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Preface 

The birth of this monograph is partly due to the persistent efforts of the General 
Editor, Dr. Klaus Timmerhaus, to persuade the authors that they encapsulate their 
forty or fifty years of struggle with the thermal properties of materials into a book 
before they either expired or became totally senile. We recognize his wisdom in 
wanting a monograph which includes the closely linked properties of heat capacity 
and thermal expansion, to which we have added a little 'cement' in the form of 
elastic moduli. There seems to be a dearth of practitioners in these areas, particularly 
among physics postgraduate students, sometimes temporarily alleviated when a new 
generation of exciting materials are found, be they heavy fermion compounds, high­
temperature superconductors, or fullerenes. And yet the needs of the space industry, 
telecommunications, energy conservation, astronomy, medical imaging, etc., place 
demands for more data and understanding of these properties for all classes of 
materials - metals, polymers, glasses, ceramics, and mixtures thereof. 

There have been many useful books, including Specific Heats at Low Tempera­
tures by E. S. Raja Gopal (1966) in this Plenum Cryogenic Monograph Series, but 
few if any that covered these related topics in one book in a fashion designed to help 
the cryogenic engineer and cryophysicist. 

We hope that the introductory chapter will widen the horizons of many without a 
solid state background but with a general interest in physics and materials. The next 
two chapters deal with basic theory (including the often neglected thermodynamics of 
anisotropic materials), and with experimental techniques; the experimental physicist 
and engineer should be helped also by the tables of data in the Appendix C, with 
their attached references. The remaining chapters cover specific properties of various 
classes of material. 

Finally we hope that this monograph will help meet the information needs in 
cryogenics that were envisioned by the Founding Editor and mentor to one of us, the 
late Dr. Kurt Mendelssohn, F.R.S. 

v 
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Chapter 1 

Introduction 

1.1. THERMODYNAMIC PROPERTIES AT LOW TEMPERATURES 

This book is concerned with the properties of materials at low temperatures, their 
measurement and the basic physics underlying them. These topics are complemen­
tary. Research in physics involves the use and often the construction of equipment, 
and even theorists need to appreciate what kinds of measurement are practicable and 
what is their precision and reliability. Conversely, the cryogenic engineer benefits 
from a fundamental understanding of the physical effects he is exploiting and of the 
materials he is using. 

Heat capacity, thermal expansion and elasticity are all thermodynamic properties. 
The principles of thermodynamics apply universally: in general both the experimental 
techniques used at low temperatures and the underlying theory apply also at ambient 
and higher temperatures, and so to the technology of everyday life. Consider, for 
instance, a domestic electric storage heater: a thermally insulated core is heated 
electrically during the night at low cost, and the heat is released during the follow­
ing day to bring the surrounding room to a comfortable temperature. This simple 
example illustrates the equivalence of heat and electrical energy, the use of an adia­
batic enclosure with facility for controlled breakdown of insulation (permitting the 
exchange of heat between the core and the air), and the definition and measurement 
of temperature. All these are also essential concepts for cryogenics. Furthermore, 
the efficiency of the heater is critically dependent on the relative heat capacities of 
the core and the air in the room. 

The understanding of thermodynamics in terms of atomic and molecular behavior 
is similarly universal: the general principles (statistical mechanics) apply at all 
temperatures. Despite this, working at low temperatures does tend to have special 
characteristics: in particular, heat capacities are often low, so that absorption of 
unwanted energy due to inadequate insulation or to external vibrations can wreak 
havoc with temperature control; also, changes in crystal dimensions and elastic 
properties may be small, requiring high precision for their measurement. 

1 
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Fig. 1.1. Heat capacity of a mole of harmonic oscillators of frequency VE as a function of temperature. 
0, experimental points plotted by Einstein for diamond, with h"E/k = 1326 K. (3R = 24.94 J·mol-1. 

K-1 = 5.96 caI·mol-1·K-l). 

Such characteristics are in accord with the Third Law of thennodynamics, which 
governs thennodynamic behavior as temperature approaches the absolute zero. The 
Third Law and its consequences are in tum due to the quantum nature of matter, and 
in particular to the consequent discrete energy levels of physical systems. As long ago 
as 1900, in a discussion of the abnormally low heat capacity of diamond, Einstein 
[Ein07] pointed out that at sufficiently low temperatures (kT « h v. the spacing 
between energy levels), none of the higher energy levels of a harmonic oscillator is 
excited. The system is then in its quantum ground state; its energy no longer changes 
with temperature, and its entropy and heat capacity have fallen to zero (Fig. 1.1). 
The same is true of bulk physical systems (in which the thermal expansion also falls 
to zero), except of course that the approach of the heat capacity to zero will not be 
the same as that for a harmonic oscillator. To demonstrate this, and to give a taste of 
the variety of low temperature behavior exhibited by different substances, let us now 
look briefly at some examples of increasing complexity. Fuller discussion of these 
examples will be given in later chapters. 

KCl. Figure 1.2 shows the temperature dependence of the heat capacity Cp and 
volumetric thermal expansion coefficient {3 of the cubic crystal potassium chloride. 
At room temperature Cp has flattened off to a value of about 50 J·mol-I·K-I, in 
agreement with the empirical law of Dulong and Petit [DuI819] that the heat capacity 
of many solids is about 25 J·g-at-I·K-I. The way in which Cp decreases to zero (as 
T 3) is more gradual than the exponential decrease seen in Fig. 1.1. This is because 
there are many different vibrations of a crystal structure, giving a vibrational spectrum 
varying from the low frequencies of sound waves to higher frequencies typically in 
the infra red region 1011_1013 Hz. To a first approximation the heat capacity is the 
sum of harmonic contributions from all these vibrations, each contribution having the 
type of temperature dependence shown in Fig. 1.1. As the temperature is lowered, 
the contributions of the highest frequency vibrations are the first to decrease, and then 
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successively those of lower frequency, until at very low temperatures we see only the 
contributions of the acoustic vibrations, giving a characteristic T3 dependence (see 
Section 2.6). Unlike Cp and (3, the elastic stiffuesses CAp. tend to non-zero limits as 
T -+ 0 (Fig. 1.3). At very low temperatures the departure from these limits is usually 
small and hard to measure accurately. 

CuCl. In Fig. 1.2 we have seen that the heat capacity and thermal expansion of 
KCI have qualitatively similar temperature dependence. Our next example, cuprous 
chloride, shows that this need not be so (Fig. 1.4): once again both Cp and (3 approach 
zero as T 3, but whereas Cp remains positive at all temperatures (as required for 
thermodynamic stability), (3 becomes negative at low temperatures. It is clear from 
this example that although all vibrations contribute similarly to the heat capacity, 
their effect on the thermal expansion can be very different. Since it is only the lower 
frequency vibrations that are excited at low temperatures, we can deduce that for CuCI 
such vibrations on balance contract the crystal lattice. There is nothing anomalous 
about this. Negative expansion is quite common, especially at low temperatures (see, 
e.g., Section 5.5.1), and low expansion materials can be produced by balancing the 
factors that make for positive and negative expansion (Section 5.7). We note also that 
there is no law for thermal expansion analogous to that of Dulong and Petit for heat 
capacity: the room temperature values of (3 for KCI and CuC] are quite different. 

It should be noted that both KCI and CuCI are cubic crystals, with isotropic 
thermal expansion. whereas non-cubic crystals have anisotropic thermal expansion 
(e.g .• Fig. 1.9). 
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a-NiS04·6H20. The strong peak in Cp superimposed on the vibrational T3 
dependence at low temperatures shown in Fig. 1.5 is a simple example of a non­
vibrational contribution to the thermal properties. The contribution builds up expo­
nentially as T increases, and then falls off as T-2 at high temperatures. Such behavior 
is typical of an assembly of so-called Schottky systems, which are essentially non­
interacting localized systems (e.g .• ions. atomic nuclei. etc.) which can exist in only 
a small number of energy states (see Section 2.5.3). In a-nickel sulphate the energy 
states arise from the three-fold degeneracy of the magnetic Ni++ ion, which in this 
non-cubic crystal is split into three closely spaced energy levels. At very low temper­
atures all the ions have the lowest energy; as T increases some ions become excited 
to the higher levels. but the resulting heat capacity dies away at higher temperatures 
as all three energies become equally likely. 

In this example the Ni++ ions are well separated from each other by the water of 
crystallization; the interaction between neighboring spins is small compared to the 
splitting of the degeneracy by the crystal field. satisfying the criterion for Schottky 
systems. Much sharper peaks in Cp are seen when the degeneracy is lifted by 
interactions between the systems, as for example in some forms of ferromagnetism 
(Section 5.11). For both types of system effects will be seen also in the thermal 
expansion and (usually less marked) in the elasticity. 

Cu. In simple metals the conduction electrons contribute small terms to the heat 
capacity and thermal expansion that are proportional to the temperature. At room 
temperature these terms are swamped by the vibrational terms, but at low temperatures 
(typically T rv 1 K) almost all the vibrations cease to contribute, leaving the electronic 
contribution dominant. The electronic and vibrational terms can be conveniently 
displayed by plotting CplT and alT or 13IT against T2. The low temperature heat 
capacity of copper is thus shown in Fig. 1.6: the intercept at T = 0 gives the coefficient 
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Fig. 1.6. Cp /T plotted against T2 for Cu at low temperatures [Hol72]. 

of the electronic term reT, and the initial slope the coefficient of the vibrational term 
aT3. Note that it is only below 4 K that the electronic term begins to dominate. For 
the thermal expansion experimental precision is insufficient to permit extension to 
temperatures where the electronic term is dominant (see Section 3.3). 

Pd. The d-electrons in transition metals such as palladium enhance the electronic 
density of states, giving electronic contributions to the heat capacity and thermal ex­
pansion much larger than those in copper (Fig. 1.7). In particular, the electronic 
thermal expansion is large enough at low temperatures to be determined quite accu­
rately. 

Go. A similar plot (of Cp/T against T2) for the superconductor gallium shows 
more complex behavior (Fig. 1.8). Instead of showing the T -dependence of a nor­
mal metal, Cp rises exponentially at low temperatures to a peak at the supercon­
ducting transition temperature Tc; it then falls discontinuously to the normal (non­
superconducting) value. The rise at low temperatures is rather similar to that seen in 
the Schottky peak of Fig. 1.5, but the discontinuous drop at Tc is in marked contrast 
to the long high temperature tail seen there; above Tc all trace of superconductiv­
ity has disappeared. Thermal expansion coefficients of superconductors also have 
a discontinuity at Teo but (unlike Cp) they may either increase or decrease at the 
transition. 

Figure 1.8 also shows that the normal T -dependence is observed at lower tem­
peratures if the superconductivity is suppressed by applying a magnetic field H. For 
gallium, however, a further non-vibrational contribution then appears at very low 
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temperatures, which has been identified as the high temperature tail of a Schottky 
contribution arising from the lifting of the nuclear spin degeneracy by the crystal field 
(Section 2.5.3). That this contribution is not seen when H = 0 is a striking example 
of the importance of kinetics: in the superconducting state at low temperatures the 
interaction between the nuclear spin system and the lattice vibrations is so small that 
thermodynamic equilibrium is not established within the time of the experiment. 

YBa2CU307. More complex forms of superconductivity than that originally seen 
in simple metals at very low temperatures have been found in various types of sub­
stance (Section 6.5), including the high-Tc ceramic oxides (Section 5.10). Like many 
of these oxides, YBa2Cu307 has orthorhombic symmetry with independent coeffi­
cients of linear expansion along the three crystallographic directions (Fig. 1.9). At Tc 
(~92K) there is a peak of about 2% in Cp, but the effect on the expansion coefficients 
is different in each direction: negative for Qa, positive for Qb and undetected for Qc • 

Invar systems. Magnetic solids of various types provide some of the most com­
plex and difficult systems to understand, and some of them are also of great technical 
importance. These include the alloys "Invar" and "Elinvar," which have respectively 
very small thermal expansion and very small change of elasticity over a wide range 
of temperature. A century ago Guillaume [Gui897] reported that properties of FelNi 
alloys were critically dependent on concentration, and later measurements alloying 
iron with other metals have shown that a dominant factor in determining properties 
is their high sensitivity to the number of conduction electrons per atom (Fig. 1.10). 
Invar. an iron/nickel alloy with 35%Ni, can be seen in this figure to have a very low 
thermal expansion at room temperature. 
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CeAI3. "Heavy fermion" metallic compounds are another class of solid with 
properties difficult to understand. Their name arises from the very high effective 
masses of their conduction electrons (see Section 6.6), corresponding to an electronic 
heat capacity much greater than that of a normal metal, and large effects also in 
other properties. For CeAlJ below 1 K, the heat capacity is about three orders of 
magnitude greater than that for copper. The expansion coefficient {3 is negative, and 
about five orders of magnitude greater than that for copper, becoming positive above 
about 1 K. Perhaps most strikingly, even the elasticity changes appreciably between 
o and 3 K (Fig. 1.11). This behavior should not be regarded as typical, however; as 
a class heavy fermion compounds display a very varied range of behavior, including 
superconductivity and different forms of magnetism. 

Ice. This important solid is mentioned here to illustrate the problems that can 
occur when the relaxation time needed to reach thermodynamic equilibrium becomes 
comparable to the time taken to perform a measurement. Figure 1.12 shows the 
results of sensitive measurements of the heat capacity of three samples of normal 
(hexagonal) ice between 70 and 160 K. At high temperatures the water molecules 
are in thermodynamic eqUilibrium and randomly oriented. As the temperature is 
lowered short-range order begins to set in, but concurrently the time needed to reach 
equilibrium increases rapidly; relaxation times have been estimated to be about an 
hour at 108 K and a week at 89.4 K. In such circumstances, the apparent heat capacity 
depends both on the time allowed for the measurement and the previous history of 
the sample. 
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In this example. the small amount of orientational ordering (at most about 2%) 
has no detectable effect on the heat capacity and thermal expansion of the different 
metastable states obtained at lower temperatures. We should therefore stress that the 
properties of systems which have a range of possible metastable states are in general 
dependent on previous history. 

Let us sum up what we have seen in these examples. At low temperatures heat 
capacity and thermal expansion change by many orders of magnitude. but elasticity 
tends to a finite limit. As the temperature decreases. vibrational contributions be­
come less, and other contributions may become dominant; sometimes it is easy to 
identify separate contributions. but sometimes this is not possible. Effects of specific 
mechanisms are seen in all three properties, but are more marked in heat capacity 
and thermal expansion than in elasticity; heat capacities are always positive. but 
thermal expansion may be negative. Electronic effects. sometimes interacting with 
the vibrations. may give rise to a rich complexity of behavior. especially in non-cubic 
crystals; this can be critically dependent on composition. Finally. properties may 
depend on the rate of measurement if thermodynamic equilibrium is not achieved 
within the time-scale of the experiment. 



Introdudioo 

..... 
I 
"0 0.155 
e 

..... -
E-t 
~ 0.150 
U oquenched (1 K/min) 

• annealed (94.4 K. 71 hr) 
• annealed (89.4 K. 624 hr) '-<l.'O. 

0. 14Sw-_-'------'_--'-_-'-_l....---1._--'-_...L-_"'-

80 100 120 

T (K) 

140 160 

11 

Fig. 1.12. Measurements of the heat capacity of differently annealed samples of ice. - - -. estimated 
behavior if there was no orientational ordering [Hai72]. 

1.2. IMPLICATIONS FOR DESIGN OF EQUIPMENT 

The consequences of the Third Law of Thermodynamics and rapid decrease of Cp 
and (3 towards zero as T ~ 0 have obvious implications for the process of measuring 
these two quantities. The traditional method of measuring the heat capacity Cp is to 
apply a measured heat pulse .1Q and determine the temperature rise, .1T = Tl - T2, 
thus obtaining a value for Cp of .1Q/.1T at the average temperature (Tt + T2)/2. 
Likewise to determine the thermal expansion coefficient we heat the specimen and 
measure the associated changes in length (per unitlength) or volume (per unit volume) 
and the change in temperature. At normal temperatures (around the Debye theta and 
above - see Section 1.3.3) these properties often vary slowly with temperature 
(e.g., Fig. 1.2), enabling relatively large intervals .1T to be used. For example, rather 
insensitive methods such as X-ray lattice spacings determined at 50 or 100 K intervals 
may suffice· to give expansion coefficients to ± 1 %. 

At low temperatures C and (3 vary rapidly with T; and to obtain meaningful data, 
intervals of AT must then normally be much less than T itself, certainly ~ 0.1 T. This 
requires sensitive thermometry, close temperature control (minimum heat leakage), 
accurate control and measurement of .1Q (for Cp) and very sensitive 'dilatometry' 
(for (3 or a). Consider orders of magnitude when measuring Cp atT = 8/100, that is 
around 3 or 4 K for most solids. Ignoring 'anomalous' features like Schottky bumps or 
heavy fermion effects, the lattice heat capacity will be about 1944(T /8)3 ~ 2 X 10-3 
J·g-aC1·K-1 '" 10-4 J·cm-3·K-1. This should not present a measurement problem: 
an electric current generating a few IL W in a resistive element attached to the sample 
(say ...... 1 em3 in size) for a few seconds will produce a measurable temperature rise of a 
few hundredths of a kelvin. For an accurate result we need to ensure that the heat pulse 
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goes into the specimen (i.e., no leakage) and that the thermometer records faithfully 
the temperature of the specimen. Germanium or carbon resistance thermometers with 
resolutions of few p.K are suited to the purpose at these temperatures (see details in 
Ch.3). 

At lower temperatures, in the millikelvin range, lattice heat capacity is many 
orders of magnitude smaller, and unwanted heat sources in the form of external 
vibrations, eddy currents, microwaves (and even cosmic rays) affect the stability and 
accuracy of Cp measurements. Usually the sample is loosely coupled thermally to a 
cooling stage (e.g., dilution refrigerator) via a heat link, and some type of transient 
method (see Ch. 3) is used. This may involve either (i) a heat pulse and measurement 
of the subsequent decay in temperature as heat leaks away to the cooling system 
or (ii) an ac heat input with a phase-sensitive detector. Such measurements of heat 
capacity sometimes concern thin film samples of only a milligram or so deposited 
on a sapphire substrate with a thin-film Ge or Si thermometer. Total heat capacity 
at such temperatures may then be as low as 10-10 or 10-11 J. K- l , requiring highly 
sensitive measurement of voltage signals. Below these temperatures the lattice heat 
capacity continues to fall as T3 until even the lowest frequency modes are no longer 
excited (T '" 10-6_10-7 K). 

You may ask how and why we bother to measure at such extremes of tempera­
ture? We digress with an illustration due to the late Sir Francis Simon, an eminent 
thermodynamicist and low temperature physicist ... the so-called 'desert' picture. 
In a really featureless desert there are no points of interest and exploration would be 
very difficult and pointless. If on the other hand there is a feature of interest, sayan 
oasis, this is worth exploring and often also provides the means to make exploration 
possible. In the present context the featureless desert corresponds thermodynami­
cally to a material at low temperatures which has lost practically all its entropy, so 
that its state is hardly distinguishable from its state at absolute zero. However, at 
similar temperatures another material may still have appreciable sources of entropy, 
provided for example by nuclear spins or heavy fermion effects; these correspond to 
the oases. Their existence can make cooling and temperature measurement in this 
range both feasible and physically significant (see Ch. 3). 

Turning to thermal expansion at low temperatures, the major problems arise from 
the limited resolving power of length measurement. Even with the best inductive or 
capacitative detectors, it is difficult to detect reliably length changes of less than 0.01 
A (10- 12m), that is, one hundredth of an atomic diameter. This difficulty is hardly 
surprising, since 0.01 A is already much smaller than the scale of irregUlarities on a 
crystal surface, or even the amplitude of the zero-point vibrations of surface atoms. 
The result is that for a copper sample of 100 mm length at a temperature of 8DI100 
(where a '" 10-9 K- l ) a temperature increase of 0.1 K will increase I by only 0.1 A 
(lO-l1m). If our limit of measurement is 0.01 A the accuracy of measurement of a 
will be only about 10%. Clearly we have no hope of determining thermal expansions 
at temperatures below 1 K except for systems having Schottky bumps or other large 
non-vibrational effects. 
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1.3. USEFUL THEORETICAL CONCEPTS 

Historically, interpretation of the thermodynamic behavior of materials devel­
oped progressively, as early theories were found inadequate to account fully for the 
wide range of observed behavior becoming available experimentally. But for a com­
prehensive treatment it is better to start with a general conceptual framework into 
which most aspects of both theory and experiment can then be fitted, including the 
early theories. Such a framework is provided by thermodynamics and its general 
interpretation by statistical mechanics, as described in Chapter 2. Specific models, 
nearly always approximate, can then be used to interpret the properties of individual 
materials or classes of material. For complete generality, this framework would need 
to be extended to take account of measurements on substances which are not in 
thermodynamic equilibrium. 

However, we do not need to establish this entire framework before discussing 
some of the concepts and procedures that occur most frequently in the presentation 
and interpretation of experimental data. For example, several early theories are still 
in common use, such as the classical theory of dilute gases, the Debye theory of heat 
capacities of solids, and the simple Griineisen equation of state. Their importance is 
due not only to their graphic simplicity, but also to their use as standards to which 
the behavior of real materials can be compared. In this section we discuss some of 
the key concepts arising from this early work. 

1.3.1. Griineisen Function and Griineisen Parameters 

The Griineisen Function. Empirically, heat capacity, thermal expansion, and 
elasticity are qualitatively correlated. We have seen that the magnitudes of the 
heat capacity and thermal expansion vary similarly with temperature. In addition, 
substances that are elastically stiff tend to have low thermal expansion. Neither of 
these correlations is surprising: the greater the heat capacity, the more energy is 
absorbed per unit increase of temperature, and it is this energy that causes the thermal 
expansion; and resistance to thermal expansion will be greater in a stiff material. 
To make these considerations quantitative, and to understand what additional factor 
affects the thermal expansion, we need precise definitions of the properties involved. 
For simplicity, we here consider only fluids and solids maintained under hydrostatic 
pressure. 

Elastic behavior is described in terms of stress (force per unit area) and strain 
(relative change of dimensions), and defined either by compliances, which give the 
response of a material under specified conditions to applied stress, or (reciprocally) 
in terms of stiffnesses, which describe its resistance to applied strain. In our case the 
pressure P is the only stress and the relative change in volume the only strain, and it 
suffices to use one compliance, the compressibility x, or its reciprocal stiffness, the 
bulk modulus B. These may be defined under isothermal or adiabatic conditions: 

)(T = -(alnV /ap)T = l/BT, Xs = -(alnV /ap)s = l/Bs (1.1) 
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Similarly, the heat capacity may be defined under conditions of constant volume or 
constant pressure: 

Cv = (aU / aT)v, Cp = (aH /aT)p (1.2) 

where U is the internal energy and H is the enthalpy U +PV. The volumetric 
expansion coefficient is defined by 

~ = (aln V /aT)p (1.3) 

Imagine now the thermal expansion at constant pressure to proceed in two stages: 

I. The temperature is raised by dT while the volume is held constant at V; this 
requires an input of energy per unit volume 

(I/V)dU = (Cv/V)dT 

and causes the pressure to change by 

dP = (Cv/V)[ap/a(U /V)]vdT 

2. The pressure is allowed to relax to its original value while the temperature is 
held constant at T + dT; the final change of relative volume is thus 

dV {xrcv [ ap ] } V = XTdP = -V- a(U IV) v dT (1.4) 

Equation (1.4) makes the roles of heat capacity and compressibility explicit, 
and also makes it clear that by themselves they are insufficient to determine the 
expansivity. We need also to know the sign and magnitude of the thermal pressure 
caused by a given increase of energy density, expressed by a third thermodynamic 
quantity, called the Griineisenfunction because it first appeared as a parameter in an 
early model ofE. Griineisen [GruI2]: 

'Y(T, V) = [a( ~~V)] v (1.5) 

The thermal expansion coefficient can then be expressed as 

~ = 'YXTCV/V (1.6) 

Equation (1.5) has been chosen here as the definition of the Griineisen function 
because it brings out most clearly its role in determining thermal expansion. Other 
thermodynamically equivalent expressions are given in Section 2.2.3. In particular, 
experimental values of 'Yare usually obtained from the expression ~V /(xsCp), and 
for this reason 'Y is sometimes called the Griineisen ratio. 
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Fig. 1.13. Temperature variation of Griineisen functions for selected solids. PE denotes a sample of 
polyethylene of 80% crystallinity. - - -, vibrational function 'Yvib(T). 

The Griineisen function is dimensionless, and unlike the expansivity it usually 
has the same order of magnitude over the entire experimental range. It thus provides 
a sensitive way of plotting experimental data: different materials have their charac­
teristic signatures in the shapes of the 'Y(T) plots (see Fig. 1.13), and trends within 
the same class of material (e.g., alkali halides) are clearly displayed (Fig. 5.5). For 
some materials 'Y varies little over wide ranges of temperature, with values typically 
between 1 and 3; the heat capacity and expansivity then vary similarly with tem­
perature. But for other materials very different behavior is observed, especially at 
low temperatures: 'Y may be negative, causing the material to contract on heating; 
and it may vary strongly with temperature (e.g., Fig. 5.8), sometimes with very large 
positive or negative values. The behavior of polyethylene in Fig. 1.13 is due to its 
more complex structure: the higher frequency modes have little effect on the thermal 
expansion but contribute to the heat capacity at higher temperatures (Section 5.9). 

Although it is a well defined thermodynamic function dependent on both tem­
perature and volume, 'Y is sometimes called the "Griineisen constant," a term that is 
particularly misleading in the cryogenic range of temperatures (Fig. 1.13). To call it 
the "Griineisen parameter" is less objectionable, although in this book we reserve this 
term for other quantities related to the parameter 'Y in Griineisen's original theory. 

Griineisen Parameters. Griineisen's original approximation took the same fre­
quency Vvib for all the vibrations. The volume derivative of this frequency was 
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described dimensionlessly by a parameter 

'Y = -d In vVib/dln V (1.7) 

For his model the Griineisen function defined in Eq. (1.5) has this value at all temper­
atures, and so the model predicted that the ratio {3V / (xrCv ) should be approximately 
independent of temperature. Indeed, it can be shown that whenever all the energy 
states of a system scale to a single characteristic energy Ec(V), the Griineisen func­
tion is independent of temperature with the value -d In Ec / d In V. For example, in 

an ideal gas of single particles all the energy states scale as V- J, giving 'Y = j in 
both the classical and the quantum limits. 

Generally, however, the energy states do not all scale in the same way, and there 
are separate Griineisen parameters for different frequencies or characteristic energies: 
e.g., 

'Yj = -dIn vj/dln V, 'Yc = -d InEcldln V (1.8) 

These can sometimes be determined by spectrocopic measurements under pressure. 

1.3.2. Additive Contributions 

When discussing experimental examples in Section 1.1 we referred to various 
contributions to the thermodynamic properties: vibrational, electronic and so forth. 
Ideally such contributions will be distinguishable and independent of each other only 
if the free energy can be expressed as the sum of distinct components: 

F = FVib+Fe+ ... (1.9) 

Although this is not exact for real materials, it is often true to a good approxima­
tion (Section 2.3), and is a feature of nearly all theoretical models; when necessary, 
interaction between the different components of a model is considered as a further 
refinement. It follows from Eq. (1.9) that all derivatives of F with respect to tem­
perature and strain are similarly additive; among these are pressure P, entropy S, 
isothermal elastic moduli (e.g., BT) and heat capacity Cv. Thus 

Cv = C) +C2+C3+'" = LCn etc. (1.10) 
r 

where the index r may refer only to a broad separation of contributions into vibra­
tional, electronic, and so on, or to a finer separation into individual vibrational modes 
(Section 2.6). 

Quantities which are not derivatives of F (T, V) are in principle not additive. These 
include coefficients of thermal expansion as well as compliances and Griineisen func­
tions. But the thermal pressure coefficient lap / aT]v is additive, and the expansion 
coefficient can be expressed as 

{3 = xr[ap/aT]v (1.11) 
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and so provided that XI is changing with T much more slowly than rap / aTjv we 
can loosely identify different additive contributions to the thennal expansion. 

This is not true of the Griineisen function. Griineisen functions can indeed be 
defined for the separate components of the model, but they are not simply additive. 
The Griineisen function for the material is an average weighted by the contribution 
to the heat capacity of each component: 

(1.12) 

The Griineisen function for Cu shown in Fig. 1.13 reveals the effect of this weighting 
at low temperatures when the contribution of Ce becomes an appreciable fraction of 
Cv, since for Cu 'Ye is considerably lower than 'Yvib. 

If the contribution of a component Cr can be scaled to a single characteristic 
temperature or frequency, its Griineisen function 'Yr is simply a constant parameter, 
as defined for example in Eq. (1.7). 

1.3.3. Vibrational Contributions; Debye Thetas 

The Frequency Distribution. We have seen that to a first approximation the 
vibrational heat capacity of a solid is the sum of contributions from independent 
harmonic vibrations. The vibrational frequencies may be given as v (in Hz), as 
angular frequencies w = 21TV (in rad·s- I ), or as their equivalents in meV, etc. (see 
Table 2.1). For the most part we shall use w. The number of vibrations with 
frequencies between w and w+ 8w is written as g(w)8w, where g(w) is called the 
frequency distribution or (less felicitously) the phonon density of states. The heat 
capacity is then 

Cvib = f g(w)dfiw/kT)dw (1.13) 

where cffiw/kT) is the contribution to Cvib of a mode of frequency w: 

x =Fiw/kT (1.14) 

This function has the temperature dependence shown in Fig. 1.1, and rises to a 
maximum value of k, or to 3R for one mole (Einstein solid; see Table C.4). 

The shape of g(w) is not simple and is different for each solid. It is usually 
estimated by fitting a lattice dynamical model to experimental data obtained mainly 
from inelastic neutron scattering (see Section 2.6.2). Examples for two crystals of 
different simple structures are given in Fig. 1.14. The shape of g(w) for Ar is much 
the same for other rare gas solids, and also for those fcc metals in which nearest 
neighbor central forces playa dominant role. The shape for Si (diamond structure) 
is fairly similar to those for Ge, for a(grey)-Sn, and for some crystals of zincblende 



18 

VI ..., 
c:: 
:::s 

to 
to 
s.... ..., 
Ll s.... 
to 

C 

5 

4 

3 

2 

°O~--~--~2~~3~--4~--~5--~6--~7~--8~~9 

'hw [meV] 

0·7 

0·1 

o 

a 

v (THz] 
b 

Cbapterl 
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Fig. 1.15. (a) The Debye frequency distribution. The area under the curve is 3N. (b) -, the Debye heat 

capacity as a function of T 18D. - - -, the heat capacity of 3N Einstein oscillators with 8E = VI 8D· 

structure in which the two atoms are in the same row of the periodic table; but it 
differs markedly from that for diamond. 

The sharp discontinuities in slope (van Hove singularities) are a consequence of 
the lattice periodicity and are a feature of all crystal frequency distributions. 

The Debye Model. Despite their great variety, all g(w) for three dimensional 
crystals have two properties in common: (i) the lowest frequency vibrations are 
elastic waves of long wave-length, which implies that at low frequencies g( w) has 
the limiting form aw2; (ii) the total number of frequencies is 3N, where N is the 
number of atoms in the solid. The Debye distribution [Deb12] has the simplest shape 
with both these properties: the w2 dependence is continued over the whole range of 
frequencies up to a cut-offfrequency WD, chosen such that there are 3N vibrations in 
total. In terms of the parameter WD the Debye distribution is then like that shown in 
Fig. 1.15(a): 

OR (1.15) 

where gD(V) is defined such that gD(v)dv is the number of frequencies between v 
and v+dv. 

The temperature dependence of Cy given by Eq. (1.13) for this distribution is 
shown in Fig. 1.15(b); it scales as T /eD , where eD = hWD/k is called the Debye 
temperature. It is usually tabulated as a function of eD /T, either as in Table COS for 
one mole (when 3Nk = 24.94 J·mol-1.K-1) or scaled as Cv/3Nk: 

Cy(Debye) = 3NkfD(eD/T) (1.16) 
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At low temperatures Cy(Debye) tends to zero as T3 , in accord with the behavior of 
real solids and unlike the exponential behavior of C y (Einstein) shown for comparison 
in Fig. 1.15(b) (compare also Tables C.4 and C.5). 

The Debye distribution is used widely in solid state theory as an approximation 
to the true frequency distribution of a solid. Since it is a one-parameter theory, it 
predicts a constant value -dineD/dIn v for the Griineisen function 'Yvib. This is a 
fair approximation for a number of close-packed metals and rare-gas solids but not 
for more complex solids (Fig. 1.13). 

Equivalent Debye Temperatures. Since most materials have Cy curves of rather 
similar shape, a sensitive means of plotting is needed to bring out their differences. 
This is usually done by plotting the equivalent Debye temperature e C as a function 
of temperature. e C (T) is defined as the Debye temperature eD that would predict 
the actual value of Cy at temperature T. It can be obtained from Debye tables (e.g., 
Table C.5) by finding the value of eD/T that gives the experimental Cy(T), and 
then multiplying by T. If many values are required, automatic computation is more 
convenient. Plots of e C against T are used extensively in the succeeding chapters 
(e.g., Figs. 5.4 and 6.1). e C (T) would of course be constant if g( CJJ) were of Debye 
form, and the shape of its variation with temperature is therefore a characteristic 
property of the actual frequency distribution of the solid. 

Consider for example the two frequency distributions in Fig. 1.14, for which the 
corresponding e C (T) are shown in Fig. 1.16. For both Ar and Si the distribution 
at low frequencies rises above its limiting CJJ2 behavior; consequently Cy rises more 
rapidly than Cy(Debye), and this is shown by a fall in eC (T) from its initial value 
e~ at T = O. For Ar the departure from the Debye distribution is much less severe 
than for Si, and the total variation of e C until it approaches its high temperature limit 
e~ is fairly small. For Si the initial rise in the distribution above the CJJ2 behavior 
is steep, and there is a big drop in e C in the range above T = 0, corresponding to a 
greatly enhanced heat capacity. But above the first peak the Si distribution is spread 
out quite thinly until the final peak occurs at much higher frequencies. Cy does not 
therefore approach 3N k until much higher temperatures are reached, and the high 
temperature limiting value e~ reflects these higher frequencies. 

Extreme departures from Debye behavior can occur when there is wide variety of 
strength of bonding within the crystal, as for example in the layered crystal graphite 
(Section 5.8.2). The low frequency vibrations involve mainly weak interlayer forces, 
and despite the low atomic mass e~ has the moderate value of 413 K. But the high 
frequency vibrations depending upon the strong intra layer forces are not excited 
until high temperatures, and at room temperature e C '" 1500 K and is still rising. 
Similarly, in molecular crystals the molecules have internal vibrations of much higher 
frequencies than those involving only the forces between molecules. It is then 
appropriate to modify the definition of the Debye equivalent temperature by not 
including these internal vibrations when counting the number of degrees of freedom 
for the equivalent Debye distribution, thus making this less than 3N. 
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The equivalent thetas for the heat capacity most often tabulated are the room tem­
perature value E)f93 and the low temperature limit E)~ that determines the coefficient 
ofT3 in 

as T-+O (1.17) 

Also tabulated sometimes is the estimated limiting value at high temperatures, 9£, 
which is of theoretical importance (Section 2.6). The room temperature values. even 
if only approximate, can be a valuable guide to the probable behavior of solids at 
temperatures down to 9/5 or 9/10 (see Section 6.2.7). 

The representation of experimental Cv values by 9 c plots can also reveal de­
parture from harmonic behavior at high temperatures. Plots derived for a harmonic 
vibrational distribution flatten off at high temperatures towards a limiting value 9£ 
- typically for T ~ 0.39. This theoretical behavior is shown in Fig. 1.16(a). But 
the experimental values for argon corrected to constant volume in Fig. 5.1 show 
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eC rising at high temperatures, indicating a negative anharmonic effect on Cv.* In 
contrast, for Si a fall in eC is observed at high temperatures, indicating a positive 
anharmonic effect [Flu59]. 

Other Debye Equivalent Temperatures. Equivalent Oebye temperatures can 
be defined for properties other than the heat capacity - particularly for the entropy 
(€)S) and for the Debye Waller effect (eM). Equivalent thetas for different properties 
of the same crystal vary differently with temperature (Fig. 1.16(a», although they 
are usually of the same order of magnitude (Section 2.6). For this reason the explicit 
notation e C for the heat capacity is preferable to eD(T), which is still sometimes 
used. 

The equivalent thetas for the heat capacity and the entropy have the same limiting 
value at low temperatures, which is therefore often written without superscript: 

(1.18) 

Because the only vibrations contributing to Cv and S at low temperatures are elastic 
waves, <90 can also be calculated from elastic data (Section 2.8). Values obtained in 
this way are written Wo' to distinguish them from those obtained from calorimetric 
measurements, written EYoh • Whenever possible Wo' should be derived from low 
temperature elastic data, since elastic moduli change with temperature (Fig. 1.3). 
Values derived from room temperature elastic data should be regarded as a rough 
approximation for <90; they do not give ef93 (see also Section 2.6.4). EYoh and e~' are 
usually found to agree within the uncertainty of the measurements (see tabulations 
[Ale65, Phi7l]). Tables ofvarious Debye equivalent thetas are given in Gschneidner's 
extensive compilation of physical properties of the elements [Gsc64]. 

1.3.4. Electronic Contributions 

The electron theory of metals is a vast subject still in process of development. 
Here we introduce some simple concepts in common use, which will be discussed 
further in later chapters. The underlying theory is standard, and can be found in solid 
state text-books (e.g., [Ash76]). 

Independent Particle Model. In a metal the conduction electrons interact with 
each other as well as with the metallic ions. For many simple metals it is a good 
first approximation to regard all these interactions as producing an effective potential 
field in which the electrons move independently, giving a single particle density 
of electronic states n(E), where n(E)dE is the number of available electron states 
between E and E +dE. Electrons are fermions, and mUltiple occupancy of states is 
forbidden. At T = 0 all the electron states are occupied up to an energy EFO called 
the Fermi energy at T = 0, and all higher states are empty. At low temperatures some 

'The results in Fig. 5.1 were obtained for natural argon, consisting mainly of 40 Ar. The values of aC are 
consequently lower than for 36 Ar. 
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of these higher states become occupied, giving an electronic heat capacity which is 
proportional both to T and to the density of states at the Fermi level: 

(1.19) 

The electronic Griineisen function corresponding to this low temperature limit is then 

'Ye = dln[n(eFo)J/dln V (1.20) 

Free Electron Model. The simplest and earliest model for the density of states 
is to take the electron states as those of a particle of mass m and spin t confined to 
a box of the volume V of the solid. The N conduction electrons then form an ideal 
Fermi gas (see Section 4.4.1), with 

(1.21) 

so that 

(1.22) 

where the Fermi temperature TF is defined by 

(1.23) 

For this model Eq. (1.20) gives for the electronic Griineisen function 'Ye = ~, the 
value for all ideal gases of single particles. This is lower than most experimental 
values (see, e.g., Table 6.1). 

Effective Masses. For the free electron model Eqs. (1.21) and (1.22) show that 
the electronic heat capacity at low temperatures is proportional to the mass m of an 
electron. When the electronic heat capacity of a metal differs from the free electron 
value, an "effective mass" m* can be defined such that when it is substituted for m 
in the free electron expression we obtain the correct electronic heat capacity. The 
ratio m * j m thus gives the ratio of the actual heat capacity to the free electron value, 
and is frequently used as a dimensionless measure of the electronic heat capacity. 
The effective mass is a function of volume, and the electronic Griineisen parameter 
is given by 

2 *j 'Ye = 3' +dlnm dIn V (1.24) 

Effective masses obtained by comparing the predictions of free electron theory 
with other measurable properties are also commonly used in solid state theory; in 
general they differ from each other and from that defined above for the heat capacity. 
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1.3.5. Molecular Gases 

The solid state theories mentioned above are relatively simple because crystals 
are well ordered; even in the free electron gas, where there is no positional order, 
there is a high degree of order in the momenta. At the other extreme, simplicity also 
results when in the classical limit an ideal gas becomes highly disordered. This does 
not happen for an electron gas until very high temperatures are reached (T » T F), but 
for a molecular gas at normal densities the particle states are much closer together and 
the classical theory of Maxwell, Boltzmann and others holds down to temperatures 
typically of order 1 K orlower for heavy molecules (Section 2.4.1), giving the familiar 
results for a monatomic gas: 

pV =NkT (1.25) 

and hence 

3 
Cv = '2Nk , (1.26) 

in agreement with the value y = ~ valid at all temperatures. Effects due to the further 
degrees of freedom of polyatomic molecules are discussed in Section 4.2.2, and those 
due to departures from ideality due to intermolecular interactions in Sections 4.2.4 
and 4.3. 

1.4. PLAN OF THIS BOOK 

Like the present chapter, the next two chapters are general in the sense that they 
deal with topics that are relevant to many (and sometimes all) materials. After defin­
ing precisely quantitative measures of heat capacity and thermal expansion, Chapter 2 
goes on to describe briefly the underlying theoretical framework: first the thermody­
namics and statistical mechanics, and then the various types of material to which they 
are applied, the different types of bonding (ionic, valence, metallic, etc.) giving rise 
to different types of behavior. Several simple models are then described which have 
widespread application either directly or indirectly by illustrating concepts important 
for more complex systems, the aim being to clarify ideas of particular relevance to 
heat capacity and thermal expansion. We then discuss anisotropic stress and strain, 
and the thermodynamics of elasticity. The ground is thus prepared for Chapter 3, 
which discusses methods of measurement and other cryogenic techniques. 

Most of the rest of the book deals in tum with different groups of materials. 
Chapter 4 deals briefly with fluids. Although most materials of cryogenic interest are 
solids, there are some fluids of great importance. Liquefied gases such as nitrogen, 
hydrogen and helium are used widely in cooling; their low triple points enable theories 
of equations of state to be tested up to high reduced temperatures and pressures; and 
vapors are used to establish the thermodynamic ideal gas scale of temperature. And 
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of course the unique properties of liquid 3He and 4He and their mixtures are of great 
interest both fundamentally and technically. 

Chapter 5 deals with non-metallic solids, including ceramic high temperature 
superconductors. These are of many different kinds, too many to be covered compre­
hensively in a book of this type. Emphasis is therefore placed on those materials that 
are cryogenically important, and on those that are interesting theoretically either be­
cause they are well understood or because they present well-defined problems. This 
is true also of Chapter 6, which deals with metals and semi-metals, but here further 
theoretical treatment is also needed in order to discuss such wide-spread properties 
as superconductivity and magnetism. 

Composite materials (with polycrystals of a single substance as a special case) are 
discussed briefly in Chapter 7. Chapter 8, "Cryocrystals, Clathrates and Curiosities;' 
deals with topics which merit inclusion but do not fit conveniently elsewhere. After 
a brief ''Conclusion;' there are appendices containing useful information such as 
methods of thermodynamic manipulation, tables of technical data, Einstein and Debye 
tables, and a list of commonly used symbols. 
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Chapter 2 

Basic Theory and Techniques 

2.1. INTRODUCTION 

This chapter summarizes theory used in the discussion of thermodynamic prop­
erties, giving references to where more detailed discussion may be found, and elab­
orating more fully some concepts which are frequently used. The general principles 
are illustrated first for isotropic behavior. Of these principles, thermodynamics is 
essential to everyone in that it provides a systematic method of describing, relating 
and analyzing the bulk properties which form the subject of this monograph. Sta­
tistical mechanics relates these properties to atomic and molecular structure, and so 
forms the basis for their theoretical explanation and prediction. Computational tools 
developed for this purpose are briefly mentioned, both for the statistical mechanics 
and for the underlying quantum theory of bonding and cohesion. Some of the appli­
cations described are simple, such as ideal gases and Schottky systems; but two others 
of great general importance, viz. cooperative order-disorder effects and vibrational 
contributions, require longer discussion. So also does the extension of the theory to 
anisotropic behavior and elasticity. 

2.2. THERMODYNAMICS 

Like Section 1.3, this section deals with processes that are functions of volume 
and temperature. The thermodynamics of more general strain (including anisotropic 
expansion and elasticity) is treated in Section 2.8. 

2.2.1. Definitions 

Heat Capacity. Heat capacity is defined as the limit of the ratio aQ/ aT as 
aQ -+ 0, where aT is the rise of temperature resulting from an input of heat aQ 
under specified conditions. The heat capacities Cp and Cv, already defined in 

27 
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Section 1.3.1, can also be expressed as derivatives of the entropy: thus 

cp=(aH) =T(as) =_T(a2~) aT p aT p aT p (2.1) 

Cv= (~~)v =T(::)v =-T(:~)v (2.2) 

where U and H are the energy and enthalpy, and F and G the Helmholtz and Gibbs 
free energies. The estimation of Cp from measurements involving finite intervals is 
discussed in Sections 1.2 and 3.2. Cv is usually not measured directly, but obtained 
from Cp by a thermodynamic relation (Eq. 2.10). 

The expressions given above can apply to macroscopic systems of any size, but 
are often taken to refer to molar quantities. We reserve the term specific heat for 
the heat capacity per unit mass or per unit volume, both of which we denote by 
lower case: 

cp=Cp/M, cv=Cv/M; OR cp=Cp/V, cv=Cv/V (2.3) 

Thermal Expansion. The coefficient of volumetric expansion, already defined 
in Eq. (1.3), can be expressed in any of the forms 

~ = (alnV) = _ (alnp ) =.!.. a2G 
aT p aT p v apaT (2.4) 

This coefficient is often also denoted by a, but that symbol is more usefully reserved 
for coefficients of linear expansion, defined by 

a = (alnl) =! (!!...) aT plaT p (2.5) 

When the expansion is isotropic, ~ = 3a. 
Data on thermal expansion can be presented in different ways - for example as 

molar volumes, as dilations AV /Vo, or as expansion coefficients. For high precision 
it may be necessary to make fine distinctions, as for example between ~ and a 
as defined thermodynamically above and the quantities W and a* often used as 
practical definitions: 

~* = ~ (av) , 
Vo aT p 

* 1 (al) 
a = t;; aT p 

(2.6) 

where Vo and 10 are usually taken to be the room temperature values of V and I. 
Details of the treatment of primary dilatometric data are discussed in Section 3.3.1 
and in several chapters of [H098]. 
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Thermal expansion data are also obtained from the change in crystal lattice 
parameters measured by Bragg reflection in X-ray or neutron diffraction. Strictly 
such data are not equivalent to dilatometric data because of crystal imperfections. 
For example, differences between the volumetric expansion coefficients of the crys­
tallographic unit cell and of the bulk crystal are used to estimate the formation of 
vacancies (see Section 3.3.2). However, vacancies have a significant effect only near 
the melting point; at other temperatures the unit cell dimensions change proportion­
ately to those of the macroscopic crystal, and so are equivalent to dilatometric data. 
Conventions for the nomenclature of crystal axes, and the relation of the change of 
crystallographic parameters to bulk expansion, are discussed in Appendix A. Anal­
ysis of intensities can give also the changing relative positions of atoms within the 
unit cell (known as internal expansion), but usually with insufficient precision to 
show perceptible change at low temperatures. 

2.2.2. Units and Conversion Factors 

Conversion between different energy scales is important for the comparison 
and interpretation of thermodynamic data. International convention now generally 
requires the use of SI units, together with allowed related units [CohS7, NeI9S]; but 
cgs and obsolete "practical" units are sometimes found, especially in the older lit­
erature. Temperature scales, thermodynamic and practical, are discussed in Section 
3.1. 

The old unit of heat, the calorie, was used in the past in much good calorimetric 
work. It was defined originally so as to make the specific heat of water at 15° 
Centigrade equal to 1 cal.g-1·deg-1, but later a thermochemical calorie (calth) was 
fixed as precisely 4.184 J. Heat capacities are now usually given in molar units of 
J·mol-I·K-1, or as specific heats in units of J.g-1·K-1 or J·cm-3·K-1• 

At the atomic level the electron volt (eV) is often used as a unit of energy, 
although spectroscopists may also refer to energy differences in terms of the fre­
quency (in Hz) or inverse wave-length (in cm- l ) of the equivalent photon. In 
statistical mechanics we also need to know the temperature range in which the 
higher energy level becomes appreciably occupied. Table 2.1 gives equivalence 
factors relating these different energy scales. Thus we can see, for example, that 
rotational energy levels of molecules, which have microwave spectroscopic tran­
sitions of a few cm-1, will contribute to heat capacities at temperatures of a few 
kelvin and upwards; whereas electronic levels, typically of the order of eV, will 
usually not contribute at all at low temperatures. 

The bulk modulus and other elastic stiffnesses have the dimensions of pressure, 
for which the SI unit is the pascal: 

1 Pa = 1 N ·m-2 = 10 dyn.cm-2 (2.7) 

The unit dyn.cm-2 is now wholly obsolete, but one pre-SI practical unit, the bar, is 
still acceptable and widely used; 1 bar = lOS Pa, introduced so that the atmospheric 
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Table 2.1. Equivalence factors for different energy scales 

J eV hxl THz hexl em- I kxl K 

1 eV = 1.602 x 10-19 1 241.8 8065 11604 

hxl THz = 6.626 x 10-22 4.136 x 10-3 1 33.36 47.99 
hexl em- I = 1.986 x 10-23 1.240 x 10-4 0.02998 1 1.439 
kxl K = 1.381 x 10-23 8.617 x 10-5 0.02084 0.6950 1 

Also: I eV·molecule- J = 96.49 kJ·mol- J = 23.06 kcalll,moJ- 1 

pressure is approximately 1 bar. Elastic stiffnesses of solids are typically of the 
order of 10 to 100 GPa, i.e., 0.1 to 1 Mbar. 

2.2.3. Thermodynamic Relations 

Methods used for obtaining relationships between thermodynamic quantities 
are summarized in Appendix B. Here we quote some results widely used in the 
analysis of thermodynamic data. 

The ratio of Cp to Cv is the same as that for Bs to BT: 

Cp = Bs = XT = 1 + ~yT 
Cv BT xs 

where "I is the Griineisen function defined in Eq. (1.5): 

Thus 

~V ~V 
"1=--=--CpXs CVXT 

~2VT 
XT=XS+-­Cp 

(2.8) 

(2.9) 

(2.10) 

The following relations are frequently used in the discussion of thermal expan­
sion: 

( as) = (ap) = ~ = ~BT 
av T aT v XT 

(2.11) 

Equations (2.11) lead to further expressions for the Griineisen function "I defined 
in Section 1.3.1: 

"1= (a(~~v))v = ~v (:~)v = ~v (:~)T =-(:!:~)s (2.12) 

The last expression in Eq. (2.12) shows that gamma governs the size of temperature 
changes caused by changing pressure under adiabatic conditions: 

( aT) = yTxs ap s (2.13) 
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This provides a direct way of determining 'Y (Section 3.3.7). The effect has also 
been used to monitor stress fluctuations in working materials by observing the 
related temperature fluctuations [Mou78]. 

Other Griineisen Functions. Although 'Y as defined above is the most widely 
used, other Griineisen functions may be met in the literature. For example, one is 
obtained from the volume derivative of the equivalent Debye temperature E)c: 

-[aln{E)c (T, V)}/aln V]T 

This is a good estimate for the 'Y of Eq. (2.12) when the temperature variation of 
eC is small, but not when deviations from Debye behavior are large. 

Two other thermodynamic Griineisen functions are used occasionally, called 
here 'YEOS and 'YSH' 'YEOS is defined from one of the Mie-Griineisen equations of 
state, approximations often used by geophysicists and others concerned with high 
pressure behavior [Eqs. (2.99)]: 

P(T, V) - P(O, V) (aln T) 
'YEos(T, V) = [U(T, V) - U(O, V)]/V = - aln V (Fth/T) 

(2.14) 

where Fth = F(T, V) - F(O, V), the thermal component of the Helmholtz energy. 
'YSH was used by Ahlers [AhI67, Ah170] in the discussion of Cv data obtained for 
helium at different fixed volumes, because (unlike 'Y) it could be obtained from 
the data without the need to extrapolate the measured heat capacities and their 
derivatives to T = 0: 

(acv / aln V)T (aln T) 
'YSH = (aCv/alnT)v = - alnV Cv 

(2.15) 

If over the whole range of temperature 'Y(T, V) is a constant depending only on 
volume, then 'Y, 'YEOS and 'YSH are all equal; but if 'Y varies strongly with temper­
ature they differ markedly.* Relations between the three functions are discussed in 
[Bar98, Section 1.4.3]. 

A number of approximations have been proposed which estimate 'Y from the 
pressure dependence of the bulk modulus; see [And95a, Section 1.4]. They are 
based on the theory of lattice vibrations, but since they are themselves thermo­
dynamic expressions they are conveniently described here. Two early estimates, 
proposed by Slater [SIa39a] and by Dugdale and Macdonald [Dug53], are some­
times still used: 

1 1 
'YsI = 2 (dB/dP) - 6' 

1 1 
'Yd-m = 2 (dB/dP) - 2 (2.16) 

·In particular, "ISH can become infinite when the heat capacity passes through a maximum or 
minimum as a function of temperature. 
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Although useful at the time, these were derived by means of crude assumptions and 
have long been known to be inaccurate both at low and high temperatures even for 
the simplest models [Bar57a]; they should now be regarded as of historical interest 
only. The best estimate of this kind is probably that of Barton and Stacey [Bar85] 
for the high temperature limit /'00 as a function of pressure: 

(2.17) 

where f = 2.35. This is based on the concept of pair potentials and includes both 
bond-stretching and tension effects (see Section 2.6.3). Approximations which 
make use also of the rigidity modulus and its pressure dependence are discussed 
by Anderson, see [And95a, Section 1.8]. 

Pressure and Volume Derivatives. The isothermal pressure derivatives of both 
the heat capacity and the thermal expansion coefficient can be obtained thermody­
namically from the results of measurements carried out at constant pressure: 

( acp ) =_T[.!...-(av)] =_T[a(f3V)] =_TV[f32+(af3) ] ap T aT aT p p aT p aT p 

(2.18) 

and 

(2.19) 

For the bulk moduli, on the other hand, isothermal pressure derivatives can only be 
obtained from measurements under varying pressure; they are dimensionless, and 
can also be expressed as isothermal logarithmic volume derivatives, often denoted 
by B~ and B~: 

B' = (aBs) s ap , 
T 

B~ = (aBT) = _ (alnBT) 
ap T aln V T 

(2.20) 

Typically they have values between 4 and 6, but decrease appreciably at high 
pressure [And95a). As with Bs and BT, their variation is small at low temperatures; 
and the difference between them is also small, tending to zero as T -t O. For further 
discussion see Section 2.7. 

In contrast to the isothermal derivatives. the difference between the isobaric 
logarithmic volume derivatives of Bs and BT is not small. These are the Anderson­
Griineisen functions fjs and Sr. defined by [Bas68] 

fj = _ (alnBs) 
s alnV p' 

fjT = _ (alnBT) = (alnf3) 
alnV p alnV T (2.21) 
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They are a different type of function from the Griineisen functions discussed above; 
they originate from a parameter used by Griineisen [GruI2] and later exploited by 
O. L. Anderson [And66a]. Anderson has pointed out that their small variation 
at high temperatures make them suitable for extrapolating bulk moduli to higher 
temperatures. They are not so useful at low temperatures, where both Ss and &r 
can vary strongly (e.g., [And95a, Fig. 1.1]). At T rv E> the difference between them 
is given approximately by ST - Ss rv 'Y. At low temperatures the difference tends 
to the limit ST - Ss = (n + 1)1'0, where n is the exponent of T in the limiting form 
of the heat capacity (1 for metals and 3 for non-metals) and as usual 1'0 is the 
limiting value of gamma at low temperatures [Bar79]. 

Measurements under pressure are needed to determine the isothermal volume 
derivative of the Griineisen function, which is often described by the dimensionless 
quantity 

q=(aln'Y/alnV)T (2.22) 

sometimes called the second Griineisenfunction.* At high temperatures q often has 
a value of about unity. At low temperatures it may vary strongly, and it becomes 
infinite whenever gamma changes sign; it is then preferable to use (a'Y / a In V)T. 

Relations between these quantities have been discussed repeatedly in the liter­
ature, e.g., [Bas68, Bar79, Bar80, And95a, Bar98]. 

Electric and Magnetic Fields. The components of electric and magnetic fields 
are intensive thermodynamic variables additional to temperature and pressure (or 
stress). For example, under conditions where there is a uniform magnetic field H 
the differential of the Gibbs free energy (G = U - TS +PV - #J.OHM) is 

dG = -SdT + V dP - #J.OMdH (2.23) 

where M is the total magnetic moment of the material. Thermodynamic relations 
follow by the usual methods; e.g., for first order magnetostriction there is the 
Maxwell relation 

(2.24) 

For more general applications a tensor notation is needed for the stress and strain, 
and explicit consideration of crystal symmetry [Nye85]; and various subtleties arise 
[Bor54, Bar98]. We shall not pursue this subject further in this book, except to 
quote results if needed. 

'Other functions have also been given the name of second Griineisen function, parameter, or constant 
[GilS6, DavS9, Barn]. 
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2.2.4. Phase Transitions 

Phase transitions have often been discovered through the appearance of unex­
pected anomalies in measurements of heat capacity or other thermodynamic proper­
ties. Indeed, Ehrenfest's historic classification of transitions as first, second, third, 
etc., is purely thermodynamic. At all phase transitions there is continuity of the 
Gibbs free energy G across the phase boundary; at a first order transition G is 
continuous but there are discontinuities in its first derivatives S and V; at a second 
order transition S and V are continuous but there are discontinuities in the second 
derivatives of G (and hence in Cp, ~, and XT); and so on. 

Ehrenfest's classification has however proved inadequate for a general descrip­
tion of transitions beyond the first order; for example, superconductors are the only 
materials which appear to have transitions exhibiting ideal second order behavior. 
The principal distinction to be drawn is between the first order transitions, which 
occur between phases of distinct structure and where consequently superheating and 
supercooling can occur, and other transitions where there is continuity of structure 
but the transition marks the initiation of some process changing the structure (see 
the incisive discussion by Pippard in [pip64, Ch. 9]). These other 'higher order' 
transitions exhibit many different types of behavior (Section 2.5.4). 

First Order Transitions. Consider first a system with two independent inten­
sive variables, P and T. Along the phase boundary in the P-T phase diagram the 
difference in free energy tlG between the phases is constant (zero), and so 

dtlG = -tlSdT +tlVdP = 0 (2.25) 

The Clapeyron equation for the slope of the transition line follows immediately: 

dP tlS 
dT tlV 

(2.26) 

The same method can be applied when there are three (or more) intensive 
variables, T,P,H say. Using Eq. (2.23) to get dtlG we find that on the transition 
boundary 

(2.27) 

Second Order Transitions. We consider only two intensive variables T, P. At 
the transition S and V are continuous, so that along the transition we can equate 
separately dS and dV to zero. This leads to the two Ehrenfest equations (e.g., 
[Pip64, Bar98]) 

dP 1 tlCp tl~ ---
dT VT tl~ tlXT 

(2.28) 
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2.2.5. The Third Law and Its Implications 

The Third Law was introduced in Chapter 1 as a consequence of the quantum 
nature of matter. Here we discuss it strictly from a thennodynamic standpoint, i.e., 
as a postulate deduced from the observed behavior of macroscopic systems. As 
such, for many years it was the subject of considerable controversy, due partly to 
the difficulty of stating it in a form that would be both general and succinct (e.g., 
[Sim56, Dug96]). Broadly, the essential content of the Law is the existence of an 
absolute zero for entropy as well as for temperature, which is approached as T -? 0 
for any system in thermodynamic equilibrium. The Law thus tells us two things: 
(a) the change in entropy as T -? 0 is finite; (b) the change !lS in entropy is zero 
between any two equilibrium states of a system at T = O. 

Behavior as T -+ O. From (a) alone it follows that the heat capacities Cp and 
Cv tend to zero as T -? 0, because otherwise the integrals giving the changes in 
entropy from T = 0 to any other temperature T, viz. 

!lS = rT Cp(P, T) dT 
Jo T 

or AS = rT Cv(V, T) dT 
Jo T 

(2.29) 

would be infinite; but to deduce the behavior of other thermodynamic properties 
the full law is needed. With the aid of a Maxwell relation we prove that {3 -? 0 as 
T -~ 0, since at T = 0 

(3 =.!. (av) = _.!. (as) = 0 
v aT p v ap T 

(2.30) 

Similarly the thermal pressure coefficient (:~) v can be shown to be zero at T = O. 

The bulk modulus (and more generally all the elastic stiffnesses) tend to finite limits, 
but their temperature derivatives tend to zero (e.g., Fig. 1.3): 

( aBT) _ [a ( ap )] _ v [a (ap) ] _ 0 aT v - - aT aln v T v - - av aT v T - (2.31) 

Similar arguments can be applied when instead of P and V we take electric 

or magnetic conjugate variables, so that for example (~~) H is zero at T = 0, as 

are also the temperature derivatives of the magnetic permeability X and the electric 
permittivity E. 

Extension of the Third Law to Sub-Systems. The restriction of the Third 
Law to systems in equilibrium would forbid any application to substances such as 
glasses at low temperatures; and indeed their entropy does not approach zero as 
T -+ O. Nevertheless, many conclusions derived from the Third Law are true also 
for such systems, and they are covered by a revised statement of the Law due to Sir 
Francis Simon [Sim37], which we give here in the wording of Dugdale in [Dug96, 
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pp. 163-4]: The contribution to the entropy of a system from each sub-system that 
is in internal thermodynamic equilibrium vanishes at T = O. This extended law is 
applicable to many different types of sub-system. For a glass at low temperatures, 
the vibrations are in internal equilibrium and contribute to the thermal properties, 
while the structure is frozen in a disordered arrangement with constant non-zero 
configurational entropy. 

Residual Entropy at T = O. There are many systems which, like a glass, have 
non-zero entropy at T = O. As such systems are cooled, kT becomes much less than 
the activation energy of the processes needed to reach thermodynamic equilibrium, 
so that equilibrium cannot be reached during the time of the experiment (e.g., ice, 
Fig. 1.12). The approximate temperature at which this occurs will depend upon 
the rate of cooling, and this may affect the extent to which the system remains 
disordered at low temperatures. Perhaps the simplest examples of residual entropy 
are provided by some crystals of asymmetric linear molecules, such as N20 and CO, 
for which the activation energy to reverse molecular orientation is much greater than 
the difference in energy between the initial and final states; molecular orientations 
then get frozen in a disordered arrangement. If no ordering has occurred before 
this happens, the residual configurational molar entropy will be 

Sconfig = k In (2NA ) = R In 2 (2.32) 

as observed for N20. However, in CO partial ordering occurs before the remaining 
disorder becomes frozen in; the residual entropy is appreciably less than Rln2 and 
depends on the rate of cooling [Man97, Section 17.1]. 

Residual entropies are often determined by calculating the absolute entropy of 
the gaseous phase by the methods of statistical mechanics, using spectroscopic data 
to obtain the molecular energy states, and then finding the change of entropy on 
cooling to the solid state by calorimetric methods [Moo62]. 

The Unattainability of Absolute Zero. Although the state of a system at T = 0 
is usually the easiest state to treat theoretically, we can deduce from the Third Law 
that such a state cannot be obtained in the laboratory. Methods for obtaining low 
temperatures are discussed in detail in many texts (see Section 3.1.1). In essence, 
reduction of temperature is achieved by changing an experimental variable (such 
as pressure or magnetic field) under adiabatic conditions, in such a way as to 
reduce the temperature along the relevant adiabat (Fig. 2.1). If it were possible 
to reach absolute zero in a finite number of such steps, the final adiabatic step 
would therefore start in a state with S > 0 and end in a state with S = 0; but under 
adiabatic conditions this is forbidden by the Second Law. 

It is interesting to note that stating the unattainability of absolute zero is not 
strictly equivalent to the Third Law, because unattainability would hold for classical 
as well as for quantum matter [Sim56]. The entropy of all substances would then 
tend to minus infinity as T -+ 0, and again the absolute zero would never be reached 
in a finite number of steps. 
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Fig. 2.1. Entropy-lemperature diagram of a substance obeying the third law, when the pressure is 
changed alternately adiabatically and isothermally. The absolute zero is unattainable. From [Dug96, 
Fig. 22(b »). 

2.3. STATISTICAL MECHANICS 

2.3.1. Quantum Statistical Mechanics 

The nineteenth century work of Maxwell, Boltzmann and Gibbs treated the 
statistical behavior of large numbers of atoms and molecules obeying the laws of 
classical mechanics. Despite its great success in accounting for the First and Second 
Laws of thermodynamics, and also for the behavior of dilute gases, it failed to account 
for the equilibrium between a solid body and its surrounding radiation field; and of 
course it was this that led to Planck's original quantum hypothesis. As we have seen 
in Chapter 1, quantum theory is essential for understanding the Third Law, including 
the behavior of the heat capacity and thermal expansion at low temperatures. 

There are very many books on statistical mechanics, with different applications 
and different levels of theory. Among these are the classic text by Tolman [To13S], 
and [Hi160, Ric67, Fey72, Gop74]. 

The Boltzmann Factor and the Partition Function. Consider a physical system 
with possible quantum states i, having energies Ei, in thermal equilibrium with 
surroundings at temperature T. The probability Pi that the system is in state i is 
proportional to the Boltzmann/actor, exp( -E;/kT), and is given by 

1Tt/ __ exp(-E;/kT) 
.r Z (2.33) 

where Z is the partition function or sum over states (German Zustands-summe) 

Z = Lexp(-E;/kT) 
i 

The Helmholtz energy and the entropy are then given by 

F=-kTlnZ, S = -k LPilnPj 

j 

(2.34) 

(2.35) 
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The expression for the entropy is quite general. In particular, it reduces to the familiar 
S = kInO when there is a finite number 0 of possible states, all equally probable, 
since then Pi = I/O for all i. 

For a macroscopic system the energies Ei are functions of the volume, Ei (V), or 
more generally of the strain (see Section 2.8). Expressions for other thermodynamic 
quantities are found by differentiating F with respect to T and V, and are functions 
of averages over the states i weighted by Pi' With the general notation 

(X) = LPiXi (2.36) 

the pressure is given by 

p= - LPiE[ = -(E') (2.37) 

and 

BT = ~ = V [(E") - { (E,2) - (E')2} / kT] (2.38) 
)(T 

(ap/aT)v = (as/aV)T = -{(E'E) - (E') (E)}/kT2 (2.40) 

The thermal expansion coefficient {3 is then obtained by using Eq. (2.11), and the 
Griineisen function is 

(T V) = -V (E'E) - (E') (E) 
'Y , (E2) _ (E)2 (2.41) 

If all the energies Ei scale with volume in the same way, so that they are all proportional 
to a single characteristic energy Ec , this reduces to a single Griineisen parameter 

'Y(T, V) = 'Yc = -(dlnEc/dlnV) (2.42) 

The above equations show that Pi, S and Cv depend only on the intervals be­
tween the energies Ei, which may be determined spectroscopically. Spectroscopic 
measurements under pressure give also the volume derivatives of energy intervals, 
and hence in principal the data needed to derive 'Y and {3. 

Application: the 1\vo State Schottky System. A simple but important illustra­
tion of these general results is provided by a system which has only two possible 
quantum states - for example, the magnetic states of a nucleus of spin ! in a mag­
netic field, with energies El = 0, E2 = AE. This is a special case of the general class 
of Schottky systems discussed in Section 2.5.3. For T « AE, the system will be in 
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the lower energy state, so that PI = 1 and P2 = 0; and the entropy is -k In 1 = O. For 
T ~ ~E, there are 2 possible states of equal probability 1, and the entropy is k In2. 
At intermediate temperatures the probabilities for the system to be in the lower and 
upper states are as shown in Fig. 2.2: 

(2.43) 

where x = fl.E/kT and 1 + e-x is the partition function. Other thermodynamic 
functions follow immediately from Eqs. (2.33)-(2.41); in particular the entropy and 
heat capacity are 

(2.44) 

where the lower case symbols denote properties of a microscopic subsystem rather 
than of bulk material. The formal similarity of the expression for the heat capacity 
to that in Eq. (1.14) for a harmonic oscillator is a good aid to memory, but the plus 
signs in the brackets lead to the behavior shown in Fig. 2.2(c), very different from 
that of a harmonic oscillator (Fig. 1.1). In the high temperature limit x -+ 0, and C sch 

tends to zero as ik(~E/kT)2. 

Additive Contributions. According to statistical mechanics, the additivity of 
different contributions to thermodynamic functions has its origin in the additivity of 
different contributions to the energies of excited quantum states. For example, in a­
nickel sulphate (see Fig. 1.5) the excitation of the magnetic energy levels is to a very 
good approximation independent of the lattice vibrations, and at low temperatures a 
total excited state of the crystal is specified by giving both its vibrational state v and 
its magnetic state x. The energy is 

Ev,x = Eg +Ev +Ex (2.45) 

where Eg is the energy of the electronic ground state. The partition function then 
factories: 

Z = ~:e-(Eg+Ev+Ex)/kT = e-Eg/kTZvibZm (2.46) 
v,X 

where Zvib and Zm are the vibrational and magnetic partition functions, giving the 
Helmholtz energy as 

F = -kTlnZ = Eg+Fvib+Fm (2.47) 

Separate contributions to P, S, Cv, etc., follow by differentiation (e.g., Section 
5.11.1). Another example is provided by excited states of molecules, which can be 
labelled by their electronic, vibrational and rotational states (Section 4.2), although 
there is significant interaction between rotations and vibrations. 
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Fig. 2.2. Properties of a mole of identical Schottky systems with two non-degenerate levels (see text): (a) 
occupation of levels PI (solid curve) and P2 (dashed curve); (b) entropy; (c) heat capacity. 
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Fig. 2.2. (Continued). 

Grand Partition Function. The method of averaging just described is that of 
the canonical ensemble, applicable to a system of fixed volume and composition in 
contact with a heat bath at temperature T. Statistical mechanics can also be applied 
to systems under different conditions. For example, the grand canonical ensemble 
is applicable to a system of fixed volume in contact both with a heat bath and with 
a reservoir of particles of chemical potential IL, so that it can exchange particles 
with the environment as well as energy. The states of the system then have energies 
EN,i(V), where the subscripts indicate the ith quantum state of the system when it 
contains N particles. The statistical probability of this state is then 

(2.48) 

where IL is the chemical potential (per particle) in the environment and 8 is the grand 
partition function, defined by 

00 

8= r, r,exp{(NIL-EN,i)/kT} (2.49) 
N=O i 

From 8 is obtained the virial PV expressed as a function of T and IL: 

PV=kTln8 (2.50) 

Other thermodynamic properties follow by differentiation, since 

d(PV) = SdT +PdV +NdlL (2.51) 

For some systems the grand canonical ensemble is easier to apply than the 
canonical ensemble - notably to systems of non-interacting particles, such as the 
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quantum ideal gas (Section 4.4.1) and the independent particle model for electronic 
properties of solids. We do not need to consider the whole system simultaneously; we 
can treat each particle quantum state j with energy Ej as an independent sub-system 
in an environment of temperature T and electron chemical potentiallJ., so that in the 
formalism N becomes the number of electrons in state j. Since electrons are fermions 
there are only two possibilities: j is occupied, giving N = 1 and energy E = Ej; or it 
is unoccupied, giving N = 0 and E = O. The grand partition function is then simply 
1 + exp{ (IJ. - Ej )/kT}, and the probability of occupation is given by the mean value 
ofN: 

exp{(1J. - Ej}/kT} 1 
p= l+exp{(IJ.-Ej}/kT} = exp{(Ej-IJ.}/kT}+1 

(2.52) 

This is the Fermi-Dirac distribution function referred to in Section 4.4.1. 
The treatment of independent boson systems is similar, except that each particle 

state can be multiply occupied: N now takes any value between 0 and 00. The grand 
partition function is then 

~ 1 
8 = N~ exp{N(IJ.- Ej}/kT} = l-exp{(1J. _ EJ}/kT} (2.53) 

giving a mean occupation number 

00 

nj = (N) = L Nexp{N(IJ.-Ej}/kT}/8 (2.54) 
N=I 

which reduces to 

1 
(2.55) 

nj = exp{(Ej -IJ.)/kT}-1 

This is the Bose-Einstein distribution referred to in Section 4.4.1. 

Use of Quantum Operators. The theory given above is expressed in terms of 
the energies Ei of the solutions of the Schrodinger equation for the system; but these 
are not always known. Complex systems are therefore often treated in an equivalent 
but more general formulation which expresses the sums over i in Eqs. (2.34}-(2.37) 
as traces of quantum mechanical operators (e.g., [Bar74b)); such traces are invariant 
whichever complete orthonormal set of wave functions are used. For example, the 
partition function Z defined in Eq. (2.34) can also be written as 

Z = 'Jr{exp( -if /kT}} = L < cPjl exp( -if /kT}lcPj > (2.56) 
j 

where if is the Hamiltonian energy operator and the quantum states 1cf>J > do not 
have to be the energy states of the system but can be taken to be any complete set of 
orthonormal states that is convenient to use; e.g., for an anharmonic crystal the 1cf>J > 
can be taken to be the harmonic vibrational states, whose properties are well known. 



