
enthalpy difference AZ/fus between the liquid and the solid at 7fus (as 
an example of the effect of a significant change in the atomic config-
uration). It also gives the quantity Ez ~ 9&B#D/8 as an approximate 
measure of the energy associated with the zero-point lattice vibrations 
(Chapter 7, §2) where #D ~ #D o r ^D(O) is a Debye temperature taken 
from the tables in Appendix I. Evfo is the vibrational energy if anhar-
monic effects are neglected, i.e. the classical value 3kBT per atom at 
high temperatures. Data are from the JANAF thermochemical tables 
(1985), Barin (1989) and the above example for NaCl. The large value 
of AHfus for GaAs reflects the fact the bonding in GaAs changes from 
covalent in the semiconducting solid state to metallic in the liquid. It 
should be remarked that A//fus/ 7fus is the entropy of fusion (see Chapter 
12). The quite small variation among [/con of different materials, when 
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Table 1.1 

Some characteristic energies, expressed in the unit k# Tfus per atom 

Al(7fus = 933K) 

W(7fus = 3680K) 

GaAs(7fus = 1511K) 

TiC (rfus = 3290 K) 

NaCl (7fus = 1074 K) 

^coh 

42.5 

27.8 

25.9 

25.1 

42.7a 

A#fus 

1.38 

1.16 

3.50 

1.30 

1.58 

^vib 

3 

3 

3 

3 

3 

EZ 

0.48 

0.10 

0.24 

0.28 

0.29 

a ^coh = 34.4 if NaCl is separated into neutral atoms instead of ions. 

expressed in kBTfus per atom, is a significant feature (cf. Chapter 19, 
§10). 

4. Simple models of cohesive properties 

4.1. Introduction 

If we know the energy C/(A), for instance expressed through a pairwise 
potential describing the interaction between the atoms (ions), we can 
solve for the atomic volume £2a at the energy minimum and also find 
the corresponding bulk modulus K and binding energy [/bind- In the 
early days of solid state physics, this was an important field of research. 
One was looking for simple mathematical descriptions, in particular for 
ionic compounds. Modern approaches to cohesive properties, including 
atomic volumes and bulk moduli, rely on large quantum mechanical 
calculations of the electronic structure. However, simple mathemati-
cal models may serve to give an insight into trends. We now consider 
such models for ionic compounds, simple (i.e. free-electron-like) and 
transition metals, and make a brief comment on semiconductors. 

4.2. Ionic compounds 

The cohesive properties of ionic compounds, in their main features, can 
be explained in terms of classical physics. This is in contrast to the 
metals, where quantum mechanics plays a major role. We assume that 
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two ions, i and j , interact through a potential (e.g. Born and Huang 
1954), 

<t)(r) = e2ZiZj/r + B/r\ (1.11) 

The first term is the Coulomb interaction between charges Z,e and 
Zje. When summed over the lattice, it gives the Madelung energy 
EM, expressed through the Madelung constant aR. (The subscript R 
means that EM ~ &R/R, where R is the nearest-neighbour distance. 
One may also define a Madelung constant aa such that EM ~ <xa/a, 
where a is the lattice parameter, or the cube root of the atomic volume 
S2a, and yet another type, o?c, is introduced in §4.3.) The last term in 
eq. (1.11) represents a repulsive interaction that prevents the ions from 
coming too close to each other. We assume that it acts only between the 
nearest-neighbours of unlike ions. As an example, consider diatomic 
compounds (e.g. NaCl, MgO). Let R be the shortest distance between 
anions and cations. The total energy of a lattice with v nearest unlike 
neighbours is (per stoichiometric unit, and with |Z,-| = \Zj\ = Z) 

Utot = -aR(Ze)2/R + vB/R\ (1.12) 

The equilibrium distance R$ is obtained from dUtot/dR = 0; 

(Ro)n~l = vBn/[aR(Ze)2]. (1.13) 

The binding energy [/bind = — Utot(Ro) depends on three quantities; 7?o, 
a and vB. If eq. (1.13) is used to eliminate vB, we obtain 

H)-0 ^ = 2 ^ , , _ - | . (1.14) 

For many ionic compounds, the exponent n ~ 8 to 10, i.e. l — l/n ^ 1. 
The electrostatic energy, taken between point charges, is therefore by far 
the most important contribution to the binding energy of ionic crystals, 
in line with the arguments in §2. By proceeding as outlined in §2, we 
obtain for the bulk modulus 

„ oiR{Ze)\n - 1) aR(Ze)2(n - 1) 
A = -. = 77; . ( l . l j ) 

18fl0
4 18^/3 
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Fig. 1.2. The experimental bulk modulus K of alkali halides in the NaCl-type crystal 
structure, as a function of the volume per atom, £2a. 

In the last step we specialised in the NaCl-type lattice, for which Qa = 

On the basis of the crude model (eq. (1.15)), we can now understand 
the variation of the bulk modulus of alkali halides crystallising in the 
NaCl-type structure, as a function of the atomic volume £2a, (fig. 1.2). K 
is obtained here as (cn + 2cn)/3 with ctj from the Landolt-Bornstein 
tables (Every and McCurdy 1992). The dashed line in the figure is just a 
guide to the eye. Its slope corresponds to K ~ Q~l-02, and not ~ ^ 4 / 3 

as suggested by eq. (1.15). Considering the crudeness of the model, for 
instance the neglect of interactions between next nearest-neighbours, we 
should not expect a better account of the bulk modulus. 

4.3. Free-electron-like metals 

The simplest representation of a metal is the jellium model. The ion 
charges are "smeared out" into a uniform positive background. The 
distribution of the conduction electrons is also spatially uniform. Since 
there is a charge neutrality everywhere, this system has no electrostatic 
energy. Let there be N atoms in a volume V. The only energy that varies 
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with the atomic volume Qa = V/N in this case is the kinetic energy of 
the electrons (Appendix B), 

<£kin) = 2.210Zr;2 [Ry]. (1.16) 

Here, and in the rest of §4, energies refer to an average per atom. The 
dimensionless parameter rs is a measure of the electron number density, 
rsao being the radius of a sphere of volume £2a/Z, and a$ the Bohr 
radius, i.e. (47t/3)(aors)

3 = QJZ. Z is the number of valence electrons 
contributed by each ion, e.g. Z = 1 for the alkali metals, Z = 3 for 
Al and Z = 4 for Pb, in their free-electron descriptions. The energy is 
expressed in Rydberg units (1 Ry = me4/(87t€oh2); 1 mRy/atom =1.313 
kJ/mol). See Appendices B and H for details. 

Because the energy (eq. (1.16)) is lowered if the system is allowed 
to expand, i.e. if rs increases further, it represents a repulsive term. We 
need also an attractive term to get a minimum in the total energy, i.e. 
cohesion. Its essential physical origin is the fact that the positive charge 
is not uniformly distributed, but approximately concentrated in positive 
ionic charges +Ze centred at the lattice points. It can not be described 
accurately in as simple a form as the kinetic energy. We therefore do not 
derive a closed-form expression for the binding energy, but turn to the 
bulk modulus K. Following the approach in §2, we consider only the 
repulsive term (eq. (1.16)) and get 

K = *L < = ( — " ) -109[Nm-2]. (1.17) 
47t(4/97T)2^m(rsa0)

5 \ rs ) 

Here rs refers to the actual value for the metal considered. Figure 1.3 
shows experimental values for the bulk modulus, versus the parame-
ter rs, with K calculated from the single-crystal elastic coefficients ctj 
(Every and McCurdy 1992) using the methods described in Chapter 18 
(§3). For Li, Rb and Cs, low temperature Q ; are used to suppress the 
effects of anharmonic softening. The dashed line is a guide to the eye, 
and corresponds to K ~ r~3'5. Considering the extreme simplicity of 
the model, with K arising entirely from the kinetic energy of a free-
electron gas, we should not expect a better account of the data in fig. 
1.3. 

It is seen in fig. 1.3 that rs varies considerably even among free-
electron-like metals of the same valency, for instance among the alkali 
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Fig. 1.3. The bulk modulus of some free-electron-like metals as a function of the 
electron density expressed through the parameter rs, plotted as log K versus log rs. 

metals that are all described by Z = 1. Obviously, the atomic volume, 
£2a, depends crucially on the "size" of the ions (e.g. the ion Na+, con-
sisting of the nucleus and the filled electron shells). However, the energy 
does not depend much on the precise lattice configuration, for a given 
ion. This can be illustrated by considering the Coulomb energy Ec (per 
ion), when ions of charge +Ze interact with a rigid uniform electron gas 
with a density given by rs. Then 

Ec = -acZ
5/3Zr;1 [Ry]. (1.18) 

Here, ac is a Madelung constant given in table 1.2. The fact that ac 

depends so weakly on the configuration of the positive point charges is 
consistent with the experimental and theoretical result that the atomic 
volume is the same within about 1% for different lattice structures (e.g. 
bcc, fee and hep lattices) for a certain free-electron-like metal (Rudman 
1965). The atomic volume of alloys is further discussed in Chapter 19, 
in connection with Vegard's (1921) rule. 

Finally, it must be stressed that one cannot tell from the element 
alone, i.e. without a quantum mechanical calculation, what is the elec-
tron structure in the solid. For instance, tin is rather free-electron-like 
in the metallic tetragonal lattice structure (jS-Sn or white tin), but is 
a semiconductor when crystallising in the diamond-type lattice struc-



12 Ch. 1. Bonding characteristics 

Table 1.2 

The Madelung constant «c 

Lattice structure 

Simple cubic 

Body-centred-cubic 

Face-centred-cubic 

Hexagonal close-packed 

Diamond 

Tetragonal (white tin) 

(c/a = 1.633) 

(c/a = 1.5) 

(c/a = 1.8) 

(c/a = 0.554) 

ac 

1.760* 

1.79186b 

1.79172b 

1.79168a 

1.78998c 

1.78909c 

1.671c 

1.77302d 

aCarr(1961). 
bFuchs (1935). 
cHarrison(1966). 
dIhm and Cohen (1980). 

ture (a-Sn or gray tin). The atomic volume of Sn is 27% larger in the 
semiconducting state. 

4.4. Transition metals 

The d-electrons play a major role in the transition metals. We will 
use a simple model (Friedel 1969) that neglects the s- and p-electrons 
altogether. Let the d-state of an isolated atom have the energy E® rel-
ative to some reference level. When the atoms are brought together 
in a solid, the d-level broadens into a band described by an electron 
density-of-states Nd(E) (per atom and spin direction). If a metal has nd 

d-electrons, the cohesive energy (per atom) becomes 

Ucoh = ndE»-2 Nd(E)EdE, (1.19) 

where E' is the bottom of the d-band and £F is the Fermi level. The 
factor of 2 in the integral comes from summation over the two-spin 
directions. Friedel (1969) assumed that Nd(E) is rectangular in shape, 
with a width Wj and a "centre of gravity" shifted from the atomic level 
E® to Ed (figs. 1.4 and 1.5). The total number of d-states is 10, which 
fixes the height of Nd(E) to 5/Wd, when Nd(E) refers to one spin 
direction. Then 
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N(E) 

Fig. 1.4. A schematic picture of how an electron d-level shifts from its value E® in an 
atom and broadens into a band of width Wd in the solid. 

Fig. 1.5. The electron density of states N(E) for a real transition metal (bcc W; from 
Einarsdotter et al. (1997)) and a representation through Friedel's rectangular model 

density of states. 

C/coh = (E°d - Ed)nd + ( 1 / 2 0 ) ^ ^ ( 1 0 - nd). (1.20) 

Neglecting the fact that Wd, Ed and E® vary with nd, which is a crude 
but reasonable approximation in our context, this model predicts that 
the cohesive energy varies parabolically with nd, i.e. with the d-band 
filling. Typically, in the 4d-transition metal series, Wd = 0.5 [Ry] and 
E® - Ed < 0.1 [Ry]. The model neglects any structural dependence of 
Nd(E) but this is not too serious since f/COh is an integrated quantity 
of Nd(E) and the most important factor is the width Wd of Nd(E). 
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Fig. 1.6. The cohesive energy [/coh (solid curve) calculated from eq. (1.20) when 
E® = Ed a nd Wrf =0 .5 Ry, and plotted versus the position of the metal in the Periodic 
Table. Filled circles are experimental values and open circles are results from an early 
and very influential ab initio electron structure calculation (Moruzzi et al. 1977, 1978). 

As is seen in fig. 1.6, the cohesive energy calculated in this approx-
imate manner is in qualitative agreement with experiments. Since the 
model makes no reference to how C/COh changes with volume, we cannot 
estimate the atomic volume. Such considerations should use the fact 
that Wd increases with decreasing volume that corresponds to attractive 
forces between the atoms. This is balanced by the repulsive force arising 
when the conduction electrons (s- and p -electrons) are forced into the 
ion cores on compression. Thus, the s- and /^-electrons are important 
in determining the atomic volume and the bulk modulus, but not for 
the cohesive energy, again in line with the arguments in §2. There, the 
balance between the repulsive and attractive forces also was found to 
imply a covariation between K and C/C0h. Such a connection holds also 
for transition metals, as seen by comparing fig. 1.6 and 1.7. However, 
there is no simple correlation between the bulk modulus K and the 
atomic volume J2a in contrast to the behaviour for simple metals, ionic 
and covalent solids. 

Example: relative stability of fee and bee structures. In pioneering work 
by Pettifor (1970), Skriver (1985) and others, the difference in cohesive 
energy between the fee, hep and bec lattice structures of transition met-
als was obtained from electron structure calculations. Such theoretical 
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Fig. 1.7. The experimental bulk modulus K (filled symbols, left scale), obtained as in 
Chapter 18 with c/y from Every and McCurdy (1992), plotted versus the position of 
the metal in the Periodic Table. The figure also shows the experimental volume per 

atom (open symbols, right scale), from Rudman (1965). 

results were first thought to be less accurate because for some elements 
they seemed not to agree with the semiempirical results (cf. fig. 1.8). It 
is now well established that ab initio electron structure calculations can 
give very reliable results for the cohesive energy of transition metals 
in various hypothetical structures. The difference between such data 
and the semiempirical values that are derived, e.g. from the fitting of 
thermodynamic functions to alloy phase diagrams, is not physically 
significant. Discrepancies between the two approaches to the cohesive 
energy of metastable structures may arise when a metastable structure 
is in fact dynamically unstable (see also Chapter 4 (§3), and a review by 
Grimvall 1998). 

It was noted above that for free-electron-like metals, the bulk mod-
ulus K varied significantly with the atomic volume Qa when different 
elements were compared, but £2a did not vary much for different metal-
lic structures of the same element. As seen in fig. 1.7, there is no 
corresponding close relation between K and Qa for the transition met-
als. However, like the case of simple metals (§4.3) it is a good rule of 
thumb for the transition metals, that Qa does not depend much on the 
lattice structure as long as the electronic structure is not much changed. 
This is further dealt with in Chapter 19 (§2). 

Simple models of cohesive properties 

400 
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Fig. 1.8. The difference in cohesive energy between the fee and bec lattice structures of 
4d-transition metals (solid line; after Skriver 1985) and the same quantity obtained by 
the often used semiempirical estimate using Miedema's approach (symbols; Miedema 
and Niessen 1983). Where the two sets of data disagree significantly, they do in fact not 

reflect the same physical quantity. 
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4.5. Semiconductors 

The bonding in semiconductors cannot be described quantitatively by 
the simple approaches we have discussed for ionic solids, free-electron-
like metals and transition metals. However, one can argue (Cohen 1985, 
1988) that the bulk modulus varies approximately inversely with a 
power of the atomic volume. Consider the Ansatz 

K* 
K-g. (1.2!) 

Figure 1.9 shows that this gives a good fit when the exponent p « 7/6. 
Hence, K varies as a~35 within a class of materials with the same lat-
tice structure, where a is a lattice parameter. The parameter K* takes 
different values for group IV, III-V and II-VI compounds. 



CHAPTER 2 

CRYSTAL DEFECTS 

1. Introduction 

Vacancies and some other point defects may be thermally generated 
and therefore present in thermal equilibrium. Other defects have such 
high formation energies that their presence depends on the detailed 
pre-history (cold-working, annealing etc.) of the sample. Since we are 
interested in the temperature dependence of phenomena related to the 
defects, it is illuminating to express the magnitude of some characteris-
tic energies in units of kBTfus, where kB is Boltzmann's constant and 7fus 

is the melting temperature; see table 2.1, based on Grimvall and Sjodin 
(1974). 

Henderson (1972) has written an elementary introduction on vari-
ous defects in crystalline solids, and Watts (1977) gives a somewhat 
more advanced account, with emphasis on non-metals, while Varotsos 
and Alexopoulos (1986) treat their own approach to point defects in 
great depth. Grain boundaries are dealt with in Chadwick and Smith 
(1976) and Humphreys and Hatherly (1996). There are a large number 
of review articles, e.g. by Seeger (1973), Kovacs and El Sayed (1976) 
and Wollenberger (1996) who cover point defects, mainly in metals. 
Extended defects in materials have been reviewed by Friedel (1980). 

2. General thermodynamic relations 

2.1. Formation energy, enthalpy, entropy and volume 

The formation energy, E^f, of a defect is the energy difference between 
a crystal with a defect, and a perfect crystal, containing the same num-
ber of atoms. The formation volume Vdef is the difference in volume 

18 
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Table 2.1 

Some characteristic energies of defects in elements, in units of kg Tfus 

Vacancy formation energy 8-13 

Activation energy of self-diffusion 15-19 

Heatoffusiona 0.9-1.3 

Surface energyb 5-10 

Grain boundary energyb 3-6 

a Per atom. 
Per area of one atom (in a monolayer). 

between the two crystals. Similarly, one can define the thermodynamic 
quantities H^u d̂ef, GW and Sdef• The usual thermodynamic relations 
for the enthalpy H, the Helmholtz energy F etc., are also valid for 
quantities like //def and Fdef, if they involve derivatives with respect to 
intensive variables, such as p and T. For instance, the formation volume 
can be written as 

/ 3Gdef \ 
v—Ur)r- <21) 

One has to be careful in the use of relations involving derivatives with 
respect to extensive variables, such as the volume V (Howard and 
Lidiard 1964, Levinson and Nabarro 1967). 

2.2. Defect concentration in thermodynamic equilibrium 

The defects present in a state of complete thermodynamic equilibrium 
must have low formation energies Z?def• This limits us to point defects 
and small aggregates of them. Let N be the number of lattice sites. The 
number of defects in equilibrium is 

TVdef = N exp(Sdef,tot/*s) e x p ( - / / d e f / ^ ) . (2.2) 

This expression assumes that iVdef <̂C N and that interactions between 
defects can be neglected. At ambient pressure, we can put p = 0 so that 
Hdef — Edef. The total entropy 5def,tot has two parts: 

,tot — ^geom + Sdef- (2.3) 
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Fig. 2.1. The quenched-in electrical resistance in gold plotted as \og(AR/Ro) ver-
sus l/T (upper scale) and p (lower scale) yields straight lines with slopes from 
which the vacancy formation energy £Vac and formation volume VVac can be obtained. 

Data from Huebener and Homan (1963). 

ln(Zdef) *s a temperature-independent geometrical term, zdef 
being the number of configurations of a defect associated with a partic-
ular site in the lattice, and with proper consideration of double counting. 
We normally encounter it as a term wp{Sgeom/ kB) = £def- If there are 
several atoms per primitive cell, one may have to assign different values 
i/def, Sgeom a nd Sdef to different configurations or lattice sites. 

2.3. Defect parameters from an Arrhenius plot 

A physical quantity showing an exponential temperature dependence 
such as in eq. (2.2) is said to obey an Arrhenius law. Then //def (or £def) 
can be determined from a plot of ln(Nfef/N) versus X/ksT which yields 
a straight line with the slope — H^f (cf. fig. 2.1). One has 

d(\/kBT) \dT ) \ dT ) 
+ //def = fldef(r). (2.4) 
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Here we have used the thermodynamic relation T(dS/dT)p = 
(dH/dT)p. Thus, a meaningful formation enthalpy Hdef(T), or forma-
tion energy Edef(T), can be obtained even when these quantities are 
temperature dependent, so that the Arrhenius plot is curved. 

From eqs. (2.1) and (2.4) we obtain the formation volume 

v _ /9Gdef\ _ /9(#def- TSfof) 

\ dp ) T V dP 

= _^p»)r. (25) 
A plot of ln(7Vdef/A0 versus p thus gives the formation volume Vdef 
(Levinson and Nabarro 1967). 

Example: temperature-dependent Hdef(T) for vacancies. We will study 
the variation of Hdef(T) with T and make an expansion in T near the 
melting temperature Tfus: 

O Hdef 
Hdef(T) = //def (Tfus) + (T — Jfus) 

(2.6) 

d T 7 P;T=T{US 

(9 5def \ 

For harmonic lattice vibrations, and in the high temperature limit, we 
have (cf. eq. (9.21)) 

Sde{ = 3NkBln[6(0)/9de{(0)l (2.7) 

where #def(0) and 6(0) are "entropy Debye temperatures" for the crys-
tal with and without a vacancy (cf. Chapter 9, §4.5). From eq. (2.7), 
(dSdQf/dT)p = 0. To obtain a temperature-dependent Z/def, anharmonic 
effects must be included. If this is done within the quasiharmonic model, 
and with equal Griineisen parameters for the perfect and the defect 
state, we still obtain (dS^f/dT)p = 0. One has to go beyond such a 
simple description to get a temperature-dependent //def (Girifalco 1967, 
Levinson and Nabarro 1967). 



22 Ch. 2. Crystal defects 

2.4. Constant pressure and constant volume 

Sometimes it is essential to distinguish between quantities considered 
at constant volume (subscript V) and at constant pressure (subscript p). 
Experiments are usually performed at constant pressure (p « 0) but 
model calculations may be more conveniently carried out at constant 
volume. If (Vdef)/? is the increase in the specimen volume when a certain 
defect is introduced at constant pressure, and (/?def)v is the increase in 
pressure if a defect is added at constant volume, they are related by (KT 

is the isothermal bulk modulus) 

(Vdef)pKT = (/?def)y V, (2.8) 

with similar relations for other thermodynamic properties of defects 
(Catlowetal. 1981). 

3. Vacancies 

Here we mainly have in mind thermally generated vacancies in elements 
and alloys. The formation energy £def = Ewac of a monovacancy is the 
energy difference between a perfect lattice with N occupied lattice sites 
and a similar lattice with N+l sites, one of which is void. The formation 
volume Vdef of a monovacancy is the difference in volume between these 
two crystals. The concentration of monovacancies in a monatomic solid 
is, in thermal equilibrium and at p = 0, 

cvac = exp(SYac/kB) exp(-£ v a c /£ B r ) , (2.9) 

where Svac is an entropy term related to changes in the vibrational spec-
trum of the lattice, eq. (9.28). Since there is only one configuration 
(orientation etc.) for a vacancy, we have Zdef = 1 and, hence, Sgeom = 0. 
Under a pressure /?, EWSLC in eq. (2.9) is replaced by EWSiC+pVV3iC. The role 
of vacancy formation in the heat capacity of solids close to the melting 
point is considered in Chapter 11, §3. 

The Landolt-Bornstein tables (Ullmaier 1991) give values of £Vac 
and SVac derived by various experimental techniques. While different 
sources typically agree in their values for EV3LC to within ~10%, the 
values for Svac a*"

6 verY uncertain. It is not unusual that quoted SVSLC/kB 

for a certain element range from, e.g. 1 to 2. Chapter 19 (§7) deals 
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Table 2.2 

Vacancy defect parameters for Cu and Al 

Cu 

Al 

cvac (T — Tfus) 

(0.76 ± 0.03) x 10~3 

0.93 x 10~3 

£vac (eV) 

1.19 ±0.03 

0.75 

£vacA#7fus 

10.2 

9.3 

^VSLc/kg 

3.0 ± 0.3 

2.4 

with the estimate of Lvac and other defect energies from the melting 
temperature 7fus. 

Example: vacancies in Cu and Al. Vacancies increase the length L of a 
specimen but do not affect the lattice parameter a, as measured by X-
ray methods. Simmons and Balluffi (1960) used this fact to derive the 
vacancy formation energy of Al from the relation 

f AL Aa 1 
cVac = 3 . (2.10) 

{ L a \ 

Here AL includes the effect of vacancies as well as ordinary thermal 
expansion, while Aa only includes the thermal expansion. This method 
has been refined by Hehenkamp et al. (1992), to get cvac, LVac and Svac 

with higher accuracy than obtained in other, similar or different, exper-
iments. Table 2.2 gives some results (Hehenkamp 1994). One should 
note that eq. (2.10) holds even when there are relaxations around the 
defects (Simmons and Balluffi 1960, Seeger 1973). 

Example: vacancies in gold under pressure. If a specimen is quenched 
from a high temperature 7\ the residual resistance Ro + AR of the 
quenched sample has a part RQ caused by impurities and a part AR 
arising from the N^f quenched-in thermal defects (vacancies). Since 
AR is proportional to N^u a plot of ln^ef/AO can be replaced by 
a plot of ln(AR/Ro). Huebener and Homan (1963) measured AR for 
vacancies in gold at different temperatures and pressures. Figure 2.1 
shows their results. From the slope of the straight lines one obtains //vac 
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= 0.98 eV and Vvac = 9.19 x KT30 m3 = 0.53£2a, where fta is the atomic 
volume. //Vac refers to p = 0.18 GPa. Then pVvac = 0.01 eV is negligible. 

Example: non-stoichiometric carbides and nitrides. Several transition-
metal carbides and nitrides crystallise in an NaCl-type lattice with a 
non-stoichiometric composition VCX etc., where typically x is M).8-
0.9. Such vacancies on the non-metal sites do not represent thermal 
equilibrium, even at high temperatures. Instead, the composition of the 
ground state, i.e. the state of lowest energy at T = 0 K, has x < 1 as was 
shown in total-energy electron structure calculations for VCX (Ozolhjs 
and Haglund 1993). 

4. Divacancies and vacancy clusters 

Divacancies and vacancy clusters can be treated by a direct generalisa-
tion of the approach given in §3. The concentration of divacancies at 
thermal equilibrium, in a monatomic solid, may be written 

Cdivac = ( z /2 ) ( c v a c ) 2 eXp(ASdivacAfl) expC^divacbind/^^)- ( 2 1 1 ) 

Here cvac is the monovacancy concentration, £divac,bind is the binding 
energy between two vacancies (the formation energy of a divacancy is 
2£vac — £divac,bind) and ASdivac is the change in the vibrational entropy 
when two separate vacancies form a divacancy. If a certain vacant site 
has z equivalent neighbouring lattice sites, one can form z differently 
oriented divacancies. After correction by a factor of 1/2 to avoid double 
counting, we obtain the prefactor exp(Sgeom/kB) = z/2 in eq. (2.11). 
There may be configurations with different £divac,bind and Sdivac- Then 
the total concentration of divacancies is a sum of terms such as the 
righthand side of eq. (2.11). 

In a bcc lattice, the nearest sites for an adjacent vacancy are at 
a(±1/2, ±1/2, ±1/2), where a is the lattice parameter. Hence, z = 8 
and Sgeom = kB In 4 ^ \AkB. There may also be divacancies where 
the adjacent vacancy is at the second nearest-neighbour position in the 
lattice, i.e. at a (±1,0, 0) and equivalent sites in a bcc lattice. Then 
z = 6 and Sgeom = kB In3 « l.lkB. Generalisations to other con-
figurations or lattices are obvious. For instance, in an hep lattice one 
may have to distinguish between divacancies lying in, or perpendicular 
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to, the basal (hexagonal) lattice plane. In fee lattices, £divac,bind may 
be so large (>kBT) for a pair of vacancies occupying the next-nearest 
lattice positions, that a term corresponding to this configuration must 
also be included in eq. (2.11). Typically, Ediv^b[nd/kBTfus ~ 1-2. Then, 
very roughly, about 0.1-0.01 of the vacant sites are associated with 
divacancies near T = 7fus. 

Atoms may also leave their regular lattice positions and form inter-
stitials. The thermodynamic description is similar to that of vacancies. 
See Smargiassi and Madden (1995) for a treatment of interstitials in 
sodium. 

A liquid is stabilised relative to the solid phase by the large entropy 
of spatial disorder. There is some evidence for a similar stabilisation of a 
liquid-like structure surrounding vacancies or interstitials, and involving 
near-neighbours to the original point defect (Gosele et al. 1983, Pokorny 
and Grimvall 1984, Stern and Ke Zhang 1988). 

5. Interactions between point defects and other defects 

Consider a dilute substitutional solid solution, with concentration cso\ of 
solute atoms. The coordination number of the lattice is z. The equilib-
rium number of vacancies may be higher in the alloy than in the pure 
host, because vacancies bind to impurities and are thus associated with 
a lowered formation energy. The equilibrium concentration of vacancies 
in the alloy is given by homer's equation', 

Cvac = (Cvac)°[l ~ ^sol] + (cVac)Vsol e x p [ G v a c - s o l / ^ L (2.12) 

where Gvac-soi is the Gibbs energy of binding between a vacancy and 
a solute atom. Often, the entropy term in G is neglected and G in eq. 
(2.12) is replaced by the binding energy £Vac-soi- We may justify eq. 
(2.12) as follows. The fraction 1 — zcsoi of all lattice sites is not adja-
cent to a solute atom. The probability for a vacant site at these lattice 
positions is the same as in the pure host (if interactions beyond nearest-
neighbours are neglected). This gives the first term on the righthand side 
of eq. (2.12). The remaining sites have a vacancy bound to a solute atom, 
giving an extra exp(Gvac-soi/ kg T) in the Boltzmann factor. Thus, we ob-
tain the second term on the righthand side of eq. (2.12). Lomer (1958), 
Lidiard (1960) and Burke (1972) have given more stringent arguments 
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for eq. (2.12). It fails if the solute atoms show clustering, and the validity 
is often limited to csoi < 0.01. March and Rousseau (1971) and Seeger 
(1973) have reviewed various aspects of vacancy-solute interactions. 

Example, vacancy-solute interactions inAl-Ag alloys. If the experiment 
of the Simmons-Balluffi type in the example in §3 is done on a pure 
element (unprimed quantities) and a dilute alloy of the same element 
(primed quantities), one has from eqs. (2.10) and (2.12); 

^vac)°^soiz[exp(£vac-sol//:Br) - 1] 

->|TT-¥H{¥-?1-
Using this method for Al with 0.94 at.% Ag, Beaman et al. (1964) 
obtained £Vac-soi/£vac ~ 0.10. 



CHAPTER 3 

ELASTICITY. BASIC RELATIONS 

1. Introduction 

The elastic properties of materials can be described in different ways. 
The engineer usually deals with polycrystalline one- or multiphase sys-
tems which are characterised by macroscopic elastic parameters such as 
the bulk modulus K and the shear modulus G. The physicist is more 
interested in the properties of a single crystal, described by the elastic 
stiffness coefficients ci;, and then elasticity is often considered as the 
special case of long-wavelength lattice vibrations. The terminology in 
the field is not quite clear. In this book we will adopt the following 
notation and terminology (Ledbetter and Reed 1973). 

K = bulk modulus 
K= l/K = compressibility 
G = shear modulus 
E = Young's modulus 
v = Poisson ratio 

dj = elastic stiffnesses 
sij = elastic compliances 

elastic 
moduli 

(polycrystal) 
engineering 
elastic constants 

(single crystal) 
elastic coefficients 

elastic 
constants 

Some authors use B for the bulk modulus and K for the compressibility; 
call our K the modulus of (hydrostatic) compression and our K the co-
efficient of (hydrostatic) compression; call G the rigidity modulus and 
denote it /x; call s^ elastic moduli and cI7 elastic constants; or even call 
Sij elastic constants while c,;- are called elastic coefficients. 

Much of the following account of elasticity is covered in mono-
graphs and articles by Nye (1957), Huntington (1958), Hearmon (1961), 
Fedorov (1968), Musgrave (1970) and Schreiber et al. (1973). We will 

27 
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Table 3.1 

Voigt's (1910) contraction scheme for indices in cap and q^ / 

/, j or k, I 

a or ft 
11 

1 

22 

2 

33 

3 

23 or 32 

4 

13 or 31 

5 

12 or 21 

6 

mainly consider those aspects which form a necessary background for 
our discussion of thermophysical properties in other parts of this book. 

2. General considerations 

The elastic strain s^ is related to the stress atj by Hooke's law, 

3 

k,i=\ 

where i, j,k and / are indices running from 1 to 3. The elastic properties 
of a material are described by a fourth-rank elasticity tensor with 34 = 
81 elements e^/ . Because c^\a = Ckitj = Cjiki = c^ik, there are at most 
21 different elements e,-^/. They can be arranged in a 6 x 6 matrix that 
is symmetric, i.e. with elements cap = cpa. The relations between cap 
and cijki are summarised in table 3.1. 

We can write eq. (3.1) as 

6 
aa = Y2lcapep, (3.2) 

where 

<*a = <*ij\ (3.3) 

efi = ekl if j8 = l , 2o r3 ; (3.4) 

ep = 2eki if 0 = 4, 5 or 6. (3.5) 
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Table 3.2 

Parameters describing the elastic properties 

Polycrystallinea Any two of AT, G, E and v 

Cubic cn,ci2,C44 

Hexagonal c\\, Q 2 , C13, C33, C44 

C i l , C i 2 , c i 3 , C 3 3 , C 4 4 , C 6 6 

Trigonalb'c c11? Q 2 , ci3, ci4, c33, c44 

Tetragonalb 

Trigonalb'c 

Orthorhombic cn, c12, c13, c22, c23, c33, c44, c55, c66 

a Statistically isotropic and homogeneous. 
b A few solids in this system have a lattice structure that requires seven elastic constants. 
c Earlier also called rhombohedral. 

The elastic stiffness tensor c is related to the elastic compliance tensor 
s by 

cs=I6, (3.6) 

where Ie is a 6 x 6 identity matrix. The relation (3.2) for the stresses a 
expressed in the strains £ can be inverted to give the strains in terms of 
the stresses; 

X^a/Kty. (3.7) 

Hooke's law, (eq. (3.1)), holds for both polycrystalline and single-
crystal specimens. The number of independent parameters required to 
specify the tensor cap depends on the symmetry of the system (cf. table 
3.2). Some tetragonal and trigonal symmetry classes have additional 
cap / 0 if one uses certain natural choices of coordinate axes (see, for 
example, Fedorov 1968). 

If a material has spherically symmetric elastic properties, two pa-
rameters suffice for their description. It follows that for isotropic 
materials, including materials which are isotropic and homogeneous in 
a statistical sense, there are only two linearly independent engineering 
elastic constants. Then there are 12 relations between K, G, E and v; 

GE E 2G(l + v) 
K = = = — -, (3.8) 

3(3G-E) 3 ( 1 - 2 v ) 3(1 -2v) v J 
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G = 

E = 

3KE 
9K - E ~ 

9KG 
3K + G 

3K -2G 

E 3K(l-2v) 
= — (3 9) 

2(1+ v) 2(1 + v) ' 

2G(l + v) = 3K(l-2v), (3.10) 

_ E _ 1 E 

2(3K + G) = 2G~l^2~~6K' ( 3 ' U ) 

Sometimes one prefers to take as independent elastic parameters the 
Lame constants k and /x, with X = K — 2G/3 and JJL = G. Cubic lattices 
have three independent elastic coefficients. Usually one chooses them 
to be en, c\2 and C44. An alternative set of constants was introduced by 
Zener(1948); 

K = (cn + 2ci2)/3, C = c44, C = (en - c12)/2. (3.12) 

It can be shown that K is the bulk modulus. C and C are shear moduli 
for shear in the (100) and (110) planes; see eqs. (3.39) and (3.40). If 
the cubic lattice is elastically isotropic, C = C = C44 equals the shear 
modulus G. 

3. Fundamental definitions of elastic constants 

Hooke's law is a phenomenological expression of how a solid re-
sponds to an applied stress. In order to get a deeper understanding 
of the influence of pressure, temperature etc. on the elastic constants, 
we should express cap in appropriate derivatives of thermodynamic 
functions. The first law of thermodynamics, in most cases just written 
dU = T dS — pdV, has a generalised form when one resolves the 
forces and deformations into Cartesian components (a positive stress a 
corresponds to a negative pressure p)\ 

dU = T dS + V0 J2 Gi d^ * (3*13) 

1=1 

For an isentropic (adiabatic) deformation (dS - 0, i.e. no heat flows in 
or out of the volume Vb)> the components of the stress tensor can be 
obtained as 

oi = (l/V0)(dU/dsi)s,e>, (3.14) 
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where the subscripts S, e' mean that the derivatives are taken at constant 
entropy S and with all strains Sj ^ £t held constant. The prefactor 1/ V0 

ensures that at is independent of the size of the specimen. Alternatively, 
we could have defined U as an energy density, i.e. energy per volume, 
and dropped Vb m eQ- (3.14). 

The components cap of the stiffness tensor are defined by 

(Cafih = 0<ra/defi)s,e> = (l/Vo)(d2U/dead£p)s,6>- (3.15) 

Now, the subscripts 5, ef mean that S and all £, except sa and e^ are 
kept constant. The cap defined by eq. (3.15) are called isentropic (or 
adiabatic) elastic coefficients since they are taken at constant entropy. 
We can also define isothermal elastic coefficients, i.e. taken at constant 
temperature T, if we start from the Helmholtz (free) energy F. One has 

6 

dF = -SdT + Vo^cnfei, (3.16) 

which leads to (Brugger 1964) 

(caP)T = (d<ra/defi)T,e> = (l/V0)(d
2F/deadsp)T,£,. (3.17) 

The isentropic (or adiabatic) compliances (sap)s are defined from the 
enthalpy H, 

(sap)s = (dejdaph,*' = -a/V0)(d
2H/d<Tadcrp)Sta,, (3.18) 

and the isothermal compliances follow from the Gibbs energy G, 

(safi)T = (dea/dafi)T,a> - -(l/Vo)(d2G/dcradap)T^. (3.19) 

See Brugger (1964, 1965b) for details on the definitions of cap and 
sap and how they are related to thermodynamics and measured elastic 
constants. 

The isentropic (or adiabatic) and isothermal compressibilities Ks and 
KT, and bulk moduli Ks and KT, are of the form 

3 

KS = (Ksy
l = J2 Ms, (3.20) 
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3 

KT = (KTyl = J^ Mr. (3.21) 

These relations, valid for any crystal structure, are discussed further in 
Chapter 13, in connection with equations-of-state. Here we just note that 
KS/KT = KT/KS = Cp/Cy, eq. (13.35). There is no significant differ-
ence between isentropic and isothermal elastic constants when T < 0D 

(a Debye temperature), but close to the melting temperature they may 
differ by 15% or more. 

Example: the bulk modulus expressed in C(j. As an illustration we check 
that the cap from eq. (3.15) are consistent with the result K = (en + 
2ci2)/3 = -V(dp/dV) for cubic lattices (eq. (3.12)). We get 

cn+2ci2 = (l/V)(d2U/ds2
l+2d2U/dsid£2) 

= (l/V)(d/dei)(dU/dei + dU/ds2 + dU/ds3) 

= (l/V)(d/dei)(dU/dV)(dV/dei + dV/ds2 

+dV/de3) 

= (d/dV)(-3pV) = -3V(dp/dV). (3.22) 

Here we have used that c\2 - c^, dV/V = ds\ + ds2 + d^3; p = 
—dU/dV and, in the last step, that p -» 0 (cap is calculated for a 
stress-free sample). 

4. Higher-order elastic constants 

The energy of a crystal can be expanded in powers of the strains st as 

U = U(8i = 0) + V0 J2 ci£i + (1/2) V0 J ] CijSiSj 

+(1/6) V0 £ c y * < W * + ' * * • (3-23) 

Indices i, j,k run from 1 to 6 in the summations. The definition of the 
expansion coefficients is exemplified by 

(cijk)s = (l/Vo)(d3U/deidejdek)Sts>9 (3.24) 
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which is called a third-order isentropic (or adiabatic) elastic coefficient. 
(Some authors call it second-order and let cap be first order.) Ufa — 0) 
is the energy of the reference state from which the strains are counted. 
That energy is uninteresting in our discussion. All terms c,-£z- vanish if 
St = 0, which refers to a stress-free equilibrium. The subscripts S, e' 
have the same meaning as earlier. In addition to the isentropic third-
order elastic coefficients, (eq. (3.24)), one can start from the Helmholtz 
energy F and define isothermal coefficients. See, for example, Brugger 
(1964), Thurston and Brugger (1964), Wallace (1970, 1972), Hearmon 
(1979, 1984) and Every and McCurdy (1992) for details and further 
references. 

In analogy to cap, symmetry reduces the number of linearly indepen-
dent third-order elastic coefficients, and many of them vanish. In cubic 
symmetries (except for, e.g. some alums with a more complicated cubic 
lattice) one is left with the six coefficients 

Clll, c112> C\23, C\44, C155, C456. (3.25) 

Note that there are other conventions concerning the choice and notation 
of high-order elastic constants, e.g. that of Birch (1947). Furthermore, 
c155 = c166, and hence relations below for cubic systems are sometimes 
quoted with c\^ instead. 

5. Hooke's law in isotropic and homogeneous polycrystalline 
materials 

Consider a polycrystalline specimen that is isotropic and homogeneous 
in a statistical sense. Expressed in K and G, Hooke's law, (eq. (3.1)), 
takes the form 

/ ai \ / K + 4G/3 K - 2G/3 K - 2G/3 0 0 0 \ / sx \ 
< T 2 IK- 2G/3 K + 4G/3 K - 2G/3 0 0 0 I I e2 I 
a3 I \ K - 2G/3 K - 2G/3 K + 4G/3 0 0 0 e3 

a 4 ~ 0 0 0 G 0 0 e4 ' 
a5 0 0 0 0 G 0 I es 

\^6 / V ° ° ° 0 0 G / \ e 6 / 

(3.26) 
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We illustrate the application of eq. (3.26) by three simple cases; uniaxial 
stress, hydrostatic pressure and shear. 

Uniaxial stress. A uniaxial stress crxx = a corresponds to <i\ = a and 
all other at = 0. Furthermore, only s\ and 62 (= £3) are non-zero. From 
eq. (3.26), we then get a = ax = (K + 4G/3)ei + (K - 2G/3)e2 + 
(K — 2G/3)£3, with a similar equation for 07 (= 0). Elimination of £2 
(= £3), and using eqs. (3.9) and (3.11), leads to 

£\ = cr/E, s2 = £3 = —va/E. (3.27) 

Hydrostatic pressure. A hydrostatic pressure p corresponds to o\ = 02 
-03- —p, and <T4 = a5 = a§ = 0. From eq. (3.26) we obtain — p = <j\ = 
(K +4G/3)£i + (K -2G/3)£2 + (K -2G/3)s 3 , with similar equations 
for a2 and 03. Then 

£l=s2 = s3 = -P/3K. (3.28) 

The relative volume change, A V/ V, is 

AV/ V = ex + £2 + £3 = - / > / * • (3.29) 

Shear. Shear, specified by t ^ = rz>, = r, has o^-x and all other at = 0. 
From eq. (3.26) one obtains 

£4 = r / G , all other e* = 0. (3.30) 

6. Hooke's law in single crystals with cubic symmetry 

6.1. General relations 

The elastic properties of a cubic lattice may be described by the elastic 
stiffness coefficients c\\, cyi and C44, or by the elastic compliance co-
efficients 5*11, 512 and 544. They are connected by eq. (3.6). The explicit 
relations are 

C\\ +C12 

(en -ci2)(ci i +2ci 2 ) ' 
(3.31) 
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S\2 

S44 

C\2 

(cn -cn)(cn + 2 c 1 2 ) ' 

1 

c44* 

(3.32) 

(3.33) 

The corresponding relations for cap expressed in sap are obtained if the 
symbols c and s are interchanged in eqs. (3.31)—(3.33). Equations (3.31) 
and (3.32) can be combined to yield two relations that more clearly show 
the symmetries of Q 7 and stj, 

SU +2^12 = 
1 

Cn +2C12 
(3.34) 

Sll - 5 i 2 = 
C\\ ~C\2 

(3.35) 

where we recognise, on the righthand side, the bulk modulus K = (c\\ + 
2ci2)/3 and Zener's elastic constant C — (c\\ — c\2)/2. 

Hooke's law, in the case of cubic elastic symmetry, has the form 

^3 

a4 

^5 

\cr6/ 

I c\\ C12 cn 0 0 0 \ 
c\2 cu C12 0 0 0 
C12 C12 c\\ 0 0 0 
0 0 0 c44 0 0 
0 0 0 0 c44 0 

\ 0 0 0 0 0 c 4 4 / 

^3 

^5 

(3.36) 

The tensor of elastic compliance coefficients has all non-zero cap in eq. 
(3.36) replaced by sap (i.e. c\\ replaced by s\\ etc.). 

In anisotropic crystals, a specimen twists and bends at the same time, 
even if only a bending (or twisting) moment is applied. Some relations 
below refer to this situation. See Schreiber et al. (1973) or Hearmon 
(1946) for a discussion of other load situations. 

6.2. Bulk modulus 

K refers to hydrostatic pressure, and is an isotropic quantity with 

K = ( c n + 2c1 2)/3 - [3(5n + 2 s 1 2 ) r i . (3.37) 
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The relative volume change AV / V, under pressure p, is 

AV/V = -p/K = -3p/(cn + 2cl2) = -3p(sn + 2sl2). (3.38) 

6.3. Shear modulus 

A shear stress ryz gives a shear in the (100) plane and the [010] direction. 
The corresponding shear modulus is 

G(100)[010] = c44 = 1A44. (3.39) 

Similarly, for shear in the (110) plane and the [110] direction, 

{GdlOEllO]}"1 = 2(sn - sl2) = 2/(cn ~ cn) = 1/Cr, (3.40) 

where C is Zener's shear constant. 
If we let G(hkl) refer to torsion around [hkl], then shear occurs in 

all directions in the plane (hkl). The general expression for that shear 
modulus is (Hearmon 1946), with Af defined in (3.45), 

{G(hkl)}-1 = S44 + 2(2sn - 2sl2 - s44)N
4. (3.41) 

In an isotropic system, the term containing Af4 vanishes and 

G = c44 = IA44. (3.42) 

A general expression for G(hkl)[h'k'l'] is found, for instance, in 
Schreiber et al. (1973) and Turley and Sines (1971). 

6.4. Young's modulus 

E is defined as the ratio of uniaxial stress to strain measured along the 
same axis, when the body is unconstrained perpendicular to that axis. 
Let o\ be along the [100] axis, and al•= 0 (/ ^ 1). Furthermore, s2 = £3 
and 84 = £5 = £6 = 0. Then, from eq. (3.36), we obtain Young's modulus 
in the [100] direction: 

£[100] = oxjex = (cn - cn)(cn + 2cn)/(cn + ci2) = l/sn. 

(3.43) 



Hooke 's law in single crystals with cubic symmetry 37 

In an arbitrary direction [hkl], Young's modulus is best given in terms 
of S(j. One has (Hearmon 1946, Schreiber et al. 1973) 

[E[hkl]}-1 = sn - (25ii ~ 2sl2 - s44)N
4, (3.44) 

where 

N4 = n\n\ + n\n\ + n\n\, (3.45) 

and n\, n2, ft 3 are direction cosines for the direction [hkl], i.e. rt\ — 
h/(h2 + k2 + / 2 ) 1 / 2 etc. Uniaxial tension in the [110] direction gives 
m=n2 = 1/V2 and> by ecl- (3-44), 

{^[llO]}-1 = (25n + 2*i2 + s44)/4. (3.46) 

In an elastically isotropic medium, 2sn — 2s\2 — S44 = 0 and the term 
containing N4 in eq. (3.44) vanishes. Then 

E = l/su = (en - c12)(cn + 2ci2)/(cn + C12). (3.47) 

Example: direction of largest E. N4 varies between 0 (in (100) direc-
tions) and 1/3 (in (111) directions). Usually, 2511 — 2si2 — S44 > 0 (cf. 
table 3.3, Az > 1). Then E has its largest value in (111) directions. In 
a few elements of cubic structure (V, Nb, Cr, Mo) and in, for example, 
alkali halides, 2sn — 2sn — S44 < 0 and E has its largest value in (100) 
directions. 

6.5. Poisson ratio 

The Poisson ratio v is defined as the negative ratio of transverse strain 
to longitudinal strain, for the case of uniaxial stress. If the stress is along 
[100] one gets 

v[100] = -e2/ei = c12/(cu + cl2) = -sl2/sU- (3.48) 

More generally, v must be specified both with respect to the direction 
[hkl] of the longitudinal strain and the direction [h'k'l'] of the transverse 
strain. Then (Schreiber et al. 1973) 

ru'i 'firi-i /i sn + (su -sn - s44/2)M4 

v[h k I ][hkl] = — . (3.49) 
5n - (2su -2sn-s44)N* 
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Table 3.3 

Materials with noteworthy anisotropy, given by AE and Az. Elastic stiffnesses in GPa 

Material 

BaF2 

CaO 

Al 

Cr 

Fe (bcc) 
3He 

Th 

P -brass 

Li(bcc) 

Pu (fee) 

KC1 

TaC 

c\l 

91 

224 

108 

348 

230 

0.024 

77 

130 

13.6 

36 

40.5 

505 

c\2 

41 

60 

62 

67 

135 

0.020 

51 

102 

11.4 

27 

6.9 

73 

CAA 

25 

81 

28 

100 

117 

0.012 

46 

74 

9.8 

34 

6.27 

79 

AE 

0.0 

0.01 

-0.12 

0.33 

-1.2 

-1.7 

-2.1 

-2.1 

-4.6 

-30 

0.63 

0.64 

AZ 

1 

0.99 

1.22 

0.71 

2.46 

6.0 

3.5 

5.3 

8.9 

7.6 

0.35 

0.37 

Comment 

Isotropic 

Almost isotropic 

Almost isotropic 

Anisotropic; Ag > 0 

Anisotropic 

Note large Az 

Note rather small Az 

Very anisotropic 

Extremely anisotropic 

Extremely anisotropic 

Very anisotropic, 

A E > 0 

Very anisotropic, 

A E > 0 

N4 was defined in eq. (3.45) and 

M4 = n\m\ + n\m\ + n\m\, (3.50) 

where mi, rni, m^ are direction cosines for [h'k'V]. In an elastically 
isotropic crystal 

v = -sn/sn. (3.51) 

Example: anisotropic and negative Poisson ratios. Consider a single 
crystal of cubic elastic symmetry, under tension in the [110] direction. 
We want to calculate v referring to contractions in the [110] and [001] 
directions, respectively. Equation (3.49), with n\ = n2 = 1/^/2, n3 = 0 
and mi = — m2 = 1/V2» m3 = 0 o r mi = m2 = 0, m^ = 1, gives 

2511 + 2s]i — SAA 
v[110][110] = - ' , o , » (3-52) 
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v[001][110] = - - — ^ - . (3.53) 
2sU + 2̂ 12 + S44 

In an elastically isotropic material, v < 0.5. Negative v are thermody-
namically allowed, but seem not to have been observed with certainty. 
However, the anisotropic Poisson ratio often exceeds these limits. Iron 
in bcc lattice structure has su = 7.67, 512 = —2.83 and S44 = 8.57 (in 
(TPa)"1); from Every and McCurdy (1992). This yields v[ll0][110] = 
—0.06 and v[001][l 10] = 0.62. Extreme values of v arise for elastically 
very anisotropic materials (Kitagawa et al. 1980, Date and Andrews 
1969, Baughman and Galvao 1993). The intermediate-valence-state 
compounds Smi_xYxS show anomalies in v and may have c\i < 0 
(Tu Hailing et al. 1984). 

7. Hooke's law in single crystals of non-cubic symmetry 

The matrix Q7 for a hexagonal symmetry is 

/ c n cn cn 0 0 0 \ 
cn cn C13 0 0 0 
C13 C13 C33 0 0 0 
0 0 0 c44 0 0 r K } 

0 0 0 0 c44 0 
\ 0 0 0 0 0 (cn-cl2)/2j 

Examples of solids with this symmetry are Mg, Zn, Ti, Zr, ice, graphite 
and /2-quartz (SiC>2). The matrix of compliances for a hexagonal sym-
metry have all Q7 in eq. (3.54) replaced by stj (i.e. cyi replaced by 1̂2 
etc.), except that (cn — c\2)/2 is replaced by 2{s\\ — S12). The corre-
sponding matrix for tetragonal symmetry has (c\\ — c\2)/2 in the lower 
right corner replaced by c^. Examples of solids with that symmetry are 
In, /3-Sn (white tin) and BaTi03. The matrix of compliance coefficients 
has all cap replaced by sap. Matrices of stiffness and compliance co-
efficients for other symmetries are given, for example, by Nye (1957), 
Fedorov (1968) and Schreiber et al. (1973). 

The compressibility /c, expressed in stj for a solid of arbitrary elastic 
symmetry, is (e.g. Nye 1957) 

K = K~l = sn + s22 + S33 + 2(sn + 513 + 523 )• (3.55) 
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In a cubic structure, sn = s22 = S33, and sn = s\3 = S23, and we 
recover eq. (3.37). Crystals of hexagonal, tetragonal and trigonal sym-
metry have sn = S22 # 3̂3 and S13 = S23 ^ s\2> One then obtains 
(Thurston 1965) 

K = ( C 1 1 + C 1 2 ) C 3 3 " 2 C ? 3 . (3.56) 
C\\ + C i 2 + 2c 3 3 - 4 c i 3 

The volume change under a hydrostatic pressure is A V = —pV/K, but 
the strains St are not equal. Then S\ (= 82) and £3 are given by (cf. Nye 
1957, Musgrave 1970) 

C33 — C13 

£i(2) = ~Pz ; : r r = -P(?n + $12 + £13), (3.57) 
(c\\ +cn)c33 ~ 2 q 3 

C\l+Ci2-2ci3 
£3 = -p- • - Y " = -p(2su + S33). (3.58) 

(en + ci2)c33 ~2cf3 

Analogous results for other crystal symmetries are found, e.g. in Nye 
(1957). As a partial check of eqs. (3.55) and (3.56) we restrict the 
discussion to elastic isotropy. Then c\\ = C33 and en = C13 (eqs. 
(3.63)-(3.66)), and we recover the result in a cubic structure. 

It should be pointed out that eqs. (3.55) and (3.56) give the bulk mod-
ulus for a single crystal and not for a statistically isotropic polycrystal. 
In the Reuss approximation to the elastic properties of polycrystals, one 
assumes uniform stress. This is the situation that holds above, and eq. 
(3.55) is seen to agree with the Reuss expression K& (Chapter 18, §3.2). 
A deformation under uniform strain, e.g. constant c/a ratio in hexagonal 
lattice structures, is described by the Voigt bulk modulus Ky (Chapter 
18, §3.2). 

Expressions for E[hkl], referring to various non-cubic lattices, are 
found in Hearmon (1946), Boas and Mackenzie (1950) and Nye (1957). 
They also give explicit relations between ctj and stj. The anisotropic 
Poisson ratio has been derived for hexagonal (Li 1976), tetragonal 
(Chung et al. 1975) and trigonal (Gunton and Saunders 1972) lattices. 
In analogy to the example in §6, a negative v is reported for a-SiC>2 
(Kittinger et al. 1981). 

Example: Poisson ratio « 0 in poly crystalline beryllium. Using c/; from 
table 3.4 and the Voigt-Reuss-Hill approximation (Chapter 18, §3.3) 
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Table 3.4 

Elastic stiffnesses in In, Be, Mg, Zr, Zn, ice and graphite, in units of GPa 

Material 

Indium (tetragonal) 

Beryllium (hep) 

Magnesium (hep) 

Zr (hep) 

Zinc (hep) 

Ice (hexagonal) 

Graphite (hexagonal) 

c\\ 

45.1 

292 

59.3 

144 

165 

13.7 

1060 

c33 

44.6 

349 

61.5 

166 

61.8 

14.7 

36.5 

c\2 

40.0 

24 

25.7 

74 

31.1 

7.0 

180 

c\3 

41.0 

6 

21.4 

67 

50.0 

5.6 

15 

c44 

6.51 

163 

16.4 

33.4 

39.6 

3.0 

4 

Q>6a 

12.0 

134 

16.8 

35 

67.0 

3.4 

440 

a For hexagonal symmetry, c^ = (c\\ — c\2)/2. 

for K and G of a statistically isotropic polycrystalline specimen, we get 
KWRU = 111.5 ± 0.1 GPa and GVRH = 151.0 ± 0.8 GPa, and thus v 
= 0.03. This is consistent with a theoretical calculation (Cohen 1982) 
which gives a slightly negative v. 

8. Elastic anisotropy in single crystals 

A crystal may have elastic coefficients cap (sap) which, accidentally, 
yield an isotropic behaviour. For a cubic lattice structure, the isotropy 
condition is 

c n - c i 2 - 2 c 4 4 = 0, (3.59) 

or, equivalently, 

2s 11 — 2si2 — S44 = 0. (3.60) 

Zener (1948) introduced, as a measure of anisotropy, 

2CAA 
Az = — . (3.61) 

c\\ - C 1 2 

In the equation for sound propagation in cubic lattices, the quantity 

c \ l ~ Cry — 2CAA 

AE = — = , (3.62) 
C\\ -C44 



42 Ch. 3. Elasticity. Basic relations 

is a more relevant measure of anisotropy than Az (Every 1980). It is 
this combination of c^ that gives the anisotropic variation of the sound 
velocity and of the angle between the displacement vector u and the 
wave vector q of the sound wave. AE also gives the direction for a 
maximum in the shear mode Gruneisen parameter (Brassington and 
Saunders, 1983). On the other hand, the difference between the Voigt 
and Reuss bounds to the shear modulus G of a statistically isotropic 
poly crystal with elastically anisotropic grains is a function of Zener's 
measure Az. Note that Az and AE are not trivially related, i.e. Az can-
not be expressed in terms of AE. Thus, there is no unique measure of 
elastic anisotropy even in the simple case of cubic lattice symmetry. 
For isotropic systems, Az = 1 and AE = 0. Table 3.3 shows data for 
some materials with noteworthy anisotropy, with q7 from the Landolt-
Bornstein tables (Every and McCurdy 1992). The extreme anisotropy 
of Pu has been discussed by Ledbetter and Moment (1976). Figure 3.1 
shows the anisotropy in a plot of en — C44 versus C12+C44. Since Every's 
anisotropy parameter can be written AE = 1 — (en + c^)/(c\\ — C44), 
the dashed line in the figure, with slope 1, is the locus of elastic isotropy. 

Since the hep lattice has five independent elastic coefficients, three 
equations are required to reduce them to the two independent elastic pa-
rameters that characterise an elastically isotropic system. The isotropy 
condition for a hexagonal symmetry is 

c\\=c^\ cu = cn; cn-cn = 2c^. (3.63) 

Similarly, a lattice with tetragonal symmetry is elastically isotropic if 

c n = c 3 3 ; ci2 = ci3; cn - cn = 2c44 = 2c66, (3.64) 

A lattice with trigonal symmetry is isotropic if 

cn=C33\ ci2 = ci3; cn - c\2 = 2c44; cu = 0, (3.65) 

and a lattice with orthorhombic symmetry is isotropic if its nine inde-
pendent elastic coefficients reduce to two, through the seven relations 

C\\ = C22 = C33; C12 = C13 = C23; 

(cn ~ cn)/2 = C44 = C55 = c66. (3.66) 
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Fig. 3.1. Elastic constants of some materials with cubic lattice symmetry, plotted as 
c\\ — C44 versus cyi + C44: The dashed line in the figure, with slope 1, is the locus of 

elastic isotropy. Data of CJJ from Every and McCurdy (1992). 

Table 3.5 

Elastic stiffnesses in orthorhombic structures, in units of GPa 

Material 

Rb2S04 

Na2S04 

Ga 

a-U 

Mg2Si04
a 

Propylene (cr.) 

c\i 

50 

80 

100 

215 

329 

10 

c 2 2 

51 

105 

90 

199 

200 

10 

£33 

48 

67 

135 

267 

235 

325 

c 4 4 

16 

15 

35 

124 

67 

3.2 

^55 

16 

18 

42 

73 

81 

1.8 

^66 

14 

24 

40 

74 

81 

5.5 

c\2 

20 

30 

37 

46 

68 

5.0 

Q 3 

20 

26 

33 

22 

69 

1.7 

c 23 

19 

17 

31 

108 

73 

3.2 

a Forsterite. 

Table 3.4, with data from the Landolt-Bornstein tables (Every and 
McCurdy 1992), shows that the isotropy conditions are approximately 
fulfilled for hep Mg, hep Zr and ice, but not for hep Zn. The latter fact 
may be compared with the anisotropy in the vibrational displacements 
of the atoms due to thermal vibrations, fig. 7.3. 
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Table 3.6 

Anisotropic hydrostatic compression in hexagonal-structure materials, in units of 
(TPa)-1 

-*1(2)/P 
-e3/p 

Be 

3.1 

3.0 

Mg 

9.2 

9.7 

Zr 

3.7 

3.2 

Zn 

1.8 

13.7 

Ice 

39 

38 

Graphite 

0.49 

26.9 

Table 3.5, with data for orthorhombic structures from Every and 
McCurdy (1992), shows that Itt^SCU is quite isotropic, in contrast 
to the chemically related compound Na2SC>4, while Ga is moderately 
anisotropic. The latter behaviour may be compared with the highly 
anisotropic electrical (and hence also thermal) conductivity properties 
of gallium (Bass 1982). Crystalline polypropylene, with data from Boyd 
(1983), is highly anisotropic. 

Fedorov (1963, 1968) described elastic anisotropy by the mean-
square deviation of the matrix oap from a certain average cap. That 
makes it possible to assign an anisotropy measure in a lattice of ar-
bitrary symmetry. However, Fedorov's parameter (denoted A^) for a 
cubic lattice is more complicated than AE. 

The third-order elastic coefficients, for the case of isotropy in cubic 
lattice structures, obey 

C\\2 = ^123 + 2C144; C155 = Q44 + 2C456; 

cm = cm + 6C144 + 8c456, (3.67) 

i.e. there are only three independent third-order elastic coefficients in 
this case. 

Example: hydrostatic compression of hexagonal structures. The strains 
sx (= e2) and £3 in eqs. (3.57) and (3.58) are equal only if 

Sll +S12 = 5i3 +S33- (3.68) 

We noted above that Mg, Zr and ice are elastically quite isotropic 
while Zn and graphite are very anisotropic. With stj from the Landolt-
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Bornstein tables (Every and McCurdy 1992), and the formulae (3.57) 
and (3.58) we get Si^/p and s3/p as in table 3.6. 

Example: expansion of tellurium under pressure. Tellurium has a 
trigonal chain-like structure. Under a hydrostatic pressure p, the strains 
are (Boas and Mackenzie 1950) 

Sj/p = (sn + su - si3 - s33)n
2 - (sn + si2 + su), (3.69) 

where n2 = 1 for strain along the chain axis (j = 3) and n2 = 0 for an 
axis perpendicular to the chain. Thus, 

s3/p = -(2sl3+S23). (3.70) 

With data from the Landolt-Bornstein tables (Every and McCurdy 
1992), we obtain for tellurium s3/p = -[2(-14.2) + 24.6] [TPa]"1 

= 3.8 [TPa]-1, i.e. a positive value. Hence, the crystal expands along 
the chain direction when a hydrostatic pressure is applied. Physically, 
this is analogous to the elongation of a zigzag shaped chain when it is 
compressed from its sides. 



CHAPTER 4 

WHAT VALUES DO THE ELASTIC CONSTANTS TAKE? 

1. Introduction 

The magnitudes of the elastic constants span over more than an order of 
magnitude, for instance if one compares the strongly bonded bcc tran-
sition metals Cr, Mo and W with the free-electron like bcc alkali metals 
Li, Na, K, Rb and Cs. They are not sensitive to lattice defects, mod-
erate variations in alloying etc. Obviously the elastic constants reflect 
the strength of the interatomic forces in the solid, but being elastically 
"hard" should not be confused with mechanical hardness in its usual 
sense. Mechanical hardness measures the resistance to plastic deforma-
tion, i.e. permanent changes in atomic positions, while elasticity refers 
to deformations under a load such that the atoms return to their original 
equilibrium positions when the specimen is unloaded. Mechanical hard-
ness may depend crucially on lattice defects and the detailed chemical 
composition and there is a very significant temperature dependence. As 
an example, lead is a soft metal not only because the forces between 
the atoms are weak, but even more so because the temperature is high 
on a relative scale (room temperature compared with the melting tem-
perature) and because the lattice structure (fee) is favourable for plastic 
deformation through the motion of dislocations. (See Chapter 19, §9, 
for additional comments on hardness). 

We noted in the preceding chapter that a lattice of cubic symmetry 
has three single-crystal elastic constants. An orthorhombic structure has 
nine, while an elastically isotropic material has two. Even though these 
constants are linearly independent in a given solid, they cannot take 
arbitrary relative values. A solid in equilibrium must be mechanically 
stable under small deformations and this imposes restrictions, in the 
form of inequalities, for the elastic constants. We start this chapter with 
such considerations. Then follow sections which present experimental 

46 
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data for the elastic properties, pointing out regularities as well as mate-
rials with exceptional properties. For instance, although the covalently 
bonded carbon, in the form of diamond, has the largest known values 
of c\\ and C44 among the elements, it is a metal, iridium, that has the 
largest value of c\2. The chapter ends with a discussion of temperature, 
chemical composition, and some other factors that may affect the elastic 
properties. Such aspects are also dealt with in Chapter 6, on phonons, 
since the elastic constants are directly related to the low frequency 
acoustic branch of phonons. 

2. Stability requirements 

Consider the elastic energy U for an arbitrary but small deformation 
given by strains ea\ 

6 

U = (l/2)VQJ2cijZi£J> (4-1) 

where V0 is the volume of the unstrained sample. Lattice stability 
requires that U is positive for any small deformation. This implies re-
strictions on ctj which are mathematically expressed by the requirement 
that the principle minors of the determinant with elements ctj are all 
positive. For the engineering elastic constants this leads to 

K,G,E > 0, (4.2) 

0.5 > v > - 1 . (4.3) 

It follows from eq. (3.9) that 

3G > E. (4.4) 

The limit v = 0.5 is obtained for an incompressible material (K -> 00). 
It is also obtained for an ideal liquid, i.e. a liquid with no shear resistance 
(G = 0), but this does not imply that the liquid is incompressible. 

The stability criteria for Qy in systems of cubic symmetry are (e.g. 
Born and Huang 1954, Alers and Neighbours 1957) 

c\\ > ki2|; en + 2ci2 > 0; c44 > 0. (4.5) 
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Fig. 4.1. The fee lattice results when a bee lattice (central part with short-dashed sides 
in the figure) has been strained in one direction by a factor c/a = 21/2 . 

For an isotropic cubic system, i.e. when c\\ — cyi = 2c^ and with the 
identification K = (cn + 2c\2)/3 and G = c44, eq. (4.5) is equivalent 
with eqs. (4.2)-(4.3). Note that cn + 2c\2 > 0 together with the isotropy 
condition c\\ — c\2 = 2c AA implies that 3c\\ > Ac^. 

In a system of hexagonal symmetry the stability requirements are 

c\\ > ki2|; c33(cii + ci2) > 2(ci3)2; 

ciic33 > (cn)2; c44 > 0. 

(4.6) 

(4.7) 

3. Bain paths and lattice instabilities 

Bain (1924) pointed out that an fee lattice can be transformed into a 
bec lattice by stretching the sides in the cubic unit cell by factors of 1, 
21/2 and 21/2. Conversely, if the axes of the bec lattice are stretched by 
factors of 21/2, 1 and 1, it transforms into an fee lattice (cf. fig. 4.1). The 
intermediate stretched lattice has a tetragonal structure, with a certain 
c/a ratio. Going from the bec to the fee lattice then corresponds to 
c/a varying from 1 to 21/2. There are many such deformation modes, 
usually called Bain paths, that connect the fee and bec structures. For 
instance, they may refer to constant volume, uniaxial deformation or 
uniaxial load. In theoretical calculations, one often allows c and a to 
vary independently, so that the total crystal energy is minimised as one 
proceeds along the Bain path. 

The first part of the Bain path in the bec lattice can be described 
by a distortion towards a tetragonal structure (i.e. a tetragonal strain) 
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through a multiplication of the lengths of the x- and y-axes by a factor 
of 1 + 8 and a contraction of the z-axis by a factor of (1 + 8)~2. That 
corresponds, in Voigt's notation, to 8\ = 82 = 8, £3 = 1 — (1 + 8)~2 ^ 
—25, 84 = £5 = 85 = 0. We then obtain, from eq. (4.1), a change AC/ 
in the energy given by 

( ^ ) At/ = 6 y 0 f l i l _ ^ j S 2 . (4.8) 

Here we recognise the shear modulus C = (en — en)/!. With the 
strains chosen above, the next term in the expansion (eq. (4.8)) of AC/ 
contains the power <53. With strains 8\ = 8, 82 = —8, 83 = 82/(l — 82) 
instead, we still get unchanged volume and AC/ ~ (c\\ — c\2)82 but the 
next term in eq. (4.8) containing second-order elastic coefficients ctj is 
of the order 84. 

In an analogous way we can apply a shear around the z-axis with 
£12 = £21 = 8 (i.e. 84 = 28) and change the z-axis by a factor of 
1+6:3 = 1/(1— 8)~2 so that the volume is conserved. Then the change 
in energy, for an infinitesimal 8, is 

AC/ = 2VoQ4<52. (4.9) 

Deformations of this kind are used routinely in ab initio electron struc-
ture calculations of the total energy, in order to get the elastic constants; 
(cf. pioneering work on transition metals by Dacorogna et al. 1982, and 
extensive calculations for 5d-transition metals by Wills et al. 1992). 
Figure 4.2 shows the result of similar calculations for U(c/a) along 
the Bain path for tungsten. The curvature of U(c/a) at the bcc and fee 
structures is directly related to the elastic constant C — {c\\ — cu)/! 
of these structures (see eq. (4.8)). In fee W there is no energy barrier 
(i.e. C < 0) for a small deformation along the Bain path. Therefore, 
this structure is dynamically unstable. Actually, it is common that the 
fee structure is unstable under shear in metals that crystallise in the 
bcc structure, and vice versa (e.g. Wills et al. 1992). The fcc-bcc Bain 
path transformation has been reviewed by Milstein et al. (1994). Anal-
ogous paths can be defined for transformations between other lattice 
structures. They may involve a uniform lattice deformation, as in the 
case above, or atomic motions described by short-wavelength phonons. 
An example of the latter case is the longitudinal q = [2/3, 2/3, 2/3] 
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Fig. 4.2. The energy U(c/a) for tungsten, as calculated along the Bain path that 

connects the bcc and fee lattice structures. Data from Einarsdotter et al. (1997). 

phonon mode in the bcc structure that takes this lattice into the so-called 
"omega-phase" (see also Chapter 6, §13, for further comments on lattice 
instabilities). 

In this context we note that a central potential 0(r) may lead to 
lattice instabilities. Misra (1940) (see also Born and Huang (1954)) 
showed that with 4>(r) = ar~m — br~n, simple cubic lattices are 
never stable, fee lattices are always stable and bcc lattices are stable 
for certain small m and n. As another example, a bcc lattice with 
only nearest-neighbour and central interactions is unstable against shear 
(Zener 1948). 

4. Cauchy relations and central interatomic forces 

If the interatomic forces can be described by a potential (p(r) which 
only depends on the distance r between atoms, and if all atoms of an 
unstrained crystal occupy centres of inversion symmetry in the lattice, 
ctj obeys the Cauchy (1828) relations, see also Voigt (1910) 

C23 = C44', C13 = c 5 5 ; C12 = c 6 6 ; (4.10) 

C\4 = C56', C25 = Q 6 ; C36 = C45. (4.11) 

This form of the potential </> excludes torsional, or bending, forces 
(present in covalent crystals) and interatomic forces which vary with 
the atomic volume (present in metals). When eqs. (4.10) and (4.11) 
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are fulfilled, the maximum number of linearly independent elements 
ctj is reduced from 21 to 15. For cubic lattices, the three independent 
elastic coefficients c\\,c\2 and C44 are reduced to two since the Cauchy 
relations in that case can be summarised by 

ci2 = c44. (4.12) 

The Cauchy relations need not be valid in non-Bravais lattices, or in 
a specimen under pressure. For instance, the atomic sites in the diamond 
structure do not have inversion symmetry and, hence, an accidental ful-
filment of eqs. (4.10) and (4.11) does not imply central forces. This 
is exemplified by GaAs in table 4.1, showing that en ~ C44 as in eq. 
(4.12). GaAs has covalent bonding with strong angular forces. Another 
example is provided by numerically simulated glasses, in which the 
atoms interact through a central potential (Wearie et al. 1971). Such 
a material is macroscopically isotropic. If we neglect internal displace-
ments under stresses and shears, the Cauchy relations plus the isotropy 
condition gives K = (5/3)G. However, there are internal displacements 
and K and G must be calculated separately. 

The Cauchy (central force) conditions for the third-order elastic 
coefficients in cubic lattices are 

Cm = C155; CU4 = Cl23 = C456. (4.13) 

5. Ranges for elastic constants in real materials 

Experimental values of second-order elastic coefficients cap and sap and 
also some higher-order elastic coefficients are found in the Landolt-
Bornstein tables (Every and McCurdy 1992). This reference is the main 
source of data for the discussions below. In cubic lattice structures the 
inequality c\\ < C44 is very unusual, but not physically impossible, and 
has been reported for some Mn-Cu and Mn-Ni alloys. It is not unusual 
that cu < C44, but negative c\i are very rare. Intermediate-valence-
state compounds Smi_xYxS seem to have c\i < 0. Some reported 
negative c\i values in other systems may be due to indirect effects, e.g. 
twinning. Table 4.1 lists q ; from the Landolt-Bornstein tables (Every 
and McCurdy 1992) for some cubic materials with noteworthy elastic 
properties. 



52 Ch. 4. What values do the elastic constants take? 

Table 4.1 

Materials with noteworthy elastic stiffnesses, in units of GPa 

Material 

W 

TiC 

Ir 

Diamond 

Mo 

Cr 

Cu20 
3He 

NaCl 

AgCl 

GaAs 

Smo.75Y0.25S 

c\\ 

523 

513 

600 

1077 

465 

348 

121 

0.024 

49.1 

59.6 

118 

12.7 

c\2 

203 

106 

260 

125 

163 

67 

105 

0.020 

12.8 

36.1 

53.5 

-5.1 

c44 

160 

178 

270 

577 

109 

100 

12.1 

0.012 

12.8 

6.22 

59.4 

3.2 

AE 

0.0 

0.15 

-0.60 

-0.40 

0.24 

0.33 

0.08 

-1.7 

-0.36 

0.21 

-0.93 

1.20 

Comment 

High cjj 

Highcn,C44;ci2 < C44 

Highest known cyi', 

Highest c\ \, C44 in metals; 

Cauchy relation well obeyed 

Highest c\\, C44; cyi <3C C44 

Highcn 

C12 < C44 

c\2 » C44 

Very low C(j 

Cauchy relation obeyed 

Cauchy relation violated 

Accidental Cauchy relation 

c12 < 0 

There are very few tables of critically assessed experimental data 
for the engineering elastic constants K, G, E and v. Often, the best 
values are obtained from the microscopic elastic coefficients c^ (or stj). 
Simmons and Wang (1971) have published extensive tables based on 
the Voigt-Reuss and Hashin-Shtrikman bounds (cf. Chapter 18). 

Figure 4.3 shows the shear modulus G plotted versus the bulk mod-
ulus K for some solids with cubic or hep lattice structures. Data for 
the single-crystal elastic constants (Every and McCurdy 1992) are used 
to obtain K of cubic structures through an exact relation (eq. (18.18)), 
and G and remaining K as the average of the upper and lower Hashin-
Shtrikman bounds (Chapter 18, §3). Figure 4.4 is a corresponding plot 
for G versus Young's modulus E, calculated as E — 9KG/(3K + G). 
The figures show the bounds (dashed lines) implied by the inequality 
0.5 > v > 0 for the Poisson ratio, i.e. G < 3K/2 and 2G < E < 3G. 
The bulk modulus refers to deformations that change the volume but not 
the shape of the lattice, while the shear modulus refers to a deformation 
of the lattice without any overall volume change. As shown in fig. 4.3 
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Fig. 4.3. The shear modulus G plotted versus the bulk modulus K for some solids of 
cubic or hep lattice structures, with G and K calculated from experimental values of 

the single crystal elastic constants C(j. 

the parameters K and G describing these two independent deformation 
modes are not very well correlated. We also see that the bec lattice 
structure does not show a significantly lower shear modulus, in spite 
of the fact that the bec lattice tends to have a phonon shear mode of 
low frequency in the [110] direction (cf. Chapter 6, §12). The Young's 
modulus describes a deformation that involves both a volume change 
and a change in the shape of the lattice, and there is a rather strong 
correlation between E and G (fig. 4.4). The barely positive Poisson 
ratio of Be (having a value v < 0 is not unphysical) was considered 
in Chapter 3, §7. 

Example: rubber-like materials. Rubber is easy to shear, but has a low 
compressibility, i.e. a high bulk modulus K. Writing the Poisson ratio 
as eq. (3.11), v = (3K - 2G)/(6K + 2G), and with G « K, we see 
that v « 0.5 for rubber-like materials, i.e. approximately at the upper 
theoretical limit for v. Cork, on the other hand, has v « 0. 
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Fig. 4.4. As in fig. 4.3, but with the shear modulus G plotted versus Young's modulus 
E. 

6. Pressure dependence of elastic constants 

In a strict application of Hooke's law, the total energy U has no terms 
of higher order than Q/qsy. In a real material, higher-order terms are 
present, thus causing the elastic constants to depend on pressure (strain) 
(Chapter 3, §4). Furthermore, when a crystal is under pressure the ex-
pansion of U in terms of small strains refers to a crystallographic unit 
cell that is smaller than that at zero pressure, which also affects q,-
defined from derivatives of U. 

The elastic constants are often determined from ultrasonic wave ex-
periments. Then it is natural to speak of effective elastic constants, to be 
distinguished from the thermodynamic definition, as in eq. (3.15). As an 
example, we consider the pressure dependence of c\\ determined from 
experiments as the ratio 

(den/dp) = [pClfrp) - PoCt(ztp = 0)]/p. (4.14) 

Here CL is the sound velocity of the longitudinal branch in the [100] 
direction of a cubic lattice, and p and po are the mass densities at p and 
p = 0, respectively. For cubic lattice symmetry, one has (Thurston and 
Brugger 1964, Brugger 1965b) 

-(dcn/dp)P=o = 1 + ( l /3*)(cn + cm + 2c112), (4.15) 
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-Oci2/ap)p=o = - 1 + (l/3AT)(c12 + cm + 2cU2), (4.16) 

-Oc44/3p)p=o = 1 + (1/3*)(C44 + c144 + 2c155), (4.17) 

Then, by K = (cn + 2cn)/3, it follows that 

-(dK/dp)p=0 = (cm + 6cm + 2c123)/9K. (4.18) 

The difference in the pressure dependence of adiabatic and isothermal 
elastic constants is discussed by Barsch (1967), with numerical appli-
cations to 25 materials (Barsch and Chang 1967). Typically, the two 
pressure derivatives differ by a few percent at ambient temperature. 
See also table 13.1 for values of (dK/dp). In materials showing invar-
effects elastic properties may have an anomalous pressure dependence 
(see §13). 

