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ABSTRACT: In this paper, the Gibbs−Duhem equation is extended to the partial
molar surface thermodynamic properties of solutions. According to the surface
Gibbs−Duhem equations, the sum of the mole fractions of the components in the
surface region of a bulk solution multiplied by different partial molar surface
quantities should equal zero if summation is taken by all components of the solution.
There are four different partial molar surface quantities identified in this paper for
which the surface Gibbs−Duhem equation is proven to be valid: (i) the reduced
surface chemical potential, (ii) the surface chemical potential, (iii) the partial molar surface area, and (iv) the partial molar excess
surface Gibbs energy = the product of partial molar surface area and the partial surface tension. The first one is known since
Guggenheim (1940), but the other three are presented here for the first time. It is also demonstrated here how to apply the surface
Gibbs−Duhem equations: (i) it is proven that the model equation applied by us recently for the reduced chemical potential [Adv
Coll Interf Sci 2020, 283, 102212] obeys one of the surface Gibbs−Duhem equations, (ii) in contrary, it is proven that the model
equation suggested by us recently for the partial molar surface area contradicts one of the surface Gibbs−Duhem equations;
therefore, a new (and simpler) model equation for the partial molar surface areas of the components is suggested here that obeys the
surface Gibbs−Duhem equation. It is also shown that the Butler equation obeys one of the surface Gibbs−Duhem equations. It is
also concluded that surface composition in equilibrium should be one that ensures minimum surface tension.

1. INTRODUCTION

The Gibbs−Duhem equation1−3 is a well-known and very
useful equation for the partial molar thermodynamic quantities
of bulk solutions.4−9 There are many models to extend the
bulk thermodynamic properties to surface thermodynamic
properties.10−35 Guggenheim11 was the first to show that the
Gibbs−Duhem equation can be extended to one of the partial
molar surface quantities (see also refs 12, 15, 17, 23, 24). In
this paper, the Gibbs−Duhem equation is extended even
further: it is shown here to be valid for three further partial
molar surface quantities.

2. METHODS
2.1. Gibbs−Duhem Equation Derived for Bulk Partial Molar

Quantities of Solutions. Let us consider a homogeneous bulk
solution phase with different components denoted as i. The total
amount of matter (n, mol) in this bulk phase is written as

n n
i

i∑=
(1a)

where ni (mol) is the amount of matter of component i in the bulk
phase. Now, let us define the mole fraction (denoted as xi,
dimensionless) of component i in this bulk solution as

x
n
ni

i≡
(1b)

The fundamental Gibbs equation written at constant pressure and
constant temperature for the integral Gibbs energy of a bulk solution
phase (G, J)1 is shown as

G nd d
i

i i∑ μ= ·
(1c)

where μi (J/mol) is the chemical potential (equal to the partial molar
Gibbs energy) of component i in the bulk solution phase. The integral
form of eq 1c can be written as

G n
i

i i∑ μ= ·
(1d)

Now, let us take the full differential of eq 1d:

G n nd d d
i

i i
i

i i∑ ∑μ μ= · + ·
(1e)

Note that eq 1e is the full differential of eq 1d, but eq 1c is not.
Now, let us make the dG values equal in eqs 1c and 1e. From here, the
following equation is obtained:
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n d 0
i

i i∑ μ· =
(1f)

Dividing each term of eq 1f by the total amount of matter in the
given solution phase and taking into account eq 1b, the following
equation is obtained:

x d 0
i

i i∑ μ· =
(1g)

Equation 1g is the well-known Gibbs−Duhem equation. In eq 1g,
μi can be replaced by other bulk molar partial quantities, such as Um, i,
Hm, i, Sm, i, Vm, i, Cp, m, i, etc. (or sometimes denoted as ui, hi, si, vi, cp, i,
etc.). Now, let us write a simplified version of eq 1g for a two-
component A−B system as

x
x

x
x

(1 )
d

d

d

d
0B

A

B
B

B

B

μ μ
− · + · =

(1h)

where the materials balance equation (xA + xB = 1) was also applied.
The integral molar Gibbs energy of the bulk phase (defined as Gm ≡
G/n, J/mol) for the two-component regular solution is written here as
an example

G x G x G R T

x x x x L x x

(1 )

