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Most metallic elements have a crystal structure that is either body-centered cubic (bcc), face-

centered close packed, or hexagonal close packed. If the bcc lattice is the thermodynamically most

stable structure, the close-packed structures usually are dynamically unstable, i.e., have elastic

constants violating the Born stability conditions or, more generally, have phonons with imaginary

frequencies. Conversely, the bcc lattice tends to be dynamically unstable if the equilibrium structure

is close packed. This striking regularity essentially went unnoticed until ab initio total-energy

calculations in the 1990s became accurate enough to model dynamical properties of solids in

hypothetical lattice structures. After a review of stability criteria, thermodynamic functions in the

vicinity of an instability, Bain paths, and how instabilities may arise or disappear when pressure,

temperature, and/or chemical composition is varied are discussed. The role of dynamical insta-

bilities in the ideal strength of solids and in metallurgical phase diagrams is then considered, and

comments are made on amorphization, melting, and low-dimensional systems. The review

concludes with extensive references to theoretical work on the stability properties of metallic

elements.
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I. INTRODUCTION

A crystalline material in thermal equilibrium at ambient
conditions has the lattice structure that minimizes the Gibbs
free energy. For instance, the elements copper, silver, and
gold all have the face-centered cubic (fcc) structure, and
chromium, molybdenum, and tungsten have the body-
centered cubic (bcc) structure, from 0 K to their melting
points. It has often been assumed that if the atoms of Cu,
Ag, or Au were instead arranged in a bcc lattice, it would
represent a metastable state, i.e., a state that can be in local

mechanical equilibrium but is not that of the lowest Gibbs
free energy. Similarly, the fcc lattice structure has been
assumed to be a metastable state of Cr, Mo, and W.
Because pure Cu, Ag, and Au have not been found in bulk
form in the bcc structure at ambient conditions, and pure Cr,
Mo, and W have not been found in the fcc structure, it has not
been possible to obtain the properties of such phases
experimentally.

Ab initio electronic structure calculations offer a way to
study phases of any assumed lattice structure and greatly
extend the knowledge gained from experiments. An early
example is the work by Yin and Cohen (1982), in which
the total energy of silicon and germanium at 0 K is calculated
for the diamond-type, fcc, bcc, and four other structures. The
volume per atom is varied and the energy minimum is found.
Such calculations can give the cohesive energy, the atomic
volume, and the bulk modulus of each considered phase. Yin
and Cohen (1982) correctly found that the energy minima of
Si in the fcc and bcc structures lie at higher energies than that
of the experimentally observed diamond-type lattice structure
(see Fig. 1). However, later ab initio calculations (Ekman,
Persson, and Grimvall, 2000) showed that the fcc and bcc
phases at their energy minima do not represent metastable
states, because these structures of Si are dynamically un-
stable. It means that there exist infinitesimal deformations
of the lattice, for which the atoms do not return to their
assumed equilibrium positions. In the literature, dynamical
instability is sometimes called mechanical instability.

The Pt-W system illustrates another aspect of dynamical
instabilities. Pure platinum has the fcc lattice structure, and
pure tungsten has the bcc structure. At low concentrations of

FIG. 1. The total energy of Si at 0 K and ambient pressure

calculated ab initio for various lattice structures by Yin and

Cohen (1982).
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tungsten, the fcc solid solution structure of the Pt-W alloy is
the thermodynamically most stable state, according to the
experimentally determined phase diagram (see Fig. 2).
However, pure fcc W is dynamically unstable, at least at
low temperatures, as will be discussed later in more detail
(see Fig. 3). A hypothetical Pt-W fcc solid solution therefore
cannot represent a metastable phase at high W concentra-
tions. There must be a critical concentration ccrit beyond
which fcc Pt1�cWc is dynamically unstable. Similarly, mag-
nesium has the hexagonal close-packed (hcp) structure in
thermal equilibrium at ambient temperature and pressure.
Under those conditions, the bcc structure of Mg turns out to
be dynamically unstable, but at high pressure the bcc lattice
of Mg not is only dynamically stabilized but also becomes the
thermodynamically most stable phase. There is a critical
pressure Pcrit below which bcc Mg is dynamically unstable.

The lattice stability can also depend on the temperature T.
For instance, in thermodynamic equilibrium at ambient pres-
sure, the elements Ti, Zr, and Hf all have the hcp structure at
low temperatures and the bcc structure at high temperatures.
However, the bcc lattice is dynamically unstable below cer-
tain critical temperatures Tcrit. Therefore, bcc Ti, Zr, and Hf
cannot be regarded as metastable phases at 0 K.

The critical concentration ccrit, critical pressure Pcrit, and
critical temperature Tcrit that separate dynamically stable and
unstable regions should not be confused with the actual

concentration, pressure, and temperature where there is a
phase change governed by the Gibbs free energy of thermo-
dynamic equilibrium. For example, the thermodynamic
stability range of the fcc structure in the Pt-W phase diagram
terminates before one reaches c ¼ ccrit. Similarly the hcp-to-
bcc transition in Mg takes place at a pressure higher than Pcrit,
and the hcp-to-bcc transitions in Ti, Zr, and Hf occur at
temperatures above Tcrit.

Figure 3 gives an overview of the stability and instability of
the fcc and bcc structures for elements from the third, fourth,
and fifth rows in the periodic table. There is a tendency for the
bcc phase to be dynamically unstable when the fcc structure is
the equilibrium phase, and vice versa. This feature will get a
natural explanation in terms of Bain paths, which represent
how a certain structure is continuously deformed into another
structure, e.g., the bcc-to-fcc transformation through distor-
tion of a tetragonal lattice.

It must be stressed that not all structural changes are
associated with a dynamical instability. For example, iron
has the bcc structure at low temperatures and ambient pres-
sure. At T ¼ 1173 K, fcc Fe becomes the thermodynamically
most stable phase, but at 1660 K it returns to the bcc structure.
Iron melts at 1811 K. At room temperature, the bcc Fe lattice
transforms to the hcp structure when the pressure exceeds
about 13 GPa. The phases of Fe that are not the thermody-
namically most stable ones nevertheless remain dynamically
stable, and thus represent metastable states in wide ranges of
temperature and pressure. Such transformations, which are
not related to dynamical lattice instabilities, lie outside the
scope of this review. Further, we will not consider internal-
coordinate instabilities such as ferroelectric phenomena and
Jahn-Teller distortions, or isostructural transitions such as
between the two fcc phases of Ce that have different atomic
volumes. The hcp structure is in many respects similar to the
fcc structure and will also be dealt with here, although the
emphasis is on bcc and fcc lattices.

