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Preface

The birth of this monograph is partly due to the persistent efforts of the General
Editor, Dr. Klaus Timmerhaus, to persuade the authors that they encapsulate their
forty or fifty years of struggle with the thermal properties of materials into a book
before they either expired or became totally senile. We recognize his wisdom in
wanting a monograph which includes the closely linked properties of heat capacity
and thermal expansion, to which we have added a little ‘cement’ in the form of
elastic moduli. There seems to be a dearth of practitioners in these areas, particularly
among physics postgraduate students, sometimes temporarily alleviated when a new
generation of exciting materials are found, be they heavy fermion compounds, high-
temperature superconductors, or fullerenes. And yet the needs of the space industry,
telecommunications, energy conservation, astronomy, medical imaging, etc., place
demands for more data and understanding of these properties for all classes of
materials — metals, polymers, glasses, ceramics, and mixtures thereof.

There have been many useful books, including Specific Heats at Low Tempera-
tures by E. S. Raja Gopal (1966) in this Plenum Cryogenic Monograph Series, but
few if any that covered these related topics in one book in a fashion designed to help
the cryogenic engineer and cryophysicist.

We hope that the introductory chapter will widen the horizons of many without a
solid state background but with a general interest in physics and materials. The next
two chapters deal with basic theory (including the often neglected thermodynamics of
anisotropic materials), and with experimental techniques; the experimental physicist
and engineer should be helped also by the tables of data in the Appendix C, with
their attached references. The remaining chapters cover specific properties of various
classes of material.

Finally we hope that this monograph will help meet the information needs in
cryogenics that were envisioned by the Founding Editor and mentor to one of us, the
late Dr. Kurt Mendelssohn, F.R.S.
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Chapter 1

Introduction

1.1. THERMODYNAMIC PROPERTIES AT LOW TEMPERATURES

This book is concerned with the properties of materials at low temperatures, their
measurement and the basic physics underlying them. These topics are complemen-
tary. Research in physics involves the use and often the construction of equipment,
and even theorists need to appreciate what kinds of measurement are practicable and
what is their precision and reliability. Conversely, the cryogenic engineer benefits
from a fundamental understanding of the physical effects he is exploiting and of the
materials he is using.

Heat capacity, thermal expansion and elasticity are all thermodynamic properties.
The principles of thermodynamics apply universally: in general both the experimental
techniques used at low temperatures and the underlying theory apply also at ambient
and higher temperatures, and so to the technology of everyday life. Consider, for
instance, a domestic electric storage heater: a thermally insulated core is heated
electrically during the night at low cost, and the heat is released during the follow-
ing day to bring the surrounding room to a comfortable temperature. This simple
example illustrates the equivalence of heat and electrical energy, the use of an adia-
batic enclosure with facility for controlled breakdown of insulation (permitting the
exchange of heat between the core and the air), and the definition and measurement
of temperature. All these are also essential concepts for cryogenics. Furthermore,
the efficiency of the heater is critically dependent on the relative heat capacities of
the core and the air in the room.

The understanding of thermodynamics in terms of atomic and molecular behavior
is similarly universal: the general principles (statistical mechanics) apply at all
temperatures. Despite this, working at low temperatures does tend to have special
characteristics: in particular, heat capacities are often low, so that absorption of
unwanted energy due to inadequate insulation or to external vibrations can wreak
havoc with temperature control; also, changes in crystal dimensions and elastic
properties may be small, requiring high precision for their measurement.

T. H. K. Barron et al., Hear Capacity and Thermal Expansion at Low Temperatures
© Kluwer Academic/Plenum Publishers, New York 1999



2 Chapter 1

=)}

»
T

C,(Cal. mol”'K™1)
(5]
T T

(=]

0.2 0.4 0.6 0.8 1.0
T/(hvg/k)
Fig. 1.1. Heat capacity of a mole of harmonic oscillators of frequency vg as a function of temperature.

o, experimental points plotted by Einstein for diamond, with hvg /k = 1326 K. (3R = 24.94 J.mol™!.
K~! =5.96 cal-mol~1.K™1).

(=]

Such characteristics are in accord with the Third Law of thermodynamics, which
governs thermodynamic behavior as temperature approaches the absolute zero. The
Third Law and its consequences are in turn due to the quantum nature of matter, and
in particular to the consequent discrete energy levels of physical systems. As long ago
as 1907, in a discussion of the abnormally low heat capacity of diamond, Einstein
[Ein07] pointed out that at sufficiently low temperatures (k7" < hv, the spacing
between energy levels), none of the higher energy levels of a harmonic oscillator is
excited. The system is then in its quantum ground state; its energy no longer changes
with temperature, and its entropy and heat capacity have fallen to zero (Fig. 1.1).
The same is true of bulk physical systems (in which the thermal expansion also falls
to zero), except of course that the approach of the heat capacity to zero will not be
the same as that for a harmonic oscillator. To demonstrate this, and to give a taste of
the variety of low temperature behavior exhibited by different substances, let us now
look briefly at some examples of increasing complexity. Fuller discussion of these
examples will be given in later chapters.

KCl. Figure 1.2 shows the temperature dependence of the heat capacity Cp and
volumetric thermal expansion coefficient B of the cubic crystal potassium chloride.
At room temperature Cp has flattened off to a value of about 50 J-mol~!-K~!, in
agreement with the empirical law of Dulong and Petit [Dul819] that the heat capacity
of many solids is about 25 J-g-at~1.K~!. The way in which Cp decreases to zero (as
T?) is more gradual than the exponential decrease seen in Fig. 1.1. This is because
there are many different vibrations of a crystal structure, giving a vibrational spectrum
varying from the low frequencies of sound waves to higher frequencies typically in
the infra red region 10'1-10!3 Hz. To a first approximation the heat capacity is the
sum of harmonic contributions from all these vibrations, each contribution having the
type of temperature dependence shown in Fig. 1.1. As the temperature is lowered,
the contributions of the highest frequency vibrations are the first to decrease, and then
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Fig. 1.4. Cp and B for cubic CuCl below room temperature [Bar77a].

successively those of lower frequency, until at very low temperatures we see only the
contributions of the acoustic vibrations, giving a characteristic T> dependence (see
Section 2.6). Unlike Cp and B, the elastic stiffnesses c),, tend to non-zero limits as
T — 0 (Fig. 1.3). At very low temperatures the departure from these limits is usually
small and hard to measure accurately.

CuCl. In Fig. 1.2 we have seen that the heat capacity and thermal expansion of
KCl have qualitatively similar temperature dependence. Our next example, cuprous
chloride, shows that this need not be so (Fig. 1.4): once again both Cp and 8 approach
zero as T3, but whereas Cp remains positive at all temperatures (as required for
thermodynamic stability), B becomes negative at low temperatures. It is clear from
this example that although all vibrations contribute similarly to the heat capacity,
their effect on the thermal expansion can be very different. Since it is only the lower
frequency vibrations that are excited at low temperatures, we can deduce that for CuCl
such vibrations on balance contract the crystal lattice. There is nothing anomalous
about this. Negative expansion is quite common, especially at low temperatures (see,
e.g., Section 5.5.1), and low expansion materials can be produced by balancing the
factors that make for positive and negative expansion (Section 5.7). We note also that
there is no law for thermal expansion analogous to that of Dulong and Petit for heat
capacity: the room temperature values of 8 for KCl and CuCl] are quite different.

It should be noted that both KCI and CuCl are cubic crystals, with isotropic
thermal expansion, whereas non-cubic crystals have anisotropic thermal expansion
(e.g., Fig. 1.9).
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vibrational component [Sto64]. (1 cal = 4.184 J).

a-NiSO4-6H,0. The strong peak in Cp superimposed on the vibrational 73
dependence at low temperatures shown in Fig. 1.5 is a simple example of a non-
vibrational contribution to the thermal properties. The contribution builds up expo-
nentially as T increases, and then falls off as 72 at high temperatures. Such behavior
is typical of an assembly of so-called Schortky systems, which are essentially non-
interacting localized systems (e.g., ions, atomic nuclei, etc.) which can exist in only
a small number of energy states (see Section 2.5.3). In a-nickel sulphate the energy
states arise from the three-fold degeneracy of the magnetic Ni*™* ion, which in this
non-cubic crystal is split into three closely spaced energy levels. At very low temper-
atures all the ions have the lowest energy; as T increases some ions become excited
to the higher levels, but the resulting heat capacity dies away at higher temperatures
as all three energies become equally likely.

In this example the Ni** ions are well separated from each other by the water of
crystallization; the interaction between neighboring spins is small compared to the
splitting of the degeneracy by the crystal field, satisfying the criterion for Schottky
systems. Much sharper peaks in Cp are seen when the degeneracy is lifted by
interactions between the systems, as for example in some forms of ferromagnetism
(Section 5.11). For both types of system effects will be seen also in the thermal
expansion and (usually less marked) in the elasticity.

Cu. In simple metals the conduction electrons contribute small terms to the heat
capacity and thermal expansion that are proportional to the temperature. At room
temperature these terms are swamped by the vibrational terms, but at low temperatures
(typically T ~ 1 K) almost all the vibrations cease to contribute, leaving the electronic
contribution dominant. The electronic and vibrational terms can be conveniently
displayed by plotting Cp/T and /T or B/T against T2. The low temperature heat
capacity of copper is thus shown in Fig. 1.6: the intercept at T = 0 gives the coefficient
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Fig. 1.6. Cp/T plotted against T for Cu at low temperatures [Hol72].

of the electronic term I', T, and the initial slope the coefficient of the vibrational term
aT3. Note that it is only below 4 K that the electronic term begins to dominate. For
the thermal expansion experimental precision is insufficient to permit extension to
temperatures where the electronic term is dominant (see Section 3.3).

Pd. The d-electrons in transition metals such as palladium enhance the electronic
density of states, giving electronic contributions to the heat capacity and thermal ex-
pansion much larger than those in copper (Fig. 1.7). In particular, the electronic
thermal expansion is large enough at low temperatures to be determined quite accu-
rately.

Ga. A similar plot (of Cp/T against T2) for the superconductor gallium shows
more complex behavior (Fig. 1.8). Instead of showing the T-dependence of a nor-
mal metal, Cp rises exponentially at low temperatures to a peak at the supercon-
ducting transition temperature T; it then falls discontinuously to the normal (non-
superconducting) value. The rise at low temperatures is rather similar to that seen in
the Schottky peak of Fig. 1.5, but the discontinuous drop at T, is in marked contrast
to the long high temperature tail seen there; above T, all trace of superconductiv-
ity has disappeared. Thermal expansion coefficients of superconductors also have
a discontinuity at 7, but (unlike Cp) they may either increase or decrease at the
transition.

Figure 1.8 also shows that the normal T-dependence is observed at lower tem-
peratures if the superconductivity is suppressed by applying a magnetic field H. For
gallium, however, a further non-vibrational contribution then appears at very low
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Fig. 1.9. Linear expansion coefficients of YBa;Cu3O; [Mei91].

temperatures, which has been identified as the high temperature tail of a Schottky
contribution arising from the lifting of the nuclear spin degeneracy by the crystal field
(Section 2.5.3). That this contribution is not seen when H = 0 is a striking example
of the importance of kinetics: in the superconducting state at low temperatures the
interaction between the nuclear spin system and the lattice vibrations is so small that
thermodynamic equilibrium is not established within the time of the experiment.

YBa; Cu30;. More complex forms of superconductivity than that originally seen
in simple metals at very low temperatures have been found in various types of sub-
stance (Section 6.5), including the high-T, ceramic oxides (Section 5.10). Like many
of these oxides, YBa;Cu3O7 has orthorhombic symmetry with independent coeffi-
cients of linear expansion along the three crystallographic directions (Fig. 1.9). At T,
(=~ 92K) there is a peak of about 2% in Cp, but the effect on the expansion coefficients
is different in each direction: negative for «,, positive for a;, and undetected for .

Invar systems. Magnetic solids of various types provide some of the most com-
plex and difficult systems to understand, and some of them are also of great technical
importance. These include the alloys “Invar” and “Elinvar,” which have respectively
very small thermal expansion and very small change of elasticity over a wide range
of temperature. A century ago Guillaume [Gui897] reported that properties of Fe/Ni
alloys were critically dependent on concentration, and later measurements alloying
iron with other metals have shown that a dominant factor in determining properties
is their high sensitivity to the number of conduction electrons per atom (Fig. 1.10).
Invar, an iron/nickel alloy with 35%Ni, can be seen in this figure to have a very low
thermal expansion at room temperature.
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Fig. 1.10. Values of « at room temperature as function of electron/atom ratio for various Invar-like systems.
AF-SG-FM denote antiferromagnetic, spin-glass and ferromagnetic regimes [Was90].

CeAl;. “Heavy fermion” metallic compounds are another class of solid with
properties difficult to understand. Their name arises from the very high effective
masses of their conduction electrons (see Section 6.6), corresponding to an electronic
heat capacity much greater than that of a normal metal, and large effects also in
other properties. For CeAls below 1 K, the heat capacity is about three orders of
magnitude greater than that for copper. The expansion coefficient 3 is negative, and
about five orders of magnitude greater than that for copper, becoming positive above
about 1 K. Perhaps most strikingly, even the elasticity changes appreciably between
0 and 3 K (Fig. 1.11). This behavior should not be regarded as typical, however; as
a class heavy fermion compounds display a very varied range of behavior, including
superconductivity and different forms of magnetism.

Ice. This important solid is mentioned here to illustrate the problems that can
occur when the relaxation time needed to reach thermodynamic equilibrium becomes
comparable to the time taken to perform a measurement. Figure 1.12 shows the
results of sensitive measurements of the heat capacity of three samples of normal
(hexagonal) ice between 70 and 160 K. At high temperatures the water molecules
are in thermodynamic equilibrium and randomly oriented. As the temperature is
lowered short-range order begins to set in, but concurrently the time needed to reach
equilibrium increases rapidly; relaxation times have been estimated to be about an
hour at 108 K and a week at 89.4 K. In such circumstances, the apparent heat capacity
depends both on the time allowed for the measurement and the previous history of
the sample.
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Fig. 1.11. Elastic moduli of longitudinal and transverse waves for polycrystalline CeAl; below 4 K
[Nik80].

In this example, the small amount of orientational ordering (at most about 2%)
has no detectable effect on the heat capacity and thermal expansion of the different
metastable states obtained at lower temperatures. We should therefore stress that the
properties of systems which have a range of possible metastable states are in general
dependent on previous history.

Let us sum up what we have seen in these examples. At low temperatures heat
capacity and thermal expansion change by many orders of magnitude, but elasticity
tends to a finite limit. As the temperature decreases, vibrational contributions be-
come less, and other contributions may become dominant; sometimes it is easy to
identify separate contributions, but sometimes this is not possible. Effects of specific
mechanisms are seen in all three properties, but are more marked in heat capacity
and thermal expansion than in elasticity; heat capacities are always positive, but
thermal expansion may be negative. Electronic effects, sometimes interacting with
the vibrations, may give rise to a rich complexity of behavior, especially in non-cubic
crystals; this can be critically dependent on composition. Finally, properties may
depend on the rate of measurement if thermodynamic equilibrium is not achieved
within the time-scale of the experiment.
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behavior if there was no orientational ordering [Hai72].

1.2. IMPLICATIONS FOR DESIGN OF EQUIPMENT

The consequences of the Third Law of Thermodynamics and rapid decrease of Cp
and B towards zero as T — 0 have obvious implications for the process of measuring
these two quantities. The traditional method of measuring the heat capacity Cp is to
apply a measured heat pulse AQ and determine the temperature rise, AT = T — T,
thus obtaining a value for Cp of AQ/AT at the average temperature (73 + T2)/2.
Likewise to determine the thermal expansion coefficient we heat the specimen and
measure the associated changes in length (per unit length) or volume (per unit volume)
and the change in temperature. At normal temperatures (around the Debye theta and
above — see Section 1.3.3) these properties often vary slowly with temperature
(e.g., Fig. 1.2), enabling relatively large intervals AT to be used. For example, rather
insensitive methods such as X-ray lattice spacings determined at 50 or 100 K intervals
may suffice to give expansion coefficients to +1%.

At low temperatures C and B vary rapidly with T; and to obtain meaningful data,
intervals of AT must then normally be much less than T itself, certainly < 0.17". This
requires sensitive thermometry, close temperature control (minimum heat leakage),
accurate control and measurement of AQ (for Cp) and very sensitive ‘dilatometry’
(for B or ). Consider orders of magnitude when measuring Cp at T = ®/100, that is
around 3 or 4 K for most solids. Ignoring ‘anomalous’ features like Schottky bumps or
heavy fermion effects, the lattice heat capacity will be about 1944(T' /)3 ~2 x 103
J-g-at"1.K~! ~ 107* J.cm™3.K~!. This should not present a measurement problem:
an electric current generating a few .W in a resistive element attached to the sample
(say ~ 1 cm? in size) for a few seconds will produce a measurable temperature rise of a
few hundredths of a kelvin. For an accurate result we need to ensure that the heat pulse
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goes into the specimen (i.e., no leakage) and that the thermometer records faithfully
the temperature of the specimen. Germanium or carbon resistance thermometers with
resolutions of few pK are suited to the purpose at these temperatures (see details in
Ch. 3).

At lower temperatures, in the millikelvin range, lattice heat capacity is many
orders of magnitude smaller, and unwanted heat sources in the form of external
vibrations, eddy currents, microwaves (and even cosmic rays) affect the stability and
accuracy of Cp measurements. Usually the sample is loosely coupled thermally to a
cooling stage (e.g., dilution refrigerator) via a heat link, and some type of transient
method (see Ch. 3) is used. This may involve either (i) a heat pulse and measurement
of the subsequent decay in temperature as heat leaks away to the cooling system
or (ii) an ac heat input with a phase-sensitive detector. Such measurements of heat
capacity sometimes concern thin film samples of only a milligram or so deposited
on a sapphire substrate with a thin-film Ge or Si thermometer. Total heat capacity
at such temperatures may then be as low as 10710 or 10~!! J.K~!, requiring highly
sensitive measurement of voltage signals. Below these temperatures the lattice heat
capacity continues to fall as 73 until even the lowest frequency modes are no longer
excited (T ~ 1075-10~7 K).

You may ask how and why we bother to measure at such extremes of tempera-
ture? We digress with an illustration due to the late Sir Francis Simon, an eminent
thermodynamicist and low temperature physicist ... the so-called ‘desert’ picture.
In a really featureless desert there are no points of interest and exploration would be
very difficult and pointless. If on the other hand there is a feature of interest, say an
oasis, this is worth exploring and often also provides the means to make exploration
possible. In the present context the featureless desert corresponds thermodynami-
cally to a material at low temperatures which has lost practically all its entropy, so
that its state is hardly distinguishable from its state at absolute zero. However, at
similar temperatures another material may still have appreciable sources of entropy,
provided for example by nuclear spins or heavy fermion effects; these correspond to
the oases. Their existence can make cooling and temperature measurement in this
range both feasible and physically significant (see Ch. 3).

Turning to thermal expansion at low temperatures, the major problems arise from
the limited resolving power of length measurement. Even with the best inductive or
capacitative detectors, it is difficult to detect reliably length changes of less than 0.01
A (10712m), that is, one hundredth of an atomic diameter. This difficulty is hardly
surprising, since 0.01 A is already much smaller than the scale of irregularities on a
crystal surface, or even the amplitude of the zero-point vibrations of surface atoms.
The result is that for a copper sample of 100 mm length at a temperature of ®p/100
(where a ~ 1072 K~!) a temperature increase of 0.1 K will increase [ by only 0.1 A
(10~!'m). If our limit of measurement is 0.01 A the accuracy of measurement of
will be only about 10%. Clearly we have no hope of determining thermal expansions
at temperatures below 1 K except for systems having Schottky bumps or other large
non-vibrational effects.
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1.3. USEFUL THEORETICAL CONCEPTS

Historically, interpretation of the thermodynamic behavior of materials devel-
oped progressively, as early theories were found inadequate to account fully for the
wide range of observed behavior becoming available experimentally. But for a com-
prehensive treatment it is better to start with a general conceptual framework into
which most aspects of both theory and experiment can then be fitted, including the
early theories. Such a framework is provided by thermodynamics and its general
interpretation by statistical mechanics, as described in Chapter 2. Specific models,
nearly always approximate, can then be used to interpret the properties of individual
materials or classes of material. For complete generality, this framework would need
to be extended to take account of measurements on substances which are not in
thermodynamic equilibrium.

However, we do not need to establish this entire framework before discussing
some of the concepts and procedures that occur most frequently in the presentation
and interpretation of experimental data. For example, several early theories are still
in common use, such as the classical theory of dilute gases, the Debye theory of heat
capacities of solids, and the simple Griineisen equation of state. Their importance is
due not only to their graphic simplicity, but also to their use as standards to which
the behavior of real materials can be compared. In this section we discuss some of
the key concepts arising from this early work.

1.3.1. Griineisen Function and Griineisen Parameters

The Griineisen Function. Empirically, heat capacity, thermal expansion, and
elasticity are qualitatively correlated. We have seen that the magnitudes of the
heat capacity and thermal expansion vary similarly with temperature. In addition,
substances that are elastically stiff tend to have low thermal expansion. Neither of
these correlations is surprising: the greater the heat capacity, the more energy is
absorbed per unit increase of temperature, and it is this energy that causes the thermal
expansion; and resistance to thermal expansion will be greater in a stiff material.
To make these considerations quantitative, and to understand what additional factor
affects the thermal expansion, we need precise definitions of the properties involved.
For simplicity, we here consider only fluids and solids maintained under hydrostatic
pressure.

Elastic behavior is described in terms of stress (force per unit area) and strain
(relative change of dimensions), and defined either by compliances, which give the
response of a material under specified conditions to applied stress, or (reciprocally)
in terms of stiffnesses, which describe its resistance to applied strain. In our case the
pressure P is the only stress and the relative change in volume the only strain, and it
suffices to use one compliance, the compressibility x, or its reciprocal stiffness, the
bulk modulus B. These may be defined under isothermal or adiabatic conditions:

xr =—(0V/oP)r =1/Br,  xs=—(énV/aP)s=1/Bs  (1.1)
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Similarly, the heat capacity may be defined under conditions of constant volume or
constant pressure:

Cy=(3U/dT)y,  Cp=(dH/dT)p (1.2)

where U is the internal energy and H is the enthalpy U + PV. The volumetric
expansion coefficient is defined by

B=(3InV/aT)p (1.3)
Imagine now the thermal expansion at constant pressure to proceed in two stages:

1. The temperature is raised by dT while the volume is held constant at V; this
requires an input of energy per unit volume

(1/v)dU = (Cy/V)dT
and causes the pressure to change by

dP = (Cv/V)[oP/a(U/V)lvdT

2. The pressure is allowed to relax to its original value while the temperature is
held constant at T + dT; the final change of relative volume is thus

dv _[xtCv [ oP
Fowar= {52 [ Jar - as

Equation (1.4) makes the roles of heat capacity and compressibility explicit,
and also makes it clear that by themselves they are insufficient to determine the
expansivity. We need also to know the sign and magnitude of the thermal pressure
caused by a given increase of energy density, expressed by a third thermodynamic
quantity, called the Griineisen function because it first appeared as a parameter in an
early model of E. Griineisen [Grul2]:

The thermal expansion coefficient can then be expressed as
B=yxrCv/V (1.6)

Equation (1.5) has been chosen here as the definition of the Griineisen function
because it brings out most clearly its r6le in determining thermal expansion. Other
thermodynamically equivalent expressions are given in Section 2.2.3. In particular,
experimental values of vy are usually obtained from the expression BV /(xsCp), and
for this reason 7y is sometimes called the Griineisen ratio.
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Fig. 1.13. Temperature variation of Griineisen functions for selected solids. PE denotes a sample of
polyethylene of 80% crystallinity. - - -, vibrational function y,i5(T).

The Griineisen function is dimensionless, and unlike the expansivity it usually
has the same order of magnitude over the entire experimental range. It thus provides
a sensitive way of plotting experimental data: different materials have their charac-
teristic signatures in the shapes of the y(T') plots (see Fig. 1.13), and trends within
the same class of material (e.g., alkali halides) are clearly displayed (Fig. 5.5). For
some materials vy varies little over wide ranges of temperature, with values typically
between 1 and 3; the heat capacity and expansivity then vary similarly with tem-
perature. But for other materials very different behavior is observed, especially at
low temperatures: 7y may be negative, causing the material to contract on heating;
and it may vary strongly with temperature (e.g., Fig. 5.8), sometimes with very large
positive or negative values. The behavior of polyethylene in Fig. 1.13 is due to its
more complex structure: the higher frequency modes have little effect on the thermal
expansion but contribute to the heat capacity at higher temperatures (Section 5.9).

Although it is a well defined thermodynamic function dependent on both tem-
perature and volume, 7y is sometimes called the “Griineisen constant,” a term that is
particularly misleading in the cryogenic range of temperatures (Fig. 1.13). To call it
the “Griineisen parameter” is less objectionable, although in this book we reserve this
term for other quantities related to the parameter vy in Griineisen’s original theory.

Griineisen Parameters. Griineisen’s original approximation took the same fre-
quency v for all the vibrations. The volume derivative of this frequency was
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described dimensionlessly by a parameter
v=—dIny,;/dInV a.mn

For his model the Griineisen function defined in Eq. (1.5) has this value at all temper-
atures, and so the model predicted that the ratio BV /(xr Cyv) should be approximately
independent of temperature. Indeed, it can be shown that whenever all the energy
states of a system scale to a single characteristic energy E.(V), the Griineisen func-

tion is independent of temperature with the value —dInE./dInV. For example, in

an ideal gas of single particles all the energy states scale as V‘§, giving y = % in

both the classical and the quantum limits.
Generally, however, the energy states do not all scale in the same way, and there
are separate Griineisen parameters for different frequencies or characteristic energies:

e.g.,
¥, =—dIny;/dInV, Ye=—dInE;/dInV (1.8)

These can sometimes be determined by spectrocopic measurements under pressure.

