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A salient feature of liquid water is the anomalous behaviour 
of its thermodynamic response functions upon cooling, the 
most famous being the density maximum at ambient pres-

sure1–6. In an effort to explain the origin of water’s thermodynamic 
anomalies, enhanced in supercooled states, Poole et al. suggested 
the presence of a first-order liquid–liquid phase transition (LLPT) 
line in the supercooled region of the pressure–temperature (P–T) 
phase diagram7. In this scenario, this transition line separates two 
liquid phases formed of transient hydrogen-bond networks—the 
low-density liquid (LDL) and high-density liquid (HDL)—and ter-
minates at a liquid–liquid critical point (LLCP)7. The anomalous 
behaviour of liquid water, along with water polyamorphism, was 
then suggested to be a manifestation of the presence of this LLPT. 
Recent numerical studies8,9, as well as experiments10–12 (despite the 
difficulties induced by the rapid formation of ice around the pre-
dicted critical temperature and pressure conditions), have provided 
strong support to this fascinating hypothesis.

Several order parameters, based on geometric or energetic cri-
teria, have been proposed to characterize the transition13–20. In 
particular, the local structure index13 and the r5 parameter14—two 
order parameters that effectively measure the distance between the 
first and second coordination shells—have been routinely applied. 
However, along the years, it has become increasingly apparent 
that a proper description of the LLPT requires the development 
of order parameters which include information beyond that of the 
single-molecule neighbourhood. This led to the introduction of 
other order parameters, such as ζ (ref. 21), V4 (ref. 15) and the total 
node communicability20, which include some information on the 
connectivity properties of the hydrogen-bond network19. It has also 
become clear that network interpenetration22–24 plays a key role in 
the LLPT in tetrahedral liquids23,25–27, with the LDL being composed 
of a single random tetrahedral network and the HDL consisting of 
two (or more23) disordered but locally interpenetrating networks. In 
this context, a structure-based order parameter that fundamentally 
distinguishes the two liquids at the microscopic level will be impor-
tant to develop our understanding of the mechanism for achieving 
a difference in density and, hence, the physical origin of the LLPT.

A colloidal model of water. Colloidal patchy particles, due to  
their capacity to form network liquids via encoded self-assembly 
information25, combined with their synthetic availability28–32, are 
ideally suited to investigating universal aspects of the LLPT, as  
well as potentially facilitating detailed experimental investiga-
tions at single-particle resolution. Therefore, guided by recent 
advances in programming their hierarchical self-assembly33 
and in understanding the conditions necessary for facilitating a 
LLPT—bond flexibility25,26 and network interpenetration23,26—we 
rationally designed a colloidal analogue of water. Figure 1a sche-
matically illustrates this ‘colloidal water’ model. We considered  
designer triblock patchy particles28,30,34 with two distinct attrac-
tive patches that encode tetrahedrality—key to the uniqueness 
of water5. The tetrahedrality emerges as the triblock patchy par-
ticles undergo two-stage assembly upon cooling. The energet-
ics and geometry of the patches, labelled A and B, encode the  
desired staged-assembly information into the particles33,35,36. The 
energetics are chosen to facilitate the formation of discrete tet-
rahedral clusters, initially driven by strong A–A interactions, 
and then a tetrahedral network fluid via weaker B–B interactions 
(Fig. 1a and Supplementary Fig. S1). The width of the A patches 
is judiciously chosen so as to favour the formation of a tetrahe-
dral cluster fluid upon completion of the first stage of assem-
bly33,35,36. The width of each B patch is instead chosen to favour its 
interaction with only one other B patch. The discrete tetrahedral 
clusters then behave as secondary building blocks, similar to tet-
rahedral patchy particles, that can interact with one another via B 
patches at lower temperatures to drive a second stage of assembly,  
leading to the formation of a liquid network. In this case, the patch 
widths are chosen not only to enforce the desired valency con-
straints but also to maximize the flexibility of the bonds to hinder 
the onset of crystallization25. As a result, the tetrahedral clusters 
formed by the triblock patchy particles can deviate from the ideal, 
tetrahedral symmetry. Note that the volume occupied by a tet-
rahedral cluster is less than that of a spherical patchy particle of 
equivalent size (Fig. 1a), thereby easing the formation of locally 
interpenetrating networks.
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Thermodynamic anomalies of colloidal water. To establish that the 
chosen system of triblock patchy particles can indeed be considered 
as a colloidal analogue of water, we first demonstrate that it captures 
water’s thermodynamic anomalies. Figure 1b shows the reduced 
temperature (T⋆ ≡ kBT/ϵBB, where kB is the Boltzmann constant and 
ϵBB is the well depth of patch B–patch B interactions) dependence of 
the reduced density (ρ⋆ ≡ ρσ3, where σ is the hard-sphere diameter 
of a triblock patchy particle) along different isobars as determined 

by Monte Carlo simulations (Methods). Below a certain reduced 
pressure (P⋆ ≡ Pσ3/ϵBB), the colloidal water model displays a den-
sity maximum upon cooling. Upon further cooling, ρ⋆ approaches 
either a low or a high density value, depending on the pressure. 
Figure 1c shows the temperature dependence of the isobaric ther-
mal expansion coefficient (α⋆

P), isothermal compressibility (κ⋆

T) and 
isobaric heat capacity (c⋆P) at a select pressure, highlighting that, 
upon cooling, colloidal water shows non-monotonic behaviour in 
its thermodynamic response functions.