Basic Theory and Techniques 43 

2.3.2. Classical Statistical Mechanics 

Classical statistical mechanics is valid in the limit of high temperatures. The 
mechanical state of a classical system is specified by the positions x,y,z and mo­
menta Px,Py,Pl. of all the N particles, equivalent to a point in 6N-dimensional 
phase space [Tol38, Cal60]. The statistical probability that the system is in a state 
within some given region of phase space is determined by a probability density 
P(rt,··· ,rN;Pl,··· ,PN), which in the canonical ensemble is proportional to the 
Boltzmann factor exp( -E/kT): 

P( )_ exp{-E(rl,···,PN)/kT} 
rt, ... ,PN - J~oo drl ... J~oo dPN exp{ - E (rt, ... ,PN) / kT} (2.57) 

where the integral is over the whole of phase space. The expressions in Eqs. (2.37)­
(2.41) remain valid, the averages being now quotients of integrals. A purely classical 
theory cannot give absolute values for the entropy and free energy, but the correspon­
dence principle of quantum mechanics implies that at sufficiently high temperatures 
it agrees with quantum theory if the density of quantum states in phase space for a 
system of N identical particles is taken to be h - 3N / N !. The partition function is then 

(2.58) 

Since 

(2.59) 

where m is the mass of a particle and ct> is the potential energy, the integration over 
the momenta can be done analytically to give 

3N 

( 27rmkT) T 1 100 100 

Z = 2 -, drl ... drN exp{ -ct>(rl,··· ,rN )/kT} 
h N. _00 _00 

(2.60) 

The entropy is given by 

S = (E}/T+klnZ (2.61) 

2.3.3. Computational Methods 

Quantum Calculations. Both quantum and classical statistical mechanics are 
widely used in the calculation of thermodynamic properties from models of physical 
systems. The most direct applications of quantum statistical mechanics are to models 
for which the quantum states can be classified and their energies calculated for use 
in the equations of Section 2.3.1, with or without algebraic summation of analytic 
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expressions. Examples include Schottky systems (Section 2.5.3), vibrating crystals 
in the harmonic approximation (Section 2.6.2) and dilute molecular gases (Section 
4.2). The computational task is thus two-fold: to solve the Schrooinger equation, at 
least approximately; and to perform the required summations over all states. For all 
except these simple separable systems this can be a formidable task. 

Classical Calculations. The validity of classical mechanics at sufficiently high 
temperatures is widely exploited. The classical integrals are sometimes easier to 
evaluate, either analytically or numerically, than the corresponding quantum sums; 
for example, they enable the virial expansions for the behavior of imperfect gases 
to be expressed in terms of integrals over clusters of interacting molecules (Section 
4.2.4). But except in special cases like these, where the integrals over phase space 
can be reduced to the calculation for small clusters, numerical computation can be 
carried out only for comparatively small systems. For these surface effects would 
be important, but in the study of bulk matter they are avoided mathematically by 
employing a cyclic boundary condition, as first used by Born in the theory of crystal 
vibrations. The finite system under study is repeated periodically over all space, with 
the effect that, for example, material near the left boundary of the system is in direct 
interaction with material near the right boundary. As the size of the system increases, 
its properties approach those of the bulk material. 

To be practicable, the integration over phase space requires some method of 
avoiding the vast regions which have very low probability. Two techniques, Monte 
Carlo (MC) and Molecular Dynamics (MD), are widely used for this purpose. 

Me methods use techniques for random successive sampling of phase space 
which are systematically biassed against regions of low probability density. The 
earliest and best known of these is that of Metropolis et al. [Met53] for canonical 
ensemble averaging; but many others have been developed for a variety of ensembles, 
and applied to many different types of model systems, including fluids, interfaces and 
strongly anharmonic solids. Details and discussions of the accuracy and reliability 
of the methods are available in several texts (e.g., [A1l87, Fre96]). 

In an MD simulation, initial positions and velocities of all the particles are chosen 
compatible with the desired macroscopic conditions, and the forces on each atom 
calculated from the model potential function. Newtonian mechanics is then used to 
deduce the development of the system over a short time step, after which the forces 
are recalculated and the process repeated. By taking a large number of such steps we 
may follow the development of the system over time. Thermodynamic properties are 
then estimated by averaging over time, on the ergodic hypothesis that all significant 
regions of phase space are covered statistically during the progress of the calculation. 
Mechanical properties such as energy and momentum are given by direct averages; 
statistical properties such as entropy and free energy are deduced from fluctuations 
of the system and obtained less accurately. The method is also used to obtain time 
correlation functions required for the calculation of spectroscopic properties, and to 
follow the kinetics of non-equilibrium processes. Details can again be found in the 
texts referenced above. 
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Advantages of classical calculations are: (i) the classical states of any model 
system are known, enabling the methods to be applied immediately to a wide variety 
of systems, including highly disordered materials (fluids and solids) and strongly 
anharmonic solids; (ii) the results obtained for the disposition and mutual behavior 
of the atoms and molecules can be presented graphically in ways that are easy to 
interpret. Disadvantages are: (i) the theory is invalid at temperatures below which 
quantum effects are dominant (although small quantum effects may be treated as a 
perturbation); (ii) the number of independent particles considered is much smaller 
(typically 1()2 - lOS) than that in bulk materials, often causing results to depend on 
sample size; (iii) important regions of phase space may be inadvertently neglected; 
(iv) getting even modest precision may be expensive in computer resources. 

2.4. BONDING AND INTERATOMIC POTENTIALS 

2.4.1. The Separation of Vibrational and Electronic Effects 

In principle, thermodynamic properties can be calculated exactly by applying 
statistical mechanics to the system of nuclei and electrons constituting each material, 
but in practice approximations must be made (except perhaps for dilute gases com­
posed of small molecules). A good approximation may lead to a simplified model in 
terms of which the general behavior of the material can be understood. 

The Bom-Oppenheimer approximation, which leads to the separation of elec­
tronic and nuclear motions, is of this type. The nuclei are considered to move subject 
to an effective potential energy ~ which is a function of the positions of all the nuclei, 
obtained by solving the electronic Schrodinger equation for each set of nuclear posi­
tions; thus both the kinetic energy and the potential energy of the electrons contribute 
to the effective potential energy seen by the nuclei. In principle, there is a different 
Bom-Oppenheimer potential energy function for each electronic energy state. This 
is important in molecular spectroscopy, as can be seen in the vibrational fine structure 
of electronic molecular spectra. For the statistical mechanics of materials, however, 
we usually need consider only the electronic ground state. This is obviously a good 
approximation for most insulators, where higher electronic states are not excited at 
temperatures of interest. Even for metals the excitation of electronic levels is usually 
found to make little difference to the effective potential in which the nuclei move, al­
lowing us to treat separately the electronic and vibrational contributions to the energy 
and hence to the thermodynamic properties (see Sections 1.3.4 and 6.1.1). When this 
is not so, phenomena are usually discussed in terms of interaction between separately 
conceived electronic and vibrational systems (see Ch. 6). The small energies associ­
ated with nuclear magnetic dipoles and electric quadrupoles are similarly treated as 
separate systems. 

Even with the Bom-Oppenheimer separation, the electronic structure of ma­
terials presents formidable theoretical problems which are currently the subject of 
widespread research. A modem introduction to this vast subject is provided by 



46 Cbapter2 

two recent undergraduate texts, Electronic Structure of Materials by Adrian Sutton 
[Sut93] and Bonding and Structure of Molecules and Solids by David Pettifor [pet95] , 
and by some of the general reviews in the centenary volume Electron [Spr97a]. 

2.4.2. Ab Initio Calculations 

Within the Bom-Oppenheimer approximation, potential energy functions can in 
principle be calculated ab initio, i.e., quantum mechanically without resort to fitting 
of parameters to empirical data. In recent years the increasing computational power 
available has made this practicable, at least for simple systems. For example, the 
frequencies of vibrations with wave numbers of high symmetry have been calculated 
for a number of crystals, including tetrahedral semi-conductors [Yin82, Kin90] , using 
the frozen phonon method in which the change of electronic energy associated with 
a vibrational displacement is calculated quantum mechanically. Again, ab initio 
methods have been used to calculate directly the forces on the atoms at each step of 
a molecular dynamics computation [Car85]. 

A short account of some of the approximations used and results obtained is given 
in [Bar98, Section 1.7.7.5]. 

2.4.3. Models of Bonding 

Even for quite simple systems ab initio calculations can be expensive in computer 
resources, and for complex systems they become unrealistic. It is therefore often nec­
essary or desirable to work with ad hoc potentials for different types of material, with 
adjustable parameters that in early work were always adjusted to fit experimental 
properties but are now frequently fitted to ab initio results for selected atomic dis­
placements (e.g., [Fra98]). Such a model can often encapsulate the most essential 
features of a material, and so give immediate insight into the processes underlying 
their thermodynamic properties. On the other hand, caution is needed; it should 
not be assumed that a model which gives a good account of known experimental 
properties will necessarily predict unknown properties correctly. 

The simplest models are those in which the atoms interact only in pairs through 
short-range potentials cf>(r); these potentials give rise to central forces, i.e., forces 
which act along the lines between the atomic nuclei. This is a good model for 
lare gas solids and fluids, especially when it is modified to take account also of 
mnch weaker many-body interactions [Kle76]. It has also been fairly successful 
in accounting for the phonon dispersion curves of simple metals, both fcc and bec, 
indicating the importance of central force interactions between neighboring atoms 
in these materials; although there are usually serious departures from experiment at 
small wave vectors for some of the acoustic branches. Since acoustic frequencies 
in the long-wave limit are determined by the elastic stiffnesses, this discrepancy 
indicates a failure of the model to account fully for the elastic properties. In metals 
positive ions are bonded together by the sea of non-localized electrons extending 
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Fig. 2.3. Schematic representation of a simple shell model in which only the anions have shells. From 
[Coc73. Fig. 7.8). 

throughout the crystal, as described in Section 6.1 , and this cannot be represented 
solely by effective pair potentials. 

Molecular crystals to some extent resemble rare gas crystals; the intermolecular 
interaction is much weaker than the bonding within the molecules, which can there­
fore to a first approximation be treated as rigid. However. molecules are not spherical 
but "knobbly" in their short range interactions, and depending on their symmetry 
may possess permanent electric dipoles or quadrupoles giving rise to longer range 
interactions. To a greater or less extent molecules are also "wobbly," so that there can 
be appreciable interaction between the crystal vibrations and the internal molecular 
vibrations. 

Models for ionic solids include both long-range Coulombic forces and short­
range forces. Rigid ion models give a surprisingly good account of many crystal 
properties, and are still widely used because of their simplicity and ready appli­
cability to disordered and other complex systems; but they obviously cannot take 
account of the polarisability of the ions and the interaction of this with the vibra­
tions. Various models which allow the ions to deform have therefore been designed 
[Har79. Bi179, Mad96]. Of these the shell model is the best known, which gives 
a simple mechanical representation of ion distortion: each polarizable ion is repre­
sented by a massive charged core surrounded by a massless charged spherical shell, 
which interacts through a short-range potential with neighboring shells (and in some 
models with neighboring cores also). Polarization arises from the displacement of 
the shell relative to the core, and can be affected both by the local electric field and by 
short-range forces exerted by neighboring ions (Fig. 2.3). The applicability of ionic 
models is extended further by using models which allow changes of size and shape 
of the ions. 

In covalent crystals, among which are the diamond structure elements and many 
organic materials, the bonding is strongly directional, and all models employ non-
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central forces of some kind. These are often provided by adding many-body potentials 
(particularly three-body) to pair-potential models. For crystals (and molecules) of 
definite structure, short-range valence force fields are much used: the potential energy 
is expressed as a sum of second order terms in small changes l)r and a (J in the lengths 
of valence bonds and in the angles between them. Where there is similar bonding 
in different substances, as for example in many organic materials, the same force 
field may be applicable. The number of possible parameters is increased greatly 
when anharmonic effects are calculated, since this requires the inclusion of third 
order terms; but often only the third order terms in the ar are included. For glasses 
and other disordered structures other types of many-body potential are used, because 
the greatly varying local arrangement of the atoms invalidates the use of a single 
valence-force field. 

In some materials there is strong covalent bonding in some directions and weaker, 
less directional, bonding in others - for example in polymers, where there is covalent 
bonding along the polymer chain only, or in crystals such as graphite, where layers 
of covalently bonded atoms interact with much weaker Van der Waals forces. 

In other materials the bonding is intermediate between ionic and covalent. Thus 
the compounds XY of zinc-blende structure (similar to diamond but with each atom 
bonded to one of different type) provide examples of differing ionicity, which J·e 
Phillips [Phi73] has classified by a numerical ionicity factor Ji on a scale varying from 
o to 1 (e.g., Table 5.4). Silica provides another example: the tetrahedral surroundings 
of the silicon atoms and the two-fold coordination of the oxygen atoms point to the 
importance of covalency, although exclusively ionic models have been reasonably 
successful in predicting experimental properties. In materials with multiatomic ions 
both covalent and ionic bonding coexist: for example, ammonium salts are strongly 
ionic, but intemally the N Ht ion is covalently bonded (Section 8.2.4). 

A fuller discussion of potential models is given elsewhere [Bar98]. For many 
materials containing atoms in the lower part of the periodic table the bonding does 
not fall completely into any of the simple categories listed above, and it becomes 
hard to design suitable ad hoc models for them. 

2.5. SOME MODEL SYSTEMS 

2.5.1. Ideal Gases 

Ideal gas behavior occurs in the limit of infinite dilution, when interaction between 
gas molecules may be neglected. It is one of the simplest systems to treat by statistical 
mechanics, because at virtually all temperatures of interest the translational positions 
and momenta of the molecules may be treated in the classical high temperature limit, 
and are purely random; the other degrees of freedom can be treated separately for 
each molecule. Because the motion of the molecular centers of mass is independent 
of all the other molecular degrees of freedom, the free energy separates into two 
components, one translational and the other non-translational. Both components 
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depend on the temperature, and so contribute to the entropy and heat capacity; 
but only the translational component depends on the volume and contributes to the 
pressure P = - ( a F / a V) T. It is for this reason that the equation of state of all classical 
ideal gases is the same as that of a monatomic gas (Section 1.3.5): PV = N kT, where 
N is the total number of molecules in the gas. 

The total heat capacity of an ideal molecular gas is obtained by adding the 
contributions of the non-translational molecular degrees of freedom to the monatomic 
values of Cv = ~Nk, Cp = ~Nk, giving a much richer behavior, sometimes with 
subtle effects from quantum statistics (Section 4.2.3). 

2.5.2. Ideal Crystals 

The ordered periodic structure of an ideal crystal is at the other extreme from the 
random structure of an ideal gas, but again makes for simplicity in the theoretical 
treatments described in later sections. The periodicity aids the analysis both of 
vibrational behavior (Section 2.6), and of electronic structure and excitations. If 
there are localized non-interacting systems they are repeated identically throughout 
the crystal, giving rise to simple Schottky behavior (Section 2.5.3). If however such 
systems interact with each other, complex patterns of behavior result which are more 
difficult to treat theoretically (Section 2.5.4). 

2.5.3. Schottky Systems 

A Schottky system is localized, interacting only weakly with other degrees of 
freedom; and each system has only a small number of accessible energy states. The 
general results ofEqs. (2.33)-(2.41) can be applied immediately. For a system with 
n energy levels E/ with degeneracy g/, Eq. (2.33) gives for the probability that levell 
is occupied 

Ji = ng, exp( -E,jkT) 

L gjexp(-Ej/kT) 
j=1 

(2.62) 

A system with only two, non-degenerate levels, separated by an interval .:lE = E2 - E1, 
has already been discussed in Section 2.3.1. Contributions of the system to the 
entropy and heat capacity are shown in Fig. 2.2. In general, the detailed behavior of 
a Schottky system depends upon the number of energy levels, their degeneracies and 
the spacing between them. The Schottky systems in a-NiS04.6H20 (see Section 
1.1) have three levels, all non-degenerate, giving a high temperature entropy of R In 3; 
and an analysis of the heat capacity (Fig. 1.5) has shown that the two higher levels are 
relatively close together at 4.48±0.07 and 5.05 ±0.07 cm-1 above the lowest level, 
giving a higher peak in Csch than that shown in Fig. 2.2(c) for the system with only 
two levels of equal degeneracy. All Schottky systems have a heat capacity that rises 
exponentially at sufficiently low temperatures and falls off as T-2 at sufficiently high 
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Fig. 2.4. Linear thermal expansion a/[lO-6K- 1] ofTmTe. Circles are experimental values; the full line is 
the calculated Schottky contribution with Y{f7} = 1.3. Y{f61 = -1.5. The r. label the symmetry species 
of the levels [Ott77]. 

temperatures. Often the Schottky peak occurs at such low temperatures that only the 
high temperature tail is detected experimentally (e.g., Fig. 1.8). 

Schottky contributions to the thermal expansion are determined by the dependence 
of the energy intervals on volume. For a two-level system, which has only the 
one interval .!le, there is a single Griineisen parameter 'Ysch = -d In .!le / d In V; the 
Schottky anomaly in the thermal expansion is then similar in shape to that in the 
heat capacity, its sign and magnitude depending on 'Ysch. This remains true for 
multilevel systems if the different energy intervals change with volume by the same 
factor and so have a common Griineisen parameter, as in the three-level system of 
TmSb, for which the Griineisen parameter and consequent Schottky expansion are 
negative (Fig. 5.39). More complex behavior is seen for those multilevel systems 
which have energy intervals with different Griineisen parameters; Eq. (2.41) then 
gives the thermodynamic Griineisen function as 

(2.63) 

where the denominator is proportional to the Schottky heat capacity. The thermal 
expansion of TmTe shows such behavior (Fig. 2.4). Between 2 and 10 K it is 
dominated by the contribution from a 3-level Schottky system with a positive 'Y for 
the lower excited level and a negative 'Y for the higher excited level [Ott77]. 

Schottky systems in anisotropic crystals behave similarly to those in isotropic 
systems, except that the energy levels are now functions of all the independent strain 
coordinates. For example, in an axial crystal with two independent dimensions a and 
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e, a two-level Schottky system has two Griineisen parameters, defined by 

( aae) 1'11=- -
alne a 

2.5.4. Cooperative Order-Disorder Systems 

51 

(2.64) 

The Ising Model. At the opposite extreme to having localized Schottky systems 
contributing independently to the free energy, we now turn to materials in which it 
is the interactions between systems that determine the behavior. To illustrate this, 
we take the spin ! Ising model of ferromagnetism, extensively studied over decades 
because of its simplicity in conception and difficulty in solution [Dom96]; although 
(unlike the Heisenberg model of Section 6.4.1) it probably does not represent very 
closely the magnetism of any real solid [deJ74]. It consists of a periodic array of 
spins, each of which can be in one of two states, up or down. It is postulated that 
there is an energy of interaction between each pair of nearest neighbors (representing 
the quantum mechanical exchange effect) which depends upon whether their spins 
are like, tt, or unlike, t,j..; but any direct interaction between the magnetic dipoles 
associated with the spins is neglected. Ferromagnetism is then favored if ae === 

Et.j. - Eft > 0, antiferromagnetism if ae < O. Because ae is the only energy parameter, 
Sand Cv are functions of kT / ae. Changing ae translates horizontally plots of Sand 
Cv against In T, but otherwise does not alter them. For the same reason there is only 
one Griineisen parameter, -(dlnae/dIn V), and ~(T) will always be proportional 
to Cv{T). 

In the ferromagnet, when kT « ae all the spins are aligned in one direction: 
we say that there is complete long range order. Conversely, when kT ~ ae the 
directions of the spins are random, and disorder is complete. As T increases from 
low temperatures, some spins will reverse, although at first most spins will be in the 
original direction: there is then partial long-range order. The existence of reversed 
spins then makes it less energetically unfavorable to reverse other spins; so as the 
temperature is increased further, the loss of long-range order becomes more rapid. 
Finally a critical temperature Tc is reached beyond which there remains no long range 
order: knowledge of the spin directions in one part of the crystal no longer enables 
us to predict anything about their behavior in a distant part of the crystal. On the 
other hand, there is still some short range order at temperatures above Te , because 
on average each spin still has more like neighbors than unlike. Figure 2.5 illustrates 
the effect this behavior has on the heat capacity of two models, one two-dimensional 
and one three-dimensional. 

Consider the heat capacity of the three-dimensional model, with spins on a face­
centered cubic lattice. The long range order parameter f is defined for a mole of NA 
spins by 

(2.65) 
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Fig. 2.5. Magnetic heat capacity of Ising spins: e-e-e, on a fcc lattice; -, on a two dimensional square 
lattice. From [deJ74, afterC. Domb). 

Loss of order implies an increase in entropy, which in the completely random high 
temperature limit has the same value as that of the two-state Schottky systems: 

(2.66) 

However, the way in which the system passes from complete order to complete 
disorder is quite different from the smooth passage of the Schottky systems. The heat 
capacity, given by Cv = T( as / aT)v, has a sharp peak at the transition temperature 
Tc; this is often called a lambda peak, because for some systems it resembles the 
Greek letter A. This peak is associated with the catastrophic loss of long range order, 
and is characteristic of cooperative phase transitions; above Teo f = 0, but there is 
still a contribution to the heat capacity due to progressive loss of short range order. 

Mean Field Theory. Precise calculations on order-disorder models are not sim­
ple. For example, the Ising model requires simultaneous consideration of the dispo­
sition of spins throughout the macroscopic crystal; this cannot be done analytically 
(except in two dimensions), and results to the accuracy of those shown in Fig. 2.5 
are obtained only after considerable computation. Approximations have therefore 
been devised, and of these the simplest is the mean field approximation, in which 
the potential field seen by each unit is replaced by an average taken over the whole 
system. In the Ising model, for example, the distribution of neighbors about an up 
spin (or a down spin) varies; but in the mean field approximation we assume that the 
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field seen by each spin is that corresponding to the average excess of up neighbors 
over down, 1/, where z is the total number of neighbors of each spin. The change of 
energy in a flip from down to up is then 1/ ~E, and for self consistency the resulting 
Boltzmann factor must give the ratio of up to down spins: 

exp(-1/~E/kT) = (1 +/)/(1-/) (2.67) 

This equation is easily solved numerically for different values of ~E/T, giving a 
result differing considerably from that shown in Fig. 2.5. The critical temperature Te 
marking the disappearance of long range order is too high by nearly 20%, and the 
peak in Cv is finite in height and markedly different in shape. In particular, the mean 
field approximation neglects any additional local correlation between spins; and so 
there is no short range order and consequently no tail in Cv above Te. 

Real Materials. Order-disorder transitions occur in many materials, both at 
cryogenic and at higher temperatures. The detailed behavior varies widely, and 
effects are seen not only in heat capacity but also in thermal expansion and other 
properties. In alloys such as f3-brass (CuZn), where the order is in the arrangement of 
the different types of atom on the crystal lattice, the order-disorder contribution to the 
heat capacity is very similar to that of the Ising model, with a large peak making an 
additional contribution to the high temperature entropy of R In2. On the other hand, 
in real ferromagnetic and antiferromagnetic materials there are significant magnetic 
contributions to Cv and f3 at lower temperatures, both when the relevant spins are 
localized and when they are itinerant (Section 6.4), and the final peak is considerably 
smaller than an Ising peak (e.g., Cr in Fig. 6.15). In molecular crystals and liquid 
crystals the order is in the orientation of the molecules, and successive transition 
temperatures can occur as order is lost for different orientational degrees of freedom 
(e.g., HBr in Fig. 8.3). In 'simple' type I superconductors, where the order is only in 
the momenta of the relevant particles or particle pairs, the peak has no tail above Te , 

since the concept of short-range order is not relevant here (Fig. 6.19). 
Both real materials and theoretical models have been studied intensely over many 

years [deJ74, Dom96], particularly the variation of their properties immediately 
below and above Te , mainly with the aim of elucidating the nature of the transitions 
for different systems and the behavior of different properties in the neighborhood of 
Te ('critical exponents'). Further references are given in Section 5.11.1. 

2.5.5. Glasses 

Unlike a crystal, a glass is frozen in a random structure, and so there is no unique 
model on an atomic scale; studies must be done on individual random assemblies 
of atoms. Early work involved the laborious construction of random configurations 
consistent with an appropriate type of bonding, but this can now be done in a 
way analogous to the experimental formation of glasses, by using configurations 
obtained from computer simulations of the liquid material. Such models are of 
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limited size, typically containing 103 to lOS atoms, obeying a periodic boundary 
condition. With suitable intermolecular potentials they can give quite a good account 
of thermodynamic properties at high and intermediate temperatures. But the models 
cannot easily be used to interpret the striking experimental results obtained at very 
low temperatures (Section 5.7), because the periodic boundary condition applied to 
samples of small size prevents the study of the effect of random structure both on 
very low frequency vibrations and on the distribution of energy intervals in tunnelling 
centers. 

Although most glasses are insulators, electronic properties may be studied in 
metallic and semi-conducting glasses [Cus87]. 

2.6. LATIICE VIBRATIONS 

2.6.1. General 

In all solid materials vibrations contribute to the heat capacity and thermal expan­
sion. The theory of vibrations in solids, called lattice dynamics, has been developed 
in great detail, from the work of Born and his colleagues onwards; it is described 
in many texts [Bor54, BlaS5, deL56, Mar71, Hor74, Ven75]. In this section we fill 
out and make more precise some of the concepts already introduced in Chapter I, in 
preparation for later discussion of specific materials. 

2.6.2. Harmonic Theory 

The Harmonic Approximation. The starting point of lattice dynamics is the 
existence of a potential energy, as given by the Born-Oppenheimer approximation 
(Section 2.4.1). This potential can be expressed as a Taylor series in the displacements 
of the atoms from their mean positions: 

(2.68) 

Here <l>L is the potential energy of the static lattice with the atoms in their mean 
positions, and the <l>n are the sums of all the terms of the nth order in the displacements. 
The harmonic approximation is to neglect all terms beyond the second order in the 
displacements. The motion can then be resolved into the superposition of a set of 
independent normal modes j, with angular frequencies Wj = 21TVj [00150]. In a bulk 
solid these form the continuous frequency distribution g( w) defined in Section 1.3.3. 

At this point, some clarification is needed. (i) For a purely harmonic solid the 
Taylor series would terminate at~. But real solids are never purely harmonic; 
indeed, apart from one-dimensional models it is mathematically virtually impossible 
for a purely harmonic lattice to exist [Bar57a]. (ii) It is easy to show (e.g., [Bru98]) 
that if a purely harmonic solid could exist, its frequencies would have no dependence 
on volume or strain. There would then be no thermal expansion, and no temperature 
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dependence of the elasticity; both these are essentially anharmonic effects. (iii) 
There are many independent anharmonic terms in the expansion of the potential 
energy function, and the anharmonicity cannot be specified by a single parameter. 
(iv)Although no real solid is ever strictly harmonic, the harmonic approximation is 
a good approximation for the vibrational heat capacities of most solids, especially at 
low temperatures. 

The Vibrational Spectrum. The structure of a crystal is described by its periodic 
lattice, consisting of points given by the vectors 

(2.69) 

where 1.,/2,/3 are integers, together with a set of vectors X(K) determining the 
positions x(l) + X(K) of the n atoms (the basis) in each cell of the lattice. The 
translational symmetry enables the normal vibrations to be classified by wave vectors 
q, such that the phase difference between any two cells separated by a vector x(l) is 
q. x(l) (Fig. 2.6a,b); in modes for which q = o the atoms in each cell are in phase with 
the corresponding atoms in all other cells (Fig. 2.6c). This phase factor is periodic in 
q-space (reciprocal space), so that the same mode can be ascribed to different values 
of q (Fig. 2.7). Wave vectors need therefore be taken only over a finite region of 
reciprocal space. This is usually chosen to be the First Brillouin Zone (FBZ), which 
comprises those independent q that are nearest to the origin of reciprocal space (e.g., 
[Kit76, Ch. 2]). For a crystal of volume V, the allowed q are uniformly distributed 
throughout the FBZ with a density V / (211")3. In diagrams the point at the zone center 
(q = 0) is usually labelled f. and referred to in speech as the "Gamma point." First 
Brillouin Zones for many lattices are given in the appendices of [HeI81]. 

The periodicity in q-space is described by the reciprocal lattice, which is the set 
of all points giving the same phase factors as the Gamma point. These are given by 
ntbt +n2~ +n3b3, where nt,n2,n3 are integers and the reciprocal lattice vectors bj 

are relilted to the aj by 

(2.70) 

The position of a q-vector referred to the reciprocal lattice is given by reduced 
dimensionless coordinates' == ('1,'2,'3). so that 

(2.71) 

and the cell phase factors are 211" l;i 'k Strictly it is , rather than q that should 
be used to label a given normal mode of vibration. because (except at the f-point) 
q changes when the crystal is strained so as to keep the phase factor for each cell 
unaltered. This must be remembered when Griineisen parameters are derived for 
individual normal modes. Details may be found in the references in Section 2.6.1, 
and in [Bar98]. 
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Fig. 2.6. Atomic displacements for transverse vibrations in a diatomic linear chain (schematic): ., heavier 
atom; 0, lighter atom. (a) q = 0.1(271" fa), acoustic branch; (b) q = 0.1(271" fa), optical branch; (c) q = 0, 
optical branch. 

In a three dimensional crystal, for each q there are 3n modes, labelled qs, with 
frequencies Wqs. As q varies, these fonn 3n branches of the vibrational spectrum 
(s = 1,3n). Of these, three are called acoustic branches, because as q -+ 0 the modes 
become macroscopic elastic sound waves; the rest are called optical branches because 
their limiting frequencies as q -+ 0 can often be measured by infra-red or Raman 
spectroscopy. At q = 0 the acoustic modes become translations of the whole crystal, 
with zero frequency, but the optical modes remain vibrations of finite frequency 
(Fig. 2.6c). Frequencies of modes for which q :f 0 are usually measured by inelastic 
neutron scattering [00174]. Plots of Wqs against q for different directions of q are 
called dispersion curves. Figures 2.8 and 2.9 show dispersion curves in directions of 
high symmetry for argon and silicon. With only one atom per cell, argon has three 
acoustic branches; however, along the [001] and [111] directions the two transverse 
branches are degenerate. Silicon, with two atoms per cell, has in addition three 
optical branches; the marked flattening of the dispersion curves for the transverse 
acoustic modes is responsible for the low frequency peak in g(w) centered on 4 
THz and hence for the deep minimum in eC (T) (Figs. 1.14 and 1.16). Dispersion 
curves of many other solids are given by Bilz and Kress [Bi179] for non-metals and 
in Landolt-Bomstein for metals [Sch8l] and alloys [Kre83]. 

Surfaces and Imperfections. The periodicity of a crystal is broken at the surface, 
and so no real crystal has strict translational symmetry. In modelling crystals for 

-8_ 

Fig. 2.7. Two different wave vectors, q = 0.1(271"/a) and q = 1.1(271"/a), describing the same vibration. 
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calculating bulk properties this difficulty is avoided by imposing a cyclic boundary 
condition, as described in Section 2.3.3. Surface vibrations therefore require separate 
theoretical treatment (e.g., [Mar71, Ch. IX] and [WaI75]). Their effect on heat 
capacity has been measured by comparing data for bulk crystals with data for fine 
powders of large surface area (e.g., [Dug54, Pat55]). 

Periodicity is also destroyed by internal imperfections, whether due to the pres­
ence of impurity atoms (Section 5.12) or to structural defects such as vacancies, inter­
stitials, dislocations etc. These again require special theory (e.g., [Mar71, Ch. VIII] 
and [Tay75]). 

Moments < t#' > of the Vibrational Spectrum; 9D (n). Some theoretical 
expressions for thermodynamic and other properties involve the moments of the 
vibrational spectrum, which are averages of powers of the frequencies defined by 

n _ 1 ~ n_Iwng(w)dw 
< W >- 3N £.J Wj - I ( )d 

~#o g W W 
(2.72) 

here brackets of the type < ... > are used to distinguish averages over the frequency 
distribution from the thennal averages ( ... ). Provided that we exclude the zero 
frequency modes, which correspond not to vibrations but to displacements of the 
whole body, Eq. (2.72) can be used in computer calculations for values of n greater 
than -3; for n :5 -3, the integral in the numerator diverges and the moments < 
wn > become infinite. Expressions for the entropy and free energy involve also the 
geometric mean frequency w" given by 

Wg = exp( < In W > ) (2.73) 

To compare the moments with each other, we define equivalent Debye frequencies 
wD(n) and temperatures eD(n) (written by some authors en), corresponding to the 
Debye distribution which gives the same nth moment as the spectrum under study. 
They are given by 

! 
eD(n)=liwD(n) =~(n+3 <wn»n 

k k 3 

As n ---t 0 and as n ---t -3, eD(n) tends to values 

1 (IiW ) eD(O)=e1 T ' eD(-3) = e~ 

(2.74) 

(2.75) 

the latter value being determined by the coefficient of w2 in the low frequency 
expansion for g(w) in Eq. (2.86),* The wD(n) or eD(n) are used also in the analysis 
of experimental data (Section 2.6.5). 

'The symbol 80 is used by D. C. Wallace (see, for example, [Wal72, Wal92]) to denote 
exp[-(1/3))9D(O) =liwg/k. 
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Both wD(n) and 6 c(T) result from comparing properties of g(w) with those 
of the Debye distribution. Thus for silicon the steep initial rise in g( w) above its 
initial T2 dependence (Fig. 1.14) is reflected by initial falls in both 6 c (T) (Fig. 1.16) 
and wD(n) (Fig. 2.10), which then rise again as the high frequency vibrations take 
effect. For large n, wD(n) approaches the maximum frequency of the distribution, 
CJJmax. Some values of 6 D (n) give high or low temperature limiting values for 6 c (T) 
and eM (T), the latter being the equivalent Debye temperature for the Debye-Waller 
effect [Sal65]: 

6D(2) = 6~, 6D(0) = <%, 
6D(-2)=~, 

6 D(-3) = 6~ = Wo, 
6D(-1) = Wo' (2.76) 

Thus values of WD (n) obtained by analyzing the heat capacity (Section 2.6.5) can be 
correlated with Debye Waller data [Sal65, Bar77b]. An accurate estimate of the zero 
point energy [see Eq. (2.83)] is given by 

9 
Ez = -Nk6D(I) 

8 
(2.77) 

Heat Capacity, Entropy and Helmholtz Energy. The Wqs comprise all the vi­
brational frequencies Wj and so determine the frequency distribution g( w) as defined 
in Section 1.3.3.* For example, Fig. 1.14 shows g(I.lI) for Ar and Si, obtained from 
force-constant models fitted to neutron scattering data. Given the frequency distri­
bution, Eq. (1.13) can be used to obtain the heat capacity, and other thermodynamic 
functions can be obtained similarly. But in practice it is more direct to calculate 
thermodynamic functions, and also the moments < wn >, by integrating over the 
FBZ. For example, 

Cv = 'J;cf/iWjJkT) = [V J(21T)3] f dQLc{liWqsJkT) (2.78) 
J FBZ S 

where the function c (x) is given in Eq. (1.14). Similar expressions may be written for 
Fvib, S, and Uvi/J, where the vibrational contributions for each mode are respectively 

'Formally g(w) = 1:8(w - ""1), where 8(x) is the Dirac delta function. 
j 

(2.79) 

(2.80) 

(2.81) 
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n 

Fig. 2.10. vD(n) = wD(n)/27r as a function of n for Si (upper curve) and Ge (lower curve). from analysis 
of thermodynamic data [Flu59]. 
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Here x =Fiw / kT, so that kT !x is the zero point energy ¥w. The thermal components 
off and u are 

(2.82) 

Behavior at Low Temperatures. As T -+ 0, x =Fiw/kT -+ 00; thus while c(x) 
and s(x) -+ 0, u(x) -+ ¥;w. The zero point energy of the solid is therefore 

1 
Ez = L;Fiwj 

j 2 
(2.83) 

For the Debye model Ez = iNkeD, where N is the total number of atoms in the 
solid; and this is usually a good approximation for simple solids if for eD we take 
e~, the equivalent temperature for the heat capacity at the high temperature limit 
[Dom52]. Eq. (2.77) is more accurate, but requires more detailed analysis of the heat 
capacity. 

For temperatures so low that only elastic waves contribute to S and Cv, i.e., 
acoustic modes with wave vectors q very near the zone center, Debye's theory 
(first applied only to an elastically isotropic solid) is generalized to take account 
of the dependence of sound velocities on direction of wave propagation. The T3_ 
dependence as T -+ ° is given by an integral over all directions [Bor54, Eq. 6.3]: 

(2.84) 

where n is an element of solid angle, q is a unit vector giving the direction of propa­
gation, and the Vs (q) are velocities of sound for the three different wave polarizations 
given by continuum elasticity theory (Section 2.8.7). The corresponding Debye 
equivalent temperature when all degrees of atomic freedom are taken into account is 

(2.85) 

where Va is the mean volume per atom and the superscript el denotes that the value 
is obtained from elastic data. For an elastically isotropic solid the integral reduces to 
41T(vi3 +2vi3), where the subscripts denote longitudinal and transverse polariza­
tion. 

For molecular crystals and other complex solids a smaller number of degrees of 
freedom may be used for the equivalent Debye spectrum (see Section 1.3); if so, the 
quotient va /9 occurring in Eq. (2.85) must be increased in proportion. Implementa­
tion ofEqs. (2.84) and (2.85) is discussed in Section 2.9. 

Various methods used for estimating from elastic data the behavior of S and Cv 
above the T3 region are reviewed elsewhere [Bar80, Bar98]; they are all approxima­
tions and their degree of reliability depends upon the type of material. Precise theory 
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Fig. 2.11. Cv /T3 plotted against T2 for KCI. The dashed line indicates a spurious AT + BT3 fit. Arrows 
denote temperatures 90/100, 290/100, etc. [8ar57c]. 

requires lattice dynamics, which takes account of the discrete atomic sbUcture of the 
solid. At low frequencies this gives series expansions of the form 

leading to low temperature expansions for Cvib of the form 

Cvib = AT3 + 8Ts + CT7 + ... 

(2.86) 

(2.87) 

Plots of CV IT3 (or CIT for metals) against T2 give smooth curves enabling the first 
two or three coefficients to be estimated from good experimental data (Fig. 2.11). 
In particular, the coefficients A give calorimetric Debye temperatures e~ which are 
usually found to be in good agreement with e~l. 

High Temperature Behavior. For many solids Cv and eC approach their 
high temperature limits below room temperature, viz. in the cryogenic region (e.g., 
Fig. 1.2). In the harmonic approximation the high temperature behavior is obtained 
by expanding the harmonic expressions for these quantities as power series in inverse 
powers of T. When T is large, x =liwlkT is small, and the functions c, s, u and! of 
Eqs. (1.14) and (2.79)-(2.81) can be expanded in powers of x; for example, 

u = kT [1 + 82 x 2 _ 84 x4 + 86 x6 _ ... J 
2! 4! 6! 

(2.88) 

where 82,84,86,·'· are the Bernoulli numbers i,~, ii,'" (e.g., [JefSOn. Summing 
over the frequency distribution then gives the Thirring expansions for the bulk prop­
erties [Thi13, BarS7b], which can be used in the analysis of experimental data (see 
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Section 2.6.5): 

Uvib = 3N kT 1 + - - - - - + ... [ 
B2 (Ii) 2 < W 2 > B4 (Ii) 4 < W 4 > 1 
2! k T2 4! k T4 

An expansion for (8C)2 can be derived from Eq. (2.91): 

C 2 C 2 8"" 8"" { ( C)2 (C)4 } (8 ) =(8",,) I-A T +B T _ ... 

where the harmonic high temperature limiting value of 8 c is 

and 

I Ii (5 < w2 » 7 8 C =_ 
"" k 3 

B = _1_ {( < w6 > _ 125) -100A} 
1400 < w2 >3 81 

63 

(2.89) 

(2.91) 

(2.92) 

(2.93) 

(2.94) 

(2.95) 

We may note that in the expressions for U and Cy all terms involving Ii tend to 
zero as T ~ co,leaving only the terms 3NkT and 3Nk given by classical statistical 
mechanics. In particular, the zero-point energy Ez does not appear in the expansion 
forU, which at high temperatures is asymptotic to 3NkT (and notto 3NkT +Ez) as 
shown in Fig. 2.12. In contrast, the absolute value of the entropy at high temperatures 
depends onli and the frequencies, and is thus a quantum property. 

We may also note that 8 c departs from its limiting value as T-2, as does Cy. 
However, the coefficients of the first few terms are relatively much smaller than those 
for Cy, so that 8 c (T) starts to approach 8~ at lower temperatures. 
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2.6.3. Anharmonic Theory - Quasiharmonic Approximation 

At low enough temperatures the vibrational amplitudes in most solids are small, 
and the anharmonic part of the potential energy can be treated as a perturbation; it 
is only for a few 'quantum solids,' where the zero-point energy becomes comparable 
to the cohesive energy, that this is not so. To the first order of perturbation theory, 
the anharmonic potential has two effects: (i) interaction between different normal 
vibrations; (ii) volume (and strain) dependence of the normal mode frequencies. The 
first of these provides a mechanism for thermal resistance (e.g., [Ber76b]); the second 
affects the thermodynamic properties, giving rise to thermal pressure and hence to 
thermal expansion, as well as to vibrational contributions to the bulk modulus and 
other elastic stiffnesses. Although there is no exact relation between the two effects, 
approximate quantitative correlations can often be found (e.g., [Whi89b]). There are 
no first order anharmonic contributions to the expressions for F, Sand Cv. 

The quasi-harmonic approximation takes the dependence of the harmonic fre­
quencies on volume or strain into account, but neglects all other anharmonic effects. 
In calculating thermal stress and hence the Griineisen function, it is equivalent to 
first order perturbation theory (e.g., [Bar74b]). Since the normal mode contributions 
to F are additive, the heat capacity and Griineisen function are as given in Section 
1.3.2, with the subscript r replaced by mode labels j or q,S' The vibrational Griineisen 
function is thus the average of all the 'Yj = -d In Wj / d In V weighted by the heat 
capacities Cj of each mode: 

"V. (V T) _ "'i..j'YjCj _ "'i..j'Yj'fiWj/kT)2tffJJj/kT /(tf"'i/kT _1)2 
rVlb , - "'i..jCj - "'i..j'fiWj/kT)2tf"'i/kT /(tf"'i/kT -1)2 

The coefficient of thermal expansion is given by 

XT XT k'fiwj/kT)2 
f3vib = V t 'Y.jCj = V t 'Yj (tf"'i/kT _I)(I_e-lifJJj/kT) 

Similarly, the equation of state can be written in one of the forms 

PV = - V<lYL (V) + L 'YjUj = - V Uo(V) + L 'YjUthj 
j j 

(2.96) 

(2.97) 

(2.98) 

where $L is the static lattice energy, Uo is the internal energy $L + Ez at T = 0, Uj is 
the total vibrational energy of the mode j and Uthj is the thermal energy (Eq. 2.82). 
Taking the same value 'Y for all the 'Yj leads to the Mie-Griineisen equations of state: 

PV = - V<I»L (V) + 'YUvib = - V Uo(V) + 'YUth (2.99) 

Thus in the quasi-harmonic approximation the thermodynamic function 'YEOS defined 
in Section 2.2.3 is an average of the 'Yj weighted by the Uthj. It tends to the same low 
and high temperature limits as 'Y ('YO and 'Yeo), but reaches 'Yeo more slowly. 

The bulk modulus BT can be obtained by differentiating P as given by the first of 
Eqs. (2.98). It involves the second derivatives of the frequencies. 
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Anisotropic Expansion. Of the non-cubic crystals for which low temperature 
data is commonly available, axial crystals (tetragonal, hexagonal, trigonal) have 
two independent expansion coefficients (written al.,all)' and orthorhombic have 
three (written era, ab, ae or ai, a2, a3); of the others, monoclinic have four and 
triclinic six. The thennodynamics of anisotropic expansion (see Section 2.8) therefore 
has to consider stress, strain and elasticity rather than only pressure, volume and 
compressibility. The quasiharmonic theory then requires mode Griineisen parameters 
'Y>.,j for each independent strain coordinate 11>.. For axial crystals 

(2.100) 

where the factor ! arises because altering the crystallographic parameter a affects 
both dimensions perpendicular to the axis; and for orthorhombic crystals 

( alnWj) 
'YI,j = - alna be' , 

( aln~) 'Y2,j = - alnb ' 
a,e 

'Y3,j = - (aln~) (2.101) 
alne a,b 

Averages of these Griineisen parameters weighted by the mode contributions to the 
heat capacity give thermodynamic anisotropic Griineisen functions [cf. Eq. (2.96)] 

'Y>. = ~'Y>',jCj/~Cj (2.102) 
j j 

for use in the thermodynamic equations of Section 2.8.4. 

Expansion Behavior at Low and High Temperatures. At low temperatures 
only long wavelength acoustic modes are excited and the thermal expansion has a 
temperature dependence like that of the heat capacity [see Eq. (2.87)]: 

(2.103) 

The Griineisen function is given by a power series in T2, in which the first term 'YO is 
related to that in the series for the heat capacity by 

1 
'YO = 3"dInA/d In V = -dln00/dln V (2.104) 

At high temperatures Eqs. (2.96}-(2.98) can be expanded as series in inverse 
powers of T2. The limiting value of the expression for 'Y(V, T) as T ~ 00 is written 
'Yoo(V); it is the arithmetic mean of all the "/j. Higher terms in the expansion involve 
the weighted means 

'Y(n) = ~ 'YjWNLWjn = -d In wD(n)/dln V (2.105) 
j j 
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Techniques for Computing Low Temperature Behavior. In calculations on 
theoretical models the squares of the frequencies (Wq,s)2 for each value of q are 
obtained as the eigenvalues of a dynamical matrix D(q), and the associated mode 
Griineisen parameters can be derived from the volume or stress derivatives of D( q) 
by perturbation theory (e.g., [WaIn, Kan95, Tay97a)). Thermodynamic properties 
are then obtained by integrating over the FBZ or other equivalent region in q-space. 
At most temperatures the required accuracy is given by integration grids which have 
typically 100 to 10000 points in the whole FBZ. 

But vibrational effects at very low temperatures depend mainly on acoustic modes 
with q close to the r-point, and to study them much finer grids are required in this 
region. To extend such grids over the entire zone would be prohibitively wasteful, 
and so some procedure is needed to allow the use of progressively finer grids as the 
r -point is approached. One simple iterative method starts with a grid adequate for 
intermediate and high temperatures. In the first iteration the integration over an inner 
region with linear dimensions half those of the whole zone is recalculated with a 
finer mesh which has the same number of points in the inner region as used originally 
for the whole zone. In the second iteration an inner region of the first inner region 
is treated similarly, and so on. At each step there is an eightfold increase in the 
density of points in the innermost region. The number of iterations needed to obtain 
convergence - typically three to six - depends upon the lowest temperature for 
which precise results are required. A complete calculation shows the approach to the 
Debye limit, as checked by an independent calculation of ag/. 

Fortunately this iteration need be done only once. At low temperatures the 
thermal expansion is small, and to calculate the dynamical matrix, frequencies and 
mode Griineisen parameters we can use the geometry at T = O. Once these are found, 
properties at each low temperature can be calculated by simultaneous integration over 
the FBZ, so that only one set of iterations of the integration grid is needed. To find the 
equilibrium geometry at T = 0 the total static and zero-point vibrational energy must 
be minimized, but since the zero-point energy is dominated by higher frequencies this 
does not require fine grids near the r -point. Similarly at higher temperatures, where 
the effect of thermal expansion on the dynamical matrix is appreciable, the total free 
energy must be minimized with respect to volume or strain for each T, necessitating 
repeated calculation and diagonalization of the changing dynamical matrix; but this 
does not require fine grids at the zone center. 

Central Force Mechanisms in Thermal Expansion. Equation (2.97) shows 
that thermal expansion will be positive or negative depending upon whether positive 
or negative 'Yj predominate in the weighted average. Positive 'Yj arise chiefly because 
a typical interatomic potential has the asymmetric shape shown in Fig. 2.13a, so that 
the force constant affecting vibrations along the line joining the atoms decreases with 
increasing distance. This mechanism for positive expansion due to vibration along 
the line of atomic centers can also be seen in two other equivalent ways: (i) it is 
easier for the atoms to move further from each other than nearer to each other; (ii) if 
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the volume and hence the distances between the mean positions of the atoms are kept 
fixed when the atoms vibrate, the average force between the atoms will be repulsive, 
leading to a positive thermal pressure (Fig. 2.13a). This is sometimes called the 
bond stretching mechanism, because it causes the mean distance between atoms to 
increase. 

Negative 'Yj arise chiefly because of vibrations perpendicular to the line of centers. 
The tension between the atoms, and hence the frequencies of transverse vibrations, 
increase with interatomic distance, as in a stretched banjo string. This mechanism 
too can be seen also in an equivalent way, by considering the thermal stresses caused 
by the vibrations: if the mean atomic positions are kept fixed, transverse displace­
ments about these positions increase the mean distance between the atoms, causing 
a tension tending to pull them towards each other (Fig. 2.13b) and so to restore the 
mean interatomic distance to its original value. This is sometimes called the tension 
mechanism. In the quasiharmonic approximation each mechanism contributes addi­
tively to the Griineisen parameters and hence to the thermal expansion, so that their 
relative importance may be easily calculated for theoretical models (e.g., [Bru98]). 

In most crystal vibrations the displacements have components both along and 
perpendicular to the lines joining neighboring atoms. Both mechanisms then operate. * 
Moreover, displacements that are roughly along one line of centers can be roughly 
perpendicular to another. Usually the bond-stretching mechanism of Fig. 2.13a has 
the larger effect, and the thermal expansion is positive. But those modes which 
have on average larger components of vibration normal to lines of centers tend to 
have lower frequencies, and so are preferentially excited at low temperatures. For 
this reason 'Yvib often decreases at low temperatures [Bla57, Bar57a]. The effect 
is particularly marked for crystals of open structure, where there can be modes for 
which the relative atomic displacements are predominantly transverse to the lines of 
centers; among the simplest examples are the rocksalt and zincblende structures (see 
Sections 5.3 and 5.5). For some very open structures ~ can be negative even at room 
temperature. 

In non-cubic crystals the same mechanisms can give rise to a wide variety of 
behavior, as in the layered and chain structures discussed in Sections 5.8 and 5.9. 
This has been exemplified by a model primitive rhombohedral lattice, in which the 
ratio of the interaction between planes perpendicular to the trigonal axis to that within 
the planes could be altered [Bar74a]. A small ratio gave layered crystals, in which 
the low frequency modes were polarized largely perpendicular to the planes; so that 
at low temperatures the expansion along the axis was relatively large and positive 
due to bond-stretching, while that perpendicular to the axis was small, and negative 
due to the tension effect and a large negative cross compliance. In contrast, a large 
ratio gave linked polymer chains, with the opposite behavior. 

'There is also a third mechanism tending to rotate the line of centers away from the direction of vibration, 
but its net effect is small or zero except for strongly anisotropic non-cubic crystals such as polyethylene 
[Bru9S]. 
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Fig_ 2_13. Central force mechanisms in thermal expansion (schematic)_ Dashed lines show amplitude of 
motion of atom B with respect to atom A_ (a) Bond stretching: displacements along the "bond" direction 
produce a mean repulsive force. because the potential well is asymmetric; (b) Tension: displacements 
perpendicular to the "bond" direction produce a mean attractive force [Bru981_ 

2.6.4. Strongly Anharmonic Vibrations 

For most solids that have been studied the quasi-harmonic approximation gives a 
good account of the thermodynamic properties at low temperatures, although it breaks 
down progressively as the amplitude of lattice vibrations increases with temperature_ 
The temperatures at which this becomes serious vary for different substances and 
the pressures at which they are held; there is no universal rule. For example the 
approximation is totally invalid at all temperatures for solid helium except at high 
pressures (Section 5.2), and also for the rotational motions of molecules in solid 
H2 and C~ (Ch. 8); but for tightly bound crystals such as the ceramic oxides it is 
useful well above room temperature. Calculations on the thermodynamic behavior 
of models of alkali halides and heavy rare gas solids under zero pressure have shown 
that noticeable deviations from quasi-harmonic behavior may begin at about 0.2 Tm, 
where T m is the melting point (e.g., [Gly71]); but the approximation can remain useful 
to considerably higher temperatures, especially when there is cancellation between 
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different anharmonic tenns. 
Several of the theoretical methods of treating anharmonic effects are summarized 

briefly in [Bar98], and described in detail in various chapters of [Hor74, Hor75, 
Kle76, Kle77]. Successive higher orders of perturbation theory (PT) extend the 
range to higher temperatures, and the variational method of the self-consistent (SC) 
phonon theory to yet higher temperatures, especially when it is combined with PT 
to give the improved self-consistent (lSC) phonon theory. These methods, together 
with some cell models, have more recently been further tested and compared with 
each other and with classical Monte Carlo methods by E. R. Cowley, G. K. Horton 
and colleagues, again using simple models for rare gas solids and ionic solids (e.g., 
[Shu85, Gon88, Cow90]; see also Fig. 2.14). 

At temperatures where quantum effects are small classical Monte Carlo and 
Molecular Dynamics are often used, because of their comparative simplicity (Section 
2.3.3). Usually it is sufficient to use quasiharmonic theory at low temperatures, and 
check its validity at higher temperatures by comparison with MC or MD results, 
interpolating between them. There are also some methods of quantum simulation 
valid over the whole temperature range [Hor95], such as the Feynman path integral 
(PI) method which can be evaluated by techniques mathematically equivalent to 
classical Monte Carlo [McG95]. Figure 2.14 illustrates the power of this method, 
and also shows that for the more strongly anharmonic (lighter) rare gas solids it 
becomes progressively less reliable to interpolate between quasiharmonic theory at 
low temperatures and classical theory at high temperatures without recourse to further 
theory. A faster approximate path integral technique, the improved effective potential 
(IEP) method, has been found useful for quantum solids such as neon and helium 
[Cow95. Hor96, Ac096]. 

According to both PT and SC theory the entropy (but not the heat capacity) is 
given correctly by the harmonic expression, but with shifted frequencies equal to 
those given by spectroscopic measurements, including neutron diffraction. We thus 
have a temperature-dependent 'renormalized' spectrum. Even as T -+ 0 there are 
still some anharmonic effects due to zero-point energy, but S and Cv still have a T3 
dependence related to the elasticity in the same way as for a harmonic solid. On 
the other hand room temperature elastic constants can be used only to calculate the 
w2 term in the room temperature renormalized spectrum, which does not correspond 
exactly to any measured heat capacity. 

2.6.5. Analysis of Thermodynamic Data 

The most usual way of treating vibrational data is to fit to them the parameters 
of a suitable lattice dynamical model, and then to use the fitted model to derive other 
information not given directly by the experimental data. But also some properties 
of the frequency distribution of a solid can be derived to a good accuracy from its 
measured thermodynamic properties without the use of specific models. 

The analysis of thermodynamic data is discussed in several books and papers, 
including [Bar57b, Bar64, Wal72, Yat72, Bar82, Gui91, Wal92]. We have already 
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Fig. 2.15. Estimation of coefficients in the high temperature expansion for eC: (eC )2 plotted against 
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seen that at low temperatures by plotting Cy IT3 (for metals Cy IT) against T2 
we can estimate the first two or three coefficients in the low frequency expansion 
[Eq. (2.86)]. The g ( 6.1 ) to which this corresponds is that of the renormalized spectrum 
at T = 0, which takes into account any anharmonic effects due to the zero-point 
energy. To derive further information about this spectrum from higher temperature 
mea'lurements the data must first be corrected to the volume Vo at r = 0, with the 
aid either of thermodynamic expressions for the volume derivatives of heat capacity, 
entropy, thermal expansion, etc. (see Section 2.2.3 and [Wal72]) or of appropriate 
Griineisen parameters (see [Bar57b, Bar64]). However, since Griineisen parameters 
are based on quasiharmonic theory, they should not be used in the fully anharmonic 
analysis of high temperature data. 

Quasiharmonic analysis. The volume-corrected data is fitted to the quasihar­
monic high temperature expansions for the thermodynamic properties or for Debye 
temperatures and Griineisen functions derived from them. This can be done in var­
ious ways. Figure 2.15 shows how e£(Vo) has been estimated for Si and Ge, by 
plotting [eC (Vo)j2 against r-2. Although experimental uncertainty and increasing 
anharmonic effects at higher temperatures limit the precision of the extrapolated in­
tercepts at r-2 = 0, e£ is obtained to within about 1 %. Good estimates can also be 

obtained of the slopes, from which < 6.14 > and hence WD (4) are derived, and even 
wD(6) can be roughly estimated. 

The most accurate information, however, is obtained from data at intermediate 
temperatures. For all values of n (including non-integral) in the range -3 < n < 0 the 
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moments of the distribution are given by integrals over the harmonic heat capacity: 

(2.106) 

where f(x) is the mathematical Gamma function, '(x) is the Riemann zeta function 
[Abr65], and the high temperature part of the integral is calculated using the high 
temperature (harmonic) expansions already obtained. In addition, Wg and the first 
moment < W > are obtained from the high temperature expansions for S and U. 
Results for Si and Ge, correlated in wD(n) plots, are shown in Fig. 2.10. This type 
of analysis can be extended to the thermal expansion to give values of 'Y(n) [Bar64], 
and similarly 'Y>. (n) for anisotropic solids [Bar67, Bar82]. 

Fully anharmonic analysis. A fully anharmonic analysis usually refers to data 
obtained above cryogenic temperatures, and detailed discussion is beyond the scope 
of this monograph. Wallace [Wain] has shown how a plot of (Cy - 3N k) IT against 
T-3 can be extrapolated to give the coefficient of a linear tenn in T in Cy, corre­
sponding to the lowest order non-zero tenn in classical perturbation theory; while 
< w2 > is given to a good accuracy by the slope. Such plots also demonstrate the 
breakdown of perturbation theory at higher temperatures. It is useful in this range to 
work at least partly with the entropy, since this corresponds to the temperature depen­
dent renormalized spectrum, about which information may be gained from neutron 
diffraction. In conductors there are also electronic contributions, for which reliable 
band-structure calculations may sometimes be available. For further discussion see 
[Gui91, Eri92, Wal92, Whi93c]. 

2.7. APPROXIMATE EQUATIONS OF STATE 

For many solids data are not available over all temperatures and pressures of 
interest, nor can they be calculated reliably from theoretical models. But examination 
of the experimental and theoretical data that is available has led to working rules for 
estimating equations of state of a wide range of materials, especially in the high 
temperature limit relevant to geophysics and many technical applications. 

2.7.1. Behavior for T ~ 9 

When T ~ e, to a first approximation Cy ~ 3N k (the Dulong and Petit value) and 
'Y has reached its high temperature limiting value 'Yoc. The Mie-Griineisen equation 
of state is then 

P(T, V) ~ -<11. (V) + 'Yoo~V) 3N kT (2.107) 
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and the thermal pressure coefficient is 

( ap) = f3Br ~ 3Nk 'Yoo(V) 
aT v V 

(2.108) 

which is a function of volume but not of temperature. 
To this Swenson [Swe68] added the further approximation, based on empirical 

observation on many cubic solids, that at high temperatures Br is a function of volume 
only; this gives [ef. Eq. (2.31)] 

( aBr) = _ [_a (ap)] '" 0 
aT v a In V aT v r-

(2.109) 

Together with Eqs. (2.107), this implies that the thermal pressure coefficient [in 
Eq. (2.108)] is independent of both volume and temperature, and that 'Yoo/V is also 
constant; and that Br can be identified with the bulk modulus of the static lattice: 

and (2.110) 

The constancy of (ap / aT)v implies that all isothermal equations of state are parallel: 

P(T, V) ~ P(T*, V) + f3(T*, V*)Br{T*, V*)(T - T*) (2.111) 

Because of its simplicity this approximation is widely used. Its reliability in the light 
of more extensive data than those used by Swenson is discussed by O. L. Anderson 
[And95a], who points out that it will be valid when the difference between the 
dimensionless functions &r and Br is small, since 

(2.112) 

Although (like Swenson) he finds significant departures in observed behavior from 
that predicted by the approximation, he concludes that it is a good first approximation 
over a wide range of pressures for many different types of solid. 

Equations of State. To complete the information required to estimate the equa­
tion of state at all pressures, Swenson used the Murnaghan equation of state at 
temperature T*: 

* V '" Br(T*, V*) [(V*)B'T(rO,VO) _] 
P(T, ) - BT(P, V*) V 1 (2.113) 

based on the assumption that the dimensionless derivative Br = (aBr / ap)r is inde­
pendent of volume. At higher pressures than those Swenson considered, observed 
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Fig. 2.16. Bulk moduli KT(T, Vo). Kr(T,P = 0). Ks(T,P = 0) as functions of temperature for AI2<>J. 
From [And9Sa). noting his use of K rather than B. 

behavior diverges from the Murnaghan equation, and a more sophisticated approxi­
mation is needed. Perhaps the best known and most successful is the Vinet ''universal'' 
equation of state, which may be written in the analytic form [Vin87a, Vin87b] 

P(T*, V) = 3B(~*; V*) (I-X)exp[T/(T*, V*)(I-X)] (2.114) 

where 

X=(;*)~ and T/(T*,V*)=~[BI(T*,V*)-I] (2.115) 

2.7.2. Behavior at Low Temperatures 

At T = 0 the quasi-harmonic expressions for the vibrational free energy and 
pressure are 

9 'Y(I) 9 
Fvib(O, V) = Ez = iReD(I), Pvib = viReD(I) (2.116) 

Neglecting any volume dependence of 'Y(I)/V, we find [Swe68] 

['Y(I)j2 9 
B1(0, V) = Bs(O, V) ~ BL(V) + -v-iR0D(I) (2.117) 

The vibrational term is positive, explaining why on cooling at constant volume BT is 
observed to rise above its high temperature value to a new limit as T -4 0 (Fig. 2.16). 
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2.S. ANISOI'ROPIC STRAIN AND STRESS: ELASTICITY 

2.S.1. Introduction 

For thennal properties of materials under isotropic pressure, the same thennody­
namics applies to both fluids and solids; V is the only relevant geometric variable. 
But unlike liquids, solids can sustain anisotropic stress; ideally they cannot flow, and 
neighboring atoms remain so pennanently even when the solid is put under stress.* 
In particular, in a crystal under anisotropic stress the unit cell retains its identity, 
but changes its shape as well as its volume. Six parameters are needed to define its 

dimensions - for example, the lengths of the edges a, b, c and the angles a, /3, .y 
between them. 

Depending on the specific application, we have therefore to generalize the thenno­
dynamics of Section 2.2 to take account of up to six geometrical degrees of freedom. 
For example, we might replace the one parameter V by the six unit cell parameters, 
and it may sometimes be appropriate to do this. However, the stresses conjugate to 
these parameters are not in general simply related to the macroscopic applied stress, 
and in any case such a theory could not be applied to non-crystalline solids. For 
these and other reasons, standard elasticity theory is developed in terms not of unit 
cell parameters but of macroscopic parameters describing the distortion of the mate­
rial from some configuration chosen as reference. Many applications are concerned 
only with the limit of infinitesimal strains from a state originally at zero pressure, 
and it is then quite straightforward to define stresses, strains and the related (second 
order) elastic coefficients with little fear of confusion (e.g., [Nye85]); with these we 
can generalize most of the relations of Section 2.2.3 to take account simultaneously 
of the different independent strain coordinates. Later in this section, however, we 
shall have to go further. We have seen that at very low temperatures the vibrational 
free energy depends on the frequencies of long wave acoustic phonons, and these in 
turn depend on the second order elastic coefficients. The low temperature thermal 
expansion therefore depends on the strain-derivatives of these frequencies, and so 
involves higher order elasticity. There is an extensive literature on this (later work 
includes [Thu64, Thu65a, Thu65b, Bru64, Bru65, Bru67, Wal70, Wal72, Bar98]), 
but the complexity of the subject makes much of it difficult to read. Here we shall be 
concerned only with the minimum needed for present purposes. 

2.S.2. Stress and Strain 

The Cauchy Stress. The best known measure of stress is the Cauchy stress 
tensor, ua {3, defined such that if dA is an element of surface area within the solid 
separating regions labelled I and II, the force exerted across dA by region II on region 
I is given by vector components 

(2.118) 

·We shall nOl here be concerned with visco-elastic substances. 
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where n is a unit vector normal to dA in the direction I to II; here and from now on we 
use the Einstein convention that a repeated suffix indicates summation (in this case 
L~= 1)· For example, a positive value of 0"11 indicates a tension along the direction 
of the x-axis, and a negative value indicates a compression. Off-diagonal elements, 
and also differences between the diagonal elements, indicate shear stress. For a solid 
under hydrostatic pressure P, all the off-diagonal elements vanish and 0" afJ = - P 8a fJ; 
here 8afJ is the Kronecker delta, which is unity when a and {3 are the same and zero 
when they are different. 

Normally (for exceptions see [Nye85]) the stress tensor is symmetric (O"afJ = O"fJa), 
and so has only six independent elements. In the abbreviated notation of Voigt these 
are written with a single subscript, as O"A' where A = 1,··· ,6: 

0"1 = 0"11, 0"2 = 022, 0"33 = 0"3 

0"4 = on = 032, 0"5 = 0"31 = 0"13, 0"6 = 0"12 = 021 . (2.119) 

Strain Coordinates. Strain coordinates describe the distortion of a material from 
the chosen reference configuration. They too may be expressed either as components 
of a tensor or in a Voigt abbreviated notation. Two sets in common use are the 
infinitesimal strain coordinates, written as eafJ or eA, which are sufficient for many 
applications (e.g., [Nye85]); and the Lagrange finite strain coordinates, written as 
TJa(J or TJA' which determine uniquely any state of strain however large, and so are 
widely used in the treatment of higher order elasticity. To the first order in the strain 
the two sets are the same, but they differ to higher orders. 

In this book we shall use mainly the Lagrange coordinates, making it clear when 
use of the infinitesimal coordinates would give different results. To define them, we 
choose a set of rectilinear Cartesian axes in the reference state, usually determined by 
crystal symmetry. In a state of uniform strain, lines that were straight in the reference 
state remain straight in the strained state. In partiCUlar, a unit cube in the reference 
state, with edges .elo .e2, .e3 parallel to the coordinate axes, becomes in the strained 
state a parallelepiped with edges .el, .e2,.e3 that in general are no longer of unit length 
nor at right angles to each other. The Lagrange finite strain tensor can then be defined 
by 

100 
TJa(J = 2 (.ea· lfJ -.ea· lfJ) (2.120) 

Its significance is that the square of the length of any vector r in the reference state 
is changed from f2 to f2 + 2TJafJf affJ in the strained state. 

Like O"afJ this tensor is symmetric, with only six independent elements. In the 
abbreviated Voigt notation, strain coordinates TJA are defined as follows: 

TJl = TJll, T/2 = T/22, T'/3 = T'/33, T/4 = 2T/23, TJs = 2TJ13, TJ6 = 2TJ12 
(2.121) 
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The factor 2 is introduced here for the off-diagonal elements of the strain tensor to 
make summation and differentiation equivalent in the two notations. To the first 
order in the strain the finite strain coordinates have a simple geometrical meaning: 
1JJ, 1}2, 1)3 are the d!latio~s 81~1 along the three coordinate axes, and -1J4, -1J5,-1)6 

are the changes 8lh3,86:n,i3812 in the angles between the straight lines originally 
along the positive coordinate axes. 

The Lagrange strain tensor is also often defined equivalently in terms of the linear 
transformation specifying the position x( i) in the strained state of each point of the 
body originally at i in the reference state: 

(2.122) 

This transformation takes account of rotation of the body as well as homogeneous 
strain, and so in general all nine elements of the tensor ua l3 are independent. In terms 
of the uap, Eq. (2.120) gives the Lagrangian tensor as 

1 
1Jal3 = 2" (uap + uPa + U yaU yl3) (2.123) 

The infinitesimal strain tensor is then defined by omitting the second order terms in 
this expression: 

1 
eal3 = 2 (ual3 +ul3a) (2.124) 

and is thus the symmetric part of uap. Voigt coordinates e A are defined in an analogous 
way to the 1JA' Infinitesimal rotation of the body is described by the antisymmetric 
part wap of uaP: 

(2.125) 

2.8.3. Elastic Stiffnesses CAp. and Compliances SAp. 

There are many different ways of treating elasticity. and of defining elastic co­
efficients. Some of these will be discussed in Section 2.8.5. But for the present 
we shall be concerned only with the "stress-strain" coefficients- obtained from the 
dependence of the Cauchy stress on the strain when the instantaneous state of the 
system is taken as reference configuration; whether we use 1JA or eA then makes 
no difference to first order derivatives. The isothermal and adiabatic stiffnesses are 
generalizations of BT and Bs. defined by 

(2.126) 

°They have also been called "effective," and "physical." 
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where the subscript 'TI' denotes that all strain coordinates except 'TIp. are kept constant 
during differentiation, and the subscript w denotes that the body does not rotate. 
Similarly, compliances are generalizations of XT and xs: 

(2.127) 

The stiffness and compliance matrices are reciprocal, in the sense that 

(2.128) 

the repeated suffices now imply the summation ~!=I. 
The stiffnesses tell us how each stress coordinate changes when one strain coor­

dinate is changed, while all the other strain coordinates are kept at zero. Conversely, 
the compliances tell us how each strain coordinate responds to an applied stress: 
thus S21 UI is the dilation in the y-direction resulting from a stress UI stretching the 
material in the x-direction, while all other stresses are kept constant. The number of 
independent coefficients depends upon symmetry. If the stress is isotropic, CAp. = C p.A 

and SAp. = S p.A, reducing the number of independent coefficients to twenty-one. Crys­
tal symmetry further reduces this number [Nye85]; for example, cubic crystals have 
only three (CII, C\2, C44). 

For solids under isotropic pressure the directional compressibilities XA provide 
another useful generalization of x. They tell us how the volume responds to a change 
in the single stress coordinate UA, and also how the strain coordinate 'TIA responds to 
a change in pressure: 

xl = (alnV) = _ (a'TIA) 
aUA u',T ap T 

(2.129) 

Adiabatic directional compressibilities are defined similarly. XA can be expressed as 
the sum of three compliances: 

(2.130) 

In turn the total compressibility is 

( alnV) 3 3 3 
XT = - -- = LxI = L L sIp. 

ap T A=I A=I p.=1 
(2.131) 

The reciprocal concept of bulk modulus is experimentally not so useful for solids 
with symmetry lower than cubic, since specifying the volume leaves the shape unde­
termined. However, for processes carried out under hydrostatic pressure BT may be 
defined as the reciprocal of the compressibility: 

BT=- --( ap ) 
a In V T (isotropic stress) 

(2.132) 
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Elasticity ofIsotropic Materials. We may ask how these quantities are related to 
Young's modulus E, Poisson's ratio u, and other coefficients used by geophysicists 
and engineers to describe the elastic properties of an isotropic material. Here all 
directions are equivalent, so that Cll = C22 = C33, C12 = Cl3, etc.; also C44 = !(Cll -
C12), etc. Other stiffnesses, such as CI4, CI5 and C45, are all zero. Young's modulus 
refers to the relation between stress and strain along a single axis while all other 
stresses are kept constant; and so although it has the dimensions of a stiffness, it is 
actually a reciprocal compliance: E = (Sll)-I. Similarly, Poisson's ratio is a ratio 
of two compliances: u = -S12/ SII. On the other hand, the bulk and rigidity moduli 
are both true stiffnesses: B = (Cll + 2CI2)/3, and G = (Cll - c12)/2 = C44. SO also 
are the Lame coefficients, A and JL, given by A = CI2 and JL = C44. In terms of E and 
u, B = E/{3(1- 2u)} and G = E /{2(1 + u)}. 