II. LATTICE INSTABILITIES

A. Phonon dispersion curves

A lattice wave (phonon) in a periodic lattice is character-
ized by its frequency !ðq; sÞ, where q is the wave vector and
s is a label denoting the polarization (one longitudinal and
two transverse modes) and the phonon branches (acoustic and
optical). The time dependence of the amplitude is given by a
factor expð�i!tÞ. An imaginary !ðq; sÞ ¼ i� leads to an
exponentially increasing factor expð�tÞ. A general stability
criterion, in the harmonic approximation and at zero external
load, therefore is

!2ðq; sÞ> 0 (1)

for all q and s.
Often an instability is present only for small q, i.e., for

long-wavelength phonons. We call it an elastic instability. In
fact, it has been suggested (Born, 1940; Born and Fürth,
1940; Power, 1942) that if a lattice is stable at long wave-
lengths, it is very likely stable also at short wavelengths.
However, a counterexample was given by Wallace and
Patrick (1965) in the diamond structure. Many examples

Ca 
Sr 
Ba 

Sc 
Y 
La 

Ti 
Zr 
Hf 

V 
Nb 
Ta 

Cr 
Mo 
W 

Mn 
Tc 
Re 

Fe 
Ru 
Os 

Co 
Rh 
Ir 

Ni 
Pd 
Pt 

Cu 
Ag 
Au 

fcc hcp hcp bcc bcc “bcc” bcc hcp fcc fcc 

fcc hcp hcp bcc bcc hcp hcp fcc fcc fcc 

bcc hcp hcp bcc bcc hcp hcp fcc fcc fcc 

FIG. 3. Elements from the third, fourth, and fifth rows in the

periodic table. The ambient-condition ground-state structure is

shown in each box, for the sequence of elements in the top row

(Donohue, 1974; Young, 1991). Generally, the bcc structure is

dynamically unstable if the equilibrium structure is close packed

(fcc or hcp), or the fcc structure is dynamically unstable if the

equilibrium structure is bcc. For Pt and the noble metals this trend is

uncertain or less pronounced. Manganese has a complex bcc-related

ground-state structure with 58 atoms per unit cell and is unstable in

the conventional bcc structure.

0 0.5 1.0

C 

2000

3000

4000

T
 (

K
)

liquid 

fcc 

bcc 

fcc+bcc 

Pt W

FIG. 2. The essential parts of the Pt-W phase diagram. From

Guillermet et al., 1995.
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were later found of lattices that are dynamically stable in the
elastic limit of the phonon dispersion curves but are unstable
when q is close to the Brillouin zone boundary, or are
unstable only at intermediate q values. The fcc structure of
tungsten exemplifies dynamical instabilities in large regions
of q in the first Brillouin zone (see Fig. 4).

In Eq. (1) we labeled the eigenfrequencies by a wave
vector q, which refers to eigenstates that are plane waves.
In a disordered alloy with N atoms, and in the harmonic
approximation, there are still 3N (or, rather, 3N � 6) eigen-
frequencies but the corresponding wave functions may not all
be well represented by plane waves. However, also in a
nonperiodic lattice all the eigenfrequencies must be real
and positive, as expressed by Eq. (1). This stability condition
holds for systems of any size and structural disorder. The
dynamical matrix in nonperiodic systems may conveniently
be expressed in real-space coordinates (instead of reciprocal
space); cf. Umeno, Kitamura, and Tagawa (2007) in a study
of amorphous metals, and Pacheco and Batra (2008) on finite-
size gold crystals. It is often referred to as the Hessian, or
Hessian matrix. Further comments on stability criteria in
nonuniform systems are given in Sec. VIII.C on defect for-
mation. In this review we keep the descriptions ðq; sÞ and
!ðq; sÞ of perfect lattices in alloys and in thermally disor-
dered systems also, even though the vibrations may be heav-
ily damped.

B. Elastic constants

1. Born stability criteria

The elastic properties of a lattice are described by the
elastic constants Cij. The elastic energy change associated

with an arbitrary deformation given by small strains ei is
(Born, 1940)

Uelast ¼ 1

2
V0

X6
i;j¼1

Cijeiej þOðe3Þ: (2)

We used the standard Voigt contraction scheme for the indices
i and j. V0 is the volume of the unstrained sample and Oðe3Þ
denotes terms of order e3 or higher. In a lattice of cubic
symmetry (e.g., fcc, bcc, diamond type, NaCl type, or CsCl
type) there are three independent elastic constants: C11, C12,
and C44. Then Eq. (2) reduces to

Uelast¼ 1
2V0½ðC11�C12Þðe21þe22þe23ÞþC12ðe1þe2þe3Þ2
þC44ðe24þe25þe26Þ�þOðe3Þ: (3)

A lattice is dynamically stable only if Uelast is positive for
any small deformation. This implies restrictions on Cij,

which are mathematically expressed by the condition that
the principal minors of the determinant with elements Cij are

all positive (Born, 1940; Born and Huang, 1954). In cubic
lattice symmetry, dynamical stability requires that

C11 þ 2C12 > 0; C11 > jC12j; C44 > 0: (4)

Usually C12 > 0, with intermediate-valent compounds such
as TmxSe (Boppart et al., 1980) and SmxLa1�xS (Schärer and
Wachter, 1995) being exceptions. Further, it is convenient to
work with the bulk modulus

B ¼ C11 þ 2C12

3
(5)

and the shear modulus

C0 ¼ C11 � C12

2
: (6)

A common formulation of the stability conditions therefore is

B> 0; C0 > 0; C44 > 0: (7)

The case B < 0 is referred to as spinodal instability
(Appendix A). The vanishing bulk modulus leads to decohe-
sion without lattice symmetry change. Failure through
C0 < 0, called the Born instability, is characterized by sym-
metry breaking with coupling of shear modes under volume
conservation. C44 < 0 is a pure shear instability. The three
relations in Eq. (4) or Eq. (7) are often called the Born
stability criteria.

The analogous stability criteria for tetragonal and hexago-
nal lattice structures follow from relations given in Eqs. (13)
and (14), when the external load is set to zero.