Example: dctj/dp for aluminium and iron. With experimental values 
inserted from the Landolt-Bornstein tables (Every and McCurdy 1992), 
eqs. (4.15)-(4.17) take the following form for aluminium; 

dcn/dp = - 1 - (108 - 1080 - 2 x 315)/232 = 5.9, 

dcn/dp = 1 - (62 + 36 - 2 x 315)/232 = 3.3, 

dc44/dp = - 1 - (28 - 23 - 2 x 340)/232 = 1.9. (4.19) 

For bcc iron, we get dcn/dp = 6.7, dc2i/dp = 4.5, dc^/dp = 2.7. 
Furthermore, (dK/dp) = 5.2 (Al) and 5.1 (Fe) (table 13.1). 

7. Volume dependence of elastic constants 

The volume dependence of elastic properties is, of course, closely re-
lated to their pressure dependence. In the theory of anharmonic lattice 
vibrations (Chapter 8), we introduce the Griineisen parameter j/(q, s) = 
— (31n&>(q, s)/dln V), where &>(q, s) is the frequency of a phonon 
with wave vector q and mode index s. In the long-wavelength limit, 
&>(q, s) = C5(q)|q|, where Cs(q) is the sound velocity. Consider now 
a longitudinal sound wave (s = L) in the [100] direction of a cubic 
lattice. Then CL = (cn/p)1 / 2, where p is the mass density. Because 
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|q|//o1/2 varies with the volume V as V1/6, we get for the corresponding 
Gruneisen parameter (cf. Brugger and Fritz 1967) 

m \dlnV J 2VdlnVy/ 6 

K / 9 c n \ 1 
2cn \ dp J 6' 

From the sound velocities expressed in c(y (table 5.1), we can define 
Gruneisen parameters yiXfikl], ytdhkl] and ynihkl], referring to the 
longitudinal and the two transverse modes, respectively. If the system is 
isotropic, we are left with only two Gruneisen parameters: 

KL = (K/2cn)(dcn/dp) - 1/6 

= -K/2cu - (cm + 2c112)/6cn - 1/3, (4.21) 

yr = (K/2cu)(dc44/dp) - 1/6 

= -K/2C44 - (ci44 + 2c155)/6c44 - 1/3. (4.22) 

Furthermore, we can write 

/ 9 1 n £ \ _ V fdK\ 

\J]nv)T ~ ~K^ \dv): 

( ^ ) r - ' " » - ^ ^{^)T\dv)T~~\d^)T 

Note that for an elastically isotropic system, a knowledge of the two 
sound velocities suffices to determine the two linearly independent elas-
tic constants (e.g. c\\ and C44). There are only three linearly independent 
third-order elastic coefficients and only two Gruneisen parameters. In 
the general anisotropic case, and in order to obtain all Cj^, one has to 
measure the sound velocities not only for varying crystal volume but 
also for, say, uniaxial tension (cf. Thurston and Brugger 1964). Elastic 
Gruneisen parameters in non-cubic systems have been calculated by 
Gerlich (1969). 

The accidental equality c\\ — c\2 = 2c^ makes the single crystal 
of cubic symmetry elastically isotropic, but such an isotropy does not 
imply that the Gruneisen parameter is isotropic. On the other hand, there 
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Table 4.2 

Sound velocity (unit: m/s) and sound wave Griineisen parameters in aluminium and 
iron 

Al 

Fe 
Al 

Fe 
Al 
Fe 

CL 

6320 

5420 

6480 

6180 

6530 

6420 

YL 

1.95 

2.17 

2.05 

2.05 

2.10 

2.03 

CTi 

3240 

3860 

3240 

3860 

3030 

3000 

m 
2.44 

1.66 

2.44 

1.66 

2.19 

1.65 

CT2 

3240 

3860 

2920 

2460 

3030 

3000 

m 
2.44 

1.66 

2.03 

1.65 

2.19 

1.65 

are truly isotropic systems, e.g. glasses, for which eqs. (4.21) and (4.22) 
hold. 

Example: sound-velocity Griineisen parameters in aluminium and iron. 
Using the relation (4.20), and the analogous results for other directions 
[hkl] and for the two transverse modes, and with the data for q ; and 
Cijk from Every and McCurdy (1992), we obtain the sound velocities Cs 

and the Griineisen parameters ys of table 4.2. Note that although CT is 
almost isotropic for Al, yTi and yn vary considerably with [hkl]. 

8. Temperature dependence of elastic constants 

8.1. Normal temperature dependence, caused by anharmonicity 

Wachtman et al. (1961) (see also Durand 1936) noted empirically that 
the temperature dependence of Young's modulus E of several oxides 
could be well fitted to 

E(T) = [1 - bTexp(-T0/T)]E(0). (4.24) 

An expansion of the exponential term for T 3> TQ gives, to leading 
order, 

E(T)^[l-b(T-T0)]E(0). (4.25) 
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Fig. 4.5. Temperature dependence of C44 in Al (solid curve), with data from Every 
and McCurdy (1992). The dashed line is an extrapolation to low T of the low-order 
anharmonic correction. Its intercept with the vertical axis gives the value of C44 in a 
"harmonic" system. The measured C44 is lower, because of the zero-point vibrations. 

This temperature dependence is observed for many systems other than 
oxides, and for elastic constants other than E (see, for instance, fig. 
4.5). Anderson (1966a) has shown how eq. (4.24) can be understood 
from the quasi-harmonic model of lattice vibrations. We shall partly 
follow that work but also make contact with the treatment in Chapter 8, 
of anharmonic lattice vibrations. The elastic constants can be related to 
the long-wavelength limit of phonons. Anharmonicity shifts a phonon 
frequency co(q, s) by an amount Aco(q, s). In an Einstein model, we 
may write for shifts Aco relative to co at T = 0, (eq. (8.27)), 

Aft>(q,.s) = fc(q, s) 
co(q,s) e x p ^ / D - l * ( -2 6 ) 

Here q is the wave vector of the phonon, s is a mode index (longitudi-
nal or transverse modes etc.), fc(q, s) is a dimensionless proportionality 
constant and 6>E is an Einstein temperature characteristic of the entire 
phonon spectrum. Let Y be an elastic constant. A dimensionally correct 
relation between Y and co is (Y/p)l/2 = co/\q\. The mass density p 
varies as l/V and |q| as V~1/3, where V is the sample volume (per 
mole etc.). Within our simple model, the thermal expansion V(T)-V(0) 
has the same temperature dependence as Aco/co. (In fact, Aco is to a 
large extent due to the thermal expansion.) Thus, an expression of the 
type (co/\q\)pl/2 has a temperature-dependent shift which varies with T 
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as [exp(6E/T) — I ] - 1 - In our model the same temperature dependence 
enters all (small) shifts in the elastic constants. We summarise this by 
the relation 

Y V 0 e / e x p ( 0 E / r ) - r 

where ay is a dimensionless proportionality factor varying with the 
elastic parameter Y under consideration. Comparing the high tem-
perature expansions Texp(—T0/T) = T — T0 + T^/IT — ••• and 
9E[exp(9E/T) - I ]"1 = T - 9E/2 + (1/12)02/T + • • •, we note that 
the two leading terms are identical if T0 = 0E/2. This gives a theoretical 
justification for the empirical rule (eq. (4.25)) at intermediate and high 
temperatures, and for the fact that T0 was observed to be about 1/3 of 
the Debye temperature. Since the Debye temperature is less than 500 K 
for most solids, we also understand why the linear temperature depen-
dence expressed by the series expansion (eq. (4.25)) is such a good 
approximation at ambient and higher temperatures. (Close to the melt-
ing temperature, high-order anharmonic effects usually give a stronger 
temperature dependence than linear in 7\ cf. Chapter 8, §6.) 

Our shifts A&>(q, s) were taken relative to T = 0 K. In fact, there is 
a shift even at T = 0, due to the anharmonicity related to the zero-point 
vibrations. The intercept of the linear portion of ctj (T) with the Q ; -axis 
at T - 0 K gives the "harmonic" ctj (see Appendix E and fig. 4.5). 

The temperature-dependent part of the energy U (or enthalpy / / , 
Helmholtz energy F, Gibbs energy G) of an insulator varies as T4 at 
low T (since Cp and Cv ~ T3). From the fundamental relations of the 
elastic coefficients expressed as derivatives of [/,//, F or G (Chapter 
3, §3), it follows that dY/dT ~ T3 at low T. The Einstein model used 
above to account for the temperature-dependent factor in the empirical 
relation (eq. (4.24)) gives too rapid (exponential) a temperature depen-
dence at low T. However, the absolute magnitude of the shift A Y at 
these temperatures is so small that this discrepancy is of little practical 
importance. In metals, £/, / / , F and G vary as T2 due to the excitation 
of electron states, but this term is important only at such low T that it is 
of no interest in the present context. 
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Fig. 4.6. A schematic illustration of an anomalous temperature dependence of an elastic 
coefficient, caused by features in the electron band structure close to the Fermi level. 
The smooth dashed curve shows the extrapolation to low T that would result if an-
harmonic effects is the only cause of a temperature dependence. The hatched parts 
correspond to the additional electronic contribution. It may increase or decrease the 

elastic coefficient. 

8.2. Anomalous temperature dependence, caused by electronic 
structure 

In some cases, one or several of the elastic coefficients c exhibit a 
marked temperature dependence also at relatively low temperatures, 
often below room temperature. Figure 4.6 shows schematically such a 
behaviour. The smooth decrease with increasing temperature, shown as 
a dashed curve for low T and a solid curve for high 71, is the normal 
variation of c due to anharmonic effects. Superimposed is a variation 
illustrated by the shaded area, leading to a low-temperature dependence 
of c on T as given by the solid curve. Although the "anomalous" contri-
bution at low T is not yet fully understood, it is naturally explained by 
features in the electron band structure in the immediate vicinity of the 
Fermi level, which can be reached by thermal excitations. The tempera-
ture dependence then has its roots in Fermi-Dirac statistical factors for 
the electrons. The "normal" variation in the elastic constants at high 7\ 
related to anharmonicity, has its roots in the increased vibrational dis-
placement, i.e. in the Bose-Einstein factors for the phonons. (The most 
important result of anharmonicity is to cause thermal expansion, which 
affects the elastic constants through their volume dependence.) There is 
a close connection between an anomalous temperature dependence of 
c^ as discussed here, and a dependence of q7 on the composition of 
certain alloys (see §11). 
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9. Dependence on lattice structure and order 

9.1. Polymorphs 

Some materials occur in two or several different crystal structures, when 
the temperature or pressure is varied. There are only few measurements 
of the engineering elastic constants (K, G, E, v) on such polymorphic 
phases. E and G in iron and in some Fe-Ni alloys change by less than 
10% when the crystal structure changes from bcc to fee (Ledbetter and 
Reed 1973). There seem to be no direct measurements of Qy in pure 
fee iron (y-Fe), which is stable in the temperature interval 1173-1660 
K. Indirectly, ctj could be inferred from the slope of phonon dispersion 
curves, derived from inelastic neutron scattering experiments, but the 
ctj obtained in this way are rather uncertain. 

Figure 4.3, where G is plotted versus K, shows no conspicuous 
difference between the bcc and the close-packed lattice structures. In 
particular, G of the bcc metals is not systematically smaller, in spite 
of the tendency for a bcc lattice to have a low frequency vibrational 
shear mode in [110] direction (Chapter 6, § 12). However, fig. 4.3 may be 
misleading, since it only refers to phases that are actually observed. In 
§3, we noted that there are many cases when a common lattice structure 
is in fact dynamically unstable under shear, even though the observed 
structure is very stable. One example is tungsten, that crystallises in a 
bcc lattice but is unstable under all shear in the hypothetical fee lattice 
(fig. 4.2). 

9.2. Order-disorder transformations 

Some compounds have an order-disorder transformation. Experiments 
on Cu3Au (Flinn et al. 1960) and £-CuZn (McManus 1963) show that 
the elastic constants ctj of the ordered and the disordered states typically 
differ by a few percent at most. An isotopic disorder has negligible effect 
on the electronic structure, and hence also on ctj—see experiments on 
6Li and 7Li (Felice et al. 1977). See also Chapter 6 (§15) for comments 
on phonons in disordered lattices. 
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9.3. Martensitic transformations 

Martensitic transformations originally referred to transformations ac-
companying the quenching of certain steels. The concept is now used 
in a much wider context, as a description of diffusionless crystallo-
graphic transformations that are almost reversible. The elastic constants 
may show a dramatic discontinuous change as one passes the critical 
temperature (or critical composition) of some transformations. A soft-
mode behaviour may also occur, as is well known from, e.g. SrTiC>3. 
Nakanishi (1979) reviewed elastic constants in relation to marten-
sitic transformations in ionic solids, oxides, metallic alloys and other 
materials. 

9.4. Molecular crystals 

The molecular crystal KCN has a NaCl-type lattice with a dumb-bell-
like [CN]_1 ion that is orientationally disordered at high temperatures, 
but orders partially at lower 7\ eventually leading to a rhombic phase for 
KCN. The elastic coefficient C44 of the cubic lattice decreases strongly 
as T is lowered (Haussiihl 1973). There has been much interest in the 
elastic properties of this and similar molecular crystals, e.g. Rowe et al. 
(1978), Sahu and Mahanti (1983) and Strossner et al. (1983). 

9.5. Glasses 

Metallic glasses are statistically isotropic, and therefore described by 
two independent engineering elastic constants. We consider K and G. 
The bulk modulus of the glass is usually at most a few percent lower 
than in the crystalline phase. The shear modulus G, on the other hand, 
may be typically 30% lower in the glassy state (Logan and Ashby 1974). 
For instance, in Pdo.775Sio.i65Cuo.06> Golding et al. (1972) found that K 
was lower by 6% and G was lower by 35% in the amorphous state. 
The small change in K is consistent with the small volume difference, 
i.e. a few percent lower mass density in the amorphous state (cf. ta-
ble 19.1). If only the volume difference is considered, we expect that 
AK/K ^ — 2yG(AV/V), where YG is a Gruneisen parameter of the 
order of 2. The large shift in G may be understood from the fact that 
the atoms in the glass do not take positions in deep symmetric potential 
wells, but can be displaced a substantial amount under shear forces. 
This qualitative picture is supported by numerical simulations using a 
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Morse interaction between the atoms (Weaire et al. 1971). The relation 
E = 3G[1 + G/3K]~l, and the fact that usually G < K, implies that E 
and G covary. Hence, also Young's modulus may be substantially lower 
in the amorphous than in the crystalline state. A similar but much larger 
effect has been observed in amorphous films. The transverse sound ve-
locity in a gallium film was smaller by a factor of 2.8 in the amorphous 
state, while there was no significant change in the longitudinal sound 
velocity (Dietsche et al. 1980). The heat capacity Debye temperature in 
amorphous films of Si and Ge is lower than the bulk value by ~20% 
(Mertig et al. 1984). This is due to a lowering of the transverse acoustic 
modes, i.e. a lowering of G. 

10. Influence of solute atoms 

We shall take several different approaches to an estimation of how the 
elastic properties are affected by point defects; an atomistic nearest-
neighbour force constant description, an elastic continuum theory, and 
an electron-band consideration in metals. 

Atomistic force-constant models. In a simple picture of a solid, atoms 
are connected by springs. The introduction of a small number of 
point-like defects means that certain springs are changed. The elastic 
properties depend on some average over all the springs and therefore 
should vary smoothly with the defect concentration. Let there be TV 
atoms in a monatomic solid, with pt springs of type / and force constant 
ft attached to each atom. A small fraction, c, of all atoms are replaced. 
Then, cNpt springs have their strength changed by Aft. Averaged over 
the crystal, the force constant of type i is 

fi = fi[l + 2c(Afi/fi)]. (4.28) 

For a vacancy, we can take A// = — fi9 and get / = (1 — 2c) ft. Such 
considerations can be put on a firmer mathematical basis. Consider an 
fee lattice with only nearest-neighbour central interactions. The force 
constants attached to a substitutional defect change from / to / + A/ . 
Neglecting relaxation around the defects, one obtains (Dederichs and 
Zeller 1980, Leibfried and Breuer 1978) 

A(cn+2c1 2) = A * = 2c(A///) 
cn+2cl2 K 1+0.24 A// / ' 
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with the analogous results A(cn — c\2)/(c\\ — cn) = 2c(A/ / / ) / ( l + 
0.38A///) and Ac44/c44 = 2c(A/ / / ) / ( l + 0.33Af/f). For a vacancy, 
A / / / = — 1. Then all relative shifts of ctj are of the order of 3c. 

In our simple model it was assumed that the positions of the atoms 
are not affected when the forces between them are altered, but in a 
real solid there are relaxations. We can identify two contributions. First, 
there is an inhomogeneous relaxation in the immediate neighbourhood 
of the defect. For a statistical distribution of defects, there is also a uni-
form volume change (Vdef Pe r defect) of the sample. From a knowledge 
of Vdef, the bulk modulus K and the anharmonic parameters dctj/dp 
and with eq. (4.15) we get a shift (Acn)* per defect, where 

(Acn)* = Vdef'
 r " m Sp 

= Va.,f(l +
 C l ' + C ' - ; + 2 C l " ) . (4.30) 

with similar expressions for the shifts in en and c44. 

Elastic-continuum model. The elastic-sphere model of Eshelby (1975) 
is another approach to the influence of small defects on the elastic 
properties. In a homogeneous material, characterised by any two of the 
parameters K, G, E and v, there are randomly distributed spherical 
inclusions with elastic properties given by K\ Gr, E' and v'. In the 
dilute limit (c « 1 where c is the volume fraction of inclusions) one 
obtains 

(4.31) 

I • (4.32) 

This model is now applied to inclusions as small as a single atom. With 
the typical value v ^ 1/3 and very stiff {K' » K,G » G) or very soft 
(K' «; K, G' < G) inclusions, we get relative changes \(dK/dc)\/K 
and |(dG/dc)|/G that are numerically similar to those in the previous 
paragraph. We note that eqs. (4.31) and (4.32) follow directly from 
the relations (17.31) and (17.32) for the elastic properties of composite 
materials. 

1 dK 
~K~dc ~ 

1 dG 
G ~dc ~ 

[ 1 + v K ' 
[3(1 — v) + K'-K_ 

"2 4 - 5 v G 
15 1 - v + G'-G 
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Table 4.3 

The isentropic cij at 298 K, in units of GPa 

Pure Mg 

Mg-1.35at.%In 

Acfj /c(j, per at.% In 

c\\ 

59.28 

59.55 

0.003 

c\2 

25.90 

26.26 

0.010 

c\3 

21.57 

22.01 

0.015 

C33 

61.35 

61.48 

0.002 

c44 

16.32 

16.25 

-0.003 

Example: ctj in dilute alloys. Eros and Smith (1961) measured the isen-
tropic (adiabatic) stiffnesses ctj in hep magnesium alloys with up to a 
few at.% of Ag, In or Sn. Table 4.3 gives typical results. The relative 
shifts Acjj/cij, are less than 0.01 per at.% solute. This can be compared 
with the relative shift ^0.03 per at.% of vacancies for the model in eq. 
(4.29). Note that the shift in C44 is opposite in sign to that of cn and cyi 
for Mg-In. Greiner et al. (1977) measured ctj in cubic Th and ThCo.o63-
They obtained Acl7/c0- = +0.039 for clu -0.004 for cl2 and -0.052 
for C44, i.e. <0.01 per at.% carbon added. 

11. Band structure effects in metallic alloys 

The elastic constants ultimately depend on the electronic structure of 
a solid. Normally, the electronic structure varies slowly and smoothly 
with the composition of an alloy. However, there are cases when the 
Fermi surface is significantly affected by a small change in the compo-
sition. Pockets or holes of electrons in reciprocal space may appear or 
disappear, necks on the Fermi surface may open or close, etc. This is 
known as electronic topological transitions. A drastic effect would be 
a metal-to-insulator transition, but here we consider only the metallic 
state. Effects on elastic constants have been dealt with by, e.g. Vaks and 
Trefilov (1988, 1991), and the field has been reviewed by Bruno et al. 
(1994). 

Figure 4.7 shows how the room-temperature value of C44 depends 
on the concentration c in bec Nbi_cMoc alloys. If an electron band 
structure has features close to the Fermi level that will lead to elec-
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Fig. 4.7. The measured elastic constant C44 at room temperature, as a function of the 
composition, in Nbi_cMoc alloys (left scale), and the temperature dependence of C44 
expressed as [c44(r) - C44(0)]/c44(0) = AC44/C44 evaluated with T = 1000 K (right 

scale). Based on experimental data in Every and McCurdy (1992). 

tronic topological transitions with changing composition, it will also 
tend to show temperature induced anomalies of the kind discussed in 
§8.2. The simple physical picture is that if a feature in the electronic 
structure is close enough to the Fermi level to be reached through a 
moderate change in the electron concentration on alloying, it could 
also be reached (at fixed concentration) by thermal smearing of the 
Fermi-Dirac function. This is illustrated in fig. 4.7 by the plot of 
[C44(T) — C44(0)]/c44(0) evaluated at T = 1000 K. Anomalies of this 
kind have been observed in many metallic alloys. In cubic alloys they 
may be seen in c44 as well as in C = (c\\ — c\2)/2, but are usually not 
pronounced in C44 and C at the same time (Every and McCurdy 1992, 
Bruno et al. 1994). 

12. Effect of dislocations and grain boundaries 

Measurements of the constants G and £ in a cold-worked material (i.e. a 
material with a high dislocation density) may be typically 5-20% lower 
than in the annealed state. The bulk modulus, on the other hand, is not 
much changed on cold working. Even with a dislocation density A as 
high as 1016 m~2, less than 1% of all atoms (on the average) are adjacent 
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to the dislocation cores. Therefore, the decrease in G and E is not re-
lated to "bond cutting" or volume changes (as is the effect of vacancies 
on elastic properties). Instead it is caused by the reversible motion of 
the dislocations (Read 1940, Eshelby 1949, Mott 1952, Friedel 1953, 
Koehler and deWit 1959). The shift in Young's modulus can be written 

AE 0 = -kAL2. (4.33) 
E 

Here, k is a dimensionless constant ~0.1, A is the dislocation density 
and L the dislocation line length. Since L depends on the pinning of dis-
locations, impurities may have an appreciable indirect effect on G and 
E. There may also be reversible grain boundary sliding, which affects 
the apparent G and E. 

In this context we should remark on the measurement of elastic 
parameters. Young's modulus is defined as the ratio of uniaxial stress 
to strain. In many experiments, the stress varies sinusoidally with the 
frequency a>. If the material is strictly elastic, the strain will follow 
the stress without phase lag. In anelastic (i.e. dissipative) materials, the 
strain still varies with the frequency co, but there is a phase difference 
between stress and strain. Then E is not uniquely defined. The measured 
G (or E) has one truly elastic part E$ and one anelastic part (Zener 
1948). We can write 

E(a>) = E0- ,E°~E*2- (434) 
1 + (cor)2 

ER includes relaxations and r is a characteristic time for stress and 
strain relaxation. The reader is also reminded of the difference be-
tween isothermal and adiabatic elastic constants (see Chapter 3, §3 and 
Chapter 13, §9). 

When a polycrystalline material is deformed, it may develop a tex-
ture, i.e. a statistically anisotropic distribution of the crystallographic 
orientation of the individual crystallites. If the single-crystal elastic 
properties are anisotropic, this leads to an apparent change in the engi-
neering elastic constants of the poly crystal which may completely mask 
the change due to dislocations (Weiner et al. 1975). It may also yield 
an apparent Poisson ratio v > 1/2, in violation of the condition (4.3) 
on v (Ledbetter and Reed 1973). See Chapter 18 for further aspects of 
polycrystalline materials. 
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In nanocrystalline materials, the grain boundary regions occupy a 
significant fraction of the solid volume. This can lower the Young's 
modulus by 15-25% (Schi0tz et al. 1998). Kluge et al. (1990) con-
sidered local elastic constants at grain boundaries, through atomistic 
simulations. 

13. Dependence on magnetic state and magnetic fields 

An external magnetic field affects Young's modulus of ferromagnetic 
materials. This is often referred to as the AE effect, a name given by 
its discoverers, Honda et al. (1902). Since E and G covary, G is also 
affected, while the bulk modulus K depends only weakly on magnetic 
fields. The physical basis for the effect is the same as for magnetostric-
tion. A (non-saturated) magnetic material has more or less randomly 
oriented magnetic domains. The magnetic energy of these domains cou-
ples to the elastic strain energy. Typically, E and G of an annealed 
specimen (i.e. with very low residual elastic strains) may be 10-20% 
less than in the unannealed state (Ledbetter and Reed 1973). This is also 
the order of magnitude of the shifts in E and G when a strong magnetic 
field is applied. In some metallic glasses, Young's modulus may change 
by more than a factor of two. The AE effect is unusually large in some 
Fe-B amorphous alloys (Kikuchi et al. 1978, Mitchell et al. 1979). The 
AE effect decreases as the temperature is increased, and is zero above 
the Curie temperature. 

It may happen that the magnetoelastic effect cancels the decrease 
in E caused by anharmonicity. The result is a Young's modulus which 
is almost temperature independent over a certain temperature interval. 
This is the elinvar effect (Guillaume 1920). Invar alloys have a very 
small thermal expansion (of any sign) in a certain temperature range, 
but show a positive expansion at other temperatures (Chapter 14, §9). 
This may be viewed as due to a cancellation of the thermal expan-
sion caused by anharmonicity in the lattice vibrations, and a magnetic 
term that tends to shrink the material with increasing temperature. The 
elastic constants behave anomalously in the invar-region. For instance, 
(dcn/dp) and (dKs/dp) are negative for Fe72Pt28 (Mafiosa et al. 1992, 
Saunders et al. 1993). The dependence of ctj on composition, temper-
ature and magnetic field in fee Fe-Ni alloys has been investigated by 
Hausch and Warlimont (1973). They find an elinvar behaviour at ~45% 
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Fig. 4.8. The measured elastic constant c44 at room temperature, as a function of the 
composition, in Ni-Cu and Ni-Fe alloys. Based on experimental data in Every and 

McCurdy (1992). 

Ni; see fig. 4.8, which also shows C44 in Ni—Cu alloys that are magnetic 
in the Ni-rich end. Magnetoelastic phenomena have been reviewed by 
Steinemann (1978, 1979). 

Some metals are strongly paramagnetic, i.e. they almost satisfy the 
Stoner criterion for an ordered magnetic state (Chapter 10, §3.5). The 
Debye temperature 0 D ( - 3 ) , and hence the elastic parameters, were 
found to be insensitive to an external magnetic field of strength ^10 T, 
for LuCo2 (Ikeda and Gschneidner 1980) and Pd (Hsiang et al. 1981). 
Similarly, the difference in ctj in ferromagnetic nickel in zero magnetic 
field and in a saturation field is less than 2% at room temperature, i.e. 
well below the Curie temperature Tc = 627 K (Epstein and Carlson 
1965). In the vicinity of the critical temperature of magnetic ordering, 
the elastic constants may show pronounced anomalies. They are par-
ticularly large in Cr near the Neel temperature (Every and McCurdy 
1992). 



CHAPTER 5 

SOUND WAVES 

1. Introduction 

In an isotropic engineering material, e.g. a texture-free piece of poly-
crystalline iron, there are two kinds of sound waves, corresponding to 
longitudinal and transverse vibrations. The longitudinal mode has the 
velocity CL = {[K + (4/3)G]/p}1/2 and the transverse mode has the 
velocity Cj = {G/p}1/2. Here p is the mass density of the medium. 
In this case there is no distinction between phase velocity and group 
velocity. The transverse mode is degenerate; its vibrations can be along 
any of two (arbitrary) directions perpendicular to the velocity vector. 

In a single crystal there are still three modes for sound waves, with 
velocities expressed in the elastic constants of the medium and the crys-
tallographic direction of the wave vector. However, they can no longer 
be classified as pure longitudinal and transverse waves, and the phase 
velocity is not parallel to, or equal in magnitude to, the group velocity 
except in certain symmetry directions of the lattice. Our approach is 
related to the treatment of lattice vibrations in Chapter 6, and sound 
waves may be viewed as the long-wavelength limit of phonons. 

2. Formulation of the secular equation 

Let the displacement vector u = (ux,uy, uz) of a sound wave be 

Uj = Aj exp[i(qix + q2y + q^z - cot)]. (5.1) 

The index j refers to Cartesian coordinates. We will write j — x,y,z 
or j = 1,2, 3, alternatively. The displacement in eq. (5.1) is a complex 
quantity, while the actual displacement is, of course, real. However, both 

70 
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the real and imaginary parts of u are solutions to the equation of motion. 
It is convenient to lump the two solutions together, as in eq. (5.1). The 
sound wave has the frequency co and the wave vector q = (#i, g2, g3). 
The (phase) velocity of the mode s is 

Cs(q) = co(q,s)/\q\. (5.2) 

When there is no risk of confusion with the Cartesian index j , we let 
the label s have any of the values 1, 2 or 3. The wave properties are 
obtained from the equation 

T n - p ^ 2 r12 r13 \ (AX\ 
r2i r2 2 - Pco2 r2 3 A 2 = o. (5.3) 
r3i r3 2 r 3 3 - pa? ) \A3J 

This is known as the Christojfel (1877) (also Christoff el-Kelvin or 
Green-Christoffel) equation. The quantities r/y are related to q and the 
elastic coefficients by 

3 

r,7 = ^2 (l/2)(ckiji + ckiij)qkqu (5.4) 
k,l=\ 

and p is the mass density of the material. There are non-trivial solutions 
(A\, A2, A3) to eq. (5.3) only if co is a solution to the secular equation 

\rij-p(o%\=0. (5.5) 

Here | . . . | is a 3 x 3 determinant and 8tj = 0 for / ^ j and 1 for 
/ = j . Often, eq. (5.5) is written as an equation for the sound velocity 
C, i.e. with co2 replaced by C2q2. We shall now consider the solution to 
the secular equation, first in a general mathematical formulation, then 
in terms of the engineering elastic constants for an elastically isotropic 
system, for a single crystal of cubic symmetry, and finally for hexagonal 
lattice symmetry. 
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3. General solution of the secular equation 

Since eq. (5.5) is a cubic equation in C2 (or co2), it has solutions in 
a closed mathematical form, for any lattice symmetry. A convenient 
expression for Cs is (Every 1979, 1980) 

ZpC] = T + 2VG cos[* + (2TT/3)(J - 1)]; s = 1, 2, 3. (5.6) 

The quantities 7\ G and * contain the elastic constants and the direction 
cosines of q, and s also serves as a mode index. If 4> = 0, the cosine 
term in the last part of eq. (5.6) is the same for s = 2 and s = 3, i.e. 
these modes then have equal velocities. Appendix D gives the explicit 
solution for cubic lattice symmetry. 

From a well-known mathematical relation between the sum of 
eigenvalues, £&>2, and the trace of the determinant we get from eq. (5.5) 

3 

3(C5
2) = J2 Cl = <Tn + T22 + r33)/pq2, (5.7) 

s=l 

for any lattice symmetry. In a cubic lattice (cf. eq. (5.14)). 

<C2) = (cn+2c44)/3p. (5.8) 

Explicit expressions for Cs in various lattice symmetries are given by 
Every (1980). The relation (eq. (5.8)) for cubic lattice symmetry is 
isotropic, i.e. it holds for each direction q. Still, the separate veloci-
ties Cs for s = 1, 2, 3 may be more (Fe) or less (Al) anisotropic, as 
exemplified in table 4.2. 

4. Secular equation for isotropic polycrystalline materials 

In an isotropic material we can identify (cn + 2ci2)/3 and C44 with 
K and G, respectively (cf. eqs. (3.37) and (3.42)). Then the secular 
equation yields, for the longitudinal wave, 

2 4 3*(1 - v) G(4G - E) 
pCL = K + -G= x + v = 3 G E 

= E{\ - v) = 2G(1 - v) = 3K(3K + E) 

(l + v ) ( l - 2 v ) l - 2 v 9K-E 
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The velocity Cj of transverse sound waves is given by 

pC\ = G. (5.10) 

Since K > 0 and G > 0, 

CL>J(4/3)CT. (5.11) 

This inequality may be sharpened because, almost universally, the Pois-
son ratio v > 0 and then CL > V2Cj. Also, when K > G, one has 
CL > V(7/3)CT « 1.53CT. The result that the longitudinal sound 
velocity is higher than the transverse sound velocity holds for isotropic 
materials, e.g. polycrystalline materials without texture, but not neces-
sarily for each direction in an anisotropic lattice (see the example in 
§5). 

Example: an important average of sound velocities. In the Debye theory 
of the lattice heat capacity, one encounters an average sound velocity 
CSOund,D defined by 

3 1 2 
—, = — + — (5.12) 
^ sound, D ^ L ^ T 

By eqs. (5.9) and (5.10), the average velocity CSOUIKI,D can be written 

13 /2 )" 1 / 3 

CSound,D — Cj { - + -
1 - 2 v 

3 3 | _ 2 ( l - v ) . 
(5.13) 

The factor in the parenthesis varies slowly with the Poisson ratio v, e.g. 
CSOUnd,D = (1.12 ± 0.02)CT if v = 0.31 ± 0.14. Since CT = (G/p)1/2, 
one may in this way connect G with the Debye temperature (see Chapter 
6, §4, and Schreiber et al. 1973). 

5. Secular equation for cubic symmetry 

Among all c,-^/, (i.e. cap) there are only three independent parameters 
for a cubic lattice structure; en, c\i and C44. The explicit form of eq. 
(5.5) is 
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Table 5.1 

pC2 = pco2/q2 in three directions [hkl] in a cubic lattice 

Mode [100] [110] [HI] 

Longitudinal c\\ {c\\ + c\2 + 2c^)/2 

Transverse C44 C44a 

( c n - c 1 2 ) / 2 b 

(en + 2ci2 + 4c44)/3 

tell - c i 2 + c44)/3 

a Polarised along [001]. 
b Polarised along [110]. 

( cn - C44)?? + Q 4 ? 2 - P&>2 

(C12 + cu)qiq\ 

(C12 + C44)<?3<?1 

(C12 + C44)<?ig3 

(^12 + C44)qiq3 
(Cn - C44)gf + C44^

2 - po>2 

(C12 + Q4)<?1<?2 

(cn - c4 4 )^ + c44?2-
(C12 + C44)<?3?2 

pco 

(5.14) 

When the solution to this equation is expressed in the general form 
eq. (5.6), the angle 4> only depends on the direction cosines of q and 
on the combination AE = (cn — cyi — 2c\\)l{c\\ — C44) of the elastic 
parameters. For this reason, AE is a natural parameter to measure the 
anisotropy in cubic lattices (Chapter 3, §8). The solutions to eq. (5.14) 
have very simple forms when q is along the principle crystallographic 
directions. Table 5.1 gives the quantity pC2 = pco2/q2 for these cases. 
Numerical results for Al and Fe are given in table 4.2. 

Example: transverse sound velocity being highest. We noted in §4 that 
in a material described by the isotropic engineering elastic constants 
K and G, the sound velocity CL of the longitudinal mode is always 
larger than Cj of the transverse mode. From table 5.1 we see that in the 
[111] direction, Cj > CL if c\i < — C44. Lattice stability requires that 
C44 > 0, so Cj > CL implies that c\i < 0. This is extremely unusual, but 
happens for the so called intermediate-valence compound Smo.75Yo.25S 
(cf. table 4.1). Table 5.2 gives the sound velocities, calculated from data 
in Tu Hailing et al. (1984) (cf. with CL and CT in Al and Fe, table 4.2). 
Similarly, in the [100] direction the transverse mode has the highest 
velocity if C44 > c\ \. This inequality has been reported for some Mn-Cu 
and Mn-Ni alloys (see Chapter 4, §5). 
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Table 5.2 

Longitudinal and transverse sound velocities (unit m/s) in Smo.75Yo.25S 

Mode 

Longitudinal 

Transverse 

[100] 

4567 

2292 

[110] 

3390 

2292; 3823 

[HI] 

2894 

3390 

6. Secular equation for hexagonal symmetry 

The secular equation for an hep lattice is easier to solve than for a cubic 
lattice, since it separates into a linear and a quadratic equation in co2. 
The sound velocities (phase velocities) are (Hearmon 1961, Musgrave 
1970) 

p [ C u ] 2 = c44 + (l/2)[n2P + (l-n2)Q] 

±{\/2){[n2P + {l-n2)Qf 

+4n2(l - n2)(R2 - PQ)}1/2, (5.15) 

p[C3]
2 = C44 + (1/2)(1 - n2)(cn - cl2 - 2c44), (5.16) 

with n being related to the angle 9 between q and the crystallographic 
oaxis; n = 93/lql = cos#. Furthermore, 

P = c33 - c44; Q = cn- c44; R = cu+ c44. (5.17) 

In the basal plane of the hep lattice, n = cos 9 = 0. The sound velocities 
are isotropic, with 

p[Ci]2 = cn\ PiC2]
2 = c44; P[C3]

2 = (en - c12)/2. (5.18) 

When q is parallel to the crystallographic oaxis, we have n = 1 and 

p[Ci]2 = c33; p[C2]
2 = p[C3]

2 = c44. (5.19) 

The sound velocities C\(2) and C3 in eqs. (5.15) and (5.16) are isotropic, 
i.e. independent of the angle 6, if 

c 1 1 - c 1 2 - 2 c 4 4 = 0; P = Q; PQ = R2. (5.20) 
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These relations follow from the isotropy conditions (3.63). 

Example: sound velocities in zinc. The hep single crystal of Zn is in 
many respects very anisotropic (see figs. 7.3 and 15.3). The elastic con-
stants are cn = 165, c\i — 31.1, c\z = 50.0, C33 = 61.8, C44 = 39.6 
(unit GPa; data from Every and McCurdy 1992). This gives the sound 
velocities 2940 and 2360 m/s along the crystallographic c-axis. In the 
basal plane, perpendicular to the c-axis, the velocities are 4810, 3060 
and 2360 m/s. 

7. Phase and group velocity 

We define phase velocities 

Cphase(q, s) = qo)(q, s)/\q\, (5.21) 

and group velocities 

Cgroup(q, s) = Vqco(q, s). (5.22) 

When Cphase and Cgroup are isotropic, the label q can be dropped. 
Then the angle </> between CPhaSe(q> s) and the displacement vector 
u(q, s) = (ux,uy,uz) for the atomic vibrations is either zero (the 
longitudinal mode), or 90° (the two transverse modes). In this case, 
one speaks of pure modes. The longitudinal pure mode has the phase 
velocity CL = (cn/p)1 / 2 and the two degenerate transverse pure modes 
have velocities Cj = (c44/p)1/2. 

A single crystal often has quite anisotropic elastic properties. Then 
the three vectors Cphase(q, L), Cgr0Up(q, L) and u(q, L) are not parallel 
(except for q-vectors in certain symmetry directions) and CPhase

 a^d 
Cgroup also differ in magnitude. Still it is customary to call the modes 
"longitudinal" (or quasilongitudinal) and "transverse" (or quasitrans-
verse). The label of a branch is then retained as one moves with the 
q-vector away from a symmetry direction where the mode is pure. Since 
eigenvectors referring to different eigenvalues are normal to each other, 
the vectors u(q, s) for s = 1, 2 and 3 are orthogonal. Brugger (1965a) 
has listed cystallographic directions of pure modes, and the correspond-
ing phase velocities expressed in elastic constants, for cubic, hexagonal, 
orthorhombic, tetragonal and rhombohedral lattice symmetries. 
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Fig. 5.1. A schematic illustration of "phonon focussing". The solid curve gives co(q, T2) 
= constant for the low-velocity transverse mode (T2) in the (001) q-plane in Ge. 

Cgroup(q, T2) is exemplified by arrows 1-6. 

Every (1980) has shown that the proper anisotropy parameter for 
sound waves in a cubic lattice structure is AE = (en — ci2 — 2c^)l{c\\ — 
C44), rather than the often used parameter due to Zener (1948), Az = 
2c44/(cn - C12) (see Chapter 3, §8). 

8. Energy transport by sound waves 

The energy transport by an elastic wave can be described by a ray 
velocity, analogous to the Poynting vector in electromagnetism. In a 
non-dissipative medium, the ray velocity equals the group velocity (cf. 
Every 1980). The group velocity Cgroup can be derived from eqs. (5.21) 
and (5.22), and the explicit relations for the phase velocity given by 
Every (1980). However, Cgr0up(q, s) does not have as simple a form 
as Cphase- The wave vector q, the phase velocity CPhase and the group 
velocity Cgroup are, for small q, related by 

Cgroup * q = I q l I cphase I- (J.ZJ) 

Hence, |Cgroup| > |CphaSel> with equality only in pure modes. 
Calculations of group velocities have been performed for, e.g., LiF, 

KC1, and A1203 (Taylor et al. 1971), af-Si02 and A1203 (Farnell 1961, 
Rosch and Weis 1976a), and diamond, Si and Ge (Rosch and Weis 



78 Ch. 5. Sound waves 

1976b). Among experiments, emphasis has been on germanium (e.g., 
Hensel and Dynes 1979, Dietsche et al. 1981). 

Example, anisotropic group velocities and phonon focussing. The group 
velocity Cgr0Up(q, s) = Vq&>(q, s) is a vector normal to the surface 
co(q, s) = constant. Figure 5.1 shows the shape of co(q, T2) for the low-
velocity transverse mode (T2) in germanium when q is in the (001) 
plane. Cgroup tends to be directed along "channels", when q lies near a 
point where the curve &>(q, s) = constant has an inflection point in q-
space. The energy flow is either decreased (arrows 1-3), or increased 
(4-6) in certain q-directions. This is the physical basis for "phonon 
focussing" in crystals (Wolfe 1980). 



CHAPTER 6 

THE PHONON SPECTRUM 

1. Introduction 

The simplest description of lattice vibrations is the Einstein model (Ein-
stein 1907). All atoms are assumed to vibrate as independent harmonic 
oscillators with the frequency &>E- In such a model the heat capacity CE 
per atom (subscript E for Einstein) is 

-HW expfloWfrD ( 6 1} 
1 ' - ' [exp(hcoE/kBT) - l ]2 

Figure 6.1, redrawn after Einstein (1907), shows that this extremely 
simple one-parameter model may account qualitatively for the heat ca-
pacity of diamond. The fact that diamond did not have a heat capacity in 
agreement with the classical Dulong and Petit (1819) rule was a major 
problem at that time. Einstein's paper can be viewed as the beginning of 
today's condensed matter theory, that is based on an atomistic approach 
combined with quantum physics. Within the same model we can also 
get a good description of the entropy S(T) and the enthalpy H(T) (see 
fig. 6.2 for A1203 and fig. 6.3 for TiC). 

A closer comparison between experiments and the Einstein-model 
result reveals discrepancies which are of various origins. A first step 
towards an improvement would be to model the phonon frequency 
spectrum better. This is discussed in this chapter. The thermodynamic 
properties resulting from such descriptions of the spectrum are treated 
in the Chapter 7. However, there is a close connection between the ways 
to describe the phonon spectrum, and the thermodynamic properties that 
can then be calculated. Therefore, some relations from Chapter 7 will be 
referred to already in this chapter. But even a very accurate description 
of the phonon spectrum is not sufficient to remove the discrepancies 
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1500 

Fig. 6.1. The measured heat capacity Cp(T) of diamond, as it was known in 1907 
(symbols), could be accounted for with Einstein's (1907) one-parameter model for the 

lattice vibrations. After Einstein's original paper. 

400 

2500 

Fig. 6.2. The measured entropy S(T) and enthalpy H(T) of AI2O3 (symbols) may be 
qualitatively represented by an Einstein (1907) model for the lattice vibrations (solid 
curve). The Einstein temperature is determined by a fit to the measured entropy at 500 

K. Experimental data from Barin (1989). 

between theory and experiments in figs. 6.2 and 6.3. Anharmonic effects 
cannot be neglected at high temperatures. They are treated in Chapter 
8. Non-vibrational contributions to the thermodynamic properties may 
also be important. These are discussed in Chapter 10 (electrons) and 
Chapter 11 (magnetism). A summary of various contributions to the 
heat capacity of real materials is given in Appendix F. 
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Fig. 6.3. As in fig. 6.2 but showing the measured entropy S(T) and heat capacity Cp(T) 
for TiC. The Einstein temperature is determined by a fit to the measured entropy at 

600 K. Experimental data from Barin (1989). 

2. Phonon dispersion curves 

It is assumed that the reader is familiar with elementary aspects of 
phonons in solids. We first recapitulate some important results to intro-
duce the notation. The reader who wants a more thorough presentation 
of general lattice dynamics is referred to reviews by, e.g. Maradudin et 
al. (1963), Maradudin (1974), Reissland (1973), Briiesch (1982), Srivas-
tava (1990) and Dove (1993). Plots of dispersion curves and the density-
of-states function for insulators are found in Bilz and Kress (1979) 
while the Landolt-Bornstein tables (Schober and Dederichs 1981, Kress 
1983) have similar data for a large number of solids. Briiesch (1986, 
1987) reviewed the role of phonons in various experiments. 

A phonon state is labelled (q, s), where q is a wave vector in the 
first Brillouin zone and s is an index which refers to longitudinal and 
transverse branches, as well as to acoustic and optical branches. (Some-
times we call s a mode index, but in other cases (q, s) is called a 
phonon mode. The context makes the use of the word "mode" clear.) 
The phonon frequencies &>(q, s) and the corresponding eigenvectors 
e(q, s) are obtained from the dynamical matrix D (Appendix C); 
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co2(q, s)ea(q, s) = ^ Dap(q)ep(q, s). (6.2) 
P 

Indices a and /3 denote Cartesian components (x,y,z). The eigenvec-
tors are orthonormal; 

] P e a ( q , s)ea(q, s') = 8SS>. (6.3) 
a 

Theoretical accounts of phonon dispersion curves may have two dif-
ferent aims—to reproduce experimental data or to give an ab initio 
calculation with a minimum of input information (e.g. only atomic 
numbers and assumed lattice structure). In the first case, one has some 
experimental knowledge about &>(q, s), perhaps only through elastic 
constants, and the aim is to map &>(q, s) for all q and s as accurately 
as possible so that the phonon density of states, for example, can be 
calculated. The standard procedure is to fit a set of force constants which 
represent the interatomic forces. Such models may be elementary, e.g. 
the Born-von Karman model, or more elaborate such as shell models 
describing ionic compounds. Ab initio calculations are steadily becom-
ing more reliable. In some cases they are of an accuracy comparable to 
that of direct experiments. This is a field of strong development that lies 
outside the main scope of this book. 

3. Phonon density of states 

Several thermophysical properties may be calculated without any de-
tailed knowledge of the phonon dispersion curves and the phonon 
eigenvectors. The only information needed about the phonons then may 
be the phonon density of states F{co). The quantity F(co)Aa> mea-
sures the number of phonon states with frequencies in the interval 
[co,(o + A(o], irrespective of which wave vectors q and modes s the 
frequencies in this interval refer to. We must then specify how F((o) is 
normalised. Some authors let it be per mole of a substance, or per lattice 
primitive cell. In this book we shall take 

/ F(o>) dco = 3. (6.4) 
Jo 
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The choice is motivated by the fact that each atom is a three-dimensional 
oscillator (although coupled to the oscillations of other atoms). In 
a solid with N atoms, there are in total 37V phonon states (q, s). 
NF(o))Aa) is the number of phonon states with frequencies in the in-
terval [co, co + A&>]. Our F(co) can be said to be normalised "per atom". 
However, in a solid with several kinds of atoms F(co) does not refer to a 
particular atom but is an average over all vibration modes (q, s). From 
a knowledge of the dispersion curves &>(q, s) one obtains F(co) by 

F{0)) = (^^E/dV(^(q^)"^) 

= _*_IW dS (65) 
(27r)3 7 V ^ t / S q | V q o ; ( q ^ ) | ' 

where V is the crystal volume and 8(x) is the Dirac 5-function. The last 
integral is over that surface Sq on which &>(q, s) = co. 

Most theoretical calculations of phonon dispersion relations co(q, s) 
are limited to q-vectors in the directions of high lattice symmetry, e.g. 
the [100], [110] and [111] directions of fee or bec lattices. That infor-
mation is usually insufficient for an accurate evaluation of the integral 
in eq. (6.5), but if co(q, s) is known in a mesh of q-points, interpolation 
procedures may yield F(co) with a high numerical accuracy. 

Example: F(co) of an fee lattice with nearest-neighbour interaction. 
Consider an fee lattice, with only central nearest-neighbour interaction 
and atomic mass M. The dispersion curves, expressed by a single force 
constant / , take a very simple form. For instance, we get for the longi-
tudinal (L) and the two degenerate transverse (T) branches in the [100] 
direction in reciprocal space, for qx < 2n/a, where a is the lattice 
parameter (fig. 6.4a): 

a>(qx, L) = 4y/f/Msm(aqx/4), (6.6) 

(o{qx, T) = V / / ( 2 M ) s i n ( a ^ / 4 ) . (6.7) 

Similar relations are obtained in other directions. In spite of this simple 
form, it is not trivial to evaluate F{co). In fact it must be calculated by 
numerical integration (Leighton 1948, Maradudin et al. 1958). Figure 
6.4b shows the density of states thus obtained. 
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F(o>) 

Fig. 6.4. (a) Phonon dispersion curves co(q) in the [100] direction of an fee lattice 
with central nearest-neighbour interactions, and (b) the phonon density of states F(co) 

obtained by integration over all phonon modes. 

4. Debye spectrum 

Only a few years after the Einstein model, Debye (1912) introduced his 
famous model. It is widely used, and sometimes misused. We therefore 
give a detailed treatment, and comment in several later chapters on its 
virtues and shortcomings. Here it suffices to note that concepts such 
as Debye temperatures can be generalised and given useful and precise 
meanings that go far beyond the simple original ideas described here. 

In the long-wavelength limit, i.e. for small q, we can write 

Q)(q,s) = C(q ,s ) |q | . (6.8) 

C(q, s) is a directional-dependent velocity, defined for the three s-
values corresponding to the acoustic branches. The simplest Debye 
model (Debye 1912) assumes a constant value C(q, s) = CS0Und,D for 
all (q, s) with &>(q, s) linear in |q| for all wave numbers |q| < qo. 
The maximum frequency (the Debye frequency) in the model is cov = 
CSound,D#D. (In this book CS0Und,D denotes the sound velocity in the De-
bye model, and CD denotes the heat capacity in the Debye model.) From 
the general expression (6.5) we get the Debye density of states 

FD(co) = 
3V 4nq2 

(2n)3N Csound,D 

3Vco2 

q=co/Csound,D
 n ^^sound,D 

(6.9) 
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The value of the Debye wave number gD is fixed by the normalisation 
condition 

/ FD(a))dco = 3. (6.10) 
Jo 

This yields 

qD = (6n2N/V)l/3 = (6jr2/^a)1/3. (6.11) 

In applications to thermophysical properties, it is convenient to intro-
duce the Debye temperature 0D as a measure of the maximum frequency 
&>D. The two parameters are related by 

hcoD = kB0D. (6.12) 

In a real solid C(q, s) is anisotropic, and different for the longitudinal 
and the transverse acoustic branches. We write C(q, s) = CS(0, (/)) and 
dS = q2 dQ = [co2/C2(0, (p)]dQ where (0, 0) are angular coordinates 
for q and dfi = sin 9 dO d0. Equation (6.5) becomes 

3 

V C 

^ W y . f 1 dQ 

S = \ A 

This agrees with eq. (6.9) if we define the Debye sound velocity CSOund D 
by 

3 _ A f 1 dQ 

cl^-j-JcW^)^- (6'14) 

If Cs is isotropic, but different, for the longitudinal (L) and the two 
degenerate transverse (T) branches, one has 

3 1 2 
- = —,+—• (6-15) c5 c5 c5 

^ sound, D ^ L ^ T 
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The Debye temperature #D can now be expressed as 

h (6n2N\ip 

?D = V 
,2.XT „ \ V 3 

^ sound, D 

~ fe {-^^) CsoundD- (616) 

Here r is the number of atoms in a molecule (r = 1 for an element, 2 
for NaCl, 5 for AI2O3), M is the mass of a mole of the material, Np, 
is Avogadro's number, and p is the mass density of the material. Since 
&>D = Csound,D?D = CSOund,D(67r2A7 V)1/3 w e c a n a l s o w r i t e the Debye 
density of states (eq. (6.9)) as 

FD(<») = -f^ = — . (6.17) 

The Debye model assumes that o>(q, s) = Cs(9, 0)|q| is linear in |q| for 
all wave numbers. The linearity always holds in the small-|q| limit, for 
the acoustic phonon branches of any solid, but with increasing |q| there 
will be deviations from this simple relation. With the inclusion of only 
the first correction term, we can write 

o>(q, s) = ci(0, 0, s)\q\ + c2(0, 0, *)|q|2. (6.18) 

Then one may prove that F(oo) has the form 

F{cS) = aX(D2 + a2co4 + • • •, (6.19) 

that is, F{QJ>) only contains even powers of co, for small co. For larger 
co there are of course drastic deviations from such a power law, as is 
illustrated later in this chapter. 

Finally some common misconceptions should be clarified. The cut-
off frequency coD is the highest frequency in the Debye model spectrum. 
But this does not mean that &>D is the highest frequency in the actual 
spectrum of a solid (cf. fig. 6.5). The cut-off frequency follows from the 
normalisation condition (6.4), and the connection to the actual spectrum 
is through the sound velocities, i.e. through the low-frequency part of 
F(co). Since the sound velocities are determined by the elastic proper-
ties, one sometimes refers to the low co part as the elastic limit. It may 
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Fig. 6.5. The phonon density of states F(y) for TiC, based on neutron scattering 
experiments, and two Debye model representations of F(v)\ co = 2ixv. 

also be called the long-wavelength part, because the wavelength of an 
elastic wave is k(q, s) = 27t/\q\ = 2nC(q, s)/co(q, s). Sound velocities 
vary as p~1 / 2 where p is the mass density, while the highest frequency 
in a solid with different masses tends to vary as M~1/2 where M is the 
lightest atomic mass. In solids with two or more kinds of atoms, and 
with large mass ratios, the Debye cut-off frequency &>D, therefore, may 
be significantly lower than the highest frequency. 

Another confusion may arise in the description of the low tempera-
ture heat capacity of solids characterised by a phonon density of states 
that has clearly separated acoustic and optical parts, as in the example 
of TiC below. The Debye model heat capacity at very low T can be 
written CD = NkB(l2n4/5)(T/eD)3 (eq. (7.29)). Since only the low 
frequency phonons (the acoustic branches) contribute significantly to 
the heat capacity at low 7\ one could get a very good fit to experiments 
by modelling only that part. But one must now be careful with the 
normalisation condition for F(co). Comparison of the expression (7.29) 
for the heat capacity CD with eq. (6.16) for the Debye temperature 
#D yields N = NAr, when f F(co)da) = 3. If only the acoustic part 
of F(co) is considered, we should take r = 1 in eq. (6.16). The two 
approaches yield identical CD at low T since r cancels in N/6^, but 
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the proper r (> l ) must be used when the model is considered at higher 
temperatures. 

Example: F{co) and a Debye model for TiC. Figure 6.5 shows the 
phonon density of states F(co) obtained from neutron scattering experi-
ments (Pintschovius et al. 1978) and two Debye model representations. 
The Debye models have the same ^-dependence at low co, and therefore 
equally well account for the low temperature heat capacity. However, 
the one with the lower cut-off &>D = 27r VD assumes one atom per primi-
tive cell, while the model with the higher cut-off correctly assumes two 
atoms per primitive cell in TiC. Only the latter model gives a reasonable 
description of the heat capacity at high temperatures. Note that &>D is 
not exactly equal to the highest frequency co in the true F(co). 

Example: Debye temperature from approximate sound velocities. From 
a knowledge of the elastic coefficients ctj, one obtains the velocities 
Cs(0, 0) as eigenvalues of a secular equation (5.5), and then CSOUnd,D 
and #D after a numerical integration over angles 0 and 0 (eq. (6.14)). 
A much simpler, but approximate, method is to estimate the bulk mod-
ulus K and the shear modulus G of a polycrystalline material by the 
Voigt-Reuss-Hill (VRH) approximation (Chapter 18, §3.3), then ob-
tain the longitudinal sound velocity from pC[ = K + (4/3)G and 
the transverse sound velocity from pC\ — G, and apply eqs. (6.15) 
and (6.16) to get 0D- Anderson (1963, 1965) investigated how well a 
calculation of CS0Und,D and 6fo by the latter method approximates the 
exact 0D. For AI2O3 (trigonal lattice) he obtained CS0Und,D = 7190 m/s 
("exact" numerical calculation) and CSOUnd,D = 7093 m/s (Voigt-Reuss-
Hill approximation), while for CaCC>3 (orthorhombic lattice) CS0Und,D 
= 3942 m/s ("exact") and Csound,D = 3991 m/s (VRH). Calculations 
on a large number of other systems showed that the typical error in 
#D is less than 2% when the approximate method is used. This also 
means that an accurate value of #D may be obtained from the measured 
longitudinal and transverse sound velocities of (statistically isotropic) 
polycrystalline materials, without recourse to the elastic constants Q ; 

of a single crystal. When the single crystal is isotropic, #D is given 
exactly by the VRH expression because then Ky = KR = AVRH and 
GY = GR = GVRH- Using the quantity AVRH = (Gv - GR)/(GV + GR) 
as a measure of elastic anisotropy in a single crystal, Anderson (1963) 
found that when AVRH < 0.2, the error in the predicted #D is ^2%. In 
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Table 6.1 

Vibrational properties described by a single parameter 

Physical property 

Heat capacity, low T 

Entropy, low T 

"Elastic limit", any T 

Thermal displacement, high T 

Thermal displacement, low T 

Entropy, high T 

Zero-point energy (T = 0) 

Zero-point velocity (T = 0) 

Heat capacity, high T 

Moment frequency 

-

-

-
a. (-2) 

w ( - l ) 

«(0) 

oil) 

co(l) 

a>(2) 

Debye temperature 

^ ( r - * o ) = flD(-3) 
e^T -». o) = 0D(-3) 

^ ( r - » - O ) = 0D(-3) 

Og{T>0D) = 0D{-2) 

Og(J=0)=OD(-l) 

0^T Z 0D) = flD(-O) 
eg(r = O) = 0D(i) 
^ ( 7 - = O ) = 0 D ( 1 ) 

< £ ( r > 0 D ) = 0 D ( 2 ) 

the example in Chapter 5 (§4) it is argued that #D can be well estimated 
if only G is known. 

5. Frequency moment representations of F(co) 

5.1. Definitions 

In the limit of low or high temperatures, it may happen that only a cer-
tain average of F(co), in the form of a frequency moment, is needed to 
calculate a certain thermophysical property (table 6.1). We define such 
moments \xn by 

POJmax I r^max 

fin = (con) = / conF(co)dco/ / F(co)da>. (6.20) 

Usually it is more convenient to work with a frequency co(n) which is 
related to the nth moment by 

o)(n) = Uin]
l/n. (6.21) 

As regards terminology, we will call coin) moment frequencies because 
they have the dimension of frequency, while fin are called frequency 
moments, because they are moments, in a mathematical sense. There is 
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Fig. 6.6. The moment frequencies co(n), as a function of n, for Ge. Data from Flubacher 
et al. (1959). 

no restriction on n to be an integer, but since F(co) ~ co2 for small a>, 
(eq. (6.20)) converges only if n > - 3 . The limiting value &>(0), i.e. for 
n -> 0, is defined by 

InMO)] 
Jo 

lna>F(co)dco F(co)dco. 

It is easy to prove that (o(n) increases monotonically with n, 

oo{nr) > co{n)\ nf > n, 

(6.22) 

(6.23) 

and asymptotically approaches the maximum phonon frequency o)m3LX of 
F(co) when n -> oo. Figure 6.6 shows co(n) for Ge. 

5.2. Moment frequencies co (n) for a Debye spectrum 

A Debye spectrum, with F(co) given by eq. (6.17), yields 

Vn = 

co2+ndco 

I co2do) 
Jo 

n + 3' (6.24) 

which then gives 

coin) = 
n + 3 

l/n 

COD. (6.25) 
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When n = 0, eq. (6.22) leads to 

ln[a>(0)] = / o)2lna)dco/ / a? Aco = lncoD - 1/3, (6.26) 

or 

a)(0) = (oDe-l/3. (6.27) 

Using the well-known result (1 + l/N)N -> e when N —• oo, one 
easily confirms that coin) in eq. (6.25) has the limit of eq. (6.27) when 
n ->0 . 

5. J. Mass dependence of co (0) 

For any q, the phonon frequencies &>(q, s) are related to the trace (Tr) 
of the dynamical matrix D by 

3r 

^ 2 ( q , s) = J ] D„(q) - TrD(q). (6.28) 
S 1 = 1 

Here r is the number of atoms in a primitive cell, and s (which includes 
any optical branches) runs from 1 to 3r. Normally, the atomic masses 
and the interatomic force constants are not separable in co(q,s) if there 
is more than one kind of atomic mass. However, the masses do separate 
from the forces in the quantity &>(0) (Grimvall and Rosen 1983). A 
general theorem in mathematics gives the roots &>(q, s) to the secular 
equation as a product 

3r 

f ]6o2(q,s)=detD(q) , (6.29) 
s = \ 

where det D is the determinant of the dynamical matrix. Using eq. 
(6.29), and the fact that the logarithm of a product is a sum of 
logarithms, one obtains 

InMO)] = (1/6//) ]Tln[detD0(q)] - (l/2)lnMeff, (6.30) 
q 

where Af is the number of atoms, D0 is the force-constant part of the 
dynamical matrix and Meff is an effective atomic mass defined as the 
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logarithmic average of all masses in the system. For instance, for a 
compound or an alloy A^B^, with atomic masses MA and MB, one has 
(x + y) In Afeff = x In MA + y In MB. Apart from the trivial case of an 
element, and also in the elastic-limit quantity co(—3), co(0) is the only 
moment frequency among co(n) that allows such a general separation of 
the mass effect. We shall see in Chapter 19, (§§4, 8), that this is a result 
of practical importance. 

6. Moment frequencies expressed as equivalent Debye 
temperatures 

A moment frequency co(n) is a single parameter giving some averaged 
information about the phonon density of states F{co). A Debye tem-
perature #D is another single parameter that contains information about 
the vibration frequencies. In the standard Debye model, #D is chosen 
such that it correctly describes the low frequency, or elastic, part of 
F(co). However, we could also choose #D such that the corresponding 
Debye spectrum correctly yields a particular moment frequency co(n), 
and denote it &o{ri). Thus, knowing 0D(W) for a certain n we also know 
co(n), and vice versa. However, we will see that there are some advan-
tages in using #D(W), rather than co{n). For instance, Ov(n) usually varies 
much less than co(n), with n. These ideas will now be given a precise 
definition. 

For a Debye spectrum, co(n) = [3/0* + 3)]l/ncoD (eq. (6.25)). When 
F(co) is not of the Debye form, we define Debye frequencies ^ D ( ^ ) . and 
corresponding Debye temperatures 

eD(n) = h(DD(n)/kB, (6.31) 

by 

/•o)D(n) / /*a>D(n) 

/ o)n(o2do)/ / a)2<ko 

a)nF(co)do)/ / F(o))dco. (6.32) 

Thus, we let coD(n) be the cut-off frequency in a Debye model which 
reproduces correctly the nth moment of co for a given density of states 
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F((JO). The righthand side of eq. (6.32) is, by definition, equal to 
[a>(n)]n. The lefthand side is 3[&>D(^)]3/\n + 3). Then, if n > — 3 and 
n / 0 , 

coD(n) = f^-_ J o>(n). (6.33) 

When ft = 0, of is replaced by ln&>. The righthand side of eq. (6.32) is 
given by eq. (6.22) and the lefthand side by eq. (6.26). Hence, 

^D(0) = el/3co(0). (6.34) 

If n = —3, the integral (eq. (6.20)) for co(n) diverges at co = 0. We 
then use the fact that F{co) = a\co2 + a2&>4 + • • •, (eq. (6.19)), and 
define a>r>(—3) so that it has the same divergent behaviour as co{—3) 
in eq. (6.20). If we replace the lower integration limit 0 in eq. (6.20) 
by an infinitesimal quantity £, take n = — 3 and recall the normal-
isation f F(co)d(i> = 3, the righthand side of eq. (6.32) diverges as 
(ai/3) ln(l/£) and the lefthand side diverges as {3/[&>D(—3)]3} ln(l/£). 
Thus, &>D(—3) = (9/ai)1/3. In a strict Debye model, a\ follows from 
eq. (6.17), giving as expected 

&>D(-3) = CSOUnd,D<7D- (6.35) 

CSound,D is the average (eq. (6.14)) over the acoustic branches, and the 
Debye wavenumber is qD = (67T2/£2a)

1/3. 
It is now natural to ask what is the use of the Debye parameters 

covin) and 9v(n), since they are just other ways of expressing the mag-
nitude of the frequency moments, and do not contain any information 
that is not already in fxn or coin). We note that in a strict Debye model, 
all covin) are constant, equal to the cut-off frequency &>D, and all 9^{n) 
are equal to a single Debye temperature Ojy.Ina. real solid, co(n) varies 
considerably, while co^(n) and 9^{n) are still fairly constant. Figure 6.6 
shows co(n) for Ge and figs. 6.7 and 6.8 show 6^{n) for Ge, CsCl, Al, 
Mg, Mo and Nb. Often 9j)(n) has a minimum near n = 0. 

In conclusion, the density of states of a real solid may be far from 
that of a Debye spectrum, but still some averages over F{co), expressed 
by coD(n) or 9^(n), are fairly well represented by a single parameter, 
&>D or #D, for a range of rc-values. This is one reason for the wide 
applicability of the Debye model. However, there are examples when 
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Fig. 6.7. The experimentally determined Debye temperature 0D(W), as a function of n, 
for Ge (Flubacher et al. 1959) and CsCl (Bailey and Yates 1967). 
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Fig. 6.8. The experimentally determined Debye temperature #D(n), as a function of n, 
for Al, Mo, Mg and Nb. Data from Schober and Dederichs (1981). 

F(co) is so different from a Debye spectrum that the concept of a Debye 
temperature is less useful. For instance, in graphite and boron nitride, 
Ov(n) increases from about 500 K when n = — 3 to about 2200 K for 
large n (Yates et al. 1975). 

7. Representing experimental data by Debye models 

A Debye model is often assumed to give a reasonable representation of 
vibration-related properties. Of course we cannot get an exact match, 

T i i i i i r 

T 1 1 — i i i r 

j i i i i 1 1 1 1 1 L 
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not even if anharmonic effects are absent, since the true vibrational 
properties, e.g. the entropy SVit» depend on 37V frequencies co(q, s) 
and we try to describe that by a single Debye frequency CD® (or Debye 
temperature 0D). But for any temperature 7\ we can derive Debye tem-
peratures #D such that the Debye-model description agrees with the true 
value at that particular T. Thus, if CNlh(T) and Svib(r) are the "true" 
vibrational heat capacities and entropies (includes anharmonic effects), 
and CD(T;6£) and SD(T;9^) are the corresponding Debye model ex-
pressions, we may formally obtain a heat capacity Debye temperature 
6£ and an entropy Debye temperature 6^ from 

CD(T; 9%) = Cvib(T), (6.36) 

SD(T;8l) = Svib(T). (6.37) 

Similarly, a Debye model can be fitted to the true vibrational displace-
ment (u2>, 

< u 2 ( r ; 0 D = (u2(r)>, (6-38) 

and yield a displacement Debye temperature 6^ that is related, e.g. to 
the term exp(—2M) in the Debye-Waller factor (eq. (7.46)). 

The Debye temperature 6D(T) derived from the low temperature heat 
capacity is the same as one would get from the sound velocities, i.e. 
from the elastic constants. Since elastic constants can be measured at 
various temperatures, it is useful to define an elastic Debye temperature 
labelled E\9g(T). 

Figure 6.9 shows the entropy and elastic Debye temperatures for 
corundum (CX-AI2O3), based on heat capacity and elastic constant data, 
respectively. The temperature dependence of 9^(T) at low T is due to 
the fact that the true phonon spectrum is not of the exact Debye form, 
and the gradual decrease at high temperatures is due to anharmonic 
softening of the phonon frequencies. The elastic Debye temperature 
9^(T) only represents the long-wavelength part of F(co) and therefore 
does not show the strong temperature dependence at low T caused by a 
non-Debyelike F(a)). The gradual decrease in 0£(T) with T is due to 
anharmonic softening of the elastic coefficients. 

Whenever a Debye model is used to describe a certain phenomenon, 
a comparison with a "true" or measured result may yield a correspond-
ing Debye temperature. For instance, a fit to the zero-point vibrational 
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Fig. 6.9. The entropy Debye temperature 0^(T) and the elastic Debye temperature 

0g(T) for CX-A12O3. After Grimvall and Fernandez Guillermet (1992). 

energy defines the Debye temperature 0^, of course without a tem-
perature dependence in this case. In Chapter 15 we will introduce the 
Bloch-Grtineisen (BG) formula pBG<T; #DG) for the electrical resistiv-
ity. If p(T) is the true phonon-limited resistivity we can define a BG 
Debye temperature 0$G(T) by 

PBG(T;6*G) = P(T). (6.39) 

(Actually, one must fit to pBG at two temperatures, because p depends 
not only on the frequency spectrum but also on the strength of the 
electron-phonon interaction.) 

It will be seen in Chapter 7 that, in the limit of high or low tempera-
tures, some vibrational properties of a harmonic system depend on only 
one particular moment frequency co(n). Table 6.1 summarises those re-
sults and also gives the corresponding Debye temperatures 9n{n). In 
some cases the values of 9^{n) for a material vary significantly with n, 
cf. the comment on boron nitride and graphite in §6. 

In conclusion, we note that the frequencies &>(q, s) are differently 
weighted in quantities like C, 5 and (u2). Thus, the price one has to 
pay for a description of thermal properties in terms of a Debye model 
is that the Debye temperature depends on the temperature as well as 
on the property one is modelling. In order to stress this fact we will 
use superscripts C, 5, M and E to denote if 9D(T) refers to the heat 
capacity, the entropy, the vibrational displacement or is derived from 
elastic properties. This set of Debye temperatures should not be con-

J I L 
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fused with the Debye temperatures 9n(n). The latter are independent of 
temperature (for harmonic vibrations) and serve to describe the density 
of states F(co) through its moment frequencies co(n), without reference 
to any particular thermophysical property. 

It follows from the discussion in this section that there is no such 
thing as the Debye temperature for a particular solid. One has to specify 
which physical property one is interested in, and at which temperature. 
On the other hand, the various Debye temperatures usually differ by less 
than 10-20%. This is one reason why they are at all used. In the absence 
of more detailed information, any Debye temperature may give valuable 
insight. For instance, it roughly gives the temperature below which clas-
sical physics should be replaced by a quantum mechanical description 
of properties which depend on the lattice vibrations. It also gives the 
temperature below which anharmonic effects may be regarded as in-
significant. When we refer to a Debye temperature in this general sense, 
we usually write it as #D, without superscripts. Debye temperatures for 
some elements and compounds are found in Appendix I. 

8. Debye temperatures as functions of temperature 

8.1. Harmonic phonons 

All the Debye temperatures 6^, 0^ and 0$ are temperature dependent. 
This behaviour will now be considered in some detail. If F(co) had 
been exactly of the Debye-model shape, and without any anharmonic 
effects, all Debye temperatures for a given solid would have been equal, 
and independent of temperature. We first discuss the temperature de-
pendence of various Debye temperatures at low T, and then how they 
asymptotically approach their high temperature limits. 

Equation (7.30) gives an expression for C^X{T) when the phonon 
density of states has the low frequency expansion F(co) — a\co2 + 
a2(o4-\ . The heat capacity Debye temperature at T = 0 K then follows 
from [#£(0)]3 = [0D(—3)]3 = 9h3/a\kl. The temperature dependence of 
9£ at very low T can be written (Grimvall 1986) 

0£(T) = 0D(O)[1 - (207t2/2l)(a2/al)(kBT/h)2]. (6.40) 

For almost all solids, but with the exception of Au and some of its dilute 
alloys (Bevk et al. 1977), a^ is positive and hence 0£(T) decreases 
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Fig. 6.10. The heat capacity Debye temperature 6^(T) and the entropy Debye 

temperature 0^(T), calculated from the measured Cp(T) of TiC. 

quadratically in T at very low T. A more complicated temperature 
dependence sets in at higher T. 

Example: d% and 0^ in TiC. Figure 6.10 shows Debye temperatures 
calculated here from the measured heat capacity CP(T) for TiC (JANAF 
thermochemical tables (1985) with denser dataset obtained from the 
table editors). One can prove mathematically that the curves cross at 
the minimum of 0^. 

We will next analyse how rapidly #£, 0^ and 0™ approach their high 
temperature limits, in the case of harmonic vibrations. Recall that the 
Debye temperatures 6v(n), without a superscript, refer to the moment 
frequencies co(n) and are independent of temperature, while 0£, 9^ and 
0$ are obtained by a fit to the (harmonic) heat capacity, entropy and 
vibrational displacement of an actual system, and therefore vary with 
the temperature at which the fit is done. For 6£ we can write (Tosi and 
Fumi 1963, Domb and Salter 1952) 

\6^{T)f = flg(2){l - (l/28)[^(4) 

- ^ ( 2 ) ] / [ r ^ D ( 2 ) ] 2 + •••}. (6.41) 

The analogous expression for 0^ is (Tosi and Fumi 1963) 

0*(T) = 0D(O){1 - (l/40)[flg(2) - 0l(O)]/T2 + •••}. (6.42) 

For 6$ we have (Barron et al. 1966) 

9g(T) = eD(-2){\ + b2[0D(-2)/T]4 + . . . } , (6.43) 
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with 

b2 = (l/72OO){[0D(2)/0D(-2)]2 - 1}. (6.44) 

Thus, unlike 9£ and 0^ at high 7\ 0$ has no l/T2-term. Furthermore, 
^ ( 0 ) —• ^ D ( _ 1) when T —• 0, a value which is usually not very 
different from the high-temperature limit #D(—2) of 0^. This means 
that 9^{T) usually varies very little with T, as has been illustrated in 
explicit calculations (Barron et al. 1966). Another way of expressing 
this fact is that the Debye model, with a constant Debye temperature, 
may be a better model for the vibrational displacement than for the heat 
capacity and the entropy, at temperatures T < #D where anharmonic 
effects are still rather small. 

8.2. Anharmonic effects 

At high temperatures anharmonicity affects the various Debye tempera-
tures, and very differently so, as is shown in fig. 6.9 for AI2O3, fig. 6.11 
for Al2Si05 and fig. 6.12 for TI1O2. The heat capacity Debye tempera-
ture behaves unphysically at high T because there is no solution 9^ to 
eq. (6.36) when anharmonic effects make Cp larger than the classical 
limit 3kB per atom. This is shown in fig. 6.11 as the strongly bent thin 
curve. It is sometimes, incorrectly, thought that Cy for the lattice vibra-
tions asymptotically approaches 3kB per atom at high 7\ and therefore 
9£ calculated from Cy would be well behaved. However, anharmonic 
effects are present also in Cy and they may be large (cf. fig. 8.3). The 
"elastic" Debye temperature 9^ in fig. 6.9 shows a gradual change with 
temperature, given by how the elastic constants ctj vary with T. Of 
course there is no rapid variation at low temperatures because 9^ only 
depends on the low frequency limit of F(co), where the spectrum is 
Debye-like. Unlike #£, the entropy Debye temperature is mathemat-
ically well defined by eq. (6.37) at all temperatures. We shall see in 
Chapter 8 that the temperature dependence of 9^ at high T (usually a 
decrease) can be given a simple and accurate interpretation in terns of 
anharmonic shifts in the phonon frequencies &>(q, s). 

Example: a series expansion for 9^ in terms of the entropy. The solution 
of eq. (6.37) may be obtained by interpolation in tables of the Debye 
functions (e.g. in American Institute of Physics Handbook 1972). There 
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Fig. 6.11. The entropy Debye temperature 0^ (T) for three phases of aluminium silicate, 
A^SiOs: andalusite, kyanite and sillimanite. Experimental (solid curves) and estimated 
(continuing dashed curves) data from the JANAF thermochemical tables (1985). The 
strongly bent thin curve shows the unphysical behaviour of 0^(T) for andalusite. After 

Grimvall and Fernandez Guillermet (1992). 
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Fig. 6.12. The entropy Debye temperature 0^(T) for ThC>2, deduced from heat capacity 
measurements, and various accounts of anharmonicity (see the main text). After Shian 

Peng and Grimvall (1994a). 



F (a)) from the inverted heat capacity 101 

is also a rapidly converging series expansion at high T (Shian Peng and 
Grimvall, 1994a); 

0*(T) = T[s + (l/49)e3 + (l/896)s5 

+(1/17046)£7 + • • • ] , (6.45) 

where s = exp[(4/3) - Swib(T)/(3rNkB)l Figure 6.12 shows 6$ ob-
tained in this way for TI1O2. The upper dashed curve represents 0^ 
in the absence of anharmonic effects. The lower dashed curve is an 
anharmonic softening deduced from the Debye-Waller factor. The sym-
bols represent the effect of thermal expansion, accounted for by the 
thermodynamic Griineisen parameter YQ. 

9. F(co) from the inverted heat capacity 

When the density of states F(co) has been obtained, theoretically or 
from experiments (e.g. by neutron scattering), it is common to calculate 
the heat capacity Char(T) and compare with its measured value. One 
may ask if it would not be possible to reverse this scheme and derive 
F(co) from the measured Char(7")- Mathematically this is a straightfor-
ward task but in practice it is usually a futile idea. The expression for 
the heat capacity, 

/»00 

Char(^) = (1/3) / F(a))CE(hco/kBT) ck», (6.46) 
Jo 

can be regarded as an integral equation for the density of states F((o), 
when Char(T )̂ is known. It can be "inverted", for instance by the method 
of Fourier transforms (Montroll 1942). Many other inversion proce-
dures have been devised, e.g. by Lifshitz (1954), Loram (1986) and 
Regan and Morgan (1992), to mention just a few. However, the heat 
capacity is so insensitive to details in F(co) that such features are not 
accurately resolved in an inversion for real solids. Furthermore, the 
high frequency parts of F(co) are mainly reflected in the high tempera-
ture Char(T). There anharmonic effects may severely affect the inverted 
F(co) and non-vibrational contributions to the heat capacity may also be 
important. 

In this context we note that F(co) is formally specified by an ex-
pansion in terms of the even positive frequency moments \±in (Montroll 
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1943, 1944). Theoretically, /X2« can be obtained directly from the dy-
namical matrix D as \±2n ~ Tr(Dw), but large values of n are required to 
resolve details in F(&>), which makes the method less useful. Matsushita 
and Matsubara (1978) used the real-space version of TrD to estimate 
F((o) for small particles. Experimentally, a>(0) may be obtained accu-
rately from heat capacity data integrated to yield the entropy and then 
using, e.g. eq. (6.45). Loram (1986) describes other procedures that 
allows co (n) to be obtained from heat capacity data, and gives refer-
ences to the numerous earlier works along the same lines. We recall that 
several physical properties, when considered in certain limits, depend 
on only a single co(n), (table 6.1). 

10. Comparison between Einstein and Debye models 

The Einstein model fails to describe the heat capacity at low tempera-
tures, where CE(T) decreases exponentially with decreasing T, while 
the Debye model CD(T) always shows the correct T3 dependence. 
However, this does not mean that the Einstein model always gives a 
poorer desciption of thermal phenomena. In fact, the two models are 
often equally good. In both cases, we have a one-parameter description 
of the frequency spectrum, expressed as frequencies COE or temperatures 
0E (Einstein), and co^ or #D (Debye). We will see in Chapter 7 that, 
in certain limits, a thermophysical property may depend on only one 
moment frequency co{n). Both the Einstein and the Debye models can 
be fitted to yield such a frequency a)(n). 