1.3.2. Additive Contributions

When discussing experimental examples in Section 1.1 we referred to various
contributions to the thermodynamic properties: vibrational, electronic and so forth.
Ideally such contributions will be distinguishable and independent of each other only
if the free energy can be expressed as the sum of distinct components:

F=Fyp+Fo+... (1.9)

Although this is not exact for real materials, it is often true to a good approxima-
tion (Section 2.3), and is a feature of nearly all theoretical models; when necessary,
interaction between the different components of a model is considered as a further
refinement. It follows from Eq. (1.9) that all derivatives of F with respect to tem-
perature and strain are similarly additive; among these are pressure P, entropy S,
isothermal elastic moduli (e.g., Br) and heat capacity Cy. Thus

Cv=C1+C+C3+--- =Y Cy, etc. (1.10)
r

where the index r may refer only to a broad separation of contributions into vibra-
tional, electronic, and so on, or to a finer separation into individual vibrational modes
(Section 2.6).

Quantities which are not derivatives of F (T, V) are in principle not additive. These
include coefficients of thermal expansion as well as compliances and Griineisen func-
tions. But the thermal pressure coefficient [P /dT]y is additive, and the expansion
coefficient can be expressed as

B = xr[oP/dT]y (1.11)
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and so provided that yr is changing with 7 much more slowly than [dP/dT]y we
can loosely identify different additive contributions to the thermal expansion.

This is not true of the Griineisen function. Griineisen functions can indeed be
defined for the separate components of the model, but they are not simply additive.
The Griineisen function for the material is an average weighted by the contribution
to the heat capacity of each component:

'Y=Zcr7r/zcr (1.12)

The Griineisen function for Cu shown in Fig. 1.13 reveals the effect of this weighting
at low temperatures when the contribution of C, becomes an appreciable fraction of
Cy, since for Cu ¥, is considerably lower than y,;p.

If the contribution of a component C, can be scaled to a single characteristic
temperature or frequency, its Griineisen function 7, is simply a constant parameter,
as defined for example in Eq. (1.7).

1.3.3. Vibrational Contributions; Debye Thetas

The Frequency Distribution. We have seen that to a first approximation the
vibrational heat capacity of a solid is the sum of contributions from independent
harmonic vibrations. The vibrational frequencies may be given as v (in Hz), as
angular frequencies @ = 27w (in rad-s~!), or as their equivalents in meV, etc. (see
Table 2.1). For the most part we shall use w. The number of vibrations with
frequencies between @ and @ + dw is written as g(w)8w, where g(w) is called the
frequency distribution or (less felicitously) the phonon density of states. The heat
capacity is then

Coip = / g(w)clio/kT)dw (1.13)

where c(fiw/kT) is the contribution to Cy;;, of a mode of frequency w:

2

x
cio/kT) = km,

x =hw/kT (1.14)
This function has the temperature dependence shown in Fig. 1.1, and rises to a
maximum value of k, or to 3R for one mole (Einstein solid; see Table C.4).

The shape of g(w) is not simple and is different for each solid. It is usually
estimated by fitting a lattice dynamical model to experimental data obtained mainly
from inelastic neutron scattering (see Section 2.6.2). Examples for two crystals of
different simple structures are given in Fig. 1.14. The shape of g(w) for Ar is much
the same for other rare gas solids, and also for those fcc metals in which nearest
neighbor central forces play a dominant rdle. The shape for Si (diamond structure)
is fairly similar to those for Ge, for a(grey)-Sn, and for some crystals of zincblende
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Fig. 1.14. Harmonic frequency distribution g( ) (phonon density of states D) for (a) Argon (3%Ar) [Fuj74],
(b) Silicon [Dol66]. From [Bil79].
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Fig. 1.15. (a) The Debye frequency distribution. The area under the curve is 3N. (b) —, the Debye heat
capacity as a function of T/@p. - - -, the heat capacity of 3N Einstein oscillators with O = \/g Op.

structure in which the two atoms are in the same row of the periodic table; but it
differs markedly from that for diamond.

The sharp discontinuities in slope (van Hove singularities) are a consequence of
the lattice periodicity and are a feature of all crystal frequency distributions.

The Debye Model. Despite their great variety, all g(w) for three dimensional
crystals have two properties in common: (i) the lowest frequency vibrations are
elastic waves of long wave-length, which implies that at low frequencies g(w) has
the limiting form aw?; (ii) the total number of frequencies is 3N, where N is the
number of atoms in the solid. The Debye distribution [Deb12] has the simplest shape
with both these properties: the w? dependence is continued over the whole range of
frequencies up to a cut-off frequency wp, chosen such that there are 3N vibrations in
total. In terms of the parameter wp the Debye distribution is then like that shown in
Fig. 1.15(a):

gp(w)=9Nw?/wp> OR  gp(v)=9Nv?/vp3 (1.15)

where gp(v) is defined such that gp (v)dv is the number of frequencies between v
and v +dv.

The temperature dependence of Cy given by Eq. (1.13) for this distribution is
shown in Fig. 1.15(b); it scales as T/@p, where ®p = hwp /k is called the Debye
temperature. It is usually tabulated as a function of ®p /T, either as in Table C.5 for
one mole (when 3Nk = 24.94 J-mol~!-K ™) or scaled as Cy /3Nk:

Cv(Debye) = 3Nkfp(®p/T) (1.16)
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At low temperatures Cy (Debye) tends to zero as T3, in accord with the behavior of
real solids and unlike the exponential behavior of Cy (Einstein) shown for comparison
in Fig. 1.15(b) (compare also Tables C.4 and C.5).

The Debye distribution is used widely in solid state theory as an approximation
to the true frequency distribution of a solid. Since it is a one-parameter theory, it
predicts a constant value —d In®p /d InV for the Griineisen function 7,;,. This is a
fair approximation for a number of close-packed metals and rare-gas solids but not
for more complex solids (Fig. 1.13).

Equivalent Debye Temperatures. Since most materials have Cy curves of rather
similar shape, a sensitive means of plotting is needed to bring out their differences.
This is usually done by plotting the equivalent Debye temperature @€ as a function
of temperature. ®C(T) is defined as the Debye temperature ®p that would predict
the actual value of Cy at temperature 7. It can be obtained from Debye tables (e.g.,
Table C.5) by finding the value of ®@p/T that gives the experimental Cy(T), and
then multiplying by T'. If many values are required, automatic computation is more
convenient. Plots of @€ against T are used extensively in the succeeding chapters
(e.g., Figs. 5.4 and 6.1). ®€(T) would of course be constant if g(w) were of Debye
form, and the shape of its variation with temperature is therefore a characteristic
property of the actual frequency distribution of the solid.

Consider for example the two frequency distributions in Fig. 1.14, for which the
corresponding @€ (T) are shown in Fig. 1.16. For both Ar and Si the distribution
at low frequencies rises above its limiting w? behavior; consequently Cy rises more
rapidly than Cy (Debye), and this is shown by a fall in @€ (T) from its initial value
©f at T = 0. For Ar the departure from the Debye distribution is much less severe
than for Si, and the total variation of @ until it approaches its high temperature limit
o€ is fairly small. For Si the initial rise in the distribution above the ? behavior
is steep, and there is a big drop in OF in the range above T = 0, corresponding to a
greatly enhanced heat capacity. But above the first peak the Si distribution is spread
out quite thinly until the final peak occurs at much higher frequencies. Cy does not
therefore approach 3Nk until much higher temperatures are reached, and the high
temperature limiting value ® reflects these higher frequencies.

Extreme departures from Debye behavior can occur when there is wide variety of
strength of bonding within the crystal, as for example in the layered crystal graphite
(Section 5.8.2). The low frequency vibrations involve mainly weak interlayer forces,
and despite the low atomic mass @g has the moderate value of 413 K. But the high
frequency vibrations depending upon the strong intra layer forces are not excited
until high temperatures, and at room temperature ®€ ~ 1500 K and is still rising.
Similarly, in molecular crystals the molecules have internal vibrations of much higher
frequencies than those involving only the forces between molecules. It is then
appropriate to modify the definition of the Debye equivalent temperature by not
including these internal vibrations when counting the number of degrees of freedom
for the equivalent Debye distribution, thus making this less than 3N.
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Fig. 1.16. Variation with temperature of ®C and (for Ar only) of ® for the distributions g(w) of

Fig. 1.14. (a)Argon (3%Ar) (Fuj74] (b) Silicon: —, from g(®); - - -, from experimental heat capacity
[Dol66].

The equivalent thetas for the heat capacity most often tabulated are the room tem-

perature value @S, and the low temperature limit ©f that determines the coefficient
of T3 in

Cvip ~3Nk(4m*/5)(T/0OF)* as T —0 (1.17)

Also tabulated sometimes is the estimated limiting value at high temperatures, ©F,
which is of theoretical importance (Section 2.6). The room temperature values, even
if only approximate, can be a valuable guide to the probable behavior of solids at
temperatures down to ®/5 or ®/10 (see Section 6.2.7).

The representation of experimental Cy values by ©C plots can also reveal de-
parture from harmonic behavior at high temperatures. Plots derived for a harmonic
vibrational distribution flatten off at high temperatures towards a limiting value ©%
— typically for T > 0.30. This theoretical behavior is shown in Fig. 1.16(a). But
the experimental values for argon corrected to constant volume in Fig. 5.1 show
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OC rising at high temperatures, indicating a negative anharmonic effect on Cy.* In
contrast, for Si a fall in @€ is observed at high temperatures, indicating a positive
anharmonic effect [Flu59].

Other Debye Equivalent Temperatures. Equivalent Debye temperatures can
be defined for properties other than the heat capacity — particularly for the entropy
(®%) and for the Debye Waller effect (®M). Equivalent thetas for different properties
of the same crystal vary differently with temperature (Fig. 1.16(a)), although they
are usually of the same order of magnitude (Section 2.6). For this reason the explicit
notation @€ for the heat capacity is preferable to ®p(T), which is still sometimes
used.

The equivalent thetas for the heat capacity and the entropy have the same limiting
value at low temperatures, which is therefore often written without superscript:

0§ =0 =0, (1.18)

Because the only vibrations contributing to Cy and S at low temperatures are elastic
waves, ©g can also be calculated from elastic data (Section 2.8). Values obtained in
this way are written @f)’ to distinguish them from those obtained from calorimetric
measurements, written @f. Whenever possible ¢ should be derived from low
temperature elastic data, since elastic moduli change with temperature (Fig. 1.3).
Values derived from room temperature elastic data should be regarded as a rough
approximation for ®y; they do not give ©%, (see also Section 2.6.4). O and O are
usually found to agree within the uncertainty of the measurements (see tabulations
[Ale65, Phi71]). Tables of various Debye equivalent thetas are given in Gschneidner’s
extensive compilation of physical properties of the elements [Gsc64].

1.3.4. Electronic Contributions

The electron theory of metals is a vast subject still in process of development.
Here we introduce some simple concepts in common use, which will be discussed
further in later chapters. The underlying theory is standard, and can be found in solid
state text-books (e.g., [Ash76]).

Independent Particle Model. In a metal the conduction electrons interact with
each other as well as with the metallic ions. For many simple metals it is a good
first approximation to regard all these interactions as producing an effective potential
field in which the electrons move independently, giving a single particle density
of electronic states n(e), where n(e)de is the number of available electron states
between € and € + de. Electrons are fermions, and multiple occupancy of states is
forbidden. At T = 0 all the electron states are occupied up to an energy €ro called
the Fermi energy at T = 0, and all higher states are empty. At low temperatures some

*The results in Fig. 5.1 were obtained for natural argon, consisting mainly of “°Ar. The values of @€ are
consequently lower than for 3Ar.
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of these higher states become occupied, giving an electronic heat capacity which is
proportional both to 7" and to the density of states at the Fermi level:

1

-

wzn(epo)kT] =T,T (1.19)

The electronic Griineisen function corresponding to this low temperature limit is then
Ye = dIn[n(epo)]/dInV (1.20)

Free Electron Model. The simplest and earliest model for the density of states
is to take the electron states as those of a particle of mass m and spin % confined to
a box of the volume V of the solid. The N conduction electrons then form an ideal
Fermi gas (see Section 4.4.1), with

n(e) = -;-Ne% /(ero)?,  ero = (%/2m)(3m*N V)3 (121)
so that
C./(Nk) = 1kl _ l1r2(T/TF) (1.22)
2 €Fr0 2

where the Fermi temperature T is defined by
kTFr = €rg (1.23)

For this model Eq. (1.20) gives for the electronic Griineisen function vy, = % the
value for all ideal gases of single particles. This is lower than most experimental
values (see, e.g., Table 6.1).

Effective Masses. For the free electron model Egs. (1.21) and (1.22) show that
the electronic heat capacity at low temperatures is proportional to the mass m of an
electron. When the electronic heat capacity of a metal differs from the free electron
value, an “effective mass” m* can be defined such that when it is substituted for m
in the free electron expression we obtain the correct electronic heat capacity. The
ratio m* /m thus gives the ratio of the actual heat capacity to the free electron value,
and is frequently used as a dimensionless measure of the electronic heat capacity.
The effective mass is a function of volume, and the electronic Griineisen parameter
is given by

Ye = §+dlnm*/dan (1.249)
Effective masses obtained by comparing the predictions of free electron theory

with other measurable properties are also commonly used in solid state theory; in
general they differ from each other and from that defined above for the heat capacity.
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1.3.5. Molecular Gases

The solid state theories mentioned above are relatively simple because crystals
are well ordered; even in the free electron gas, where there is no positional order,
there is a high degree of order in the momenta. At the other extreme, simplicity also
results when in the classical limit an ideal gas becomes highly disordered. This does
not happen for an electron gas until very high temperatures are reached (T > Tr), but
for a molecular gas at normal densities the particle states are much closer together and
the classical theory of Maxwell, Boltzmann and others holds down to temperatures
typically of order 1 K or lower for heavy molecules (Section 2.4.1), giving the familiar
results for a monatomic gas:

3

U= iNkT, pV =NkT (1.25)
and hence
3 5
Cv=§Nk, CP=§Nka BT=P7 B=(1/T) (1'26)

in agreement with the value y = % valid at all temperatures. Effects due to the further
degrees of freedom of polyatomic molecules are discussed in Section 4.2.2, and those
due to departures from ideality due to intermolecular interactions in Sections 4.2.4
and 4.3.

1.4. PLAN OF THIS BOOK

Like the present chapter, the next two chapters are general in the sense that they
deal with topics that are relevant to many (and sometimes all) materials. After defin-
ing precisely quantitative measures of heat capacity and thermal expansion, Chapter 2
goes on to describe briefly the underlying theoretical framework: first the thermody-
namics and statistical mechanics, and then the various types of material to which they
are applied, the different types of bonding (ionic, valence, metallic, etc.) giving rise
to different types of behavior. Several simple models are then described which have
widespread application either directly or indirectly by illustrating concepts important
for more complex systems, the aim being to clarify ideas of particular relevance to
heat capacity and thermal expansion. We then discuss anisotropic stress and strain,
and the thermodynamics of elasticity. The ground is thus prepared for Chapter 3,
which discusses methods of measurement and other cryogenic techniques.

Most of the rest of the book deals in turn with different groups of materials.
Chapter 4 deals briefly with fluids. Although most materials of cryogenic interest are
solids, there are some fluids of great importance. Liquefied gases such as nitrogen,
hydrogen and helium are used widely in cooling; their low triple points enable theories
of equations of state to be tested up to high reduced temperatures and pressures; and
vapors are used to establish the thermodynamic ideal gas scale of temperature. And
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of course the unique properties of liquid *He and “He and their mixtures are of great
interest both fundamentally and technically.

Chapter 5 deals with non-metallic solids, including ceramic high temperature
superconductors. These are of many different kinds, too many to be covered compre-
hensively in a book of this type. Emphasis is therefore placed on those materials that
are cryogenically important, and on those that are interesting theoretically either be-
cause they are well understood or because they present well-defined problems. This
is true also of Chapter 6, which deals with metals and semi-metals, but here further
theoretical treatment is also needed in order to discuss such wide-spread properties
as superconductivity and magnetism.

Composite materials (with polycrystals of a single substance as a special case) are
discussed briefly in Chapter 7. Chapter 8, “Cryocrystals, Clathrates and Curiosities,”
deals with topics which merit inclusion but do not fit conveniently elsewhere. After
a brief “Conclusion,” there are appendices containing useful information such as
methods of thermodynamic manipulation, tables of technical data, Einstein and Debye
tables, and a list of commonly used symbols.
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Basic Theory and Techniques

2.1. INTRODUCTION

This chapter summarizes theory used in the discussion of thermodynamic prop-
erties, giving references to where more detailed discussion may be found, and elab-
orating more fully some concepts which are frequently used. The general principles
are illustrated first for isotropic behavior. Of these principles, thermodynamics is
essential to everyone in that it provides a systematic method of describing, relating
and analyzing the bulk properties which form the subject of this monograph. Sta-
tistical mechanics relates these properties to atomic and molecular structure, and so
forms the basis for their theoretical explanation and prediction. Computational tools
developed for this purpose are briefly mentioned, both for the statistical mechanics
and for the underlying quantum theory of bonding and cohesion. Some of the appli-
cations described are simple, such as ideal gases and Schottky systems; but two others
of great general importance, viz. cooperative order—disorder effects and vibrational
contributions, require longer discussion. So also does the extension of the theory to
anisotropic behavior and elasticity.

2.2. THERMODYNAMICS

Like Section 1.3, this section deals with processes that are functions of volume
and temperature. The thermodynamics of more general strain (including anisotropic
expansion and elasticity) is treated in Section 2.8.

2.2.1. Definitions

Heat Capacity. Heat capacity is defined as the limit of the ratio AQ/AT as
AQ — 0, where AT is the rise of temperature resulting from an input of heat AQ
under specified conditions. The heat capacities Cp and Cy, already defined in
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Section 1.3.1, can also be expressed as derivatives of the entropy: thus
oH S ’G
Cp=|—) =T|—=) =-T|— 2.1
F (3T)P (‘9T>P <‘9T2>P @b

U S 3*F
or=(%),-7(5), -7 (7), e
where U and H are the energy and enthalpy, and F and G the Helmholtz and Gibbs
free energies. The estimation of Cp from measurements involving finite intervals is
discussed in Sections 1.2 and 3.2. Cy is usually not measured directly, but obtained
from Cp by a thermodynamic relation (Eq. 2.10).

The expressions given above can apply to macroscopic systems of any size, but
are often taken to refer to molar quantities. We reserve the term specific heat for
the heat capacity per unit mass or per unit volume, both of which we denote by
lower case:

cp=Cp/M, cy=Cy/M; OR cp=Cp/V, cy=Cy/V 2.3)

Thermal Expansion. The coefficient of volumetric expansion, already defined
in Eq. (1.3), can be expressed in any of the forms

v dln 1 4°G
B= - L (2.4)
or /p oT Jp V oPIT
This coefficient is often also denoted by a, but that symbol is more usefully reserved
for coefficients of linear expansion, defined by

0lnl) 1 < ol )
a=|—) =-(—= 25)
( oT Jp 1 \dT /p
When the expansion is isotropic, 8 = 3a.

Data on thermal expansion can be presented in different ways — for example as
molar volumes, as dilations AV /Vj, or as expansion coefficients. For high precision

it may be necessary to make fine distinctions, as for example between 8 and a
as defined thermodynamically above and the quantities B* and a* often used as

practical definitions:
1 [oV 1/ al
Y= — | — = —= 2.6
v (@), <=2 (), @9

where Vp and [y are usually taken to be the room temperature values of V and /.
Details of the treatment of primary dilatometric data are discussed in Section 3.3.1
and in several chapters of [Ho98].
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Thermal expansion data are also obtained from the change in crystal lattice
parameters measured by Bragg reflection in X-ray or neutron diffraction. Strictly
such data are not equivalent to dilatometric data because of crystal imperfections.
For example, differences between the volumetric expansion coefficients of the crys-
tallographic unit cell and of the bulk crystal are used to estimate the formation of
vacancies (see Section 3.3.2). However, vacancies have a significant effect only near
the melting point; at other temperatures the unit cell dimensions change proportion-
ately to those of the macroscopic crystal, and so are equivalent to dilatometric data.
Conventions for the nomenclature of crystal axes, and the relation of the change of
crystallographic parameters to bulk expansion, are discussed in Appendix A. Anal-
ysis of intensities can give also the changing relative positions of atoms within the
unit cell (known as internal expansion), but usually with insufficient precision to
show perceptible change at low temperatures.

2.2.2. Units and Conversion Factors

Conversion between different energy scales is important for the comparison
and interpretation of thermodynamic data. International convention now generally
requires the use of SI units, together with allowed related units [Coh87, Nel98]; but
cgs and obsolete “practical” units are sometimes found, especially in the older lit-
erature. Temperature scales, thermodynamic and practical, are discussed in Section
3.1.

The old unit of heat, the calorie, was used in the past in much good calorimetric
work. It was defined originally so as to make the specific heat of water at 15°
Centigrade equal to 1 cal-g~!-deg™!, but later a thermochemical calorie (caly,) was
fixed as precisely 4.184 J. Heat capacities are now usually given in molar units of
J-mol 1K™}, or as specific heats in units of J-g‘l-K_l or J-em™3.K1.

At the atomic level the electron volt (eV) is often used as a unit of energy,
although spectroscopists may also refer to energy differences in terms of the fre-
quency (in Hz) or inverse wave-length (in cm™!) of the equivalent photon. In
statistical mechanics we also need to know the temperature range in which the
higher energy level becomes appreciably occupied. Table 2.1 gives equivalence
factors relating these different energy scales. Thus we can see, for example, that
rotational energy levels of molecules, which have microwave spectroscopic tran-
sitions of a few cm™!, will contribute to heat capacities at temperatures of a few
kelvin and upwards; whereas electronic levels, typically of the order of eV, will
usually not contribute at all at low temperatures.

The bulk modulus and other elastic stiffnesses have the dimensions of pressure,
for which the SI unit is the pascal:

1Pa=1N-m™2=10 dyn-cm™> 2.7

The unit dyn-cm~2 is now wholly obsolete, but one pre-SI practical unit, the bar, is

still acceptable and widely used; 1 bar = 10° Pa, introduced so that the atmospheric
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Table 2.1. Equivalence factors for different energy scales

J eV hx1 THz hexl ecm™!  kx1 K
leV = 1.602 x 10~12 1 241.8 8065 11604
hx1 THz = 6.626x 10722 4.136x 1073 1 33.36 47.99
hex1 em™ = 1.986x1023  1.240x10™%  0.02998 1 1.439
kx1 K = 1.381x 1072 8.617x 1075  0.02084 0.6950 1

Also: 1 eV-molecule™! = 96.49 kJ-mol~! =23.06 kcaly-mol~!

pressure is approximately 1 bar. Elastic stiffnesses of solids are typically of the
order of 10 to 100 GPa, i.e., 0.1 to 1 Mbar.

2.2.3. Thermodynamic Relations

Methods used for obtaining relationships between thermodynamic quantities
are summarized in Appendix B. Here we quote some results widely used in the
analysis of thermodynamic data.

The ratio of Cp to Cy is the same as that for Bs to Br:

Cp Bs Xxr
Cv Br Xxs B )

where 7y is the Griineisen function defined in Eq. (1.5):
BV BV

=== 2.9
Y Cpxs Cvxr
Thus
2 2
vT VT
cr=cv+ BT xr=xs+E 2.10)
Xr Cp
The following relations are frequently used in the discussion of thermal expan-
sion:
as oP B
— ) =(— = — =fB 2.11
(), (), = =P @

Equations (2.11) lead to further expressions for the Gruneisen function 7y defined
in Section 1.3.1:

(o) -2 (), -2 (), (), e
Y= 0(U/V)>V—E; oT ), cy\av),~ \amv ) '

The last expression in Eq. (2.12) shows that gamma governs the size of temperature
changes caused by changing pressure under adiabatic conditions:

aT

(ﬁ)s =7YTxs (2.13)
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This provides a direct way of determining 7y (Section 3.3.7). The effect has also
been used to monitor stress fluctuations in working materials by observing the
related temperature fluctuations [Mou78].

Other Griineisen Functions. Although vy as defined above is the most widely
used, other Griineisen functions may be met in the literature. For example, one is
obtained from the volume derivative of the equivalent Debye temperature OC:

—[0m{O%(T,V)}/oInV]|r

This is a good estimate for the y of Eq. (2.12) when the temperature variation of
OC is small, but not when deviations from Debye behavior are large.

Two other thermodynamic Griineisen functions are used occasionally, called
here yros and ysy. Yeos is defined from one of the Mie—Griineisen equations of
state, approximations often used by geophysicists and others concerned with high
pressure behavior [Egs. (2.99)]:

_ P(T,V)-P(O,V) _ (omT
oS T = G0 (7 )y P

where Fyy = F(T,V)—F(0,V), the thermal component of the Helmholtz energy.
ysy was used by Ahlers [Ahl67, Ahl70] in the discussion of Cy data obtained for
helium at different fixed volumes, because (unlike <) it could be obtained from
the data without the need to extrapolate the measured heat capacities and their
derivatives to T = 0:

(0Cy /o V)r olnT
- - 2.
YSH = (4Cy/aInT)y anv )¢, 2.15)

If over the whole range of temperature y(T,V) is a constant depending only on
volume, then 7y, yeos and ysy are all equal; but if y varies strongly with temper-
ature they differ markedly.* Relations between the three functions are discussed in
[Bar98, Section 1.4.3].