2. The stability triangle

An illuminating description of elastic properties in cubic
lattices is obtained with the parameters s1, s2, and s3, where

s1 ¼ C11 þ 2C44 (8)

is a characteristic measure of the magnitude of the elastic
constants, and

s2 ¼ C11 � C44

C11 þ 2C44

; s3 ¼ C11 � C12 � 2C44

C11 þ 2C44

(9)

are dimensionless parameters. The Born stability criteria are
fulfilled for all points inside a prism in the (s1, s2, and s3)
space with s1 > 0 and a triangular base, as shown in Fig. 5
(Paszkiewicz, Pruchnik, and Zieliński, 2001; Paszkiewicz and
Wolski, 2008). That base is called the stability triangle.
Elastically isotropic systems (e.g., bcc W) are located on
the s2 axis. The two shorter sides of the triangle represent
symmetry-breaking soft shear modes (C0 ¼ 0 or C44 ¼ 0)
while the longest side represents cubic isostructural phase
transitions (B ¼ 0). When C44 ! 0 (s2 ! 1, i.e., anywhere
on the vertical side of the stability triangle in Fig. 5) all elastic
shear modes with q ¼ ðq1; q2; 0Þ and polarization vector
(0, 0, 1) simultaneously have ! ! 0. Special cases are the
modes in the [100] and [110] directions. When C0 ! 0
(anywhere on the lower side in the stability triangle) only

FIG. 4. At ambient pressure, fcc tungsten is dynamically unstable

for all long-wavelength transverse modes and for some Brillouin

zone boundary modes, but there are also regions of q where all

modes are stable. From Einarsdotter et al., 1997.

948 Göran Grimvall et al.: Lattice instabilities in metallic elements

Rev. Mod. Phys., Vol. 84, No. 2, April–June 2012



the mode in the [110] direction with polarization in the (110)
plane has a vanishing frequency. In this respect, one can say
that C44 ! 0 leads to a more severe lattice instability than is
the case for C0 ! 0. Instabilities in cubic lattices are usually
associated with C0 < 0, while still C44 > 0; cf. Tables II and
III and Appendixes D and I.

Phonon dispersion curves !ðqÞ in cubic structures are
often presented for the three high-symmetry directions
[100], [110], and [111]. It follows from what has just been
said that if they show dynamical stability in the [100] and
[110] directions, all elastic shear modes will be dynamically
stable. This result holds only in the small-q limit. For in-
stance, we note in Fig. 4 for tungsten that the transverse
phonons at the Brillouin zone boundary in the [100] and
[110] directions are stable, but the transverse zone boundary
mode in the [111] direction is unstable.

Paszkiewicz and Wolski (2007) used the concept of the
stability triangle to discuss Young’s modulus E, the shear
modulus G, and Poisson’s number � for cubic lattices.

3. Elastic stability under external load

The Born stability criteria in Eq. (4) must be modified
when the solid is subject to an external load, specified by the
stress tensor � (Hill, 1975; Hill and Milstein, 1977). We
introduce an elastic stiffness matrix B (Wallace, 1967,
1972) with elements

Bijkl ¼ Cijkl þ 1
2ð�ik�jl þ �jk�il þ �il�jk

þ �jl�ik � 2�kl�ijÞ: (10)

Here Cijkl are elements in the elastic constant tensor C

evaluated at the current stressed state (which may not have
cubic symmetry), �ij specify the external stresses, and �ij is

the Kronecker delta (1 if i ¼ j; 0 if i � j). The Born criteria,
which followed from the determinant condition jCj ¼ 0, are
now replaced by criteria derived from jAj ¼ 0, where A ¼
ðBT þ BÞ=2 and superscript T denotes transposition (Wang
et al., 1995). In the special case of hydrostatic pressure,
�11 ¼ �22 ¼ �33 ¼ �P, the new conditions for elastic

stability are (Wallace, 1967; Milstein and Hill, 1979a,
1979b; Wang et al., 1993, 1995; Mizushima, Yip, and
Kaxiras, 1994; Milstein and Rasky, 1996; Zhou and Joós,
1996; Morris, Jr. and Krenn, 2000; Yip et al., 2001)

C11 þ 2C12 þ P> 0; C44 � P> 0;

C11 � C12 � 2P> 0;
(11)

or equivalently

BþP=3> 0; C44 �P> 0; C0 �P> 0: (12)

The spinodal instability with P < 0, i.e., under a uniform
tension, might be achieved indirectly as a result of lattice
expansion through the insertion of large atoms in the lattice.

In a tetragonal crystal structure one has six independent
elastic constants: C11 ¼ C22, C33, C12, C13 ¼ C23, C44 ¼
C55, and C66; all other Cij ¼ 0. Under hydrostatic pressure

the stability conditions are (Cleri, Wang, and Yip, 1995;
Sin’ko and Smirnov, 2002)

C44 � P> 0; C66 � P> 0;

C11 � C12 � 2P> 0;
(13)

and

ðC33 � PÞðC11 þ C12Þ � 2ðC13 þ PÞ2 > 0: (14)

A special case is the hexagonal lattice symmetry, where
C66 ¼ ðC11 � C12Þ=2. For cubic symmetry, where C33 ¼ C11

and C13 ¼ C12, Eq. (14) can be factorized as ðC11 � C12 �
2PÞðC11 þ 2C12 þ PÞ> 0, in agreement with Eq. (11).

If a tetragonal crystal structure is subject to uni-
axial tension � in the [001] direction, the stability
criteria are C11 � C12 > 0, C44 þ �=2> 0, C66 > 0, and
ðC33 þ �ÞðC11 þ C12Þ � 2ðC13 � �=2Þ2 > 0 (Wang et al.,
1993, 1995; Li and Wang, 1998; Pokluda et al., 2004).

In this context we note that the elastic constants in a
specimen subject to an external load can be defined in differ-
ent ways, leading to different stability criteria (Milstein
and Rasky, 1996; Pokluda et al., 2004); see also Steinle-
Neumann and Cohen (2004) and Marcus and Qiu (2009a,
2009b). The stability conditions (11)–(14) correspond to the
definition of elastic constants from the energy expansion of
Green’s variables (Hill and Milstein, 1977).

4. Phonon stability under hydrostatic pressure

How should the stability criterion !2ðq; sÞ> 0 be gener-
alized under external hydrostatic pressure? In the case of
short-wavelength phonons, the lattice modulation varies
over a length scale given by the size of atoms. The medium
that provides the external pressure is also discrete on a similar
length scale. Therefore the meaning of constant pressure as a
boundary condition is troublesome. In practice, theoretical
calculations of phonon spectra are instead performed at
constant volume, corresponding to a certain pressure.
Before we treat that case, it is instructive to look at a specific
example in which constant pressure is nevertheless assumed
to be well defined.