2.8.4. Thermodynamic Relations 

We can now generalize the results of Section 2.2.3. Cv and Cp are replaced by 
heat capacities at constant strain and stress: 

(2.133) 

where Cu becomes Cp when the stress is isotropic. Thermal expansion coefficients 
and Griineisen functions are defined by 

( aT/A) 
aA= aT ' 

U,W 

( aUA ) 
-YA = - a(U IV) 1),w 

(2.134) 

Other expressions for -YA are 

v (aUA) (alnT) 
-YA = - C1) aT 1),W = - aT/A 1)' ,W,S 

(2.135) 

Consideration of first increasing the temperature at constant strain and then allowing 
the stress to relax isothermally leads to a generalization of f3 = -y ( C v / V) Xr : 

(2.136) 

where the second equality can be derived by thermodynamic manipulation. 
Anisotropic thermal expansion is thus a result of the interplay of the thermal stress 
coefficients (proportional to the -YA) and the elastic compliances [Mun68]. Reciprocal 
relations give the -YA in terms of the stiffnesses and expansion coefficients: 

(2.137) 
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In terms of all these quantities relations have been found between Cu and C". 
and between isothennal and adiabatic elastic coefficients. For the heat capacities we 
have the two equivalent relations 

Cu = C..,(1 + a A 'YAT), CU = C.., + VTcrlLaAalL 

and for the stiffnesses and compliances 

(2.138) 

(2.139) 

Crystals of Axial and Orthorhombic Crystals. Much work. both experimental 
and theoretical. has been done on crystals of high symmetry, for which the above 
equations take simple explicit forms. For axial crystals (tetragonal. trigonal and 
hexagonal) there are only two independent coefficients of expansion. perpendicular 
and parallel to the axis. and similarly two Griineisen functions, related by: 

C.., [( T T ) T J Cu [( s s ) S J al. = V Su +s12 'Yl. +s13'Y1l = V Su +s12 'Yl. +s13'Y1l (2.140) 

(2.141) 

and 

(2.142) 

(2.143) 

Similarly 

(2.144) 

and so on for the rest of Eqs. (2.137)-(2.139). 
For orthorhombic crystals there are three independent expansion coefficients and 

Griineisen functions. related by 

C.., [ T T T J Cu [ S S S J al = V SuYI +sI2'Y2+ s13'Y3 = V SuYI +s12'Y2+ s13'Y3 (2.145) 

(2.146) 

(2.147) 
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A model of orthorhombic polyethylene [Bru98] provides a good example of 
the interplay of thermal pressure and compliance. There is a strong negative cross 
compliance S12 perpendicular to the polymer chains, so that a small change in the 
anisotropy of the Griineisen tensor with temperature leads to a much larger change 
in that of the thermal expansion. Examples for axial crystals may be fouod in 
[Muo69, Muo72] and in Chs. 5 and 6. 

2.S.S. Thennodynamic Stiffnesses C A,. 

The Thennodynamic Stress tAo In general the Cauchy stress is not thermody­
namically conjugate to any set of strain coordinates. The stress conjugate to 1)A 

is 

1 (au) 1 (aF) 
tA = iT a1)A TI',s = iT a1)A TI',T 

(2.148) 

where iT is the volume in the reference configuration. tA is equal to eTA only in the 
reference configuration, or when all stress coordinates are zero. The general relation 
between the thermodynamic and Cauchy stresses is discussed briefly in [Bar98]. 

The advantage of using tA is that it is a purely thermodynamic variable, indepen­
dent of whether the material has been rotated. Since tA is defined by Eq. (2.148) 
for all states of strain, a full set of thermodynamic relationships can be developed 
straightforwardly in a systematic manner, to any order of differentiation, and related 
later to the Cauchy stress if required (e.g., [Bar98]). Here we shall be concerned 
only with the elastic properties, so that we can relate to each other three different sets 
of second order stiffnesses all commonly fouod in current literature, and go on to 
discuss their stress-dependence in terms of higher order thermodynamic stiffnesses. 

Second Order Stiffnesses. Thermodynamic stiffnesses are usually written in 
upper case. The second order stiffnesses are 

(2.149) 

Unless the stress is zero, these stiffnesses are different from the stress-strain CAP. de­
fined in Section 2.8.3 even in the reference configuration; and they are different again 
from another set of stiffnesses sometimes used in theoretical modelling, viz. those ob­
tained from second order derivatives of F or U with respect to the infinitesimal strain 
coordinates eA. The relations between these three sets of second order stiffnesses 
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(in the reference configuration) take a simple fonn when the solid in the reference 
configuration is under hydrostatic pressure P; thus for the adiabatic stiffnesses 

t . I.. 1 (a2U) . 
II = Cll +r =.... --2 +P (2.150) 

V ael e',w,S 

t I2 =C12-P=! ( a2u ) 
V aelae2 e',w,S 

(2.151) 

!J. • I. 1 (a2U) 1 • 
L.44=C44+ r = .... --2 + -2P 

V ae4 e',w,S 
(2.152) 

When the stress UA in the reference state is anisotropic, the relation between the 
tAp. and the CAp. can be written as 

CAp. = tAp. + PAp. (2.153) 

where PAp. is the matrix 

~h -0'1 -0'1 0 0'5 0'6 
-d-z d-z -d-z 0'4 0 0'6 
-6) -0'3 6) 0'4 0'5 0 
-0'4 0 0 l(d-z +6) !U6 10'5 

0 -us 0 
2 I. 

!(6) +0'1) t. 
fC:-6 !0'4 

0 0 -0'6 I • !(UI +d-z) !O's 20'4 

We note that although CAp. = Cp.A, CAp. = Cp.A only for a solid under hydrostatic 
pressure, when Eq. (2.153) reduces to Eqs. (2.150)-(2.152). An expression for the 
elements of PAp. in tensor notation is given in Eq. (2.161). 

Thennodynamic compliance matrices SAp. are reciprocal to the stiffness matrices 
CAp.-

Higher Order Stiffnesses. Higher order thennodynamic stiffnesses are deriva­
tives of lower order stiffnesses with respect to the 1)A. They may be adiabatic, such 
as 

cf = (aCf,.) = ( a2tA) = ! ( a3 U ) 
p.v a1)v T(,s a1)p.a1)v T(,s V a1)Aa1)p.a1)v T(,s 

(2.154) 

isothermal, or "mixed." The most important example of "mixed" is given by the third 
order stiffnesses 

cfT = (~) = [.!...... (~) 1 
p.v a1)v T(,T a1)v a1)p. T(,s T(,T 

(2.155) 

which are determined experimentally by ultrasonic measurements under varying 
stress. Relations between pure and mixed third order stiffnesses are discussed by 
Skove and Powell [Sko67]. 
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2.8.6. Tensor Notation 

Despite the convenience and simplicity of Voigt notation, a full tensor notation is 
needed for some topics - for example, the propagation of elastic waves. The second 
order stiffnesses then appear as fourth rank tensors; e.g., 

(2.156) 

At this point it must be made clear what is meant by differentiating partially with 
respect to the elements of a symmetric tensor, and in particular how 'rJa(3 is considered 
to be altered while 'rJ(3a is kept constant. The convention is that the function to be 
differentiated is first expressed in a form symmetric to the interchange of 1Ja(3 and 
1J(3a, and then all nine elements are treated as independent during differentiation. 
With this convention the stiffnesses ca (3ylJ equal the corresponding Voigt stiffnesses; 
e.g., 

Cll23 = ct 132 = Cl4 (2.157) 

However, the compliance elements have a factor of one half for each off-diagonal af3 
or "18; e.g., 

Sllll = Sll, Sll22 = Si2, (2.158) 

Also, while all the "Ia(3 equal the corresponding "lA, the thermal expansion coefficients 
have similar relationships to those between 'rJa(3 and 1JA, i.e., all = al but ai2 = !cxt;. 
The reciprocal relationship between stiffnesses and compliances then becomes 

1 
CapylJSylJe..., = SapylJCylJe..., = '2 (8ae 8(3..., + 8a...,8pe) (2.159) 

All the thermodynamic equations of Sections 2.8.3-2.8.4 can now be written in 
tensor form. For example, Eq. (2.136) becomes 

C..., T Cu S 
aa(3= ~SapylJ"IylJ= ~sa(3ylJ"IylJ (2.160) 

The difference PAIL between the thermodynamic and stress-strain stiffnesses in the 
reference configuration can be expressed in tensor notation as 

(2.161) 

Cauchy Relations. Here we digress from thermodynamics to describe simple 
relations between elastic stiffnesses which are often used as a test for the predom­
inance of central forces. They apply strictly only to static models in which each 
atom is a center of inversion symmetry, so that all interatomic distances change under 
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strain unifonnly, and when the only interactions are pair potentials. By writing these 
potentials in the fonnf(r2), and remembering that in the strained state r2 is increased 
from r2 by 2T/o/3ror/3' it follows that for each pair of atoms 

a2f(r2)f aT/o/3aT/y8 = ror/3 ryrif"(r2) 

and hence that the value of Cofjy8 is unchanged when the indices a, /3, 'Y, 8 are 
pennuted; for example, C2233 = C2323. This gives six relations in Voigt notation, 

C23 = C44, 

CI4 = CS6, 

C13 =Css, 
C2S = C46, 

C12 = C66, 

C36 = C4S (2.162) 

Similarly, Cauchy relations for higher order stiffnesses follow from pennuting the 
Cartesian indices in Co/3.... However, the best known application is to the second 
order stiffnesses of unstressed cubic crystals, for which the thennodynamic and 
stress-strain stiffnesses are equivalent and there is but one relation Cl2 = C44. As a 
test for the dominance of central forces, it is best applied at low temperatures, where 
the crystal approximates more closely to a static model. 

2.8.7. Velocities of Elastic Waves 

During wave propagation the local strain-rotation tensor uo /3 is given at any point 
of the body by 

aXo 
uofj = -.-

aXfj 
(2.163) 

Elastic waves normally propagate adiabatically, and the equations of motion in the 
hannonic limit of small amplitudes involve the adiabatic second order derivatives of 
the energy with respect to the uofj, written A!Jh8' which are simply related to the 
thennodynamic stiffnesses C~fjy8: 

(2.164) 

It is the A!/3'l'8 that determine the elastic wave velocities. Note that they are not 
symmetric WIth respect to separate interchange of a with /3 and 'Y with 8, and so 
cannot be expressed in Voigt notation. 

For propagation in the direction of the unit vector 4, the wave-fonn is 
exp i [q (4 . :i) - wt]. The three eigenvalues of the matrix 

1 s A A 

Moy = -Ao/3y8Q/3Q8 p 
(2.165) 

then give the squares of the three possible wave velocities, and the normalized 
eigenvectors w give the corresponding directions of polarization. Eqs.(2.164) and 
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(2.165) are valid for arbitrary stress in the reference state. When the stress is isotropic, 
A!J3y8 can be replaced in Eq. (2.165) by the stress-strain stiffness C!/iy8' because the 
difference between them is antisymmetric with respect to interchange of 13 and li. 

Measurement of wave velocities in suitably chosen directions can thus be used to 
determine the second order elastic stiffnesses. For cubic symmetry we have 

A 2 A 2 A 2 
pMII =CII(ql) +C44[(Q2) + (Q3) j, etc., 

pMI2 = (C!2 +C44)~1~2' etc. (2.166) 

For propagation in the [100] direction this becomes a diagonal matrix, giving a 
longitudinal velocity (CII/p)I/2 and two equal transverse velocities (C44/p)I/2, as 
described in Section 3.4.4. Application to different symmetries is discussed in 
[WaI70, Thu64]. 

For propagation of waves in piezoelectric media, explicit account must be taken 
of the electric field arising from polarization (see [Bor54, Section 32]). 

2.9. CALCULATION OF w,,', yf,' AND 'YA~O FROM ELASTIC DATA 

EYoI can be computed from the integral of Eq. (2.85) with velocities obtained 
from the eigenvalues of the matrix May in Eq. (2.165). Before powerful electronic 
computers became widely available various ingenious methods were employed for 
this integration (see [Ale65]), but now it can be readily performed to any degree of 
required precision with suitable variables such as the spherical polar coordinates 6 
and t/J, in terms of which 

ii = (sin 6cos t/J, sin 0 sin t/J, cos 0), dO. = sin6d6dt/J (2.167) 

A standard computer subroutine can be used to obtain the eigenvalues and eigenvec­
tors of the matrix May for each direction of ii used in the integration. 

The integration can also be done to a good accuracy by using the set of 489 
directions uniformly distributed over 1/48 of the unit sphere given by Overton and 
Schuch [Ove65]. This is directly applicable to cubic crystals, and can be extended to 
lower symmetries by appropriate permutation of the direction cosines. 

Numerical tables for EYoI have been published by de Launay [deL54, deL56] 
covering a wide range of stiffness ratios for non-piezoelectric cubic crystals, and by 
Wolcott [Wo159] covering some ratios for hexagonal crystals. 

The Griineisen functions at T = 0 can be expressed as derivatives of 00, and so 

dln0el 
el 0 

'Yo = - dIn V ' 
el _ (alnEYo/) 'Y,\o-- ---
, a1!,\ TI' 

(2.168) 

In principle there are two different but equivalent ways of evaluating them from 
elastic properties. 
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Fig. 2.17. Internal and macroscopic expansion coefficients for a central force model of a-quartz (see text). 
-, model; - - -, approximate experimental internal coefficients [LeP80]. ~,a.l.; V, all; +,A.; x,Ax; D, 
A y ; <>, Az• From [Bar87]. 

Derivatives of &0' can be obtained by brute force calculation of eo' for neigh­
boring strains, or (for cubic crystals) by using de Launay's tables [Dan62a]. This 
method has often been used to obtain Y81 from pressure derivatives of the stress­
strain stiffnesses CAp., particularly for cubic crystals. Application to piezoelectric 
crystals is straightforward if the volume-dependence of relevant properties is known 
[Han74, Bar77a]. It can also be used for theoretical models. 

The second method averages mode Griineisen parameters of elastic waves over 
all polarizations and directions of propagation, weighted by inverse third powers of 
their velocities; thus 

e' ILi=1 ([vs (il))-3 y,\(q, s)}dfi 
YA,O = I Li=1 [vs(q)]-3dfl 

(2.169) 

The mode Griineisen parameters are derived from the thermodynamic elastic stiff­
nesses. In tensor notation, Wallace gives for an unstressed crystal at T = 0 [WaI70] 

A 1 3 3"A 3 3 
Ya/3(Q,s) = -waw/3 - 22 L L q,q,.,[C,,.,al3 + L L C,y,.,8aI3W yW 8] (2.170) 

pv ,=1,.,=1 y=18=1 

where w is the normalized polarization vector for the wave and v is its velocity; and 
the general expression for y(q,s) is 

3 3 3 

y(q,s) = B L L L sal3~E'Yal3(q,s) (2.171) 
a=II3=I~=1 
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See [WaI70] for further discussion, and [Bru67] for application to crystals of high 
symmetry. 

2.10. INTERNAL STRAIN 

In many crystals, the positions of atoms within the unit cell are not wholly deter­
mined by symmetry, and are specified in crystallography by one or more additional 
parameters. These parameters describe the state of internal strain, and they (or 
some equivalent set of internal coordinates) can be treated thermodynamically on the 
same footing as the macroscopic strain coordinates. This is particularly useful in the 
study of theoretical models, where it is usually simplest to calculate a generalized 
Helmholtz energy as a function of both internal and macroscopic strain. The sub­
sequent derivation of purely macroscopic properties is discussed in [Bar71, Bar98], 
and illustrated for a model of tellurium by Gibbons [Gib73]. 

Internal expansion coefficients are temperature derivatives of internal strain co­
ordinates. They can be calculated for theoretical models either by minimization of 
free energies at different temperatures with respect to internal and external strains 
or from analytical expressions (e.g., [Tay97a, Kan95, Bru98]). Experimentally they 
are usually determined from the analysis of intensities in x-ray diffraction, which for 
most crystals is not sufficiently sensitive to detect changes in internal strain below 
about 100 K (see Chapter 3). But when they are available they provide additional 
checks on the validity of theoretical models of more complex crystals, as exemplified 
by the four independent internal expansion coefficients of a-quartz (Fig. 2.17). 

Because straining a crystal can lower its symmetry, modelling elasticity usually 
requires a fuller set of internal strain coordinates than is provided by the crystallo­
graphic parameters. A comprehensive discussion of internal elasticity is given in 
tensor notation by Cousins [Cou78]. 
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Chapter 3 

Measurement Techniques 

3.1. GENERAL PRINCIPLES 

3.1.1. Introduction 

Measurements of Cp and expansivity have many requirements in common: ac­
curate measurement of temperature and temperature difference, temperature control, 
and thermal isolation. They differ in that measurement of Cp requires accurate 
knowledge of heat input aQ to determine 

Cp = {dQ/dT}p = {!1Q/aT)I1T--+O 

while a (or 13) requires accurate measurement of dimensional changes llJ (or a V) to 
determine 

13 = {alnV /aT)p = (aV /VaT)I1T--+O 

Another difference is that measurements of expansion may be taken during either 
heating or cooling, which is useful when studying phase transitions and hysteresis. 

Measurements of elastic moduli usually place less stringent requirements on 
temperature measurement and stability, since the moduli rarely change rapidly with 
T except at a phase transition. But they usually require precise measurement of 
another parameter, travel time and/or frequency of an ultrasonic wave. 

There are few, if any, complete measurement systems (cryostat and all) available 
off the shelf suited to these properties at low temperatures; a possible exception 
is Cp, for which two firms have recently introduced 'mini' calorimeter modules to 
insert in their multi-purpose measurement systems (Quantum Design and Oxford 
Scientific). Therefore we devote the following three sections to some details of 
methods and cryostats, hopefully sufficient to enable the reader to judge the accuracy 
that can be achieved and to locate references giving more details of the 'art' of such 
measurements, including those of thermal anchoring, heat switches, vacuum seals, 
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and suitable glues or cements. We also list the most important reference materials 
that are often used to check or calibrate a measurement system. 

Some useful books on cryogenic techniques are the following: 

• Matter and Methods at Low Temperatures [pob96], which emphasizes proper­
ties and refrigeration methods below 4 K; 

• Experimental Principles and Methods Below I K [Lou74]; 

• Experimental Techniques in Condensed Matter Physics at Low Temperatures 
[Ric88], which is based on a series of lectures to graduate students at Comell 
and includes many useful technical details needed for successful experiments, 
again with emphasis on very low temperatures; 

• An Introduction to Millikelvin Technology [Bet89]; 

• Low Temperature Laboratory Techniques [Ros73] and Experimental Tech­
niques in Low Temperature Physics [Whi79], which are each concerned with 
the whole temperature range below 273 K. 

3.1.2. Temperature Measurement 

A vital ingredient in all thermophysical property measurements is accurate know l­
edge of temperature. In practice we measure temperature and temperature change 
using various instruments and properties that happen to be suited to the particu­
lar range, accuracy and conditions, e.g., resistance thennometers, thennocouples, 
magnetic susceptibility, thermal expansion, etc. However, the foundations of our 
measurement depend on the concept of thennodynamic temperature T, which can be 
determined by various methods: 

1. The primary method is ideal gas thennometry, which uses the equation of state 
PV = RT = NAkT for a perfect gas; in practice helium at sufficiently low 
pressure approaches 'perfection.' 

2. Acoustic gas thennometry, which depends on measurement of sound velocity 
and requires corrections for an imperfect gas as in 1.; also dielectric constant 
gas thermometry. 

3. Electrical noise in a resistor of fi ohms, which gives a mean square voltage ,,2 = 4kTfill.j, where ll.f is the bandwidth. 

4. Total black-body radiation. 

These are painstaking measurements to perfonn at high accuracy, and generally 
not suited to everyday measurements of physical properties. Practical temperature 
scales have been adopted which relate as closely as possible to the thennodynamic 
scale and can be realized with resistance thermometers, thennocouples etc. The 
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development of these scales culminating in ITS-90 (the International Temperature 
Scale of 1990) is a long and fascinating story, well told by Quinn in Temperature 
[Qui90]. 

The unit of Temperature is the Kelvin, defined as 11273.16 of the interval from 0 
K to the triple point of water (0.01 0C). An outline of the text of ITS-90 which has 
cryogenic relevance in [Qui90, p. 59] (see also [pre90]) says: 

, ... Between 0.65 K and 5.0 K, Too is defined in tenns ofthe vapor-pressure 
temperature relations of 3He and 4He. 

Between 3.0 K and the triple point of neon (24.5561 K) Too is defined by 
means of a helium gas thermometer calibrated at three experimentally realizable 
temperatures having assigned numerical values (defined fixed points) and using 
specified interpolation procedures. 

Between the triple point of equilibrium hydrogen (13.8033 K) and the freez­
ing point of silver (961.78°C) Too is defined by means of platinum resistance 
thennometers calibrated at specified sets of defining fixed points and using spec­
ified interpolation procedures . .. ' 

Some of the defining fixed points and the uncertainty tJ..T of their thermodynamic 
temperatures are in Table 3.1, together with some secondary points (superconducting 
transitions of the Standard Reference Materials (SRMs) produced by the National 
Bureau of Standards or NBS (now the National Institute of Standards and Technology 
or NIST) which are of cryogenic interest. 

The ITS-90 equations for the vapor pressures of 3He and 4He are given in [Qui90, 
Pre90]. Note that the vapor pressures of the helium isotopes published in earlier 
cryogenic texts under the headings T58 and T62 may be in error by several millikelvins; 
for less precise needs there are useful tables of vapor pressures of helium, hydrogen, 
nitrogen and oxygen in such texts [Ros73, Whi79]. 

For the two ranges covered by the platinum resistance (13.8033 K to 273.16 
K and O°C to 961.78° C), there are polynomial reference functions linking the 
resistance ratio, W(T90) = R(T90)/R273.16, for a particular thermometer, see [Qui90, 
p. 454]. Other thermometers made of suitable pure strain-free platinum (PTRs) can be 
calibrated at the fixed points and deviation functions from these reference equations 
can be produced. For most practical purposes, we prefer the so-called Z-function, 
Z (T) = (Rr - R4.2) / (R273 - R4.2), which is tabulated for a group of high-quality 
platinum thermometers in [Whi79, p. 310] and should be valid for others of similar 
quality within deviation limits of about 25 mK above 20 K [Bes78]. Resistance 
thermometers are available from commercial sources with calibrations (at a price) 
which are traceable to the ITS-90 scale through the national standards laboratories 
such as the National Institute of Standards and Technology (NIST, formerly NBS at 
Gaithersburg) and National Physical Laboratory (NPL, Teddington). 

Details of the construction and performance of the commonly used thermometers 
are given in cryogenic texts [pob96, Qui90, Whi79]. Quoting from a Summary in 
[Whi79, p. 123], we list the following: 
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Table 3.1. Defining fixed points of ITS-90 with 
estimates of their uncertainty [Qui90, Pre90]. 
Lower section shows some superconducting 

transition temperatures, Te , of metals 
encapsulated in SRM 767 and SRM 768, see 

[QW90, p. 183] 

Fixed points T90/K tl.TlrnK 

4He b.p. 4.2221 0.3 
(at pressure of 101325 Pa) 
e-H2 t.p. 13.8033 0.5 
Net.p. 24.5561 0.5 
Ch t.p. 54.3584 1 
Art.p. 83.8058 1.5 
Hgt.p 234.3156 1.5 
Watert.p. 273.16 0 
Gamp. 302.9146 1 
In f.p. 429.7485 3 
Also Sn, Zn, AI etc .... 

Superconductor TclK WidthlrnK 

W 0.016 0.7 
Be 0.023 0.2 
Ir 0.099 0.8 
AuAh 0.1605 0.3 
AuIn2 0.2065 0.4 
Cd 0.5190 O. 5"'{). 8 
Zn 0.8510 2.5-10 
AI 1.1796 1.5-4 
In 3.4145 0.5-2.5 
Pb 7.1996 0.6-2 

1. Those with sensitivity and stability of 1 mK.: 
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(a) platinum thennometers encapsulated in sheath in strain-free mount for 
range T > 10K, 

(b) RhFe resistance thennometers for range 0.5-300 K, 

(c) Ge (encapsulated) thennometers for 0.5-50 K. Some show a 'jump' 
(equivalent to a few mK.) after cycling. 

All above are affected by magnetic fields. 

2. With sensitivity of 1-10 mK. and stability of < 100 mK.: 

(a) platinum as thin film or in unencapsulated coil for T > 10K, 

(b) carbon resistors encapsulated or potted (sealed) for 0.5-100 K, 

(c) carbon-in-glass for 1-300 K, relatively insensitive to magnetic field, 

(d) capacitance (e.g., SrTi03) for range 0.5-60 K, not affected by field but 
calibration may be affected by cooling cycle. 
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3. With sensitivity of 10 mK and stability of 100 mK: 

(a) p-n-junction diodes for 1-300 K, 

(b) thennocouples of AuFe for 2-300 K, 

(c) CLTS (manganin + nickel) for 2-300 K. 
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More recently, other 'thennistor' materials with negative dR/dT characteristics 
have been developed for low temperature use and might be included in categories 
2. or 3. above. 1\vo which are commercially available and useful down to below 
1 K are a thin-film based on RU02 and a thick-film (chip) using zirconium oxyni­
tride. Commercial versions from Lake Shore Cryotronics are called Rox and Cemox 
respectively. They are generally less sensitive to magnetic fields than most other 
resistance sensors. References to these and other semiconducting materials are given 
in a review of progress in cryogenic thennometry between 1982 and 1996 [Rub97]. 

3.1.3. Thmperature Control 

At low temperatures both C and a vary rapidly with T and generally involve 
measurement of a small temperature interval, requiring temperature control at the 
millikelvin level. In some instances this can be achieved by controlling the vapor 
pressure above the liquid refrigerant by a manostat or controlling the flow rate of 
a cooling gas stream. More often the temperature of sample, chamber or adiabatic 
shield is held steady by electrical heating in response to the signal from a suitable 
temperature sensor selected from the groups 1.,2. or 3. listed above. For example: a 
carbon or small platinum resistor (group 2.) is attached to the chamber or shield and 
fonns one arm of a phase selective ac bridge; the out-of-balance signal is amplified 
and fed back into a small resistance heater attached to the chamber, shield, etc. Such 
electronic controllers are commercially available or can be made from an ac bridge 
and phase sensitive detector. With thennocouple sensors, dc amplifiers can be used 
[Ros73, Whi79]. 

3.2. HEAT CAPACITY ... BY S. J. COLLOCOTT 

3.2.1. Introduction 

On cooling from room temperature to liquid helium temperatures the specific 
heat of a typical solid decreases by three to four orders of magnitude, and becomes 
vanishingly small at absolute zero. The small heat capacity of solids at liquid helium, 
and at lower, temperatures creates difficulties for the experimentalist, because small 
heat influxes from the surroundings, for example vibration, can lead to significant 
errors in the detennination of the heat capacity of a solid. Heat capacity measurements 
become even more challenging if the specimen has mass of a few tens of milligrams 
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(frequently samples of larger mass are not available), as there is increased difficulty 
in achieving adequate thermal isolation. 

Heat capacity measurements reveal much information about the electronic prop­
erties of a solid, for example the density of states at the Fermi level; about the lattice 
or vibronic properties of a solid, in particular the low-frequency phonon density of 
states, acoustic, and optic modes; about phase transitions, be they magnetic, super­
conducting, or structural; and about a range of other low temperature heat capacity 
effects, for example Schottky anomalies, magnetic spin-wave contributions, and two­
level systems. A consequence of this abundance of effects is that the heat capacity 
can vary enormously, being several orders of magnitude larger or smaller in a given 
specimen as a function of temperature, as well as obviously from one solid to another. 
For example, the heat capacity of the rare-earth metal holmium at 0.6 K, where the 
nuclear hyperfine heat capacity dominates, is ~5.6 J.mol-1·K-1, decreasing to less 
than 0.5 J·mol-1·K-1 at 4 K, and then increasing with increasing temperature as the 
lattice heat capacity begins to dominate (see Section 6.4.3); and at 19.46 K there is a 
peak of width 0.03 K, which attains a maximum heat capacity of 145 J.mol-1·K-1, 
due to a magnetic transition from a helical to a conical spiral state [Co188, Ste89]. 
A great strength of heat capacity measurements is that they give information on the 
bulk behavior of a solid, and as such are useful in determining whether an effect 
observed by some other technique, for example resistivity measurements, is a feature 
of the bulk material or due to some other minority phase. A wide variety of low 
temperature heat capacity effects can be investigated using a simple pumped 3He 
cryostat, operating over the temperature range 0.3 K to about 30 K. 

There are a number of excellent review articles on low-temperature calorimetric 
techniques [Wes68, St068, Hil68, Ste83, Gme87, And88, Mar88, Wes88], and these 
are complemented by the more general discussion of calorimetry by Hemminger 
and H6hne [Hem84]. This discussion draws heavily on these reviews, and the 
reader is referred to them for greater detail. Recently, there have been a number 
of new experimental developments. These have been driven by the availability of 
improved instrumentation, and as a result there have been advances in small sample 
«200 mg) calorimetry [DeP86, Dut88], the measurement of adsorbed gases on 
substrates using ac calorimetric methods [Cha89, Ken90], measurements in large 
magnetic fields [Kla97], and increased automation of calorimeters [pec97]. The 
trend to increased automation has been accelerated with the advent of a number 
of manufacturers offering commercial 'turnkey' systems. These new developments 
will also be addressed in the context of the broader discussion of low-temperature 
calorimetric techniques. 

3.2.2. Adiabatic Calorimetry 

A convenient starting point for the measurement of low temperature specific heat 
is the classical definition of the specific heat (per unit mass), Cp, 

cp(T) = lim (AQ/AT}p/M 
t.T-+O 

(3.1) 
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where aQ is a heat energy input (pulse) that causes a small temperature rise aT in 
a specimen of mass M. This 'step' or 'pulse' heating technique can be traced back 
to Nemst (see [Gme87]), and it remains today one of the most accurate methods for 
obtaining specific heat data. In practice the specimen is contained in, or thermally 
connected to, an addenda which consists of the specimen support system or container, 
thermometer, resistive heater, and any other wiring - the addenda is the calorimeter 
- and the addenda/sample assembly is thermally insulated from the surroundings 
(adiabatic conditions). Thermal eqUilibrium with the surroundings is established 
before and after the heat pulse aQ. The temperature, T, is monitored as a function 
of time, and the temperatures Ti and If at the beginning and end of the heat pulse 
are corrected for any heat exchange with the environment by extrapolating T before 
and after the heat pulse to the time that corresponds to the midpoint of the pulse. 
The temperature increment is then aT = Tf - Ti, from which Cp is obtained at the 
temperature Tm = (Ti + If )/2. This technique is shown schematically in Fig. 3.1. 
Strictly, adiabatic conditions occur only when there is no heat transfer between the 
calorimeter and surrounding shield. After the heat pulse the calorimeter will be at a 
temperature slightly above that of the shield, and there will be a downward temper­
ature drift; and so the experimental conditions are more appropriately described as 
being 'quasi-adiabatic' or 'slightly isoperibol.' 

In a typical experiment from 0.3 to 20 K the calorimeter is heated by series of 
heat pulses and the drift rates monitored before and after each heat pulse. Ideally aT 
is kept small, so that linear extrapolation of the drift rate is sufficient to determine 
either Ti or Tf. The shield temperature is kept constant both before and after the 
heat pulse, and obviously during the pulse. It is common to adjust the shield before 
each data point to the temperature of the calorimeter, which minimizes the drift 
corrections. If addenda corrections are small, the heat capacity of a specimen may 
be determined with an inaccuracy of order 0.2%. In this experimental technique 
the specimen is at thermal eqUilibrium with its surroundings before and after each 
heat pulse. This is not so in continuous heating calorimeters, where heat is added to 
the specimen at a constant rate and the resulting rate of increase of temperature is 
measured [Coc66]. In the continuous heating calorimeter, the specimen may never 
be in thermal equilibrium with its surroundings. 

Some comments and clarification are in order on the terms adiabatic, isoperibol 
and isothermal (see Fig. 3.2), which are used in the literature, frequently in an 
imprecise manner, to describe the modes of operation of a calorimeter. The term 
adiabatic refers to a calorimeter where there is no heat transfer between it and its 
surroundings (usually a thermal shield that is part of the cryostat). In practical 
terms no calorimeter is truly adiabatic, as there will always be some heat input from 
the surroundings, though this heat leak can be minimized by ensuring the shield 
and calorimeter are at the same temperature and the thermal resistance between the 
calorimeter and the shield is very large, i.e., the best possible thermal insulation. 
In an isoperibol* calorimeter the surrounding shield is maintained at a constant but 

-The term 'isoperibol' (uniform surroundings) was introduced by Kubaschewski and Hultgren [Kub62]. 
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Fig. 3.1. Low temperature calorimetry methods. 

different temperature to that of the calorimeter, and the thermal resistance between 
the calorimeter and the surrounding shield is large but of a finite value. In an 
isothermal calorimeter the calorimeter and surrounding shield are maintained at the 
same temperature and the thermal resistance between the calorimeter and surrounding 
shield is very small. 

3.2.3. Ac-Temperature Calorimetry 

The need for excellent thermal isolation and the minimization of stray heat leaks 
places a lower limit of about 200 mg on specimen mass for adiabatic calorimetry. 
The requirement for heat capacity measurements on smaller specimens has led to the 
development of a number of techniques, and, in 1968, Sullivan and Seidel [SuI68] 
introduced a technique where the specimen is heated by an ac current of angular 
frequency w/2 passing through a resistance heater (see Fig. 3.1). Measurement 
of the peak-to-peak ac temperature response, Tac , by synchronously detecting the 
voltage across a resistance thermometer at frequency w, using a lock-in amplifier, 
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Fig. 3.2. Schematic representation of a calorimeter to highlight the various types [(1) Environment, (2) 
Surrounding shield, (3) Measuring system and (4) 1berrnaI resistance, TF Temperature of surrounding 
shield, TM Temperature of measuring system and R'h thermal resistance]: Isothermal R'h very small and 
TF = TM = constant; Adiabatic R'h very large and TF = TM; and, Isoperibol R'h fixed, TF constant and 
TM = TM(t) (Adapted from [Hem84]). 

enables the total heat capacity (specimen and addenda), Cp, to be calculated from 

Qo [ 1 2 2 2Kb]-1/2 
Tae = 2wCp 1 + w2Tt + W T2 + 3Ks 

(3.2) 

where Qo is the amplitude of the sinusoidal heat flux, Tl is the specimen to bath 
relaxation time, 'T2 is the response time of the specimen, heater and thermometer 
to the heat input, Kb the thennal conductance of the specimen to the bath, and 
Ks the thermal conductance of the specimen. Equation (3.2) can be simplified 
through judicious choice of the experimental conditions [Ste83 , Cha89, Kra84], 
namely'T2 «: l/w, Tl »l/w and Ks» Kb, giving a simple expression for Cp, 

Qo 
Cp~--

2wTae 
(3.3) 

Sullivan and Seidel [SuI68] demonstrated the ac-method with measurements on a 9 
g specimen of indium, using an ac temperature modulation of 10 Hz with a peak-to­
peak value of 4 mK. Relaxation time corrections were small and could be neglected 
(Tl = 2.5 ± 0.1 sec, 'T2 = (0.7 ±0.3) x 10-3 sec), and they estimate an error in Cp 

of 1 %. They report further measurements on a 82 mg single crystal of beryllium, 
and were able to observe relative changes in Cp of 0.04%, with an absolute accuracy 
of 8%. As with the adiabatic method it is necessary to correct the measured heat 
capacity values for the addenda contribution. 

The ability of the ac-method to detect changes in heat capacity as small as 10-8 

to 10-12 J·K- 1 [Min94, Cha89, Fom97] has made it one of the favored methods 
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for small sample calorimetry, or what has become known as microcalorimetry or 
nanocalorimetry. The ac-method has been used in a number of elegant experiments 
studying the adsorption of a range of gases on various substrates, namely 4He on 
sapphire [Ken90] and on single crystal graphite [Cha89], and H2 on gold [Bir96]. It 
has also been used for measurements on specimens of less than 100 mg in magnetic 
fields up to 20 T [Sch87a]. A variation of the ac-method is the injection of heat into 
the specimen by irradiation with chopped light from a tungsten lamp [Tas90] or from 
an electronically modulated diode laser [Mar97], instead of a resistance heater. In 
this case the amount of energy input into the specimen is not usually known, and 
a relative measure of the heat capacity is obtained, unless the calorimeter has been 
calibrated previously with a known, or reference, material. It should be noted that 
use of the ac-method is not restricted to low temperatures, and it can be used for 
measurements up to the melting point of refractory metals. In this broader context 
it is frequently referred to as 'Modulation Calorimetry,' and the reader is referred to 
the review of Kraftrnakher [Kra84]. 

3.2.4. Relaxation Calorimetry 

In recent times thermal relaxation calorimetry has become particularly popular as 
it is suitable for small samples, can be used over a wide temperature range (from below 
1 K to 300 K), cryostat design and specimen mounting are simple, and signal-to­
noise can be improved using signal averaging as part of a computer controlled system. 
Indeed, a number of the commercially available computer automated systems use the 
relaxation method.· 

In the thermal relaxation method [Bac72, Sch74, For80, Reg86, Dut88] the spec­
imen is connected by a weak thermal link to a constant temperature bath, at temper­
ature To. The temperature of the sample is raised by a small amount, !!..T (typically 
!!..T IT ~ 1 %), and then allowed to decay exponentially down to the bath temperature. 
The temperature of the specimen, Ts , is described by 

Ts = To +!!..T exp( -( /,rt) (3.4) 

where t is time and 71 is the specimen to bath time constant. The heat capacity, Cp, 
is determined from the measurement of 71 and the thermal conductance of the weak 
thermal link, K, where 

(3.5) 

Bachmann et ai. [Bac72] used four wires of pure gold or gold alloyed with 7 at. % 
copper, each 25 mm long and 0.076 mm in diameter, for the thermal link. At 4.2 K 
the thermal conductance was 5 x 10-4 W·K- 1 and 5 x 10-6 W·K- 1, for pure gold 
and the gold-copper alloy, respectively. Alternatively, the thermal conductivity of the 

"Quantum Design, San Diego. California. USA. and Oxford Instruments. Tubney Woods. Abingdon, 
Oxfordshire. U. K. 
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link can be detennined at each data point using the heater power, P, where K = P / 6.T 
[Sch74, Ban92]. Choice of the thennallink material gives the experimentalist control 
of K, and hence 'Tl, which may vary typically from <50 ms to 100 secs. For the 
limit where K is very small, the relaxation method becomes the adiabatic method, 
discussed earlier. On occasions it may also be necessary to consider the behavior 
of 1"2, the response time of the specimen, heater and thermometer (as was defined 
in the ac-method). So called ''T2 effects' occur when 'Tl and 'T2 are comparable 
(for 1 % accuracy it is necessary for 'Tl » 'T2), occurring when the specimen and 
thermometer are not at the same temperature, i.e., for a specimen of very low thennal 
conductivity. The signature of this behavior is an overshoot in the thermometer and 
a non-exponential shape in the decay curve, and is discussed in detail by [Bac72]. 
As with the adiabatic and ac methods, it is necessary to correct the measured heat 
capacity values for any addenda contributions. The experimental configuration can 
be arranged for an upward step of the constant temperature bath, and 'Tl is detennined 
from the exponential growth towards the new higher temperature, as is shown in 
Fig. 3.1 [DeP86, Ban92]. 

The relaxation method is suitable for specimens from 1 to 100 mg. Measurement 
of the heat capacity of a 90 mg copper specimen by [For80] shows that the method is 
accurate to 1 %, and resolutions in the heat capacity of 0.1 to 5 JLJ·K-l are achievable 
[DeP86]. The availability of powerful personal computers combined with fast data 
acquisition cards has resulted in the relaxation method's becoming very popular, as 
data acquisition and detennination of the heat capacity are done in real-time. 

3.2.5. Diffusive Heat Pulse Calorimetry 

There is one technique, the diffusive heat pulse method [Ber70, Fi175, Mad88], 
which cannot be easily categorized with the above methods. It differs in that it is 
not necessary for the specimen to be at a homogeneous temperature. Its advantage 
is that it allows simultaneous measurement of both the heat capacity and thermal 
conductivity, and it is suitable for specimens of small mass, such as thin films. In 
this method a long sample, thermally isolated from its surroundings by a vacuum, 
is thermally fixed at one end to a constant temperature bath. At the isolated end of 
the sample there is a heater, and arranged along the length of the specimen, between 
the heater and constant temperature bath, there may be one or more thermometers. 
Pulses of heat, typically of duration 10-4 seconds, are injected into the specimen. 
Bertman et al. [Ber70] have solved the diffusion equation for this configuration, and 
analysis of the pulse height and arrival time are used to determine the heat capacity 
and thennal conductivity, with a typical inaccuracy of ±5% [Fil75]. A number of 
more sophisticated numerical techniques for fitting the data have been proposed to 
overcome problems associated with the boundary resistance between the specimen 
and the attached thermometer [McM94, McM96]. In principle this method has the 
potential for high accuracy, as the diffusivity depends only on time measurements, 
and signal averaging can be used. 
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3.2.6. Advantages and Disadvantages of the Various Methods 

It is important to tailor the heat capacity measurement method to the partic­
ular effect or anomaly being investigated. The adiabatic method works well for 
specimens with a mass greater than about 0.5 g and up to several tens of grams, 
in the temperature range from 0.3 to 30 K, and it has a high accuracy. Generally, 
large sample adiabatic methods are not suitable for temperatures below about 0.3 
K, as it is common to use a mechanical heat switch [HiI68, Mar88] to cool the 
calorimeter, and operation of the heat switch at the lowest temperature injects a 
significant amount of heat energy into the calorimeter. (The use of helium ex­
change gas to cool the calorimeter is to be avoided, because heats of desorption 
or evaporation may be comparable with the heat capacity of the calorimeter, and 
it may introduce an unexpected heat leak to the surrounding temperature shield 
[Mar88].) Operation to lower temperatures is possible if a superconducting heat 
switch is used [Ste83]. Thermal isolation of the specimen may become difficult 
for a specimen mass below 0.5 g, as heat leaks may become large when compared 
to the experimental heat input. Also, for small specimens the heat capacity of 
the addenda may become the largest portion, 80% or 90%, of the measured heat 
capacity, necessitating large addenda corrections which limit the accuracy of the 
heat capacity determination. There are also limitations when the adiabatic method 
is used to examine phase transitions, as finite values of !::J.T must be used. It may 
not be possible to resolve the fine detail of a phase transition if the values of 
!::J.T are too coarse and the phase transition occurs over a very small temperature 
range. 

Both the ac and relaxation methods are suitable for specimens with a mass 
in the range 1 to 100 mg and in the temperature range 1 to 30 K. The upper 
temperature limit is set by the increasing addenda contribution, but on occasions 
they may be used satisfactorily to higher temperatures for specimens that have 
a large heat capacity. Commercial instruments (see footnote2) use the relaxation 
method and operate up to 300 K. They make use of powerful personal com­
puters, sophisticated measuring instruments, and microlithography techniques, to 
fabricate an addenda with a very small heat capacity. The ac-method is the best 
method for resolving small changes in heat capacity. At temperatures below 1 
K, for specimens that have a poor thermal conductivity (e.g., pressed powders or 
amorphous materials), and when the condition 7'1 1 < W < 7'2- 1 is not satisfied, the 
ac-method breaks down [Ste83]. Below 1 K the relaxation method is preferred, 
and it can be used with specimens of poor thermal conductivity. The availability 
of low cost personal computers and data acquisition systems for signal averag­
ing, with a fast response time, has simplified data manipulation when using the 
relaxation method. The decay or growth profile can be measured, a number of 
profiles averaged, fitted using a non-linear least-squares routine to obtain 7'1, the 
total heat capacity determined, and a correction made for the addenda to give the 
specimen heat capacity, all in real time. 
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3.2.7. Experimental Issues and Calorimeter Design 

Experimental calorimetry has benefited greatly from the advances made in elec­
tronic instrumentation, personal computers, and the use of microlithography tech­
niques to form very small addenda, but one should not lose sight of the importance 
of good calorimeter and cryostat design. This includes thermometry and the choice 
of appropriate materials for cryostat construction. A schematic diagram of a cryostat 
is shown in Fig. 3.3. Whilst it is beyond the scope of this section to discuss all 
aspects, and the subtleties, of cryostat design and construction (it is well covered 
in the literature [Man59, Scu65, Hi168, Joh73, Whi79, Mar88, Pob96]), it is worth­
while to review a number of aspects that are particularly relevant to low temperature 
calorimetry. 

A number of principles of calorimeter design, with reference to [Mar88, Pec97], 
can be stated. 

1. The accuracy of a heat capacity measurement is critically dependent on the 
accuracy of the energy, time, and temperature measurements. 

2. There must be good thermal equilibrium within the calorimeter. The ther­
mometer must correctly indicate the specimen temperature. 

3. For adiabatic calorimeters, any heat exchange between the specimen and its 
surroundings must be minimized, to minimize drift rate corrections. Below 
about 10 K heat conduction is via electrical connections and is proportional to 
Il.T (attention must be paid to good thermal anchoring of all wires). Above 
about 50 K heat transfer by radiation begins to dominate, and is proportional 
to T3Il.T. Eliminate stray heat inputs from unexpected sources, such as those 
from vibration and radio frequency interference. 

4. Maximize the ratio of specimen heat capacity to addenda heat capacity, to 
minimize any addenda corrections, and thus ensure the best possible accuracy 
in the determination of the heat capacity of the specimen. 

5. Use a simple calorimeter and cryostat design for easy loading and unloading of 
the specimen. Also, the calorimeter should be able to measure a large variety 
of different specimens. 

6. Minimize the number of 'corrections' that need to be made for unmeasured 
material on the calorimeter (such as varnish, solder, vacuum grease, etc.). It is 
preferable to mount, connect or contain the specimen to the addenda, whose 
heat capacity has been determined in a separate experiment, rather than gluing 
a heater and thermometer on to the specimen. 

The germanium resistance thermometer (GRT) is the thermometer of choice for 
heat capacity measurements, in zero applied magnetic field, between 0.3 and 30 
K. GRTs are not suitable for measurements in magnetic fields, due to their large 
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magneto-resistance; thermometers that are less sensitive to magnetic fields include 
carbon glass, Ru02-based sensors and Cernox (a registered trade mark of Lake Shore 
Cryotronics, Inc.) [Pec97]. Measurements of heat capacity should be made on the 
thermodynamic temperature scale, preferably the International Temperature Scale 
of 1990 (ITS-90), with a thermometer calibrated appropriately [Mar75, Rub97]. A 
discussion of the differences between ITS-90 and earlier temperature scales (lPTS-
68, EPT-76, IPfS-48 and ITS-27) is presented in [Go192]. The effect of temperature 
scale differences on the analysis ofheat capacity data has been addressed by [Hol72]. 

For best accuracy it is important to keep the addenda contribution to the total 
measured heat capacity as small as possible. This requires that the addenda be 
constructed from materials that have a low heat capacity and high thermal conductivity 
(to minimize thermal relaxation times), and can be well characterized, so there should 
be no phase transitions and amorphous materials should be avoided. In large sample 
adiabatic calorimeters the addenda is most commonly constructed from high-purity 
copper, e.g., 99.999+% ASARCO, a heater, which is bifilar wound from resistance 
wire, e.g., Evanohm, and a germanium resistance thermometer [CoI83a]. For small 
specimen calorimeters, be they of the adiabatic or relaxation type, investigators 
have displayed considerable creativity and innovation in constructing addenda that 
have a very low heat capacity. Addenda described in the literature include: a holder 
constructed from Ah03 discs with a sputtered NiCr heater, and ORT thermometer (see 
Fig. 3.4) [Ome81a]; thinned copper support, strain gauge heater, and unencapsulated 
ORT [DeP86]; Al203 holder, a heater of 160 om thick copper sputtered onto the 
holder, and a thermometer made from a 0.018 cm slice cut from a carbon resistor 
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[Sch74]; sapphire disk, with a thin film nichrome heater and GRT bare element 
[Dut88]; a thin silicon membrane (2-10 ILm thick), a deposited thin film CuNi 
heater, and a deposited thin film NbN thermometers [Fom97]; a silicon on sapphire 
thermometerlheater assembly [Ear81]; copper sample holder, strain gauge heater, 
and Cernox thermometer [Pec97]; and a sapphire disc with a AuGe thermometer and 
heat input by absorption of optical light pulses from a light emitting diode [Gut91]. 

Reference Materials. It is important to check the operation of the calorimeter 
by measurements on a known or reference material. This will give insight into the 
behavior of the calorimeter and alert the experimentalist to any odd behavior, which 
for example could be due to stray heat leaks. If behavior out of the ordinary is found, 
its source should be pin-pointed and fixed, rather than using a 'universal factor' to 
correct all measurements. What is thought to be a 'universal factor' may turn out not 
to be so, due to variations in internal thermal time constants of different materials. 
The reference material most often used for checking the operation of low temperature 
calorimeters has been the 1965 Calorimetry Conference Copper Standard, which was 
vacuum cast at the Argonne National Laboratory from 99.999+% high-purity copper 
(A.SARCO Grade A-58 Copper) [Osb67]. Osborne et ai. [Osb67] have produced the 
copper reference equation, a polynomial expression which gives the heat capacity 
between 1 and 25 K for the 1965 Calorimetry Conference Copper Standard. It has 
been shown by Ahlers [Ahl66] that the specific heat of vacuum annealed 99.999+% 
ASARCO copper differs by less than 0.1% from the 1965 Calorimetry Conference 
Copper Standard above 1.3 K. If a 1965 Calorimetry Conference Copper Standard is 
unavailable, vacuum annealed 99.999+% ASARCO copper is a perfectly acceptable 
substitute, for use as a low temperature calorimetric standard [AhI66]. 

The temperature scale, particularly at low temperatures, has changed appreciably 
since the work of Osborne et ai. [Osb67], and it is now recommended by CODATA 
[Whi97] and IUPAC [Mar87a] that for the range 1-30 K, the polynomial given 
by Holste et ai. [Hol72] be preferred because the temperature scale (Iowa State' 
University) on which it was based agrees most closely with ITS-90. This latter 
polynomial for the Cp of copper in the range 1 to 30 K is [Hol72] 

Cp =AIT +A3T3 +AsTs +A7T7 +A9T9 +AllTII +Al3Tl3 

(mJ ·mol-I·K-I) 

where the polynomial coefficients An (in mJ·mol-I·K-(n+I) are as follows: 

Al = 0.69260 A7 = 1.0869 x 10-7 All = 1.3343 x 10-13 

A3 = 0.047369 A9 = -1.9745 x 10- 10 Al3 = -3.2196 x 10-17 

As = 1.9537 x 10-6 

For the range 30-300 K, IUPAC [Mar87a] produced a more lengthy (14 term) 
polynomial fit to Cp for Cu which agrees to better than 0.3% with other data evalu­
ations including [Whi97, CODATA] and [Rob76, Whi84b, Mar87b]; it is the source 
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for the selected values given in Table C.3 of Appendix C. The 14 coefficients, Ao, 
AI etc. can be found in [Mar87a, Whi97]. Measurements on the 1965 Calorimetry 
Conference Reference Standard and vacuum annealed 99.999+% ASARCO copper 
are a convenient way for investigators to assess the accuracy of their calorimetric 
technique, perform intercomparisons with other researchers, and to produce tables of 
recommended values [AhI66, Mar67, Bl070, Hol72, Mar73, Hur74, Rob76, Ara77, 
Co183a, Whi84b, Mar87b, Whi97]. 

Another reference material recommended for temperatures above 20 or 30 K is 
a-alumina (sapphire), as discussed in [Mar87a, Whi97, Cas84]. 

Automation. A calorimetry experiment involves a series of repetitive measure­
ments, and adjustments of shield temperatures, often over a long period of time. The 
experimental burden can be eased greatly by automation. Approaches to automation 
adopted fall roughly into two categories; data acquisition with off-line processing 
or on-line processing. In the latter the heat capacity is determined in real time, 
whilst in the former it is calculated from the acquired data on another computer at 
another time. The advantage of off-line processing is that all the experimental data is 
retained, for example temperature, time and heat input, for further reference should 
any unexpected behavior be observed. A disadvantage with on-line systems is that 
many different specimens of widely varying mass will be studied in the calorimeter, 
ranging perhaps from glasses to metals and superconductors with phase transitions, 
and it is very difficult, if not impossible, to write a software program that will adjust 
all the parameters given the variation in thermal time constants. (This may be a brave 
statement given the rapid advances being made in instrumentation and powerful per­
sonal computers.) The automation of calorimeters has tracked the improvements in 
measuring instruments and computers. Early systems used paper-tape, automatic ac 
bridges and minicomputers [Mar73, Sch75, Mos77, Mar79, Gme81b], which were 
soon displaced by microprocessor based systems, some of which use a high-quality 
digital voltmeter for thermometry [Che82, Lan81 , CoI83a]; these have in turn been 
followed by systems using the latest personal computers, and require no human 
intervention [pec97]. Examples of automatic heat-pulse adiabatic calorimeters in­
clude [Mar73, Mos77, Mar79, Gme81b, Lan81, Che82, Co183a, San95, Pec97], ac 
calorimeters [Cha96], relaxation calorimeters [Sch75, Dut88, Ban92, Hwa97], and 
diffusive heat pulse calorimeters [Kwo90]. As was noted earlier, fully automatic 
relaxation calorimeters are available commercially. 

3.3. THERMAL EXPANSION 

3.3.1. Introduction 

The linear coefficient of expansion a is normally measured as an average 

(3.6) 
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obtained from the length change (or lattice spacing change) over an interval aT = 

T2 - T2. If IT is taken to be (lTI +lr2 )/2 and T to be (Tl + T2)/2, the limit of a as 
aT -+ 0 is identical to a as defined thermodynamically in Eq. (2.5): 

a = (a;;,) p = ~~'!Ol~ (~) (3.7) 

In practice, the value of IT is often replaced by the length measured at room tempera­
ture, IRT (sometimes denoted as 10), so that the experimental results usually reported 
are strictly for 

a* = _1_ (_a_I) = a _lr_ = a (1 + ...:;lr-:-_I.,.;;.;R.;:..T) 
IRT aT p IRT IRT 

(3.8) 

Detailed analysis of errors resulting from the finite size of intervals aT is discussed 
in [Bar98]. 

Alternatively values of a can be obtained by differentiating an algebraic fit to a 
number of readings of length (or lattice spacing) at various temperatures. In each case 
the temperature interval aT should be much smaller than T (generally aT IT ~ 0.1) 
unless a is sensibly constant over a wide range, which is unlikely at low temperatures. 

At ambient temperatures, where a '" 10-5 K- 1 for many solids, we can measure 
the change in length (or lattice spacing) over an interval aT", 10 K. In this case, a 
method having sensitivity al II '" 1 0-6 should give an inaccuracy of 1 % or less from 
a pair of readings. This sensitivity can be achieved easily by many dilatometers but 
not by X-ray or neutron measurement of lattice spacing. 

At low temperatures, a becomes much smaller and necessitates more sensitive 
methods. For example: for Cu, a = 1.0 x 10-6 at 30 K, 0.1 X 10-6 at 15 K and 
0.005 x 1O-6K- 1 at 5 K. Therefore to measure a to 1 % over a temperature interval 
of 1 K demands a resolution of alit", 10-9 near 15 K and very much finer at 5 K. 
Indeed at 5 K, even if the specimen I '" l00mm, the expansion al '" 0.5 nm over a 1 
K interval necessitating a sensitivity of'" 0.005 nm (0.05 A). 

Such detection levels of 0.1 A or less are much smaller than the average inter­
atomic spacing in a solid and much smaller than the scale of roughness on a polished 
surface. Any form of dilatometry involving contacting surfaces has to take this into 
account: thermal cycling will often reveal hysteresis effects arising from the relative 
movements of the surfaces. 

In the following sections we discuss the various methods in order of increasing 
sensitivity with comments on ease of operation and reproducibility of data. Some 
methods which are of use mainly at high temperatures, including telemicroscopy and 
'Y-ray density, will not be included. 

A valuable reference to methods of measurement of thermal expansion is the 
handbook on Thermal Expansion o/Solids [H098], in which various authors give de­
tails of X-ray diffraction (H. A. McKinstry et at.), optical interferometry (T. A. Hahn) 
and high resolution techniques (C. A. Swenson). 
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3.3.2. X.Ray Diffraction 

The normal resolution in determining changes in lattice parameter is fw / a '" 
10-5, so that with a temperature interval of 50 K an expansivity of 1O-5K-l could be 
detennined with an error of 2% or less. Clearly this is a convenient method at normal 
temperatures for most solids (for which Q ~ 1O-5K- 1), provided the temperature 
interval is not so large as to 'smear out' important physical features. The Debye­
Scherrer (powder pattern) method is particularly convenient in not requiring large 
samples or single crystals; for anisotropic solids it can establish the differences in 
principal expansivities without the need for large single crystals. 

Single crystal methods such as Bragg's, the Bond diffractometer and rotating 
crystal are discussed by Krishnan et al. [Kri79] and [H098, Ch. 7]. Generally 
resolution limits their value below 100 K or so for most solids, except for dislocation­
free single crystals such as Si where triple-axis spectrometry can be used with much 
higher resolution. 

Good examples of the use of X-ray diffraction at higher temperatures are the 
measurements at the University of Illinois on Cu, Ag, Al etc., where the changes 
in lattice spacing were compared with the macroscopic length detennined from a 
cathetometer at 25 or 50 K intervals [Sim60]. In Cu, for example, the two methods 
agreed to within experimental error up to 1100 K. For higher temperatures, closer 
to melting, differences between fw / a and AI / I become significant enough to allow 
estimates of vacancy concentrations. In copper near 1300 K, they reveal vacancy 
concentrations of rv 10-4 [Sim63]. 

Clearly X-ray methods are generally inadequate for detennination of coefficients 
of expansion below 100 K. Some authors have measured the lattice parameters at say 
4 K, 50 K and 100 K and fitted them to a simple polynomial such as a = ao + bT4 

which may be misleading, particularly if differentiated to give 'values' of Q. X-ray 
measurements can be useful at temperatures well below 100 K for those materials 
which have high expansion coefficients in this range, such as the rare gas solids. 

Diffraction is the only method available for measuring the internal expansion, 
that is, the change with temperature of the positions of atoms within the crystal unit 
cell. Because the information comes from the analysis of intensities, and not from 
simple Bragg reflection, it is less precise than the measurement of lattice parameters. 
Low temperature data have large uncertainties and virtually no results are obtainable 
below 100 K. 

3.3.3. Optical Interferometers 

Interferometric measurements began with the classic experiments of Fizeau in 
the 1860s on mineral crystals, and are still used over wide temperature ranges as they 
are absolute and can now achieve resolutions of a few A (less than a nanometer) with 
the aid of laser light sources. 
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Fizeau Technique. The usual form uses either a cylindrical hollow sample (tube) 
with parallel end-plates of polished silica or three rods of equal length, placed so that 
the separation of two etalon plates is changed as the specimen expands or contracts. 
Changes in the fringe pattern produced by a monochromatic light source can be 
measured to about 11100 of a fringe, :::; 10 nm. Most experimenters have quoted 
deviations in their data of not less than 1O-7K- 1, a frequent source of error being 
tilting effects. Examples of this technique used at low temperatures include work on 
Cu SRM 736 [Hah70] and alkali halides [Jam65]. 

Polarization interferometer. Based on the work of Dyson at the National Physical 
Laboratory (NPL), these depend on measuring the angular rotation of the plane of 
polarization of a stabilized laser beam. A single beam is split and interference occurs 
between waves reflected from 'top' and 'bottom' of a sample. 

Fig. 3.5 illustrates the arrangement of Roberts [RobSl] for measurements on an 
ultra-low expansion glass. 1\vo orthogonally polarized beams from a stabilized laser 
pass through a Polaroid filter, a silica parallel plate beam splitter and a polarizing 
beam splitter (PBS). Then one beam A traverses the path. D, is reflected on the 
shoulder of the sample back to mirror (M) and then via path G to be reflected again 
on the other shoulder. The double path compensates for effect of tilt. The other 
beam B travels via E to be reflected successively at the bottom of the sample, then 
by mirror M and again by the bottom plate. Finally with suitable use of 114 and 112 
wave plates and superposition of beam C, an output beam reaches J and the automatic 
polarimeter. This output beam is linearly polarized at an angle which changes by 
360° for every 112 wavelength change in length of the sample allowing resolution of 
111000 of a fringe. The observation point at S is for monitoring tilt. Note that the 
sample (hollow cylinder in this example but solid block in others) is supported on a 
base of similar material (to avoid distortion during cooling) to which it is optically 
contacted. The length changes were measured on ULE, Zerodur, silicon to 111000 
fringe giving an absolute precision in a of 1O-8K- 1 • 

Heterodyne interferometer. Nanometer resolution is also achieved with an optical 
heterodyne method in which two beams of slightly different frequency are produced 
by acoustic-optic modulation of the beam from a stabilized laser. Length changes 
are measured from the phase change of the beat frequency using a frequency counter. 
Examples are the systems used by Drotning [DroSS] and developments by Okaji 
and collaborators at the National Research Laboratory for Metrology (NRLM) in 
Tsukuba. The latter include the following: 

1. [Oka91] describes an intercomparison of results obtained for Si and silica with 
differing interferometers used at NRLM and at NPL by Birch for the range 
from 250 to 700 K. 

2. [Oka95b] describes a helium flow cryostat to measure fused silica SRM 739 
from 6 to 273 K with uncertainties of:::; 2 x 1O-8K-l. Temperatures were 
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measured with a RhFe thennometer and controlled via a silicon diode activated 
system. 

3. [Oka97a] covers another cell design used to intercompare various copper sam­
ples from 20 to 300 K; they confirmed that ex values for high purity Cu, OFHC 
Cu and tough-pitch Cu differ by less than 1O-7K- 1 above 20 K. 

4. [Oka97b] describes the interferometer used for room temperature measure­
ments on some standard reference materials (silica, W, and Cu). 

In each of these, the optical paths are not unlike those in Fig. 3.5: tilt effects are 
removed by doubling the path, as for the polarization interferometer, but detection of 
the path change (on changing T) uses a frequency counter. 

Fabry-Perot multiple-beam. Perhaps the highest precision among interferometric 
methods is that developed at the Optical Sciences Center in Tucson by Jacobs and 
colleagues, which uses the dependence of a Fabry-Perot etalon's resonant frequency 
on mirror separation. The sample forms a cylindrical spacer separating two mirrors 
(endplates) whose expansion coefficients should match that of the cylinder to avoid 
distortion. Shifts in the etalon resonant frequency are measured by comparing the 
tunable laser frequency to that of a stable reference laser. One such system was 
mounted in a cryostat for measuring uniformity of thermal expansion coefficient (at 
the 1O-9K-1 level) among samples of glasses used in large telescope mirrors [Jac84]. 
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Fig. 3.6. Principles of the optical-grid system [Swe98]. 

3.3.4. Optical Amplifiers 

Chapter 3 

Prior to the development of the three-terminal capacitance system (Section 3.3.6) 
some very sensitive dilatometers were developed based on optical levers and optical 
amplifiers, many achieving detection limits of less than an A. Jones has reviewed 
[Jon61] those which he and colleagues developed for measuring angular movements 
as small as 10-10 radians and displacements of < 1 pm. Unfortunately, when applied 
to thermal expansion determinations, their resolution is limited by hysteresis and drift 
effects associated with thermal cycling and the mechanical linkage from specimen to 
optics. 

The type of amplifier most commonly used has been the optical-grid illustrated 
schematically in Fig. 3.6 [Swe98]. It was used by Andres [And64] to measure the 
expansion between 1.5 and 12 K of a number of metals (AI, Pb, Pt, Mo, Ta etc.) with 
resolutions of better than 0.1 om (1 A) corresponding to f'V 1O-9K- 1 in a. 

3.3.5. Electrical Inductance 

In an electrical inductance dilatometer, the length change of a rod is transmitted to 
the inner coil (secondary) of a mutual inductance and the inductance varies linearly 
with the displacement. Commercial push-rod dilatometers using linear variable 
differential transformers (LVDT) are widely used at normal and high temperatures 
and can have sensitivities of a few nanometers. Accuracy is usually limited by 
thermal problems - temperature gradients along the push-rod or sheath. These can 
be partially overcome by careful calibration using a reference specimen of roughly 
similar length and expansion to the unknown. Such reference materials include 
copper, silica, stainless steel, silicon, tungsten, sapphire. 

Below about 100 K, the sensitivity of the commercial LVDT devices is usually 
insufficient. More sensitive laboratory instruments have been made using coils held at 
cryogenic temperatures: Carr and Swenson [Car64a] (see also [McL72]) successfully 
measured length changes in non-magnetic solids at liquid helium temperatures with 
sensitivity of 0.01 A (1 pm). Their dilatometer was absolute, requiring no calibration, 
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because the sample was mechanically linked to the secondary coil by a sapphire­
sapphire contact but thermally isolated by the high thermal resistance of this contact. 
However, inductive systems are generally less convenient to use than the capacitance 
dilatometers (Section 3.3.6 below) because of their sensitivity to magnetic effects 
including magnetic impurities in the specimens. 

SQUID dilatometer. An ultra-sensitive dilatometer was used to measure the ex­
pansion of glasses in the 0.1 to 10 K range [Ack82]. With the use of a SQUID as a 
null detector, a resolution of 2 x 10-4 A was achieved. The flux changes caused by 
expansion and consequent movement of a coil in a steady field were counterbalanced 
by a piezoelectric quartz transducer. Here again magnetic impurities and interference 
limit their performance. 

3.3.6. Electrical Capacitance 

Two different capacitance methods have been widely used for high sensitivity 
measurement of thermal expansion. One of these is based on measuring frequency 
change of a tuned oscillator circuit, but this has been now largely superseded by 
the other method in which a ratio transformer bridge operating at low frequency 
compares two three-terminal capacitors - one capacitor involving the specimen and 
the other being a fixed reference capacitor. 

At first sight, the tuned oscillator LC circuit appears the easier of the two to use be­
cause of ease of measuring frequency and frequency change. However. in cryogenic 
practice, problems arise from geometry, calibration, drifts in lead capacitance, etc. In 
the 3-terminal method the capacitance can be well defined geometrically and 'para­
sitic' capacitances of leads (to earth) do not affect the bridge balance. Well-shielded 
ratio-transformer bridges are available which are capable of resolving capacitance 
changes of 1 in 107 and even 1 in 108. This translates to a length resolution of 
~ 1O-12m or 0.01 A. Some examples of both systems are discussed briefly below, 
and more details are given in Swenson's review of 'high sensitivity techniques,' see 
[Swe98]. 

Resonant Oscillator. Some interesting examples of high resolution measure­
ments which have used resonant oscillators are the following: 

• Tolkachev et at. [To175] for measuring the expansion of solidified gases with a 
tunnel-diode oscillator operating at 15 MHz; 

• Van Degrift [Van74] at NBS (now NIST) with tunnel diode oscillators which 
could resolve movements of rv 0.1 pm (0.001 A); 

• Kos and Lamarche [Kos69] measured expansion of Cu, Ag and Au below 15 
K with sensitivity of at / I rv 10-11 • 
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Three· Terminal Capacitance Method. This method stems largely from the 
work of Thompson [Th058], who developed ratio transformer bridges capable of 
comparing capacitances with resolution of better than 1 in 108 • The features of 
such bridges (Fig. 3.7) include well-shielded and tightly coupled transformer arms, 
shielded non-microphonic leads, stable reference capacitor Cs (e.g., made of Invar) 
and a detector-amplifier tuned to the bridge frequency. Not shown in this schematic 
diagram are the RC quadrature circuit for separating the capacitative from the con­
ductive component and the LC tuning circuit to counteract the reduction in detector 
sensitivity from the effect of lead capacitance. More details of bridges and ampli­
fiers are given in [Th058] and of their application to thermal expansion by White 
[Whi61, Whi72a] (also [Car64b]). Figure 3.8 shows a dilatometer in which the ca­
pacitance between surfaces of plate (1) and the sample (2) constitutes the unknown, 
Cx (Fig. 3.7); the other capacitances (to the earthed shields) Cl3 and C23 do not affect 
the balance condition in a low frequency bridge. 

Commercial versions of the Thompson bridge have been produced by General 
Radio Corp. (now QuadTech of Marlborough, Mass.) as model numbers 1615 and 
1616. 

A self-balancing direct read-out bridge was developed by Andeen and Hagerling 
(Cleveland, Ohio) with resolution of about 1 in 107 • Such a resolution of ac /C "" 
10-7 for a parallel plate capacitor (typically C "" 10 pF) having a gap of 0.1 mm 
corresponds to a detection limit in terms of length change of the sample (2) of 10-8 

mm (i.e., 0.01 om or 0.1 A). 
In calculating the thermal expansion from the change in gap g of the parallel plate 

sketched in Fig. 3.8, the familiar equation C = 7Tr2 / g must include a small correction 
term for the distortion caused by the guard ring. If the separation between the central 
electrode and the guard ring is 2w, then from Maxwell [Whi61, Swe98] 

C E7Tr2 ( E7Trw ) (1 /2) E7Tr2 E7Trw =--+ +w r R:l--+----
g g+0.22w g g+0.22w 

(3.9) 

since w /2r « 1; here E is the permittivity Ereo, and Er R:l 1. 
The dilatometer shown in Fig. 3.8 is a 'differential' (as opposed to absolute) cell; 

the length changes in the sample (2) are measured relative to the framework which is 
here made of OFHC copper. The copper 'plugs' (1 at the top) in the top and bottom 
plates are tapered and held in position with epoxy resin and mylar spacers about 0.2 
mm thick so that w = 0.1 mm and w/2r "" 0.1/10 = 0.01 in equation above. The 
plugs and guard-rings are lapped flat and attached to the copper cylinder with brass 
screws and spring washers. Parts can be gold plated to prevent tarnishing and to 
assist heat transfer between contacting surfaces. Usually the screened top plug (1) is 
connected to the 'low' voltage or detector side of the bridge and the sample (2) to the 
'high' side. Within the cryostat the leads are low thermal-conductivity coaxial and 
outside the cryostat are non-microphonic shielded cables. 

Calibration runs are usually done with Si and/or Cu samples, and are necessary 
at low temperatures to take account 'of small spurious 'expansions' arising from 
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Fig. 3.7. Principal components of a three-teonina! capacitance bridge: - - - denotes shielding. At balance 
Cx/C. = V./Vx [Swe98]. 

the epoxy joints in the end plates. For measurement of non-conducting samples, 
an evaporated film of silver is deposited on the surfaces. With smaller samples, 
copper discs can be used to make up the desired length and achieve a capacitance 
gap (between parts 1 and 2) of 0.1 to 0.2 mm; phosphor bronze springs hold the 
'composite' sample together (more details in [Car64b, Whi72a]). When operating 
at a length resolution of 0.1 A or less it is not surprising that any relative movement 
of contacting surfaces will produce significant hysteresis, considering that even good 
optical polishing leaves surface asperities'" 100 A high. Hysteresis effects of 10-100 
A can show up after thermal cycling over say, 20 K, particularly if the materials in 
contact are of very different expansion coefficient. However it is remarkable how 
reproducible are data if 2 or 3 preliminary thermal cycles are made from say, 4.2 K 
to 15 and back to 4.2, then from 4.2 to 25 to 4.2 K. 

This type of cell can be made 'absolute' rather than 'differential' by isolating the 
sample thermally from the base using sapphire spacers [Swe98]. 

Shown in Fig. 3.9 is a convenient copper holder (for insertion in a dilatometer 
such as illustrated in Fig. 3.8) which can be adjusted to take small samples of any 
length; on the top of the sample is a copper plate held by flexible wires [Swe98] . 

. Pott and Schefzyk [pot83] describe a copper cell of rather more complicated 
construction than that in Fig. 3.8, but which allows easier specimen changing and 
preparation. Their cell is open on one side for changing the sample; the sample forms 
a pushrod to move the capacitance plate. Parallel movement of the plate is achieved 
via a beryllium-copper strip acting as a spring. The gap is adjusted by a control rod 
from the top of the cryostat. 

Many other variants of the three-terminal capacitance technique have been de­
scribed, for example: for measurements on samples of large expansion coefficient, 
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Fig. 3.9. An insert for use with small samples of different lengths to replace the base plate and sample 
shown in Fig. 3.8. All components are of copper excepting the rnanganin suspension wires and brass 
clamping screw [Swe98]. 

soft single crystals, application of a magnetic field and measurement along differ­
ent axes; also with irregularly shaped samples, using tilted plates and the sample 
sandwiched in between them (refs. and details in [Swe98]). 

There have also been cells made of low expansion materials such as Si to achieve 
better absolute accuracy when measuring other low expansion solids at low temper­
atures. One successful example [Vil80] , which is based on the design in Fig. 3.8, 
replaces the copper cylinder (3) by three silicon posts. 

A related geometry for measuring materials of large expansion coefficient (e.g., 
potassium) inverts the 'assembly' by replacing the cylinder with three posts made 
from the sample and making the central cylinder (no. 2) out of copper. During cool­
ing, the 'soft' sample posts contract more than the central cylinder [Swe98]; therefore 
the capacitance gap decreases and the sensitivity of measurement is increased rather 
than decreased during cooling. 

Another test cell, similar to that in Fig. 3.8 was made from single crystal sapphire 
plates and cylinders with evaporated aluminium electrodes, but was disappointing 
in its performance [And90b). Hysteresis effects on thermal cycling were relatively 
large compared with the very low expansivity of the sapphire. The reason may have 
been the surface asperities which would allow less elastic deformation in sapphire 
than in copper [And90b]. 