A number of approximations have been proposed which estimate y from the
pressure dependence of the bulk modulus; see [And95a, Section 1.4]. They are
based on the theory of lattice vibrations, but since they are themselves thermo-
dynamic expressions they are conveniently described here. Two early estimates,
proposed by Slater [Sla39a] and by Dugdale and Macdonald [Dug53], are some-
times still used:

1 1 1 1

*In particular, ysy can become infinite when the heat capacity passes through a maximum or
minimum as a function of temperature.
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Although useful at the time, these were derived by means of crude assumptions and
have long been known to be inaccurate both at low and high temperatures even for
the simplest models [Bar57a]; they should now be regarded as of historical interest
only. The best estimate of this kind is probably that of Barton and Stacey [Bar85]
for the high temperature limit . as a function of pressure:

1(6Br/aP)r — L — if [1- 4(P/Br)]
1-%(P/Br)

where f = 2.35. This is based on the concept of pair potentials and includes both
bond-stretching and tension effects (see Section 2.6.3). Approximations which
make use also of the rigidity modulus and its pressure dependence are discussed
by Anderson, see [And95a, Section 1.8].

2.17)

Yoa-s =

Pressure and Volume Derivatives. The isothermal pressure derivatives of both
the heat capacity and the thermal expansion coefficient can be obtained thermody-
namically from the results of measurements carried out at constant pressure:

(5), -l (&), 5] - e (),
2.18)

% =— (2.4 (2.19)
oP )¢ aT ] p
For the bulk moduli, on the other hand, isothermal pressure derivatives can only be
obtained from measurements under varying pressure; they are dimensionless, and

can also be expressed as isothermal logarithmic volume derivatives, often denoted
by B and Bf:

, dBs , dBr dlnBr
5=(%), #-(%),--(Gr), o
Typically they have values between 4 and 6, but decrease appreciably at high
pressure [And95a]. As with Bs and Br, their variation is small at low temperatures;
and the difference between them is also small, tending to zero as T — 0. For further
discussion see Section 2.7.
In contrast to the isothermal derivatives, the difference between the isobaric
logarithmic volume derivatives of Bs and By is not small. These are the Anderson-
Griineisen functions 8s and 87, defined by [Bas68]

dInBg dInBr dlnB
__ - - 2.21
% (alnv),,’ or (aan)P (amv)T @21

and
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They are a different type of function from the Griineisen functions discussed above;
they originate from a parameter used by Griineisen [Grul2] and later exploited by
O. L. Anderson [And66a]. Anderson has pointed out that their small variation
at high temperatures make them suitable for extrapolating bulk moduli to higher
temperatures. They are not so useful at low temperatures, where both 8s and &7
can vary strongly (e.g., [And95a, Fig. 1.1]). At T ~ O the difference between them
is given approximately by 87 — 8s ~ . At low temperatures the difference tends
to the limit 87 — 8s = (n+1)vyp, where n is the exponent of T in the limiting form
of the heat capacity (1 for metals and 3 for non-metals) and as usual vy, is the
limiting value of gamma at low temperatures [Bar79].

Measurements under pressure are needed to determine the isothermal volume
derivative of the Griineisen function, which is often described by the dimensionless
quantity

qg=(dlny/dInV)r 2.22)

sometimes called the second Griineisen function.* At high temperatures q often has
a value of about unity. At low temperatures it may vary strongly, and it becomes
infinite whenever gamma changes sign; it is then preferable to use (dy/dlnV)r.

Relations between these quantities have been discussed repeatedly in the liter-
ature, e.g., [Bas68, Bar79, Bar80, And95a, Bar98].

Electric and Magnetic Fields. The components of electric and magnetic fields
are intensive thermodynamic variables additional to temperature and pressure (or
stress). For example, under conditions where there is a uniform magnetic field H
the differential of the Gibbs free energy (G=U —TS +PV — poHM) is

dG = —SdT + VdP — poMdH (2.23)

where M is the total magnetic moment of the material. Thermodynamic relations
follow by the usual methods; e.g., for first order magnetostriction there is the

Maxwell relation
oV M
_— S — 2.24
(aH)P,T MO(aP)H,T @29

For more general applications a tensor notation is needed for the stress and strain,
and explicit consideration of crystal symmetry [Nye85]; and various subtleties arise
[Bor54, Bar98]. We shall not pursue this subject further in this book, except to
quote results if needed.

*Other functions have also been given the name of second Griineisen function, parameter, or constant
[Gil56, Dav59, Bar72].
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2.2.4. Phase Transitions

Phase transitions have often been discovered through the appearance of unex-
pected anomalies in measurements of heat capacity or other thermodynamic proper-
ties. Indeed, Ehrenfest’s historic classification of transitions as first, second, third,
etc., is purely thermodynamic. At all phase transitions there is continuity of the
Gibbs free energy G across the phase boundary; at a first order transition G is
continuous but there are discontinuities in its first derivatives S and V; at a second
order transition S and V are continuous but there are discontinuities in the second
derivatives of G (and hence in Cp, B, and xr); and so on.

Ehrenfest’s classification has however proved inadequate for a general descrip-
tion of transitions beyond the first order; for example, superconductors are the only
materials which appear to have transitions exhibiting ideal second order behavior.
The principal distinction to be drawn is between the first order transitions, which
occur between phases of distinct structure and where consequently superheating and
supercooling can occur, and other transitions where there is continuity of structure
but the transition marks the initiation of some process changing the structure (see
the incisive discussion by Pippard in [Pip64, Ch. 9]). These other ‘higher order’
transitions exhibit many different types of behavior (Section 2.5.4).

First Order Transitions. Consider first a system with two independent inten-
sive variables, P and T. Along the phase boundary in the P-T phase diagram the
difference in free energy AG between the phases is constant (zero), and so

dAG = —ASdT +AVdP =0 (2.25)

The Clapeyron equation for the slope of the transition line follows immediately:

dP AS

The same method can be applied when there are three (or more) intensive
variables, T,P,H say. Using Eq. (2.23) to get dAG we find that on the transition
boundary

OP\ _AS (oH\ _ __AS  (OHN _ AV - o
T )y AV’ \9dT Jp wmAM’ \oP/); pAM ‘

Second Order Transitions. We consider only two intensive variables 7, P. At
the transition S and V are continuous, so that along the transition we can equate
separately dS and dV to zero. This leads to the two Ehrenfest equations (e.g.,
[Pip64, Bar98])

dP 1 ACp AB
— T — — T e— . 8
dT ~ VT AB  Axr 228)
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2.2.5. The Third Law and Its Implications

The Third Law was introduced in Chapter 1 as a consequence of the quantum
nature of matter. Here we discuss it strictly from a thermodynamic standpoint, i.e.,
as a postulate deduced from the observed behavior of macroscopic systems. As
such, for many years it was the subject of considerable controversy, due partly to
the difficulty of stating it in a form that would be both general and succinct (e.g.,
[Sim56, Dug96]). Broadly, the essential content of the Law is the existence of an
absolute zero for entropy as well as for temperature, which is approached as T — 0
for any system in thermodynamic equilibrium. The Law thus tells us two things:
(a) the change in entropy as T — O is finite; (b) the change AS in entropy is zero
between any two equilibrium states of a system at T = 0.

Behavior as T — 0. From (a) alone it follows that the heat capacities Cp and
Cy tend to zero as T — 0, because otherwise the integrals giving the changes in
entropy from T = 0 to any other temperature T, viz.

T T
AS = / CePT) ) or  AS— / WD r 229
0 T 0 T

would be infinite; but to deduce the behavior of other thermodynamic properties
the full law is needed. With the aid of a Maxwell relation we prove that 8 — 0 as
T —0,sinceat T =0

| A% 1 /aS
2= (%), =+ (3), 0 &

Similarly the thermal pressure coefficient g;) can be shown to be zero at T =0.

The bulk modulus (and more generally all the elastic stiffnesses) tend to finite limits,
but their temperature derivatives tend to zero (e.g., Fig. 1.3):

Br) __[2 (PN __y[2 ()] _
(W)V_ [aT(alnv)T]v“ V[av (aT)V]T—O 2.31)

Similar arguments can be applied when instead of P and V we take electric

or magnetic conjugate variables, so that for example (%)H is zero at T =0, as

are also the temperature derivatives of the magnetic permeability x and the electric
permittivity e.

Extension of the Third Law to Sub-Systems. The restriction of the Third
Law to systems in equilibrium would forbid any application to substances such as
glasses at low temperatures; and indeed their entropy does not approach zero as
T — 0. Nevertheless, many conclusions derived from the Third Law are true also
for such systems, and they are covered by a revised statement of the Law due to Sir
Francis Simon [Sim37], which we give here in the wording of Dugdale in [Dug96,
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pp- 163-4]: The contribution to the entropy of a system from each sub-system that
is in internal thermodynamic equilibrium vanishes at T = 0. This extended law is
applicable to many different types of sub-system. For a glass at low temperatures,
the vibrations are in internal equilibrium and contribute to the thermal properties,
while the structure is frozen in a disordered arrangement with constant non-zero
configurational entropy.

Residual Entropy at T = 0. There are many systems which, like a glass, have
non-zero entropy at T = 0. As such systems are cooled, kT becomes much less than
the activation energy of the processes needed to reach thermodynamic equilibrium,
so that equilibrium cannot be reached during the time of the experiment (e.g., ice,
Fig. 1.12). The approximate temperature at which this occurs will depend upon
the rate of cooling, and this may affect the extent to which the system remains
disordered at low temperatures. Perhaps the simplest examples of residual entropy
are provided by some crystals of asymmetric linear molecules, such as N,O and CO,
for which the activation energy to reverse molecular orientation is much greater than
the difference in energy between the initial and final states; molecular orientations
then get frozen in a disordered arrangement. If no ordering has occurred before
this happens, the residual configurational molar entropy will be

Sconfig = kIn(2¥4) = RIn2 (2.32)

as observed for N,O. However, in CO partial ordering occurs before the remaining
disorder becomes frozen in; the residual entropy is appreciably less than RIn2 and
depends on the rate of cooling [Man97, Section 17.1].

Residual entropies are often determined by calculating the absolute entropy of
the gaseous phase by the methods of statistical mechanics, using spectroscopic data
to obtain the molecular energy states, and then finding the change of entropy on
cooling to the solid state by calorimetric methods [Mo062].

The Unattainability of Absolute Zero. Although the state of a systemat 7 =0
is usually the easiest state to treat theoretically, we can deduce from the Third Law
that such a state cannot be obtained in the laboratory. Methods for obtaining low
temperatures are discussed in detail in many texts (see Section 3.1.1). In essence,
reduction of temperature is achieved by changing an experimental variable (such
as pressure or magnetic field) under adiabatic conditions, in such a way as to
reduce the temperature along the relevant adiabat (Fig. 2.1). If it were possible
to reach absolute zero in a finite number of such steps, the final adiabatic step
would therefore start in a state with § > 0 and end in a state with S = 0; but under
adiabatic conditions this is forbidden by the Second Law.

It is interesting to note that stating the unattainability of absolute zero is not
strictly equivalent to the Third Law, because unattainability would hold for classical
as well as for quantum matter [Sim56]. The entropy of all substances would then
tend to minus infinity as T — 0, and again the absolute zero would never be reached
in a finite number of steps.
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|
T=0 T

Fig. 2.1. Entropy-temperature diagram of a substance obeying the third law, when the pressure is
changed alternately adiabatically and isothermally. The absolute zero is unattainable. From [Dug96,
Fig. 22(b)].

2.3. STATISTICAL MECHANICS

2.3.1. Quantum Statistical Mechanics

The nineteenth century work of Maxwell, Boltzmann and Gibbs treated the
statistical behavior of large numbers of atoms and molecules obeying the laws of
classical mechanics. Despite its great success in accounting for the First and Second
Laws of thermodynamics, and also for the behavior of dilute gases, it failed to account
for the equilibrium between a solid body and its surrounding radiation field; and of
course it was this that led to Planck’s original quantum hypothesis. As we have seen
in Chapter 1, quantum theory is essential for understanding the Third Law, including
the behavior of the heat capacity and thermal expansion at low temperatures.

There are very many books on statistical mechanics, with different applications
and different levels of theory. Among these are the classic text by Tolman [Tol38],
and [Hil60, Ric67, Fey72, Gop74].

The Boltzmann Factor and the Partition Function. Consider a physical system
with possible quantum states i, having energies E;, in thermal equilibrium with
surroundings at temperature T. The probability P; that the system is in state i is
proportional to the Boltzmann factor, exp(—E; /kT), and is given by

P = exp(—Ei/kT) (2.33)
z
where Z is the partition function or sum over states (German Zustands-summe)
Z = exp(—E;/kT) (2.34)
i

The Helmholtz energy and the entropy are then given by
F=—kThhZ, S=-kY PP (2.35)
i
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The expression for the entropy is quite general. In particular, it reduces to the familiar
S = kIn{) when there is a finite number () of possible states, all equally probable,
since then P; = 1/Q for all i.

For a macroscopic system the energies E; are functions of the volume, E;(V), or
more generally of the strain (see Section 2.8). Expressions for other thermodynamic
quantities are found by differentiating F with respect to T and V, and are functions
of averages over the states i weighted by P;. With the general notation

X)= ZTiXi (2.36)
the pressure is given by
P= —Z?,E," = —(E") (237
and
Br = — = VI(E")~ {(E") ~ (E'}*}/iT] 2.38)
Cv = {(E?) — (E)*}/kT? = ((AE)?) /kT? (2.39)
(aP/dT)y = (3S/aV)r = —{(E'E) — (E')(E)}/kT* (2.40)

The thermal expansion coefficient B is then obtained by using Eq. (2.11), and the
Griineisen function is

(E'E) — (E')(E)

Y(T’V)=_V <E2)_<E>2

(241)

If all the energies E; scale with volume in the same way, so that they are all proportional
to a single characteristic energy E,, this reduces to a single Griineisen parameter

¥(T,V)=v.=—(dInE;/dInV) 2.42)

The above equations show that P;, S and Cy depend only on the intervals be-
tween the energies E;, which may be determined spectroscopically. Spectroscopic
measurements under pressure give also the volume derivatives of energy intervals,
and hence in principal the data needed to derive y and B.

Application: the Two State Schottky System. A simple but important illustra-
tion of these general results is provided by a system which has only two possible
quantum states — for example, the magnetic states of a nucleus of spin % in a mag-
netic field, with energies €) = 0, e, = Ae. This is a special case of the general class
of Schottky systems discussed in Section 2.5.3. For T < Ag, the system will be in
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the lower energy state, so that P} = 1 and P, = 0; and the entropy is —kIn1 = 0. For
T > Ae, there are 2 possible states of equal probability % and the entropy is kIn2.
At intermediate temperatures the probabilities for the system to be in the lower and
upper states are as shown in Fig. 2.2:

1 e e~ 1

= 1+e

=Ty T

Fpwd 2= = (2.43)

where x = Ae/kT and 1+ e~* is the partition function. Other thermodynamic
functions follow immediately from Eqgs. (2.33)-(2.41); in particular the entropy and
heat capacity are

2

Sscn =k [m(l te )+ L] , can =g a (2.44)

1+e* eX+1)(1+e %)
where the lower case symbols denote properties of a microscopic subsystem rather
than of bulk material. The formal similarity of the expression for the heat capacity
to that in Eq. (1.14) for a harmonic oscillator is a good aid to memory, but the plus
signs in the brackets lead to the behavior shown in Fig. 2.2(c), very different from
that of a harmonic oscillator (Fig. 1.1). In the high temperature limit x — 0, and c;cp,
tends to zero as ;k(Ae/kT)2.

Additive Contributions. According to statistical mechanics, the additivity of
different contributions to thermodynamic functions has its origin in the additivity of
different contributions to the energies of excited quantum states. For example, in -
nickel sulphate (see Fig. 1.5) the excitation of the magnetic energy levels is to a very
good approximation independent of the lattice vibrations, and at low temperatures a
total excited state of the crystal is specified by giving both its vibrational state v and
its magnetic state x. The energy is

Eyx=Eg+E,+Ex (2.45)

where E; is the energy of the electronic ground state. The partition function then
factories:

Z = Ze—(Eg+Eu+Ex)/kT — e—Eg/kTZVinm (2-46)

vx

where Z,;, and Z,, are the vibrational and magnetic partition functions, giving the
Helmbholtz energy as

F=—kTInZ=E;+Fyp+Fn (2.47)

Separate contributions to P, S, Cy, etc., follow by differentiation (e.g., Section
5.11.1). Another example is provided by excited states of molecules, which can be
labelled by their electronic, vibrational and rotational states (Section 4.2), although
there is significant interaction between rotations and vibrations.
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Fig. 2.2. Properties of a mole of identical Schottky systems with two non-degenerate levels (see text): (a)
occupation of levels P; (solid curve) and P, (dashed curve); (b) entropy; (c) heat capacity.



Basic Theory and Techniques 41
0.50 T T

o
~ 025 - .

0.00 . - L
0.0 1.0 2.0 3.0

kT/Ae

C

Fig. 2.2. (Continued).

Grand Partition Function. The method of averaging just described is that of
the canonical ensemble, applicable to a system of fixed volume and composition in
contact with a heat bath at temperature 7. Statistical mechanics can also be applied
to systems under different conditions. For example, the grand canonical ensemble
is applicable to a system of fixed volume in contact both with a heat bath and with
a reservoir of particles of chemical potential w, so that it can exchange particles
with the environment as well as energy. The states of the system then have energies
Ey ;(V), where the subscripts indicate the ith quantum state of the system when it
contains N particles. The statistical probability of this state is then

Py, = SRR —Eni)/kT} (2.48)

[
(=]

where p is the chemical potential (per particle) in the environment and E is the grand
partition function, defined by

E=Y Yexp{(Nn—En;)/kT} (2.49)
N=0 i

From E is obtained the virial PV expressed as a function of T and p.:
PV =kThhE (2.50)
Other thermodynamic properties follow by differentiation, since
d(PV)=S8dT +PdV +Ndp (2.51)

For some systems the grand canonical ensemble is easier to apply than the
canonical ensemble — notably to systems of non-interacting particles, such as the
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quantum ideal gas (Section 4.4.1) and the independent particle model for electronic
properties of solids. We do not need to consider the whole system simultaneously; we
can treat each particle quantum state j with energy €; as an independent sub-system
in an environment of temperature T and electron chemical potential p, so that in the
formalism N becomes the number of electrons in state j. Since electrons are fermions
there are only two possibilities: j is occupied, giving N = 1 and energy E = ¢;; or it
is unoccupied, giving N = 0 and E = 0. The grand partition function is then simply
1 +exp{(m — €)/kT}, and the probability of occupation is given by the mean value
of N:

__exp{(n—¢g)/kT} _ 1
1+exp{(n—¢)/kT}  exp{(g—p)/kT}+1

This is the Fermi-Dirac distribution function referred to in Section 4.4.1.

The treatment of independent boson systems is similar, except that each particle
state can be multiply occupied: N now takes any value between 0 and «. The grand
partition function is then

(2.52)

< 1
E= Y exp{N(n—¢)/kT} = (2.53)
giving a mean occupation number
nj=(N)= Y Nexp{N(n—¢)/kT}/E (2.54)
N=1
which reduces to
= (2.55)

ni =
7 exp{(g—p)/kT}~1
This is the Bose—-Einstein distribution referred to in Section 4.4.1.

Use of Quantum Operators. The theory given above is expressed in terms of
the energies E; of the solutions of the Schrodinger equation for the system; but these
are not always known. Complex systems are therefore often treated in an equivalent
but more general formulation which expresses the sums over i in Egs. (2.34)~(2.37)
as traces of quantum mechanical operators (e.g., [Bar74b]}); such traces are invariant
whichever complete orthonormal set of wave functions are used. For example, the
partition function Z defined in Eq. (2.34) can also be written as

Z =Tr{exp(-H/kT)} = ¥, < ¢j|exp(—H /kT)|d; > (2.56)
J

where H is the Hamiltonian energy operator and the quantum states |¢; > do not
have to be the energy states of the system but can be taken to be any complete set of
orthonormal states that is convenient to use; €.g., for an anharmonic crystal the |¢; >
can be taken to be the harmonic vibrational states, whose properties are well known.
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2.3.2. Classical Statistical Mechanics

Classical statistical mechanics is valid in the limit of high temperatures. The
mechanical state of a classical system is specified by the positions x,y,z and mo-
menta py,py,p, of all the N particles, equivalent to a point in 6N-dimensional
phase space [Tol38, Cal60]. The statistical probability that the system is in a state
within some given region of phase space is determined by a probability density
P(ry, -+ ,rN;P1, - ,PN), Which in the canonical ensemble is proportional to the
Boltzmann factor exp(—E /kT):

exp{—E(ry,--- ,pn)/kT}
Joedry--- 2. dpy exp{—E(r1,-- ,pn)/kT}

where the integral is over the whole of phase space. The expressions in Egs. (2.37)-
(2.41) remain valid, the averages being now quotients of integrals. A purely classical
theory cannot give absolute values for the entropy and free energy, but the correspon-
dence principle of quantum mechanics implies that at sufficiently high temperatures
it agrees with quantum theory if the density of quantum states in phase space for a
system of N identical particles is taken to be A~3" /N!. The partition function is then

P(ry,---,pN) = (2.57)

h~ 3N
z="— / dry - / dpy exp{—E(r1,--- ,pn)/kT} (2.58)

Since

Ipif? ®(ry,-+ ,rN) (2.59)

E=2—

n I'Mz=

where m is the mass of a particle and P is the potential energy, the integration over
the momenta can be done analytically to give

N
=5 = o0
Z= (—2-17;:;£> I\%/ dr; / dryexp{—®(ry,--- ,rn)/kT} (2.60)

The entropy is given by

=(E)/T+kInZ (2.61)

2.3.3. Computational Methods

Quantum Calculations. Both quantum and classical statistical mechanics are
widely used in the calculation of thermodynamic properties from models of physical
systems. The most direct applications of quantum statistical mechanics are to models
for which the quantum states can be classified and their energies calculated for use
in the equations of Section 2.3.1, with or without algebraic summation of analytic
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expressions. Examples include Schottky systems (Section 2.5.3), vibrating crystals
in the harmonic approximation (Section 2.6.2) and dilute molecular gases (Section
4.2). The computational task is thus two-fold: to solve the Schrodinger equation, at
least approximately; and to perform the required summations over all states. For all
except these simple separable systems this can be a formidable task.

Classical Calculations. The validity of classical mechanics at sufficiently high
temperatures is widely exploited. The classical integrals are sometimes easier to
evaluate, either analytically or numerically, than the corresponding quantum sums;
for example, they enable the virial expansions for the behavior of imperfect gases
to be expressed in terms of integrals over clusters of interacting molecules (Section
4.2.4). But except in special cases like these, where the integrals over phase space
can be reduced to the calculation for small clusters, numerical computation can be
carried out only for comparatively small systems. For these surface effects would
be important, but in the study of bulk matter they are avoided mathematically by
employing a cyclic boundary condition, as first used by Born in the theory of crystal
vibrations. The finite system under study is repeated periodically over all space, with
the effect that, for example, material near the left boundary of the system is in direct
interaction with material near the right boundary. As the size of the system increases,
its properties approach those of the bulk material.

To be practicable, the integration over phase space requires some method of
avoiding the vast regions which have very low probability. Two techniques, Monte
Carlo (MC) and Molecular Dynamics (MD), are widely used for this purpose.

MC methods use techniques for random successive sampling of phase space
which are systematically biassed against regions of low probability density. The
earliest and best known of these is that of Metropolis et al. [Met53] for canonical
ensemble averaging; but many others have been developed for a variety of ensembles,
and applied to many different types of model systems, including fluids, interfaces and
strongly anharmonic solids. Details and discussions of the accuracy and reliability
of the methods are available in several texts (e.g., [All87, Fre96]).

In an MD simulation, initial positions and velocities of all the particles are chosen
compatible with the desired macroscopic conditions, and the forces on each atom
calculated from the model potential function. Newtonian mechanics is then used to
deduce the development of the system over a short time step, after which the forces
are recalculated and the process repeated. By taking a large number of such steps we
may follow the development of the system over time. Thermodynamic properties are
then estimated by averaging over time, on the ergodic hypothesis that all significant
regions of phase space are covered statistically during the progress of the calculation.
Mechanical properties such as energy and momentum are given by direct averages;
statistical properties such as entropy and free energy are deduced from fluctuations
of the system and obtained less accurately. The method is also used to obtain time
correlation functions required for the calculation of spectroscopic properties, and to
follow the kinetics of non-equilibrium processes. Details can again be found in the
texts referenced above.



Basic Theory and Techniques 45

Advantages of classical calculations are: (i) the classical states of any model
system are known, enabling the methods to be applied immediately to a wide variety
of systems, including highly disordered materials (fluids and solids) and strongly
anharmonic solids; (ii) the results obtained for the disposition and mutual behavior
of the atoms and molecules can be presented graphically in ways that are easy to
interpret. Disadvantages are: (i) the theory is invalid at temperatures below which
quantum effects are dominant (although small quantum effects may be treated as a
perturbation); (ii) the number of independent particles considered is much smaller
(typically 102 — 10°) than that in bulk materials, often causing results to depend on
sample size; (iii) important regions of phase space may be inadvertently neglected;
(iv) getting even modest precision may be expensive in computer resources.

2.4. BONDING AND INTERATOMIC POTENTIALS

2.4.1. The Separation of Vibrational and Electronic Effects

In principle, thermodynamic properties can be calculated exactly by applying
statistical mechanics to the system of nuclei and electrons constituting each material,
but in practice approximations must be made (except perhaps for dilute gases com-
posed of small molecules). A good approximation may lead to a simplified model in
terms of which the general behavior of the material can be understood.