Consider a transverse phonon mode in the [001] direction,
where !2ðqÞ ¼ q2C44=� for small q. Then C44 � P > 0 can
be rewritten as

-2.5
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FIG. 5. Cubic crystal structures are dynamically stable when the

values of C11, C12, and C44 are such that ðs2; s3Þ falls inside the

stability triangle bounded by the thick lines, corresponding to s3 ¼
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points are shown for two very stable structures (bcc W, fcc Os), two
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weakly unstable (bcc Hf); cf. Table II.
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!ðqÞ � q

ffiffiffiffi
P

�

s
> 0: (15)

The relation C44 � P> 0 expresses the stability condition
that the enthalpy H ¼ Uþ PV increases when a specimen is
subject to a small shear under an external hydrostatic pressure
P. The shear leads to volume decrease �V (cf. the volume
change due to shear alone, as discussed in Sec. IV.B). Thus,
�Uelast � P�V must be positive.

The potential energy of a single harmonic oscillator
of frequency ! and instantaneous displacement u is
M!2u2=2. The analogous result for a transverse wave of
frequency ! propagating in the z direction with displacement
x ¼ a sinðqzÞ and wavelength � ¼ 2�=q, averaged over a
specimen of volume V0, is �Uinternal ¼ V0a

2!2�=4. Further,
this shear deformation of the crystal unit cells shortens the
specimen in the z direction, leading to a total volume decrease
�V ¼ V0a

2q2=4. The stability condition �Uinternal �
P�V ¼ V0ða2!2�=4� a2q2P=4Þ> 0 has the same q and
P dependence as in the small-q limit in Eq. (15), which
therefore holds for all wavelengths in this example.

We next turn to calculations of the phonon dispersion
relations !ðq; sÞ referring to a certain pressure but actually
performed at constant volume. One starts with a specimen
having the equilibrium volume V 0 when the atoms are at their
equilibrium positions and there is an external hydrostatic
pressure P. The lattice then is modulated according to the
phonon mode ðq; sÞ, which increases the energy but also
changes the specimen volume. Through an additional defor-
mation, the specimen volume is brought back to V 0. The
resulting energy change �E after the two kinds of deforma-
tions is calculated by ab initio techniques and yields the
corresponding frequency !ðq; sÞ. The energy change in the
volume-conserving step just mentioned is the equivalent of
the enthalpy gain P�V in the case of a calculation at constant
pressure. Therefore the calculated !ðq; sÞ already includes
the effect of external pressure on the stability condition, and
no explicit correction such as in Eq. (15) should be added.
There seems to be no rigorous discussion of this point in
papers that have presented ab initio calculations of phonon
dispersion curves under pressure, but it has been clarified in
the case of elastic constants, equivalent to the long-
wavelength limit of !ðq; sÞ. Consider the strain-energy
density expressed in the elastic constants (the stress-strain
coefficients) Cijkl (Barron and Klein, 1965; Steinle-Neumann

and Cohen, 2004):

�E

V
¼�Peiiþ1

2

�
Cijkl�1

2
Pð2�ij�kl��il�jk��jl�ikÞ

�
�eijekl: (16)

The convention of summation over repeated indices is ap-
plied. If the strains e are chosen such as exemplified in
Sec. IV.B, all terms proportional to P vanish in Eq. (16), to
the order of e2; cf. Steinle-Neumann and Cohen (2004).
Therefore, no further pressure correction should be added
to the elastic constants calculated from �E, contrary to what
was argued by Marcus, Ma, and Qiu (2002), but also see later
clarifications (Marcus and Qiu, 2004, 2009a, 2009b; Sin’ko
and Smirnov, 2004).

III. THERMODYNAMIC FUNCTIONS

A. Harmonic approximation

The Helmholtz free energy FðTÞ per atom for a harmonic
phonon spectrum can be written

F ¼ kBT
Z !max

0
ln

�
2 sinh

�
ℏ!
2kBT

��
Dð!Þd!: (17)

Dð!Þ is the density of phonon states, normalized to 3 per
atom. The high-temperature expansion of F, in a system with
N atoms, is

F¼�NkBT
Z !max

0

�
ln

�
kBT

ℏ!

�
� 1

24

�
ℏ!
kBT

�
2þ���

�
Dð!Þd!:

(18)

Thus the leading term in the Helmholtz free energy at high
temperatures,

FðTÞ ¼ �3NkBT ln

�
kBT

ℏ!log

�
; (19)

and the corresponding entropy

SðTÞ ¼ �
�
@F

@T

�
V
� 3NkB

�
1þ ln

�
kBT

ℏ!log

��
; (20)

depend on only a single parameter, i.e., on the logarithmic
average !log of the phonon frequencies, defined as

lnð!logÞ ¼ 1

3

Z !max

0
lnð!ÞDð!Þd!: (21)

B. Vibrational properties near instabilities

1. Entropy

Consider a solid that is dynamically unstable when the
composition or the pressure has passed a certain critical
value. Let q0 be the wave vector of that phonon whose
frequency first becomes zero when the critical condition is
approached. Thus !2ðq0; scritÞ ¼ 0 but all other !2ðq; sÞ> 0
when q ! q0. An expansion of !ðq; scritÞ in small q� q0

around q0, for the unstable mode s ¼ scrit, can be written in
the form

!ðq; scritÞ ¼ !ðq0; scritÞ þ �ðqx � q0;xÞ2
þ �ðqy � q0;yÞ2 þ 	ðqz � q0;zÞ2: (22)

To get the contribution to !log from phonons close to the

unstable mode, we integrate over d3q in the region
jq� q0j< qr, where qr is a suitable cutoff parameter, and
use the fact that the density of states for phonons in q space
(reciprocal space) is a constant. When !ðq0; scritÞ ! 0, and
for the special case � ¼ � ¼ 	, we have ln!ðq; scritÞ ¼
ln½�ðq� q0Þ2�. Then, with integration variable q ¼
jq� q0j,Rqr

0 ln½�ðq� q0Þ2�d3qRqr
0 d3q

¼ 3

q3r

Z qr

0
lnð�q2Þq2dq

¼ lnð�q2rÞ � 2

3
: (23)
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Thus we obtain the important result that the logarithmic
average !log does not diverge, but has a finite limit when

!ðq0; scritÞ ! 0. It now follows from Eq. (20) that the entropy
has a well-defined limit (Guillermet et al., 1995). This
qualitative result is obtained also when the isotropy condition
� ¼ � ¼ 	 does not hold. If the critical condition first arises
at the Brillouin zone center, i.e., for q0 ¼ 0, then !ðq; scritÞ is
linear in q for small q. The entropy still has a finite limit when
the instability condition is approached, but only when one
takes into account that !ðq; scrit) is not strictly isotropic for
small q; see Sec. III.B.3.