Figure 1d shows the dependence of ρ⋆ and the fraction of bonds fb 
(defined as the fraction of bonded B patches, a quantity directly reflec-
tive of the potential energy of the system) on P⋆. We find that, below 
a certain T⋆, there is a discontinuous jump in ρ⋆ and fb as P⋆ changes, 
signalling a first-order phase transition. In contrast, ρ⋆ and fb change 
continuously with P⋆ above this critical temperature, indicating that 
there is a LLCP. To locate the critical point, we followed a procedure 
similar to that applied recently in the study of a molecular model 
of water9 to calculate the order parameter distribution P(M), where 
M = ρ⋆ − sv⋆ is a combination of the density, the potential energy per 
particle (v⋆ = V/(NεBB), where V is the total potential energy) and 
a field-mixing parameter s (ref. 37). Upon performing a non-linear 
fit to identify the critical temperature (Tc) and critical pressure (Pc), 
we find that P(M) closely matches the distribution of the magnetiza-
tion at the critical point of the three-dimensional (3D) Ising model  
(Fig. 1e), confirming the presence of an LLCP in colloidal water.

Topological nature of the LLPT in colloidal water. Topological 
concepts have become central in the description of physical38–40, 
biological41,42, social43 and financial44,45 networks. The topological 
properties of the interaction matrix,39 owing to their unexpected con-
nections with hidden conservation laws, have been shown to affect 
the response of the system to external perturbation and to play a 
key role in phase transitions. In this context, a pertinent question 
is whether the LLPT also has a topological character. Therefore, to 
identify any topological features, we inspected configurations of the 
LDL and HDL, finding that linked and knotted ring structures were 
noticeably present in the networks of the HDL phase but seemingly 
absent from the LDL phase. Figure 2a,b shows representative snap-
shots of the two liquid phases, where examples of these topologically 
complex motifs in the HDL networks are highlighted: a trefoil knot 
and a Hopf link46 (Supplementary Video 1). In addition to knots and 
links, we found a large number of knotted theta curves47,48 in the HDL 
networks, which can be viewed as two entangled fused rings (that is, 
rings that share at least two vertices). Examples of these knotted theta 
curves are shown in Fig. 2c and Supplementary Videos 2–4.

To investigate the importance of such topological features in the 
LLPT, we quantified the degree of ‘entanglement’ in the LDL and 
HDL networks using the concept of helicity. The helicity has previ-
ously been used to provide a measure of the topological properties of 
vector fields, including magnetic fields49 and vortex fields in fluids50. 
This scalar quantity measures the amount of entwining in the set 
of closed curves contained within a system. For the particle-based 
networks considered here, these closed curves correspond to the 
set of rings formed by bonded particles. Each pair of disjoint (and 
therefore distinct) rings Ri and Rj contributes to the helicity with 
a term proportional, in essence, to how many times the two rings 
wind around one another (alternatively, this can be thought of as 
the number of times ring Ri pierces the surface bounded by ring 
Rj). Also, each individual ring contributes with a term proportional 
to how many times it loops around itself. Formally, the helicity is 
defined as a double sum over the total number of rings NR of the 
double line integral, known as the Gauss linking integral:
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Fig. 1 | Thermodynamic anomalies and LLCP in colloidal water. a, Schematic 
of the hierarchical self-assembly of triblock patchy particles leading 
to a colloidal model of water. The two patches, labelled A and B, are of 
different sizes and form bonds of different strengths. The A patches (red) 
form stronger bonds than the B patches (blue) so as to encode two-stage 
assembly upon cooling. b, The evolution of the reduced density ρ⋆ as a 
function of the reduced temperature T⋆ for different reduced pressures P⋆, 
where P⋆ × 103 = 5, 6, 7, 7.5, 8.5, 9, 10, 12, 14 and 16. The arrow indicates the 
direction of increasing P⋆. The inset highlights the density maximum for 
P⋆ × 103 = 5, 6, 7 and 7.5. c, The evolution of the reduced thermal expansion 
coefficient (α⋆

P), isothermal compressibility (κ⋆T) and isobaric heat capacity 
(c⋆P) as functions of T⋆ at P⋆ = 0.0085 (close to the critical pressure). 
Error bars represent the standard deviation over five sets of Monte Carlo 
trajectories, each of 1 × 108 cycles. d, The dependence of ρ⋆ and the fraction 
of BB bonds formed (fb) on P⋆ at T⋆ = 0.105 and T⋆ = 0.112. e, The distribution 
of the order parameter M for colloidal water (blue symbols), calculated using 
histogram reweighing, with T⋆ ≈ 0.1075, P⋆ ≈ 0.0082 and s ≈ 0.627, compared 
with the corresponding 3D Ising universal distribution (solid red line).
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where ri and rj are points on the two rings Ri and Rj, respectively. In 
equation (1), dri and drj are infinitesimal vectors tangential to the 
two rings Ri and Rj located at points ri and rj, respectively. In the 
case where i ≠ j, the Gauss linking integral gives the linking number 
(Lkij) of the two curves and takes on only integer values, whereas for 
i = j, it corresponds to the writhe (Wri) of a single curve and can take 
on any real value. Equation (1) can therefore be rewritten as the sum 
of the linking number and the writhe as

H =

NR∑
i>j

Lkij +
NR∑
i=1

Wri. (2)

A visual representation of the Gauss linking integral for a set of 
closed loops, along with their corresponding writhe or linking num-
ber, is shown in Fig. 2d.