The Born—Oppenheimer approximation, which leads to the separation of elec-
tronic and nuclear motions, is of this type. The nuclei are considered to move subject
to an effective potential energy ® which is a function of the positions of all the nuclei,
obtained by solving the electronic Schrodinger equation for each set of nuclear posi-
tions; thus both the kinetic energy and the potential energy of the electrons contribute
to the effective potential energy seen by the nuclei. In principle, there is a different
Bom—-Oppenheimer potential energy function for each electronic energy state. This
is important in molecular spectroscopy, as can be seen in the vibrational fine structure
of electronic molecular spectra. For the statistical mechanics of materials, however,
we usually need consider only the electronic ground state. This is obviously a good
approximation for most insulators, where higher electronic states are not excited at
temperatures of interest. Even for metals the excitation of electronic levels is usually
found to make little difference to the effective potential in which the nuclei move, al-
lowing us to treat separately the electronic and vibrational contributions to the energy
and hence to the thermodynamic properties (see Sections 1.3.4 and 6.1.1). When this
is not so, phenomena are usually discussed in terms of interaction between separately
conceived electronic and vibrational systems (see Ch. 6). The small energies associ-
ated with nuclear magnetic dipoles and electric quadrupoles are similarly treated as
separate systems.

Even with the Born—Oppenheimer separation, the electronic structure of ma-
terials presents formidable theoretical problems which are currently the subject of
widespread research. A modern introduction to this vast subject is provided by
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two recent undergraduate texts, Electronic Structure of Materials by Adrian Sutton
[Sut93] and Bonding and Structure of Molecules and Solids by David Pettifor [Pet95],
and by some of the general reviews in the centenary volume Electron [Spr97a].

2.4.2. Ab Initio Calculations

Within the Bom—Oppenheimer approximation, potential energy functions can in
principle be calculated ab initio, i.e., quantum mechanically without resort to fitting
of parameters to empirical data. In recent years the increasing computational power
available has made this practicable, at least for simple systems. For example, the
frequencies of vibrations with wave numbers of high symmetry have been calculated
for a number of crystals, including tetrahedral semi-conductors [Yin82, Kin90], using
the frozen phonon method in which the change of electronic energy associated with
a vibrational displacement is calculated quantum mechanically. Again, ab initio
methods have been used to calculate directly the forces on the atoms at each step of
a molecular dynamics computation [Car85].

A short account of some of the approximations used and results obtained is given
in [Bar98, Section 1.7.7.5].

2.4.3. Models of Bonding

Even for quite simple systems ab initio calculations can be expensive in computer
resources, and for complex systems they become unrealistic. It is therefore often nec-
essary or desirable to work with ad hoc potentials for different types of material, with
adjustable parameters that in early work were always adjusted to fit experimental
properties but are now frequently fitted to ab initio results for selected atomic dis-
placements (e.g., [Fra98]). Such a model can often encapsulate the most essential
features of a material, and so give immediate insight into the processes underlying
their thermodynamic properties. On the other hand, caution is needed; it should
not be assumed that a model which gives a good account of known experimental
properties will necessarily predict unknown properties correctly.

The simplest models are those in which the atoms interact only in pairs through
short-range potentials ¢(r); these potentials give rise to central forces, i.e., forces
which act along the lines between the atomic nuclei. This is a good model for
1are gas solids and fluids, especially when it is modified to take account also of
much weaker many-body interactions [Kle76]. It has also been fairly successful
in accounting for the phonon dispersion curves of simple metals, both fcc and bcc,
indicating the importance of central force interactions between neighboring atoms
in these materials; although there are usually serious departures from experiment at
small wave vectors for some of the acoustic branches. Since acoustic frequencies
in the long-wave limit are determined by the elastic stiffnesses, this discrepancy
indicates a failure of the model to account fully for the elastic properties. In metals
positive ions are bonded together by the sea of non-localized electrons extending
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Fig. 2.3. Schematic representation of a simple shell model in which only the anions have shells. From
[Coc73, Fig. 7.8].

throughout the crystal, as described in Section 6.1, and this cannot be represented
solely by effective pair potentials.

Molecular crystals to some extent resemble rare gas crystals; the intermolecular
interaction is much weaker than the bonding within the molecules, which can there-
fore to a first approximation be treated as rigid. However, molecules are not spherical
but “knobbly” in their short range interactions, and depending on their symmetry
may possess permanent electric dipoles or quadrupoles giving rise to longer range
interactions. To a greater or less extent molecules are also “wobbly,” so that there can
be appreciable interaction between the crystal vibrations and the internal molecular
vibrations.

Models for ionic solids include both long-range Coulombic forces and short-
range forces. Rigid ion models give a surprisingly good account of many crystal
properties, and are still widely used because of their simplicity and ready appli-
cability to disordered and other complex systems; but they obviously cannot take
account of the polarisability of the ions and the interaction of this with the vibra-
tions. Various models which allow the ions to deform have therefore been designed
[Har79, Bil79, Mad96]. Of these the shell model is the best known, which gives
a simple mechanical representation of ion distortion: each polarizable ion is repre-
sented by a massive charged core surrounded by a massless charged spherical shell,
which interacts through a short-range potential with neighboring shells (and in some
models with neighboring cores also). Polarization arises from the displacement of
the shell relative to the core, and can be affected both by the local electric field and by
short-range forces exerted by neighboring ions (Fig. 2.3). The applicability of ionic
models is extended further by using models which allow changes of size and shape
of the ions.

In covalent crystals, among which are the diamond structure elements and many
organic materials, the bonding is strongly directional, and all models employ non-
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central forces of some kind. These are often provided by adding many-body potentials
(particularly three-body) to pair-potential models. For crystals (and molecules) of
definite structure, short-range valence force fields are much used: the potential energy
is expressed as a sum of second order terms in small changes 8r and 86 in the lengths
of valence bonds and in the angles between them. Where there is similar bonding
in different substances, as for example in many organic materials, the same force
field may be applicable. The number of possible parameters is increased greatly
when anharmonic effects are calculated, since this requires the inclusion of third
order terms; but often only the third order terms in the 8r are included. For glasses
and other disordered structures other types of many-body potential are used, because
the greatly varying local arrangement of the atoms invalidates the use of a single
valence-force field.

In some materials there is strong covalent bonding in some directions and weaker,
less directional, bonding in others — for example in polymers, where there is covalent
bonding along the polymer chain only, or in crystals such as graphite, where layers
of covalently bonded atoms interact with much weaker Van der Waals forces.

In other materials the bonding is intermediate between ionic and covalent. Thus
the compounds XY of zinc-blende structure (similar to diamond but with each atom
bonded to one of different type) provide examples of differing ionicity, which J-C
Phillips [Phi73] has classified by a numerical ionicity factor f; on a scale varying from
0to 1 (e.g., Table 5.4). Silica provides another example: the tetrahedral surroundings
of the silicon atoms and the two-fold coordination of the oxygen atoms point to the
importance of covalency, although exclusively ionic models have been reasonably
successful in predicting experimental properties. In materials with multiatomic ions
both covalent and ionic bonding coexist: for example, ammonium salts are strongly
ionic, but internally the NH," ion is covalently bonded (Section 8.2.4).

A fuller discussion of potential models is given elsewhere [Bar98]. For many
materials containing atoms in the lower part of the periodic table the bonding does
not fall completely into any of the simple categories listed above, and it becomes
hard to design suitable ad hoc models for them.

2.5. SOME MODEL SYSTEMS

2.5.1. Ideal Gases

Ideal gas behavior occurs in the limit of infinite dilution, when interaction between
gas molecules may be neglected. It is one of the simplest systems to treat by statistical
mechanics, because at virtually all temperatures of interest the translational positions
and momenta of the molecules may be treated in the classical high temperature limit,
and are purely random; the other degrees of freedom can be treated separately for
each molecule. Because the motion of the molecular centers of mass is independent
of all the other molecular degrees of freedom, the free energy separates into two
components, one translational and the other non-translational. Both components
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depend on the temperature, and so contribute to the entropy and heat capacity;
but only the translational component depends on the volume and contributes to the
pressure P = —(JF /dV)r. Itis for this reason that the equation of state of all classical
ideal gases is the same as that of a monatomic gas (Section 1.3.5): PV = NkT, where
N is the total number of molecules in the gas.

The total heat capacity of an ideal molecular gas is obtained by adding the
contributions of the non-translational molecular degrees of freedom to the monatomic
values of Cy = %Nk, Cp = %Nk, giving a much richer behavior, sometimes with
subtle effects from quantum statistics (Section 4.2.3).

2.5.2. Ideal Crystals

The ordered periodic structure of an ideal crystal is at the other extreme from the
random structure of an ideal gas, but again makes for simplicity in the theoretical
treatments described in later sections. The periodicity aids the analysis both of
vibrational behavior (Section 2.6), and of electronic structure and excitations. If
there are localized non-interacting systems they are repeated identically throughout
the crystal, giving rise to simple Schottky behavior (Section 2.5.3). If however such
systems interact with each other, complex patterns of behavior result which are more
difficult to treat theoretically (Section 2.5.4).

2.5.3. Schottky Systems

A Schottky system is localized, interacting only weakly with other degrees of
freedom; and each system has only a small number of accessible energy states. The
general results of Egs. (2.33)—(2.41) can be applied immediately. For a system with
n energy levels € with degeneracy g;, Eq. (2.33) gives for the probability that level I
is occupied

giexp(—e /kT)
n
.21 gjexp(—€/kT)
j=

fi= (2.62)

A system with only two, non-degenerate levels, separated by an interval Ae = €; — €,
has already been discussed in Section 2.3.1. Contributions of the system to the
entropy and heat capacity are shown in Fig. 2.2. In general, the detailed behavior of
a Schottky system depends upon the number of energy levels, their degeneracies and
the spacing between them. The Schottky systems in a-NiSO4.6H;O (see Section
1.1) have three levels, all non-degenerate, giving a high temperature entropy of RIn3;
and an analysis of the heat capacity (Fig. 1.5) has shown that the two higher levels are
relatively close together at 4.48 +-0.07 and 5.05 £ 0.07 cm™! above the lowest level,
giving a higher peak in C;, than that shown in Fig. 2.2(c) for the system with only
two levels of equal degeneracy. All Schottky systems have a heat capacity that rises
exponentially at sufficiently low temperatures and falls off as T2 at sufficiently high
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Fig. 2.4. Linear thermal expansion «/[10~5K~!] of TmTe. Circles are experimental values; the full line is
the calculated Schottky contribution with yr,} = 1.3, ¥{r;} = —1.5. The I, label the symmetry species
of the levels [Ott77].

temperatures. Often the Schottky peak occurs at such low temperatures that only the
high temperature tail is detected experimentally (e.g., Fig. 1.8).

Schottky contributions to the thermal expansion are determined by the dependence
of the energy intervals on volume. For a two-level system, which has only the
one interval Ag, there is a single Griineisen parameter y;c, = —dInAe/dInV; the
Schottky anomaly in the thermal expansion is then similar in shape to that in the
heat capacity, its sign and magnitude depending on <ys. This remains true for
multilevel systems if the different energy intervals change with volume by the same
factor and so have a common Griineisen parameter, as in the three-level system of
TmSb, for which the Griineisen parameter and consequent Schottky expansion are
negative (Fig. 5.39). More complex behavior is seen for those multilevel systems
which have energy intervals with different Griineisen parameters; Eq. (2.41) then
gives the thermodynamic Griineisen function as

(YE?) — (YE)(E)

where the denominator is proportional to the Schottky heat capacity. The thermal

expansion of TmTe shows such behavior (Fig. 2.4). Between 2 and 10 K it is

dominated by the contribution from a 3-level Schottky system with a positive ‘y for

the lower excited level and a negative vy for the higher excited level [Ott77].
Schottky systems in anisotropic crystals behave similarly to those in isotropic

systems, except that the energy levels are now functions of all the independent strain

coordinates. For example, in an axial crystal with two independent dimensions a and
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c, a two-level Schottky system has two Griineisen parameters, defined by
1 [ dAe dAe
w‘__§<alna>t’ y"_—<8lnc>a (264)

2.5.4. Cooperative Order-Disorder Systems

The Ising Model. At the opposite extreme to having localized Schottky systems
contributing independently to the free energy, we now turn to materials in which it
is the interactions between systems that determine the behavior. To illustrate this,
we take the spin % Ising model of ferromagnetism, extensively studied over decades
because of its simplicity in conception and difficulty in solution [Dom96]; although
(unlike the Heisenberg model of Section 6.4.1) it probably does not represent very
closely the magnetism of any real solid [deJ74]. It consists of a periodic array of
spins, each of which can be in one of two states, up or down. It is postulated that
there is an energy of interaction between each pair of nearest neighbors (representing
the quantum mechanical exchange effect) which depends upon whether their spins
are like, 11, or unlike, 1; but any direct interaction between the magnetic dipoles
associated with the spins is neglected. Ferromagnetism is then favored if Ae =
€1, — €4 > 0, antiferromagnetism if Ae < 0. Because Ae is the only energy parameter,
S and Cy are functions of kT /Ae. Changing Ae translates horizontally plots of S and
Cy against InT, but otherwise does not alter them. For the same reason there is only
one Griineisen parameter, —(dInAe/dInV), and B(T) will always be proportional
to Cy (T)

In the ferromagnet, when kT < Ae all the spins are aligned in one direction:
we say that there is complete long range order. Conversely, when kT > Ae€ the
directions of the spins are random, and disorder is complete. As T increases from
low temperatures, some spins will reverse, although at first most spins will be in the
original direction: there is then partial long-range order. The existence of reversed
spins then makes it less energetically unfavorable to reverse other spins; so as the
temperature is increased further, the loss of long-range order becomes more rapid.
Finally a critical temperature T, is reached beyond which there remains no long range
order: knowledge of the spin directions in one part of the crystal no longer enables
us to predict anything about their behavior in a distant part of the crystal. On the
other hand, there is still some short range order at temperatures above T, because
on average each spin still has more like neighbors than unlike. Figure 2.5 illustrates
the effect this behavior has on the heat capacity of two models, one two-dimensional
and one three-dimensional.

Consider the heat capacity of the three-dimensional model, with spins on a face-
centered cubic lattice. The long range order parameter f is defined for a mole of Ny
spins by

f=(INy—=N,|)/Na (2.65)
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Fig. 2.5. Magnetic heat capacity of Ising spins: e-e-e, on a fcc lattice; —, on a two dimensional square
lattice. From [del]74, after C. Domb].

Loss of order implies an increase in entropy, which in the completely random high
temperature limit has the same value as that of the two-state Schottky systems:

AS = kIn(2M*) = RIn2 (2.66)

However, the way in which the system passes from complete order to complete
disorder is quite different from the smooth passage of the Schottky systems. The heat
capacity, given by Cy = T(3S/dT)y, has a sharp peak at the transition temperature
T,; this is often called a lambda peak, because for some systems it resembles the
Greek letter A. This peak is associated with the catastrophic loss of long range order,
and is characteristic of cooperative phase transitions; above T, f = 0, but there is
still a contribution to the heat capacity due to progressive loss of short range order.

Mean Field Theory. Precise calculations on order—disorder models are not sim-
ple. For example, the Ising model requires simultaneous consideration of the dispo-
sition of spins throughout the macroscopic crystal; this cannot be done analytically
(except in two dimensions), and results to the accuracy of those shown in Fig. 2.5
are obtained only after considerable computation. Approximations have therefore
been devised, and of these the simplest is the mean field approximation, in which
the potential field seen by each unit is replaced by an average taken over the whole
system. In the Ising model, for example, the distribution of neighbors about an up
spin (or a down spin) varies; but in the mean field approximation we assume that the
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field seen by each spin is that corresponding to the average excess of up neighbors
over down, zf, where z is the total number of neighbors of each spin. The change of
energy in a flip from down to up is then zf A€, and for self consistency the resulting
Boltzmann factor must give the ratio of up to down spins:

exp(—zfAe/kT) = (1+£)/(1-f) (2.67)

This equation is easily solved numerically for different values of Ae/T, giving a
result differing considerably from that shown in Fig. 2.5. The critical temperature T,
marking the disappearance of long range order is too high by nearly 20%, and the
peak in Cy is finite in height and markedly different in shape. In particular, the mean
field approximation neglects any additional local correlation between spins; and so
there is no short range order and consequently no tail in Cy above T¢.

Real Materials. Order—disorder transitions occur in many materials, both at
cryogenic and at higher temperatures. The detailed behavior varies widely, and
effects are seen not only in heat capacity but also in thermal expansion and other
properties. In alloys such as B-brass (CuZn), where the order is in the arrangement of
the different types of atom on the crystal lattice, the order—disorder contribution to the
heat capacity is very similar to that of the Ising model, with a large peak making an
additional contribution to the high temperature entropy of RIn2. On the other hand,
in real ferromagnetic and antiferromagnetic materials there are significant magnetic
contributions to Cy and S at lower temperatures, both when the relevant spins are
localized and when they are itinerant (Section 6.4), and the final peak is considerably
smaller than an Ising peak (e.g., Cr in Fig. 6.15). In molecular crystals and liquid
crystals the order is in the orientation of the molecules, and successive transition
temperatures can occur as order is lost for different orientational degrees of freedom
(e.g., HBr in Fig. 8.3). In ‘simple’ type I superconductors, where the order is only in
the momenta of the relevant particles or particle pairs, the peak has no tail above T,
since the concept of short-range order is not relevant here (Fig. 6.19).

Both real materials and theoretical models have been studied intensely over many
years [deJ74, Dom96], particularly the variation of their properties immediately
below and above T, mainly with the aim of elucidating the nature of the transitions
for different systems and the behavior of different properties in the neighborhood of
T, (‘critical exponents’). Further references are given in Section 5.11.1.

2.5.5. Glasses

Unlike a crystal, a glass is frozen in a random structure, and so there is no unique
model on an atomic scale; studies must be done on individual random assemblies
of atoms. Early work involved the laborious construction of random configurations
consistent with an appropriate type of bonding, but this can now be done in a
way analogous to the experimental formation of glasses, by using configurations
obtained from computer simulations of the liquid material. Such models are of



54 Chapter 2

limited size, typically containing 10° to 10° atoms, obeying a periodic boundary
condition. With suitable intermolecular potentials they can give quite a good account
of thermodynamic properties at high and intermediate temperatures. But the models
cannot easily be used to interpret the striking experimental results obtained at very
low temperatures (Section 5.7), because the periodic boundary condition applied to
samples of small size prevents the study of the effect of random structure both on
very low frequency vibrations and on the distribution of energy intervals in tunnelling
centers.

Although most glasses are insulators, electronic properties may be studied in
metallic and semi-conducting glasses [Cus87].

2.6. LATTICE VIBRATIONS

2.6.1. General

In all solid materials vibrations contribute to the heat capacity and thermal expan-
sion. The theory of vibrations in solids, called lattice dynamics, has been developed
in great detail, from the work of Born and his colleagues onwards; it is described
in many texts [Bor54, Bla55, deL.56, Mar71, Hor74, Ven75]. In this section we fill
out and make more precise some of the concepts already introduced in Chapter 1, in
preparation for later discussion of specific materials.

2.6.2. Harmonic Theory

The Harmonic Approximation. The starting point of lattice dynamics is the
existence of a potential energy, as given by the Born—Oppenheimer approximation
(Section 2.4.1). This potential can be expressed as a Taylor series in the displacements
of the atoms from their mean positions:

=P, +D)+ D+ D3 +Dy+--- (2.68)

Here @, is the potential energy of the static lattice with the atoms in their mean
positions, and the ®,, are the sums of all the terms of the nth order in the displacements.
The harmonic approximation is to neglect all terms beyond the second order in the
displacements. The motion can then be resolved into the superposition of a set of
independent normal modes j, with angular frequencies w; = 27v; [Gol50]. In a bulk
solid these form the continuous frequency distribution g(w) defined in Section 1.3.3.

At this point, some clarification is needed. (i) For a purely harmonic solid the
Taylor series would terminate at ®,. But real solids are never purely harmonic;
indeed, apart from one-dimensional models it is mathematically virtually impossible
for a purely harmonic lattice to exist [Bar57a]. (ii) It is easy to show (e.g., [Bar98])
that if a purely harmonic solid could exist, its frequencies would have no dependence
on volume or strain. There would then be no thermal expansion, and no temperature
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dependence of the elasticity; both these are essentially anharmonic effects. (iii)
There are many independent anharmonic terms in the expansion of the potential
energy function, and the anharmonicity cannot be specified by a single parameter.
(iv)Although no real solid is ever strictly harmonic, the harmonic approximation is
a good approximation for the vibrational heat capacities of most solids, especially at
low temperatures.

The Vibrational Spectrum. The structure of a crystal is described by its periodic
lattice, consisting of points given by the vectors

x(l) = ha) + hay + l3a3 (2.69)

where 11,1;,l3 are integers, together with a set of vectors x(k) determining the
positions x(!) + x(k) of the n atoms (the basis) in each cell of the lattice. The
translational symmetry enables the normal vibrations to be classified by wave vectors
g, such that the phase difference between any two cells separated by a vector x(1) is
q-x(1) (Fig. 2.6a,b); in modes for which q = 0 the atoms in each cell are in phase with
the corresponding atoms in all other cells (Fig. 2.6c). This phase factor is periodic in
g-space (reciprocal space), so that the same mode can be ascribed to different values
of q (Fig. 2.7). Wave vectors need therefore be taken only over a finite region of
reciprocal space. This is usually chosen to be the First Brillouin Zone (FBZ), which
comprises those independent q that are nearest to the origin of reciprocal space (e.g.,
(Kit76, Ch. 2]). For a crystal of volume V, the allowed q are uniformly distributed
throughout the FBZ with a density V/(27)3. In diagrams the point at the zone center
(q = 0) is usually labelled I, and referred to in speech as the “Gamma point.” First
Brillouin Zones for many lattices are given in the appendices of [Hel81].

The periodicity in q-space is described by the reciprocal lattice, which is the set
of all points giving the same phase factors as the Gamma point. These are given by
niby +n;b; +n3bs, where ny,n;, ns are integers and the reciprocal lattice vectors b;
are related to the a; by

a;- bj = 211'8,’1' (270)

The position of a g-vector referred to the reciprocal lattice is given by reduced
dimensionless coordinates { = ({1,{,$3), so that

q={1by + by + $3bs @71

and the cell phase factors are 27 Y; {;l;. Strictly it is { rather than q that should
be used to label a given normal mode of vibration, because (except at the I'-point)
q changes when the crystal is strained so as to keep the phase factor for each cell
unaltered. This must be remembered when Griineisen parameters are derived for
individual normal modes. Details may be found in the references in Section 2.6.1,
and in [Bar98].
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Fig. 2.6. Atomic displacements for transverse vibrations in a diatomic linear chain (schematic): e, heavier
atom; o, lighter atom. (a) ¢ = 0.1(27r /a), acoustic branch; (b) g = 0.1(27 /a), optical branch; (c) g =0,
optical branch.

In a three dimensional crystal, for each q there are 3n modes, labelled gs, with
frequencies wgs. As q varies, these form 3n branches of the vibrational spectrum
(s = 1, 3n). Of these, three are called acoustic branches, because as q — 0 the modes
become macroscopic elastic sound waves; the rest are called optical branches because
their limiting frequencies as ¢ — O can often be measured by infra-red or Raman
spectroscopy. At q = 0 the acoustic modes become translations of the whole crystal,
with zero frequency, but the optical modes remain vibrations of finite frequency
(Fig. 2.6c). Frequencies of modes for which q # 0 are usually measured by inelastic
neutron scattering [Dol74]. Plots of wqs against g for different directions of q are
called dispersion curves. Figures 2.8 and 2.9 show dispersion curves in directions of
high symmetry for argon and silicon. With only one atom per cell, argon has three
acoustic branches; however, along the [001] and [111] directions the two transverse
branches are degenerate. Silicon, with two atoms per cell, has in addition three
optical branches; the marked flattening of the dispersion curves for the transverse
acoustic modes is responsible for the low frequency peak in g(w) centered on 4
THz and hence for the deep minimum in @€ (T') (Figs. 1.14 and 1.16). Dispersion
curves of many other solids are given by Bilz and Kress [Bil79] for non-metals and
in Landolt-Bomstein for metals [Sch81] and alloys [Kre83].

Surfaces and Imperfections. The periodicity of a crystal is broken at the surface,
and so no real crystal has strict translational symmetry. In modelling crystals for
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Fig. 2.7. Two different wave vectors, g = 0.1(2m/a) and g = 1.1(27r/a), describing the same vibration.
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Fig. 2.8. Phonon dispersion curves for argon. Full and dashed curves are computed from two different
models fitted to the experimental points. From [Bil79], who give original sources.
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Fig. 2.9. Phonon dispersion curves for silicon. A, 3, A indicate propagation in (100), (110), (111)
directions respectively. Full and dashed curves are computed from two different models fitted to the
experimental points. From [Bil79], who give original sources.
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calculating bulk properties this difficulty is avoided by imposing a cyclic boundary
condition, as described in Section 2.3.3. Surface vibrations therefore require separate
theoretical treatment (e.g., [Mar71, Ch. IX] and [Wal75]). Their effect on heat
capacity has been measured by comparing data for bulk crystals with data for fine
powders of large surface area (e.g., [Dug54, Pat55]).

Periodicity is also destroyed by internal imperfections, whether due to the pres-
ence of impurity atoms (Section 5.12) or to structural defects such as vacancies, inter-
stitials, dislocations etc. These again require special theory (e.g., [Mar71, Ch. VIII]
and [Tay75]).