(1 ) ln(1 ) ln (1 )

m B m A
o

B m B
o

B B B B B B

, ,= − · + · + · ·

[ − · − + · ] + · · − (1i)

where Gm, A
o (J/mol) is the standard molar Gibbs energy of the pure

component A, Gm, B
o (J/mol) is the same for pure component B, R =

8.3145 J/mol K is the universal gas constant, T (K) is the absolute
temperature, and L (J/mol) is the bulk molar interaction energy
between components A and B (the components attract each other at
L < 0, repel each other at L > 0, and are neutral to each other at L = 0;
the latter case is called the “ideal solution”). The chemical potentials
of the components can be calculated as

G x
G
x

d
dA m B

m

B
μ = − ·

(1j)

G x
G
x

(1 )
d
dB m B

m

B
μ = + − ·

(1k)

The derivative of Gm by xB using eq 1i is

i
k
jjjjj

y
{
zzzzz

G
x

G G R T
x

x
L x

d
d

ln
1

(1 2 )m

B
m B
o

m A
o B

B
B, ,= − + · ·

−
+ · − ·

(1l)

Substituting eqs 1i and 1l into eqs 1j and 1k,

G R T x L xln(1 )A m A
o

B B,
2μ = + · · − + · (1m)

G R T x L xln (1 )B m B
o

B B,
2μ = + · · + · − (1n)

The derivatives of eqs 1m and 1n by xB are

x
R T

x
L x

d

d 1
2A

B B
B

μ
= − ·

−
+ · ·

(1o)

x
R T
x

L x
d

d
2 (1 )B

B B
B

μ
= · − · · −

(1p)

Now, let us substitute eqs 1o and 1p into eq 1h:

i
k
jjjjj

y
{
zzzzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
x

R T
x

L x x
R T
x

L x(1 )
1

2 2 (1 ) 0B
B

B B
B

B− · − ·
−

+ · · + · · − · · − =

(1q)

After some rearrangements of eq 1q, 0 = 0 is obtained. This means
that the regular solution model of eq 1i obeys the Gibbs−Duhem
equation, and so it is one of the thermodynamically meaningful
solutions models. The same conclusion follows when the last term of
eq 1i is extended to the Redlich−Kister polynomial36−38

G x G x G R T

x x x x x x

L L x L x

(1 )

(1 ) ln(1 ) ln (1 )

(1 2 ) (1 2 ) ...

m B m A
o

B m B
o

B B B B B B

o B B

, ,

1 2
2

= − · + · + · ·

[ − · − + · ] + · − ·

[ + · − · + · − · + ] (1r)

where Lj (J/mol) is the interaction energy between the components
of the jth order (j = 0, 1, 2, etc.). However, let us also note that not all
mathematical forms obey the Gibbs−Duhem equation. Consider for
example the simplistic model equation being the same as eq 1i but
without the last part (1 − xB) of its last term. Repeating the same
procedure as above for this simplistic model equation, one can find
that the Gibbs−Duhem equation is not obeyed. Thus, this simplistic
model equation is not an appropriate model for a solution.

The above example demonstrates the usefulness of the Gibbs−
Duhem equation in proving or disproving the validity of different
thermodynamic model equations for bulk solutions. The surface
Gibbs−Duhem equations to be derived below will be useful in a
similar way to select proper model equations for the partial molar
surface properties of solutions.

3. RESULTS AND DISCUSSION
3.1. Derivation of the First Surface Gibbs−Duhem

Equation. Let us consider a surface region of a homogeneous
bulk phase with different components denoted as i. The total
amount of matter in the surface region (ns, mol) is written as

n ns
i

i s( )∑=
(2a)

where ni(s) (mol) is the amount of matter of component i in
the surface region of the bulk phase. Now, let us define the
surface mole fraction (denoted as xi(s), dimensionless) of
component i in the surface region of this phase as

x
n

ni s
i s

s
( )

( )≡
(2b)

The second fundamental Gibbs equation written at constant
pressure, constant temperature, and constant bulk composition
for the surface integral Gibbs energy of this phase (Gs, J) is