2. Atomic displacement

The conventional expression for the average of the squared
thermal atomic displacement at high temperature T in a
monatomic lattice of cubic symmetry and with atomic mass
M is (Grimvall, 1999)

hu2i ¼ kBT

NM

X
qs

1

!2ðq; sÞ : (24)

Following the approach above, with !ðq; scritÞ ¼
!ðq0; scritÞ þ �ðq� q0Þ2 inserted into Eq. (24), and after a
summation over q vectors with jq� q0j< qr, one finds that
hu2i diverges as 1=½!ðq0; scritÞ�1=2 when !ðq0; scritÞ ! 0. A
similar consideration shows that hu2i diverges also in
the elastic-limit instabilities that arise when C44 ! 0 or
C0 ! 0. This seems inconsistent with the fact that the entropy
does not diverge, since in classical physics (high T), the
entropy is a measure of the occupied part of phase space.
However, hu2i in Eq. (24) refers to the displacement of a
specified atom relative to its equilibrium position. Because of
the correlated motion of the atoms, one cannot take hu2i as a
measure of the total occupied phase space. Let hu2ðRÞi be
the average of the squared thermal displacement of the
distance R ¼ Rj �R0 between atoms labeled j and 0. The

high-temperature expression corresponding to Eq. (24) is
(Grüneisen and Goens, 1924; Warren, 1969; Grimvall, 1998)

hu2ðRÞi ¼ 2kBT

NM

X
qs

½
ðq; sÞ � ê�2
!2ðq; sÞ

� f1� cos½q � ðR0
j �R0

0Þ�g: (25)

Here 
ðq; sÞ is a phonon polarization vector and ê is a unit
vector along R0

j �R0
0, where the superscript 0 denotes the

equilibrium position. In the elastic limit (small q), and to
lowest order, 1� cos½q � ðR0

j �R0
0Þ� � ½q � ðR0

j �R0
0Þ�2=2,

which cancels the singularity from !2ðq; sÞ � q2 in the de-
nominator. On the other hand, ignoring the cosine term yields
hu2ðRÞi ¼ 2hu2i=3 with hu2i as in Eq. (24), i.e., the result of
noncorrelated vibrations. Another simple case is when q lies
at the boundary of the first Brillouin zone. Then every second
atom moves in phase. We let these examples illustrate how
the finite vibrational entropy close to the lattice instability can
be reconciled only with correlated vibrational displacements.

3. Generalized Debye models

The conventional Debye model has a density of states
Dð!Þ �!2, with a cutoff frequency !D related to the sound

velocity Csound ¼ !D=qD, where qD is the Debye cutoff wave

number. Thus the longitudinal and transverse lattice vibra-

tions are described by a common parameter !D. Such a

model is unrealistic in a treatment of dynamical instabilities,

because of the crucial role of shear vibrations; the vibrational

entropy would diverge when !D ! 0. In Appendix D it is

shown that this divergence remains even if the longitudinal

and shear modes are treated separately, but are still isotropic.

However, in a real system where the elastic waves are de-

scribed by the three independent constants C11, C12, and C44,

the vibrational entropy is finite when either C0 ! 0 or

C44 ! 0. As an example, we show in Fig. 6 how the entropy

increase �S varies in a model alloy when a shear instability is

approached with C44 ! 0 (C0 fixed) and with C0 ! 0 (C44

fixed), respectively. Ab initio calculations by Rousseau et al.

(2011) show a related behavior for !log in fcc Li under

pressure, where phonons close to the K point in the

Brillouin zone become unstable but elastic stability is

retained.

4. Effect of anharmonicity

The results obtained above for the entropy and the atomic

displacement were derived within the harmonic approxima-

tion for lattice vibrations. As one approaches an instability,

anharmonic effects will be important. However, it is known

that the harmonic expression for the entropy (but not for, e.g.,

the energy) remains valid, within low-order perturbation

theory, if one lets the frequencies !ðq; sÞ be shifted due to

the anharmonicity (Barron, 1965; Cowley and Cowley, 1966;

Grimvall, 1999). Therefore the entropy is well described also

in the case of moderate anharmonic effects. This is sufficent

to account for phase diagrams, as done in Sec. IX, since then

the thermodynamic functions in the immediate vicinity of the

lattice instability are not important. After the onset of an

instability, the vibrational entropy is of course not a thermo-

dynamically defined quantity. A much more intricate aspect

of strong anharmonicity is considered in Sec. VI, dealing with

temperature-dependent effects in the combined vibrational

and electronic systems.
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FIG. 6. The entropy increase per atom in a Debye model of a

monatomic solid, plotted as �S=ð3kBÞ, when either C44 or C
0 varies

linearly with the concentration c and becomes zero at ccrit ¼ 0:5,
while the other shear constant is kept constant. At concentration

c ¼ 0, our model system is assumed to be isotropic with C0 ¼
C44 ¼ C11=3. Note that �S does not diverge at c ¼ ccrit.
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IV. STRUCTURAL TRANSFORMATIONS

A. Transformation paths

1. Classical (uniaxial) Bain path

Bain (1924) pointed out that an fcc lattice can be trans-

formed into a bcc lattice by stretching the three sides in the

cubic unit cell by factors of 1,
ffiffiffi
2

p
, and

ffiffiffi
2

p
, respectively.

Conversely, if the axes of a bcc lattice are stretched by factors

of
ffiffiffi
2

p
, 1, and 1, respectively, the lattice transforms into an fcc

structure (see Fig. 7). The intermediate lattice has tetragonal

structure, with the crystallographic unit cell axes a and c.
Going from the bcc to the fcc lattice in this case corresponds

to c=a varying from 1 to
ffiffiffi
2

p
in a body-centered tetragonal

(bct) structure (see Fig. 8). Alternatively, we define a lattice

parameter a0 ¼ a=
ffiffiffi
2

p
. Going from the fcc to the bcc lattice

then corresponds to c=a0 varying in a face-centered tetragonal
(fct) lattice from 1 to 1=

ffiffiffi
2

p � 0:71. We use the first descrip-

tion in this review, but both of them occur in the literature.
There are several similar deformation modes of a lattice,

which all pass through the special cases of fcc and bcc

lattices. They are called Bain paths; see, for example, reviews
by Milstein, Fang, and Marschall, (1994) and Marcus, Jona,

and Qiu (2002). The simplest of them, which we call the
classical Bain path, has an intermediate tetragonal lattice

structure and is subject to the additional condition that the
volume per atom�a ¼ a2c=2 is kept constant. To distinguish
it from other Bain paths, it can be referred to as the volume-
conserving tetragonal Bain path. [In the original paper by