Moments < w" > of the Vibrational Spectrum; ®p(n). Some theoretical
expressions for thermodynamic and other properties involve the moments of the
vibrational spectrum, which are averages of powers of the frequencies defined by

2 ot = M (2.72)

1
<o'>=— P =
o T Tewdw

3N

here brackets of the type < --- > are used to distinguish averages over the frequency
distribution from the thermal averages (---). Provided that we exclude the zero
frequency modes, which correspond not to vibrations but to displacements of the
whole body, Eq. (2.72) can be used in computer calculations for values of n greater
than —3; for n < —3, the integral in the numerator diverges and the moments <
" > become infinite. Expressions for the entropy and free energy involve also the
geometric mean frequency wy, given by

wg =exp(<Inw >) (2.73)

To compare the moments with each other, we define equivalent Debye frequencies
wp(n) and temperatures ®p (n) (written by some authors ®,), corresponding to the
Debye distribution which gives the same nth moment as the spectrum under study.
They are given by

1

_hwp(n) ’i n+3 n n
Op(n) = e ( 3 <> 2.74)
Asn — 0 and as n — —3, Op(n) tends to values
Op(0) = e3 (”%) . Op(-3)=6§ @2.75)

the latter value being determined by the coefficient of w? in the low frequency
expansion for g(w) in Eq. (2.86).* The wp(n) or ®p(n) are used also in the analysis
of experimental data (Section 2.6.5).

*The symbol ©g is used by D. C. Wallace (see, for example, [Wal72, Wal92]) to denote
exp(~(1/3)]@p (0) =Fuwg/k.
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Both wp(n) and O (T) result from comparing properties of g(w) with those
of the Debye distribution. Thus for silicon the steep initial rise in g(w) above its
initial 72 dependence (Fig. 1.14) is reflected by initial falls in both ®C (T (Fig. 1.16)
and wp(n) (Fig. 2.10), which then rise again as the high frequency vibrations take
effect. For large n, wp(n) approaches the maximum frequency of the distribution,
Wmax. Some values of @p (n) give high or low temperature limiting values for @€ (T)
and @M (T), the latter being the equivalent Debye temperature for the Debye—Waller
effect [Sal65]:

0p(2)=0F, ©p(0)=65, Op(-3)=0f=eg,
Op(-2)=0Y, @p(-1)=0Y (2.76)

Thus values of wp(n) obtained by analyzing the heat capacity (Section 2.6.5) can be
correlated with Debye Waller data [Sal65, Bar77b]. An accurate estimate of the zero
point energy [see Eq. (2.83)] is given by

E; = %Nk@p(l) 277

Heat Capacity, Entropy and Helmholtz Energy. The wqs comprise all the vi-
brational frequencies w; and so determine the frequency distribution g(w) as defined
in Section 1.3.3.* For example, Fig. 1.14 shows g(«) for Ar and Si, obtained from
force-constant models fitted to neutron scattering data. Given the frequency distri-
bution, Eq. (1.13) can be used to obtain the heat capacity, and other thermodynamic
functions can be obtained similarly. But in practice it is more direct to calculate
thermodynamic functions, and also the moments < " >, by integrating over the
FBZ. For example,

Cv =Y el /kT)=[v/@n)) [ dqSchag/k)  @79)
J FBz °

where the function ¢(x) is given in Eq. (1.14). Similar expressions may be written for
Fyip, S, and Uy, where the vibrational contributions for each mode are respectively

f=kT %x+ln(l —e_x)] (2.79)
L
x —X
1 x
u=kT |55+ o 1] 2.81)

*Formally g(w) = ¥ 8(w — wj), where 8(x) is the Dirac delta function.
J
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Fig. 2.10. vp(n) = wp(n)/2m as a function of n for Si (upper curve) and Ge (lower curve), from analysis
of thermodynamic data [Flu59].
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Here x =Rw/kT, so thatkT %x is the zero point energy %ﬁ . The thermal components
of f and u are

fo=kTIn(1—e™*) and wpy=kT[x/(e" —1)] (2.82)

Behavior at Low Temperatures. As T — 0, x =Aw/kT — o; thus while c(x)
and s(x) = 0, u(x) - %iiw. The zero point energy of the solid is therefore

Ez=Y %fiw, (2.83)
J

For the Debye model Ez = %N k®p, where N is the total number of atoms in the
solid; and this is usually a good approximation for simple solids if for ®p we take
0, the equivalent temperature for the heat capacity at the high temperature limit
(DomS52]. Eq. (2.77) is more accurate, but requires more detailed analysis of the heat
capacity.

For temperatures so low that only elastic waves contribute to S and Cy, i.e.,
acoustic modes with wave vectors q very near the zone center, Debye’s theory
(first applied only to an elastically isotropic solid) is generalized to take account
of the dependence of sound velocities on direction of wave propagation. The T3-
dependence as T — 0 is given by an integral over all directions [Bor54, Eq. 6.3]:

CvibN3svib ~ m _’i 3 3 ~A\1—3 3
2 _k{%(ﬁ) /FZI[vs(q)] aQlT (2.84)

where () is an element of solid angle, § is a unit vector giving the direction of propa-
gation, and the v;(§) are velocities of sound for the three different wave polarizations
given by continuum elasticity theory (Section 2.8.7). The corresponding Debye
equivalent temperature when all degrees of atomic freedom are taken into account is

1
hlv 3 o3
eg==-¢2 s(§)]3dQ (2.85)
p { 5 / Szf,l[v (@) }

where v, is the mean volume per atom and the superscript ¢ denotes that the value
is obtained from elastic data. For an elastically isotropic solid the integral reduces to
4w (vp® +2v;?), where the subscripts denote longitudinal and transverse polariza-
tion.

For molecular crystals and other complex solids a smaller number of degrees of
freedom may be used for the equivalent Debye spectrum (see Section 1.3); if so, the
quotient v, /9 occurring in Eq. (2.85) must be increased in proportion. Implementa-
tion of Eqgs. (2.84) and (2.85) is discussed in Section 2.9.

Various methods used for estimating from elastic data the behavior of S and Cy
above the 7 region are reviewed elsewhere [Bar80, Bar98]; they are all approxima-
tions and their degree of reliability depends upon the type of material. Precise theory
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Fig. 2.11. Cy /T3 plotted against T2 for KCl. The dashed line indicates a spurious AT + BT fit. Arrows
denote temperatures ©9/100, 209 /100, etc. [Bar57c].

requires lattice dynamics, which takes account of the discrete atomic structure of the
solid. At low frequencies this gives series expansions of the form

g(w) =aw?+bw* +cwb+--- (2.86)
leading to low temperature expansions for C,;, of the form
Cois =AT*+BT +CT" +--- (2.87)

Plots of Cy/T? (or C /T for metals) against 72 give smooth curves enabling the first
two or three coefficients to be estimated from good experimental data (Fig. 2.11).
In particular, the coefficients A give calorimetric Debye temperatures @3 which are
usually found to be in good agreement with @5’.

High Temperature Behavior. For many solids Cy and ©®€ approach their
high temperature limits below room temperature, viz. in the cryogenic region (e.g.,
Fig. 1.2). In the harmonic approximation the high temperature behavior is obtained
by expanding the harmonic expressions for these quantities as power series in inverse
powers of T. When T is large, x =hw/kT is small, and the functions c, s, u and f of
Egs. (1.14) and (2.79)—(2.81) can be expanded in powers of x; for example,

B B B
u=kT [1+2—!2x2—4—‘!‘x“+-6—‘;x6—--~] (2.88)

where B3, By, Bg, - - - are the Bernoulli numbers %, 313, 41 ,-- (e.g., [Jef50]). Summing
over the frequency distribution then gives the Thirring expansions for the bulk prop-
erties [Thil3, Bar57b], which can be used in the analysis of experimental data (see
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Section 2.6.5):

B, (A’ <> By (A\*<w'>
Uyip =3NkT [14—5(;) T T% +-- (2.89)

i 2 2 4 4
Suip = 3NK [l_ln_&+ﬁ_(’i) 513_&(5) <w>

kT " 2(2) \k T2 4(4) \k T4
(2.90)
B, (kR 2<m2> 3B4 (h 4<m4>
Cvib=3Nk I—F<E) —TT—+T(E) '—T4—— (2.91)

An expansion for (©€)? can be derived from Eq. (2.91):

ec\* [ec\*
(GC)2=(®£)2{1—A <?> +B(-T—> -} 2.92)

where the harmonic high temperature limiting value of OC is

1
F/(5<w?>\?
cC_" (=% —
®°°_k( 3 ) (2.93)
and
3 <w*> 25
4= 100 << w?>2 ﬁ) 299
1 <w®> 125
B= 1400{(< w? >3 wﬁ) _IOOA} 295

We may note that in the expressions for U and Cy all terms involving/ tend to
zero as T — =, leaving only the terms 3NkT and 3Nk given by classical statistical
mechanics. In particular, the zero-point energy Ez does not appear in the expansion
for U, which at high temperatures is asymptotic to 3NkT (and not to 3NkT + Ez) as
shown in Fig. 2.12. In contrast, the absolute value of the entropy at high temperatures
depends on/ and the frequencies, and is thus a quantum property.

We may also note that @€ departs from its limiting value as T2, as does Cy.
However, the coefficients of the first few terms are relatively much smaller than those
for Cy, so that @C (T) starts to approach @S at lower temperatures.
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Fig. 2.12. U and Cy as functions of T for a harmonic crystal (schematic).
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2.6.3. Anharmonic Theory — Quasiharmonic Approximation

At low enough temperatures the vibrational amplitudes in most solids are small,
and the anharmonic part of the potential energy can be treated as a perturbation; it
is only for a few ‘quantum solids,” where the zero-point energy becomes comparable
to the cohesive energy, that this is not so. To the first order of perturbation theory,
the anharmonic potential has two effects: (i) interaction between different normal
vibrations; (ii) volume (and strain) dependence of the normal mode frequencies. The
first of these provides a mechanism for thermal resistance (e.g., [Ber76b]); the second
affects the thermodynamic properties, giving rise to thermal pressure and hence to
thermal expansion, as well as to vibrational contributions to the bulk modulus and
other elastic stiffnesses. Although there is no exact relation between the two effects,
approximate quantitative correlations can often be found (e.g., [Whi89b]). There are
no first order anharmonic contributions to the expressions for F, S and Cy.

The quasi-harmonic approximation takes the dependence of the harmonic fre-
quencies on volume or strain into account, but neglects all other anharmonic effects.
In calculating thermal stress and hence the Griineisen function, it is equivalent to
first order perturbation theory (e.g., [Bar74b]). Since the normal mode contributions
to F are additive, the heat capacity and Griineisen function are as given in Section
1.3.2, with the subscript , replaced by mode labels ; or ¢ ;. The vibrational Griineisen
function is thus the average of all the y; = —dInw;/dInV weighted by the heat
capacities c; of each mode:

5w _ By w ey /KTPA0NT (T 12

in(V,T) = 2.96
L S T T s Ty Ly
The coefficient of thermal expansion is given by
XX k@ /kT)?
Boiv = ;y,c, =5 IZ%(J“’i/"T—l)(l—e‘”‘"i/"T) 297
Similarly, the equation of state can be written in one of the forms
PV = -V (V) +Zy,-u,- =-—VU)(V) +Zy,-u,h,- (2.98)

J J

where @, is the static lattice energy, Up is the internal energy &, +Ez at T =0, u; is
the total vibrational energy of the mode j and u,s; is the thermal energy (Eq. 2.82).
Taking the same value 7y for all the +y; leads to the Mie—Griineisen equations of state:

PV =—V®[ (V) +yUyp = —VUy(V) +yUn (2.99)

Thus in the quasi-harmonic approximation the thermodynamic function ygps defined
in Section 2.2.3 is an average of the 7; weighted by the u;; ;. It tends to the same low
and high temperature limits as -y (‘yp and =), but reaches . more slowly.

The bulk modulus By can be obtained by differentiating P as given by the first of
Egs. (2.98). It involves the second derivatives of the frequencies.
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Anisotropic Expansion. Of the non-cubic crystals for which low temperature
data is commonly available, axial crystals (tetragonal, hexagonal, trigonal) have
two independent expansion coefficients (written a ,a), and orthorhombic have
three (written oy, ap, a. or aj, az, a3); of the others, monoclinic have four and
triclinic six. The thermodynamics of anisotropic expansion (see Section 2.8) therefore
has to consider stress, strain and elasticity rather than only pressure, volume and
compressibility. The quasiharmonic theory then requires mode Griineisen parameters
7, for each independent strain coordinate 7. For axial crystals

1 (dnw; dlnw;
R L= 2.100
YL 2 ( dlna )C’ Yl ( dlnc )a ( )

where the factor % arises because altering the crystallographic parameter a affects
both dimensions perpendicular to the axis; and for orthorhombic crystals

dlnw; dln w; dInw;
= — = i=— 2.101
Yy ( dlna )b’c’ Y2 ( dlnb )a,c’ Vi ( dlnc /,, (2.10D)

Averages of these Grineisen parameters weighted by the mode contributions to the
heat capacity give thermodynamic anisotropic Griineisen functions [cf. Eq. (2.96)]

= 216/ D€ (2.102)
j

J

for use in the thermodynamic equations of Section 2.8.4.

Expansion Behavior at Low and High Temperatures. At low temperatures
only long wavelength acoustic modes are excited and the thermal expansion has a
temperature dependence like that of the heat capacity [see Eq. (2.87)]:

Byip = b3T> +bsT> +b7T7 +- - (2.103)

The Griineisen function is given by a power series in 72, in which the first term yp is
related to that in the series for the heat capacity by

Yo = %dlnA/dan =—dIn®/dInV (2.104)

At high temperatures Egs. (2.96)—(2.98) can be expanded as series in inverse
powers of T2. The limiting value of the expression for y(V,T) as T —  is written
¥=(V'); it is the arithmetic mean of all the ;. Higher terms in the expansion involve
the weighted means

y(n) =Y v/ Y o = —dnwp(n)/dInV (2.105)
j j
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Techniques for Computing Low Temperature Behavior. In calculations on
theoretical models the squares of the frequencies (coq,s)2 for each value of q are
obtained as the eigenvalues of a dynamical matrix D(q), and the associated mode
Griineisen parameters can be derived from the volume or stress derivatives of D(q)
by perturbation theory (e.g., [Wal72, Kan95, Tay97a]). Thermodynamic properties
are then obtained by integrating over the FBZ or other equivalent region in g-space.
At most temperatures the required accuracy is given by integration grids which have
typically 100 to 10000 points in the whole FBZ.

But vibrational effects at very low temperatures depend mainly on acoustic modes
with g close to the I'-point, and to study them much finer grids are required in this
region. To extend such grids over the entire zone would be prohibitively wasteful,
and so some procedure is needed to allow the use of progressively finer grids as the
I'-point is approached. One simple iterative method starts with a grid adequate for
intermediate and high temperatures. In the first iteration the integration over an inner
region with linear dimensions half those of the whole zone is recalculated with a
finer mesh which has the same number of points in the inner region as used originally
for the whole zone. In the second iteration an inner region of the first inner region
is treated similarly, and so on. At each step there is an eightfold increase in the
density of points in the innermost region. The number of iterations needed to obtain
convergence — typically three to six — depends upon the lowest temperature for
which precise results are required. A complete calculation shows the approach to the
Debye limit, as checked by an independent calculation of @8’.

Fortunately this iteration need be done only once. At low temperatures the
thermal expansion is small, and to calculate the dynamical matrix, frequencies and
mode Griineisen parameters we can use the geometry at 7 = 0. Once these are found,
properties at each low temperature can be calculated by simultaneous integration over
the FBZ, so that only one set of iterations of the integration grid is needed. To find the
equilibrium geometry at T = 0 the total static and zero-point vibrational energy must
be minimized, but since the zero-point energy is dominated by higher frequencies this
does not require fine grids near the I'-point. Similarly at higher temperatures, where
the effect of thermal expansion on the dynamical matrix is appreciable, the total free
energy must be minimized with respect to volume or strain for each T, necessitating
repeated calculation and diagonalization of the changing dynamical matrix; but this
does not require fine grids at the zone center.

Central Force Mechanisms in Thermal Expansion. Equation (2.97) shows
that thermal expansion will be positive or negative depending upon whether positive
or negative 7; predominate in the weighted average. Positive -y; arise chiefly because
a typical interatomic potential has the asymmetric shape shown in Fig. 2.13a, so that
the force constant affecting vibrations along the line joining the atoms decreases with
increasing distance. This mechanism for positive expansion due to vibration along
the line of atomic centers can also be seen in two other equivalent ways: (i) it is
easier for the atoms to move further from each other than nearer to each other; (ii) if
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the volume and hence the distances between the mean positions of the atoms are kept
fixed when the atoms vibrate, the average force between the atoms will be repulsive,
leading to a positive thermal pressure (Fig. 2.13a). This is sometimes called the
bond stretching mechanism, because it causes the mean distance between atoms to
increase.

Negative 1; arise chiefly because of vibrations perpendicular to the line of centers.
The tension between the atoms, and hence the frequencies of transverse vibrations,
increase with interatomic distance, as in a stretched banjo string. This mechanism
too can be seen also in an equivalent way, by considering the thermal stresses caused
by the vibrations: if the mean atomic positions are kept fixed, transverse displace-
ments about these positions increase the mean distance between the atoms, causing
a tension tending to pull them towards each other (Fig. 2.13b) and so to restore the
mean interatomic distance to its original value. This is sometimes called the tension
mechanism. In the quasiharmonic approximation each mechanism contributes addi-
tively to the Griineisen parameters and hence to the thermal expansion, so that their
relative importance may be easily calculated for theoretical models (e.g., [Bru98]).

In most crystal vibrations the displacements have components both along and
perpendicular to the lines joining neighboring atoms. Both mechanisms then operate.*
Moreover, displacements that are roughly along one line of centers can be roughly
perpendicular to another. Usually the bond-stretching mechanism of Fig. 2.13a has
the larger effect, and the thermal expansion is positive. But those modes which
have on average larger components of vibration normal to lines of centers tend to
have lower frequencies, and so are preferentially excited at low temperatures. For
this reason vy, often decreases at low temperatures [Bla57, Bar57a]. The effect
is particularly marked for crystals of open structure, where there can be modes for
which the relative atomic displacements are predominantly transverse to the lines of
centers; among the simplest examples are the rocksalt and zincblende structures (see
Sections 5.3 and 5.5). For some very open structures 3 can be negative even at room
temperature.

In non-cubic crystals the same mechanisms can give rise to a wide variety of
behavior, as in the layered and chain structures discussed in Sections 5.8 and 5.9.
This has been exemplified by a model primitive rhombohedral lattice, in which the
ratio of the interaction between planes perpendicular to the trigonal axis to that within
the planes could be altered [Bar74a]. A small ratio gave layered crystals, in which
the low frequency modes were polarized largely perpendicular to the planes; so that
at low temperatures the expansion along the axis was relatively large and positive
due to bond-stretching, while that perpendicular to the axis was small, and negative
due to the tension effect and a large negative cross compliance. In contrast, a large
ratio gave linked polymer chains, with the opposite behavior.

*There is also a third mechanism tending to rotate the line of centers away from the direction of vibration,
but its net effect is small or zero except for strongly anisotropic non-cubic crystals such as polyethylene
[Bru98].
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Fig. 2.13. Central force mechanisms in thermal expansion (schematic). Dashed lines show amplitude of
motion of atom B with respect to atom A. (a) Bond stretching: displacements along the “bond” direction
produce a mean repulsive force, because the potential well is asymmetric; (b) Tension: displacements
perpendicular to the “bond” direction produce a mean attractive force [Bru98).

2.6.4. Strongly Anharmonic Vibrations

For most solids that have been studied the quasi-harmonic approximation gives a
good account of the thermodynamic properties at low temperatures, although it breaks
down progressively as the amplitude of lattice vibrations increases with temperature.
The temperatures at which this becomes serious vary for different substances and
the pressures at which they are held; there is no universal rule. For example the
approximation is totally invalid at all temperatures for solid helium except at high
pressures (Section 5.2), and also for the rotational motions of molecules in solid
H; and CH4 (Ch. 8); but for tightly bound crystals such as the ceramic oxides it is
useful well above room temperature. Calculations on the thermodynamic behavior
of models of alkali halides and heavy rare gas solids under zero pressure have shown
that noticeable deviations from quasi-harmonic behavior may begin at about 0.2 T,,,,
where T, is the melting point (e.g., [Gly71]); but the approximation can remain useful
to considerably higher temperatures, especially when there is cancellation between
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different anharmonic terms.

Several of the theoretical methods of treating anharmonic effects are summarized
briefly in [Bar98], and described in detail in various chapters of [Hor74, Hor75,
Kle76, Kle77]. Successive higher orders of perturbation theory (PT) extend the
range to higher temperatures, and the variational method of the self-consistent (SC)
phonon theory to yet higher temperatures, especially when it is combined with PT
to give the improved self-consistent (ISC) phonon theory. These methods, together
with some cell models, have more recently been further tested and compared with
each other and with classical Monte Carlo methods by E. R. Cowley, G. K. Horton
and colleagues, again using simple models for rare gas solids and ionic solids (e.g.,
[Shu85, Gon88, Cow90]; see also Fig. 2.14).

At temperatures where quantum effects are small classical Monte Carlo and
Molecular Dynamics are often used, because of their comparative simplicity (Section
2.3.3). Usually it is sufficient to use quasiharmonic theory at low temperatures, and
check its validity at higher temperatures by comparison with MC or MD results,
interpolating between them. There are also some methods of quantum simulation
valid over the whole temperature range [Hor95], such as the Feynman path integral
(PI) method which can be evaluated by techniques mathematically equivalent to
classical Monte Carlo [McG95]. Figure 2.14 illustrates the power of this method,
and also shows that for the more strongly anharmonic (lighter) rare gas solids it
becomes progressively less reliable to interpolate between quasiharmonic theory at
low temperatures and classical theory at high temperatures without recourse to further
theory. A faster approximate path integral technique, the improved effective potential
(IEP) method, has been found useful for quantum solids such as neon and helium
[Cow95, Hor96, Aco96].

According to both PT and SC theory the entropy (but not the heat capacity) is
given correctly by the harmonic expression, but with shifted frequencies equal to
those given by spectroscopic measurements, including neutron diffraction. We thus
have a temperature-dependent ‘renormalized’ spectrum. Even as T — 0 there are
still some anharmonic effects due to zero-point energy, but S and Cy still have a 73
dependence related to the elasticity in the same way as for a harmonic solid. On
the other hand room temperature elastic constants can be used only to calculate the
®? term in the room temperature renormalized spectrum, which does not correspond
exactly to any measured heat capacity.

2.6.5. Analysis of Thermodynamic Data

The most usual way of treating vibrational data is to fit to them the parameters
of a suitable lattice dynamical model, and then to use the fitted model to derive other
information not given directly by the experimental data. But also some properties
of the frequency distribution of a solid can be derived to a good accuracy from its
measured thermodynamic properties without the use of specific models.

The analysis of thermodynamic data is discussed in several books and papers,
including [Bar57b, Bar64, Wal72, Yat72, Bar82, Gui91, Wal92]. We have already
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Fig. 2.15. Estimation of coefficients in the high temperature expansion for C: (6C€)?2 plotted against
T2 for Si (upper curve) and Ge (lower curve) [Flu59].

seen that at low temperatures by plotting Cy/T> (for metals Cy/T) against T2
we can estimate the first two or three coefficients in the low frequency expansion
[Eq. (2.86)]. The g(w) to which this corresponds is that of the renormalized spectrum
at T = 0, which takes into account any anharmonic effects due to the zero-point
energy. To derive further information about this spectrum from higher temperature
measurements the data must first be corrected to the volume Vp at T = 0, with the
aid either of thermodynamic expressions for the volume derivatives of heat capacity,
entropy, thermal expansion, etc. (see Section 2.2.3 and [Wal72]) or of appropriate
Griineisen parameters (see [Bar57b, Bar64]). However, since Griineisen parameters
are based on quasiharmonic theory, they should not be used in the fully anharmonic
analysis of high temperature data.

Quasiharmonic analysis. The volume-corrected data is fitted to the quasihar-
monic high temperature expansions for the thermodynamic properties or for Debye
temperatures and Griineisen functions derived from them. This can be done in var-
ious ways. Figure 2.15 shows how ®S(Vp) has been estimated for Si and Ge, by
plotting (@€ (Vp))? against T~2. Although experimental uncertainty and increasing
anharmonic effects at higher temperatures limit the precision of the extrapolated in-
tercepts at T-2 =0, OF is obtained to within about 1%. Good estimates can also be
obtained of the slopes, from which < w* > and hence wp(4) are derived, and even
wp(6) can be roughly estimated.

The most accurate information, however, is obtained from data at intermediate
temperatures. For all values of n (including non-integral) in the range —3 < n < 0 the
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moments of the distribution are given by integrals over the harmonic heat capacity:

G/k)" < o >= “(Cv /Tt [T@-n)i(1-n) (2.106)

1
3Nk Jo
where I'(x) is the mathematical Gamma function, {(x) is the Riemann zeta function
[Abr65], and the high temperature part of the integral is calculated using the high
temperature (harmonic) expansions already obtained. In addition, w; and the first
moment < w > are obtained from the high temperature expansions for S and U.
Results for Si and Ge, correlated in wp(n) plots, are shown in Fig. 2.10. This type
of analysis can be extended to the thermal expansion to give values of y(n) [Bar64],
and similarly v, (n) for anisotropic solids [Bar67, Bar82].