To establish the prevalence of topologically complex motifs in 
a liquid network, we adapted the concept of the helicity to define 
two quantities: the network linking number39 (Ln) and the network 
writhe (Wn). To emphasize the degree of entanglement in a net-
work, Ln and Wn are computed by summing up the absolute values 
of Lkij and Wri, respectively, to ignore the intrinsic orientation of the 

closed curves (in other words, we ignore the chirality of the topo-
logical objects). Additionally, the writhe is only computed for the set 
Nk of knotted objects that includes knotted rings and pairs of fused 
rings that contain a knotted path. Including the latter in Nk ensures 
that the contributions of theta curves (such as those shown in  
Fig. 2c) are captured by Wn. We formally define Ln and Wn as

Ln =

NR∑
i>j

|Lkij| and Wn =

Nk∑
i=1

|Wri| (3)

We also note that, in some instances, the helicity can include a twist 
term when the structures under consideration are constructed 
from bundles of closed curves (as is the case for supercoiled DNA). 
However, since this is not the case with the bond rings considered 
here, the twist can practically be ignored.

We computed Ln and Wn by first identifying all the rings in the 
system up to a maximum size of lmax (which defines the maximum 
number of particles forming a ring) and then calculating either 
(1) the linking number for all disjoint rings or (2) the writhe for 
each ring that is knotted and for entangled fused rings (such as the 
knotted theta curves shown in Fig. 2c). This then becomes akin to 
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Fig. 2 | Characterization of the LLPT in colloidal water by identifying links and knots. a,b, Representative snapshots of the LDL (a) and HDL (b) networks 
of colloidal water at T⋆ = 0.105, a temperature below the critical temperature Tc, and pressures either side of the critical pressure Pc (P⋆ = 0.005 and 
P⋆ = 0.016). Here, vertices correspond to the centres of tetrahedral clusters, while edges indicate existing B–B bonds. Tetrahedral clusters in the HDL 
network forming a trefoil knot (top) and a Hopf link (bottom) are highlighted in b, visualized in a reduced representation as tetrahedral patchy particles.  
c, Illustrative snapshots of theta curves found in the HDL networks and their corresponding idealized representations. d, The linking number (Lk) or writhe 
(Wr) for an idealized unknot (top left), unlink (top right), trefoil knot (bottom left) and Hopf link (bottom right). Each point in the motifs is coloured 
according to the corresponding (relative) contribution to the Gauss linking integral (equation (1)). e, The dependence of the average network linking 
number (Ln) and the network writhe (Wn) divided by the total number of rings in the network (NR) as a function of P⋆ at T⋆ = 0.105 (T < Tc) and T⋆ = 0.112 
(T > Tc). Ln and Wn were computed using rings of size up to lmax = 13. Error bars represent the standard deviation over two Monte Carlo trajectories, each 
of 4 × 107 cycles. f, Frequency distribution for the writhe (Wr), separated for different unique knotted structures observed in the HDL network, at T⋆ = 0.105 
and P⋆ = 0.016 with lmax = 15. The idealized knot associated with each distribution is colour coded and shown to the right of the plot. The dashed vertical 
lines indicate the writhe values of the idealized knots57, and the solid lines through the data points are a guide to the eye.
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identifying linked and knotted paths in the spatial embedding of a 
graph48,51 (full details on how Ln and Wn are computed in practice 
are given in Methods). Because we only identified links between 
rings of sizes l ≤ lmax and knotted structures of sizes l ≤ (2lmax − 2), 
the computed values of Ln and Wn depend on the chosen lmax. The 
LDL and HDL networks were found to show asymptotic limit-
ing behaviour in their topological properties as a function of lmax, 
above a critical value (Supplementary Figs. S2 and S3). Therefore, 
we computed Ln and Wn using the smallest lmax value that was 
found to be in the asymptotic regions of both the LDL and HDL 
phases (lmax ≥ 13). Figure 2e shows the average values of Ln and 
Wn as a function of pressure for T < Tc and T > Tc with lmax = 13. 
Both Ln and Wn display a discontinuous change with pressure for 
sub-critical temperatures (T < Tc), concomitant with the disconti-
nuity in the density (Fig. 1d), while they change continuously for 
super-critical temperatures.