For instance, consider the high T expansion of the harmonic heat 
capacity (eq. (7.31)), 

Char(r) = 3NkB{l - (l/12)[ha>(2)/kBT]2 

+(l/240)[h(o(4)/kBT? - . . . } , (6.47) 

We get the same l/r2-term if we either take coD = (20/12)1/2&>(2) in 
the Debye model (eq. (7.32)) or take COE = co(2) in the Einstein model, 
i.e. if 9E and #D are related as 

0E = 7(375)0D^O.77#D. (6.48) 
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Fig. 6.13. The heat capacities in the Debye model (solid line) and Einstein model 
(dashed line and also nearly coinciding with the solid line) can be made to closely 

agree if the characteristic temperatures #D and #E are properly chosen. 

Figure 6.13 compares the heat capacities CE(T) and CD(T) with this 
#-ratio. Similarly, the vibrational entropy at high T is (eq. (7.23)), 

5har(D = 3 ^ B { l + l n [ / : B r / ^ ( 0 ) ] + ( l /24)[^(2) / / :Br]2 

-(l/960)[ha)(4)/kBTf + . . . } . (6.49) 

The same behaviour is obtained in the Debye, (eq. (7.24)), and Einstein 
models, in the high temperature limit, if either &>E = co(0) or coD = 
exp(l/3)<o(0),i.e.if 

9E = exp(-l/3)c?D - 0.72flD. (6.50) 

Some other properties that have contributions from an integration over 
the entire phonon spectrum can be reproduced equally well with suit-
ably chosen Einstein or Debye parameters, even at 0 K. Such examples 
are the zero-point energy per atom, hco(l)/2, and the average zero-point 
vibrational displacement, (u2> ~ l/co(— 1). 

11. Other few-parameter models for F(co) 

The Debye model, which assumes that co(q, s) is linear in q = |q| for 
all q, does not give a good representation for the high frequency part. 
A relation co(q, s) ~ sing would often come closer to reality (cf. the 
example in §3). Assuming this, or similar, dispersion relations one can 
express F(co) in some general mathematical form that depends on one 
or several parameters to be fitted. For instance, assuming that &>(q, s) — 
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Fig. 6.14. An example of a complex model for F(co) which may give a good represen-
tation for a certain compound with several optical phonon branches. The figure is just 

an illustrating example and does not refer to a particular material. 

coo sin(g/gD) for all q up to the usual Debye cut-off wave vector qD = 
(6n2N/ V)1/3 would leave us with only one free parameter, COQ. It could 
be identified with a temperature #0 = hcoo/lcB that would be analogous 
to the usual Debye temperature. When the model is fitted to, e.g. the heat 
capacity at different temperatures, one gets a solution OQ(T). If the new 
model gives a better representation of co(q, s) than a standard Debye 
model, we also expect that 00(T) does not vary as much as 0D(T) with 
T. 

There are two main reasons why the Debye model is still so widely 
used, in spite of its shortcomings. One is tradition, and the connection 
to a vast amount of information expressed in Debye temperatures. The 
other is its mathematical simplicity. Figure 6.14 shows, schematically, a 
model spectrum that is much more complicated than the Debye model, 
and is of a type that may describe solids with many atoms per primi-
tive cell. It has a low frequency Debye-like part which represents the 
acoustic branches. The optical branches are in this example described 
by a rectangular F(co) and several sharp peaks as in an Einstein model. 
Experimental information on, e.g. optical resonance frequencies and 
elastic constants may be combined with the knowledge of the atomic 
masses in the solid and other information to fix the characteristic fre-
quencies of such a spectrum. Then, having a model for F((o), one may 
proceed to derive, e.g. thermodynamic properties like the heat capacity 
and the Helmholtz energy. Kieffer (1982) used complex representations 
of F(co) to model thermodynamic properties of minerals. Westrum and 
Komada (1986) used another complex model for F(co) that has only 
one free-fitting parameter 0, analogous to the Debye temperature. That 
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is a useful approach when one wants to isolate, e.g. a Schottky-type 
anomaly of crystal-field origin in the heat capacity by subtracting a large 
phonon contribution from the total Cp. It should be remarked that one 
may still have the problem with an anharmonic contribution, when the 
lattice part of Cp is modelled. We also recall that the simplest of all 
the one-parameter models, the Einstein model, may give an adequate 
description of F{co) in many practical applications. 

12. Structure dependence of F(co) and Debye temperatures 

More than 25 of the metallic elements have a low temperature close-
packed (fee or hep) structure and a high temperature bec phase. This 
may be explained if #D,bcc(0) is lower than #D,fcc(0) or #D,hcp(0), since 
the larger vibrational entropy will then tend to stabilise the bec phase at 
high T (cf. Chapter 7, §6). Zener (1948) noted that with only nearest-
neighbour central forces, the bec lattice in unstable against shear in 
the (110) plane. This, he argued, would tend to give the bec lattice a 
low-lying transverse mode and hence, a low Debye temperature. Fig-
ure 6.15 shows F(a>) of bec, fee and hep potassium, calculated in a 
pseudopotential model. The low-lying [110] shear mode does give a 
strong weight to fbcc(^) at low &>, but because #D(0) is an average over 
the entire F(a>), Zener's argument is not sufficient. However, a large 
number of calculations (Grimvall and Ebbsjo 1975) suggest that for a 
wide class of interatomic potentials there is a tendency for #D,bcc(0) to 
be lower than #D,fcc(0) or #D,hcp(0) by several percent. A difference of 
this magnitude is sufficient to explain much of the observed allotropy 
among the elements (cf. Chapter 7, §6). 

Friedel (1974) related #D(0) of transition metals to the coordination 
number z of their crystal structures. With a tight-binding nearest-
neighbour interaction, taken to be independent of the crystal structure, 

#D,bcc(O)/0D,fcc(O) = #D,bcc(0)/#D,hcp(0) = ^ / U « 0.82. (6.51) 

This is too low a ratio. Moraitis and Gautier (1977) extended 
Friedel's (1974) model to include also next-nearest neighbours, but 
#D,bcc(0)/#D,hcp(0) is still not satisfactorily accounted for. 

A relative volume change by AV/V gives rise to a relative change 
y(0; V)(AV/V) in #D(0) (cf. Chapter 8, §3.3). The Griineisen para-
meter typically is y(0; V) = 1.5 ± 1. If the bec phase has an atomic 
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Fig. 6.15. The phonon density of states F(co) for potassium in bcc, fee and hep lat-
tice structures, as obtained in pseudopotential calculations. After Grimvall and Ebbsjo 

(1975). 

volume Qa that is significantly higher than that of the close-packed fee 
and hep phases, the allotropy of the metallic elements might be due 
to a lowering of #D,t>cc(0) associated with the larger J2a. A model with 
atoms represented by rigid spheres of fixed radius would make £2a of 
bcc lattices 9% larger than for fee and hep lattices. However, the actual 
volume change usually is too small to be of significance in this context 
(Chapter 19, §2). 

The rather weak dependence of a certain Debye temperature on the 
lattice structure, that is suggested above for bcc, fee and hep lattices, 
may hold also in more complicated cases. See, for instance, the com-
parison of three structures of Al2Si05 in fig. 6.11. Of course we expect 
a large difference in #D between structures of the same chemical compo-
sition if the chemical bonding is very different. Carbon in the forms of 
diamond and graphite provides a good example. Another is tin, where 
the low temperature phase a-Sn is a semiconductor and /3-Sn is a metal 
(see Chapter 7, §6.2). Lattice instabilities (see below) also show that one 
should use with caution the rule of thumb that Debye temperatures vary 
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Fig. 6.16. The entropy Debye temperature Q^iT) for iron (symbols), calculated from 
the phonon densities of states F(co) which are based on neutron scattering experiments 

at various temperatures. The solid curve is a guide to the eye. 

less than a few percent with the lattice structure, for a given chemical 
composition. 

Example: 6^{T) for bcc and fee Fe. Iron transforms from a bec lattice 
structure to an fee structure at 1184 K, and then transforms back again 
to a bcc structure at 1660 K, before melting at 1808 K. Phonon frequen-
cies have been measured by neutron scattering at several temperatures. 
From a fit of force constants to the measured phonon dispersion curves, 
a temperature dependent F(co) can be derived. Neuhaus et al. (1997) 
and Neuhaus (1999) analysed such information and calculated the vi-
brational entropy. Figure 6.16 shows the entropy Debye temperature 
9£(T) ~ #D(0; T) derived here from their data. Note that the transition 
to a paramagnetic state in the bcc lattice at the Curie temperature 1042 
K seems to give a depression in 0^(T), which is superimposed on the 
general decrease due to anharmonic effects. Note also how small is the 
change in 9^(T) at the bcc-to-fcc and fcc-to-bcc transitions. 

13. Lattice instabilities 

The discussion in the previous section took for granted that the lattice 
vibrations are well defined in, for instance, bcc, fee and hep lattices. 
However, it is quite common that a hypothetical structure of a solid is 
dynamically unstable. For instance, tungsten is stable in the observed 
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bcc lattice structure but is unstable in the fee structure at ambient pres-
sure (see the example below). Magnesium, with an hep structure, is 
unstable in the bcc lattice (Althoff et al. 1993). Other examples are Os 
and Ir (Wills et al. 1992) and Cu (Kraft et al. 1993), with an observed 
fee structure but a dynamically unstable bcc structure, and Ni-Cr al-
loys with fee Ni and bcc Cr being stable phases while bcc Ni and fee 
Cr are dynamically unstable (Craievich and Sanchez 1997). Covalent 
AiVB8_iv-type semiconductors (e.g. GaAs) are dynamically unstable in 
the NaCl-type lattice structure (Ozoliijs and Zunger, 1999). 

A dynamical instability may appear in the long-wavelength limit of 
the phonon spectrum (i.e. for small oo), but also for frequencies cor-
responding to wave vectors well into the first Brillouin zone. In the 
former case, the instability is often related to a negative value of the 
elastic constant C = (en - c\2)/2. Tungsten shows instabilities for a 
large range of q-vectors. Ti and Zr have unstable longitudinal phonon 
modes in the bcc structure at T = 0 K, close to q = [2/3, 2/3, 2/3]. 
Those modes are stabilised at high T and the lattice transforms from the 
hep to the observed bcc structure. The stabilisation of bcc Mg under 
pressure is considered in the example in Chapter 7 (§6.4). Grimvall 
(1998) has reviewed the steps leading to an understanding of unstable 
lattice structures of the metallic elements, in particular the apparent dis-
crepancies (cf. fig. 1.8) when ab initio electron structure calculations 
were confronted with thermodynmic interpretations of measured binary 
phase digrams. See also the discussion of the Bain paths in Chapter 4 
(§3). 

Example: 0£(T) for Ti and Zr in hep and bcc structures. Figure 6.17 
shows 9^(T), calculated here from entropy data that are based on 
F(co) from inelastic neutron scattering. The bcc structure is dynami-
cally unstable at very low temperatures. The data for the hep phases are 
smoothly extrapolated in the figure to high T, following what one would 
expect from anharmonic effects. We note that close to the melting tem-
perature, 9^ is the same for the bcc and hep structures, to within a few 
percent, in spite of the considerable difference at lower temperatures. 
The results indicate that at high temperatures 6^ is larger for the bcc 
structure than for the hep structure, i.e. opposite to the trend discussed 
above that the bcc phase has a slightly lower Debye temperature. 
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Fig. 6.17. The entropy Debye temperature 0^ (T) for Ti and Zr in hep and bec structures, 
derived from neutron scattering data for the phonons at certain temperatures (symbols). 
Solid curves are guides to the eye. Data from Heiming et al. (1991) and Petry et al. 

(1991). 

14. Amorphous systems 

In amorphous materials the lattice periodicity is lost, and we no longer 
have eigenmodes (q, s) for the vibrations in the form of propagating un-
damped waves. However, for harmonic interactions between the atoms, 
there are still well defined eigenfrequencies and hence, a well-defined 
F((D). Most of the quantities introduced in this chapter, therefore, re-
main valid in an amorphous system. In particular, we may consider the 
elastic-limit Debye temperature #D(-3). It is typically lower by 15-
30% when compared with the crystalline state. This is well established, 
both experimentally (e.g. Golding et al. (1972) for Pdo.775Sio.i65Cuo.06, 
Mizutani and Massalski (1980) for Pd0.8oSio.20, Suck et al. (1981) for 
Mgo.7oZn0.3o) and theoretically (e.g. Hafner 1983). See also the discus-
sion on the elastic shear modulus G in Chapter 4 (§9). However, it is 
only the low frequency part of F{co) that is significantly different in 
the amorphous and the crystalline states. The Debye temperature #D(2), 
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which measures co2 averaged over the entire density of states F(co), is 
essentially the same in both structures (e.g. Suck et al. 1980, 1981) 
in the case of "dense" amorphous materials, i.e. where the density is 
close to that of the crystalline state. The electronic states in strongly 
disordered systems may be localised, i.e. their wave functions do not 
extend far beyond a region of atomic size. In contrast to this, most of 
the vibrational modes in glasses are not localised but propagate through 
the solid, although with considerable damping (Nagel et al. 1984). 

15. Effect of order-disorder transitions 

Some compounds, for instance CuZn, Cu3Au and NiaAl, exist at low 
temperatures in an ordered structure, with the two kinds of atoms taking 
positions in two different sublattices. At a certain critical temperature 
there is an order-disorder transition. One may ask if the vibrational 
spectrum of the ordered and the disordered phases are so different that 
it affects the entropy difference, and therefore must be considered in 
an account of the transition temperature. This is a question which has 
been difficult to resolve, experimentally as well as theoretically. It has 
been claimed (e.g., Fultz et al. 1995) that experiments give an increased 
vibrational entropy as large as about 0.3&B per atom in the disordered 
state of NisAl. On the other hand, there are theoretical calculations that 
yield a much lower value (van de Walle et al. 1998). For comparison, 
we note that an entropy increase by 03kB per atom corresponds to a 
moment frequency &>(0), or entropy Debye temperature 0^, that is low-
ered by about 10% in the disordered state. It implies that the interatomic 
force constants are lowered (on the average) by over 20%. Such large 
variations are usually not observed when the type of chemical bonding 
(here metallic) is unaltered. We note that the mass disorder does not 
affect the difference in entropy between the disordered and the ordered 
states at high temperatures, because in both cases the atomic masses 
enter as the logarithmic average over the constituent atoms (§5.3). Of 
course the static disorder is associated with an entropy. For a random 
distribution of atoms in a compound AcBi_c over a lattice, the entropy 
per atom is — k^[c In c + (1 — c) ln(l — c)]. As an example, for a binary 
compound like CuZn we have c = 0.5, and an entropy k# In 2 ~ 0.69&B 
at complete static disorder. 
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16. Effect of magnetism and magnetic fields 

In the example above on bcc and fee iron it was noted that pass-
ing through the Curie temperature Tc has only a moderate effect on 
#Q, which averages over all frequencies. On the other hand, electron 
structure calculations (Ekman et al. 1998) have shown that strictly 
non-magnetic bcc Fe would be dynamically unstable under shear. It 
is necessary in this case to have magnetic moments, rather well lo-
calised on the Fe atoms, but the moments can be disordered like in the 
paramagnetic state well above Tc without making the lattice structure 
dynamically unstable. We have also noted (Chapter 4, §13) that there 
may be pronounced anomalies in the elastic constants near a critical 
temperature for magnetic ordering. 

The Debye temperature of ferromagnets, subject to an external mag-
netic field, is affected in a complicated way (see, for example, Wohlfarth 
1974). The Debye temperature of non-magnetic materials (as opposed 
to magnetic materials in the paramagnetic state) seems usually not to be 
affected by an external magnetic field, not even in the case of strongly 
paramagnetic materials (Ikeda and Gschneidner 1980, Hsiang et al. 
1981). However, there are also cases where #D is affected by a magnetic 
field, probably due to induced magnetic moments (e.g. in Sc and YC02) 
(see Gschneidner and Ikeda 1983). 



CHAPTER 7 

THERMAL PROPERTIES OF HARMONIC LATTICE 
VIBRATIONS 

1. Introduction 

Lattice vibrations give the key to many temperature dependent proper-
ties of solids. If we know the quantum mechanical energy eigenvalues 
of these vibrations, we can easily model thermodynamic quantities such 
as the Gibbs energy and the heat capacity. If we also know the eigen-
functions corresponding to the eigenvalues, we can calculate, e.g. the 
vibrational displacements of the atoms and connect that to properties 
such as the electrical resistivity. In applications to materials science the 
temperature is often so high that a classical description agrees very 
well with the more fundamental quantum mechanical approach. We 
therefore start with a brief comparison of these two descriptions. 

Consider a one-dimensional oscillator in classical mechanics. If the 
restoring force constant is k, and the mass is M, the frequency is 

» = , / £ . (7.D 

The potential energy Epot is 

£pot = \kx2 = \Mo)2x2. (7.2) 

The equipartition theorem says that, in thermal equilibrium, the poten-
tial energy Epoi and and the kinetic energy £kin are equal; 

ZJpot = £kin = -zknT. (7.3) 

112 
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Here " " denotes thermal average. It follows that the thermally aver-
aged squared displacement is 

— kBT kBT 
x =ir = i^' {1A) 

The heat capacity C = dE/dT is 

d -
C = — CEpot + £kin) = kB. (7.5) 

01 

The absolute value of the Helmholtz (free) energy F = E — TS is 
undefined since classical physics only deals with entropy differences 
and not their absolute values. 

These classical properties can be contrasted with the quantum me-
chanical description. There the Helmholtz energy can be obtained 
as 

F = -kBTIn Z. (7.6) 

Z is the partition function, containing a sum over all quantum states / 
with energies Et; 

Z = YJ^V(-Ei/kBT). (7.7) 

In our case with a single oscillator, the quantum energies are hco(n + 
1/2) with n = 0, 1, 2, 3 , . . . , and Z takes a simple closed form; 

7 V^ r i. • _LI /OWI TI exp(-/to/2fcBr) 
Z = > exp[- /Mn + l/2)/£B71 = , (7.8) 

^ l-exp(-/fc»/fcB^) 
which yields 

F = /io>/2 + ifcBrin[l-exp(-/ift)/ikBr)] 

= ^Brin[2sinh(/zo;/2^Br)]. (7.9) 

From a knowledge of F = E — TS, ordinary thermodynamics gives, 
e.g. the energy E and the entropy S. The third law of thermodynamics 
implies that S — 0 at T = 0 K, and the entropy has a well-defined 
value. There is also an "equipartition" theorem for each quantum state 
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of a harmonic oscillator, saying that the expectation values (Hpot) and 
(#kin) of the potential and kinetic parts of the Hamiltonian H are equal. 
Hence, this equipartition of energies also holds in thermal equilibrium 
for the statistical distribution over quantum states, i.e. 

(ffpot) = (±Ma>*x2) = \E(T). (7.10) 

A quantum mechanical description is necessary at "low" temperatures, 
i.e. at temperatures such that k^T < hco. Expressed in terms of some 
characteristic Debye temperature #D for a solid, this condition can be 
written T < 9D. Since for many materials of practical importance 0D < 
300 K, a classical description is often adequate at room temperature and 
above. 

This chapter gives a systematic presentation of thermodynamic 
properties in the quantum mechanical description, and with series 
expansions at high temperatures showing the approach to classical 
behaviour. 

2. Thermal energy of phonons 

In thermal equilibrium, the energy associated with a harmonic phonon 
mode (q, s) with frequency co = co(q, s) is (for simplicity we write 
£(q, s) instead of £(q, s) etc.) 

£(q, s) = hco[n + 1/2] = (hco/2) coth(hco/2kBT). (7.11) 

where n is the Bose-Einstein statistical factor 

n<*>s) = r* \ T^ 1 • ( 7 * 1 2 ) 

The total vibrational energy of a crystal with Af atoms is 

EhAT) = Y/E(q,s) = N / hco 
7 7 -/o 
q,s 

X 
1 1' 

+ -exp(hco/kBT) - 1 2 
F{fo) dco. (7.13) 

Here we have introduced a subscript "har" to stress that this an ex-
pression for harmonic lattice vibrations. In a real system anharmonic 
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corrections may be important. If F(co) has the form of a Debye 
spectrum, the harmonic vibrational energy is ED; 

ED(T) = (9/8)NhcoD 

9NH Pm a x co3 

+ " 1 - / ,* ,h ^ i dco' ( 7 ' 1 4 ) 

coL Jo txp(hco/kBT) - 1 

2 

At high temperatures, £har(T) has the expansion 

£har(7) = 3NkBT{l + (l/l2)[hQ>(2)/kBT] 

-(l/120)[hco(4)/kBT]4 + . - . } . (7.15) 

Expressed in the Debye temperatures 0D(TZ), this expansion becomes 

EhM(T) = 3NkBT{l + (l/20)[eD(2)/T]2 

- ( l /1680)[^D(4) / r ] 4+ - . . } . (7.16) 

The Einstein-model result at high temperatures is obtained from eq. 
(7.15) with all co(n) replaced by the Einstein frequency &>E, and the 
Debye-model result is obtained from eq. (7.16) with all On(n) replaced 
by the Debye temperature 6®. 

Example: the equipartition theorem and the zero-point vibrational en-
ergy. The thermal energy of a phonon mode (q, s) is hco(n + 1/2). We 
note that the high temperature expansion of the Bose-Einstein function 
n contains a term —1/2 that cancels the explicit term 1/2 in hco(n +1/2) 
(see Appendix D). Thus, the thermal energy (eq. (7.15)) approaches 
kBT per mode (q, s), which is the well-known result of the equipartition 
theorem in classical mechanics. This fact can be given a graphical in-
terpretation. The shaded area in fig. 7.1 between the Dulong-Petit value 
3kB and C^iT), yields the zero-point energy of the vibrations, for any 
form of the harmonic vibrational density of states F(co). 

Example: zero-point vibrations and the cohesive energy. The cohesive 
energy C/coh of a solid at T = 0 K has contributions from the energy 
— Ĉ stat of a static lattice, with the atoms at their equilibrium positions, 
and the zero-point vibrational energy, i.e. (averaged per atom) 

Ucoh = -Ustat-Evih = -Usm-(3/2)ha)(l) 

= - t / s t a t - (9 /8 )M D ( l ) . (7.17) 
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Fig. 7.1. The vibrational heat capacity per atom, plotted as C/3kB. The shaded area 
yields the zero-point vibrational energy. 

The magnitude of Ucoh depends on the reference state used, but typically 
EYib(T = 0) is less than 1% of Ucoh (table 1.1). Furthermore, #D(1) of 
competing structures with the same type of chemical bonding usually 
differ by less than 5% (Chapter 6, §12). For a given solid, Evih(T = 0) 
therefore does not affect the relative thermodynamic stability of differ-
ent crystal structures. Carbon seems to be an exception (Yin and Cohen 
1984). In a static lattice at T = 0 K, diamond has a marginally lower 
energy than graphite. However, Evib(T = 0) in diamond is exception-
ally large, while some of the chemical bonds in graphite are of the weak 
van der Waals type and give a much lower EYih(T = 0). The difference 
is sufficient to make graphite the stable phase at low temperatures. 

3. Entropy of phonons 

The vibrational entropy Shar plays a particularly important role among 
the thermodynamic functions for lattice vibrations. There are two main 
reasons for this. Atomic masses separate from interatomic forces in the 
high temperature expression for Shar. Furthermore, anharmonic effects 
can be simply incorporated in the description. But in this section we 
shall focus on the harmonic case. Three convenient expressions for the 
entropy of a particular mode (q, s) are 

S(q, s) = kB[(l + n) ln(l +n)-n Inn], (7.18) 

S(q, s) = kB 
hco 

kWT 
in + 1) - In exp 

/ hco\ 
- l , (7.19) 
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S ( q , , ) = ^ B { ^ - c o t h ( — ) - l n 2sinh 
/ hco V 

(7.20) 

Here n = [exp(hco/ kBT) — 1] l and co = co(q, s). The total vibrational 
entropy in a solid with N atoms is 

ShAT) = Y 5(q, s) = N S(o))F((o) dco. (7.21) 

When F(co) has the form of a Debye model, we get the Debye-model 
entropy SD; 

12NkB T D ^co3/(kBT) dco 
^ D U ) 

l2NkB fa 

o)l Jo exp(hco/kBT) — 1 
-3NkB ln[l - exp(-hcoD/kBT)]. (7.22) 

A very important result is the high temperature expansion of eq. (7.21), 
expressed in moment frequencies co(n)\ 

Shar(r) = 3 ^ B { l + l n [ / : B r / ^ ( 0 ) ] + ( l /24)[^(2) / / :Br]2 

-{\/96Q)[hco{A)/kBTf + . . . } . (7.23) 

We note that to leading order at high 7, the entropy only depends on 
the logarithmic average co(0) of the phonon frequencies, without regard 
to the detailed shape of F(co) or if F{co) refers to, e.g. an element, a 
compound or a disordered alloy. Expressed in the Debye temperatures 
6^(n), eq. (7.23) takes the form 

Shar(F) = 3tf*B{4/3 + ln[r/0D(O)] + (l/40)[£D(2)/r]2 

-( l /224O)[0D(4)/r]4+ - . . } . (7.24) 

The Einstein-model result at high temperatures is obtained from eq. 
(7.23) with all co(n) replaced by the Einstein frequency coE, and the 
Debye-model result is obtained from eq. (7.24) with all 9^(n) replaced 
by the Debye temperature #D-



118 Ch.7. Thermal properties of harmonic lattice vibrations 

4. Heat capacity 

Since we now deal with strictly harmonic vibrations, the heat ca-
pacities Cp and CV, taken at constant pressure and constant volume, 
respectively, are equal (= Char)-

Thermodynamics gives 

Char = (dEhJdT) = T(dS/dT). (7.25) 

From expressions for the entropy S and its series expansions in §3, we 
can derive a number of useful relations. The heat capacity Char(q> s) of 
a single phonon mode (q, s) with frequency co = &>(q, s) is 

( h(o\ 2 exp(ha)/knT) 
[exp(hco/kBT) - l ]2 

2 1 
5 • (7.26) 

4sinh2(/to/2A:Br) 
The total heat capacity Char in a solid with N atoms and a phonon 
density of states F(a>) is 

/*ft>max 

Char(r) = AT / Char(a>)F(a>) dco. (7.27) 
Jo 

When F(co) has the form of a Debye model, with Debye temperature 
0D, we get 

:r\3 f W r j V 
#DJ JO ( e * - l ) 2 CD(r) = 9AttB ( 7~ ) y 7 - f ^ ^ c k . (7.28) 

At very low temperatures, the upper integration limit 0p/ T in the Debye 
expression (7.28) can be replaced by oc. Then the integral becomes a 
constant, 4;r4/15, and 

- ) , 2 3 4 ^ B y CD(T-) = ^ 8 - ^ - ^ 1 «234iV*B(^-) • (V-29) 

We recall that #D is defined through an average over anisotropic and 
mode dependent sound velocities, eq. (6.14), so eq. (7.29) is valid for 
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any solid in the low temperature limit, irrespective of its structure at the 
atomic level (but see Chapter 11, §5 for a comment on glasses). 

We noted in eq. (6.19) that for small co, F(co) = a\co2 + a^o^ H , 
with only even powers of a>. If this form is used in the expression (7.27), 
and we go to the low temperature limit, the result is 

Chai(T) = Nk^A^/^a^T/h? 

+{\6n6/2\)a2(kBT/h)5 + ..-]. (7.30) 

Thus, the low temperature expansion of C^iT) does not have a T4 

contribution. 
The high-temperature expansions of Char (7") in terms of moment 

frequencies, oo(n), or the related Debye temperatures 6v(n), are 

Char(T) = 3NkB{l - (l/l2)[hco(2)/kBT]2 

+(l/240)[hco(4)/kBT? - . - . } , (7.31) 

Char(r) = 3^ B { l - ( l / 20 ) [^ D (2 ) / / :B / r ] 2 

+(l/560)[#D(4)/r]4 - . . . } . (7.32) 

The Einstein-model result at high temperatures is obtained from eq. 
(7.31) with all co(n) replaced by the Einstein frequency COE, and the 
Debye-model result is obtained from eq. (7.32) with all 0n(n) replaced 
by the Debye temperature 6D. 

Example: the Dulong-Petit rule. Dulong and Petit (1819) noted em-
pirically that the specific heat (i.e. heat capacity per mass) at room 
temperature, multiplied by the atomic weight, was approximately con-
stant for 13 solid elements. Their numbers correspond to a heat capacity 
of about 6.5 cal/mol. This is reasonably consistent with the high tem-
perature limit 3NkB in eq. (7.31) which yields 5.96 cal/mol. Further 
aspects of the Dulong-Petit rule are found in the discussion of the 
Neumann-Kopp rule in Chapter 19 (§5). 

Example: heat capacity offullerite. At room temperature C6o mole-
cules can form an fee structure called fullerite, with transitions to other 
structures at lower temperatures. Figure 7.2 shows the heat capacity as 
it results from low temperature (<20 K) heat capacity measurements 
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Fig. 7.2. The heat capacity of C^Q fullerite from experiments. After Jin Yu et al. (1994). 

(Beyermann et al. 1992), from information about the atomic dynamics 
through neutron scattering (Pintschovius et al. 1992) and from the the-
oretical modelling of those excitations (Jin Yu et al. 1994). Each C60 

molecules contributes 3 x 60 modes vibration modes. When placed 
in a lattice, six of these modes refer to intermolecular motions (three 
vibrations and three rotations of the molecule). The remaining modes 
refer to intramolecular motions. The two sets of modes are well sepa-
rated in energy. At ambient temperature only the intermolecular motions 
contribute significantly to Cp. The force constants for the intramolecular 
motions are almost as strong as in the diamond form of C. We therefore 
expect that Cp of fullerite (in a hypothetically stable state) would not 
reach the classical (Dulong-Petit) limit until around 2000 K. 

5. Thermal atomic displacements 

5.1. General relations 

Much of the material in the following discussion of thermal atomic 
displacements has been developed in relation to thermal effects in X-
ray crystallography. The monograph by Willis and Pryor (1975) covers 
these aspects in depth. Some additional formulae are given in Appendix 
D. Butt et al. (1988,1993) have tabulated displacements for many solids 
with cubic lattice structure. 



Thermal atomic displacements 121 

The instantaneous position R(/c, /; t) of the /cth atom in the /th unit 
cell is written 

R(/c, /; 0 = R V , /) + u(/c, /; t), (7.33) 

where u is the displacement vector from the equilibrium position R°. We 
wish to calculate the thermal averages (u2) and (w2), of u(/c, /) and its 
Cartesian components ua(K, /), respectively. Let there be Nc primitive 
cells in the lattice, with r atoms in each cell. From (D.10), 

Here e(q, s; /c) is the /cth part of the total phonon eigenvector e, i.e. the 
component of e(q, s) which refers to the displacement of the /cth atom. 
MK is the mass of the atom of type /c, and E(q, a-) = ha)(q, s)[n(q, s) + 
1/2]. The total mean-squared displacement is 

(u2(/c, /)) = (a2(/c, /)) + (u2
y(K, /)) + (M

2(/c, /)). (7.35) 

If the site (/c, /) has cubic symmetry, the average displacement is 
isotropic, with 

(u2(/c,/)) = 3(W
2(/c,/)). (7.36) 

Thus, it is worth stressing that in the approximation of harmonic lattice 
vibrations and cubic symmetry, the displacements are the same in all 
directions, e.g. the [100], [110] and [111] directions of an fee (or bec) 
lattice, although this may seem counter-intuitive. 

The distribution function P(ua, KI) for the displacement of the (/c/)-
atom in the a -direction is Gaussian, i.e. 

P(ua) = [27r(W
2(/c,/))]-1/2exp[-W

2/2(W
2(/c,/))]. (7.37) 

This relation was proved in the classical limit by Debye (1914) and 
Waller (1925), and shown by Ott (1935) to be true also in a quan-
tum mechanical treatment. From the distribution functions P(ua), we 
can calculate the probability that an atom is to be found in a certain 
region near its equilibrium position. For instance, there is a 50% prob-
ability that the a -component of the displacement vector u is larger 
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than 1.54(u2)1/2. See Nelmes (1969) for details regarding displacement 
probabilities. 

Anharmonic effects have been neglected here. They are pronounced 
for large displacements, and thus make P(u) less reliable when u2 3> 
(u2). 

5.2. Monatomic solid with cubic symmetry 

In a monatomic solid with cubic symmetry, the index K is irrelevant. 
Then 

£*«(q ,*K(q , j ) = l, (7.38) 
a 

and eq. (7.34) gives 

<"2>=^I (uz) = — / V ; JF(co) dco. (7.39) 

Thus, we have the important result that the mean-square thermal dis-
placement in a monatomic solid (i.e. an element) with cubic symmetry 
can be calculated without knowledge about the eigenvectors e. We also 
note that eq. (7.39) converges at the lower integration limit only if 
F((L>) ~ cop for small &>, with p > 1. In a one-dimensional chain, which 
is often used to illustrate important concepts in lattice dynamics, F(co) 
tends to a constant for small co. Then (u2) diverges at all temperatures. 

At high temperatures E(co; T) -> £B7\ and (u2) becomes 

(u2) = - ^ — . (7.40) 
V } Mco2(-2) 

Because co(—2) ~ M~1/2 for a monatomic solid, we see that (u2) at 
high temperatures does not depend on the atomic mass M. 

When T -> 0 only the zero-point vibrations remain. Then E(co; T) 
= ha)/2 and eq. (7.39) gives 

(u2) = ™ n . (7.41) 

In this case, the mass dependence 6L)(—1) ~ M_ 1 / 2 does not cancel in 
eq. (7.41), and a heavy mass tends to have a low zero-point vibrational 
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displacement. We note that the high and low temperature limits of the 
displacement do not depend on the detailed shape of the density of states 
F(co) but only on a single parameter, co(—2) and co(— 1), respectively. 

5.3. Thermal displacements in a Debye model 

With a Debye model for F(co), eq. (7.39) becomes 

9h2T 
<u2> = 777-^2 [ * 0 D / D + 0D/4T], (7.42) 

where O is the Debye integral function 

1 fx z 
*(*) = ~ / -r—r dz. (7.43) 

For small JC, O(x) = 1 — JC/4 + x2/36 — • • •, which yields the high 
temperature expansion 

9h2T 
<u*> = 777^2 t1 + (V36)(0D/r)2 + •••]• (7.44) 

In the low temperature limit, O -> 0 and hence, 

9 9h2 

4M£ B #D 

5.4. Debye-Wallerfactor 

The mean-square displacements can be obtained from the temperature 
dependence of the intensity in X-ray or neutron scattering experiments 
(Debye 1914, Waller 1923). Let / be the actual intensity, 70 the intensity 
when the lattice is rigid, ki and k2 the wave vectors and A = 27r/|k| 
the wavelength of the photon (or neutron) before and after the (elastic) 
scattering, q = ki — k2 and 26 the angle between ki and k2. One has 

/ = /0exp(-2MDW). (7.46) 

In the Debye-Waller factor exp(—2MDW) of a cubic lattice, 

MDW = (l/2)((u.q)2) = ( l / 6 ) ( u V 
= (l/3)(u2)(87r2sin2#A2) = Bsin20/k2, (7.47) 
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where B is called the B-factor of the atom. According to eq. (7.46), a 
plot of ln(///o) versus sin2 6/X2 (a Wilson plot) should give a straight 
line with a slope which, at high temperatures, is linear in 7\ but anhar-
monic effects give rise to some non-linearity (Hahn and Ludwig 1961, 
Maradudin and Flinn 1963, Cowley and Cowley 1966, Mair 1980). 

5.5. Interatomic distance 

The displacements discussed above refer to the deviation of a particular 
atom from its equilibrium position. Sometimes one is more interested 
in how the distance between two specific atoms varies due to the vibra-
tions. Let the instantaneous positions of two atoms, labelled 0 and j , be 
R0 = RQ + uo and Rj =R°. + u7. The distance d between them differs 
from the distance do = Ry — R$ in the static lattice, such that 

d = (R° + uj) - (R° + uo) = d0 + (u; - u0). (7.48) 

The mean-square relative displacement is 

OT2 = ( ( d - d 0 ) 2 ) = <(U;-Uo)2) 

= <u2) + ( u 2 ) - 2 ( u ; - u 0 ) . (7.49) 

Consider now the relative displacement along the direction R; — Ro, for 
instance the distance between near-neighbours. Thus, we seek 

tfR = <[e-(u;-u0)]2} , (7.50) 

where e is a unit vector along R; — Ro. If the atoms vibrate indepen-
dently, like in an Einstein model, one has (u7 • uo) = 0. In another 
extreme limit, that of acoustic long-wavelength vibrations, all atoms 
move in phase and d = do. In a real solid, we expect correlations 
between the atomic motions to be significant when 0 and j are near 
neighbours, but to be small for atoms far apart. A general expression 
for OTR, in a monatomic lattice with atomic mass M, is (Griineisen and 
Goens 1924, Warren 1969) 

2 _ & y ^ [e(q,s) -e]2 r / to(q,s)1 
aR " NMJ^ a>(q,s) C° L 2£Br J 

x { l - c o s [ q . ( R ; - R ° ) ] } . (7.51) 
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Without the cosine term in eq. (7.51), a^ = 2(u2)/3 (cf. eqs. (7.11), 
(7.34) and (7.49)). That would correspond to Ry — Ro being so large (i.e. 
the atoms 0 and j being so far apart) that the cosine term averages to 
zero when one sums over q. An accurate treatment of eq. (7.51) requires 
numerical calculations. Not even in a Debye model is it possible to get a 
closed-form algebraic expression for a£. The quantity a^ is accessible 
in experiments on extended X-ray absorption fine structures, XAFS (e.g. 
Greegor and Lytle 1979, Bohmer and Rabe 1979 and Marcus and Tsai 
1984). Displacement correlation functions have also been calculated 
from the phonon spectrum, for instance by Beni and Platzman (1976) 
for Zn, Sevillano et al. (1979) for Cu, Fe and Pt and Zywietz et al. (1996) 
for SiC. See Appendix D for further comments. 

5.6. General expression for the thermal displacement 

We now seek a general but tractable expression for (u2(/c, /)) in a lat-
tice of arbitrary structure. It is convenient to introduce a matrix B with 
elements (do not confuse B with the B-factor in eq. (7.47)) 

Btj = {uiUj). (7.52) 

Let the r atoms in the primitive cell be numbered by K = 1 , . . . , r. 
Then ut is a component of the vector (wlx, u\y, u\z, U2X,. •., urz). From 
a result in matrix theory (Born 1942) we can write (for brevity restricted 
here to high temperatures) 

B(KK) = 
NCMK 

E 
q 

1 

720 

D~\q; KK) + 
1 h 

12 \knT 

kuT 
D(q; KK) + (7.53) 

D is the 3r x 3r dynamical matrix and I is a unit matrix. B{KK) refers 
to the displacement of atoms of kind K. This expression is useful since 
it allows the evaluation of (u2) directly from the inverted dynamical 
matrix D. 
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5.7. Two atoms per primitive cell 

An interesting special case is a lattice with a primitive cell contain-
ing two atoms, denoted by 1 and 2. Let their masses be M(l) and 
Af(2). From eq. (7.34) we cannot obtain the displacements of each 
kind of atom without knowing the 6-component eigenvectors e(q, s) = 
[e(q, s; 1), e(q, s; 2)]. However, we can obtain the weighted sum 

M(l)(u?> + M(2){u2
2) = 2 / [E((o; T)/(o2]F(co) dco. (7.54) 

Jo 
Here E(o), T) is the Einstein thermal energy. To obtain the displacement 
of each atom we turn to eq. (7.53). D(q) is now a 6 x 6 matrix. It can 
be blocked into four parts, D(KK') = D0(/c/c/)/[M(/c)M(/c/)]1/2 (cf. eq. 
(C.3)). Then eq. (7.53) yields the high temperature result 

M(l){nj)a = (kBT/Nc)J2Val(* ID, (7.55) 
q 

M(2)(uj)a = (kBT/Nc)J^D-l(q; 22). (7.56) 
q 

The index a refers to a Cartesian component in the displacements and 
in the block D(/c/c). At high temperatures, we only keep the first term 
on the righthand side of eq. (7.53). Then, since D_1(q, KK) ~ M(K), 
the atomic masses cancel on each side of eqs. (7.55) and (7.56), respec-
tively. It follows that (Uj) and (û > do not depend on the masses but only 
on the forces between the atoms. 

If the force-constant part obeys D0(ll) = Do(22), one has the 
important result that the mean-square thermal displacements in a di-
atomic solid at high temperatures are the same for both kinds of atoms, 
irrespective of their mass ratio. The condition Do (11) = Do (22) is ful-
filled if there are only nearest-neighbour interactions, but also for direct 
Coulomb forces in an ionic compound A+B~. In the low temperature 
limit, on the other hand, only zero-point vibrations remain. Then the 
average displacement amplitudes are unequal for the two kinds of atoms 
(cf. the analogous result in eq. (7.41)). 

The monatomic hexagonal close-packed lattice is a special case of 
diatomic lattices. The B-matrix has the form 

((ul) 0 0 \ 
B = 0 (u2

a) 0 , (7.57) 
V 0 0 {u])J 
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where ua refers to vibrations along an a-axis, and uc to vibrations per-
pendicular to that axis. D0(ll) = D0(22) and M(l) = Af(2) = M. 
From eq. (7.54) we obtain the average (u2) over all directions, 

(u2) = 2(u2
a) + (u2

c) 

= (1/M) / [E(co; T)/(o2]F(o)) dco. (7.58) 
Jo 

In an arbitrary direction q, making an angle 9 with the oaxis, one has 

((u • q)2) = (u2
c) cos2 9 + (u2

a) sin2 9. (7.59) 

Example: mean-square displacements in NaCl-type lattices. Since the 
essential interatomic forces in alkali halides, A+B~, are Coulomb forces 
plus interaction from overlap of atomic wave functions on neighbouring 
ions, we expect that (u2(A)) & (u2(B)) at high temperatures. Cal-
culations confirm this result (Huiszoon and Groenewegen 1972). For 
work on thermal displacements in NbCo.95 (which has NaCl-structure), 
see Kaufmann and Meyer (1984), citing Milliner, Reichardt and Chris-
tensen. Butt et al. (1993) have tabulated atomic displacements in 52 
diatomic cubic compounds, based on diffraction experiments. 

Example: anisotropic vibrations in zinc. Zinc has unusually anisotropic 
thermal displacements. According to eq. (7.57) it suffices to find (u2) 
and (w2). A strict treatment requires not only the frequencies &>(q, s) 
but also the corresponding eigenvectors. However, it is a useful ap-
proximation (Griineisen and Goens 1924) to introduce two effective 
density-of-states functions of the Debye type, Fa(co) and Fc(co), and 
choose Debye temperatures 9a and 9C such that the temperature depen-
dence of the displacements is well described. Figure 7.3 shows that this 
gives a good account of (u2) and (w2) in zinc. The normalisation of 
Fa (co) and Fc(co) is defined by fitting theory and experiment at T = 0 K. 
The inset shows the actual F(co) and the two Debye spectra used here. 

5.8. Combined static and dynamic displacements 

In a random alloy AXB\-X, the atoms may take the positions of an 
ordered lattice but show displacements relative to the ideal lattice posi-
tions, because of the randomness and different atomic sizes. Such static 
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Fig. 7.3. Anisotropic thermal displacements in zinc, calculated with separate Debye 
models (shown in the inset together with the full F(co)) for directions parallel (||) 
and perpendicular (±) to the hep c-axis. Filled and open circles are measured values. 

After Potzeletal. (1984). 

displacements are superimposed on the dynamic (vibrational) displace-
ments. Static displacements affect the vibration frequencies, but that 
would enter as higher-order corrections in this case. Then it is reason-
able to consider static and dynamic displacements as uncorrected and 
get, for the total displacement, 

(U )total ^ (U )static + (u )dynamic- (7.60) 

For an example of this approach, see Dernier et al. (1976) in an analysis 
of the mixed-valence compound Smo.7Yo.3S. 

5.9. Vibrational velocity 

The instantaneous velocity va(ic9 /; t) of an atom (KI) in the direction a 
is obtained from dua(K, /; t)/dt (cf. Appendix D). Then, in analogy to 
eq. (7.34), we get the thermal average 

(VI(K, /, 0) = TTTT" J2 E^ s)s<*^ 5; KK(1> s> *)• (7-61) NCMK 
q,s 

In a monatomic lattice with cubic symmetry, (v2) = (v*) + (vh + (u2) 
is isotropic; 

(v2) E{fl), T)F(co) da), (7.62) 
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with the low and high temperature limits 

(v2) = 3heo(l)/2M = (9kB/8M)9D(l), T = 0, (7.63) 

(v2) = 3kBT/M, kBT » ha)max. (7.64) 

See Chapter 19, §3 for comments on bounds to (v2). 

Example: Heisenberg's uncertainty relation in solids. In a monatomic 
lattice with cubic symmetry, the zero-point vibrational displacement and 
velocity are given by 

(u2
x)T=0 = h/2McD(-l), (7.65) 

{v2
x)T=o = ha)(l)/2M. (7.66) 

The inequality co(l) > &>(—1), eq. (6.23), is equivalent with the 
Heisenberg uncertainty relation 

(u2
x)T=0(v

2
x)T=o > h2/4M2. (7.67) 

For a single one-dimensional oscillator the relation (7.67) becomes an 
equality, while the Debye model gives (9/8)(/j2/4M2) for the lefthand 
side of eq. (7.67). An analogous inequality holds for the displacement 
and velocity of a particular atom in a lattice with several different atoms 
(Housley and Hess 1966). 

6. Temperature and pressure induced polymorphism 

6.1. Introduction 

With polymorphism we mean that an element or a compound can ex-
ist in several different crystalline forms. (Some authors use the word 
allotropy in the case of elements. Others use the word polytypism.) 
We will be interested in the cases when a solid transforms from one 
thermodynamically stable crystal structure to another, with varying 
temperature or pressure. A typical example of a temperature-induced 
transformation is that of tin at 286 K, from the low temperature semi-
conducting phase (gray tin) to the metallic /3-phase (white tin). A typical 



Point of transitiona 

1173 K 

1660 K 

~10GPa 

1155 K 

1136 K 

1547 K 

-1.5 GPa 

Structural change 

bee -> fee 

fee ->- bee 

bee —> hep 

hep -> bee 

hep -> bee 

hep -> bee 

graph.-> diam. 
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Table 7.1 

Examples of temperature or pressure-induced polymorphism 

Material 

Fe 

Fe 

Fe 

Ti 

Zr 

Be 

C 

aData from Young (1991). 

pressure induced transformation is that of alkali halides, where at least 
eight of the twelve compounds which crystallise in the B1 (i.e. NaCl-
type) structure at zero pressure transform to the B2 (i.e. CsCl-type) 
structure at pressures below 100 GPa (Kim and Gordon 1974). Table 
7.1 gives some additional examples. Data from Young (1991) and the 
JANAF thermochemical tables (1985). 

6.2. Temperature-induced transformations 

That structure is the most stable, which has the lowest Gibbs en-
ergy G = U — TS + pV'. We first discuss a temperature-induced 
transformation and then one induced by pressure. Let us describe the 
temperature-dependent part of G by harmonic lattice vibrations, and 
specialise to p « 0 (i.e. normal atmospheric pressure) and high temper-
atures (T > 9D). Then the difference G2 — G\ between two phases, 1 
and 2, is (cf. eq. (D.7)) 

G2-Gi = AH + 3NkBT{ln[co2(0)/o)l(0)] 

+(l/24)(h/kB)2[co2
2(2) - coj(2)]/T2 + . - •} , (7.68) 

where AH = [G2 — G\]T=O K is the difference in cohesive energy for 
the static lattice at 0 K. Ignoring the term ~ l/T2 in eq. (7.68), the 
condition G\(Tt) = G2(Tt) yields the transformation temperature Tt; 

t-3MfcBln[a>i(0)/a>2(0)]' 
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600 

Fig. 7.4. The Gibbs energy G(T) for a-Sn, £-Sn and liquid Sn. The inset shows the 
heat capacity, normalised as Cp/3R. Data from Dinsdale (1991) and Hultgren et al. 

(1973a). 

If the difference Aco = o;i(0) - co2(0) is small compared with &>i(0) 
[^ &>(0)], we get 

Aco AH 

(o(0) 3NkBTt' 
(7.70) 

Example: gray and white tin. Figure 7.4 shows G{T) for gray, white 
and liquid tin, as derived from experiments at ambient pressure. Gray 
tin (a-Sn) is a semiconductor with the diamond-type lattice structure 
and white tin 06-Sn) is a metal with tetragonal structure. The electronic 
structure, and hence the bonding, is radically different in the two phases. 
This is reflected in the entropy Debye temperatures evaluated at T = 
Tt = 286 K, where eg (grey )/flg (white) % 1.3. 

6.3. Pressure-induced transformations 

To illustrate the pressure-induced transformation we consider r = 0K. 
The relative lattice stability is determined by the enthalpy H = U+pV. 
At the transformation pressure pu 

UiiVx) + ptVi = U2(V2) + PtV2. 

Thus, a transformation occurs at 

U2(V2) - Ui(V{) 
Pt = 

Vi-V2 

(7.71) 

(7.72) 
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Fig. 7.5. The energy U(T) for bcc and hep Fe, as a function of the volume per atom. 
From ab initio electron structure calculations (Ekman 1998, unpublished). 

The pressure pt has a geometrical interpretation as the slope of the 
common tangent to the U\(V) and U2(V) versus V curves (fig. 7.5). 

Because our approach only compares the energy difference between 
two equilibrium structures, we cannot say anything about kinetic as-
pects, such as nucleation and growth of a phase (Yamada et al. 1984), 
but see the discussion of dynamic instabilities in §6.4 below and in 
Chapter 6 (§13). 

Example: pressure-induced transformation in Fe. At ambient temper-
ature and pressure, iron has the bcc structure. Under pressure, it trans-
forms to an hep structure. Figure 7.5 shows the energy U at T = 0 K for 
bcc and hep Fe, from ab initio electron structure calculations. The tran-
sition pressure pt as given by eq. (7.72) corresponds to the slope of the 
common tangent to U(V; bcc) and U(V; hep) in fig. 7.5. The calculation 
yields pt « 10 GPa, in good agreement with experiments, which are 
uncertain due to hysteresis in pt. The large difference in atomic volume 
of Fe between the bcc and hep lattices is due to magnetic effects. There 
is no magnetic moment in hep Fe at the volumes considered here. (In 
a model with atoms represented by rigid spheres, the atomic volume of 
the bcc phase would be 9% larger than for the hep phase, see Chapter 
19, §2.) 

Example: temperature- and pressure-induced polymorphism in TIL 
Thallium iodide has some interesting properties (Samara et al. 1967). At 
ambient pressure and Tt = 429 K, it transforms from a low temperature 
orthorhombic structure (1) to a more dense cubic CsCl-type structure 

J I I I L 



Temperature and pressure induced polymorphism 133 

(2). The same structural transformation takes place if, at ambient tem-
perature, the pressure is increased to pt = 0.29 GPa (2.9 kbar). The heat 
of transformation at 0.1 MPa (1 bar) is AH = 1230 ± 160 J/mol. The 
molar volume is lower by 3.3% in the CsCl structure; V\ — V2 = 1.5 
cm3/mol. We shall analyse these transformations in a simple model. 
With N = 2NA and T = 429 K, eq. (7.69) gives o;2(0)M(0) = 0.94. 
In the pressure-induced transformation, temperature effects cannot be 
neglected. If the high temperature form of G2 — G\ in eq. (7.68) re-
places U2 — U\ in eq. (7.72), and the volume dependence of AH 
and CL>2(0)/CO\(0) is ignored, eq. (7.72) yields pt = 0.26 GPa, to be 
compared with the measured pt = 0.29 GPa. 

6.4. Approaching a lattice instability 

In the solid-solid phase transformations discussed above, each phase 
also exists as a metastable phase in a certain temperature or pressure 
interval beyond the point of equal Gibbs energies. The actual transfor-
mation takes place through nucleation and growth of the new phase. We 
shall now comment on the case when a phase becomes dynamically un-
stable due to a change in temperature, pressure or chemical composition 
(cf. Chapter 4, §3, Chapter 6, §13). Then the concept of a vibrational 
entropy has no physical meaning, and the Gibbs (or Helmholtz) energy 
is undefined. 

For example, consider the behaviour of G when a change in the 
pressure p takes the solid from a dynamically stable state to one that 
has an unstable phonon mode. In a strict Debye model, and at high 
temperatures, the Gibbs energy can be written (eq. (D.8)), 

G % U(V) + pV - 3NkBT[l/3 + ln(77#D)]. (7.73) 

If we let #D approach 0 in eq. (7.73), G would diverge towards — 00, and 
hence this phase would be stabilised relative to other phases just before 
it becomes unstable at a pressure pc. However, eq. (7.73) assumes that 
all phonon frequencies tend to zero at the same rate, and become 0 at 
pc. In a real material, there will be one particular mode (q, s) that first 
reaches co(q, s) — 0. The singularity therefore is very weak, and G does 
not diverge when p —• pc (Fernandez Guillermet et al. 1995). Hence, 
on approaching pc, there is only a small precursor effect in the phase di-
agram. Figure 7.6 shows this for Mg, which is stable in the bcc structure 
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Fig. 7.6. The temperature-pressure phase diagram of magnesium, as obtained through 
ab initio electron structure calculations. After Moriarty and Althoff (1995). 
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Fig. 7.7. At ambient pressure (volume VQ per atom) the fee lattice of tungsten is dy-
namically unstable under shear, but the phonons are stabilised with increasing pressure, 
as shown here for phonons in the [100] direction when V = 0.44VQ- The figure gives 
-\co(q, s)\ when co2(q, s) < 0. For each V, the upper curve refers to longitudinal and 
the lower curve to transverse modes. After Einarsdotter et al. (1997). 

at high p but with a transverse [110] mode that becomes unstable at low 
pressures (Moriarty and Althoff 1995). Analogously, the Pt-W phase 
diagram does not show any feature revealing that the fee lattice becomes 
unstable as one goes from Pt towards pure W (Fernandez Guillermet et 
al. 1995). See also Craievich and Sanchez (1997) for calculations on 
Ni-Cr alloys, showing that the elastic constant C = (cn — ci2)/2 is 

l r 

unstable 
J I i_ 
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negative for fee Cr and for bec Ni (pure Cr has the bee and pure Ni 
the fee lattice structure). Strong anharmonieity in the soft modes will 
modify the arguments above, but not change the essential point about the 
singularity in G. Finally, it should be remarked that the actual transfor-
mation may take place before the point of instability, and be of the first-
order type discussed in §§6.2 and 6.3 above. For instance, the bec phase 
of Ti and Zr appears to be dynamically unstable at low temperatures, 
but the phonons are well defined at the bec «> hep transition (see fig. 
6.17). 

Example: phonon instability in fee tungsten. Tungsten at ambient con-
ditions has the bec lattice structure, and the fee structure is dynamically 
unstable (Einarsdotter et al. 1997). Under compression, the phonon 
modes of the fee lattice are gradually stabilised. Figure 7.7, based on ab 
initio electron structure calculations, shows this for phonons in the [100] 
direction. Modes in some other directions are also strongly affected. 



CHAPTER 8 

PHONONS IN REAL CRYSTALS: 
ANHARMONIC EFFECTS 

1. Introduction 

In the previous chapters we discussed lattice vibrations under very ideal 
circumstances. The lattice was assumed to be free from defects such 
as vacancies, impurities, grain boundaries and surfaces. It was also as-
sumed sufficient to retain only the harmonic part of the expansion of 
the potential energy in the atomic displacements. Although these may 
be excellent approximations in some cases, they completely leave out 
certain phenomena. For instance, perfectly harmonic vibrations give no 
thermal expansion. Furthermore, if the vibrations are harmonic and the 
lattice is also free from defects, the thermal conductivity is infinite. 

As a starting point of our theoretical treatment we take the expansion 
of the total lattice energy in atomic displacements U; and the corre-
sponding momenta p,-. With /, j denoting atoms and a, /3 Cartesian 
components, the energy in the harmonic approximation is 

£ 2M- + *° + (1/2) £ *^(/* j)UiaUjP' (8,1) 

i l ij,ct,p 

Corrections to the simple theory of Chapters 6 and 7 may arise because: 
(i) Higher-order powers of u are added to the expansion of the potential 

energy O ineq. (8.1). 
(ii) The perfect periodicity is destroyed by the presence of vacancies, 

impurity atoms, dislocations, grain boundaries, free surfaces, etc. 
If, in the case of (ii), we only retain quadratic terms in u, the vi-

brations are still described as harmonic. However, the solutions to the 
equations of motion are no longer plane waves characterised by the 
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wave vector q (although that may be a good approximation for most 
of the vibrational modes). 

The anharmonic effects mentioned under (i) are present even in a lat-
tice without any defects. That is the theme of this chapter. Vibrations in 
defect lattices, (ii), are considered in Chapter 9. Original work covering 
the main points in this chapter is due, inter alia, to Leibfried and Ludwig 
(1961), Maradudin and Fein (1962), Cowley (1963) and Barron (1965). 
There are several reviews, e.g. by Cowley (1968), Wallace (1972) and 
Barron and Klein (1974). 

2. Weakly perturbed harmonic vibrations 

Let a)o(q, s) be the frequency of the phonon mode (q, s) in the harmonic 
approximation. In a real system, which we assume does not deviate too 
far from the harmonic conditions, the frequency coo(q, s) is shifted to a 
complex value 

o>(q, s) = co0(q, s) + A(q, s) - iT(q, s). (8.2) 

If there had been no imaginary part — iT(q, s), the perturbed state (q, s) 
would have the exact energy eigenvalue a>o(q,s) + A(q, s), and a time 
dependence given by exp[—/(ct>0 + A)/]. The imaginary term adds a 
factor exp(—Ft) to the time dependence. Hence, the state (q, s) decays, 
but if r is small (V/coo <g 1), the lifetime of the state will be long and it 
is still meaningful to label it by the (q, s) of the unperturbed state. (The 
situation is similar to that encountered in atomic physics. The energy 
levels of the hydrogen atom are well described by the quantum mechan-
ical version of Bohr's simple theory. In a more accurate description, 
however, there are corrections which shift the energy levels and give 
them a finite line width.) 

In this chapter we assume that T is negligible, i.e. we let 

ew(q, s) = Q)0(q, s) + A(q, s). (8.3) 

An important result is that, within the low-order quantum-mechanical 
perturbation theory, the shifted frequencies (eq. (8.3)) are those obtained 
in a neutron inelastic scattering experiment. We will comment on that in 
§6 when the vibrational entropy is discussed. A significant consequence 
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of a finite T is to limit the phonon part of the thermal conductivity. 
That problem is dealt with in Chapter 16. Furthermore, a measurable 
physical property, such as the heat capacity, cannot have an imaginary 
part. Therefore, one cannot simply insert the perturbed complex en-
ergies (eq. (8.2)) in, e.g. Bose-Einstein statistical factors. There is a 
well-developed theory for how to allow for a finite T in an account of 
thermodynamic properties (see e.g. Pathak and Varshni 1969). 

3. The quasi-harmonic approximation and phonon Gruneisen 
parameters 

3.1. General aspects and cubic lattice symmetry 

The quantities <&^(/, j) in eq. (8.1) have the dimension of force con-
stants, measuring the interatomic forces when the potential O is given. 
The derivatives with respect to the coordinates (a, /?) are evaluated for 
atoms labelled (/, j) that have the position vectors R; and R7. If the lat-
tice is strained, the atoms take new positions where the derivatives of O 
should be evaluated. Therefore, the force constants depend on the state 
of strain. For instance, they will vary with an external pressure. In the 
quasiharmonic approximation we allow for such a strain dependence of 
the phonon frequencies co(q,s), but still consider them to be harmonic. 
This may be a very good approximation to describe physical phenom-
ena, although from a strict mathematical point of view, it is inconsistent 
for the following reason. If the vibrations are truly harmonic, the third-
and higher-order derivatives of O are zero. But variations in the second 
derivative of O with small variations in the positions R are proportional 
to these high-order derivatives. 

The Gruneisen parameter y(q, s) is now introduced as a measure 
of how the phonon frequency &>(q, s) is altered under a small change 
in the geometry of the crystallographic unit cell. The most commonly 
encountered Gruneisen parameter is that referring to an isotropic change 
in the volume V; 

^ > = - ^ m = - ( ™ ) - <s-4> 
This expression will be the cornerstone in the simplest theory of thermal 
expansion, (Chapter 14, §4). It is a special case of a more generally de-
fined Gruneisen parameter y (q, s; £;) that expresses how &>(q, s) varies 
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under a small change in £;, where 8t is a strain parameter specifying the 
geometry of the unit cell. Here, / = 1, 2, 3 refer to the lengths at of the 
cell axes and i = 4, 5, 6 refer to the angles between a,- (Chapter 3, §2); 

y(q,s;si) = . (8.5) 
co(q,s) V 3fi| Je> 

The derivative is taken with all s[ ^ £; kept constant. Usually y is 
calculated at the reference state of zero external tension or shear. For 
clarity we will sometimes add a label V to the most common Griineisen 
parameter, as defined in eq. (8.4), i.e. y (q, s; V). We remark that other 
authors often write the Griineisen parameter as yc, with a subscript G. In 
this book the notation yc is used for the "thermodynamic" Griineisen 
parameter (eq. (13.23)), which is obtained directly from macroscopic 
thermodynamic quantities. Griineisen parameters can be defined also 
for electronic and magnetic contributions to the total free energy of a 
solid. For brevity the label "phonon" on the Griineisen parameters in 
this chapter is suppressed. 

If, for / = 1, 2, 3, one of the at is changed by a relative amount 
Adi/di, the corresponding strain is st = Aat/at. Then, from eq. (8.5), 

/ Aco(q, s)\ ( Aat\ 
— ; = - y (q, s; 8i)A£i = -y (q, s; e() , (8.6) 

V co(q,s) J V ai J 

and we can write 

( 31no)(q, s)\ 
a 1

 4 • (8.7) 

3 In at ) 
In a lattice with cubic symmetry, ^ 1 = ^ 2 = ^ 3 = ^ and V ~ a3, and 
therefore 3 In at/3 In V = 1/3 under uniform expansion or contraction 
of the unit cell. Hence, 

t TM / 3 1 n ^ ( q , s ) \ 

f^\ d\nat )\dlnVj Y VH 

where we have introduced yet another Griineisen parameter, y(q, s\ a). 
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Usually, the Gruneisen parameters are positive and lie in the range 
1.5 ± 1. Negative Gruneisen parameters sometimes occur for low-lying 
frequencies (long-wavelength transverse modes) in open structures like 
those of Ge, Si and some alkali halides. 

3.2. Gruneisen parameters in hexagonal lattice symmetry 

The conventional notation for the lattice parameters in hexagonal lat-
tices is a\ = #2 = a and a^ = c. Then, for a uniform expansion or 
contraction of the unit cell (i.e. while keeping c/a fixed) 

'dhuo(q,s\ai)\ fdlna{ y(q,s; V) = - 2 ' 
31nai / \31nV 

/31n&>(q, s; c)\ / 31nc \ 

= ( l /3)[2y(q^;a1) + y(q,5;c)]. (8.9) 

Here, we have to be careful in the notation. In eq. (8.9) we have written 
a\ to denote that we only change the strain in one direction, perpendic-
ular to the c-axis. It is now natural to introduce Gruneisen parameters 
Yw and y±, such that y\\ = Y± in the special case of cubic symmetry. We 
define 

Y\\ 
/31no;\ 

(q,s) = Y(q,s;c) = - l ^ — \ , (8.10) 

In the last derivative, it is the cell dimension a that is varied (i.e. a\ and 
#2 both vary by the same amount), and this gives rise to the prefactor 
1/2. With the definitions above, and those to follow in this chapter, the 
various Gruneisen parameters will be equal in the special case that all 
y(q, s) of the individual phonon modes are equal and depend only on 
volume changes, irrespective of shape deformations of the lattice unit 
cell. 

Example: Gruneisen parameter for varying c/a in hep lattices. Some 
materials with hep structures, e.g. Cd and Zn, have a c/a ratio which 
deviates strongly from the "ideal" value 1.63, but the atomic volume 
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n 

Fig. 8.1. The Gruneisen parameter y(n; V) as a function of n, for C3F2 and SrF2 
(Bailey and Yates 1967) and for Zn (Barron and Munn 1967). Because the Zn lattice is 

hexagonal, there are two Gruneisen parameters, y±_ and y\\. 

is not abnormal (cf. the example in Chapter 19, §2). It is therefore of 
interest to consider how the phonon frequencies vary with c/a at fixed 
volume V. One has 

/ 9 1 n c y ( q , j ) \ 

V 91n(c/a) / v 

_ /aino>(q,5)\ / ainfl \ 

/31ncw(q,j)\ / 31nc \ 
" V ainc J . Vain(c/a)Jv 

- (2/3)[Kn(q,5)-yi.(q^)]. (8.12) 

Here, we have used the fact that ca2 ~ V = constant, which yields 
c/a = (constant)/a3 and, hence, [31n(c/a)/31na]y = —3. Similarly, 
[d\n(c/a)/dlnc]v = 3/2. In zinc, y± = 2.50 and y\\ = 1-28 when all 
modes are given equal weights (n = 1, fig. 8.1). Then y(c/a) — —0.81. 
In the special case of isotropy, y\\ = y i ,we would get y(q,s; c/a) = 
0 as expected, since it was assumed that c/a varied under constant 
volume. 

3.3. Gruneisen parameters for moment frequencies and Debye 
temperatures 

Gruneisen parameters can be defined also for the moment frequencies 
co(n) and the corresponding Debye temperatures #D(^)- For instance, 

/d\n9D(n)\ /d\nco(n)\ 

T 1 \ i i i i r 
Zn Yi 

0 Zn YH 

J I I I I I I L 
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In the strict Debye model, coD = CSOund,D̂ D = &B#D/^, where CSOunci,D is 
the sound velocity and q& = (6JT2N/V)1/3. Then 

y(flb;v)=- h^v)=- [-3^-)+3- (814) 

Only if all y(q, s; V) are equal, is y(n\ V) independent of n. Often 
y(q,s; V) of different modes (q, s) differ by as much as a factor of 
two. The corresponding variation of y(n\ V) is shown in fig. 8.1. The 
value of y(2; V) has a simple relation to the trace of the dynamical 
matrix (see Appendix C). 

It is not unusual to approximate y(n) by the thermodynamic 
Gruneisen parameter yo (see eq. (13.23)). This may be too crude an ap-
proximation. For instance, in the very anisotropic graphite, y (n) varies 
very strongly with n (Bailey and Yates 1970). 

If y (n; V) depends only weakly on the volume, we can integrate eq. 
(8.13) and obtain 

eD(n; vb) V v 

In hexagonal structures, the corresponding relation is 

0p(n;a,c) _ /a^v^n) /CQ\n{n) 

9v(n; ao,co) V a / V c / 

Example: Slater's form of the Gruneisen parameter y(—3; V). Slater 
(1940) derived an expression for the GrUneisen parameter, essentially as 
follows. Expand the volume change V — Vo, due to an external pressure 
/?, in powers of p and keep only the first two terms; V — Vb = Vo(a\p + 
a2P2). The average sound velocity CSOUnd,D to be used in #D(—3) is given 
by 3/(CSOUnd,D)3 = 1/CL + 2/C| , eq. (6.15). If we neglect the volume 
dependence of the Poisson ratio and use eqs. (5.9) and (5.10) for CL and 
Cj expressed in the elastic constants, we get CS0Und,D ~ (KV)l/1. K is 
the bulk modulus; K~l = -(l/V)(dV/dp)T = -(V/V0)[ai + 2a2(V 
— Vo)/(a\ Vo)]. Then, as in eq. (8.14), one obtains Slater's expression 

y(-3;V) = - ( l / 2 ) ( d l n ^ / d l n V ) - l / 6 

= a2/a\ - 2/3 = (l/2)(d£/d/?) - 1/6. (8.17) 
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The coefficients a\ and ai, which yield din K/din V, can be measured 
(Gschneidner 1964). At the time of Slater's original derivation, it was 
unknown to what extent y (q, s) varies with the phonon mode (q, s) and 
no distinction was made between y(n\ V) for different n. Here we have 
stated explicitly that Slater's expression is an estimation of y(—3; V). 
Thus, it is not equal to the Griineisen parameter y(0; V) ( ^ / G ) that is 
approximately obtained from the thermal expansion coefficient at mod-
erate and high temperatures (Chapter 14, §4.2). The quantity (dK/dp) 
in the last part of eq. (8.17) is discussed in Chapter 13, §2. 

Example: internal pressure from zero-point vibrations. Suppose that we 
have calculated the atomic volume Q& from a model that considers only 
the static lattice. We now estimate how much fia is changed due to the 
zero-point (T = 0) lattice vibrations. The pressure p is related to the 
energy by p = — (dU/dV)s. If we add to U the zero-point energy 
(3/2)hco(l) per atom, (eq. (7.17)), the pressure is changed by 

pz = -(V/Qa)(3/k/2)[3a>(l)/3V] 

= [ 3 / M l M l ) ] / [ 2 n a ] . (8.18) 

V/ Qa is the number of atoms in the solid. An added internal pressure 
pz gives rise to a relative change in the atomic volume; 

AB. = ^ = 3»oKl) y ( 1 ) t ( 8 1 9 ) 

&2a Kj z.Kj^l^ 

where a mass dependence (isotope effect) enters through co(l). At high 
temperatures, with p — —(dF/dV)r and F as given in eq. (D.7), we 
find that hco(l)y(l) in eq. (8.19) should be replaced by 2kBTy (0). Then 
p does not depend on the atomic mass. Figure 8.2 shows how the lattice 
parameter depends on the isotopic composition and the temperature, 
for lithium hydrides with different lithium and hydrogen isotopes; after 
Grimvall (1996). See also Johansson and Rosengren (1975) for a discus-
sion of 6Li and 7Li, and Ramdas (1995) and Haller (1995) for reviews 
of various isotope effects in semiconductors. 
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Fig. 8.2. Effect of isotope mass on the lattice parameter of lithium hydrides. 

4. Explicit anharmonicity 

The frequency shifts discussed above vanish if the crystal volume, or 
rather all e,-, remain constant. However, there are also effects that we 
will refer to as explicitly anharmonic. They arise from higher-than-
quadratic terms when the potential energy <E> is expanded in powers 
of displacements u from the equilibrium positions of the atoms, (eq. 
(8.1)). (Due to the zero-point motion they are, to some extent, present 
also at T = 0.) To see the structure of the associated frequency shifts, it 
is illuminating first to study an anharmonic one-dimensional oscillator. 
Let the mass M move in a potential 

V(x) = (l/2)Mco2x2 + V3x
3 + V4x\ (8.20) 

where V3 and V4 are in some sense (decreasingly) small. When V3 = 
V4 = 0, the energy eigenvalues are En == hco(n + 1/2). Quantum 
mechanical perturbation theory, applied to the state n and at T = 0, 
gives energy shifts AEn. In conventional notation, they can be written 

, / E*nf ^n 

We have {n | V3X3 \n) = 0 , since in this term the integrand is an odd func-
tion of x and the integration is over negative and positive x. In the last 
term of eq. (8.21) we only keep the lowest-order part of the numerator, 
i.e. (n\V$x*\nf). Thus, the term V4*4 contributes to the first order (in 
the first term on the righthand side), while V3*3 contributes to second 

I .UUO 

O 
* 1.006 

1.004H 

£ 1.002 

1 nt\c\ 



Explicit anharmonicity 145 

order in the perturbation expansion. It is necessary to keep both these 
terms, even though V4X4 was assumed to be much smaller than V3X3 

in the relevant range of x-values, because the larger term enters only 
in a higher-order perturbation contribution. We shall use subscript 2 
for the quasiharmonic shift (because only terms quadratic in the atomic 
displacements are kept), while frequency shifts originating from u3 and 
u4 are denoted A 3 and A4. (Other authors may use other conventions 
for the subscripts of A.) Neglecting damping of the phonons, we now 
get 

o)(q, s) = o>0(q, s) + A2(q, s) + A3(q, s) + A4(q, s). (8.22) 

When one adds the explicitly anharmonic shifts A3 and A4 to the qua-
siharmonic model, but still neglects damping, one sometimes calls it 
the pseudoharmonic approximation. (It should be mentioned that some 
authors refer to eq. (8.22) as the quasiharmonic approximation, but 
normally "quasi-harmonic" refers only to &>o + A2.) 

The shifts A2(q, s), A3(q, s) and A4(q, s) can be written in con-
densed form as (e.g. Maradudin and Fein 1962, Cowley 1963, 1968, 
1970, Cowley and Cowley 1965, Wallace 1972) 

A2(q, s) = (2/h) J^ Va(qs, -qs)ea, (8.23) 
a 

A3(q,s) = -(lS/h2) J2 |V(q5,q151,q252)|
2

JR(0,l,2), 
qi-*l,q2*2 

(8.24) 

A4(q,s) = (l2/h)^2v(.qs,-qs,qisu-qis\) 
qisi 

x[2n(l) + l], (8.25) 

with 
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Table 8.1 

The relative frequency shifts — Atot/^harm(0) and — A&>(Vo)/<^harm(0) n e a r Tfus-
Based on data from Fernandez Guillermet and Grimvall (1991a) (for Mo, W) and Rosen 

and Grimvall (1983) 

-Atot/Harm(0) 
-Aw(Vo)Miarm(0) 

Cu 

0.14 

-0.01 

Zn 

0.10 

-0.01 

Al 

0.15 

0.00 

Pb 

0.11 

-0.01 

K 

0.12 

0.04 

Mo 

0.30 

0.17 

W 

0.31 

0.18 

/?(0,1,2) 

= [n(l) + n(2) + 1] ( —L- ) 
\O)0 + CO1+CO2 O)0 — 0)\ — 0)2/ 

+ [n(l)-n(2)]( — —1 V (8.26) 
\O)0 -0)1+0)2 0)0 + 0)1-0)2/ 

In the Bose-Einstein function w(i), as well as in the interaction function 
V(/,...), in the quantities A(/) and &>,-, and in the summations, the index 
i = 0 ,1, 2 is short for (q, s), (qi, s\) and (q2, £2), respectively. In A2, 
the thermal strain sa is to be calculated as in eq. (14.17). Va(0), V(0, 1) 
and V(0, 1, 2) are short for the Fourier transforms of the interatomic 
potential. The principal value (in the mathematical sense) should be 
taken in the sum over the singular terms in eq. (8.26). (In a non-primitive 
lattice there is an additional term in A4.) 

One can show that A3 is always negative. A4 may have either sign 
but often cancels much of A3. Usually, A2 is much larger than A3 + A4, 
but see also the elements K, Mo and W in table 8.1. The temperature 
dependence of A3 and A4 comes from the Bose-Einstein factors n. At 
high temperatures the factors (n + 1/2), and therefore also A3 and A4, 
are linear in T (Appendix E). When 7 = 0 there remains the term 1/2 
in (n + 1/2), i.e. the contribution from zero-point vibrations. Hence, A3 

and A4 are not zero at T = 0 K. 
Table 8.1 gives the quantities Atot/&>harm(0) and Act)(Vb)/^harm(0) 

near the melting temperature 7>us for some metals. Here &>harm(0) is 
approximated by the frequency corresponding to the Debye temperature 
0D derived from the experimental entropy at 300 K, and corrected for the 
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Fig. 8.3. The entropy Debye temperature 0^(T) of tungsten, at constant pressure and at 
fixed volume, as derived from thermodynamic data. 

electronic contribution to S. The total frequency shift Atot is obtained 
from 0&(T « Tfus) - e£(T = 300K), and Ao)(V0) is the frequency shift 
that results when the thermal data have been reduced to fixed volume 
Vo. Within low-order perturbation theory, Atot = A2 + A3 + A4 and 
A&>(Vo) = A3 + A4, but close to Tfus there are higher-order anharmonic 
contributions to Atot and Aco(Vo). As shown in table 8.1, the thermal 
expansion accounts for almost all of the frequency shifts in Cu, Zn, Al 
and Pb, i.e. A&>(V0)/&>harm(0) ~ 0. However, in Mo and W there are 
considerable frequency shifts A(o(Vo) a l s o when the solid is held at a 
fixed volume Vo (see also fig. 8.3). In K, the shift Ato(Vb) is moderate in 
absolute magnitude, but is not much smaller than A2. A closely related 
consequence is that the vibrational part of the heat capacity Cy at high 
T is not approximately given by the classical value 3&B per atom. This 
fact is worth noting, since it is often assumed that Cy is close to 3kB 

per atom at high T. Consider, for instance, the three compounds AI2O3, 
MgO and Mg2Si04. These solids are insulators, and therefore Cy has 
a contribution from lattice vibrations only. Cy of AI2O3 and MgO ap-
proach the Dulong-Petit limit but Cy of Mg2SiC>4 steadily increases 
above this value as T increases. Wallace (1997) got results similar to 
those of table 8.1 in an analysis of 25 elements. 

Example: temperature dependence of frequency shifts in an Einstein 
model. The summations in eqs. (8.24) and (8.25) cannot be carried out 
in a closed form, and one is left with a numerical calculation. However, 
a simple expression results if we replace co2 and &>3 in the Bose-Einstein 
factors by the same frequency, &>E. If we also take an Einstein represen-

i 1 1 r 

j L 
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tation of the strain sa (cf. eq. (14.17)), including that due to zero-point 
vibrations, we get 

A2(q, s) = k2(q, s)co0(q, s) ( — — + - ) , (8.27) 
\exp(ha)E/kBT) - 1 2 / 

with the same expressions for A3 and A4 if £2(q, s) in eq. (8.27) is re-
placed by other functions, k^(q, s) and ^ (q , s), respectively. Although 
the temperature dependence of A2, A3 and A4 is the same as in an 
Einstein model for the thermal energy, our description is not that of 
an ordinary Einstein model since the (dimensionless) quantities fc,-(q, s) 
(i = l, 2, 3) may vary with the mode (q, s). 

5. Thermodynamic functions in anharmonic systems 

5.7. Introduction 

In Chapter 7 we derived expressions for the energy £har(q, s), the en-
tropy Shar(q,s)> the Helmholtz energy 7<har(q, s) and the heat capacity 
Char(q> s) °f strictly harmonic systems. In this chapter we have intro-
duced approximate phonon frequencies &>o(q, s) + A2(q, s) + A3(q, s) 
+ A4(q, s) in anharmonic systems. A central question is whether E, S, 
F and C can be obtained for the anharmonic case simply by replacing 
&>o by (Do(q, s) + A2(q, s) + A3(q, s) + A4(q, s) in the usual expres-
sions for E etc. of harmonic vibrations. One can show (Barron 1965) 
that the entropy is correctly given in this way, but not the energy, the 
Helmholtz energy and the heat capacity. 