3.3.7. Measurement of Gruneisen 'Y by Thermoelastic Methods 

1\vo direct methods of determining the Griineisen parameter 'Y avoid the necessity 
of determining very small expansivities (and heat capacities) which occur as T ~ O. 
One measures the change in temperature induced by adiabatic strain or volume 
change, and the other measures the change in stress induced by change in internal 
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energy at constant volume. The thermodynamic relations involved are [see Eq. (2.12)] 

(3.10) 

(3.11) 

Boehler et al. [Boe77] describe the use of small adiabatic pressure changes on NaCI 
at various pressures to determine the Griineisen parameter and its variation with 
volume. This was done at room temperature and pressures up to 3.3 GPa with an 
end-loaded piston-cylinder apparatus, the main aim being to determine y(V) and 
q = (alny/alnV)T. 

Another example of using Eq. (3.10) is to apply a single 'pulse' of strain and/or a 
sinusoidally varying strain to measure y [Wri84]. Rods of silica and a polymer were 
strained by means of an Instron tester at temperatures down to 0.5 K. Small strains 
of '" 10-4 were determined to 2% and temperature changes of 10 mK or so were 
registered on a small carbon thermometer attached to the center of the rod (Fig. 3.10). 

An example of the second method Eq. (3.11) is the determination of 'YO for Si 
and Al [Gau71]. A thermoelastic stress is produced by a pulse of 1.5 MeV electrons, 
lasting about 40 nanoseconds; this stress is recorded with a quartz gauge bonded to 
the back face of the sample. The experiments were done over a range from 5 to 290 
K. The application to Si is particularly useful, because the thermal expansivity is very 
small and difficult to determine below 20 or 30 K with sufficient accuracy to obtain 
,'h = /3BsV /Cp as T -+ O. 

Volume dependence of the heat capacity. A different Griineisen parameter YSH 

has been obtained from the volume dependence of the heat capacity, defined by 

YSH = _ (alnT) = (aCv/alnV)r 
alnV Cv (aCv/alnT)v 

It has been used particularly for compressible systems such as the rare gas solids (see 
[Bar80, pp. 652-6]). Its relation to other Griineisen functions is discussed in Section 
2.2.3. 

3.3.8. Reference Materials 

Many dilatometers give relative length changes rather than absolute values and 
even absolute instruments are prone to systematic errors arising from heat leaks, 
thermometer errors etc. With such instruments, calibration checks with samples of 
reproducible and well characterized materials are a virtual necessity. Fortunately 
there are now many suitable reference materials, some of which have been certified 
by national laboratories and are therefore legally traceable. Many materials such as 
copper, aluminium and silicon are readily available in a state of high purity so that 
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off-the-shelf samples will be adequate unless there is a legal necessity for 'certified' 
samples such as NIST Standard Reference Materials (SRMs). 

Those which have been certified in the past by NBS (now NIST) include: 

1. Copper SRM 736, certificated from 20 to 800 K. This is not now available but 
pure 99.99+% Cu is satisfactory down to 2 or 3 K. Magnetic impurities can 
alter a significantly at temperatures below 20 K. 

2. Sapphire crystal SRM 732 (measured in direction 59° from c-axis) certificated 
from 293 to 2000 K, is also out of stock but similar material can be obtained 
commercially. It has been measured at low temperatures where the expansion 
is relatively small. 

3. Tungsten SRM 737 measured from 80 to 1800 K at NBS is also out of stock 
but suitably pure rod is readily available. 

4. Borosilicate glass, SRM 731, is certificated from 80 to 680 K. Being a mixed 
glass, off-the-shelf material cannot be relied upon. 

5. Vitreous silica SRM 739, certificated from 80 to 1000 K and measured below 
80 K [Oka97b] is available but is affected by exposure to elevated temperature, 
i.e., is sensitive to thermal history; it has a relatively large negative coefficient 
at low temperatures. 

6. Although not certified by NIST, silicon has been well studied, is isotropic, is 
readily available in pure state, and has a relatively small coefficient (negative 
between 18 and 120 K). 

For some of these materials, expansion data are given in the Appendix and further 
details in [Whi93b, Whi97], and [H098, Ch. 11]. 

3.4. ELASTIC MODULI 

3.4.1. Introduction 

This monograph includes elastic moduli because they form an important 'link' 
between the thermal expansion and the heat capacity; that is, they determine the 
changes in dimensions which result from changes in internal energy and pressure. 
They also furnish a means of calculating the lattice contribution to Cv in the low 
temperature (long wave) limit from the Debye temperature er/ which is calculated 
as an average over the CAp. (see Section 2.9). Likewise the pressure derivatives of the 
elastic moduli give values of the elastic mode gammas 

(3.12) 
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from which can be calculated the weighted average 'Y~l (see Section 2.9) and hence 
the lattice contribution to u or f3 in the low temperature limit. 

This short section on techniques for measuring elastic moduli is intended to show 
some of the problems and levels of accuracy in determining B , X and individual moduli 
CA/J. (or SA/J.). The elastic moduli are measured in a variety of ways, both static and 
dynamic. The static methods include pressure-volume measurements which yield the 
isothermal compressibility (or bulk modulus), and linear stress-strain measurements 
which can give Young's modulus E, Poisson's ratio u and shear modulus G. For 
isotropic materials two of these three parameters determine XT or BT. For single 
crystals stress-strain data can also give the principal axial values of X. 

The dynamic (adiabatic) methods include measurement oflow frequency torsional 
or flexural vibrations, ultrasonic velocities, ultrasonic resonant spectroscopy, inelastic 
neutron scattering, and Brillouin scattering. Ultrasonic velocity measurement is the 
most common as it is applicable at all temperatures to crystals of different symmetries 
and to polycrystals and glasses. For small (rv 1 mm) crystals, resonant ultrasonic 
spectroscopy has developed as a valuable tool to determine all the principal moduli 
from a single set of measurements and become practicable by the advent of high speed 
computers. The opto-acoustic techniques (Brillouin scattering and laser-induced 
phonon spectroscopy) are especially well suited to study of microcrystals (rv 0.1 
mm). 

As illustrated in Fig. 1.3 for Kel, the principal moduli vary rather slowly with 
temperature (except near a phase transition) and approach a constant value as T -+ 
O. At higher temperatures, T ~ e, isothermal and adiabatic values of cA/J. fall 
nearly linearly for most solids. The 'linear' slope of Bs (T) is related to the volume 
expansion coefficient by the Anderson-Griineisen parameter 8s = - ( a In B s / a In V) p 

(see Section 2.2.3); 

( alnBS) = -Ssf3::= -4f3 
aT p 

(3.13) 

e.g., for tungsten at 1000 K, f3 = 15 X 1O-6K- 1, so that (alnBs/ aT)p ::= -6 x 
1O-5K-1 and Bs falls by about 0.6% per 100 K rise in temperature. 

The relatively slow change with temperature means that for most measurements 
of elastic moduli, temperature control is not a prime requirement. Major errors in 
ultrasonic data arise from other factors; they are of the order of tenths of a percent so 
that smaIl drifts in T are not as serious as they are when measuring Cp or u. 

3.4.2. Equation of State Methods 

Dilatometric Measurements of V (P, T). PVT measurements do not give indi­
vidual moduli but are a useful source of compressibility (and bulk modulus) values 
over a wide range of temperature and pressure, particularly suited to solidified gases 
or very soft materials which are not easy to obtain or handle in single crystal form. 
Examples are the measurements on the alkaline earths [And90a] and rare gas solids. 
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Packard and Swenson [pac63] describe a piston-cylinder method of measuring the 
change in volume of solid Xe from 20--160 K at pressures up to 2 GPa. Such soft 
materials have a very low shear strength so that the pressure applied via the piston 
is effectively hydrostatic. Values of bulk modulus resulting for the alkali metals and 
alkaline earths have error bars of ±0.5% [And83b]. 

X-Ray and Neutron Lattice Spacing. Measurements oflattice spacing by X-ray 
or neutron diffraction as a function of pressure (and volume) do not give individual 
moduli but can provide linear compressibilities as well as volume compressibility 
for polycrystals and single crystals. This is very useful for obtaining values of 
Xa,b,c on sintered compacts as well as on polymers for which ultrasonic methods can 
be difficult; for example, the measurements of BT for YBa2Cu306+s [Jor90] and 
polyethylene [Sak66]. 

3.4.3. Young's Modulus, Poisson's Ratio and Shear Modulus 

By applying a tensile stress to a solid rod and measuring the change in length 
and diameter, values are obtained for Young's modulus E and Poisson's ratio u from 
which the isothermal bulk modulus can be calculated: 

B = E/3{1-2u); B=EG/{9G-3E) (3.14) 

The vibrating reed method uses the flexural (or torsional) motion of a thin bar, 
clamped at one end. The free end oscillates at a natural frequency depending on 
length and thickness of the bar and is proportional to VE, the Young's modulus sound 
velocity, i.e., from E = pvi:. 

3.4.4. Ultrasonic Methods 

The velocity of a sound wave in a uniform solid in general depends on the 
directions of propagation and polarization, as described in Section 2.8.7. But in a 
bulk sample of an isotropic material (polycrystal with randomly oriented crystallites 
or glassy) there are only two sound velocities, VI (longitudinal) and Vt (transverse or 
shear), which together yield values of the adiabatic bulk and rigidity moduli: 

( 2 4 2) Bs = P VI - '3 Vt , Gs =PV~ (3.15) 

These are related to other elastic coefficients such as Es and Us (Section 2.8.3). Es 
is also given directly by pvi: for longitudinal waves in a thin rod. 

For cubic crystals, three independent velocities suffice to specify the individual 
moduli 

• cfl = pvl from longitudinal wave in [100] direction 
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• c!. = pv; from transverse wave in [110] direction with [100] polarization 

• c,s = (cft -cf2)/2 from transverse wave in [110] direction with [lIO) polar­
ization. 

Additional or alternative values are provided by: 

• cf = (cft +cf2 +2c!.)/2 from longitudinal wave in [110] direction 

• c!. from transverse wave in [100] direction with arbitrary polarization. 

For crystals with axial synnnetry, there are five or six independent moduli to be 
determined, and for orthorhombic crystals there are nine. 

The 'standard' method of determining the velocity of a compressive sound wave 
or shear wave, typically of frequency 10-30 MHz, is by timing the passage of a 
pulse through a crystal of about 5-10 mm thickness. The sample is cut and lapped 
to have two parallel faces, to one (or both) of which is bonded a piezoelectric 
transducer. This is usually a quartz crystal, X-cut for longitudinal waves, AC- or 
Y-cut for shear wave; LiNbOJ is also used. The bonding agents are carefully chosen 
to minimize attenuation and avoid cracking due to expansion mismatch. Depending 
on temperature range and the sample, they include Dow Coming 200 silicone, Nonaq 
grease, Salol, ethylene glycol, epoxy and organic liquid mixtures, e.g., 4-methyl,l­
pentene [McS64, Bat67]. For higher frequencies thin films of CdS, ZnS, ZnO 
have been used as transducers. The path of the ultrasonic wave (or pulse) involves 
reflection from a specimen boundary and occupies a time interval of '" lOlLS for 
waves of velocity '" lOS cm·s- t . Figure 3.11 shows the measuring circuit described 
in McSkimin's review [McS64]. 

Various techniques for determining .the transit times (and velocity) have been 
reviewed in volumes of Physical Acoustics, edited originally by Warren Mason and 
published by Academic Press from 1964 onwards. They include: 

• Pulse echo technique in which the time of passage is measured directly on an 
oscilloscope. A single transducer or two separate transducers can be used for 
transmitting and receiving. A single transducer is preferred (Fig. 3.11). 

• Pulse superposition method which measures the time between any given wave 
crest in one echo and a crest in a later echo. This avoids errors due to the time 
delay in the bond and which can amount to a few parts in 104 [McS64]. Later 
developments of this 'pulse echo overlap' (PEO) technique are described by 
Papakadis [pap90]. Note that corrections for the transducer-bond phase shift 
can be made by varying the sample length or transducer configuration as shown 
by Jackson et al. [JacSl]. 

• Continuous wave resonance method has proved useful with thin samples and 
for measuring small changes in velocity [BoI63]. 
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I--~ '0 
Scope 

~----1 Attenuator 1--_ ...... 

~------------~A.F.C.~------------...... 

( b) 

Fig. 3.12. Block diagram of the phase comparison methods in [Ale66. p. 278]. 

• Phase comparison methods which compare the phase of an rf signal which 
has traversed the specimen with a reference signal which has traversed an­
other path. These are capable of high sensitivity and have been important 
in measuring the small velocity changes ($ 1 in 106) which occur during 
a norrnal-superconducting transition or with the application of a strong mag­
netic field to a metal. Alers [Ale66] reviews variants of these methods of which 
two are illustrated by the block diagram in Fig. 3.12. Spetzler and colleagues 
have described the use of GHz sound waves for interferometry, applicable to 
small samples and very high pressures (see for example [Spe96]). 

• The sing-around system which employs two transducers, one as transmitter 
and one as receiver, and can also detect very small changes in velocity. In the 
version developed by Forgacs (see [Ale66]), a received pulse arriving after a 
transit time T is used to retrigger the transmitter, so that the circuit becomes an 
oscillator whose frequency is about 1/ T Hz. Frequency shifts of a few parts in 
107 can be detected. 

Techniques for measuring ultrasonic velocities at very high pressures have been 
reviewed by Heydemann [Hey71], Jackson and Niesler [Jac82] (see also more recent 
measurements up to 10 GPa [Nie89, Li96]). Most involve piston or anvil methods 
which are not particularly suited to the cryogenic range. 

Measuring systems for ultrasonic velocities have been available from various com­
panies including Anutech Pty. (ANU, Canberra, Australia), Krautkramer Branson 
(Lewistown, Penn. USA), Karl Deutsch (Wuppertal, Germany), Matec Instruments 
(Northborough, Mass.), Parametrics Inc. (Waltham, Mass.), Ritec Inc. (Warwick, 
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Fig. 3.13. Schematic diagram of electronics for a resonant ultrasonic system in [May92, p. 391]. 

Rhode Is.), Utex Inc. (Ontario, Canada). 

3.4.5. Resonant Ultrasonic Spectrometry 

Most of the ultrasonic methods are difficult to use with crystal dimensions less 
than a millimeter; for example, for a thickness of 0.5 mm pulse transit times are much 
less than a microsecond so that GHz transmitters are needed. The resonant spec­
trometry method, pioneered largely by Soga, Ohno, Kumazawa and others [And95aJ 
and later at Los Alamos [Mig93, Mig97J is well suited to small crystals but requires 
sophisticated computing. This has been made easier in recent years with the develop­
ment of smaller and cheaper high speed computers. The crystal is usually in the form 
of a polished rectangular parallelepiped to the comers of which are loosely attached 
two transducers. These may be small piezoelectric plastic films, one acting as driver 
to supply a sweep frequency to the crystal and the other monitoring the spectral 
response (Figs. 3.13, 3.14). Maynard et al. [May92J have reviewed this method and 
its application to small crystals of La2Cu04 and quartz. Values of CIl,C33 etc. for the 
latter differ by less than 1 % from those obtained by the more usual ultrasonic pulse 
methods (see also book by Migliori and Sarrao [Mig97]). 

1 1 
1- ----. ~ ~ 

0.6 1.0 1.4 

frequency (MHz) 

Fig. 3.14. Ultrasonic spectrum for undoped La2CU04 [May92, p. 397]. 
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x20 ATTENUATION 

FREQUENCY SHIFT We/sec) 

Fig. 3.15. Brillouin spectra of a xenon crystal for different orientations from Stoicheff in [Kle77, p. 1003]. 
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3.4.6. Neutron and Opto-Acoustic Scattering 

Neutron scattering. Thermal neutrons have energies and wavelengths comparable 
with those of the vibrating ions. Inelastic scattering of neutrons yields information 
about the energy-wave number relations for the phonons involved and hence the w{ q) 
curves for the principal modes. These can extend over the entire range of q out to the 
zone boundary and allow the phonon density of states to be calculated. The accuracy 
of determining the wave velocity d w / d q at low frequencies is less than that achieved 
with ultrasonics and the method requires crystal dimensions comparable with the 
ultrasonic technique. For a few relatively compressible solids, measurements of 
w{q) have also been done under pressure which yield volume dependences of the 
frequencies and hence values of 'Yi up to high wave numbers. An example is RbI 
which was measured up to 0.3 GPa by Blaschko et al. [Bla75]. 

Brillouin scattering. Photons of visible light are also scattered by phonons and 
can provide information about phonon energies, particularly with the use of a laser 
source: there is a 'Doppler' shift of the wave velocity of the scattered light. However 
the photon energies are very much larger than the phonon energies and therefore 
energy or frequency shifts are small. The photon wave numbers are small compared 
with the Brillouin zone dimensions so that data are obtained only about the long 
wave phonons (near q=O). Examples of the use of Brillouin spectroscopy for deter­
mining the elastic constants of rare gas solids are given in a review by Stoicheff in 
[Kle77, Ch. 16]. This review shows typical cryostats and spectra for Ne, Ar, Xe etc. 
(Fig. 3.15). They found differences up to a few percent for these moduli compared 
with values obtained with ultrasonics but this may be due to imperfections in the 
solid gas samples. 

Data on small quartz crystals (0.3 mm) have given longitudinal wave velocities 
with errors of less than 2%. From these measurements Weidner et al. [Wei75] 
estimate a minimum sample size of < 0.1 mrn. 

Laser induced phonon spectroscopy. This technique is also applicable to small 
crystals. Elastic waves are generated in the crystal by the interference of two laser 
pulses. Brown et al. [Bro89] describes the application to a small olivine crystal with 
resulting uncertainties of less than 1 % in the elastic moduli. 

3.4.7. Data Sources 

The major compilations of elastic moduli are in: 

• Volumes of Landolt-Bomstein IIIIl [Hea66] supplemented by Vol. IW2 
[Hea69]; followed by a new compilation in Vol. 111111 [Hea79] with sup­
plement in Vol. TIII18 [Hea84]; finally a replacement Vol. IIII29a prepared by 
Every and McCurdy [Eve92]. 
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• The handbook on Single Crystal Elastic Constants and Calculated Aggregate 
Properties by Simmons and Wang [Sim71). 

• Elasticity of Minerals, Glasses, and Melts by Bass in the Handbook of Physical 
Constants from the American Geophysical Union [Bas95]. 

• Review of Elastic Constants of Transition Metals by Steinemann and Fisher 
[Ste81). 

• Elastic Constants of Mantle Minerals at High Temperatures by Anderson and 
Isaak, which includes room temperature data on MgO, CaO, NaCI, KCI, MnO, 
and some silicates [And95b). 

• Tables by Sumino and Anderson in Handbook of Physical Properties of Rocks, 
Vol. m [Sum84). 
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Chapter 4 

Fluids 

4.1. INTRODUCTION 

This monograph is primarily devoted to cryogenic solids but, inevitably, the 
question is asked" ... What is the difference in heat capacity, thermal expansion, or 
bulk modulus between gas, liquid and solid? ... " Gases are dilute assemblies of atoms 
(or molecules), so that their properties depend on the kinetic energy of translation and 
for molecules also on energies of rotation and other "internal energies"; at normal 
pressures mutual interaction is usually a small perturbation. By contrast, liquids 
and solids are both about 1000 times more dense, and interactions play a dominant 
rOle. Liquids and dense gases are more difficult to model than crystals, because they 
lack the long range order which allows us to apply the concept of periodicity to the 
vibrating atoms and the electron gas (Chs. 2 and 6); also the hindered translational 
and rotational motions are not approximated by harmonic vibrations. Thus the three 
phases require separate discussion. 

The conditions under which the phases can exist are conveniently shown in a P, T 
phase diagram, as for the simple example of the monatomic Ar (Fig. 4.1). There are 
two special points labelled in this diagram: at the triple point (T"Pt ) solid, liquid 
and gas can all coexist; and at the critical point (Tc, Pc) the distinction between the 
two fluid phases disappears. The solid-liquid coexistence (melting) curve in this 
range has a slope of about 4 MPa·K-1 (40 bar·K-1), and is much steeper than the 
gas-liquid" curve. Most phase diagrams are similar to this, except that often they 
are more complex because of the existence of different solid phases; also, for a few 
systems the line between solid and fluid slopes backward. The outstanding exception 
is helium, for which there is no triple point and the fluid phase extends to T = O. 

For most substances Tt is above 0 DC. The liquid does not then exist in the 
cryogenic region, and the vapor only at very low pressures, approximating closely to 
an ideal gas. But some important systems have lower triple points (Table 4.1), and 
so, like helium, can be used as cryogenic fluids. We therefore discuss in order dilute 
classical gases in Section 4.2, liquids in Section 4.3, and quantum fluids in Section 
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Fig. 4.1. Phase diagram of argon. T is the triple point. C is the critical point. Inset shows region near T 
with pressure scale enlarged. 

4.4, including the unique properties of the helium isotopes. 

4.2. GASES 

4.2.1. Introduction 

Under typical working conditions, the thermodynamic properties of most gases 
approximate quite closely to those of a classical ideal gas, and the ideal equation of 
state [Eq. (4.1)] is then adequate for most engineering purposes. However, the heat 

Table 4.1. Boiling points (T b), triple points (Tt ), and critical 
points (Tc ), for some liquids of cryogenic interest; density is at 

boiling point under 100 kPa (1 bar) [Jac97, Qui90J 

Liquid Tb Tc Pc T, P, p 

(K) (K) (kPa) (K) (kPa) (g/cm3) 

3He 3.19 3.32 115 0.059 
4He 4.207 5.1953 227.5 2.1768 (A) 4.8565(A) 0.125 
n-H2 20.345 33.19 1315 13.95 7.20 0.0707 
p-H2 20.233 32.94 1284 13.8033 7.034 0.0708 
Ne 27.061 44.492 2679 24.5561 43.4 1.208 
N2 77.237 126.19 3398 63.1504 12.52 0.807 
Ar 87.17 150.663 4860 83.8058 68.89 1.397 

Ch 90.062 154.58 5043 54.3584 0.1463 1.141 
CCh 194.6 304.14 7375 216.589 518 1.18 
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capacity of an ideal gas depends on its molecular composition. In most cryogenic 
gases electronic and vibrational degrees of freedom are not excited, while rotational 
contributions to Cv have reached their full classical value. Under these conditions, 
the heat capacity depends only on whether the gas is composed of isolated atoms 
(e.g., Ar), linear molecules (e.g., N2, C(h), or non-linear molecules (e.g., Ca.). 
The values of Cv for these three groups are then respectively ~R, ~R, and 3R, or 
numerically 12.41,20.79, and 24.94 J·mol-1K-l; the corresponding values of Cp 
are 20.79, 29.10, and 33.25 J·mol-1K-1. The data for Cv in Table 4.2 for some 
real gases at atmospheric pressure shows that these values are a good approximation 
over wide ranges of temperature, although there are large deviations for hydrogen 
below about 200 K (Section 4.2.3), and for methane at higher temperatures due to 
vibrational excitation. Small deviations also occur as the temperature is lowered 
towards the boiling point, due to intermolecular interaction. 

We treat first the ideal monatomic gas; next the ideal molecular gas, and the 
rotational quantum effects seen in hydrogen; and then departures from ideal behavior 
as the pressure is increased. 

Classical Ideal Monatomic Gases. The ideal gas limit has already been dis­
cussed briefly in Sections 1.3.5 and 2.5.1. The equation of state is the same for all 
gases, giving 

PV=nRT, BT=P, (3 = liT, Cp-Cv =nR (4.1) 

where R is the gas constant (8.314 J·mol-1·K- 1) and n is the number oflIloles of the 
gas. The ratio of heat capacities (traditionally called 'Y but here denoted by 'Y*) is 
simply related to the Griineisen function; by Eq. (2.8) 

.. Cp Bs 
'Y == - = - = 1 + (3'YT = 1 + 'Y 

Cv BT 
(4.2) 

For a monatomic gas the partition function depends only on translational degrees 
of freedom, and is given by Eq. (2.60) when the potential energy function q, is put to 
zero: 

_ _ VN (2'1rmkT)3N/2 
Z - Ztrans - N! h2 (4.3) 

From this the thermodynamic properties follow. In particular 

3 3 
Cv = 2Nk = 2nR (4.4) 

and the entropy at pressure P can be evaluated from the Sackur-Tetrode formula: 

5 2'1rm :z s 5 
{ [ 3 1 } S=Strans =nR 2InT-InP+ln (y) k:Z +2 (4.5) 
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For mixtures of gases the partition function becomes 

(4.6) 

The equation of state and the heat capacity are unchanged, but the entropy changes 
both because of the distribution of masses and because there is an additional entropy 
of mixing 

Smix = Nk( -Xa InxA -Xb InxB _ ... ) = R( -na lnxa - nb lnxb _ ... ) (4.7) 

where na ... and Xa ... are respectively the number of moles and the atomic fractions 
of the component gases. 

4.2.2. Ideal Molecular Gases 

The partition function. In the ideal limit the translational kinetic energy of the 
center of mass of a molecule does not interact with its remaining degrees of freedom, 
and the partition function is given by 

(4.8) 

where Ztrans is unaltered except that mA is now the mass of molecule A, and ZA,int is 
the internal partition function obtained by summing over all internal energy states of 
the molecule, which are independent of volume. The Helmholtz energy is therefore 
of the form 

F = Ftrans(T, V) + Fint (T) (4.9) 

The second term does not affect the equation of state, and so the bulk modulus, 
thermal expansion coefficient and Cp - Cv are the same as for a monatomic gas 
(Eq. 4.1); but it does contribute additive terms to the entropy and heat capacity. 

Calculation oj absolute entropiesJrom spectroscopic data. The additive terms in 
F int are sums over all the non-translational energy states of an isolated molecule. For 
many simple gases the energies of such states have been the subject of precise study 
by spectroscopists, thus enabling the internal contribution to the entropy and other 
thermodynamic properties to be calculated. When this is added to the translational 
entropy given by Eq. (4.5), the absolute entropy of a dilute gas at a given temperature is 
obtained to a good accuracy purely from theory and spectroscopic data. Calorimetric 
data (latent heats and heat capacities) can then be used to find the difference in entropy 
between this dilute gas phase and other phases over the experimental temperature 
range. In this way absolute entropies of condensed phases are obtained, including 
the residual entropies of disordered material as T --t 0 (e.g., [Mo062, pp. 623-624]; 
see also Section 2.2.5). 
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Rotational contributions. Usually the internal degrees of freedom are themselves 
separable to a good approximation. Most molecules are in their electronic ground 
state at cryogenic temperatures, and sufficiently rigid for the interaction between the 
rotational and vibrational motions to be small and for the vibrational frequencies to 
be too high for appreciable excitation at cryogenic temperatures. A non-linear rigid 
molecule has three rotational degrees of freedom, since two parameters are needed to 
give the direction of some axis within the molecule, and a third for rotation about that 
axis; and a linear molecule clearly has only two. Like the three translational degrees 
of freedom, the kinetic energy for each rotational degree of freedom contributes !k 
to the classical expression for Cv, thus giving the values of ~Nk (linear) and 3Nk 
quoted above. Apart from some molecules with low-lying vibrational (e.g., Ch) or 
electronic (e.g., NO) states, which start to become excited below room temperature, 
the only exceptions are H2 and its isotopic modifications D2 and HD. These are 
important cryogenic fluids whose rotational states we shall now discuss. 

4.2.3. Ortho- and Para-Hydrogen 

The rotational energy levels of a diatomic molecule are labelled by quantum 
number J, and given by 

EJ = J(J + 1)(1i2/21) = J(J + I)kerot , (J=0,1,2,···) (4.10) 

where I is the moment of inertia about an axis through the center of mass perpen­
dicular to the molecular axis. The spacing between the lower levels is thus inversely 
proportional to I, and of all molecules only hydrogen has a smaIl enough moment of 
inertia for the discrete nature of the levels to be reflected in the heat capacity when 
T > Tt • For other molecular gases typical values of the characteristic temperature 
erot lie between I and 15 K, much lower than the boiling points. But for H2, HD, 
and D2 the values of erot are respectively 85.4, 65.7, and 43.0 K, well above the 
boiling points. 

The degeneracy (the number of quantum states in level J) depends on the con­
stituent atoms, owing to the Pauli principle that the total wave function of the molecule 
must be anti-symmetric with respect to interchange of the coordinates of two identical 
fermions, and symmetric with respect to interchange of two identical bosons. The 
translational and vibrational factors of the wave-function are always symmetric, but 
rotational and nuclear spin factors can each be either symmetric or anti-symmetric. 
Furthermore, the H nucleus (proton) is a fermion with spin !, and the D nucleus 
(deuteron) is a boson with spin 1. The degeneracies are therefore different for each 
of the homonuclear molecules H2 and D2, and different again for the heteronuclear 
molecule HD. 

Consider first HD. The nuclei are distinct, there is no symmetry requirement, and 
any rotational state can be combined with any of the six spin states. The rotational 
degeneracy (number of rotational states in level J) is 2J + 1, and the spin-rotational 
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Fig. 4.2. Rotational heat capacity for a heteronuclear diatomic molecule. For HD, erot = 65.7 K. From 
[Gop66, Fig. 6.1]. 

partition function is 

Zspin-rot = 6 L (21 + 1)e-J (1+1)(0ror/kT) ( 4.11) 
J=O,I,2··· 

The only thermodynamic effect of the nuclear spin is thus to contribute an additional 
entropy of Rln6. The rotational heat capacity derived from Eq. (4.11), which is the 
same for all heteronucIear diatomic molecules, is shown in Fig. 4.2. The maximum 
in Crot is due to the low-lying triply degenerate first excited state. 

For H2 the total state must be anti symmetric with respect to exchange of the 
nuclei. There are three symmetric spin states (l = 1) and one anti-symmetric (I = 0). 
Rotational states of even 1 are symmetric, and to give total anti symmetry can be 
combined only with the single antisymmetric spin state, giving degeneracy 21 + 1; 
whereas those of odd 1 are anti symmetric and can be combined with any of the 
three symmetric spin states, giving degeneracy 3(21 + 1). The partition function is 
therefore 

Z · - '" (21 + 1)e-J (J+I)(0rot /kT) Spin-rot - LJ 
J=O,2··· 

+3 L (21+1)e- J (1+I)(0rot /kT) (4.12) 
J=I,3··· 

From this is derived the rotational heat capacity of e-H2 ("equilibrium hydrogen") in 
Fig. 4.3. The large initial Schottky-like bump is due to the now nine-fold degenerate 
first excited level at 2k8rot ; the next level is not until6k8rot , and is then only five-fold 
degenerate. 

However, the heat capacity of e-H2 is not that usually observed. The nuclear spins 
are so weakly coupled to other degrees of freedom that transitions between different 
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400 

Fig. 4.3. Rotational heat capacities of e-H2, P-H2 O-H2 and n-H2. 8 ro, = 85.4 K. From [Gop66, Fig. 6.2]. 

spin states seldom occur; consequently, when the temperature is altered a new thermal 
equilibrium is established only among the even J states and among the odd J states, 
and not between them. Effectively therefore we have a mixture of two different 
species - 'para-hydrogen' (p-H2), whose molecules have the anti-symmetric spin 
state combined with one of the even J rotational states, and 'ortho-hydrogen' (0-H2), 
whose molecules have one of the symmetJic spin states combined with one of the odd 
J states. The total heat capacity is then the sum of contributions from each species. 
The spacing between levels for each species is greater than for e-H2, and so their heat 
capacities do not approach the classical value until higher temperatures (Fig. 4.3). 

The equilibrium ortho/para composition of hydrogen varies with temperature. 
Below about 30 K it is virtually pure para; at the boiling point of nitrogen it is 
about half ortho; and at room temperature and above it is three quarters ortho. The 
relaxation time for equilibration between the species depends upon conditions and 
the catalytic action of the walls of the container. Typically in the gas it is of the order 
of years, in the liquid of the order of days, and in the solid of the order of hours. 
Hydrogen is usually manufactured at room temperature or above, and then has an 
ortho to para ratio of 3: 1. This mixture is called 'normal hydrogen' (n-H2)' Its heat 
capacity is shown in Fig. 4.3, and tabulated in [Jac97], as is also that ofp-H2. Other 
compositions varying in proportions between pure p-H2 and n-H2 can be obtained by 
passing the gas over a catalyst that facilitates ortho-para conversion at the appropriate 
temperature. 

The conversion of O-H2 to p-H2 at low temperatures is exothermic, and so if nor­
mal hydrogen is rapidly liquefied and then immediately stored considerable heating 
and consequent evaporation occurs over a period of days. To avoid this, conversion 
to p-H2 should be carried out before storage. 
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The same principles apply to the heat capacity of deuterium, where 8 rol=43.0 K 
and the total wave function is symmetric with respect to deuteron exchange. Again 
there are two species: P-D2 with one of three antisymmetric spin states (I = 1), which 
for bosons must be combined with rotational states of odd J; and O-D2 with one of 
six symmetric spin states (I = 0 or 1 = 2) combined with rotational states of even 
J. At low temperatures the equilibrium composition is pure ortho, and for n-D2 the 
ortho-para ratio is 2: 1. 

Further details are given in many texts, including [Rus49, Gop66, Ric67]. Similar 
theory is needed to account for the spin-rotation states of other molecules containing 
identical nuclei, although it is only for the hydrogens that the heat capacity of the dilute 
gas is appreciably affected. But related effects sometimes occur when molecules are 
able to rotate in a condensed phase, for example in some cryocrystals (Ch. 8). 

4.2.4. Non-Ideal Gases: Virial Expansion 

The range of validity of the ideal gas expression for the virial P V can be extended 
considerably by taking it only as the first term in an expansion of the inverse molar 
volume V'; 1: 

(4.13) 

where 8(T), C(T),··· are called respectively the second, third, ... virial coefficients. 
Tabulations of experimental virial coefficients for a large number of gases are given in 
the compilation [Dym80]. 

Taking the expansion up to the third term usually gives a close approximation for 
gases for densities less than about half the critical density. Integrating the expression 
for P at constant T gives the expansion for the deviation in F from ideal behavior, and 
subsequent differentiation with respect to T gives expressions for S and C v. In partic­
ular 

C - C RT [d2 [TB(T)] 1 1 d2 [TC(T)] 1 ] 
v - V,ideal - n dT2 V + 2 dT2 V2 - ... 

m m 
(4.14) 

The virial coefficients depend upon the intermolecular potential function: B de­
pends only upon the interaction between two molecules, C also on the three-molecule 
potential, and so on. Since the interaction between molecules depends upon their rel­
ative orientation, the integrals for the virial coefficients involve rotational degrees of 
freedom (e.g., [Gra84]); they also involve other coordinates if the molecules are floppy. 

The simplest application however is to a classical monatomic gas. If the pair po­
tential is c/>(r), 

(4.15) 
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At low temperatures the integral is dominated by the outer region where cf>( r) is nega­
tive, and consequently B is negative. As T increases the repulsive range of the potential 
becomes more important, and B becomes positive at sufficiently high temperatures. 
The temperature at which this occurs, the Boyle point TH, varies strongly from gas to 
gas. For helium it is about 22 K, for hydrogen about 110 K, for nitrogen about 330 
K and for carbon dioxide over 700 K. The information contained in precise measure­
ment of B as a function of temperature has been used in determining the shape of cf> (r ), 
particularly in the attractive range of the potential. Information about three body po­
tentials can in principle be derived from third virial coefficients, and so on [Bar76a]. 

4.2.5. Numerical Data 

Whereas the small departures from perfection of the equation of state of gases such 
as helium and hydrogen have impact on their application as thermometric standards, 
these departures are trivial as far as cryogenic engineering applications are concerned. 
Values of f3 are sufficiently well established for most cryogenic purposes by assuming 
thatPV ~ nRT so that f3 = d In V /dT ~ lIT. 

The heat capacity needs more discussion. The variation in Cv for a number of 
real gases may be judged from the data in Table 4.2. These few representative values 
are taken from the extensive compilation entitled Thermodynamic Properties o/Cryo­
genic Fluids [J ac97]. This monograph gives both tables and computer fits for values of 
density, U, H, S, cv, cp, and velocity of sound at pressures from 0.1 MPa up to 20 MPa 
(or higher for some fluids) of air, Ar, CO, n-D2, C2~, F2, n-H2, Kr, CRt, Ne, N2, 
02, p-H2, and Xe. Another useful source is the IUPAC series of International Ther­
modynamic Tables o/the Fluid State, beginning in 1971 with Ar [Ang71]; subsequent 
volumes have been edited by S. Angus, B. Armstrong or K. M. de Reuck under the 
auspices of various publishers. 

As discussed above, values of Cv at temperatures significantly above the boiling 
point are close to 3R12= 12.S J·mol-1·K-1 for the rare gases, andSRl2 =20.8J·mol-1. 
K-1 for oxygen and nitrogen. For n-H2, Cv falls well below SRl2 as T drops below 
about 300 K; forp-H2, Cv has a maximum near ISO K arising from rotational energy, as 
shown also in Fig. (4.3). When the temperature of a dilute gas held at constant pressure 
is lowered towards the boiling point, significant increases can occur in Cp and Cv (see 
Fig. 4.4 and Table 4.2), which are accompanied by a greater increase in density than 
predicted for an ideal gas, giving evidence of pre-condensation clustering. 

4.3. LIQUIDS AND DENSE GASES 

4.3.1. Introduction 

A liquid possesses some short range order in the instantaneous distribution of 
near neighbors about an atom or molecule, but in general the geometry of this loose 
packing differs radically from that in the solid phase: as well as the loss of long 
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Table 4.2. Values ofev (J.mol-1.K-1) for some gases at pressure of 0.1 MPa 
(=1 bar) [Jac97] (see also ITS-90 for values of Tt [Qui90)) 

T (K) Ar 4He n-Hz Kr Ne Nz Oz C", 

4.216 12.96 
10 12.46 
20 12.48 
30 12.48 12.57 13.07 
50 12.47 12.53 12.52 
70 12.47 12.87 12.49 

100 13.29 12.47 14.26 12.48 20.84 20.88 
120 12.70 12.47 15.44 12.48 20.87 20.94 25.5 
150 12.56 12.47 17.07 12.75 12.48 20.80 20.87 25.12 
200 12.50 12.46 18.97 12.47 12.47 20.80 20.83 25.18 
300 12.50 12.46 20.54 12.47 12.47 20.77 21.07 27.41 
600 12.50 12.46 21.0 12.47 12.47 21.79 44.06 

Tb (K) 87.17 4.207 20.345 119.62 27.061 77.237 90.062 1ll.51 
T. (K) 150.66 5.1953 33.19 209.43 44.492 126.19 154.58 190.56 
p.(kPa) 4860 227.5 1315.2 5510 2678.6 3397.8 5043 4599 
T, (K) 83.8058 13.95 115.776 24.5561 63.1504 54.3584 90.694 
!', (kPa) 68.89 7.2 73.0 43.4 12.52 0.1463 11.7 

range order when a crystal melts, there is a discontinuous change in the nature of the 
short-range order. This was first illustrated by Bernal in an experimental study of 
the random packing of uniform hard spheres. In the close-packed crystalline form 
(e.g., fcc) each sphere is surrounded by twelve nearest neighbors, and 74% of the 
space is occupied. In various experiments Bernal found that when spheres were 
shaken together in a random arrangement only 64% of the space was occupied, and 
the coordination patterns were quite different from those in a solid (for details of this 
and later work see, e.g., [Cus87]). 

Computer simulations (MC and MD as described in Section 2.3.3) on random 
assemblies of atoms, have substantially confirmed Bernal's conclusions about liquid 
structure, and have provided quantitative results for simple models that also enable 
approximate analytic theories to be tested. Such work is beyond the scope of this 
monograph, but some references have already been given in Section 2.3.3. To these 
can be added The Physics of Structurally Disordered Matter by Cusack [Cus87], 
which discusses also the electronic properties of liquids and glasses; the student text 
Gases, Liquids and Solids by Tabor [Tab91]; Liquids and Liquid Mixtures by the phys­
ical chemist Rowlinson [Row69]; Theory of Simple Liquids, 2nd. edition, by Hansen 
and McDonald [Han86]; and Theory of Molecular Fluids. Vol. 1: Fundamentals by 
Gray and Gubbins [Gra84]. 

4.3.2. Changes in Thenoodynamic Properties on Melting 

Except for helium at low temperatures (Section 4.4), entropy increases on melting. 
The molar entropy !l.fS of fusion is of the order R: about O.8R for many metals, about 
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Pig. 4.4. Heat capacities Cp and Cv of solid and liquid nitrogen along the equilibrium vapor pressure 
curve (Man97]. and of gaseous nitrogen at a pressure of 0.1 MPa (l bar) [Jac97]. 

1.5R for the rare gas solids, hydrogen and hydrogen halides, about 2.5R for the 
semi-metals Ga, Sb and Bi, 3.8R for Si and Ge, and distributed in this range for 
various crystals ofsmall molecules [Moe57, Wal91]. For the same groups the molar 
volumes increase by a few percent for most metals, by about 15% for the rare gas 
solids, and by 6-12% for various molecular crystals. Molar volumes decrease by a 
few per cent for Ga, Sb, and Bi, and by about 8% for Si and Ge' These values contrast 
with those for vaporization - typically about 12R for I1vS and 2 x 10-2 m 3 for l1v V. 
Thus l1vV /l1fV > UP, whereas I1vS/l1fS ~ 10; by the Clapeyron Eq. (2.26) this 
explains why solid-liquid equilibrium lines in P-T phase diagrams are much steeper 
than liquid-vapor lines (Fig. 4.1). Similarly, solid-liquid lines for substances whose 
volumes decrease on melting have a negative slope. These include the semimetals 
and semi-conductors mentioned above, in which the closer packing in the liquid is 
associated with radical change in the electronic structure [WaI91]; and also ice, where 
on melting there is a partial breakdown of the tetrahedral hydrogen bonding between 
the oxygen atoms. 

For the heat capacity, we must distinguish between Cy and Cpo Since each 
translational or rotational degree of freedom contributes only tR to Cy when the 
molecule is free in an ideal gas, but double that amount for classical harmonic 
vibrations, we might expect Cy to decrease as the molecules become freer on melting. 
This is seen to happen in all three phase transitions shown for N2 in Fig. 4.4. In the 
a solid phase there is l()ng ~ge orientational order; this is lost in the f3 solid phase, 
where however there is believed to be correlated rotation retaining considerable short 
range order. Cy decreases also when there is further loosening of the structure both 
on melting and on vaporization. In contrast, the difference in heat capacities C p - C y 

increases on melting, presumably due to an increase in compressibility and hence in 
thermal expansion. 
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4.3.3. The Critical Region 

Both liquid and gas have random structures. At temperatures just above the 
triple point the molecules of a liquid cohere because of the attractive part of the 
intermolecular potential. At the saturated vapor pressure the liquid has the same 
Gibbs free energy H - T S as the vapor, whose greater enthalpy is compensated by its 
greater entropy. But at temperatures high enough for kT to be much greater than the 
depth of the potential well, only the repulsive part of the potential is important, and 
there is no tendency for the molecules to cohere. Then, as the pressure is increased, 
the random structure of the fluid changes continuously from dilute gas to dense fluid, 
and there is no phase change until the Gibbs free energy of the ordered crystalline 
structure becomes less than that of the fluid. There is therefore a critical temperature 
Tc above which the distinction between gas and liquid disappears. The fluid can 
change continuously from low temperature gas to low temperature liquid by passing 
above Tc (Fig. 4.1). 

It was J. D. van der Waals who produced the first and simplest theoretical model 
which demonstrates this behavior. The ideal equation of state is modified to give 

(4.16) 

where the effective reduction in molar volume to (V m - b) simulates the effect of 
the hard core inner repulsion, and a/V~ simulates the effect of the attractive forces. 
The success of this beautifully simple approximation in the interpretation of fluid 
behavior is described in countless books; for a full and clear discussion see [Dom96, 
Ch. 2]. The critical point is given by 

8a 
RTc = 27b' Vc = 3b, (4.17) 

The second virial coefficient is B(T) = b - (a/RT), illustrating the general depen­
dence on temperature discussed in Section 4.2.4, and the Boyle temperature is thus 
T8 = a/Rb. Cv is finite but has a discontinuity at the critical point and Cp and XT 
diverge. 

Such a simple model does not of course represent quantitatively the behavior of 
even the simplest real fluids. For example. Eq. (4.17) gives a value of 8/3 = 2.67 
for the dimensionless ratio RTc/Pc Vc , compared with values for Ar and n-H2 of 
3.43 and 3.28 respectively. Moreover, the nature of the singularity at the critical 
point (for example. how XT and Cp approach infinity) is different from that observed. 
Experimental study of the singularity demands high precision as the critical point is 
approached, and theoretical study demands extensive calculations using either series 
expansions or computer simulation. As an introduction to the vast literature on this 
subject, see [Sta71. Dom96]; for critical phenomena in liquid mixtures. see [Row69]. 
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4.4. QUANTUM FLUIDS; LIQUID HELIUM 

4.4.1. Quantum Ideal Gases 

The ideal gas is a system for which the effects of quantum statistics can be 
calculated exactly. As in Section 4.2.1, we consider a monatomic gas of N non­
interacting particles of mass m, occupying a volume V, so that the particle density is 
p = N IV. Quantum theory gives the density of states for a particle in a large box as 

2 3 1 
nee} = 27TuV(2mlh }2 e 2 (4.18) 

where n(e}de is the number of states between e and e+de, and u = 2s+ 1 is the spin 
degeneracy for a particle of spin s. This density of states is written as continuous, 
because when V is of macroscopic size the energy intervals between states are very 
small. But strictly the levels are discrete, and there is a unique lowest energy state, 

with an energy (3h 2/2m V ~) that tends to zero for a large system. 

At T = 0 the gas is in its ground state. For a Bose gas all the particles are in 
the lowest energy state, and there is no zero-point energy. For a Fermi gas there is 
one particle in each of the N lowest energy states; the highest occupied state has 
energy 

(4.19) 

and the zero-point energy is iN eFO. 
As T increases the distribution of particles among the energy states spreads out, 

until at high enough temperatures the probability of occupation of any given state 
becomes small and both systems behave like a classical gas, with thermodynamic 
functions as given in Section 4.2.1. At intermediate temperatures their behavior is 
determined by the Fermi-Dirac or Bose-Einstein distribution functions derived in 
Section 2.3.1; the average number fee} of particles in a given state of energy e is 
either 

1 
fFD(e) = e(E-jJ.)/kT + 1 or (4.20) 

as plotted in Fig. 4.5. At each temperature the chemical potential /.L has a value such 
that the total number of particles is N: 

Lt(eh/.L, T} = J f(e)n(e}de = N 
I 

(4.21) 

At T = 0, /.LFD = eFO and /.LBE = O. 

Ideal Fermi Gas. When kT ~ eFO the occupation numbers are affected only for 
those states for which Ie - eFO I rv kT. The number of particles that are affected is of 
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Fig. 4.5. Femli-Dirac and Bose-Einstein distribution functions. plotted against (e - J.L)/kT. 

order n(€Fo)kT. and the mean increase of energy for such particles is of order kT. 
The total increase of energy above the ground state is therefore of order n(€Fo)(kT? 
and the heat capacity is of order kn (€FO) (k T). For a general density of states detailed 
calculation leads to the numerical result ofEq. (1.19). For the ideal gas Cv increases 
as 

(4.22) 

while I-L falls with temperature: 

(4.23) 

On further increase of temperature the thermodynamic functions change smoothly 
up to the classicalliITIlts (Fig. 4.6). 

Ideal Bose Gas. The occupation of each level increases with increase of chemical 
potential. Since !BE (€) becomes infinite when I-L = €. I-L cannot exceed the energy of 
the lowest state. which we have seen is effectively zero. At low temperatures I-L has 
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Fig. 4.6. Heat capacity as a function of T ITc for Fermi, Bose, and classical ideal gases, all for the same 
density of states. Tc is the critical temperature of the Bose gas, and TF = 2.29Tc. From [Dug96, Fig. 14]. 
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this maximum value, so that the number of particles in excited states is 

(2m)~ r E! 
21TUV h2 10 eE/kT -1 dE (4.24) 

This is less than the total number of particles N in the system at all temperatures up 
to 

h2 ( N ) ~ 
Te = 21Tmk 2.612uV 

(4.25) 

Below this critical temperature the rest of the particles are in the lowest state, with 
energy zero. The energy is therefore ff(E)EdE, and Cv andS follow thermodynam­
ically: 

3 (T)~ U = 2PV = O.770RT Te ' 

3 

Cv = 1.92R ( ~ ) :1. , 

3 

S = 1.28R ( ~ ) :1. 

(4.26) 

Above the critical temperature IL starts to fall, and there is a cusp in Cv which 
gradually falls to its classical value of 1.5R (Fig. 4.6). The nature of the transition at 
Te is discussed by London in [Lon54, Section 7]. Although Cv is continuous at Te, 
it is not a third order phase transition (Section 2.2.4). Below the critical temperature 
P depends only on T and not on V, and so the compressibility is infinite, and Cp 
diverges; and when P is greater than the critical pressure the volume collapses to 
zero. The accumulation of particles in the lowest energy state which starts to occur 
below Te is called Bose-Einstein condensation. The condensate has zero entropy 
and energy, and makes no contribution to the thermoelastic properties. 

Real atomic and molecular gases do not exhibit these quantum properties, because 
condensation to liquid or solid occurs well above TF or Te. But related phenomena 
occur in the liquid helium isotopes. 

4.4.2. Helium 

Near their boiling points the liquids of 4He and of the rarer isotope 3He resemble 
the other rare gas liquids, except that the helium liquids have larger molar volumes. 
But they differ radically at lower temperatures, where quantum effects dominate. 
The difference is due to the very low binding energy of the interatomic potential, 
combined with the low mass, which results in a 'zero-point' energy of motion (i.e., 
even in the quantum ground state) which almost cancels the binding energy of the 
potential. This not only "blows up" the volume of the liquid. but also prevents it 
from solidifying under normal pressure even at the lowest temperatures. As in solids. 
marked departures from classical behavior are seen as the temperature is lowered to 
absolute zero; and because helium is the only element which remains liquid down 
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Fig. 4.8. TIle heat capacities of liquid 4He and 3He near TA. Note the difference in the temperature scales. 
From [Wil87, Fig. 1.3]. 

to T = 0, this "quantum liquid" behavior is unique. Moreover, the 4He nucleus is a 
boson, with nuclear spin I = 0, while the 3He nucleus is a fermion, with nuclear spin 
I = !; and so the two liquids show quite different quantum effects. 

Phase diagrams for the two isotopes are shown in Fig. 4.7, where the temperature 
scale for 3He is logarithmic. The "A-line" for liquid 4He marks the famous A-shaped 
transition in the heat capacity, below which the liquid becomes superfluid (vanishing 
viscosity) as the Bose particles condense into a ground state (the phases above and 
below the transition are often called He I and He II). No such transition occurs in the 
Fermi liquid 3He, which is in some ways like the electron "sea" in a metal. 3He does 
not become superfluid until much lower temperatures are reached (about 2.6 mK), 
and then the peak in the heat capacity is a different shape (Fig. 4.8) more reminiscent 
of a superconducting transition (cf. Fig. 6.19). The requirement of different types 
of Cooper pairing from that in a typical superconductor, and the effect thereon of a 
magnetic field (including the existence of a magnetic superfluid phase), has provided 
a system of great complexity for the delight of theorists [VoI90]. Further discussion 
is however beyond the scope of this monograph. 

Among the many books and reviews on this subject are Helium-3 and Helium-
4 by Keller [KeI69], Liquid and Solid Helium by Wilks [Wil67] and the later An 
Introduction to Liquid Helium by Wilks and Betts [Wil87], Helium Cryogenics by 
Van Sciver, with tables of thermodynamic data for 4He above 1 K in an Appendix 
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[Van86], The Superjiuid Phases of Helium 3 by Vollhardt and Wolfle [VoI90], and the 
more general reference Matter and Methods at Low Temperatures by Pobell [Pob96]. 

There are two complementary simple models or ways of thinking about liquid 
4He - the two fluid model of London and Tisza, based on analogy with the ideal 
Bose-Einstein (B-E) gas, and the theory of Landau, based on the quantization of 
hydrodynamics. We consider first the two fluid model. 

The statistical mechanics of the ideal Bose gas suggests that we may picture the gas 
as consisting of two components - one the 'condensate' of atoms in the ground state, 
the other comprising the remaining atoms in excited states. The phenomenological 
two fluid model for the liquid 4He below Tc follows by analogy, with a superjiuid 
component carrying no entropy, and a normal liquid component. It has proved 
successful in correlating many of the transport properties of liquid 4He. However, 
the analogy with an ideal Bose gas should not be pushed too far. In particular the 
behavior of the heat capacity is very different. For example, below about 0.6 K, 4He 
has Cy = 0.0816 T3 J·mol-1·K-1, compared to the ideal Bose gas for which Cy 

varies as T~ . 
In contrast, Landau proposed that the lowest lying excitations were quantized 

longitudinal sound waves (phonons), which as in a solid give Cy proportional to T3 
at low temperatures, and also that at higher values of the wave-number there was 
a pronounced minimum in the dispersion curve which he ascribed to some kind of 
localized rotational motion (rotons). Later inelastic neutron scattering measurements 
confirmed this general shape of dispersion curve. The coefficient of T3 derived from 
the measured sound velocity is in good agreement with the calorimetric value, and 
the joint contribution of phonons and rotons to Cy approximates well to experiment 
until fairly close to the lambda transition. In the neighborhood of the transition 
measurements of increasing precision are consistent with a logarithmic divergence 
both below and above Tc (Fig. 4.9), quite different from the ideal Bose gas. Extensive 
theory is discussed in [Ke169, Wil87]. 

4.4.4. 3He 

Once again it was Landau who gave the seminal model for the energy states, 
this time for a Fermi liquid. The system is far removed from an ideal Fermi gas of 
non-interacting atoms, but the model is rather similar except that 'quasi-particles' of 
effective mass m* take the place of the bare atoms (cf. Section 6.1). As in metals, 
the heat capacity is predicted to be proportional to T at low temperatures (but not of 
course in the superfluid region). 

Interest in 3He as a Fermi liquid has led to many measurements of heat capacity: 
for example those of Greywall in Fig. 4.10 [Gre83] showing that Cy at a fixed volume 
varies roughly linearly with T at temperatures above 0.3 K. Below 0.1 K data may 



148 Chapter 4 

96 

S2' 80 J ~ ""6 i l E -... .1 , 2- 64 .~ 
> ~ /\ () 

f 
n; 48 
.Q) 
.I::. 

! u 
;0:: 32 '---. '13 1 
Q) 

~ Q. 
16 (f) 

'-----'" 
a 

-1 a 1 -4 a 4 -20 a 20 
a T-T). [K] T-T). [mK] T-T). [\.IK] 

• 
100 • • . , 

S2' 
, 

•• "T<T1.. 
'0 • • 
E 80 -... "', "'-2-

> 
() 

n; "" "-
Q) 
.I::. 60 
u T > Tl, 

;0:: 

'13 
Q) 
a. 

(f) 

40 

-8 -7 -6 -5 -4 -3 

b I0910IT/T).-11 

Fig. 4.9. Heat capacity of liquid 4He at saturated vapor pressure near the lambda transition: (a) with 
increasing T -resolution on a linear temperature scale; (b) on a logarithmic temperature scale. From 
[pob96, p. 23]. 



Fluids 149 

0.7S 

Cy 

Ii 

O.S 1 1.5 2 2.S 
T1K 

Fig. 4.10. Cy/R for liquid 3He at a fixed volume of36.82 cm3·mol-J• see [Wil87. p. 8] and [Ore83]. 

be fitted to a theoretical relation 

Cv/R = fT +BT3 ln(T/6) (4.27) 

where f, B and 6 are volume-dependent parameters; for a volume of36.74 cm3 ·mol-1 

they have respective values of 2.78 K- 1, 35.4 K-3 and 0.458 K. The second term in 
Eq. (4.27) is ascribed to the effect of local fluctuating ferromagnetic alignments. 

Pomeranchuk refrigerator. The melting curve in Fig. 4.7(b) is determined by the 
properties of the solid as well as the liquid. In the solid we can regard the atoms 
as labelled by their lattice sites, and the Pauli principle (though still operative) can 
be ignored. The nuclear spins at each site can take either value, and because the 
interaction between them is weak they are not ordered except for temperatures of 
the order of mK and below; above this the spin entropy is Rln2. In consequence 
the entropy of the liquid is less than that of the solid up to about 0.32 K, and it 
follows from the Clapeyron equation Eq. (2.26) that the slope of the melting curve 
is negative in this region. Appreciably below this temperature the entropy of the 
liquid is therefore equal to that of the solid at a much lower temperature. This was 
predicted as early as 1950 by the theorist Pomeranchuk [pom50], who also drew the 
important conclusion that freezing the liquid by adiabatic compression could be used 
to reach temperatures in the range corresponding to spin ordering in the solid. An 
extensive discussion of the practical use of Pomeranchuk cooling is given by Pobell, 
see [pob96, Ch. 8]. 
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Fig. 4.11. The phase diagram of liquid 3Het'He mixtures at saturated vapor pressure. From [Wil87. 
p. 106]. 

4.4.5. 3Uet'Ue Mixtures 

The phase diagram (Fig. 4.11) shows that as the temperature is lowered below 
the tricritical point at 0.7 K a mixture of liquid 3He and 4He separates into two 
phases over an increasing range of concentrations. As T ~ 0 4He becomes totally 
insoluble in 3He. but 3He remains up to 6.6% soluble in 4He. In such dilute solutions. 
at temperatures well below the A-line. the 4He component in the solution is almost 
wholly superftuid, providing an inert background diluting the 3He so that it becomes a 
Fermi gas rather than a Fermi liquid, but with an effective mass m* of about 2.4 times 
the bare 3He atomic mass. Heat capacity measurements for dilute solutions confirm 
the expected Fermi gas behavior, with T -dependence at low temperatures changing 
smoothly to the classical value of 3R /2 per mole of 3He at higher temperatures (e.g., 
[Edw65, And66b)). Figure 4.12 shows this, and also demonstrates the effectiveness 
of heat capacity measurements in determining points on the phase separation curve. 

Dilution refrigerator. At the 1951 Low Temperature Conference in Oxford, H. 
London suggested that the adiabatic dilution of a solution of 3He in liquid 4He 
would prove an effective means of cooling. This is the principle of the 3Het'He 
dilution refrigerator, now widely used to achieve temperatures down to about 5 
mK. Methods for the effective realization of the principle, and the construction and 
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Fig. 4.12. Heat capacity per gram-atom ofliquid 3 HerHe mixtures at the saturated vapor pressure, plotted 
as C.a';~R. From [Wi187, p. 107]. 

operation of different types of equipment, are discussed by Pobell [pob96] (see also 
[Lou74, Bet89, Whi79]). 
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Chapter 5 

Non-Metals 

5.1. INTRODUCTION 

In this chapter we give examples of the behavior of heat capacity and thennal 
expansion for some of the important classes of non-metallic solids, in which itinerant 
electrons make little or no contribution. Usually the dominant contributions to the 
heat capacity and thennal expansion are those of the lattice vibrations. At very low 
temperatures these can be related to the elasticity, and as the temperature increases 
to the phonon frequencies as determined by neutron diffraction (Section 2.6.2). But 
some of the solids also display non-vibrational effects, due for example to localized 
magnetic moments, or to quantum tunnelling of atoms between different sites. 

We begin with the 'simplest' family - the rare gas solids - traditionally beloved 
by the theorist because of their electrically neutral closed shell atomic structures and 
close-packed crystal structures, enabling them to be approximated quite well by 
short-range central force models. 

Then we tum to other important cubic systems: the strongly ionic alkali halides 
of rocksalt structure; the alkaline earth fluorides (fluorite structure); and the tetrahe­
drally bonded crystals of diamond and zincblende structures, together with those of 
the associated hexagonal wurtzite structure. These are followed by a structurally dis­
parate group of oxides - magnesia, alumina, a-quartz, zirconia and titanium dioxide 
(rutile); then glasses and glass ceramics, including the ultra-low expansion materi­
als based on aluminosilicates; and then highly anisotropic crystals such as graphite 
(layer structure), tellurium (chain structure), and the chain-like polymers. Although 
polymer crystals are chain-like, many commercial samples are in the isotropic or 
'amorphous' condition and display some glass-like behavior in their thennal proper­
ties. 

The chapter continues with the ceramic high-temperature supercondUCtors, which 
are generally non-cubic, although their structure is related to that of perovskite. 
They behave thermally much like other ceramics, except in the vicinity of their 
superconducting transition and at liquid helium temperatures. The chapter concludes 
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with magnetic crystals, and the effect of impurities such as magnetic ions, electric 
dipoles, and heavy or light ions. 

5.2. RARE GAS SOLIDS 

The history of the discovery of the rare gas elements, and of fifty years of progress 
in unravelling their physical properties, is well told by George Horton in the opening 
chapter of the two volumes of Rare Gas Solids [Kle76, Kle77]. Both theory and 
experiment are covered comprehensively in succeeding chapters. 

All these solids are weakly bound by van der Waals interatomic forces, which can 
be represented fairly closely by pair potentials of similar shape [Bar76a], scaled by 
parameters eo for energy and ro for distance. For the heavier rare gases this leads to a 
law of corresponding states, so that they have similar properties when scaled to units 
derived from these two parameters and the atomic mass (see, for example [Row69]). 
But departures from this simple law of corresponding states become larger for the 
lighter rare gas solids, as the ratio of the zero point vibrational energy to the binding 
energy of the interatomic potential increases from about 0.03 for Xe to 0.25 for Ne 
and nearly unity for He. This ratio depends on the de Boer dimensionless parameter 

A* = hhjmeor'6 (5.1) 

tabulated in Table 5.1 [deB49]. In helium the zero point energy is so large that even 
at the lowest temperatures solidification occurs only under pressure of at least 25 bar, 
and even then the vibrations are strongly anharmonic. For this reason we consider 
first the heavier rare gas solids. 

5.2.1. Ne, Ar, Kr and Xe 

Purely central forces would give the hcp structure, but small many-body effects 
cause all these crystals to be fcc [Nie76]. Because the bonding is weak they have 
low melting points and large expansion coefficients, making pure strain-free single 
crystals difficult to produce and presenting a challenge to the experimentalist. Many 
measurements have been made on samples which were condensed in metal or glass 
cylinders and thereby severely strained, and so not truly representative. Thermal and 
elastic properties are reviewed by P. Korpiun and E. Luscher in the second volume of 
Rare Gas Solids [Kle77], and high pressure thermodynamic data by C. A. Swenson 
in the same volume. Data for Ne, Ar, Kr and Xe from these two sources are given 
in Table 5.1, together with values for the two helium isotopes (see Section 5.2.2 and 
the review by H. R. Glyde in [Kle76]). 

Figure 5.1 illustrates the temperature dependence of 6 c for Ar [Bea61]. For Kr, 
Xe and Ne the graphs are very similar in shape to that for Ar. The reduced values 
of 6 c (T)/60 versus T /60 are quantitatively similar for all four, with a shallow 
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Table 5.1. Data for rare gas solids. A· is the de Boer parameter, 
T, Is the triple point and • denotes solid phase under pressure of 

3.3 MPa eHe) and 2.5 MPa (4He) [K1e76, K1e77] 

Property 3He 4He Ne Ar Kr Xe 

A* 3.08 2.67 0.593 0.186 0.103 0.063 
T,(K) 24.556 83.806 115.763 161.391 
AJ(g/cm3) 0.123* 0.190* 1.507 1.771 3.093 3.781 
Yo (cm3/mol) 24.3* 21.0· 13.4 22.6 27.1 34.7 
B~(GPa) 0.019 0.027 1.12 2.9 3.5 3.7 
eo(K) 15-18* 26* 74 92 72 64 
10 2.9* 2.6 2.7 2.6 2.5 

minimum near 0 0/10. The rise in 0 c (T, Vo) at high temperatures indicates that the 
anharmonic contribution to Cy is negative, as often seen in a close-packed crystal. 

Thermal expansion measurements by X-rays and capacitance dilatometry and 
also equation of state data (see [Bar80, p. 654]) lead to limiting values of ')'0 ~ 2.6 
and values in the range of 2.7 to 2.9 at higher temperatures (Fig. 5.2). 

The most accurate elastic data appear to be those derived from Brillouin scattering 
or from the limiting slopes of phonon dispersion curves obtained by inelastic neutron 
scattering (see [Kor77]). At low temperatures departures from the Cauchy relation 
Cl2 = C44 are small, as expected for solids dominated by pair potentials (Section 
2.8.6); The crystals are elastically anisotropic, with 2C44/(Cll - Cl2) ~ 2.4 as T --} 0 
[Kor77]. 
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Fig. 5.1. Variation of €Ie (T) for Ar [Bea61). 
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Helium gas, at least at low pressures, may be close to 'perfection' as far as the 
equation of state is concerned, but the liquid and solid states present a complex 
picture which is still being unravelled and would take a volume to cover in detail. 
The weak binding forces and large zero point energy prevent solidification under 
normal pressure (see phase diagram in Fig. 4.7): the more common isotope 4He 
liquefies under the standard pressure of 100 kPa (1 bar) at 4.21 K, and 3He at 3.19 
K. The minimum pressure to produce solid 4He increases from about 2.5 MPa (25 
bar) near absolute zero to about 8 MPa near 3 K. Even under these pressures the 
volume is considerably larger than the equilibrium volume of the static lattice, and 
gives a negative static lattice compressibility; it is the zero-point vibrational energy 
that stabilizes the structure at these volumes. But although the quasi-harmonic 
approximation thus breaks down completely, the heat capacity and thermal expansion 
behave similarly to other solids, with a renormalized effective vibrational spectrum 
(Section 2.6). 

The thermodynamic properties above 1 K are well established. The solid phase is 
hcp at moderate pressures, except for a narrow range along the melting curve between 
1 and 2 K where it is bec. For 3He the solidification pressures are higher (Fig. 4.7 and 
Table 5.1), and there is a more extended bec phase region at lower pressures. Both 
isotopes transform from hcp to fcc at high T and P. 

Because of the large compressibility of solid helium, there have been many 
measurements of both heat capacity and (ap / aT)v as functions of volume and 
temperature, which lead to values of@C(V, T) and 'Y(V, T). For 4He, 'Yo increases 
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from about 2.5 at a molar volume V = 17.5 cm3 to 2.9 at V = 21 cm3, indicating that 
'Y/V is fairly constant and q = dln'Y/dln V ~ 1 (e.g., [Swe77]). 

Dugdale and Franck [Dug64] made extensive measurements of Cv of solid (and 
fluid) 3He and 4He from 3 K up to the melting points at different densities. Curves of 
a C versus V measured near T = a /20 show parallel behavior of the two isotopes, 
each giving 'Y = -dIna/dIn V = 2.4. At much lower temperatures ('" mK) the 
nuclear spin of 3He gives rise to magnetic properties in both the bec and fcc phases. 
These, and also the properties of 3He-4He mixtures, are described in Solid Helium 
Three [Dob94]. 

Theoretical treatment of these highly anharmonic crystals is reviewed extensively 
in [Gly76]. More general references are the monographs by Wilks [Wil67], Keller 
[KeI69], Dobbs [Dob94], and Pobell [pob96]. 

5.3. ROCKSALT STRUCTURE 

5.3.1. Alkali Halides 

Most of the alkali halides crystallize in the 6-coordinated cubic rocksalt structure; 
cations and anions each form a fcc lattice, and together occupy the sites of a simple 
cubic lattice. At high pressures the crystals undergo a first order transition to the 
more compact 8-coordinated cesium chloride structure, where cations and anions 
each form a simple cubic lattice, and together occupy the sites of a bec lattice. 
Transition pressures increase from a few GPa for Rb halides to tens of GPa for Na 
halides; they have been predicted by ab initio electronic computations for several of 
the salts in good agreement with experiment [Sim98]. The remaining halides, CsCI, 
CsBr and CsI, have the cesium chloride structure at atmospheric pressure, at least up 
to room temperature. 

Qualitative differences in the lattice dynamics and thermal properties of rocksalt 
halides may be expected to reflect differences in the ratios of atomic masses and 
of ionic radii, and also in the nature of the short-range interatomic potential. The 
differences in ionic radii are illustrated in Fig. 5.3, which compares LiF with RbBr 
and CsF using values for the Pauling radii and nearest neighbor distances taken 
from Born and Huang, see [Bor54, p. 18]. It is clear that the rocksalt structure can 
comfortably accommodate a wide range of ratios of ionic radii. The ionic masses 
do not directly affect the elasticity, but do affect the vibrational spectrum and hence 
the heat capacity and thermal expansion. In contrast, the nature of the interatomic 
potential affects all three properties. 

Elasticity. We consider first the volume and the elasticity. Table 5.2 shows 
how the molar volume V increases with increasing size of each ion. At the same 
time the bulk modulus B decreases, so that the product VB remains roughly constant 
throughout the table. The shear stiffness for transverse waves polarized perpendicular 
to {100} planes, C44, also decreases with the size of either ion, but more drastically 
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(a) LiF 

(b) RbBr 

(c) CsF 

Fig. 5.3. Schematic view of a (100) plane in (a) LiF, (b) RbBr and (c) esF. 

when the cation is changed. The ratio C44/ B thus depends mainly on the type of alkali 
ion; and so also does its pressure derivative, which becomes negative for the heavier 
cations. This has important consequences at low temperatures, affecting the heat 
capacity and particularly the thermal expansion. Our main source of elastic data for 
this table are from [Lew67, Har79] and compilations by Hearmon [Hea66, Hea69]. 

Heat Capacity. The first definitive measurements of Cp by Clusius et al. [Clu49] 
were followed by extensive work at the National Research Council (Ottawa) on K 
and Na halides [Bar57b]. The latter achieved sufficiently high accuracy (error bars 
of ±O.I%) for the Taylor expansion in Eq. (2.87) to be fitted to the data below 8/25, 
which gave the higher order TS and T7 terms as well as the T3 term and hence the 
corresponding terms in w4 and w6 for the frequency distribution. The T3 term gave 
values for 8~ in good agreement with best elastic values. 

At higher temperatures the accuracy was sufficient to allow extrapolation of 
(8C )2 versus I/T2 to give the hannonic high temperature limit 8£ for several salts 
(see Table 5.2 and Section 2.6.2). For other salts in Table 5.2, Eq. (2.76) was used to 
derive 8£ from values of < w2 > computed from the DD3N models of Hardy and 
Karo [Har79]. 

Plots of8C (T) show a characteristic pattern, as in Fig. 5.4 (see [Bar57b, p. 485]), 
with a minimum near 8D / 15 and an increase towards 8 ao at higher temperatures; the 
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Table 5.2. Data for alkali halides of NaCI structure. Most are from [Bar80] 
with elastic data from [Lew67]. Asterisk. indicates use of room temperature 

data, .1 use of elastic data, and m use of < tAl']. > [Har79] 

M.W. Vo Bo 
dC44 

80 8.,(Vo} C44 
dP 

"}U ll293 

(em3) (GPa) (GPa) (K) (K) (l0-6/K) 

LiP 25.9 9.81 69.8 65 1.38 735 662m 1.7 33.9 

LiCI 42.4 20.0 35.4 26.9 1.70 429 41gm 2.0" 44 
LiBr 86.8 24·0 26.3 20.5 1.80 274 338m 1.9" 49.5 
Lil 133.8 33·0 19.2* 14.0* 1.96* 178" 281m 

NaP 42.0 14.7 51.4 28.8 1.21 488 438m 0.92 32.5 
NaCI 58.45 26.4 27.0 13.2 0.37 321 290 1.06 39.5 
NaBr 102.9 31.2 22.6 10.6 0.42 225 236 m 1.0 42.0 
Nal 149.9 39.9 17.9 7.9 0.59 164 195 1.03 45.5 
KF 58.1 23.0 34.2 12.3 -0.45 333 334m 0.49" 31.2 
KO 74.55 36.1 19.7 6.7 -0.39 235 235 0.35 37.0 
KBr 119.0 42.1 17.7 5.1 -0.33 174 188 0.29 39.0 
KI 165.0 53.2 12.8 3.7 -0.29 132 163 0.28 40.5 
RbF 104.5 36-0 30.1 9.6 .-0.70 221 273m 0.06<1 
RbCl 121.0 42.9 18.7 4.7 -0.61 168 198m 0.0 35.5 
RbBr 165.4 48.2 16.0 4.1 -0.59 134 14~ -0.03 37.5 
RbI 212.4 57.9 13.3 2.9 -0.51 107 122m -0.11 39.0 
CsF 151.9 32.3 26.5* 8.0* 174" 254m 0.3 33.9 

fall-off in 8 C at still higher temperatures for the potassium halides is an anharmonic 
effect, due to a small positive contribution to C v. The shapes of these curves depend 
both on the mass ratio and on the type of alkali ion. 80 depends through the elastic 
wave velocities on the density, and hence on the average mass (ml +m2)/2, whereas 
to a rough approximation 8£ depends on the reduced mass [Bla42]: 

C2 1(1 1) (800 ) oc- -+-
2 ml m2 

For crystals with similar interionic forces, the ratio eo / 8£ thus becomes proportional 

to~, where TJ = (ml-m2)/(ml +m2)' To a good approximation this factor 
accounts for changes in 8 0/8£ as the halide ion is changed. But in addition, the 
lowering of the ratio C44 / B with increasing atomic number of the alkali ion affects 
the weighting of the low-lying transverse modes, producing a relative lowering of 
80, so that the mass-corrected ratio depends chiefly on the cation. For example, KCI 
and RbBr both have ionic mass ratios close to 'unity but different ratios 80/8£. 