The transition between the LDL and HDL phases is clearly cap-
tured by Ln when lmax ≥ 5 (Extended Data Fig. 1). However, as knots 
require longer chains of particles to form, they require a larger lmax 
to be identified, and so, Wn only shows a clear discontinuity when 
lmax ≥ 10 (Extended Data Fig. 1). Additionally, this means that there 
are fewer knots than links in the network, which in turn, means that 
Wn is smaller than Ln for a given lmax. Yet, there are a variety of knot-
ted objects in the HDL networks that contribute to the nonzero value 
of Wn. Figure 2f shows the frequency distribution of the writhe for 
different knotted objects found in the HDL network with lmax = 15. 
The majority of these structures contain trefoil knots, but we also find 
figure-of-eight, cinquefoil, three-twist and Stevedore knots46. Similar 
to randomly generated knotted rings, the ensemble average of the 
writhe for each of these knots correlates well with the writhe of the cor-
responding idealized configuration (an idealized knot configuration is 
one which allows the volume-to-surface area ratio to be maximized52).
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Fig. 3 | Characterization of the LLPT in molecular water by identifying links and knots. a,b, Illustrative snapshots of the LDL (a) and HDL (b) 
hydrogen-bond networks of molecular water, simulated using the TIP4P/Ice potential, at T = 188K and P = 1,100 bar and P = 2,000 bar, respectively. This 
temperature is slightly below the critical temperature (Tc = 188.8 K (ref. 9)), and the pressures are below and above the critical pressure (Pc = 1,725 bar 
(ref. 9)). In the LDL, only a few links are present (one is highlighted in a). In the HDL, both linked and knotted motifs are present (highlighted in b). c, The 
frequency distribution of the writhe (Wr) of the knotted paths found in the HDL network (essentially all being trefoil knots) at T = 188 K and P = 2,000 bar. 
The inset shows the idealized configuration of a trefoil knot, and the dotted vertical line indicates the value of the writhe for the idealized trefoil knot57.  
d, Dependence of Ln and Wn, computed using rings of sizes up to lmax = 13, divided by NR, as a function of P at T = 188 K for N = 1,000 molecules. Error 
bars represent the standard deviation as calculated along the corresponding molecular dynamics trajectory. e, The fluctuations in the density (ρ) and 
Ln (computed using lmax = 13) with time (t) along an isobaric–isothermal molecular dynamics trajectory for N = 300 molecules of TIP4P/Ice water at a 
temperature of T = 188 K for P = 1,100 bar, P = 1,725 bar and P = 2,000 bar.
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Topological nature of the LLPT in molecular water. It is clear 
that both Ln and Wn can serve as a topological order parameter to 
describe the LLPT in colloidal water, providing strong evidence that 
the LLPT is a transition from an ‘unentangled’ to an ‘entangled’ net-
work. This raises the question of whether entanglement also under-
pins the LLPT in supercooled water. Recently, it was shown that 
both the TIP4P/Ice53 and TIP4P/200554 molecular models of water, 
which do not explicitly enforce tetrahedral coordination, exhibit a 
first-order LLPT and corresponding LLCP9. We therefore performed 
a similar topological analysis for TIP4P/Ice and TIP4P/2005. Figure 
3a,b shows representative snapshots of the hydrogen-bond networks 
for the LDL and HDL of TIP4P/Ice. We find that the LDL contains 
a small number of links and practically no knotted structures (with 
only one or two knots occasionally appearing in a frame), while the 
HDL contains trefoil knots and theta curves in addition to links 
(which are also present in more abundance than in the LDL). Figure 
3c shows that the ensemble average of the writhe for these trefoil 
motifs in the HDL of TIP4P/Ice also correlates well with the writhe 
of the idealized trefoil knot, as was the case for colloidal water. 
Additionally, as for colloidal water, Fig. 3d shows that, for TIP4P/
Ice, both Ln and Wn jump at the critical pressure, suggesting that 
entanglement also underpins the LLPT in molecular water.

A universal property of systems close to a second-order criti-
cal point (when T ≈ Tc and P ≈ Pc) is wide oscillations in relevant 
order parameters, as configurations belonging to both phases are 
sampled along the trajectory37. To check whether the topological 
order parameter Ln does indeed properly distinguish between the 
two liquid phases of the TIP4P/Ice and TIP4P/2005 models, we 
calculated Ln along 40 μs molecular dynamics trajectories of super-
cooled water for different values of P close to Tc. Figure 3e shows 
the evolution of ρ and Ln along the molecular dynamics trajectory 
for a system of N = 300 TIP4P/Ice molecules at three different pres-
sures. Above and below the critical pressure, Ln displays quite dif-
ferent values, indicating a notable topological difference between 
the two liquids. At the critical pressure, wide fluctuations in Ln are 
observed, closely correlating with those of ρ. Extended Data Fig. 2 
shows that the TIP4P/2005 model also displays these wide fluctua-
tions in Ln and ρ when P ≈ Pc, confirming that the LLPT can indeed 
be interpreted as a topological transition.

Conclusions. We have designed a colloidal analogue of water—a 
tetrahedral network liquid self-assembled from designer triblock 
patchy colloidal particles via tetrahedral clusters. This colloidal 
water model captures the anomalous thermodynamic behaviour 
of supercooled water, including the well-known density maxi-
mum, and displays two structurally different network liquid phases.  
With the synthetic feasibility of the triblock patchy particles  
under consideration30, colloidal water presents itself as an ideal 
model system, amenable to experimental investigation at the 
single-particle level, for gleaning fundamental understanding of 
LLPTs in tetrahedral liquids.