5.2. The quasiharmonic model 

We write 

a>(q, s) = <yo(q, s) + A2(q, s; V(T)) (8.28) 

to indicate that A2 varies implicitly with the temperature through the 
thermal expansion (or contraction) of the solid. The entropy is, (eq. 
(7.20)), 

S(q, s) = kB{(x/2) coth(x/2) - ln[2 sinh(x/2)]}, (8.29) 
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where x = hco(q, s)/k^T. This yields (suppressing the label (q, s) on 
S) 

ds\ /as \ (dx\ _ /35\ /dT\ (dx\ 

)v \JV)T ~ \JT)V \te)v \w)i VV/T \ OX / y \U V / j \U 1 / y \ UA / y \U V / j 

Cv\(dco\ (Cv\ /31n(w0 + A2) 

to \dV T \ V J \ 31nV T 

= ^-y(q,s;V). (8.30) 

Thus, 

We can generalise eq. (8.31) to arbitrary deformations of the crystallo-
graphic unit cell and write, for strains £t (i = 1 to 6) 

y(q,s;ei) = -)r(?f) , (8.32) 

where Cs is the heat capacity taken at constant strain. The heat capacity 
at constant pressure, Cp, is 

/ d S \ ^ / 9 5 \ rrfdS\ /dV\ 

= Cv + T(^-)y(V)(^); (8.33) 

that is 

Cp(q, J ) = Cv(q, *)[1 + j87>(q, 5; V)], (8.34) 

where /J is the cubic expansion coefficient. 

5.3. Third- and fourth-order anharmonicity 

Let AF3 and AF4 be the perturbation corrections due to explicit an-
harmonicity in the Helmholtz energy F, i.e. terms analogous to the 
frequency shifts A3 and A4. The general form of AF3 and AF4, at 
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arbitrary temperatures, is given in Appendix E (cf. the work by Ludwig 
1958, Maradudin et al. 1961, Cowley 1963, 1968 and Barron and Klein 
1974). With the notation from §4 one has the high temperature forms 

AF3 = -24(kBT/h)2(l/h) 

x y i ^ q i * i . q ^ ) i 2
 t ( 8 3 5 ) 

q s , q ^ 2 C O ( q ' S ) ( 0 i q U S l ) C O ( q 2 ' S 2 ) 

Ac I™ T/^2 v^ v(q*>-qs.qisi,-qisi) ,Ba~ 
AF4 = l2(kBT/hY > — . (8.36) 

. 7 . , Q)(q,s)a>(ql,sl) 

The next-order contributions to F, which are proportional to T3 at high 
temperatures, have been written down by Shukla and Cowley (1971) and 
evaluated numerically for simple models by Shukla and Wilk (1974). 
They are too complicated to calculate in a realistic treatment of real 
solids. 

6. Thermodynamic functions related to frequency shifts 

We may express AF and AS in the frequency shifts A2, A3 and A4 as 
(Barron 1965, Cowley and Cowley 1966, Wallace 1972) 

AF = (ft/2) £ > ( q , s) + l/2][2A2(q, s) + A3(q, s) + A4(q, s)], 
qs 

(8.37) 

A5 = -h y ( ^ A ) [A2(q, s) + A3(q, s) + A4(q, s)]. 
as ^ ^ 

(8.38) 
Equation (8.38) has the very important interpretation that the en-

tropy S is correctly obtained, within the low-order perturbation theory 
considered here, if one takes the harmonic-model expression for S and 
replaces all frequencies coo(q, s) by the shifted frequencies &>o(q, s) + 
A2(q, s) + A3(q, s) + A*(q,s) (see Appendix E). Within low-order 
quantum-mechanical perturbation theory, these shifted frequencies are 
also those measured in a neutron inelastic scattering experiment (see, 
e.g. Maradudin and Fein 1962 and Cowley 1968). Such experiments 
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are often analysed to give phonon dispersion curves, and the related 
phonon density of states F(co) through a fit of force constants in order 
to generate co(q, s) for all modes (q, s). When the frequencies co(q, s) 
are measured at different temperatures, one also obtains a temperature 
dependent F(co) which can be used to evaluate the vibrational entropy 
SVib(T)> with anharmonic effects included. As we shall see in the ex-
amples below, the high temperature frequency shifts vary more rapidly 
than linearly with T. Obviously anharmonic effects beyond the low-
order perturbation contributions A3 and A4 may become significant 
well below the melting temperature. It is not known to what extent one 
may then use the frequencies obtained in neutron scattering experiments 
to calculate the vibrational entropy, but assuming such a connection to 
be valid seems to give a useful description. Finally, we stress again that 
its is only for the entropy that one can account for the anharmonicity 
by inserting the anharmonically shifted frequencies in the mathematical 
expressions derived for a harmonic model (cf. eqs. (8.37) and (8.38)). 

The heat capacity is obtained from T(dS/dT). This yields 

ACP = -/ir^p2rc(q,s)/ar2] 

x[A2(q, s) + A3(q, s) + A4(q, s)] + [3n(q, s)/dT] 

x[dA2(q,s)/dT + dA3(q,s)/dT 

+dA4(q,s)/dT]}. (8.39) 

At constant volume, 

ACV = ACP + hT ^ [ 3 n ( q , s)/dT][dA2(q, s)/dV][dV/dT]. 
qs 

(8.40) 

This is equivalent (Appendix E) to the well-known relation (neglecting 
the volume dependence of A3 and A4) 

Cp — Cy = (Cp>har + A C p ) — (Cy,har + A C y ) 

= ACP - ACV = PYGCVT. (8.41) 

Example: frequency shifts in tungsten affixed volume. The total entropy 
Stot obtained from heat capacity data at constant pressure can be re-
duced to a fixed volume Vb, using the formalism in Chapter 13 (§7). 
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Subtraction of an electronic term Se\ yields the vibrational contribution 
5vib = 5tot — 5el, from which the entropy Debye temperature 0^(T) can 
be calculated. At fixed volume 6^(T) contains only the shift A3 + A4 

while 0£(T) at constant pressure contains the shift A2 + A3 + A4. 
Figure 8.3 shows the result for tungsten; from Fernandez Guillermet 
and Grimvall (1991a). 

7. Factors influencing the Griineisen parameter 

Point defects, dislocations, grain boundaries etc. have only a small effect 
on the Debye temperature (Chapters 6 and 9). It is then not surprising 
that also the Gruneisen parameters are rather insensitive to such defects. 
More specifically, consider the thermodynamic Gruneisen parameter 

yG = PVKT/CV, (8.42) 

where /3 is the thermal expansion coefficient, V the specimen volume, 
KT the isothermal bulk modulus and Cy the heat capacity at constant 
volume. None of the quantities on the righthand side of eq. (8.42) de-
pends strongly on lattice defects. In concentrated alloys, one expects 
that YQ, like #D, varies smoothly with the composition (cf. Chapter 9, 
§4). This has also been found in experiments on solid solutions of Zr, 
Nb and Mo at 300 K (Smith and Finlayson 1976), where YG lies in the 
range 1.5 ± 0.5. Nagel et al. (1984) noted that although the Gruneisen 
parameter in glassy materials is affected by phonon localisation, so few 
modes are localised that the overall Gruneisen parameter is within 10% 
of its value in the crystalline material. 

Concerning the volume (i.e. pressure) dependence of the Gruneisen 
parameters, Moriarty et al. (1984) found, in theoretical calculations for 
Al, that YG decreases smoothly from about 2.0 to about 1.0 when the 
material is compressed to half its original volume. Analysis of Cp data 
gave (din y/dln V) = 3.2 ± 0.8 for Ge (Leadbetter and Settatree 1969), 
2.1 ± 0.3 for Pb (Leadbetter 1968), 1.4 ± 0.5 for KCl, 1.1 ± 0.4 for 
NaCl and 0.9 ± 0.6 for KBr (Leadbetter et al. 1969). For NaCl, see also 
Boehler et al. (1977). In Chapter 4 (§7) we showed that the third-order 
elastic constants are related to the elastic-limit Gruneisen parameter. 
The fourth-order coefficients Q^/ are related to the volume dependence 
ofy. 



CHAPTER 9 

ATOMIC VIBRATIONS IN DEFECT LATTICES 

1. Introduction 

We have seen in previous chapters that many thermophysical proper-
ties depend on some average of the vibrational density of states F((o). 
Such properties are usually insensitive to the presence of lattice de-
fects like impurities, vacancies, dislocations, grain boundaries etc. At 
very low temperature, however, only modes of low energies are excited. 
Then, low-frequency defect modes may give a significant contribution 
to the thermophysical properties of the sample. At room temperature 
and above, one does not expect that a low concentration of imperfections 
in the lattice causes any spectacular features in static properties like the 
heat capacity and thermal expansion. But of course even a low concen-
tration of defects may have a profound effect on transport properties like 
electrical and thermal conduction and diffusion. In concentrated alloys 
and mixed crystals, some vibration modes may be very different from 
those of the host material, but properties which depend on an average of 
F(co) are still expected to vary smoothly with the composition. 

2. General aspects 

It is convenient to introduce a density of states AF^CD) which de-
scribes the changes in the atomic vibrations when a defect is created 
in a lattice. Consider a solid with N lattice sites, of which A^f are 
associated with the creation of a defect. For instance, if the defect is 
a vacancy, N^f/(N + Ndef) ^ N^/N is the vacancy concentration. In 
the case of a surface, Ndef may be loosely identified with the number of 
surface atoms, but see the discussion below. We now write 

^totM = Fbulk(co) + (Ndef/N)AFdQf(co), (9.1) 
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where Ftot(co) is the total density of states of the actual specimen and 
FbUik(&>) is its density of states in the absence of the defect under con-
sideration, in both cases as an average per atom. The normalisation 
relations are f Fiot(co) dco = 3 = / Fbu\k(co) dco. Then 

/ AFdef(a>)d^ = 0, (9.2) 
Jo 

i.e. AFdef(&>) varies in sign. 
From AFdef(&>) we can calculate, for example, the change in the 

vibrational heat capacity; 

AChar,def(r) = / Chai(hco/kBT)AFdef(co) dco, (9.3) 
Jo 

where comax is the maximum frequency in the presence of lattice de-
fects. It may be larger than &>max of the defect-free solid. Char is the 
heat capacity of a single harmonic oscillator. The high-temperature limit 
(£Br>>/^m a x)of(9.3)is 

/^max 

AChar,def(r) = *B / AFd e fM dco = 0. (9.4) 
Jo 

This relation simply reflects the fact that the vibrational heat capacity 
at high temperatures has the classical value of 3kB per atom, for a 
perfect crystalline atomic arrangement as well as for a structure with 
defects. Note that there may also be an additional heat capacity associ-
ated with the formation of the defect, such as the two-level description 
of vacancies, eq. (11.7). 

Except for point defects, the number Afdef in eq. (9.1) is usually not 
exactly defined, but there is a strict operational definition of, e.g. the 
surface contribution to the thermodynamic functions as (half) the differ-
ence between the properties of two well separated blocks of a material, 
and the same blocks joined with perfect atomic matching. Even though 
TVdef may be poorly defined, it gives a measure of the size, or amount, of 
defect regions, e.g. the area of an interface, and can be used to estimate 
how vibrations at defects affect thermodynamic quantities. 

Example: surface states in TiN. Rieder and Drexel (1975) found, from 
neutron scattering experiments, that AFdef(&>) due to surface effects in 
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Fig. 9.1. The defect-related vibrational density of states F^Qf(co) for surface states in 
TiN, expressed as the change in the bulk density of states caused by the surface states 
(shaded regions), compared with F{co) in the bulk. Arbitrary units and arbitrary scale 

factors for F{co) and F^ef(co). After Rieder and Drexel (1975). 

TiN has three positive and two negative regions when plotted versus 
co. Their result is schematically shown in fig. 9.1. A similar result for 
AFdef(&>) has been obtained by Loram et al. (1993) in an analysis of heat 
capacity data for the high temperature superconductor YE^CUBC^+X 

for varying x. 

3. Surfaces 

3.1. Elastic waves in a semi-infinite elastic continuum 

In an ordinary Debye model, the lattice vibrations are described by elas-
tic waves propagating in an infinite medium. In a semi-infinite medium, 
bounded by a free surface, the classical wave equation d2up/dt2 — 
c2pS72up — 0 has solutions up which are the usual bulk waves, but also 
solutions with an amplitude localised to the surface region. The latter 
modes, known as Rayleigh waves (Rayleigh 1900), propagate with their 
wave vector q in the surface plane. Their frequency is 

Q) = CT\q\%, (9.5) 
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where Cj is the transverse sound velocity in the bulk. The dimensionless 
parameter § depends on the ratio C J / C L and lies between 0.874 and 
0.955. For a given q, the frequency of the Rayleigh wave is thus less 
than that of the transverse elastic bulk wave. (In a real solid the sound 
velocity is anisotropic (Gazis et al. I960).) A brief general discussion of 
elastic surface waves is found in Landau and Lifshitz (1959). Maradudin 
(1981) has reviewed the entire field of surface waves. 

3.2. Thermal properties of an elastic-continuum surface 

We shall calculate the heat capacity in the low temperature limit, i.e. 
when only elastic waves are excited. The allowed (qx,qy) for wave 
propagation parallel to the surface give a density of states which varies 
linearly with co. The number of (Rayleigh) states is proportional to the 
area A of the surface. Their density of states is 

FR(co) = Akxco. (9.6) 

We note that the frequencies of both the bulk and the surface states 
are linear in the wave number q (for small q). The fact that FR(co) is 
linear in co, while the bulk F(co) varies as co2, reflects the difference in 
possible q-vectors sampled in a two- and three-dimensional system. The 
low frequency part of the density of states, for the states not localised 
to the surface, is of the bulk form plus a correction Ak^oy1. Hence, 
approximately, 

Ftot(co) = (1 - Ak3)Fhulk(a)) + AkAco. (9.7) 

This is the "Debye model" in the presence of a surface. For mathe-
matical details, see Wallis (1975), Stratton (1953, 1962), Dupuis et al. 
(1960), Maradudin et al. (1963) and Maradudin and Wallis (1966). From 
eq. (9.7) we obtain the low temperature heat capacity 

CUT) = (1 - Ak3)Chulk(T) + Ak5T\ (9.8) 

where Cbuik ~ T3. The parameters k\,..., ks depend on the elastic 
parameters and the mass density of the material. The r2-term in eq. 
(9.8) can be observed only at low temperatures and if the surface-to-
volume ratio is large enough, i.e. for very small particles. But then the 
finite size of the particle is important (§3.4), which gives corrections 
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to our model of vibrations in an elastic continuum instead of the true 
discrete atomic lattice. Therefore, eq. (9.8) can only be used for very 
qualitative estimations. 

3.3. Thin slabs 

Consider a thin slab formed by N layers of atoms. This is the three-
dimensional generalisation of a finite monatomic linear chain. Such a 
model system has been extensively studied by Allen et al. (1971). The 
solutions to the equation of motion are of the form 

u = u(Rj{z)) exp[/(q • Rj(xy) - cot)]. (9.9) 

Rj(z) denotes the z-component (i.e. perpendicular to the surfaces) of the 
position vector Ry of the 7th atom. R/o^) is a position vector along 
the slab and q = (qx, qy) is a two-dimensional wave vector. Almost 
all of the modes of the form eq. (9.9) have amplitudes u(/?/(z)) which 
are appreciable throughout the width of the slab. However, a mode 
corresponding to a Rayleigh wave has a displacement u(/?y-(Z)) which 
decreases rapidly as R7 moves inward from either surface. Allen et al. 
(1971) also discovered new surface modes which do not exist in the limit 
of small q and thus have no elastic-wave counterpart. Similar results 
have been obtained in a study of the TiN(OOl) surface (Benedek et al. 
1984). 

3.4. Small particles 

The bulk material has a phonon density of states which is quasicon-
tinuous and varies as co2 for small co. In a very small sample, on the 
other hand, the eigenfrequencies form a discrete spectrum. In particular, 
there is a lowest eigenfrequency com[n which can be estimated crudely 
as follows. In the bulk, co = Cq, where C is a sound velocity. In a 
small particle, of diameter d, it is unphysical to consider wavelengths 
larger than d, i.e. q > 2n/d. With &>D = Cq® ~ 2nC/do, where do 
is the diameter of an atom, we get co^m ~ (do/d)co^. The discrete 
nature of the low frequency part of the vibrational spectrum means that 
we must write out explicitly the first terms in the partition function 
when T < (do/d)6v, instead of applying the usual integral approxi-
mation. This has been recognised by Burton (1970), Chen et al. (1971) 
and Baltes and Hilf (1973). Nishiguchi and Sakuma (1981) made an 
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accurate study of the vibrations of a small elastic sphere. The excess 
heat capacity (above the bulk value) has been measured for ionic solids 
(NaCl; Barkman et al. (1965)) and metals (Pb, In; Novotny and Meincke 
(1973)). The theory referred to above is in reasonable agreement with 
the experiments. Dobrzynski and Leman (1969) developed a frequency-
moment representation of the surface phonons, and calculated their 
contribution to the heat capacity. 

4. Point imperfections 

4.1. The mass-defect model 

The mass defect is the simplest point imperfection in a vibrating lattice. 
One then assumes that the mass of a particular atom in the perfect lattice 
is altered from M to M', without any change of the force constants. That 
is the case if an atom is replaced by one of its isotopes, and one therefore 
also speaks of an isotope defect. The important parameter characterising 
the impurity is the relative mass difference e\ 

M-Mf _ _ 
e = ———. (9.10) 

M 

In the case of a light impurity (Mr < M; s > 0), there may be a 
localised mode, with a frequency &>imp > &>max> i.e. above the highest 
frequency of the host lattice. When the impurity is much heavier than 
the host atoms (M' 3> M; e < 0) there is a pronounced resonance at a 
frequency COJ which is "embedded" in the quasicontinuous spectrum of 
the host lattice. 

Starting from a general expression for &>; (Kagan and Iosilevskii 
1962,1963, Lifshitz 1956, Brout and Visscher 1962, Dawber and Elliott 
1963, Mannheim 1968, Dederichs and Zeller 1980), we restrict the dis-
cussion to the case of cubic symmetry and one atom per primitive cell. 
The impurity-mode frequencies cot are threefold degenerate (equivalent 
x, y and z directions) and obtained from 

Jo Q)J — CO1 

where F{co) and &>max refer to the unperturbed vibrations of the host. 
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For a light impurity, coi > &>max. We then expand the integrand in eq. 
(9.11) in powers of co/cot and consider s « 1 (i.e. M' <g; M). Keeping 
only the first two terms in the expansion gives 

(Of ^ (1 - syl/2co(2) = (M/Mf)l/2a)(2), (9.12) 

where co(2) is the unperturbed second-moment frequency (eq. (6.21)). 
When the impurity is very heavy (|e| ^> 1; s < 0) there is a res-

onance mode a* = coi, where co[ has a small imaginary part. A Debye 
model for the host lattice, F(co) = 9co2/a>l>, in eq. (9.11) gives, to lowest 
order in the limit that coD 3> &>,, 

^ = I r ^ 1 - '(a>,-M>)0r/2)]. (9.13) 

We now see explicitly that the heavy impurity gives rise to a frequency 
with an imaginary part, i.e. a damped mode. When coi/co^ « 1 we can 
neglect the imaginary term in eq. (9.13) and treat the resonance as if it 
were a true eigenstate with a frequency [3|£|]~1/2CL>D-

4.2. Thermal displacement in the mass-defect model 

The theory for the thermal displacement, (u^ef), of impurity atoms 
is complicated, but in an approximate theory one just scales the 
displacement of the replaced host atom; 

<«def>/<«Lt) = (M/M')1/2, T « 0D; (9.14) 

(»def)/(«host> = 1. T»9D. (9.15) 

Equations (9.14) and (9.15) may be compared with the result in Chapter 
7 (§5.2), that (u2) in the high temperature limit does not depend on the 
atomic mass M, and varies as M_ 1 / 2 at 0 K. Calculations by Dawber 
and Elliott (1963), using a Debye model for the host lattice, showed eq. 
(9.15) to be exact and eq. (9.14) to be correct to within about 5%. These 
authors also give an expression for the velocity of the defect as (v^ef). 
Both (ujkf) and (v^ef) can be measured in Mossbauer experiments. 
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4.3. Debye temperature in the mass-defect model 

Consider a crystal with a low concentration, c, of impurities. When their 
vibrations are described by the mass-defect model, i.e. with all force 
constants unchanged, the Debye temperatures 0D(n; c) are related to 
6v(n) of the pure host lattice as 

0D(-3; c) = 0D(-3)[1 - ceVl/2 « 0 D ( - 3 ) [ 1 + ce/2], (9.16) 

#D(0; C) = 0D(O)[1 - s]~c/2 « 0D(O)[1 + ce/2], (9.17) 

0D(2; c) = 0D(2)[1 + (ce)/(l - e)]1/2 « 0D(2)[1 + ce/2]. (9.18) 

These relations easily follow from the fact that 0v(n; c) ~ 
[Meff(n)]~1/2, where Afeff(—3) varies as the mass density of the spec-
imen (cf. eq. (6.16)), Meff(0) is the logarithmic average of the atomic 
masses (cf. eq. (6.30)), and Meff(2) follows from £&>2 = TrD 
(Appendix C) as 1/Meff(2) = (1 - c)/M + c/Mf. 

4.4. Force constant changes 

The equation (9.11) for the localised or resonance-mode frequencies cot 
can be generalised to include force constant changes at the impurity 
(Kagan and Iosilevskii 1962, Mannheim 1968). Work by Tiwari and 
Agrawal (1973a, b, c) and Tiwari et al. (1981) exemplify theoretical 
calculations of resonance states, with allowance for both mass and force 
constant changes. 

Let the force constants associated with an impurity atom be changed 
by a relative amount Af/f (cf. Chapter 4, §10). The elastic-limit Debye 
temperature &>D(—3) depends predominantly on the shear modulus, as 
coD(-3) ~ G1/2 (cf. Chapter 6, §4). The relations in Chaper 4 (§10) for 
the elastic shear moduli c\\ — cyi and C44 now give, approximately, 

£D(-3; c) « 0D(-3) 1 + 2c(A///) -,1/2 

l + A//(3/)J 
« 0 D ( - 3 ) [ l + c ( A / / / ) ] . (9.19) 

Then it has been implicitly assumed that the lattice coordinates are 
unaltered. However, there are two kinds of relaxations in the atomic 
positions; an overall change of the volume of the specimen and a "local" 
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change in the vicinity of an impurity atom. We write the first type of 
volume change AV as AV/V = cAQa/Qa, where AC2a is the defect 
formation volume. With a Griineisen parameter approach we get, as a 
crude estimate for the effect of the overall volume change, 

^dilated = #undilated[l ~ CyG(AQJ fta)]. (9.20) 

With the realistic values YG = 1.5 and A£2a/£2a = 0.2, we see that this 
type of relaxation effect may be significant (cf. Tiwari et al. 1981, on 
Cu-Sn). 

4.5. Heat capacity 

We now turn to the relative change, A Char/ Char, in the vibrational heat 
capacity associated with a low concentration of impurity atoms. Con-
sider first heavy impurities. Very roughly, one obtains a contribution 
from the 3Nc localised or resonance modes, superimposed on a change 
in the heat capacity of the 3N(l — c) extended modes. Heavy impu-
rities lead to a A Char/Char that is peaked at low temperatures (below 
T = [3|£|r1/2#D, cf. eqs. (9.13) and (9.3)). This effect has been ob-
served, e.g. for Pb in Mg (Panova and Samoilov 1965, Cape et al. 1966). 
To achieve a quantitative account of such measurements one must go 
beyond our simple idea of a sharp resonance mode (e.g. Tiwari and 
Agrawal 1973a, b, c). 

The effect AChar of a light impurity will be difficult to see directly 
in heat capacity measurements since the heat capacity of the host has 
already reached its (large) classical value at the temperatures when the 
localised modes of the impurity start to be significantly excited. 

Although it is very difficult to obtain a precise expression for AChar> 
there is an integral relation which links AChar to the excess entropy 
AShar- By using (7.24) we can write for the high temperature limit 
Shar(00): 

AShar(00) = / d7 
Jo l 

= 3NkBln[9D(0)/9D(0',c)l (9.21) 

where #D(0) refers to the logarithmically averaged phonon frequencies 
of the host material. 
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5. Concentrated alloys and mixed crystals 

In this section we go beyond the dilute limit of impurities or defects 
that was considered above, and discuss (one-phase) concentrated al-
loys and mixed crystals (e.g. NacKi_cCl). The lattice vibrations are 
assumed to be harmonic, but since there is no translational invariance, 
the eigenstates are no longer plane waves, and the eigenfrequencies 
cannot be mapped as sharp dispersion curves &>(q, s). Even if the 
dispersion curves are strongly modified, or give a completely inade-
quate description, there is still a well-defined density of states F(OJ). 

In the long-wavelength limit, &>(q, s) = CS0Und(q> s)\q\9 implying that 
F(co) ~ co2 for small co. A strict Debye model, which assumes that 
the elastic limit is extrapolated to the frequency eo^, may be an equally 
good approximation in a pure element as in a concentrated alloy or a 
mixed crystal. In, say, a substitutional alloy with a bcc or fee lattice, 
F(co) usually retains the general shape with two humps, corresponding 
to longitudinal and transverse modes. However, the sharp structures in 
F(co) characteristic of a perfect periodic lattice are smoothed out. 

Consider a compound or a solid solution with the composition 
AcBi_c. Here 0 < c < 1, but it is not required that c or 1 — c is small. 
The masses of the constituents are MA and MB. Then the first equalities 
in eqs. (9.16)—(9.18) hold exactly, within the mass-defect model (i.e. 
without allowance for changes in the interatomic forces). Thus, 

0 D ( - 3 ; C) = 0£(-3)[(l - c) + cMB/MAVl/\ (9.22) 

#D(0; C) = ^(0)[MA/MB]c / 2 , (9.23) 

0D(2; c) = #(2)[(1 - c) + cMA/MB]V2. (9.24) 

These relations can also be written as interpolation formulae between 
the Debye temperatures 0£ and 6^ of the pure components: 

[ 0 D ( - 3 ; C)]- 2 = (1 - c ) [ ^ ( - 3 ) ] " 2 + c [ ^ ( - 3 ) ] " 2 , (9.25) 

#D(0; C) - [^(0)] ( 1-c )[^(0)]c , (9.26) 

0 D ( 2 ; C)]2 = (1 - c)[fl£(2)]2 + c[9g(2)]2. (9.27) 

Within the mass-defect model (i.e. without force constant changes), the 
interpolation formulae are excact. They are also exact if the masses MA 
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Fig. 9.2. The measured Debye temperature 0 D ( - 3 ) = 0^(T = OK) in KBrcCl!_c 

(symbols), the interpolation formula (9.25) and an extrapolation from 0D(—3) of pure 
KCl using the mass-defect model only (eq. (9.22)). 

and MB are equal but the properly averaged interatomic force constants 
vary as l/f(c) = c / / B + ( l - c ) / / B ineq. (9.25), as f(c) = [fB]c[fA]l'c 

in eq. (9.26) and as f(c) = cfB + (1 - c)fA in eq. (9.27). Thus, eqs. 
(9.25)-(9.27) go beyond the mass-defect model and may give a good 
account of the concentration dependence of the Debye temperatures in 
many real systems, but there are also exceptions (cf. the two examples 
below). 

Example: interpolation formulae in KBrcCl\-c. Figure 9.2 shows the 
interpolation formula (9.25) for KBrcCli_c, fitted at the two ends of 
pure compounds, and compared with experimental 6D(—3) from low 
temperature heat capacity experiments by Karlsson (1970). Also shown 
is 9D(—3) as extrapolated from pure KCl, using only the mass-defect 
model (eq. (9.22)). It is seen that the extended mass-defect model (the 
interpolation formula) gives a good description. This is expected be-
cause the bonding (ionic in character) is not very different in KCl and 
KBr. This should be contrasted with the following example of Nb-Mo 
alloys. 

Example: the Debye temperature #D(—3) in Nb-Mo alloys. Niobium 
and molybdenum form a solid solution with bcc lattice structure over 
the entire composition range of NbcMoi_c alloys. The atomic masses 

1 1 1 
KBrc Cl-j .c 

extrapolated mass-defect model 

interpolation formula 
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500 

Fig. 9.3. The measured Debye temperature 0 D ( - 3 ) in the alloy Nb-Mo. Data points, 
from White et al. (1978), lie scattered in the shaded region. The lower solid curve is the 

interpolation formula (9.25). 

of Nb and Mo differ by only 3%, and thus have almost negligible effect 
on the concentration dependence of the phonon frequencies. In spite of 
the fact that Nb and Mo are located next to each other in the Periodic 
Table, there are large variations in the interatomic forces. Figure 9.3 
shows experimental results for 0 D ( - 3 ) , from White et al. (1978). The 
data are scattered in the shaded band. The interpolation formula (9.25), 
given as a solid curve, fails to give a good account of the variation in 
# D ( - 3 ) . 

6. Vacancies 

The atoms surrounding a vacant site are more loosely bound than those 
in the bulk and therefore give an increased vibrational entropy. At high 
temperatures, we have 

= *B / 
Jo 

f 
Jo 

ln(kBT/ho))AFY3LC(a)) dco 

= ~h ln(co)AFWiiC(co)dco, (9.28) 

where we have used the result that ln(kBT/h) f AF(co) dco = 0, by eq. 
(9.2). The physical dimension (the unit) of co in \n(co) in the last part 
of eq. (9.28) is of no concern since by eq. (9.2), ln(co/coi)AF(co) dco is 
independent of the choice of the frequency unit co\. 
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We crudely estimate Svac as follows. If a certain vibration mode has 
the frequency â uik in the perfect crystal and &>vac when a vacancy has 
been introduced, the vibrational entropy is changed by kB ln(o>t>uik/&>vac)-
Consider a simple cubic lattice with central nearest-neighbour interac-
tions. The 6 atoms adjacent to the vacancy have their force constants 
reduced by a factor of 2, for vibrations towards the vacant site. Because 
vibration frequencies vary as [force constant]1/2, we reduce the corre-
sponding frequencies by a factor of 1/V2. Then the vibrational excess 
entropy in the high temperature limit becomes (per vacant site) 

Svac ^ 6kB ln(A/2) = 3*8 In 2 - 2kB. (9.29) 

This is, of course, a much too simplified picture, but it gives the right 
order of magnitude of 5vac. Similar bond-cutting models have been ap-
plied to an fee lattice (Stripp and Kirkwood 1954), a simple cubic lattice 
(Mahanty et al. 1960) and fee Cu (Huntington et al. 1955). They all give 
SVac ^ 1.7/:B to 2.0*B per vacant site. Experimental values of SVac/̂ B* 
compiled by Brudnoy (1976) and Wollenberger (1996) usually lie in 
the range 1-3, but with a large scatter between different measurements 
on the same element. The data given in the Landolt-Bornstein tables 
(Ullmaier 1991) confirm the picture of a large uncertainty in Svac/&B-
See also Harding and Stoneham (1981) and Sahni and Jacobs (1982) 
for similar data in ionic crystals. 

An accurate calculation of 5vac must include several features, in ad-
dition to the bond-cutting approach. First, the atoms near the vacancy 
will relax to new equilibrium positions which changes the effective 
force constants acting on them. Then there is a dilatation of the lattice 
even far from the vacant site. The correponding shifts can be handled 
using the Gruneisen model (see, for example, Mott and Gurney 1940, 
Vineyard and Dienes 1954, Huntington et al. 1955 and §4.4 above). The 
dilatation term may also be obtained (Huntington et al. 1955) from the 
macroscopic relations 

(dS/dV)T = (dp/dT)v = KTp = CVYG/V. (9.30) 

If we take the values Cv = 3NkB, V = NQa, yG = 1.5 and AV = 
Vvac = 0.5£2a, the dilatational term gives 5vac ~ 2&B, per vacancy. 
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7. Dislocations 

The dislocation core has a more open structure than the perfect lattice. 
One therefore expects a softening of the atomic vibrations near the core. 
Simple estimates (Friedel 1982) show that, for the core of a dislocation, 
the vibrational entropy S^s\ ~ 0.5&B (or less) per atom in the core. The 
strain field surrounding a dislocation is of long range and has regions 
of compression as well as expansion, where the Gruneisen description 
should be applicable. There seems to be no estimation of the overall 
effect of dislocations on the vibrational spectrum. 

Vibrations of the dislocations as such should also be considered. 
When a dislocation line is pinned at its ends, it can vibrate much 
like a string under tension. Granato (1958) and Ohashi and Ohashi 
(1980) developed a theory for the contribution of such vibrations to 
the heat capacity of a solid, and Bevk (1973) performed experiments 
on copper. The corresponding heat capacity Cdisi, which varies lin-
early with the temperature 7\ is exceedingly small compared to the 
lattice part of the total heat capacity Cp, except at very low tem-
peratures. Theory (Granato 1958) and experiments (Bevk 1973) show 
that CdiSi/Cp ~ 10~3 at T/6D ~ 10"2 in heavily cold-worked 
samples (dislocation density 1015 m~2). 

8. Grain boundaries 

The thermodynamics of grain boundaries is similar to that of solid-
vacuum interfaces, but much more complex. The grain boundary energy 
(per area) is usually determined from the surface tension. The temper-
ature is high and in the surface tension ygrainb = £grainb — 7"Sgrainb> the 
entropy-related part rSgrainb may amount to £grainb/4 or more. There is 
both a configurational (static) and a dynamic (vibrational) contribution 
to Sgrainb. They may be of the same order of magnitude (Ewing 1971, 
Ewing and Chalmers 1972, Hasson et al. 1972). The structure of grain 
boundaries has often been studied through numerical simulations with 
an assumed interatomic potential, see, e.g. Schi0tz et al. (1998). In very 
fine-grained material, a substantial part of the atoms are affected by 
the grain boundaries, which may lead to a large effect in the vibra-
tional entropy. For instance, in nanocrystalline Ni3Fe (grain size ~9 
nm) the reported excess vibrational entropy is 0.18£B per atom (Frase 
et al. 1997), which corresponds to a lowering of the average vibrational 
frequency by about 6%. 



CHAPTER 10 

THERMODYNAMIC PROPERTIES OF CONDUCTION 
ELECTRONS 

1. Introduction 

Many thermophysical properties which are related to the electronic 
structure of metals and alloys depend on the electron density of states 
N(E) at the Fermi level E?. For instance, the Sommerfeld formula for 
the electronic heat capacity, which appears in almost all textbooks on 
solid state physics, reads (some authors let N(E) refer to both spin 
directions and then the prefactor of 2 is absent) 

Cei = yT = ^-N(EF)klT. (10.1) 

This expression is qualitatively correct, for simple (i.e. free-electon-
like) metals as well as for transition metals and alloys. However, it 
neglects some important features. There should be an electron-phonon 
many-body enhancement factor 1 + A.ei_ph, which typically is 1.4 but 
occasionally (e.g. Pb, Hg) can be as large as 2.5. That correction is 
temperature dependent and vanishes at high temperatures. Equation 
(10.1) also assumes that the electron states are probed in such a nar-
row energy interval around the Fermi energy that the density of states 
can be regarded as a constant and equal to N(E?). Near the melting 
temperature, this leads to an error in Cei by a factor of two or more, for 
some transition metals. It is obvious from what has just been said that an 
accurate account of the thermal properties of conduction electrons has 
to go beyond the simple textbook formula (10.1). This chapter primarily 
deals with such aspects. 

167 
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2. Thermodynamic functions 

2.1. Fermi-Dime function and the chemical potential 

The electrons in a solid can be divided into two groups; those that form 
the closed electron shells of the constituent atoms (the core electrons), 
and the remaining electrons of higher energy (the valence electrons). In 
metals the valence electrons can move more or less freely through the 
lattice. One usually refers to them as the conduction electrons. 

We first consider the Sommerfeld model (Sommerfeld and Bethe 
1933) in which the conduction electrons are assumed to form a gas 
of fermions with energies E^ and a density of states N(E). The 
Fermi-Dirac distribution function is 

f{E) = —^ T7TTTT7' ( i a2> 
exp[(£ - fi)/kBT] + 1 

where [i = fi(T) is the chemical potential. We shall frequently 
encounter df/dE or df/dT. Some useful expressions are 

9 / 1 

3E kBT 
1 

4kBT cosh2[(£ - ii)/2k*T]' 
(10.3) 

and 

m ff-*(^rii-i-
The function —df/dE is symmetrically peaked around /x(T), with an 
approximate width of a few kBT (fig. 10.1). 

The chemical potential /x(T) is determined by the condition that the 
total number of conduction electrons, Afei, is conserved, i.e. 

••r 
J - c 

N(E)f(E) &E = Neh (10.5) 

The integration limits in eq. (10.5) mean that the integration is over all 
energies for which the integrand is nonvanishing. Often one takes E = 0 
to be the bottom of the conduction band, i.e. N(E) = 0 for E < 0. The 
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Fig. 10.1. The peaked shape of —(df/dE) around the Fermi level. 

lower integration limit then is 0. The Fermi energy (Fermi level) EF is 
defined to be the chemical potential at zero temperature, EF = /x(0). 
Sometimes the energies are counted relative to EF instead, i.e. E = 0 
at the Fermi level. It even happens, in theoretical calculations, that still 
another reference level is chosen for the energies, e.g, the zero-level for 
the so-called muffin-tin potential. It is common to express EF through 
the Fermi temperature TF\ 

kBTF = EF. (10.6) 

From what has just been said about the various conventions for the 
reference level of EF, it is obvious that the Fermi temperature TF is not 
a unique quantity. However, in free-electron-like systems, one almost 
invariably takes E = 0 at the bottom of the conduction electron band, 
and textbook values of TF then refer to this case. 

It is a standard technique (Ashcroft and Mermin 1976) to evaluate 
integrals such as eq. (10.5) in the form of a series expansion in powers 
of T. Then, to lowest order in T2, 

/x (D- /x(0) - fi(T)-EF = -(n2/6)(kBT)2 

x(dN/dE)E==E¥/N(EF), (10.7) 

where dN/dE is evaluated at E = EF. Because df/dE is peaked around 
JJL(T) with an approximate width ~ AkBT (fig. 10.1), it is of interest to 
know how large is the shift ii(T) — /x(0) expressed in units of kBT. 
Fromeq. (10.7) 

kBT = ~ * B 7 T yw) * -rgn(N}- (ia8) 
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Table 10.1 

The Fermi temperature Tp in a free-electron description 

Element 

7 F [ K ] 

Na 

37,000 

Cu 

81,000 

Mg 

83,000 

Zn 

109,000 

Al 

135,000 

Pb 

109,000 

0-Sn 

116,000 

The function sgn(x) is ±1 , depending on the sign of x. TN is a charac-
teristic temperature such that N{E) varies significantly (e.g. a variation 
comparable to N(E) itself) when E is altered by an amount k^Ty. For 
free electrons, Tv ~ TF - 105 K (table 10.1). With T lower than the 
melting temperature Tfus, the shift IJL{T) — /x(0) therefore is negligible 
in free-electron-like metals. In transition metals, however, N(E) may 
vary considerably over energies ^Tfus around the Fermi level. Then one 
cannot neglect the temperature dependence of JJL{T) in the calculation 
of high temperature properties. See also the related discussion of the 
heat capacity (eqs. (10.13) and (10.14)). 

2.2. Heat capacity 

The total conduction-electron energy is (in the single-particle descrip-
tion, i.e. with the neglect of explicit many-body corrections) 

/

oo 
EN(E)f(E) dE, (10.9) 

-OO 

which gives the heat capacity 

= ̂ / ( ^ ) V £ > ( - ^ ) d £ . (KM0) 

In the integrand, a term 0 = d{2EFNQ\)/dT was subtracted, and 
a higher-order correction from the temperature dependence of JJL(T) 

was ignored. The integration is over all energies where N(E) is non-
vanishing, but as we shall see below only a narrow energy interval 
around £F gives a significant contribution. If N(E) is slowly varying 
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with E near the Fermi level, N(E) ~ N(E?) can be taken outside the 
integral. Then 

Cel = ^-N(EF)klT. (10.11) 

It is common to write Cei = yT. This form allows for electron-phonon 
many-body corrections etc. in the parameter y. For the Sommerfeld 
result (eq. (10.11)) we use the notation 

Cei = yj = (mb/m)Cfe. (10.12) 

The subscript b means that electron band structure effects are included. 
Cfe is the heat capacity calculated in the free-electron model. The band 
mass rab is defined in Appendix B. 

If the density of states around the Fermi level is expanded in a series 
in E - E¥, one obtains (AT = dN(E)/dE\ Nff = d2N(E)/dE2) 

lit2
 9 

i-(*Br)2^r 
N'\2 1 N" 

N 5 N 
(10.13) 

For a free-electron density of states, N(E) ~ El/2, and (Nf/N)2 = 
l/(4E2) and N"/N = -l/(4E2). Then eq. (10.13) becomes the well-
known result from textbooks (e.g. Wilson 1965) 

2n2
 2 ( 3n2/T\2} 

Cd = — W , ) » i r { ! - — ( - ) j . (.0.14) 

It is not an unusual mistake that the (r/rF)2-term in Cei is neglected in 
transition metals, invoking an argument that TF = £F/&B is of the order 
of 100,000 K (cf. table 10.1). A correct treatment has to consider what 
is the energy interval AE around E? over which N(E) varies signifi-
cantly, and replace 7p in the low temperature expansion (eq. (10.14)) by 
AE/kB, a quantity which may be <1000 K when E¥ falls at a sharp 
structure in N(E). 

Example: CQ\for a realistic density of states N(E). This example serves 
to give an idea about corrections to eq. (10.11) in a real metal. The inset 
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T (K) 

Fig. 10.2. The inset shows a density of states N(E) for ^-electrons characteristic of Pd. 
The main part of the figure shows the corresponding heat capacity Ce\(T) in three mod-
els, as described in the text. The arrow marks the energy width A£ that corresponds to 

AE/kB= 20,000 K. 

in fig. 10.2 shows the gross features of N(E) for Pd. The main figure 
shows the heat capacity Ce\(T) calculated from this N(E) in three mod-
els. The two straight lines refer to a constant N(E) = N(E¥) for all E\ 
the full-drawn line with a tentative constant many-body enhancement 
parameter X = 0.7 (allowance for electron-phonon and other correc-
tions, see below), and the dashed line with X = 0. The full-drawn curve 
is based on the full N(E) and therefore reflects the true behaviour at 
high T (where electron-phonon effects are small). 

2.3. Entropy 

A useful expression for the entropy is 

/

oo 
{/(£)[ln/(£)] 

-OO 

+[l - f(E)]\n[l - f(E)]}N(E) dE. (10.15) 

The function inside the braces { . . .} in eq. (10.15) is an even function 
of E — ii{T) and is sharply peaked at fi(T). When the density of states 
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varies slowly with E near the Fermi level, N(E) can be taken outside 
the integral, as a constant N(Eft). We get 

5 d = ^-N(EF)klT. (10.16) 

Thus 5ei = Cei, a result which also follows immediately from the 
general thermodynamic relation 

S*(T) = [ ^ P dTf (10.17) 
Jo I 

when Ce\(T
f) is linear in T'. However, we noted above that structure 

in the energy dependence of N(E) near E? may be important. Then 
Sei ^ Cei at high T (cf. Chapter 19, §12). 

3. Electronic entropy and heat capacity in real metals 

3.1. Introduction 

The Sommerfeld electron theory of metals, leading to expressions such 
as eq. (10.11) for the heat capacity CQ\ and eq. (10.16) for the entropy 
Sei, is not in quantitatively good agreement with experiment, even if one 
uses an electron density of states N(E^) determined from accurate elec-
tron band calculations. The main reason is that the Sommerfeld model 
neglects important electron-phonon many-body corrections. Their ex-
istence was realised by Buckingham (1951) and Buckingham and 
Schafroth (1954) but their magnitude was unknown until much later 
(e.g. Ashcroft and Wilkins 1965, Allen and Cohen 1969). The electron-
phonon many-body correction to the thermal properties of conduction 
electrons has been reviewed by Grimvall (1976, 1981). 

The complications caused by a rapidly varying density of states 
N(E) around the Fermi level have already been discussed above. It 
may be necessary to allow the chemical potential /x to vary with T. 
In numerical calulations of the electron band-structure term (i.e. without 
many-body corrections) one may use eq. (10.5) to determine fi(T), then 
eq. (10.15) to obtain the entropy, and finally calculate the heat capacity 
as C = T(dS/dT). Examples showing the non-linear T-dependence of 
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Cei at high temperatures are given in Eriksson et al. (1992) and in fig. 
10.2. 

3.2. Effects of electron scattering 

In the treatment of electron states with energies Ek, and a correspond-
ing density of states N(E), it is assumed that the electrons move in 
a perfect periodic lattice, with sharp energy eigenvalues Ek. In a real 
solid, scattering against phonons or impurities gives these electron states 
a finite life time r which may be described by an imaginary part 
—2/T = —ih/x in Ek. We can still use the expression (10.15) for 
the entropy if we replace the density of states N(E) by a "smeared" 
function N*(E) defined as 

A r ( £ )-£/w(B-q£Ud'- <iai8) 

When r -> 0, the Lorentz function in the integrand becomes a 8-
function, 8(s - E), and then N*(E) = N(E). If we expand N(E) 
around E¥ as N(s) = N(EF) + (s - EF)N'9 (eq. (10.18)) formally di-
verges, but the contribution from (s — E¥)N

f vanishes over a symmetric 
interval around £F. Therefore, in real cases, it is only when N(E) has a 
strong non-linear energy dependence near £F that the finite lifetime of 
the electrons affects the entropy. Electron states within several &B T from 
£F contribute to the entropy (eq. (10.15)), so the effect of a finite T is 
negligible if T <S kBT. For the phonon-limited life time one has (Chap-
ter 15 and Grimvall 1981) T = 7rAei-Ph^B7" at high T, where Xei_Ph is 
the electron-phonon parameter introduced in §3.3. Since A.ei_ph is of the 
order of unity, the phonon-limited T could have a significant influence 
on Sei. However, calculations with realistic N(E) (Thiessen 1986) show 
that the effect is usually small (< 10%, any sign). In the case of impurity 
scattering it is convenient to relate F = h/2r to the electron lifetime as 
it enters the electrical conductivity, a = ne2r/m\y (eq. (15.9)). It follows 
that when the electrical resistance due to impurities is less than that due 
to electron-phonon scattering, as is the case with dilute impurities, the 
influence of impurity scattering is negligible. Finally, note that even if 
N(E) is a 5-function, N*(E) decays as \/E for large E and therefore 
has an infinite width. Integrals for thermal properties are taken over a 
finite energy range, and N*(E) must be multiplied by a renormalisation 
factor so that eq. (10.5) is still fulfilled. 
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3.3. Electron-phonon many-body corrections to the electronic entropy 

The electron-phonon many-body corrections are significant only at low 
temperatures (T < #D) and may usually be neglected when T is so 
high that one has to consider the variations in N(E) dealt with above. 
Therefore, in this section we let the electron density of states be a 
constant, N(E¥). We also assume that the electron-phonon interaction, 
expressed through a so-called electron self energy Mei_ph, is isotropic. 
Then (Grimvall 1976, 1981, 1986) 

s = N(EF)kBh2 f00 I" co 1 
d (kBT)2 J^ |_cosh2(/to/2/:Br) J 

x[hco - R e M d _ p h O , T)] dco. (10.19) 

This result holds for all temperatures. In the low temperature limit 
(T <& 0D where #D is a Debye temperature) the integral (10.19) picks 
up Mei_ph very close to the Fermi level, i.e. for small co. There one 
may expand Mei_ph as Me\_vh(co, &F; T) — —Xe\-phhco. The resulting 
integral has the same form as in the Sommerfeld model, apart from a 
factor 1 + A.ei_ph, and the final low temperature result is 

Sei = (27T2/3)Ar(£F)(l + Ael_ph)£2r. (10.20) 

Thus the effect of electron-phonon many-body interactions is easily ac-
counted for, at very low temperatures. The high temperature limit of 
eq. (10.19) agrees exactly with the Sommerfeld model, since Mei_ph 

goes to zero as (0D/T)2 for T > #D- At intermediate temperatures, 
one has to perform the integration in eq. (10.19) numerically. It is 
convenient to split 5ei into two parts; 5b which is the Sommerfeld (or 
electron-band theory) result, and 5ei_Ph which is the correction caused 
by electron-phonon many-body interactions; 

Sel = 5b + Sen*. (10.21) 

In the low temperature limit, 

Sel-ph = ^el-ph^b- (10.22) 

If Mei_ph is calculated with an Einstein model for the lattice vibrations 
Sei-Ph can be expressed as a universal function 5ei_ph(7")/(yb^ei_phr) 
(fig. 10.3). 
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Fig. 10.3. The temperature dependence of the electron-phonon renormalisation con-
tribution to the electronic heat capacity yel-ph(T)> a nd to the electronic entropy, 

Sel-ph(^)> calculated in an Einstein model for the phonons. From Grimvall (1981). 

The quantity Aei_Ph discussed in this section is closely related to the 
BCS theory of superconductivity. In fact, Aei_ph can be estimated from 
the critical temperature Tc (Appendix B). Numerical values of A,ei_ph 

are given in Appendix I. Because A.ei-Ph is anisotropic, the listed values 
of Aei-ph are averages over the electron states at the Fermi level. There 
is also a close relation between A,ei_ph and the "transport" coupling pa-
rameter A.tr that appears in the electrical resistivity of metals (Chapter 
15). 

3.4. Electron-phonon many-body corrections to the electronic heat 
capacity 

The electronic heat capacity (at constant volume) is obtained from 

c" = T{w)v-
 <m23) 

Equation (10.20) gives the low temperature (i.e. T < #D) result 

Cel = (27t2/3)N(E¥)(l + Ae l_p h)^r = ^ ( i + Ael_ph)7\ (10.24) 

We define a "thermal" effective electron mass m^ by 

rnth = (Y/Yfe)m, (10.25) 
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where y is the measured coefficient in Cei = yT,m is the usual (free) 
electron mass, and /fe is the coefficient resulting from the free-electron 
version of the Sommerfeld model. With the electron-phonon many-body 
correction written explicitly we have 

mth = (KbMeXl + K\-Ph)m = rab(l + Aei_ph). (10.26) 

In analogy to our treatment of the entropy, the electronic heat capacity 
is split into two parts; 

Cei = [yb + yd-phCmr, (10.27) 

where yei_ph(r = 0) = ybAei_ph. At high temperatures, yei-ph tends to 
zero. There is no temperature dependence in y^ because we have as-
sumed the approximation that N(E) is a constant, within the energy 
interval probed by the heat capacity. Figure 10.3 shows ye\-ph(T) in 
an Einstein phonon model. As a rough rule of thumb, we can take 
Xei-ph(^)/Kb = -̂ei-ph for T < 9^/4 and zero for T > 0D/3 , where 9D 

is a characteristic Debye temperature. The temperature dependence of 
Ye\-ph(T) and Sei-ph(^) given in fig. 10.3 is not much altered if one uses 
the true phonon spectrum instead of the Einstein model; the peaks in fig. 
10.3 will be somewhat broader and with smaller maxima. The decrease, 
and eventual absence, of the electron-phonon enhancement factor is not 
easy to see in experiments on Cp because it is difficult to separate it from 
the temperature dependence of the lattice part. However, there seems to 
be clear evidence for the effect, including a spin fluctuation part (see 
below) in Lu and Sc (Tsang et al. 1985, Pleschiutschnig et al. 1991, 
Swenson 1996). 

Heavy fermion systems get their name from the fact that the effec-
tive electron mass (quasi particle mass) at the Fermi level is very high; 
several orders of magnitude larger than in conventional metals. The heat 
capacity parameter y = Ce\/T shows a strong temperature dependence, 
varying with the material. The ground state of a heavy-fermion system 
may be superconducting (e.g. CeCu2Si2, UPt3), magnetic (e.g. UCdn, 
U2Z1117) or normal metallic (e.g. CeAl3, CeCu6). We may still write 
^th = /wo(l + K\-ph) where ra0 is the result in the absence of electron-
phonon interactions, but in this case the effect of the electron-phonon 
interaction is to reduce meff, i.e. A,ei__ph < 0 (Fulde et al. 1993). 
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3.5. Other many-body corrections 

Electron-electron interactions: In a uniform electron gas, the electron-
electron many-body corrections to the thermal electron mass are small. 
In free-electron-like metals the corrections are at most a few percent 
(Grimvall, 1975b). In transition metals there are important electron-
electron many-body terms, but to a large extent they are folded into the 
single-particle density of states N(E) obtained in a band structure cal-
culation. The remaining correction to the thermal mass probably is only 
a few percent and of uncertain sign. Lacking more detailed information 
it is therefore best to neglect these effects. 

Electron-paramagnon interactions: In metals that are close to a mag-
netic instability, there are electron-paramagnon many-body corrections. 
We can write (Gladstone et al. 1969, Burnell et al. 1982, Leavens and 
MacDonald 1983) 

™th = mh(\ + A-el-ph + A-el-sp), (10.28) 

where Aei-sp refers to spin fluctuations (i.e. paramagnons). It is difficult 
to calculate Aei_sp accurately (Daams et al. 1981, Leavens and Mac-
Donald 1983). Among several proposed expressions we quote that of 
Doniach and Engelsberg (1966); 

Aei-sp = 3IN(EF) (1 + V / J V ( £ F ) 1. (10.29) 
el sp v w [ 12[1 - IN(EF)] J v } 

Here we recognise the term 1 — IN(EF) from the Stoner model of 
magnetism, where the susceptiblity x = Xo/U — IN (Eft)] diverges 
when IN(E?) -> 1 which signals a transition to a magnetically ordered 
state (eq. (19.24)). The parameter v is roughly of the order of 1/2. In 
free-electron-like metals IN(EF) «; 1, and A.ei-sp is negligible. Also for 
most transition metals A,ei_sp < 0.05. However, there seem to be metals 
(LuCo2; Ikeda and Gschneidner 1980, MnSi; Taillefer et al. 1986) with 
Aei-sp of the order of 4, i.e. a larger enhancement than the highest known 
A,ei_ph from electron-phonon interactions. 

Electron-magnon interactions: In magnetically ordered materials, 
there are electron-magnon many-body corrections which add a term 
analogous to Aei_sp in eq. (10.28). The magnitude of their influence on 
mth is not very well known, but it may be comparable to Aei_ph in Ni 
and Co (Phillips 1967, Batallan et al. 1975) and even be the dominating 
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enhancement in rare earths (Cole and Turner 1967, Nakajima 1967, 
Kim 1968). Fulde and Jensen (1983) gave a unified theoretical treat-
ment of electron mass enhancements due to electron-phonon, electron-
paramagnon and electron-magnon interactions. The corrections may be 
appreciable near T = 0 K, but disappear at high temperatures (cf. fig. 
10.3). 

Single-particle density of states in magnetic metals: In the Stoner 
model of ferromagnetic metals, one considers separate density-of-states 
functions, N+(E) and N-(E), for the two spin directions. Relations 
such as eq. (10.15) for the entropy and eq. (10.1) for the low temperature 
heat capacity remain valid if we put 

2N(E) = N+(E) + N-(E). (10.30) 

However, one should note that the splitting of the two spin bands, 
and hence N+(E?) and N^(E^), varies with the temperature. The 
many-body enhancement factor need not be the same for the two spin 
directions, but this is of no concern if we let the enhancement factor be 
an average over all electron states, in analogy to the case of anisotropic 
enhancement referred to earlier. 

4. Electron density of states in real metals 

The energies E(k, s) of electron states in a perfectly periodic lattice 
of an element or a compound, and the corresponding density-of-states 
N(E), are obtained from electron structure calculations through well-
developed methods and in numerous scientific papers. This case will 
not be further considered here. In materials which lack perfect peri-
odicity, for instance, alloys, amorphous structures and liquids, there 
are still solutions to the Schrodinger equation which give well-defined 
energy eigenvalues (in the single-particle description) and, hence, a 
well-defined N(E). Therefore, the methods described in this chapter 
still apply. However, we can no longer label the electron energy values 
with precise wave vectors k, and the sharp structures in N(E) that are 
associated with the lattice periodicity through certain values of k will be 
smeared. When the disturbance of the electron states is only moderate, 
such as in a dilute alloy, we may keep the labels (k, s) on the elec-
tron states and introduce a smearing of N(E) through a finite electron 
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lifetime. This was discussed in §3.2. On alloying, the electron-phonon 
parameter Aei-Ph shows no variation that is particularly different from 
the variation in A.ei-Ph between elements (Grimvall 1976, 1981). 

The simple Bohr model of an atom considers a sequence of pos-
sible energy states for the electrons. In atoms of increasing atomic 
number, and hence increasing number of electrons, these energy levels 
are succesively filled with electrons. Similarly, in a metal, the con-
duction electrons (valence electrons) go into electron states described 
by the density-of-states N(E). As one moves, e.g. to the right in a 
transition-metal row in the Periodic Table, the increasing number of 
valence electrons succesively fills N(E) to higher energies. The rigid-
band model assumes that N(E) stays the same along this sequence, 
and only the Fermi energy increases with the filling of the electron-
band states. This is a considerable simplification, but may still give a 
useful insight into the physics of trends among metals and alloys. If 
one starts from a pure element whose N(E) is known, and increases 
the number of electrons only moderately through alloying, it may be a 
reasonable approximation to use a N(E) of fixed shape and calculate 
the Fermi level from eq. (10.5), with the new number of electrons Ne\. 
The resulting N(E?) is then used to obtain thermodynamic properties 
of the alloy. In Chapter 1, we used the rigid-band concept in an even 
more simplified form (Friedel's rectangular N(E)) to get a qualitative 
account of the bulk modulus and cohesive energy of transition metals. 
However, arguments invoking the rigid-band model must be used with 
great care, and sometimes the model fails badly. 

It is beyond the scope of this book to review the large field of electron 
band structure calculations. In pioneering work, Moruzzi et al. (1978) 
calculated N(E) for all metals with atomic number Z < 49. In the 
Landolt-Bornstein tables, Cracknell (1984) presents graphs of N(E) 
for metallic elements and Sellmyer (1981) gives N(E) for ordered com-
pounds and disordered alloys. Moruzzi and Sommers (1995) published 
N(E) calculated ab initio for the elements with atomic number Z < 55, 
in assumed fee and bec lattice structures, and also graphs of N(E) 
for their ordered 3d/3d- and 4d/4d-transition metal alloys in assumed 
lattice structures of the CsCl, CuAu, Cu3 Au and AuC3 types. Papacon-
stantopoulos (1986) published N(E) and y^ for free-electron-like, 3d-, 
Ad- and 5d-transition metals. 
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Fig. 10.4. The variation of y\y in the electronic heat capacity Ce\ = yT, as a function 
of the average number of valence electrons per atom, nQ. After Grimvall (1999), and 

based on electron-band structure calculations. 

Example: heat capacity in transition metal carbides and nitrides. Figure 
10.4 shows the electron-band structure parameter yb that appears in the 
"bare" (i.e. without many-body corrections) heat capacity Cei = y^T. 
Thus, >̂  ~ N(EY), with N(E?) taken from electron-band structure 
calculations. We see that there is a regular variation of y^ as a function of 
the average number nc of valence electrons per atom in the compounds, 
which suggests a rigid-band picture. In fact, that crude description with 
bonding and antibonding electron states below and above ne = 4, re-
spectively, correlates very well with the maximum in cohesion-related 
properties (melting temperature, elastic constants) for TiC and ScN. 



CHAPTER 11 

THERMAL PROPERTIES OF FEW-LEVEL SYSTEMS 
AND SPIN WAVES 

1. Introduction 

Several important thermophysical properties may be described by sim-
ple models with only two, or a few, energy levels. Of particular interest 
are vacancy formation, localised /-electrons in rare earths, magnetic 
excitations in insulators and order-disorder transformations in alloys. A 
dynamical coupling between discrete spins of magnetic atoms in a lat-
tice leads to excitations which are propagating waves, closely analogous 
to phonons. They are called spin waves, or magnons. Since the scope of 
this book is mainly to consider thermophysical properties of materials 
which are of practical importance, we leave out many effects which are 
mainly significant at a few kelvin and below. 

2. Systems with few energy levels 

Consider an ensemble of n-level systems. The energy levels are Et{\ < 
i < n), with degeneracies gt. Its thermodynamic properties are ob-
tained from the partition function Zn through the Helmholtz energy 
Fn = -kBT\nZn\ 

n 

z„ = J>e- £ ' / t e r . (li.D 
i=l 

For instance, the contribution to the heat capacity from each of these 
rc-level systems is Cn = —T(d2Fn/dT2). An important special case is a 
two-level system with non-degenerate energy levels E\ and E2. We let 

E2-Ex = AE = kBT\ (11.2) 
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Fig. 11.1. The heat capacity (Schottky peak) for a two-level system with energy spacing 
AE, plotted versus kBT/AE. 

and get for the heat capacity 

C2(T)=kB-
x2ex 

V + l]2 ' 
(11.3) 

with x = AE/kBT = Tf/T. C2{T) has a characteristic form, known as 
a Schottky peak (fig. 11.1). The behaviour at low and high temperatures 
is 

C2(T) « kB(Tf/T)2exp(-r/T), (T « T')\ 

c2(T)^(i/4)kB(r/T)\ ( r » n . 

(11.4) 

(11.5) 

At high temperatures, i.e. T » (En - Ex)/kB, all quantum states in 
the n-level system are equally populated, with a probability 1/G where 
G = Y, gt- Thus, the entropy in the high temperature limit is 

S = -kBJ2gil(VG)ln(l/G)] = kBlnG. (11.6) 
/=i 

Note that this important sum-rule for the entropy holds irrespective of 
the detailed nature of the energy levels. 

3. Heat capacity from vacancies 

Let there be TV lattice sites in a solid. A site is either occupied or vacant, 
and can therefore be described by a two-level model. Hence, we have 
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N two-level systems. The probability that a site is vacant is cvac(T) (eq-
(2.9)). The energy associated with a thermal-equilibrium concentration 
of vacancies is E = NEV3LCcVSiC. The heat capacity, Cvac = dE/dT, is 

Cvac(^) « NkBexp(Syac/kB)(EWzJkBT)2exp(-Evac/kBT), 

(11.7) 

that is, of the low temperature form (eq. (11.4)). If there is more than 
one atom per primitive cell, one may have to consider non-equivalent 
lattice sites separately, with different N, £Vac and SVSiC. Typically, 
EVac/kBTfus & 10 and Swac/kB ^ 3 for an elemental metal (see tables 2.1 
and 2.2). Then Cvac/3NkB « 0.03 at the melting temperature Tfus, but 
<0.01 at T = 0.8rfus. The entropy of the solid, which is an integrated 
property over the heat capacity from T = 0, is little affected by the 
vacancies. Its total value cYSiCNSYSLC < 0.003NkB, which is negligible for 
all practical purposes, and correponds to the entropy change caused by 
a shift in the Debye temperature by <0.1% (cf. eq. (7.24)). Several as-
pects of the effect of vacancies on thermophysical properties have been 
discussed by Kraftmakher (1972, 1978, 1996) and Varotsos and Alex-
opoulos (1986). Some of their conclusions may be challenged because 
of the difficulty to quantitatively account for the effect of high-order 
anharmonicity in the lattice-vibrations of a defect-free crystal. 

4. Crystal-field split electron levels in atoms 

Rare earth ions in a lattice, for instance Ho3+ in the high-rc super-
conductor HoBa2Cu307_5 and Tm3+ in TmE^CuaOv-^, give rise to 
crystalline electric field (CEF) splitting of the Hund's rules ground state 
4/-electron multiplet. These discrete levels contribute to the heat capac-
ity in the form of Schottky-like terms, calculated as shown in §2. The 
ground state of a free ion, characterised by the quantum number / , has 
degeneracy 27 + 1. The crystal field now splits this level. Figure 11.2 
shows the low energy part of the split levels, as given by Ferreira et al. 
(1988a). They calculated the corresponding heat capacity and obtained 
a good agreement with their experiments for Cp. 
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Fig. 11.2. Low energy part of the crystal-field split energy level for the 4/-electrons 
in Ho3 + and T n r + in the high temperature superconductors HoBa2 01307-5 and 
TmBa2Cu307_($. The energies are expressed in the equivalent temperature, E = k#T. 
The number to the left of the levels is the degeneracy. Remaining levels fall at much 

higher energies. 

5. Tunneling states in amorphous materials 

Zeller and Pohl (1971) discovered that the low temperature heat capac-
ity of several non-metallic amorphous materials varied linearly in T. 
This was first surprising, since the Debye 73-law should hold in the 
low temperature limit, irrespective of the crystal structure. (The excited 
phonons have such long wavelengths that they "see" the lattice as an 
elastic continuum.) The phenomenon, which is present both in insulat-
ing glasses and amorphous metals, is still poorly understood (Cibuzar et 
al. 1984, Graebner and Allen 1983) but it may be qualitatively explained 
by the two-level tunneling system model (Anderson et al. 1972, Phillips 
1972). The idea is that in a glassy material, there are atoms which can 
be in any of two neighbouring equilibrium positions. Let e be the spac-
ing between two such levels, and N(£)As be the number of two-level 
systems in the specimen with £ lying in the energy interval [£, s + As]. 
The total heat capacity is 

/•OO 

C= / N(s)C2(e/kBT)ds. (11.8) 
Jo 
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Ciis/k^T) *s negligible when kBT > ^ o r k^T <£ e, i.e. on either side 
of the Schottky peak. If N(s) is a smoothly varying function of £ we 
can take N(£*), with e* ~ kBT, outside the integral in eq. (11.8). Then 

C = (n2/6)klN(s*)T. (11.9) 

The heat capacity in this model is linear in T, in accordance with the 
experiments. 

6. Order-disorder transformations 

Order-disorder transformations of various kinds form a central part of 
statistical physics. The matematical complexity may be enormous, even 
for very simplified models. Since the field is well covered in many texts 
(e.g. Ziman 1979), and since it would not be possible to take a discus-
sion to the same depth as in other chapters in this book, we just mention 
a few important points. 

Two problems of prime importance are the order-disorder transitions 
of spins in magnetic systems, and of atomic configurations in alloy 
lattices. In the first case we can (in the simplest Ising model) assign 
to each lattice site a spin which is either in a "spin-up" or a "spin-
down" state. The spins interact with their nearest-neighbours only, and 
one introduces different interaction energies for the three possible pairs; 
spin-up-spin-up, spin-down-spin-down and spin-up-spin-down. In the 
case of atomic ordering in an alloy with atoms A and B, one again 
assumes interactions with nearest-neighbours and introduces interaction 
energies EAA, ^BB and £AB- One, of several, approximate mathematical 
solutions to the statistical mechanics of these models makes use of the 
mean-field approximation. When applied to magnetic systems, it is usu-
ally referred to as the Curie-Weiss theory, or the (Weiss) molecular-field 
theory. In the atomic ordering case it is known as the Bragg-Williams 
model (although priority should perhaps have been given to Borelius, 
see Borelius 1934, Domb 1981). 

The heat capacity CdiS of an order-disorder transformation is very 
difficult to calculate in its full details for a realistic system. Roughly, it 
has the form of fig. 11.3. Although Cdis is poorly known, it always obeys 
the sum rule related to the entropy Sdis(T), 

poo 

Sdis(oo) - Sdis(0) = / [Cdis(T)/T]dT. (11.10) 
Jo 
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Fig. 11.3. A schematic representation of the heat capacity of a system with an 
order-disorder transformation at T = Tc. 

For instance, if an alloy Ai_cBc is completely ordered at low tempera-
tures, the entropy S&s(0) = 0. At temperatures so high that the atoms 
are randomly distributed over the lattice sites, the entropy per site is 

5dis(oo) = -kB{clnc + (1 - c) ln(l - c)}. (11.11) 

In the special case of an AB alloy (i.e. c = 0.5) we get SdiS(oo) = &B In 2. 
An analogous relation holds for the spin-disorder entropy in magnetic 
insulators. In metals, the question of persistent spin fluctuations above 
the Curie temperature is a matter of controversy. There seem to be large 
such fluctuations in Fe. 

7. Magnons 

In the Ising model of magnetism, mentioned above, magnetic excita-
tions correspond to the reversal of the spin at a particular lattice site 
(for spin 1/2). Such excited states are separated from the ground state 
by a rather large energy gap, and hence they are frozen out at low 
temperatures. However, when the spins of adjacent sites are dynami-
cally coupled to each other, there may be wave-like excitations, called 
magnons or spin waves. This is in close analogy to phonons. In an Ein-
stein model, which is reminiscent of the Ising model, the lowest excited 
state lies at a finite energy level above the ground state. When dynami-
cal coupling between the atoms is introduced, wave-like excitations are 



188 Ch. 11. Thermal properties of few-level systems and spin waves 

possible, in which each atom is displaced only a small amount relative to 
its neighbours, and the excitation energy can be very low. It lies outside 
the scope of this book to discuss magnons in detail and the reader is 
referred to elementary (Kittel 1996) and more advanced (Kittel 1987) 
accounts. Below we summarise concepts which are of importance for 
the thermal properties of solids. 

Consider a ferromagnetic insulator, with N regularly ordered atoms 
which have a spin of magnitude S. (Even for metallic magnetic systems 
there are several properties which are well described by the model of 
an insulator.) The lattice may also contain atoms which do not have 
a magnetic moment, but they are of no concern here. In the ground 
state (T = 0 K) all spins are aligned. The magnons (spin waves) are 
excitations characterised by a wave vector q, lying in the first Bril-
louin zone defined by the lattice of magnetic atoms. The energy of 
a magnon is written hcomagn(q, /). The index / distinguishes between 
different magnon branches for a given q. The terminology is taken over 
from phonons and one speaks of the acoustic magnon branch and (in 
the case of several magnetic atoms per primitive cell) optical magnon 
branches. However, the three polarisation directions for a given q in the 
case of phonons have no magnetic counterpart and there is only one 
"polarisation" mode for each q. We write for the magnon energy (when 
/ refers to the acoustic mode) 

ha)magn(qJ) = Da2q2. (11.12) 

D has the dimension of energy, and measures the strength of the 
magnetic coupling between adjacent spins, and a is a lattice parameter. 

In analogy to the Debye model, we shall assume that eq. (11.12) 
is valid for all q, and evaluate the magnon contribution Cmagn(7") to the 
heat capacity at low temperatures. The density of states in q-space is the 
same as for phonons; V/(2TT)3. The calculations closely follow those of 
the Debye model for the heat capacity, but with comdign{q) ~ q2 instead 
of the relation co(q) ~ |q| for phonons. We get 

Nkn A R r \ 3 / 2 f°° x5/2ex 

(Wi 
= 0.113Ar*B|-^-J , (11.13) 
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with N = V/a3. The integral (11.13) is related to f (2.5), where f is 
Riemann's £-function. A similar result is obtained for a ferrimagnet 
where not all the spins are of equal magnitude (Kouvel 1956). 

In an effective-medium model for a simple cubic lattice with nearest-
neighbour interactions, the Curie temperature Tc is related to D by 
(White 1970) 

kBTc = (S+l)D. (11.14) 

Within this approximation we can write 

Cmagn(T) = 0.U3NkB(S + l)3/2(T/Tc)^
2. (11.15) 

An entropy argument shows that eq. (11.15) cannot hold all the way up 
to T = Tc. We would get, with eq. (11.15), 

Smagn(^c) - / [Cm,gn/T]dT = 0.015NkB(S + 1 ) 3 / 2 , (11.16) 
Jo 

which is incorrect as the theory only applies at temperatures well below 
Tc. On the other hand, if there were complete spin disorder at T = 
7c, we would have an entropy Smagn(Tc) = NkB ln(2S + 1). For any 
reasonable magnitude of the spin 5, this is much larger than eq. (11.16) 
and the discrepancy cannot be explained by the relatively small short-
range order that still prevails above Tc. Near Tc, the heat capacity must 
be described by the order-disorder models (§6). 

If &>magn(q, 0 are the magnon frequencies for wave vector q and 
mode /, one may form a partition function 

Zmagn(q, 0 = X I e X P{[ _ / l ^magn(q , l)/kBT][n + 1/2]}, (11.17) 

and a corresponding Helmholtz energy 

^magn(q, 0 = ~kBT In Zmagn(q, /). (11.18) 

Then one could calculate, e.g. the magnetic heat capacity Cmagn in 
complete analogy to the case of lattice vibrations. Thus, 

/

x2ex 

— TT^magnMdtW, (H.19) 

(ex - \y 



190 Ch. 11. Thermal properties of few-level systems and spin waves 

where Fmagn(&>) is the density of states for the magnon frequencies a>, 
and x = hco/k^T. For a dispersion relation as in eq. (11.12), we recover 
eq. (11.15). Furthermore, if there is an energy gap A up to the lowest 
magnetic excitation energy, so that Fmagn(&>) is zero for hco < A, one 
gets 

Cmagn = C(T; A)exp(-A/kBT). (11.20) 

The formulation in eq. (11.18) can only be used at low temperatures. 
Actually, if it is formally taken to high 7\ one double-counts the con-
tribution to the heat capacity. Measurements of the heat capacity in rare 
earth and yttrium garnets (Harris and Meyer 1962, Guillot et al. 1981) 
exemplify how the interpretation of the data requires a low temperature 
collective description (i.e. magnons) and a high temperature (in fact, at 
1-10 K) Weiss molecular field approach. 

Magnons in antiferromagnets (i.e. with alternating spin directions in 
the ground state) are similar to the magnons of ferromagnetic insulators, 
but the dispersion relation corresponding to eq. (11.12) has the form 

/^magn(q) = tC^o)2 + (Daq)2]l/\ (11.21) 

where /too is a characteristic gap energy. In magnetically anisotropic 
materials, COQ ^ 0. Then the lowest excitation energy is finite, /too. 
The heat capacity at temperatures k^T <g /too will be that of two-level 
system (§2). When k^T ^> /too, the thermal properties are dominated 
by the excitations for which /too can be neglected compared to Daq, 
i.e. we can make the approximation that /too = 0. In that case, the 
heat capacity varies as T3. This is the same temperature dependence as 
for the phonons, a consequence of the fact that a>(q) ~ |q| for both 
phonons and magnons (in antiferromagentic crystals). At still higher 
temperatures, it is again necessary to use an order-disorder model. 

Example: heat capacity and magnetic entropy in GdCu2Si2. In the com-
pound GdCu2Si2, the Gd ions carry a magnetic moment through their 
/-electrons. The material is an antiferromagnet with Neel temperature 
TN = 11.9 K. The isostructural compound LaCu2Si2 is non-magnetic. 
The extraction of the magnetic part Cmagn from the total measured heat 
capacity Cioi = Cmagn + Cvib + Cei requires knowledge about the vi-
brational and electronic contributions. Bouvier et al. (1991) measured 
Ctot of GdCu2Si2 and LaCu2Si2, and assumed that they were essentially 
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Fig. 11.4. The magnetic part of the heat capacity C of GdCu2Si2 may be estimated as 
the difference in heat capacities C of GdCu2Si2 and LaCu2Si2. After Bouvier et al. 

(1991). 

the same, except for Cmagn. Thus, by subtraction, they obtained Cmagn 
as in fig. 11.4. A detailed theoretical account of Cmagn(T) would be 
very difficult. However, in spite of such difficulties, the total magnetic 
entropy at high temperatures, 

^magi = f 
JO 

[Cm a g n( r ) / r ]d7\ (11.22) 

was found to be very close to the expected value kB ln(27 + 1) = kB In 8 
per Gd ion, derived from the total angular quantum number J = 7/2 for 
the 4/-electrons in the Gd ion. 



CHAPTER 12 

MELTING AND LIQUIDS 

1. Introduction 

It is a widely held, but erroneous, view that melting occurs at a tem-
perature 7fus where the solid structure becomes dynamically unstable. 
Many different physical reasons have been given for such an instability. 
For instance, it has been suggested (e.g. Born 1939 and others) that a 
shear modulus, which normally decreases steadily with T due to anhar-
monic effects, vanishes at 7fus. However, experiments show that elastic 
constants do not extrapolate to zero at Tfus. Another idea is that the 
free energy for the formation of dislocations becomes zero at Tfus (e.g. 
Kuhlmann-Wilsdorf 1965). The liquid would then be described essen-
tially as a solid penetrated by a very dense network of dislocations. It 
has also been suggested that the vacancy concentration becomes so high 
at TfUS that the lattice collapses (Gorecki 1974), while the Lindemann 
(1910) melting criterion (Chapter 19, §6) focusses on the magnitude 
of the vibrational displacement of the atoms as the cause of a lattice 
instability. These and other melting mechanisms have been thoroughly 
reviewed by Boyer (1985) and Poirier (1991). 

From a thermodynamic point of view, a theory of melting should 
consider the Gibbs energy of both the solid and the liquid phases, 
and find that temperature at which Gsoi(r) = Gnq(T). This does not 
necessarily exclude a description with contributions to G invoking a 
dynamical instability. However, a straightforward approach to the free 
energy gives a good account of Tfus, for instance as demonstrated in 
work on Na (Stroud and Ashcroft 1972, Holian et al. 1983), Al (Straub 
et al. 1994) and Mg (Moriarty and Althoff 1995). Molecular dynamics 
calculations, relying on a semiempirical interaction between the atoms, 
may yield a reasonable value for Tfus, e.g. as in calculations for Cu 
(Sadigh and Grimvall 1996). 

192 
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Fig. 12.1. The Gibbs energy G = H - TS for the solid (fee) and the liquid phases of 
Al, in the vicinity of the melting temperature 7fus. 

Figure 12.1 shows the Gibbs energy G(T) of fee and liquid Al at 
ambient pressure and in the vicinity of rfus, based on recommended 
data (JANAF thermochemical tables 1985). The scale is chosen so that 
Gsoi = 0 at 0 K. It is obvious that the melting temperature, i.e. the point 
of intersection between Gsoi and Giiq, will move significantly even for 
small changes in Gnq. For a long time, it was therefore difficult to get 
a good theoretical prediction of the melting temperature, and it is still a 
demanding task (cf. the references above). 

In this context we note that although the Gibbs energies of the solid 
and the liquid are equal at Tfus, there is an energy barrier between the 
states. The dynamics of the melting process may involve atomic motions 
that can be described as characteristic of an incipient instability. If Tfus 

actually coincides with the temperature at which the solid phase be-
comes dynamically unstable, it has no meaning to continue Gso\ beyond 
Tfus, as in fig. 12.1. In a dynamically unstable structure, the vibrational 
part of the entropy is undefined, and the Gibbs energy G = H - TS has 
no interpretation as a quantity describing the energy of a (metastable) 
state. 

2. Entropy of fusion 

The entropy of fusion (entropy of melting) A5fus is directly related to 
the difference in slope in the plot of G(T) for the solid and the liquid 
phases (cf. fig. 12.1); 
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function of the melting temperature rfus. The dashed line is Richard's rule. Data from 

Barin(1989). 
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The major contribution to A5fus usually comes from the positional dis-
order in the liquid state. It is difficult to account for quantitatively, but 
is accessible, for instance, through molecular dynamics calculations. 
Experimentally, it is found that ASfus is approximately kB per atom for 
many elements (Richard's rule), but fig. 12.2 shows that this is not a 
universally valid result. Some A S^AB-values in the figure are con-
siderably smaller than 1. There can be two simple reasons for such a 
behaviour. The liquid may retain some local ordering near rfus, remi-
niscent of the solid structure, which gives a lower Suq than in a more 
disordered phase. Another possibility is the development of partial dis-
order already in the solid, through some kind of lattice defects, which 
would increase Ssoi and, hence, decrease ASfus/kB. CaF2 exemplifies a 
solid where there is a transition to a phase of high entropy just prior to 
melting. 

The elements Si, Ge, Sb and Bi and (as examples) the III-V semi-
conductors GaAs and InP all have exceptionally large ASfuS/fcB. The 
essential explanation is the different chemical bonding in the solid and 
the liquid. The solids are semiconductors (Si, Ge, III-V compounds) 
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or semimetals (Sb, Bi) while the liquid states are metallic. In fact, if 
solid Si and Ge had been free-electron-like metals, like Pb in the same 
column in the Periodic Table, a very crude scaling argument suggests 
that they would have Debye temperatures 6D which are about 60% of 
what is observed in the semiconducting state (Grimvall, 1977). Because 
vibrational entropies contain a leading term 3&B \n(T/6iy) per atom (eq. 
(7.24)), such a difference in #D would account for about 1.5&B of the 
anomalous A5fus. 