Bain (1924) no such volume constraint is mentioned, but it
has been used in numerous later works; see Milstein, Fang,

and Marschall (1994).]
Let the total energy of the static tetragonal lattice be

Uða; cÞ. At the special points of bcc (c=a ¼ 1) and fcc

(c=a ¼ ffiffiffi
2

p
) lattices, symmetry arguments imply that U has

either a minimum corresponding to a stable or metastable
state or a maximum corresponding to a dynamically unstable
state (Craievich et al., 1994; Marcus, Jona, and Qiu, 2002).
In the limits of very large and very small c=a, the atoms
strongly overlap and the energy Uða; cÞ goes to infinity. It
follows that there must be at least three points of energy
extrema along the tetragonal Bain path; two of them for cubic
and one for tetragonal lattice symmetry (Marcus, Jona, and
Qiu, 2002). The extremum in Uða; cÞ that represents a non-
cubic structure is not located at a particular c=a dictated by
symmetry. In rare cases, for example, zinc (Marcus, Jona, and
Qiu, 2002), there is more than one energy extremum for a
tetragonal (noncubic) lattice structure. Figure 9 shows Bain
paths in Ir and W at zero temperature and constant volume,
and Fig. 10 shows three qualitatively different shapes of
Uða; cÞ for tungsten at different volumes. If Uða; cÞ has a
maximum at zero strain, a distortion can lower the total lattice
energy, i.e., the structure is dynamically (mechanically) un-
stable. In Fig. 9, the bcc Ir and the fcc W lattices are unstable.

Magnetism can play an important role, and one must take
into account how the magnetic state varies along a deforma-
tion path. We leave that discussion to Sec. VII.D and to the
treatment of magnetic elements in Appendix J.

As argued above, the existence of a minimum and a local
maximum in the classical Bain path implies the existence
of another (secondary) local minimum. Mehl et al. (2004)
investigated this extended tetragonal Bain path in some detail
for elements that are thermodynamically stable in fcc or bcc
structures. For Sr the secondary minimum coincides with the
bcc lattice, and for Ba with the fcc lattice. Figures 11 and 12
exemplify their results for Pt and W, showing minima to the
left of the bcc structure and to the right of the fcc structure,
respectively. These minima, which represent saddle points in
graphs of energy versus displacement, are unstable against
shear. The question now arises if the structure at the second-
ary minimum is dynamically stable. Mehl et al. (2004) found
that in all cases (except Sr and Ba) it is unstable, with C0 < 0
for those elements that have the equilibrium fcc structure, and

FIG. 8. The body-centered tetragonal structure.
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FIG. 9. Bain paths illustrating cases where either the fcc or the bcc

structure is stable. From Šob, Wang, and Vitek, 1997a.

FIG. 7. The fcc lattice structure results when a bcc lattice (central

part with short-dashed sides in the figure) is stretched in one

direction by a factor c=a ¼ ffiffiffi
2

p
.
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with C66 < 0 for those that have the equilibrium bcc

structure.
The three possible positions of an energy extremum for the

bct structure relative to the energy extrema of the bcc and fcc

structures in the sequence (minimum, maximum, minimum)

along the tetrgonal Bain path are in the order (bct, bcc, fcc),

(bcc, fct, fcc), and (bcc, fcc, bct), as illustrated in Fig. 11,

Fig. 10 (at reduced volumes), and Fig. 12, respectively.
We can abandon the condition of the conserved volume

and consider, e.g., a relaxed uniaxial Bain path where the

dimensions of the lattice in the directions perpendicular to the

direction of the uniaxial stress are relaxed (Alippi, Marcus,

and Scheffler, 1997). This path corresponds to a simulation of

a uniaxial tensile test (see Sec. VIII).
Usually the energy is plotted in one dimension, i.e., along

the coordinate representing the transition path. A more gen-

eral description is to plot the ‘‘energy landscape’’ in which

the special structures are located at peaks, troughs, or saddle

points, as exemplified by Černý et al. (2005) for Cu and Al,

and in Fig. 13 for Si.
In our plots of Bain path energies, a certain path has been

prescribed. However, there can be instabilities along that

primary path, such that the deformation branches off along
a secondary path with another lattice structure. For instance,
if one follows a primary [100] loading path with tetragonal
lattice symmetry and reaches a point where C22 ¼ C23, there
can be a transition to a secondary equilibrium path with
orthorhombic lattice structure, while the specimen is still
subject to a uniaxial load (Hill and Milstein, 1977; Milstein
and Huang, 1978; Milstein, 1980). Bifurcation along a load-
ing path was discussed in detail by Milstein and Huang
(1978) for an fcc crystal subject to [110] loading. We return
to other examples of bifurcation in Sec. VIII.B on the theo-
retical strength.

2. Epitaxial tetragonal Bain path

For each set of lattice parameter values a and c there is a
quantity Uða; cÞ that gives the total quantum-mechanical
energy per atom of the corresponding rigid lattice. The stress
in the crystallographic c direction is

�c ¼ @Uða; cÞ
@c

: (26)

The expitaxial tetragonal Bain path is defined as that curve
in the two-dimensional ac plane where �c ¼ 0 (Alippi,
Marcus, and Scheffler, 1997; Marcus, Jona, and Qiu,
2002). It always passes through the points of cubic symmetry,

c=a ¼ 1 and c=a ¼ ffiffiffi
2

p
, of the relaxed uniaxial Bain path

where the energy Uða; cÞ has an extremum, exactly at the
same volume per atom �a at these energy extrema (Alippi,

FIG. 13. The two-parameter fcc ! sh transformation in Si. The

shear parameter 	 ¼ ðc=aÞ3=2. From Persson, 2001.
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Marcus, and Scheffler, 1997). Note that the epitaxial tetrago-
nal path with biaxial compression corresponds to uniaxial
tension; cf. Sec. VIII.B.1.

Of course, the atomic volume along the epitaxial Bain path
is not conserved. Also in many other cases, as, e.g., when
simulating tensile tests (see Sec. VIII) or analyzing shear, the
corresponding dimensions of the lattice or atomic volume
should be relaxed. One case is illustrated in Fig. 14, which
shows the variation of the energy with the engineering shear
strain along h112i in the (111) plane for fcc Cu (Roundy
et al., 1999). We also note the possibility of bifurcation, as
discussed in Sec. VIII.B.