By analysing configurations from this colloidal model and from 
two widely used molecular models53 for water, we have established 
that the LDL and HDL networks associated with the LLPT in all 
three cases are topologically distinguishable. The LDL in all these 
cases is practically an ‘unentangled network’, consisting primarily 
of unknots, while the HDL is an ‘entangled network’ containing an 
ensemble of topologically non-trivial motifs. For colloidal as well as 
molecular models, Ln and Wn—metrics able to capture the degree 
of entanglement—act as suitable order parameters, highlighting that 
the LLPT can also be interpreted as a topological phase transition.

Uncovering the topological distinction between the LDL and 
HDL networks allows us to understand the physical mechanism 
underpinning the LLPT from a new perspective that sheds light 
on its microscopic origin. The LLPT occurs at low temperatures at 
which the system tends to form a liquid network with the maximum  

number of bonds possible. At low pressures, it is well established 
that this is achieved by forming an open random tetrahedral net-
work. However, as the pressure increases, the system tends also to 
minimize its volume. In tetrahedral liquids, associated with this 
drive to maximize the number of bonds, there is an increase in 
the number of rings in the network. Due to the directionality of 
the interactions, the system cannot minimize its volume by sim-
ply deforming the rings while preserving the network connectivity 
because there is a limit to the flexibility of the bonds. Instead, the 
system is able to simultaneously minimize its volume and maximize 
the number of bonds in the network by forming knots and links. 
Additionally, we note that, unlike knots and links formed by cova-
lently bonded chains or networks40, the LDL and HDL are transient 
networks (that is, bonds are constantly breaking and forming) and 
so their topological state is not constant. Despite this evolution, the 
topological signatures for each phase are properly defined.

The helicity has been used previously to study knotted vortices in 
classical fluids55 and superfluids56, where these knots were found to 
untie via a universal topological mechanism. It would be of interest 
to use the metrics for the degree of entanglement used here to fol-
low the nucleation of the LDL out of the HDL, and vice versa, to see 
whether this universal topological mechanism is also relevant in the 
context of the LLPT. Finally, owing to their topological complexity, 
these entangled liquids should possess physical properties38,40 dis-
tinct from simple liquids, which will merit exploration.
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Methods
Colloidal water model. We employed the Kern–Frenkel pair potential58,59, which 
has been used extensively to study patchy particles. Each particle, with a hard-core 
diameter σ, has (at opposite poles) two distinct, circular attractive patches, labelled 
A and B, having half-angles of θA and θB, respectively. The effective potential for a 
pair of patchy particles vij is

vij(rij ,Ωi ,Ωj) = vhsij (rij) +
∑

α,β={A,B}

vswαβ(rij)f(rij , n̂
α
i , n̂

β

j ), (4)

where rij = ∣rij∣ is the centre-to-centre distance between particles i and j and Ωi and 
Ωj describe the orientations of particles i and j, respectively. In equation (4), vhsij  is 
the hard-sphere pair potential, given by

vhsij (rij) =

{

∞ if rij < σ

0 otherwise
(5)

and vswij  is a square-well potential, given by

vswαβ(rij) =

{

−εαβ if σ ≤ rij ≤ (1 + δαβ)σ

0 otherwise
, (6)

where εαβ and δαβ control the depth and range, respectively, of patch α–patch 
β attraction. The factor f(rij , n̂α

i , n̂
β

j ) controls the angular dependence of the 
interaction between two patches and is given by

f(rij , n̂α
i , n̂

β

j ) =







1 if n̂α
i · r̂ij > cos θα and n̂β

j · r̂ji > cos θβ

0 otherwise
, (7)

where n̂α
i  is a normalized vector from the centre of particle i in the direction of the 

centre of patch α on its surface, thus depending on Ωi. Similarly, n̂β

j  is a normalized 
vector from the centre of particle j in the direction of the centre of patch β, thus 
depending on Ωj. The total potential energy of the system was calculated by 
summing over the contributions from all distinct pairs (V =

∑

i ̸=jvij).
We employed εAA = 5εBB along with εAB = 0 to encode a two-stage self-assembly 

process upon cooling33. We selected θA = 50° and θB = 26° because this choice, 
combined with the interaction strengths, ensures that an A patch interacts with 
three other A patches (to yield discrete tetrahedral clusters at relatively high 
temperatures) while a B patch interacts with only one other B patch (to bring 
the tetrahedral clusters together to form a tetrahedral network liquid at lower 
temperatures). The choice of εAB = 0, which is realizable via DNA-mediated 
interactions, facilitates staged assembly and allows for the use of a wider A patch 
without compromising the formation of self-limiting tetrahedral clusters at 
intermediate temperatures. Note that the use of an A patch with θA = 50° makes the 
tetrahedral clusters flexible enough to hinder crystallization from the tetrahedral 
liquids formed at lower temperatures. The ranges of the interactions are set by 
δAA = 0.05 and δBB = 0.2 (the value of δAB being irrelevant since εAB = 0). The longer 
range of B–B interactions facilitates the formation of a tetrahedral network liquid 
at low temperatures. In the present study, we used reduced units: the length in 
units of σ, the energy in units of εBB and the temperature in units of εBB/kB, with the 
Boltzmann constant set to kB = 1.