Thermal Expansion. At room temperature linear expansion coefficients lie 
mainly in the narrow range 36 to 45 x 10-6 K-1• This is a consequence of a 
similarly narrow range (1.4-1.7) for the Griineisen function at T '" 8 D for these 
salts (Fig. 5.5), since VB varies little. Values for the fluorides are lower. There is 
a clear trend for a273 to increase with the size of the halide ion, and except for CsF 
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'1'/8. 

Fig. 5.4. Reduced plot of eC against T for potassium halides [Bar57b]. 

to decrease with the size of the alkali ion. Sources of a values in Table 5.2 are the 
reviews [Bar80, Mer73) and the book by Krishnan et at. [Kri79). 

At low temperatures "I decreases markedly (excepting for the lithium salts). This 
is another dimensionless property that depends primarily on the alkali ion (Fig. 5.5), 
as can be seen also from the values of ')'0 given in Table 5.2; these correlate well with 
the change in the alkali ion and agree within limits of measurement with values of "lei 

calculated from the pressure dependence of the ultrasonic velocities. In particular, 
transverse modes propagating in {I OO} planes and polarized normal to the planes do 
not bring into play the strong force-constant of the nearest neighbor pair potential, 
and so tend to have low frequencies and small or negative gammas because of the 
tension effect (Section 2.6.3). In the acoustic limit these are governed by C44, which 
has a negative pressure dependence for both the potassium and rubidium halides; 
and this plays a major part in lowering the average 'YO. For example, RbCI has 
dC44/dP = -0.6, which gives a value of about -1.3 for the associated mode 'Y. 
The weighted average over all the low frequency modes of RbBr gives 'Yo' ~ -0.05, 
agreeing well with "Ibh = -0.03. 

By contrast, for the three Cs halides which have the CsCI structure 'Y ~ 2.0 over 
the whole range from 2 to 300 K (see review [Bar80, p. 661]). 

5.3.2. Other Crystals of Rocksalt Structure 

Numerous other solids crystallize in the rock salt structure, including the alkaline 
earth oxides (MgO is discussed in Section 5.6) and many compounds of the transition 
and post-transition metals, including PbS, PbSe, PbTe, SnTe, etc. For many of 
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these there are heat capacity data in Vol. 5 of Thermophysical Properties of Matter 
[Tou70b] and thermal expansion data in Vol. 13 of the same Series [Tou77]. They 
are not generally of major cryogenic interest. 

5.4. FLUORITE STRUCTURE 

The best known member of this family is fluorspar, CaF2, which may be de­
scribed crystallographically as a face-centered cubic array of Ca2+ ions with P- ions 
occupying the 8 tetrahedral sites in the cube. Physically it is useful to think of the 
structure as a simple cubic array of P- ions with centers of alternate cubes occupied 
by the smaller Ca2+ ions, especially when considering the anion disordering which 
occurs in these compounds at high temperatures (T '" 0.8 Tm). 

Table 5.3 lists relevant data for three alkaline earth fluorides. Measurements of 
heat capacity show that eC decreases from its T = 0 value by about 10% with a 



162 ChapterS 

Table 5.3. Data for some crystals of 8uorite structure 
[Bar80, Whi80, Col83b] 

M.W. V Bo c' 
dc' 

90 8£ 
dP 

")t) ~93 

(em3) (GPa) (GPa) (K) (K) (l0-61K) 

CaF2 78.1 24.3 88.2 63 0.8 508 500 1.0 18.5 
SrF2 125.6 29.1 74.5 40 0.4 382 420 0.64 17.9 
BaF2 175.3 35.6 62.6 25.7 -0.2 286 360 0.23 18.2 
PbF2 245.2 30.8 ~70 27 0.2 230 ::::::350 0.5-0.9 29.0 

minimum near eo/IS. Their lattice properties display a rather similar pattern to that 
shown by the NaCI structure, but with the shear modulus c' = (CII -CI2)/2 replacing 
C44 in the dominant role. As the alkaline earth ion changes from Ca to Sr to Ba, the 
increase in ion size brings a progressive weakening of the shear stiffness c' and a 
decrease in its pressure derivative. Figure 5.6 shows the pattern wherein the 'Y falls 
from a high temperature value between 1.6 and 1.9 to a low temperature limit of 1.0 
for the calcium fluoride, 0.64 for strontium fluoride and 0.23 for the barium fluoride. 

An interesting contrast to the alkaline earth fluorides is PbF2 (Fig. 5.6), with a 
large peak in 'Y(T) around 25 K. The heat capacity and expansion data are each well 
represented by an Einstein contribution centered about eE ::::: 65 K as well as a Debye 
term [Whi80], in agreement with the difference in shape of the frequency distribution 
g( w) from those of the alkaline earth fluorides [Dic78, Bi179]. 

Two oxides of fluorite structure which are of high temperature interest are ThCh 
and U02. They are high melting point ceramics, and any cryogenic interest rests 
with a first order antiferromagnetic transition in U~ near 30 K (see Section 5.11). 

5.5. TETRAHEDRALLY BONDED CRYSTALS 

This family of open structured crystals with low coordination number (z = 4) 
includes many important minerals and semiconductors and has attracted much exper­
imental and theoretical attention. Their vibrational and associated thermal properties 
show interesting features, including a low frequency transverse acoustic branch which 
is important at low temperatures and leads to serious departures from Debye-like be­
havior, and in many cases to negative values of the expansion coefficient. Such 
behavior is likely in open structure crystals (Section 2.6.3), being due to low fre­
quency transverse modes (likened to the vibrations of a guitar-string) which are 
preferentially excited at low temperatures [BlaS7, BarS7a]. This pattern, already 
seen to a lesser extent in the alkali halides, extends also to other systems of open 
structure, including silicate crystals and silica glasses. 
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Fig. 5.6. ,,(T) for alkaline earth fluorides and PbF2. Hatched areas denote limiting values of "bh for the 
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5.5.1. Diamond and Zincblende Structure 

As in the fluorite structure, the lowest acoustic velocity in these cubic crystals is 
for c' transverse modes propagated along the [110] direction with a [1 10 1 polarization; 
but now all the ions are tetrahedrally coordinated. If we look at a three-dimensional 
model of this rather open structure, it is easy to see how such an acoustic wave (having 
an open space normal to the propagation direction) propagates along 'chains' without 
altering distances between nearest neighbors. Unless the bonds have appreciable 
covalency and hence strong angular rigidity, such modes will not only be of relatively 
low frequency but will also soften under pressure like a relaxed guitar string (Section 
2.6.3). Ultrasonic measurements confirm that the velocity of this wave decreases 
under pressure for many members of the family; dc' / dP is negative, and increasingly 
so for the more ionic (less covalent) members (Table 5.4). A measure of the ionicity is 
a factor, Ii, defined and tabulated by Phillips [Phi73] (see Table 5.4 below). Crystals 
for which/; exceeds 0.78 are not likely to be stable in this cubic structure. 

Neutron spectroscopy confirms a high degree of dispersion for these transverse 
acoustic modes. At temperatures in the region of E> /25 they may be fully excited, and 
contribute strongly to the sharp drop in E>D(T) (see Fig. 5.7) and the minimum in 'Y(T) 
(see Fig. 5.S). The decrease in 'Y from '}t) to 'Ymin results from two factors: dispersion, 
which weights these TA modes more heavily, and more importantly a decrease in 
the mode gammas (to become negative - or more negative) with increase in wave 
number, revealed both by model [Do166] and ab initio [Xu91] calculations, and by 
neutron diffraction under stress [Pay64]. Measurements of the Raman spectra under 
pressure for Zn chalcogenides also confirm that 'YT A at the zone boundaries may be 
much lower than at the low-frequency zone center (e.g., [Wei77]). 

Table 5.4 lists diamond or zincblende structure crystals for which there are exten­
sive low temperature data [BarSO]. Excepting diamond itself they all appear to have 
low-temperature ranges over which a is negative; thus 'Ymin is negative, although 
'}t) is sometimes positive (though small). Barron et al. [Bar77a] show a correlation 
between '}t), c' and the ionicity, Ii, for a number of these crystals. Values of 'Ybh 

marked with a query (?) in Table 5.4 are less reliable than elastic values, 'Y81, due to 
uncertainty in measuring the very small expansion below 10K. 

Most of these crystals have 'Y values at higher temperatures which approach 0.7 or 
O.S. An exception is HgSe, for which a < 2 x 10-6 K- 1 up to 500 K [Zhd66], giving 
'Yoo == 0.2. Pressure derivatives of both the shear moduli (c' and C44) are negative 
for HgSe, and the minimum value of a is comparable with that for CuCI (Fig. 5.9), 
namely about -8 x 10-6 K- 1 near 30 K. 

There are limited thermal and elastic data for some other III-V compounds such 
as the phosphides. Useful sources of available data on the Group N and III-V 
compounds are the Landolt-Bomstein volumes IIII17a [Mad82]. Slack and Bartram 
[Sla75] have reviewed thermal expansion data for a number of diamond-like crystals, 
with emphasis on high temperature data and the importance of matching expansion 
values for technical purposes; the crystals include AIN, cubic BN, BP, GaP, cubic and 
polycrystalline SiC, diamond, Ge, Si and polycrystalline BeD (a wurtzite structure). 
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Thble 5.4. Data for crystals of zincblende structure (and wurtzite in 
brackets). Most are from review [BarSO]. Asterisk denotes room 

temperature data, el denotes use of elastic moduli andJi is Phillips 
ionicity factor. For (?) see text 

80 80 c' 
dc' 

1~h 181 f; 
dP fl293 

(K) (GPa) (GPa) (l0-6/K) 

C 2230 442 477 1.46 0.84 0 1.0 
Si 645 99.5 51 0.075 0.44(7) 0.24 0 2.56 
Ge 374 76.5 40.9 0.35 0.5 0.48 0 5.70 
GaAs 345 78.9 32.7 0.105* 0.32 0.38 0.31 5.74 
GaSb 269 58.0 24.7 0.16* 0.30(7) 0.39 0.26 6.3 
InAs 251 63.6 19.7 -0.20* 0.28(7) 0.01 0.36 ~5 

InSb 206 48 15.6 -0.15* 0.21(7) 0.05 0.32 5.0 
Zns 339 77 17.9 0.0* -0.14 -0.17 0.623 6.40 
zDSe 271 64.7 18.0 -0.25* 0.0 -0.05 0.63 6.90 
ZnTe 223,1 52.8 15.8 -0.16 0.07 0.05 0.61 8.25 
CdTe 160 45 8.6 -0.85 0.72 4.9 
HgSe 151el 57 9.0 -0.52 -1.2 0.68 1.5 
HgTe 148 47.5 9.0 -1.2 0.65 4.8 
CuCl 179 46 4.7 -0.50 -2.3 -2.0 0.75 14.0 

(ZnO) 416 139 -1.1 0.62 4.65(.1) 
2.8 (II) 

(CdS) 215 62* 15.5 -0.8 -1.4 0.69 4.3(.1) 
2.6(11) 

1.1 

0.7 
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Fig. 5.7. Reduced plot of aC against T for some diamond-type crystals [Gop66]. 
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Fig. 5.8. l' for some diamond-type crystals as function of reduced temperature [BarBO, Fig. 5.10]. 
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Silicon. This has particular significance as a reference material for thermal ex­
pansion (see Section 3.3): it is cubic, readily available in a state of ultra-high purity 
(and therefore very reproducible), and the expansion has been carefully measured 
over a wide temperature range. Levels of uncertainty in a are :::; 10-8 K- i be­
low room temperature. Values recommended by CODATA (Committee on Data for 
Science and Technology) [Whi97] are given in Table C.3 of Appendix C. 

5.5.2. Wurtzite Structure Including Ice 

Closely related to the zincblende structure is the wurtzite structure. This has 
hexagonal symmetry (ABAB ... packing) rather than cubic (ABCA. .. ), and the ther­
mal expansion can therefore be anisotropic. A few of the III-V, II-VI, and I-VII 
compounds may exist in either zincblende or wurtzite form. Others such as ZnO, 
AIN, AgI, CdS, BeO are always wurtzite. The low-lying TA modes correspond to the 
C44 and C66 elastic constants, which because of the different crystal axes correspond 
roughly to c' in zincblende. 

There is not a great body of thermal data at low temperatures on this group. The 
Landolt-Bomstein volume on semiconductors [Mad82] gives information on band 
structure, optical properties etc. for many of the III-V compounds, but few thermal 
data at low temperatures. 

CdS. Cadmium Sulphide has attracted some attention for its electroacoustic prop­
erties, but values for a at temperatures below about 30 K are confined to polycrys­
talline compacts. Curves of CXav(T) and yeT) for CdS are similar to those of CdTe 
(zincblende structure), after allowing for differences in E> [Bar80, p. 669]. 

ZnO. Values of the expansion coefficient of zinc oxide along the principal axes 
are shown in Fig. 5.10, a being negative below about 100 K. 

Ice. The oxygen atoms in the hexagonal (normal) form of ice also form a wurtzite 
structure, being linked by hydrogen bonds. The light mass of the hydrogen or 
deuterium atoms and consequent low moment of inertia of the water molecules 
causes the frequencies of the translational vibrations of the molecules to be well­
separated from the higher rotational frequencies; frequencies of the intramolecular 
vibrations are much higher again, and their contributions to Cv can be neglected over 
most of the cryogenic range. 

The thermodynamic properties have been discussed in a classic analysis by Lead­
better [Lea65], who exploited differences between H20 and D20 ice to separate the 
contributions of translational and librational modes to the heat capacity and thermal 
expansion. He thus obtained moments < wn > and approximate Griineisen parame­
ters for the different parts of the spectrum. These correlated well with spectroscopic 
and Debye-Waller data. Small additional effects in Cp due to incipient orientational 
ordering of the molecules [Hai72] are shown in Fig. 1.12. 
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Fig. 5.10. Linear coefficients of expansion of Zno [Iba69]. The calculated curves were obtained by fitting 
to a frequency distribution of two Einstein peaks (8E = 107 K and 590 K). 
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The thermal expansion is not markedly anisotropic: the principal coefficients 
of linear expansion differ by less than 2% near 273 K, with values of about 50 x 
1O-6K- I . Crystals of both H20 and D20 have been measured down to 20 K 
[Dan62b], showing similar a values for the two isotopes which become negative 
below 63 K. At 20 K, 'Y(T) is about -0.9, rising to about 0.6 above 150 K [Lea65]. 

5.5.3. Phenacites, Cuprite 

The mineral phenacite, Be2Si04, is another open structure, with tetrahedrally 
coordinated cations (Be++) and 3-coordinated anions. Slack and Huseby [Sla82] have 
reviewed the thermal behavior of a number of phenacite-type compounds because of 
their potential interest as low expansion materials. They are also reviewed by D. C. 
Palmer in the chapter on 'stuffed derivatives of the silica polymorphs' in Silica, see 
[Hea94, Ch. 3]. 

Many show a marked departure from Debye behavior in heat capacity with 8 c 
falling to 8~in '" 0.680 at T '" 0.06 80. They are all non-cubic, and those with 
small average expansion coefficients at 300 K include: 

For willemite (Zn2Si04) there are expansion data on single crystals extending down 
to 2 K [Whi88]; al. is negative below 290 K and all is negative below 150 K. There 
are no reliable data on Cp or on B below 50 K, but extrapolation indicates that 'Y falls 
from 0.6 at high temperatures to about 0.1 at room temperature and less than -1 at 
low temperatures (see Section 8.4.3). 

Cuprite. Another material of potential technical interest because its low coor­
dination leads to negative expansion is the cubic oxide of copper, cuprite (CU20), 
see [Bar80, p. 674]. Structurally it consists of two interpenetrating networks not 
connected to each other by any primary CuO bonds; in each network, the 0 atoms 
form a diamond structure, being linked by Cu atoms midway between them, so that 
each 0 is surrounded tetrahedrally by Cu and each Cu has two nearest neighbor 0 
atoms linearly arranged. Both the c' and C44 stiffness constants have negative pressure 
derivatives, leading to '}\) ~ -4 and negative values of expansion coefficient below 
280 K. Other parameters are 80 ~ 185 K and Bo = 110 GPa. 
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Thble 5.5. nata for some ceramic oxides used at low temperatures [BarBO, Tou77]. 
AI /1 = (1293 -14.2) /1293' Asterisk denotes room temperature data 

eo 80 c~93 Cl293 I:J/l) ')t) 'Y293 

(K) (GPa) (J/g·K) (l0-61K) (10-6) 

a-AhOJ 1035 251 0.765 5.80<11> 635(av) 1.24e1 1.31 
5.06(.1) 

MgO 953 165 0.92 10.4 1390 1.61 1.50 
Ti<h 780 223 0.68 9.1(11) I 470(av) 0.5" 1.65 

7.1(.1) 
a-Si<h 558 37 0.733 7.54(11) 1700(av) 0.4 0.67 

13.75(.1) 
Th<h 415 193* 0.27 7.2 1160 1.7 2.0 
Zr<h (stab.) 540 192 0.495 7.8 1300 5 1.7 

There are a number of ceramic oxides which are used over a wide temperature 
range for structural supports, insulators, reference standards, film substrates etc. They 
have little in common crystallographically but are tough and stable materials. In Table 
5.5 are given technical data on Ah03 (alumina or sapphire), MgO (magnesia), Ti02 
(rutile), a-Si02 (quartz), Th~ (thoria), and yttria stabilized zirconia (Zr02 + 9 mol% 
y 203). Some further data on length changes at intermediate temperatures are given 
in Table C.2 of Appendix C. Data sources are compendia of CINDAS [Tou77], 
American Institute of Physics Handbook [IGr72], and [Bar80, p. 674]. For the yttria 
stabilized zirconia, data are from Collins et al. [CoI85a]. The data for this zirconia 
should be fairly representative also of calcia- and magnesia-stabilized zirconia. 

Sapphire (a-alumina). a-A1203 is trigonal and so has anisotropic expansion; but 
it has been available in single crystal form as a Standard Reference Material for both 
heat capacity (SRM720) and thermal expansion (SRM732), being recommended as a 
reference material by both CODATA [Whi97] and IUPAC [Mar87a] (see also Ch. 3). 

Magnesia. MgO has cubic rocksalt structure, is stable with a high Debye e, and 
is used as a substrate for thin films of high temperature superconductors. 

Quartz. Si02 can exist in many forms: a-quartz, f3-quartz, cristobalite, 
tridymite, coesite, stishovite, as well as in the vitreous state (see [Hea94, Ch. 1]). 
The stable form below 846 K is a-quartz, which has an open structure of trigonal 
symmetry composed of regular Si04 tetrahedra linked by shared oxygen atoms 
at each comer. This linkage is a feature of many forms of silica and silicates, 
and usually such open structure should give rise to small or negative expansion. * 

'Professor Vollee Heine and others (e.g., [Pry96]) have discussed to what extent the negative 
thennal expansion often exhibited by such systems is due to vibrational motion of effectively 
rigid tetrahedra, but as yet with no application to low temperatures. 
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In a-quartz, however, helical arrangements of the tetrahedra occur parallel to the 
hexagonal c axis which permit the Si-O-Si angle joining the tetrahedra to change 
by cooperative rotation or 'tilting' of successive tetrahedra. This flexibility ac­
counts for the relatively large compressibility (see low value of B in Table 5.5) 
of a-Si02 (and of a-Ge02), and the large positive thermal expansion at room 
temperature compared to other forms of silica [Wri76]; the tetrahedra themselves 
are fairly rigid, but the change in macroscopic dimensions when tilting is in­
duced by pressure or temperature is relatively large (see for example the neutron 
diffraction studies under pressure [Car81]). Barron et al. [Bar82] discuss the ex­
pansion, heat capacity and elastic constants over the range of stability and show 
how E)c and the principal 'Y's change with temperature (Fig. 5.11). Theoretical 
models indicate that although tetrahedral tilt is the largest effect in the change 
of geometry with temperature [Bar87], tetrahedral distortion makes a comparable 
effect on the macroscopic expansion at low temperatures. 

Rutile. Many oxides have the structure of the mineral rutile (Ti~), including 
Ge02, Sn02, Mn02. The symmetry is tetragonal and the expansion anisotropic. 
There are few low temperature data excepting for Ti~, whose properties are 
strongly influenced below 150 K by optic modes. These modes, in particular a 
soft 'ferroelectric' mode (A2u), are responsible for a deep minimum in E)c near 
30 K (E)min = 440 K) and a maximum in the principal values of 'Y also near 30 
K. Values of 'Y(n are shown in Fig. 5.12 [CoI84a] for Ti02 together with those 
for MgF2, which has the same structure but does not contain a transition metal 
atom. The latter has a less marked minimum in E)c and a deep minimum in 
'Y, arising in part from an optic Big mode for which Raman spectroscopy gives 
'Yj ~ -5. 

Another tetragonal compound with the rutile structure is paratellurite (Te02), 
for which E)~ = 265 ± 10 K. At room temperature all = 5.6 x 1O-6K- 1 and a.L = 
10 x 10-6K-l, giving 'Y = 0.9, while at liquid helium temperatures 'Y ~ -lowing 
to the influence of a soft c' transverse mode [Whi90a]. 

Thoria. Th02 is another stable high melting point ceramic, having the cubic 
fluorite structure. It is discussed briefly in Section 5.11.3, in association with its 
isomorph U02 which becomes antiferromagnetic below 30 K. 

Zirconia. Zr02 also has the cubic fluorite structure at high temperatures. The 
structure can be stabilized at lower temperatures by addition of a few per cent of 
yttria, calcia or magnesia. It is then important as a high strength ceramic, an oxygen 
sensor and as a substrate for film deposition. The low temperature heat capacity has a 
linear (T -) term, indicative of 'disordered' tunnelling states, discussed in more detail 
under Section 5.7 on glasses and glass-ceramics. 

Low temperature values of Cp /T3 and a/T3 for Zr02 + 9 mol% Y 203 are shown 
in Fig. 5.13 [CoI85a] with data below 1 K from [Ack84]. The measured heat capacity 



174 ChapterS 

includes a Schottky contribution from magnetic impwities, evident below 5 K and 
centered about 1.5 K. Subtracting this term leaves: 

Cp (in p.J. g-l. K-1) = 1.9T + Debye T3 term (eo = 540 K) 

Values for 'Y are about 4 near 10 K and 1.7 at 293 K (see Table 5.5). 

5.7. GLASSES AND GLASS CERAMICS 

5.7.1. Introduction 

Glasses have some features in common with liquids. They have no long range 
order, but some degree of order at short range. The scale of the short range order can 
be estimated from the phonon scattering which determines the thermal conductivity, 
A. At normal temperatures the thermal conductivity and heat capacity of glasses 
are fairly temperature independent. The values indicate that mean free paths for the 
higher frequency lattice waves are less than or equal to loA (1 nm). 

Early recognition of unusual thermal properties for a glass at low temperatures 
came from heat capacity measurements on silica [Flu591: at the low-temperature 
limits of measurement near 2 K, Cp showed increasing departures from the expected 
T3 phonon contribution (Fig. 5.14). There were also observations of a 'plateau' 
around 10 K in the thermal conductivity, A(T}, both for Si02 and Se. Later mea­
surements on many other glasses showed that the magnitude of A in the region near 
10 K was surprisingly sinrllar, differing from 0.1 W·m-1·K- 1 by factors of 2 or 
less. Another feature observed in glasses of high silica content or with other types of 
tetrahedral bonding was that the thermal expansion at lower temperatures is negative 
and relatively large (e.g., review by Leadbetter [Lea68]). 

It was then recognized [Ze17l] that the departure of Cp from a T3 dependence 
at the lowest temperatures for silica and many glasses was due to the presence of a 
dominant 'linear' T -term, and that A varies approximately as T2 in this same region 
below the 'plateau' range. The magnitude of the 'linear' terms in the heat capacity 
ranges from 1 T to 6 Tp.J·g-1·K- 1 (Fig. 5.15). 

A model was proposed by Phillips [Phi72] and Anderson et al. [And72] to ex­
plain the origin of this linear term in C: in a disordered solid, some atoms might 
have available two or more potential wells and could tunnel between them. At low 
temperatures (over a limited range of temperature or energy) the random nature of 
the disorder could lead to a constant density of energy-states and hence to a linear 
contribution to the heat capacity like that produced by electrons in a metal. This 
is often referred to as the TLS or two-level-system model; it also leads to a T2 de­
pendence for the lattice heat conductivity at the lowest temperatures. The tunnelling 
concept also offers an explanation of the large values of Griineisen parameter ob­
served in many disordered solids at the lowest temperatures, since tunnelling will 
usually be sensitive to strain; for example, large expansion anomalies occur in alkali 
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10r--------------------------, 

Fig. 5.12. Principal Griineisen functions for Ti~ and MgF2 [Col84a]. Dot-dash curves are from [Kir67] 
for Ti~ and [Bro7S] for MgF2. Arrows denote values of r'o 
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halide crystals from impurity dipoles which can tunnel between a number of equiv­
alent orientations (Section 5.12). However the 1LS model does not give a specific 
microscopic picture of what tunnelling sites actually exist in individual glasses; so 
that it cannot, for example, make quantitative predictions. Nor, of course, does the 
1LS model account for all the aspects of thennal behavior at temperatures of 10 K 
or so. There are considerable differences in Cp(T) between various glasses in the 
region T rv 10 K: the tetrahedrally bonded glasses generally depart from Debye-like 
behavior much more than the non-tetrahedral glasses. 

There is such a wealth of data at low temperatures on the heat capacity, ultrasonic 
attenuation, conductivity and thennal expansion of some glasses that it is easy to 
be confused and lose track of the salient or connecting features. These topics 
are reviewed in more detail by a number of authors in Amorphous Solids: Low 
Temperature Properties [Phi81]. There are more recent measurements on thennal 
expansion below 1 K for silica, PMMA, AS2S3, epoxy polymer and 'defect' crystals 
(NaJ3-alumina and Zr02:Y203) [Ack84], giving a wide variety of values for the 
Griineisen 'Y calculated from the T -terms. 

In Section 5.7.2 we discuss separately the tetrahedral glasses, with emphasis on 
the silica family, and a few representative non-tetrahedral glasses, before reviewing 
some technically important glass ceramics. Later in Section 5.9 we shall return to 
glass-like behavior in some polymers, where the degree of glassiness or crystallinity 
varies from one extreme to the other. 

5.7.2. Tetrahedral Glasses 

All these amorphous solids display negative values of a at temperatures above the 
'linear T' region (e.g., Fig. 5.16), and also associated negative pressure coefficients 
of the shear modulus G and bulk modulus B. Kurkjian et al. [Kur72] measured the 
ultrasonic velocities and thermal expansion of various glass formers - Si02, Ge~, 
BeF2, Zn(p03h - and noted that these all had negative expansion coefficients at 
low temperatures, negative values of (aG/ap)r and positive values of (aG/aT)p, 
in contrast to another glass former, B203, which is not tetrahedral. 

It is not obvious that 1LS tunnelling controls this behavior above 2 or 3 K. It is 
more likely that the tension mechanism is responsible, as with the transverse modes 
in crystalline Si, Ge, GaAs, etc. It is interesting to speculate whether the bridging 
oxygen atoms contribute to this effect as well as providing 'tunnelling sites' (see 
Fig. 5.17 in [phi81, Ch. 6]). 

A related puzzle concerns the nature of the departures of Cp from the Debye 
model in the temperature region of 10 to 20 K (near 0/40). The departures appear 
to be larger for many tetrahedral than for non-tetrahedral glasses, and they are also 
large for many diamond-like crystals and a-cristobalite (see Fig. 5.18). 

SiUca and SiUcates. The thermal properties of vitreous silica show significant 
changes with change in density. Density differences amounting to parts in a thousand 
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may be produced by thennal ageing and from presence of hydroxyl ions; the latter 
depends on the origin of the silica samples, e.g., whether made by electrical fusion 
of quartz or from breakdown of tetrasilicide compounds. Neutron irradiation can 
produce density increases of many percent and large effects on thermal properties. 
Table 5.6 gives data for two samples of silica aged at 1000 and 1400 ec, SRM 
739, a Spectrosil sample after neutron irradiation dose of 5 x 1019nvt, an ultra-Iow­
expansion glass (Si<h + 7.5% Ti02) and a series of sodium silicate glasses; also 
included is a borosilicate similar in composition to Corning Pyrex, containing 4% 
Na20, 12-15% B203, and 2% Ah03. For pure Si02, egl ~ 495 K. 

Table 5.6 and other sources show that the addition of soda, a network filler, 
to silica does not change the heat capacity by more than a few percent at room 
temperature. Measurements of Cp in the range 20-100 K show changes with soda 
content are generally less than 10% [Kru72]. Near 10K there is a significant decrease 
(see Fig. 5.14) with increasing soda content, but at lower temperatures where the 
tunnelling term becomes dominant the heat capacity does not change much with 
composition, although there is a marked difference from pure Si<h (see Fig. 5.19 for 
potash and soda glasses). 
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CRISTOBALITE VI TREOUS SILICA 

Fig. 5.17. Schematic two dimensional picture of cristobalite and vitreous silica: full circles. Si; open 
circles, O. Arrows indicate types of defect. From Hunklinger and Schickfus, [Phi81. p. 85]. 
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Fig. 5.18. Reduced plot of (C/T3)exp,J(C /T3)vebye versus (T /eo)2. Values of eo are 271 K (8203), 
165 K (AS2S3), 495 K (GeOz), 560 K (quartz crystal), 475 K (cristobalite crystal), 530 K (Zerodur glass 
ceramic), 148 K (HgTe crystal) [Whi84c]. 
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18ble 5.6. Data for some silica based glasses at room temperature 
from [BarBO, Tou77]. 41/1 = (1293 -14.2)/1293 

Material p Bs c293 p £r293 ~/l 'Y6' 
(g/cm3) (OPa) (J/g·K) (l0-6/K) (10-6) 

Si(h(lOOOO) 2.200 36 0.73 0.50 20 -2.3 
Si(h(l4000) 2.203 36 0.73 0.40 70 
Si(h(SRM739) 2.20 0.73 0.49 47 
Si(h(n-irrad) 2.253 
ULE(Coming) 2.199 0 
Vycor(Si(h+ 0.70 0.75 
4%B7<>J) 
Borosilicate 2.23 0.72 3.0 540 
Si(h+10%Na20 2.29 33.9 ~0.75 5.1 -1.4 
Si(h+20%Na20 2.38 35.4 9.1 ~ 1700 -0.44 
Si(h+30%Na20 2.47 39.0 12.3 0.26 
Si(h+4O%Na20 2.52 43.1 15.0 0.76 

+ 

OJ ID 
T(K) 

Fig. 5.19. Log-log plot of ClT3 (per volume) for silicate glasses. Solid line indicates data for pure silica 
while other points include K concentrations of 0.08, 0.10 and Na concentrations of 0.25, 0.27. Horizontal 
lines show Debye phonon contributions (details in [Mac85]). 
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TIK) 

Fig. 5.20. Log-log plot of -afT3 versus T for silica-potash glasses. Concentrations of K are x=O (D), 
x=O.05 (x), x=O.08 (b.), x=O.lO (0) [Mac85]. 

Table 5.6 and Fig. 5.20 show that the thermal expansion is affected much more 
than the heat capacity by change in composition. The addition of network fillers 
like soda or potash inhibits the mechanisms responsible for negative expansion in 
pure silica; presumably they break down the open Si-O-Si bonding. The effect is 
also evident from the experimental values of 'Yth over the range down to about 3 K 
(Fig. 5.21). Note these become lower than ultrasonic values of 'Yel = -2.3 for silica, 
-0.44 for silica with 20% soda etc., see [Bar80, p. 670] and [Whi77]. Below 1 or 2 
K (Fig. 5.20) a is dominated by a negative linear term '" 1O-9T K-l which is less 
sensitive to composition. 

Other Tetrahedral Glasses (Ge02, BeF2 etc.). These are of less technical 
importance than the silica family, but are of basic interest in that they show similarities 
to the silica systems in having negative expansivities at low temperatures and negative 
pressure dependence of elastic moduli. The heat capacity of BeF2 in the 5 to 15 K 
range is very like that of silica in so far as C /T3 exceeds the expected Debye term 
by a factor of 5 or 6 near 7 K (90/50) [Lea7l], whereas for vitreous germania the 
increase is less than a factor of 3 at the maximum (also near 90/50) (see Fig. 5.18). 
Experimental data for these and some non-tetrahedral glasses (see Section 5.7.3) are 
given in Table 5.7 and are selected from sources given in the review [Bar80, p. 669] 
and [Ste73, Ack84]. 
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Fig. 5.21. Variation of the thennal Griineisen parameter with temperature for sodium silicate glasses above 
about 3 K. Dashed lines were calculated from the effective T3 terms in Q and Cp between 2 and 4 K, 
which is above the region where T-terms dominate ([Whi77l and [BarBO, p. 671]). 

5.7.3. Non-Tetrahedral Glasses 

Apart from polymers, low temperature data for non-tetrahedrally bonded glasses 
are largely restricted to B203 [Ste73, WhiS4a], AS2S3 [BarSO, MorSla], and AS2Se3 
[Hor78, Cla78], as summarized in Table 5.7. Chieffeatures are as follows: 

1. the maxima in Cp/T3 (or the equivalent minima in 0 c) are less pronounced 
than for the tetrahedral glasses or crystals (see lower part of Fig. 5.1S); 

2. the elastic moduli do not soften under pressure; 

3. there is no indication of negative expansion, at least above 1 K. Ackerman 
et al. [AckS4] have measured one of these glasses, AS2S3, below 1 K; their 
extrapolation suggests that a tunnelling (T -) term has an associated 'Y value of 
about -2. 
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Table 5.7. Experimental data for some non-silicate glasses from 
references in the text including [Bar80, p. 669] and [Ste73, Ack84]. 
Vitreous SiOl is included for comparison. 'YlO is from thermal data 
at 10 K and 'Yl is from the respective T -terms (tunnelling) below 1 

K [Ack84] 

Material Bs eo «.!93 ')'293 no 'Y81 'Yef 
(GPa) (K) (10-6/K) 

Tetrahedral 

SiCh 36 492 0.5 0.03 -3 -2.3 -60 
Ge02 24 309 6.9 0.2 -0.2 -0.9 
GeS2 170 14 1.2 
BeF2 19 390 7.5 -1.4 

Non-tetrahedral 
B20 3 13 259 15.5 0.35 0.8 0.28 

271,1 

AS2S3 13 165 22.5 0.55 1.8 1.8 -2 
AS2Se3 14 144 22 0.6 2.1 2 
PMMA 8 ~270 80 -I 

5.7.4. Glass Ceramics 

The tenn 'glass ceramics' describes those materials which can be fonned in the 
glassy state and then heat treated to partially recrystallize with the help of a nucleating 
agent. The resulting mix of small crystallites ('" ILm or less) in a glass matrix is 
achieved with very little change in volume or shape, and has zero porosity and high 
mechanical strength. 

The history of the development and technical importance of low thermal ex­
pansion glass ceramics is discussed in a book by Hans Bach of Schott Glaswerke 
[Bac95]. The process of photonucleation was discovered at Corning (New York) 
about 1940. There followed research on the lithium-alumina-silicates such as f3-
eucryptite (LhO·Alz03.2SiOz) which have negative values of volume expansion at 
ambient temperatures, and also the discovery of nucleation by addition of TiOz. 
Another convenient nucleating agent was found to be zrOz. Development work at 
Corning, Owens-Illinois and Schott centered on the LiAISiO family with f3(hi)-quartz 
structure. This structure can be stabilized below the a-f3 quartz transition (573°C) 
by additions of MgO, ZnO, Alz03, etc. Generally the addition of LiAlOz leads to 
strong negative values of a, ZnAlz04 gives smaller negative values, AIP04 has little 
effect, and MgAlz04 gives a strong positive contribution to the expansion. 

These developments led to the production of glass ceramics for kitchen ware 
which were resistant to thermal shock. Later came their potential use for large zero­
expansion blanks for telescope mirrors. This imposed additional requirements of 
homogeneity, suitable polishing characteristics and adhesion of Al films. One such 
material from Schott was called Zerodur and typically contained (in wt%) about 57% 
SiOz, 25% Ah03, 6.5% PzOs, 3.4% LiOz, 1 % each of MgO and ZnO, and 2% each 
of TiOz and ZrOz. Later Schott developed Zerodur M with less MgO to improve 
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stability on thermal cycling (see also [Hea94, Ch. 14]). 
Partly because of their use in space telescopes, there are thermal data extending 

to liquid helium temperatures, particularly for thermal expansion. At temperatures 
below about 100 K, the expansion coefficient is negative with values comparable to 
those for vitreous silica. 

Measurements of heat capacity have been largely confined to below 30 K, due 
largely to a fundamental interest in the magnitude of T - and T3 - terms in C p. At 
temperatures between about 50 K and room temperature the observed values of Cp 
for these aluminosilicates are not very different from values for silica or many silicate 
glasses. 

J1-Eucryptite. LiAISi04 or (LhO·AI203.2Si02) is a hexagonal Li-stuffed 
derivative of {3-quartz, and plays an important rOle in determining the expansion 
coefficient of ceramic glasses. There are no high resolution expansivity data, but 
there are lattice spacing measurements at 20, 100, 200, 300 K, and also at higher 
temperatures, which reveal markedly anisotropic expansion. Along the c-axis. all is 
negative above 20 K, with a value of ~ - 20 x 1 0-6K -I at 300 K; while a 1- is positive 
(except possibly below 50 K) with a magnitude roughly half that of all. The volume 
coefficient is near zero over a wide range. The relative importance of low-frequency 
TA modes, rigid unit modes (which may include some low frequency TA modes) and 
the Li+ ion is yet unresolved; see [Pil73, Lic98] and [Hea94, Ch. 3]. 

Glass Ceramics. The heat capacity of most glass ceramics at room temperature 
is about 0.8 J.g-1·K- 1 or 48 J·mol-I·K- 1, compared with 44 J·mol-I·K-1 (±1%) 
for a-quartz, cristobalite and vitreous silica at 293 K. For all these latter three forms 
of Si02. Cp values agree within 1 or 2 per cent from 300 K down to 80 K [Wes63]. 
They diverge increasingly below this temperature: at 25 K. Cp = 1.32 J·mol-I·K- 1 
for quartz, 2.33 for cristobalite. 2.26 for silica and 1.7 J·mol-I·K- 1 for Cer-Vit. 

Some of the measurements of Cp on samples of Cer-Vit (Owens-Illinois) and 
Zerodur (Schott) are illustrated in Fig. 5.22 [CoI85b]. The Cer-Vit samples had 
varying degrees of crystallinity and were stated [Lea77] to be ' ... essentially a 
lithium aluminium silicate containing several percent of Ti02 and Zr02 as nucleating 
agents ... '. Below 4 K. data could be represented by Cp ~ (5T + 0.8T3) pJ. 
g-l·K- I• the linear term being of similar magnitude for differing proportions of 
glass-to-crystallite. 

The Zerodur samples had average crystal sizes 50 to 135 nm and had 70 to 80% 
crystallinity [CoI85b]. Below 5 K, measurements fitted Cp = AT + BT3 with values 
of A from 5.4 to 7.8 pJ.g-I·K-2 andB ~ 0.7 pJ.g-I.K-4; these are rather similar to 
the Cer-Vit data. Note that the linear (tunnelling) term is much larger per gram than 
the 1.2p.J.g-I·K-2 observed for vitreous silica (Fig. 5.15). 

The thermal expansion coefficient for these aluminosilicates is much more sen­
sitive than Cp to composition, particularly at intermediate temperatures. say 50 to 
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Fig. 5.22. Cp IT3 against T for some silica-based materials [CoI85b]. 
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350 K. Berthold and Jacobs [Ber76a] (see also [Bar80, p. 673]) measured the ex­
pansion of more than 40 samples of Cer-Vit between 150 K and 540 K, finding a 
at 150 K varying from -0.3 to +0.8 x 1O-6K- 1• Figure 5.23 shows some selected 
data on Zerodur samples and MGC (or MACOR, a machineable glass ceramic from 
Corning); and for comparison vitreous silica (aged at 1000°C) and Corning ULE 
[CoI91, Whi76a]. The maximum in a near 100 K for many samples of Cer-Vit and 
Zerodur raises interesting questions. Obviously there is a balance between negative 
and positive contributions to a, but it is difficult to reconcile the large differences near 
100 K with the rather similar values below 10 or 15 K. At the lowest temperatures 
transverse modes of vibration (giving negative expansion as in vitreous silica) must 
be dominant, and near 100 K other modes become important. Near room temper­
ature there may be a strong negative contribution from a crystalline phase such as 
l3-eucryptite. 

The machineable glass ceramic, MGC or MACOR, contains small (5-10 ILm) 
blocks of a ftuorophlogopite mica phase crystallized in a boraluminosilicate matrix. 
Its machinability, shock-resistance, and non-magnetic qualities make it useful for 
cryogenic equipment. The heat capacity per gram measured below 20 K by Lawless 
[Law75] is similar to that of silica. The density is 2.52 g·cm-3, and a293 = 8.8 x 10-6 

K-1. Values of a down to 2 K are shown in Fig. 5.23 [Whi76a]. 
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Fig. 5.23. a(T) of Zerodur samples. Z-1 and Z-M. vitreous Si02. ULE 7971 and MGC (Macor) [Whi76a. 
CoI91]. 

S.S. IDGHLY ANISOTROPIC CRYSTALS 

S.S.l. Introduction 

We usually associate the most extreme cases of anisotropy with easily cleaved 
crystals such as mica and graphite, or with the fibrous chain-like crystals of asbestos 
and some polymers. Their anisotropy arises from having weak Van der Waals forces 
between planes (or chains) and stronger covalent bonding within planes (or chains). 
Generally this anisotropy shows up as high compressibility in one direction and low 
compressibility in the other. For example, in layered crystals of axial symmetry such 
as graphite XII » X.l; while for chain-like crystals such as Te XII «X.l. Indeed, for Te 
and Se at room temperature XII has a small negative value; under hydrostatic pressure 
the spiral chains decrease in radius and expand slightly in length. Another measure 
is the ratio of the elastic compliances along and perpendicular to the symmetry axis, 
$33/$11, which is about 28 for graphite and 0.6 for Te. 

The vibrations that depend primarily on the weak force-constants have much 
lower frequencies than those that are governed by the strong force constants, and at 
low temperatures they are excited preferentially and dominate the heat capacity and 
thermal expansion, with low values of eC . Above the low temperature region eC (T) 
increases with T until the high frequency vibrations become excited at much higher 
temperatures. Likewise changes in the Griineisen 'Y occur, because the uniaxial strain 
dependences of low and high frequency modes are very different and may differ also 
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with orientation. 

5.8.2. Layer Structures 

A simple layer structure has strong elastic anisotropy like that of graphite, with 
only small cross compliance between the II and -L directions. The low frequency 
modes are polarized roughly perpendicular to the layers and the high frequency 
modes roughly perpendicular to the axis. The high frequencies are therefore weak­
ened by stretching the crystal perpendicular to the axis but scarcely affected by 
stretching along the axis, so that 'Y.l is large and positive and 'YII is small. In 
contrast, the lower frequencies are weakened by stretching along the axis (which 
reduces the restoring forces for motion in this direction) and are strengthened by 
stretching perpendicular to the axis (which increases the restoring force perpen­
dicular to the layers because of the tension between neighbors), so that for these 
modes 'Y.l is negative and 'YII large and positive. At low temperatures when only 
low frequency modes are excited there is a relatively large expansion in the soft 
direction along the axis, and a small contraction within the layers. As T increases 
the excitation of the high frequency modes will have little effect on the expansion 
along the axis, but their large 'Y.l will drive the expansion within the layers positive, 
though it remains small because of the high stiffness in the layers. A theoretical 
example is provided by one form of the rhombohedral model discussed in Section 
2.6.3. 

Graphite. In graphite, each carbon atom is bonded to three other carbons 
forming a network of planar hexagonal rings. The distance between carbon atoms 
in a plane is 0.142 nm (1.42 A), and planes are about 0.33 om (3.3 A) apart. It is a 
good electronic conductor within the planes, giving an electronic fT contribution 
to the heat capacity at low temperatures. The weak bonding between planes results 
in a compressibility at room temperature of XII = 27 x 10-12 Pa -1, compared with 
X.l = 0.5 x 10-12 . This layer structure led to an early theoretical prediction that 
the vibrational heat capacity at low temperatures might vary as T2 rather than T3, 
and indeed the first definitive measurements on a natural crystal from 13 to 300 K 
[DeS53] showed Cp ex: T2 from 13 to 50 K. But at low temperatures the weak 
interlayer forces become important, and later measurements [Van63] extending 
down to 0.4 K on a similar natural crystal gave Cp = 13.8T+27.7T3,...J·g-ac l . 

K- 1 below 1.2 K, confirming that in the low temperature or long wave limit the 
Debye T3 law applies with eo :::::: 413 K. These and other measurements of Cp 
on various graphites (Canadian and Madagascar natural graphites, pile graphite, 
pyrolitic graphite, etc.) showed that the values obtained below 20 K were highly 
dependent on crystallite size, stacking faults, etc., with the natural crystals giving 
the lowest values of heat capacity (Fig. 5.24). Data in [Tou70b] suggests that at 
higher temperatures, above say 50 K, differences are small. At 300 K, Cp = 8.58 
J.g_ac 1.K-1 [DeS58]. 
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Fig. 5.24. Cp(T) for representative samples of graphite below 5 K [OeS53, OeS58]. -(top curve): 
graphitized lampblack, crystallites", 100m - -(middle): pile graphite, crystallites", 25 om 
- - - -(bottom): natural crystals ~ 100,... m 

Note that the low temperature values of eC ('" eo) are not a good guide to 
the heat capacity of graphite (or boron nitride) at higher temperatures; the high 
frequency modes do not become excited and increase Cp until much higher tem­
peratures than predicted by the Debye model. For example, measured values of 
Cp at about 100 K and 300 K respectively correspond to Debye temperatures of 
1050 K and 1500 K. 

The thermal expansion of a highly oriented pyrolytic graphite sample from 30 to 
270 K [Bai70] is shown in Fig. 5.25 and Table 5.S. A sample of hexagonal BN (of 
graphite structure) showed similar and even greater anisotropy, see [BarSO, p. 676]. 
There are very many high temperature expansion measurements on graphites from 
many sources (not single crystal) because of its importance as a high temperature 
refractory, but relatively few at low temperatures [Tou77]. 

Bailey and Yates [Bai70] calculate approximate values for the principal 
Griineisen parameters with accuracy limited by lack of low temperature elastic 
moduli. They find 'Yl.. ~ -5 at lowest temperatures rising to ~ -1 at 270 K and 
becoming positive at higher temperatures. In the soft direction, 'Y~ ~ 3 and 'YfO ~ 1. 

Values of a and !l.1/1293 = (1293 - iT )/h93 are given in the American Institute 
of Physics Handbook [Kir72] for graphite. Values of a (in units of 1O-6K-1) may 
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Fig. 5.25. a(T) for pyrolitic graphite and boron nitride. Note scale change above and below the 
horizontal axis. From [Bai70j and [BarSO. p. 676]. 

be compared with those for 'glassy' carbon GC-20 (crystallites::; 10 nm): 

T 293 K 200K lOOK 
al. -1.2 -0.8 -0.4 
all 25.9 22.6 15.4 
£Xav 7.8 7.0 4.9 
aoC-20 1.9 ~ 1.6 1.3 

Graphite is the classic example of a simple layered crystal, in which the 
anisotropy of both the elasticity and the Griineisen functions combine to give large 
positive expansion perpendicular to the planes and small negative expansion in the 
planes. But this is not necessarily true of crystals with more complex layers. Thus 
arsenic has Griineisen functions which are almost isotropic, and the anisotropy of 
its thermal expansion stems largely from its elasticity (see Section 6.3.1). And 
InBi, with compound layers consisting of Bie.slnBie.s sandwiches, has reversed 
anisotropy in thermal expansion, with positive expansion in ab directions and con­
traction perpendicular to the planes (see Section 8.4.6). 
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Table S.S. Data for some layer and chain-like crystals. Sources are 
reviews [BarSO, Tou77] 

Material 80 Bo a293 a293 'Y 1-,293 'YiI,293 'Y1-,O 'Yil,o 1- II 
(K) (GPa) (1O-61K) (l0-6/K) 

Graphite 413 36 -1.3 27 -1 -5 3 

BN 485 -2.8 38 

Se 160 12.5 69 -13 1.5 -1.6 0.85 1.0 
±1O approx 

Te 152 22 29.5 -2.3 1.8 -0.7 1.0 1.1 

POM 271 11 75 2.4 1.35 -1.2 0.7 0.7 

5.8.3. Chain Structures 

Selenium. Se crystallizes in the trigonal system in the form of spiral chains of 
atoms arranged in a hexagonal array, so that each chain has six neighbors: the space 
group is Dl (D3 121) or D~ (D3231). There are also amorphous and monoclinic forms 
as for sulphur. 

Low temperature values of heat capacity for trigonal Se show some variation 
depending on the sample preparation. Values for Cp/T3 below 10 K lie within about 
10% of 0.5 mJ·mol- 1·K-4 , corresponding to eo ~ 160 K [Mei7S, Las69]. Their 
values of eo for monoclinic Se are about 12S K. The thermal expansion data from 10 
to 300 K [Gr07S] show the expected large anisotropy, with a.l = 69.8 x 10-6 K- 1 

and all = -13.4 x 10-6 K- 1 at 300 K. Other data are given in Table 5.8. 

Tellurium. Te crystallizes in the same trigonal structure of spiral chains as See 
There are more consistent thermal data for Te than for See The heat capacity, measured 
from 1.5 to 20 K [Lea73] and above 14 K [Sla39b], gives a eC (T) curve similar 
in shape to those of other crystals represented in Figs. 5.4 and 5.7: eo = 152 K, 
e~in = 131 Kat T = 10 K (eo/IS) and e~ ~ ISO K. This contrasts with the shape 
of the eC (T) curves for graphite and BN mentioned above. 

The thermal expansion of single crystals determined down to 2 K (Fig. 5.26, refs. 
in [BarSO, p. 691]) shows anisotropy but less marked than for selenium: at 293 K, 
a.l = 29.6 x 10-6 K- 1 and all = -2.3 x 10-6 K- 1• Principal 'Y values are included 
in Table 5.S. A theoretical model indicates that the anisotropy may be reduced by 
radial contraction of the spiral chains with increasing temperature [Gib73]. 

5.9. POLYMERS 

5.9.1. Introduction 

Polymers are widely used in cryogenic applications, particularly when fiber re­
inforced, because of their strength/weight ratio and nonmagnetic nature. They are 
generally in the amorphous (glassy) or semicrystalline condition. If the crystallites 
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are oriented by the growth process or by drawing, the properties are then anisotropic. 
In the fully crystallized state, which is not usually achieved with bulk samples, the 
polymers consist of chains (linear, planar zigzag, helical, etc.); the crystals can have 
axial, orthorhombic or lower symmetry. Whatever the structure, the covalent in­
trachain linkage (i.e., within chains) is much stronger than the interchain linkage 
(i.e., between chains), so that we may expect the lattice dynamics of crystalline poly­
mers to resemble that of tellurium or selenium, with the added complication of side 
groups of atoms. In some polymers such as epoxy resins and vulcanized rubbers 
the interchain linkage is strengthened by cross bonding. At low temperatures, the 
thermal properties are largely determined by low frequency modes governed by in­
terchain forces and weak intrachain torsional forces; at higher temperatures the high 
frequency intrachain modes become important. However, polymers normally melt 
before the highest frequencies are excited. * 

For both isotropic and oriented samples, the heat capacity and thermal expan­
sion depend on the degree of crystallinity, i.e., the fraction of the material that is 
crystalline rather than amorphous, and also on whether the samples are isotropic or 
have crystallites and/or chains oriented preferentially (texture). We shall discuss first 
the experimental behavior of the few examples available of single or quasi-single 
crystal specimens, before examining the properties of the partially crystalline and 
amorphous materials. 

Data on heat capacity have been reviewed and tabulated in a series of papers by 
Gaur et al. [Gau81] in the Journal of Physical and Chemical Reference Data. A 
Cryogenic Monograph by Hartwig [HarJ4] entitled Polymer Properties at Room and 
Cryogenic Temperatures includes a review of heat capacity and thermal expansion, 
as well as dielectric and elastic behavior and thermal conductivity. Hartwig tabulates 
values for linear thermal expansion and heat capacity of many common polymers. 
His values for Cp (per gram) correlate closely with Cp values (per mole) given by 
Gaur et al. [Gau81]. Hartwig does not include data for the powder or fiber-filled 
polymer composites. Some of the latter are included in the chapters by Clark and 
others in Materials at Low Temperatures [Cla83]. Other good sources of thermal 
data on polymers and composites are the proceedings of the International Cryogenic 
Materials Conferences published by Plenum Press as Advances in Cryogenic Engi­
neering Materials and specialist ICMC conferences on Nonmetallic Materials and 
Composites at Low Temperatures [Cla79, Har82, Har88b, Oka95a}. 

Table 5.9 gives selected values for cp and tll/l293 = (1293 -l4)/1293 for the 
following polymers in amorphous (a), crystalline (c) or semicrystalline (sc) state 
[Gau81, Har94]: 

• POM (polyoxymethylene ... (CH20)n) 

• PE (polyethylene ... (CH2)n) 

• PTFE (polytetraftuorethylene ... (CF2)n) 

'Vulcanized rubbers continue to be solids above the glass transition region and exhibit interesting thenna) 
expansion [Bar98]. but this does not usually occur at cryogenic temperatures. 
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Table 5.9. Values o(cp (J.g-I·K-I ) and Al/I = (1293 -14)/1293 for some 
polymers in crystalline (c), semi- crystalline (sc) and amorphous (a) forms 

[GauSt, Har94] 

cp Cp Cp cp Cp Cp Cp cp Mil 
Material 10K 20K 50K lOOK 150K 200K 250K 300K 10-4 

POM(c) 0.014 0.082 0.337 0.556 0.73 0.905 1.08 1.28 150 
PE(c) 0.008 0.051 0.33 0.68 0.86 1.03 1.22 1.44 160 
PE(a) 0.025 0.098 0.35 0.70 0.94 1.19 2.07 2.27 290 
PTFE(sc) 0.026 0.079 0.210 0.39 0.55 0.68 0.78 0.87 180 
PVC (a) 0.029 0.095 0.260 0.43 0.56 0.69 0.82 0.94 120 
PS (a) 0.031 0.102 0.266 0.45 0.62 0.80 0.99 1.21 ISO 
PP(c) 0.017 0.087 0.304 0.61 0.99 1.11 1.31 ? 
PP (a) 0.025 0.120 0.354 0.68 0.94 1.23 1.42 130 
PET (a) 0.065 0.25 0.44 0.62 0.80 0.99 1.17 130 
PMMA(a) 0.017 0.080 0.28 0.55 0.92 105 

• PVC (polyvinylchloride ... (CH2 ·CHCl)n) 

• PS (polystyrene ... (CH2·CH-C6Hs)n) 

• PP (polypropylene ... (CH2·CH-CH3)n) 

• PET (polyethylenetetraphthalate ... (CO,C614·CO·O-(CH2h·O)n)' 

5.9.2. Crystalline Polymers 

There have been many simple theoretical models devised to explain the properties 
of polymer crystals (see for example [Bau73, Gib74, Bar88]). The basic ideas 
are simple (Section 2.6.3). The heat capacity depends at low temperatures on the 
weak forces controlling torsion of the chains and interactions between them, with 
additional contributions at higher temperatures from modes governed by stronger 
intrachain forces. The bonds between successive atoms in the chain are very stiff and 
expand very little, so that their rotational motion (libration) contracts the mean length 
of the chain, giving negative expansion in that direction (an extreme example of the 
tension effect), while the anharmonicity of the interchain potentials produces positive 
expansion in directions normal to the polymer chains. However, the quantitative 
behavior, especially for the anisotropic expansion normal to the chains, is intricate, 
requiring detailed models for specific substances. Several such models have been 
developed for crystalline PE (e.g., [Kob79, Lac94b, Bru98]), and single models 
for a few other polymer crystals, notably by Lacks, Rutledge and colleagues (e.g., 
[Lac94a]), but most of the calculations do not extend to very low temperatures. 

Polyoxymethylene(POM). A close approach to a single crystal among the non­
conducting polymers was made by Anderson et al. with their samples of poly­
oxymethylene produced by radiation polymerization of tetroxane [And82]. They 
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obtained rods of ' ... single crystal texture ... fiber bundles are well aligned with 
respect to one another . .. and low angle diffraction measurements indicate that the 
bundles vary from a few hundred to many thousands of A. in thickness ... and diffrac­
tion peaks of width never greater than a couple of degrees in all crystallographic 
directions ... .' They used such 'single crystals' for inelastic neutron scattering de­
terminations of the principal elastic moduli. Measurements on a similar crystal were 
made of Cp (2-20 K) and the principal linear expansivities (2-100 K) [Whi76b]. 
Below 10 K, Cp = 0.013T3 mJ·g-1·K-1, corresponding to eo = 271 K. Above this 
the temperature dependence changes to an approximate T -law between about 25 and 
lOOK. 

The aA (T) curves are qualitatively very similar to those of Te (Fig. 5.26). a.L 

is positive and relatively large, reaching a value of 75 x 1O-6K-1 at 293 K. all ~ 
2.4 x 1O-6K-1 at 293 K, becoming negative below 100 K and reaching a minimum 
of -2.0 x 1O-6K-l at 40 K. The 'YA{T) curves resemble those ofTe and Se, as the 
values in Table 5.S indicate, but are less smooth (see [BarSO, Fig. 5.221). 

Polysulphur nitride. (SN)x is a semimetallic chain polymer which can be pro­
duced as an 'imperfect' single crystal, i.e., as an oriented bundle of fibers with 
diameters between 200 and 1200 A.. Measurements of Cp from 1.5 to SO K [Har77a] 
showed that the lattice contribution varied as T3 below about 5 K (eo = 143K) with 
a T -dependence from about 40 to SO K. 

5.9.3. Amorphous and Semi-Crystalline Polymers 

When a polymer solidifies from the melt, crystalline regions are formed which 
may consist of long chains folded into lamellae; these are randomly oriented and 
joined by amorphous regions and sometimes by chains which enter more than one 
crystallite. If the polymer is then drawn, the degree of the crystalline orientation 
increases rapidly and results in well oriented blocks of folded chains separated by 
amorphous regions and some bridges. This is then a semicrystalline oriented polymer. 

Polyethylenetetraphthalate. PET can be produced in both amorphous (a) form 
and, by heat treatment, in semicrystalline (sc) form. Two series of measurements 
of Cp at low temperatures are in good agreement and show the effect of changing 
from 60% crystallinity (by volume) to 90%[Ch075, CoIS7b]. Figure 5.27 shows 
one series which was fitted to a linear 'tunnelling' term (dominant below 1 K and 
varying with crystallinity), plus a Debye term with e ~ 13S K, plus a I-dimensional 
Debye term, plus an Einstein term to represent the 'bumps' shown near 4 K [CoIS7b]. 
The decrease in the height of the bump with increase in crystallinity (and density) 
is reminiscent of the change in the magnitude of Cp IT3 for the silica family in the 
region near 10 K (e.g., Figs. 5.14 and 5.22): as the density increased in progressing 
from vitreous silica to quartz due to thermal crystallization or irradiation, the bump 
decreased in magnitude. 
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Table 5.10. Values of coefficient, AI, of linear 
terms for various materials. Refs: PET 

[CoI87b], PTFE [Boy83], others from Pohl, see 
[PhiS1, Ch. 3] 

Material AI (J,LJ/g ·K2 ) Material AI (J,LJ/g ·K2 ) 

PET(a) 2.28 PTFE 0.36 
PET(58%c) 5.77 PE 0.94 
PMMA 4.8 silica 1.2 
PS 5.3 Zerodur 6.1 
Nylon 2.1 
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Values of the tunnelling term from the Cp data (down to 0.4 K) were 2.3T ILl · 
g- I·K- 1 for amorphous PET and 5.8T lLJ.g-I ·K- 1 for crystalline PET [CoI87b], 
compared with 1.2T ILl·g-1·K- 1 for silica and other polymers in Table 5.10. 

Polytetrafluoroethylene (Teflon). PTFE or Teflon is a good prototype of a long­
chain polymer for low temperature study of the heat capacity because it is available 
pure, with well defined structure and with no cross links or side chains. Measurements 
of Cp from 0.3 to 20 K at pressures from zero to 0.5 GPa [Boy83] gave the results 
shown in Fig. 5.28. The relatively small tunnelling term at zero pressure, ~ 0.36T ILl· 
g-I. K-2, is compared with values for PET, PMMA, PS in Table 5.10. 
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Fig. 5.27. Cp/T3 against T for five samples of PET varying from zero crystallinity (top • • ) to 58% 
(bottom, x) [CoI87b). 
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The 'peak' in c/T3 near 3 K is very obvious at low pressure and decreases by 
a factor of two at 0.5 GPa. Assuming a bulk modulus of 6.5 GPa, the increase in 
pressure from 0 to 0.16 GPa (1.6 kbar) corresponds to a density increase of about 
2.5%. There is an associated decrease in c /T3 near 3 K of about 30%, which 
corresponds to a 10% increase in eC • Therefore the effective Griineisen parameter 
is 'Y = dlnefj /dlnp ~ 4. 

Polyethylene. The thermal properties of isotropic PE in various degrees of crys­
tallinity and anisotropic samples have been widely studied, but values for nearly 
perfect crystals can only be inferred by extrapolation, except at higher temperatures 
(~ 100 K) from x-ray diffraction. The values in Table 5.9 for fully crystalline (c) 
and fully amorphous (a) material were extrapolated linearly from data on a number 
of samples [GauSI]. At temperatures in the region of 100 to 150 K, the values of cp 

(amorphous) exceed those for Cp (crystalline) by only a few percent, but below 20 K 
the excess increases considerably: by a factor of 2 near 20 K and a factor of 4 at 10 
K. 

The values of a for isotropic PE (Fig. 5.29) show similar differences, e.g., aa /T3 

is roughly 5 times greater than a C /T3 near 5 K [WhiS4a]. Choy and collaborators 
[ChoSl] have measured the effect of orientation by drawing various polymers, in­
cluding PE, through dies. For a sample with a draw ratio of II (Table 5.11) the 
anisotropy in expansion is like that of a crystal, although it is hard to estimate how 
much the numerical values of all and a..L would differ from those of an ideal perfect 
crystal of PE. Above 100 K, all is consistent with ac as given by x-ray diffraction 
[DadSl]; a..L is in fair agreement with (an + ab)/2, but increases more rapidly so 
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Thble 5.11. Values of 0/ (units of 
lO-6K-l) for isotropic polyetbylene 
extrapolated to fully amorpbous (a) 
and fully crystalline (c); also values 
measured on rod (draw ratio 11, ca. 

80% crystalline) in directions 
perpendicular and parallel to draw 

direction [eboSl, Whi84a] 

T(K) PErso PEfso PEtawn PEdrawn 
II 

10 3.18 0.68 2.2 -0.175 
20 11.6 5.0 11.3 -0.79 
55 35 30 53 -4.2 
100 57 49 86 -6.0 
150 96 65 107 -6.8 
200 143 77 123 -8.0 
250 203 80 141 -10 
300 324 83 158 -11 

that at room temperature a.L for the drawn sample is about 25% larger. The x-ray 
measurements reveal marked anisotropy in the ab plane at higher temperatures, with 
CXa about double ab, but force-constant models of the perfect crystal suggest that 
at the lowest temperatures the thermal expansion is approximately isotropic in this 
planefBru98]. 

'Y values for the isotropic PE change from about 3 below 10 K to 1 at room 
temperature. For the anisotropic drawn rods, 'Y.L '" 3 at low temperatures and falls to 
about 1 at 300 K; in the axial direction, 'Y!i is negative. 

PoIymethyimethacrylate (PMMA). Measurements of linear expansion between 
1.5 and 4 K show a negative T-term and positive T3-term, fitting the equation 
01= (-1.06T+1.15T3 ) X 1O-8K- i [Ly079]. Using a value of Bs = 8.2 GPa and 
unpublished heat capacity data gives for the linear term, 'YT = -16. The a measure­
ments extend up to 300 K with 01293 = 79.3 X 1O-6K- i and 1l1/1293 ~ 1.2%. 

Later measurements of a for PMMA extending down to 0.4 K [Ack84] give 
values about 25% smaller than [Ly079], and analysis of the data below 1 K gives a 
very different value for 'Yr, namely -1, while 'YT3 '" 1. 

Epoxy resins. Epoxy resins, with and without fillers, are widely used in cryogenic 
equipment. Measurements of linear thermal expansion indicate a range of values of 
0!293 from 60 to 70x 1O-6K-i for unfilled samples and 20 to 40x 1O-6K-i for some 
filled samples [Esc95, Wal94]. Overall contractions, ill/I, on cooling from 293 to 4 
K range from 1.0 to 1.4% for unfilled samples and from 0.3 to 0.7% for samples with 
fillers. 

A filled epoxy of low expansion which is often used for sealing electrical leads 
through copper at low temperatures is Stycast 2850Ff. Measurements of heat capacity 
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Fig. 5.29. afT3 versus T for various isotropic PE samples. aa and aC denote coefficients of amorphous 
and crystalline regions respectively [Whi84a]. 

(1 to 90 K) and linear expansion (1.5 to 300 K) [Swe97] give a300 = 30 x 1O-6K-1 

and {l300 -11.5)/1300 ~ 0.45%. This sample had a maximum in Cp/T3 and in a/T3 

near 5 K and a linear tunnelling term was apparent below 2 K. 

Polyme r composites. The thermal expansion and elastic properties of composites 
can be tailored to meet engineering requirements by addition of powders such as 
silica, alumina and magnesia or fibers of graphite, silica, kevlar, etc.; the general 
aim is to produce structural components of light weight, sufficient strength, and 
thermal expansion compatible with other components. They are also electrically non­
conducting and non-magnetic. The electrically non-conducting property is important 
in ac applications to stop eddy currents and associated magnetic fields. The 'tailoring' 
consists of choosing suitable proportions of powder or suitable alignment of fibers. 
These composites are discussed in Ch. 7. 

S.10. HIGH Te SUPERCONDUCTORS 

S.10.1. Introduction 

High-Tc superconductors (HfS) are included in this chapter because they are ce­
ramics, and because their heat capacity and thermal expansion vary with temperature 
in much the same way as do those of other ceramics except in the immediate vicinity 
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Fig. 5.30. The basic perovskite structure with large metal ion, A, at the center, smaller metal ions, B, at 
comers and anions (e.g., 0) at mid-edge. 

of the superconducting transition Tc. At Tc there is sometimes a bump and some­
times a sharp peak in Cp (and also in a) which is relatively small compared with the 
lattice vibrational background: relatively small because Tc is larger compared with 
o than for metallic superconductors. For example, Tc/00 '" 0.2 for YBa2Cu306+s 
compared with '" 0.02 for Sn. 

As far as electron transport is concerned, the electrical resistivity of most HTS 
above Tc is rather like that of graphite: Pab I'V 100 IL{}.cm (= 10-6{}.m) and increases 
roughly linearly with T, while Pc is orders of magnitude larger and is semiconductor­
like. 

The crystal structures of the HTS are related to the perovskite (CaTi03) structure, 
shown in Fig. 5.30. The larger metallic ion A sits at a cube center, the smaller metallic 
ion B (Cu in most HTS) is at a cube comer, and the non-metallic anions (oxygen 
in the HTS) are at mid-edge sites. As discussed in more detail below for YBCO, 
the HTS structure is generally distorted to tetragonal or orthorhombic symmetry, 
with layers of CU02 normal to the principal axis performing a vital function in the 
superconductivity. When samples are twinned with a common c-axis, aa and ab 
cannot be measured separately but only an average denoted by aab. 

The following sections present data for selected HTS showing how well (or 
badly) Cp and a fit the Debye-Griineisen models, and also discuss the anisotropy in 
expansion; both these properties are important in cryogenic applications. The exaCt 
form of the anomalies near to Tc depend critically on the doping or oxygen content 
and are offundamental interest. The relative magnitudes of the 'discontinuities' in C 
and a at Tc are also useful as a means of calculating the pressure and uniaxial strain 
dependences of Tc via the Ehrenfest relations. 

The thermal properties of HTS have been the subject of a number of reviews, 
including (in chronological order) [Fisc88, Fish88, Jun90a, Phi92, Jun96] for heat 
capacity and [Gme89, Whi93a] for thermal expansion. Reviews of high pressure 
studies by Schilling and Klotz [Sch92] and of ultrasonic data by Dominec [Dom93] 
are sources for compressibility (and bulk modulus) data. However, the ultrasonic 
data include many measurements on polycrystalline samples of relatively low density 
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which lead to values of X (and B) which are at variance both with each other and 
with values from pressure measurements and single crystal data. It appears that the 
shape of the voids in the porous samples makes it impossible to apply realistic density 
corrections, and therefore may lead to low values of B. Table 5.12 gives some physical 
parameters for selected HTS, including: approximate molecular weight (M.W.); 
'best' estimates of Tc, 0 0 ahd 'linear' term in Cp ([(0)) for optimal stoichiometry; 
normal-state r n (observed above Tc); linear expansion coefficient, a~93' measured 
on a polycrystal without preferred orientation; and the volumetric Griineisen gamma 
at room temperature, 1'293. These data are based on information in the review 
articles [Fisc88, Fish88, Jun90a, Phi92, Whi93a, Jun96, For97]; also see [Lor94] and 
expansion data of Meingast and collaborators [Mei91, Mei93, Mei96, Gug94, Pas98]. 
Abbreviations for HTS in Table 5.12 are as follows: 

• Y123 for YBa2Cu306+s or YBa2CU307-1l 

• Y124 for YBa2Cu40g 

• Bi2212 for BizSr2CaCU20g 

• Bi2223 for BizSr2Ca2Cu301O or (Bi,Pb)zSr2Ca2Cu301O 

• TB2212 for TlzBa2CaCU20g 

• BKB for (Bao.6Ko.4)Bi03. 

Perovskites. The perovskite structure plays an important role in the HTS. The 
forerunner of the ceramic HTS was SrTi03, which was found (in the early 1970s 
[For97]) to exhibit superconductivity below 1 K if oxygen deficient. Minerals of the 
perovskite structure are also of great interest to the geophysicist because of their role 
in the earth's mantle. The elastic and thermal properties have been widely studied 
at high temperatures and pressures (see, for example, recent monograph by Orson 
Anderson [And95a]). They are of less concern to the low temperature physicist, 
with the exception of the HTS and some perovskites which display soft ferroelectric 
modes below room temperature. Some like SrTi03 remain cubic in structure, while 
others are distorted to tetragonal or orthorhombic symmetry. Fischer et at. [Fisc93] 
give elastic data on polycrystals of the Ca, Sr and Ba titanates. Values of Bs at room 
temperature given below are from [Fisc93] and Webb [Web98]. The a values are 
from [Toun]. We can compare them with values for the HTS in Table 5.12. 

• CaTi03 ... Bs = 172-176GPa(0-rh); a~93 = 11 x 1O-6K- 1; 1'293 = 1.7 

• SrTi03 ... Bs = 172 -185 GPa (cub); a293 = 10.3 x 1O-6K- 1; 1'293 = 1.7 

• BaTi03 ... Bs = 136 GPa (tetr.); a~93 = 6.3 x 1O-6K- 1; 1'293 = 1.0. 
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Table 5.12. Physical parameters for some major members of the HTS 
family. M. W. is approximate molecular weight. (Sources discussed in 

text) 

Property YI23 YI24 Bi2212 Bi2223 1'82212 LSC BKB 

M.W.(approx) 667 746 888 1024 979 398 355 
Tc (K) 92 81 85 107 110 37 31 
8o(K) 430 350 240 285 255 440 330 

±10 ±l0 ±20 ±5 ±5 ±10 ±IO 
nO) ::;4 5 ::; 0.1 ~O <7 <1.5 $0.1 
(mJ/mol·K2) 
rn 18 II II 7-10 1.5 
(mJ/mol·K2) 
!:J.C(Tc)jTc 40-60 12-16 20-25 20-30 ~30 ~8 ~2 

(mJ/mol·K2) 
dTc/dP 0.7 5.5 1.5 1.1 1.2 3 0.7 
(KlGPa) 
106~9/K 11.5 II 12 12-13 12 
106~93/K 18.5 18 18 13 
106~3/K 10 8(ab) 8.s 11 
1061l2931K 10 8(ab) 11 11 
Bs (GPa) 125 120 70 80 120 130 
1'293 1.6 1.6 1.5 1.1 1.6 

Lawless [Law80] has measured Cp on a number of these ferroelectrics from 2 to 
35 K where there are large departures from Debye-like behavior due to the optic or 
ferroelectric modes. Values of e~ are rather uncertain because of these soft modes. 
Their role in producing a very large pressure dependence of the dielectric constant 
and an associated large value of'Y ("-' 100) at low temperatures has been discussed 
by Samara [Sam71]. 