G n Ad d ds
i

i s i s( ) ( )∑ μ σ= · + ·
(2c)

where μi(s) (J/mol) is the surface chemical potential (equal to
the surface partial molar Gibbs energy) of component i in the
surface region of the bulk phase, σ (J/m2) is the surface tension
of the phase, and A (m2) is the surface area of the phase. Let us
note that starting from this point, all dYi values are understood
as dYi/dxB(s) (see eqs 2o, 3d, and 6e) and not as dYi/dxB, the
latter being valid only above for the bulk Gibbs−Duhem
equation (see eq 1h). The integral form of eq 2c can be written
as

G n As
i

i s i s( ) ( )∑ μ σ= · + ·
(2d)

Now, let us take the full differential of eq 2d:

G n n A Ad d d d ds
i

i s i s
i

i s i s( ) ( ) ( ) ( )∑ ∑μ μ σ σ= · + · + · + ·

(2e)

Note that eq 2e is the full differential of eq 2d, but eq 2c is
not. Now, let us make eqs 2c and 2e equal: from here, the
following equation is obtained:

n Ad d 0
i

i s i s( ) ( )∑ μ σ· + · =
(2f)
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Let us define the integral molar surface area of a phase (ω,
m2/mol) being the surface area covered by 1 mol of atoms
(molecules) in the surface layer22,28,35,39,40

i
k
jjjjj

y
{
zzzzz

A
n

d
d s p T n, ,

ω ≡
(2g)

The integral form of eq 2g is

A nsω= · (2h)

Any integral quantity can be written as the weighted average
of its partials

x
i

i s i( )∑ω ω= ·
(2i)

where ωi (m2/mol) is the partial molar surface area of
component i, being the surface area covered by the same
component along the surface and is defined as22,28,35,39,40

i

k
jjjjjj

y

{
zzzzzz

A
n
d

di
i s p T n n( ) , , , j i s( )

ω ≡
≠ (2j)

Dividing each term of eq 2f by the total amount of matter in
the surface region of the phase (ns) and taking into account eqs
2b and 2h, the following equation is obtained:

x d d 0
i

i s i s( ) ( )∑ μ ω σ· + · =
(2k)

Substituting eq 2i into eq 2k, the final equation is obtained
after some rearrangements:

x (d d ) 0
i

i s i s i( ) ( )∑ μ ω σ· + · =
(2l)

Equation 2l is the first surface Gibbs−Duhem equation
derived in this paper. The same equation was also derived by
Guggenheim11 (see also refs 12, 15, 17, 24). The simplest way
to prove the validity of eq 2l is to remind that it follows from
the same eq 2f, from which the widely accepted Gibbs
adsorption equation follows.22 Note that the expression in the
parentheses of eq 2l is the differential form of the reduced
surface chemical potential of component i in the surface region
of the solution, defined as28

i s i s i( ) ( )μ μ ω σ* ≡ + · (2m)

Substituting eq 2m into eq 2l, the first surface Gibbs−
Duhem equation written for the reduced surface chemical
potential follows in its shortest form as

x d 0
i

i s i s( ) ( )∑ μ· * =
(2n)

For a binary A−B solution, eq 2n is written similarly to eq
1h:

x
x

x
x

(1 )
d

d

d

d
0B s

A s

B s
B s

B s

B s
( )

( )

( )
( )

( )

( )

μ μ
− ·

*
+ ·

*
=

(2o)

Now, let us apply the first surface Gibbs−Duhem equation
to check whether the following model equations suggested
previously28 for the reduced chemical potentials obey it or not:

R T x k L xln(1 )A s A s
o

B s B s( ) ( ) ( ) ( )
2μ μ* = * + · · − + · · (2p)

R T x k L xln (1 )B s B s
o

B s B s( ) ( ) ( ) ( )
2μ μ* = * + · · + · · − (2q)

where μA(s)*o (J/mol) is the standard reduced surface chemical
potential of component A, μB(s)*o (J/mol) is the same for
component B, and k (dimensionless) is the ratio of surface to
bulk coordination numbers.28 Now, let us write the derivatives
of eqs 2p and 2q by xB(s):

x
R T

x
k L x

d

d 1
2A s

B s B s
B s

( )

( ) ( )
( )

μ*
= − ·

−
+ · · ·

(2r)

x
R T
x

k L x
d

d
2 (1 )B s

B s B s
B s

( )

( ) ( )
( )

μ*
= · − · · · −

(2s)

Now, let us substitute eqs 2r and 2s into eq 2o:
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÄ

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

x
R T

x
k L x x

R T
x

k L x

(1 )
1

2

2 (1 ) 0

B s
B s

B s B s

B s
B s

( )
( )

( ) ( )

( )
( )

− · − ·
−

+ · · · +

· · − · · · − =
(2t)

After some rearrangements, eq 2t simplifies to 0 = 0. Thus,
eqs 2p and 2q obey the first surface Gibbs−Duhem equation.
This proves that eqs 2p and 2q are proper model equations for
the reduced surface chemical potentials. It is an important
result as eqs 2p and 2q were used to derive the second Butler
equations, while the first Butler equation is written
as10,16,21,22,25,28

A Bσ σ σ= = (2u)

where σA (J/m
2) is the partial surface tension of component A,

while σB (J/m
2) is the partial surface tension of component B,

defined in ref 16 and written by the second Butler
equations10,21,22,25,28

R T x

x
L

k x xln
1

1
( )A A

o A
o

A A

B s

B A
B s B

( )
( )

2 2σ σ
ω
ω ω ω

= · + · ·
−
−

+ · · −

(2v)

R T x

x
L

k x x

ln

(1 ) (1 )

B B
o B

o

B B

B s

B B

B s B

( )

( )
2 2

σ σ
ω
ω ω ω

= · + · · + ·

[ · − − − ] (2w)

where σA
o (J/m2) is the surface tension of pure A, σB

o (J/m2) is
the same for pure B, ωA

o (J/m2) is the molar surface area of
pure component A, and ωB

o (J/m2) is the same for pure
component B. Let us note that eqs 2v and 2w are written in
agreement with the model eqs 1m, 1n, 2p, and 2q.
As follows from the above, the following three equations are

in agreement with each other: (i) the Gibbs adsorption
equation, (ii) the Butler equations, and (iii) the first surface
Gibbs−Duhem equation. The mutual agreement of these three
equations means that any of the above three equations can be
derived as a combination of another two above equations.

3.2. Derivation of the Second Surface Gibbs−Duhem
Equation. Now, let us take the full differential of eq 2m and
let us substitute the resulting equation into eq 2n:

x (d d d ) 0
i

i s i s i i( ) ( )∑ σ ω ω σ· μ + · + · =
(3a)

Taking into account eq 2l, eq 3a is simplified as
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x d 0
i

i s i( )∑ σ ω· · =
(3b)

Now, let us divide both sides of eq 3b by σ:

x d 0
i

i s i( )∑ ω· =
(3c)

Equation 3c is the second surface Gibbs−Duhem equation,
valid for the partial molar surface areas of the components. For
a two-component A−B solution, it is written similarly to eq 2o:

x
x

x
x

(1 )
d

d
d

d
0B s

A

B s
B s

B

B s
( )

( )
( )

( )

ω ω
− · + · =

(3d)

Now, let us apply the second Gibbs−Duhem equation to
check whether the commonly used model equations,28 written
as follows, are valid or not:

f N Vi m iAv
1/3

,
2/3ω = · · (4a)

where f (dimensionless) is a geometrical parameter,28 NAv =
6.02 × 1023 1/mol is the Avogadro number, and Vm, i (m

3/
mol) is the partial molar volume of component i. Let us apply a
regular solution model for the partial molar volumes, similar to
eqs 1m and 1n:

V V L xm A m A
o

V B s, , ( )
2= + · (4b)

V V L x(1 )m B m B
o

V B s, , ( )
2= + · − (4c)

where Vm, A
o (m3/mol) is the standard molar volume of

component A, Vm, B
o (m3/mol) is that for component B, and LV

(m3/mol) is the interaction volume. Now, let us substitute eqs
4b and 4c into eq 4a:

f N V L xA Av m A
o

V B s
1/3

, ( )
2 2/3ω = · ·[ + · ] (4d)

f N V L x(1 )B Av m B
o

V B s
1/3

, ( )
2 2/3ω = · ·[ + · − ] (4e)

Now, let us take the derivatives of eqs 4d and 4e by xB(s):

i

k
jjjjj

y

{
zzzzzx

f L x
N

V
d

d
4
3

A

B s
V B s

Av

m A( )
( )

,

1/3
ω

= · · · ·
(4f)

i

k
jjjjj

y

{
zzzzzx

f L x
N
V

d
d

4
3

(1 )B

B s
V B s

Av

m B( )
( )