Monte Carlo simulations of colloidal water. All the Monte Carlo simulations were 
carried out with systems of N = 1,000 triblock patchy particles contained in a cubic 
box under periodic boundary conditions, using the minimum image convention. 
Each triblock patchy particle was treated as a rigid body whose orientational 
degrees of freedom were represented by quaternions. The potential energy 
was calculated using a spherical cutoff of σ(1 + δBB), and a cell list was used for 
efficiency60. To enhance sampling in systems composed of clusters, we employed 
a combination of translational and rotational single-particle and cluster moves, 
where the acceptance probability for a translational or rotational cluster move was 
taken as60

acc(o → n) = min







1, exp [−β (V(n) − V(o))]
∏

i,j

1 − Pn(i, j)
1 − Po(i, j)







(8)

where β = 1/kBT, V(o) and V(n) correspond to the potential energy of the system 
before and after the cluster move, respectively, and P(i, j) represents the probability 
that particles i and j share a bond, that is, that the patches interact. We defined 
a cycle as the number of attempts, equal to the number of particles N, to move 
(rotate or translate) a particle or a cluster (with equal probability). Additionally, in 
isothermal-isobaric (NPT) simulations, we included one volume move, on average, 
per cycle. We performed cluster volume moves in the logarithmic space of the 
volume (that is, ln(Vn) = ln(Vo) + ΔV ), where each cluster’s centre of mass was 
scaled isotropically. Volume moves were accepted with probability61

acc(Vo → Vn) = min
{

1, exp
[

(Nclstr + 1) ln
(

Vn
Vo

)

− βPΔV − βΔV]
∏

i,j

1−Pn(i,j)
1−Po(i,j)

}

,
(9)

where Nclstr is the number of discrete clusters identified in the system. In the 
context of an anticipated two-stage assembly of the patchy colloidal particles via a 
discrete set of clusters, formed by A–A bonds, we constructed a simple rule to move 
the discrete clusters. We took P(i, j) = 1 if two particles share an A–A bond, and 
P(i, j) = 0 otherwise. Therefore, to ensure detailed balance is satisfied, any proposed 
cluster or volume moves that created a new A–A bond between particles i and j 
were rejected.

At low temperatures (T⋆ ≤ 0.12), two sets of simulations were carried out 
over the same range of state points, starting from a tetrahedral cluster fluid of 
triblock patchy particles, where the initial density was set to ρ⋆ = 0.2 for one set of 
simulations and to ρ⋆ = 0.4 for the other set. For each of these simulations, 3 × 108 
Monte Carlo cycles were performed to ensure that equilibrium was attained. At 
higher temperatures, 1 × 108 Monte Carlo cycles were performed, starting with a 
density of ρ⋆ = 0.4.

From the NPT simulations, we calculated the reduced isobaric thermal 
expansion coefficient (α⋆

P), isothermal compressibility (κ⋆

T) and isobaric heat 
capacity (c⋆P) by computing the covariance and variance in the volume and 
enthalpy (H) as

αP =
⟨HV⟩ − ⟨H⟩⟨V⟩

N⟨V⟩kBT2 =
kB
εBB

α
⋆

P , (10)

κT =
⟨V2

⟩ − ⟨V⟩2

N⟨V⟩kBT
=

σ3

εBB
κ
⋆

T , (11)

cP =
⟨H2

⟩ − ⟨H⟩
2

NkBT2 = kBc⋆P . (12)

These thermodynamic quantities, as well as the average density, were computed 
from five independent NPT simulations, consisting of 1 × 108 Monte Carlo cycles, 
following equilibration at each temperature and pressure considered.

Molecular dynamics simulations of TIP4P/Ice and TIP4P/2005. Molecular 
dynamics simulations were performed for the TIP4P/Ice53 and TIP4P/200554  
water models in the NPT ensemble, using GROMACS.62 The integration time  
step was 2 fs. The Nosé–Hoover thermostat and the isotropic Parrinello– 
Rahman barostat, both with characteristic times of a few picoseconds, were used. 
Rigid constraints for the molecular model were implemented with a sixth-order 
linear constraint solver. The long-range electrostatic interactions were dealt with  
by using the particle-mesh Ewald method at fourth order. The cut-off distances  
for both the van der Waals and the real-space electrostatic interactions were  
fixed at 0.9 nm. For the TIP4P/Ice model, we focused on the T = 188 K isotherm 
for systems of N = 300 and 1,000 molecules, with pressures ranging from 1 bar to 
4,000 bar. For the TIP4P/2005 model, we performed simulations at T = 177 K and 
P = 1,750 bar for a system of N = 300 molecules. The analysed trajectories were 
longer than 40 μs for both models, and equilibrated data from ref. 9 were used as 
starting configurations.

Cluster identification in the colloidal water model. We identified the tetrahedral 
clusters formed by the triblock patchy particles using the local order parameter, qTd 
(which equals 1 for a perfect tetrahedron), defined as63

qTd = 1 −

3
8

Nc−1
∑

i=1

Nc
∑

j=i+1

(

cos ψ ij +
1
3

)2
, (13)

where Nc = 4 is the number of particles in the cluster under consideration and ψij 
is the angle subtended at the centre of the cluster by the two vectors joining the 
centre of particle i and particle j. We defined the set of neighbours for each particle 
i as those with which it shares a patch A–patch A bond. qTd was then calculated 
for all distinct combinations of four particles including i from this set. All unique 
sets of four particles satisfying the condition qTd > 0.99 were considered to form a 
tetrahedron.