KTa03 is one cubic perovskite for which there are low temperature data on both 
heat capacity and thermal expansion. The Cp measurements extend from 1.5 to about 
30 K and depart considerably from the Debye function based on 601 = 594 K [Whi87]. 
Below 3 K, the difference in Cp from Debye can be represented by an Einstein term 
based on eE ~ 15 K; eE increases to about 20 K near 4 K. Measurements of a from 
2 to 30 K combined with value of Bs = 235 GPa leads to values of Griineisen 'Y of 
about 100 at 3-4 K decreasing to 13 at 30 K and 1.4 at room temperature. If the 
optic-mode contributions are separated from the total measured values, then 'Y lies 
between 100 and 200 at liquid helium temperatures, comparable with the values of 
"-' +400 calculated from dielectric data [Sam73]. 

5.10.2. YBa2Cu306+s 

Y123 is the most studied of the HfS but is not the simplest in terms of structure 
and oxygen content. Relating the structure to the perovskite of Fig. 5.30, the copper 
sites all remain occupied, and every third A site (up the c-axis) is occupied by a Y 
atom and the intervening two A sites by Ba. But some of the oxygen sites are vacant. 
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Consider first YBa2Cu306, which is tetragonal. The sites in the ab planes containing 
Y atoms are all vacant, and so are the sites in ab planes midway between adjacent Ba 
atoms, so that these planes contain only Cu atoms. The other 0 sites are occupied, 
and in particular there are CU02 planes normal to the c axis above and below each Y 
site. Increasing oxygen content starts to fill vacancies in the planes midway between 
the Ba ions, until in YBa2Cu307 half of the mid-edge oxygen sites are filled, thus 
giving CuO planes. In these planes there are quasi I-dimensional CuO chains running 
in the b direction, leaving unoccupied sites along the a direction. The occupied sites 
expand the lattice in the b direction, producing the orthorhombic distortion. Optimal 
oxygen content for superconductivity corresponds to x = 0.92, with Te ~ 93 K. The 
minimum value of x for superconductivity to occur at all is around 0.4, giving 6.4 
oxygens per molecule, (see, for example, the reviews [For97] and [A1l97, Fig. 10.5]). 
There is also oxygen deficiency in the CU02 planes, which are those responsible for 
superconductivity. 

Measurements show that Cp generally follows the same form of departure from 
the Debye model as most other dielectric crystals, except in the regions near Te and 
below 4 K. e C (T) falls from a limiting value of about eo = 430 K to a minimum of 
ca. 350K at T ~ eo/15 and then rises to ca. 500 K at room temperature. Figure 5.31 
from a review by Fisher et al. [Fish88] shows the general form of heat capacity up 
to 100 K, plotted as C /T to illustrate the 'bump' near Tc more clearly; the regions 
below 10 K and near Tc are amplified in insets. 

At temperatures below 4 K, graphs of C /T3 show a marked upturn, which varies 
from sample to sample and has been attributed partly to magnetic impurity effects 
- a Schottky bump due to some Cu2+ ions - and partly to a linear T -term (e.g., 
Fig. 5.31 inset). The question remains whether this 'linear' term (written as f(O)T) 
arises from tunnelling states (as in glasses), normal regions, or unpaired carriers in 
CuO chains and/or whether it is an intrinsic part of the superconducting interaction. 
The lowest value of f(O) ~ 2 mJ·mol-I·K- 1 has been observed for an overdoped 
untwinned single crystal [Fisc88, Fish88, Jun90a, Phi92]. 

It is difficult to determine the normal electronic component of Cp in HTS be­
cause the critical fields are too high to allow destruction of superconductivity at low 
temperatures. However, careful analysis of Cp near Tc has been applied to separate 
Cen from the much larger phonon component: Loram et al. [Lor94] used precise 
differential calorimetry to compare Cp for the same sample (after different oxygen 
doping) with a non-superconducting sample in which 7% of the Cu was replaced 
by Zn, giving a fully oxygenated YBa2(CUo.93ZnO.07 h06.92. They had previously 
established that the phonon and electronic terms for the latter are very similar to those 
of YBa2Cu306.92 material. Their results showed that fn ~ 18 mJ·mol- I·K-2 = 1.4 
mJ·g-aC I·K-2 for optimally doped Y123 on samples with x;::: 0.9 and Te ~ 91 K. 
Values of Cp also showed that a degree of oxygen depletion (provided that x ;::: 0.4) 
had little affect on fn, but that the height of the step at Tc was substantially reduced 
for values of x ~ 0.9 (see Fig. 5.32). At optimal doping the step height !l.C /Te was 
about4mJ.g-ac l ·K-2 or 50 mJ·mol- I ·K-2. 
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Measurements of the shape and size of the anomaly in Cp near Tc in fields up to 
16 T show that Tc is not changed by field but that the height of the peak is reduced; 
also it is reduced much more drastically by a magnetic field parallel to the c axis 
than by a field in the ab plane. Junod [Jun96] has reviewed these studies and their 
implications for various theoretical models. 

The expansion coefficient determined on sintered samples, Qav(T), follows a 
similar curve to Cp with variations of a few percent from sample to sample, reflecting 
differences in oxygen content, microcracks, preferred orientation, etc. There is a 
peak or bump near 90 K of 1-2%, and indications of departures from T3 behavior 
below 4 K as for Cpo Using a value of 125 GPa for Bs leads to 'Y ~ 1.6 from 20 to 
300 K (e.g., [Whi93a, Swe89]). 

Capacitance dilatometry [Mei91] on an untwinned single crystal confirmed earlier 
X-ray evidence that Q c > Q a > 0!lJ (Fig. 5.33). Near Tc there are obvious differences 
in the expansion coefficient along the different crystal axes: there is a positive 'jump' 
(or 'step') in Qa, (so that Q~ < Q;), a negative jump in Qb (as in Cp), and no obvious 
change in O!c. From these jumps the Ehrenfest relations lead to values for dTc / dP a,b,c 
of -1.9 K-GPa-1 (a-axis), +2.2 K-GPa- 1 (b-axis), and 0 (c-axis). Adding these gives 
a net positive sum for the hydrostatic presscre derivative of (0.3 ±0.4) K-GPa-1• A 
value of about 0.7 K·GPa-1 is obtained from polycrystals and from direct pressure 
measurements [Sch92, Whi93a] and leads to din Tc / d In V ~ 1.1. 

Further measurements were made on a larger single crystal with near-optimal 
doping by Pasler et al. [pas98] to investigate evidence for critical fluctuations near 
Te. They show very clearly the difference between O!a and Qb near Tc with a large 
positive 'spike' in Qb - O!a = !l.Qb-a of height 2 to 3 X 10-6 K- 1; this 'spike' is 
centered near 91.5 K and leads to values for critical exponents. 

5.10.3. YBazC .... Os 

Y124 has attracted less attention than Y123 because Tc (~ 81 K) is lower and 
close to the boiling point of nitrogen. However it has potential interest in that it 
does not adopt the possible tetragonal structure but retains orthorhombic symmetry, 
the oxygen content is more stable, and there is less twinning and microcracking. 
Structurally the difference from Y123 is that Y124 has a double layerofCuO chains, 
still running in the b direction. Calcium can be added to raise Tc to about 90 K. 

Cp per gram atom above 20 K differs by less than 2% from that of Y123, but 
the step at Tc is much smaller [Jun90b]: !l.C /Tc is 12 to 16 mJ·mol- 1·K-2 or about 
1 mJ·g-ac 1·K-2 • f)c increases with temperature from the minimum value of about 
350 K (near 20 K) to about 550 K at room temperature. 

Expansion measurements on a single crystal give values of Q293 in units of 
1O-6K-1 of about 18 for O!c and 8 for O!a and Qb [Mei93]. Below Te, Qb < O!a. 
At Te the jumps in ab and in Q c are very small, but that in Q a is relatively large: 
!l.aa = Q~ - Q; = (0.45 ± 0.05) x 10-6 K-l - or about 5%. This leads to a value 
of the uniaxial pressure dependence of dTc/dPa ;::: 4 K-GPa- 1, and a similarly large 
value for the hydrostatic pressure dependence. 
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Fig. 5.33. Principal expansivities for Y123. showing ",(T) in the upper figure and an expanded view of 
change in '" near Tc in lower figure [Mei91]. 
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5.10.4. BhSr2CaCu20S 

Cp measurements on Bi2212 below 4 K are affected by the presence of magnetic 
phase material as they are for Y123 and Y124. However, the coefficient of the linear 
term in T, f(O), appears to be less than 0.1 mJ·mol- I·K-2• and is possibly zero in 
the best single crystals. 85 at the lowest temperatures is in the range 220 to 260 K 
and increases to about 450 K at 100 K and 550 K at 200 K (see review [Jun96]). At 
Tc (~ 85 K) there is no sharp step in Cp as in Y123, but a symmetrical logarithmic 
'cusp'; this decreases when a field is applied parallel to the c-axis, but is not affected 
by fields (up to 10 n normal to the c-axis. 

Meingast et al. [Mei96) measured the principal expansion coefficients between 
10 and 300 K on a single crystal 9 x 5 x 1 mm3 with Tc = 88.5 K. Values of a~9~ c 
are in Table 5.12. Near to Te, they observed a positive cusp or 'spike' in £la and'a:b 

of'" 0.5 x 10-6 above the background and a negative spike in ac. The Ehrenfest 
relation leads to the following values of the uniaxial pressure dependence (in KlGPa): 

dTe 
dPa = 1.6, dTc = -29 

dPc . 

The resulting hydrostatic pressure dependence is dTc/dP ~ 0.8 K·GPa-1 which 
compares with values of 1 to 1.5 K-GPa- 1 from direct pressure measurements. 

Kierspel et al. [Kie96) measured the cusps in both Cp and £lab near Tc on an un­
twinned single crystal, finding them to have similar shapes but differing magnitudes: 
1.8 J·mol-I·K- I or 1.3% for !!.Cp and 0.16 x 1O-6K- I or 4% for !!.a, leading to a 
value for dTc/dPab of 0.9 K-GPa- l . 

5.10.5. (Bi,PbhSr2Ca2Cu301O 

The pure Bi2223 phase is usually achieved by addition of some Pb and has 
Tc ~ 107 K. Data for Cp indicate that f(O) is close to zero and that eo is in the range 
280 to 290 K, with evidence of dispersion and optic modes affecting eC above 4 K. 
The bump in Cp near Tc is rather symmetrical like that in 2212, and !!.Cp/Tc ~ 16 
mJ·mol- I·K-2 [Phi92, Jun96). The coefficient a for polycrystals is similar to that of 
2212 near room temperature but appears to be smaller at low temperatures, reflecting 
a higher value of 8 c . 

5.10.6. TlzBa2CaCu20s 

Thermal data are scarce for the thallium family, whether 2201 (Tc = 85 K), 2212 
(Tc = 110 K) or 2223 (Tc = 125 K). Cp data for TB2212 indicates eo ~ 250 K 
with a linear coefficient f(0) less than 7 mJ·mol- I·K-2 • The bump centered on Te 
is symmetrical and rounded, leading to a value of !!.C /Tc = 35 ± 10 mJ ·mol- I. K-2 
[Jun90a). A sharper symmetric bump has been observed for a 2201 ceramic, centered 
at 85 K and with a height of!!.C /Tc = 10 mJ·mol- I·K-2 [Jun96). There are no data 
for !!.a, but there are direct pressure measurements giving dTc/dP = 1.2 K·GPa- l . 
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Measurements of Cp and a below 20 K on a polycrystal show a similar pattern 
(Fig. 5.34 and [Co187c]), with a linear teon dominating below 5 K and a T3 teon 
giving 0 0 ~ 440 K. 0 c falls to a minimum of about 320 K near 25 K (rv 00/15) 
and then increases to about 500 K at room temperature. Near 35 K, there are small 
'discontinuities' in Cp and a of rv 2%. Because the transition is in a temperature 
region where the lattice energy and therefore Cp and a are changing rapidly, the 
shape of the anomaly is not easily distinguished unless data are plotted as C /T2 and 
a/T2 (or IlI/T3 ) [Jun90a]. 

Later measurements of aa,b,c were made from 5 to 300 K on an untwinned single 
crystal, doped at Sr levels of x = 0.10,0.15,0.20 [Gug94]. For the optimally doped 
sample near Tc = 36 K, there were positive jumps in aa and ab respectively of 0.32 ± 
0.05 and 0.63 ±0.05 x 10-6 K-1 and in ac a (negative) jump of -0.87 ±0.1 x 10-6 

K- 1. 

This leads to the following values of the uniaxial pressure dependence (in KlGPa): 

dTc =2.5 
dPa ' 

dTc =4.9, 
dPb 

dTc = -6.8 
dPc 

The sum of these, the hydrostatic derivative, is zero within rather large limits of 
experimental error. Direct pressure measurements of dTc / dP on polycrystalline 
samples give values in the range 2 to 3 K-GPa- 1 [Sch92]. Using a value of 120 GPa 
for Bs gives '}'2.93 = 1.6. 

S.10.S. (Ba(l.6Ku)Bi03 

BKB is of interest because it is a ceramic HfS which is copper-free, i.e., a 
cubic perovskite without the CuO planes of the cuprate HfS. The low temperature 
measurements of Cp show that any linear teon must be ~ 0.1 mJ·mol-1·K- 1• 0 c 

falls from eo ~ 320-340 K to a minimum near 25 K and then increases to about 380 
Kat 90 K. The step IlC/Tc at Tc = 31 K was observed to be about 2 mJ·mol- 1·K-2 
[Jun90a]. Lacking data for the thermal expansion at the transition, Table 5.12 lists a 
value dTc/dP = 0.7 K-GPa-1 based on pressure measurements [Sch92]. 

S.10.9. Fullerenes 

The fullerenes are members of the carbon family, each looking like a 'soccer ball' 
made from folding up a graphite sheet. They are closed cage polyhedral molecules 
of carbon atoms, the most common being C60 (see review [Dre94]). When doped 
with alkali metals to foon M3C60 (M=K, Cs, Rb, Na) they show superconductivity at 
temperatures up to 33 K (RbCs2C60). Most of these compounds have a fcc structure, 
that is the C60 soccer balls foon an fcc lattice with the alkali metal ions taking up 
octahedral or tetrahedral sites in the cube. 
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Thermal data are limited. The Cp values for K3C60 [Ram92] at low temperatures 
fit a Debye term (using 00 = 70 K, estimated from the bulk modulus) plus linear and 
Einstein terms. The step in /l.C IT at Tc ~19 K is ~ 30 mJ·mol- 1·K-2• Measurements 
of Cp on C60 from 1 to 20 K give values similar to K3C60 except for the absence of 
a linear term [Bey92]. 

Burkhardt and Meingast [Bur96] measured the expansion of K3C60 and Rb3C60, 
finding small positive steps about 3% high at respective temperatures of 19 and 29 K 
(Fig. 5.35). The steps in a and Cp at Tc lead via the Ehrenfest relations to negative 
values of dTc/dP of between -8 and -10 KGPa- 1, consistent with results of direct 
pressure measurements. Room temperature values of a were about 28 x 10-6K- i 

for each compound, about twice that for C60. 

5.11. NON-METALLIC MAGNETIC CRYSTALS 

5.11.1. Introduction 

Magnetic moments, electronic or nuclear in origin, contribute additively to the 
free energy and a component Sm to the entropy. These result in contributions Cm and 
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~m to the heat capacity and thermal expansion coefficient: 

em = (aSm/alnT)v 

~m = xr(asm/aV)r 

They are linked by a Griineisen function 
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(S.2) 

(S.3) 

(S.4) 

If Sm can be expressed as a function of (Em/T) where Em is a magnetic interaction 
energy depending only on volume, then there is a single Griineisen parameter [see 
Eq. (2.42)]: 

'Ym = -(dlnEm/dlnV) (S.5) 

If we further assume that Em alone determines the magnetic ordering temperature, 
T m, it follows that 

'Ym = -(dlnTm/dln V) (S.6) 

To a first approximation these assumptions are usually valid, and so we can get a 
reliable estimate of the volume or pressure dependence of T m from the magnetic 
contribution to thermal expansion. Independently of models, thermodynamically for 
first order transitions we have the Clapeyron equation Eq. (2.26) 

dTm/dP =!\V /£\S (S.7) 

and for second order transitions, the Ehrenfest relation Eqs. (2.28) 
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In insulators we are largely concerned with local magnetic moments, generally 
arising in d- or f-electron shells. Nuclear moments are orders of magnitude smaller, 
and so their effect on C or f3 is usually apparent only at very low temperatures (mK to 
JLK region) in high magnetic fields. Exceptions are some rare earth salts where large 
internal fields from the electron shells can split the nuclear energy levels sufficiently 
to be comparable with kT at liquid helium temperatures. 

We distinguish between cooperative and non-cooperative ordering (Section 2.5) 
among magnetic spins. Cooperative ordering, whether first order (showing a discon­
tinuity in S at Tm) or second order (showing a discontinuity in the derivative (dS/dT) 
at Tm) occurs via direct or indirect exchange interactions, and is characterized by a 
well defined 'cusp' (logarithmic singularity) or A-shaped peak in C and in f3 (e.g., 
Fig. 2.5). In contrast, the non-cooperative ordering of Schottky is characterized 
by broad 'bumps,' with an exponential shape as T -+ 0 and a I/T2 tail above the 
maximum (e.g., Fig. 2.2). Such transitions occur for example in diluted electron para­
magnets (e.g., the cooling salt ferric ammonium alum - FeN14(S04h . 12H20), 
nuclear paramagnets, 'dilute' magnetic impurity systems (e.g., ZnS with low levels 
of Fe impurity), and in linear chain systems (e.g., CsNiCiJ, centered around 30 K). 

Those systems which order cooperatively do so with the spins either parallel 
(ferromagnetic ... F and ferrimagnetic) or antiparallel (antiferromagnetic ... AF). 
At T = 0 all spins are aligned, but at finite temperatures spins are excited with spin 
wave spectra described respectively by w ex q2 (F) and w ex q (AF), which should give 
rise to T 3/2 (F) or T3 (AF) contributions to C and f3 at low temperatures. In the AF 
case there can be an energy gap in the spin wave spectrum which causes a departure 
from T3 as T -+ O. Some examples of these effects are given below. 

We do not give details of the phase transitions in this monograph. A recent book 
by Cyril Domb entitled The Critical Point [Dom96] includes a fascinating historical 
introduction to modern theory of critical phenomena and refers to volumes 1-6 of 
Phase Transitions and Critical Phenomena (eds. Domb and Green, 1972-1976) and 
later volumes 7-16 of Phase Transitions and Critical Behavior (eds. Domb and 
Leibowitz, 1983-1994) published by Academic Press. We shall refer below to the 
review of experimental data on 'simple magnetic model systems' by de longh and 
Miedema [deJ74]. General treatments of the heat capacity of magnetic systems are 
given in the monograph by Gopal ([Gop66, Ch. 4]) and the chapter by Miiller ([Mii88, 
Section 1.4]). 

5.11.2. Ferromagnets 

EuO and EuS. Examples of ferromagnetic crystals which have cubic symmetry 
are EuO and EuS (rocksalt structure), with Curie temperatures of 69.2 and 16.4 K 
respectively. They have attracted experiments on their thermal properties because 
of the simple structure and approximation to a cubic Heisenberg ferromagnet (e.g., 
[deJ74, p. 198]). The linear expansivity a of EuO is shown in Fig. 5.36 [Arg67]; 
the variation of Cp with T is qualitatively similar. The magnetic components are 
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Fig. 5.36. The measured a(T) for EuO, compared with the estimated lattice component (_. -) and a for 
Cu [Arg67]. 

extracted by estimating the lattice background using a value of eD detennined well 
above Te , e.g., above 150 K for EuO. The magnetic component am varies linearly 
with Cm over the temperature ranges 25 to 64 K and 74 to 140 K, that is excluding the 
region near Tc where C and a change rapidly and are difficult to measure accurately. 
The ratio am/Cm ~constant, giving 'Ym ~ 5.3, compared with 'Yvib ~ 1.9 (measured 
at temperatures well above Tc). 

Magnetite. The low temperature behavior of Cp for a ferromagnet well below Tc 
is exemplified by magnetite, Fe304. Figure 5.37 shows that Cp = AT3/2 + BT3 in 
the region 1.5 to 4 K. Another good example of the T 3/ 2 dependence of Cm is from 
data on yttrium iron gamets, see [Gop66, p. 91]. 

We are not aware of measurements which show a T3/ 2 term in the expansivity at 
low temperatures. The probable magnitude of a T 3/ 2 spin wave term in a for EuO 
was estimated [Lor67] by assuming that 'Ym '" 5. The conclusion was that such a 
term would cause a length change in a 10 mm long rod of about 40 A (4nm) between 
1 and 4 K. This should be observable by capacitance dilatometry. 

5.11.3. Antiferromagnets 

Uranium dioxide. U02 has a first order transition to antiferromagnetism at 30.4 
K. It crystallizes in the fluorite structure and appears to remain cubic in the AF 
ordered state. There is a convenient non-magnetic isomorph, Th~, of similar 
density, molar volume and Debye temperature (see Table 5.5) from which a reliable 
estimate can be made of the lattice components for U02 in the AF region. Data for 
the elastic moduli of U~ give ecl ~ 380 K. Using measurements of Cp [Huo71] 
and a [Whi74, Bar80], we can calculate the magnetic contributions, leading to 'Ym ~ 
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4-5 below 35 K. while '}'293 = 2.2. Fig. 5.38 shows a(T) for a single crystal ofU02 
and a series of U02ffh02 mixtures (cold-pressed and sintered ceramics). For the 
100% and 90% U02 samples the transition is in fact first order, and a distinct jump 
in length Al is observed at TN; but the cusp is broadened for the other samples, due 
perhaps to non-random distribution ofU ions [Whi74]. 

Below 15 or 20 K, Cp and a both appear to vary more rapidly than T3 - as about 
T 3.5 for the expansivity. The magnitude of Cp in this range is a factor of about two 
larger than for Th02, while the factor is about ten for a. reflecting a more significant 
magnetic contribution. 

MnF2. Another AF crystal which has been well studied is MnF2, with TN = 67 
K. see [deJ74. p. 154]. It has the tetragonal rutile structure, and a is anisotropic: ac 
has a large sharp (positive) cusp at the Neel Point, while aa is small and negative 
below 150 K with a less obvious anomaly at TN [Gib59]. Many hydrated chlorides of 
Co, Ni. Mn have also been measured with values of TN between 1 and 6 K. Cp shows 
logarithmic singularities similar in form for each, but the observed ai are anisotropic 
and complex due to the low symmetry of the crystals [Bar80. deJ74]. 

5.11.4. Schottky Anomalies 

Examples of Schottky anomalies include the hydrated paramagnetic salts used for 
magnetic cooling. In these salts. spins are associated with Ni. Fe. Cr, Mn. etc., and are 
diluted with nonmagnetic ions and water of crystallization. They have energy level 
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splittings of "" 1 K, largely from Stark splitting. With application of a magnetic field 
of a Tesla or less, the splitting is increased sufficiently so that at temperatures of'" 1 K 
enough spins are aligned to reduce the magnetic entropy substantially: examples are 
potassium chrome alum, ferric ammonium alum, manganous ammonium sulphate, 
gadolinium sulphate, cerous magnesium nitrate. 

The theoretical form of Schottky bumps in Cp (e.g., Fig. 1.5) was discussed in 
Ch.2. Characteristic is the 1/T2 'tail' above the maximum. Most of the hydrated 
cooling salts mentioned above are anisotropic and of low symmetry, and they have 
not attracted expansion measurements. 

In these salts the interaction between the diluted spins is very weak, but it does 
produce a cooperative ordering peak in Cp at sufficiently low temperature ("" 0.1 K 
for many of them and"" mK for hydrated cerous magnesium nitrate). 

Figure 5.39 shows magnetic components for both C and ex of a cubic (rocksalt) 
structure compound, TmSb, one of a series of rare-earth antimonides measured by 
Ott and Luthi [Ott77] giving values of 'Ym (Schottky) ranging from -0.5 to -4. The 
rare earth ions have a 4f ground state which is partially split by the crystal electric 
field; the observed negative values for 'Y show that this is not adequately represented 
by a point charge model, which would predict 'Y ~ 5/3, see [Bar80, Section 9.3]. 

Magnetic impurities. Small concentrations of magnetic impurity ions such as Fe 
or Cr in a host lattice can produce localized energy levels resulting in Schottky peaks 
at low temperatures in the heat capacity and in the expansion coefficient. For two­
level defects of splitting energy Em, the contribution to f3 is proportional to 'Ym Cm, 
where em is the Schottky heat capacity of the impurities and 'Ym = - (d InEm/ d In V) 
is the Griineisen parameter. The combination of measurements of C and f3 can be 
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a useful supplement to spectroscopy in detennining the nature of the splitting, for 
example whether it arises from Jahn-Teller effect or from spin~rbit coupling. 

An example is the effect of Fe2+ ions in a cubic crystal, ZnS. Measurements of 
Cp and a on crystals containing 0.1 and 1% Fe give bumps which are centered near 
10 K and are roughly similar in shape to those shown in Fig. 5.39, the component am 
being negative. Values of"Ym for the more dilute sample are distributed around the 
value of -5/3 predicted by the point-ion model for second-order spin~rbit coupling, 
see [She72] and [BarSO, pp. 706-70S]. 

Linear-chain antiferromagnets. Examples of quasi one-dimensional antiferro­
magnets are the hexagonal ABX3 crystals such as CsNiClJ. For the latter the Ni 
atoms form chains parallel to the c-axis, characterized by an intrachain exchange 
parameter J which is stronger than the interchain parameter J' by a factor of 100. 
Short range AF order develops within the chains in the vicinity of 30 K, with the 
result that the acoustic attenuation, magnetic susceptibility and magnetic components 
of Cp and 13 show broad maxima centered around 30 K. At much lower temperatures 
( '" 5 K) the thermal energy becomes comparable with the smaller interchain coupling 
and three-dimensional order develops, shown by sharp cusps in both Cp and 13 at 
4.S5 K. 

The individual linear expansion coefficients are highly anisotropic: at TN = 4.S5 
K, all has a sharp positive cusp while al. shows no anomaly. In CsNiCl3 there is also 
a spin reorientation at TR = 4.4 K, where Cp, 13 and al. show strong positive cusps 
and all a small minimum [RaySl, CoIS7d]. The elastic stiffness C33, measured by 
the longitudinal wave velocity along the c-axis chains, reflects similar anomalies -
a fall around 30 K, a smaller drop near TN, and a sharp minimum at TR = 4.4 K. 

The volume coefficient I3(T) of CsNiCl3 (Fig. 5.40) has a similar form to Cp (T) 
and leads to values of"Ym ~ S [RaySl]. 

Cp has also been measured for RbNiClJ (TN = 11.0 K) and CsCuCh (l0.4 
K) [CoIS7d] and the Neel temperatures then related to the relative strengths of the 
intrachain exchange parameter J, and the interchain exchange J'. Using Cp data for 
the non-magnetic 'isomorph' CsMgC13, the lattice contributions can be estimated 
and subtracted from the total to give the T3 antiferromagnetic contributions to heat 
capacity at low temperatures. 

5.12. MIXED SYSTEMS, DIPOLES ETC. 

5.12.1. Introduction 

How do we expect the heat capacity of a polycrystalline mix of say KCI and 
NaCI to relate to that of their constituents? Does Cp (or 13) vary linearly with 
concentration? The lattice dynamics will certainly be affected by the changes in 
atomic masses, the binding energy and the molar volume, with consequent changes 
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in eo and e£. Changes in the expansion coefficient will also reflect changes in the 
anhannonicity of the interatomic potential. 

Data on homogeneous mixed systems are limited compared with data on compos­
ites or aggregates. Low temperature interest has been largely confined to the effect 
of impurities at liquid helium temperatures, where magnetic ions or electric dipoles 
may have considerable effect on Cp and {:J because of the small lattice background 
at these temperatures. These impurities include well separated Fe and Cr ions in 
alumina (sapphire) and Fe in ZnS (discussed under Schottky anomalies in Section 
5.11.4 above); also electric dipoles resulting from hydroxyl ions (OH-) and Li+ ions 
in alkali halides. 

5.12.2. Polycrystalline Mixtures 

There do not appear to be systematic studies of the heat capacity of mixed 
polycrystals to see whether averages based on molar fraction give a good guide to 
the values of, say, a 30nO or 50/50 mix of two compounds. Nor are there many 
data for their expansion coefficients. Figure 5.41 shows the variation of a near room 
temperature for a series of sintered compacts of U02 and Th~ (see also Section 
5.11.3), the components being each cubic, of similar molecular weight and miscible. 
Not surprisingly a varies roughly linearly with concentration. It is less clear why the 
end values for the sinters are significantly smaller than the single crystal values: the 
samples were made by coprecipitation, powdering, cold pressing and sintering with 
final densities varying from about 75 to 95% of theoretical [Whi74]. 

The thermal expansion of an equimolar mixture of Ca and Ba fluorides, measured 
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Fig. 5.41. Upper curve shows average a measured between 0 and 20· C for mixtures of UOz and ThOz 
[Whi74]. 

from 80 to 300 K, gave values which are a few percent higher than either of the 
components [Bar80, p. 662]. 

A rather different system referred to in Section 5.7.2 are the sodium silicate glasses 
for which there are some data on both Cp and cx. These data cover concentrations up to 
40 mol% Na20 in Si02, chiefly at low temperatures (below 30 K) but including some 
at liquid nitrogen temperatures and room temperatures (Fig. 5.42 [Bar80, Whi77]). 
The heat capacity of a number of alkali silicate glasses has been measured, including 
Si02 . xNa20 (x = 0.14,0.2,0.3,0.4) from 2-95 K [Kru72] and mixed Cs-K, Cs-Na, 
K-Na silicates from 77-300 K [Hir70]. The differences in Cp at 300 K are a few 
percent, generally reflecting an increase with addition of alkali and with increase 
in atomic mass of the alkali. Differences are larger at 100 K and are qualitatively 
consistent with change in Debye e. In the mixed alkalis the changes are not linear 
in concentration. The structure and lattice dynamics of these glassy silicates do not 
lead to any useful conclusions about simpler mixed polycrystals. 

5.12.3. Substitutional Impurities - Heavy Ions 

When a low concentration of foreign atoms is introduced into a crystal lattice, 
there are three factors affecting the lattice dynamics: 

1. The mass difference, I!:.M / M ; 
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Fig. 5.42. Sodium silicate glass. Upper three curves show variation of a with composition x mol% soda 
at 283 K, 85 K and 30 K; dashed curve shows values of alT3 as T -+ 0 [Whi77]. 

2. The coupling constant K determining whether binding is weak or strong; 

3. Change in the anharmonicity of the potential. M/A. which affects ex rather 
than Cpo 

Timmesfeld and Elliott [Tim70] analyzed the likely effect of adding a heavy ion 
to an alkali halide. They concluded that if loosely bound. the heavy ion would have a 
resonant frequency in the lower end of the spectrum and therefore produce observable 
changes in Cp and {3 at low temperatures. The change in {3 could be negative or 
positive depending on M/A. If the impurity was tightly coupled the change in the 
phonon spectrum would be less localized and less obvious. 

The difference is born out by observations below 30 K on two samples of NaCI 
doped respectively with 1 % Ag and 1 % Rb. Each of these has a large mass difference 
from Na but only the Ag produced a significant (localized) 'bump' in Cp (Figure 
5.43) and in ex (some values in Table 5.13). Both Cp and ex showed a maximum 
increase of about 10% for the Ag additive over the range 10 to 15 K. 
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Fig. 5.43. Plot of Cp/T3 versus T for pure NaCl (0) and NaCl containing 1% Ag (0) or 1% Rb (+) 
[CoI84bj. 

Table 5.13. Values of linear coefficient a in units of 10-8 K-1 for 
pure NaCl, NaCI + 1 % Rb and NaCl+1 % Ag [Col84b] 

T(K) NaO +1%Rb +1%Ag T(K) NaO +1%Rb +1%Ag 

4 0.37 0.35 0.39 20 61.2 61.3 65.9 
±0.01 24 115.4 116.1 121.9 

5 0.72 0.71 0.82 28 184.9 195.3 202.7 
6 1.24 1.24 1.32 32 299 299.5 307.5 
8 3.05 3.07 3.27 35 392 392 401 
10 6.02 6.14 6.64 40 571 571 579 
12 10.8 10.9 11.95 65 1555 1570 1560 
14 18.0 18.1 20.0 75 1890 1880 1895 
16 28.1 28.35 30.95 85 2180 2200 2210 
18 42.4 42.5 46.1 285 3910 3910 3910 

±5 
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5.12.4. Impurity Dipoles - Thnnelling Effects 

Another class of substitutional impurities which have been studied with an alkali 
halide as host are those which form an electric dipole which has a number of equivalent 
orientations along symmetry directions in the crystal. The orientations are separated 
by potential barriers through which quantum tunnelling may occur, with energy 
splitting corresponding to temperatures of the order of 1 K. One such dipole is OH- , 
often present as an unwanted impurity in alkali halides. Others are the cyanide ion, 
CN-, with the added complication of rotational and librational states; and Li+, a 
small ion which sits off center from its substitutional site and forms a dipole which 
can tunnel between 8 equivalent directions. 

For an isolated impurity there are a small number of energy levels giving rise to a 
Schottky contribution to the thermodynamic properties. The spacing between these 
levels decreases as the height of the potential barriers increase, so that the Griineisen 
parameter and consequent contribution to the thermal expansion will be negative or 
positive depending upon whether the barriers are enhanced or reduced by pressure. 
However, even for low impurity concentrations electric dipole~ipole interactions can 
be expected to broaden the distribution of Schottky levels. Increasing concentrations 
of impurities in random sites gives rise to the formation of an 'orientational glass,' 
with an apparent linear T region in Cv and a. 

Much early work on these tunnelling states was done at Cornell University, 
involving spectroscopic, thermal conductivity and heat capacity measurements. This 
arose from their interest in thermal properties of alkali halides, and was reviewed by 
Narayanamurti and Pohl [Nar70]. Where tunnelling states are involved, the barrier 
height is expected to be very sensitive to changes in strain or volume and therefore 
to make a much larger contribution to the thermal expansion than to Cpo 

NaCl + OH-. When the thermal expansion of pure NaCI and NaCI crystals doped 
with 6 and 80 ppm of hydroxyl ion were compared at temperatures from about 2 to 30 
K, the increase in a below 15 K was very obvious: there was IjT2 tail, characteristic 
of a Schottky anomaly around 10 K. The Griineisen parameter associated with the 
anomaly was large and positive - l' ~ 40, see [Cas72] and [Bar80, p. 706] -
indicating that pressure reduces the barriers between orientations. 

KCl + Li+. Similar measurements on a for KCI containing about 100 ppm of 
Li+ between 1.3 and 30 K showed the 'tail' of a Schottky bump, expressible as 
a ~ 5 x 1O-8T- 2 K- 1 below 5 K [Cas72]. Thus again pressure reduces the barriers, 
presumably because it reduces the distances between the off-center Li sites. Later 
measurements of Cp and a extended down to 0.1 K, showing the fuller extent of the 
Schottky bump (see Fig. 5.44), which was broadened and had a value of I'sch ~ 160 
[Dob86a, CoI87a]. Using a simplified model but taking account of dipole~ipole 
interaction, M. W. Klein has derived a(T) and CdT) for a very low concentration of 
8-oriented (111) tunnelling dipoles dissolved in alkali halides, obtaining qualitative 
agreement with the experiments on KCI+Li [Kle87]. 
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CN- ions. The rod-shaped CN molecule has been studied in a number of alkali 
halide host lattices. In some hosts such as NaCI, the low temperature properties show 
complex ageing effects which are not easily interpreted. A clearer picture emerges 
from the measurements on KBr:CN. At low enough concentrations the isolated CN 
ions occupy (111) localized orientational tunnelling sites. Dobbs et ai. [Dob86b] 
measured a sample with a 0.03% concentration of CN from 0.08 to 10 K, finding 
a rather broadened Schottky bump in Cp centered around 0.5 K, with a becoming 
negative below 0.5 K: the Griineisen parameter for the tunnelling states, 'YeN, reached 
nearly - 300 at 0.1 K, indicating strong enhancement of the barriers under pressure. 

With higher concentrations, the CN ions 'freeze into an orientational glass' and 
display the T -term (in Cp) and T2-term in heat conductivity characteristic of amor­
phous solids. CN levels up to 60 mol% have been measured [Wat89, Dob86b]. 
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Chapter 6 

Metals 

6.1. INTRODUCTION 

6.1.1. The Separation of Electronic and Vibrational Effects 

Chapter 5 was concerned with non-metallic solids for which the bonding forces 
are predominantly ionic, covalent or Van der Waals. For them the thermal energy 
responsible for the specific heat and expansion derives from the collective modes 
of vibration (and rotation and libration) of the atoms. There are also magnetic 
exchange interactions in many crystals containing Ni, Cr, Fe, Mn or rare earth ions, 
and tunnelling levels in some imperfect crystals and glasses. 

The electronic structure of metals is characterized by the presence of mobile 
'conduction' electrons, which in general are distributed throughout the volume of the 
metal rather than being concentrated near ion cores or in directional bonds between 
atoms; they then act as a jelly or glue to bind the ions together. This kind of 
bonding usually results in a more closely packed type of structure than that in most 
insulating crystals. The usual structures found in pure metals are close-packed (cubic 
or hexagonal, each having 12 nearest neighbors) or body-centered cubic (8 nearest 
neighbors). The structures of alloys can also often be understood in terms of packing, 
but may then depend upon the relative ion sizes. 

The conduction electrons play a major rOle in determining the binding energy, 
and hence also the compressibility and other elastic moduli, as well as the vibrational 
frequencies; but their contributions to these properties are not separable from those 
of the ions, any more than are those of the valence electrons in insulators; they 
are inextricably mixed. However, there is a crucial difference between metals and 
insulators: in metals there is a continuum of electron energy levels extending above 
the ground state. The excitation of these levels as the temperature increases gives 
rise to specifically electronic contributions to the entropy, heat capacity and thermal 
expansion coefficients. We have seen in Ch. 1 that these are easily distinguished 
from the vibrational contributions, at least at low enough temperatures, by their 
linear dependence on T, and that a most convenient separation is achieved by simply 
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plotting data points obtained below T '" 0 D /25 as CIT versus T2 or OtIT versus 
T2 (e.g., Figs. 1.6 and 1.7). The intercept at T = 0 then gives the coefficient of the 
electronic term and the initial slope gives the coefficient of the T3 vibrational term. 
Computer fitting may achieve the same result, but can be misleading unless it is done 
with awareness and careful assessment and weighting of the data. As with insulators, 
a value for 00 can also be obtained from the averaging of ultrasonic wave velocities 
derived from elastic moduli (see Section 2.9). Denoted by 0gl , it should agree with 
0g obtained from heat capacity data within experimental error (for metallic elements 
see [Phi71, Table 5]). In addition a value of y&l can be calculated from the pressure 
derivatives of the elastic moduli or from third order stiffnesses, for comparison with 
the value of Ybh obtained from the ratio of the T3 terms in Ot and C. 

As discussed in Section 1.3.4, the electronic term in Cv at low temperatures is a 
measure of the density of states at the Fermi surface, n (fFO), while the corresponding 
term in the expansion coefficient gives the volume derivative of this density of states, 
d n ( fFO) I d V. At higher temperatures the separation into lattice and electron terms 
is more difficult and its interpretation less certain, for various reasons. We have 
already seen that Cvib varies with T in a complicated way, mainly because of vagaries 
of the frequency spectrum and also because of increasing anharmonic effects as the 
temperature rises. Another reason is that the electronic component Ce does not 
generally remain linear in T as the temperature increases; even in simple metals 
'phonon enhancement' of Ce due to electron-phonon coupling is reduced from its 
low-temperature value (see Section 6.1.2). 

6.1.2. Description of Electronic Structure of Metals 

In the following sections we present the salient features of the heat capacity 
and thermal expansion, first for cubic metals and alloys, including technical alloys 
used in cryogenic construction, and then for anisotropic metals. We next deal with 
the effect of magnetic spins, which are particularly important in determining the 
thermal expansion of materials such as chromium, manganese and many alloys; and 
we conclude with superconducting metals and heavy electron (fermion) metals. To 
understand qualitatively what is going on in these increasingly complex materials, and 
in particular the nomenclature that is applied to them, we must say a little more about 
the electronic structure of crystals. To go further, readers are referred to Electron 
- a centenary volume [Spr97a], which includes general reviews of many aspects of 
solid state theory, including the 'electron glue; see [Gyo97]. 

Electronic Band Structure. In Section 1.3.4 we introduced the independent 
particle model. Each electron moves in an averaged potential field produced by 
the totality of all the nuclei and electrons. Because electrons are fermions, no two 
electrons can exist in the same single particle quantum state; and at T = 0 the N 
electrons of the system fill up the N single particle states of lowest energy. When the 
highest occupied state falls within a continuum of allowed energies, its energy is the 
Fermi energy fFO. 
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The assumption that each electron moves in the averaged potential field is called 
the Hartree-Fock approximation. When it is applied to individual atoms, the field has 
spherical symmetry; the single particle wave functions are called orbitals, which have 
characteristic symmetries labelled s,p,d,J - for example, s orbitals have spherical 
symmetry. The energies of atomic orbitals are discrete, and successive shells of 
orbitals (called ls,2s,2p, 3s, etc.) are occupied by the available electrons. 

In a crystal the atoms are so close to each other that the outermost atomic orbitals 
would overlap considerably. Under these circumstances they merge to form orbitals 
extending throughout the solid, and the discrete energy levels of the atomic orbitals 
widen into 'bands.' The governing symmetry is now the periodic symmetry of the 
crystal structure, with the consequence that the orbitals take the form of waves. These 
can be labelled by their wave-vectors, denoted by k (in distinction from the phonon 
wave-vectors q). This description of the total electronic wave-function of the crystal 
in terms of bands of single electron states is called the band structure. 

For atoms of large atomic number the overlap of inner shells is negligible, and it 
is only for the outer shells that band-width becomes appreciable. In general, s- and 
p-shells overlap more than d-shells, which themselves overlap more than I -shells. 
Consequently, outer s- and p-bands are broad, d-bands are narrow and I-bands 
narrower still. The bands also may themselves overlap in energy, so that for example 
a narrow d-band with a rapidly varying density of electron states comes in the middle 
of a broad, low density sjp-band. If the Fermi-level falls in this region, the density 
of states n( EFO) and other crystal properties can depend critically on the total number 
of available electrons (Fig. 1.10). 

The Hartree-Fock approximation is drastic, in that it neglects any correlation 
between the motion of different electrons, despite the strong Coulomb interaction 
between them; and at first sight it might seem incredible that it provides a useful 
description of the electronic structure. However, further investigation reveals that 
the effective interaction between two electrons falls rapidly with distance, because 
of screening by the other electrons; and although there still remains appreciable 
correlation, theory has been developed so that band structure calculations can take 
this into account: an effective independent particle picture is retained, but with a 
'renormaiized' band structure. 

Phonon Enhancement of Ceo Correlation also occurs between the motion of the 
electrons and that of the ions (electron-phonon interaction). This normally has a neg­
ligible effect on the vibrational contributions to thermodynamic properties (although 
it may cause subtle changes to phonon dispersion curves), but gives rise to an indirect 
attraction between pairs of electrons which affects the electronic contributions at 
low temperatures - spectacularly so when the attraction is strong enough to cause 
electron pairing and consequent superconductivity (Section 6.5). Even in the normal 
(non-superconducting) state, analysis shows that at low temperatures the attraction 
has a marked effect on the energies of effective single particle states in the immediate 
neighborhood of the Fermi energy, in such a way as to enhance the effective density 
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of states that should be used in Eq. (1.19): 

neff (EFO) = nbs (EFo)(1 +.\) (6.1) 

where the subscript bs refers to the renonnalized electronic band structure. Estimates 
of.\ for different non-transition metals are tabulated in [Phi71 , Table 6] and [Gri81], 
and vary from about 0.10 for Be and 0.15 for Na and K to unity or larger for Pb. 
The electronic heat capacity is proportional to (I + .\ ), and the thennal expansion 
depends on its volume dependence as well as that of nbs ( EFO). At higher temperatures 
(T ~ 0) this enhancement has fallen off, both because only a narrow range of states 
is affected and because the effect on them is itself temperature dependent. 

Magnetic and Other Complex Materials. Band theory has proved very fruit­
ful in the interpretation of metallic properties and their calculation, especially for 
the simpler metals. However, electronic structure becomes increasingly complex 
for heavier metals, especially when d - and / -electrons participate. Some of these 
materials are discussed later in this chapter. 

6.1.3. References for Data 

Much of the data on metals and alloys which we use to illustrate the sections of 
this chapter are from the following compilations: 

• Heat capacity from volume 4 of Thermophysical Properties o/Matter [Tou70a], 
Hultgren et al. [HuI73], Corruccini and Gniewek [Cor60], American Institute 
0/ Physics Handbook [Pur72] and review by Phillips [Phi71]. 

• Thermal expansion data from volume 12 of Thermophysical Properties o/Mat­
ter [Tou75], Corruccini and Gniewek [Cor6l], American Institute 0/ Physics 
Handbook [Kir72], Clark [Cla68], and Barron et al. [Bar80). 

• Elastic Moduli from volumes of wndolt-Bomstein [Hea66, Hea69, Hea79, 
Hea84] and Simmons and Wang [Sim71]. 

• Other more recent sources which are referenced explicitly. 

6.2. CUBIC METALS 

6.2.1. General 

We may get an idea of the variation of behavior of non-magnetic materials from 
Table 6.1, which takes a slice across the Periodic Table listing the cubic metals 
beginning with Rb, Sr and ending with Rh, Pd, Ag. This row includes the 4d 
elements (see Periodic Table) and has been preferred because many of the elements 
in the 3d row are magnetic. Table 6.1 lists their structure (bec or fcc), atomic volume 
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V, adiabatic bulk modulus Bs (293 K), 0~, Cp (293 K), a (293 K), r (electronic 
heat capacity coefficient), and the Griineisen parameters 'Ye, ')t) and ')'293. The first 
obvious difference is the larger molar volume of Rb and Sr compared with the 
transition metals. This is due largely to weaker binding by the electron gas, which is 
also reflected in the low values of bulk modulus and Debye temperature. 

Heat capacity values at room temperature are not too dissimilar because the 
majority of the lattice vibrations are excited at room temperature which for all 
these elements is comparable with or greater than the Debye temperature. At lower 
temperatures Cv (and Cp) decrease with T roughly in accord with the Debye function, 
departures being illustrated in Fig. 6.1 by the variations of 0 c with temperature. The 
shallow minimum in 0 c (T) indicates that in this vicinity Cv is larger than the Debye 
model would predict. Generally the variations in 0 c (T) are smaller for the cubic 
metals than for highly anisotropic metals or for the non-metals of more open structure. 
At very low temperature, the effect of the (T / 0) 3 dependence amplifies the effect of 
differences in 0: for example at 10 K, Cp ~ 7 I·mol-I·K-1 for Rb and 0.2 I·mol- l . 

K- 1 for Nb. Above the Debye temperature Cv usually exceeds the Dulong and Petit 
value, because of electronic contributions and possible anharmonic effects. 

The differences in expansion coefficient at 293 K (Table 6.1) arise from the 
interplay between thermal pressure and bulk modulus (or compressibility): 

13 = 'YXTCV/V = xr(ap/aT)v 

For example, the molar volume ofRb is larger than thatofNb by a factorof5, so that 
the heat capacity per unit volume is about 5 times smaller for R1:ythan for Nb. But this 
difference is far outweighed by the difference in compressibility-Rb being about 70 
times more compliant than Nb. Figure 6.2 shows the temperature variation of a for 
these cubic metals, except that K replaces Rb because data are lacking for Rb below 
room temperature. At lower temperatures the variation of a (or 13) with T is roughly 
similar to that of Cp(T), departing from the Debye function partly due to the nature 
of the frequency spectrum with its transverse and longitudinal branches, but also due 
to variations in 'Y for the different parts of the spectrum. Table 6.1 shows that the 
low temperature average of mode gammas, 'YO, is usually smaller than the average 
at ambient temperature, ')'293. Also at temperatures of 10 K or less, the electronic 
contributions to a (and to Cv) are noticeable (e.g., Figs. 1.6 and 1.7), particularly for 
the transition elements. 

6.2.2. Group lA-Alkali Metals 

For these body-centered cubic metals, Phillips's review [Phi71] gives the follow­
ing values of 0 0, noting that Li and Na can transform martensitically from bec to 
hcp: Li ... 355 K (hcp) and 335 K (bec); Na ... 159 K (hcp) and 153 K (bec); K 
... 91 K; Rb ... 56 K; Cs ... 40 K. The progressive decrease in 00 from Li through 
to Cs reflects a decrease in vibrational frequencies due mainly but not entirely to the 



230 Chapter 6 

Table 6.1. Data for a selection of cubic metals 

Property Rb Sr Nb Mo Rh Pd Ag 

structure bee fcc bee bee fcc fcc fcc 
V 293Cem3/mol) 55.9 33.7 10.8 9.40 8.30 8.87 10.28 
B~93CGPa) 2.3 11.8 168 260 270 189 104 
8oCK) 56 147 277 470 500 274 226 
C~93(J/mol.K) 30.5 26.8 24.6 23.9 24.6 25.8 28.5 
ctCJ/mol.K) 28.0 26.4 24.3 23.7 24.2 25.2 27.4 
a 93(10-61K) 90 22.6 7.1 5.1 8.4 11.7 19.0 
f(mJ/mol.K2) 2.5 3.6 7.8 1.84 4.7 9.4 0.65 
y, -4.4 1.5 l.l 2.8 2.2 l.l 
)\) 0.44 0.9 1.3 1.9 2.2 2.2 
1'l93 1.1 1.1 1.6 1.6 2.3 2.4 2.38 
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Fig. 6.1. Variation of eC with temperature for Rb, Sr, Nb, Mo, Rh, Pd and Ag. 
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increase in atomic mass. Experimental values of Cp (and enthalpy data) at high and 
low temperatures are tabulated in an extensive review [Alc94]. 

Experimental data for thermal expansion at low temperatures are confined to 
potassium. There are equation of state PVT measurements for other members of the 
alkali family which give values of the isothermal bulk modulus BT [And83b, And85]. 
The 'Y values at room temperature lie between 0.9 and 1.2 [Bar80]. 

6.2.3. Group IB-Noble Metals; also AI, Pb 

The fcc metals Cu, Ag, Au and Al have been more thoroughly studied than most, 
particularly Cu as it is both a common cryogenic material and a 'standard' reference 
material. The critical analysis of the C p data by Furukawa [Fur68] and a later review 
[Phi71] both give similar limiting values of 00, viz. 344.5 K for Cu, 226.0 K for 
Ag and 162.3 K for Au. The Furukawa analysis tabulates 'best' values for Cp and 
enthalpy from 0 to 300 K, and a IUPAC pUblication [Mar87a] includes polynomial 
expressions for Cp for Cu from 1 to 300 K. For Al and Pb Phillips gives 00 as 
430 K and 105.0 K respectively. These latter two elements are superconducting 
below 1.1795 K (AI) and 7.1999 K (Pb); this has no measurable effect on the lattice 
component, but gives rise to a A-shaped anomaly in Ce at Teo below which Ces falls 
exponentially (see Section 6.5). 
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The elastic moduli lead to values of Bs at 293 K and at 4 K respectively of 137 
and 142 GPa (Cu), 103.5 and 109 GPa (Ag), 173 and 180 GPa (Au), 76.1 and 79.4 
GPa (AI) and 44.9 and 48.8 GPa (Pb). 

For all these metals the temperature dependence of a is qualitatively similar to that 
of Cp, as shown for Ag in Fig. 6.2. The Griineisen function falls a little for Ag and Cu 
at temperatures below 50 K (Fig. 6.3) [Whi72b, Bar80]; but for practical engineering 
purposes of calculating dimensional changes this could be ignored, and heat capacity 
data or the Debye function used as a good guide to a (T). Aluminium is a little unusual 
in that 'YO (lattice) =2.6 is larger than the room temperature value of 2.16, because the 
mode gammas are larger for many low-lying transverse acoustic modes than for the 
longitudinal modes [Co173, Bar80]. For Al and Pb in the superconducting state the 
electronic component ae falls more rapidly with temperature than in the normal state, 
the difference, aen - a es , being of basic interest as it is related thermodynamically to 
the strain dependence of Te and He (Section 6.5). 

An important factor in cryogenic design is whether mechanical strain or traces of 
chemical impurity have any significant effect on the thermal or other properties of a 
material. Copper is one element for which there is a considerable body of thermal data 
for samples of varying degrees of physical and chemical purity. Measurements of heat 
capacity and expansion both indicate that these properties which depend principally 
on the lattice vibrational energy are not significantly affected by trace impurities or 
strain effects. For example, measurements of Cp from 20 to 300 K for commercial 
and 99.999% pure samples, cold-worked and annealed, showed that differences are 
much less than 1 % [Mar60]. Similarly thermal expansion measurements from 273 
to 293 K and from 2 to 100 K on various coppers (6N, OFHC, electrolytic tough­
pitch, phosphorus-deoxidized, free-machining tellurium copper and deformed rod) 
give differences of less than 1 % [Whi72a]. 

There have also been thorough intercomparisons of thermal expansion between 
high purity Cu and various oxygen-free coppers which have been used in precision 
gas thermometry. No measurable differences were found. Only dissolved magnetic 
impurities (particularly Mn and Fe) have relatively large effects on both Cp and f3 at 
low temperatures (see [Bar80, p. 700] and [Whi72a]). Impurity levels of'" 0.1 % of 
Fe or Mn may produce changes of '" 10-8 K- i in a ofCu at 10 K. This is equivalent 
to more than a 20% change at this low temperature (see also Section 6.4.1). 

6.2.4. Group II-Alkaline Earths 

Best estimates of eo for the alkaline earths are [Phi71]: 

Ca (fcc) ... 230 K; Sr (fcc) ... 147 K and Ba (bec) ... 111 K. 

These agree well with the compilation by Alcock et al. [Alc93] except for Ca, for 
which eo = 250 ± 5 K based on more recent data than that available to Phillips. 

The few measurements of thermal expansion which extend to liquid helium 
temperatures were made on rather impure specimens ([Bar80, p. 685]). The most 
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Fig. 6.3. Variation of the lattice Griineisen function Yvib with temperature. Arrows show the best estimates 
of yg'; shaded areas show Ybh and error bars at 3 K represent au = ± 10- i OK- i [Whi72b. Bar80]. 
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interesting aspect of the results are the values for the electronic contribution, which 
is near zero for Ca and negative for Sr (see 'Ye = -4.4 in table 6.1). These appear 
to arise from the overlapping electron energy bands causing the density of states to 
increase under compression. 

Bulk modulus values are available from the experimental equations of state mea­
sured at pressures up to 2 GPa (20 kbar) and temperatures from 4 to 295 K [And90a]. 
Room temperature 'Y values are about 1.1 for Ca and Sr and 0.9 for Ba. 

6.2.S. Transition Metals 

These are an interesting family, with structures delicately balanced between close­
packing (fcc or hcp) and body-centered cubic. Molar volumes generally lie in the 
narrow range of 8 to 11 cm3 for the 4d and 5d rows and 6 to 10 cm3 for the 3d 
elements. The additional bonding due to the d-electrons shows itself in the variation 
of bulk modulus, as for example in the 4d elements, Nb to Ag, listed in Table 6.1. 
Consider also a column in the Periodic Table, such as VIB: Bs =157 GPa for V, 168 
GPa for Nb and 190 GPa for Ta. For these three elements E>o decreases from 400 K 
(V) to 277 K (Nb) and 258 K (Ta). The decrease in characteristic temperature (and 
vibrational frequencies) is less than that expected from the increase in the atomic 
mass, owing to increase in elastic stiffness. 

The electronic contributions to the low temperature heat capacity vary as we 
move along a row of the Periodic Table. This variation is revealed clearly for the 4d 
elements by a plot of the electronic coefficient r as function of electron-atom ratio 
(Fig. 6.4). For the 3d and 5d elements the pattern is similar, but magnetic ordering 
in the 3d elements Cr, Mo, Fe, Co and Ni adds a little more irregUlarity to r as a 
function of electron-atom ratio. 

As a practical guide, a (and f3) varies with temperature for the cubic elements 
roughly like the Debye function, because 6 D and 'Y are fairly constant down to 
T", 6/5. Below this 'Yvib decreases for most elements (see 'YO in Table 6.1). An 
interesting feature of the electronic component of expansion is that 'Ye f'J 2 for most 
of the transition elements, which is much larger than the free electron value of 213 
but comparable with the value of 5/3 predicted by the Heine-Ehrenreich model of an 
electron density of states controlled by a narrow d-band [Shi74, Fle79]. 

6.2.6. Cubic Alloys (Non-Magnetic) 

Dilute Alloys and Local Modes. At low temperatures, heavy solutes of much 
greater mass than the solvent atoms can significantly affect the low-frequency end of 
the lattice spectrum, producing local mode effects akin to those discussed in Section 
5.12.3 for Ag in NaCI. For metals the effect on C and a was clearly shown by 
measurements at Kharkov (see [Pop75, Pop76] and [Bar80, p. 698]) using Al or Mg 
a~ solvents and 1 % or less of Pb or Cd as additives. These produced broad peaks in 
C and a centered around 40--50 K. The relative increases, boC / C and aa / a, reached 
maximum values at 10--15 K; e.g., 
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Fig. 6.4. Variation of electronic heat capacity coefficient r with number of valence electrons per atom in 
4d elements and alloys [Hei66]. 

AIPb, mass ratio of 8.0, aa/ a ~ 90% per at% 

MgCd, mass ratio of 4.5, aa/ a ~ 30% per at%. 

The relative increases were usually similar in magnitude for C and a, indicating 
that the Griineisen 'Y for the local modes was similar to that for the solvent. 

Light Impurities. Solutes or impurities of relatively small mass have little effect 
at low temperatures, but may contribute a band of optic modes at higher temperatures. 
PdH is an example of a system (not necessarily dilute) where significant amounts of 
H can be absorbed into octahedral interstitial sites in the fcc Pd lattice, increasing 
a at ambient temperatures through optic modes which have been shown by neutron 
scattering to be centered near 650 K, see [Bar80, p. 699]. 

Alloys. For alloys in general, mass differences will have more direct effect on 
the phonon spectrum f ( w) than on the electron density of states, whereas differences 
in the electron-atom ratio will affect n( EF) (see Fig. 6.4) more than the lattice 
vibrations. In this section we restrict discussion to 'simple' non-magnetic disordered 
binary alloys of the same structure as the constituents. 

One example for which we have elastic and heat capacity data are the a-brasses 
[Ray59, Vea63]. Ultrasonic measurements from 4.2 to 300 K on crystals containing 
Cu + 0, 4, 9,17, and 23% Zn showed that ell and e' fell by about 10% with addition 
of 23% Zn, while e44 fell by rather less. The calculated values of ef,' fall from 345 
to about 325 K over this range of concentration. Measurements of Cp below 4.2 K 
were made on samples containing up to 33% Zn, giving values of e~ and r shown 
in Figs. 6.5 and 6.6. 
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The addition of Zn to Cu increases the lattice spacing by about 0.07% per atomic 
percent, so that 10% Zn would increase molar volume by about 2%. We might expect 
this expansion to produce a decrease in 60 of about 3.5% or 12 K per 10% Zn, based 
on the Griineisen parameter for Cu, 

'm = -d In6o/d In V = 1.7 

The calculation ignores the effect of mass difference (small between Cu and Zn) and 
details of changes in local geometry and bonding. The rate of change agrees roughly 
with the observed changes of 6~ and Wi (Fig. 6.5). 

We may attempt the same sort of correlation between r and volume change, 
assuming that changes in r are controlled by (Section 1.3.4) 

')Ie =dlnn(EF)/dlnV =dlnr/dlnV (6.2) 

where 1'e ~ 0.9 for Cu. The increase in r with addition of Zn correlates roughly 
with that expected from volume change (Fig. 6.6), but this ignores the change in the 
number of electrons, which on the rigid band model would lead to a decrease in r. 
To account for this discrepancy, modifications to the rigid band model are discussed 
in [Vea63]. 

A similar picture comes from the heat capacity data on Ag-rich alloys with added 
Cd, In, Sn and Sb [Mon67, Phi71]: a decrease in 6~ with added solute correlates 
roughly with increase in electron-atom ratio and volume, while r increases slightly 
with these parameters. This increase, again at variance with the rigid band model, is 
discussed by Phillips in [Phi71, p. 498]. 
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Montgomery et al. [Mon67] also measured Cp for the AglPd system, finding that 
small additions of Ag to Pd reduced r markedly as the d-band was filled but had little 
effect on 80. 

We expect that the thermal expansion of these binary alloys would reflect the 
same sort of changes in lattice spectrum and electronic density of states as the heat 
capacity, with the added effect of change in the compressibility modulus. There are 
relatively few expansion data over a wide range of temperature and composition. 
Measurements of a range ofPd-Ag alloys from 30 K to 270 K [Bai69] show that the 
expansion coefficient varies monotonically with alloy content (Fig. 6.7) roughly as 
predicted by the 'mixture' model of Turner, 

a= ~aiHiVi/~HiVi 
I I 

(6.3) 

where Vi is the volume occupied by the ith component and ai and Hi are the corre­
sponding expansion coefficient and bulk modulus. The measurements did not extend 
to low enough temperature to see how 'YO and "Ie varied with composition. 

6.2.7. Technical Materials 

When a cryogenic engineer is faced with designing a storage vessel or a motor or 
a magnet, two important considerations are (i) the total heat content of material that 
is to be cooled and (ii) the stresses that may be caused by thermal contraction. For 
this purpose the input data may only need to be reliable to within a few percent, and 
can be obtained from tables such as C.I and C.2 in Appendix C. If such data are not 
available, then estimates may often be made based on the room temperature values 
and the Debye approximation, particularly if the Debye 8 near room temperature 
is known from the heat capacity. The heat capacity at room temperature for most 
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metals will approach the Dulong and Petit value of'" 25 J.(g-at.K)-1 and fall with 
temperature roughly as the Debye function, so that for an unlisted alloy the energy 
change between 293 K and 80 or 4.2 K can be estimated within say 10% with the 
help of Debye Tables (Table C.5 in Appendix C). 

As an example, we assume the validity of the Debye approximation for the 
change in internal energy U per gram atom between 300 and 4 K and calculate the 
ratio I1U /Cv = (U300 - U4)/C~00 for solids of different Debye temperatures (600 
K, 500 K, 450 K, etc.) From the Debye tables we obtain the following values: 

00 0 0 /300 I1U300-4 C300 v I1U /C~oo 
(K) (JIg-at) (JIg-at· K) (K) 

600 2 3300 20.6 160 
500 1.67 3810 21.8 175 
450 1.5 4103 22.4 183 
400 1.33 4400 22.8 192 
300 1 5043 23.7 212 
200 0.667 5766 24.4 236 

Most structural metals have 0 0 values in the range from 300 to 450 K, so that if 
they behave in a Debye-like fashion, the change in U from 300 to 4 K is from 180 to 
210 times the value of Cv at room temperature. The change in total heat or enthalpy, 
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H, cannot be estimated from the Debye function, but it does not differ from U by 
more than a few percent below room temperature. 

This approximation for !J.U ICv is also useful for estimating the length change 
in metals, provided that Debye and Griineisen formulae are a good guide for the 
temperature ranges involved. Estimates of the overall length change in cooling 
would appear to be difficult because the room temperature values of a, unlike Cv, 
vary considerably from one element or alloy to another. However, for most solids 
the temperature dependence aCT) is roughly like Cp(T) or Cv down to 20 or 30 K; 
and so if a measurement of a can be made or is available at room temperature, a 
fair estimate of the length change can be made based on the same functional relation 
as the change in heat capacity. In particular, if the parameters 0 and 'Y are fairly 
constant then the overall change !J.I I 1 will be roughly proportional to the value of a 
at room temperature. Clark [Cla68, Cla83] examined this correlation for a number 
of technical metals and showed that the ratio [( h93 -/4) I h93l/ a293 lies between 170 
and 200. The metals include commercial Al alloys, Hastelloys, Inconels, phosphor 
bronze and Fe-Ni alloys (excluding Invar composition). Collings (see [CoI86a, 
p. 366]) tabulated a similar ratio for 17 metallic elements over the intervals 293 to 
20 K and 293 to 200 K, finding respective mean values of 193±16 and 89±3. He 
excluded data for Cd (anisotropic), Pb (low 0), and Cr (magnetic), which gave ratios 
outside these limits. 

Two materials for which there are very reliable expansion data are Cu, for which 
measurements give 

(!J.h93-4/i)la293 = 3257 x 10-6 /16.65 X 10-6 = 196 

and W, for which the measured ratio is 198. 
Figure 6.8 illustrates the fractional length change from 293 K to 0 K for sev­

eral metallic elements (including polycrystalline Ti and Be) and a common alloy, a 
Cll6SZn3S yellow brass. Although the values are very different, the ratios of length 
change to the room temperature a lie generally between 180 and 200. Obvious 
exceptions are Be (0D ~ 900 K, ratio about 117) and Pb (0D ~ 90 K, ratio 244). 
Such exceptions occur for unusually high and low values of 0D because of the nature 
of the Debye function, even if 0 c and 'Y are constant. There may be further discrep­
ancies for some magnetic materials, and for non-metallic solids for which 'Y changes 
considerably with temperature, e.g., Si. 

6.3. NON-CUBIC METALS 

6.3.1. Introduction 

In Ch. 2 we introduced the anisotropic nature of the lattice spectrum w(q,s), as 
revealed by inelastic neutron scattering and by the elastic moduli and the ultrasonic 
wave velocities which vary with direction even in cubic crystals (unless c' = C44). 
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Fortunately the thennal and transport properties of cubic crystals depend on averages 
over the vibrational spectrum and so do not show this underlying elastic anisotropy. 
Non-cubic crystals show anisotropy in directional properties such as thermal expan­
sion (and conductivity). The effect is small in some hexagonal close-packed metals 
which have nearly ideal 'billiard ball' packing, e.g., Mg (hcp) where the cia ratio is 
1.623, very close to the ideal ratio of 1.633 (Fig. 6.10). By contrast, in layer structure 
crystals (e.g., As) or chain-like crystals (e.g., Te), the anisotropy in thermal expansion 
is very large and usually accentuated at low temperatures. 

The heat capacity is a scalar quantity and so cannot show the effects of anisotropy 
directly, although the departures of Cv from the Debye model at low temperatures 
may be relatively greater for the more anisotropic metals. For example, compare 
0 c (T) for Zn and Cd with the more isotropic Ti (see Fig. 6.9). The relatively larger 
decrease in 0 c from the limiting value 0 0 to the minimum (near T ~ 00/15) is clear, 
and comes partly from the existence of a lower frequency transverse acoustic branch 
of the vibrational spectrum. However, from an engineering viewpoint it is enough to 
know that 0 c is fairly constant for these metals above about 30 or 40 K, allowing 
the Debye formula to be used to calculate changes in energy in cooling from room 
temperature as well for Zn as for Ti or Cu. 

Most of the non-cubic metallic elements have crystal structures which are axially 
symmetric, so that the linear expansion can be expressed by two components, all and 
a..L, respectively parallel and normal to the axis (tetragonal, hexagonal or trigonal). 
An exception is gallium, which is orthorhombic with three principal axes and nine 
independent elastic moduli. The two principal coefficients for axial crystals are 
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related to the adiabatic values of the elastic compliances, sfp., and the heat capacity 
at constant stress, CO', by the relations (see Section 2.8.4) 

a.1 = (Cu/V)[(Sfl + Sf2h.1 + Sf3 'YII 1 

all = (CO' IV) [2sf3 'Y.1 + S~3 'Y11l 

(6.4) 

(6.5) 

The cross compliance sf3 is negative for these metals, and the magnitude and sign of 
the principal coefficients is controlled by the relative magnitude of the compliances 
as well as by the Griineisen parameters. 

Muon [Muon] showed that Eqs. (6.4) and (6.5) can be expressed also in terms of 
the cross-compliance S13 and the linear compressibilities X,\ defined in Section 2.8.3: 

a.1 = (Cu/V) [xl 'Y.1 + Sf3( 'YII - 'Y.1)] 

an = (Cu/V)[x~'Y1I-2sf3('Yn- 'Y.1)1 

Similar equations may be written for orthorhombic crystals: 

(6.6) 

(6.7) 

Such equations show more clearly the differing dominant factors which control the a,\. 
For example, compare two axial crystals, As (double layered structure - see Section 
6.3.4) and graphite (simple layers - see Section 5.8.2). Both are highly anisotropic, 
with a.1 negative at low temperatures, but with different anisotropy in their elasticity 
and Griineisen fuoctions. Along the c axis both are highly compressible (XII large), 
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while perpendicular to the axis X1- is small and negative for As and very small and 
positive for graphite; the cross-compliance SI3 is very large and negative for As, 
very small and negative for graphite. Consequently, although both crystals have a1-

negative at low temperatures, it is for different reasons. 
For As, 'YII and 'Y 1- are positive and almost equal at very low temperatures, with 

a value of about 4; despite the large Sl3, Sl3 ('YII - 'Y 1-) is negligible, and the negative 
expansion is due to the negative value of X1-. At room temperature, however, a small 
difference ('YII- 'Y1-) ~ -0.08 is sufficient to drive a1- positive. 

In contrast, for graphite the gammas differ in sign: at room temperature 'Y 1- ~ -1, 
decreasing to -5 at 20 K, whereas 'YII ~ 0.4 near room temperature, increasing to +4 
at 20 K. The negative a1- at low temperatures is thus due primarily to the negative 
'Y1-, with the two terms in Eq. (6.4) roughly equal. 

The reader who wishes to get a better feeling for the lattice dynamics of ax i­
ally anisotropic crystals could study the rhombohedral lattice model [Bar74a]. This 
quasiharmonic model employs Mie-Lennard-Jones 6--12 potentials between near 
neighbors, and explores the effect on the Griineisen functions and the expansion 
coefficients of (i) changing the relative bonding within a layer and between layers, 
(ii) changing the axial ratio. The changes in bonding are seen to change the princi­
pal Griineisen functions qualitatively in the fashion observed experimentally, while 
changes in axial ratio have more effect on the expansion coefficients. Details are not 
appropriate in this monograph, but the conclusions are important in understanding 
anisotropic behavior: quoting from [Bar74a] " ... The forces within planes nonnal 
to the symmetry axis are affected strongly by strain 111- but only weakly by strain 
1111' Forces between the planes are affected more strongly by 1111 .... " See also the 
discussions on mechanisms in Section 2.6.3 and on highly anisotropic non-metals in 
Section 5.8. 

Table 6.2 lists the more common anisotropic metals, giving values for the cia ratio 
at room temperature, S~, electronic heat capacity coefficient r [Phi71], and principal 
linear expansion coefficients at 293 K [Kir72]. It also includes approximate values 
for Si93 based on heat capacity data [Fur72, Tou70a, Whi79] and phonon spectra 
[Sch81]. The latter should be appropriate when calculating approximate values for 
the heat capacity or internal energy at temperatures from about 50 K to 293 K. They 
will also be useful in calculating average length changes in polycrystalline samples 
of anisotropic solids, provided that there is not any significant texture (preferred 
orientation). Clearly single crystal values are more difficult to predict. 