Electronic excitations can usually be neglected in A5fus. In metals 
with an electron density of states N(E) which is not varying much 
within an approximate energy interval ±2kB T around the Fermi energy 
EF, one has for the electronic part, (eq. (10.16)); 

In1
 ? 

(A5fus)el = — ^rfus[Miq(£F) - Nsol(EF)l (12.2) 

This term gives an essential contribution to (ASfus)totai only if NS0\(E?) 
and N\[q(E^) are significantly different and, at the same time, 7fus is 
large. In free-electron-like systems none of these conditions are ful-
filled. Furthermore, most transition metals with a high 7fus do not show 
a large difference in Nso\(E^) and N\[q(EF). Noteworthy exceptions are 
Cr, Mo and W. Their strong bonding in the solid (bcc) phase, and 
the related high Tfus, is due to the fact that the Fermi level E? lies in 
a pronounced minimum in N(E). This is an effect that appears in a 
half-filled electron d-band in the bcc lattice structure, and it is not as 
pronounced in the atomically disordered liquid. As an illustration, as-
sume that N\[q(EF)/NS0\(EF) as in fig. 12.3. That would give (ASfus)ei ~ 
0.5£B/atom in W. Silicon and germanium, with an anomalously large 
ASfus, have Nso\(E¥) % 0. With a free-electron-like N\[q(E¥) (cf. 
references below), eq. (12.2) contributes only M3.1&B/atom. 

The sharp structures found in N(E) in many crystalline metals, 
caused by the periodic structure of the lattice, are absent in liquid met-
als. This is illustrated in fig. 12.3 which shows N(E) for bcc W (solid 
lines; from Einarsdotter et al. (1997)) and a tentative N(E) for liquid 
W (dotted curve) based on a comparison with calculated N(E) for bcc 
and liquid Cr (Jank et al. 1991) and Mo (Moriarty 1994). For theoretical 
calculations of N(E) in liquids, see, e.g. Jank and Hafner (1990) for Be, 
Mg, Zn, Cd, Hg, Ca, Sr and Ba; Hafner and Jank (1990) for Al, Ga, In 
and Tl; Hafner and Jank (1992) for As, Sb and Bi; Jank et al. (1991); 
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Fig. 12.3. The electron density of states N(E) for bcc and liquid W, in arbitrary units. 

Bose et al. (1993) for several 3d- and 4d-transition metals; Wang et al. 
(1992) for Si; Wang et al. (1993) for C; and Kulkarni et al. (1997) for 
Ge. 

Wallace (1997) analysed the entropy of fusion of 25 elements, that 
are metallic at least in their liquid state. In order to isolate the contri-
bution to ASfUs that comes from the atomic configurational disorder, he 
used Griineisen parameters to convert the experimental entropy 5soi in 
the crystalline state just below the melting temperature to the value 5soi 
would take at the density of the liquid phase. It was found that the dis-
order, at equal densities for the solid and the liquid, contributes to ASfus 

an almost universal value of (0.80 ± 0.1)&B per atom. This is in good 
agreement with Richard's rule. When the actual value of ASfus differs 
from the universal value caused by disorder, it has other explanations, 
as discussed above. 

Finally we note that for iron ASfus = 0.9&B/atom is about the same 
as for most non-magnetic elemental metals, in spite of the magnetic 
entropy ~l&B/atom due to spin disorder in bcc as well as fee Fe (Grim-
vall 1989). The existence of a magnetic entropy also in the liquid phase 
explains why ASfus is not anomalous for Fe. 

3. Liquid heat capacity 
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At the melting temperature, the difference in heat capacity Cp between 
the solid and the liquid phases is rather small, and it can be of either 
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Table 12.1 

The discontinuity in the heat capacity at the melting transition, expressed as 
(Cp,liq~cP.sol)/3*B (P^ atom) 

Cu 

Ag 

Au 

Na 

Mg 

Al 

Pt 

Fe 

sign. See table 12.1 giving (Cp^q — CP,SO\)/31CB per atom, based on data 
from Barin (1989). 

There is not much experimental information on Cp in liquids well 
above 7fus. Measurements on free-electron-like elements with low melt-
ing temperatures and (less accurate) data for elemental transition metals 
(e.g. Pottlacher et al. 1993) indicate that CP(T) is usually almost 
independent of T over a wide range of temperatures. Theoretical cal-
culations using molecular dynamics for Cu (Sadigh and Grimvall 1996) 
corroborates this result. The heat capacity at constant volume, Cy(T), 
decreases with T. It approaches ~2&B/atom at high T through the grad-
ual loss of shear resistance, which leaves four degrees of freedom (three 
kinetic energy variables and one term referring to compression poten-
tial energy) instead of the six degrees of freedom for three-dimensional 
harmonic oscillators (Wallace et al. 1982). Figure 12.4 shows the lattice 
parts of CP(T) and CV(T) for Na and Hg. The molecular dynamics 
calculation for Cu mentioned above gives the same picture. 

4. More on lattice instabilities 

Figure 12.5 shows, with a full-drawn curve, the experimental heat ca-
pacity Cp in solid Cu, including suggested values in the superheated 
region (JANAF thermochemical tables 1985), and a tentative extrapo-
lation (dashed) to high temperatures. It also shows, with a full-drawn 
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Fig. 12.4. Heat capacities Cp and Cy for K and Hg (per atom) plotted versus 
the reduced temperature T/Tfus, as derived from experimental data. After Grimvall 
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Fig. 12.5. The recommended (JANAF thermochemical tables 1985) heat capacity Cp 

for solid Cu (solid line) with a tentative extrapolation to higher T (dashed), and the 
calculated (Sadigh and Grimvall 1996) Cp for liquid Cu with a tentative extrapolation 

(dashed) into the supercooled region. 

curve, the heat capacity in the liquid phase (Sadigh and Grimvall 1996) 
and a tentative extrapolation (dashed) in the supercooled region. 

If Cp of the solid continued to increase with T as in Fig. 12.5, while 
Cp of the liquid remained essentially constant, the solid phase would 
become more stable than the liquid at some temperature T$ well above 
Tfus. (The Gibbs energy decreases faster with T for the phase with the 
larger heat capacity.) A re-entering solid phase is of course unreason-
able, and some kind of a lattice instability must occur below Ts. In fact, 

l i i r 

j i i L 

T 1 1 1 r 
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there may be several different such instabilities (Stroud and Ashcroft 
1972, Pietronero 1987, Fecht and Johnson 1988), but not much is known 
about them. 

The extrapolation of Cp in the liquid to temperatures below 7fus, has 
been the subject of much modelling, but the situation is still unclear. 
When the liquid has been undercooled to a temperature Tg, there will be 
a glass transition, characterised by an increase of the viscosity by many 
orders of magnitude, so that the material transforms to a glassy solid 
state. 



CHAPTER 13 

EQUATION OF STATE AND THERMAL EXPANSION: 
MACROSCOPIC RELATIONS 

1. Introduction 

Arguably, the best known non-trivial relation in thermodynamics is the 
ideal gas law, 

pV = NkBT. (13.1) 

This is an equation-of-state (EOS), i.e. a relation between the pres-
sure /?, the volume V and the temperature T. For gases, pressure is a 
very important variable. In materials science, on the other hand, pres-
sure may seem to be of little importance, with an obvious exception 
being geophysical applications. For instance, we noted in Chapter 1 
that the standard thermodynamic properties are now recommended to 
be evaluated at 105 Pa (1 bar) while they were previously referring to 
the "normal" ambient pressure, 101,325 Pa (1 atm). For example, the 
two reference levels for the pressure lead to a difference in the standard 
entropy S^s 15 °f aluminium by ~10~6 J/(K mol), to be compared with 
the full value S^ 15 = 28.275 J/(K mol). Even if we take zero pressure 
instead of 101,325 Pa, it would increase S^ 15 by less than 0.001 J/(K 
mol). Pressure is a variable that is usually not even mentioned in tables 
of properties like the electrical and thermal conductivity. Yet almost 
every textbook on solid state physics contains the formula 

CP-CV = VT/32KT, (13.2) 

where Cp and Cy are the heat capacities at constant pressure and vol-
ume, /? is the cubic expansion coefficient and KT is the isothermal bulk 
modulus. The main reason is a fundamental difference between exper-
iments and theory. Experiments are easily performed at constant (e.g. 

200 
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ambient) pressure and it can be quite difficult to impose the condition 
of constant volume instead. Theories of solids, on the other hand, are 
most easily formulated at constant volume. There is a need to convert 
one set of data to the other. (One may note in this context that "heat 
capacity at constant volume" is not quite the same as "heat capacity at 
fixed volume"; see §7.) 

At a given temperature, the ideal gas law provides a universal re-
lation between the pressure and the volume. When this is not accurate 
enough one may resort to a vast number of equations-of-state, the best 
known being the van der Waals equation that contains two parameters 
specific for the considered gas. For solids there is no universal equation-
of-state corresponding to the ideal gas law but there are numerous 
equations-of-state containing parameters characteristic of the material, 
for instance the Murnaghan equation. 

Finally, it should be remarked that one may distinguish between 
"thermal equations of state" that give a relation of the form p = 
p(V, T) and "caloric equations of state" that give a relation of the form 
U = U(V, T) or H = H(p, T). Taken together, they give a complete 
thermodynamic description. Here we will be concerned mainly with the 
thermal equation of state, and often the temperature dependence will be 
ignored so that we just formulate a. p — V relation. 

This chapter presents thermal equations-of-state and closely related 
thermodynamic relations where the approach is macroscopic, i.e. with-
out any attempt to connect explicitly to lattice vibrations and conduction 
electrons. Such aspects are considered in the next chapter, on thermal 
expansion. 

2. Power series in pressure or volume 

Let V(p, T) be the volume of a specimen and VQ its volume at p = 0 
and temperature T. We expand V(/?, T) in powers of p\ 

V = V0{1 + ax(T)p + a2(T)p2 + a3(T)p3 + . - . } . (13.3) 

The isothermal compressibility KT = (—l/V)(dV/dp)T is usually 
taken in the limit of zero (^atmospheric) pressure. Then (K is the bulk 
modulus) 

KT = K~1 = -ax(T). (13.4) 
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Keeping only the first three terms in the series expansion eq. (13.3) gives 

VIV0 = 1 + ax(T)p + a2(T)p2. (13.5) 

If we consider a fixed temperature and regard V (p = 0) = VQ as known, 
eq. (13.5) is a two-parameter equation of state. However, there are other 
two-parameter relations between V and p at fixed T. For instance, we 
can assume that the isothermal bulk modulus KT varies linearly with p\ 

KT(p; T) = K0(T) + K'Q{T)p. (13.6) 

Here KQ(T) = dKT(p, T)/dp is evaluated at p = 0. As seen in the fol-
lowing example, the dimensionless parameter KQ typically is between 
4-6. (Many authors use the symbol B for the bulk modulus and hence 
introduce a quantity denoted Bf

0.) 
In analogy to the approach above we may also expand the pressure 

in powers of the small quantity (Yo — V)/V\ 

, = W T )(*ZX)+ W J 1(^)V... (B.7) 

If V — Vo from eq. (13.3) is inserted in eq. (13.7), and the coefficients 
of equal powers of p on the left- and righthand sides are put equal, we 
obtain relations between al5 a2 and b\,bi. In particular, when only the 
lowest-order terms are kept, 

KT =K~1 ^bx. (13.8) 

Example: the parameter K'0 in real solids. We noted in Chapter 4 (§6) 
that for cubic lattice symmetry, (dK/dp) can be expressed in third-order 
elastic coefficients as 

fdK\ , cm + 6c no + 2ci23 
— =KfJT) = —— — —, (13.9) 

\dp)p=, oV 9K ' 

where K = (c\\ + 2ci2)/3. With experimental data for elastic coeffi-
cients from Every and McCurdy (1992) we obtain the results in table 
13.1. Here we have ignored the small difference at room temperature 
between isothermal (K'0) and isentropic (the experimental c/7 and Q ^ ) 
quantities. For many materials, ^ ~ 4-5. It is worth noting how little 
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Table 13.1 

The dimensionless parameter KQ = (dK/dp), and the bulk modulus K (in GPa), as 
calculated from experimental second- and third-order elastic coefficients 

Al 

K 11 

a Diamond 

Fe Nb Ge Ca GaAs NaCl MgO CaF2 

5.1 6.8 4.0 4.9 4.6 4.5 3.9 5.3 

167 170 75 442 75 25 160 86 

KQ varies from one material to another, when compared with the much 
larger variation in the magnitude of the bulk modulus itself. 

3. The Mumaghan equation of state 

From the definition KT(p) = — V(dp/dV)T, and with the notation 
VQ = V(p = 0;T), we find from eq. (13.6) Murnaghan's (1944) 
logarithmic equation-of-state, 

ln[V0/V] = - L ln[l + {K'JKQ)p]. (13.10) 

Often it is written in the mathematically equivalent form 

P=K 
^ - i 
V 

(13.11) 

It should be remarked that our simple derivation of eq. (13.10) is not 
quite satisfying from a physical point of view but a correct treatment 
yields the same mathematical expression as eq. (13.10). 

At low pressures, the expressions (13.3) and (13.10) are of course 
equivalent. (Keep only the term linear in p and use the fact that K~l = 
—0i.) It has been empirically established (Anderson 1966b) that for 
many solids, Murnaghan's equation gives a better representation than 
the polynomial expression (13.3), even if p3 and p4 terms are included 
in the polynomial. 

Since KT = -V(dp/dV)T we get, from eq. (13.11), 

KT(V;T) {Vo\K°(T) 

1 x . (13.12) KT(V0;T) \V 
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We can also use p = —(dU/dV) and eq. (13.11) to get a relation for 
U as a function of V, in analogy to the functions £/COh(V) considered 
in Chapter 1. However, U(V) obtained in this way only contains para-
meters K0 and KQ referring to properties of the solid at the equilibrium 
volume. Therefore, it only describes U(V) for small V — Vb- In fact> 
this U(V) diverges for large V and does not give a relation to cohesive 
energies. 

The quantity KQ(T) = dKT(p, T)/dp is temperature dependent; 
often increasing with T but it may also decrease. Fernandez Guiller-
met (1995) has summarised and extended work on this temperature 
dependence in relation to Murnaghan's equation-of-state. 

4. A universal binding energy relation 

In Chapter 1 (§2) we introduced a relation U(X) that gives the vari-
ation of the total energy of the solid as a function of a parameter X 
that can be, for instance, a lattice parameter. From U(X) we get the 
cohesive energy £/COh and the bulk modulus K. The example of U(X) 
shown in fig. 1.1 used the familiar 6-12 Lennard-Jones potential. We 
may call U(X) a cohesive-binding-energy relation. There is an empirical 
cohesive-binding-energy relation that has been found to account for a 
large number of experimental data for cohesive properties (Ferrante et 
al. 1983, Rose et al. 1981, 1983, 1984). In its three-parameter form it is 
assumed that the volume Vb a nd the bulk modulus ^o at the equilibrium 
conditions, and the cohesive energy C/coh, are known. Then the binding 
energy relation has the form of the mathematical Rydberg function; 

U(X)/Ucoh(X) = - ( 1 + A.)exp(-A.). (13.13) 

The scaled length parameter X is 

£coh \ ^0 / 

where R/R0 = (V/V0)1/3. From eq. (13.13) and p = -dU/dV we 
easily derive an equation-of-state. The relation (13.13) is known as the 
universal-binding-energy relation (UBER). It describes well the shape 
of the binding-energy curves for a wide class of systems, including 
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ordinary bulk cohesion of solids, diatomic molecules, chemisorption 
and adhesion (Ferrante et al. 1983). There is much work discussing this 
type of relation; see for instance an extension to relations with more 
parameters (In Ho Kim et al. 1992). 

5. Other equations-of-state 

There are numerous other equations-of-state (Holtzapfel 1996, Poirier 
1991, Anderson 1995). One of the best known is the Birch-Murnaghan 
equation-of-state, in which Birch (1938, 1947, 1952) extends a theoret-
ical basis by Murnaghan (1937). It can be written 

(13.15) 

The form in eq. (13.15) is called the Birch-Murnaghan equation-of-state 
of third order. Earlier, and following Birch, the quantity (3/4) (4 — KQ) 
was denoted £. With KQ — 4 we get the corresponding equation of 
second order. 

The Mie-Gruneisen equation-of-state is briefly treated in Chapter 
14 (§4.1). Thomsen and Anderson (1969) discussed the partial lack of 
consistency between the Mie-Griineisen equation and other equations-
of-state like the Murnaghan equation, and warn against the simultaneous 
use of equations-of-state that are not mutually consistent. 

6. Some important thermodynamic relations 

6.1. Definitions 

For later reference we define some important thermodynamic quantities 
and express them as derivatives of thermodynamic functions. They re-
fer to isotropic systems (including cubic lattice symmetry). Anisotropic 
quantities are considered in §8 and §9. 
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The heat capacities at constant volume, and at constant pressure, are 
defined by 

c' = {jf)r
 = T{sf)r-

 <1316) 

SdH\ /dS\ 
c'={*r)rT{»f); <m7) 

The isothermal and the isentropic (also called adiabatic) compressibil-
ities K and bulk moduli K are defined by 

1 1 / 9 V \ 1 /d2F\~l 

-T = (KrV = - ? ( ¥ ) = ? ( j ^ ) . (13.18) 

, i /av\ I /32t/\ ' -^-'--vy.-visvO,- <i3i9) 
Thermal expansion is decribed by the cwWc expansion coefficient. It can 
be expressed in the Helmholtz energy F, or the entropy S; 

1 / 3 V \ 1 (3p/3Dv 
V V 9 7 7 , V(3p/3V)r 

i / a2F \ l / ^ 5 ^ 

where we have used 

' =-(£),• 
There is a simple expression for /JJCV; 

Kj 

i-

(dp 

(13.20) 

(13.21) 

The thermodynamic Grilneisen parameter YQ is defined by 

KG = - 7 ; — • (13.23) 
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This is a very important quantity, which can also be written 

v (dv/dT\ v(dp/dT)v v(ds/dV)T yG = = = . (13.24) y Cv (dV/dp)T Cv Cv 

The Griineisen parameter YG is sometimes called the Griineisen con-
stant. However, it may vary by a factor of two or more as a function 
of 7\ thus being far from a constant, and should rather be called the 
Griineisen function YG(T, V). Still, YG varies much less than Cy and fi 
as a function of T. (The name Griineisen ratio has also been used, for 
reasons that are obvious; cf. eq. (8.6).) 

Besides the Griineisen parameter there are other useful dimension-
less parameters that describe thermoelastic behaviour. One of them 
is the Anderson-Griineisen parameter 8 (Griineisen 1912, Anderson 
1966a, Barron 1979). It was earlier called the second Griineisen pa-
rameter. We define Anderson-Griineisen parameters 8T and 8S by 

)KT\ 1 (dLA x 
8T = — - , (13.25) 

8s = —*-(™±) . (13.26) 
PKS \dT ) p 

Using thermodynamic identities we obtain the relations 

with an analogous relation for 8$. 
In the example in Chapter 8 (§3.3), we considered Slater's (1940) 

form of the Griineisen parameter and found (when the Poisson ratio 
does not vary with the volume V) that (din AT/dln V) = —2y(—3) — 
1/3. If we, crudely, identify y(—3) with the thermodynamic Griineisen 
parameter yG we get 8 = 2yG + 1/3. This is not a very precise relation 
but it supports the experimental result that 8 ~ 4 for many materials, 
and also demonstrates that 8 and YG a r e related. 
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6.2. Cp — Cy and related quantities 

Using macroscopic thermodynamics, in particular Maxwell relations, 
one can derive a number of useful relations between Cp, Cy, KT, Ks, 
KT, Ks and /?. Most of those quoted below, and several others, are given 
by Wallace (1972). The well-known relation 

Cp-Cy = VTP2KT (13.28) 

may be rewritten as 

CI 
Cp-Cy = -^-ClT = AC2

pT. (13.29) 

The merit of the last formulation is that the parameter A is often approx-
imately constant, over a wide range of temperatures T > (fa. Therefore, 
ACp T can be used to extrapolate Cp — Cv. When A is regarded as a con-
stant, eq. (13.29) is known as the Nernst-Lindemann relation (Nernst 
and Lindemann 1911). Another relation of practical importance is 

Cp = Cv(l + ^ y ^ ) = CV(1 + PYGT). (13.30) 

Often one calculates the bulk modulus from the elastic coefficients cy 
(Chapter 18, §3). Because the experimental ctj usually refer to isen-
tropic conditions, it is Ks that is obtained. Then, when reducing Cp to 
Cy, one may use 

Cp =Cr(,+xi0iy ( 1 , 3 1 ) 
The compressibilities at constant temperature and at constant entropy 
are related by 

KT-KS = ^ ^ - - (13.32) 
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The corresponding bulk moduli obey 

KS-KT = KTKS(KT - Ks), (13.33) 

and 

/ VTB2KS\ Ks = KTll+ £ S\ = KT{\ + PYGT). (13.34) 

Comparing eq. (13.31) and the first part of eq. (13.34) gives 

Cp _ Ks _ KT 

Cy KT KS 
(13.35) 

It follows that the thermodynamic Gruneisen parameter may be written 

PVKT PVKS YG = —— = —^~. (13.36) 

The relations (13.31) and (13.34) imply that 

Cp > Cv; Ks > KT. (13.37) 

Example: Cp, Cy, Ks and KT in aluminium. Figure 13.1 shows Cp 

and Ks — (en + 2cn)/3 as obtained from experiments and Cy and 
KT — Ks(Cy/Cp), as calculated from the relations above. 

7. Thermodynamic properties reduced to fixed volume 

Experiments are usually carried out at constant (i.e. ambient) pressure, 
while theoretical calculations are more conveniently performed at con-
stant specimen volume. However, there is sometimes confusion about 
what is meant by "constant volume". In the heat capacity Cy(T) one 
takes the ratio AU/AT of infinitesimal quantities AC/ and AT at a 
certain temperature 7\ while the volume V is kept constant. If the ratio 
is taken at a different temperature T2, the volume is again kept constant 
but normally V(T\) ^ V(?2)- One therefore must distinguish between 
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Fig. 13.1. Cp and Cy, and Ks and Kj = (Cy/Cp)Ks for aluminium. 

CVQ(T), which is Cy reduced to a fixed volume Vb» a nd the conventional 
CV(T) = T(dS/dT)v. The relation 

\dV ) T \dTdVj \dT2J} 
(13.38) 

gives, to lowest order in (V - V0)/V0 (cf. Wallace 1972), 

Cv(T)-CVo(T) = (V-V0)T[KT(dl3/dT)p 

+2p(dKT/dT)p + p2KT(dKT/dp)Tl 

(13.39) 

Calculations by Wallace (1972) show that there is a strong cancellation 
among the terms on the righthand side of eq. (13.39). For instance, at 
T = 2#D, CVo is larger than Cy by 2% in KC1 and the difference changes 
sign at T ~ 1.40B. See also fig. 13.2 for W. 

The reduction of the energy and the entropy to fixed volume is given 
by 

U(T, V) - U(T0, Vo) I CVo(T')dT' 
JTQ 

+ I 
JVo 

d 
dT 

\p(T,V')l 

T J 
dV, (13.40) 
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S(7\ V) - S(T0, Vb) = / ^£P-dT' 
To ?' 

f 
JVC) 

+ l d^V\y'. (13.41) 
<v0 dT 

To lowest order in (V - V0)/V, we may obtain S(T, V) - S(T, V0) 
directly from eq. (13.24) as 

S(T,V)-S(T,Vo) = (V-V0)yGCv/V0 

= (V - V0)PKT. (13.42) 

At room temperature, 5 ~ 2NkB (very roughly). Then, with yo ~ 
1.5 and CV ~ 3Nk^, we obtain, as a crude estimate, [S(V) — 
S(V0)]/S(V0) ~ 2(V - V0)/Vo. Thus, the difference between room 
temperature values of S(V) and S(Vo) is often ~ 1 % if V — Vb is due to 
the thermal expansion from 0 K to room temperature. 

The expansion coefficient /? depends on the volume as (cf. eq. 
(13.22)) 

(dp{T,V)\ 

\ dv ) T -
1 /d2S(V, T)\ 

KT V dV2 ) 

1 (dKT\ (dS 
K2 \ 3V )T\dV 

(13.43) 

To lowest order in V — VQ we have 

V - V 0 1 /dKT\ 
/ , ( V ) - « W = - j r _ ( _ ) ( j . (13.44, 

The temperature dependence of elastic constants is discussed in Chapter 
4 §8. 

Example: heat capacity of tungsten, reduced to fixed volume. Using the 
formalism above, and available experimental data, Fernandez Guiller-
met and Grimvall (1991a) obtained the heat capacity of tungsten at fixed 
volume Vb (the volume at 298 K) (fig. 13.2). An interpretation in terms 
of anharmonic shifts in the Debye temperature 9D(0) is given in the 
example in Chapter 8 (§6). 
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Fig. 13.2. The total heat capacity of tungsten at constant pressure, Cp, and the heat 
capacity Cy0 which is reduced to fixed volume VQ = V(300 K), as a function of the 
reduced temperature T/Tfus, where Tfus = 3695 K is the melting temperature. Also 

shown is Cy0 with an electronic term subtracted, to yield Cy0(vib). 

8. Thermal expansion in anisotropic solids 

Quite generally, the linear expansion coefficient, a, is a symmetric 
tensor of rank two. It is related to the symmetric strain tensor e by 

£ l l £12 £13 \ / <*11 «12 « i 3 

£l2 £22 £23 J = I <*12 «22 «23 | A T, 

£l3 ^23 £33 / \ <*13 <*23 <*33 

(13.45) 

where e^ are the strains caused by a temperature increment AT. The 
cubic (i.e. volume) expansion coefficient, /*, is obtained through the 
relation AV/V = en + e22 + £33- One has 

ft =aU +«22+«33-

A general definition of atj is 

aU = v 
dT 

(13.46) 

(13.47) 

The derivative is taken with all components atj of the stress tensor held 
constant. Usually, a refers to constant (ambient) pressure /?, and we 
write 

(<*U)P = I Jf (13.48) 
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Table 13.2 

Non-vanishing a/y and a^ in different crystal symmetries 

Symmetry 

Cubic 

Hexagonal 

Trigonal 

Tetragonal 

Orthorhombic 

Monoclinic 

Triclinic 

Tensor components a/y 

«11 =<*22 =(X33= & = P/3 

«11 = «22 =a±;a33 = «|| 

ail ,c*22>a33 

a i l . « 2 2 . a 3 3 » a 1 3 

a i l , a 2 2 . a 3 3 » a 1 3 » a i 2 

In Voigt's notation 

cq = «2 = 0L3 = a 

a\ = a?2 = aj_; 0*3 = ay 

a i , a 2 , a 3 

cq, «2, «3 , 0*5/2 

a i , a 2 , a 3 , « 5 / 2 , a 6 / 2 

Table 13.2 gives the independent of/7 in different crystal symmetries. 
It also gives atj expressed as c^, with only one index /z = 1-6, using 
Voigt's contraction scheme (table 3.1). 

The linear expansion coefficient in a certain crystallographic direc-
tion [hkl] is 

ot[hkl] = n\oi\\ + ^2^22 + ^3^33- (13.49) 

Here, n\, n^ and ^3 are the direction cosines of [hkl]. In axial crystals 
(hexagonal, trigonal and tetragonal lattices), 

a[hkl] = (nx + n2)ctu + n3oi33 = a±sin 9+ a\\ cos 6 

= <XJ_ + (of|| - a±) cos2 0, (13.50) 

where 0 is the angle between [hkl] and the c-axis, and we have used the 
result that n\ + n\ + n\ = 1. 

Example: thermal expansion in some axial crystals. Table 13.3 gives 
aj_ and a\\ in some metallic and non-metallic crystals, with data from 
Touloukian et al. (1975, 1977). The cubic expansion coefficient is 

j8 = 2a_L+a„. (13.51) 

Note that magnesium (hep structure) is almost isotropic in its expansion 
properties, while hep zinc, which is also a divalent metal in the same 
column in the Periodic Table as Mg, is very anisotropic. 



214 Ch. 13. Equation of state and thermal expansion: macroscopic relations 

Table 13.3 

Linear thermal expansion coefficients in some axial crystals (at 293 K) 

Be Mg Zn Zr £-Sn Ru02 Si02 Al203 

a± [1(T6 K"1] 12 25 14 4 16 6 12 6 

an [1(T6 KT1] 10 26 64 7 33 - 2 7 5 

9. Gruneisen parameters in non-cubic lattices 

9.1. General relations 

In an anisotropic solid, Gruneisen parameters yGj are defined as a gen-
eralisation of the relation y = (V/Cy)(dS/dV)T for the isotropic case. 
We have (see, for example, Wallace 1972, Barron et al. 1980 and eq. 
(8.32)) 

YGJ = ^ (^) , (13.52) 
Ce \d£iJT^ 

where C£(T) is the heat capacity at constant strain £, a quantity that is 
further discussed below. The index e[ in the derivative means that all 
strain components except et are held constant. 

The generalisations of the relations YQ = VfiKT/Cv = Vf}Ks/Cp 

are, with Voigt's notation for aM, 

YG i = (V/C£)J2(cij)TCtj, (13.53) 
; = i 

6 

YG,i = (V/Ca)Y,(Cij)sctj. (13.54) 

There are six components of the Gruneisen parameter, yGj (i = 1-6). 
Ca is the heat capacity at constant stress a, and Q7 are elastic stiffness 
coefficients. The "inverse" relations to eqs. (13.53) and (13.54) are 

6 

ai = (C£/V)J2("ijhYGj, (13.55) 
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6 

<Xi = (CJV)J2(sij)sYGj- (13.56) 

We also note the following result (e.g. Musgrave 1970); 

(Sijh - (stjh = r
 J- (13.57) 

When all at > 0, which is often the case, 

(Cij)s > (ctjh, (13.58) 

(stjh > (Sij)s, (13.59) 

which should be compared with the general result that Ks > KT, Ks < 
KT (eq. (13.37)). 

Example: reduction of general formulae to cubic symmetry. As an illus-
tration we check that eqs. (13.55) and (13.56) contain the well-known 
relations (13.36) for a cubic lattice. Then, ot\ = oti — a^ = a, while 
oti = 0 when / = 4, 5 and 6. Furthermore, Cs = Cy. Hence, 

6 6 

0 = 3a = Y,"i = (CVYG/V) £ ( * , ) r = CvyG/(VKT). 
i = l 1,7 = 1 

(13.60) 

Here we have used the result from eq. (3.21) that l/Kj = J2(sij)r-
Similarly, from eq. (13.56), when yGJ = yG and with Ca = Cp, 

6 6 

0 = 3a = J2<*i = (CpYc/V) J > , 7 ) s = CPYG/(VKS). 
i=\ ij=i 

(13.61) 

We also easily see that eq. (13.57) for cubic lattices reduces to the 
correct result, eq. (13.32). Then KT — Ks = OC%)r ~~ (sij)s] = 
9a2VT/Cp = p2VT/Cp. 
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9.2. Griineisen parameters in hexagonal lattices 

An important special case is that of hexagonal lattice symmetry. (The 
same relations hold for trigonal and tetragonal lattices.) There are only 
two independent quantities a^, i.e. a± and a\\. Furthermore, there are 
two independent Griineisen parameters; (KG)_L and (YG)\\- Performing 
the summations in eq. (13.54) we obtain, for a stress corresponding to 
hydrostatic pressure /?, 

(YG)± = (V/Cp){[(cn)s + (cl2)s]*± + (da)*",,}, (13.62) 

(yo)n - (V/Cp){2(cl3)sa± + (C33)sct\\}. (13.63) 

The "inversion" of these relations gives 

« L = (Cp/V){[(sn)s + (SU)S](YG)± + (sl3)s(YGhh (13.64) 

an = (CP/V){2(S13)S(YG)± + (s33)s(YGhh (13.65) 

We may now write the cubic expansion coefficient as 

P = 2otL + a\\ = CPYG^IVKS, (13.66) 

with 

KChex = [2(K±)S(YG)±. + (K\\)S(YG)\\]/KS, (13.67) 

i.e. /G,hex is a weighted average of Y± and Y\\- The quantities K± 
and K\\ are properly defined compressibilities. Analogous relations for 
orthorhombic crystals are found in Barron et al. (1980). 

Let the axes of the hexagonal unit cell have the conventional lengths 
a and c. Then d£i = ds2 = da/a and d^3 = dc/c. Hence, we can write 

a± = (dlna/dT)p, (13.68) 

ay = (dlnc/dT)p. (13.69) 

Furthermore, 

(YG)± = a/2Ce)(dS/d\na)T,c, (13.70) 
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(yG)|| = ( l /Cf i )05/ainc) r , f l . (13.71) 

Munn (1969) has discussed the thermal expansion of Zn, Cd, Mg, Sn, In, 
Bi and Sb, which all have axial lattice structures. There is an empirical 
correlation that (YG)± > (XG)|| if (c/a) > (c/tf)ideai in the hep lattices. 

9.3. Generalisation ofCp — Cy to non-cubic lattices 

For isotropic materials, or crystals of cubic symmetry, 

CP-CV = VTP2KT. (13.72) 

Cp is the heat capacity measured with the stresses at = — p (i = 1, 2, 3) 
and or/ = 0 (/ = 4, 5, 6). Sometimes, eq. (13.72) is used to find Cy from 
the measured Cp. However, this Cy is not the heat capacity at constant 
dimensions of the crystallographic unit cell. Instead it refers to constant 
volume and isotropic stress, i.e. there will be changes in the shape of 
the unit cell. We shall denote this heat capacity C. Thus, 

Cy = CP-VTP2KT, (13.73) 

for a crystal of any symmetry. The generalisation of eq. (13.72) to 
anisotropic solids is (Truesdell and Toupin 1960, Barron and Munn 
1968) 

6 

CG-C£ = VTJ2 <Xi<*j(Cij)T- (13.74) 

Here, the heat capacity Ca refers to constant stress and Ce to constant 
strain. When the specimen is under a hydrostatic pressure p, we have 
CG — Cp. In theoretical calculations, it is attractive to assume that not 
only the total volume, but also the shape of the unit cell is kept constant. 
It is therefore of interest to know how much C£ differs from C calculated 
by eq. (13.73). In axial lattices one has (Barron and Munn 1968) 

Cv-C£ = 2(TC8/V)[(YG)± ~ (Ko)||]2
 ( 1 3 ? 5 

C£ (CU+CI2)T+2(C33)T-4(CI3)T' 

Finally we note the following inequality, valid for any lattice symmetry 
(Barron and Munn 1968); 

CP>CV> Ce. (13.76) 
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Table 13.4 

C — Ce in hexagonal lattices 

Material 

Magnesium (283 K) 

Zinc (283 K) 

Zinc (600 K) 

Zirconium (300 K) 

Graphite (1000 K) 

(KG)-L 

1.54 

2.15 

2.18 

0.86 

1.06 

(KG) || 

1.55 

1.98 

1.72 

1.03 

0.38 

(C - C£)/3NkB 

0.0000 

0.0004 

0.0084 

0.0012 

0.0029 

The last inequality becomes an equality if and only if y\ = Yi — K3-

Example: C — Ce in hexagonal lattices. Barron and Munn (1968) inves-
tigated C — Cs for several cubic solids. Table 13.4 is based on some of 
their results. 

9.4. Generalisation of KTCP = K$Cy to non-cubic lattices 

For an isotropic solid one has the equality KTCP = KsCy, but in an 
anisotropic solid KTCG ^ KSC£ in general. Then the definition of 
YG(T\ V) is not unique. We may consider 

yG(T; s) = /3VKT/C£ = (V/C,)05/aV)r,isotropics t ra in, (13.77) 

or 

yG(T; a) = PVKS/Ca = -(V/T)(dT/dV)s,isotropicstrcss. (13.78) 

The quantity yG{T\ s) has been discussed by Collins and White (1964) 
and YG(S; a) by Barron and Munn (1967). For an isotropic solid j/(q, s) 
is a constant, but in the expression above, j/(q, s; e) and y(q, s; a) 
depend on the temperature unless all ratios Sij{T)/si>y(T) remain con-
stant. However, the variations in Sij(T)/si>j>(T) are due to higher-order 
anharmonic effects and therefore are small. Barron and Munn (1967) 
estimate that, in zinc, 3 In a)(q, s)/d In V at isotropic stress and constant 
S varies by a few percent from 0 K to room temperature. 



CHAPTER 14 

THERMAL EXPANSION: MICROSCOPIC ASPECTS 

1. Introduction 

Most materials increase their volume as the temperature T is raised. 
Since also the thermal displacement of atoms increases, one might think 
that the atoms "push" their neigbours apart. However, this is a mis-
leading argument. A crystal described with perfectly harmonic lattice 
vibrations shows no thermal expansion at all. Many solids, for instance 
silicon and germanium and some alkali halides, shrink with increasing 
r , at low temperatures. Some solids with non-cubic lattice structures, 
for instance zinc and uranium, shrink in one direction but expand in oth-
ers so that there is a net volume increase. There are also materials, such 
as invar alloys, which have a very small or slightly negative coefficient 
of thermal expansion at ambient temperatures. Figure 14.1 exemplifies 
how the cubic expansion coefficient /? varies with T. 

A correct approach to thermal expansion relies on basic thermo-
dynamics, in particular the fact that the volume of a solid in thermal 
equilibrium is such that it minimises the Helmholtz energy. A tem-
perature dependence of the specimen volume V arises when there are 
contributions to F which vary with both T and V (under restrictions 
such as a constant number of atoms and constant pressure). 

The field of thermal expansion has been reviewed by Barron et al. 
(1980), with emphasis on the low-temperature behaviour. Monographs 
by Yates (1972) and Krishnan et al. (1979) give a general introduction 
and a detailed survey of experimental data. See also Wallace (1972) for 
a more theoretical account. 

219 
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Fig. 14.1. The cubic expansion coefficient fi(T) of Rbl, Al, a-Fe (bcc) and /J-Fe (fee), a 
stainless steel, amorphous Pdo.775Sio.i65Cuo.06* AI2O3 and Si. Data from Touloukian 
et al. (1975, 1977) and, for Pd-Si-Cu, from Kaspers et al. (1983). The curves for Rbl, 

Al and Si end at the melting temperatures. 

2. General relations 

We simplify the problem and assume an isotropic material, or a single 
crystal with cubic lattice symmetry, so that the thermal expansion is 
isotropic. (Macroscopic aspects of anisotropy were considered in Chap-
ter 13 (§8). They can be connected to microscopic aspects along the 
lines of the present chapter.) We also assume that the material is under 
hydrostatic pressure (including atmospheric pressure, i.e. p « 0). The 
cubic expansion coefficient fi (volume expansion coefficient) is defined 
by 

In an isotropic material, the linear expansion coefficient is 

(14.1) 

a = p/3. (14.2) 

To evaluate the righthand side of eq. (14.1) we need an equation of 
state, i.e. a relation between p, V and T. For a comparison, consider 
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first the equation-of-state of an ideal gas; pV = NkBT. It yields an 
expansion coefficient 

In contrast to this universal behaviour, P of different solids may even 
vary qualitatively. In many cases, however, fi(T) of a crystalline solid 
has a temperature dependence which is remarkably similar to that of 
the heat capacity. While the previous chapter described thermal expan-
sion in terms of phenomenological relations, the theme of the present 
chapter is to understand the physical origin of thermal expansion in 
terms of electron and phonon states. For instance, that will provide an 
explanation for the covariation of /3(T) and CV(T) just referred to. 

3. Microscopic models for thermal expansion 

Let us assume that the total Gibbs (or Helmholtz) energy, and thus the 
entropy 5, is the sum of independent contributions labelled by r. These 
terms may originate from atomic vibrations, electronic and magnetic 
excitations, etc. The relation (13.20) can be generalised as 

<»-i>-£E(i!)r-
Each contribution to the entropy may be associated with a Grilneisen 
parameter (YG)r, through 

V /dSr\ 

The total Griineisen parameter YG is a weighted average of (YG)^ 

Ya = S y ^ . (146) 

From eqs. (14.5) and (14.6) we get 

Er[V/(Cv)r](dSr/dV)T(Cv)r V(dS/dV)T 
YG = Tj^r

 = — c 7 - ' (14J) 
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i.e. we recover eq. (13.24), as expected. The following sections consider 
various contributions to fir and (CV)r. We will see that the dimen-
sionless parameter (yG)r in eq. (14.5) is often of the order of 2. Then 
the expansion coefficient has contributions from those excitations (vi-
brational, electronic, magnetic etc.) which contribute to a significant 
fraction of the heat capacity at the temperature of interest. 

4. Phonon contribution to the thermal expansion 

4.1. The quasiharmonic approximation 

The contributions to F in a non-magnetic insulator come from the lattice 
vibrations. If only the terms corresponding to harmonic vibrations are 
kept in F, such a system has no thermal expansion. Strictly speaking, 
the assumption of harmonic vibrations is not quite the same as assum-
ing interactions between the atoms to be represented by ideal springs 
obeying Hooke's law. In the case of such springs, and with nearest 
neighbour interactions, the expansion coefficient is negative (Barron 
1957). The reason is that the restoring forces from springs perpendicular 
to the direction of an atomic displacement do depend on the strain state. 
Furthermore, we will see that there are cases when anharmonicity in the 
lattice vibrations gives rise to a thermal contraction. These introductory 
remarks serve to stress that there is no a priori reason why a solid should 
expand on heating, even when only lattice vibrations are considered, 
although expansion is of course the normal behaviour. 

In the quasiharmonic approximation, each phonon mode (q, s) 
contributes to the entropy an amount (eq. (7.20)) 

S(q, s) = kB{(x/2) coth(jc/2) - ln[2 sinh(x/2)]}, (14.8) 

where x = hco{i\,s)/kBT. The frequency &>(q, s;V) is volume 
dependent; 

{ smv ) = - * * ' > - (14-9) 

(In order to avoid too many indices we write y(q, s) rather than 
XG,ph(q> s) when dealing with the Gruneisen parameter for individual 
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phonons, and also CV(q, s) instead of CV,ph(q, s).) Because fi — 
(l/KT)(dS/dV)T, we are interested in 

Compare this with the expression for CV(q, s); 

(14.11) 

Combining eqs. (14.9)—(14.11) gives 

( ^ 3 V ^ ) = ^(q^) /V]CV(q,s ) . (14.12) 

By eq. (14.4), the cubic expansion coefficient due to all phonon modes 
is 

^h = v T ^ Cv(q'5)K(q'5)" (14'13) 

If we assume that y(q, s) is the same for all modes (q, s), and neglect 
the temperature dependence of KT as well as non-vibrational contribu-
tions and the difference between Cp and Cv, we get that the expansion 
coefficient fi(T) has the same temperature dependence as the heat ca-
pacity Cp. This is sometimes called Gruneisen's rule, or Gruneisen's 
law. Furthermore, since Cy for phonons at low temperatures has the 
temperature dependence A1T3 + A2T

5 + . . . , the same powers of T 
appear in ^(T) at low T. 

We can express /3ph in terms of the Griineisen parameter yG,ph as 

^ h - VKr ' ( } 

giving 

EqfJCv(q,5)y(q,5) 
mPh = — ^ — 7 T 7 : • (14.15) 

Eq,,cv(q,^) 
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At low temperatures, CV(q, s) is appreciable only for those phonon 
modes which have hco(q, s)/kBT < 1 while at high temperatures all 
Cy are close to the Dulong-Petit value k^. Since KG(Q» S)

 m a y v a ry by 
a factor of two or more between low frequency transverse modes and 
high frequency longitudinal modes, for example, the weighted average 
yG,ph in eq. (14.15) may show a considerable temperature dependence 
in the range from 0 K to 9D. At high temperatures, T >9D, each Cy (q, 
s) ~ &B and yG,ph varies very little with T. 

We now turn to the volume change AV = V(T) — V(0). It is 
obtained as 

AV = f V(T')P(T')dT'. (14.16) 
Jo 

If KG,ph is approximated by a temperature-independent constant, and if 
we neglect the temperature dependence of KT and other anharmonic 
corrections, eq. (14.16) yields 

A V = Y ^ Cv,ph(T')dT' = ^ [ £ h a r ( D - £har(0)]. 
KT Jo &T 

(14.17) 

£har(0) is the zero-point vibrational energy. When one lacks detailed 
information about the temperature dependence of YG,ph(T) it may be a 
useful approximation to take AV proportional to the thermal energy, 
as in eq. (14.17). This, gives essentially the Mie-Grilneisen equation 
of state at zero pressure (Mie 1903, Griineisen 1912). With an Einstein 
approximation for E^T), 

V(T) - V(0) = (3N">-***T) ^/T . (14.18) 

4.2. Higher-order anharmonicity 

We noted in Chapter 8 (§6) that the third- and fourth-order anharmonic 
effects are correctly accounted for if, in the harmonic expression for the 
entropy, one inserts the shifted frequencies 

G>(q, s) = co0(q, s) + A2(q, s) + A3(q, s) + A4(q, s). (14.19) 
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In the previous section we only considered the quasiharmonic approx-
imation, i.e. co(q, s) = COQ + A2. Those results are easily extended to 
include A3 and A4. We define generalised Griineisen parameters yi a nd 
K34by 

(14.20) 

(14.21) 

K(q, s) = K2(q,^) + y34(q,5), 

with (assuming A2, A3, A4 <§; co0) 

n = 

and 

K34 = 

/91n(o;o + A2)\ 
V 3 In V ) ' 

/ain(w0 + A3 + A4) 

) • ai 1/ " ( 1 4 2 2 ) 

91n V 
where A2 and (A3 + A4) may be of the same order of magnitude. How-
ever, A2 is directly proportional to the volume change, while (A3 + A4) 
is likely to vary much more slowly with V. We thus expect that y^ <3C 

Yl-
From the definition of yo, (eq. (13.24)), we have the general relations 

v(dS/dV)T (ds/dinV)T 

KG = = • (14.23) 
r Cv (8S/d\nT)v 

It is convenient to introduce isothermal and isochoric (i.e. "constant 
volume") Griineisen parameters (Varley 1956, Barron et al. 1980) 

yr,ph = - ( 3 1 n ^ / 9 1 n V ) r , (14.24) 

Xv,ph = - ( 9 1 n ^ / 9 1 n 7 > , (14.25) 

where 6^{T) is the entropy Debye temperature, which is here assumed 
to include A2 + A3 + A4. After a few manipulations one obtains 

Ko,Ph = Kr,Ph/(l + ?V,ph). (14.26) 

At low temperatures, ]/v,ph 7̂  0 because the phonon spectrum is not a 
Debye spectrum, and this gives a temperature dependent 9^(T) (Chap-
ter 6, §8). When T > 0$(T)/2, this effect is of little importance. 
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Instead the explicit anharmonicity gives a non-zero yv,$h through the 
frequency shifts A3 + A4. Then, yv^h « (A3 + A4)/a>o, which is usu-
ally less than 5% even close to the melting temperature. Furthermore, 
Yr,ph ~ Yi + KM ^ Yi- Therefore, the Griineisen parameter yo derived 
from macroscopic thermodynamic quantities (yc = PVKS/CP) gives 
information about yi* i-e- the quasiharmonic shift. It is then assumed 
that /3 and Cp do not have significant contributions of non-vibrational 
origin. 

Leadbetter (1968) has discussed the separation of the quasiharmonic 
and the explicitly anharmonic parts in 5, Cv and /J, with an application 
to Al and Pb, and a similar analysis was performed for Ge (Leadbetter 
and Settatree 1969), NaCl and KBr (Leadbetter et al. 1969). Rosen and 
Grimvall (1983) considered non-transition metals. 

4.3. High-temperature expansion 0/ycph 

We consider j/Q.ph within the quasiharmonic approximation. From eq. 
(14.15) and the high-temperature expansion (eq. (7.31)) of Cv we 
obtain, after a rearrangement of terms (Barron et al. 1964), 

m P h( r ) = y(0) + (l/l2)[hco(2)/kBT]2[y(0) - y(2)] 

+(l/240)[/ia;(4)//:Br]4[K(4) - y(0)] 

-(l/U4)[ha>(2)/kBT?[y(2) - y(0)] + ... .(14.27) 

Here, co(n) are moment frequencies and y(n) corresponding Griineisen 
parameters (see Chapter 8, §3.3). When T » #D, YG,ph(T) —• y(0). 
A plot of YG,ph(T) versus l/T2 yields y(0) as the intercept at l/T2 = 
0. Such an analysis makes use of YG,ph(T) at intermediate temperatures 
(T ~ QD/2) where anharmonic effects are small. Therefore, the deter-
mination of y (0) is quite accurate. After y (0) has been obtained one 
may plot [y (0) — YG,ph(T)]T2 versus l/T2 to give y(2) and y(4). One 
can prove that 

f Char(T)Tn~l dT 

The integrals converge for — 3 < n < 0. Thus, an analysis of Cv,Ph(7") 
may give a good estimate of y(—2), y (— 1), y(0), y(2) and y(4). The 
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pressure dependence of the elastic constants yields y{—3). Values of 
y(n) obtained in this way are given in fig. 8.1. 

5. Electronic contribution to the thermal expansion 

The electronic contribution to the cubic expansion coefficient, /3ei, is 
(Varley 1956) 

^ = % F ^ - (1429) 

VKT refers to the real solid (i.e. with all contributions to KT included) 
but CV>ei

 a nd /G,ei contain the electronic contribution only; 

m e i - 7 ^ - ( 3 5 e i / 3 V ) r . (14.30) 
<-V,el 

Many-body electron-phonon interactions give to Se\(T) a complicated 
temperature dependence at T ~ #D/5 , but in the limit of low and high 
temperatures (T < On/10 and T > 0D/2) the theory is simple. We can 
write (Chapter 10, §3), 

Sei - (27r2/3)A^(£F)(l + ^ei-ph)^7^ low T; (14.31) 

5ei = (2n2/3)N(EF)klT, high T. (14.32) 

These expressions require that the electron density of states N(E) varies 
slowly with the energy E in the vicinity of the Fermi level, so that 
it suffices to consider the value N(EF) at the Fermi level. The gen-
eral definition of Griineisen parameters, (eq. (14.5)), now gives for the 
electronic part: 

dlnJV(EF) , dln(l+Ael_ph) 
/G.ei = .. . . + ., , . low T; (14.33) 

d In V d In V 
din N(EF) 

Ko,ei= .. I / highT. (14.34) 
din V 

In a free-electron system (Appendix B), N(Ep) ~ (E¥)
l,2V ~ V2/3. 

Then, 

dlnA^(£F) 2 
., I / = r . (14.35) 
din V 3 
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In transition metals it has sometimes been assumed that the width W& of 
the d-band varies as V~5/3 (Heine 1967), and that the "shape" of Nd(E) 
does not depend on V (Lang and Ehrenreich 1968). Since the area under 
N&(E) is invariant (5 electrons per atom and spin), it then follows that 
Nd(EF) ~ 1/Wd ~ V5/3. We get 

din N(E¥) 5 

din V 3 

The quantity dln(l + A,ei-ph)/dln V has been reviewed by Grim-
vall (1981). A major contribution to the volume dependence of Aei_Ph 
comes from an average over the phonon frequencies; Aei_ph ~ l/(&>2) = 
l/[o>(2)]2. If we only include that effect, 

dln(l + Aei-ph) _ Aei-ph d In Aei-ph 
dlnV " 1+^i-ph dlnV 

= T ^ L y ( 2 ) . (14.37) 
1 + Ael-ph 

Usually 2A.ei_ph/(l + A.ei_ph) lies in the interval 1/3 to 1, with a typical 
value of 1/2 for transition metals. An approximate value of y(2) is 2. 
Then dln(l + A.ei-Ph)/dln V ~ 1, and we conclude that at low temper-
atures, the electron-phonon many-body interactions give a significant 
contribution to the electronic Gruneisen parameter yo.ei- Hence, an ac-
count of the thermal expansion at very low temperatures (T < #D/20), 
where /3ei ~ T dominates over the phonon part /3ph ~ T3, cannot 
be based on a discussion of the electron-band density-of-states N(E) 
alone. The important role of a temperature dependent many-body ef-
fect due to electron-phonon interactions and spin fluctuations at low 
T has been seen in Lu and Sc (Swenson 1996). At high temperatures 
(T > 0D/2) a description of /3ei in terms of N(EF) is sufficient, but then 
the total expansion coefficient is dominated by the phonon part /}ph. 

Barron et al. (1980) reviewed experimental values of yo.ei- Most of 
them lie in the interval 1.5 ± 0.5. However, yo,ei derived from low-
temperature thermal expansion data are often very uncertain. Fletcher 
and Yahaya (1979) obtained yo.ei fr°m band structure theory for 22 
transition metals, and modern ab initio electron-structure calculations 
(e.g. Eriksson et al. 1992) usually yield accurate results. 

Finally, we comment on the fact that for phonons the Gruneisen 
parameter y (q, s) = —3 ln&>(q, s)/9 In V is expressed as a derivative 
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1.00 

Fig. 14.2. Relative importance of the electronic and the vibrational contributions to 
the expansion coefficient, /3ej and /?ph, in a typical transition metal and plotted as 

/W(/*ph + /?el) versus the temperature T. 

of the individual energies (frequencies) co(q, s) while for electrons we 
used the macroscopic definition (14.5) of yo and arrived at yc,ei = 
dinN(E)/din V. In fact, this ycei is essentially equivalent with the 
form XG,ei(k) = — dln(£k — /x)/dln V that is based on the individual 
electron energies £(k) (see Appendix B). 

Example: comparison between /3ei and /3ph in metals. As a model exam-
ple, consider a solid described by a Debye phonon spectrum with yo,ph 
= 1.5. We take Aei_ph = 0.5, dln(l + Aei_ph)/dln V = [2A./ei-PhQ + 
*ei-Ph)M2) = 1 and dlnN{E¥)/dlnV = 5/3. Furthermore, let 
CV?ei = Nk^T'/Tfus when T > #D and assume a melting temperature 
rfus = 8#D- These numbers are typical of a transition metal or alloy. We 
give V KT an arbitrary fixed value, neglect anharmonic effects in Cv^ 
and consider only the relative importance /3ei//?Ph of the electron and the 
phonon contributions to the thermal expansion coefficient. Figure 14.2 
shows the result. 

6. Magnetic contribution to the thermal expansion 

The magnetic contribution to the thermal expansion can be written 

Pmagn 
^ V,magnXG,magn 

VK~T ' (14.38) 
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Here, Cy,magn is the magnetic part of the heat capacity and the "magnet-
ic" Gruneisen parameter is defined by 

X G , m a g n = V
 (TA^) ' {U39) 

Cy,magnU) \ OV JT 

In a ferromagnetic insulator at low temperatures, the magnetic part 
of the heat capacity is described by magnons, or spin waves, of en-
ergy /tomagn(q> 0 (Chapter 11, §7). The index / distinguishes between 
acoustic and optical branches (if necessary) and q is a wave vector in 
the first Brillouin zone of the lattice defined by the magnetic atoms. 
Magnons have thermal properties which are similar to those of phonons. 
From the general entropy expression (7.18), 5(q, i) — &R[(1 +n) ln(l + 
n) — n ln(n)] where n = {exp[/j&>magn(q, O^B^] — 1}_1> w e c a n define 
a parameter 

KG,magn(q, 0 = -{3 ln[^magn(q, 01/3 In V}. (14.40) 

This is in direct analogy to the mode Gruneisen parameters of phonons. 
The volume dependence of &>magn is given by how the exchange inter-
action between adjacent spins varies with the distance between them. 
However, it may be of more practical use to relate ycmagn to the volume 
dependence of the Curie temperature Tc. Within a simple model we have 
(Chapter 11, §7) 

^magn = Da2q2\ D = kBTc/(l + S). (14.41) 

5 is the magnitude of the spin on a lattice site and a is a lattice parameter. 
Then, 

mmagn(q,0 - - ( 3 In D/3 In V)r = -(31nrc/31n V), (14.42) 

i.e. a common parameter yb.magn f°r all <!• (The contributions from a2 

and q2 in eq. (14.41) cancel in eq. (14.42)). The expression (11.15) for 
Cmagn now yields, with eq. (14.38), 

.=°^(I^)"(J*L\ 04.43, 

The spin wave contribution to the thermal expansion can be ob-
served only at very low temperatures (Lord 1967). At high tempera-
tures, the spin-wave description is inadequate. We should get /3 from 
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(3Smagn/3 V), but lack a simple and realistic model to evaluate this quan-
tity. For the same reason, we cannot discuss the very intricate question 
of /?magn in i r o n m this book. 

7. Vacancy contribution to the thermal expansion 

Let the formation volume of a vacancy be Vvac and the atomic volume 
be £2a. In thermal equilibrium, the crystal volume V(T) is 

V(T) = V(0) + Vvac[y(0)/fia]exp(5vac//:B)exp(-£vac//:Br). 

(14.44) 

The term V(0)/£2a is the number of atoms in the solid, and the two 
exponential factors give the equilibrium concentration cvac of vacan-
cies. Then the vacancies contribute to the cubic expansion coefficient 
an amount 

£vac = d/V)(dV/dT) 

= (£Vac/^B^2)(Vvac/fia) exp(5,
vac/^B) exp(-EYaLC/kBT) 

= ( £ v a c / ^ r 2 ) ( K a c / ^ a ) C v a c (14.45) 

The vacancy concentration is appreciable only near the melting tem-
perature 7fus. Let us take ^vac/̂ B^fus ~ 10 (tables 2.1 and 2.2), 
Cvac(Tfus) ~ ° - 0 0 2 a n d Kac/^a ~ 1/2. Then, r^vac ~ 0.01. This 
can be compared with the empirical rule 7fus/3tot ~ 0.06. It is obvious 
that vacancies may in some cases give a significant contribution to the 
expansion coefficient at high temperatures (i.e. very close to the melting 
temperature), but because of the sensitivity of the exponential factor to 
small changes in £vac it is difficult to give an accurate value for /Jvac. 
See also Kraftmakher (1972, 1978, 1996) for a detailed discussion of 
vacancies. 
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Fig. 14.3. The cubic expansion coefficient fi(T) of Rbl, Ge and Si, shown as a function 
of temperature, is negative at low temperature. Data from Touloukian et al. (1977). 

8. Negative thermal expansion 

We noted in the beginning of this chapter that there are solids which 
shrink on heating, in particular at low temperatures. For a solid of cu-
bic lattice symmetry, a negative expansion is equivalent to a negative 
Gruneisen parameter YQ{T). We recall that the phonon contribution 
YG,ph(T) is an average over all mode parameters y (q, s), weighted by 
the mode heat capacity C(q,s). Certain solids, e.g. ionic compounds 
like Rbl and RbCl and covalent-bonded solids like Si, Ge, GAs and 
InSb, have y(q, s) = -(31n&>(q, s)/dln V) < 0 for some transverse 
acoustic modes, while y (q, s) > 0 for the longitudinal acoustic modes. 
At low temperatures, ]/o,ph is dominated by the transverse modes, be-
cause they have the lowest frequencies and hence the largest Char at 
a given T. Then yo,ph> and hence /}ph, is negative (fig. 14.3). At high 
temperatures, Char -> &B for all modes (approximately), and the large 
and positive values of y(q, s) for the longitudinal mode outweigh the 
negative y (q, s) of the transverse branches. That makes yc,ph > 0, and 
we have a positive thermal expansion. There seems to be no nonmag-
netic solids with a "common" and simple crystal structure (e.g. bcc, fee, 
hep, NaCl-type, CsCl-type, diamond-type) for which yG,Ph < 0 when 
T>6D. 

Glassy materials usually behave as crystalline solids, but at very low 
temperatures (<1 K) some of them have /3 < 0. That result has been 
interpreted in terms of two-level tunneling states (Chapter 11, §5), but 
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having fi < 0 is not universal in glasses (Ackerman and Anderson 1982, 
Kaspers et al. 1983, Pinango et al. 1983). 

Some ceramics show a negative expansion coefficient /3 from low 
temperatures to T as high as 1000 K. The effect is related to the rota-
tional motion of polyhedra of the form SiC>4, PO4 and WO4. It has been 
observed in solids of the form A2M3O12 and in, e.g. ZrW^Og (Mary et 
al. 1996). 

A special kind of a soft shear mode of vibration, leading to a negative 
ft even at high temperatures (and negative Poisson ratio), is found in 
hinged polyacetylen carbon phases and related systems (Baughman and 
Galvao 1993). As the name suggests, the structure contains "hinges" 
that allow for a shear leading to a volume decrease. 

Fe3Si exemplifies a material that has a negative /3 at low temper-
atures, caused by a negative electronic Griineisen parameter yG,eb and 
related to a rapidly varying electron density of states near the Fermi level 
(Miles et al. 1992). Negative expansion coefficient caused by magnetic 
effects are considered in §9 below. 

9. Invar-type systems 

Some solids, called invar alloys, have a very small expansion coeffi-
cient in a certain temperature interval. The archetype of such an alloy, 
with the approximate composition Feo.65Nio.35, was discovered by Guil-
laume (1897). Today many similar systems are known, for instance 
Feo.72Pto.28> see, e.g. Saunders et al. (1993). Figure 14.4 shows fi(T) 
for Feo.64Nio.36- Obviously it is only in a certain, more or less wide, 
temperature interval that /3 ~ 0. We may understand the behaviour 
of invar-type systems as follows. The thermal expansion coefficient 
has one contribution ^(T) from anharmonicity in the lattice vibra-
tions, which is of the normal type described in §4. Then there is a 
magnetic contribution /Jmagn(r), which is negative and happens to be 
approximately equal to — P̂h- To be more specific, the sum fitot(T) = 
PPh(T) + /3magn(r) may be zero at a certain temperature T, and remain 
small (with a change in sign) in an interval around that temperature (see 
fig. 14.4). 

The invar-type systems, with a magnetic contribution to the ther-
mal expansion, should be distinguished from materials like Si and C 
(diamond). The small ft = YGCV/(VKT) of Si and C at room temper-
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Fig. 14.4. The thermal expansion coefficient in the invar-system Feo.64Nio.36- D a t a 

from Touloukian et al. (1975). 

ature can be understood within the usual theory of anharmonic lattice 
vibrations. It is the result of a small Griineisen parameter yG,Ph, a high 
bulk modulus KT, and a high Debye temperature so that Cy has not yet 
reached its classical value. 

10. Pressure dependence of the expansion coefficient 

Macroscopic thermodynamics gives (Wallace 1972) 

(*L\ . J . (**L\. (,4.46, 
\dp)T K2

T\dTjp 

For most materials (dKT/dT)p < 0 (Chapter 4, §8) and therefore the 
coefficient of thermal expansion decreases under an external pressure. 

11. Dependence on lattice structure and defects 

Usually, the thermal expansion has its major cause in the volume depen-
dence of the phonon frequencies. It has been noted in Chapter 9 that the 
various Debye temperatures are not much affected by lattice defects. 
They vary smoothly with the composition in concentrated alloys and 
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mixed crystals, and do not depend strongly on the lattice structure, pro-
vided that the type of bonding is not changed (e.g. metallic to covalent). 
The same behaviour is expected for the Griineisen parameter and, hence, 
also for the expansion coefficient /3ph. In particular, we note that a ma-
terial with disorder, for instance a substitutional alloy or an amorphous 
material, still has sharp eigenfrequencies for the atomic vibrations if we 
assume harmonic forces between the atoms. These frequencies can no 
longer be associated with undampened waves of wave vectors q, but for 
each of them we can define a Griineisen parameter, and the theoretical 
description in this chapter remains valid. An analogous conclusion can 
be drawn for the electronic contribution to /3ei in metals (Chapter 10, 
§3). We conclude that the normal behaviour is a thermal expansion that 
does not depend strongly on lattice structure or defects. Exceptions may 
arise, for instance, in magnetic materials or in materials with anomalous 
bulk moduli. 

12. Coupled thermal conduction and expansion 

A material, subject to a temperature gradient, is normally in a state 
of spatially varying strain. The thermal expansion and the thermal 
conduction are coupled through the equation 

3 

V(KVT) = pcv(dT/dt) + /3TKT Y^(d6i/dt). (14.47) 
z = l 

This is the specialisation to isotropic materials of a general relation (e.g. 
Fung 1965) for the anisotropic case. The strains correspond to / = x, 
y, z- Furthermore, K is the thermal conductivity, p the mass density, cv 

the specific (i.e. per mass) heat capacity, and KT the isothermal bulk 
modulus. If the sample is clamped so that the strain is zero, or if the 
coefficient of thermal expansion is zero, the last term in eq. (14.47) 
vanishes. Then we recover Fourier's law of heat conduction at constant 
volume, (eq. (16.9)). If heat flow is prevented, i.e. cp = —K(VT) = 0, 
we obtain 



236 Ch. 14. Thermal expansion: microscopic aspects 

After integration, 

AT = .!H£L±^^E£L(^.). (14.49) 
PCV *-f PCV \ V J 

This is Kelvin's formula for the thermoelastic effect, i.e. the change in 
temperature, AT, caused by changes in strain, Ae,-. (Cf. the change in 
temperature when a gas is expanded or compressed.) A uniaxial tension 
in the x-direction gives, by eq. (3.27), e\ = a/E and £2 = £3 = 
—av/E. Insertion into eq. (14.49) yields 

^f = -exyG(l-2v), (14.50) 

where yo is the Griineisen parameter and v is the Poisson ratio. For 
many materials, /G(1 — 2v) ^ 1. A wire which is strained 1% then gets 
a temperature decrease of about 1%. 



CHAPTER 15 

ELECTRICAL CONDUCTIVITY OF METALS AND 
ALLOYS 

1. Introduction 

There are two formulae for the electrical properties of metals, which 
are found in almost any textbook on solid state physics. One of them is 
Matthiessen's rule for the resistivity p; 

Plot = Pel-ph + Pdef • (15.1) 

The other formula expresses the conductivity a(= l/p) as 

a = ne2r/m. (15.2) 

This relation is often called the Drude formula (Drude 1900a, b). Its 
essential ingredient is the electron scattering time (or lifetime) r. 

Matthiessen's rule says that the total resistivity, ptoU is the sum of 
contributions from the scattering of conduction electrons by the thermal 
vibrations (to be labelled el-ph for electron-phonon) and the scattering 
by static lattice defects. The relation (15.1) is well obeyed in many 
cases, but not for highly resistive systems. For instance, it is not even 
qualitatively correct for zirconium alloys at high temperatures, or for 
stainless steels (§11). 

In eq. (15.2), e and m are the electron charge and mass, n is the 
electron number density and r is an average relaxation time for the 
conduction electrons carrying the current. Matthiessen's rule follows 
from eq. (15.2) when 

^tot ^el-ph rdef 

237 
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Fig. 15.1. The ratio pei_ph(T)/T for Cu, Ag and Be. Data from Bass (1982). 

The relation (15.2) is deceptively simple. It might give the impression 
that the electron number density n plays a central role. This can be true 
for doped semiconductors where n varies by many orders of magnitude, 
but not for metals. The major problem is hidden in the electron relax-
ation time r. Let us neglect the effect of impurities on r and consider the 
phonon-limited resistivity pei-ph (^l/^ei-ph)- Griineisen (1913) noted 
that, for pure metals, p/T and the heat capacity Cp have approximately 
the same temperature dependence. In fact, an Einstein model for the 
lattice vibrations leads to proportionality between pe\_ph(T)/T and Cy 
(Chapter 19, §11). 

Figure 15.1 shows pei-ph(7")/r for Ag, Cu and Be. Silver is the best 
elemental conductor at room temperature. We see from the figure that 
this is partly accidental. Beryllium has such a high Debye temperature 
(~900 K) that 300 K is in the low temperature region. Below about 
200 K beryllium is a better conductor than the noble metals Cu, Ag and 
Au. Figure 15.2 gives the resistivity of some other metals. The "nor-
mal" high temperature behaviour is that p increases somewhat faster 
than linear in T, as for Al and W. Titanium provides an example of a 
tendency for "resistivity saturation" (§11). In iron, there is a significant 
contribution to p from scattering of electrons by persisting spin disorder 
above the Curie temperature. 

Monographs by Rossiter (1987), Dugdale (1977), Blatt (1968) and 
Meaden (1965) give a broad, but mostly elementary, survey of the 
electrical conductivity of metals. 
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Fig. 15.2. The electrical resistivity p(T) of Ti (hep and bcc), Fe (bcc and fee) W and 
Al. Data from Bass (1982). 

2. General formulae for the electrical conductivity 

We will now start from a general approach to the electrical conductivity 
(in systems of cubic lattice symmetry) and see how one arrives at a = 
ne2x/m (eq. (15.2)), and a similar relation, a — (CO1

1/4JT)X, where for 
free electrons the plasma frequency cop\ has the well-known form a& = 
Anne1/m. 

We begin with some expressions to define the notation. An electron 
with velocity Vk carries an electric current —eVk- In equilibrium, for 
each electron state characterised by the wave vector k, there is also a 
state —k, with velocity —Vk, so that the total electric current vanishes. In 
the presence of an electric field E, the Fermi-Dirac function is changed 
from its equilibrium value f£ to the value fa. If the field is weak, we 
can assume that fa — f£ is linear in E and write 

h - A° = ^ k • E)r(k)0/k°/a^k), (15.4) 

where s^ = E(k) — E?. The quantity r (k) has the dimension of time. 
We shall call it a relaxation time, although it usually does not fulfill the 
requirements of such a quantity (namely that the electron states decay 
exponentially in t/x as the field E is turned off at time t = 0). In the 
following we may also write t(£k), T(S), r(£k, k) or r(£, k) instead of 
x (k), to stress that r is energy dependent, or both energy dependent and 
anisotropic. The actual calculation of r(k) is difficult, but we can learn 
much just by assuming that it is a known quantity. The terms multiply-
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ing (df/ds) in eq. (15.4) give the energy acquired by an electron that 
moves with velocity Vk in the field E during the time r. 

The total electric current density is 

j = - ( 2 e / V ) £ v k ( / k - / k ° ) . (15.5) 

The factor of 2 comes from the two spin directions. The current density 
j is related to the field E through the conductivity tensor <r, such that 

j = orE. (15.6) 

In a system with cubic symmetry, that tensor is diagonal with all the 
elements era = a. Then, from eqs. (15.4)—(15.6), 

a = -(2e2/3V) ]T(vk • vk)r(k)(df£/dek). (15.7) 

The factor 1/3 in eq. (15.7) comes from the projection of Vk along the 
applied field E in eq. (15.4). 

3. Relations of the type a = ne2x/m 

Starting from the general relation (15.7) we consider two special cases. 
First, we let Vk be isotropic but take an anisotropic r(k) and average it 
over the Fermi surface. In the second case, we let r (k) be a constant but 
take an anisotropic Vk • Vk and average it over the Fermi surface. 

The usual prescription for turning a sum over k into an integral 
brings eq. (15.7) to the form (Appendix B) 

a = -(2e2/3)(27t)-3 [ J k J " dS f°° T(e,k)(df£/dek)de. 
Jsp |Vk£(k)| J^ 

(15.8) 

Assume that the first integral can be evaluated with a spherical Fermi 
surface, but with band structure effects accounted for through an ef-
fective band mass m^, so that |Vk|/fp = m/m\>, where Up is the 
free-electron velocity at the Fermi surface. Furthermore, n/m = 
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S°v^/(l2n3h) where 5° is the area of the free-electron Fermi surface. 
Then eq. (15.8) can be written 

7 

a = (r(e,k)>. (15.9) 

The average relaxation time is defined 

C AS f°° 
(T(e,k)) = J —J T(s,k)(-df£/dek)de. (15.10) 

With a constant relaxation time r, and a free-electron model in eq. 
(15.10), we recover the familiar form 

a = ne2r/m. (15.11) 

Next we replace r (k) in eq. (15.8) by a properly averaged constant r, 
and also assume that (—df^/de^) can be replaced by a S-function <5(£k) 
that picks up contributions for k-values, where sk = E(k) — EF = 0, 
i.e. k-values on the Fermi surface. One gets, from eq. (15.7), 

a = (^/47r)T. (15.12) 

Here the Drude plasma frequency cop\ is defined by a Fermi-surface 
average of the squared electron velocity; 

col = (87re2/3V) £> j^ (£k) 
k 

= [87ce2N(EF)/3V](\2
k). (15.13) 

For free electrons, coL = Anne1 /m and we again recover a = ne2r/m. 
Experimental values of co2

x are reviewed by Foiles (1985). See Appendix 
H for important comments on the dimensions (units) of a, e and cop\. 

4. Solutions to the Boltzmann equation 

4.1. Relaxation time equations 

In the last section, it was not stated how the relaxation time r(k) for a 
particular k is to be calculated. In a quantum mechanical formulation, 
one should consider the probabilities for the scattering of an electron 
from a state k to other states k^ We describe such processes by 
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P(k, k') = Pei-ph(k, k') + Pdef(k, k') + Pr(k, k'). (15.14) 

Pei_ph refers to the scattering of electrons by phonons, Pdef to the scatter-
ing by various kinds of lattice defects (impurity atoms, vacancies, grain 
boundaries, etc.) and PT refers to remaining scattering mechanisms (e.g. 
scattering by other conduction electrons and by magnetic excitations). 

If one knows the interactions as described by P(k, k'), the relaxation 
times r(k) follow from a solution of the Boltzmann equation, but even 
without such an information about P(k, k') one can derive several use-
ful results. For a system with cubic lattice symmetry, and with some 
reasonable approximations (Grimvall 1981), one gets 

( — 1 = Y^(l - cos#kk/)P(k, k'). (15.15) 

This formulation allows us to state more precisely the difference be-
tween a "scattering time" (or "lifetime") of an electron and the quantity 
r(k) to be used in the transport problem. With a factor 1 instead of 
(1 — cos#) in eq. (15.15), r(k) would be the lifetime of an electron 
state labelled k. It can be calculated by the Golden Rule of quantum 
mechanics. In that case all scattering processes out of a state k are of 
equal importance. In electrical transport problems, we have to ask in 
which direction the electron goes after the scattering, since "backscat-
tering" of electrons gives the largest contribution to the resistivity. This 
is expressed by the term 1 — cos#kk' in eq. (15.15). (In the electron 
contribution to the thermal conductivity the factor 1 — cos 9 does not 
appear, but instead one must ask what is the change in energy in the 
scattering process (k, k').) 

We next assume the presence of different scattering mechanisms, 
labelled i. Let t;(£k, k) be a solution to the Boltzmann equation, when 
only a particular scattering mechanism i is present. If the T;(£k, k) thus 
obtained for different / all have the same dependence on the energy £k 

and the wave vector k (i.e. they are just scaled by a factor), it follows 
that 

- = T-- ( 1 5 1 6 > 
Ttot ; ti 

This is equivalent to Matthiessen's rule, cf. eq. (15.3). 
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4.2. Variational solution 

The Boltzmann equation is an integral equation which is non-trivial 
to solve. Therefore, most calculations for real systems rely on an ap-
proximate solution, through a variational procedure. The method was 
outlined by Kohler (1948, 1949) and Sondheimer (1950) and exploited 
in detail by Ziman (1960). Like other variational calculations, it gives a 
bound to the exact result. In our case, it can be written 

(V/2kBT) f d3k [ d3k'(Ok - Ok02P(k, k') 

P < — - n ' (15-17) 
e2 J(vk-cDk)0/°(k)/3^k)d3k 

where P(k, k') is the scattering operator introduced in eq. (15.14), and 
$ k is a trial function to be used in the variational procedure. Since 
O appears squared both in the numerator and the denominator of eq. 
(15.17), all <E> can be multiplied by the same constant without altering 
the estimation for p. The essence of a variational method is that one can 
choose O to be a function of one or several parameters Xt. The righthand 
side of eq. (15.17), i.e. an upper bound to p, is then minimised with 
respect to all Xt. In most calculations one uses the trial function 

<Dk = E-k . (15.18) 

In fact it has no parameters to vary, but since it gives the exact solution 
under certain idealised assumptions, it is assumed to give a reasonable 
value of p also in real metals. 

With O as in eq. (15.18), and with the electron states described by an 
isotropic electron band mass m^ as in eq. (B.15), one finds after some 
manipulations that the variational solution eq. (15.17) gives 

Mb(l/t(k)) 
p < 5 . (15.19) 

nez 

This should be compared with the "exact" solution (15.9), p = l/cr = 
(rab/rce2)/(t(k)). Schwartz' inequality in mathematics implies (1/r) > 
l / (r) , which is consistent with the inequality in eq. (15.19). In real 
calculations of p from the variational formula (15.17) one has to approx-
imate P(k, kr), which may introduce errors of unknown sign. Therefore, 



244 Ch. 15. Electrical conductivity of metals and alloys 

formulae such as (15.17), and relations derived from it, are usually 
(although not correctly) written with an equality sign. 

5. Phonon-limited electrical conductivity 

5.7. Resistivity expressed in the Eliashberg transport coupling 
function 

The lifetime rei_Ph for the scattering of electrons by phonons contains 
quantum-mechanical matrix elements for the electron-phonon inter-
action, and statistical Bose-Einstein and Fermi-Dirac factors for the 
population of phonon and electron states, respectively. A very useful 
quantity in this context is the Eliashberg transport coupling function 
a2F(co). It can, somewhat loosely, be viewed as the product of the 
squared electron-phonon matrix element, a2, for all scattering processes 
where a single phonon of energy hco is either emitted or absorbed, and 
the phonon density of states F(co). A similar expression, a2F(a>), arises 
in the theory of superconductivity and in the effect of electron-phonon 
interactions on the thermal properties of electrons (see Chapter 10 and 
Appendix B). The essential difference between a2

vF{co) and a2F(co) is 
a term corresponding to the factor 1 — cos 9. 

The Eliashberg coupling function allows us to write the resistivity in 
a very simple, although approximate, form. In the variational expression 
forp, (eq. (15.17)), we take Ok = E-VR. Using eq. (15.13) for the Drude 
plasma frequency we get 

_ W 2 Tmax (ha)/kBT)a2
rF(a)) 

<»pi Jo [exp(hco/kBT) - 1][1 - exp(-hco/kBT)] 

(15.20) 

It is worth commenting on the accuracy of eq. (15.20). First, it 
requires that the Boltzmann equation is valid. This is true for many met-
als and alloys, but there are notable exceptions among highly resistive 
systems (§11). Second, eq. (15.20) is based on the variational method. 
However, we do not vary anything, but simply take the estimation of p 
that results from the trial function E • \k. The accuracy of this procedure 
is not very well known for transition metals, but it may be acceptable 



Phonon-limited electrical conductivity 245 

in free-electron-like metals. Since a true variational approach is very 
complicated, and still of somewhat uncertain accuracy because its suc-
cess depends on the choice of trial functions, there is usually no realistic 
alternative to the use of Ok = E • Vk or Ok = E • k. Furthermore, we 
have assumed in eq. (15.20) that a^F(co) and aA are well approximated 
by their values exactly at the Fermi level. Therefore, we do not allow for 
the effect of a rapidly varying electron density-of-states N(E) around 
the Fermi level E = £F. (However, there is still an energy dependence 
of r(e) arising from the Fermi-Dirac and Bose-Einstein functions, f° 
and n.) In an actual calculation of the resistivity, it remains of course, 
to find the electron-phonon matrix element that couples an electron in a 
state k to an electron in a state k', through interaction with a phonon of 
mode s. This is beyond the scope of this book. 