Multiple histogram reweighting. To identify the location of the LLCP in the 
colloidal water system, we merged information collected from the Monte Carlo 
simulations to generate an estimate of the density of states, Ω̂(E, V). In the NPT 
ensemble, the partition function at a given pressure P and temperature T can be 
written as9,64

Z(P, β) =
∑

E

∑

V
Ω̂(E, V)e−β(E+PV)

= e−βG(P,β), (14)
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where E is the energy of the system, V is the volume and G is the Gibbs free 
energy. We estimated the density of states by performing R simulations at different 
temperatures and pressures, where the total set of state points considered was given 
by {Ti, Pi}, i = 1, …, R. For each simulation, a histogram (Hi) of the energies and 
volumes sampled was generated using data from Ci configurations spaced equally 
along the trajectory. We defined an estimate for the density of states at discrete 
values of energy and volume, using data from a single simulation, as

Ωi(E, V) =
Hi(E, V)

Ci
e+βi(E+PiV)e−βiG(Pi ,βi). (15)

However, each of the R simulations only provides information of the density of 
states for a finite portion of the phase space. Hence, a better estimate was obtained 
by combining all the information gathered from the R simulations. This ‘best guess’ 
for the density of states was written as a linear combination of these individual 
estimates, combined with a weight factor ωi(E, V), as

Ω̂
b(E, V) =

R
∑

i=1
ωi(E, V)Ωi(E, V)

=
R
∑

i=1
ωi(E, V)Hi(E,V)

Ci
e+βi(E+PiV)e−βiG(Pi ,βi)

. (16)

Conventionally, it is assumed that the ‘random’ variable Hi(E, V) has Poisson 
statistics. It then becomes possible to optimize equation (16) by minimizing 
the variance of Ω̂b(E, V) using the method of Lagrange multipliers, under the 
constraint that 

∑R
i ωi = 1. As a result

Ω̂
b
(E, V) =

∑R
i=1 Hi(E, V)

∑R
i=1 e−βi(E+PiV)e+βiG(Pi ,βi)Ci

(17)

and

e−βiG(Pi ,βi) =
∑

E

∑

V
Ω̂

b
(E, V)e−βi(E+PiV). (18)

When the number of samples used to generate each of the R histograms is the same 
(that is, ∀i: Ci = C), the above equations can be simplified by writing

S(E, V)/kB = ln Ω̂
b(E, V) = ln

(∑R
i=1 Hi(E,V)

C

)

− ln
( R
∑

i=1
e−βi(E+PiV)e+βiG(Pi ,βi)

) (19)

and

G(Pi, βi) = −kBT ln
(

∑

E

∑

V
eS(E,V)/kB−βi(E+PiV)

)

. (20)

Evaluation of the exponential terms can be numerically unstable, but rewriting these 
equations in terms of the entropy allows us to make use of ln(ex) = a + ln(ex−a) 
to improve the numerical precision. Equations (19) and (20) can then be solved 
self-consistently via an iterative procedure, taking Gi = 0 for all i as an initial guess. 
We assume that the values of the Gibbs free energies have converged once the sum 
squared difference between consecutive estimates is less than a tolerance value of 
10−7. The converged solutions provided an estimate for the values of G(P, β) up to 
some additive constant c. From these estimates, we obtained values for the density of 
states. It was, therefore, possible to predict the probability of observing a state with 
energy E and volume V at any relevant state point (P, β) using

Bond definition. In the case of colloidal water, the network is created by the 
patch B–patch B interactions, forming bonds that join discrete tetrahedral clusters. 
Owing to the square-well nature of the patch–patch interaction, searching for the 
existing bonds becomes equivalent to searching for all pairs of particles with pair 
interaction energy equal to −ϵBB.

For the TIP4P/Ice and TIP4P/2005 models, a bond between two water 
molecules was deemed to exist when a hydrogen bond was present. This was 
defined on the basis of a geometric criterion65 by the conditions r < 0.35 nm and 
θ < 30°. Here, r is the intermolecular oxygen–oxygen distance and θ is the smallest 
among the four angles between the intramolecular O–H and the intermolecular 
O–O lines. As shown previously19, no ambiguity in the identification of hydrogen 
bonds remains if the Chandler–Luzar geometric criterion is applied using 
inherent structure configurations. These are the local potential energy minimum 

(21)

configurations reached via a steepest descent path that quenches the vibrational 
degrees of freedom. To evaluate the inherent structures, we used the steepest 
descent algorithm in GROMACS (compiled in double precision) with a force 
tolerance of 1 J mol−1 nm−1 and a maximum step size of 5 × 10−4 nm.