6.3.2. Group II-Be, Mg, Zn and Cd 

The anisotropy of these hexagonal close-packed metals increases as the cia ratio 
departs from its ideal 'sphere-packing' value of (8/3)1/2 = 1.633. For Be, cia =1.58, 
corresponding to a 'compression' along the c (hexagonal symmetry) axis. Mg is 
almost ideal with a ratio of 1.623, while Zn and Cd are 'stretched' along the symmetry 
axis by about 15% with cia values of 1.86 (Zn) and 1.89 (Cd) at room temperature. 
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Table 6.2. Data for some non-cubic metals. Ga Is orthorhombic with three 
principal axes-a,b,c. For data sources see [Phi71, Bar80, Kir72] and text 

(Section 6.1.3) 

Element Structure da eC 
0 r Eli93 all,293 al.,293 'Yl93 

(K) {_f.K21 (K) {~1 (~1 
Be hcp 1.57 1470 0.17 920 8.9 12.3 1.0 
Mg hcp 1.623 405 1.23 330 27 25 1.55 
Zn hcp 1.86 327 0.653 240 64 13 2.0 
Cd hcp 1.89 209 0.687 175 54 20 2.2 

Ti hcp 1.59 429 3.34 360 ~ 10.5 ~9 1.2 
'h: hcp 1.59 291 2.80 250 6.5 5.5 0.9 
Co hcp 1.62 460 4.5 380 14.6 11.0 2.1 

Ga orh 322 0.598 240 31< 16.6a 1.45 
11.5b 

11 hcp 1.599 78.5 1.47 94 72 9(1) 1.2 
In tet 1.076 110 1.63 110 -10 53 2.35 
Sn tet 0.546 198 1.77 160 32.5 16.5 2.2 

As rhl 282 0.192 290 41 1.2 1.3 
Sb rhl 210 0.110 210 16.2 8.4 0.95 
Bi rhl 120.4 0.008 120 16.2 11.7 1.05 

The stretching along the c-axis for Zn and Cd is associated with an increase in the 
linear compressibility XII which is 6 or 7 times larger than Xl., with a corresponding 
increase in an (see Table 6.2). At low temperatures the differences in a increase: al. is 
negative below 50 K (Fig. 6.10) while all is large and positive. The volume coefficient 
and average linear coefficient (for a polycrystalline sample) remain positive and vary 
with temperature roughly as does the heat capacity. The bulk Griineisen parameter, 'Y, 
has a broad maximum (2.9 for Zn) at 20 to 30 K and values of2.0 at room temperature 
and at liquid helium temperature. 

The interplay between the electronic and lattice contributions to a at liquid helium 
temperatures is complex, and discussed in [Bar80, Munn]. 

6.3.3. Anisotropic Transition Metals 

The more studied of these metals are included in Table 6.2. For others, single 
crystal data are limited, particularly for the expansion at low temperatures. Phillips 
[Phi71] gives the following values from heat capacity measurements: 

• Hf(80 ~252 K, r= 2.15 mJ·mol- 1K-2) 

• Re (80 ~415 K, r = 2.26 mJ·mol- 1K-2) 

• Ru (00 ~555 K, r = 3.00 mJ·mol-1K-2) 

• Os (80 ~500 K, r = 2.3 mJ·mol-1K-2) 
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Fig. 6.10. Anisotropy of linear expansion coefficient of Zn compared with Mg; for data sources see 
[BarBO, p. 686]. 

Thennal expansion data at low temperatures are restricted to polycrystalline 
samples ofTi, Zr, Co and Re and may not be representative of the true average due to 
preferred orientation, see [Bar80, p. 693-5]. Values of a for the principal axes near 
room temperature can generally be obtained from X-ray lattice spacings measured at 
relatively large temperature intervals (e.g., Handbook of Lattice Spacings of Metals 
and Alloys [Pea67]). They can be used to calculate volume coefficients, and together 
with the Debye function to estimate the approximate length changes during cooling 
of rods or tubes made by powder metallurgy techniques. Single crystal values have 
not been reported for low temperatures. 

6.3.4. Others: Ga, In, T1, Sn, As, Sb and Bi 

The first four of these anisotropic elements become superconducting at liquid 
helium temperatures, and this feature of their behavior will be considered further 
under Section 6.5. 

The heat capacity of Ga (orthorhombic) is shown in Fig. 1.8. An interesting 
feature of its thermal expansion is the anisotropy of the electronic component as 
determined from single crystal data from 1 to 10 K [Gri77]: linear electronic compo­
nents are negative in the a and c directions and positive in the b direction. Vibrational 
components are all positive and lead to 'YO ~ ')'293 ~ 1.5. 

Indium is face-centered tetragonal with no clear-cut soft direction: the linear 
compliance s33 > S11, but the linear compressibility XII < Xl.. The linear expansion 
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Fig. 6.11. Principal expansion coefficients of In; data sources in [BarSo, p. 689]. 

coefficients show an interesting oscillatory pattern arising from interplay of thermal 
and elastic forces (Fig. 6.11). The volume coefficient increases monotonicaHy with 
temperature, as does the heat capacity, so that the volume change below room tem­
perature can be predicted fairly weH from Debye and Griineisen models, unlike the 
length changes in a single crystal! The principal Griineisen coefficients are fairly 
constant over the temperature range from 5 to 300 K with values of about 2.3. 

What about As, Sb and Bi? These group VA semi-metals show an interesting 
progression with atomic mass. They become less metallic Gudging from their con­
ductivity) and more isotropic. The primitive lattice is like an fcc which is stretched 
along a [1111 direction which becomes the trigonal symmetry axis. The rhombohe­
dral primitive ceH contains two atoms, and has an axial angle of about 54° for As and 
57° for Sb and Bi (cf. 60° in a fcc lattice). 

Arsenic crystals cleave easily like mica or graphite. They are layered perpen­
dicular to the trigonal axis with planes of atoms alternately separated by 1.25 and 
2.25 A, thus forming double layers which are only loosely bonded to the adjacent 
double layers. The thermal expansion of arsenic is highly anisotropic, not unlike Zn 
(Fig. 6.10), with a.L negative below 150 K while all is relatively large and positive. 
The volume coefficient is positive. 

Bismuth has positive coefficients in both directions with all being about 50% 
larger than a.L from about 100 to 300 K. Antimony is intermediate in behavior, 
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the linear coefficient being negative normal to the symmetry axis below 20 K and 
otherwise positive. 

6.4. MAGNETIC METALS 

6.4.1. Introduction 

The behavior of non-metallic magnetic solids including diluted magnetic ions in 
paramagnetic salts has been described in Section 5.11. Metals and alloys exhibit 
a greater variety of magnetic behavior, because the d- or J-electrons giving rise to 
magnetism can interact and mix with non-magnetic conduction electrons in many 
different ways. 

Dilute Magnetic Impurities. To make the transition from non-metallic to mag­
netic metals, we start with the comparatively simple systems in which magnetic 
ions are present only as well-separated impurities in non-magnetic metals. They are 
reviewed in detail by Phillips in [Phi71, Sections 12,13,14,23]. 

We take as examples dilute solutions of Cr and Fe in Cu. Figure 6.12 shows 
Cp below 10 K for two Cu-Cr samples with 0.56 and 0.073 at% Cr. Below 1 
K the magnetic contribution Cm is seen to be linear in T and to be at least roughly 
independent of the concentration c. But at much lower concentrations a very different 
behavior is seen (Fig. 6.13): Cm is now proportional to c, and has the form of a broad 
bump peaking at about 1 K. It is clear that at low enough c we are seeing the 
additive effects of isolated impurities. These are believed to arise from the Kondo 
mechanism, in which the magnetic ions form localized zero spin complexes with 
the sea of the conduction electrons, below a Kondo temperature TK. Theoretical 
approximations differ in detailed predictions of behavior, but that shown in Fig. 6.13 
is in good agreement with experiment with h fitted at a value of 2.1 K. At the higher 
concentrations of Cr in Fig. 6.12 a different mechanism is brought into play, owing to 
effective interactions between the magnetic ions; the results again are in qualitative 
agreement with theory. In CuFe the Kondo effect is stronger, with h ~28 K, and 
is operative even at a concentration of 0.24 at%, except at very low temperatures 
when ion-ion interactions become important. Several other systems are described by 
Phillips. 

For thermal expansion, rather similar Kondo-like effects have been observed at 
low temperatures in Cu with small additions (0.2 to 2%) of Mn and Fe and in AgMn, 
~a reaching a maximum around 6 K with a Griineisen 'Ym ~ 3. Figure 6.14 shows 
the increase for CuMn expressed as ~a/T [Bar80, p. 701]. 

Ordering in Magnetic Metals. We now turn to magnetic metals proper, in 
which the magnetic ions are close together. Theoretical models show that long range 
magnetic ordering can occur among localized or among itinerant electrons, in either 
case due to exchange interactions resulting from the anti-symmetry of the electronic 
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Fig. 6.12. Heat capacities of pure Cu (- - -) and ofCu containing 0.56 (0) and 0.73 (filled triangle) at% Cr 
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Fig. 6.13. Magnetic heat capacities of very dilute Cu-Cr. The solid curve is obtained by fitting the 
Bloomfield-Hamann theory to the 51 at ppm data. Error bars denote ±0.1% of total Cpo From [Phi71, 
p.510]. 
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Fig. 6.14. Change in expansion coefficient, ~a/T, for CuMn [BarBO, p. 701]. 

wave function with respect to exchange of electrons. The ordering may be ferromag­
netic, in which neighboring spins are aligned; antiferromagnetic, in which the spins 
are ordered in different directions so that there is no net magnetic polarization; or 
ferrimagnetic, in which the spins are ordered in different directions but with a net 
magnetic polarization. At sufficiently high temperatures all long range magnetic or­
dering disappears at a critical temperature, called the Curie temperature Tc for ferro­
and ferrimagnetism, and the Neel temperature TN for anti-ferromagnetism. In some 
solids the energies of these and other phases are finely balanced, so that transitions 
occur between them as the temperature or pressure is changed. In particular, many 
of the rare earths display complex patterns of magnetic order. 

The simplest theoretica] models comprise interacting spins localized on the mag­
netic ions. In the Heisenberg model the exchange interaction energy between two 
neighboring ions A and B is taken to be of the form -JSA . SB, where a positive J 
favors parallel spins and hence ferromagnetism, and a negative J favors anti-parallel 
neighbors and hence anti-ferromagnetism. In the ground state of a Heisenberg fer­
romagnet the spins are all aligned, and above this there is a continuum of energy 
levels in which the excitations are spin-waves in the component of spin normal to 
the direction of magnetization, the energy of each wave being quantized in magnons. 
The magnons are thus analogous to phonons, but with the important difference that 
the energy of magnons with long wavelengths is proportional to the square of the 
wave-number. This has the consequence that magnetic contributions to the limiting 

heat capacity and thermal expansion, em and 13m, are proportional to Ti at low 
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enough temperatures. A similar result has also been found for models of itinerant 
ferromagnetism. Low temperature measurements on non-metallic ferromagnets such 

as magnetite (Fe304) can therefore be analyzed by plotting CpjT~ against T~. 
For metallic ferromagnets, the presence of Ce usually prevents direct identification 

of the small Cm term, although analysis may be helped by subtracting the vibrational 
contribution derived from egl . In this way evidence has been found for the presence 

of a T ~ term for both Fe [Ray61] and Ni [Ray56]. For Fe the data for Cp below 4 K 
fitted the relation 

Cp = 4.90T + {O.08±O.04)T3/ 2 + 1.944{T jegl )3 

where Cp is in mJ·mol-1·K-1, T is in K, and egl = 477 K [Ray61]. Any such term 
in the thermal expansion has so far proved unmeasurable (see below). 

Antiferromagnets behave differently at low temperatures. For simple models 
their magnon energies at long wave-lengths are linear in the wave-vector, so that Cm, 
like Cvib, is proportional to T3. Other models predict more complex behavior. 

At higher temperatures it is usually difficult to identify magnetic contributions 
until near the critical temperature. In ferromagnetic elements such as Fe, Ni and 
Co the magnetic contribution to the entropy and energy manifests itself near to Tc 
(e.g., 1043 K for Fe) by a sharp peak in the heat capacity, but below this region the 
contribution is not obvious or easily separated from other components. Take nickel as 
all example: a peak in the expansion coefficient near Tc = 629 K has been carefully 
measured by Kollie [KoI77], but at lower temperatures the expansion coefficient of 
Ni is much like that of its non-metallic neighbors Pd and Pt. 

For the antiferromagnetic elements Cr and Mn, the transitions at TN are marked 
by narrow 'delta functions' in the heat capacity (small latent heats); but the anomalies 
in the thermal expansion are large, indicating strong magnetoelastic coupling (see 
Figs. 6.15 and 6.16). 

Table 6.3 gives some comparative data for ferromagnetic (F) iron, nickel and 
cobalt, antiferromagnetic (AF) chromium and manganese and paramagnetic (P) pal­
ladium and Cr95 V 5 (an alloy which is similar in density and lattice dynamics to Cr 
but is non-magnetic). We shall discuss below elements and alloy systems involving 
Fe, Ni, Cr, Mn and rare earths, etc. Their heat capacities and enthalpies both near 
to magnetic transitions and at very low temperatures are of fundamental interest; 
and although these magnetic interactions are usually less important to the engineer, 
magnetostrictive effects can be large and technically important. 

6.4.2. Transition Elements (Magnetic) and Their Alloys 

Among the 3d elements from Cr to Ni, it is energetically favorable for the spins 
of the d-electrons to order magnetically. The spin-wave contribution to the heat 
capacity at low temperatures is small in the elements, but in some alloys there are 
significant increases in Cp below about 10 K, variously attributed to ferromagnetic 
clusters, exchange enhancement and spin fluctuations [Mor8! b, Mor85]. Their origin 
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Table 6.3. Data for a selection of magnetic metals. V is atomic 
volume [Bar80, Phi71] 

Property Pd Fe Co Ni Cr Cr5%V Mn 

structure fcc bee hcp fcc bee bee cub 
mag. struct P F F F AF P AF 
Tc,N(K) 1043 1380 629 311 96 
V293(cm3) 8.87 7.10 6.62 6.60 7.23 7.2 7.39 
B~93(GPa) 189 170 212 184 N 170 200 125 
e~(K) 274 479 460 470 600 600 390 
e (K) 290 400 380 390 480 480 410 
cj3~(J/mol.K) 25.8 25.0 25.1 26.0 23.3 23.3 26.3 
0293 (10-61K) 11.7 11.8 12.8 12.8 5.0 7.9 ~23 

r(mJ/mol·K2) 9.4 4.78 4.5 7.05 1.42 2.3 9.2 

"Y 2.2 2.4 2.4 2.1 -10 2.0 ~-10 

">'I 2.2 1.3 1.7 1.6 1 1.1 

"Yl93 2.37 1.67 2.1 1.87 ~1 1.45 2.5 

is generally beyond the scope of this monograph and does not playa significant role 
in the overall change in total heat (enthalpy) on cooling from room temperature. 

Figures 6.15 and 6.16 illustrate how magnetic interactions may effect the expan­
sion much more than the heat capacity. Differences in Cp between say Cr, Pd and 
Ni at low temperatures reflect chiefly differences in their Debye temperatures. The 
much larger differences in ex between Pd, Cr and FeNi show the effect of magneto­
elastic coupling. Chromium has attracted particular attention from experimentalists 
and theorists as the .. . .. archetypal itinerant antiferromagnet whose incommensurate 
spin-density wave (SOW) is characterized by a wave vector determined by the nesting 
properties of its Fermi surface" (from review [Faw88]). The Neel temperature is very 
sensitive to strain and to alloying. If we calculate a magnetic Griineisen parameter 'Ym 
from dTNldV, values of rv -50 are obtained [Faw88, Faw94]. The magnetovolume 
effects in some of these systems are also discussed in [Ho184, Kai85]. 

Corsan and Mitchem [Cor76] measured Cp from 4 to 300 K for a range of stainless 
steels with nominal CrlNi percentages ranging from 12/12 to 24/20. Their tabulated 
values down to about 40 K lie within an envelope of ±2%, but below this there 
are differences of 20% or more. The alloys of higher Ni content show the largest 
departure from the T + T3 behavior at liquid helium temperatures. Values of Cp 
of the cryogenic stainless steels 304 (CrlNi contents of 20/9), 316 (19/11) and 310 
(28/19) show a similar pattern [CoI86b]. The coefficients of expansion of these same 
three steels agreed within a few per cent above 70 K but diverged below this. Below 
40 K, values for the 304 and 316 became negative, while the 310 remained positive 
down to 6 or 7 K [CoI86b]. Other technical metals (see Section 6.2.7) of the NiCrFe 
family for which there are expansion data include the Hastelloys and Inconel, etc. 
[Cla68, Cla83]. 

The most famous (from the technical view) or infamous (as a long- standing puz­
zle) are the alloys of the Invarfamily, pioneered by Chevenard and Guillaume around 
the turn of the century in the search for metals of very low expansion at ambient tem-



Metals 251 

Fe65Ni35 

30 

25 Cr 

~ 

::..:: 20 
~ 
I 

~ ...... 15 ~ 

0-

U 

10 

°0~~-L---I~0-0--~----2~O-0--~----30~0--~~--4~0~0---J 

T(K) 

Fig. 6.15. Heat capacity of Pd (ef93 "" 290K), Fe (400 K), Ni (390 K), Cr (480 K), Fe65Ni33 (400 K) and 
an 18:8 stainless steel (S. S.). 

-~ 

15 

10 

o 100 

,.,. 0'--' --

/ 
--------- .' F N' / .. ..-" - ---:---t---_!§..o_ 140 t 
/ "" / ---

\I / , ", 

I ,..-'" . 
~ __ ---I_"-' Fe65N135 

200 300 400 

T(K) 
500 

Fig. 6.16. Linear expansion coefficients ofPd, Fe, Ni, Cr, Fe65Ni35 and an 18:8 stainless steel (S. S.). 



252 Chapter(j 

perature (e.g., [Gui897]). These are fcc FeNi alloys with Ni content of about 35 at% 
(see Fig. 1.10). Alloys with lower Ni content undergo a martensitic transfonnation 
on cooling. The shape of the a(T) curve (Fig. 6.16) arises from a balance between 
the positive lattice contribution to ex and a negative magnetostrictive contribution, 
resulting in a negative overall coefficient below 60 K and a relatively small positive 
coefficient at room temperature. The exact value near room temperature depends 
sensitively on the Ni content and heat treatment, but approximates 1 x 1 0-6K- i . 

The Invar effect, the negative expansion at low temperatures and small expansion 
at ambient temperature, is equally marked in FePd and in FePt alloys (including the 
ordered Fe3Pt) [Woh75]. It occurs to varying degrees in many alloys of Fe-Cr­
Ni-Mn-Co, as discussed in the reviews by Wassennan [Was89, Was90] (see also 
Fig. 1.10). There have been many theoretical models to explain the effect ranging 
from earlier attempts based on metallurgy and/or inhomogeneity to latent antifer­
romagnetism, local order, Weiss two-state models, weak itinerant ferromagetism. 
etc. These have been reviewed (e.g., [Was89] and [Chi97, Ch. 14]) and discussed at 
many conferences; see for example the Proceedings o/the International Symposium 
on Magnetoelasticity in Transition Metals published in Physica, volumes 119 B+C, 
161 B of 1983 and 1989. Experiments do show that the Fe-Fe interactions on an 
fcc lattice are antiferromagnetic in nature and are likely to contribute to negative 
expansion. 

The concept of a negative magnetic contribution to the expansion coefficient can 
seem puzzling. It is equivalent to a positive magnetovolume at low temperatures, that 
is, the volume near 0 K is larger in the magnetically ordered state than if it were in 
the disordered state. On warming the magnetic disordering produces a contraction in 
order to minimize the free energy. For some magnetic systems, the role of spin fluc­
tuations is important. Moriya [Mor85] discusses the self-consistent renonnalization 
theory of spin fluctuations in relation to the weak itinerant ferromagnetic compounds 
MnSi, NhAI, ZrZn2, SC3In, which have Curie temperatures at 40 K or lower and 
exhibit this positive magnetovolume below Tc. Brommer and Franse [Bro90] have re­
viewed their considerable experimental data on magneto-volume effects in 'enhanced 
itinerant intermetallics and alloys.' 

6.4.3. Rare Earths, Actinides and Their Alloys 

Thennal properties of the rare earth elements are interesting, although not usually 
of concern to cryogenic engineers. For many rare earth elements the intrinsic values 
have not been accurately measured for a number of reasons. Firstly, most of these 
elements have one or more magnetic transitions at low temperatures involving planar 
and spiral rearrangement of the electron spins. These ordering processes complicate 
the task of fitting electronic and lattice terms in the heat capacity (or expansion). 

Further problems are caused at very low temperatures by a nuclear heat capacity in 
the form of a Schottky 'bump' arising from a very large internal magnetic field acting 
on the nuclear moment. This bump at liquid helium temperatures makes it difficult 
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to fit T and T3 tenns to the heat capacity data. The presence of impurities in the 
rare earths, particularly hydrogen, nitrogen, oxygen, and carbon, add to the difficulty. 
Only recently have electrotransport methods of purification produced samples of rare 
earths with impurity levels below 0.1 at%. 

Analysis of thermal expansion data is complicated by anisotropy. The structure 
of most rare earths is hexagonal close-packed (ABAB stacking) or double hexagonal 
close-packed (ABACAB for Pr and Nd), with cia ratios in the range of 1.57 to 1.62. 
Exceptions are Ce and Yb (fcc), Eu (bee) and Sm (complex hexagonal). 

Because of these difficulties, the values of some parameters in Table 6.4 may have 
significant errors, e.g., in r and 0. These values are based largely on the reviews 
[Sun78, Sc078], with some 00 values calculated from ultrasonic elastic data. Expan­
sion coefficients are from the AlP Handbook [Kir72] and CINDAS Tables [Tou75]. 
Values of 0f93 are approximations derived from neutron scattering data [Sch81] or 
specific heats. For Sc and Lu there are recent comprehensive measurements of Cp 
and a [Swe96]). 

The relatively complex temperature dependence of the thermal properties for the 
magnetic rare-earths is shown by a.l (T) for a holmium single crystal (Fig. 6.17). On 
cooling, a second order magnetic transition to an antiferromagnetic state occurs at 
the Neel point, TN ~132 K, a first order transition to ferromagnetism at Tc = 19.5 
K and a further reordering at TR = 17.3 K. The linear expansion 6.1(T) shows a 
difocontinuity in length at 19.5 K confirming the first order nature of the transition. A 
curve of all (T) has a qualitatively similar shape to that in Fig. 6.17 but with negative 
sign. 

In addition to showing these three transitions, the heat capacity ofHo has an upturn 
below 4 K revealing a hyperfine nuclear spin term [Ste89] which is not evident in the 
thermal expansion data. 

In contrast to the complexity of holmium (Fig. 6.17) are the smooth curves for 
the heat capacity and expansion of the non-magnetic elements Sc and Lu [Swe96]. 
For example, Cv for Lu after subtracting the bare-band electron component is well 
represented between 20 and 300 K by a Debye function with 0 D = 160 K. 

Alloys. As an example of the separation of magnetic components there are mea­
surements of both Cp and a from about 1 K up to 50 K on a series of poly crystalline 
samples of Gdx Yl-xCU2 [Lu085]. The RCU2 family (where R is a heavy rare earth 
metal) have an orthorhombic structure and order antiferromagnetically. GdCu2 or­
ders at TN = 40 K whereas YCU2 is nonmagnetic. Values for Cp of alloys with Gd 
contents ranging from 0 to 100% are shown in Fig. 6.18. The curves for aCT) are of 
similar shape to Cp but the magnetic 'peaks' are relatively much higher. Cp for the 
YCU2 could be fitted to an electronic term6.7T mJ·K-l·mol-1 plus a Debye phonon 
term with 0 D = 236 K. For the other alloys, eC ranged down to 198 K (x=l). Mag­
netic contributions were obtained by subtracting the electronic and phonon tenns, and 
showed cusps at the respective Neel temperatures. Similar analyses were done on the 
expansion data. Together they lead to values of the respective Griineisen parameters 



2S4 Chapter 6 

45 

~~ 
x 

x 
40 " 

" 35 x 
x 

x " 
30 

x 
x 

-~ 25 - x 
CD 
I )( 

0 20 ,.... )( ..... x 

~ x 
15 J: )( 

• l! >y;)'" x 
10 • 'S: 

II x 

f~ x 

5 l! )( 

oj ~ 
0 20 40 60 80 100 120 140 

T(K) 

Fig. 6.17. Linear expansivity £X.l for holmium from 1 to 140 K [WhiS9a]. 

(assuming a value Bs = 170 GPa): 'Yvib = 2, 'Ye = 1.7 and 'Ym ~ 10. The relatively 
larger 'peaks' in a compared with those in Cp lead to the large value of 'Ym. 

Another important group of intermetallic compounds is the RMn2 (R= rare earth) 
family, some of which show very large volume expansions below the magnetic 
ordering temperature. A notable case is YMn2 with an observed volume change of 
about 5% at TN ~ 100 K. Nakamura [Nak94] has discussed them in terms of the 
magnetic moment of the Mn atoms above and below the transition temperature. 

6.5. TYPE I AND TYPE II SUPERCONDUCTORS 

6.5.1. Introduction 

Superconductivity is a cooperative ordering process in which the charge carriers 
(electrons in these metals) 'condense' below a critical temperature into a ground state 
in which they have zero entropy. Electron pairs in this ground state can circulate 
without being scattered by lattice waves or other irregularities. 

The effect of this ordering on the mechanical properties such as elasticity or on 
the vibrational spectrum is small: the differences in CAlL or bulk modulus between 
superconducting (s) and normal (n) states amount to a few parts in a million and re­
quire sophisticated ultrasonic interferometry to measure. Alers and Waldorf [Ale62] 
measured the changes in ultrasonic velocities in single crystals of Pb, V and Nb with 
a 'sing-around' technique capable of resolving to a part in 107 . They did this in 
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Table 6.4. Data for Rare earths and actinides from 
[Sun78, Sco78, Kir72, Too7S, Swe96]. Note that U is orthorhombic with 

a,b,c axes 

Element Tc TN 8i93 8 0 r 0 293 0 293 8 293 
II 1- s 

(K) (K) (K) (K) (mJ/mol·K2) (l0-6/K) (l0-6/K) (GPa) 

Sc 310 352 10.4 14 8 57 
Y 220 256 8.2 19 5 41 

La ~ 130 154 9.5 15 1 28 
Ce 13 120 136 12 5.2 5.2 21 
Pr 152 ~22 14 4 29 
Nd 12 145 163 11 5 32 
(Pm) 
Sm 13.7 lOS 145 169 12 19 9.5 38 
Eu 90 118 6 25 25 13 
Gd 293.4 150 182 10 -5 6 38 

(310 K) (310 K) 
Th 221 230 145 177 4.3 13 7.5 39 
Dy 85 179 155 183 4.5 15 6 41 
Ho 19.5 132 150 190 ~2 17 3.5 40 
Er 19 85 160 189 4.3 16.5 6.0 44 
Tm 25 58 200 ~ 18 ~9 45 
Yb 118 2.8 24.6 24.6 30 
Lu 159 190 8.3 20 7 48 

Th 140 165 4.4 11 11 57 
U 222 9.8 20'" 23° ,O.5b 

Pu 161 15.9 ~ 50(pc) ~ 50(pc) 

magnetic fields up to 0.7 T and found that differences between s- and n-states in the 
elastic moduli (dc44/c44, dc'/c', Mi/B) were at most 100 parts per million. They 
calculated that this would result in a change in 0't/ of:5 0.02 K. 

It follows that differences in the vibrational contributions to heat capacity or ther­
mal expansion should be too small to detect by thermal techniques. Notwithstanding 
this there was some calorimetric evidence in the early 1960s for In, which indicated 
an apparent small difference between CIs and Cln, probably arising from calorimetric 
problems as 0 is small, see [Phi71, p. 504]. For other metals including Pb, later work 
did not show any measurable difference. 

The electronic contributions to heat capacity (and expansion) in the normal and 
superconducting states, Cen and Ces , are very different, and this is especially no­
ticeable in those metals for which Tc «eD• For example, in Sn and AI the lattice 
contribution to these thermal properties is small near Tc and falling as T3, so that 
electronic components are relatively large. 

Values of Tc for the more common superconducting elements range down from 
Nb (9.25 K), Pb (7.200 K), V (5.38 K), Ta (4.48 K), Sn (3.722 K), In (3.415 K), AI 
(1.180 K), Mo (0.92 K), Zn (0.87 K), Cd (0.56 K), Zr (0.546 K), Ti (0.39 K) to W 
(0.015 K). The values of Tc are much more sharply defined for the elements which 
are readily available in high purity strain-free crystals than for 'dirtier' materials. 
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In the next section we discuss the relation between the heat capacity, length, and 
critical magnetic field for Type I superconductors. Type I are those metals for which 
a magnetic field exceeding a critical field, He> penetrates completely and destroys the 
superconductivity with accompanying latent heat and discontinuity in dimensions. 

Type II are distinguished by a shorter range of ordering interaction which makes 
it energetically favorable for flux penetration to be gradual and produce an 'interme­
diate' state in which normal regions are interspersed with superconducting regions 
until the magnetic field is large enough to render the whole sample normal. 

6.5.2. Type I Superconductors 

According to the theory of Bardeen-Cooper-Schrieffer (BCS) for weak-coupling 
superconductors, 

Tc = 1.140exp(-1/{n(EF)V}] (6.9) 

where V is an interaction potential between the Cooper pairs and E> is an average over 
the lattice spectrum but not in general the same average as E>&, or E>~T. Other forms 
of the BCS equation for strong coupling due to McMillan, Dynes and others involve 
the electron-phonon coupling parameter, A, and screened Coulomb interaction, IL * , 
in the exponential. It is clear that the ratio TelE> increases with the strength of the 
electron-phonon coupling [Co186a, Ch. 8]. 

In this monograph we are less concerned with the limitations and extensions of 
the BCS theory than with the thermodynamic relations between the heat capacity and 
mechanical properties in the normal and superconducting states. Consideration of 
the Gibbs free energy shows that in zero magnetic field the difference in heat capacity 
at Tc is ([Sh060, Ch. 3] and [Bar98, Section 1.8.4.1]) 

( aHC)2 
Cs - Cn = IlOVTc aT p (6.10) 

which is a positive quantity. Note that in the electromagnetic units used by Shoenberg 
/I" - 1 ,......, - 41T· 

According to BCS theory, at Tr an energy gap appears at the Fermi surface which 
increases from zero at Tc to 3.52 kTc at T = O. The dependence of Ces on temperature 
is complicated but approximates to T3 just below Tc and becomes exponential over a 
limited temperature range below this. From BCS for weak coupling, the discontinuity 
in Ce at Tc is given by 

(Ces - fTc) /fTc = 1.43 (6.11) 

The measured values of this 'jump' I~.ce at Tc depart from the BCS model to varying 
degrees for elements and alloys, e.g., [Phi71 , Section 20] and [Co186a, Ch. 8]. Figure 
6.19 shows the total measured heat capacity for vanadium, for which fl.C /fTc ~ 1.43. 
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Fig. 6.19. Heat capacity of vanadium in the normal (Cn ) and superconducting (C,) states [Gop66]. 

The changes in volume and length can also be deduced from the thermodynamic 
relations [Sho60, p. 74] 

(6.12) 

(6.13) 

where Pi denotes a uniaxial compression in direction i. The second term on the right 
of the equations is the smaller magnetostrictive contribution. 

Differentiating the above and taking He = 0, we find 

(6.14) 

(6.15) 

At T = Tc , an Ehrenfest relation [see Eqs. (2.28)] gives also 

13 -13 - Cn -Cs . dlnTe 
n 5 - V dP (6.16) 

This last equation shows that a combination of measurements of differences in Cp 
and in a can provide data on the pressure or stress dependence of Tc. More direct 
pressure or stress measurement can be difficult and sometimes misleading because of 
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non-hydrostatic conditions, anisotropy and frozen-in magnetic flux, etc., particularly 
with single crystals. 

Figure 6.20 shows the length changes observed for tantalum, vanadium and 
niobium in normal and superconducting states below 10 K, see [Bar80, p. 711]. Note 
that!1i = in -is is negative for Ta and Nb (and most other elemental superconductors) 
but is positive for V. The positive sign indicates that Tc increases under pressure for 
V in contrast to the more usual decrease with pressure. The order of magnitude 
of dTc/dP for many type I superconductors is rv -0.1 K-GPa- i , corresponding to 
d In Tc/ d In V rv 1. 

6.5.3. Type II Superconductors Including Technical Alloys 

In type IT superconductors below Tc, partial penetration by a magnetic field 
begins at the lower critical field, Hq , which may be relatively small, e.g., rv 0.1 Tor 
less. With increasing field a relatively larger volume of the metal becomes normal 
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until at the upper critical field, HC2 , the whole volume is in the normal state and 
finite electrical resistance is restored. The thermodynamics of the type II are more 
complicated than type I [Hak68, Hak69]. 

Most superconducting alloys and compounds are type II. Some with sufficiently 
high values of Hcz are useful for construction of high field magnets (Table 6.5 
and review [Eki83]) although many are unsuitable for mechanical or metallurgical 
reasons. The most tractable alloys used for fields up to 12 T have been Ti-Nb of 
about 50/50 wt% (35 at% Nb). 

In zero magnetic field the behavior of C(T) near to Tc for type II is similar 
to that for type I: see Fig. 6.19, and also the C /T versus T2 graphs of Fig. 6.21, 
see [CoI86a, p. 317]. At higher temperatures the Debye function is generally a good 
rough guide to the lattice contribution. The smaller electronic term is more difficult to 
assess because the electron-phonon coupling decreases with increase in temperature. 
Analysis of the Ti-Mo alloy data (Fig. 6.21) shows that r = 5 ± 2 mJ·mol- I ·K-2 

and that the coupling factor A rv 0.4 at low temperatures. 
For all superconductors Cp decreases on warming through Te, but the change in 

a at Te may be positive or negative. Figure 6.22 shows the change in ae for (a) NblZr 
alloy for which a es > a en , and (b) pure Nb for which a es < a en at Te. The Ehrenfest 
relation then leads to a positive value of dTe/dP for tl1e NblZr alloy and a negative 
value for Nb. 

An alloy which is commonly used in constructing superconducting magnets is 
Ti-Nb, for which tl1e fractional contraction on cooling from room temperature to 4 
K is about 0.19%. This compares witl1 a contraction of 0.326% for Cu, which is 
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Table 6.S. Data for practical high field superconducting 
aUoys and compounds, including contraction 

-!JJ./I'1.'3 = (1'1.93 -14)/1'1.93' (CulNb-Ti is a multifilament 
material with Nb-Ti in a Co matrix). Data sources 

[Eki83, C1a81, CIa83] (see also [Wil83, Rob72, Col86a]) 

Material Structure Tc H 4.2 
c2 ~93 1%293 -!::t.l/1293 

(K) (T) (K) (10-6/K) (10-4 ) 

Nb bee 9.25 0.27 250 7.1 14.3 
Ti-Nb A2 10.2 12 310 9.0 18.9 
Nb-Zr A2 10.8 21 310 
Cuffi-Nb comp ~14 ~25 

V3Ga A15 16.5 22 400 
V3Si A15 17.0 500 7.5 
Nh)Sn A15 18.3 22 7.2 16.5 
NbJAl A15 18.9 32 7.8 
NbJGe A15 23 30 6.7 

commonly used as a matrix for the multifilament Ti-Nb wires. Such magnets can be 
used up to about 14 T. 

The compound which has been used for magnets producing higher fields (up 
to 20 T) is Nb3Sn, usually in the form of tape. It is one of the A15 compounds; 
these include V3Si, Nb3Sn, and V3Ga, which have relatively high transition temper­
atures and a martensitic transformation at low temperatures. This transformation is 
associated with a 'soft' transverse acoustic mode, c' = (Cll - C12) /2. In V 3Si, the 
cubic-to-tetragonal transformation occurs at T M ~ 21 K, and may give rise to compar­
atively large anisotropic length changes (positive and negative) of parts in 104 , with 
magnitude dependent on the stoichiometry and applied stress (e.g., [Ott85, Liu95]). 
The roles of lattice vibrations, electronic density of states and electron-phonon in­
teraction in detennining Te , TM, and dTc/dP for A15 compounds are still debated 
[Liu95]. 

Cp has been measured for a series of V3X compounds (where X= Si, Ga, Sn) 
and corrected for expansion to obtain Cv [Kna75]. The Cv values were analyzed 
into a Debye-Iike lattice term (e.g., e ~ 500 K for V3Si) and an electronic term, 
Ce = rT. At normal temperatures r for V3Si was reduced to about 30% of its low 
temperature phonon-enhanced value, falling from 16.7 (at low temperatures) to 5 or 
6 mJ·g_ac 1.K-2 (cf. band-structure value of9.18 mJ·g_ac 1.K-2). 

6.6. HEAVY ELECTRON METALS 

6.6.1. Introduction 

Another collective electron system of considerable interest is that of the 'heavy 
electron' or 'heavy fennion' metals, which exhibit large heat capacity values and even 
larger expansion coefficients at low temperatures. They are called heavy because the 
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effective masses of the conduction electrons are very much larger than the bare elec­
tron mass. To quote Fisk et al. [Fisk88] , ... at room temperatures and above, heavy 
electron systems behave as a weakly interacting collection of f-electron moments 
and conduction electrons with ordinary masses; at low temperatures the f-electron 
moments become strongly coupled to the conduction electrons and one another, and 
the conduction electron effective mass is typically 10-100 times the bare mass ... .' 

The materials are all intermetallic compounds with one constituent atom having a 
4f or Sf shell partially filled. A Curie-Weiss type susceptibility at higher temperatures 
shows that these give rise to localized magnetic moments, which have energies that 
are split in the crystal field. The coupling at low temperatures of these moments to 
the conduction electrons is thought to resemble in some way that in the dilute Kondo 
systems (Section 6.4.1); but the distance of magnetic atoms from each other in heavy 
fermion materials is much smaller than the radius of an isolated Kondo complex, and 
also they form an ordered lattice. We have therefore a strongly correlated system, 
which is found experimentally to give an effective very narrow band of conduction 
'electrons' with very large effective mass. This has sometimes been called a Kondo­
lattice system. Moreover, the type of correlation is highly sensitive to strain, as shown 
by very large Griineisen parameters that can be either positive or negative, giving 
rise to marked effects at low temperature in the thermal expansion and even in the 
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elasticity. 
Salient features of their physical properties at low temperatures are: 

• They show a large linear (T -) term in the heat capacity, with r up to 150 times 
larger per mole than for Pd or Ni 

• They show a paramagnetic susceptibility which depends only weakly on tem­
perature but of magnitude 102 to 103 times that of normal metals 

• Values of the expansion coefficient may be 1000 times greater than those for 
Pd or Ni, with values of'Y ,.... 100 

• The electrical resistivity is relatively large (,.... 100 x 10-8 I'm) at room tem­
perature, and falls at low temperatures as T2. The coefficient of T2 is many 
orders of magnitude larger than for transition metals. 

• Some order antiferromagnetically and some show superconductivity. 

The present understanding of these materials has been surveyed recently by 
Springford [SpI97b]. Despite extensive and continuing study, there is as yet no 
agreed theory, and 'such diverse properties are not easy to accommodate within a 
general framework.' Nevertheless, the systems are of such interest and potential 
importance that they merit brief discussion here. 

6.6.2. Heat Capacity 

The review by Fisk et al. [Fisk88] lists 11 heavy electron compounds for which 
there were low temperature Cp data with r values ranging from about 140 to 1600 
mJ·mol- l . K-2• Some of these (for which there are also expansivity data) are listed in 
Table 6.6, which includes approximate values of the adiabatic bulk modulus, r values 
per mole and per gram atom, the Griineisen function 'Y from thermal data at the lowest 
temperatures, and the temperature at which any ordering occurs (superconducting or 
magnetic). 

The compound ceCl16 for which Cp(T) is shown (Fig. 6.23) was chosen as an 
example by Springford in his review [SpI97b] for detailed discussion of heat capacity 
and electron transport because it has been widely studied and remains paramagnetic 
without onset of ordering down to a few mK. This compound and CeAh (which 
also does not order, at least above 20 mK) are discussed further in the review by 
Ott [Ou87]. Values of r in Table 6.6 are estimates based on different sources 
[Fisk88, Ott87, deV89, deV90]. 

6.6.3. Thermal Expansion 

Except for UBe13, the compounds in Table 6.6 are highly anisotropic. Values of 
principal linear coefficients of some of them have been measured by de Visser and 
colleagues, and reviewed in [deV89]. The observed behavior is very varied and often 



Metals 

.. 
I 
~ 

UI 
I 
0 ..... 
~ 

15 

10 

5 

0 
0 20 40 60 

T (K) 
80 100 

Fig. 6.24. Coefficients oflinear expansion, J3 /3, for heavy electron compounds listed in Table 6.6 [deV89]. 

Table 6.6. Selected heavy electron compounds for which there are low 
temperature Cp 'and a values. S or AF denote superconductiog or 

antiferromagnetic transition at temperature T s or TN 
[deV89, Fisk88, Ott87] 

Structure r r Bs 'Y Ts,N 

{mo~K2 ) {1_~K2 ) (GPa) (K) 

CeAh hex 1600 400 -200( < 0.3 K) 0 
60(",1 K) 

CeClI6 o-rb 1~1700 240 83 200« 0.3 K) 0 
00-100('" 1 K) 

CeRu2Siz fet 330 16 '" 100 150 l7(AF) 
URuzSiz fet 60-180 12-30 137 25 1.5(S) 
UBel3 cub 800-1100 60-80 93 3()-40 0.9(S) 
UPt3 hex 430 107 208 70 0.5(S) 

Pd fcc 10 10 189 2.2 0 
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striking. In the absence of a common pattern, we quote here ceCl16 as one example. 
No superconductivity or magnetic ordering was observed down to IS mK. The linear 
coefficients of expansion were measured from 1.4-200 K, and it was found that' ... 
the unit cell expands along the b and c axes, while it shrinks along the a axis up to 
17 K ... ' This anisotropy is strongly temperature-dependent. At 2 K ac is more 
than double ab, while aa is negative; by 25 K ac is small and negative, CXa small and 
positive, and ab is flattening off to a high value of about 1.2 x 10-6 K- 1; and by 
100 K CXa is rather greater than ab and ac, which are roughly equal. Other materials 
are reviewed in [Bar9S, Section I.S.6]. After subtraction of the phonon contribution, 
obtained from data on LaCl16, the I-electron contributions were identified as (i) a 
low temperature anomaly centered at 2.5 K, attributed to the 'Kondo-lattice' effect, 
and a broad contribution centered near 60 K attributed to crystal field effects. Other 
materials are reviewed in [Bar9S, Section I.S.6]. 

The averaged linear expansion coefficients (= /3/3) for these compounds are 
shown in Fig. 6.24. There is further discussion of the Griineisen parameters by de 
Visser et al. [deV90] and in the review by Ott [OttS7]. 
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Chapter 7 

Polycrystals, Composites and Aggregates 

7.1. INTRODUCTION 

This chapter covers mixtures which are not homogeneous. In a polycrystalline 
specimen of a single component only the orientation of the crystallites varies, while 
in composites and aggregates there are also two or more distinct components forming 
a mosaic throughout the solid. 

In such a heterogeneous solid there are usually local stress and strain fields, 
and these local fields change non-uniformly when the solid is subjected to stress 
or strain or change of temperature. For example, quoting from Rosen and Hashin 
[Ros70]: When the bulk Cv (or Cp) is measured 'there is no change in the average 
strains (or stresses), but the local values of strains (or stresses) may change. Hence 
the composite specific heats are not simple weighted averages of the constituent 
specific heats.' This can make it difficult to relate the bulk properties to those of 
the constituents, especially when the crystallites are strongly anisotropic, and (in 
composites) when the thermoelastic properties of the components differ strongly. 
Moreover, if the inhomogeneous stresses are large enough slip may occur, and this 
may also give rise to hysteresis. 

We must note, however, an important exception. In a polycrystal of crystallites 
which have cubic symmetry, change of temperature and pressure do not give rise to 
inhomogeneous stress and strain fields, so that the bulk modulus, heat capacity and 
thermal expansion are the same as for a single crystal. Inhomogeneous fields then 
arise only under shear stress. 

In composites and aggregates the two or more components are spacially sepa­
rated, and thus are not chemically linked except possibly at the interface between 
them. They include many everyday materials ranging from rocks (mineral aggre­
gates) through fiber-reinforced metals to fiber-reinforced polymers and particle-filled 
polymers. The term composite therefore does not apply to homogeneous mixtures 
such as 3HerHe or stabilized zirconia. Those of most cryogenic interest are the 
polymer composites, mentioned in Section 5.9, in which high strength fibers or low 
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Fig. 7.1. Linear thermal expansion, !iJ/I, relative to 293 K for several composites and epoxy resins, 
compared with Cu [Har88a). 

expansion powders are added to the polymer to give constructional materials of light 
weight, high strength and compatible thermal expansion (or contraction). Thermal 
properties of composites can be tailored for many purposes by addition of powders 
such as silica, alumina, magnesia or fibers of graphite, silica, kevlar, etc. They are 
also electrically non-conducting and non-magnetic. The electrically non-conducting 
property is important in ac applications to avoid eddy currents and associated mag­
netic fields. The 'tailoring' consists of choosing suitable proportions of powder or 
suitable alignment of fibers. Figure 7.1 [Har88a] illustrates the wide range of linear 
thermal contractions that can be achieved with different 'mixes,' Ill/I (relative to 293 
K) varying from zero to about 1.4%. It is not within the scope of this monograph to 
cover in detail the multitude of 'mixes' and their engineering applications. 

Although significant departures from additivity generally arise from inhomoge­
neous stress and strain due to mismatch of the thermal expansion at interfaces between 
components, to a first approximation the heat capacity of a composite can be taken 
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as simply the sum of the heat capacities of the individual constituents. But for the 
expansion coefficient departures from additivity are usually larger and more difficult 
to estimate, particularly if the one or more of the components is anisotropic. Useful 
sources of information on composites are 

• Handbook o/Composites edited by Lubin [Lub82], which covers applications, 
ingredients, and processing rather than physical properties. 

• Mechanics o/Composite Materials by Christensen [Chr91], which is primarily 
a mathematical treatment of the elastic properties with a short chapter on 
effective thermal properties of composites. 

• Papers on the thermal expansion of composites include those of Rosen and 
Hashin [Ros70] and Hale [Hal76]. These are theoretical treatments of the ther­
moelastic properties of composites and their constituents, in which bounds are 
derived for the effective expansion coefficients and specific heats of multiphase 
anisotropic composites having anisotropic constituents. 

• Papers by Klemens [Kle86, Kle88] on the theory of thermal expansion of 
composites with spherical or cylindrical inclusions in a matrix. 

• On the experimental side, there are many reports in the physics journals, 
particularly in the Proceedings of ICMC (International Cryogenic Materials 
Conference) published as volumes of Advances in Cryogenic Engineering 
- Materials (e.g .• volume 40B, 1994) by Plenum Press (New York), and in 
specialist ICMC conferences on Nonmetallic Materials and Composites at Low 
Temperatures [Cla79, Har82, Har88b, Oka95a, Har98]. 

It appears that for composite materials there has been insufficient marriage be­
tween theory and experiment, particularly for the anisotropic fiber-reinforced poly­
mers. On the one hand there are theoretical upper and lower bounds for values 
of thermoelastic properties, and various models and approximations for estimating 
where the true values lie between these bounds. On the other hand there are exten­
sive measurements on practical composites, but usually without any comparison with 
theoretical models. We shall discuss them separately below. 

7.2. THEORY 

The complex pattern of local stress and strain fields in a composite depends on 
the size, shape and orientation of the different grains and their distribution relative 
to each other. For simple models of the distribution, it may be possible to compute 
bulk properties using finite element techniques. Much work has also been done on 
developing approximate general theories. But, to quote [Tay98a]: 'Many simplified 
relationships have been derived [Cha87]. Unfortunately. different equations predict 
different values of expansion coefficient for a given composite.' To chart reliable 
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paths through this specialist minefield is beyond the scope of this monograph, but we 
can indicate the principles on which some of the theories are based. 

7.2.1. Reuss, Voigt and Related Approximations 

The historic approximations of Voigt [Voi889] and Reuss [Reu29] are still often 
quoted and used. Together they give limits for bulk properties within which the true 
values must lie. Reuss assumes that any change in stress is uniform throughout the 
solid, and then derives bulk properties by averaging changes in energy and strain over 
all component parts of the mosaic. This gives Cu. aA. and isothermal compliances 
as simple averages of the components; from these other properties may be derived 
thermodynamically. In contrast, Voigt assumes that any change in strain is uniform 
throughout the solid; this gives c.". 'YA and isothermal stiffnesses as simple averages. 
A popular approximation is that of Hill [Hil52]. who takes the mean of the Reuss and 
Voigt values for any given property. 

To illustrate the methods. consider a macroscopically isotropic polycrystal of a 
single crystalline substance (e.g., [Gib74]). The averages then reduce to averaging 
equally over all possible orientations of a microcrystal. The Reuss values of Cp, 

J3 and x:r for the polycrystal are then the same as those for a single crystal under 
hydrostatic pressure; in particular 

6 3 

J3 = al +a2 +a3 and 'Y = l: X~'YJL/ l: X~ 
JL=1 JL=1 

(7.1) 

where the XJL are the directional compressibilities d~fined in Eqs. (2.129) and (2.130). 
On the other hand, Voigt gives Cy the same as c." for a single crystal. while 

6(3 ) 33 
J3 = 3 ~l A~1 cfJL aJL / JL~1 A~1 cfJL and 'Y = ('Yl + 1'2 + 1'3) /3 (7.2) 

Thus whereas Reuss gives the bulk expansion of a polycrystal as a simple average 
over all directions. Voigt gives more weight to the small expansion in elastically stiff 
directions. In most polycrystals of a single substance the experimental expansion is 
closer to the Reuss average. Composites, however, may be tailored to favor the Voigt 
average. For example, long stiff fibers can greatly reduce the expansion of a less stiff 
matrix in which they are incorporated. and also reduce the value of the specific heat 
Cp to a value closer to that of Cy for the pure matrix material. 

Similar approximations can be used for models in which the distribution of 
crystallite orientation is not isotropic. when the polycrystal is said to have 'texture.' 
The Reuss and Voigt averages are then weighted by the orientation distribution 
function (OOF). Conversely, the theory has been used to estimate the OOF from 
ultrasonic measurements on the polycrystal. 
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7.2.2. Use of Aggregate Elasticity 

The orientation distribution function takes no account of crystallite shape and the 
other details of the mosaic structure. But by averaging over the unknown geometrical 
distribution of crystallites it was found possible for a few simple systems to express 
the thermal expansion of the aggregate in terms of the thermal expansion and elastic­
ity of the separate components plus the elasticity of the aggregate. Later Schulgasser 
[Sch89] showed that these results could be obtained by a delightfully simple phys­
ical argument, which demonstrates clearly which kinds of model can be treated in 
this way. We illustrate Schulgasser's method by using it to derive an expression 
originally obtained by Levin [Lev67] for the effective coefficient of expansion f3e of 
a macroscopically isotropic composite with effective compressibility Xe, composed 
of two components A and B with isotropic expansion coefficients f3A and f3B and 
compressibilities XA and XB· 

Schulgasser considers the expansion to proceed in two stages. In the first stage 
the temperature rise dT is accompanied by a change in pressure dp· chosen such 
that each component has the same relative expansion d In V : 

so that 

and 

(dIn Vh = f3AdT - XAdp· = f3BdT - XBdp· 

dP* = (f3A - f3B) dT 
XA-XB 

(7.3) 

(7.4) 

(dIn Vh = [f3A - XA (f3A - f3B)] dT = (f3BXA - f3AXB '\ dT (7.5) 
XA-XB XA-XB) 

In this first stage the change in both stress and strain is uniform throughout the 
composite. In the second (isothermal) stage the applied pressure dP* is reduced to 
zero, with a further change in bulk strain for the composite 

) • (f3A - f3B ) (dlnV 2 = XedP = Xe dT 
XA-XB 

(7.6) 

The effective thermal expansion coefficient of the composite is thus 

f3e = (alnV) = (f3BXA -f3AXB) +Xe (f3A -f3B) (7.7) 
aT p XA - XB XA - XB 

This is equivalent to an expression derived earlier showing the departure from addi­
tivity [Ros70, Hal76, Mil83]: 

(7.8) 
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where BA, B8 are the bulk moduli of the components, Be is the effective bulk modulus 
of the composite, and fA ,f8 are the volume fractions of each component. 

Without further assumptions the method cannot be applied to composites with 
three or more components, because the condition of uniform expansion in stage 
1 could not be satisfied for all three components; nor can it be applied when the 
components have anisotropic expansion and compressibility. But it can be applied 
to isotropic polycrystals of a single component with axial symmetry [MiI83, Has84], 
when dP* is chosen so that the change in dimensions of each crystallite is isotropic. 
It can also be applied to the above systems when they have 'texture,' i.e., when they 
are not macroscopically isotropic [Sch87b]: stage 1 is then the same as before, but in 
stage 2 the response to the relaxation of pressure is given by the effective directional 
compressibilities XA,e of the aggregate. 

Dunn and Leadbetter have combined the method with Voigt-Reuss-Hill averaging 
of the elasticity to obtain the thermal expansion in terms solely of single crystal 
properties and the ODF [Dun95]. 

7.2.3. Other Relations 

A number of approximate expressions relating the thermal expansion of different 
types of composites to the thermoelastic properties of their components are quoted in 
[Tay98a], including those of Schapery [Sch69] for longitudinal and transverse coef­
ficients of a unidirectional fibrous composite in terms of the expansion coefficients, 
Young's moduli and Poisson's ratios of matrix and fiber. The review by Hale [HaI76] 
also lists a number of alternative relations for the axial and transverse values of a for 
transversely isotropic aligned fiber composites. Some of the upper and lower bounds 
from these relations are shown in Fig. 7.2, together with experimental values for an 
aligned glass-fiber composite attributed to Schneider [Sch71]. 

Note also a formula given by Hartwig and Knaak [Har84] attributed to Schneider 
[Sch71], for the longitudinal expansion of a uni-directional composite: 

all = aFIi + 1 + [1.1f /(1-1.1f)](EFII/EM) 
(7.9) 

wheref is relative fiber content per volume, and EM and EFII are Young's moduli for 
matrix and fiber respectively. 

7.2.4. Theories for Specific Inclusions 

Klemens [K1e86] developed a theory for the overall thermal expansion of com­
posites containing either spherical or randomly oriented long cylindrical inclusions 
in a matrix. The strain field of the inclusions consists of a uniform expansion and 
short-range strain fields, and these are related by minimizing the elastic free energy. 
He gives an instructive numerical illustration of the results: for cylindrical and spher­
ical inclusions, the expansion is less than the volume average for low concentrations 
and more for higher concentrations. 
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Klemens [Kle88] generalized this to other shapes of inclusion (i) in matrix (m) 
and obtained a relation of the same form as the simple mixing rule 

/3 = ff3i + (1- f)f3m (7.10) 

but with concentrationf being replaced by an effective concentration 

I fF 
f=(I+fF ) 

(7.11) 

where F is a function of bulk moduli Hj , Hm and shear moduli G;, Gm of inclusions 
and matrix as well as f. For low values off, F is usually > 1 so that f3e > f3simple. 

For large values of f, F < 1, and the simple equation overestimates the effect of 
inclusions; but departures are usually small. 
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7.3. EXPERIMENT 

7.3.1. Heat Capacity 

As we have seen, in the absence of varying local interfacial stresses the spe­
cific heat Cp of the composite would be simply the weighted sum of the individual 
contributions. A composite of 2 components would then have a bulk specific heat 

Cp = (1-f)cM +/CF (7.12) 

where CM and CF are respectively the specific heats cp per unit volume of matrix and 
fiber, and/ is the volume fraction of fiber (or powder). 

But in some materials there are appreciable departures from this approximation. 
For example, Jackel [Jac91] measured the specific heat of a glass-fiber epoxy com­
posite and its components from 2 to 80 K and found the calculated values from the 
above equation were 10 to 20% higher than his measured values. 

The relation of experimental values of 8 0 (and ")'0) to the bulk elastic properties of 
the composite has been discussed recurrently over many years (e.g., [Bar98, p. 93]. In 
most measurements the relevant phonon wavelengths even at the lowest temperatures 
are smaller than the crystallite dimensions, and so the bulk elasticity appears to be 
strictly irrelevant, although experimentally it has given good agreement for some 
cubic materials. At lower temperatures (where averaging over individual crystallites 
becomes invalid) the properties will depend upon the disordered structure of the 
material, providing intractable theoretical problems similar to those for a glass. 

7.3.2. Thermal Expansion 

Powder-Filled Composites. Unfilled epoxy resins contract on cooling from 
room temperature (usually 293 K) to helium temperatures (4 K) by amounts gen­
erally in the range 1.0 to 1.4%. The addition of about 40% (by volume) of a filler 
(silica, alumina powder) can reduce this contraction to about half [Wal94], i.e., to 
about 0.6% or 60x 10-4 • Tests by Hartwig [Har77b] with these powders (including 
zirconium silicate) at concentrations ranging from 10 to 80 vol% of filler showed 
that dl / 1 (from 293 to 4 K) decreased roughly linearly with concentration of filler, 
almost independently of the particular filler. Reduction due to 40 vol% filler reduced 
the contraction to between 50 and 60% of the unfilled value. 

Glass-Fiber Filled Composites. In these, the filling agent is isotropic and is 
often a glass with a room temperature value of a ~ 5 x 10-6K- i (and therefore an 
overall contraction on cooling to 4 K of about 0.05%, similar to Pyrex). Used as 
filler at 60 vol%, it will reduce the overall contraction from 293 to 4 K of an epoxy 
resin from over 1 % to about 0.2%. Grades of fiberglass suited to various applications 
include A-glass, S-glass and E-glass, see [Lub82, p. 139]. Of these E-glass is most 
widely used, particularly for electrical and cryogenic applications. The composition 
(in wt.%) is about 54% Si02,15% Al203, 17% CaO, 5% MgO and 8% B203. 
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Fig. 7.3. Thermal contraction relative to 293 K of glass-cloth epoxy composites, GlO and GIl. and of a 
cotton-resin composite [QaSI]. 

Commercial glass-cloth epoxy laminates have become very important as cryo­
genic structural supports to provide thermal and electrical insulation for large super­
conducting magnets. This necessitated performance specifications being established 
by the NBS (now NIST) and the National Electrical Manufacturers Association 
(NEMA) in the USA. These are based on a woven fabric of silane-finished E-glass 
in an epoxy resin - heat activated, amine-catalyzed, bisphenolA [KasSO]. These 
laminates, denoted as G-IOCR and G-IICR, have measured contraction ratios (293 
to 4 K) of about 0.2% in the warp direction and 0.6-0.7% in the direction normal to 
the warp of the glass cloth [KasSO]. 

Clark et al. [ClaSI] tabulate extensive data for G-IO and G-II and other cotton­
phenolic laminates used in superconducting magnets (Fig. 7.3), including CulNbTi 
wire and NbTi wire interwound with fiberglass cloth. Table C.2 in the Appendix gives 
values for the contractions of some materials widely used in cryogenics, including 
G-IO. 
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Fig. 7.4. Thermal contractions relative to 293 K observed transverse and parallel to a UD Kevlar fiber in 
epoxy and to a UD carbon fiber in epoxy. Note scale change above and below the horizontal axis [Har88a]. 

Carbon-Fiber Composites. Graphite single crystals have hexagonal structure 
and are highly anisotropic (see Section 5.8.2), with weak Van der Waals forces along 
the c-axis and strong covalent bonding in the ab-plane. Fibers are generally small 
graphitized areas 'cylindrically' aligned [Har84] in the fiber direction so that the fiber 
axis is roughly equivalent to the a-direction and has negative values of a at normal 
and low temperatures. Thus the expansivity, conductivity and strength of epoxy 
laminates made from carbon-fiber mats depend critically on fiber alignment and the 
choice of cross-ply angles. Values of contraction !l.lll on cooling to 4 K may be 
varied from around 1.0% to -0.04% (i.e., an expansion of 4x 10-4), depending on 
choice of alignment [Har88a]. 

A series of measurements by Yates and collaborators at the University of Salford 
examined the effect of changing fiber type, fiber weave, orientation, resin type, curing, 
etc. (e.g., [Yat82]). 

Kevlar Composites. Kevlar fibers consist of stretched aramide molecules with 
strong covalent bonding in the fiber direction only. They are more anisotropic than 
graphite fiber. The negative coefficient a in the fiber direction is due to transverse 
vibrations nonnal to the molecular chain alignment [Har84). as discussed in Section 
5.9. 

Figure 7.4 shows the differences in !l.lll (relative to 293 K) for a Kevlar fiber 
composite cooled to 4 K. Transverse to the fiber there is a contraction of 1.5%, while 
in the longitudinal fiber direction there is an expansion of about 0.09%. 
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Chapter 8 

Cryocrystals, Clathrates and Curiosities 

8.1. CRYOCRYSTALS 

8.1.1. Introduction 

The term c ryocrystals is used for the solidified forms of those gases which become 
solid at low temperatures. The monatomic members of this family (He, Ar, Ne, etc.) 
have been discussed in Section 5.2 and in the two volumes on rare gas solid~ edited 
by Klein and Venables [Kle76, Kle77]. 

Here we select those molecular gases which are of general cryogenic interest, 
including hydrogen, nitrogen, oxygen, carbon dioxide, methane. Many of the pioneer 
investigations of these crystals were done by Professor Manzhelii and his colleagues 
at the Low Temperature Institute in Kharkov. Some of the crystals, notably H2, 
02, N2, CO, C02, and N20 are discussed in detail in Physics of Cryocrystals by 
Manzhelii and Freiman [Man97]. 

8.1.2. Solid Hydrogen 

Both hydrogen and deuterium contain molecules of two kinds, 'ortho' and 'para'; 
in o-H2 the spins of the two protons are parallel to each other, and in P-H2 they are 
antiparallel (see Section 4.2.3). Due to energy differences between the two states, 
equilibrium concentrations vary from 100% para-hydrogen at the lowest temperatures 
to about 20% at room temperature. When cooled and solidified, the transformation 
to eqUilibrium is a slow process (in the absence of a catalyst), extending over many 
days and involving the release of heat of transformation amounting to 670 J.g-I for 
H2. The crystal structure is hcp with a cia ratio at 0 K of 1.633, very close to the 
ideal packing ratio, (8/3)1/2. 

The triple point of equilibrium hydrogen at 13.8033 K is a defining temperature 
on the International Temperature Scale ITS-90. 

The heat capacity of solid para-hydrogen has been measured from near 1 K up to 
the melting line for a number of capsules sealed at different pressures, corresponding 
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Fig. S.l. Cv data for para-H2 containing low levels of ortho-H2 impurities. Data at 19.120 cm3'mol-1 
are for two different concentrations of ortho-H2. Solid lines represent lattice contributions [KraSO]. 

to molar volumes ranging from 22.79 to 16.19 cm3 ·mol-1 (see Fig. 8.1 from [Kra80]). 
The data were analyzed to give the volume and temperature dependence of eg, the 
Griineisen 'Y, and the equation of state for P-H2, as well as the volume dependence 
of the quadrupole interaction parameter for the residual O-H2 impurities. 

The values of Cy of the nearly pure P-H2 fit a relation of the form 

Cy = Corthopabs +A3T3 +AsTs + ... 

The T3 terms give values of eo ranging from 127 K (for Vo = 22.79 cm3'mol-1) 

to 255 K (V = 16.19 cm3 ·mol- I ). Extrapolation gives values at P = 0 (V = 23.23 
cm3·mol- l ) of eo = 120.6 K, 'Yo = 2.344 and 80 = 0.176 GPa. 

At higher pressures, eo and 'Yo are given by [Kra80] 

In eo = 8.4528-0.614In V -0.0744V 

and 

'Yo = -(d Ineo/dIn V) = 0.614 + 0.0744V 

The Kharkov group [Ale89] have made direct measurements of linear expansion 
of a free-standing rod of para-hydrogen from 0.9 to 5 K. They fitted their results to 
the equation ex = 1.82 x 1O-7T3 K- 1 and obtained 

'Y = 2.0 ± 0.25 

They later measured a free standing rod of ortho-deuterium from 1.5 to 5.6 K and 
fitted to a relation [SoI92] ex = (1.475 ±0.04) x 1O-7T3 + O(TS) +O(T-2) K- 1 for 
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Table 8.1. Some basic parameters for the Nz-type crystals from 
[Man97, p. 216, chs.13,14) and other solid gases. Tt is the triple-point 
temperature at pressure Pt. T otP is the temperature of the a-fJ phase 

transition at P = O. Asterisk· denotes value at 51 K [Ste59) 

Parameter N2 CO N20 CDl p-H2 02 Cf4 

Wa(K) 83.6 103.3 141.0 151.8 121 104.5 

Vo(cm3/mol) 27.1 27.1 27.0 25.8 23.23 23.5· 31.6 
80 (GPa) 2.21 2.52 6.70 7.58 0.176 3.0· 
Y-IOK 2.5 2.9 2.15 2.1 2.34 
T, (K) 63.15 68.13 182.35 216.57 13.803 54.3584 90.69 
P, (kPa) 12.5 15.4 87.9 518 7.034 0.1464 11.70 
Tall(K) 35.61 61.55 23.88 

43.80(/3y) 
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T > 3.5 K. The T3 term in the heat capacity corresponds to e~ = 114 K. The data 
below 4 K could be fitted with a lattice term plus a Schottky term with a maximum 
near 2 K. 

X-ray measurements of expansivity of solid p-H2 show that the anisotropy is not 
significant between 4 and 9 K but that aa exceeds ac for T;::: 10K [Man97, p. 100]. 

8.1.3. Nz-Type Solids 

The crystals N2, CO, N20 and C02 are all formed from linear molecules, the 
molecular units occupying a fcc lattice with the Pa3 structure in the orientationally 
ordered low-pressure phase, see [Man97, Ch. 10]. Another common feature of these 
solids is that the intermolecular forces are much weaker than the intramolecular ones: 
the intramolecular vibrational frequencies are an order of magnitude higher than the 
intermolecular frequencies, corresponding to wave numbers .-v 1000 cm -1. As far as 
lattice vibrations are concerned, the molecules can be treated as undeforrnable. The 
two main types of motion are translational and rotational. 

Some of these crystals transform from their low-temperature a-phase (Pa3) to a 
f3-phase at higher temperatures. For N2, the f3-phase which is stable above 35.6 K 
is hexagonal P63/mmc. For CO, a similar transformation occurs at 61.6 K. There is 
no clear evidence of other phases in C~ and N20 [Man97]. For residual entropy in 
CO and N20, see Section 2.2.5. 

Some important parameters are given in Table 8.1. They include values for the 
triple point temperature and pressure, Tt and Pt , the a-f3 transition temperature Tap, 
Debye temperature e~ and bulk modulus Bo. Most values are from the extensive 
tabulations in [Man97, Cbs. 10,12-14] which include references to much experimental 
data on sound velocities, lattice spacings and heat capacity. Data sources for the other 
solid gases (H2, 02 and Cf4) are discussed below. Triple point data are also given 
by Jacobsen et al. [Jac97]. A few representative values of Cp, Cv, f3 and 'Y for a-N2, 
f3-N2 and C~ in Table 8.2 are from [Man97]. 
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Table 8.2. Thermal data for Nz and COz at 
selected temperatures from [Man97, cb. 14] 

T (3 Cp Cv Bs 'Y 
(K) (l0-4/K) (J/mol·K) (J/mol·K) (GPa) 

a-N2 

10 2.0 4.83 4.81 2.19 2.44 
20 7.2 19.9 19.3 2.15 2.13 
30 14.1 34.2 31.2 2.00 2.27 
35 24.7 44.6 35.9 1.84 2.83 

fl-N2 
40 18.7 37.8 32.8 1.45 2.04 
50 20.5 41.5 35.0 1.34 1.84 
60 25.3 45.6 35.9 1.10 1.79 

C(h 
20 0.56 5.14 5.13 7.57 2.13 
30 1.42 12.95 12.83 7.55 2.13 
40 2.15 19.64 19.29 7.52 2.13 
60 3.32 30.05 28.82 7.44 2.14 
80 4.00 35.9 33.6 7.34 2.14 
100 4.52 39.9 36.4 7.16 2.15 
150 5.83 47.7 40.3 6.35 2.17 
200 8.70 56.8 41.5 4.92 2.30 

8.1.4. Solid Oxygen 

The two lower temperature phases of solid oxygen, a and {3, are both layered with 
almost hexagonal packing of the molecules (see [Man97, p. 359]). The transition 
temperatures under saturated vapor pressure are Tafj = 23.88 K and T(Jy = 43.80 K. 
The triple point is at 54.3584 K, a defining temperature for the ITS-90 Scale. Ancsin 
[Anc75] measured Cp and the latent heats through the a-{3 and {3-'Y transitions 
because of their importance as temperature-scale fixed points. Burford and Graham 
[Bur69] measured Cp from 0.8 to 4.2 K and hence eij for solid 02 as well as for N2, 
CO and NO. There are also earlier Cp measurements of Giauque and colleagues on 
these solids (see [Bur69]). 

Manzhelii et al. [Man66] measured a from 21 to 45 K, noting discontinuities 
near 24 and 44 K. Stewart [Ste59] measured isothermal compressibilities of 02 (and 
methane) over the pressure range 0 to 19 kbar (0 to 1.9 GPa) and temperature range 
4 to 120 K, and mapped the phase diagram. 

8.1.5. Solid Methane 

Methane is another example of weak intermolecular forces so that rotational 
motion of the molecular units is important even at low temperatures. With its 
isotopes and isotopic mixtures, which have various symmetries, methane presents 
an intricate problem and has been the subject of much study, theoretical as well as 
experimental (see [Par78, Section 9.7], and for thermal expansion only, see [Bar80, 
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p. 637, p. 670]). As with ortho and para H2 and D2, thennodynamic measurements 
have to take account of slow interconversion between different nuclear spin species. 
Many different phases are found depending upon isotopic composition as well as on 
temperature and pressure, and different kinds of anomalies in the heat capacity and 
thermal expansion due to transitions between them. Thennodynamic properties can 
be strongly affected by impurities, particularly from Schottky contributions at low 
temperatures. 
C~ has fcc structure. Below the melting point, in phase I, the molecules 

are distributed between twelve equivalent orientations, with large librational and 
translation amplitudes. At 20 K there is a transition to 'phase II: which has a 
remarkable structure: molecules are arranged on the fcc lattice such that on three out 
of four sites the molecules librate about an ordered orientation, while in the fourth 
the molecule undergoes hindered rotation. At still lower temperatures (rv S K) there 
is a broad transition to a state in which all the molecules appear to be rotating, but 
this behavior is dependent upon isotopic purity and inter-spin conversion. 

Early heat capacity measurements on the different isotopic species were per­
fonned by Clusius and later greatly extended by A. Sperandio and by J. A. Morrison 
and colleagues (e.g., [CoI63]). Their findings are summarized and discussed in 
[Par7S]. 

The thermal expansion below 60 K has been measured by the Kharkov group (see 
[BarSO, p. 679]) and Heberlein and Adams [Heb70]. Values of 'Y ~ 1.7 are obtained 
for the region from 20 to 60 K. Low temperature values for CD4 give 'Y as about 2.0 
below S K, rising to about 2.S at 17 K. 

S.1.6. Solid Ammonia 

Manzhelii and Tolkachev [Bar80, p. 679] measured Cp and a from 24 to 175 K. 
They fit these to Debye and Einstein terms with e~ ~ 220 K and 'YD ~ 1.35 from 30 
to 50 K. They note that Cv and a increase above 100 K much more rapidly than the 
Debye model predicts and suggest this contribution is due to hindered rotation of the 
molecules. 

S.2. OI'HER RUfATIONALLY DISORDERED CRYSTALS 

S.2.1. Introduction 

The crystals of general cryogenic interest described in the preceding section are 
members of a vast group of orientationally disordered crystals, in which approxima­
tion to spherical or cylindrical shape can permit hindered rotation of a molecule or 
molecular group. These solids are usually weakly bound, with low melting points 
and easily defonned, and so used to be called 'plastic crystals' (e.g., [She79]; but 
this name was obviously inappropriate for a group which contained strongly ionic 
ammonium salts. Like the cryocrystals, they display a rich variety of phenomena at 
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Fig. 8.2. Comparison of -y(T) for some cryocrystals (see [BarSO. p. 6781 and [Man97]). 

cryogenic temperatures, with phase transitions between different kinds of rotational 
ordering manifest in their thermodynamic properties. The elucidation of this intricate 
behavior is aided by other measurements, including X-ray and neutron diffraction, 
NMR, Raman and infra-red spectroscopy, dielectric and acoustic studies, etc. Here 
we can give only a few brief examples; for references and further discussion see 
[Par78, She79]. 