The name expitaxial derives from the close connection
to the stress and strain conditions for an epitaxial surface
layer. Of particular interest in this review is the case in
which the structure of the epitaxial layer is dynamically
unstable in bulk form. As an example, fcc Co is thermo-
dynamically stable up to its melting temperature, and bcc
Co is dynamically unstable. However, the bcc structure was
reported in ultrathin layers of Co when grown epitaxially
on GaAs(110) (Prinz, 1985) and on Cr(100) (Metoki,
Donner, and Zabel, 1994). Similarly, the equilibrium struc-
tures of Ni and Pd are fcc, and their bcc lattices are
dynamically unstable, but a bcc Ni film was formed epi-
taxially on Fe(100) (Heinrich et al., 1987). Further ex-
amples are given in Appendix I.

A theoretical account of the stabilization of an epitaxial
layer must include the interfacial energy as well as the strain
energy caused by lattice parameter mismatch between film
and substrate. When the film thickness becomes too large, the
dynamical instability of the equilibrium bulk phase cannot be
suppressed. For instance, there is a critical thickness of about
ten atomic monolayers when bcc Cu is grown on Ag(100) (Li
et al., 1991; Pfeifer et al., 2005). One can also grow more
complicated structures with alternating layers of two sub-
stances, e.g., bcc Ti/bcc Nb and bcc Zr/bcc Nb (Thompson
et al., 2004), and Ag/V multilayers with continuous and
reversible bcc-fcc transformation (Wei, Liu, and Misra,
2011).

3. Trigonal Bain path

There are several paths that can take a lattice continuously
between bcc and fcc structures. The tetragonal Bain path
involved strains but no shear. In the trigonal Bain path (or
trigonal deformation path) the lattice is both strained and
sheared. It goes from the bcc to the fcc structure through an
intermediate simple cubic (sc) structure. Figure 15 shows
how a bcc lattice structure can be seen as the special case
when the angle � in the rhombohedral (trigonal) unit cell is
109.47�. The sc structure has � ¼ 90� and the fcc structure
has � ¼ 60�. Figure 16 shows the energy along the bcc-fcc
trigonal Bain path in tungsten. Analogous results have been
obtained by Šob, Wang, and Vitek (1997a) and Mehl and
Finkenstadt (2008). Zelený, Friák, and Šob (2011) compared
the energetics of nonmagnetic (NM), ferromagnetic (FM),
and antiferromagnetic (AFM) states in Fe, Co, and Ni along
the trigonal deformation path.

It should be remarked that tellurium transforms at high
pressure from a rhombohedral (trigonal) to a bcc structure.
Further, the phonons near [0.2, 0, 0] in the Te bcc structure
become dynamically unstable at low pressure. However,
since both the rhombohedral and the bcc structures have
one atom per unit cell, they cannot be linked by a transition
path described by a nonzero phonon q vector. The fact that
the bcc Te phonon mode becomes dynamically unstable near
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FIG. 15. The bcc lattice structure (dashed lines) can be repre-

sented by rhombohedral primitive cells (solid lines) with rhombo-

hedral angle � ¼ 109:47�.
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the rhombohedral-to-bcc transition pressure thus is coinci-
dental (Mauri et al., 1996).

We conclude the discussion of trigonal Bain paths by
contrasting the three cases exemplified by W, Ir, and Po. In
W there is an absolute energy minimum at the bcc structure
(see Fig. 16), in Ir the absolute energy minimum is at the fcc
structure (Šob, Wang, and Vitek, 1997a), and in Po it is at the
sc structure [see Legut, Friák, and Šob (2007, 2010)].

4. Burgers path and other bcc or fcc to hcp transformations

Burgers (1934) suggested a continuous deformation path
from bcc to hcp through a shear followed by a shuffling of
atomic planes. However, later research showed that the trans-
formation can be very complicated, and we give only a few
references here. Johnson and Carter (2008) found paths in the
pressure-induced bcc-to-hcp Fe transformation with a lower
enthalpy barrier than that of the Burgers path. The bcc-hcp
transformation was also treated by Zhao, Maroudas, and
Milstein (2000) for Morse-type interactions, Chen, Ho, and
Harmon (1988) for Ba, Wentzcovitch and Cohen (1995) for
Mg, Craievich et al. (1997) for Mo and Nb, and Ekman et al.
(1998), Friák and Šob (2008), and Friák (2011) for Fe.
Djohari, Milstein, and Maroudas (2009) investigated the
bcc-hcp Burgers transition through molecular-dynamics
simulations in a model alkali metal subject to a uniaxial
compressive load. Kolluri, Gungor, and Maroudas (2008)
studied the fcc-hcp transformation in thin films, and Folkins
and Walker (1990) discussed another fcc-hcp structural tran-
sition mode. The temperature-induced hcp-to-bcc transitions
in Ti, Zr, and Hf are discussed in Sec. VI.

B. Calculation of elastic constants

Ab initio electronic structure calculations can give the
change in total energy for any combination of small strains
ei, and in this way provide theoretical results for the elastic
constants. The strains ei are related to the components of the
strain tensor 
 as ei ¼ 
i for i ¼ 1, 2, or 3, and ei ¼ 2
i for
i ¼ 4, 5, or 6, with indices expressed through Voigt’s con-
traction scheme. The volume change is given by the deter-
minant jIþ 
j, where I is the unit tensor.

In a tetragonal deformation of a cubic lattice, two sides of
the cubic unit cell are strained by small and equal amounts

1 ¼ 
2 ¼ �. Conservation of the volume per atom �a re-
quires that the third side is simultaneously strained by 
3 ¼
ð1þ �Þ�2 � 1. Further, there is no shear, 
4 ¼ 
5 ¼ 
6 ¼ 0.
Then the elastic energy per atom, relative to the unstrained
lattice, takes the form (to order �3)

Ua;elast¼6�a

C11�C12

2
�2¼6�aC

0�2þOð�3Þ: (27)

Ua;elast refers to macroscopic deformations. Therefore

Eq. (27) is independent of the precise atomic configuration
(e.g., bcc or fcc) in the cubic lattice structure.