5.2. Bloch-Griineisen resistivity formulae 

Ever since the early days of quantum mechanics, the Bloch-Griineisen 
formula has been used to describe the temperature dependence of the 
phonon-limited electrical resistivity in metals. It is often given in the 
form 

q» q^_ 

[exp(hCq/kBT)- 1][1 - exp(-hCq/kBT)] 

(15.21) 

PBG(T) = — / r _ / g . ^ , y ^ — _, ^ / 7 ^ N 1 dq. 
1 Jo 

Here, c\ is a constant, specific for the metal under consideration, q is 
a phonon wave number lying between 0 and the Debye value gD, C is 
the longitudinal sound velocity and hCq is a long-wavelength phonon 
energy. The subscript BG stands for "Bloch-Griineisen". Putting z = 
hCq/kftT in eq. (15.21) we have 

""̂  - s (s) r (--IKI-«-<)* 
0v 

£ ) MOD/T), (15.22) 

where ci is another constant and J5 is the Debye integral of order 5. 
At low temperatures, we need the value 75(00) = 124.4, and at high 
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temperatures (T » Oo) we need J5(T/6D) « (1/4)(6D/T)4. Then we 
can write 

PBGiT) = (124.4c2/^D)(r/^D)5, T « 0D, (15.23) 

and 

PBG(^) = (c2/4G>)(r/ft>), r » 0D. (15.24) 

In two famous papers, Bloch (1928, 1930) derived first the high temper-
ature and then the low temperature results (eqs. (15.24) and (15.23)). 
Griineisen (1933) noted, empirically, that Bloch's low temperature for-
mula could be matched to the high temperature version and thus provide 
a good account of the electrical resistivity at all temperatures. 

The original derivation of eq. (15.21) rests on a number of assump-
tions which are usually not very well fulfilled, even for free-electron-
like metals. However, it is well known that the Bloch-Griineisen for-
mula describes p(T) for many real systems with a remarkable accuracy. 
This is easy to explain if we start from the variational estimation of 
p, expressed through the transport electron-phonon coupling a^F(co). 
The true function afrF(co) contains all complications regarding the 
phonon spectrum, the electron-phonon matrix elements, coupling to 
transverse phonons, Umklapp processes etc. Except at very low energies 
co, afrF(co) is reminiscent of the phonon density of states F(co). Because 
p results from an integration over oo, the resistivity is determined by the 
gross features of afrF(co) but is insensitive to its finer details. This is 
analogous to the fact that a Debye model can give a good account of the 
phonon heat capacity, although F(co) may deviate substantially from an 
&>2-shape. 

As a model approximation, we now represent this function by a 
power law in &>, 

alF(co) = Cncon, (15.25) 

for 0 < co < comax. It allows us to define generalised Bloch-Griineisen 
formulae PBG(T', n). They all have p ~ T at high temperatures. In the 
low temperature limit, they yield p ~ Tn+l. Contrary to a widespread 
belief, the experimental resistivity usually does not vary as T5 at low 
temperatures - not even for the free-electron-like metals Na and K. In 
fact, the full variational formula (15.17) is not quite adequate at low 
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temperatures because there may be complications due to "phonon drag" 
and other effects (cf. Grimvall 1981). If we take n = 4 and hcom3iX = 
&B#D in eq. (15.25), the expression (15.20) yields exactly the B loch-
Griineisen formula (15.21). 

5.3. Einstein-model resistivity formula 

At intermediate and high temperatures (say T > 6D/4) any reasonable 
representation of a2

rF(a>) gives a good account of the resistivity and 
PBG is just one possible choice, which has no deeper justification. In the 
extreme case of an Einstein model, i.e. 

a2
TF(co) = C08(a) - o)E), (15.26) 

where Co is a constant, p/T becomes proportional to the Einstein heat 
capacity. Even this crude approximation may give a good description of 
p(T) in many metals, at not too low temperatures (cf. Chapter 19, §11). 

5.4. Relation to the electron-phonon coupling parameter A.ei_ph 

The high temperature limit of eq. (15.20) can be cast in an interesting 
form. We write 

(4jt)2(kBT/h)2 p - a2F(co) ^ = 8n2kBT . 

where 

2(oz
pl Jo o) hcoz

pl 

P m a x alF((o) 
Xtr = 2 tr ' dco. (15.28) 

Jo co 

We noted above that the essential difference between a2F(co) and 
a2F((o) is a factor which is approximately 1 — cos# k k ' . Therefore, it 
is not unreasonable to approximate a2

YF(co) by 

a2
rF(co) = (1 - cosO)a2F(co), (15.29) 

where (1 — cos#) is some properly defined average. This leads to the 
high temperature form 

Sn2kBT{\ -COS0), 

ha)2
vl 

~^el-ph 

InmknTil — cos6) 
V l %-ph . (15.30) 

fine1 
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In the last equality we assumed a free-electron expression for coh. The 
parameter A.ei_ph = 2 f a2F((o)(da)/(o) is the same as that appearing 
in the electron-phonon enhancement factor 1 + A.ei_ph of the electronic 
heat capacity (Chapter 10 and Appendix B). Resistivity data can be 
used, therefore, to estimate Aei_ph (Grimvall 1981, Allen 1987, 1999). 
Obviously, we can approximately identify rei-Ph with h/lirkQi-^k^T. 

6. Electrical conduction in non-cubic lattices 

Quite generally, the conductivity a (or resistivity p) is a 3 x 3 tensor of 
rank two, with elements atj (or ptj). If a tensor of rank two has cubic 
symmetry, it reduces to a scalar, i.e. on = a, while o^ = 0 when i ^ j 
(similarly, pa = p and ptj = 0). In the general case, 

j = <rE, E = pj, (15.31) 

and the current j is not parallel to the field E except in certain directions 
of high symmetry. 

We shall exemplify a non-scalar conductivity by a material of hexag-
onal symmetry. (The same relations hold for trigonal and tetragonal 
symmetry.) Let 9 be the angle between the current j and the c-axis. The 
resistivity p(6) = E(9)/\j\ is 

p(0) = p„ cos2 9 + pL sin2 6. (15.32) 

This describes current flow in a wire, for example. Next, we let the field 
E have a specified angle 9 to the c-axis (e.g. E is applied across a slab). 
The conductivity a{9) = j(9)/\E\ is 

a{9) = ay cos2 9 + aL sin2 9. (15.33) 

Note that a{9) ^ l/p(9), although cr±_ = l/pj_ and an = l/p\\. 
A theoretical account of the anisotropy of pei-ph is difficult, because 
it requires a detailed consideration of the scattering process over the 
Fermi surface (e.g. Chan 1978, Lawson and Guenault 1982). Figure 
15.3 shows how p\\/p± may vary with the temperature in metals. Fur-
ther aspects of anisotropic conductivity are dealt with in Chapter 18, 
in connection with the averaging of anisotropic transport coefficients in 
poly crystalline materials. 
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Fig. 15.3. The anisotropy of the electrical resistivity, given as p\\(T)/p±(T), for hep 
Zn, Mg and Ru. Data from Bass (1982). 

7. Matthiessen's rule 

Matthiessen and Vogt (1864) noted that the temperature dependence of 
the resistivity was not affected by small amounts of alloying elements; 

dptot(7\ c)/dT = dpei-phfD/dr. (15.34) 

This result, called Matthiessen's rule, is usually quoted in the integrated 
form 

p t o t ( 7 \ C) = Pel-ph(^) + Alef(c). (15.35) 

Corrections to eq. (15.35) are known as deviations from Matthiessen's 
rule (DMR). Mathematically, we can trace their origin to the relation 

1 1 
+ 

1 

W e , q) *ei-Ph(e, q) *def(q) 
(15.36) 

If we consider p ~ (l/rto t), as in the expression (15.3), Matthiessen's 
rule is obtained from eq. (15.36). However, we should rather consider p 
~ l/(Ttot> = l/(*ei-phW<Jei-Ph + Tdef)), which becomes (l/rtot) only 
if rei_ph(£, k) and Tdef(e, k) have the same dependence on s and q, i.e. 
if they differ by a (temperature dependent) factor. In this way we see 
how eq. (15.36) gives rise to a DMR. The fact that rei_ph(e, q) is energy 
dependent, through £, while Tdef(q) refers to elastic scattering and is 
independent of e, causes a DMR which is peaked at T ~ 0.1#D and 
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is of the order of O.lpdef or (much) less (Engquist and Grimvall 1980). 
Differences in the anisotropy of rei-ph and tdef also lead to a DMR. A 
magnetic field may reduce the DMR (Mitchel et al. 1980). Bass (1972) 
and Cimberle et al. (1974) have reviewed work on DMR. Bass (1982) 
gives numerical results for the resistivity in dilute alloys, also covering 
other aspects than DMR. 

Impurities not only give a static scattering but they also change the 
vibrational properties and hence alter a^rF(o)). This leads to a DMR at 
high T which is linear in T, and can have either sign (Engquist and 
Grimvall 1980). Usually there is no dramatic effect caused by heavy 
(Kus and Taylor 1980) or light (Kus and Taylor 1982) impurities. 

The effect of vacancies and other intrinsic defects is similar to that of 
impurity atoms. In thermal equilibrium the magnitude of these effects 
is usually very small. For instance, the resistivity per 1 at.% vacancies 
(i.e. a very high vacancy concentration) is a few fiQ cm (Wollenberger 
1996). The resistivity increase in heavily cold-worked copper is ~2 x 
10~4

 IJLQ m (Powell et al. 1959). Still, such small changes in the resistiv-
ity are of interest in studies of the recovery of a specimen on anneling, 
after it has been cold-worked, irradiated etc. Complications in the inter-
pretation arise when point defects migrate to dislocation cores and grain 
boundaries (e.g. Kasen 1972). Grain boundary scattering is referred to 
in §9. Rossiter (1987) and Dugdale (1995) give a detailed treatment of 
the effect of various lattice defects on the electrical resistivity. 

8. Concentrated alloys 

For low impurity concentrations, c, Pdef varies linearly with c; 

Pdeffc) = C*4f. (15.37) 

Some values of p^ef are given in table 15.1 (Bass 1982). In a system 
Ai_cBc, the linear dependence on the impurity content holds for c <?C 1 
and 1 - c « 1. The simplest relation that interpolates between these 
limits is Nordheim's (1931) rule, 

Pdef(c) = c ( l -c )p* e f . (15.38) 

Qualitatively, this rule is observed in some concentrated alloys, but the 
transport process is too complicated to allow a more precise, and yet 
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Table 15.1 

Impurity resistance, at low temperatures, in some dilute alloys. Unit: /z£2 cm/at.% 

Al-Cu 

0.7 

Cu-Al 

1.3 

Al-Fe 

6.1 

Fe-Al 

5.5 

Al-Ti 

5.9 

Ti-Al 

13 

Cu-Ag 

0.08 

Ag-Cu 

0.03 

Cu-Au 

0.53 

Au-Cu 

0.43 

accurate, relation. For instance, there is no reason to assume that p êf is 
the same for a dilute solution of A in B, as for a dilute solution of B 
in A (cf. the pairs in table 15.1). We also note that mutual solubility in 
a wide range of concentrations c is rather unusual. It requires that the 
atoms are chemically similar, and then p^ef tends to be small. When the 
concentration c is such that the alloy Ai_cBc forms a two-phase mate-
rial, one has a transport problem for a composite material, see Chapter 
17. 

9. Electron mean free path and size effects 

If i;F is the velocity of an electron at the Fermi level, and r is the electron 
lifetime, we define the electron mean free path I as 

I = v¥r. (15.39) 

In a nearly-free-electron model with t>F = hk^/m^ we get 

a = ne2r/mh = ne2l/(mhv¥) = (37t2yl/3n2/3(e2/h)£. (15.40) 

This can be rewritten, with n expressed in terms of the electron density 
parameter rs, (eq. (B.ll)), and the Bohr radius a$ (Appendix H), in the 
form 

P = n(l6n/3)^(^)(^y (15.41) 

Typically, 7t(l67t/3)l/3r2 - 40. The quantity a0h/e2 = 0.22 /iQ m is a 
fundamental unit of resistivity (Appendix H). From eq. (15.41) we can 
get a rough idea of the mean free path I (in non-transition metals) when 
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Fig. 15.4. The electron mean free path I in pure aluminium and in Al-1.7 at.% Mg. From 

Grimvall(1981). 

the resistivity is known. Figure 15.4 shows I calculated in this way for 
pure aluminium and an Al alloy. 

When the electron mean free path I becomes comparable with a 
characteristic dimension of the specimen, surface scattering gives cor-
rections to the bulk resistivity pt>ulk. (This requires pure materials and 
low temperatures.) For thin films, Fuchs (1938) and Sondheiner (1952) 
developed a simple model, which gives the first-order correction in the 
small parameter 4uikM where d is the film thickness; 

Pfiim = Pbuiktl + (3/8)(l - ps)(4uikAD]. (15.42) 

The parameter ps (0 < ps < 1) measures the amount of specular 
character in the surface scattering. Very similar formulae hold for thin 
wires. This early theory has been improved (Soffer 1967) to give good 
agreement with experiments (Stesmans 1982). Thin films may be very 
fine-grained. Then grain boundary scattering is not negligible (van At-
tekum et al. 1984, Mayadas et al. 1969). Bass (1982) gives a brief 
theoretical introduction and an extensive survey of experimental results 
on size effects in electron scattering. 

10. Pressure dependence 

We start from the expression for the phonon-limited electrical resistivity 
at high temperatures (eq. (15.27)); 

i i i i i 
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pel_ph - (%7T2kBT/hcolx)K- (15.43) 

In our treatment of the electronic part of the thermal expansion coef-
ficient (Chapter 14, §5), we discussed the volume dependence of the 
electron-phonon interaction parameter Aei_Ph. Because A,tr is closely 
related to Aei_Ph we can take the same approach here, giving 

dlnp/dlnV = -2(dln6opl/dln V) + 2y, (15.44) 

where y may be (crudely) approximated by the Grtineisen parameter yc. 
In a free-electron model, cdL = Anne2/m, i.e. dln&>pi/dln V = —1/2. 
Then the righthand side of eq. (15.44) becomes 1 + 2yo- Similar results 
have been obtained for alkali metals, in pioneering work by Dugdale and 
Gugan (1962). In transition metals, there are other important terms in 
dlnAtr/dln V than just 2yo, and a detailed consideration of the various 
contributions to d/Oei-ph/dV is necessary (Sundqvist et al. 1985). Dug-
dale and Myers (1985) have briefly reviewed the theory of the pressure 
(i.e. volume) dependence of the electrical resistivity and they give an 
extensive survey of experiments. 

11. Saturation effects 

According to the simple theory (eqs. (15.24) or (15.27)), p increases 
linearly in T when T > 6D. Thermal expansion, combined with the 
fact that p varies with the volume mainly through phonon frequencies, 
gives an additional slight increase of p with the temperature. This is the 
normal behaviour, shown, for example, by Al (fig. 15.2). Titanium (fig. 
15.2) has an anomalous temperaure dependence of p which cannot be 
explained by a rapidly varying N(E) near the Fermi level. Instead, we 
have an example of what has been termed resistivity saturation (Fisk 
and Webb 1976). Empirically, the shape of p(T) is well approximated 
by the shunt resistor model (Wiesmann et al. 1977); 

P(T) Adeal(^) 

Here pideai is the "normal" resistivity, and psat is a value which the 
actual resisivity would take when pideai becomes very large (either be-
cause T is high or because pdef is large). A consequence of eq. (15.45) 



254 Ch. 15. Electrical conductivity of metals and alloys 

is that dp/dT < dp^ea\/dT. In fact, dp/dT is experimentally found 
to decrease with increasing p and becomes negative for most highly 
resistive metals, such as certain steels and amorphous metals. This is 
known as Mooij's rule (1973). Qualitatively one may understand the 
phenomenon of saturation as a result of the short electron mean free 
path I. Obviously, it cannot be shorter than the distance between two 
scattering centers, i.e. I must at least be larger than the diameter of an 
atom. This sets a universal (but crude) upper limit to p. The resistivity 
at which dp/dT < 0 was first thought to have the rather definite value 
of about 1.5 /JLQ m (Mooij 1973), but has later been found to cover a 
wide range, from 0.3 to 4 /xf2 m (Tsuei 1986). In spite of much effort 
(see Tsuei 1986, and reviews by Allen 1980, 1981, and Lee and Ra-
makrishnan 1985) there is no generally accepted theory which explains 
resistivity saturation, and its relation to phenomena like Anderson local-
isation (e.g. Kaveh and Mott 1982, Howson 1984). Dugdale (1995) has 
given an elementary review of various aspects of electrical properties in 
disordered metals. 



CHAPTER 16 

THERMAL CONDUCTIVITY 

1. Introduction 

Metals are usually characterised by a high thermal conductivity K. The 
heat is carried by the conduction electrons, and an account of the ther-
mal conductivity closely parallels that of the electrical conductivity a. 
The Wiedemann-Franz law, 

K = LaT, (16.1) 

connects the two phenomena through the Lorenz number L. But it is an 
insulator—diamond—that has the highest known thermal conductivity 
of any material at room temperature. In that case, the heat is carried by 
phonons. 

Figure 16.1 exemplifies the temperature dependence of the thermal 
conductivity in a pure metallic element (Al), a concentrated alloy (steel), 
a pure insulator (MgO) and a strongly disordered insulator (glass). 
Pure metals and insulators have a maximum in the thermal conductiv-
ity, much below room temperature. With increasing lattice disorder of 
various kinds, this maximum decreases in height and shifts to some-
what higher temperatures. In very impure or disordered materials, the 
maximum is absent. 

It will be characteristic of our theoretical models, in particular those 
referring to the lattice part of the conductivity, that they only give 
qualitative descriptions. Thus, they provide a scheme for semiempirical 
analysis and for the establishment of trends, but we cannot hope for 
accurate numerical predictions. 

In this book the emphasis is on what affects the thermal conductivity 
of real materials. More detailed theoretical treatments are found in re-
views by Klemens (1958, 1969,1993) and Beck et al. (1974). Parrot and 

255 
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T 1 r 

Fig. 16.1. The thermal conductivity K(T) of pure aluminium, pure MgO, a glass and 
stainless steel. Data from Touloukian et al. (1970). 

Stuckes (1975) and Berman (1976) give general reviews of the thermal 
conductivity, partly along the lines presented here, while Slack (1979) 
has reviewed the thermal conductivity of insulators at high tempera-
tures. Ziman (1960) gives a detailed account, with ample references to 
work before 1958. 

2. Macroscopic relations 

2.1. Thermal conductivity and resistivity 

The density of heat flow rate <p in a temperature gradient VT is, 
according to Fourier's law, 

<p = -K(VT). (16.2) 

To be more precise, the conductivity K is a tensor with components /Q7 

(/, j =x,y,z) and the ith component of the heat-flow vector <p is 

3 

7=1 
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Table 16.1 

Components of the thermal conductivity in some axial crystals (at 300 K), in the unit 
W/(m K) 

K\\ 

Ti02 

7 

10 

Si02 

6 

10 

Cd 

104 

83 

Bi 

9 

5 

£-Sn 

74 

52 

Graphite (pyrolitic) 

2000 

10 

For a material in which Ktj has cubic symmetry, the conductivity tensor 
is diagonal, i.e. Ku = K when / = 1, 2, 3 and Ktj = 0 when / •=/=• j . Then 
the heat flow is parallel to the temperature gradient and eq. (16.3) holds 
with a scalar K. 

We shall also refer to the thermal resistivity W. It is the inverse of 
the conductivity. Thus, for scalar W and /c, 

W = 1/K. (16.4) 

In non-cubic lattices, the tensors K and W have the same symmetry 
properties as the corresponding electrical quantities (Chapter 15, §6). 
Table 16.1 gives K± and K\\ in some axial crystals, with data from 
Touloukian et al. (1970), and where K\\ is the conductivity along the 
crystallographic oaxis. 

In metals, the heat transport by electrons (el) and phonons (ph) can 
be considered as independent. Then the total thermal conductivity is 

*tot = *el + Kph- (16.5) 

Equation (16.5) does not mean that the electron-phonon interaction 
has been neglected, but only that we may consider separate Boltzmann 
equations for the electrons and the phonons. Note that the thermal 
resistivities of different heat carriers are not additive; 

Wtot # Wd + Wph. (16.6) 

This should not be confused with the fact that the effects of various 
scattering mechanisms for electrons may add in Wei (Matthiessen's 
rule), and analogously (but with some restrictions) for the scattering 
of phonons in WPh. 
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2.2. Thermal diffusivity 

The physicist is primarily interested in the thermal conductivity /c, while 
measurements often give the thermal diffusivity a. The two quantities 
are related by 

a = — . (16.7) 

Here, cp is the specific (i.e. per unit mass) heat capacity at constant pres-
sure and p is the mass density. Fourier's equation (the heat equation) 
contains the thermal diffusivity; 

— - a(V2T) = 0. (16.8) 
ot 

When the thermal conductivity is not uniform throughout the sample, 
eq. (16.8) is replaced by 

CPP^-V(KVT) = 0. (16.9) 
ot 

Note that K may be spatially varying not only because of an inho-
mogeneous material but also because K is temperature dependent and 
the sample is in a temperature gradient. The heat equation coupled to 
the equation of state (i.e. with allowance for thermal expansion) was 
considered in Chapter 14 (§12). 

Example: covarying thermal conductivity and diffusivity. When T > 
6v, the heat capacity is approximately 3£B per atom. If M is the (aver-
age) mass of an atom in the specimen, N the total number of atoms, V 
the specimen volume, and Q& = V/N the volume per atom, we have 
from eq. (16.7) 

K 

- =cPP (*>) (E) = * . (16.10) 

Since £2a does not vary nearly as much as the thermal conductivity 
between different materials, the material with the higher thermal con-
ductivity usually also has the higher thermal diffusivity, provided that 
T > 0D. A later example (fig. 16.8) shows how a(T) varies in a metal 
(vanadium) from very low to very high temperatures. 
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logT 

Fig. 16.2. A schematic plot of log(/cph) versus log(r). The four regions A, B, C and D 
are discussed in the text. 

3. Lattice thermal conductivity: general aspects 

The thermal transport by phonons will be referred to as the lattice 
thermal conductivity, and denoted /cph. In textbooks its mathematical 
description usually starts from the theory of thermal conduction in a 
classical gas. This does not mean that one has resorted to a classical 
description, because the scattering rate is calculated using quantum me-
chanics. We may think of phonons as a gas of particles, characterised 
by a momentum hq (q is the wave vector) and an energy hco(q, s). In 
an ideal gas, there are no collisions between the particles. That would 
lead, in the case of a classical gas, to an infinite thermal conductivity. 
Likewise, the lattice thermal conductivity is infinite if the phonon mean 
free path is not limited by collisions—between phonons themselves or 
between phonons and lattice imperfections. Energy and momentum are 
conserved in a collision event, but because the phonons are massless 
particles they may be annihilated or created. The simple picture just 
outlined allows us to reach a qualitative understanding of the character-
istic features in the temperature dependence of K. Figure 16.2 shows a 
typical temperature dependence of K in a non-metallic crystal. There are 
four regions, denoted A, B, C and D, which we will explain. 

In a classical gas one has the well-known formula for the thermal 
conductivity, 

K = (l/3)ncvCl. (16.11) 

Here n is the number of particles per volume, cv is the heat capacity 
per particle (i.e. ncv is the heat capacity per volume), C is the (aver-
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age) velocity of a gas particle in the thermal equilibrium, and I is its 
mean free path. In a solid, the lattice thermal conductivity is given by 
an expression of the form (16.11), but we must sum over all phonon 
modes (q, s) and let cy, C and I depend on (q, s). The phonons are not 
true particles but waves, characterised by a phase and group velocity. 
In this case, C in eq. (16.11) should be replaced by the group velocity 
Cg(q, s) = |Vq&>(q, s)\. Let cy(q, s) be the heat capacity of a single 
mode (q, s). Then we have for the lattice thermal conductivity K = /cph; 

*ph = (1/3V) J2 cv(q, *)Cg(q, s)l(q, s). (16.12) 

An accurate evaluation of this expression is a formidable task, but it is 
easy to draw some qualitative conclusions. The phonon mean free path 
I is limited by collisions with other phonons and with lattice defects of 
various kinds. We assume that these mechanisms are additive so that 

—*— = + T . (16.13) 
4*(q, s) V- p h (q , *) V-def(q,s) 

The first term on the righthand side refers to phonon-phonon collisions 
and the next terms to phonon scattering by faults such as point defects, 
dislocations, grain and phase boundaries and the finite size of the sam-
ple. The discussion is simplified if only one of the terms in eq. (16.13) 
dominates at a time and we make that approximation. A calculation of 
/Cph from eq. (16.12) requires so many simplifying approximations that 
there is no point in using the precise phonon spectrum. We shall later be 
content with a Debye model, but we first discuss, qualitatively, the four 
regions A, B, C and D in fig. 16.2. 

Region A. The number of phonons (q, s) present in thermal equilibrium 
is given by the Bose-Einstein statistical factor 

1 / T1 

n(q, s) = * — . (16.14) 
exp[/io)(q, s)/k^T] — 1 hco(q, s) 

When T > $&, we take the leading high temperature term. Phonon 
collisions that limit the thermal conductivity must involve three or more 
phonons. The simplest case arises when two phonons combine in a 
"collision" event, and form one new phonon (fig. 16.3a) or when one 
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(a) (b) 

">—^ -—~C 

(c) (d) (e) 

Fig. 16.3. Three-phonon (a, b) and four-phonon (c, d, e) scattering processes. 

phonon is annihilated to form two new phonons (fig. 16.3b). It is intu-
itively clear that the probability for the phonon (qi, si) to undergo the 
process depicted in fig 16.3a varies as the number of phonons present 
to collide with, i.e. as some average n of all n(q, s). Because n ~ T at 
high temperatures, we expect that scattering such as in fig. 16.3a (and, 
it can be argued, such as in fig. 16.3b) leads to I ~ l/T. There may 
also be four-phonon processes (fig. 16.3c, d, e). For them, I ~ l/T2. 
Usually, the phonon-phonon scattering at high temperatures is domi-
nated by three-phonon processes (fig. 16.3a, b). The heat capacity at 
high temperature is reasonably well approximated by its classical value, 
3&B per atom. Hence, /cph varies with T as l/T. This is close to the 
observed temperature dependence in region A of fig. 16.2. 

Region B. We now turn to region B in fig. 16.2, where log(/cph) varies 
linearly with log(7), i.e. /cph ~ Tn. Typically, n ~ 3. Since there are few 
phonons excited at low temperatures, collision processes between them 
are rare. Instead, the mean free path is limited by phonon scattering 
against defects. Let us take I to be independent of T. Because the heat 
capacity of phonons at low T varies as T3 for all crystalline solids, we 
get the universal result K ~ T3. 

Region C. The maximum of /cph(r), region C, occurs roughly where 
^ph-ph ~ p̂h-def- Because £def depends on the nature and number of 
defects in the crystal, the temperatures covered by region C are char-
acteristic of the specimen rather than of the chemical composition of 



262 Ch. 16. Thermal conductivity 

the material. As a very crude rule of thumb, the maximum lies at 
temperatures just below 0. 1#D-

Region D. At very high temperatures, KP^(T) often decreases less 
rapidly than as l/T. There seems to be a "saturation" so that KPh(T) 
does not fall below a certain value. This is analogous to the saturation 
of the electrical conductivity in metals and alloys (Chapter 15, §11) and 
it can be given a similar interpretation. The mean free path decreases 
with increasing 7\ but I cannot be shorter than a characteristic distance 
a between two neighbouring atoms. (In fact, a more restrictive condi-
tion holds. A phonon is a wave packet defined by the displacements 
of discrete atoms. It would be unphysical to consider I shorter than a 
wavelength.) Hence, from eq. (16.11), /cPh cannot be smaller than of 
the order of (l/3)(3A^^B/V)CSOund,D^ ~ kBCsound,D/a2, where N is 
the number of atoms in the volume V, a? ~ V/N and CS0Und,D is the 
sound velocity in the Debye model. This argument is crude, because 
the Boltzmann equation and the concept of a mean free path between 
scattering events breaks down when I approaches a. However, it gives a 
physical explanation for the observed trend towards a weak temperature 
dependence of KV^{T) at very high T or in very defect lattices. 

In the following sections we will deal separately with the scattering 
mechanisms which dominate KV^{T) in the regions A, B and D of fig. 
16.2. Before that we give a general expression for /cPh, based on the 
Boltzmann equation for phonon transport. 

4. The Boltzmann equation for phonon transport 

In Chapter 15 we presented expressions for the electric current j and 
the electrical conductivity tensor a with components o^, in relation to 
the Boltzmannn equation for electron transport in an electric field E. 
Here we give the corresponding expressions for the density of heat-flow 
rate (p, and the thermal conductivity components Ktj resulting from the 
Boltzmann equation for phonon transport in a temperature gradient V7\ 
There are close similarities between the two sets of expressions. The 
thermal transport can be written 

<p = - ( 1 / V) £ [ C g ( q , s) • Vr]Cg(q, s)r(q, s)Char(q, J ) , (16.15) 
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where Cg(q, s) = Vqo>(q, s) is the group velocity and Char is the heat 
capacity for a single phonon mode (q, s), i.e. with the Einstein-model 
temperature dependence (x = ha)(q, s)/kBT); 

x2ex 

Cha[ = kB (16.16) 
(ex — \)1 

The tensor components of the thermal conductivity are 

KV = d / V> J2[C^ *)MCg(q, S)W*> )̂Char(q, s). (16.17) 
q,s 

In an isotropic system, co(q, s) and r(q, s) depend only on |q| and s. 
Then Cg(q,s) = (q/|q|)Cg(s). When i ^ j the sum over q in eq. 
(16.17) yields /c/y = 0, as expected. The mean free path £(q, s) is 

£(q,j) = Cg(q,j)T(q,j). (16.18) 

With eq. (16.18) in eq. (16.17) we recover the formulation (16.12) of 
/cph in terms of I. The prefactor (1/3) in eq. (16.12) arises from eq. 
(16.17) because, in an isotropic system, [Cg]/[Cg]7 = (l/3)[Cg]2 on 
the average. 

It is often more natural to express r (q, s) and £(q, s) as a function of 
the phonon frequencies a> of the modes (q, s). Then the sums over (q, s) 
can be replaced by an integral over co containing the phonon density of 
states F(co). For instance, from eq. (16.17) 

P &>max 

/cph = (A73V)Cg / Chav(co)i(co)F(co)dco 
Jo 

Jo 
{N/2>V)Cil Ch3r(co)r(co)F(co)d(o. (16.19) 

Here, Cg is some average phonon group velocity, Char(<w) is the heat 
capacity of a single phonon mode, (eq. (16.16)), and N/V is the 
number of atoms per volume. We recall our normalisation convention, 
/ F(co) do; = 3. 
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5. Lattice conductivity limited by anharmonic effects 

5.7. General results 

If the lattice vibrations are strictly harmonic, the phonons are rep-
resented by non-interacting waves. Then there is no mechanism for 
phonon scattering and the lifetime, rph_Ph, is infinite. In order to have 
a finite rph-Ph, one must retain anharmonic terms when the potential 
energy O is expanded in the atomic displacements u (Appendix C); 

cD = O0 + ( l / 2 ) ^ O / ; w a ^ + (l/3!) ^ ®ijkUaupuy 

+(1/4!) ] P ®ijkiUaUpuyu8 + • • •. (16.20) 
af}y8,ijkl 

Here, /, j , k and / label atoms and a, /3, y and S label Cartesian coor-
dinates. It can be shown that terms in eq. (16.20) which are cubic in u 
correspond to three-phonon scattering (fig. 16.3a, b). The terms quartic 
in u correspond to four-phonon processes (fig. 16.3c, d, e). To calculate 
the phonon-limited lattice thermal conductivity from eq. (16.17) we first 
must find the lifetime r(q, s). Consider scattering in and out of a state 
1, as shown schematically in fig. 16.3a, b. Let the statistical distribution 
function of the state 1 be perturbed from its equilibrium value n(l) to 
n(l) = n(X) + An(l) but let the states 2 and 3 be described by the 
equilibrium functions nil) and n(3). The probability for a scattering 
event 1 —> 2 + 3 contains the temperature explicitly through the factors 
h(l)[n(2) + l][rc(3) + 1]. (The term 1 in n + 1 arises because of the 
stimulated emission of bosons, i.e. phonons.) Similar expressions hold 
for events 2 + 3 -> 1, etc. One is left with an expression 

1 2;r v-^ 9n(2)n(3) 
-7TT = T E l^1 ' 2' 3)l ^ T T H (16-21) 

r(l) h ^ n{\) 
where |#(1,2,3) | 2 is short for |(1|A//|2, 3)|2<5(qi - q2 - q3 -
G)8(HAa)), and Aw = oo\ — CDI — 0)3 or similar terms, (... AH ...) is a 
quantum mechanical matrix element for the transition, and delta func-
tions 5(...) account for wavenumber and energy conservation. Equation 
(16.21) is a key expression in our subsequent discussion. It is very 
difficult to evaluate |/Z(1,2, 3)|2 accurately but simple assumptions 
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(e.g. Leibfried and Schlomann 1954, Klemens 1958, 1969), and even 
dimensional arguments, lead to a form 

o n y S2a CO\<JOIOO% 
| /J(1, 2, 3)|2 = A — — l-J-±. (16.22) 1 v n 3MN C\ 

Here, A is a dimensionless constant, roughly of the order of unity. Fur-
thermore, we have assumed a monatomic primitive lattice (fee or bec), 
with atomic volume £2a and atomic mass M. The parameter y in eq. 
(16.22) is related to the Gruneisen parameters, but it is not equal to any 
particular y(n). N is the number of atoms and 3N is the number of 
phonon modes. The evaluation of r (1) in eq. (16.21) requires a summa-
tion over modes 2 and 3. This cannot be done analytically, so it is not 
possible to give a closed-form expression for the temperature depen-
dence of the thermal conductivity /cph-Ph(^), valid at all temperatures 
and based on eq. (16.21). Instead we discuss separately the case of high 
and low temperatures. 

The four-phonon processes (fig. 16.3c, d, e), are much less important 
than the three-phonon processes (Ecsedy and Klemens 1977). This is 
different from the case of anharmonic shifts in the vibrational entropy 
(Chapter 8, §5), where the three- and four-phonon interactions are of 
roughly equal importance. 

Because anharmonic effects are always present (contrary to various 
lattice defects or sample size effects) one may call the lattice conductiv-
ity that is limited by anharmonicity the intrinsic conductivity. We denote 
it /Cph-ph-

5.2. Low temperatures 

The combination n(2)n(3)/n(l) of Bose-Einstein factors in eq. (16.21) 
must be considered in some detail. At a given (low) temperature, only 
phonon states with ha>\ < k^T are sufficiently populated to be of im-
portance in the scattering process 1 —• 2 + 3. In this context, Peierls 
(1929) derived a very important result that only scattering with G ^ O 
in eq. (16.21) contributes to the thermal resistivity. This is termed Um-
klapp scattering, and referred to as [/-processes. (The German Umklapp 
means a "flip-over".) If now qi is small (because hco\ < k^T), the 8-
function for wave vectors in eq. (16.21) implies that at least one of |q2| 
and |q31 is of the order of |G|, i.e. of the order of qD. This also implies 
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that at least one of a>2 and 0)3 is of the order of the Debye frequency &>D. 
Hence, when T <£ #D, the factor n(2)n(3)/n(l) contains a term of the 
order 

exp(-ha)D/kBT) = exp(-# D / r ) . (16.23) 

Such an exponential term dominates the temperature dependence of 
Kph-ph(7") and, in a qualitative description, we can neglect any pre-
factors containing powers of T. Therefore, at low temperatures, we get 
approximately 

Kph-ph = KO exp(-0D/r). (16.24) 

The prefactor KQ is, in principle, to be calculated from r( l ) in eq. 
(16.21). In practice, this is not feasible, and we are left with KQ as a 
free parameter. Its order of magnitude may be estimated by joining 
Kph-ph^) at high temperature (eq. (16.26)), to the low temperature form 
(eq. (16.24)), with T = 9D. The Debye temperature 6D in eq. (16.24) 
only measures, in a rough way, the magnitude of typical phonon ener-
gies, and #D is not equal to any particular 9^(n). Sometimes a reasonable 
account of /cph_Ph(7') in the transition region between A and C in fig. 
16.2 is obtained with #D replaced by 0D(—3)/b, where b typically is 
between 2 and 3. 

5.3. High temperatures 

Let the temperature be much higher than the Debye temperature 
0D, i.e. kBT » h(oh for i = 1, 2, 3. Then n(2)n(3)/n(l) « 
(kBT/h)(0)1/0)20)3). When this is inserted in eq. (16.21) the explicit 
dependence on 0)2 and 0)3 vanishes, by eq. (16.22). There is still a 
dependence on the modes 2 and 3 in H(l, 2, 3) but that has been al-
lowed for in an average manner in the constant A in eq. (16.22). The 
summation over the mode 3 reduces to a single term because of the 
5-functions in eq. (16.21). Because r( l ) now only depends on the fre-
quency o) = <w(qi, s\), but makes no explicit reference to the values of 
q or 5, we write r (1) = x(co) and get 

1 1 =2xAr^>\TJ 
T(l) T(W) M C\ 
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Finally, an integration over all modes 1, i.e. over all frequencies co, 
yields /cPh_Ph from the expression (16.19). With a Debye phonon spec-
trum, and using that Cg/a = &>D/(97r/2)1/3 and (4n/3)a3 = fia, one 
obtains 

B MQl/3klel 
Kph-ph = / 0 w V 3—^3 ^lrr—, (16.26) 6a^jTVgt/D 

(2TT)3 h3y2T 

where B is a dimensionless constant. This is a key result. Formally it 
is valid when T ^> 0D, but in practice the \/T dependence is often 
already well obeyed for T > #D/3 . A relation of the form (16.26) has 
been derived by Leibfried and Schlomann (1954) (corrected for an error 
by a factor of two by Julian (1965)), Klemens (1958, 1969) and others. 
These theoretical approaches give essentially the same combination of 
characteristic parameters, but they differ in the numerical prefactor B. 
This is natural, because an evaluation of B requires a large number of 
simplifying, and to some extent arbitrary, assumptions. Klemens (1969) 
suggests that B = 1.61, a value that usually gives an adequate descrip-
tion of the measured conductivity of non-metals at high temperatures 
(Slack 1979). We note that the theory was developed for 1 atom per 
primitive cell, i.e. with only acoustic branches in the phonon spectrum. 
In §5.4 it is discussed how #D must be redefined in the case of several 
atoms per primitive cell, i.e. when the phonon spectrum contains op-
tical modes. We also make the important observation that the intrinsic 
thermal conductivity at high temperatures has an essential contribution 
from the long-wavelength phonons. This is because r ~ l/co2 and 
F(co) ~ co2 which makes the product T(CO)F(CO) in the integrand of 
eq. (16.19) independent of co. Finally, we note that /cph-Ph in eq. (16.26) 
is explicitly linear in the atomic mass M, but there is also an indirect 
mass dependence in #D, which varies as M~3/2 (for a monatomic solid). 
Hence, /cph_Ph varies as M~1/2 in this model. 

Example: analysing /cph-ph at high temperatures. In view of the theo-
retical uncertainties about the absolute magnitude of /cPh-Ph, one may 
choose to analyse high temperature experiments using the semiempiri-
cal formula 

^ph-ph = /c*(rfus/7T. (16.27) 

Here K* is a fitted prefactor, rfus is a melting temperature and the ex-
ponent T) is near unity. Neglecting any temperature dependence, other 
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Fig. 16.4. Experimental values (Touloukian et al. 1970) of ln/c versus lnT, in the 
high-temperature region, for NaCl and MgO. The dashed line has the slope - 1 , i.e. 

the slope corresponding to K ~ l/T. 

than the explicit factor l/T and the indirect temperature dependence of 
6D due to the thermal expansion, we have from eqs. (16.26) and (16.27) 
near Tfus 

r] = -(dlnKph_ph/dln:r) 

^ l -3(31n#D/31nV)(ainV/31nr) 

^ l + 3j8yrfuS. (16-28) 

For many solids, fiTfus ~ 0.06, and y ~ 1.5. Then t] ^ 1.3. Thus, 
thermal expansion causes r\ to be somewhat larger than unity. The four-
phonon processes (fig. 16.3c, d, e) give a scattering rate for which r ~ 
l/T2. This would also make r\ larger than 1, but the effect appears to be 
small (Ecsedy and Klemens 1977). 

Figure 16.4 shows ln/ctot versus ln7\ from experiments. Because 
/ctot for these solids is mainly limited by phonon-phonon scattering, the 
slopes of the curves give an estimation of the parameter r] in eq. (16.27). 

5.4. Several atoms per primitive cell 

In the derivation above, we have assumed a Debye spectrum for all 
phonon modes. This must be modified when there are several atoms per 
primitive cell in the lattice. Consider the extreme case that the dispersion 
curves for the optical branches are almost "flat", as in fig. 16.5. The 

j i 
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G)(q;s) 

Fig. 16.5. A schematic phonon dispersion curve for a solid with 2 atoms per primitive 
cell. The dashed line is a model dispersion curve, corresponding to a Debye model for 

the acoustic branch and an Einstein model for the optical branch. 

group velocity Cg = Vq&>(q, s) ^ 0 for these branches, and therefore 
they do not contribute to the heat flow. Still the optical modes affect 
the thermal conductivity because they interact with the heat-carrying 
acoustic modes and thus limit the relaxation time. Slack and Oliver 
(1971) assumed that one should sum over only the acoustic modes in 
eq. (16.17) and they neglected the influence of the optical modes on r 
for the acoustic branches, while Roufosse and Klemens (1973) included 
the effect of optical modes on r. When the high temperature formula 
(16.26) is applied to lattices with several atoms, p, per primitive cell, 
one has to be careful in the definition of 9D. Typical acoustic phonon 
energies are kB9D/pl/3, and not kB6D. Slack (1979) has considered the 
thermal conduction in lattices with p > 1 in some detail. He finds that 
a result calculated as if there were 1 atom per cell should be divided 
by a factor of p2/3. This is not a strict rule, but it gives the trend. In an 
analogous way, 0D must be reduced in the factor exp(-9D/T) that ac-
counts for the freezing-out of the Umklapp scattering as the temperature 
is decreased. 
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6. Defect-limited lattice conductivity 

6.1. General considerations 

We will consider the scattering of phonons by: 
(i) point defects; substitutional atoms, interstitials, vacancies, isotopic 

defects etc.; 
(ii) line defects; thin cylindrical inclusions; 
(iii) planar defects; thin platelets; 
(iv) volume defects; the strain field from dislocations; 
(v) interface boundaries and sample boundaries. 

The scattering cross-section has a different dependence on the phonon 
wavelength in each of the five cases (i)-(v). It is well known, for exam-
ple from Rayleigh scattering in acoustics and optics, that the scattering 
cross-section for a point defect varies as 1/A,4, where X is the wave-
length. For line defects (ii), the cross-section varies as 1/A3; for planar 
defects (iii), as 1/A.2; and for the strain field due to dislocations (iv), as 
1//L In case (v) it is practically independent of A. 

The scattering by defects is of particular importance at low temper-
atures. Since only phonons with ha>(q, s) < kBT are excited, it is a 
good approximation to take co(q, s) linear in |q|. Then co ~ 1/A. It 
follows that the scattering cross-sections for cases (i)-(v) vary as of, 
where n = 4, 3, 2, 1 and 0, respectively. The corresponding relaxation 
times r vary as of~n. We now assume an isotropic Debye spectrum for 
F(CD), with &B#D = hcomSLX, and make the substitution hco/k^T = x. 
Then, from eq. (16.19), 

1 k*T3 f^/T
 JCVT(JC) 

^T) = 2^¥cti c ^ l ? ^ <16'29) 

With r ~ co~n ~ x~n, and at low temperatures, we have 

r»oo V 4 V - n „ x . f°° x*x~nex 

(16.30) 

The integral in eq. (16.30) diverges at x = 0 when n = 3 or 4, i.e. 
for point and line defects. Therefore, one must introduce a cut-off xc as 
the lower integration limit. Physically this cut-off means that the finite 
size of the specimen, grain boundaries or extended defects, dominate 
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the scattering of very low frequency phonons. When n = 0, 1 or 2, the 
integrand in eq. (16.30) has its maximum at, very roughly, x ~ 1. It 
follows that those phonons that carry most of the heat have hco(q, s) ~ 
kBT, i.e. a wavelength X ~ ( # D / ^ ) ^ D ~ (6v/T)a, where a is an atomic 
diameter. 

After this general introduction to defect scattering of phonons, we 
discuss each defect separately. 

6.2. Point defect scattering 

It is instructive to first recall Rayleigh's (1894) classical theory of 
sound wave scattering against small objects. Some complications arise 
in solids because there are longitudinal as well as transverse modes 
(Ziman 1960). We can write, for macroscopic inclusions, 

^- = "defA (jp) CgVd
2

ef[(Ap/p)2 + 6(AG/G)2]. (16.31) 

Here, d̂ef is the number of defects per volume, Vdef is the volume of a 
single defect (i.e. d̂ef Vdef is the volume fraction occupied by defects), 
Cg is the group velocity of the wave, (Ap/p) is the change in the mass 
density of the inclusion relative to the matrix, (AG/G) is the corre-
sponding change referring to the shear modulus G (that relates to the 
sound velocity) and A is a dimensionless constant of the order of 4n3. 
Note that (Ap/p) and (AG/G) need not be small. 

The archetype of a point defect is a substitutional atom in a lattice. 
It creates several kinds of disturbances for a propagating phonon. The 
atomic mass and the interatomic forces are changed, and atoms are more 
or less displaced (often referred to as lattice relaxation). We first discuss 
the mass change (isotope scattering), because that is the simplest case 
to treat theoretically. 

Klemens (1955) derived an expression for the scattering time TAM, 
as limited by a change of an atomic mass from M to M + AM. In a 
monatomic lattice, and with an isotropic Debye model for the phonons, 
he obtained 

1 £W* / A A A 2 

= ctefT±Jzi-rr) • (16-32) 
/ A M V 

r A M^) 4;rC] V M 

This is equivalent to eq. (16.31) when AG/G = 0. (Let A = 4^3, cok = 
27rCg and Ap/p = AM/M.) Vdef = ^a is the volume per atom and cdef 
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(with 0 < Cdef < 1) is the defect concentration in the lattice (i.e. the vol-
ume or site fraction occupied by defects). As in eq. (16.31), eq. (16.32) 
does not require AM/M to be small. A more detailed formulation of 
the scattering problem (Takeno 1963, Callaway 1963, Krumhansl 1965, 
Elliott and Taylor 1964, McCombie and Slater 1964, Klein 1966) leads 
to essentially the same result. 

The combined effect of mass and force constant changes have 
been studied theoretically by Krumhansl and Matthew (1965) and Yus-
souff and Mahanty (1966, 1967). In one dimension (a linear chain), 
Krumhansl and Matthew (1965) found that the factor (AM/M)2 in the 
scattering rate should be replaced by 

AM 2(Ak/k) 

M l + (Aifc/Jfc)J 
(16.33) 

if the force constants between nearest-neighbours at the defect site are 
changed from k to k + Ak. Thus, there is in this model a cancellation 
of the two effects when (Ak/k) = - (AM/M)/[2 + (AM/M)]"1. No 
such simple result seems to be known for a three-dimensional system, 
but we conclude that the effects of mass and force constant changes are 
not additive. 

An impurity atom may cause a dilatation of the lattice. Its effect 
on the thermal conductivity can be estimated from the classical theory 
of Rayleigh scattering, if one relies on some Gruneisen parameter to 
estimate changes in the group velocity Cg. Also, in this case there is 
the possibility of a cancellation between the two effects. In spite of 
much work (e.g. Carruthers 1961), it is still uncertain how to handle 
the dilatation term (Klemens 1983a). 

In our treatment of point defects, it has been required that k ^> L, 
where L is a characteristic size of the scattering object. Nothing has 
been said about the distance D between these objects. If the phonon 
mean free path £def S> D, a phonon will "see" very many point-like scat-
tering centres and there may be interference effects. The total scattering 
amplitude is the sum of amplitudes from each scattering centre. How-
ever, the scattered intensity depends on the total scattering amplitude 
squared. If the scattering centres are randomly distributed, the interfer-
ence effect averages to zero and the total scattered intensity is the sum of 
the intensity calculated from each scattering centre separately. (A better 
known example of this phenomenon is the blue colour of the sky. It is 
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caused by Rayleigh scattering of light against air molecules, but it is 
essential that the number-density of molecules is spatially fluctuating.) 

Example: vacancy scattering. Vacancies can be regarded as point de-
fects with the mass change AM/M = — 1 and (less accurate) AG/G = 
— 1. The equilibrium number of thermally generated vacancies is much 
too small (typically < 10-3) to have any significant effect on the lattice 
thermal conductivity. A larger concentration is found in doped ionic 
solids, e.g. KC1 doped with Ca (Slack 1957), where charge neutrality 
requires that vacancies are formed. The vacancies are often adjacent 
to the impurity atoms. Their combined effect on /cph is small, but may 
be detected in accurate experiments at low temperatures (Schwartz and 
Walker 1966). The theory of vacancy scattering is in fair agreement with 
experiments (Klemens 1983a). 

Example: clustering of small defects. Assume that clusters are formed, 
each containing p of the original small defects. Then, nde{ in eq. (16.31) 
decreases by a factor p while Vd

2
ef increases by a factor p2. Thus, within 

Rayleigh's classical model, x (and hence /cph) decreases by a factor of p. 
However, the Rayleigh formula is not valid when the characteristic size 
L of the scattering objects becomes comparable to the wavelength. We 
expect a breakdown of eq. (16.31) when Lq > 1, i.e. when a> > Cg/L. 
The theory describing the transition from Rayleigh scattering to the 
"geometrical" scattering against large objects is complicated (Schwartz 
and Walker 1967). 

6.3. Dislocation scattering 

The influence of dislocations on the lattice thermal conductivity has re-
ceived continuous interest for a long time (e.g. Klemens 1955, Bross 
et al. 1963, Eckhardt and Wasserbach 1978, Anderson 1983). Be-
cause of the strain field surrounding a dislocation, they do not scatter 
like line defects. The effect of dislocations on the thermal conductiv-
ity is controversial and theoretical calculations are in poor agreement 
with experiments. It is only at very low temperatures (T < 9^/10) 
that dislocation scattering in heavily deformed materials may be of 
importance. 
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Fig. 16.6. The thermal conductivity K of a crystal of the pure isotope 74Ge and a crystal 
of natural Ge. Also shown is K of irradiated LiF in two crystal sizes. 

6.4. Boundary scattering 

At very low temperatures, the phonon mean free path I may be compa-
rable to a characterisitic sample dimension d (the diameter of a wire or 
the diameter of small crystals). Then I is independent of k (or co) and 
/cPh varies as the low temperature lattice heat capacity, i.e. as T3. 

Example: scattering by defects in LiF and Ge. Figure 16.6 shows the 
measured thermal conductivity of Ge (Geballe and Hull 1958) and LiF 
(Pohl 1960). For Ge, K(T) is shown for an isotopically almost pure sam-
ple of 74Ge and for natural Ge. The difference in K can be explained by 
the isotope scattering model (§6.2). At very low temperatures, boundary 
scattering gives K a T3-dependence. The two curves for LiF refer to 
irradiated samples of different sizes (6.7 x 0.8 x 40 mm and 0.7 x 0.8 x 40 
mm). F-centres, introduced by irradiation, contribute to the scattering at 
T near the maximum in K. 

6.5. Several scattering processes acting simultaneously 

In eq. (16.13) we wrote the inverse phonon mean free path as a sum 
of inverse mean free paths for each scattering mechanism. This is 
equivalent to a corresponding relation for the lifetimes r(&>); 

1 _ 1 y ^ 1 

*tot(G>) Tph-ph(^) ^ tph-def (CO)' 
(16.34) 
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Let us assume that there are only two scattering mechanisms, each asso-
ciated with a constant relaxation time. Then, with rtot = (1/ri + l / r 2 ) - 1 

inserted in eq. (16.19), 

Wph,tot = l/Kph,tot 
rcomax -i-l / j j x 

(N/3 V)C\ J Char((o)F(co) dco\ 1- + - \ 

= 1/KI + 1/K2 = WX + W2. (16.35) 

If r depends on o), the arguments above can be repeated provided that 
r\ (O))/T2((JO) is independent of co. Only then can one add phonon-related 
terms in the thermal resistivity, in analogy to Matthiessen's rule for 
adding contributions to the electrical resistivity in metals. However, the 
condition for TI(Q))/T2(CD) is usually not fulfilled, but eq. (16.34) is still 
the natural relation to start from, because it expresses the fact that the 
total scattering rate is the sum over the various scattering processes that 
are present. 

Erdos and Haley (1969) considered the validity of the relaxation 
time approximation and eq. (16.34) in an application to point defect 
scattering in a slab of finite size. Then the point defects contribute to the 
thermal resistance as (C<M)3/4, i-e- n o t simply proportional to the point 
defect concentration cdef. 

6.6. Concentrated alloys 

The electrical resistivity of a concentrated alloy very roughly follows the 
rule yOtot = /oei-ph(7,)+c(l — c)p*, where the defect resistance c(l — c)p* 
varies parabolically with the composition Ai_cBc of the alloy and is 
independent of the temperature. (This behaviour excludes cases with 
"saturation".) In phonon transport such a simple result does not hold. 
The reason is to be sought in the point defect scattering, which gives a 
divergence in /cph arising from low frequency phonons. The divergence 
is taken care of by the anharmonic (phonon-phonon) scattering. Because 
of the very different behaviour of T{CO) for the two scattering mecha-
nisms, Matthiessen's rule is strongly violated. The qualitative result, at 
high T and not too small c, is (Klemens 1960) 

Wpn.tot - [c(l - c)]l,2Tlf2(l/n + l / r2) . (16.36) 
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Such a behaviour has been observed, e.g. in experiments on Ge-Si 
(Abeles 1963). 

7. Electronic contribution to the thermal conductivity 

7.1. Introduction 

The expression for the conductivity of a classical gas was the starting 
point for our discussion of the phonon part of the thermal conductivity 
in solids. The same fundamental expression can be used in a treatment 
of the electronic contribution, Kt\. One can write 

*ei = ^nceXveXle\, (16.37) 

where cei is the electronic heat capacity (per electron), n is the number 
of conduction electrons per volume, ve\ the electron velocity and £ei 
the electron mean free path. Now let the electrons be described by 
a free-electron model, i.e. % = fp (the Fermi velocity) and cei = 
(nkB/v¥)

2(T/m). The mean free path can be expressed in the electron 
lifetime r as €ei = vpT. The thermal conductivity then becomes 

*d = " • (16.38) 
3ra 

Compare this with the result (eq. (15.2)) for the electrical conductivity, 
a = ne2r/m. We get 

B ' - ' x r - L0T. (16.39) 
a ne2x/m -mr-

L0 (= 2.44 x 10"8 WQ K~2, or V2K"2) is the Lorenz number for a 
free-electron model in which the lifetime r is taken to be the same for 
electrical and thermal transport. The proportionality between KQ\ and a 
was discovered by Wiedemann and Franz (1853). Lorenz (1881) noted 
that the proportionality constant is linear in T. Therefore, eq. (16.39) is 
known as the Wiedemann-Franz or the Wiedemann-Franz-Lorenz law. 
The first theoretical account of this law is due to Drude (1900a). In a 
real metal we define the Lorenz number L by 

L = Kel/crT. (16.40) 



Electronic contribution to the thermal conductivity 277 

3 h 

1 H 

I I I I I I I 1 I 

/ w
 />RRR = 30 

» / 
X R R R = 1000 

I I I I I I I I 

I 
I 

500 
T (K) 

1000 

Fig. 16.7. The Lorenz number, as approximated by L — Ktot/vT, from measured /ctot 
and o (Touloukian et al. 1970, Bass 1982). RRR is the residual resistance ratio. 

L is temperature dependent, but when T > 6D/2, L often does not 
deviate more than 20% from L0 (Laubitz and Matsumura 1972, Laubitz 
et al. 1976), and normally L > L0. (An exception is Pu, for which 
L « LQ/2.) An experimental determination of the Lorenz number 
requires that the phonon part /cph is subtracted from the total thermal 
conductivity /ctot = /cph + KG\. The magnitude of /cph is very diffi-
cult to calculate accurately. In fig. 16.7 we therefore plot the quantity 
L(T) = Ktot/(aT), from experimental data on a and the total con-
ductivity /ctot. Obviously, the Wiedemann-Franz-law, with L = L0, is 
approximately obeyed also for these real materials. The minimum in 
L(T) at low T is discussed in §7.4. 

7.2. Fundamental expressions for Ke\ 

In Chapter 15, dealing with the electrical conductivity a, we obtained 
the expression 

ne 
a = —( r ( e ,k ) ) . (16.41) 

Here, m^ is an effective electron band mass and T{E, k) is an elec-
tron lifetime that depends both on the direction of the wave vector k 
and on the energy distance s to the Fermi energy £F. The brackets 
(...) denote an average over all electron states, with a weight factor 
—[9/(£k)/9£k] which implies that we only sample electron states k near 
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the Fermi level. The analogue of eq. (16.41) for the electronic part of 
the thermal conductivity is 

*el 
nk\T 

t(e,k) (16.42) 

The lifetime r(s, k) solves the Boltzmann equation in a thermal gradi-
ent. 

We will now see that eq. (16.42) contains, as a special case, the 
Wiedemann-Franz law. Let r(s, k) be isotropic and energy indepen-
dent, i.e. r(£, k) = r. (This still allows r to be temperature dependent.) 
Then, from eq. (16.42), 

*el = 
nk^Tx n^yras* — 

The integral over d£2 gives 4n and the integral over e can be solved 
exactly, giving 7T3/3. One obtains the desired result 

Kel 
7T2nk^Tr 

3mh 
= GL0T. (16.44) 

7.3. Ke\ expressed in electron-phonon coupling functions 

In Chapter 15 (§5.1), we related the electron lifetime, and the resulting 
electrical resistivity, in integrals involving the transport Eliashberg cou-
pling function afTF(a>). The corresponding expression for /cei contains 
both a2F(co) and the ordinary Eliashberg coupling function a2F(co). 
One has (Leung et al. 1977, Tomlinson 1979, Grimvall 1981) 

1 

*el 

1 (4;r)2 

L0T ft>2 

f 
Jo 

hco/kftT 

[exp(h(o/kBT) — 1][1 — exp(—hoo/k^T)] 
T 1 / ha) V 

2^2 \kvr) 
<F(co) 

+ 
ha> 

2n2 \kBT 
a2F(o) \ dco. (16.45) 
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We consider this formula in some special cases. It is then convenient to 
use the thermal resistivity We\ = l//cei-

High temperature limit: Let hcomax/kBT <$C 1 (in practice even T/9D > 
1 may be enough) and take the free-electron result co2

x = Anne2/m. 
Then 

Wei = T r - / — dco = — — . (16.46) 
L§neln JQ co Lonezn 

This is now compared with the corresponding expression, (eq. (15.27)), 
for the electrical conductivity, \/a — 2nmkBTXtT/(ne2h). Again, we 
recover the Wiedemann-Franz law. 

Einstein phonon spectrum: Let the phonons be described by an Einstein 
model. Then 

a2
TF(co) = A8(to - coE), a2F(co) = B8(co - coE), (16.47) 

where A and B are constants. The integral in eq. (16.45) just picks up 
the 8 -function contributions and one obtains 

Wei = kEChAT/6E) 
B ^ I T ) In2 \ B 

(16.48) 

Here, kE is a constant and C^iT/6E) is the lattice heat capacity in an 
Einstein model. It follows that Wei = l//cei and the heat capacity Cp of 
a pure metal will tend to have a covarying temperature dependence (cf. 
Chapter 19, §11). 

In Chapter 15 (§5.4), we made the approximation a2F(co) = 
(1 — cos0)a2F(co), where (1 — cosO) is a geometrical factor and 9 
is an electron scattering angle. Typically (1 — cos#) « 1, i.e. A/B ^ 
(1 — cos#) ^ 1. Motakabbir and Grimvall (1981) discussed Wei on the 
basis of an Einstein model, with A/B as a free parameter. In particular, 
they were able to account for the minimum in the thermal conductivity 
of pure metals, which is observed, e.g. for Al, Na and Zn at T ~ 0.4#D. 
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7.4. The Wiedemann-Franz law 

Comparing l//cei in eq. (16.45) with p = \/a in eq. (15.20), it is 
obvious that the Wiedemann-Franz law is valid if we can make the 
approximation 

1 /HcoY ha> 
<FM+^[^f^iFM 

2 

2n2 

«c4F(a>), (16.49) 

i.e. if we can neglect a term 

1 / h \ ^ 

2^ Vi^r) &*2F(a>)-alF(o>)] (16-5°) 

in the integrand of eq. (16.45). This is a good approximation when 
T > #D> because then the factor preceding [...] in eq. (16.45) is <0.05. 
At low temperatures (in pure metals), there are large deviations from 
the Wiedemann-Franz law (fig. 16.7). The prime reason is the inelastic 
nature of the scattering of electrons by phonons, i.e. the scattering with 
energy loss or gain. It is often stated that the Wiedemann-Franz law 
holds in the limit of low and high temperatures. At low 7\ this is true if 
T is so low that the (elastic) impurity scattering dominates. At high 7\ 
the (dominating) electron-phonon scattering is basically inelastic, but 
the energy changes, ~ hcoD, are small compared to the energy k^T, and 
the scattering therefore appears to be elastic. 

For completeness, we remark that we have left out a correction of 
a few percent or less in Ke\, related to the thermoelectric power (e.g. 
Laubitz and Matsumura 1972). 

7.5. Thermal conductivity in impure metals 

We first recall the basic results for the electrical conductivity of impure 
metals. Let ptoi obey Matthiessen's rule, ptot = pei-ph + Aief- We may 
also write this as atot = ne2rioi/m, with l/rtot = l/rei_ph + l/rdef- The 
Wiedemann-Franz law gives 

m m ( 1 1 \ 
Wel,tot = 2 , - = - J ^ + — • (16.51) 

nelL§7rtot nelL0T Vrei_ph Tdef/ 
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Fig. 16.8. The thermal diffusivity a for vanadium. The residual resistivity is p^ef = 
1.72 IMQ cm. Data as recommended by Touloukian et al. (1973). 

Thus, Matthiessen's rule holds also for the electronic thermal resistivity, 

Wel,tot = Wel_ph + Wdef. (16.52) 

This argument can be repeated with a more fundamental expression than 
ne2r/m for atot. 

Assuming that the Wiedemann-Franz law is valid, the effect of vari-
ous static lattice defects on the electron part of the thermal conductivity 
follows from our discussion of the electrical conductivity (Chapter 15). 
See also Motakabbir and Grimvall (1981) for a simple model calculation 
of Wtot(T) in an alloy, with allowance for the energy dependence of 
Tel-ph(£). 

Example: thermal diffusivity in vanadium. In vanadium, the thermal 
diffusivity a = K/(CPP) is dominated by the electronic contribution. 
We assume that the Wiedemann-Franz law K = crL0T holds. At 
very low temperatures, a = adef. Furthermore, the heat capacity at 
low T is dominated by the electronic contribution ~ yT. It follows 
that a — crdefL0/}/, i.e. a temperature independent quantity. At high 
temperatures (T > 6D) the heat capacity is dominated by an approx-
imately constant phonon contribution while a ~ \/T. Hence, a is 
approximately independent of T also in this case. Figure 16.8 shows 
the measured thermal diffusivity of vanadium (Touloukian et al. 1973). 

J I L 
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Fig. 16.9. The electrical resistivity p (solid lines) and the quantity LQT/K (symbols) as 
obtained from the measured p and K for V, W and U. After Grimvall (1984). 

8. Miscellaneous transport mechanisms 

8.1. Simultaneous electron and phonon transport 

In alloys, heat is conducted by both the electrons and the phonons. It 
follows from fig. 16.9 that the high temperature conductivity of pure 
metals is dominated by the electrons, also when the elemental metal 
is not a very good electrical conductor. Even in a concentrated alloy 
like stainless steel the electrons carry most of the heat, except in the 
temperature region of the maximum in the phonon part, i.e. roughly 
at T ~ 0.1 ̂ D (e.g. White 1969) where the phonons give a significant 
contribution. In particular, this means that metals and alloys have a low 
temperature limit K ~ T. (Use Matthiessen's rule and the fact that 
impurity resistance always dominates p at low enough temperatures.) 

8.2. Magnons 

Magnons carry heat much like phonons. The effect is significant only at 
very low temperatures. See, for example, Berman (1976). 
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8.3. Photons 

In materials which are semitransparent to infrared radiation, there is a 
high temperature contribution to K which increases with I as I 3 . This 
term is a possible cause of the upturn in K at high T in MgO (fig. 16.4). 
The problem has been discussed by Men' and Sergeev (1973) among 
others. It has been suggested that the mechanism is significant even at 
room temperature, e.g. for In2Te3 (Petrusevich et al. 1960). 

8.4. Porous materials 

Conduction in inhomogeneous materials is considered in Chapter 17. 
Here, we only mention that in porous materials both contact resistance, 
gas conduction and radiation may be important. See, e.g. Furmanski 
(1994) on porous materials, Larkin and Churchill (1959) on insulating 
fiber materials and Klemens (1983b) on metal powders. 

9. Pressure dependence 

The volume (pressure) dependence of the electronic thermal conduc-
tivity Ke\ of metals follows from our discussion of the electrical con-
ductivity and with reference to the Wiedemann-Franz law. The volume 
dependence of/cph was, indirectly, discussed in §5.3 where we noted that 
the thermal expansion affected the high temperature /cph mainly through 
#D- Many materials, both metals and insulators, have — dln/c/dln V in 
the range 4-8. For a more detailed discussion, see Ross et al. (1984), 
Backstrom (1985) and Mooney and Steg (1969). 

10. Mean free paths and saturation phenomena 

70.7. Phonon transport 

A (temperature dependent) characteristic phonon mean free path £ph is 
sometimes estimated from the measured thermal conductivity and heat 
capacity by 

V = 3/cphV/(CgCp). (16.53) 
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Here Cp is the lattice heat capacity of a specimen with volume V. A 
similar expression, £ph = 3a/Cg, involves the thermal diffusivity a. 
However, eq. (16.53) can be quite misleading. Since £ph and Cg may 
vary strongly with (q, s), the weighting of modes (q, s) that enter £ph is 
unclear. Furthermore, £Ph has both an explicit temperature dependence 
from the scattering rate and an indirect variation with T through the heat 
capacity, which makes an interpretation of £ph difficult (MacDonald and 
Anderson 1983). 

We noted in §3 (in the discussion of region D), that the mean free 
path £(q, s) cannot be shorter than the wavelength of the correspond-
ing phonon, and the wavelength cannot be shorter than the distance a 
between two neighbouring atoms. Hence, /cph > ^ B C S O ^ D / ^ 2 , where 
CS0Und,D is the Debye velocity. We rewrite the righthand side of this 
inequality as 

, , £B(<7DCSOund,D) ^ B ^ D ^ B ^ ^ D ^ ^ D / 1 / : C ^ 

(Kph)sat J ~A = ~TT~ = T I T ' (1 6 '5 4) 
alqv 4a 4an Aah 

where we have used the result that qv = (67r2)1/3/a for a simple cubic 
lattice. Taking the typical values #D = 300 K and a = 3 x 10~10 m, we 
have for the "saturation" value of the thermal conductivity (/cPh)sat ~ 0.5 
W/(m K). This is too crude an estimation of ^Ph, because we have gone 
to the extreme limit I ~ a for all phonon modes. However, our approach 
explains why the conductivity of many strongly disordered materials of 
quite different kinds (alloys, ceramics, ionic solids, polymers), and also 
the high temperature conductivity of many pure solids, seems to saturate 
at a rather universal value. Kittel (1949) used these ideas to explain the 
conductivity of glasses and Slack (1979) has reviewed the field in some 
detail. 

10.2. Electron transport 

In Chapter 15 (§11), we discussed saturation effects in the electrical 
resistivity. Because they suggest a breakdown of the usual Boltzmann 
equation, one may wonder if the Wiedemann-Franz law still holds. Fig-
ure 16.9 shows LQT/K and p for metals that show saturation (V, U) 
and those that apparently do not (W). The result is consistent with the 
idea that the thermal conductivity is almost entirely due to the elec-
trons, and that the Wiedemann-Franz law still holds in the saturation 
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regime. A closer analysis of tungsten shows that saturation takes place 
also in that case. As a crude argument for this, we note that pei-Ph at 
high temperatures varies with typical phonon frequencies as 1/0^, eq. 
(15.24). Furthermore, the phonon frequencies in W show an extremely 
large softening with increasing temperature, fig. 8.3. The latter effect 
alone would give pei-ph/ T a strong increase at high 7\ but this is partly 
compensated for by the resistivity saturation. 



CHAPTER 17 

TRANSPORT, ELASTIC AND THERMAL-EXPANSION 
PARAMETERS OF COMPOSITE MATERIALS 

1. Introduction 

Aluminium-silicon alloys are typical two-phase materials, with almost 
no mutual solubility of silicon and aluminium. A specimen of an Al-
Si alloy therefore is a mixture of Al and Si grains. Suppose that the 
grains are small compared with the size of the specimen, and that they 
are in a statistically isotropic distribution, on a large scale. Such a ma-
terial has isotropic electrical and thermal conductivity, bulk modulus, 
shear modulus, Young's modulus, thermal expansion coefficient etc. 
Handbook data for these properties are often sparse and not very ac-
curate. One obviously needs methods to estimate the properties of the 
composite system when the corresponding properties of the constituent 
phases are known and one has some information about their geometrical 
distribution. That is the theme of this chapter. 

Consider the following well-known relations: 

electrical conduction 

thermal conduction 

dielectric displacement 

magnetic induction 

diffusion 

j = aE, 

<p = -KVT, 

D = £E, 

B = /*H, 

Q = -DVc . 

(17.1) 

(17.2) 

(17.3) 

(17.4) 

(17.5) 

These equations are all of the same mathematical structure. The left-
hand side gives the response to a disturbance, and the proportionality 

286 
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constant (a, /c, etc.) is a tensor of rank two. For a system of cubic 
symmetry the tensor reduces to a single constant, which is the case 
assumed above. Suppose that we have solved the problem of finding the 
average conductivity a of a composite material, in terms of the conduc-
tivities of the constituent phases and their geometrical distribution. The 
same mathematical expression can then be used to find, for instance, 
the average dielectric constant s, if we know s of the pure phases. It 
therefore suffices to consider one of the properties in eqs. (17.1)—(17.5). 
We shall often choose the electrical conductivity a, and briefly refer to 
eqs. (17.1)—(17.5) as "transport properties" (although s and /x do not 
refer to currents). 

The elastic properties are more complicated. The counterpart of the 
transport equations above is 

Hooke's law a — Ce, (17.6) 

where now a is the stress and e is the strain tensor. The elasticity tensor 
C never reduces to a single constant. For a single crystal of a material 
with a cubic lattice structure, C has three independent components en, 
c\2 and C44. For an elastically isotropic system, two elastic parameters 
suffice. In solid mechanics one often chooses them to be the bulk mod-
ulus K and the shear modulus G. They are related to Young's modulus 
E and the Poisson ratio v through equations given in Chapter 3 (§2). 
In principle, one may now proceed in analogy to the electrical conduc-
tivity, and obtain expressions for the elastic properties of a composite 
material in terms of the properties of the constituent phases and their 
geometrical distribution. 

The strain e associated with a temperature increase AT is given by 
the equation for thermal expansion 

e=aAT. (17.7) 

The second-rank tensor a reduces to a constant in a material of cubic 
symmetry (a = j8/3). In a composite material, an estimation of a has 
to include not only the expansion coefficients of the constituent phases, 
but also their elastic properties expressed, for example, by K and G. 

Methods to find effective properties for a composite follow two main 
lines—the establishment of upper and lower bounds to the quantity of 
interest, and direct estimates through approximate modelling. We shall 
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consider both approaches in some depth. A case of particular interest 
is a dilute suspension, i.e. a small amount of inclusions embedded in a 
matrix, for which effective properties can often be exactly obtained. 

One of the first extensive treatments of eqs. (17.1)—(17.5) for two-
phase materials is that of Bruggeman (1935), who was mainly interested 
in dielectric properties. Another milestone is papers by Hashin and 
Strikman (1962a, 1963a). Part of the material in this chapter has been 
covered in a review by Hale (1976). Reviews by van Beek (1967), Lan-
dauer (1978) and Bergman (1978) concentrate on dielectric properties, 
by Bergman and Stroud (1992) on various electrical and electromag-
netic properties, and by Taylor (1991) on thermal transport in materials 
of practical importance. Christensen (1979), Watt et al. (1976) and 
Laws (1980) consider elastic properties; Watt et al. (1976) with special 
reference to geophysical applications. Hashin (1983), Walpole (1981) 
and Willis (1981) discuss mainly the elastic properties of compos-
ites, but also thermal expansion and transport. Torquato (1991) has 
reviewed mathematical aspects of bounds to the effective properties of 
composites. Further references are given as we proceed. Figure 17.1 
shows schematically some important structures that are dealt with in 
this chapter. We may characterise them as: 

(a) lamellar or fibrous composites (§2.2; Chapter 18, §6); 
(b) two- or multiphase composites with no clear matrix phase (§§2.3, 

5); 
(c) suspension of more or less spherical particles in a matrix (§§3.1, 

3.3, 3.4, 5); 
(d) suspension of fibres or plate-like particles in a matrix (§§3.2-3.4); 
(e) suspension of particles in a matrix, with phase-boundary effects 

(§8); 
(f) weakly inhomogeneous, but statistically isotropic, distribution of 

phases (§4). 

2. Rigorous bounds 

2.1. General aspects 

Consider a composite material of rather complex geometry, such as that 
shown in fig. 17.2. Its microstructure is characterised by many length 
scales, and various discernible geometrical arrangements of the phases. 
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Fig. 17.1. Schematic representation of the microstructure of some composites, here 
given as two-dimensional cuts through the material. 

It is assumed throughout this chapter that the linear dimension of the 
specimen is much larger than any characteristic and relevant length in 
the microstructure. The mathematical relations to be presented assume 
that there are no surface effects caused by the phase boundaries. In trans-
port properties this means that we neglect boundary scattering, contact 
potentials etc. Ignoring surface effects may be dubious in diffusion 
problems. In the case of elastic properties and thermal expansion, we 
neglect grain boundary sliding, formation of cracks and other anelastic 
behaviour. 

2.2. Absolute bounds 

In this section we consider bounds which are always valid, whatever is 
the phase geometry of the composite material. Let phases 1 and 2 oc-
cupy the volume fractions f\ and / 2 (= 1 — / i ) and have conductivities 
ori and a2. Then the effective conductivity of the material, measured in 
any direction, is bounded as (Wiener 1912, Jackson and Coriell 1968) 

( / lM + f2/o-2)
 l < tfeff < flCTl + flOl- (17.8) 
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Fig. 17.2. A schematic representation of a composite material with various characteris-
tic length scales. 

The lower bound in eq. (17.8) follows from an assumption of a spa-
tially uniform current through the sample and the upper bound from 
an assumption of a uniform electric field. The bounds in eq. (17.8), 
sometimes called the Wiener bounds, may also be referred to as the 
series and parallel model. They are the best possible when only volume 
fractions are known, because they are attained for conduction in fibrous 
or lamellar geometries. The generalisation to N phases is 

- l 

J ^ fi/cfi I < tfeff < J ] fiGi' (17.9) 
w=l 1 = 1 

Analogous results hold for the bulk modulus K and the shear modulus 
G (Paul 1960, Hill 1963). Thus, 

KR < Keff < Ky, 

G R < Geff < Gy, 

(17.10) 

(17.11) 

with 

^V = f\K\ + /2^2» 

J_ = A + A 
KR K\ K2 

(17.12) 

(17.13) 
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and corresponding relations for Gv and GR, when G replaces K in eqs. 
(17.12) and (17.13). The relations (17.12) and (17.13) have obvious 
similarities with the series and parallel coupling (eq. (17.8)) that led 
us to the Wiener bounds. In the lower bound the stress is assumed 
to be uniform and the strain is the total sum of all the strains in the 
individual grains coupled in series. Similarly, in the upper bound the 
strain is assumed to be uniform and the stress is carried by all the indi-
vidual grains considered in parallel. These assumptions, in the case of 
one-phase polycrystalline materials, lead to the Voigt and Reuss bounds 
(Chapter 18, §3), motivating our use of the subscripts V and R above. 

We can obtain bounds to Young's modulus E by the general relation 
\/E = 1/(3G) + 1/(970. It is clear that the largest E is obtained with 
the largest K and G, and vice versa. One has 

(17.14) ER < £eff < Ey, 

ith 
1 1 1 

ER 3GR 9KR 

1 1 1 
(17.15) 

Note, however, that Ey ^ f\E\ + f2E2- After a little algebra one finds 
that 

F - f F + f F + 21flf2(GlK2-G2Kl)
2 

£v — Ji^i + J2E2 + (3KV + Gv)(3*i + Gi)(3K2 + G2) 

(17.16) 

The special case v\ = v2 for the Poisson ratio implies, (eq. (3.8)), that 
G1K2 = G2K1. Then one recovers the familiar form Ey = f\Ei + f2E2 

that is often used for fibrous materials. The relation 1/£R = f\/E\ + 
f2/E2 (which gives E perpendicular to lamellae) holds for any v\ and 
v2. From the general relation v = (3K — 2G)/(6K + 2G) one finds that 
v increases with increasing K (for constant G) but decreases with G 
(for constant K). No practically useful bounds to v seem to result from 
the bounds to K and G (Zimmerman 1992). 
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2.3. Hashin-Shtrikman bounds 

Often one is interested in properties of a composite material which is, 
in a statistical sense, isotropic and homogeneous. This excludes fibrous 
and lamellar geometries (with parallel arrangements of fibres or lamel-
lae), for which the bounds of the previous section are relevant. Instead 
there are more narrow bounds. They are the best possible for a, K and G 
in the sense that these bounds are attained in certain geometries (§6.1). 
Many of the relations below can be cast in a variety of algebraic forms. 
Although they may look different, they are all equivalent. However, that 
should not be confused with similar, but less stringent, formulae that are 
abundant in the literature. 

Transport properties: Hashin and Shtrikman (1962a) derived bounds to 
the conductivity a. We choose the labelling such that o^ > o\. The 
upper bound is 

ff» = ff2 + 777 {' f / , » (17-17) 
1/(CTI - o2) + f2/3cr2 

and the lower bound is 

O-/ = CTI + — • (17.18) 
l/(<r2-<n) + / i /3ai 

Note that oi is obtained from au if indices 1 and 2 are interchanged. 
Analogous relations hold for the thermal conductivity, the dielectric 
constant, the magnetic susceptibility and the diffusion constant. The 
number 3 in the denominator of the righthand side of eqs. (17.17) and 
(17.18) is replaced by 2 for a two-dimensional system, for instance 
in the transverse conductivity of a bundle of cylinders embedded in a 
matrix (e.g. Milton 1980, Bergman 1982). 