Fully anharmonic analysis. A fully anharmonic analysis usually refers to data
obtained above cryogenic temperatures, and detailed discussion is beyond the scope
of this monograph. Wallace [Wal72] has shown how a plot of (Cy —3Nk) /T against
T3 can be extrapolated to give the coefficient of a linear term in T in Cy, corre-
sponding to the lowest order non-zero term in classical perturbation theory; while
< w? > is given to a good accuracy by the slope. Such plots also demonstrate the
breakdown of perturbation theory at higher temperatures. It is useful in this range to
work at least partly with the entropy, since this corresponds to the temperature depen-
dent renormalized spectrum, about which information may be gained from neutron
diffraction. In conductors there are also electronic contributions, for which reliable
band-structure calculations may sometimes be available. For further discussion see
[Gui91, Eri92, Wal92, Whi93c].

2.7. APPROXIMATE EQUATIONS OF STATE

For many solids data are not available over all temperatures and pressures of
interest, nor can they be calculated reliably from theoretical models. But examination
of the experimental and theoretical data that is available has led to working rules for
estimating equations of state of a wide range of materials, especially in the high
temperature limit relevant to geophysics and many technical applications.

2.7.1. BehaviorforT >0

When T > 0, to a first approximation Cy ~ 3Nk (the Dulong and Petit value) and
v has reached its high temperature limiting value y». The Mie-Griineisen equation
of state is then

P(T,V)~ —®,(V)+ ﬁ‘(ll)yva (2.107)
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and the thermal pressure coefficient is

P\ on o Ya(V)
(ﬁ) =B a2 (2.108)

which is a function of volume but not of temperature.

To this Swenson [Swe68] added the further approximation, based on empirical
observation on many cubic solids, that at high temperatures By is a function of volume
only; this gives [cf. Eq. (2.31)]

(W)V__ [zﬂnV (ﬁ)V]T—O (2.109)

Together with Eqs. (2.107), this implies that the thermal pressure coefficient [in
Eq. (2.108)] is independent of both volume and temperature, and that y./V is also
constant; and that Br can be identified with the bulk modulus of the static lattice:

go=(dInys/dInV)r ~ 1, and Br ~V®] (2.110)
The constancy of (9P /dT )y implies that all isothermal equations of state are parallel:
P(T,V) ~P(T*,V)+B(T*,V*)Br(T*,V*)(T - T*) @.111)

Because of its simplicity this approximation is widely used. Its reliability in the light
of more extensive data than those used by Swenson is discussed by O. L. Anderson
[And95a), who points out that it will be valid when the difference between the
dimensionless functions 87 and B’T is small, since

dBr . ,
(T?T)V_BBT(BT_ET) 2.112)

Although (like Swenson) he finds significant departures in observed behavior from

that predicted by the approximation, he concludes that it is a good first approximation
over a wide range of pressures for many different types of solid.

Equations of State. To complete the information required to estimate the equa-
tion of state at all pressures, Swenson used the Murnaghan equation of state at
temperature 7*:

vy o BETH V) [y BT
P(T"V) = grimyy [(-‘7) -1 2.113)

based on the assumption that the dimensionless derivative By = (dBr/dP)r is inde-
pendent of volume. At higher pressures than those Swenson considered, observed
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behavior diverges from the Murnaghan equation, and a more sophisticated approxi-
mation is needed. Perhaps the best known and most successful is the Vinet “universal”
equation of state, which may be written in the analytic form [Vin87a, Vin87b]

p(r,v) = 2LV (1 Xyexpln(r,v)(1 - x) @.114)
where
V % * * 3 / * *
X= (V—) and n(T",V*)=3[B'(T",V*)-1] (2.115)

2.7.2. Behavior at Low Temperatures

At T = 0 the quasi-harmonic expressions for the vibrational free energy and
pressure are

9 1)9
Fip(0,V)=Ez = §R®D(1), Py = y—é—)gR@D(l) (2.116)
Neglecting any volume dependence of y(1)/V, we find [Swe68]
2
Br(0,V) = Bs(0,V) zBL(v)+[l%21—%R®D(1) (2.117)

The vibrational term is positive, explaining why on cooling at constant volume Br is
observed to rise above its high temperature value to a new limit as 7 — 0 (Fig. 2.16).
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2.8. ANISOTROPIC STRAIN AND STRESS: ELASTICITY

2.8.1. Introduction

For thermal properties of materials under isotropic pressure, the same thermody-
namics applies to both fluids and solids; V is the only relevant geometric variable.
But unlike liquids, solids can sustain anisotropic stress; ideally they cannot flow, and
neighboring atoms remain so permanently even when the solid is put under stress.*
In particular, in a crystal under anisotropic stress the unit cell retains its identity,
but changes its shape as well as its volume. Six parameters are needed to define its

dimensions — for example, the lengths of the edges a,b,c and the angles &, B,y
between them.

Depending on the specific application, we have therefore to generalize the thermo-
dynamics of Section 2.2 to take account of up to six geometrical degrees of freedom.
For example, we might replace the one parameter V by the six unit cell parameters,
and it may sometimes be appropriate to do this. However, the stresses conjugate to
these parameters are not in general simply related to the macroscopic applied stress,
and in any case such a theory could not be applied to non-crystalline solids. For
these and other reasons, standard elasticity theory is developed in terms not of unit
cell parameters but of macroscopic parameters describing the distortion of the mate-
rial from some configuration chosen as reference. Many applications are concerned
only with the limit of infinitesimal strains from a state originally at zero pressure,
and it is then quite straightforward to define stresses, strains and the related (second
order) elastic coefficients with little fear of confusion (e.g., [Nye85]); with these we
can generalize most of the relations of Section 2.2.3 to take account simultaneously
of the different independent strain coordinates. Later in this section, however, we
shall have to go further. We have seen that at very low temperatures the vibrational
free energy depends on the frequencies of long wave acoustic phonons, and these in
turn depend on the second order elastic coefficients. The low temperature thermal
expansion therefore depends on the strain-derivatives of these frequencies, and so
involves higher order elasticity. There is an extensive literature on this (later work
includes [Thu64, Thu65a, Thu65b, Bru64, Bru65, Bru67, Wal70, Wal72, Bar98]),
but the complexity of the subject makes much of it difficult to read. Here we shall be
concerned only with the minimum needed for present purposes.

2.8.2. Stress and Strain

The Cauchy Stress. The best known measure of stress is the Cauchy stress
tensor, oqg, defined such that if dA is an element of surface area within the solid
separating regions labelled I and II, the force exerted across dA by region II on region
I is given by vector components

Fo = gapnpdA (2.118)

*We shall not here be concerned with visco-elastic substances.
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where n is a unit vector normal to dA in the direction I to II; here and from now on we
use the Einstein convention that a repeated suffix indicates summation (in this case
2‘33=1). For example, a positive value of o;; indicates a tension along the direction
of the x-axis, and a negative value indicates a compression. Off-diagonal elements,
and also differences between the diagonal elements, indicate shear stress. For a solid
under hydrostatic pressure P, all the off-diagonal elements vanish and o4g = —P 8,g;
here 8, is the Kronecker delta, which is unity when a and B are the same and zero
when they are different.

Normally (for exceptions see [Nye85]) the stress tensor is symmetric (0ag = 0ga),
and so has only six independent elements. In the abbreviated notation of Voigt these
are written with a single subscript, as o, where A =1,--- ,6:

o) =011, 02=0722, 033=03

04 =023=03, Os5s=03 =013, 0¢=0]2=072 (2.119)

Strain Coordinates. Strain coordinates describe the distortion of a material from
the chosen reference configuration. They too may be expressed either as components
of a tensor or in a Voigt abbreviated notation. Two sets in common use are the
infinitesimal strain coordinates, written as eqg or e, which are sufficient for many
applications (e.g., [Nye85]); and the Lagrange finite strain coordinates, written as
Nap OF M, Which determine uniquely any state of strain however large, and so are
widely used in the treatment of higher order elasticity. To the first order in the strain
the two sets are the same, but they differ to higher orders.

In this book we shall use mainly the Lagrange coordinates, making it clear when
use of the infinitesimal coordinates would give different results. To define them, we
choose a set of rectilinear Cartesian axes in the reference state, usually determined by
crystal symmetry. In a state of uniform strain, lines that were straight in the reference
state remain straight in the strained state. In particular, a unit cube in the reference
state, with edges ¢ 1 22, 23 parallel to the coordinate axes, becomes in the strained
state a parallelepiped with edges £, £, £3 that in general are no longer of unit length
nor at right angles to each other. The Lagrange finite strain tensor can then be defined
by

1 ° °
Nap = 5(8,,-(,;—6.,-23) (2.120)

Its significance is that the square of the length of any vector F in the reference state
is changed from 72 to 72 +2m,gFafg in the strained state.

Like o,p this tensor is symmetric, with only six independent elements. In the
abbreviated Voigt notation, strain coordinates 7, are defined as follows:

MmM=m, M="M2, MW=Mm3 M=2M3 N5=2M3, Ne=2Mm2
(2.121)
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The factor 2 is introduced here for the off-diagonal elements of the strain tensor to
make summation and differentiation equivalent in the two notations. To the first
order in the strain the finite strain coordinates have a simple geometrical meaning:
m, M2, M3 are the dilations 6//1 along the three coordinate axes, and —n4, —7s,— N6

are the changes 8523, 8531,6512 in the angles between the straight lines originally
along the positive coordinate axes.

The Lagrange strain tensor is also often defined equivalently in terms of the linear
transformation specifying the position x(X) in the strained state of each point of the
body originally at X in the reference state:

Xog = (80,5 +ua,3))'t3 (2.122)

This transformation takes account of rotation of the body as well as homogeneous
strain, and so in general all nine elements of the tensor u,g are independent. In terms
of the u,g, Eq. (2.120) gives the Lagrangian tensor as

1
Nap = E(uap +uga + Uyallyg) (2.123)

The infinitesimal strain tensor is then defined by omitting the second order terms in
this expression:

1
eap = 5 (Map +Uga) (2.124)

and is thus the symmetric partof u,g. Voigtcoordinates e, are defined in an analogous
way to the 7). Infinitesimal rotation of the body is described by the antisymmetric
part wg Of uyg:

1
Wog = E(uaB - uBa) (2.125)

2.8.3. Elastic Stiffnesses c), and Compliances s,

There are many different ways of treating elasticity, and of defining elastic co-
efficients. Some of these will be discussed in Section 2.8.5. But for the present
we shall be concerned only with the “stress—strain” coefficients* obtained from the
dependence of the Cauchy stress on the strain when the instantaneous state of the
system is taken as reference configuration; whether we use m, or e, then makes
no difference to first order derivatives. The isothermal and adiabatic stiffnesses are
generalizations of Br and Bg, defined by

ao d0;

T A S A

Oy =|— , Hy=|— (2.126)
. <anﬂ-)n’,w,T A (anﬂ-)n',w,s

*They have also been called “effective,” and “physical.”
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where the subscript ' denotes that all strain coordinates except 7, are kept constant
during differentiation, and the subscript @ denotes that the body does not rotate.
Similarly, compliances are generalizations of xr and xs:

d ]
sLu=(535) , siu=(5ﬂi) @.127)
Ou 7,0,T On 70,5
The stiffness and compliance matrices are reciprocal, in the sense that
T s s S
s,mcz,, = c{usz,, =8\ sfuc#,, =CrpSur = Srv (2.128)

the repeated suffices now imply the summation 22=1.

The stiffnesses tell us how each stress coordinate changes when one strain coor-
dinate is changed, while all the other strain coordinates are kept at zero. Conversely,
the compliances tell us how each strain coordinate responds to an applied stress:
thus 52107 is the dilation in the y-direction resulting from a stress o7 stretching the
material in the x-direction, while all other stresses are kept constant. The number of
independent coefficients depends upon symmetry. If the stress is isotropic, ¢, = cyua
and s),, = sy, reducing the number of independent coefficients to twenty-one. Crys-
tal symmetry further reduces this number [Nye85]; for example, cubic crystals have
only three (c11,c¢12,C44)-

For solids under isotropic pressure the directional compressibilities y) provide
another useful generalization of x. They tell us how the volume responds to a change
in the single stress coordinate o7, and also how the strain coordinate 7, responds to

a change in pressure:
o = (31“") - (_"m) (2.129)
50',\ o\T oP T

Adiabatic directional compressibilities are defined similarly. y, can be expressed as
the sum of three compliances:

Xy =Sk +55+513 (2.130)

In turn the total compressibility is

dlnV 3 2
X,=_( ul ) Y =3 3, @.131)
T =

The reciprocal concept of bulk modulus is experimentally not so useful for solids
with symmetry lower than cubic, since specifying the volume leaves the shape unde-
termined. However, for processes carried out under hydrostatic pressure By may be
defined as the reciprocal of the compressibility:

( P )
Br =—
01V /1 isotropic stress)

(2.132)
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Elasticity of Isotropic Materials. We may ask how these quantities are related to
Young’s modulus E, Poisson’s ratio o, and other coefficients used by geophysicists
and engineers to describe the elastic properties of an isotropic material. Here all
directions are equivalent, so that c11 = ¢22 = ¢33, €12 = €13, €tC.; als0 c44 = %(cn -
c12), etc. Other stiffnesses, such as ¢4, ¢15 and c4s, are all zero. Young’s modulus
refers to the relation between stress and strain along a single axis while all other
stresses are kept constant; and so although it has the dimensions of a stiffness, it is
actually a reciprocal compliance: E = (s1;)~!. Similarly, Poisson’s ratio is a ratio
of two compliances: o = —s12/s11. On the other hand, the bulk and rigidity moduli
are both true stiffnesses: B = (c11 +2¢12)/3, and G = (c11 — ¢12)/2 = c44. So also
are the Lamé coefficients, A and p, given by A = ¢12 and . = c44. In terms of E and
o0,B=E/{3(1-20)}and G =E/{2(1 +0)}.

2.8.4. Thermodynamic Relations

We can now generalize the results of Section 2.2.3. Cy and Cp are replaced by
heat capacities at constant strain and stress:

EN EN
= _— =T _— .
Cy T(ar)", Co (ar)a (2.133)

where C, becomes Cp when the stress is isotropic. Thermal expansion coefficients
and Griineisen functions are defined by

am ao,
= (£ =— —2— 2.134
a) (aT>o',w’ YA (9(U/V))1,,w ( )
Other expressions for vy, are
Vv am) (alnT)
=—— (252 =— (2.135)
n=-c, ( T ) e M ) yows

Consideration of first increasing the temperature at constant strain and then allowing
the stress to relax isothermally leads to a generalization of B = y(Cy/V)xr:

C C
a = V"s{,‘y,‘ - —é’—sfu'y“ (2.136)

where the second equality can be derived by thermodynamic manipulation.
Anisotropic thermal expansion is thus a result of the interplay of the thermal stress
coefficients (proportional to the vy, ) and the elastic compliances [Mun68]. Reciprocal
relations give the v, in terms of the stiffnesses and expansion coefficients:

% vV
YA = Z‘:C{”’a# = E:Ci“'a”, (2137)



Basic Theory and Techniques 81

In terms of all these quantities relations have been found between C, and C,,
and between isothermal and adiabatic elastic coefficients. For the heat capacities we
have the two equivalent relations

Co =Cp(1+auaNT), Co¢=Cyn+VTc],aray (2.138)
and for the stiffnesses and compliances
TC TV
cf}‘ =CI#+TT'7'\'YM’ sf“ =s1#—-c—aa,\a,,, (2.139)

Crystals of Axial and Orthorhombic Crystals. Much work, both experimental
and theoretical, has been done on crystals of high symmetry, for which the above
equations take simple explicit forms. For axial crystals (tetragonal, trigonal and
hexagonal) there are only two independent coefficients of expansion, perpendicular
and parallel to the axis, and similarly two Griineisen functions, related by:

C C
a = 7"[(3111 +sD)vL+syy)) = Va[(sfl +5h) 7L +st3) (2.140)
C C
o= 7"[25{371 +shyy)] = —Vl'r'[zsiqﬂl +s5y] (2.14D)
and
| % |4
YL = ‘C—[(ClTl +eh)ar +cfoy] = E‘[(Cfl +ch)ar +cfia)) (2.142)
n o
Vv 1%
V)= C—[chraﬂu. +chyay] = C—[2C1S3C’J. + ] (2.143)
n ag
Similarly
Co = C.,,(1+2aJ_7lT+a||‘y||T) (2.144)

and so on for the rest of Egs. (2.137)—(2.139).
For orthorhombic crystals there are three independent expansion coefficients and
Griineisen functions, related by

c c

a1 = Fsfin +shr+shml = Flhim+shn+shn] (2.145)
c c

o = shn+shr+shnl = Flhn+shn+shn (2.146)

¢ C
a3 = -VI'-[SIT3’YI +sg3‘Y2+s3T3'y3] = —‘}E[sf3'yl +s‘2g3'y2 +s‘393'y3] (2.147)
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A model of orthorhombic polyethylene [Bru98] provides a good example of
the interplay of thermal pressure and compliance. There is a strong negative cross
compliance sy, perpendicular to the polymer chains, so that a small change in the
anisotropy of the Griineisen tensor with temperature leads to a much larger change
in that of the thermal expansion. Examples for axial crystals may be found in
[Mun69, Mun72] and in Chs. 5 and 6.

2.8.5. Thermodynamic Stiffnesses C,,,

The Thermodynamic Stress £). In general the Cauchy stress is not thermody-
namically conjugate to any set of strain coordinates. The stress conjugate to 7,
is

,A=i(ﬂ) =L(i) (2.148)
VNIM/pys V\IM/pyr

where V is the volume in the reference configuration. #, is equal to o) only in the
reference configuration, or when all stress coordinates are zero. The general relation
between the thermodynamic and Cauchy stresses is discussed briefly in [Bar98].
The advantage of using ¢, is that it is a purely thermodynamic variable, indepen-
dent of whether the material has been rotated. Since ¢, is defined by Eq. (2.148)
for all states of strain, a full set of thermodynamic relationships can be developed
straightforwardly in a systematic manner, to any order of differentiation, and related
later to the Cauchy stress if required (e.g., [Bar98]). Here we shall be concerned
only with the elastic properties, so that we can relate to each other three different sets
of second order stiffnesses all commonly found in current literature, and go on to
discuss their stress-dependence in terms of higher order thermodynamic stiffnesses.

Second Order Stiffnesses. Thermodynamic stiffnesses are usually written in
upper case. The second order stiffnesses are

G- () (o)
" M s V MmN 7.5

2
Cru= (—a—t"—) 1 (_a F ) (2.149)
M) ywr V MM w.T

Unless the stress is zero, these stiffnesses are different from the stress—strain c,, de-
fined in Section 2.8.3 even in the reference configuration; and they are different again
from another set of stiffnesses sometimes used in theoretical modelling, viz. those ob-
tained from second order derivatives of F or U with respect to the infinitesimal strain
coordinates e),. The relations between these three sets of second order stiffnesses



Basic Theory and Techniques 83

(in the reference configuration) take a simple form when the solid in the reference
configuration is under hydrostatic pressure P; thus for the adiabatic stiffnesses

1 /42 .
Chu=tn+P=+ (-‘9—(2) +P (2.150)

V 081 e’,wS

1/ é*U
Cp=¢ —P=T( ) 2.151
12=2¢C12 7 \erdes ) oo s ( )
. . 1 (3%U 1.
Cu=tu+P=+(— +=P 2.152
U v(aeﬁ),,,m,s 2 .152)

When the stress &, in the reference state is anisotropic, the relation between the
. P
C), and the &), can be written as

e =Cru+Pru (2.153)

where P,,, is the matrix

o -6 -6 0 Js b6
-0 & -0 G4 0 (3
-0y —63 &3 i 7} G5 0
—04 0 0 %(52+5’3) %0"'5 —%"5

0 —35 0 166 %("3 +C°r1) -2-6'4

0 0 -0 305 164 3(61+62)

We note that although C),, = Cp\, cxp = cpua only for a solid under hydrostatic
pressure, when Eq. (2.153) reduces to Egs. (2.150)-(2.152). An expression for the

elements of P, in tensor notation is given in Eq. (2.161).
Thermodynamic compliance matrices Sj,, are reciprocal to the stiffness matrices

Chp-

Higher Order Stiffnesses. Higher order thermodynamic stiffnesses are deriva-
tives of lower order stiffnesses with respect to the 1,. They may be adiabatic, such

as
acy 3%t 1 »’u
Chuv = (—-‘“ ) = ( A ) == (—-———) (2.154)
any .S oy ws V oM\ INLINY .S
isothermal, or “mixed.” The most important example of “mixed” is given by the third
order stiffnesses

S
T, = (.‘?_E"AE) - | (.‘?ﬂ.) (2.155)
I Sy |9 NI/ ys| ¢

which are determined experimentally by ultrasonic measurements under varying
stress. Relations between pure and mixed third order stiffnesses are discussed by

Skove and Powell [Sko67].
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2.8.6. Tensor Notation

Despite the convenience and simplicity of Voigt notation, a full tensor notation is
needed for some topics — for example, the propagation of elastic waves. The second
order stiffnesses then appear as fourth rank tensors; e.g.,

o,
s _ B
Capys = ( IMys ) e (2.156)

At this point it must be made clear what is meant by differentiating partially with
respect to the elements of a symmetric tensor, and in particular how 7qg is considered
to be altered while 7, is kept constant. The convention is that the function to be
differentiated is first expressed in a form symmetric to the interchange of 7, and
TBa, and then all nine elements are treated as independent during differentiation.
With this convention the stiffnesses cogys €qual the corresponding Voigt stiffnesses;

e.g.,
C1123 = C1132 = C14 (2.157)

However, the compliance elements have a factor of one half for each off-diagonal a8
or y8;e.g.,

1
SINL=S1, - S22 =512, $1123 = 5514, S1213 = 7565 (2.158)

Also, while all the y,g equal the corresponding v, , the thermal expansion coefficients
have similar relationships to those between nqg and 1, i.e., a1 = o) but a2 = %a@
The reciprocal relationship between stiffnesses and compliances then becomes

1
CapysSyden = SapysCysen = 5 (8agBpn + 8anpe) (2.159)

All the thermodynamic equations of Sections 2.8.3-2.8.4 can now be written in
tensor form. For example, Eq. (2.136) becomes

Cor Co s
Qaag = —‘}ESGBYSYYS = Vasaﬁysyvs (2.160)
The difference P, between the thermodynamic and stress—strain stiffnesses in the
reference configuration can be expressed in tensor notation as

1 . . . . .
Papys = —2-(50,70'55 + 5350’07 + 30,50'57 + 3370',,5) - 5750'0,5 (2.161)

Cauchy Relations. Here we digress from thermodynamics to describe simple
relations between elastic stiffnesses which are often used as a test for the predom-
inance of central forces. They apply strictly only to static models in which each
atom is a center of inversion symmetry, so that all interatomic distances change under
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strain uniformly, and when the only interactions are pair potentials. By writing these
potentials in the form f (r2), and remembering that in the strained state r2 is increased
from #2 by 2mqpFafp, it follows that for each pair of atoms

O*f (r?)/ amapdys = Faigyiaf" ()

and hence that the value of C,g,s is unchanged when the indices «,B,7,6 are
permuted; for example, C;333 = Cz323. This gives six relations in Voigt notation,

C23 = Cya, C13=Css, C12 = Ces,
C14 = Csg, Cas = Cas, Ci6 = Cys (2.162)

Similarly, Cauchy relations for higher order stiffnesses follow from permuting the
Cartesian indices in C,g... However, the best known application is to the second
order stiffnesses of unstressed cubic crystals, for which the thermodynamic and
stress—strain stiffnesses are equivalent and there is but one relation cj2 = c44. As a
test for the dominance of central forces, it is best applied at low temperatures, where
the crystal approximates more closely to a static model.

2.8.7. Velocities of Elastic Waves

During wave propagation the local strain-rotation tensor ug is given at any point
of the body by

0Xq
ox B

Uap = (2.163)
Elastic waves normally propagate adiabatically, and the equations of motion in the
harmonic limit of small amplitudes involve the adiabatic second order derivatives of
the energy with respect to the uqg, written AaB 5» Which are simply related to the
thermodynamic stiffnesses CaB 5

U s \
Aaprs = (a—pa—) o = Cays + BarFs (2.164)

It is the Aiﬁ 5 that determine the elastic wave velocities. Note that they are not
symmetric with respect to separate interchange of « with 8 and y with 8, and so
cannot be expressed in Voigt notation.

For propagatlon in the direction of the unit vector (’1 the wave-form is
expilg(§-%) — wt]. The three eigenvalues of the matrix

1 A ~
Moy = ;Aaﬁys‘hsqs (2.165)

then give the squares of the three possible wave velocities, and the normalized
eigenvectors W give the corresponding directions of polarization. Egs. (2.164) and
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(2.165) are valid for arbitrary stress in the reference state. When the stress is isotropic,
Az gys Can be replaced in Eq. (2.165) by the stress—strain stiffness cﬁ 8y5” because the
difference between them is antisymmetric with respect to interchange of 8 and 8.
Measurement of wave velocities in suitably chosen directions can thus be used to
determine the second order elastic stiffnesses. For cubic symmetry we have

pMi1 = c11(§,)? +caal(d2)? + (43)%), ete.,
pMiz = (c12+ca4)q,4,, etc. (2.166)

For propagation in the [100] direction this becomes a diagonal matrix, giving a
longitudinal velocity (c11/p)!/? and two equal transverse velocities (cas/p)/2, as
described in Section 3.4.4. Application to different symmetries is discussed in
[Wal70, Thu64].

For propagation of waves in piezoelectric media, explicit account must be taken
of the electric field arising from polarization (see [Bor54, Section 32]).