,

1/3
ω

= − · · · − ·
(4g)

Now, let us substitute eqs 4f and 4g into eq 3d:

f L N x x V V
4
3

(1 ) ( ) 0V Av B s B s m A m B
1/3

( ) ( ) ,
1/3

,
1/3· · · · · − · − =− −

(4h)

At any LV ≠ 0 and xB(s) ≠ 0 or xB(s) ≠ 1 (i.e., for any real
solution), eq 4h is valid only if Vm, A = Vm, B. However, the
latter condition is generally not valid, so the second surface
Gibbs−Duhem equation is not obeyed for partial molar surface
areas modeled by eqs 4d and 4e. This means that eqs 4d and
4e are not proper equations to model the partial molar surface
areas. Now, let us introduce some simpler model equations for
the partial molar surface areas, being analogues to eqs 4b and
4c:

L xA A
o

B s( )
2ω ω= + ·ω (5a)

L x(1 )B B
o

B s( )
2ω ω= + · −ω (5b)

where Lω (m
2/mol) is the interaction surface area. Substituting

eqs 5a and 5b into eq 2i, a new equation for the integral molar
surface area is obtained as

x x x x L(1 ) (1 )B s A
o

B s B
o

B s B s( ) ( ) ( ) ( )ω ω ω= − · + · + · − · ω
(5c)

where the suggested model equations for the three model
parameters are taken in agreement with eq 4a as

f N V( )i
o

Av m i
o1/3

,
2/3ω = · · (5d)

f N LL Av V
1/3 2/3= · ·ω (5e)

Now, let us take the derivatives of eqs 5a and 5b by xB(s):

x
L x

d
d

2A

B s
B s

( )
( )

ω
= · ·ω

(5f)

x
L x

d
d

2 (1 )B

B s
B s

( )
( )

ω
= − · · −ω

(5g)

Now, let us substitute eqs 5f and 5g into eq 3d:

L x x2 (1 ) (1 1) 0B s B s( ) ( )· · − · · − =ω (5h)

As follows from eq 5h, the second surface Gibbs−Duhem
equation is valid (as 1 − 1 = 0) for the partial molar surface
areas modeled by eqs 5a and 5b. In other words, using our
new, second surface Gibbs−Duhem equation, we were able to
correct the previously suggested wrong model equations for
the partial molar surface areas. The new model eqs 5a and 5b
provide a way to improve the Butler eqs 2v and 2w.

3.3. Derivation of the Third Surface Gibbs−Duhem
Equation. Now, let us extend the first surface Gibbs−Duhem
eq 2n by a second term:

x xd d 0
i

i s i s
i

i s i( ) ( ) ( )∑ ∑μ μ· * − · =
(6a)

where μi (J/mol) is the chemical potential of component i in

the equilibrium bulk phases and ( ) xd di x
p T xi

B s
, ,

( )
i

B s( )
μ ≡ ·μ∂

∂ . As

μi depends only on bulk compositions of the equilibrium
phases, temperature, and pressure but is obviously independent
of the surface composition, the second term of eq 6a is zero.
The first term of eq 6a is zero due to eq 2n, and this is how the
validity of eq 6a is proven. Now, let us make some
rearrangements in eq 6a:

x d( ) 0
i

i s i s i( ) ( )∑ μ μ· * − =
(6b)

Now, let us recall that according to ref 28, the difference
between the reduced surface chemical potential and the bulk
chemical potential of any component i equals the partial molar
surface excess Gibbs energy of the same component (ωi · σi, J/
mol) as

i s i i i( )μ μ ω σ* − = · (6c)

The quantity ωi · σi can be understood as the molar partial
surface excess Gibbs energy of component i accompanying its
transfer from the bulk of the phase to its surface region (see
also eq 2m). Now, let us substitute the right hand side of eq 6c
into the parentheses in eq 6b:

Langmuir pubs.acs.org/Langmuir Article

https://doi.org/10.1021/acs.langmuir.2c00229
Langmuir 2022, 38, 4906−4912

4909

pubs.acs.org/Langmuir?ref=pdf
https://doi.org/10.1021/acs.langmuir.2c00229?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


x d( ) 0
i

i s i i( )∑ ω σ· · =
(6d)