Elastic properties: Hashin and Shtrikman (1963a), Walpole (1966) and 
others have used various mathematical methods to derive bounds to the 
elastic parameters. One has, for K^ > K\, 

l/(Kl-K2) + 3f2/(3K2 + 4G2y 



Rigorous bounds 293 

and 

u " 2 l/(Gl - G2) + 6f2(K2 + 2G2)/5G2(3K2 + 4G2)' 

(17.20) 

The lower bounds, Kt and G ,̂ are obtained from eqs. (17.19) and 
(17.20) when indices 1 and 2 are interchanged. However, if {K2 — 
KX)(G2 - GO < 0, the bounds to K are reversed (Hill 1963). The 
bounds to G, when (K2 — K\)(G2 — G\) < 0, are similar to eq. (17.20) 
(Walpole 1966). Bounds to Young's modulus E are obtained through the 
relation (3.10) between £, K and G. The absence of useful bounds to v 
was noted in connection with the Voigt and Reuss bounds above. Rela-
tions such as eq. (17.19) can be written in different, but mathematically 
equivalent, forms (see Appendix G). 

Thermal expansion: Levin (1967) and, independently, Rosen and 
Hashin (1970) and Schapery (1968) have shown that the linear expan-
sion coefficient of an isotropic two-phase composite can be written in 
the exact form 

<*eff = / l«l + hOil + " * " ? * [1/ATeff " hlKX ~ f2/K2], 
1/Ai - 1/A2 

(17.21) 

If we now use that Kt < K^ < Ku, eq. (17.21) gives upper and lower 
bounds to a. The upper bound can be written 

KX(3K2 + 4G2) 
(<*eff)u =<K 2 - / l ( a 2 ~ < * l ) 

K2(3KX + 4G2) + 4/ 1 G 2 (^ 1 - K2) 

(17.22) 

Again, the lower bound is obtained if indices 1 and 2 are interchanged. 
Equation (17.22) holds if G2 > Gx and (a2 - ax)(K2 - Kx) < 0. This 
is the normal situation, i.e. a stiffer material also has a lower thermal 
expansion coefficient. If this is not the case, the bounds are reversed so 
that eq. (17.22) gives (aeff)£- When a2 = ot\ or G2 = Gi, the upper and 
lower bounds to a coincide. G2 = G\(= G) implies that Ku = Kt and 
leads to 
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«eff = / l « l + / 2 « 2 - fl(l- fl)(C£\ ~ a2) 

4G(K2 - KQ 
X 3KlK2 + 4G(flKl + f2K2y 

(17.23) 

We note that if Kes in eq. (17.21) is replaced by the Reuss expression 
(17.13) we get exactly aeff = f\ot\ + f2a2. Since KR is a lower bound to 
Kef[, the expansion coefficient aeff lies below the average aeff = fi<x\ + 
/2«2 if («i — #2X^1 — ^2) < 0» an(l y i c e versa. 

Properties of multiphase systems: The derivation by Hashin and Shtrik-
man (1962a, 1963a) allowed for an arbitrary number of phases. To 
illustrate the mathematical structure of the bounds for this general case 
we quote two relations. The upper bound to the conductivity is 

where 

N-l 

1 

1=1 

1 

3GN 

+ 

- 1 

(17.24) 

1 -1 -1 

G{ — GN 3GN 
(17.25) 

The upper bound to the bulk modulus is 

3AN 
Ku = KN + AN,K 

where 

N-l 

AN,K = J ] & 
i=l 

1 

1 

3 A^ + 4G -r1 
(17.26) 

+ Ki - KN 3KN + 4G J' (17.27) 

Here, i = Ito N denotes the phases, numbered so that GN, KN and GN 

are largest. 
Bounds have also been derived for non-isotropic systems. They are 

considered in Chapter 18. 

Example: comparison of bounds to G. In fig. 17.3 are shown the Wiener 
bounds and the Hashin-Shtrikman bounds to the conductivity a, for 
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Fig. 17.3. The Wiener bounds and the Hashin-Shtrikman bounds to the conductivity o 
of a composite with 02/01 = 10, as a function of the volume fraction fa of phase 2. 

the case cr2/cri = 10. If the bounds are applied to real materials with 
phases A and B, one should note that the conductivities of A and B may 
be significantly influenced, e.g. by the diffusion of (small amounts of) 
atoms from A to B and vice versa. This complication does not arise 
in the case of elastic or thermal expansion properties, which depend 
weakly on variations in the composition of the individual phases. 

Example: bounds to the bulk modulus of aluminium-silicon alloys. 
Aluminium and silicon have very low mutual solubility, and the Al-
Si system consists of almost pure Al and Si. Figure 17.4 shows the 
Voigt, Reuss and Hashin-Shtrikman bounds to the bulk modulus K. 
Hill (1952) suggested that the arithmetic mean of the Voigt and Reuss 
limits (the Voigt-Reuss-Hill approximation, ATVRH) could make a good 
estimate; 

KYRH = (l/2)(KY + KR), (17.28) 

with analogous relations for G and E. 

Example: bounds to the expansion coefficient of aluminium-silicon 
alloys. The two Hashin-Shtrikman bounds to the linear expansion co-
efficient a in Al-Si lie very close; fig. 17.5. The symbols denote 
experimental results (Touloukian et al. 1975). 
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0 20 40 60 80 100 
Al vol. % Si 

Fig. 17.4. The Voigt, Reuss and Hashin-Shtrikman bounds to the bulk modulus of an 
aluminium-silicon alloy with no mutual solubility of Al and Si. 

Example: thermal expansion in a material with voids. Consider a one-
phase material with voids. The voids can be regarded as a second phase 
with K2 -> 0. Then, the expression (17.21) for aeff reduces to 

<*eff = / l«l + /2«1 = <*l, (17.29) 

i.e. the linear expansion coefficent is the same as for the material without 
voids. 

3. Dilute suspensions 

We will consider the limiting case when phase 2 is in the form of 
a dilute suspension, i.e. with a volume fraction /2 « 1. The shape 
of the suspended particles is assumed to be ellipsoidal or, as special 
cases, spherical, rod- or disc-like. We thus exclude systems for which 
phase 2 is continuous through the material. Spherical inclusions lead to 
particularly simple results and we start with them. 
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Fig. 17.5. The Hashin-Shtrikman bounds to the linear thermal expansion coefficient a 
of aluminium-silicon alloys, and the "law of mixtures", oreff = f\a\ + f2a2. 

3.1. Spherical inclusions 

Transport properties: Rayleigh (1892) and others (see the review by 
Grosse and Greffe 1979) considered spherical inclusions in a matrix. In 
the dilute limit (f2 <g 1), but for any ratio a2/au one has 

tfeff = a\ 1 + /2 
3 ( a 2 - o r i ) 
2a! + a2 

(17.30) 

Elastic properties: Expressions for the bulk modulus K^ and the shear 
modulus Geff have been derived, independently, by Dewey (1947), 
Eshelby (1957) and Hashin (1959). The result is 

êff = K\ + f2(K2 — K\) 

Geff = G\ + f2(G2 — G\) 

3^!+4Gi 
3K2+4Gi' 

5(3if1+4G1) 
9Kl+8Gl+6(Kl+2Gl)G2/Gl 

(17.31) 

(17.32) 
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These relations agree with the lower Hashin-Shtrikman bounds when 
those bounds are considered in the limit f2 <?C 1 and for K2 > K\, 
(K2 — K\)(G2 — G\) > 0. If these inequalities are reversed we should 
compare with the upper Hashin-Shtrikman bound instead. 

Thermal expansion: From eqs. (17.21) and (17.31) we obtain the linear 
expansion coefficient for a suspension of spheres in a matrix. Neglecting 
(K2 — K\)f2 compared with K\, one has 

K2(3KX + 4 G 0 
aeff = a\ + f2(a2 — o?i) . (17.33) J Kx(3K2 + 4Gi) 

3.2. Ellipsoidal inclusions; rods and discs 

Rods, needles and fibres can be viewed as limiting cases of elongated el-
lipsoids of revolution. Similarly, circular discs and plates can be viewed 
as very oblate ellipsoids. 

Transport properties: For a dilute suspension of ellipsoids, 

(cr2 - G T I ) ^ °\ t\niA\ 
ffeff = cr\ + h 5 > —7-7 r, (17.34) 

where At are so-called depolarising factors along the ellipsoid axes / = 
x, y and z. (The name depolarising factor stems from the application to 
dielectric properties, cf. eq. (17.3).) Tables of At have been published 
by Stoner (1945), Osborn (1945) and Fricke (1953). Some special cases 
are given in table 17.1. For a sphere, which has all At = 1/3, we recover 
eq. (17.30) from eq. (17.34). 

In this context, it can be noted that the electric field E is uniform in-
side a sphere, or more generally inside an ellipsoid, embedded in a large 
uniform matrix (e.g., Stratton 1941). If an external field is along the i-
axis of the ellipsoid, the average field strength Et inside the ellipsoid 
is 

Ei = Eal/[al+Ai(a2-al)]. (17.35) 

Similarly, in the case of heat conduction, the thermal gradient VT is 
constant inside an ellipsoidal inclusion in a large uniform matrix. 
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Table 17.1 

Depolarising factors 

Ll A2 A3 

Sphere, a\ = a2 — a3 1/3 1/3 1/3 

Very prolate ellipsoid, a\ > a2 — a3 0 1/2 1/2 

Very oblate ellipsoid, a\ <̂C a2 — a 3 1 0 0 

The effective conductivity of a dilute suspension of randomly ori-
ented rods is obtained from eq. (17.34), and with At from table 17.1, 
as 

( a 2 - a i ) ( 5 a 1 + a 2 ) 
tfeff = a i + / 2 — ; " • (17.36) 

The corresponding relation for a dilute suspension of randomly oriented 
circular thin discs is 

(or2-a1)(ai+2or2) m „ , 
^eff = OTi + / 2 • (17.37) 

3<72 

Elastic properties: The elastic properties of a matrix with a dilute 
suspension of randomly oriented ellipsoids have been treated by Wu 
(1966), Walpole (1969), Watt et al. (1976) and Berryman (1980). The 
results are more complicated than eq. (17.34) for the transport prop-
erties, and we only give a few illustrating examples below. In the low 
concentration limit of phase 2 one has, for rods, 

Kx+Gx+ G2/3 
tfeff = Kx + f2(K2 - Kx)

 l l 2/ (17.38) 
A2 + CJI + Lr2/5 

The corresponding expression for Geff is algebraically complicated. For 
discs, 

3KX + 4G2 
tfeff = *i + fiiKi ~ * i )~ * An , (17.39) 

3 A 2 + 4Cr2 

Geff = G 1 + / 2 ( G 2 - G 1 ) ^ i ^ , (17.40) 
G2 + F2 
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where F2 = (G2/6)(9K2 + SG2)/(K2 + 2G2). The relations (17.39) and 
(17.40) agree with the upper Hashin-Shtrikman bounds (eqs. (17.19) 
and (17.20)), in the limit f2 <$C 1, if the discs are stiff, i.e. K2 > K\, 
(K2 — K\)(G2 — G\) > 0. Otherwise we should compare with the 
lower bounds. An expression for the elastic field inside the ellipsoid, 
analogous to eq. (17.35), has been obtained by Eshelby (1957). 

3.3. Inclusions with extreme properties 

We first consider the effective conductivity when the inclusions either 
have a very high conductivity (cr2/cri ]» 1), or are insulating, with 
voids as a special case {o2/(J\ <gC 1). In the limit of highly conducting 
inclusions (p2/a\ -> oc), 

<Teff = cri[l + 3/2] (spheres), (17.41) 

aeff = G\ + hoil^ -> oo (rods). (17.42) 

Similarly, oreff for thin discs is infinitely large. In the case of insulating 
inclusions {a2 — 0), 

oreff = ai[l - (3/2) f2] (spheres), (17.43) 

*eff = <ri[ l - (5/3) / 2 ] (rods), (17.44) 

while the interpretation of eq. (17.37) for thin discs is <7eff = 0. 

Example: elastic and thermal-conduction properties of cast iron. Cast 
iron has graphite embedded in a matrix, which is itself a composite 
of ferrite and cementite. Here, we will regard the matrix as a uniform 
material. When the graphite is mainly in the form of sheets, the material 
is referred to as grey cast iron, and when it is essentially spherical one 
refers to ductile cast iron. Graphite is elastically highly anisotropic, but 
we follow Speich et al. (1980) and Anand (1982), and let each graphite 
inclusion consist of aggregates of graphite grains for which we take the 
isotropic values K2 = 6.7 GPa and G2 = 3.3 GPa. For the matrix we take 
K\ = 162 GPa and G\ = 81 GPa. Figure 17.6 shows experimental data 
for cast iron of varying graphite concentration. The filled circles refer to 
ductile cast iron, which has spherical graphite inclusions. The squares 
refer to gray cast iron, which has flake-like graphite inclusions. In the 
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T i r 
cast iron 

graphite vol. % 

Fig. 17.6. Young's modulus E and the shear modulus G of cast iron. Filled circles and 
open squares refer to spherical and plate-like graphite inclusions, respectively. After 

Anand (1982). 

dilute limit of inclusions, spheres and plates give properties coinciding 
with the upper and lower Hashin-Shtrikman bounds, respectively. 

Graphite is a very good (although highly anisotropic) thermal con-
ductor (table 16.1). Because spherical inclusions gives the smallest, and 
plate-like inclusions the largest, effect on the effective conductivity, we 
expect grey cast iron to have the highest thermal conductivity. This is 
also observed; KG& « 45 W(m-K) for grey cast iron and /ceff ^ 16 
W(m-K) for white cast iron (Helsing and Grimvall 1991). 

Example: elastic properties of porous NbC. Speck and Miccioli (quoted 
by Toth 1971) measured the shear modulus G(p) and Young's modulus 
E{p) for sintered NbCo.97, as a function of the porosity p. Figure 17.7 
shows their data (filled circles) and the expressions for G and E that 
result from eqs. (17.31) and (17.32) if we take f2 = p and K2 = G2 = 0 
for the pores. 

3.4. Smallest and largest change in effective properties 

It is interesting to compare the Hashin-Shtrikman bounds in the limit 
of small f2 with the results above for dilute suspensions. One finds that, 
when the inclusion phase has a higher conductivity than the matrix, the 
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Fig. 17.7. Young's modulus E and the shear modulus G (filled circles) versus the poros-
ity of porous NbC; after data by Toth (1971). The straight lines are extrapolations of 

the result for a dilute suspension of spherical voids. 

upper bound coincides with the result for a dilute suspension of discs, 
while the lower bound corresponds to a dilute suspension of spheres. If 
the suspended phase has a lower conductivity than the matrix, the upper 
Hashin-Shtrikman bound corresponds to spherical inclusions and the 
lower bound to thin discs. This can be summarised as follows: When a 
given small amount {fi) of a phase is added to a matrix in the form 
of a suspension, one gets the smallest change in oreff with spherical 
inclusions, and the largest change with thin discs. Rods fall between 
these limits. Compared with discs, they do not force the current to make 
as large "detours" in the composite and therefore affect aeff less. 

Analogous results hold for the elastic properties. The smallest 
change in the bulk modulus (i.e., when KGQ equals a Hashin-Shtrikman 
bound) is obtained for spherical inclusions, and the largest change (KGs 
equals the other H-S bound) is obtained for disc-like inclusions. 

Example: the aggregate method. One may reverse the procedures dis-
cussed above, and determine approximately a property of a material A 
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Fig. 17.8. The relative uncertainty R = /\oil°2 m the conductivity o2 derived from 
measurements of the effective conductivity aeff of a suspension of sheres of phase 2 in 
a matrix of phase 1. The experimental uncertainty in aeff is assumed to be ±1%, and 

/ 2 = 0.1 in this example. R is given as a function of the contrast o\ / a 2 or o^/^l • 
from measurements on a mixture of A and B, where B is a material 
with known properties. We illustrate the method by first considering a 
dilute suspension of phase 2 in a matrix of phase 1. Because spherical 
inclusions have the smallest effect on creff, that is the most unfavourable 
geometry to obtain a2 from aeff. Figure 17.8 shows the relative uncer-
tainty R = A(T2/<72 a s a function of the contrast G\/o2 between the 
matrix and the inclusions if the experimental uncertainty in aeff is ±1%, 
fi - 0.1, and eq. (17.30) is assumed to be exact. 

Cementite (Fe3C) is an important compound in steel. It has been 
very difficult to make specimens of pure Fe3C so that its thermal and 
electrical conductivities could be measured. There are several attempts 
to derive these conductivities from meaurements of two-phase systems 
with Fe3C in ferrite (bcc Fe), and the aggegate method seems to give 
useful and reliable results (Helsing and Grimvall 1991, Christiansson 
and Grimvall 1994). See Watt et al. (1976) for further discussions of the 
aggregate method. 
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4. Weakly inhomogeneous materials 

4.1. Two-phase materials 

When the conductivities of the phases are almost equal, the upper 
Wiener bound f \ 0 \ + f2a2 = (a) (sometimes called the "law of mix-
tures") gives an approximate but somewhat too large estimation for creff• 
Let the difference in the conductivities, 8a = a2 — ̂ l* be a small 
quantity, and expand the upper and lower Hashin-Shtrikman bounds in 
powers of 8. Neglecting powers of higher order than <52, the two bounds 
are identical. We take that as an estimation of oreff, i.e. 

(8a)2 

0tf*(<r)-fif2^rr- (17.45) 
3(a) 

The corresponding relations for the bulk modulus K, the shear modulus 
G, and the linear expansion coefficient a, are 

3(8 K)2 

K-~m-AAWTJ5j- (17'46) 

G.»«(G)-/,/2
6(* + 2 G ) ( { G ) 2 . (.7.47) 

ofeflf « (a) — ft A • (17.48) 
ett \ / J1J2 (K)(3K+4G) ^ ' 

Note that aeff, K& and Geff all lie below the arithmetic averages (a) , 
(A )̂ and (G), in agreement with the upper Wiener and Voigt bounds, but 
<*eff — (<*) c a n h a v e either sign. To lowest order, ae& — (a) is independent 
of <5G, which may be compared with the fact that au and at coincide for 
any K\ and K2 when G\ = G2. 

Series expansions of aefft0 the third and fourth order in 8a have been 
worked out by Phan-Tien and Milton (1982), including a generalisation 
to an arbitrary number of phases. Corresponding results for the elastic 
parameters are given by Milton and Phan-Tien (1982). 

To second order in 8a, eq. (17.45) is equivalent with 

(ffeff)1/3 = / l ( f f l ) 1 / 3 + /2(<r2)1/3. (17.49) 
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Occasionally, this relation may give a good account of aeff for real ma-
terials even when Sa/a^ is not small, but this has no deeper theoretical 
justification. 

4.2. One-phase materials 

Consider a one-phase material in which the composition, and therefore 
also the electrical conductivity, is (isotropically) weakly inhomoge-
neous. The variations are assumed to be small so that a local conduc-
tivity a can be defined everywhere in the material. Let (...) denote a 
spatial average over the entire specimen. The effective conductivity aeff 
is 

1 ((a - (a))2) 
3 {o) 

<Xeff ^ (a) | 1 - - " , _ / " ' \ , (17.50) 

(see Brown (1955), Nedoluha (1957), Herring (1960), Landau and Lif-
shitz (1960), Beran and Molyneux (1963), Beran (1965), Hori (1973a,b) 
for proofs and generalisations). 

Equation (17.45) is closely related to eq. (17.50) because for a two-
phase material we can write (a2) = f\(cr\)2 + fii^i)2 and (a)2 = 
( M i + fai)2* which gives ((a - (a))2) = fif2(cr\ - o2)

2. 
The approach in this chapter relies on a macroscopic description 

of the conduction. Therefore, in averages such as ((a — (a))2) one 
should only consider fluctuations on a length scale much larger than 
the (electron) mean free path. 

The bulk modulus in weakly inhomogeneous one-phase materials is 
(Molyneux and Beran 1965) 

K*s « (K) - — —1^1. (17.51) 
x ' (3K+4G) 

This is obviously another version of eq. (17.46). Analogous results hold 
for Geff and a^. 

43. Clustering 

The section above showed that weak inhomogeneities give only a 
second-order correction to the effective properties, i.e. second order in 
a — (a) etc. A moderate amount of clustering, as in fig. 17.9a, may 
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Fig. 17.9. A two-phase material showing clustering (a), and a uniformly random 
distribution (b), have almost the same effective properties. 

therefore give a negligible correction to the properties of a uniformly 
random distribution, as in fig. 17.9b. 

5. Effective-medium theories 

5.7. Introduction 

In the first part of this chapter we established bounds to <xeff, £eff» Geff 
and Qfeff for two-phase materials. These bounds may lie far apart and be 
of little practical value. It is therefore of interest to have models which 
give a single estimated value. This has led to a rich literature aiming at 
approximate but closed-form expressions for <reff, Keff, etc. Much of that 
work relies on an empirical fitting to certain functions, or on dubious 
theoretical assumptions. However, there is one approach, the effective-
medium theory, which is algebraically simple and yet physically well 
founded and we focus on that description. (Effective-medium theories 
can be defined in slightly different ways, leading to different expres-
sions. We shall not dwell on this point but present the simplest and most 
common version.) 

5.2. Transport properties 

In §3, we considered a dilute suspension of spheres or ellipsoids in a 
matrix. If the volume fraction fa is not small, one can still use a similar 
approach but let a sphere of phase 2 be surrounded by a medium with an 
effective conductivity a* instead of o\. (We use the notation a* because 
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the effective conductivity obtained here is only an approximation to the 
true effective conductivity oreff of the composite.) Then 

3(a2 ~ cri)cr* m*i\ 
o =cri + f2 . (17.52) 

2a* + a2 

This formula, which can be derived in a much stricter fashion, was 
given by Bottcher (1952) for the dielectric case. Landauer (1952, 1978) 
considered dielectric properties of Af-phase materials and derived the 
following relation (here with e replaced by a); 

E ^ % / i = 0 . (17.53) 
i = \ 

2a* + Gt' 

For a two-phase material (N = 2) we have 

a* — o\ a* — a? 
2 a * + a i 2a* + a2 

The latter expression appears first to have been given by Bruggeman 
(1935) in his treatment of dielectric properties. After a rearrangement 
of terms, one finds that eq. (17.54) is identical to eq. (17.52). When the 
relation for a* is cast in the symmetric form (17.54), it is obvious that f2 

does not have to be small. If f2 <̂C 1, we can approximate a* in the de-
nominator by the matrix conductivity o2. Then eq. (17.52) is consistent 
with eq. (17.30), to lowest order in f2. In the two-dimensional case (e.g. 
conduction perpendicular to fibres in a matrix), eq. (17.54) retains its 
form if only 2a* is replaced by a* in the two denominators (Bruggeman 
1935). Equation (17.53) is of the order N, and has N solutions, but only 
that a* which becomes o\ when all ot = <j\ has physical meaning. 

The effective-medium theory (EMT), or effective-medium approx-
imation (EMA), is also known as the self-consistent method (SCM). 
Sometimes it is called the symmetric EMT, because eq. (17.53) is sym-
metric in the phases /, unlike eq. (17.55) below. It is mathematically 
equivalent to the coherent potential approximation (CPA) used to obtain 
the electron band structure in alloys. The history of EMTs has been 
reviewed by Landauer (1978). 

The EMT result a* from eq. (17.54) lies between the upper and 
lower Hashin-Shtrikman bounds. From eq. (17.52) it is easy to see that 
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in the dilute limit (f2 <£! 1), cr* starts out along either the lower or 
the upper Hashin-Shtrikman bound, depending on the sign of a2 — <J\. 
With increasing f2, a* then crosses over to the other Hashin-Shtrikman 
bound at the opposite dilute end (f\ <K 1). 

In this context, it is natural to quote another well-known approxi-
mation to aeff, the Maxwell Garnett (MG) expression aMG that is the 
solution to the equation (Maxwell Garnett 1904, 1906) 

a M G " a i f2p^-. (17.55) 
^MG + 2<7i 2V\ + <J2 

Actually, <TMG coincides for all f2 with either the upper or the lower 
Hashin-Shtrikman bound, depending on the sign of a2 — <j\. The MG 
approximation is frequently used in connection with dielectric proper-
ties, and textbooks therefore give it with a replaced by e, often under 
the name of the Clausius-Mossotti approximation. It is also called the 
average t-matrix or non-selfconsistent approximation. We finally note 
that the MG approximation assumes particles embedded in a continuous 
matrix while the approach by Bruggeman refers to a random mix-
ture of particles. Therefore, only the latter method shows a percolation 
threshold (§7); aeff = 0 at f2 = 2/3 for insulating particles (a2 = 0). 

5.3. Elastic properties 

Budiansky (1965, 1970) and Hill (1965b) independently derived 
effective-medium results for the elastic properties. Several others have 
taken similar approaches (see Laws 1980, for a review of the field). One 
has 

K* = Ki + f2(K2 - Ki) , (17.56) 

5(3K* + 4G*)G* 
G* = Gl + f2(G2 -Gi) 

G*(9K* + 8G*) + 6G2(K* + 2G*) 

(17.57) 

Thus, K* and G* are coupled and one must find their values by numer-
ical iteration. When the Poisson ratio obeys vi = v2 = 0.2, it follows 
that 3^i = 4Gi etc., and the relations (17.56) and (17.57) decouple 
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Fig. 17.10. Young's modulus E of porous autoclaved cement, as a function of vol.% 
porosity. The straight line is the effective-medium result. Symbols give measured values 

(Beaudoin and Feldman 1975, Feldman and Beaudoin 1977). 

(Budiansky 1965). In analogy to how eq. (17.52) could be written in a 
mathematically equivalent form, (eq. (17.54)), that displays the symme-
try between the labels 1 and 2, one can rewrite eqs. (17.56) and (17.57) 
to symmetric forms (see Appendix G). 

Example: cement with voids. Beaudoin and Feldman (1975) and Feld-
man and Beaudoin (1977) measured Young's modulus EGs for porous 
autoclaved cement. They also obtained E\ = 36 GPa and v\ = 0.2 for 
pure cement. The pores can be considered as inclusions with K2 = 
G2 = 0. The Poisson ratio v2 is undefined but it is no restriction to 
put v2 = 0.2. Then the EMT equations for K* and G* decouple, giving 
K* = Kx(\ - 2/2) and G* = Gi(l - 2/2) and by eq. (3.10), 

E* = E i ( l - 2 / 2 ) . (17.58) 

The same expression is obtained from eqs. (17.31) and (17.32), i.e. for 
a dilute suspension of spheres, if we take K2 = G2 = 0 and note that 
3K\ = 4Gi when vi = 0.2. Because one of the phases (the pores) is 
extreme in its properties we cannot expect the EMT or the dilute sus-
pension model to be adequate when / 2 is not very small. However, fig. 
17.10 shows that eq. (17.58) may give a good account of the measured 
£eff 1° quite high pore concentrations. Nielsen (1982) has discussed 
elastic properties of porous cement in some detail. 

effective-medium theory 
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5.4. Thermal expansion 

Because there is an exact result for the linear expansion coefficient aeff, 
(eq. (17.21)), expressed in terms of the elastic properties of the compos-
ite, there is no separate effective-medium theory for a. If one uses the 
EMT result for K*, the expression for a is quite complicated, even in 
the special case that v\ = v2 = 0.2, for which K* and G* decouple. 

6. Exact results in certain geometries 

In a few cases, it is possible to give mathematically exact results for the 
effective properties of a composite material, or they can be calculated 
numerically to arbitrary accuracy. Although some of these geometries 
may be far from what is encountered in real materials, the results 
are of interest because they provide test cases in the assessment of 
approximate methods. 

6.1. Attained Hashin-Shtrikman bounds 

The Hashin-Shtrikman conductivity bounds are attained in the "coated 
sphere" geometry ("composite sphere assemblage"). Choose labelling 
such that a2 > o\. Spheres of phase 1 and radius R\ are coated with 
shells of phase 2 and radius R2, with radii such that the volumes of a 
sphere and of its shell correspond to volume fractions f\ and f2, respec-
tively. All space is now filled with such coated spheres, which requires a 
distribution of radii, including infinitesimally small values. This geom-
etry has an effective conductivity equal to the upper Hashin-Shtrikman 
bound. If instead spheres of phase 2 are coated by spheres of phase 1, 
the effective conductivity is equal to the lower Hashin-Shtrikman bound 
(Hashin and Shtrikman 1962a). 

The Hashin-Shtrikman bounds Ki and Ku to the bulk modulus are 
also attained in the coated-sphere geometry, but not the corresponding 
bounds to the shear modulus (Hashin 1962, Milton 1981). However, the 
Hashin-Shtrikman bounds to both K and G are attained in a related 
geometry with packed spheres (Lurie and Cherkaev 1985), and also in 
geometries formed by laminate structures (Norris 1985, Milton 1986, 
Francfort and Murat 1986). Furthermore, when K& is known, also aeff 
is known exactly. The analogous result holds in two dimensions. That 
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Fig. 17.11. The coated-sphere geometry, here given schematically in its two-
dimensional form. 

case is schematically shown in fig. 17.11. The fact there exist geome-
tries for which the Hashin-Shtrikman bounds are attained means that 
these bounds are optimal, i.e. they are the best possible under the given 
assumptions. 

6.2. Symmetric cell materials 

A two-phase cell material (Miller 1969) is defined as follows: the com-
posite material is subdivided by closed surfaces into closed regions, or 
cells. Each cell is randomly assigned physical properties with probabil-
ities fi and /2, referring to one or the other of the two phases. The cells 
are distributed in such a way that the material is statistically isotropic 
and homogeneous. Figure 17.12 shows schematically a possible phase 
distribution in 2 dimensions. Let the conductivity of a symmetric cell 
material be aeff(l, 2). If now the phases 1 and 2 are interchanged, with-
out altering the phase boundaries, the conductivity is oreff(2, !)• F°r a 

three-dimensional symmetric cell material (Schulgasser 1976) 

aeff(l,2)oreff(2, \)>axa2. (17.59) 

In the two-dimensional case, the inequality (17.59) becomes an equality 
(Dykhne 1970). 

6.3. Numerical calculations in periodic geometries 

Let a two-phase material have spheres of one phase, forming a periodic 
lattice, for instance as is schematically shown in fig. 17.13. With such 
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Fig. 17.12. A schematic illustration of a symmetric cell material. The figure also illus-
trates the concept of percolation, with the gray phase forming a percolating path from 

the top to the bottom of the frame. 

regular phase distributions, the effective conductivity can be calculated 
numerically with high accuracy, for varying volume fractions and con-
ductivity ratios cri/cr2. Results have been obtained for spheres forming 
a simple cubic, body-centred cubic and face-centred cubic lattices in 
a matrix, also close to the percolation threshold. Cheng and Torquato 
(1997a, b) developed a method that allows the spheres to be coated with 
a layer that is superconducting, or has a certain resistance. Studies of 
regular lattice geometries provide accurate results that can be used in 
the test of approximate methods for less well-ordered composites. 

7. Percolation 

Consider a dilute suspension of conducting spheres in an insulating ma-
trix. There is no path that lies entirely within the conducting phase and 
goes through the specimen. Hence, the composite is an insulator. We 
now increase the volume fraction of the conducting phase. Eventually 
one reaches a critical concentration fC9 known as the percolation thresh-
old, at which a current can pass through the sample. It is obvious that fc 

depends strongly on the geometry of the grains of the conducting phase. 
Examples may be constructed, for which fc is anywhere in the interval 
0 to 1. Figure 17.12 illustrates the idea of percolation. 

The percolation phenomenon has been much studied, in particular 
because of its so-called critical behaviour when / is near fc. Near fC9 

the conductivity varies as a ~ a0(f - f c ) a , where a is a "critical 
exponent". The name "percolation" was introduced by Broadbent and 
Hammersley (1957), with reference to a coffee percolator, in their pio-
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Fig. 17.13. A schematic drawing of a regular phase distribution for which transport 
properties can be calculated numerically to arbitrary accuracy. 

neering work on the spread of a fluid through a random porous medium. 
Such flow problems form a central part of percolation studies (see a 
broad review by Sahimi 1993). For further geometrical aspects of perco-
lation, see, e.g. Stauffer (1979) and Stauffer and Aharony (1992). Many 
physical properties are covered by Deutscher et al. (1983). Much of the 
early work on percolation dealt with resistor networks, along the lines 
reviewed by Kirkpatrick (1973). This is because of some nearly univer-
sal features in the critical behaviour, which do not depend crucially on 
the kind of system studied. 

8. Phase-boundary effects 

The presentation in this chapter has assumed perfect interfaces between 
the phases. In order to illustrate the possible role of a surface layer cov-
ering the dispersed particles, we consider spherical inclusions (phase 2) 
in a matrix (phase 1), with the spheres coated by a thin layer of a surface 
phase (s), with thickness 8. Let the conductivities of the three phases be 
ai, a2 and as. When the boundary phase is one with a non-negligible 
resistance, we introduce the dimensionless parameter R; 

/? = (17.60) 

If we are instead interested in the effect of a non-negligible conductance 
of the boundary phase, we introduce the dimensionless quantity C; 

,a v\ 
(17.61) 
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Torquato and Rintoul (1995) derived upper and lower bounds to creff, 
containing R or C. They are mathematically elementary but alge-
braically rather complex. Boundary effects are negligible if R <^ 1 or 
C « l . 

In the case of elastic properties and thermal expansion, a thin phase-
boundary layer has a minor influence. This is in analogy to the almost 
negligible role of lattice defects for these properties (Chapters 4 and 14). 
However, the approach in this chapter assumes that there is no grain-
boundary sliding. When such effects occur, they may drastically alter 
the apparent elastic behaviour. For instance, one has to be cautious in 
the case of cast iron with a graphite phase. 

Example: surface effects in particulate and fibre composites. There is a 
class of ionic conductors called composite solid electrolytes, for which 
surface effects can be dominating. Solid LiCl is a typical ordinary ionic 
conductor, where the charge is carried by highly mobile ions. If grains 
of AI2O3 are added to LiCl, the effective electrical conductivity may 
increase by several orders of magnitude, in spite of the fact that AI2O3 
is insulating. A region of high ionic mobility is formed at the interface 
between AI2O3 and LiCl (see a review by Ce-Wen Nan 1993). 

Cracks may arise at phase boundaries or in the surrounding matrix, 
due for instance, to strains related to the processing of a composite 
material, and significantly affect transport properties. SiC has five times 
higher thermal conductivity than that of cold-pressed Ti powder, but 
still a Ti-SiC particulate composite may have lower conductivity than 
Ti. Reaction products in the interface zone have a large volume and 
therefore cause cracking (Turner et al. 1993). 

If fibres of high thermal conductivity are given a coating of low con-
ductivity, the heat does not penetrate the coating, and the fibres do not 
affect ceff of the composite much. Analogously, aeff can be increased by 
a highly conducting coating of low conductivity fibres (see a review by 
Taylor 1991). 

9. Resistivity versus conductivity 

In this chapter we have referred to the electrical and thermal conductiv-
ities, a and /c. We shall now comment on the resistivities, and consider 
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p = l /o\ The relation between the effective transport coefficients of a 
composite is 

Peff = l/tfeff. (17.62) 

If we put o\ = 1/pi and a2 = I/P2 in the Wiener bounds, (eq. (17.8)), 
the bounds are reversed. The same substitution in the Hashin-Shtrikman 
bounds, eqs. (17.17) and (17.18), gives (if p2 < p\ in accordance with 
our assumption in this chapter that a2 > o\) 

fx 

l / ( P 2 - P i ) + 2/2/3p2 

< a. h 

< Pi + l / ( P i - p 2 ) + 2/1/3p1 

(17.63) 

We note that the factor 2/3 in the denominators of eq. (17.63) corre-
sponds to 1/3 in the conductivity relation (17.17). Furthermore, although 
peff = l/creff one has (p) = (I/a) ^ l/(cr). Therefore, in the case of 
a weakly varying resistivity (or conductivity), the relation analogous to 
eq. (17.50) for creff is 

Peff « (P) ' + rn^i- <™> 
Finally, consider the dilute limit. The smallest influence on peff is ob-
tained when the inclusions in the matrix have spherical shape, and the 
largest influence when they are plate-like. As an illustration, let phase 
1 consist of voids, in a matrix of phase 2. (This labelling is consistent 
with our convention that p2 < p\.) Then, from the lower bound in eq. 
(17.63) and with/! « 1, 

Peff = P2[1 + (3/2)/!]. (17.65) 



CHAPTER 18 

ANISOTROPIC AND POLYCRYSTALLINE MATERIALS 

1. Introduction 

Fibrous or lamellar composites are typical examples of materials with 
anisotropic physical properties. More generally, we will be interested in 
composites in which the properties of each separate phase are isotropic 
but the geometrical distribution of the phases is anisotropic. We will 
also treat polycrystalline one-phase materials for which the property of 
interest is anisotropic in a single crystallite. The two cases are partly re-
lated. Consider the microstructure in fig. 18.1. Each grain in the material 
consists of two phases which form a lamellar structure. If phases 1 and 
2 have different isotropic conductivities, the grains may be described 
by different conductivities perpendicular and parallel to the lamellae. 
Thus, the entire material can be viewed either as a one-phase poly-
crystalline material with anisotropic conductivity in each crystallite or 
as a two-phase material with isotropic conductivity in each phase. A 
very important case is that of a polycrystalline material in which the 
grains are randomly oriented so that the specimen is isotropic on a 
large scale. One may call this a quasi-isotropic material, or a mater-
ial that is isotropic in a statistical sense. Some authors use the word 
aelotropy for the anisotropy of a single crystal and reserve the use of 
anisotropy to systems composed of many crystallites. We will not make 
this distinction. 

Much of our discussion parallels that of the preceding chapter. In 
particular, we are interested in the effective-conductivity tensor com-
ponents (oreff),7 of an overall anisotropic material, the effective conduc-
tivity aeff of an overall isotropic polycrystalline material and analogous 
parameters describing elastic and thermal-expansion properties. There 
are bounds to such quantities, e.g. of the Hashin-Shtrikman (HS) type, 
and there are effective-medium theories. 

316 



Conductivity properties of quasi-isotropic poly crystalline materials 317 

Fig. 18.1. A two-phase material may be viewed as a one-phase poly crystalline material 
with anisotropic properties in each grain (schematic illustration). 

2. Conductivity properties of quasi-isotropic polycrystalline 
materials 

2.1. Bounds 

Let the diagonal elements of the conductivity matrix of a single crystal 
be cra, ab and ac. One can show (Molyneux 1970) that aeff is bounded 
by 

3 ( — + — + — ) < <reff < -(<ra + ab + ac). (18.1) 

It was shown by Schulgasser (1977) that one can construct a laminated, 
statistically isotropic material with the conductivity o*eff = (̂ a + &b + 
o*c)/3. Hence, the upper bound in eq. (18.1) is the best possible, given 
the condition of overall isotropy. The problem of the best lower bound 
has been more difficult to solve. Schulgasser (1977) showed that the 
conductivity is at least (o^b^c)^3- Avellaneda et al. (1988) and Nesi 
and Milton (1991) derived a lower bound as which is attainable. That 
bound is the solution to the equation 

tf| + (aa + 0b + °c)os2 - 4aaabac = 0. (18.2) 

Crystals of axial symmetry (hexagonal, trigonal or tetragonal) have 
aa = Ob = a^, and ac = o\\. Then eq. (18.2) has a closed-form solution, 
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^s = [(<7|f + 8a_La||)1/2 — a||]/2, for o\\ > cr±_ and with o\\ and a±_ 
interchanged in as when o\\ < a±. 

Hashin and Shtrikman (1963b) derived bounds which are valid when 
the grains in the polycrystal are equiaxed, i.e. the grains have no pre-
ferred dimension (such as being lamellar; cf. the discussion above) 
which is a more restrictive condition than requiring overall isotropy of 
the material. Therefore, these bounds are narrower than the combination 
of eqs. (18.1) and (18.2). The latter are the best possible, given only the 
condition of statistical isotropy. In an isotropic material, with grains of 
axial symmetry, the HS bounds take the form (if cry > <7j_; otherwise the 
bounds are reversed) 

4a± + 5cr,| laL + 2o\\ 
°J-~ TTT" < tfeff < or|| - 5 — • (18.3) 

7a_L + 2cri| a_L + 8aii 

2.2. Effective-medium theory 

An effective-medium approach (Stroud 1975, Helsing and Helte 1991) 
gives aeff as the solution to (i —a, b, c) 

E Oeff — ai 

2oreff + &i 

l-=0. (18.4) 

The effective-medium result lies within the H-S bounds. In the special 
case that aa = o\> = a± and ac — o\\ (i.e. axial symmetry) we get (see 
also Bruggeman 1935) 

<xeff = d/4)[a± + (a2
± + Za±crt)

l,2l (18.5) 

We note that eq. (18.4) is identical to the effective-medium result (eq. 
(17.53)) for a composite made up of equal amounts of three phases with 
isotropic conductivities. 

2.3. Weakly anisotropic material 

As an illustration, consider hexagonal (or trigonal, tetragonal) lattice 
symmetry with 

or,. =a±(l+s) (18.6) 
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and \e\ <̂C 1. Then, 

tfeff « cr±(l + e/3 - As2111). (18.7) 

If we keep only terms linear in e, bounds in eq. (18.1), the HS bounds, 
and the effective-medium-theory result all agree, and give aeff = 
aj_(l + e/3). 

Example: thermal conductivity in pearlite. An Fe-C alloy with 0.8 
weight-% C may have the microstructure called pearlite, where fer-
rite (a-Fe; bcc Fe) and cementite (Fe3Q form lamellae, reminiscent 
of the geometry in fig. 18.1. The local thermal conductivity, in a re-
gion containing many such parallel lamellae, can be viewed as having 
components K± and /cy where K±_ and K\\ are trivially obtained from a 
parallel and series coupling of a-Fe and Fe3C. (Note that K\\ denotes the 
conductivity perpendicular to the lamellae, because this is the direction 
for axial symmetry.) Using the conductivities (Helsing and Grimvall 
1991) Kpcaiioy = 30 W/(m K) and /ccementite = 8 W/(m K), and the vol-
ume fraction /cementite = 0.122, we get K±_ = 27.3 W/(m K) and K\\ = 
22.5 W/(m K). If there is no overall preferred orientation of the lamellae, 
the conductivity properties of a pearlite specimen can be modelled as 
that of a statistically isotropic one-phase polycrystalline material. Table 
18.1 gives results for the bounds in eq. (18.1) and the HS bounds to the 
thermal conductivity, and also K* from an effective-medium theory. The 
numerical accuracy in the table only serves to show how close bounds 
are, for given conductivities K± and /cy. 

Example: electrical resistivity in yttrium. Yttrium has hexagonal lattice 
structure with a larger anisotropy ratio p±/p\\ = 2.07 than for most other 
hep-structure metals. With p± = 71.6 fiQ cm and py = 34.6 fiQ cm 
we get bounds and estimates which fall outside the measured value pexp 

= 59.7 /iQ cm for polycrystalline specimens. Equation (18.2) yields 
Peff < 57.4 /JLQ cm. The experimental data, from Hall et al. (1959) 
and Alstad et al. (1961), are said to refer to a polycrystalline material 
without texture (cf. §5), corrected for the residual resistivity at low tem-
peratures, and with an uncertainty of about 1%. This example illustrates 
how bounds can be used to show that not all the assumptions about an 
experiment may be correct. 
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Table 18.1 

Thermal conductivity of pearlite, in W/(m K), and electrical resistivity of yttrium, in 

IJLQ cm 

(18.1)^ (18.1)u H-S lower H-S upper Eff. medium Experiment 

Pearlite 25.488 25.700 25.618 25.627 25.624 
Yttrium 52.8 59.3 54.5 55.6 55.2 59.7 

3. Elastic properties of quasi-isotropic polycrystalline one-phase 
materials 

3.1. Cubic lattice structures 

Voigt and Reuss bounds. We first consider a statistically isotropic poly-
crystalline one-phase material in which the crystallites have a cubic 
lattice structure (e.g. fee, bec, diamond- or NaCl-type lattice). The elas-
tic properties of the individual crystallites are described by three elastic 
constants, cn, cyi and C44. Our task is to find the effective bulk modulus 
Keff and shear modulus Geff. Voigt (1910) assumed that the strain is 
uniform throughout the sample. The bulk modulus then becomes 

*v = (ci i+2ci2) /3. (18.8) 

Similarly, Reuss (1929) assumed a uniform stress in the sample and 
obtained the bulk modulus 

KK = (cn+2cl2)/3, (18.9) 

i.e. Ky = ^ R for cubic lattices. For the shear modulus, the result is 

Gv = (cn - cn + 3c44)/5, (18.10) 

GR = 5(cn - ci2)c44/[4c44 + 3(cn ~ cn)l (18.11) 

Hill (1952) has shown that the assumptions of Voigt (i.e. uniform strain) 
and Reuss (uniform stress) lead to upper and lower bounds to K and G, 
for any crystal structure. Thus, 

^ R < ^eff < ^V» (18.12) 
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G R < G e f f < G v . (18.13) 

From the general relation (3.10) between E, G and K, 

- = — + — , (18.14) 
E 3G 9K 

it is obvious that the smallest possible E, denoted £R, is obtained with 
GR and KR on the right of eq. (18.14). Similarly, the largest value, E\, 
is obtained with Gy and Ky on the right. Then 

£R < £eff < Ew. (18.15) 

Example: Reuss' expression for E. If we solve for E from eq. (18.14) 
with KR and GR given by eqs. (18.9) and (18.11), and use eqs. (3.31)— 
(3.33), we get 

- = sn - -(2sn - 2si2 ~ 544). (18.16) 
ER 5 

In eq. (3.44) it was noted that {E[hkl]}~1 =sn- (2sn ~ 2sn - su)N
A 

where N contains direction cosines for [hkl]. Taking an average over all 
directions [hkl], i.e. 

- f {E[hkl]}-X sine 60, (18.17) 
2 Jo 

yields 1/^R as in eq. (18.16). The agreement is not accidental. In Reuss' 
approach one assumes that the stress a is uniform in the polycrystalline 
sample. The effective strain is eeff = G/E&. Now, £eff is the resulting 
strain from crystallites with a random crystallographic orientation. We 
have eeff as an average of s = a/E[hkl]. Hence, £eff = OT/^R. A similar 
argument, with uniform strain, leads to Ey. 

H-S bounds. Hashin and Shtrikman (1962b) derived upper and lower 
bounds to K and G using the same variational method as for their 
bounds in multiphase materials. It seems not to be known whether, or 
not, the bounds to G are the best possible (optimal), i.e. if there are 
quasi-isotropic materials for which they are attained. The bounds to the 
bulk modulus must coincide in a cubic lattice, since then KR = Ky. 
Hence, 

Kti = Ki = (cn+2cn)/3. (18.18) 
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The bounds to the shear modulus are algebraically more complicated 
(Hashin and Shtrikman 1962b). They can be written (when c\\ — cyi > 
2c44), 

Gu = C44 H 
(5/2)[cn - C12 -

_ C „ - C i 2 

2 (5/2)[2c44 • 

where 

(Cn +2C1 2 + 6C44) 

5c44(cii + 2cn + 2C44) 

^ 2 ( 4 c i i - c i 2 ) 

15(cn - c i 2 ) c n ' 

2C44]"1 

3 
- (cn -

+6//r 

-C12)] - 1 + 4#2' 

(18.19) 

(18.20) 

(18.21) 

(18.22) 

When c\\ — cn < 2c44, the upper and lower bounds are reversed. For 
elastically isotropic crystallites, i.e. when c\\ —cu = 2C44, they simplify 
to 

Gu = Gi = Gw = GR = c44. (18.23) 

Experimental values of the elastic coefficients of single crystals, and the 
Voigt, Reuss and HS bounds derived from them, have been tabulated 
by Simmons and Wang (1971) for essentially all systems with data 
available at that time. 

3.2. Non-cubic lattices 

Since the Voigt approach assumes a uniform strain and the Reuss ap-
proach a uniform stress, it is natural to use the elastic stiffnesses ctj in 
the former and the elastic compliances stj in the latter case. The general 
expressions for the Voigt and Reuss bounds to K and G in non-cubic 
lattices are (Schreiber et al. 1973) 

1 2 
^v = - (cn + c22 + c33) + -(C12 + C13 + c23), (18.24) 

— = (,511+ ^22 + 533) + 2(512 + S13 + 523), (18.25) 
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GV = -—(CU + C22 + C33) - TT<A2 + C13 + C23) 

1 
+ -(c4 4 + c55 + c66), (18.26) 

1 4 4 
— = — fall + ^22 + S33) - 7 7 O 1 2 + ^13 + ^23) 

3 
+ —(^44 + ^55+^66). (18.27) 

We check that these relations contain the results (eqs. (18.8)—(18.11)) 
for cubic crystals as special cases. Take c\\ — c22 = C33; c\2 = C13 = 
C23; C44 = C55 = C66, with analogous relations for stj. The results for 
Ky and Gy follow immediately. Furthermore, l/KR — 3(sn + 2s n) 
and 1/GR = (4sn - 4sn + 3s44)/5. With the relations (3.33)-(3.35) 
between ctj and stj, we recover eqs. (18.9) and (18.11). 

Crystals belonging to one of the seven classes of hexagonal lattices 
have five independent elastic constants; en, C12, C13, C33 and C44. The 
Voigt and Reuss bounds, when expressed in ctj, take the form (Watt and 
Peselnick 1980, Meister and Peselnick 1966) 

^v = -[2(cn + cn) + c33 + 4c13], (18.28) 

# R = C2/M, (18.29) 

Gv = ^[1 2^66 + 12c44 + M], (18.30) 

5 C44C66C 
(18.31) 

.(C44 + C 6 6 ) C 2 + 3KyC44C66^ 

where c^ = (cn — c\2)/2 and the auxiliary moduli C and M are defined 

C2 = (c 1 1 +c 1 2 )c 3 3 -24 , (18.32) 

M = cn + C12 + 2c33 - 4ci3. (18.33) 

The analogous relations for the Voigt and Reuss bounds in trigonal and 
tetragonal lattices were obtained by Meister and Peselnick (1966). 
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The H-S type bounds to K and G for hexagonal and trigonal (Pesel-
nick and Meister 1965, Watt and Peselnick 1980), tetragonal (Meister 
and Peselnick 1966, Watt and Peselnick 1980), orthorhombic (Watt 
1979) and monoclinic (Watt 1980) lattices are algebraically more com-
plicated than eqs. (18.18)—(18.20). It appears unknown if these bounds 
are optimal, i.e. the best possible. 

3.3. The Voigt-Reuss-Hill approximation 

The Voigt and Reuss estimations are easy to calculate. Hill (1952), hav-
ing shown that they are rigorous bounds, suggested that one takes their 
arithmetic average as an estimation of the elastic properties. Usually, 
one refers to these averages as the Voigt-Reuss-Hill (VRH) values, a 
term introduced by Chung (1963); 

KVRH = (*v + KR)/2, (18.34) 

GVRH = (Gv + GR)/2. (18.35) 

Note that £VRH derived by eq. (3.10) from Ĵ VRH and GVRH> is not 
mathematically identical to (2sv + £ R ) / 2 , although the latter may be 
a very good approximation. 

There is no particular reason why the arithmetic (VRH) mean should 
be preferred. Kumazawa (1969) used the geometric mean (KyK^)1^2 

and Shukla and Padial (1973) used the harmonic mean, 2KyKR/(Ky + 
KR). If the material is only weakly anisotropic, they will of course 
all give good estimations. We can define a measure AVRH of elastic 
anisotropy by 

Gv — G P 
A V R H = , / • (18.36) 

This measure has been applied by Chung and Buessem (1967) to crys-
tals of cubic lattice symmetry. The relation between AVRH and Zener's 
measure, eq. (3.61), Az = 2c44/(cn — cu) of anisotropy in cubic 
crystals is 

AVRH = (
0

Az ~ l) w 0.12(AZ - l)2. (18.37) 
1 + A2 + (19/3)AZ 
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The last expression refers to almost isotropic materials, Az ^ 1. We can 
understand the usefulness of the VRH approximation from the fact that 
it is accurate to second order in the (small) anisotropy parameter Az — 1. 

The approach discussed above is relevant for the elastic properties 
measured in short-time (e.g. acoustic) experiments. In long-time (e.g. 
static compression) experiments, the polycrystalline material may have 
time to relax so that it is characterised by the Reuss condition of uniform 
stress. Then K& is given by KR (Thomsen 1972). 

In analogy to the relation between C(j and the engineering elastic 
constants, one can derive relations between single-crystal third-order 
elastic coefficients and the corresponding third-order quantities for the 
engineering elastic constants (Chang 1967; see also Chung 1967). 

Example: VRH and HS estimations of Keff and Geff. Table 18.2 gives 
VRH- and HS-type estimations of the elastic properties of some poly-
crystals. The VRH estimation of K is here defined as (Ky + KR)/2 ± 
(Ky - KR)/2 and the HS type as (Ku + Kt)/2 ± (Ku - Kt)/2, with 
analogous definitions for the shear modulus. No uncertainty interval is 
given when the upper and lower bounds coincide to the number of dig-
its given. The entries (in GPa) for cubic structures are calculated from 
elastic constants in the Landolt-Bornstein tables (Every and McCurdy 
1992), and other entries are from Peselnick and Meister (1965) for Mg 
and ice, from Watt and Peselnick (1980) for Zn, graphite, A1203, Si02 

and Sn, and from Watt (1979) for U and CaS04. See Watt and Peselnick 
(1980) for further examples. One notes that in most cases the HS bounds 
give an estimation that is accurate to within a few percent (provided 
that the single-crystal elastic constants are accurately known), i.e. better 
than achieved in many direct experiments. We also note in the table 
that the VRH approximation lies inside the HS bounds. This is a rule 
which has few exceptions (Watt et al. 1976, Watt and Peselnick 1980). 
Even in the very anisotropic case of fee Pu (cf. table 3.3) one gets a 
useful estimation of G from the HS bounds. However, the method fails 
completely in graphite, which has an exceptional anisotropy. 
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Table 18.2 
Voigt-Reuss-Hill (VRH) and Hashin-Shtrikman (HS) estimations of the effective bulk 

modulus Kt?[ and shear modulus Geff, in units of GPa 

Al (fee) 

Cu (fee) 

Th (fee) 

Pu (fee) 

of-Fe (bec) 

Li (bec, 195 K) 

C (diamond) 

Si (diamond) 

GaAs (diamond) 

NaCl (cubic) 

MgO (cubic) 

TaC (cubic) 

Zn (hep) 

Mg (hep) 

Ice (hexagonal) 

Graphite (hexagonal) 

/3-Sn (tetragonal) 

Si02 (tetragonal) 

AI2O3 (trigonal) 

a-U (orthorhombic) 

CaS04 (orthorhombic) 

^eff(VRH) 

77.3 

137.7 

59.6 

30.0 

166.7 

12.1 

442.1 

97.0 

75.0 

24.9 

160.0 

217.0 

68.3 ± 6.8 

36.9 

8.14 

161.1 ± 125.3 

60.6 

37.7 ± 0.2 

251.1 ±0 .2 

113.1 ±1.7 

54.9 ± 2.7 

*eff(HS) 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

69.7 ± 2.2 

36.9 

8.14 

120.2 ± 84.0 

60.6 

37.7 

252.1 

112.9 ±0 .3 

54.1 ± 1.0 

Geff (VRH) 

26.1 ±0.1 

47.3 ± 7.3 

27.7 ± 4.9 

15.8 ± 6.4 

81.5 ±7.7 

4.34 ±1.98 

534.3 ± 2.4 

66.3 ± 1.5 

46.5 ±2.1 

14.7 ± 0.2 

130.3 ± 2.9 

119.8 ±14.0 

39.5 ± 5.4 

19.3 ±0 .1 

3.67 ± 0.02 

109.2 ± 108.7 

17.8 ±2 .1 

44.4 ± 3.4 

163.3 ± 2.7 

84.4 ± 3.7 

29.3 ± 6.2 

Geff(HS) 

26.1 

47.7 ±1.7 

27.8 ±1 .2 

15.3 ±2 .5 

81.8 ± 1.4 

4.19 ±0.85 

534.2 ±0 .1 

66.4 ±0 .1 

46.6 ± 0.3 

14.7 ±0 .1 

130.3 ± 0.3 

118.7 ±2 .8 

39.7 ± 1.8 

19.3 

3.67 

73.5 ± 72.7 

18.2 ± 0.6 

44.2 ± 0.7 

163.5 ± 0.3 

84.2 ± 0.6 

29.6 ± 2.2 

a KQff is given exactly in cubic systems. 

4. Thermal expansion of quasi-isotropic polycrystalline one-phase 
materials 

The thermal expansion of a single crystal of hexagonal, trigonal or 
tetragonal symmetry is described by two expansion coefficients, ot\ 
(=of2) and a?3. When such single crystals form a statistically isotropic 
polycrystal, the resulting effective coefficient of thermal expansion 
takes an exact form (Hashin 1984, Schulgasser 1987, 1989, Ballabh et 
al. 1988, Gibiansky and Torquato 1997) which can be written as 
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2a i + a3 
<*eff = g 1" («3 - <*l) 

[1/^efiF ~ (2^33 + Cn + C 1 2 - 4 C 1 3 ) / C 2 ] 
x , (18.38) 

3(cn +C12 - c n - c 3 3 ) / C 2 

where C2 was defined in eq. (18.32). This relation is sometimes given in 
a seemingly different, but mathematically equivalent, form. We further 
note that, by eqs. (18.29), (18.32) and (18.33), (2c33 + cn + cX2 -
4co)/C2 = I/A'R, so that with the Reuss expression for K& we get 
aeff = (2«i + a3)/3. 

Because eq. (18.38) is a monotonically varying function of K^ it 
yields upper and lower bounds to aeff if we insert such bounds for K^. 
We remarked in the example in §3.3 that, with very few exceptions, the 
VRH approximation to K^ lies inside the HS bounds to K&. Therefore, 
^eff(VRH) inserted in eq. (18.38) yields aeff between the HS bounds to 
aeff. Table 18.3 shows examples when K^ is given by the VRH ap-
proximation, i.e. with uncertainties that follow from the bounds Ky and 
KR. The unrealistic number of digits in the calculated a^ only serves 
to show the difference between the bounds that would result if indata 
had been exact. Expansion data are taken from Touloukian et al. (1975, 
1977) and elastic constants from the Landolt-Bornstein tables (Every 
and McCurdy 1992). 

In materials with texture and non-cubic lattice structure, aeff is 
anisotropic. Dunn and Ledbetter (1995), relying on results by Schul-
gasser (1987), have given explicit expressions for the generalisation of 
eq. (18.38) in the Voigt and Reuss limits, when the texture is expressed 
by coefficients in the orientation-distribution function (ODF). 

5. Anisotropic particles in an isotropic matrix 

Let a matrix have an isotropic conductivity am, and the grains of a 
second phase, embedded in the matrix, have anisotropic conductivities 
characteristic of a hexagonal (or trigonal or tetragonal) lattice structure, 
i.e. <r_L and ay. Levy and Stroud (1997) considered the conductivity 
of this composite system in the Maxwell Garnett approximation (cf. 
eq. (17.55)) when the inclusions have spherical shape. The expressions 
for the effective conductivity are mathematically elementary, but alge-
braically somewhat complex, and will here be illustrated in two simple 
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Table 18.3 

Linear thermal expansion coefficient aeff (unit 10 - 6 K - 1 ) of statistically isotropic 
poly crystalline specimens, calculated from eq. (18.38), with ATeff in the VRH approx-

imation, and compared with experiments 

Material 

Zn 

Be 

Zr 

0-Sn 
Si02 

ay 

64 

10 

7 

33 

7 

« 1 

14 

12 

4 

16 

12 

«eff(VRH) 

28.52 ±2.15 

11.31 ±0.03 

5.02 ± 0.02 

21.63 ±0.04 

10.21 ±0.12 

aeff (exp) 

30 

11 

6 

22 

10 

cases. First, consider the dilute limit fa <C 1 of spherical inclusions 
which are oriented so that the axes with the conductivity o\\ are parallel. 
Let the effective conductivity of the composite in the same direction be 
(Jeff, || and the conductivity in any perpendicular direction be oreff,_L- Then 

tfeffj = ^ir 

Oeff.-L = Gn 

1 - 3 / 2 

1 - 3 / 2 

( g m - CT||) 

2am + o\\ J 

fan - QT±) 

2(7m + OT_L 

(18.39) 

(18.40) 

As a second example, consider the dilute limit when the spherical 
inclusions are randomly oriented, so that <7eff is isotropic; 

ffeff : 1 -3 /2 
(gm - a||)(2gm + aj_) - 2am(a_L — ay) 

(2gm + a|.)(2am + g_L) 

(18.41) 

It is easily seen that when cry = <T_L> the relations (18.39)—(18.40) 
become oreff in the dilute limit of isotropic inclusions, eq. (17.30). Hels-
ing and Helte (1991) derived results similar to those above, but for 
ellipsoid-shaped inclusions with anisotropic conductivity. 



Oriented phases 329 

6. Oriented phases 

The most important composite materials have more or less parallel 
fibres in an isotropic matrix, or have a lamellar structure. We have en-
countered these cases as bounds in some of the expressions in Chapters 
17 and 18. There is a vast literature in this field. We shall only make a 
few comments on fibre composites, that connect to our previous results. 

The conduction properties of a fibre composite are described by 
two parameters, referring to conduction along (o\), and transverse (<7T) 
to, the fibres. The Wiener bounds in Chapter 17 (§2.2) give the lon-
gitudinal conductivity exactly (or to a very good approximation if the 
individual fibres are shorter than the specimen). For the transverse con-
ductivity, bounds are given by the two-dimensional HS relations, i.e. 
with 3 replaced by 2 in eqs. (17.17) and (17.18). When the transverse 
microstructure fulfills the requirements of a symmetric cell material, the 
result in Chapter 17 (§6.2) is applicable. 

A fibre composite which is transversely isotropic has the same sym-
metry as a single crystal of a hexagonal lattice. Thus we need five 
independent elastic parameters, to be compared with only two (e.g. K, 
G) in an elastically isotropic material. We can choose the five para-
meters to be, e.g. the transverse bulk modulus KT, the transverse and 
longitudinal shear moduli Gj and GL, and the transverse and longitudi-
nal Young's moduli ET and EL. Other elastic constants, for instance the 
transverse and longitudinal Poisson ratios, can be expressed in terms 
of these five elastic parameters. In analogy to the approaches in this 
and the previous chapter there are HS-type bounds (Hill 1964, Hashin 
1965) and effective-medium results (Hill 1965a). The field has been 
reviewed by Laws (1980) and Hashin (1983). There is an exact result 
for the "coated cylinder" analogue of the "coated sphere" aggregate 
(Hashin and Rosen 1964, Hashin 1983). It should be pointed out that 
the measured longitudinal effective Young's modulus EL may be quite 
different from the approximate value f\E\ + fiEi, because fibres are 
not perfectly straight. If they have a slight sinusoidal shape, and the 
matrix is not stiff, the fibres may straighten under a load and give a low 
apparent EL. 

There are two coefficients of thermal expansion, aj and aL. If the 
fibre and matrix materials are isotropic, there is an exact solution (Levin 
1967, Rosen and Hashin 1970), in analogy to the case of statistically 
isotropic materials. 
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Finally, we briefly comment on materials with a texture, i.e. a pre-
ferred orientation for a crystallographic direction [hkl] of the single 
grains of a one-phase polycrystalline material. The most extreme texture 
would be when all grains have parallel [hkl], thus effectively making it 
a single crystal. There are several approaches to a quantitative measure 
of the degree of texture. Early work often referred to pole figures, which 
give a stereographic representation of the grain orientations. It is now re-
placed by the concept of an orientation-distribution function, ODF (e.g. 
Humphreys and Hatherly 1996). See also Dunn and Ledbetter (1995), 
Hirao et al. (1987) and Schulgasser (1987) for examples of elastic and 
expansion properties in materials with a texture. 



CHAPTER 19 

ESTIMATIONS AND CORRELATIONS 

1. Introduction 

Estimations play an important role in materials science, for instance to 
provide information when direct experimental data are missing or of low 
quality. The bases for estimations are of essentially two kinds; correla-
tions between different properties of the same material, and regularities 
for a certain property in a group of related materials. 

Most of the theories developed in this book centre around some im-
portant parameters, such as properly defined Debye temperatures 6D(n), 
Griineisen parameters y(n) and elastic coefficients Q7. In simplified 
versions of the theories, one may use a common Debye temperature 6fo 
and Griineisen parameter yo for all n, and isotropic engineering elastic 
constants K, G and E instead of C[-r Furthermore, the equipartition 
theorem for classical harmonic vibrations gives a universal energy 3&B T 
and heat capacity 3kB at high temperatures. Many properties related to 
the conduction electrons in metals depend on the electron density of 
states N(E) in the vicinity of the Fermi level. With relatively few such 
parameters entering the description, it is not surprising that there are 
correlations between experimental thermophysical data. For instance, 
Griineisen noted already in 1913 that the electrical resistivity (plotted as 
p/T) and the heat capacity Cp of Cu, Ag, Au, Pt and Pb showed almost 
the same temperature dependence (cf. fig. 19.6). This was long before 
a theoretical understanding of the temperature dependence of the re-
sistivity, which requires a quantum mechanical model. The Lindemann 
melting formula is another well known correlation, although of dubious 
reliability. 

Physical properties of solids ultimately depend on the electronic 
structure, which normally varies in a regular way for a group of 
chemically related materials. This fact may be used in estimations 
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through interpolations or extrapolations. Such a regular behaviour is 
well illustrated by the bulk modulus (see Chapter 1). 

This chapter reviews several kinds of correlations and regularities, 
and critically discusses their theoretical basis and limitations. Some of-
ten used relations such as the Lindemann melting criterion, Latimer's 
rule for standard entropies S^ 15, and the proportionality between de-
fect energies and melting temperatures, have gained their popularity 
from data on elements. They will lose much of their significance in more 
complex solids. 

2. Rules related to atomic volumes 

It is common to define atomic radii based on a lattice model with atomic 
spheres. For elements, for instance, one may take the radius to be half 
the distance between nearest neighbours. Several schemes have been 
devised to define and obtain radii for use in chemical compounds (see, 
e.g. Pauling 1960). It is meaningful to assign a certain value to the radius 
r of an atom or ion, only if r is approximately unchanged when one 
considers different structures or compounds. Depending on the appli-
cation of interest, this may be a reasonable or a poor assumption. For 
instance, compare bcc, fee and hep lattices. If they are formed by rigid 
spheres, the atomic volume £2a would be 9% larger in the bcc lattice 
than in the close-packed fee and hep lattices. (£2a = V/N where V 
is the total crystal volume and N is the number of atoms.) Table 19.1 
gives the relative change A£2a/ Q& in the atomic volume at the transition 
temperature, for some elements that exist in both bcc and fee (or hep) 
structures. We note the strong tendency to conserve the atomic volume, 
rather than the radius. Furthermore, theoretical calculations for a large 
number of intermetallic phases show that £2a does not vary much with 
the crystal structure for given composition (Ferreira et al. 1988b). It 
should be remarked that the rather large change in volume for the bcc to 
hep transition in iron is accompanied by a loss of the magnetic moment 
that is present also in the paramagnetic states of the bcc and fee phases 
of Fe. 

As a further warning against the simple interpretation that a bcc 
lattice has a lower density than the close-packed fee and hep lattices, 
consider Mg. At ambient pressure Mg has the hep lattice structure. 
(Actually, the bcc phase is dynamically unstable under long-wavelength 
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Table 19.1 

The relative change in atomic volume when the crystal structure is changed 

Transition A£2a/^a(%) 

Fe(bcc) -> Fe(fcc), 1184 Ka -1 .0 b 

Fe(fcc) -> Fe(bcc), 1660 Ka +0.3b 

Fe(bcc) -> Fe(hcp), - 1 0 GPaa - 6 a 

Co(fcc) -> Co(hcp), 695 Ka 0.3b 

Ti(hcp) -> Ti(bcc), 1155 Ka - 0 . l b 

Nio.76Po.24 (amorphous -> cryst.) —0.8C 

C00.75P0.25 (amorphous -> cryst.) — 1.3C 

(FeNi)0.8(BP)o.2 (amorphous -* cryst.) -0.3 to -0 .8 d 

Rigid spheres (fee or hep -> bec) +8.9 

aYoung (1991). 
bRudman(1965). 
cLogan and Ashby (1974). 
dvan den Beukel and Radelaar (1983). Cooling rate to produce the amorphous structure 
varying from 103 to 106 K/s. 

shear in the [110] mode (Althoff et al. 1993).) At about 50 GPa and 300 
K, hep Mg transforms to bec Mg, having a volume Qa that is lower by 
~ 1 % (Olijnyk and Holzapfel 1985). 

When an hep lattice is considered as a stacking of spheres, the 
c/a ratio for the lattice parameters c and a has the ideal value of 
y/S/3 ~ 1.633. Magnesium comes close to this, with c/a = 1.62, while 
cadmium has c/a = 1.89. The Cd-Mg system forms a solid solution 
Cdi-^Mg* with the hep lattice structure at high temperatures, for all x. 
Figure 19.1 shows the variation in c/a and the average atomic volume 
Qa. When x increases from 0 to 0.5, c/a decreases by about 13%. This 
is due to simultaneous variations in c and a, but such that the variation 
in £2a is <1%. 

In an alloy, or a mixed crystal such as NaCl-KCl, it is often assumed 
that a certain lattice parameter a varies linearly with the composition c, 
i.e. as 

a = c\d\ +c2a2 (19.1) 

in a binary system (c2 = I — c\). This relation is known as Vegard's 
law. It was originally applied to solid solutions of ionic crystals (Vegard 
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Fig. 19.1. Variation of the ratio c/a of the hep lattice parameters (lefthand scale) and 
of the atomic volume Qa (righthand scale) of hep solid solutions of Cd-Mg. Data from 

Pearson (1972). 

1921), but has frequently been used in alloys. However, the "law" is 
often strongly violated, as exemplified above by the Cd-Mg system, 
and it must be amended to be useful (Gschneidner and Vineyard 1962). 
In the light of our discussion of Qa above, it may seem better to use the 
corresponding rule for the atomic volumes; 

Qz = C\Q\ + ^2^2- (19.2) 

This is sometimes called Zen's rule (Zen 1956). In eq. (19.2) the solids 
1 and 2 need not have the same crystal structure. Note that Vegard's and 
Zen's relations cannot hold simultaneously. Zen's rule may be of some 
value, but it should only be used to establish trends. Data on lattice 
parameters in solids are found in the extensive works by Pearson (1972) 
and Villars and Calvert (1985). 

In chemistry and metallurgy, one frequently uses the concept of par-
tial molar quantities. The partial molar volume V; of component / in a 
system containing other components j , is defined by 

Vt = 
dV 

dtli 
(19.3) 

T,p,Hj 
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where V is the volume of the system and nt is the number of moles 
of component i. If Zen's rule holds, and with NA being Avogadro's 
number, 

Vi/NA= [-LLJZ
 L-Jl) = « / . (19.4) 

Example: interstitial carbon in austenite (fee Fe). There are cases when 
the idea of crystals formed by rigid spheres with certain radii gives a 
very useful insight. Consider, for instance, the bec and fee lattices. The 
bec structure is usually referred to as "open" while the fee structure is 
close-packed. However, the largest "holes" where one can inscribe a 
sphere are found in the close-packed structure, although the bec lattice 
has more volume in the form of void regions. This explains why carbon 
is almost insoluble in bec Fe but forms a solid solution in fee Fe (up 
to 9 at.% at 1426 K). If carbon atoms could be viewed as rigid spheres 
which fitted into the "holes" in the lattice, alloying with carbon would 
not change the lattice parameter of fee Fe. Then the partial molar vol-
ume of C in Fe would be zero. In reality, the iron lattice expands. The 
measured lattice parameter as a function of the carbon concentration at 
900 K (Ridley and Stuart 1970) gives the partial molar volumes 

VFe(fcc) = 7.20 cm3, Vc in Fe(fcc) = 3.76 cm3. 

This can be compared with the molar volumes of pure carbon, Vc = 
5.31 cm3 (graphite) and Vc = 3.42 cm3 (diamond). 

3. Bounds to vibrational properties 

In a system described by perfectly harmonic lattice vibrations there are 
simple, but non-trivial, bounds to properties which depend on an aver-
age over the vibrational spectrum (Johnson and Kassman 1969, 1972; 
Johnson et al. 1971). For instance, if the heat capacity Char(7") is fitted 
to an Einstein model heat capacity CECO at any temperature To, one 
has 

CB(T) > Char(D, T > r0; (19.5) 



336 Ch. 19. Estimations and correlations 

CE(T) < Char(7), T < T0. (19.6) 

It follows that CE(T) crosses Char(T) at one and only one temperature. 
Similarly, if the average squared vibrational displacement (u2)har is fit-
ted at any T = T0 to an Einstein model (u2)E, one has that (u2)har at 
T > TQ lies between (u2)E and another mathematically simple bound, 
and vice versa. Analogous relations hold for the average squared ve-
locity (v2) of an atom. The results just quoted are valid irrespective of 
lattice structure, range offerees, number of different atoms etc. They are 
only a consequence of the assumption of harmonic vibrations. There-
fore, if accurate experimental data fall outside the bounds it shows the 
presence of anharmonic effects. 

Example: Debye-Waller factor of Fe in Cu. From Mossbauer mea-
surements on 57Fe in Cu (Nussbaum et al. 1968) one can obtain the 
Debye-Waller factor exp(—2M), where M is proportional to (u2). Let 
M be described by an Einstein model for (u2), fitted at T0 = 104 K. 
Then exp(—2M), for any form of the vibrational spectrum of the Fe-
Cu system, must lie within the shaded band in fig. 19.2. The fact that 
the experimental points fall outside that region shows that anharmonic 
effects influence (u2), and hence exp(—2Af). 

4. Latimer's rule for standard entropies 

Latimer (1921, 1951) noted that the standard entropy per mole, 5̂ 98 i5> 
i.e. S at T = 298.15 K, is often well described for the elements by the 
simple expression 

Latimer = 3tfA*B[*L + (1/2) In Mr]. (19.7) 

Here, k^ is an empirical dimensionless constant of the order of unity, 
AfA is Avogadro's number and Mr = M/M0 is the relative atomic mass 
(earlier called atomic weight; 12Mo is the mass of the atom 12C). Nor-
mally, the lattice vibrations account for almost all of S£9815, and we here 
consider only that term. From eqs. (7.23) and (6.30), the leading terms 
of the entropy in the high temperature expansion can be expressed, at 
T = T0 = 298.15 K, as 

52°98.i5 * 3 A ^ B { 4 / 3 + Indb/a) + (1/2) In M), (19.8) 
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Fig. 19.2. The experimental Debye-Waller factor exp(-2M) for the vibrations of 57Fe 
in a Cu host lattice (symbols) is fitted to an Einstein model at 104 K, and also to another 
simple model which assumes the highest vibrational frequency of the Fe-Cu system 
to be less than 1.20&>max where &>max refers to the pure Cu host. If the vibration of 
57Fe was strictly harmonic, exp(-2M) would lie in the shaded band. The fact that the 
experimental data fall outside this band is due to anharmonic effects. After Johnson et 

al. (1971). 

with a = (h/kB)(ks)
l/2, and ks being an average interatomic force 

constant (see §8). In analogy to eq. (19.7) we now form the entropy of 
a compound AxBy as 

52°9815(A,B,) « 3(x + y)NAkJ^+\n - To 
x/(x+y)y/(x-\-y) 

a 

+ \\n[M x/(x+y) ii/ry/(x+y) M} B 

B 

(19.9) 

This form of Latimer's rule gives the correct weight to the atomic 
masses at high temperatures. If variations in ks are smaller than vari-
ations in M, eq. (19.9) may give a fair estimate of S^g i5(A*BA but 
it still has severe limitations (Grimvall 1983). For instance, the high 
temperature expansion (eq. (19.8)) is not valid at T0 = 298 K for solids 
with very light atoms, since then #D(0) » 298 K. 
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5. The Neumann-Kopp rule for Cp 

The Neumann-Kopp rule expresses the (molar) heat capacity Cp(AxBy) 
of a compound A^B^ (or an alloy) as the sum of Cp for the elements 
forming A^B^, 

Cp(AxBy) = xCp(A) + yCp(B). (19.10) 

The rule was formulated by Neumann (1831) and Kopp (1864), as an 
extension of the Dulong-Petit (1819) rule. 

Table 19.2, based on data from the JANAF thermochemical tables 
(1985), Barin (1989) and Hultgren et al. (1973a, b), suggests that the 
rule is often astonishingly well obeyed, but in fact its predictive power 
is rather limited. In systems where the elements A and B and the 
compound A^By get their major contribution to Cp from the lattice 
vibrations, and the temperature is higher than, say, the Debye tempera-
tures 6D of A, B and A^B^, the Neumann-Kopp rule is just equivalent 
with the Dulong-Petit rule. To be more precise, consider the first terms 
in the high temperature expansion Char/3NkB « 1 - (l/20)[#D(2)/r]2, 
(7.32). When combined with the interpolation formula (9.27) for 6fo(2) 
we recover exactly the Neumann-Kopp rule, so the rule is often reason-
able even at temperatures somewhat lower than #D of A, B and A^B^. 
Furthermore, if the Neumann-Kopp rule is valid at all temperatures we 
may use the expression S = / Cp(dT'/Tf) for the entropy and obtain 
^(A^By) = xS(A) + yS(B), which is exactly Latimer's high temperature 
rule (eq. (19.9)). On the other hand, Latimer's high temperature relation 
does not mathematically imply that the Neumann-Kopp rule is valid 
at low temperatures. In fact, the Neumann-Kopp rule at low T implies 
that [ 0 D ( - 3 ; A,B,)]-3 = x[9D(-3; A)]"3 + y[9D(-3; B)]"3. This is 
not consistent with the interpolation formula (9.25) for #D(—3), which 
is of the same structure but has exponents —2 instead of —3. 

We conclude that the major reason for the apparent success of 
the Neumann-Kopp rule in many cases is that it expresses the trivial 
Dulong-Petit results. The rule certainly fails when there are large non-
vibrational contributions to the heat capacity (e.g. the magnetic term 
in Cp for Fe at 1000 K; entries for Fe3C in table 19.2), when one is 
well below the Dulong-Petit limit because T < 9D (e.g. TiB2 at 100 K; 
C in Fe3C) or when there are large anharmonic effects in one or both 
of the components (e.g. AlSb at 900 K). Finally we remark that heat 
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Table 19.2 
The experimental heat capacity Cp of elements A and B and compounds AxBy, and 

the result of the Neumann-Kopp rule, xCp(A) + yCp(B) 

Compound 

AXBy 

Cu0.8Zn0.2 
Cuo.gZno.2 
MgZn2 

AlSb 

AlSb 

Mg2Si 

Mg2Si 

B4Mg 

B4Mg 

TiB2 

TiB2 

TiB2 

WC 

WC 

Fe3C 

Fe3C 

Al2Si05
d 

Al2Si05
d 

T\K] 

100 

298 

298 

298 

900 

298 

900 

298 

900 

100 

298 

1000 

298 

1000 

298 

1000 

298 

1800 

Heat capacity Cp [ 

" A " " 

16.0 

24.4 

24.9 

24.3 

33.1 

24.9 

31.9 

11.3 

24.2 

14.3 

25.2 

32.1 

24.3 

27.6 

25.0 

54.4 

79.0 

135.1 

B 

19.5 

25.4 

25.4 

25.2 

30.9 

20.0 

25.9 

25.4 

31.9 

1.1 

11.3 

25.0 

6.1a 

21.6a 

8.5b 

21.6b 

44.6 

73.8 

J/(Kmol)]c 

xA + yB 

16.7 

24.6 

75.6 

49.6 

64.0 

69.8 

89.7 

70.5 

128.9 

16.5 

47.9 

82.0 

30.4 

49.2 

83.4 

184.9 

123.6 

208.9 

A^By (exp.) 