Ring statistics. We calculated the number of rings (NRl) with sizes l ∈ [4 − lmax] 
where each bond network was abstracted into a periodic undirected graph G. The 
vertices (VG) of the graph represent the positions of the objects of interest (either 
the tetrahedral cluster centres or the oxygen atoms of the water molecules), and 
each of the edges (EG) connects two bonded objects as defined above. We defined 
a ring as a closed path in this graph (that is, a path whose first and final vertices are 
the same). We excluded rings in which non-adjacent vertices are directly connected 
via an edge. For each vertex Vi

G in the graph, we determined all distinct rings, 
sequentially identifying all rings associated with each vertex, using a depth-first 
search traversal, up to the chosen lmax. To improve the efficiency of the analysis, 
following the extraction of all relevant paths starting from Vi

G (and hence rings 
containing Vi

G), all edges connected to that vertex were removed from the graph 
before initiating the depth-first search traversal from Vi+1

G
. We also accounted for 

the double counting of a ring, which arises from the undirected nature of the graph.

Linking number and writhe calculations. We measured the entanglement of 
liquid networks using metrics derived from the helicity, which is defined in 
equation (2), in terms of Lkij, the linking number between two independent closed 
curves Ri and Rj, and Wri, the writhe of a single closed curve. Both the linking 
number and the writhe can be defined as double line integrals46,66–68:

Lkij(Ri ,Rj) =
1
4π

∮

Ri

∮

Rj

rj − ri
|rj − ri|3

· (drj × dri), (22)

Wri(Ri) =
1
4π

∮

Ri

∮

Ri

r′i − ri
|r′i − ri|3

· (dr′i × dri). (23)

Note that equation (22) and (23) are combined together in equation (1) 
(the contributions i ≠ j and i = j, respectively). The closed curves from which we 
computed Ln and Wn are constructed from the set of rings identified in the liquid 
networks from both models, where ri and rj represent the positions of the objects 
that make up rings Ri and Rj, respectively. We calculated the linking number only 
for pairs of disjoint rings (rings not sharing any vertices), and the writhe for both 
knotted individual rings and for pairs of rings that share at least one edge that were 
also knotted (these pairs of rings can essentially be considered as composite rings 
with intra-ring edges).

Computing the linking number. The rings are composed of discrete line segments 
and so can be considered as closed polygonal paths. As a result, the linking number 
can be computed using the expression for polylines69:

Lkij(Ri ,Rj) =
1
4π

∑

kl

λkl, (24)

where λkl is the contribution to the Lkij from a pair of line segments k and l 
belonging to rings i and j, respectively, and

λkl = atan
(

a·(b×c)
|a||b||c|+(a·b)|c|+(c·a)|b|+(b·c)|a|

)

+atan
(

c·(d×a)
|c||d||a|+(c·d)|a|+(a·c)|d|+(d·a)|c|

)

,
(25)

where a = rl − rk, b = rl − rk+1, c = rl+1 − rk+1 and d = rl+1 − rk (ref. 69).

Computing the writhe. The writhe has previously been used to study folding 
in protein systems70 and supercoiling in DNA68. In these studies, proteins and 
DNA strands are modelled as polymer chains made up of straight line segments. 
Similarly, we computed the writhe using68

Wri(Ri) =
1
2π

∑

k̸=l
ωkl, (26)

where ωkl is the contribution to the writhe from the segments k and l on ring i, 
defined as68

ωkl = sgn
{

[(rl+1 − rl) × (rk+1 − rk)] · a
} (

sin−1(n1 · n2) + sin−1(n2 · n3)

+ sin−1(n3 · n4) + sin−1(n4 · n1)
)

,
(27)

where sgn(⋅) is the sign function and

n1 =
a × d
|a × d|

, n2 =
d × c
|d × c|

, n3 =
c × b
|c × b|

, n4 =
b × a
|b × a|

, (28)

where a, b, c and d are defined as above.
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Identifying knots. We made use of the freely available Python package ‘pyknotid’ 
to identify whether a ring (or a pair of rings sharing vertices) is knotted71. Using 
‘pyknotid’, we computed the Gauss code for the ring, and following simplification 
by performing Reidemeister moves, we identified whether a knot was present. If 
present, the identity of the knot was determined using a knot look-up table, which 
includes information about all knots with up to 15 crossings. Only if the ring (or 
a pair of rings sharing vertices) was deemed to be knotted was the writhe then 
calculated.

Data availability
Datasets used to generate the figures in this article have been deposited in the 
University of Birmingham edata Repository and can be accessed from https://edata.
bham.ac.uk/828/.

Code availability
Our Monte Carlo code, developed in-house, can be accessed at https://github.com/
cdwaipayan/PaSSion.git.
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Extended Data Fig. 1 | Pressure dependence of the topological properties of the colloidal water model. Pressure dependence of the topological 
properties of the colloidal water model. Pressure dependence of ⟨Ln/NR⟩, ⟨Wn/NR⟩ and ⟨NR⟩ for the colloidal water model, for 5 � lmax � 13 at a 

temperature of T⋆ = 0.105. Note that Wn = 0 for all pressures when lmax � 7.
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Extended Data Fig. 2 | Topological nature of the liquid-liquid phase transition in TiP4P/2005. Topological nature of the liquid-liquid phase transition 
in TiP4P/2005. Fluctuations in density (ρ) and Ln (computed using lmax=13) with time (t) along an isobaric-isothermal molecular dynamics trajectory for 
N = 300 TIP4P/2005 water molecules at a temperature of T = 177K and a pressure of P = 1750bar, a state point close to its liquid-liquid critical point.
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