Equation 6d is the third surface Gibbs−Duhem equation
written for the partial molar surface excess Gibbs energy of
component i. For a binary A−B solution, eq 6d simplifies as

x
x

x
x
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A A

B s
B s
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B s
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( )
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( )

ω σ ω σ
− ·

·
+ ·

·
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(6e)

When the Butler eq 2u is substituted into eq 6e to replace
both σA and σB by σ, then this modified eq 6e can be simplified
by dividing its sides by σ, and then eq 6e is simplified to eq 3c,
proven above. This can be considered as another way to prove
the validity of eq 6e. Now, let us rearrange eqs 2v and 2w and
write the following model equations for ωA · σA and ωB · σB:
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Let us take the derivatives of eqs 6f and 6g by xB(s):
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Now, let us substitute eqs 6h and 6i into eq 6e:
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Rearranging eq 6j, the identity 0 = 0 is obtained, proving
that the model eqs 6f and 6g satisfy the third surface Gibbs−
Duhem equation, i.e., the Butler model written by eqs 2v and
2w, are reasonable model equations.
3.4. Derivation of the Fourth Surface Gibbs−Duhem

Equation. Now let us apply our previous result:21

( ) xd d 0
x

p T x
i s

d
d

, ,
( )

i s
i

( )
σ = · =σ . This is because in equilibrium,

nature seeks for minimum Gibbs energy, including minimum
surface tension, which is achieved by adjusting the surface
composition of the solutions (for more details, see ref 21).
Note that the following three claims are valid at the same time
for surface equilibrium: (i) the chemical potential of each
component should be identical in all bulk phases and along all
interfaces (after Gibbs), (ii) the partial interfacial energies of
all components should be identical along each interface (after
Butler), and (iii) all interfacial energies have their possible
minimum values (after ref 21). Now, let us substitute dσ = 0
into the first surface Gibbs−Duhem eq 2k to obtain the fourth
surface Gibbs−Duhem equation:

x d 0
i

i s i s( ) ( )∑ μ· =
(7a)

According to Gibbs, the chemical potential of any
component i should be identical in equilibrium in all bulk
phases and along all interfaces, i.e., one can write

i s i( )μ μ= (7b)

Substituting eq 7b into eq 7a and applying the model eqs 1m
and 1n, the final result 0 = 0 follows in the same way as was
shown above, i.e., it is proven that the regular solution model
applied to the surface region obeys the fourth surface Gibbs−
Duhem equation. The same conclusion follows if the last terms
of eqs 1m and 1n are extended to the Redlich−Kister
polynomial.36−38

Finally, let us conclude that the Gibbs−Duhem equation can
be extended to all four partial molar surface quantities known
to us: the reduced surface chemical potential (μi(s)* , eq 2n), the
partial molar surface area (ωi, eq 3c), the partial molar excess
surface Gibbs energy (ωi · σi, eq 6e), and the surface chemical
potential (μi(s), eq 7a).

4. CONCLUSIONS
In this paper, the Gibbs−Duhem equation is extended to the
partial molar surface thermodynamic properties of solutions by
making the sum of mole fractions of the components in the
surface region of bulk solutions multiplied by different partial
molar surface quantities equal to zero if summation is taken by
all components. The following four partial molar surface
properties were found to obey the surface Gibbs−Duhem
equation: (i) the reduced surface chemical potential, (ii) the
partial molar surface area, (iii) the partial molar excess surface
Gibbs energy, and (iv) the surface chemical potential.
The reduced surface chemical potential is defined as the sum

of the surface chemical potential and the partial surface area
multiplied by surface tension; its model equation suggested by
us recently28 is found to obey the first surface Gibbs−Duhem
equation. In this way, this model equation was found to be
valid.
However, the model equation suggested by us recently for

the partial molar surface area28 is found to contradict the
second surface Gibbs−Duhem equation, i.e., it is found wrong.
In this paper, new (and simpler) model equations for the
partial molar surface areas are found to obey the second
surface Gibbs−Duhem equation. These new model equations
are expected to improve the practical application of the Butler
equations further.
Applying the third surface Gibbs−Duhem equation, the

general form of the Butler equation was further confirmed.
Finally, applying the fourth surface Gibbs−Duhem equation, it
is shown that in equilibrium, nature seeks for minimum surface
tension, which is achieved by adjusting the surface composition
of solutions.
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