16.7 

24.7 

74.6 

46.4 

52.2 

67.9 

85.7 

70.3 

111.0 

7.5 

44.3 

76.9 

35.4 

50.1 

105.9 

119.7 

122.2 

220.0 

aDiamond. 
bGraphite. 
cThe classical vibrational heat capacity of an element is ?>R = 24.94 J/(K mol). 
dAl2Si05 considered as (a-Al203)(Si02). 

capacities are sometimes given per mass, e.g. in J/(kg K). Then the 
Neumann-Kopp rule would of course fail (unless the constituent masses 
are approximately equal) since the heat capacity per mass does not show 
the regularity of the Dulong-Petit rule. 

6. The Lindemann melting criterion 

Lindemann (1910) is often quoted to have suggested that the melting 
temperature TfUS is reached when the root mean square displacement 
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[(u2)]1/2 exceeds a certain fraction of the nearest neighbour distance 
2a. Actually, Lindemann never proposed such a rule, but used the melt-
ing temperature and other experimental data to derive a vibrational 
frequency, somewhat analogous to how Einstein fitted a vibrational fre-
quency to heat capacity data. It seems to be Gilvarry (1956) who first 
gave a criterion for melting in the form usually ascribed to Lindemann. 
Since 7fus > #D, we take the leading term in eq. (7.44) and write the 
(squared) ratio in Lindemann's rule on the form 

( u 2 ) _ to2^ 

* 4a2 4a2MkB%' 

where 2a is some characteristic distance between neighbouring atoms, 
here defined by (4n/3)a3 = J2a. In table 19.3 are given £ = 
[(u2)]1/2/2a calculated from eq. (19.11), and with QD = 0D(O) at 
T = rfUS from Rosen and Grimvall (1983). (It would be more cor-
rect to use 0D(—2), which is not easily available at TfUS, but typically 
may be 10% larger than #D(0) in these metals. Furthermore, some au-
thors use #D from room temperature data and get a smaller § because 
that neglects anharmonic softening of the vibrations.) There have been 
numerous discussions of Lindemann's rule, trying to give it some the-
oretical justification (e.g. Enderby and March 1966, Jacobs 1983) or 
merely examining its validity empirically (e.g. Shapiro 1970, Hansen 
1970, Hoover et al. 1971, Young and Adler 1974, Stillinger and Weber 
1980, Cho 1982). Equation (19.11) is derived for a monatomic solid 
with cubic symmetry. In §10, a dimensional argument is given as to why 
Lindemann's rule may be approximately obeyed for such a simple case, 
but we do not expect it to hold in more complex materials. A critical 
assessment by Wolf and Jeanloz (1984) shows that it fails, e.g. for alkali 
halides. It is obvious that the widespread method of estimating Debye 
temperatures from melting temperatures is not very reliable. In this con-
text we remark that ordinary melting is not caused by an instability of 
the lattice at T = Tfus (see Chapter 12). 

7. Defect energies related to the melting temperature 

The monovacancy formation energy EYSLC is astonishingly well corre-
lated to the melting temperature (fig. 19.3). A similar correlation is 
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Table 19.3 

341 

The ratio £ = [(u2)]1//2/(2a) at the melting temperature Tfus, illustrating Lindemann's 
rule 

Na (bcc) 

0.13 

Cu (fee) 

0.11 

Pb (fee) 

0.10 

Al (fee) 

0.10 

Mg (hep) 

0.11 

Tl (hep) 

0.12 

4 

3 

> CD 

s 2 

1 

n 

-

^ 

1 1 \ 1 1 1 

• fee Moo J 
• bcc ^ * " i 

*** S* Nb 
/ 

UyP' AC 
"•°K 

1 L J 1 1 1 

500 1000 1500 2000 2500 3000 

•fus (K) 

Fig. 19.3. The monovacancy formation energy £Vac plotted versus the melting temper-
ature Tfus. Data from Ehrhardt (1991) in the Landolt-Bornstein tables. The dashed line 

is a guide to the eye. 

noted for many other defect energies, e.g. dislocations, grain boundaries 
and surfaces (Grimvall and Sjodin 1974). In §10 we show that such 
relations follow from dimensional arguments if the interaction between 
atoms is of a particularly simple form, as may be the case for elements, 
but they cannot be expected to hold in more general cases. 

Diffusion is an important thermophysical phenomenon that we have 
not dealt with in this book. One reason is that the microscopic aspects 
of diffusion are still not very well understood. The diffusion process is 
too complex to be described by accurate expressions without recourse 
to fitted parameters. On the other hand, there are well-known empirical 
results. For instance, the activation energy for self diffusion is remark-
ably well correlated to the melting temperature rfus (e.g. Grimvall and 
Sjodin 1974). 
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It has long been known (Carnelley 1879) that the cubic expansion 
coefficient fi tends to be large for materials with a low melting temper-
ature. We can write Tfusp(Tfus) = k with k = 0.059 ± 0.015 for the 
elements with bcc, fee or hep lattices. The lowest and the highest values 
of A: among the elements are 0.009 (grey Sn) and 0.15 (Pu) (Gschneidner 
1964). 

8. Effective force constants 

In classical mechanics, the frequency co of a harmonic oscillator with 
force constant k and mass M is 

co = ^k/M. (19.12) 

The same frequency enters the corresponding quantum mechanical en-
ergy eigenvalues ha>[n + 1/2]. Thus, knowing co and M we get the force 
constant k = Mco2. We will now see how an effective force constant 
ks in a lattice can be obtained from the measured vibrational entropy, 
and how it can be used to define an energy Es similar to the cohesive 
energy. (Labels S here refer to entropy-based quantities.) 

The frequencies co(q,s) of a vibrating lattice depend on atomic 
masses, and on interatomic forces which can be complicated and of 
long range. But in the logarithmically averaged frequency co(0), the 
masses enter only as a scaling factor (Meff)~

1/2, where Meff is the log-
arithmically averaged mass (see Chapter 6, §5.3). There we have also 
introduced a Debye temperature as &B#D(0) = exp(l/3)/to(0), and an 
"entropy Debye temperature" 0^(T) which has the high-temperature 
limit 0D(O). Thus, knowing the entropy 5, we can calculate a high tem-
perature entropy Debye temperature 0^ and then obtain a quantity ks 

with the dimension of a force constant, through the definition 

ks = Mrt{kB/h)2[e*]2. (19.13) 

0£(T) is temperature dependent—at low T because the true phonon 
spectrum is not of the Debye shape, and at high T because of an-
harmonic effects. In the intermediate temperature region the variation 
usually is slow. We may now specify 6^ by taking its value at, say, 
T = 9£(T)9 and use it in eq. (19.13). 
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Table 19.4 

Effective force constant k$, derived from the vibrational entropy 

Ti 

Zr 

Hf 

ks [N/m] 

169 

154 

209 

TiC 

ZrC 

HfC 

ks [N/m] 

442 

398 

386 

TiB2 

ZrB2 

HfB2 

ks [N/m] 

477 

436 

426 

CaCl2 

SrCl2 

BaCl2 

ks [N/m] 

86 

85 

77 

In discussions of bonding strengths in solids one usually considers 
the cohesive energy [/coh, or, in more crude comparisons, the melting 
temperature TfUS. The latter quantity can be expressed as an energy 
through ^E f̂us- The force constant ks is also a measure of the bonding 
strength. To enable comparisons of ks with C/COh and &B7fus> we define a 
quantity Es, with the dimension of energy, as 

Es = ksnl/3. (19.14) 

£2a is the average volume per atom, i.e. the total crystal volume divided 
by the total number of atoms. In this way Es is defined for any solid, be 
it an element, a compound, or a disordered alloy. 

We expect k$ and Es to show a regular behaviour with the position in 
the Periodic Table of the atoms in the solid. For instance, elements in the 
same column, or chemically related compounds, have similar bonding 
strengths. This is illustrated in table 19.4, based on data in Appendix 
I. Figure 19.4 shows the corresponding Es of some metal carbides and 
nitrides plotted versus the cohesive energy t/coh. Regularities such as 
those displayed here of course require that the nature of the chemical 
bonding is not drastically changed, as happens in the elements C, Si, 
Sn, Pb which are in the same column in the Periodic Table and where 
the bonding changes from covalent to metallic. The ideas in this section 
have been used to study trends or to estimate vibrational entropies in 
many systems, for instance metal carbides (Fernandez Guillermet and 
Grimvall 1992), borides (Fernandez Guillermet and Grimvall 1991b) 
and binary ionic compounds (Shian Peng and Grimvall 1994b). Further 
aspects of the correlations are given in §10. 
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Fig. 19.4. The quantity Es of transition metals carbides and nitrides shows a regular 
behaviour as a function of the position of the metal in the Periodic Table and covaries 

with the cohesive energy £/coh. After Grimvall (1999). 

9. Hardness 

With (mechanical) hardness we mean the resistance of a material to 
plastic deformation. It can be quantified, for instance, by the Brinell 
or Vickers hardness numbers. They are expressed in pressure unit (e.g. 
GPa) but must not be confused with the elastic constants, e.g. the bulk 
modulus K, which is also expressed in this unit. The latter refers to 
elastic deformation, in which the atoms return to their original positions 
in the lattice on unloading. Mechanical hardness and the bulk modulus 
may show quite a different behaviour. The mechanical hardness usually 
decreases very rapidly with temperature at high temperatures (cf., for 
instance, forging processes) while the bulk modulus typically decreases 
by only 10-20%, on approaching the melting point. Furthermore, lat-
tice defects and structure are of utmost importance in the mechanical 
hardness, primarily through the motion and pinning of dislocations. 
The bulk modulus, on the other hand, depends very weakly on lattice 
defects. For this reason, a direct comparison between the sample- and 
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Fig. 19.5. Correlation between the microhardness and the quantity k$/a, where ks is the 
effective interatomic force constant derived from the vibrational entropy. After Grimvall 

and Thiessen (1986). 

temperature-dependent mechanical hardness and the bulk modulus may 
not be very meaningful. However, hardness ultimately depends on the 
strength of the interatomic forces, like the bulk modulus or the effective 
interatomic force constant ks that was introduced in §8. Therefore, there 
is a correlation between hardness measures and K or ks/a, if one con-
siders materials which form a well-defined chemical group, similar with 
respect to structure, and are compared at similar temperatures relative, 
e.g. to the melting temperature. (We have divided ks by a lattice para-
meter a to account correctly for the number of bonds and get a quantity 
with the dimension of pressure.) Figure 19.5 shows such a correlation 
between the hardness and the quantity ks/a for some refractory carbides 
and nitrides in the NaCl lattice structure. 

10. Correlations explained by dimensional analysis 

There have been many attempts to account for properties of materials 
through some simple form of interaction between the atoms. One such 
interaction is the Lennard-Jones (LJ) potential, also referred to as the 
6-12 potential (Lennard-Jones 1924); 

Vuir) = V0[(r0/r)n - 2(r0/r)6]. (19.15) 

It has a minimum at r = r0, where VLJ(^O) = -V0. (Note that in a 
lattice, the distance between nearest neighbouring atoms would not be 

1 IUU 

10001 

- 900 

J? 8001 

700 
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ro since the minimisation of the total energy also involves more distant 
atoms.) The LJ potential is an example of a simple interaction which, in 
more general terms, could be written 

V(r) = Vo0(r/ro). (19.16) 

0(r/ro) is a dimensionless "shape function" and Vb gives the "strength" 
of the interaction. The potential acts between pairs of atoms but it is not 
necessarily a central potential, i.e. it may also describe bending forces, 
and we let r be a vector. 

When the shape <j) is fixed, the interaction has only two free para-
meters which depend on the material, Vb a nd r0, with the dimension of 
energy and length, respectively. We now seek the energy £conf of certain 
atomic configurations, e.g. the cohesive energy £/coh in different crystal 
structures, or defect energies such as the vacancy formation energy £vac, 
the diffusion activation energy E^s, the dislocation line energy £disi 
and the grain boundary energy £grain. Each of these configurations can 
be described by a set of parameters r; which give atomic coordinates, 
interatomic distances etc. Thus, the problem involves two parameters 
with the dimension of energy, Vb and Econf, and parameters ro, r/ with 
the dimension of length. In Buckingham's theorem (Appendix A), they 
are combined in dimensionless ratios; Yli = Econf/Vo and n , = r//ro. 
The theorem states that there is a relation 

n ( n i , . . . n f , . . . ) = o. (19.17) 

The form of the function O depends on the shape function </> and on the 
defect considered. The quantities 11/ (with / # 1) take certain values 
for each type of atomic configuration. For a given 0 and type of defect, 
eq. (19.17) then implies that also 111 is a constant for each such case 
with fixed n,-. By purely dimensional arguments, all energies Econf are 
therefore proportional to Vb-

We next seek the melting temperature rfus of a material described by 
eq. (19.16). The temperature is so high that we can use a classical ther-
modynamic description. Temperatures appear in the combination k^T, 
with the dimension of energy. The melting temperature, and therefore 
B̂?fus» is entirely determined by the interaction (19.16) and the consid-

ered solid structure that melts. Again, the problem only contains two 
quantities with the dimension of energy, kB T and Vb, and a set of length 
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parameters describing atomic configurations. It follows that kBTfus is 
proportional to Vb» a nd therefore also 

£conf = CCOnf7fus» ( 1 9 . 1 8 ) 

where "conf" may refer to, e.g. the cohesive energy and various defect 
energies. 

Given the interaction (19.16) and a certain lattice structure, the clas-
sical vibrational displacement [(u2)]1/2 depends on the temperature T 
(or, better, kBT), and on Vb a nd ro- We form Ox = k^T/Vo and 
n 2 = [(u2)]1/2/r0. According to the discussion above, there is a (new) 
function O such that <J> (n i, II2) = 0, where n 1 has a certain fixed value 
at T — 7fus, and hence also W^ has a fixed value. Combined with the 
fact that the lattice parameters scale as ro, a constant II2 is equivalent 
with Lindemann's melting rule. 

Finally we consider phonon frequencies. They are determined by 
force constants k obtained from the derivatives 32</>(r)/3r2 of the in-
teraction between the atoms, evaluated at lattice points which have 
coordinates that are all proportional to r0. It follows that all force 
constants scale as Vb/̂ O' aiK* hence all Debye temperatures scale as 
6l ~ k/M - V0/(Mr2) - rfus/(Mr2). 

We can summarise the results of this section as follows. When a 
group of materials are described by an interaction which is as simple as 
e.g. eq. (19.16), Lindemann's melting rule, the proportionality between 
the melting temperature and vacancy energies etc., all follow from di-
mensional arguments. Such a simple interaction may be reasonable for 
elements. But in complex materials, the description of the interaction 
between atoms requires more parameters with the dimensions of energy 
and length, and then the dimensional argument fails. One should there-
fore be cautious in extending empirical relations for elements to other 
solids. 

11. Relation between CP(T), 0(T) and p(T) 

In the ideal case of harmonic lattice vibrations, the heat capacity (per 
atom) tends to a universal value at high temperatures, Cp = Cv -> 3&B-
Similarly, the thermal expansion coefficient ft in the Gruneisen the-
ory, eq. (13.36), tends to the constant 3kBYG/(Q<iKs), where £2a is 
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Fig. 19.6. Cp/(3k#) and the quantity p/T normalised to 1 at high temperatures, as a 
function of temperature for TaC. After Grimvall (1999). 

the volume per atom. The phonon limited electrical resistivity p, as 
given in the general form (eq. (15.20)), tends to %n2knT\ix/(hccfc). 
Hence, in this description the quantities Cp/(3kB), pQaKs/(3k^yG) and 
phQ)^[/(%n2kftT'kix), vary from 0 at T = 0 K to 1 at high temperatures. 
In fact, when the phonon density of states is described by an Einstein 
model, all three quantities have the same temperature dependence. In 
this context, it is interesting to quote what Griineisen (1913) writes (in 
German): "Empirically, I have found the following remarkable result. 
(...) That the empirically found agreement between p/T(...) and Cp 

has a direct theoretical interpretation seems to me doubtful, considering 
the complicated processes in the electrical conduction". There now is 
such a theoretical interpretation, outlined above. However, there are 
examples when the correlation is far from perfect. This is illustrated 
in fig. 19.6, that shows Cp and p/T for TaC. 

12. Probing electron properties near the Fermi level 

According to the Sommerfeld theory, the electronic entropy and heat 
capacity are proportional to the electron density of states N(E^) at the 
Fermi level. Many other physical properties are, within simple theo-
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ries, related to N(E?). For instance, the Pauli spin paramagnetism is 
described by the susceptibility 

XP = M B ^ f N(E)[f(E - fiBH) - f(E + fiBH)]dE 

/

+oo 

N(E)(-df/8E) dE « 2ti2
BN(E¥), (19.19) 

-00 

where /xB = eh/lmc is the Bohr magneton. The derivative with respect 
to H in eq. (19.19) is taken in the weak-field limit, H —> 0. 

The susceptibility XL of the Landau diamagnetism is considerably 
more difficult to calculate, both for free-electron-like systems and 
transition metals. The free-electron expression is 

*L = - ^ \ k \ = -(2/3)/4Arfe(£F). (19.20) 

In Chapter 15 we obtained an expression, a = ne2r/m, for the 
electrical conductivity. Another form of a, which takes the electron 
velocity uk to be isotropic but allows the relaxation time r (£) to be 
energy dependent is, from eq. (15.8), 

a = (ne2/mb) J r(E)(-df/dE) dE. (19.21) 

Then we have assumed a spherical Fermi surface with a radius h? = 
(37r2ft)1/3 but allowed electron band effects to be approximately in-
cluded through an effective band mass mb. 

By the Wiedemann-Franz law, the electronic part of the thermal 
conductivity is 

*ei = (n2/3)(kB/e)2Ta = L0Ta, (19.22) 

where L0 is the Lorenz number. However, this relation requires that the 
relaxation time r does not vary with the energy E^ of the electron states 
involved in the transport process. The analogue of eq. (19.21) is, from 
eq. (16.43), 

• / 
KA = (nkiT/mb) I r(E)[(E - n)/kBT]\-df/dE)dE. (19.23) 
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Table 19.5 

Dependence of various properties on the electron density n, electron-band mass m^ and 
electron-phonon parameter Aei_ph. A, B,C and D are material-dependent constants 

Property Free-electron Electron-band effects Electron-phonon mass 

Q i 

XP 

XL 
a 

*el 

model 

Amn^l3 

Bmn1/3 

-(\/3)Bmn1/3 

Cn/m 

Dn/m 

included through 

Ambn
1/3 

Bmhn
1/3 

-(l/3)Bm(m/m 

Cn/m\> 

Dn/m\) 

mh 

b)n 1/3 

enhancement included 

A m b C l + A e ^ p h ^ ^ ^ l o w r ) 

Amhn^3(highT) 

no correction 

no correction 

no correction 

no correction 

We will first let the temperature be so low, or the energy dependence 
of N(E) so weak, that (—df/ds) can be considered as a S-function at the 
Fermi level. The question now is how band effects (mb or N(EF)) and 
electron-phonon many-body corrections enter the physical properties 
mentioned above. We consider these properties in models at three levels 
of sophistication: (i) a strict free-electron model; (ii) a nearly-free-
electron model in which the Fermi surface is assumed to be spherical 
with a radius h? = (37r2n)1/3 and with band effects included through an 
isotropic effective band mass m^ = h2k^/\VkE^\\ and (iii) electron-
phonon many-body corrections to the model (ii), when such effects 
should enter. 

The first column in table 19.5 suggests a strong correlation be-
tween Ce\ and XP- Since Cei and XP are both proportional to N(EF), 
this correlation may not be limited to free-electron-like systems. How-
ever, electron-phonon many-body effects in Cei, and also contributions 
other than XP to the measured susceptibility x, spoil the proportionality 
between Cei and x in real metals. 

It is a non-trivial matter to decide whether, or not, the band density 
of states N(E?), the band electron velocity Vk, the band mass m\> etc. 
should be enhanced by electron-phonon interactions (Grimvall 1981). 
In fact, only the low temperature heat capacity and the effective band 
masses measured in cyclotron resonance and de Haas-van Alphen ex-
periments should be renormalised by a factor 1 + Aei-Ph. In most other 



Probing electron properties near the Fermi level 351 

0 1 2 3 4 5 6 7 
(E-n)/kBT 

Fig. 19.7. Weight function for Fermi surface averages of some physical parameters. The 
area under each curve is normalised to unity. 

cases, renormalisation effects are either absent or enter in such a way as 
to cancel. For instance, the renormalisations of r and m^ cancel in the 
static electrical conductivity a = ne2T/m\>. 

There is also an electron-electron many body effect. Its influence on 
Cei is small in the simple metals, and it is to a large extent folded into 
the band structure N(E?) of transition metals. However, it is essential 
for the magnetic susceptibility. Within the Stoner (1938) model one can 
write 

XP = 2fi2
BN(E¥)/[l - IN(EF)l (19.24) 

where / is the intra-atomic Coulomb interaction between the electrons. 
When IN(E¥) > 1, XP is negative, which is interpreted to mean 
magnetic ordering. 

We get from eq. (B.3) that N(E), and hence the electronic heat 
capacity, contains an average of (1/fk) over the Fermi surface, while 
the expression (15.13) for the electrical conductivity contains a product 
of (1/fk) and (v£). When the electron states at the Fermi level are 
described by a single and isotropic band mass, m^ = h2kF/\VkE^\, 
any combination of (v£) can be expressed in a single m^. Often this is 
an oversimplification, and one should introduce different effective band 
masses m^(n) for different powers n, in analogy to 9v(n) and y(n). 
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Finally, we consider the case that (—df/ds) cannot be approximated 
by a 5-function at the Fermi level. When the electron density-of-states, 
the electron relaxation time r, etc. vary strongly with the energy E — //, 
the 8 -function approximation may be inadequate and one has to state 
precisely what is the shape and width of the energy "window" around 
£p> where the electron states are probed. It follows from eq. (10.10) 
that Cei has contributions from a region defined by the weight func-
tion [(E - fi)/kBT]2(-df/dE) ~ [(£ - fi)/kBT]2f(l - / ) . The 
susceptibility XP of the Pauli paramagnetism, eq. (19.19), and the re-
laxation time r in the electrical conductivity, eq. (19.21), have a weight 
function f{\ — f). The entropy probes the electronic states weighted 
by / [ I n / ] + [1 - /][ln(l - / ) ] , eq. (10.15). The chemical potential 
/JL(T) has a temperature dependence determined by f[(E — /ji)/kBT] or 
1 — f[(E — jjL)/kBT], depending on the sign of E — /x, eq. (10.5). The 
relaxation time of the electronic contribution to the thermal conductivity 
has the same weight function as Cei, cf. (19.23). Figure 19.7 summarises 
these cases. It is worth noting that Ce\ and /cei probe the density of 
electron states in an energy interval of width ~ l0kBT. This is much 
wider than the width ~ kBT often alluded to in textbooks. 
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BUCKINGHAM'S n-THEOREM 

The heat capacity (per atom) in the Einstein model has the form 

2 
CE = 3kB (H-^) °*<»«*/fr r> (A.1) 

It expresses the desired quantity, CR, in the natural constant kB and two 
independent model quantities, hcoE and kBT. They may be combined 
in two quantities Oi and II2 that are "dimensionless" (more correctly, 
have dimension 1); 

n i = — , n 2 = — - . (A.2) 
1 kB' 2 kBT 

The heat capacity relation in the Einstein model can then be written 

<D(n i ,n 2 )=0 , (A.3) 

where O is a properly defined function. This example will now illus-
trate the essential idea in Buckingham's Il-theorem ("pi theorem"). Its 
name derives from the symbol n that Buckingham (1914) chose for the 
dimensionless ratios. The theorem can be formulated as follows. Let 
a physical quantity a\ be described by a physical model that contains 
r — 1 linearly independent parameters a2, . . . , ar. Assume that these at 

can be expressed using p independent physical units. Then the relation 
between a\ and at (i = 2, . . . , r) may be written in a general form 

o(n 1 , . . . ,n r _ / 7 ) = o. (A4) 

with r — p linearly independent ratios n j (j = 1 , . . . , r — p) that have 
dimension 1 and are formed by all at (i = 1, . . . , r). 
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Returning to the Einstein model, as an illustration, we have a\ — CE, 
^2 = &B> ^3 = h, <*4 = &>E, #5 = T. These five quantities at can 
be expressed in the three SI units for mass (kg), length (m) and time 
(s). However, because we know that &>E appears in the combination hco, 
there are only four linearly independent combinations of a,-. They can be 
expressed in the two units J and J/K, respectively. Hence, r = 4, p = 2, 
and there arer — p = 4 — 2 = 2 independent ratios Tlj, in accordance 
with eq. (A.2). 

As another illustration, consider the expression (15.42) for the elec-
trical resistivity pfiim of a thin film of thickness d, when the electron 
mean free path in the bulk material is £t>uik; 

Pfilm = Pbulktl + (3/8)(l - P s X W d ) ] . (A.5) 

The dimensionless parameter ps measures the amount of specular char-
acter of the surface scattering. The set at — {pmm> A>uik> b̂uik, d, ps}, 
i.e. r = 5. Two independent units suffice in this case, for resistivity and 
length respectively, i.e., p = 2. Hence, we can form r — p = 5 — 2 = 3 
independent ratios of dimension 1; 

rii = Pfiim/Pbuik, n 2 = 4uikM n 3 = ps. (A.6) 

Obviously, eq. (A.5) is of the general form <E>(I"Ii, TI2, TI3) = 0. For a 
thick film, i.e., a large d, we get n 2 <$C 1 and recover the limiting case 
Pfiim = Pbuik- More generally, ignoring certain small effects in a physical 
description means that there are corresponding ratios II which we put 
equal to 0. As an example, ignoring quantum effects in the heat capacity 
(eq. (A.l)) of a harmonic oscillator means that we take hco/k^T <£ 1. 
In this limit, YI2 -^ 0 in eq. (A.3) and 111 = CE/&B -> 3, i.e. we get 
the classical Dulong-Petit value. (To be more precise, see below, we get 
111 -* constant.) 

When, in physics, we talk about a low (or high) temperature, a low 
(or high) speed etc., we must always compare with some other parame-
ter (or a combination of parameters) with the dimension of temperature, 
speed etc. This is equivalent to a corresponding Buckingham Fl-ratio 
being « 1 (or »1) . 

Finally, consider the case r — p = 1, so that the desired relation 
4> = 0 can be written 

fli = constant. (A.7) 
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When dimensional arguments are invoked, it is often the simple form 
(eq. (A.7)) that one refers to. We illustrate it by seeking a relation for the 
frequency co [s~l] of an oscillator with mass M [kg] and force constant 
k [N/m = kg s - 2] . Then r — 3 and p — 2, so r — p = I and only 
one ratio n is needed. In line with eq. (A.7) we make the Ansatz that 
(jo/(MakP) = constant, or 

co = CMak^ (A.8) 

where C is a constant with dimension 1. Dimensional consistency now 
implies that a = —\/2,j5 = 1/2, as expected. Of course, the constant 
C cannot be determined by dimensional arguments. For instance, we 
would get the same type of relation if we wanted the frequency v = 
O)/2TX instead of the angular frequency co. 



APPENDIX B 

SOME RELATIONS FOR ELECTRON STATES 

Summation over k-vectors. Electron and phonon states in a periodic 
lattice are, in this book, labelled by a wave vector k (electrons) or q 
(phonons). The prescription for turning a sum over all k (or q) into an 
integral is 

£ < - > = <^3 /<-><*• CB.D 

V is the volume of the crystal and (...) is an arbitrary function of k. 
Let £(k) (or £k) be the energy of an electron. It is often convenient to 
write the integral in eq. (B.l) with E(k) as the integration variable. For 
an isotropic system 

E<...)-/(- )N(E)dE. (B.l) 

N(E) is the electron density-of-states (also called density of levels); 

V f , V f dS 
N(E) = — j / d\8(Ek -E) = — 3 / (B.3) 

(2?r)3 J (2TT)3 JSE |Vk£(k) | 

The last integral is over that surface SE in k-space for which E(k) = E. 
Our N(E) refers to one spin direction. Other authors let N(E) refer to 
both "spin up" and "spin down". The difference will appear as a factor 
of 2 in our expressions when we sum over all electron states. In an 
anisotropic system, we can define a directional density of states function 
N(E; k) as 

V 4nk3 

N(E; k) = (B.4) 
(2TT)3 k • VkE(k) 
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Then 

J2(---) = j^j^(...)N(E;k), (B.5) 

where dQ^ is a solid angle. 

Free-electron model. For free electrons, |Vk#(k)| = h2k/m and dS = 
k2 dfif Equation (B.4) yields 

V mk 
N(E) = Nk(E) = —I-T, (B.6) 

or 

V /2m\3/2 r-

Often, the density of states is given per atom (and spin), 

Na(E) = N(E)/N, (B.8) 

where N is the number of atoms. At the Fermi level, and in the free-
electron model, 

Z m£p 3Z 1 
A^feC^) = r - 2 — f = -f — , (B.9) 

2nz nh 4 £F 

where Z is the number of conduction electrons per atom and n = 
ZN/V. In the expression for the Fermi energy, £F = (hk?)2/(2m) the 
Fermi wave number &F is obtained, e.g. from eq. (B.l) as 

2V An , 
= NZ. (B.10) (2TT)3 3 

The number of electrons per volume, n = NZ/V = Z/£2a, is often 
expressed through the dimensionless parameter rs that gives the radius, 
in units of the Bohr radius ao, of a sphere containing one electron. Thus, 

— (rsa0)3 = y , (B.ll) 
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, / 9 7 T \ 1 / 3 1 

*F = (T —• (B12) 

The average kinetic energy per electron is (3/5) £p> which may be 
written 

(E ) - 3 E - 3 t9^3 ^ { ^ ~ 5 ^ F " 10 V 4 ) m(rsa0)2 

3 (9n\2p ( e2 \ 1 2.210 

-5(T) {*;h—*-m- <B13) 

where we have used that a§ — h2/(me2) and the energy unit 1 Ry = 
e2/(2ao) (see Appendix H). 

Electron band mass. For any functional form of £(k) we can define an 
effective electron band mass rab(k) by 

k.Vk£(k) = —1J-, (B.14) 
mb(k) 

where k = k/|k| is a unit vector along k. If N(E; k) is the density of 
states of a real metal and NfQ(E) is the free-electron density of states we 
have 

mb(k) 
N(E\ k) = -°±-lNft(E). (B.15) 

m 

The average band mass mb obeys the relations 

N(E) = — ^ f " ' " - ' ' " ' d ^ k = —iVfe(£). (B.16) 
V /• mb(k)|k| A„ _ m b 

Electronic Grilneisen parameter. In order to illustrate that yei = 
dlnA^(£')/dln V is equivalent with yei = — dln(£k — /x)/dlnV we 
assume that the latter quantity is independent of k for electron states 
£k near the chemical potential (Fermi level) \x. Under a small volume 
change AV, the energy distance s^ — \i to the Fermi level changes to 
£k — li + [d(£k — M)/dV]AV, but the number of states between the 
new £k and \i remains the same. Hence, the density of states is changed 
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by a factor (£k — /x)/{£k — M + [d(£k — fi)/dV]AV}. The ratio of the 
densities of states after and before the volume change can also be writ-
ten {N(E) + [dN(E)/dV]AV}/N(E). Equating the two expressions 
yields din N(E)/din V = -dln(sk - /x)/dln V. 

Electron-phonon interaction. The quantity k — Aei_ph enters as an en-
hancement factor (1 + Aei_ph) in the low temperature electronic heat 
capacity. It is also a central parameter in the BCS theory of supercon-
ductivity, and it is closely related to the "transport" coupling parameter 
Atr that appears in the high temperature electrical resistivity. One can 
express Aei_Ph in the Eliashberg electron-phonon coupling function 
a2F(co) (Eliashberg 1962, Grimvall 1981), 

Ael_ph = 2 / —da;. (B.17) 
Jo v 

McMillan (1968) derived a semiempirical relation which allows Aei-Ph 
to be calculated from the critical temperature Tc of a (strong coupling) 
BCS-type superconductor (i.e. excluding the oxide high temperature 
superconductors). Then 

hcov 
knTr = exp 

1.45 F 

1.04(1+Ael_ph) 

^el-ph - M*(l + 0.62Aei_ph) 
(B.18) 

Here, &>D is a Debye frequency which may be approximately identi-
fied with (1.45/1.2)&>(0), where a>(0) is the logarithmic average of the 
phonon frequencies (eq. (6.22)). The quantity /x* is an electron-electron 
interaction parameter; /x* ^ 0.13. 



APPENDIX C 

THE DYNAMICAL MATRIX 

Definition. We expand the potential energy O of a lattice in the small 
displacements ua(K, /) around the equilibrium positions. They refer 
to the /cth atom in the /th cell being displaced an amount u in the 
a-direction (a = x, y, z)\ 

d> = O0 + (1/2) Y, I ] <M*/ ' ' K'l>a{icl)up{K't) + • • •. (C.l) 
kla k'l'P 

The quantities O^/c/;/c'/') are called atomic force constants. The 
physical meaning of O^OcZ; K T ) is the force in the a -direction on the 
atom (KI) that arises when the atom (K'V) is displaced a unit distance in 
the /3-direction while all other atoms are held fixed at their equilibrium 
positions. From Oaig(/c/; K'V) we define the elements Dap(KKf\ q) of the 
dynamical matrix. The periodicity and symmetry of a lattice imposes 
several conditions on O ^ . For instance, <t>ap only depends on I — V. 
Then 

Dafi(KK';q) = ( M . M . O - ^ e x p i / q . t R ^ - R C O ] } 

x J ] <bap(Kl'\ K' 0) exp[/q • R(/)] (C.2) 

R(/c/), R(/c) and R(/) are position vectors in the lattice, with R(/c/) = 
R(/) + R(/c). If there are r atoms per primitive cell, K and K' run from 
1 to r. Furthermore, a, ft = x,y,z. Thus, we have a 3r x 3r matrix 
D with elements Daol'{KKf\ q) which are functions of the wave vector 
q lying in the first Brillouin zone of the reciprocal lattice. Let M be a 
diagonal 3r x 3r matrix with diagonal elements Mi, M\, Mi, . . . , Mr, 
Mr, Mr, where M,- is the mass of the atom with K — i. Then we can 
write for the dynamical matrix D; 

D = M-1/2D0M"1/2. (C.3) 
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D0 is the force constant part of the dynamical matrix. It does not contain 
any atomic masses. D and D0 are Hermitian matrices; Dap(/cKf; q) = 

The phonon eigenfrequencies squared, co2, are solutions of 

\DaP(KKf; q) - eo2IaP(KKf)\ = 0, (C.4) 

where | | denotes a determinant and Iap {KK') is the 3r x 3r unit matrix. 
For each q there are 3r solutions which we label a>(q, s). 

The expansion of the potential energy in terms of the force constant 
matrix elements <J>ay8 does not require a periodic lattice, but is also 
applicable in a solid with lattice defects. As long as we work within 
the harmonic approximation there are still 3N eigenfrequencies, where 
TV is the number of atoms. (More precisely 3N — 6 eigenfrequencies 
since rotation and translation of the entire solid should be excluded.) 
The frequencies are solutions to 

|M~ 1/2(Dlvr1/2 - co2I\ = 0. (C.5) 

M, O and I are 3N x 3N matrices. M is diagonal, with elements M\, 
Mi, Mi, . . . , MN, MN, MN, I is a unit matrix and O has the elements 
4>a/K*Z; *'/ ' ) . 

Grilneisen parameter expressed in the dynamical matrix. Since the av-
erage (co2) is directly related to the trace of the dynamical matrix, it 
is possible to obtain j/(2; V) without the explicit evaluation of all the 
phonon frequencies. One has 

din 

Y(2;V) = 

J]TrD(q) 
3N 

2 dlnV 
(C6) 



APPENDIX D 

SOME RELATIONS FOR HARMONIC LATTICE 
VIBRATIONS 

Sound velocities in cubic lattice symmetry. The sound velocities Cs (s = 
1, 2, 3), given by the general form (eq. (5.6)), can be expressed in the 
case of cubic symmetry (Every 1980) as 

3pC2 = (en + 2c44) + 2(cn - c44)y/Go 

x cos[* + (2n/3)(s - 1)], (D.l) 

* = (1/3) arccos(//0/G^/2), (D.2) 

P — n\n\ + n\n\ + n\n\\ Q = n\n\n\, (D.3) 

G0 = 1-3AE(2-AE)P, (D.4) 

Ho = 1 - (9/2)AE(2 - AE)P + (27/2)A
2 (3 - 2AE)£. (D.5) 

Here, n\, 2̂> ^3 are direction cosines for the wave vector q. We now 
see explicitly that the anisotropy of the sound velocities Cs depends on 
the elastic coefficients only through Every's anisotropy parameter AE = 
(en — en — 2cu)/(c\i — C44). For an isotropic system we have AE = 0, 
i.e. Go = Ho = I and yfr = 0, which gives pC2

s = c\\ (for 5 = 1) and 
pC\ — C44 (for s = 2, 3). 

High temperature expansion ofn + 1/2. In theories dealing with har-
monic lattice vibrations one frequently encounters the expression n + 
1/2, where n is the Bose-Einstein function. Then, in the limit of high 
temperatures, 

I _ 1 1. 
H+2 " txp(hco/kBT) - 1 + 2 

- ^+i(^V_.... (D.6) 
/to 12 V^RT 

362 



Appendix D 363 

Thus, we see that the constant 1/2 in n + 1/2 cancels against a term 
—1/2 in the expansion of n. 

Helmholtz energy. From the expressions (7.15) for the energy E and 
(7.23) for the entropy S, we find that the Helmholtz energy Fhar = £har~ 
rShar of harmonic vibrations has the high temperature expansion 

Fhar(T) = 3NkBT{-ln[kBT/hco(0)] + (l/24)[hco(2)/kBT]2 

- ( 1 / 2 8 8 0 ) [ / M 4 ) A B 7 1 4 + •••}. (D.7) 

The corresponding form of Fhar expressed in Debye temperatures 9v(n) 
is 

FfoiT) = 3NkBT{-l/3-ln[T/9D(0)] + (l/40)[9D(2)/T]2 

-d/6720)[£D(4) / r ] 4 + - . . } . (D.8) 

Atomic displacements. A general expression for the displacement u of 
an atom (/c, /) is 

ua(K,l,t) = > —ea(q,s;K) 
(NCMK)XI2^ (o(q,s) 

x exp{i[q • R°(K, /) - co(q, s)t]}. (D.9) 

The correlation between the displacements u of an atom (/c, /) and an 
atom (K\ V) is 

(ua(K,l)up(ic',l')) = 
NC(MKMK,)W 

E E(q,s) 
— -ea(q, s; K)eUq, s; K ) 
<x>2(q, s) p 

q,s v ^ y 

x exp[jq • (R°(K, /) - R°(K', /'))]. (D.10) 

The velocity component va of an atom (K, I) is 

va(K,l,t) = - 1/2 ^ ] [ £ ( q , s)]l/2sa(q, s; K) 

x exp{i[q • R°(*\ /) - <w(q, s)t]}. (D.l 1) 
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In the calculation of a^ in eq. (7.50) we need to evaluate (u(/c,/)• 
U(K\ /'))• In a monatomic cubic lattice and in a Debye model for the 
lattice vibrations, we get at high temperatures (Bruesch 1986) 

1 fqdr sint 
(u(/) • u(0)> = / df, (D.12) 

qur Jo t 

where q& is the Debye wave number and r = |R^ — RQ|. Thus (u • u(0)) 
rapidly tends to zero with increasing distance r between the atoms at 
R(£)andR(0). 



APPENDIX E 

SOME RELATIONS FOR ANHARMONIC LATTICE 
VIBRATIONS 

Anharmonic Helmholtz energy. The low-order contributions AF3 and 
AF4 to the Helmholtz energy in quantum-mechanical perturbation 
theory can be written in the general form 

AF3 = -(6/ft) J2 ly((l5' ^ ^ 2 ) | 2 / ? F , (E.l) 
qs,qisi,q2s2 

AF4 = 3 J2 V(qs,-qs,qisu-qisi) 
qs,q\si 

x[2w(0) + l][2n(l) + l]. (E.2) 

where 

= [/i(0) + l][w(l)+yi(2) + l] + n(l)yi(2) 
F Q)(0)+(O(l)+Q)(2) 

n(0)n(l) + n(0)n(2) - w(l)/i(2) + w(0) 
co(l) + co(2)-co(0) ' ( ' } 

The quantities V are Fourier-transformations of the interaction and n are 
Bose-Einstein statistical functions. In the high temperature limit, where 
n + 1/2 ^ kBT/h(jo, cf. eq. (D.6), one obtains eqs. (8.35) and (8.36). 

Anharmonic shifts in phonon frequencies and elastic constants. We have 
written the phonon frequencies, shifted by anharmonic effects to low 
order in perturbation theory, as 

<w(q, s) = &>0(q, s) + A2(q, s) + A3(q, s) + A4(q, s). (E.4) 
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This is an approximation, and usually a very good one, to the correct 
(but still within low-order perturbation theory) form (e.g. Cowley 1963) 

[co(q,s)]2 = [co0(q,s)]2 + 2a)0(q,s) 

x[A2(q, s) + A3(q, s) + A4(q, s)]. (E.5) 

Furthermore, A2, A3 and A4 are all linear in terms of the type n + 1/2, 
where n is a Bose-Einstein occupation number. An expansion of n +1/2 
at high temperatures has the form kBT/hco, i.e. with cancellation of the 
term 1/2 in n + 1/2 (cf. eq. (D.6)). Therefore, if the high temperature 
form of eq. (E.5) is linearly extrapolated to T = 0 K, one gets &>o- It 
also follows that A2, A3 and A4 are directly linear in T at high 7\ 
while shifts taken relative to the frequency at 0 K would vary with T 
as something like T — 6^/2. What has now been said about co(q, s) is 
relevant also for the elastic constants cij(T), since they give the low-
frequency part of co. For instance, consider a pure transverse mode with 
co2 ~ C44. Then 

c44(T) « c44(T = 0)-AT (E.6) 

at high T (within low-order perturbation theory, i.e. neglecting higher-
order anharmonicity). A is a constant which is specific for the material, 
and related to anharmonic effects, including thermal expansion. Extra-
polation of experimental data from the linear region of c44(T) to T = OK 
gives the value of C44 for "harmonic" vibrations (cf. fig. 4.5). Of course 
this assumes that there are no anomalies in ctj (T) of electronic or mag-
netic origin that would cause a temperature dependence not described 
by Bose-Einstein factors n. 



APPENDIX F 

HEAT CAPACITY CONTRIBUTIONS IN A REAL SOLID 
-AN OVERVIEW 

Figure F. 1 shows contributions to the heat capacity of a typical transition 
metal, from 0 K to the melting point rfus. Some features are exaggerated 
for clarity, and the figure mainly serves to identify various contributions. 
The dashed line gives the classical Dulong-Petit law for the vibrational 
heat capacity, C = 3&B per atom. The other contributions are as follows: 

(a) Char is the vibrational contribution for perfectly harmonic vibra-
tions. It approaches the Dulong-Petit value asymptotically from 
below. 

(b) Cy,Ph is the total vibrational heat capacity, taken at "constant vol-
ume", for instance calculated as the vibrational part of Cy = 
Cp — VT/32KT. We note that Cy,Ph does not strictly approach the 
classical value 3kB at high 7\ although this may be a good ap-
proximation. Within low order in quantum mechanical perturbation 
theory, CV,Ph varies linearly with T\ in almost all cases an increase. 
We also remark that Cyph is not quite the same as the heat capacity 
at a fixed volume V0 (e.g. the volume at 300 K) (see Chapter 13, 
§7). 

(c) The vibrational heat capacity at constant pressure, Cp^. This term 
differs from Cv^ by the addition of the effect of thermal expansion. 
To low order, anharmonicity causes Cp^ to increase linearly in T 
at high T. Normally, higher order anharmonicity gives Cp^ a more 
rapid increase above, say, Tfus/2. 

(d) An electronic contribution Cei is added to the vibrational Cp^. If 
the electronic density of states N(E) does not vary much within 
an energy interval ±3kB T around the Fermi level, Cei is linear in 
T. We write Cei = yT. Note that y is not the same as derived 
directly from low temperature data, because there is an electron-
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Fig. F.l. Schematic representation of heat capacity contributions in a transition metal. 

phonon many-body enhancement to Cei at low T only. If N(E) is 
not approximately constant around the Fermi level, Ce\ has a smooth 
but complicated temperature dependence. Then Ce\ may vary more 
rapidly, or less rapidly, than linearly in T (see Chapter 10). 

(e) A vacancy contribution is added. It increases with an exponential 
function in T and is very small until one is close to the melting 
point. 

e: Cp.ph+el+vacl 
d: Cp.ph+el _| 
C: Cp.ph 

b: CViPh 
3 ; Char 



APPENDIX G 

SOME RELATIONS FOR INHOMOGENEOUS SYSTEMS 

Hashin-Shtrikman bounds; an equivalent expression. A mathematically 
equivalent form of Ku in eq. (17.19) is 

3/1/2(^1 - K2)
2 

Ku = flKi + f2K2 . (G.l) 

Effective-medium theory, equivalent expressions. The effective-
medium result (eq. (17.56)) for the bulk modulus may also be written 
(e.g. Hashin 1983) 

fl + T A T = T^A-r^- (G.2) 
K*-K2 K* - Ki 3K* + 4G 

The shear modulus, (eq. (17.57)), may be written 

f\ h 6(K* + 2G*) 
+ — — — = — - — . (G.3) G2 G* - Gi 5G*(3K* + AG*) 
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UNITS 

Energies. Many sources of thermophysical data use non-SI units for en-
ergies. Tables HI and H2 give some examples, with conversion factors. 
In HI, the temperature (K) is related to energy through kBT. Note that 
there are several definitions of a calorie. The "thermochemical" calorie 
has leal = 4.184J. 

Atomic units. Physicists often use so called atomic units (au). The length 
unit is 1 bohr = lao> where a$ = 5.29177 x 10-11 m is the Bohr radius. 
The unit for energies, in atomic units, is 1 hartree (H) = 2 rydberg (Ry) 
= 4.359 x 10~18 J. One usually writes a0 = h2/me2, 1 H = e2/a0 and 
1 Ry = e2/(2ao). These expressions are not dimensionally correct in SI 
units. In SI units one has a0 = Ans0h

2/'(me2) = 0.5292 x 10~10 m (cf. 
the following section). 

Electron charge in transport formulae. The expressions for the electrical 
resistivity contain the electron charge e. Some of the relations in Chapter 
15 refer to the old CGS system of units where e2 means e2/(Anso), 
and £o = 8.85419 x 10~12 As/(Vm) is the permittivity of free space 
(vacuum). The SI unit of conductivity is l/(£2m) = A2s3/(kgm3). If we 
write a = ne2x/m we get the correct dimension (unit) for a when n is 
number density (unit: m~3), e is charge (unit: C = As), r is time (unit: s) 
and m is mass (unit: kg). In eq. (15.12) we replaced ne2/m by co2J(An). 
However, in the expression co2

x = Anne2/m, cop\ does not have the 
dimension of frequency. A correct form is co2

x = Anne2/(Aneom) = 
ne2/(som). It follows that eq. (15.13) is not dimensionally correct when 
SI units are used. To get the correct form, e2 should be replaced by 
e2/(Ans0). One the other hand, eqs. (15.20), (15.27) and (15.30), which 
contain a term co2

x, are the equivalent of a = ne2x/m and should 
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Table H.l 

Conversion factors for energy units. 

371 

K kcal eV mRy 

1 3.298 x 10~27 1.3807 x 10"2 3 8.617 x 10"5 6.333 x 10~3 

3.033 x 1026 1 4.1868 x 103 2.613 x 1022 1.921 x 1024 

7.243 x 1022 2.388 x 10~4 1 6.242 x 1018 4.588 x 1020 

1.160 x 104 3.827 x 10~23 1.6022 x 10~19 1 73.499 

157.9 5.207 x 10~25 2.180 x 10"21 0.013606 1 

Table H.2 

Conversion factors for energies per mole or atom 

kJ/mol kcal/mol eV/atom mRy/atom 

1 
4.187 

96.49 

1.313 

0.2388 

1 

23.05 

0.3135 

0.01036 

0.04336 

1 

0.013606 

0.7615 

3.187 

73.499 

1 

have (Wpj calculated from eq. (15.13) as it stands, i.e. without any factor 
l/(47T£o), and hence an cov\ that does not have the dimension of fre-
quency. The fundamental unit of resistivity which we wrote (Chapter 
15, §9), aoh/e2 = 0.22 /jiQm comes out correctly with SI units for ao, 
h and e. 
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TABLES OF DEB YE TEMPERATURES AND Aei-ph 

Recommended sources of data. Most of the illustrating examples in this 
book rely on the following sources of data. Sometimes these reference 
works give carefully assessed data, rather than just a compilation, which 
makes them very useful. 

Heat capacity and directly related properties: JANAF thermochemical 
tables (1985), Barin (1989), CINDAS tables, Vols. 4, 5 (Touloukian 
and Buyco 1970). 

Elastic constants: Landolt-Bornstein tables (Every and McCurdy 
1992). 

Phonon dispersion curves, phonon density of states: Landolt-Bornstein 
tables (Schober and Dederichs 1981). 

Electrical conductivity of elements: Landolt-Bornstein tables (Bass 
1982). 

Thermal conductivity and dijfusivity: CINDAS tables, Vols. 1, 2, 10 
(Touloukian et al. 1970, 1973). 

Thermal expansion: CINDAS tables, Vols. 12, 13 (Touloukian et al. 
1975, 1977). 

Electron band structure and density of states: Landolt-Bornstein tables 
(Sellmyer 1981, Cracknell 1984), Moruzzi et al. (1978), Papacon-
stantopoulos (1986) and Moruzzi and Sommers (1995). 

Recommended Debye temperatures and electron-phonon mass enhance-
ment parameters. Tables 1.1-1.6 give entropy Debye temperatures 9^ 
evaluated from experimental data for the vibrational entropy at T ^ 6^ 
(or at 71 ^ 298 K if data at T ^ 6^ are not readily available, except 
for Table 1.1 where the 0-values are corrected to refer to F(co) at low 
T). Entropy values are usually taken from Barin (1989) or the JANAF 
thermochemical tables (1985). The bulk moduli K and the elastic-

372 
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Table LI 
Properties of some free-electron-like metals, including noble metals 

At. number 

3 
4 

11 

12 

13 

19 

29 
30 

31 
37 

47 

48 

49 

50 

55 

79 

80 

81 
82 

Symbol 

Li 

Be 

Na 

Mg 
Al 

K 

Cu 
Zn 

Ga 
Rb 

Ag 
Cd 

In 

Sn 

Cs 

Au 

Hg 
Tl 
Pb 

0D(-3) 

K 

350 
1374 

152 

386 

429 

88 

346 

307 

296 

55 
224 

182 

108 

185 

40 
163 

71 

80 
96 

0D(O) 
K 

393 
974 

161 

327 

394 

96 

316 

225 

237 

60 
215 

150 

123 

158 

44 

175 

92 

93 
89 

^•el—ph 

0.4 

0.2 

0.16 

0.35 

0.43 

0.13 

0.15 

0.38 

0.4 

0.16 

0.13 

0.38 

0.8 

0.7 

0.15 

0.17 

1.6 

0.8 
1.5 

limit Debye temperature 0£ = #D(—3) are from the quoted sources 
or calculated from elastic constants in the Landolt-Bornstein tables 
(Every and McCurdy 1992), as explained in Chapters 6 and 17. The 
electron-phonon mass enhancement parameter A,ei_ph is a recommended 
value from the author's somewhat subjective estimate based on data in 
Grimvall (1981) and Allen (1987, 1999). 



374 Tables ofDebye temperatures and A.ei_ph 

Table 1.2 

Properties of some transition metals 

At. number 

22 

23 
24 

25 

26 

27 

28 
40 
41 

42 

43 

44 

45 

46 

72 
73 
74 

75 
76 
77 

78 

Symbol 

Ti 

V 

Cr 

Mn 

Fe 

Co 
Ni 
Zr 

Nb 

Mo 

Tc 

Ru 

Rh 

Pd 

Hf 
Ta 

W 
Re 

Os 
Ir 

Pt 

K 

GPa 

105 

157 

160 

131 
167 

187 
184 

95 
170 

264 

281 

311 
267 

188 

109 
193 

310 
365 

410 
355 

283 

#D(-3) 

K 

429 

400 

598 
409 
477 

460 
477 

299 
277 

470 

454 

555 

489 

275 

252 
258 

380 
416 
467 

425 

237 

4 
K 

352 

384 

473 

358 

413 

365 

378 
244 

282 

380 

320 

384 
344 

269 

203 
229 
319 
264 

320 

286 

228 

^•el—ph 

0.4 

1.0 
0.4 
0.4 

0.4 

0.4 

0.4 
0.4 

1.0 

0.4 

0.4 

0.4 
0.4 

0.4 

0.4 

0.9 
0.4 
0.4 
0.4 
0.4 

0.4 
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Table 1.3 

Entropy Debye temperatures 0^ of alkali halides and alkali hydrides (Unit: K) 

LiF 

NaF 

KF 

RbF 

CsF 

LiH 

^ 

590 

419 

305 

232 

199 

894 

LiCl 

NaCl 

KC1 

RbCl 

CsCl 

NaH 

<% 

354 

273 

222 

171 

153 

566 

LiBr 

NaBr 

KBr 

RbBr 

CsBr 

KH 

^ 

262 

204 

171 

130 

121 

434 

Lil 

Nal 

KI 

Rbl 

Csl 

RbH 

*s 
208 

161 

138 

110 

100 

326 

All compounds have the NaCl-type crystal structure except CsCl, CsCsBr and Csl 
which have the CsCl-type structure, 
Source: Oberschmidt (1996, unpublished) and, for hydrides, Haglund (1990, unpub-
lished). 

Table 1.4 

Entropy Debye temperatures 6^ of alkali-earth-metal halides (Unit: K) 

BdF2 

MgF2 

CaF2 

SrF2 

BaF2 

634 

569 

470 

390 

320 

BeCl2 

MgCl2 

CaCl2 

SrCl2 

BaCl2 

^ 

393 

350 

286 

249 

221 

BeBr2 

MgBr2 

CaBr2 

SrBr2 

BaBr2 

^ 

303 

244 

204 

170 

156 

Bel2 

Mgl2 

Cal2 

Srl2 

Bal2 

*g 
229 

202 

165 

138 

128 

Source: Shian Peng and Grimvall (1994b). 
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Table 1.5 

transition-
(Unit: K) 

Entropy Debye temperatures 6^ of transition-metal carbides, nitrides and borides 

ScC 

ZrC 

ScN 

ZrN 

TiB2 

NbB2 

4 
654 

650 

755 

582 

972 

813 

TiC 

HfC 

TiN 

HfN 

ZrB2 

TaB2 

4 
805 

581 

710 

521 

834 

740 

VC 

NbC 

VN 

NbN 

HfB2 

CrB2 

fis 

745 

634 

631 

539 

741 

796 

CrC 

TaC 

CrN 

TaN 

VB2 

MnB2 

^ 

664 

551 

535 

489 

897 

671 

Some of the compounds have a non-stoichiometric composition. 
Source: Fernandez Guillermet and Grimvall (1989, 1991b). 

Table 1.6 

Entropy Debye temperatures 0^ of the elements Si and Ge and III-V compounds (Unit: 
K) 

Si 

AIN 

GaN 

InN 

586 

954 

731 

524 

Ge 

MP 

GaP 

InP 

<% 

335 

482 

425 

354 

BN 

AlAs 

GaAs 

InAs 

*g 
1133 

351 

322 

252 

BP 

AlSb 

InSb 

4 
898 

315 

205 

Si and Ge have the diamond structure, AIN, GaN and InN have the ZnO-type structure 
and the remaining compounds have the ZnS-type structure. 
Source: Oberschmidt (1996, unpublished). 
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conduction electron, 167, 170, 176, 367 
constant pressure, 149, 151, 206, 208, 

217, 367 
constant strain, 149, 217 
constant volume, 99, 147, 151, 206, 

208, 217, 367 
Debye model, 87, 95, 98, 102, 118 
defect lattice, 154, 166 
dislocation, 166 
Einstein model, 79, 81, 102, 119, 353 
f-electron system, 184 
fixed volume, 209 
glass, low T, 185,232 
harmonic phonon, 118 
hexagonal lattice, 218 
impurity mode, 161 
inversion of, 101 
liquid, 196 
magnon, 187 
mixed crystal, 163 
Neumann-Kopp rule, 338 
order-disorder transformation, 186 
overview for real solid, 367 
relation to resistivity, 347 
Schottky peak, 183 
small particle, 157 
surface vibrations, 156 
two-level system, 183 
vacancy, 183, 367 
vibrating defect, 154, 166 

Heat of formation, compound, 5 
Heat of fusion, 19 
Heavy fermion, 177 
Heisenberg's uncertainty relation, 129 
Helmholtz free energy 

anharmonic vibrations, 149, 365 
defining elastic constants, 31, 33, 59 
few-level system, 182 

grain boundary, 166 
harmonic phonons, 113, 363 
lattice defect, 19, 166 
magnon, 189 

Hexagonal lattice 
c/a ratio, 333 
conductivity, 248, 257 
elastic properties, 29, 39, 41, 42, 44, 

48 
Griineisen parameters, 140, 142, 216 
heat capacity, 218 
hydrostatic compression, 44 
polycrystalline 

conductivity, 317 
elasticity, 323 
thermal expansion, 326 

sound waves, 75 
thermal displacement, 126, 127 
thermal expansion, 213,216 

Hooke's law, 28, 33, 34, 39, 222, 287 

Impurities, effects on 
atomic vibrations, 158, 160, 161 
elastic properties, 63 
electrical resistivity, 237, 249 

Inclusions, in models of 
composite materials, 296 
elastic constants, 64 
thermal conductivity, 271 

Instability, see Bain path, Lattice instabil-
ity, Melting 

Invar, 68, 233 
Inversion, phonon heat capacity, 101 
Ionic compound, 5, 7 
Ionisation energy, 4 
Isentropic elastic properties, 30, 31, 206, 

208 
Ising model, 186, 187 
Isothermal elastic properties, 31 
Isotope effect, 61, 143, 158, 271, 274 
Isotropy conditions 

second-order elasticity, 42, 56 
sound waves, 72, 74, 75 
third-order elasticity, 44, 56 

Kelvin thermoelastic relation, 236 
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Lame constants, 30 
Landau diamagnetism, 349 
Latimer's rule, 336, 338 
Lattice instability, 6, 47, 48, 107, 108, 

111,133 
Lattice vibrations, see Phonon density of 

states, Anharmonic effects, Quasihar-
monic model 

Lennard-Jones potential, 3, 345 
Lifetime, see Relaxation time 
Lindemann's melting criterion, 339, 347 
Liquids, 192 
Localised vibration, 157, 158 
Lomer's equation, 25 
Lorenz number, 255, 276 

Madelung constant, 8, 12 
Magnetic effects 

Debye temperature, 69, 111 
elastic constants, 68 
electron density of states, 179 
many-body interactions, 178 
induction, composites, 286 
susceptibility, 349 
thermal expansion, 229 

Magnons 
heat capacity, 187 
many-body effects, 178 
thermal conductivity, 282 
thermal expansion, 230 

Many-body effects, conduction electrons, 
with 

electrons, 167, 177, 178, 351 
magnons, 178, 228 
phonons, 173, 175, 176, 228, 350, 

359, 372 
Martensitic transformation, 62 
Mass-defect model, vibrations, 158, 159, 

162 
Mass dependence, phonons, 87, 91, 112, 

126, 336, 342 
Matthiessen's rule, 237, 242, 249, 257, 

280, 281 
Maxwell Garnett theory, 308 
Mean free path 

electrons, 251, 284 

phonons, 260, 283 
Melting, 

entropy, 6, 194 
general aspects, 192, 197 
Lindemann's criterion, 339, 347 
relations involving 7fus, 6, 19, 340, 

342, 347 
Mie-Griineisen equation, 205, 224 
Mixed crystal, 162 
Molar volume, 4, 334 
Molecular crystal, vibrations, 62 
Moment of phonon spectrum, 90 
Mooij'srule, 254 
Murnaghan equation-of-state, 203 

Nanocrystalline materials, see Size effects 
Nernst-Lindemann relation, 208 
Neumann-Kopp rule, 338 
Nordheim's rule, 250 

Order-disorder transformation, 61, 110, 
186 

Orientation distribution function (ODF), 
330 

Orthorhombic lattice 
elastic properties, 29, 42, 43, 324 
thermal expansion, 213, 216 

Paramagnetism, 69, 349 
Partial molar volume, 334 
Percolation, 312 
Phase velocity, sound waves, 70, 76 
Phonon density of states 

bcc, fee, hep lattices, 105 
complex models, 104 
Debye model, 84 
definition, 82 
disordered lattice, 110 
eigenvectors, 82 
elastic limit, 86, 95, 97 
frequency moments, 89, 101 
inverted heat capacity, 101 
lattice defects, 153, 162, 164 
lattice structure dependence, 105, 110, 

130 



Subject index All 

low-frequency power series, 86, 93, 97, 
119 

mass dependence, 87, 91 
small particles, 157 
surface effects, 153, 156 

Phonons {see also Anharmonic effects, 
Quasiharmonic model) 
focussing, 77 
general, 79, 112 
instability, 107, 111,133 
thermodynamic properties, 112, 363 

Plasma frequency, 241, 370 
Poisson ratio 

anisotropic, 37, 38, 40, 67 
anomalous behaviour, 40, 47, 53, 67 
composite material, 291, 293, 308 
cubic single crystal, 37 
general aspects, 27, 29, 52 
in thermoelasticity, 236 
negative, 38, 233 

Poly crystalline material, 316 
Polymorphism, 1, 14, 61, 105, 129 
Porous material 

conductivity, 283, 315 
elasticity, 301, 309 
thermal expansion, 296 

Poynting vector, 77 
Pressure, kept constant 

entropy, 206, 208, 217 
heat capacity, 206, 208, 217, 367 
lattice defect parameters, 22 

Pressure effects see also Quasiharmonic 
model 
anisotropic elasticity, 40, 44 
elastic parameters, 54, 68, 203 
electrical conductivity, 23, 252 
Griineisen parameter, 152, 225 
in chain-like structure, 45 
polymorphism, 131 
thermal conductivity, 283 
thermal expansion, 234 
vacancy concentration, 20, 22 

Pseudoharmonic model, 145 

Quasiharmonic model 
elastic constants, 58 

entropy of vibrations, 21, 148 
phonon frequency shifts, 138, 145 
thermal expansion, 222 
thermodynamic functions, 148 
vacancy properties, 21 

Rayleigh surface wave, 155 
Relaxation time 

electrons, 174, 237, 239, 249, 278, 280, 
349 

phonons, 137, 262, 264, 266, 270, 274, 
275 

Resistivity, see Conductivity, electrical 
Resistivity saturation, 253 
Resistivity, thermal, 257, 275, 279, 281 
Reuss bound, 40, 42, 291, 320, 322 
Richard's rule, 194, 196 
Rigid electron band, 180 

Saturation effect 
electrical resistivity, 253 
thermal conductivity, 283 

Schottky peak, 183 
Secular equation, 70 
Self-consistent method (SCM), compos-

ites, 307 
Shear deformation, 34, 35 
Shear modulus 

anisotropic, 36 
composites, 286 
cubic single crystal, 36 
dependence on 

lattice defects, 66 
lattice structure, 53, 61 
magnetic effects, 68 

general aspects, 27 
polycrystalline material, 29, 53, 54, 

316 
relation to bulk and Young's modulus, 

53,54 
values in real solids, 53, 54 
Zener's parameters, 30 

Shunt resistor model, 253 
Size effects, 

elasticity, 68 
electrical conduction, 251, 354 
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thermal conduction, 274 
lattice vibrations, 102, 157, 166 

Slater's Gruneisen parameter, 142, 207 
Small particles, see Size effects 
Sommerfeld electron model, 167, 168, 

175, 348 
Sound velocity 

amorphous material, 63 
anisotropic, 57, 72, 74, 75, 76, 85, 

362 
general, 70, 362 
hexagonal lattice, 75 
polycrystalline material, 72 
pressure dependence, 54, 55 
pure modes, 76 
relation to Debye temperature, 73, 85, 

88 
single crystal, 54, 55, 56, 362 
surface mode, 155 

Specific heat, see Heat capacity 
Spin fluctuations, 177, 228 
Spin waves, 187,230 
Stability criteria, elastic constants, 47, 48 
Stability, relative, of phases, 14 
Standard entropy, 200, 326, 336 
Standard state, 4, 200 
Stiffness, see Elastic stiffness 
Stoner model, magnetism, 69, 178, 179, 

351 
Strain 

constant, heat capacity, 149, 217 
Gruneisen parameters, 139, 149, 218 
Hooke's law, 28, 287 
uniform, in composite, 291, 320 
thermal expansion, 212, 287 

Stress, uniaxial, 34 
Surface energy, 19 
Surface scattering, 252 
Surface vibrations, 155 
Suspension, dilute, 296 

Tetragonal lattice 
conductivity, 248, 317 
elastic properties, 29, 39, 41, 42, 323 
Gruneisen parameters, 216 
polycrystalline, conductivity, 317 

thermal expansion, 213, 216, 326 
Texture, 67, 327, 330 
Thermal conductivity, see Conductivity, 

thermal 
Thermal diffusivity, 258, 281 
Thermal displacement, see Displacement 
Thermal expansion 

and thermal conduction, 235 
anisotropic, 212 
composite material, 287, 293, 296, 298, 

304, 310 
dependence on defects, 234 
dependence on lattice structure, 234 
electronic contribution, 227, 231, 

342 
empirical relation to 7fus, 
general aspects, 206, 219 
invar, 233 
macroscopic aspects, 200, 206 
magnetic contribution, 228, 229 
microscopic aspects, 219 
Mie-Gruneisen equation, 224 
negative, 222, 232 
non-cubic lattice, 213, 216 
phonon contribution, 222 
polycrystalline material, 326 
pressure dependence, 234 
reduced to fixed volume, 211 
vacancy contribution, 231 

Thermal resistivity, 257, 275, 279, 281 
Thermoelastic effect, 236 
Third-order effects 

anharmonic free energy, 144 
elastic constants, 33, 44, 51, 56, 152 
phonon frequency shifts, 138, 145 

Trigonal lattice 
elastic properties, 29, 42, 45 
conductivity, 248 
hydrostatic compression, 45 
polycrystalline materials, 317, 323, 326 
thermal expansion, 213,216 

Tunneling model, glasses, 185, 232 
Two-level system, 182 

Universal-binding-energy relation, 204 
units, 251, 370 
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Vacancy 
clustering, 24 
effect on 

atomic vibrations, 21, 164 
conductivity, 23, 250, 273 
elastic properties, 63 

energy, 19, 21, 341 
entropy, 21, 164 
general relations, 18, 22 
heat capacity, 183, 367 
interactions, 25 
liquid-like structure, 25 
non-thermal, 24 
pressure effect, 20, 22 
thermal expansion, 231 

Vegard's law, 333 
Velocity 

atomic displacement, 128, 363 
sound, poly crystalline material, 88 
sound, single crystal, 362 

Vibrational amplitude, see Displacement 
Vibrational velocity, 128 
Voids, see Porous materials 
Voigt bound, 40, 42 
Voigt-Reuss-Hill (VRH) approximation, 

88, 324 
Voigt's contraction scheme, 28 
Volume dependence, see Pressure effects 

Wiedemann-Franz law, 255, 276, 280, 
284 

Wiener bounds, 290, 304 

XAFS, 125 

Young's modulus 
anisotropic, 36, 321 
composite material, 291, 293, 301, 302, 

309 
cubic single crystal, 36 
defect lattice, 66, 68 
dependence on lattice structure, 61 
effects of dislocations, 66 
fibre composite, 329 
general aspects, 27 
magnetic effects, 68 
poly crystalline material, 29, 54, 321 
temperature dependence, 57 
values in real solids, 54 

Zener's shear constant Cf, 30, 35, 36, 105, 
134 

Zener's ansiotropy parameter, 38, 41, 49, 
77, 324 

Zen's rule, 334 
Zero-point atomic vibrations 

anharmonic effects, 58, 59, 146 
atomic displacement, 103, 122 
effect on cohesive energy, 6, 115 
effect on lattice parameter of Li, 143 
Heisenberg's uncertainty relation, 129 
in diatomic lattice, 126 
internal pressure, 143 
relation to equipartition theorem, 115 
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Atomic volume 
(FeNi)o.8(BP)o.2, 333 
C (diamond), 335 
C (graphite), 335 
Cd-Mg, 333, 334 
Co, C00.75P0.25' 333 
Fe, 132, 333, 335 
Li, 143 
LiH, LiD, LiT, 143, 144 
Mg, 333, 334 
Nio.76p0.24, 333 
Ti, 333 
Til, 134 
Alkali halides, 9, 333 
III-V, II-VI com-

pounds, 16 
4d-metals, 15 

Cohesive energy, total lat-
tice energy 
Al,7 
GaAs, 7 
C (diamond), 116 
C (graphite), 116 
NaCl, 5, 7 
TiC,7 
Til, 134 
W, 7, 50 
4d-metals, 14, 16 

Elastic constants, single 
crystals (c/y) 

* Single data points in \ 
here. 

AgCl, 52 
Al, 38, 55, 58 
BaF2, 38 
Be, 41, 44 
C (diamond), 52 
C (graphite), 41,44 
CaO, 38 
Cr, 38, 52, 69 
Cu3Au, 61 
Cu20, 52 
CuZn, 61 
Fe, 38, 39, 55 
Fe-Ni, 68, 69 
Fe72Pt28, 68 
Ga,43 
GaAs, 51, 52 
He, 38, 52 
In, 41 
Ir,52 
KC1, 38 
KCN, 62 
Li, 38, 61 
Mg, 41, 44, 65 
Mg-In, 65 
Mg2Si04, 43 
Mn-Cu, Mn-Ni, 51 
Mo, 52 
Na2S04, 43 
NaCl, 52 
Nb-Mo, 66 
Ni,69 
Ni-Cr, 134 

i, and entries in tables 

Ni-Cu, 69 
Pu, 38, 42 
Rb2S04, 43 
Smi_xY^S,39,51,52 
SrTi03, 62 
TaC, 38 
Te,45 
Th, 38, 65 
Th-C, 65 
TiC, 52 
U,43 
W,52 
Zn, 41, 44, 76 
Zr,41,44 
Ice, 41, 44 
Propylene, 43 
£-brass, 38 

Bulk modulus K 
Al, 203, 209, 210 
Al-Si, 295, 296, 326 
A1203, 326 
C (diamond), 203, 300, 

326 
C (graphite), 325, 326 
CaF2, 203 
CaS04, 326 
Cr,69 
Cu, 326 
Fe, 203, 326 
Fe72Pt28, 68 
GaAs, 203, 326 

pp. 373-376 non included 

421 



422 Materials index 

Ge, 203 
Li, Mg, 326 
MgO, 203, 326 
NaCl, 203, 326 
Ni,69 
Ni-Fe, 69 
pdo.775Si0.165Cu0.06> 

62 
Pu, Si, Si02, Sn, TaC, 

Th, U, Zn, 326 
Alkali halides, 9 
Free-electron-like met-

als, 11 
Ice, 326 
4d-metals, 15 
III-V, II-VI com-

pounds, 16 

Shear modulus G 
Al, 326 
A1203, 326 
C (diamond), 326 
C (graphite), 326 
CaS04, 326 
Cast iron, 300, 301 
Cu, 326 
Fe, 326 
Fe-Ni, 61 
GaAs, Li, Mg, MgO, 

NaCl, 326 
NbC, 301, 302 

Pdo.775Sio.l65Cuo.06> 
62 

Pu, Si02, Sn, TaC, Th, 
U, Zn, 326 

Ice, 326 

Young's modulus E 
Fe,61 
Fe-B, 68 
Fe-Ni, 61 
NbC, 301, 302 
Cast iron, 300, 301 
Cement, 309 

Poisson ratio 
Be, 40 
Fe,39 
Sm1_JCYxS,39 
Cement, 309 
Cork, 53 
Rubber, 53 

Sound propagation 
Al,57 
Al203,CaCo3,88 
Fe,57 
Ga (film), 63 
Ge, 77, 78 
Mn-Cu, Mn-Ni, 74 
Smo.75Yo.25S, 74, 75 
Zn,76 

Phonon density of states 
K, 106 
TiC, 87, 88 
TiN, 154 

Debye temperature 
Al,94 
Al203,96 
Al2Si05, 100 
Au,97 
BN,94 
C (graphite), 94 
CsCl, 94 
Fe, 107 
Ge, 90, 94 
Ge (film), 63 
KBr-KCl, 163 
LuCo2, 69 
Mg,94 
Mg0.7Zn0.3,109 
Mo, 94 
Nb,94 
Nb-Mo, 163 
NiAl3, 110 
Pd,69 

Pdo.775Sio.l65Cuo.06> 
109 

Pd0.8Si0.2, 109 
Sc, 111 

Si, film, 63 
Th02, 100 
Ti, 108, 109 
TiC, 98 
W, 147, 151 
YCo2, 111 
Zr, 108, 109 

Atomic force constant 
Ti, Zr, Hf, 343 
TiC, ZrC, HfC, 343 
TiN, ZrN, VN, 345 
TiB2, ZrB2, HfB2, 343 
CaCl2, SrCl2, BaCl2, 

343 

Atomic displacement, ther-
mal 
Al, 341 
Cu, 125, 341 
Cu-Fe, 336, 337 
Fe, 125 
Mg, 341 
Na, 341 
NbCo.95, 127 
Pb, 341 
Pt, 125 
Smo.7Yo.3S, 128 
SiC, 125 
TiN, 157 
TI, 341 
Zn, 125, 127, 128 

Electrons, thermodynamic 
properties and many-
body effects 
CeCu2Si2, 177 
Co, 178 
HoBa2Cu37.5, 185 
Lu, 177, 195, 228 
LuCo2,178 
MnSi, 178 
Ni, 178 
Sc, 177, 195, 228 
Si, 195 
TmBa2Cu37_5, 185 
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UPt3, UCdn, U2Zn17, 
177 

W, 195 
Carbides, nitrides, 181 
Rare earths, 179 

Electrons, Fermi tempera-
ture 
Na, Cu, Mg, Zn, Al, Pb, 

Sn, 170 

Phonons, anharmonic ef-
fects 
Al, 146, 226 
Cu, 146 
Fe-Cu, 336, 337 
Ge, 226 
K, 146 
KBr, 226 
Mo, 146 
NaCl, 226 
Pb, 146, 226 
W, 146, 147, 151, 152 
Zn, 146 

Gruneisen parameter 
Al, 57, 152 
BaF2, 141 
C (graphite), 142 
CaF2, 141 
Fe,57 
Ge, KC1, KBr, Mo, 

NaCl, Nb, Pb, 152 
SrF2, 141 
Zn, 141 
Zr, 152 

Polymorphism 
Be, 130 
C,116, 130 
Fe, 130, 132 
Mg, 133, 134 
Sn, 131 
Ti, 130 
Til, 132 
Zr, 130 

Liquid properties 
Ag, 197 
Al, 192, 193, 197 
As, 195 
Au, 197 
Ba, 195 
BaF2, CaF2, 197 
Be, 195 
Bi, 194, 195 
C, 196 
Ca, 195 
Cd, 195 
Cr, 195 
Cu, 192, 197, 198 
Fe, 196, 197 
GaAs, 197 
Ge, 194, 196, 197 
Hg, 195, 198 
K, 198, 
KC1, 197 
Mg, 192, 195, 197 
Mo, 195 
Na, 192, 197 
NaCl, 197 
Na2Si03, 197 
Pt, 197 
Sb, 194, 195 
Si, 194, 196, 197 
Sn, 131 
Sr, 195 
W, 196 
Zn, 195 

Thermal expansion 
a-Sn, 342 
Al, 220, 226 
Al-Si, 295, 297 
Al2O3,220,214 
Be, 328 
Fe, 220 

Feo.64Nio.36, 233, 234 
Feo.72Pto.28, 233 
Ge, 232, 226 
KBr, 226 
Lu, 228 
Mg, 214 

NaCl, 226 
Pb, 226 
Pd0.775Sio.l65Cu0.06 

(amorph.), 220 
Pu, 342 
Rbl, 220, 232 
Sc, 228 
Si, 220, 232 
Si02, 214, 328 
Sn, 214, 328, 342 
Zn, 214, 328 
Zr, 214, 328 
ZrW208,233 
Polyacetylen, 233 
Steel, 220 

Heat capacity 
Al, 192, 210, 226 
A1203, 147 
Al2Si05, 339 
AlSb, 338, 339 
B4Mg, 339 
C (diamond), 80 
C (graphite), 218 
C60,119 
Co, 178 
Cu, 166, 192, 198 
Cuo.gZn0.2, 339 
Fe3C, 338, 339 
Ga (film), 63 
GdCu2Si2, LaCu2Si2, 

190, 191 
Ge, 226 
Hg, 198 
K, 198 
KBr, 226 
Lu, 177 
LuCo2, 178 
Mg, 192, 218 
Mg2Si, 339 
Mg2Si04, 147 
MgO, 147 
MgZn2, 339 
MnSi, 178 
Na, 192 
NaCl, 158, 226 
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Ni-Cr, 108 
Os, 108 
Ti, 135 
W,49,50,107,134,135 
Zr, 135 

Ni, 178 
Pb, 158, 226 
Pd, 172 
Sc, 177 
TaC, 348 
TiB2, 338, 339 
TiC, 81 
WC, 339 
YBa2Cu306+JC, 155 
Zn, 218 
Zr, 218 
W, 211, 212 

Entropy, enthalpy, 
Helmholtz and Gibbs 
energy 
Al, 193, 200 
A1203, 80 
Bi, 194 
Fe, 132 
Ge, 194 
N13AI, 110 
Sb, 194 
Si, 194 
TiC, 81 
Til, 132 

Lattice instability 
Cu, 108 
Fe, 111, 132 
GaAs, 108, 134 
Ir, 108 
Mg, 108, 133, 134 

Vacancy properties 
Al,23 
Al-Ag, 26 
Au, 20, 23 
Cu, 23, 165 
KCl-Ca, 273 
VQt,24 

Conductivity (resistivity), 
electrical 
Ag, 238, 331 
Ag-Cu,251 
Al, 239, 252, 253 
Al-Cu,251 
Al-Fe,251 
Al-Mg, 252 
Al-Ti,251 
Au,331 
Au-Cu,251 
Be, 238 
Cu, 238, 250, 331 
Fe, 239 
Fe3C, 303 
LiCl-Al203, 314 
Mg, 249 
Pb, 331 
Pt,331 

Ru, 249 
TaC, 348 
Ti, 239, 253 
W,239 
Y, 319, 320 
Zn, 249 

Conductivity, thermal 
Al, 256, 277, 279 
Bi, 257 
C (diamond), 255 
C (graphite), 257 
Cd, 257 
Fe3C, 303, 319, 320 
Ge, 274 
Ge-Si, 276 
In2Te3, 283 
KCl-Ca, 273 
LiF, 274 
MgO, 256, 268, 283 
Na, 279 
NaCl, 268 
Pu, 277 
Si02, 257 
Sn, 257 
Ti-SiC, 314 
Ti02, 257 
U,282 
V, 281, 282 
W, 277, 282 
Zn, 279 
Glass, 256 
Steel, 256 
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