8.2.2. Hydrogen Halides 

Solid state transitions have been observed in the three heavier solids, but not 
in HF (Table 8.3). The explanation for this is to be found in the larger molecular 
dipole moment of HF, which fixes more firmly the molecular orientation; it keeps 
its full orientational order up to the melting point, as shown by the large entropy 
of meltjng. At low temperatures Hel has an ordered crystal structure with the 
molecules arranged in zigzag chains, but it loses a large part of its orientational 
order in a first order transition to an fcc phase at 98.4 K; a large increase of electric 
permittivity confirms that in this phase molecules can reorientate. In contrast, early 
heat capacity measurements by Giauque and Wiebe [Gia28a, Gia28b] revealed three 
separate lambda transitions in HBr (Fig. 8.3). There is an enormous peak in the 

Table 8.3. Phase transitions in hydrogen 
halides; entropies and dipole moments 

Halide HF HCI HBr HI 

Tm (K) 190 159 186 222 
Mm (J.mol-I·K-1) 24.1 12.5 '" 12.6 
,.,. (Debye) 1.91 1.08 0.80 0.42 

Transition none 98.4 117 125 
temperatures 113 69 
(K) 90 
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Fig. 8.3. Heat capacity of HBr. showing three solid state phase transitions. Note 1 cal = 4.184 J. From 
[Gia28b). 

permittivity at the 90 K transition, possibly indicating a ferroelectric order-disorder 
transition. Neutron diffraction on DBr shows that above 90 K each molecule can 
orient in one of two directions, compared to a unique direction in an ordered zigzag 
structure below 90 K. III is rather similar to BBr. 

8.2.3. T-Butyl Chloride (TBC) and T-Butyl Bromide (TBB) 

There are many rotationally disordered organic solids, of which we take the 
tertiary butyl halides as an example. Calorimetric data reveals three separate solid 
state phases for both TBC and TBB, all separated by first order transitions (Table 
8.4). The phases are labelled I, IT. ill, with I adjacent to the melting point. The 
molecules have the structure XC(CH3h, where X is the halogen, with an electric 
dipole moment along the three-fold symmetry axis. The possibilities for orientational 
disorder include not only the direction of the dipole but also the orientation of the 
molecule about the dipolar axis, and perhaps also internal rotation of the methyl 
groups about their C-C bonds. 

X-ray and neutron diffraction show that in both compounds phase I is fcc, with 
random orientations. For TBC phase IT is tetragonal, with the C-CI bonds fixed along 
the 4-fold axis and random orientation of the molecules about the bonds; phase ill has 

Table 8.4. Phase transitions in tertiary butyl bandes 

1'8e 1'8B 
T, (K) t:.s (J·mo1-1.K-l) T, (K) t:.s (J·mol-1·K-l) 

III --+ II 183 10.2 209 27.2 
II --+ I 219 
I --+ liquid 248 

25.8 
8.0 

231 
256 

4.6 
7.5 
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orthorhombic symmetry. Phases II and III of TBB appear both to be orthorhombic, 
but with different structures from each other and from phase III of TBC. 

The low tJ.S on melting shows that both compounds have high orientational 
disorder in phase I, which for TBB largely persists in stage II, as confirmed by high 
permittivity in both phases. Phase II for TBC is more ordered, and permittivity shows 
that the dipoles cannot reorient; but ordering in either compound is not complete until 
phase III. Further discussion and interpretation of the results is given by Richardson 
and Taylor [Ric84]. 

8.2.4. Ammonium Halides 

Ammonium salts are hard ionic crystals, but with the possibility of disorder in 
the orientation of the NHt ions. In Nli4F there are strong directional hydrogen 
bonds between the ions, and the crystal is ordered at all temperatures, with the N 
and F atoms forming a tetrahedral wurtzite structure. The other halides have weaker 
hydrogen bonds and are rich in phase transitions. 

ND4Br. To illustrate the complexity of behavior in these salts, we take deuterated 
ammonium bromide, on which there have been extensive measurements. There are 
four solid state phases, numbered lor a to IV or B) as the temperature is decreased. 
I has NaCI structure, with maxima in the smeared deuteron density between the N 
and CI sites. The remaining phases have CsCI or distorted CsCI structure, where 
there are two possible orientations of the tetrahedral deuterons such that they point 
towards neighboring anions. In phase II (cubic) there is a random distribution of 
these orientations, in phase III (tetragonal) neighboring NDt ions are antiparallel in 
ab planes but parallel in the c direction, and in phase III (cubic) they are parallel in 
all directions. 

Calorimetric data [Ste68] show a clear first order transition from I to II at 391 K, 
and lambda peaks at215.1 K(broad, as::::: Rln2) and 166.7 K (narrow, as::::: O.15R), 
indicating that III to II is a typical order-disorder transition. Surprisingly, X-ray data 
(see [Hov69] and [Bar98, Fig. 51]) indicate discontinuous jumps in volume at all the 
transitions, and do not reflect in any way the broad peak seen in the heat capacity. 

Similar phases are seen in other ammonium halides, although the B-phase is 
absent from the iodide and the 'Y-phase from the chloride. Pressures of the order of 
kilo bars modify behavior considerably. 

8.3. CLATHRATES 

8.3.1. Introduction 

Clathrates, named after the Greek word for cage (clathros), are lattice inclusion 
compounds in which a guest molecule is confined by barriers created by the archi­
tecture of the crystalline host. The interaction between guest molecules and host 
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in clathrates is usually weak in comparison with covalent chemical bonding. Many 
hosts owe their existence and stability to the presence of the guest molecules within 
the 'cage.' 

Technically and cryogenically important are the gas hydrates, because of the 
significant amounts of natural gas (largely ClL!) which may be locked into clathrate 
ice (under pressure) in many colder parts of the earth. This has stimulated research on 
the thermal properties of those ice clathrates which can be made in the laboratory and 
are stable at atmospheric pressure. These should mirror the properties of natural gas 
hydrates which are only stable under pressure. Generally the thermal conductivity 
of the ice clathrates is many times smaller than for normal ice in the range 100 to 
200 K, although values of heat capacity (and expansion) are not very different. The 
thermal conductivity is reduced by rotational disorder. 

The book Disorder in Crystals [Par7S] includes a chapter on clathrates and 
channel compounds, discussing particularly the evidence for rotational disorder. 
Before discussing clamrate ices, we describe briefly low temperature data on two 
organic systems - the quinol clathrates containing rare gas atoms and diatomic 
molecules, and the clathrates of Dianin's compound. 

8.3.2. Gases in IJ-Quinol 

Hydroquinone when crystallized in the l3-quinol structure forms a clathrate com­
pound with regularly spaced holes which can trap foreign molecules of suitable size. 
Although the host l3-quinol cannot exist on its own, its properties can be estimated 
by extrapolation of guest concentration to zero. Measurements of Cp for the trapped 
molecules show that above 100 K or so they 'rattle around' much as in a gas, but 
the 'rattling' motion becomes frozen at lower temperatures. The molar contribution 
to Cp of the monatomic guests Ar and Kr is approximately constant above 100 K, 
with values of about 2.SR (see [Par7S, Fig. 11.2]). This lies between the values 
for a classical particle in a box and that for a three-dimensional classical harmonic 
oscillator. Below about SO K, there is a sharp drop in this contribution (Fig. S.4). 

For diatomic guests such as CO, N2, 02, there is a hindered rotation of the mole­
cules in the cage in addition to the translational motion. A study of the far-infrared 
spectra of the monatomic gases showed a single spectral line while the polar diatomic 
molecules showed an additional line presumed due to hindered rotation. Burgiel et 
al. [Bur6S] calculated the specific heat from the infrared data; they found good agree­
ment above 100 K or so, but the calculated rate of change at low temperatures was 
faster than that observed, due perhaps to coupling effects neglected in their theory. 
More Cp data below SO K are needed to elucidate the problem. 

8.3.3. Dianin's Compound and Its Clathrates 

Dianin's compound (4-p-hydroxyphenyl-2,2,4-trimethylchroman) is a complex 
organic crystal containing empty cages with relatively narrow waists. It can have the 



286 

C/R I. 

Chapter 8 

CLASSICAL LINEAR HARMONIC OSCILLATOR - -

••••• 
• 

. -••••••••• 

CLASSICAL FREE PARTICLE IN A BOX - - -

T (OJ() 
Fig. 8.4. Heat capacity of Ar trapped in /:I-quinoJ. Experimental points (see [Par78. p. 724]) are compared 
with a curve calculated from the infrared spectrum [Bur6S). 

same crystalline form both when it is pure and when it is a clathrate host, enabling 
direct comparison to be made of experimental properties. More than fifty different 
guest species have been identified, but we consider here only the pure compound and 
its ethanol and carbon tetrachloride adducts. Ethanol is included as a dimer, with 
one molecule in each half of the cage; in contrast there is a single CCI4 molecule in 
each cage, with one CI as 'foot' in the waist of the cage and the other half of the cage 
empty. 

Heat capacities, lattice parameters and thermal conductivities have been stud­
ied down to 50 K by M. A. White and her collaborators (see [Zak91] for ref­
erences). The effective heat capacity of the guest Cf4 molecules, obtained as 
Cp(clathrate)-Cp(host), was similar to that of the bulk solid, except for the absence 
of bulk phase transitions which depend upon interactions between neighboring mole­
cules. The heat capacity of guest ethane was closer to the bulk liquid than to the 
solid. 

Estimated Griineisen functions of the clathrates were similar to that of the pure 
host ('" 1), except below 100 K where they started to rise sharply with decreasing 
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temperature. Despite uncertainty in both the X-ray and elastic data, this rise appeared 
to be significant, indicating extra low frequency optic modes with a strong strain 
dependence. 

8.3.4. Clathrate Ice 

Specific Heat. Measurements from 100 to 200 K of various ices containing 
tetrahydrafuran (nominally THF·17H20), ethylene oxide (EtO· 7H20) and a cyclobu­
tane (C·16H20) gave values of Cp (per gram) of about 1.0 J.g-1·K-1 at 100 K, 
increasing to 1.S J.g-1.K-1 at 260 K; These do not differ by more than 10% from 
values for normal (hexagonal) ice [LeaS2, AndS3a]. 

Other heat capacity measurements on THF clathrate hydrate were made from 17 
to 261 K by M. A. White and Maclean [Whi85b]. The results were consistent with 
free or nearly free rotation of the guest molecules above 120 K, but with increasingly 
hindered rotation below this temperature. Normal hexagonal ice seemed to be a good 
model for the behavior of the host above 120 K, but not at the lower temperatures. 

Thermal Expansion. Measurements of the linear expansion of a rod of tetrahy­
drafuran ice (THF·17H20) from SO to 265 K gave values which were higher by about 
20 x 1O-6K-1 than for normal ice. The corresponding values of the Griineisen 'Y 
were between 0.8 and 0.9 compared with 0.6 for normal hexagonal ice [Rob84]. 

8.4. CURIOSITmS 

This section includes a number of solids for which there are low temperature data 
of interest but which do not fit naturally with other major groups. 

8.4.1. Alto V: An Einstein Solid or 'Particle in a Box' 

In Section 5.12 we discussed the effect of introducing a heavy ion impurity into an 
alkali halide lattice and the possibility of creating a local low-frequency mode which 
could enhance the heat capacity and expansion at low temperatures, depending on the 
degree of coupling to the host lattice. Truly localized vibrational modes are unusual 
because of the strength of the interatomic coupling. With tight coupling, we might 
expect a 'foreign' ion to move roughly in phase with the neighboring lattice ions: 
the effect on thermal properties would be less obvious, being distributed over an 
extended energy and temperature range unlike the localized effect observed in some 
of the clathrate 'cages' (see Section 8.3). 

An example among intermetallic compounds of a localized 'Einstein' mode is 
AllO V, where the specific heat (and electrical resistivity) below", 20 K were found 
to be many times greater than the expected lattice contribution based on a Debye 
temperature of 390 ± 10 K. Cp data below 5 K (see Fig. 8.5) were fitted well by an 
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Fig. 8.5. Cp of Allo V (upper curve) compared with AI9COZ plotted as CIT versus T2 [Cap7J. Cap78]. 

Einstein function with @E = 22 K and a linear tenn with r = 19 mJ·mol- 1·K-2 (see 
[Cap73. Fig. 8.3]). These observations and X-ray ~vidence indicate that the mode 
is associated with a 'loose' Al atom occupying a large hole in the AI 10 V structure, 
reminiscent of the behavior of the rare gas clathrates (Section 8.3). In the unusual 
structure of AIIOV the cubic unit cell contains 16 fonnula units (176 atoms) with 
many Al atoms clustered closely around the V sites. However there are a few extra 
Al atoms that occupy cage-like sites with 16 Al neighbors at a much larger distance 
of 3.1 to 3.2 A. [Cap78]. 

The thermal expansion coefficient of Alto V has a positive 'bump' centered around 
10 K which is much larger relatively than that in Cpo A plot of InaT2 versus liT 
gave a value for the excitation energy associated with this bump which corresponds 
to an Einstein tenn of @E = 22 ± 0.3 K [Leg78]. The magnitude of the bumps in 
a and in Cp lead to a value of 1E ~ 80. This very large value denotes a large 
volume dependence of the local energy potential, suggestive of a tunnelling process 
analogous to that of the off-center Li ions in KCI discussed in Section 5.12.4. Indeed 
the pseudopotential calculations discussed by Caplin and Nicholson [Cap78] suggest 
that the AI ions in the Al 'cage' may occupy potential minima offset from the center 
in [111] directions by about 0.5 A.. This leaves Al 10 V as an interesting problem with 
tunnelling as a possible explanation. 
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8.4.2. a-Cristobalite 

We include this cubic form of Si02 among the 'Curiosities' because the low 
temperature values of heat capacity and thermal expansion appear to contradict the 
behavior of quartz and vitreous silica. 

The many forms of silica including the so-called 'stuffed derivatives' such as 
l3-eucryptite (Section 5.7) are an interesting challenge to physicists and crystallogra­
phers, as may be seen from reading the volume 29 of Reviews in Mineralogy entitled 
Silica [Hea94]. The low pressure phases include a-quartz (density p = 2.650 g. 
cm-3), l3-quartz (p = 2.533), a-cristobalite (p = 2.33) and tridymite, (p = 2.3). The 
a- and l3-quartz have structures based on 3, 4, and 6-fold spirals of Si04 tetrahedra, 
some of which can accommodate smaller ions such as Li, e.g., in the LiAlSi family 
(eucryptite and spodumene). 

For a-cristobalite, Cp was measured from 5 to 300 K by Westrum [Wes63] and 
from 2 to 20 K by Bilir and Phillips [Bil75]. Results showed eg ~ 475 K and that 
e C falls very rapidly with increase in temperature to a minimum of about 270 K 
near T '" eo/35. This is clear from the sharp rise in c /T3 (Fig. 8.5) which is very 
like that observed for vitreous silica but quite unlike the slower rise seen in quartz or 
indeed in most other crystals. Bilir and Phillips comment on the similar positioning 
of the Si atoms in cristobalite to those in silicon and diamond-like crystals, suggesting 
that dispersive transverse acoustic modes may be important in the determining c{T}. 
However the minimum in e C for the diamond-like crystals is closer to <90/15. 

The expansion coefficient, shown as a/T3 in Fig. 8.6 [Whi76a] behaves in 
very similar fashion to c /T3, but there is no sign of negative expansion as occurs in 
vitreous silica and many diamond-like crystals. Without more details of the frequency 
spectrum of cristobalite, it is not certain whether TA modes or low-lying optic modes 
are responsible for the rather unique patterns shown in Fig. 8.6. Inelastic neutron 
scattering experiments on polycrystalline specimens [Lea69] showed that the lowest 
energy acoustic branch of the spectrum of cristobalite was very flat with the top 
frequency being centered around 40 cm- i , slightly lower than that observed for 
vitreous silica. Leadbetter concluded that there is a broadening of the lowest energy 
(transverse) acoustic branch in the glassy state due to disorder. 

8.4.3. Two Silicates: MgZSi04 and ZOZSi04 

The two silicate minerals forsterite (2MgO·Si02) and willemite (2ZnO·Si02) 
might seem like close relatives, but their lattice dynamics reflects major differences 
in their structural arrangement. 

Forsterite is one of the olivine family of minerals, (Mg,Fe)zSi04, which are 
important constituents of the earth's upper mantle. It has an orthorhombic Pbnm 
structure, only slightly distorted from a hexagonal close-packed array of oxygen an­
ions with the orthorhombic b, c axes in the basal plane. The smaller Mg and Si cations 
sit in octahedral and tetrahedral interstices respectively. The elastic anisotropy is not 
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Fig. 8.6. a-cristobalite. A plot of alT3 in units of IO-JOK-4 and clT3 in units of p.Jg-J .K-4 [BiI75, 
Whi76aJ. 

very marked, with linear compressibilities Xb(3.43 x 10-12) > Xc(2.66 x 10-12) > 
Xa(1.80 x 10-12 Pa-I) and Bo = 130 GPa [Gra69, Sum77]. Measurements of Cp 
from 5 to 380 K give 80 = 768 ± 15 K (cf. 8(/=766 K) with 8~in ~ 670 K near 
8/15 [Rob82]. The three principal linear expansion coefficients measured from 2 to 
150 K are all positive (see selected values in Table 8.5); they give principal values of 
the Griineisen parameters 'Ya,b,c ~ 1.2 at 300 K, and between 1.3 and 1.5 below 30 K 
[Whi85a]. 

Willemite. This compound with the phenacite structure can be envisaged in terms 
of tetrahedral groups with open channels along the c-axis (see [Hea94, p. 84]). The 
anisotropy and negative values of both a.l and all at low temperatures are shown by 
the selected values given in Table 8.5. The volume coefficient remains negative up 
to about 250 K, reminiscent of the behavior of the tetrahedrally bonded zincblende 
and wurtzite crystals discussed in Section 5.5. 

Low temperature data on Cp are limited to the range 53 to 298 K [Tod5I], giving 
8 c ~ 435 Kat 53 K increasing up to 815 K at room temperature. Slack and Huseby 
[Sla82] give estimates of 80 ~ 700 K and Bs = ISS GPa based on a model of the 
Zn04/Si04 arrangement. The values of 'Y in Table 8.5 are dubious because of the 
paucity of elastic data, but the trend of 'Y(T) is very like that shown by the zincblende 
and wurtzite family. The contrast with the more closely packed forsterite (of olivine 
structure) is obvious and in agreement with the discussion of Section 5.5. 
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TableS.5. Selected values of a, Cp and 'Y for M~Si04 (Bo = 130 
GPa, Vo = 43.5 em3) and ZOZSi04 (Bs ~ 155 GPa, V :::::: 52.5 em3) 

[WhiS5a, Whi88) 

T Cp a" ab a.: 13 'Y 
(K) (J/mol·K) (l0-61K) (l0-6/K) (l0-61K) (l0-6/K) 

M~Si04 

10 0.030 0.0016 0.0044 0.0027 0.0087 1.45 
20 0.275 0.013 0.036 0.022 0.071 1.4 
30 Ul6 0.041 0.131 0.073 0.245 1.3 
60 9.8 0.30 1.00 0.56 1.86 1.1 
100 32.2 1.39 3.30 2.40 7.09 1.2 
150 62 2.95 6.20 4.95 14.1 1.26 
300 119 6.6 11.3 10.0 27.9 1.25 

Zn2Si04 aJ. an 
10 -0.03 -0.001 -0.062 
20 -0.21 -0.114 -0.53 
40 (10.8) -0.98 -0.58 -2.54 -1.8 
60 27.2 -1.55 -0.80 -3.90 -1.15 
100 52 -2.00 -0.82 -4.80 -0.75 
130 68 -1.80 -0.45 -4.05 -0.48 
300 124 0.15 2.00 2.30 0.16 

8.4.4. ZrWzOs ••• Coupled Polyhedra? 

An example of a compound containing fairly rigid polyhedra which shows 
negative expansivity at normal temperatures is ZrW20S. The W04 tetrahedra and 
Zr06 octahedra are linked by common 0 atoms. Dilatometry and X-ray diffraction 
measurements above room temperature showed that over the range 320 to 470 K 
the average value of a is about -10 x 10-6 K- 1, apparently decreasing in magni­
tude at the lower temperature [Mar68]. Recent neutron and X-ray lattice spacing 
measurements near 4 K, 80 K, 150 K, 200 and 300 K appeared to give a similarly 
large value of the average a, but the data are insufficiently sensitive to show how 
a varies below 100 K [Mat96]. Because of motions transverse to the bonds, the 
open structure can be expected to favor negative expansion, and a model has been 
proposed in which transverse motions of oxygen atoms along the Zr-O-w linkage 
cause a coupled rotation of the linked polyhedra, giving cooperative motions of the 
tetrahedra described as rigid unit modes or 'RUMs,' see [Pry96]. Such coupled 
motions will undoubtedly occur, although modified to some extent by deformation 
of the tetrahedra. The validity of the model should be clarified by further accurate 
measurements, especially of dilatometric behavior at low temperatures and elastic 
moduli. There does appear to be a similarity to the behavior of Si04 tetrahe­
dra in /3-quartz (to which the model has recently been applied [WeI98]) and the 
aluminosilicates (Section 5.7.4), where also negative expansion persists to higher 
temperatures. 
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8.4.5. p-Aluminas 

f3-aluminas containing a few percent of alkali or silver ions have high ionic 
conductivities, and are of potential use in energy storage systems. There is also a 
basic interest in the mechanism of conduction/diffusion, whether it is random hopping 
or a cooperative process. There is thus a need for low temperature measurements. 

The heat capacity of f3-alumina samples containing about 10 mol. % of M20 
and 90 mo\.% Ah03 (M = Ag, Li, Na, K, Rb) has been measured from 1 to 40 
K [McW77]. The excess of Cp above a Debye background (based on E>D = 586 
K) increases progressively from Li (very small excess) through K, Rb, Na to Ag 
(the largest). For Ag, the excess is about five times the Debye term near 20 K; this 
behavior is like that of Ag in NaCI (see Section 5.12.3), which was attributed to heavy 
ion local modes. 

At lower temperatures (:::; 3 K) Cp falls more slowly than T 3, suggestive of 
the tunnelling process evident in disordered solids. The excess in Cp (a possible 
tunnelling term) was measured below 1 K [Ant77] and expressed (in units of mJ· 
mol-I·K-I) as: 

6.4TL18 (Ag); 7.3T1.22 (Li); 3.1T L18 (Na); 1.3TJ.12 (K) 

The thermal expansion was measured from about 8 K down to 0.8 K of Na 13-
alumina, as well as of other disordered solids - silica, epoxy, zirconia, etc. - in a 
study of the low energy excitations by Ackerman et ai. [Ack84]. Their crystal was 
stated to be highly anisotropic, and measurements were only made normal to the 
c-axis. Results from 1 to 2 K were fitted to the relation 

leading to values of 'Y = 8 (for the T term) and 'Y = 2 for the T3 term if B is 
taken to be 270 GPa. Their values of expansion near 8 K were consistent with 
unpublished data [And90b] obtained on a polycrystalline rod of Na f3-alumina, for 
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Fig. 8.8. Griineisen functions for InBi (lower) compared with those for In (upper curves) [Whi9Ob). 

which a = 2 X 10-11 T3 K- 1 from 5 to 25 K. Some values of a at higher temperatures 
were 0.37 at 30 K, 1.2 at 75 K and 4.95 x 10-6 K- 1 at 293 K. 

8.4.6. InBi 

Indium bismuthide is a 'curiosity' because it appears to break the 'rule' (see 
Section 5.8) that anisotropic crystals expand more along the softer axes and less 
in the harder directions. This compound does the opposite. It is a semi-metal 
crystallizing in the B10 tetragonal structure with layers ofIn and Bi atoms arranged 
in planes normal to the c-axis. Each In atom is strongly (tetrahedrally) bonded to 
two Bi atoms in the plane above and two in the plane below. so that the three planes 
form a corrugated triple layer. like a sandwich with Bi as the bread and In inside. 
The sandwiches are piled on each other to form the crystal, and the bonding between 
neighboring Bi planes is assumed to be weak and responsible for the easy cleavage 
normal to the tetragonal axis. The elastic moduli measured at room temperature 
[Akg73] show large anisotropy, with compressibility XII (c-axis) ten times larger than 
Xl- (basal plane). The weakest principal modulus is c' = 7 GPa, this being a shear 
wave propagated in the [110] direction. It softens under pressure, while another shear 
mode, C66, stiffens under low pressure up to 1.2 GPa and then softens [Fri76]. 
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The heat capacity measured from 1 to 35 K [MarS1] gives a value of 6~ = 140 
K and a small electronic term Ce = O.S mJ·mol-1K- 1• 

The linear expansion curves all (T) and a.l (T) look qualitatively similar to those 
for In (see Fig. 6.11) but are of different magnitude. all (soft axis) has a shallow 
minimum near 4 K and a maximum near 10K, and then falls monotonically, reaching 
a value of -S5 x 10-6 K- 1 at room temperature; a.l is always positive, reaching 
61 x 10-6 K- 1 at 293 K. The volume coefficient is positive, with 'Yabout 1 below 
50 K and about 0.6 at room temperature. 

The principal 'Y values (Fig. S.S) show that 'Y.l exceeds 'YII at high temperatures by 
at least 50%, and at very low temperatures by considerably more. Their role vis-a-vis 
the compliance terms is clear from the relations for axial crystals (see Section 6.3.1): 

a.l = [(Sl1 +SI2)'Y.l +s13'YI!1CjV 

all = [s33'Y1l + 2S13'Y.l]CjV 

(S.l) 

(S.2) 

For InBi, room temperature values of the compliances (in units of 1O-l1Pa-1) are 

Sl1 +S12 = 3.46, S13 = -3.21, S33 = S.S3 

The large negative cross compliance combined with the larger value of 'Y.l compared 
to 'Yli leads to negative values of all' despite the large value of S33. The puzzle remains 
why these principal gammas behave as they do. An explanation would require more 
detailed know ledge of the phonon spectrum and its strain dependence, and this in turn 
would require a better understanding of the bonding in this complex layered system. 
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Chapter 9 

Conclusion 

This century has seen enonnous advance in our knowledge and understanding of the 
condensed state. The foundations of lattice dynamics were laid by Debye, Born and 
von Kannan early in the century, and extended later through Brillouin, Peierls and 
the neutron spectroscopists. They pointed out one of the tasks ahead: to unravel the 
meaning of the harmonic or approximately harmonic properties of solids, including 
the heat capacity. And yet notwithstanding the help of high speed computers, the 
experimental data on crystals and glasses - even the simpler cubic crystals - are not 
as explicable or predictable as we might like; and despite a century of measurements, 
precise data is still lacking for many systems of interest. This monograph includes 
a brief coverage of existing data on various crystal systems, and draws attention to 
gaps in the understanding of much of the available infonnation at a quantitative and 
sometimes even a qualitative level. The gaps are greater for the anharmonic property 
of thermal expansion, born from the efforts of Mie and Griineisen, also early in the 
century. In particular, the difficulties of inelastic neutron scattering at high pressures 
have largely prevented the acquisition of data on the volume dependence of disper­
sion curves (which show the phonon frequency-wave number dependence w(q,s)). 
Apart from some optical zone center frequencies obtainable from spectroscopic mea­
surements, it is usually only at the low frequency limit that we have experimental 
mode Griineisen parameters, as obtained from measurements of elastic moduli under 
pressure. 

In the second half of this century powerful computers and improved numerical 
techniques have enabled detailed studies to be made of the behavior of models 
of quite complex crystals and even of disordered phases; and ab initio techniques 
for solving many electron systems have reached the point of making reasonably 
reliable predictions for harmonic interatomic forces in some simple systems. Further 
improvements in the basic theory underlying the approximations and in the numerical 
algorithms used may soon extend applications to more complex or larger systems. 
But we still have little knowledge, empirical or fundamental, of anharmonic forces 
in solids, apart from those derived from pair potentials. Fermi surface measurements 
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have revealed much about electron energy-wave number relations, but much less 
about the strain dependence of these properties and their effect on shear moduli and 
anisotropic effects in the thermal expansion. 

For metals the electron gas makes a direct contribution to heat capacity and 
thermal expansion which can be predominant at low temperatures. Itinerant and 
collective electron effects are important in superconductors, heavy fermion metals, 
and magnetic systems such as chromium, rare earths, and invar alloys, resulting in a 
variety of behavior patterns to challenge the theorist for some time to come. As the 
late Berndt Matthias was fond of saying, no theorist has yet predicted the ordering 
temperature of a superconductor (or a ferromagnet for that matter). Some properties, 
both electronic and vibrational, appear to be dependent on such a subtle balance of 
effects that prediction will only be possible when we can make detailed calculations 
with much more realistic models and precise ab initio approximations than at present 
available. Low temperature thermodynamic measurements probe the low energy 
excitations, providing a stringent test of many theories that appear satisfactory at 
higher temperatures. 

We leave this monograph with you not only as an attempt to convey what is known 
about heat capacity and thermal expansion at low temperatures, but to present some of 
the outstanding problems for materials ranging from rare gases to high temperature 
superconductors. As novel materials 'come on to the market' they rightly attract 
attention and present new problems. The familiar things like sodium chloride or 
graphite are then perhaps ignored for a time; but we should not forget that they are 
there in the back drawer, still able to provide worthwhile problems and sometimes 
useful tools for the scientist and the engineer. 
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Axes and Unit Cells in Crystals 

DESCRIYfION OF CRYSTAL STRUCTURE 

The notation for describing crystal structure and symmetry is given in Vol. A of 
International Tables for X-ray Crystallography [Hah83]. The crystallographic unit 
cell is chosen to have the full symmetry of the crystal, and so it is not always the 
smallest repeating unit. There are conventions for the selection and labelling of the 
lattice vectors a, b, c. They always form a right-handed triad. The description of 
the structure is completed by specifying the basis. comprising the positions of atoms 
within the unit cell. For many structures these positions are determined or partly 
determined by symmetry. 

mE VOLUME OF THE UNIT CELL 

A cell with edges oflength a, b, c and angles between the edges a,~,1' has volume 

vcel/ = abc [1- cos2 a - cos2 ~ - cos2 1' + 2cosacos~cos1'li (A. I) 

This reduces to simpler forms for crystals of higher symmetry than triclinic, and in 
particular to abc for cubic, tetragonal and orthorhombic crystals. From Eq. (A.I) the 
volumetric coefficient of expansion f3 can be derived in terms of the cell parameters 

a,b,c, a,~,:y and their temperature coefficients (e.g., [Bat)8, Section 1.2.4]). 

RECTANGULAR CARTESIAN AXES 

Tensor properties of crystals such as thermal expansion and elasticity are usu­
ally given referred to rectangular Cartesian coordinates. For cubic, tetragonal and 
orthorhombic crystals the Cartesian axes are taken in the directions of a, b, c. For 
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other symmetries the axes recommended by the IRE Piezoelectric Crystals Com­
mittee [IRE49, Nye85] are as follows: Oz is taken along c; Ox is taken in the ac 
plane perpendicular to Oz, such that it makes an acute angle with a; finally, Oy is 
taken in a direction normal to the ac plane such that Oxyz forms a right-handed triad. 
Using this convention, expressions for the a,\ in terms of the cell parameters and 
their temperature derivatives are given for all crystal symmetries in [Bar98, Section 
1.2.5.4]. 

Other conventions are sometimes used. For example, a standard crystallographic 
text [RoI65] takes Oy in the be plane and Ox perpendicular to this plane; for hexag­
onal, trigonal and triclinic crystals this would give different Ox and Oy axes from 
those given by the convention given above. It is not always easy to find out which 
conventions have been used in published work, and uncertainty has sometimes led to 
confusion and error (e.g., for the trigonal crystal quartz see [Bar76b, Appendix]). 
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Manipulating Thermodynamic Expressions 

Thermodynamic quantities can be derived as partial derivatives of the internal energy 
U(S, V) and of the related functions F(T, V), H(S,P) andG(T,P); or more generally 
as derivatives of similar functions of other or additional variables, e.g., with strain 
and 'Stress replacing volume and pressure [Cal60). Relations between such quantities 
are then obtained as mathematical identities. There are two widely used techniques 
for doing this. 

CHANGING THE ORDER OF DIFFERENTIATION 

The order of differentiation does not matter in a multiple derivative, provided 
that the same set of independent variables is used in each successive partial 
differentiation. Thus we obtain the well-known Maxwell relations from second 
derivatives of the energy functions U,F,G,H; for example 

(B.l) 

as in Eq. (2.11). Similarly we can obtain relations such as Eqs. (2.18)-{2.19); 
e.g., 

( acp ) _ T a3G _ T [a2 (aG) ] 
ap T -- apaT2 -- aT2 ap T p 

= -T [~(av) ] = -T [a((3V)] 
aT aT p p aT p 

(B.2) 

Sometimes preliminary manipulation is needed, as in the proof of the identity in 
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Eq. (2.21): 

iir _ (alnXT) _ ~ (aXT ) (~) 
- aln V p - XT aT pain v p 

1 a21nV 1 ( ap ) (a~) (aln~) 
=- ~XT aTap = Ii alnV T ap T = alnV T (B.3) 

TRANSFORMATIONS BETWEEN DIFFERENT SETS OF INDEPENDENT 
VARIABLES 

If z: is a function of a set of independent variables Ui, which are themselves 
functions of another such set Xj, then 

(~) = L (~) (aUi) 
aXk x' i aUi Ii aXk x' 

(B.4) 

where for example the subscript x' denotes that all the Xj except for Xk are kept 
constant during differentiation. In thermodynamic applications the sets Ui and Xj 
often have a variable in common. For example, taking the entropy S successively as 
a function of T and V and then of T and P, we get 

_ (as) _T[(as) (as) (av)] Cp - T aT p - aT v + av T aT p (B.5) 

(B.6) 

in agreement with Eq. (2.10). 
A further very useful result is obtained when the set Xj not only has a common 

member with the set Ui but also contains the variable z: being differentiated, so that the 
left hand side ofEq. (B.4) is identically zero. In a system with only two independent 
variables, with x,z: as the setxj andx,y as the set Ui, this gives 

(B.7) 

thus giving 

(B.8) 

Taking z: = P, x = T and y = In V leads directly to the expression for (ap / aT)v in 
Eq. (2.11). When z: and yare replaced by sets of n independent variables the right 
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hand side of this equation involves a sum of products, as for example in the first of 
Eqs. (2.136): 

aA - (aT/A) __ L(aT/A) (au",) 
- aT <T,W - '" au", u',T,w aT T/,W 

(B.9) 

= LsI", 'Y",(CT/!V) (B.IO) 

'" 
where in this appendix (but not in the main text) sums over repeated suffices are 
written explicitly. 
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Tables 

DATA SOURCES AND MATERIALS LISTED IN TABLES C.I, C.2, C.3 

Sources of data for these tables can be found throughout the text. Here we 
summarize the major compilations which have been used. These also contain original 
sources and data for a wider range of materials. 

1. The CINDAS Series on Thermophysical Properties of Matter include Vol. 4 on 
Specific Heat of Metallic Elements and Alloys [Tou70a], Vol. 5 on Specific Heat 
of Nonmetallic Solids [Tou70b], Vol. 12 on Thermal Expansion of Metallic 
Elements and Alloys [Tou75], Vol. 13 on Thermal Expansion of Nonmetallic 
Solids [Tou77]. 

2. The NBS Monographs by Corruccini and Gniewek - No. 21 on Specific Heats 
and Enthalpies of Technical Solids at Low Temperatures [Cor60] and No. 29 
on Thermal Expansion of Technical Solids at Low Temperatures [Cor61]. 

3. The American Institute of Physics Handbook includes evaluated data on heat 
capacity [Fur72] and thermal expansion [Kir72]. 

4. Two tabulations on metallic alloys [Cla68] and on 'selected materials' (metals 
and polymers) [Cla83]. 

5. The CODATA evaluation of thermophysical properties of key reference mate­
rials [Whi97] (see also [H098, Ch. 11]). 

6. Books on cryogenic techniques, for example [Pob96, Whi79], and on polymers 
[Har94]. 

Materials in the tables include the following with approximate alloy composi­
tions expressed in wt%: 

• A12024-T86 (AI + 4.1 Cu, 1.4 Mg, 0.5 Mn, 0.2 Fe, 0.1 Si,O.l Zn) 
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• AI5083 (AI + 4.75 Mg, 0.6 Mo, 0.2 Fe, 0.1 Cr, balance AI) 

• Brass(65/35) is a yellow brass [Cor61] 

• Brass(70/30) data from [Cla83] 

• Hastelloy C (Ni + 15.9 Mo, 15.4 Cr, 5 Fe, 3.4 W, 0.8 Si, "" 0.3 Mo, Co, V) 

• Inconel 718 (Ni + 3 Mo, 18 Cr, 17 Fe, 5 Nb+ Ta, 0.8 Ti, "" 0.3 AI, Mo, Si) 

• Constantan (60 Cu, 40 Ni) 

• CulNbTi is multifilamentary NbTi in Cu matrix with volume ratio of 1.8: 1 

• SnPb(50/50) is tin-lead solder [Zie64] 

• S.S.304/316-stainless steels (Fe + 18-20 Cr, 8-10 Ni) 

• Ti-6AI-4V is a common Ti-rich alloy 

• Zr02 (stab) is ZI02 + 9 mol% Y 203 (Section 5.6) [CoI85a] 

• Stycast 2850Ff is a powder-filled epoxy (see Section 5.9, [Swe97]) 

• Polymer GI0 is a glas~poxy laminate (see Section 7.3). 
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Table Colo Specific heatscp (Jog-1 0 K- I ) of technical solids 

Material 25K 50K 75K lOOK 150K 200K 250K 293K 

METALS [Fur72. Whi97] 
Al 0.0175 0.142 0.322 0.481 0.683 0.797 0.859 0.897 
Cu 0.015 0.097 0.187 0.252 0.322 0.355 0.373 0.383 
Fe 0.0080 0.051 0.136 0.216 0.324 0.384 0.421 0.444 
Nb 0.020 0.085 0.147 0.188 0.230 0.248 0.260 0.262 
Ni 0.0098 0.069 0.156 0.232 0.329 0.383 0.416 0.435 
Si 0.0085 0.078 0.170 0.260 0.425 0.557 0.649 0.694 
TI(pc) 0.0137 0.098 0.210 0.300 0.408 0.466 0.500 0.518 
W 0.0041 0.032 0.064 0.087 0.112 0.123 0.129 0.133 
ALLOYS [fou70a, Whi79] 
Al2024 0.46 0.65 0.73 0.80 0.84 
CuZn(65/35) 0.022 0.118 0.21 0.27 0.33 0.36 0.37 0.377 
Constantan 0.013 0.08 0.17 0.24 0.32 0.36 0.38 0.41 
Inconel718 0.07 0.16 0.27 0.36 0.40 0.42 0.43 
Nb-38TI 0.03 0.11 0.24 
SnPb(50150) 0.062 0.116 0.140 0.152 0.163 0.170 0.174 0.178 
S.S.30413168 0.019 0.092 0.19 0.28 0.35 0.42 0.45 0.47 
TI-6AI-4V 0.21 0.40 0.4~ 0.52 0.55 
NON-METALS [fou70b. Whi97] 
sapphire 0.0014 0.0148 0.0558 0.126 0.313 0.501 0.658 0.763 
MgO 0.0019 0.0207 0.085 0.195 0.449 0.661 0.814 0.916 
Pyrex 0.043 0.28 0.406 0.533 0.64 0.72 
Silica 0.038 0.111 0.188 0.268 0.420 0.546 0.650 0.728 
ZI{h 0.009 0.041 0.095 0.15 0.26 0.35 0.41 0.45 
POLYMERS [Har94. Whi79] 
Epoxy 0.13 0.27 0.39 0.48 1.0 1.3 
Nylon 6 0.47 0.81 1.01 1.2 1.5 
Stycast 0.032 0.088 0.15 0.22 
Teflon 0.10 0.21 0.29 0.39 0.56 0.72 0.87 1.0 
GlO(GFRP) 0.3 0.4 0.5 1.0 1.5 
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Table C.2. Linear thermal contraction -41/11.93 (10-4) relative to 293 K, 
and aD3 (10-6 K-1), for selected tecbnical solids 

-Mil -Mil -Mil -ALII -ALII -Mil -Mil a 
Material 

4K 40K 80K lOOK 150K 200K 250K 293 K 

METALS [Kir72, Whi79] 
AI 41.4 41.2 39.0 36.9 29.4 20.1 9.6 22.9 
Cu 32.6 32.3 30.2 28.3 22.1 14.9 7.1 16.65 
Fe 20.4 20.2 19.5 18.5 14.9 10.2 4.5 11.8 
Nb 14.3 14.1 12.9 12.1 9.3 6.3 3.0 7.1 
Ni 22.9 22.7 21.7 20.6 16.5 11.2 5.4 12.8 
Si 2.2 2.2 2.3 2.4 2.4 1.9 1.0 2.56 
TI(pc) 15.1 15.0 14.2 13.4 10.7 7.3 3.5 8.6 
W 8.8 8.7 8.1 7.6 5.9 4.0 1.9 4.42 
ALLOYS [Cla68, Cla83] 
A12024 39.6 39.4 37.2 35.1 27.8 19.0 9.0 21.2 
AI 5083 41.5 41.3 39.0 36.8 29.4 20.1 9.7 22.8 
brass( 65/35) 38.4 38.0 35.0 32.6 25.3 16.9 8.0 19.0 
bra.~s(70130) 36.9 36.6 33.7 31.3 24.5 16.3 7.5 18 
Fe64Ni36 4.5 4.8 4.8 4.5 3.0 2.0 0.9 ",1 
HastelloyC 21.8 21.6 20.4 19.3 15.4 10.5 5.2 12.8 
Incone1718 23.8 23.6 22.3 21.1 16.7 11.4 5.3 12.9 
Nb-45TI 18.8 18.4 16.7 15.6 11.7 7.8 3.8 ~10 

Cu/NbTI 26.5 26.2 24.5 23.1 17.8 11.7 5.4 ~ 12 
S.S.304I316 29.7 29.6 27.8 26.0 20.3 13.8 6.6 15.8 
TI-6AI-4V 17.3 17.1 16.2 15.4 11.8 7.8 3.6 8 
NON-METALS [Kir72, Whi97] 
sappbire@ 7.15 7.15 7.05 6.9 6.1 4.5 2.3 5.80 
sapphire(.L) 6.05 6.05 5.95 5.85 5.2 3.9 2.0 5.06 
MgO 13.9 13.9 13.7 13.3 11.4 8.3 4.2 10.3 
Pyrex 5.6 5.7 5.4 5.0 3.95 2.7 1.4 3.0 
Silica -0.05 -0.03 0.01 0.13 0.30 0.31 0.18 0.45 
Zrl)z(srab) 13.1 13.0 12.4 11.8 9.8 6.8 3.3 8.0 
POLYMERS [Cla81, Cla83] 
Araldite 106 102 93.5 88 71 50.5 25.5 ",60 
Nylon 139 135 125 117 95 67 34 ~80 

Stycast 44 43 40 38 32 22.5 11 30 
Tefton 214 206 193 185 160 125 75 ",200 
010(.1) 70.5 69 64 60 49 35 17 ~40 

010(11) 24 23.5 21 20 15.5 11 5.2 ~ 12 
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Table C.3. Reference Materials. Values of Cp (J ·mol-I . K-I) 
from CODATA [Whi97); thermal expansion values of a* 
(10-'K-I) and Al /1293 (10-') from CODATA [Whi97) 

excepting silica [Hah72, Oka9Sb); values of a* for alumina 
(sapphire) are the average a;v = (2a1 + ap /3 = ass. 

T Cp Cp a* il.l/I293 a* a:v a* 

(K) Cu AI203 eu Cu Si AhDJ Si02 

10 0.0554 0.0087 0.030 -3257 0.0005 -0.18 
15 0.184 0.0305 0.103 -3257 0.0012 -0.44 
20 0.462 0.073 0.263 -3256 -0.003 0.004 -0.63 
25 0.957 0.145 0.556 -3254 -0.019 0.009 -0.74 
30 1.688 0.263 1.00 -3250 -0.053 0.016 -0.80 
35 2.628 0.443 1.58 -3244 -0.103 0.028 -0.83 
40 3.725 0.698 2.27 -3234 -0.164 0.044 -0.84 
45 4.92 1.046 3.05 -3221 -0.22s 0.068 -0.84 
50 6.16 1.506 3.84 -3204 -0.29 0.095 -0.83 
60 8.62 2.793 5.46 -3157 -0.40 0.18 -0.80 
70 10.89 4.594 6.98 -3095 -0.46 0.29 -0.75 
80 12.87 6.902 8.33 -3018 -0.47 0.44 -0.70 
90 14.56 9.677 9.49 -2929 -0.43 0.61 -0.62 
100 16.00 12.85 10.49 -2829 -0.34 0.81 -0.54 
110 17.22 16.34 11.36 -2719 -0.22 1.03 -0.46 
120 18.26 20.07 12.05 -2602 ':"0.06 1.28 -0.38 
130 19.13 23.96 12.70 -2478 0.11 1.53 -0.31 
140 19.86 27.94 13.19 -2349 0.31 1.80 -0.24 
150 20.49 32.00 13.65 -2215 0.49 2.07 -0.17 
160 21.03 36.04 14.03 -2077 0.69 2.34 -0.10 
180 21.90 43.91 14.67 -1789 1.06 2.90 0.02 
200 22.58 51.33 15.19 -1491 1.39 3.42 0.13 
220 23.10 58.15 15.62 -1183 1.70 3.89 0.23 
240 23.53 64.32 15.96 -867 1.98 4.32 0.32 
250 23.74 67.17 16.11 -706 2.10 4.52 0.35 
260 23.93 69.86 16.25 -545 2.22 4.69 0.39 
280 24.22 74.89 16.50 -218 2.44 5.03 0.45 
293.15 24.36 77.95 16.65 0 2.56 5.30 0.48 
300 24.44 79.46 16.70 114 2.62 5.40 0.49 
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Table C.4. Einstein functions. Cv, (U - Uo)/T, and S (J.g-ac1.K-1). 
0E =liWE/kT 

eE/T Cv (U - Uo)/T S 8E/T Cv (U - Uo)/T S 

0.0 24.943 24.943 00 8.2 0.4609 0.0562 0.0630 
0.2 24.861 22.532 65.130 8.4 0.3959 0.0471 0.0527 
0.4 24.614 20.287 47.965 8.6 0.3398 0.0395 0.0441 
0.6 24.209 18.204 38.056 8.8 0.2912 0.0331 0.0369 
0.8 23.655 16.282 31.164 9.0 0.2494 0.0277 0.0308 
1.0 22.965 14.517 25.958 9.2 0.2134 0.0232 0.0257 
1.2 22.154 12.901 21.840 9.4 0.1824 0.0194 0.0215 
1.4 21.240 11.430 18.493 9.6 0.1557 0.0162 0.0179 
1.6 20.240 10.096 15.721 9.8 0.1329 0.0136 0.0149 
1.8 19.174 8.891 13.398 10.0 0.1133 O.oI 13 0.0125 
2.0 18.061 7.808 11.435 10.2 0.0965 0.0095 0.0104 
2.2 16.918 6.838 9.767 10.4 0.0821 0.0079 0.0087 
2.4 15.764 5.973 8.345 10.6 0.0698 0.0066 0.0072 
2.6 14.614 5.203 7.128 10.8 0.0594 0.0055 0.0060 
2.8 13.482 4.522 6.087 11.0 0.0504 0.0046 0.0050 
3.0 12.379 3.921 5.195 11.2 0.0428 0.0038 0.0042 
3.2 11.315 3.392 4.430 11.4 0.0363 0.0032 0.0035 
3.4 10.299 2.928 3.775 11.6 0.0308 0.0027 0.0029 
3.6 9.336 2.523 3.214 11.8 0.0261 0.0022 0.0024 
3.8 8.431 2.169 2.733 12.0 0.0221 0.0018 0.0020 
4.0 7.585 1.862 2.323 12.2 0.0187 0.0015 0.0017 
4.2 6.801 1.595 1.972 12.4 0.0158 0.0013 0.0014 
4.4 6.077 1.364 1.672 12.6 0.0134 0.0011 0.0011 
4.6 5.414 1.165 1.417 12.8 0.0113 0.0009 0.0010 
4.8 4.808 0.994 1.200 13.0 0.0095 0.0007 0.0008 
5.0 4.259 0.846 1.015 13.2 0.0080 0.0006 0.0007 
5.2 3.762 0.720 0.857 13.4 0.0068 0.0005 0.0005 
5.4 3.315 0.611 0.724 13.6 0.0057 0.0004 0.0005 
5.6 2.914 0.518 0.611 13.8 0.0048 0.0003 0.0004 
5.8 2.556 0.439 0.515 14.0 0.0041 0.0003 0.0003 
6.0 2.237 0.372 0.434 14.2 0.0034 0.0002 0.0003 
6.2 1.954 0.314 0.365 14.4 0.0029 0.0002 0.0002 
6.4 1.703 0.266 0.307 14.6 0.0024 0.0002 0.0002 
6.6 1.482 0.224 0.258 14.8 0.0020 0.0001 0.0001 
6.8 1.287 0.189 0.217 15.0 0.0017 0.0001 0.0001 
7.0 1.117 0.159 0.182 15.5 0.0011 0.0001 0.0001 
7.2 0.967 0.134 0.153 16.0 0.0007 0.0000 0.0000 
7.4 0.836 0.113 0.128 16.5 0.0005 0.0000 0.0000 
7.6 0.722 0.095 0.107 17.0 0.0003 0.0000 0.0000 
7.8 0.622 0.080 0.090 17.5 0.0002 0.0000 0.0000 
8.0 0.536 0.067 0.075 18.0 0.0001 0.0000 0.0000 
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Table C.S. Debye functions. Cv, (U - Uo)/T, and S (J.g_at-1.K-l) 

8DIT Cy (U-Uo)/T S 8DIT Cy (U - Uo)/T S 

0.0 24.943 24.943 00 8.2 3.2363 0.8512 1.1418 
0.2 24.893 23.123 73.430 8.4 3.0404 0.7954 1.0662 
0.4 24.745 21.401 56.214 8.6 2.8582 0.7442 0.9968 
0.6 24.500 19.778 46.224 8.8 2.6887 0.6969 0.9331 
0.8 24.163 18.253 39.219 9.0 2.5309 0.6535 0.8745 
1.0 23.739 16.822 33.871 9.2 2.3842 0.6134 0.8204 
1.2 23.236 15.485 29.586 9.4 2.2476 0.5764 0.7707 
1.4 22.660 14.238 26.047 9.6 2.1203 0.5423 0.7247 
1.6 22.021 13.077 23.062 9.8 2.0017 0.5106 0.6822 
1.8 21.327 12.000 20.508 10.0 1.8912 0.4814 0.6429 
2.0 20.588 11.003 18.299 10.2 1.7882 0.4542 0.6065 
2.2 19.814 10.082 16.372 10.4 1.6920 0.4291 0.5727 
2.4 19.012 9.231 14.682 10.6 1.6023 0.4055 0.5413 
2.6 18.192 8.450 13.193 10.8 1.5184 0.3836 0.5122 
2.8 17.363 7.730 11.875 11.0 1.4400 0.3634 0.4850 
3.0 16.531 7.073 10.705 11.2 1.3667 0.3444 0.4597 
3.2 15.704 6.470 9.665 11.4 1.2980 0.3270 0.4362 
3.4 14.887 5.916 8.737 11.6 1.2339 0.3103 0.4141 
3.6 14.086 5.413 7.909 11.8 1.1735 0.2951 0.3936 
3.8 13.305 4.953 7.169 12.0 1.1170 0.2806 0.3743 
4.0 12.548 4.533 6.505 12.2 1.0639 0.2672 0.3563 
4.2 11.817 4.148 5.911 12.4 1.0141 0.2547 0.3394 
4.4 11.115 3.801 5.378 12.6 0.9672 0.2427 0.3236 
4.6 10.444 3.485 4.898 12.8 0.9232 0.2314 0.3087 
4.8 9.803 3.195 4.468 13.0 0.8817 0.2209 0.2947 
5.0 9.195 2.933 4.080 13.2 0.8426 0.2110 0.2815 
5.2 8.619 2.694 3.730 13.4 0.8058 0.2018 0.2691 
5.4 8.074 2.477 3.416 13.6 0.7710 0.1931 0.2575 
5.6 7.561 2.279 3.131 13.8 0.7382 0.1848 0.2464 
5.8 7.078 2.098 2.874 14.0 0.7072 0.1770 0.2360 
6.0 6.625 1.936 2.642 14.2 0.6779 0.1696 0.2262 
6.2 6.200 1.786 2.432 14.4 0.6502 0.1627 0.2169 
6.4 5.803 1.650 2.241 14.6 0.6329 0.1561 0.2082 
6.6 5.431 1.526 2.069 14.8 0.5990 0.1499 0.1998 
6.8 5.084 1.413 1.912 15.0 0.5755 0.1439 0.1920 
7.0 4.761 1.310 1.769 15.5 0.5217 0.1305 0.1740 
7.2 4.459 1.215 1.639 16.0 0.4744 0.1186 0.1582 
7.4 4.178 1.129 1.521 16.5 0.4326 0.1082 0.1442 
7.6 3.917 1.050 1.413 17.0 0.3956 0.0989 0.1319 
7.8 3.673 0.9780 1.314 17.5 0.3626 0.0907 0.1209 
8.0 3.447 0.9119 1.224 18.0 0.3333 0.0833 0.1111 
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Commonly Used Symbols 

cx ... coefficient of linear expansion, a In I j aT 
cx* ... coefficient of linear expansion, (lj1o)aljaT 
CXa,b,c ••• linear coefficients in directions of a, b, c 
a, b, cor aI, a2, a3 ... lattice vectors 
(3 ... coefficient of volume expansion 
Bs,Br ... adiabatic and isothermal bulk moduli 
cAlL ..• elastic stiffness moduli 
CAlL • •• thermodynamic elastic stiffness moduli 
Cy, Cp ... molar heat capacities at constant volume, constant pressure 
Cy ,c p ... specific heats per unit mass or unit volume 
Ce . .. electronic heat capacity 
Cm .•. magnetic heat capacity 
Csch ... Schottky heat capacity 
Cvib ... lattice vibrational heat capacity 
XS, XT ... adiabatic and isothermal compressibilities 
XA , Xa, etc. . .. directional compressibilities 
8s, 8r ... Anderson Griineisen functions 
dO. ... element of solid angle 
71a{3 or 71A ••• strain component 
Es,Er ... adiabatic and isothermal Young's modulus 
Ez ... zero-point vibrational energy 
F ... Helmholtz free energy 
Fth ... thermal Helmholtz free energy 
'Y(V, T) ... thermodynamic Griineisen function 
'Yvib . .• lattice vibrational Griineisen function 
'YA ..• anisotropic Griineisen functions 
'Y .L ,'YII .•. principal anisotropic Griineisen functions for axial solids 
'Ye ... electronic Griineisen parameter 
"'Ii, 'Yqs ... mode Griineisen parameters ( -d In CtJj j d In V, etc.) 
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1'tI ... value of 'Yvib as T -+ 0 
'Y6h and 'Y81 ... 1'tI derived respectively from thermal and elastic data 
r e ... coefficient of electronic heat capacity 
G ... Gibbs free energy 
H ... Enthalpy 
H, H ... magnetic fields 
k ... Boltzmann Constant 
A ... electron-phonon enhancement factor 
lr ... length at temperature T 
"Vi . •• frequency of the vibrational mode j 
Wj or Wqs '" angular frequency (2'ITv) of vibrational mode j or qs 
N .. , number of atoms in material 
NA ... Avogadro's number 
<l>L ... static lattice energy of solid 
cp (r) ... interatomic pair potential 
q ... phonon wave vector 
q ... phonon wave number 
q . .. 'second Griineisen function' (a In 'Y / a In V) T 

R = NAk ... molar gas constant 
eTa !3 or eTA ••• stress component 
eT ••• Poisson's ratio 
~ T I' I' sAjL' SA,. ... e ashc comp lances 

S ... entropy 
e, eD ••• Debye characteristic temperatures 
eC (T) ... Debye temperature derived from heat capacity 
es (T) ... Debye temperature derived from entropy 
eo or e~ '" calorimetric Debye temperature as T -+ 0 
EYoh ... eo derived from thermal data 
fYc/ ... eo derived from elastic data 
eE ... a characteristic temperature for Einstein (optic) mode 
eRT ••• a Debye temperature from room temperature thermal data 
e~ ... harmonic high temperature limit of eC (T) 
T ... thermodynamic temperature (in Kelvin) 
T F ••• Fermi temperature 
TN ... transition temperature for antiferromagnetism (Neel point) 
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Tc ... transition temperature for superconductivity or ferromagnetism (Curie point) 
U ... internal energy 
Uth ... thermal internal free energy 
V, V m ••• volume or molar volume 
Va .,. volume per atom 
v ... velocity of acoustic wave 
< ... > '" average over vibrational spectrum 
( ... ) ... Boltzmann thermal average 
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Ceramics: see also Glass ceramics 

oxides, 8, 120, 162, 171-175,200-210, 
213-214 

Clapeyron equation, 34, 139, 149, 211 
Clathrates, 284-287; see also AIIO V 

l3-quinol, 285, 286 
Dianin's compound, 285-287 
ice, 285, 287 

Composites and aggregates, 267-276 
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Composites and aggregates. (continued) 
experiment 

heat capacity. 274 
thermal expansion. 273. 274-1:16 

theory. 269-273 
elasticity 270 
thermal expansion, 270-273 

Compressibilities XS and XT. 13. 119 
directional xf and xl. 79 

Computational methods 
Wo' • "1&' • and l1~o from elastic data. 8£H!8 
ab initio methods. 45-46. 157, 164, 

295-296 
glasses, 53-54 
low temperature behavior, 67 
Molecular Dynamics (MD), 44 
Monte Carlo (MC), 44 
quantum and classical. 43-45 
reference texts, 44, 138 

Correspondence principle in statistical 
mechanics, 43 

Covalent crystals. 47 
Cristobalite, 181, 186, 289 
Critical point (liquid-vapor), 129. 140 
Cryocrystals: see Molecular gases, solids 
Cryogenic techniques, source books, 90 
Crystal unit cell volume, 297 
Crystallographic conventions. axes, etc., 

297-298 
Cyclic boundary condition, 44 

Data sources, metals and alloys, 228 
De Boer parameter A*, 154, 155 
Debye characteristic temperature 8D, 19 
Debye equivalent temperatures 8 c (T). 

&S(T), 8 D (n). etc .• 20-22. 58 
elastic and thennal values, 8r/ and 8'0" , 

86-88,113 
low and high temperature limits, 20-22. 

59 
Debye frequency distribution, 19 
Debye functions. 19-20. 309 
Debye model, 19 
Debye Theta plots, 20-22 
Density of electronic states n( E), 22. 226-228 
Diamond sttucture elements, 2. 17. 164-166, 

168 
silicon. 17-19,20-22,57. 168 

Dilution refrigerator, 150-151 
Dispersion curves, 5~57. 126.295 
Dulong and Petit law, 2,4.73,229,238 

Effective mass m*. 23. 147. 150.263 
Ebrenfest relations. 34. 211. 258 

Einstein functions. 2. 308 
Einstein model, 2, 17. 19 
Elastic compliances, 13,78-79,83,84 
Elastic stiffnesses (moduli) 

data sources, 126-127 
definitions. CAl' and CAl" 79, 82-83 
higher order, 83 
magnitudes, 30 

Index 

measurement, 86,89. 118-127,236,254 
on small and micro crystals. 119 

temperature variation, 3-4. 13. 119 
tensor notation, 84 

Elastic wave velocities, theory, 85-86, 
120-121 

Elasticity of isotropic materials, 80. 119-120 
Electrical inductance dilatometers 

commercial (LVDT). 110 
low temperature, 110 
SQUID,111 

Electron/atom ratio, 9, 234-236 
Electronic contributions to a and Cv. 5, 

22-23,225-228 
Electronic Griineisen function "I~. 23 
Enthalpy H. 14 
Equations of state 

dilute gas (virial expansion). 136 
fluid (van der Waals). 140 
solids, 73-75.119-120 

Equipment design. 11. 232 
calorimetry. 101-104 
dilatometry, 107-115 

Fermi energy EFO. 22, 226 
Fermi gas, 23. 141-142 
Fermi liquid. 147, 149 
Fermi temperature T F, 23 
Fermi-Dirac distribution. 42. 141 
Ferromagnetic materials 

non-metals. 212-213 
metals, 248-252 

Ferromagnetism. 51, 53. 248-249 
Heisenberg model. 248 
Ising model. 51 

FIrSt Brillouin Zone (FBZ). 55 
Fixed points (temperatures). 92. 130, 138 
Fluorites, 161-162.218-219 
Free electron model, 23 
Frequency distribution g(w). 17-19 

moments < wn >. 58 
Wj)(n) and 8D(n). 58-60 

Frozen phonon method, 46 

Gas thermometry, 90 
Gases 

Bose and Fermi. 141-144 
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Gases, (continued) 
Cv values, 137, 138 
data sources, 137 
fixed points, 130, 138 
monatomic and molecular, 130-136 
non-ideal, 136-137 
rotational heat capacity, 133 
solid (cryocrystals), 36, 154-157, 

277-281 
Glass ceramics, 186-188 
Glasses, 48, 53-54, 127 

non-tetrahedral, 184-185 
tetrahedral, 162, 177-184 
tunnelling states, TI..S, 174, 176-177 

Grand canonical ensemble, 41 
Grand partition function, 41-42 
Graphite, 20, 48,189-192,242 
Griineisen function 

appfOxllnations,31 
definition, 14 
direct measurements, 31, 115-116 
in statistical mechanics, 38 
other Griineisen functions, 31-32 
temperature variation, 15 
thermodynamic expressions for, 30 
values at low and high T (~and ')'00), 66 

Griineisen parameters, 15-17,23,51 

Harmonic ap~xllnation, 54, 64 
Harmonic oscillator functions: see Einstein 

functions 
Heat capacity: see also Specific heat 

definitions, 14,27-28,94 
information given by, 94 
reference materials, 104,307 
solids 

anharmonic effects, 21-22 
measurement: see Calorimetry 
vibrational analysis, 70-73 
vibrational theory, 59-64 

Heavy fermion materials, 9-10, 262-266 
Heisenberg model, 248 
Helium 

gas, 130, 137, 138 
3He and 4He liquids, 144-151 

Landau theory, 147 
two fluid model, 147 

3He4He mixtures, 150-151 
phase diagrams, 145 
reference books, 146 
solid, ISS, 156-157 

High Tc: see Superconductors 
Holmium, 94, 253, 254 
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Hy~gen and isotopes 

Ice 

gas and liquid (ortho-, para-, normal-), 
133-136 

solid, 277-279 

clathrate ice, 287 
hexagonal ice, 9-11, 168, 170 

Ideal crystals, 49 
Ideal gases, 48-49 

quantum, 42, 141-144 
Imperfections, 58 
Impurity effects 

dilute alloys, 234-237 
dipole tunnelling, 222-223 
mass difference, 219 
magnetic effects in metals, 253 
magnetic Schottky anomalies, 215,217 
traces in metals, 232 

InDi,19I,293-294 
Independent particle model, 22-23 
Inelastic neutn)n scattering, 17,56, 126, 164, 

239,295 
Interatomic potentials and bonding, 45-48 
Internal energy E, 14 
Internal expansion, 29, 88, 107 
Internal strain and elasticity, 88 
Invar, 112, 250 
Invar systems, 8, 250-252 
Ionic solids, 47 
Ising model, 51-53 

KDndosystems,246,263,266 
Kronecker delta l>ap, 77 

Lagrange finite strain TJap or 1/)" 77-78 
Lambda transitions, 52, 146-148, 212, 231, 

282-284 
Lattice contributions to a and Cv: see 

Vibrational contributions 
Lattice dynamics, 54 
Lattice heat capacity: see Vibrational heat 

capacity 
Law of corresponding states, 154 
Liquids and dense gases, 137-140 

structure, 137-138 
Local modes, 220, 234-235, 287-288, 292 
Low expansion materials, 4, liS, 185-188, 

199-200,250-252 

Magnetic contributions to a and Cv 
Kondo alloys, 246, 263 
metals, 246-254 
non-metals, 210-215, 217 
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Magnetic contributions to a and Cv, 
(continued) 

rare earths, 252-254 
Magnetic critical temperatures, Tc and TN, 5 I, 

248 
Magnetic susceptibility, 90, 217, 263-264 
Martensitic transformations, 229, 252, 262 
Mean field theory, 52-53 
Melting, changes in properties, 138-139 
Melting curve, 129 
Metastable states, dependence on history, 10 
Methane 

gas,138 
solid,280-281 

Mie-Griineisen equation of state, 31, 73 
Millikelvin range, 12 
Minerals 127, 17~175, 289-291 
Mixed systems, 217-223 
Molecular crystals, 47, 61, 277-284 
Molecular gases, 24, 4~9, 132-137 

solids 277-281 
Monatomic gas, 24,131-132, 136 

N2-type solids, 279-280 
Negative thermal expansion, 4, 15 

magnetic metals, 25~252 
minerals, 17~171, 2~291 
non-metallic crystals, 164-170 
tetrahedral glasses, glass ceramics, 

177-188 
vibrational mechanisms, 68 

Neutron scattering, 29, 124-125, 147 
Nitrogen, solid, 139,279-280 
Noble metals, 5-6,107,231-232 
Normal modes, 54 
Nuclear spin contributions to a and Cv, 8,12, 

45,94,252-253,281 

Optical amplifiers, 110 
Optical branches, 56 
Optical interferometers, 107-109 

Fabry-Perot (Jacobs), 109 
Fizeau, 108 
hete~yne, 108-109 
polarization (Dyson), 108 

Orbitals(s,p,dJ), 227 
Order-disorder systems, 51-53,246-250; see 

also Orientationally disordered 
crystals 

Orientationally disordered crystals, 9-11, 53 
ammonium halides, 284 
cryocrystals,36,277-281 
hydrogen halides, 282-283 
t-butyl halides, 283-284 

<>Xygen, solid, 280 

Pair potentials, 47 
Partition function, 37,42,43, 131-132 
Pauli principle, 133,149 
Perovskites, 202-203 

Index 

Phase diagrams, 129-130, 145-146, 150,280 
Phase space, 43 
Phase transitions, theory 

Clapeyron and Ehrenfest equations, 34, 
139,149,211,258 

classification, 34 
Phillips ionicity factor, 48, 164-165 
Phonon density of states: see Frequency 

distribution 
Phonon enhancement, 227-228, 262 
Plastic crystals: see Orientationally disordered 

crystals 
Platinum resistance thermometers, 91 
p-n-junction diodes, 93 
Poisson's ratio u, 119 
Polycrystalline mixtures, 218-219 

Voigt, Reuss, etc. averages, 270, 272 
Polymers, 15,48, 120, 192-200 

amorphous, 192-195, 196-199 
crystalline, 194,195-196 
epoxy resin, 199-200 

Pomeranchuk refrigerator, 149 

Quantum operators, 43 
Quartz, 171-173 

transducers, 121 
Quasi-harmonic approximation, 65,69,72-73, 

75 

Rare earths and actinides, 252-254, 255, 256 
Rare gases: see also Helium 

fluid state, 120, 129-131, 137-138, 140 
solid state, 17-18, 2~21, 57,107, 

119-120,125,154-157 
Reciprocal lattice, 55 
Reference materials, 104, 116-118,303,307 
Relaxation time, 9 
Renormalization 

of electronic band structure, 227-228 
of vibrational spectrum, 72-73, 156 

Residual entropy at T = 0, 36, 132 
Resistance thermometers 

carbon and carbon-glass, 12, 103 
germanium, 12, 103 
oxide 'thermistors; 93 
platinum, 91 

Rigid ion models, 47 
Rigidity modulus G: see Shear modulus G 
Rocksalt structure, 157-161, 171,212-213, 

215,216 
Rutile structure, 173, 175, 214 
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Schottky systems,S, 8, 12, 174,212,214,217, 
222-223 

Griineisen parameters, 50-51 
theory, 38-40,49-51 

'Second Griineisen function' q,33 
Separation of electronic and vibrational 

eff~,5-7,45,225-226,249 

Shear modulus G, 32, 119 
Shell model, 47 
Silicates, 127, 162, 171, lTI-183, 185-188, 

219,220,274,289-291 
Simon 'desert' picture, 12 
Sound velocities, 120-121 
Specific heats (definitions), 28,94 
Spin-waves, 248-249 
SRMs (Standard Reference Materials), 118 
Statistical mechanics 

classical, 42 
quantum, 37-42 

Superconducting transition temperature Tc , 

256 
tables, 92, 203, 256, 262, 265 

Superconductors 
fullerenes, 209-210 
Ga,6-9 
heavy fermion compounds, 264-265 
high Tc compounds, 8, 120, 200-210 
normallsuperconducting differences in a 

and Cy, 257-261 
pressure effects, dTcldP, 203, 258-259, 

262 
type I and type 11, 53, 257-262 

BCS theory, 257 
Supertluid, 146-147 
Surface effects, 56-57 
Symbols (list), 311-312 

Tables 
alkali halides of rocksalt structure, data, 

159 
boiling points, triple points and critical 

points, 130 
ceramic oxides for low temperature use, 

data, 171 
Debye functions (Cy, U, S), 309 
Einstein (harmonic oscillator) functions 

(Cy, U, S), 308 
energy scales, equivalence factors, 30 
fluorite structure salts, data, 162 
forsterite and wilIemite, data, 291 
gases, Cy at 0.1 MPa, 138 
glasses (non-silicate), data, 185 
glasses (silica-based), data, 182 
heavy electron materials, data, 265 
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Tables, (continued) 

high field superconducting materials, 
data, 262 

high Tc superconductors, data, 203 
hydrogen halides, phase transitions, 282 
ITS-90, fixed points, 92 
layer and chain-like crystals, data, 192 
metals (cubic), data, 230 
metals (magnetic), data, 250 
metals (non-cubic), data, 243 
N2 and eCh, thermal data, 280 
N2-type crystals, basic parameters, 279 
NaCI doped with 1% Rb or Cs, aCT), 221 
polyethylene samples, thermal expansion, 

199 
polymers, Cp and (1293 -14)/1293,195 
polymers, linear tunnelling terms in cp, 

197 
rare earths and actinides, data, 256 
rare gas solids, data, ISS 
reference materials, Cp, a* and 11111293 , 

307 
superconducting transition temperatures 

and widths, 92 
technical solids, Cp, 305 
technical solids, tll II and Cl293, 306 
tertiary butyl halides, phase transitions, 

283 
zincblende and wurtzite structure crystals, 

data, 165 
Technical materials 

guesstimating Cy and a, 237-239, 242 
superconductors, 260-262 
tables of Cp, tll, Cl293, 305-306 

data sources, 303 
Temperature control, 93 
Temperature measurement: see Thermometry 
Temperature scales 

ITS-90,91-92 
Kelvin, 91 

Tetrahedrally bonded crystals, 162, 173 
Thermal expansion 

expansion coefficients 
definitions,28,106 
magnitudes, 106 

measurement, 10S-118 
sensitivity, 106 

microscopic mechanisms, 67~9 
reference book, 106 
reference materials, 116, 118 

Thermodynamic relations, 30-34 
anisotropic materials, 80-82, 84 
electric and magnetic fields, 33 
manipulative methods, 299-301 
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Thermodynamic relations, (continued) 

pressure and volume derivatives, 32 
superconducting transitions, 257-258 

Thennoelastic measurements, 115-116 
Thennometry 

primary methods (gas, acoustic, noise, 
black body), 90 

resistance thermometers, 91-93 
sensitivity of sensors, 91-92 
vapor pressure, 91 

Third Law, 2, II, 35-37 
Thirring expansions, 62-63 
Thompson three-terminal capacitance, 112 
Three-terminal capacitance dilatometers, 

112-115 
absolute measurement, 113 
differential measurement, 112 
irregularly shaped samples, 115 

Transducers for ultrasonic measurements, 121 
Transition metals, 6,127,230,234,243-244 
Triple point, 129 
Thnnelling, 173, 288, 292: see also Glasses; 

Impurity effects 

Ultrasonic velocity measurements, 120-123, 
235,254 

Unattainability of zero temperature, relation to 
Third Law, 36-37 

Units and conversion factors, 29-30 

Vacancies, 29, 58,107 
Valence force fields, 48 

Index 

Vapor pressures of 3He and 4He, 91 
Vibrational contributions to thermodynamic 

properties, 17, 59 
analysis of data, 72-73 
high temperatures, 62-64, 66, 69-71, 

73-75 
low temperatures, 2-4, 61~2, 64, 75 

Vibrational spectrum, 55-59 
Virial PV, 41 
Virial coefficients of gases, 136-137 
Vitreous state: see Glasses 
Voigt abbreviated notation, 77-79 

Wurtzite structure, 168-170 

X-ray and neutron diffraction (elastic), II, 
107, 120 

measuring internal expansion, 29,107 

Young's modulus E, 119 

Zero-point energy, 61, 63, 144 
Zincblende structure compounds, 4,164-167, 

217 
Zirconia, 173-174 
ZrWzOs,291 