29. CALCULATION OF ©%', ' AND v{') FROM ELASTIC DATA

@5’ can be computed from the integral of Eq. (2.85) with velocities obtained
from the eigenvalues of the matrix M,,, in Eq. (2.165). Before powerful electronic
computers became widely available various ingenious methods were employed for
this integration (see [Ale65]), but now it can be readily performed to any degree of
required precision with suitable variables such as the spherical polar coordinates 6
and ¢, in terms of which

= (sinfcos ,sinfsinp,cos0), d=sinbd0de (2.167)

A standard computer subroutine can be used to obtain the eigenvalues and eigenvec-
tors of the matrix M, for each direction of § used in the integration.

The integration can also be done to a good accuracy by using the set of 489
directions uniformly distributed over 1/48 of the unit sphere given by Overton and
Schuch [Ove65]. This is directly applicable to cubic crystals, and can be extended to
lower symmetries by appropriate permutation of the direction cosines.

Numerical tables for @5‘ have been published by de Launay [del.54, del.56]
covering a wide range of stiffness ratios for non-piezoelectric cubic crystals, and by
Wolcott [Wol59] covering some ratios for hexagonal crystals.

The Griineisen functions at T = 0 can be expressed as derivatives of @, and so

dIn@®¢ dlnO¢!
el _ _ 0 el _ _ 0 2.168
Yo dlnv > Mo ( ETN ) o @169

In principle there are two different but equivalent ways of evaluating them from
elastic properties.
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Fig. 2.17. Internal and macroscopic expansion coefficients for a central force model of a-quartz (see text).
—, model; - - -, approximate experimental internal coefficients [LeP80]. A, a3V, o3 +, Ay X, Ax; O
Ay; o, A;. From [Bar87].

Derivatives of @g’ can be obtained by brute force calculation of @5’ for neigh-
boring strains, or (for cubic crystals) by using de Launay’s tables [Dan62a]. This
method has often been used to obtain ygl from pressure derivatives of the stress—
strain stiffnesses c),, particularly for cubic crystals. Application to piezoelectric
crystals is straightforward if the volume-dependence of relevant properties is known
[Han74, Bar77a]. It can also be used for theoretical models.

The second method averages mode Griineisen parameters of elastic waves over
all polarizations and directions of propagation, weighted by inverse third powers of
their velocities; thus

o S 2 {[vs (@) 3v(@,5)}40 o JZ{[vs(@) 3 ya(@,5)}4Q

TN m@ e 0T T 3T 0, @) 240
(2.169)

The mode Griineisen parameters are derived from the thermodynamic elastic stiff-
nesses. In tensor notation, Wallace gives for an unstressed crystal at T = 0 [Wal70]

1
YaB(q, 5)= —WaWg — 200 Py 2:1 2 ng'r' C{naB + 21 52:1 C{ynBaBWyWS] (2.170)
n=1 y=lo=

where w is the normalized polarization vector for the wave and v is its velocity; and
the general expression for y(q,s) is

3 3 3
=BY Y Y sapee¥ap(d,s) @.171)

a=1p=1¢=1
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See [Wal70] for further discussion, and [Bru67] for application to crystals of high
symmetry.

2.10. INTERNAL STRAIN

In many crystals, the positions of atoms within the unit cell are not wholly deter-
mined by symmetry, and are specified in crystallography by one or more additional
parameters. These parameters describe the state of internal strain, and they (or
some equivalent set of internal coordinates) can be treated thermodynamically on the
same footing as the macroscopic strain coordinates. This is particularly useful in the
study of theoretical models, where it is usually simplest to calculate a generalized
Helmholtz energy as a function of both internal and macroscopic strain. The sub-
sequent derivation of purely macroscopic properties is discussed in [Bar71, Bar98],
and illustrated for a model of tellurium by Gibbons [Gib73].

Internal expansion coefficients are temperature derivatives of internal strain co-
ordinates. They can be calculated for theoretical models either by minimization of
free energies at different temperatures with respect to internal and external strains
or from analytical expressions (e.g., [Tay97a, Kan95, Bru98]). Experimentally they
are usually determined from the analysis of intensities in x-ray diffraction, which for
most crystals is not sufficiently sensitive to detect changes in internal strain below
about 100 K (see Chapter 3). But when they are available they provide additional
checks on the validity of theoretical models of more complex crystals, as exemplified
by the four independent internal expansion coefficients of a-quartz (Fig. 2.17).

Because straining a crystal can lower its symmetry, modelling elasticity usually
requires a fuller set of internal strain coordinates than is provided by the crystallo-
graphic parameters. A comprehensive discussion of internal elasticity is given in
tensor notation by Cousins [Cou78].
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Measurement Techniques

3.1. GENERAL PRINCIPLES

3.1.1. Introduction

Measurements of Cp and expansivity have many requirements in common: ac-
curate measurement of temperature and temperature difference, temperature control,
and thermal isolation. They differ in that measurement of Cp requires accurate
knowledge of heat input AQ to determine

Cp=(dQ/dT)p = (AQ/AT)ar—0

while « (or B) requires accurate measurement of dimensional changes Al (or AV) to
determine

B=(9nV/aT)p = (AV/VAT)ar—0

Another difference is that measurements of expansion may be taken during either
heating or cooling, which is useful when studying phase transitions and hysteresis.

Measurements of elastic moduli usually place less stringent requirements on
temperature measurement and stability, since the moduli rarely change rapidly with
T except at a phase transition. But they usually require precise measurement of
another parameter, travel time and/or frequency of an ultrasonic wave.

There are few, if any, complete measurement systems (cryostat and all) available
off the shelf suited to these properties at low temperatures; a possible exception
is Cp, for which two firms have recently introduced ‘mini’ calorimeter modules to
insert in their multi-purpose measurement systems (Quantum Design and Oxford
Scientific). Therefore we devote the following three sections to some details of
methods and cryostats, hopefully sufficient to enable the reader to judge the accuracy
that can be achieved and to locate references giving more details of the ‘art’ of such
measurements, including those of thermal anchoring, heat switches, vacuum seals,
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and suitable glues or cements. We also list the most important reference materials
that are often used to check or calibrate a measurement system.
Some useful books on cryogenic techniques are the following:

e Matter and Methods at Low Temperatures [Pob96], which emphasizes proper-
ties and refrigeration methods below 4 K;

e Experimental Principles and Methods Below 1 K [Lou74];

o Experimental Techniques in Condensed Matter Physics at Low Temperatures
[Ric88], which is based on a series of lectures to graduate students at Cornell
and includes many useful technical details needed for successful experiments,
again with emphasis on very low temperatures;

e An Introduction to Millikelvin Technology [Bet89];

e Low Temperature Laboratory Techniques [Ros73] and Experimental Tech-
niques in Low Temperature Physics [Whi79], which are each concerned with
the whole temperature range below 273 K.

3.1.2. Temperature Measurement

A vital ingredient in all thermophysical property measurements is accurate knowl-
edge of temperature. In practice we measure temperature and temperature change
using various instruments and properties that happen to be suited to the particu-
lar range, accuracy and conditions, e.g., resistance thermometers, thermocouples,
magnetic susceptibility, thermal expansion, etc. However, the foundations of our
measurement depend on the concept of thermodynamic temperature T', which can be
determined by various methods:

1. The primary method is ideal gas thermometry, which uses the equation of state
PV = RT = N4kT for a perfect gas; in practice helium at sufficiently low
pressure approaches ‘perfection.’

2. Acoustic gas thermometry, which depends on measurement of sound velocity
and requires corrections for an imperfect gas as in 1.; also dielectric constant
gas thermometry.

3. Electrical noise in a resistor of {} ohms, which gives a mean square voltage
V2 = 4kTQAf, where Af is the bandwidth.

4. Total black-body radiation.

These are painstaking measurements to perform at high accuracy, and generally
not suited to everyday measurements of physical properties. Practical temperature
scales have been adopted which relate as closely as possible to the thermodynamic
scale and can be realized with resistance thermometers, thermocouples etc. The
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development of these scales culminating in ITS-90 (the International Temperature
Scale of 1990) is a long and fascinating story, well told by Quinn in Temperature
[Qui90].

The unit of Temperature is the Kelvin, defined as 1/273.16 of the interval from 0
K to the triple point of water (0.01 °C). An outline of the text of ITS-90 which has
cryogenic relevance in [Qui90, p. 59] (see also [Pre90]) says:

‘... Between 0.65 K and 5.0 K, Ty is defined in terms of the vapor-pressure
temperature relations of 3He and 4He.

Between 3.0 K and the triple point of neon (24.5561 K) T is defined by
means of a helium gas thermometer calibrated at three experimentally realizable
temperatures having assigned numerical values (defined fixed points) and using
specified interpolation procedures.

Between the triple point of equilibrium hydrogen (13.8033 K) and the freez-
ing point of silver (961.78°C) Ty is defined by means of platinum resistance
thermometers calibrated at specified sets of defining fixed points and using spec-
ified interpolation procedures ... ’

Some of the defining fixed points and the uncertainty AT of their thermodynamic
temperatures are in Table 3.1, together with some secondary points (superconducting
transitions of the Standard Reference Materials (SRMs) produced by the National
Bureau of Standards or NBS (now the National Institute of Standards and Technology
or NIST) which are of cryogenic interest.

The ITS-90 equations for the vapor pressures of >He and “He are given in [Qui90,
Pre90]. Note that the vapor pressures of the helium isotopes published in earlier
cryogenic texts under the headings T'sg and T, may be in error by several millikelvins;
for less precise needs there are useful tables of vapor pressures of helium, hydrogen,
nitrogen and oxygen in such texts [Ros73, Whi79].

For the two ranges covered by the platinum resistance (13.8033 K to 273.16
K and 0°C to 961.78° C), there are polynomial reference functions linking the
resistance ratio, W (Tgp) = R(T90)/R273.16, for a particular thermometer, see [Qui90,
p- 454]. Other thermometers made of suitable pure strain-free platinum (PTRs) can be
calibrated at the fixed points and deviation functions from these reference equations
can be produced. For most practical purposes, we prefer the so-called Z-function,
Z(T) = (Rt — R4.2)/(R273 — Rs2), which is tabulated for a group of high-quality
platinum thermometers in [Whi79, p. 310] and should be valid for others of similar
quality within deviation limits of about 25 mK above 20 K [Bes78]. Resistance
thermometers are available from commercial sources with calibrations (at a price)
which are traceable to the ITS-90 scale through the national standards laboratories
such as the National Institute of Standards and Technology (NIST, formerly NBS at
Gaithersburg) and National Physical Laboratory (NPL, Teddington).

Details of the construction and performance of the commonly used thermometers
are given in cryogenic texts [Pob96, Qui90, Whi79]. Quoting from a Summary in
[Whi79, p. 123], we list the following:
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Table 3.1. Defining fixed points of ITS-90 with
estimates of their uncertainty [Qui90, Pre90].
Lower section shows some superconducting
transition temperatures, T, of metals
encapsulated in SRM 767 and SRM 768, see

[Qui90, p. 183]
Fixed points Too/K AT/mK
“He b.p. 42221 0.3
(at pressure of 101325 Pa)
e-H, t.p. 13.8033 0.5
Ne t.p. 24.5561 0.5
O, t.p. 54.3584 1
Ar t.p. 83.8058 1.5
Hg t.p 234.3156 1.5
Water t.p. 273.16 0
Ga m.p. 302.9146 1
In f.p. 429.7485 3
Also Sn, Zn, Al etc. ...
Superconductor T./K Width/mK
w 0.016 0.7
Be 0.023 0.2
Ir 0.099 0.8
AuAlp 0.1605 03
Auln; 0.2065 04
Cd 0.5190 0.5-0.8
Zn 0.8510 2.5-10
Al 1.1796 1.54
In 3.4145 0.5-2.5
Pb 7.1996 0.6-2

1. Those with sensitivity and stability of 1 mK:

(a) platinum thermometers encapsulated in sheath in strain-free mount for

range T > 10K,

(b) RhFe resistance thermometers for range 0.5-300 K,

(¢) Ge (encapsulated) thermometers for 0.5-50 K. Some show a ‘jump’
(equivalent to a few mK) after cycling.

All above are affected by magnetic fields.

2. With sensitivity of 1-10 mK and stability of < 100 mK:

(a) platinum as thin film or in unencapsulated coil for T > 10K,

(b) carbon resistors encapsulated or potted (sealed) for 0.5-100 K,
(c) carbon-in-glass for 1-300 K, relatively insensitive to magnetic field,

(d) capacitance (e.g., SrTiO3) for range 0.5-60 K, not affected by field but
calibration may be affected by cooling cycle.
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3. With sensitivity of 10 mK and stability of 100 mK:

(a) p-n-junction diodes for 1-300 K,
(b) thermocouples of AuFe for 2-300 K,
(c) CLTS (manganin + nickel) for 2-300 K.

More recently, other ‘thermistor’ materials with negative dR/dT characteristics
have been developed for low temperature use and might be included in categories
2. or 3. above. Two which are commercially available and useful down to below
1 K are a thin-film based on RuO; and a thick-film (chip) using zirconium oxyni-
tride. Commercial versions from Lake Shore Cryotronics are called Rox and Cermnox
respectively. They are generally less sensitive to magnetic fields than most other
resistance sensors. References to these and other semiconducting materials are given
in a review of progress in cryogenic thermometry between 1982 and 1996 [Rub97].

3.1.3. Temperature Control

At low temperatures both C and « vary rapidly with T and generally involve
measurement of a small temperature interval, requiring temperature control at the
millikelvin level. In some instances this can be achieved by controlling the vapor
pressure above the liquid refrigerant by a manostat or controlling the flow rate of
a cooling gas stream. More often the temperature of sample, chamber or adiabatic
shield is held steady by electrical heating in response to the signal from a suitable
temperature sensor selected from the groups 1., 2. or 3. listed above. For example: a
carbon or small platinum resistor (group 2.) is attached to the chamber or shield and
forms one arm of a phase selective ac bridge; the out-of-balance signal is amplified
and fed back into a small resistance heater attached to the chamber, shield, etc. Such
electronic controllers are commercially available or can be made from an ac bridge
and phase sensitive detector. With thermocouple sensors, dc amplifiers can be used
[Ros73, Whi79].

3.2. HEAT CAPACITY ... BY S. J. COLLOCOTT

3.2.1. Introduction

On cooling from room temperature to liquid helium temperatures the specific
heat of a typical solid decreases by three to four orders of magnitude, and becomes
vanishingly small at absolute zero. The small heat capacity of solids at liquid helium,
and at lower, temperatures creates difficulties for the experimentalist, because small
heat influxes from the surroundings, for example vibration, can lead to significant
errors in the determination of the heat capacity of a solid. Heat capacity measurements
become even more challenging if the specimen has mass of a few tens of milligrams
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(frequently samples of larger mass are not available), as there is increased difficulty
in achieving adequate thermal isolation.

Heat capacity measurements reveal much information about the electronic prop-
erties of a solid, for example the density of states at the Fermi level; about the lattice
or vibronic properties of a solid, in particular the low-frequency phonon density of
states, acoustic, and optic modes; about phase transitions, be they magnetic, super-
conducting, or structural; and about a range of other low temperature heat capacity
effects, for example Schottky anomalies, magnetic spin-wave contributions, and two-
level systems. A consequence of this abundance of effects is that the heat capacity
can vary enormously, being several orders of magnitude larger or smaller in a given
specimen as a function of temperature, as well as obviously from one solid to another.
For example, the heat capacity of the rare-earth metal holmium at 0.6 K, where the
nuclear hyperfine heat capacity dominates, is ~5.6 J-mol~!-K~!, decreasing to less
than 0.5 J-mol~!-K~! at 4 K, and then increasing with increasing temperature as the
lattice heat capacity begins to dominate (see Section 6.4.3); and at 19.46 K there is a
peak of width 0.03 K, which attains a maximum heat capacity of 145 J-mol~!-K~!,
due to a magnetic transition from a helical to a conical spiral state [Col88, Ste89].
A great strength of heat capacity measurements is that they give information on the
bulk behavior of a solid, and as such are useful in determining whether an effect
observed by some other technique, for example resistivity measurements, is a feature
of the bulk material or due to some other minority phase. A wide variety of low
temperature heat capacity effects can be investigated using a simple pumped *He
cryostat, operating over the temperature range 0.3 K to about 30 K.

There are a number of excellent review articles on low-temperature calorimetric
techniques [Wes68, Sto68, Hil68, Ste83, Gme87, And88, Mar88, Wes88], and these
are complemented by the more general discussion of calorimetry by Hemminger
and Hohne [Hem84]. This discussion draws heavily on these reviews, and the
reader is referred to them for greater detail. Recently, there have been a number
of new experimental developments. These have been driven by the availability of
improved instrumentation, and as a result there have been advances in small sample
(<200 mg) calorimetry [DeP86, Dut88], the measurement of adsorbed gases on
substrates using ac calorimetric methods [Cha89, Ken90], measurements in large
magnetic fields [Kla97], and increased automation of calorimeters [Pec97]. The
trend to increased automation has been accelerated with the advent of a number
of manufacturers offering commercial ‘turnkey’ systems. These new developments
will also be addressed in the context of the broader discussion of low-temperature
calorimetric techniques.

3.2.2. Adiabatic Calorimetry

A convenient starting point for the measurement of low temperature specific heat
is the classical definition of the specific heat (per unit mass), cp,

cp(T) = lim (AQ/AT)p/M (€R))
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where AQ is a heat energy input (pulse) that causes a small temperature rise AT in
a specimen of mass M. This ‘step’ or ‘pulse’ heating technique can be traced back
to Nemnst (see [Gme87]), and it remains today one of the most accurate methods for
obtaining specific heat data. In practice the specimen is contained in, or thermally
connected to, an addenda which consists of the specimen support system or container,
thermometer, resistive heater, and any other wiring — the addenda is the calorimeter
— and the addenda/sample assembly is thermally insulated from the surroundings
(adiabatic conditions). Thermal equilibrium with the surroundings is established
before and after the heat pulse AQ. The temperature, T, is monitored as a function
of time, and the temperatures 7; and Ty at the beginning and end of the heat pulse
are corrected for any heat exchange with the environment by extrapolating T before
and after the heat pulse to the time that corresponds to the midpoint of the pulse.
The temperature increment is then AT = Ty — T;, from which Cp is obtained at the
temperature T,, = (T; + Tf)/2. This technique is shown schematically in Fig. 3.1.
Strictly, adiabatic conditions occur only when there is no heat transfer between the
calorimeter and surrounding shield. After the heat pulse the calorimeter will be at a
temperature slightly above that of the shield, and there will be a downward temper-
ature drift; and so the experimental conditions are more appropriately described as
being ‘quasi-adiabatic’ or ‘slightly isoperibol.’

In a typical experiment from 0.3 to 20 K the calorimeter is heated by series of
heat pulses and the drift rates monitored before and after each heat pulse. Ideally AT
is kept small, so that linear extrapolation of the drift rate is sufficient to determine
either 7; or Ty. The shield temperature is kept constant both before and after the
heat pulse, and obviously during the pulse. It is common to adjust the shield before
each data point to the temperature of the calorimeter, which minimizes the drift
corrections. If addenda corrections are small, the heat capacity of a specimen may
be determined with an inaccuracy of order 0.2%. In this experimental technique
the specimen is at thermal equilibrium with its surroundings before and after each
heat pulse. This is not so in continuous heating calorimeters, where heat is added to
the specimen at a constant rate and the resulting rate of increase of temperature is
measured [Coc66]. In the continuous heating calorimeter, the specimen may never
be in thermal equilibrium with its surroundings.

Some comments and clarification are in order on the terms adiabatic, isoperibol
and isothermal (see Fig. 3.2), which are used in the literature, frequently in an
imprecise manner, to describe the modes of operation of a calorimeter. The term
adiabatic refers to a calorimeter where there is no heat transfer between it and its
surroundings (usually a thermal shield that is part of the cryostat). In practical
terms no calorimeter is truly adiabatic, as there will always be some heat input from
the surroundings, though this heat leak can be minimized by ensuring the shield
and calorimeter are at the same temperature and the thermal resistance between the
calorimeter and the shield is very large, i.e., the best possible thermal insulation.
In an isoperibol* calorimeter the surrounding shield is maintained at a constant but

*The term ‘isoperibol’ (uniform surroundings) was introduced by Kubaschewski and Hultgren [Kub62].
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Fig. 3.1. Low temperature calorimetry methods.

different temperature to that of the calorimeter, and the thermal resistance between
the calorimeter and the surrounding shield is large but of a finite value. In an
isothermal calorimeter the calorimeter and surrounding shield are maintained at the
same temperature and the thermal resistance between the calorimeter and surrounding
shield is very small.

3.2.3. Ac-Temperature Calorimetry

The need for excellent thermal isolation and the minimization of stray heat leaks
places a lower limit of about 200 mg on specimen mass for adiabatic calorimetry.
The requirement for heat capacity measurements on smaller specimens has led to the
development of a number of techniques, and, in 1968, Sullivan and Seidel [Sul68]
introduced a technique where the specimen is heated by an ac current of angular
frequency w/2 passing through a resistance heater (see Fig. 3.1). Measurement
of the peak-to-peak ac temperature response, T,, by synchronously detecting the
voltage across a resistance thermometer at frequency w, using a lock-in amplifier,
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Fig. 3.2. Schematic representation of a calorimeter to highlight the various types [(1) Environment, (2)
Surrounding shield, (3) Measuring system and (4) Thermal resistance, Tr Temperature of surrounding
shield, Ty Temperature of measuring system and R, thermal resistance]: Isothermal R, very small and
Tr = Ty = constant; Adiabatic R,y very large and Tr = Ty; and, Isoperibol R, fixed, Tr constant and
Ty = Ty (t) (Adapted from [Hem84]).
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enables the total heat capacity (specimen and addenda), Cp, to be calculated from

QO 2.2 2Kb}_l/2

1
Toc = —— —
ac 2aCp [ +w2712+<u T2+3Ks

32)

where Qg is the amplitude of the sinusoidal heat flux, 7; is the specimen to bath
relaxation time, 7 is the response time of the specimen, heater and thermometer
to the heat input, K; the thermal conductance of the specimen to the bath, and
K, the thermal conductance of the specimen. Equation (3.2) can be simplified
through judicious choice of the experimental conditions [Ste83, Cha89, Kra84],
namely 7 < 1/w, 71 > 1/w and K; > K}, giving a simple expression for Cp,

~_Q
Cr ™ 5T
Sullivan and Seidel [Sul68] demonstrated the ac-method with measurements on a 9
g specimen of indium, using an ac temperature modulation of 10 Hz with a peak-to-
peak value of 4 mK. Relaxation time corrections were small and could be neglected
(11 =2.5+0.1 sec, » = (0.7+0.3) x 1073 sec), and they estimate an error in cp
of 1%. They report further measurements on a 82 mg single crystal of beryllium,
and were able to observe relative changes in cp of 0.04%, with an absolute accuracy
of 8%. As with the adiabatic method it is necessary to correct the measured heat
capacity values for the addenda contribution.

The ability of the ac-method to detect changes in heat capacity as small as 1078
to 10712 J.K! [Min94, Cha89, Fom97] has made it one of the favored methods

(3.3)
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for small sample calorimetry, or what has become known as microcalorimetry or
nanocalorimetry. The ac-method has been used in a number of elegant experiments
studying the adsorption of a range of gases on various substrates, namely “He on
sapphire [Ken90] and on single crystal graphite [Cha89], and H, on gold [Bir96]. It
has also been used for measurements on specimens of less than 100 mg in magnetic
fields up to 20 T [Sch87a). A variation of the ac-method is the injection of heat into
the specimen by irradiation with chopped light from a tungsten lamp [Tas90] or from
an electronically modulated diode laser [Mar97], instead of a resistance heater. In
this case the amount of energy input into the specimen is not usually known, and
a relative measure of the heat capacity is obtained, unless the calorimeter has been
calibrated previously with a known, or reference, material. It should be noted that
use of the ac-method is not restricted to low temperatures, and it can be used for
measurements up to the melting point of refractory metals. In this broader context
it is frequently referred to as ‘Modulation Calorimetry,” and the reader is referred to
the review of Kraftmakher [Kra84].

3.2.4. Relaxation Calorimetry

In recent times thermal relaxation calorimetry has become particularly popular as
itis suitable for small samples, can be used over a wide temperature range (from below
1 K to 300 K), cryostat design and specimen mounting are simple, and signal-to-
noise can be improved using signal averaging as part of a computer controlled system.
Indeed, a number of the commercially available computer automated systems use the
relaxation method.*

In the thermal relaxation method [Bac72, Sch74, For80, Reg86, Dut88] the spec-
imen is connected by a weak thermal link to a constant temperature bath, at temper-
ature Ty. The temperature of the sample is raised by a small amount, AT (typically
AT /T = 1%), and then allowed to decay exponentially down to the bath temperature.
The temperature of the specimen, T, is described by

T; = To+ AT exp(—t /1) (34

where ¢ is time and 7 is the specimen to bath time constant. The heat capacity, Cp,
is determined from the measurement of 7; and the thermal conductance of the weak
thermal link, K, where

Cp=mnK 3.5)

Bachmann et al. [Bac72] used four wires of pure gold or gold alloyed with 7 at.%
copper, each 25 mm long and 0.076 mm in diameter, for the thermal link. At 4.2 K
the thermal conductance was 5 x 10~* W-K~! and 5 x 1076 W-K~!, for pure gold
and the gold—copper alloy, respectively. Alternatively, the thermal conductivity of the

*Quantum Design, San Diego, California, USA, and Oxford Instruments, Tubney Woods, Abingdon,
Oxfordshire, U. K.
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link can be determined at each data point using the heater power, P, where K = P /AT
[Sch74, Ban92]. Choice of the thermal link material gives the experimentalist control
of K, and hence 1, which may vary typically from <50 ms to 100 secs. For the
limit where K is very small, the relaxation method becomes the adiabatic method,
discussed earlier. On occasions it may also be necessary to consider the behavior
of 73, the response time of the specimen, heater and thermometer (as was defined
in the ac-method). So called ‘r; effects’ occur when 71 and 7, are comparable
(for 1% accuracy it is necessary for 71 > ), occurring when the specimen and
thermometer are not at the same temperature, i.e., for a specimen of very low thermal
conductivity. The signature of this behavior is an overshoot in the thermometer and
a non-exponential shape in the decay curve, and is discussed in detail by [Bac72].
As with the adiabatic and ac methods, it is necessary to correct the measured heat
capacity values for any addenda contributions. The experimental configuration can
be arranged for an upward step of the constant temperature bath, and 7; is determined
from the exponential growth towards the new higher temperature, as is shown in
Fig. 3.1 [DeP86, Ban92].

The relaxation method is suitable for specimens from 1 to 100 mg. Measurement
of the heat capacity of a 90 mg copper specimen by [For80] shows that the method is
accurate to 1%, and resolutions in the heat capacity of 0.1 to 5 wJ-K~! are achievable
[DeP86]. The availability of powerful personal computers combined with fast data
acquisition cards has resulted in the relaxation method’s becoming very popular, as
data acquisition and determination of the heat capacity are done in real-time.

3.2.5. Diffusive Heat Pulse Calorimetry

There is one technique, the diffusive heat pulse method [Ber70, Fil75, Mad88],
which cannot be easily categorized with the above methods. It differs in that it is
not necessary for the specimen to be at a homogeneous temperature. Its advantage
is that it allows simultaneous measurement of both the heat capacity and thermal
conductivity, and it is suitable for specimens of small mass, such as thin films. In
this method a long sample, thermally isolated from its surroundings by a vacuum,
is thermally fixed at one end to a constant temperature bath. At the isolated end of
the sample there is a heater, and arranged along the length of the specimen, between
the heater and constant temperature bath, there may be one or more thermometers.
Pulses of heat, typically of duration 10~* seconds, are injected into the specimen.
Bertman et al. [Ber70] have solved the diffusion equation for this configuration, and
analysis of the pulse height and arrival time are used to determine the heat capacity
and thermal conductivity, with a typical inaccuracy of +5% [Fil75]. A number of
more sophisticated numerical techniques for fitting the data have been proposed to
overcome problems associated with the boundary resistance between the specimen
and the attached thermometer [McM94, McM96]. In principle this method has the
potential for high accuracy, as the diffusivity depends only on time measurements,
and signal averaging can be used.
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3.2.6. Advantages and Disadvantages of the Various Methods

It is important to tailor the heat capacity measurement method to the partic-
ular effect or anomaly being investigated. The adiabatic method works well for
specimens with a mass greater than about 0.5 g and up to several tens of grams,
in the temperature range from 0.3 to 30 K, and it has a high accuracy. Generally,
large sample adiabatic methods are not suitable for temperatures below about 0.3
K, as it is common to use a mechanical heat switch [Hil68, Mar88] to cool the
calorimeter, and operation of the heat switch at the lowest temperature injects a
significant amount of heat energy into the calorimeter. (The use of helium ex-
change gas to cool the calorimeter is to be avoided, because heats of desorption
or evaporation may be comparable with the heat capacity of the calorimeter, and
it may introduce an unexpected heat leak to the surrounding temperature shield
[Mar88].) Operation to lower temperatures is possible if a superconducting heat
switch is used [Ste83]. Thermal isolation of the specimen may become difficult
for a specimen mass below 0.5 g, as heat leaks may become large when compared
to the experimental heat input. Also, for small specimens the heat capacity of
the addenda may become the largest portion, 80% or 90%, of the measured heat
capacity, necessitating large addenda corrections which limit the accuracy of the
heat capacity determination. There are also limitations when the adiabatic method
is used to examine phase transitions, as finite values of AT must be used. It may
not be possible to resolve the fine detail of a phase transition if the values of
AT are too coarse and the phase transition occurs over a very small temperature
range.

Both the ac and relaxation methods are suitable for specimens with a mass
in the range 1 to 100 mg and in the temperature range 1 to 30 K. The upper
temperature limit is set by the increasing addenda contribution, but on occasions
they may be used satisfactorily to higher temperatures for specimens that have
a large heat capacity. Commercial instruments (see footnote?) use the relaxation
method and operate up to 300 K. They make use of powerful personal com-
puters, sophisticated measuring instruments, and microlithography techniques, to
fabricate an addenda with a very small heat capacity. The ac-method is the best
method for resolving small changes in heat capacity. At temperatures below 1
K, for specimens that have a poor thermal conductivity (e.g., pressed powders or
amorphous materials), and when the condition 7, lcw< T, ! is not satisfied, the
ac-method breaks down [Ste83]. Below 1 K the relaxation method is preferred,
and it can be used with specimens of poor thermal conductivity. The availability
of low cost personal computers and data acquisition systems for signal averag-
ing, with a fast response time, has simplified data manipulation when using the
relaxation method. The decay or growth profile can be measured, a number of
profiles averaged, fitted using a non-linear least-squares routine to obtain 7, the
total heat capacity determined, and a correction made for the addenda to give the
specimen heat capacity, all in real time.
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3.2.7. Experimental Issues and Calorimeter Design

Experimental calorimetry has benefited greatly from the advances made in elec-
tronic instrumentation, personal computers, and the use of microlithography tech-
niques to form very small addenda, but one should not lose sight of the importance
of good calorimeter and cryostat design. This includes thermometry and the choice
of appropriate materials for cryostat construction. A schematic diagram of a cryostat
is shown in Fig. 3.3. Whilst it is beyond the scope of this section to discuss all
aspects, and the subtleties, of cryostat design and construction (it is well covered
in the literature [Man59, Scu65, Hil68, Joh73, Whi79, Mar88, Pob96]), it is worth-
while to review a number of aspects that are particularly relevant to low temperature
calorimetry.

A number of principles of calorimeter design, with reference to [Mar88, Pec97],
can be stated.

1. The accuracy of a heat capacity measurement is critically dependent on the
accuracy of the energy, time, and temperature measurements.

2. There must be good thermal equilibrium within the calorimeter. The ther-
mometer must correctly indicate the specimen temperature.

3. For adiabatic calorimeters, any heat exchange between the specimen and its
surroundings must be minimized, to minimize drift rate corrections. Below
about 10 K heat conduction is via electrical connections and is proportional to
AT (attention must be paid to good thermal anchoring of all wires). Above
about 50 K heat transfer by radiation begins to dominate, and is proportional
to T3AT. Eliminate stray heat inputs from unexpected sources, such as those
from vibration and radio frequency interference.

4. Maximize the ratio of specimen heat capacity to addenda heat capacity, to
minimize any addenda corrections, and thus ensure the best possible accuracy
in the determination of the heat capacity of the specimen.

5. Use a simple calorimeter and cryostat design for easy loading and unloading of
the specimen. Also, the calorimeter should be able to measure a large variety
of different specimens.

6. Minimize the number of ‘corrections’ that need to be made for unmeasured
material on the calorimeter (such as varnish, solder, vacuum grease, etc.). It is
preferable to mount, connect or contain the specimen to the addenda, whose
heat capacity has been determined in a separate experiment, rather than gluing
a heater and thermometer on to the specimen.

The germanium resistance thermometer (GRT) is the thermometer of choice for
heat capacity measurements, in zero applied magnetic field, between 0.3 and 30
K. GRTs are not suitable for measurements in magnetic fields, due to their large
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magneto-resistance; thermometers that are less sensitive to magnetic fields include
carbon glass, RuO;-based sensors and Cernox (a registered trade mark of Lake Shore
Cryotronics, Inc.) [Pec97]. Measurements of heat capacity should be made on the
thermodynamic temperature scale, preferably the International Temperature Scale
of 1990 (ITS-90), with a thermometer calibrated appropriately [Mar75, Rub97]. A
discussion of the differences between ITS-90 and earlier temperature scales (IPTS-
68, EPT-76, IPTS-48 and ITS-27) is presented in [Gol92]. The effect of temperature
scale differences on the analysis of heat capacity data has been addressed by [Hol72].

For best accuracy it is important to keep the addenda contribution to the total
measured heat capacity as small as possible. This requires that the addenda be
constructed from materials that have a low heat capacity and high thermal conductivity
(to minimize thermal relaxation times), and can be well characterized, so there should
be no phase transitions and amorphous materials should be avoided. In large sample
adiabatic calorimeters the addenda is most commonly constructed from high-purity
copper, e.g., 99.999+% ASARCO, a heater, which is bifilar wound from resistance
wire, €.g., Evanohm, and a germanium resistance thermometer [Col83a]. For small
specimen calorimeters, be they of the adiabatic or relaxation type, investigators
have displayed considerable creativity and innovation in constructing addenda that
have a very low heat capacity. Addenda described in the literature include: a holder
constructed from Al, O3 discs with a sputtered NiCr heater, and GRT thermometer (see
Fig. 3.4) [Gme81a]; thinned copper support, strain gauge heater, and unencapsulated
GRT [DeP86]; Al,O3 holder, a heater of 160 nm thick copper sputtered onto the
holder, and a thermometer made from a 0.018 cm slice cut from a carbon resistor
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[Sch74]; sapphire disk, with a thin film nichrome heater and GRT bare element
[Dut88]; a thin silicon membrane (2-10 wm thick), a deposited thin film CuNi
heater, and a deposited thin film NbN thermometers [Fom97]; a silicon on sapphire
thermometer/heater assembly [Ear81]; copper sample holder, strain gauge heater,
and Cernox thermometer [Pec97]; and a sapphire disc with a AuGe thermometer and
heat input by absorption of optical light pulses from a light emitting diode [Gut91].

Reference Materials. It is important to check the operation of the calorimeter
by measurements on a known or reference material. This will give insight into the
behavior of the calorimeter and alert the experimentalist to any odd behavior, which
for example could be due to stray heat leaks. If behavior out of the ordinary is found,
its source should be pin-pointed and fixed, rather than using a ‘universal factor’ to
correct all measurements. What is thought to be a ‘universal factor’ may turn out not
to be so, due to variations in internal thermal time constants of different materials.
The reference material most often used for checking the operation of low temperature
calorimeters has been the 1965 Calorimetry Conference Copper Standard, which was
vacuum cast at the Argonne National Laboratory from 99.999+% high-purity copper
(ASARCO Grade A-58 Copper) [Osb67]. Osborne et al. [Osb67] have produced the
copper reference equation, a polynomial expression which gives the heat capacity
between 1 and 25 K for the 1965 Calorimetry Conference Copper Standard. It has
been shown by Ahlers [Ahl66] that the specific heat of vacuum annealed 99.999+%
ASARCO copper differs by less than 0.1% from the 1965 Calorimetry Conference
Copper Standard above 1.3 K. If a 1965 Calorimetry Conference Copper Standard is
unavailable, vacuum annealed 99.999+% ASARCO copper is a perfectly acceptable
substitute, for use as a low temperature calorimetric standard [Ahl66].

The temperature scale, particularly at low temperatures, has changed appreciably
since the work of Osborne et al. [Osb67], and it is now recommended by CODATA
[Whi97] and IUPAC [Mar87a] that for the range 1-30 K, the polynomial given
by Holste et al. [Hol72] be preferred because the temperature scale (Iowa State
University) on which it was based agrees most closely with ITS-90. This latter
polynomial for the Cp of copper in the range 1 to 30 K is [Hol72]

Cp=A\T +A3T? +AsT> + AT + AgT? + AT +A3TH
(mJ-mol~!.K71)
where the polynomial coefficients A, (in mJ-mol~!-K~(**+1) are as follows:
A; = 0.69260 A7 =1.0869 x 1077 A =1.3343%x 1078
A3 =0.047369 Ag=-19745x10"10 A3 =-32196x 10717
As =1.9537 x 1076

For the range 30-300 K, IUPAC [Mar87a] produced a more lengthy (14 term)
polynomial fit to Cp for Cu which agrees to better than 0.3% with other data evalu-
ations including [Whi97, CODATA] and [Rob76, Whi84b, Mar87b]; it is the source
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for the selected values given in Table C.3 of Appendix C. The 14 coefficients, Ao,
A\ etc. can be found in [Mar87a, Whi97]. Measurements on the 1965 Calorimetry
Conference Reference Standard and vacuum annealed 99.999+% ASARCO copper
are a convenient way for investigators to assess the accuracy of their calorimetric
technique, perform intercomparisons with other researchers, and to produce tables of
recommended values [Ahl66, Mar67, Blo70, Hol72, Mar73, Hur74, Rob76, Ara77,
Col83a, Whi84b, Mar87b, Whi97].

Another reference material recommended for temperatures above 20 or 30 K is
a-alumina (sapphire), as discussed in [Mar87a, Whi97, Cas84].

Automation. A calorimetry experiment involves a series of repetitive measure-
ments, and adjustments of shield temperatures, often over a long period of time. The
experimental burden can be eased greatly by automation. Approaches to automation
adopted fall roughly into two categories; data acquisition with off-line processing
or on-line processing. In the latter the heat capacity is determined in real time,
whilst in the former it is calculated from the acquired data on another computer at
another time. The advantage of off-line processing is that all the experimental data is
retained, for example temperature, time and heat input, for further reference should
any unexpected behavior be observed. A disadvantage with on-line systems is that
many different specimens of widely varying mass will be studied in the calorimeter,
ranging perhaps from glasses to metals and superconductors with phase transitions,
and it is very difficult, if not impossible, to write a software program that will adjust
all the parameters given the variation in thermal time constants. (This may be a brave
statement given the rapid advances being made in instrumentation and powerful per-
sonal computers.) The automation of calorimeters has tracked the improvements in
measuring instruments and computers. Early systems used paper-tape, automatic ac
bridges and minicomputers [Mar73, Sch75, Mos77, Mar79, Gme81b], which were
soon displaced by microprocessor based systems, some of which use a high-quality
digital voltmeter for thermometry [Che82, Lan81, Col83a]; these have in turn been
followed by systems using the latest personal computers, and require no human
intervention [Pec97]. Examples of automatic heat-pulse adiabatic calorimeters in-
clude [Mar73, Mos77, Mar79, Gme81b, Lan81, Che82, Col83a, San95, Pec97], ac
calorimeters [Cha96], relaxation calorimeters [Sch75, Dut88, Ban92, Hwa97], and
diffusive heat pulse calorimeters [Kwo090]. As was noted earlier, fully automatic
relaxation calorimeters are available commercially.

3.3. THERMAL EXPANSION

3.3.1. Introduction

The linear coefficient of expansion « is normally measured as an average

-_(sz_'lTl)/lT___l_(ﬂ)
“= (T, —-T) T \AT (36)
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obtained from the length change (or lattice spacing change) over an interval AT =
T, — T,. If Ir is taken to be (I, +!1,)/2 and T to be (T; + T2)/2, the limit of & as
AT — 0 is identical to « as defined thermodynamically in Eq. (2.5):

dlnl .1 /A
*= (_aT ),, g oy (E) @7

In practice, the value of I7 is often replaced by the length measured at room tempera-
ture, [rr (sometimes denoted as lp), so that the experimental results usually reported

are strictly for
. 1 [al Ir ( Ir — IRT>
a=—|—=) =a—=al|l+— (3.8
IrT ( oT ) p  Irr IrT 4

Detailed analysis of errors resulting from the finite size of intervals AT is discussed
in [Bar98].

Alternatively values of a can be obtained by differentiating an algebraic fit to a
number of readings of length (or lattice spacing) at various temperatures. In each case
the temperature interval AT should be much smaller than T (generally AT /T < 0.1)
unless « is sensibly constant over a wide range, which is unlikely at low temperatures.

At ambient temperatures, where a ~ 1073 K~! for many solids, we can measure
the change in length (or lattice spacing) over an interval AT ~ 10 K. In this case, a
method having sensitivity Al /I ~ 10~ should give an inaccuracy of 1% or less from
a pair of readings. This sensitivity can be achieved easily by many dilatometers but
not by X-ray or neutron measurement of lattice spacing.

At low temperatures, a becomes much smaller and necessitates more sensitive
methods. For example: for Cu, @ = 1.0 x 1076 at 30 K, 0.1 x 1076 at 15 K and
0.005 x 10~°K~! at 5 K. Therefore to measure a to 1% over a temperature interval
of 1 K demands a resolution of Al/l ~ 10~ near 15 K and very much finer at 5 K.
Indeed at 5 K, even if the specimen / ~ 100mm, the expansion Al ~ 0.5 nmovera 1
K interval necessitating a sensitivity of ~ 0.005 nm (0.05 A).

Such detection levels of 0.1 A or less are much smaller than the average inter-
atomic spacing in a solid and much smaller than the scale of roughness on a polished
surface. Any form of dilatometry involving contacting surfaces has to take this into
account: thermal cycling will often reveal hysteresis effects arising from the relative
movements of the surfaces.

In the following sections we discuss the various methods in order of increasing
sensitivity with comments on ease of operation and reproducibility of data. Some
methods which are of use mainly at high temperatures, including telemicroscopy and
v-ray density, will not be included.

A valuable reference to methods of measurement of thermal expansion is the
handbook on Thermal Expansion of Solids [Ho98], in which various authors give de-
tails of X-ray diffraction (H. A. McKinstry et al.), optical interferometry (T. A. Hahn)
and high resolution techniques (C. A. Swenson).
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3.3.2. X-Ray Diffraction

The normal resolution in determining changes in lattice parameter is Aa/a ~
1073, so that with a temperature interval of 50 K an expansivity of 10~>K~! could be
determined with an error of 2% or less. Clearly this is a convenient method at normal
temperatures for most solids (for which @ > 1073K~!), provided the temperature
interval is not so large as to ‘smear out’ important physical features. The Debye—
Scherrer (powder pattern) method is particularly convenient in not requiring large
samples or single crystals; for anisotropic solids it can establish the differences in
principal expansivities without the need for large single crystals.

Single crystal methods such as Bragg’s, the Bond diffractometer and rotating
crystal are discussed by Krishnan et al. [Kri79] and [Ho98, Ch. 7]. Generally
resolution limits their value below 100 K or so for most solids, except for dislocation-
free single crystals such as Si where triple-axis spectrometry can be used with much
higher resolution.

Good examples of the use of X-ray diffraction at higher temperatures are the
measurements at the University of Illinois on Cu, Ag, Al etc., where the changes
in lattice spacing were compared with the macroscopic length determined from a
cathetometer at 25 or 50 K intervals [Sim60]. In Cu, for example, the two methods
agreed to within experimental error up to 1100 K. For higher temperatures, closer
to melting, differences between Aa/a and Al /I become significant enough to allow
estimates of vacancy concentrations. In copper near 1300 K, they reveal vacancy
concentrations of ~ 10~% [Sim63].

Clearly X-ray methods are generally inadequate for determination of coefficients
of expansion below 100 K. Some authors have measured the lattice parameters at say
4 K, 50 K and 100 K and fitted them to a simple polynomial such as a = ag + bT*
which may be misleading, particularly if differentiated to give ‘values’ of a. X-ray
measurements can be useful at temperatures well below 100 K for those materials
which have high expansion coefficients in this range, such as the rare gas solids.

Diffraction is the only method available for measuring the internal expansion,
that is, the change with temperature of the positions of atoms within the crystal unit
cell. Because the information comes from the analysis of intensities, and not from
simple Bragg reflection, it is less precise than the measurement of lattice parameters.
Low temperature data have large uncertainties and virtually no results are obtainable
below 100 K.

3.3.3. Optical Interferometers

Interferometric measurements began with the classic experiments of Fizeau in
the 1860s on mineral crystals, and are still used over wide temperature ranges as they
are absolute and can now achieve resolutions of a few A (less than a nanometer) with
the aid of laser light sources.
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Fizeau Technique. The usual form uses either a cylindrical hollow sample (tube)
with parallel end-plates of polished silica or three rods of equal length, placed so that
the separation of two etalon plates is changed as the specimen expands or contracts.
Changes in the fringe pattern produced by a monochromatic light source can be
measured to about 1/100 of a fringe, < 10 nm. Most experimenters have quoted
deviations in their data of not less than 10~7K~!, a frequent source of error being
tilting effects. Examples of this technique used at low temperatures include work on
Cu SRM 736 [Hah70] and alkali halides [Jam65].

Polarization interferometer. Based on the work of Dyson at the National Physical
Laboratory (NPL), these depend on measuring the angular rotation of the plane of
polarization of a stabilized laser beam. A single beam is split and interference occurs
between waves reflected from ‘top’ and ‘bottom’ of a sample.

Fig. 3.5 illustrates the arrangement of Roberts [Rob81] for measurements on an
ultra-low expansion glass. Two orthogonally polarized beams from a stabilized laser
pass through a Polaroid filter, a silica parallel plate beam splitter and a polarizing
beam splitter (PBS). Then one beam A traverses the path D, is reflected on the
shoulder of the sample back to mirror (M) and then via path G to be reflected again
on the other shoulder. The double path compensates for effect of tilt. The other
beam B travels via E to be reflected successively at the bottom of the sample, then
by mirror M and again by the bottom plate. Finally with suitable use of 1/4 and 1/2
wave plates and superposition of beam C, an output beam reaches J and the automatic
polarimeter. This output beam is linearly polarized at an angle which changes by
360° for every 1/2 wavelength change in length of the sample allowing resolution of
1/1000 of a fringe. The observation point at S is for monitoring tilt. Note that the
sample (hollow cylinder in this example but solid block in others) is supported on a
base of similar material (to avoid distortion during cooling) to which it is optically
contacted. The length changes were measured on ULE, Zerodur, silicon to 1/1000
fringe giving an absolute precision in « of 1073K~!.

Heterodyne interferometer. Nanometer resolution is also achieved with an optical
heterodyne method in which two beams of slightly different frequency are produced
by acoustic-optic modulation of the beam from a stabilized laser. Length changes
are measured from the phase change of the beat frequency using a frequency counter.
Examples are the systems used by Drotning [Dro88] and developments by Okaji
and collaborators at the National Research Laboratory for Metrology (NRLM) in
Tsukuba. The latter include the following:

1. [Oka91] describes an intercomparison of results obtained for Si and silica with
differing interferometers used at NRLM and at NPL by Birch for the range
from 250 to 700 K.

2. [Oka95b] describes a helium flow cryostat to measure fused silica SRM 739
from 6 to 273 K with uncertainties of <2 x 1078K~!. Temperatures were
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Fig. 3.5. Optical paths in a polarization interferometer [Rob81].

measured with a RhFe thermometer and controlled via a silicon diode activated
system.

3. [Oka97a] covers another cell design used to intercompare various copper sam-
ples from 20 to 300 K; they confirmed that « values for high purity Cu, OFHC
Cu and tough-pitch Cu differ by less than 10~7K~! above 20 K.

4. [Oka97b] describes the interferometer used for room temperature measure-
ments on some standard reference materials (silica, W, and Cu).

In each of these, the optical paths are not unlike those in Fig. 3.5: tilt effects are
removed by doubling the path, as for the polarization interferometer, but detection of
the path change (on changing T') uses a frequency counter.

Fabry—Perot multiple-beam. Perhaps the highest precision among interferometric
methods is that developed at the Optical Sciences Center in Tucson by Jacobs and
colleagues, which uses the dependence of a Fabry—Perot etalon’s resonant frequency
on mirror separation. The sample forms a cylindrical spacer separating two mirrors
(endplates) whose expansion coefficients should match that of the cylinder to avoid
distortion. Shifts in the etalon resonant frequency are measured by comparing the
tunable laser frequency to that of a stable reference laser. One such system was
mounted in a cryostat for measuring uniformity of thermal expansion coefficient (at
the 107K ! level) among samples of glasses used in large telescope mirrors [Jac84].
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3.3.4. Optical Amplifiers

Prior to the development of the three-terminal capacitance system (Section 3.3.6)
some very sensitive dilatometers were developed based on optical levers and optical
amplifiers, many achieving detection limits of less than an A. Jones has reviewed
[Jon61] those which he and colleagues developed for measuring angular movements
as small as 1010 radians and displacements of < 1 pm. Unfortunately, when applied
to thermal expansion determinations, their resolution is limited by hysteresis and drift
effects associated with thermal cycling and the mechanical linkage from specimen to
optics.

The type of amplifier most commonly used has been the optical-grid illustrated
schematically in Fig. 3.6 [Swe98]. It was used by Andres [And64] to measure the
expansion between 1.5 and 12 K of a number of metals (Al, Pb, Pt, Mo, Ta etc.) with
resolutions of better than 0.1 nm (1 A) corresponding to ~ 10°K!in a.

3.3.5. Electrical Inductance

In an electrical inductance dilatometer, the length change of a rod is transmitted to
the inner coil (secondary) of a mutual inductance and the inductance varies linearly
with the displacement. Commercial push-rod dilatometers using linear variable
differential transformers (LVDT) are widely used at normal and high temperatures
and can have sensitivities of a few nanometers. Accuracy is usually limited by
thermal problems — temperature gradients along the push-rod or sheath. These can
be partially overcome by careful calibration using a reference specimen of roughly
similar length and expansion to the unknown. Such reference materials include
copper, silica, stainless steel, silicon, tungsten, sapphire.

Below about 100 K, the sensitivity of the commercial LVDT devices is usually
insufficient. More sensitive laboratory instruments have been made using coils held at
cryogenic temperatures: Carr and Swenson [Car64a] (see also [McL72]) successfully
measured length changes in non-magnetic solids at liquid helium temperatures with
sensitivity of 0.01 A (1pm). Their dilatometer was absolute, requiring no calibration,
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because the sample was mechanically linked to the secondary coil by a sapphire-
sapphire contact but thermally isolated by the high thermal resistance of this contact.
However, inductive s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>