Since we are also interested in energy variations along the
tetragonal Bain path, it is useful to rewrite Eq. (27) in a form
that explicitly refers to the energy Uða; cÞ of the tetragonal
structure. With new lattice parameters að1þ �Þ and c½1þ
ð1þ �Þ�2 � 1� � cð1� 2�Þ, the ratio c=a changes to
ðc=aÞð1� 3�Þ, and we get

Ua;elast ¼ 1

2

@2Uða; cÞ
@ðc=aÞ2 �2; (28)

i.e.,

C11 � C12

2
¼ 1

12�a

@2Uða; cÞ
@ðc=aÞ2 : (29)

Uða; cÞ is the energy along the Bain path, relative to some
reference level (e.g., the bcc or the fcc structure). The de-
rivative is taken at constant a2c, and where c=a ¼ 1 (for bcc

structure) or c=a ¼ ffiffiffi
2

p
(for fcc structure). The stability cri-

terion that Uða; cÞ has a minimum is equivalent to C0 > 0.
A volume-conserving monoclinic deformation of the cubic

lattice is obtained through 
1 ¼ 
2 ¼ 0, 
3 ¼ �2=ð1� �2Þ,
and a shear distortion with 
4 ¼ 
5 ¼ 0, 
6 ¼ � (i.e., e6 ¼
2�). Then

Ua;elast ¼ 2�aC44�
2 þOð�4Þ: (30)

Avolume-conserving orthorhombic deformation of a cubic
lattice is obtained with the strains 
1 ¼ �, 
2 ¼ ��, 
3 ¼
�2=ð1� �2Þ, and 
4 ¼ 
5 ¼ 
6 ¼ 0. Then

Ua;elast ¼ �aðC11 � C12Þ�2 þOð�4Þ: (31)

We note that there is no term of order �3 in Eqs. (30) and (31),
unlike Eq. (27).

There are many other types of deformations that lead to
energies expressed in the elastic constants of the cubic struc-
ture and therefore can be used in ab initio calculations of Cij.

Deformations that yield the elastic constants in the hcp lattice
are found in, e.g., Fast et al. (1995), Cohen, Stixrude, and
Wasserman (1997), Steinle-Neumann, Stixrude, and Cohen
(1999), and Guo and Wang (2000a, 2000b).

In all the methods to calculate the elastic constants de-
scribed above, one obtains the energy as a function of the
imposed strain [Eq. (2)]. An alternative (Le Page and Saxe,
2002; Le Page, Saxe, and Rogers, 2002) is to calculate the
stress resulting from a given strain and find the elastic con-
stants from the well-known relation

�i ¼
X6
j¼1

Cijej: (32)

Here the stress change is a first-order function of the applied
strain, while the energy change in Eq. (2) is a second-order
function. Therefore, the stress-based approach can allow
smaller strains than the energy approach and still yield rea-
sonable accuracy (Karki, Karato, and Silva, 1998; Le Page
and Saxe, 2002). The approach is particularly suitable to treat
complex structures, for instance, as in the calculation of the
elastic constants of the triclinic polymorph of Al2SiO5 (kya-
nite), and Ti4As3 under uniaxial strain (Le Page and Saxe,
2002). In spite of such advantages, the stress-strain approach
has not been used as much as the energy-strain approach. One
reason is that common calculational packages give the en-
ergy, and not the stress, as output.

C. Soft modes as precursors to structural changes

The tetragonal and trigonal transformation paths described
above are one-parameter transformations taking the bcc to the
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fcc structure, or vice versa. In the tetragonal path, a small C0
implies a low energy barrier for such a structural change.
Similarly, a small C44 implies a low energy barrier in the
trigonal transformation path. A softening of C0 or C44, arising
from changes in pressure, temperature, or composition, can
therefore be viewed as a precursor to a displacive structural
change. Further, phonon softening and instabilities are not
limited to the long-wavelength shear modes described by C0
or C44 but can occur for Brillouin zone boundary modes or for
modes with wave vectors in the interior of the Brillouin zone;
cf. Fig. 4. The best known example in the bcc lattice is the
LA½2=3; 2=3; 2=3� phonon mode, which provides a path be-
tween the bcc and the hexagonally structured ! phase; see
Table I. The atoms in the f111g planes of the bcc structure are
hexagonally distributed. Allowing two of these planes to
collapse into each other, while the third plane is kept fixed,
yields the ! phase. Thus the bcc-! transformation is also a
one-parameter path, which takes place without diffusion of
atoms. Often it is referred to as a martensitic transformation, a
name borrowed from a diffusionless structural change in
carbon steel. It is of particular interest in Ti, Zr, and Hf
alloys; see Figs. 17 and 18, phonon dispersion curve mea-
surements in bcc Zr by Heiming et al. (1991), and a
molecular-dynamics simulation for Ti by Hennig et al.
(2008). A broad investigation of the role of elastic and shear

stabilities in the martensitic transformation path in NiTi is

given by Hatcher, Kontsevoi, and Freeman (2009).
Transformation paths between the bcc and fcc phases and

other hexagonal phases, such as the sh (simple hexagonal),

hcp (hexagonal close-packed), dhcp (double hexagonal close-

packed), and 9R structures, are connected with special pho-

non modes in the transverse acoustic ½��0� branch, together
with a shearing of the lattice corresponding to the C0 elastic
constant; see Table I and Fig. 17. As a result, the crystal can

be relaxed according to two independent parameters.
Body-centered cubic structures of Ti, La, and Hf are

unstable through the TA1 N-point phonon, with an atomic

displacement � ¼ 1=12, which yields an hcp stacking in the

½110�bcc direction. Further, the tetragonal Bain path in these

materials exhibits a minimum for c=a � 0:82, which corre-

sponds to the ideal hexagonal angle of 120� in the ð110Þbcc
planes (Persson, Ekman, and Ozolin, š, 2000). Thus, the en-

ergy surface spanned by the two distortion parameters allows

for several possible paths in which the energy is continuously

lowered. However, often a detailed crosswise relaxation of

the two parameters is required for the transformation to

proceed. Silicon is then a good illustration (Ekman,

Persson, and Grimvall, 2000). Both the bcc and fcc phases

are dynamically unstable for displacements toward the sh

phase, through the N-point phonons and the elastic constant

C0. Figure 13 shows the energy landscape for the fcc-sh

transformation in Si.
Note that although small values of C0 or C44, or of the

frequency of other phonon modes, can be associated with

transformation paths along certain crystallographic direc-

tions, the thermal displacement amplitude hu2i relative to

the equilibrium lattice position for harmonic vibrations in a

lattice of cubic symmetry is isotropic, i.e., we have the

counterintuitive result that the thermal displacements are

not exceptionally large in the special directions of the trans-

formation paths, as long as anharmonic effects can be

ignored; cf. Eq. (24).
Finally, it must be stressed that although a soft mode may

indicate a possible path to another structure, the actual tran-

sition is usually of first order and occurs before a phonon

mode in the parent phase has become unstable.

TABLE I. Some displacive structural transformation paths.

Distortion modes
Parent phase Phonon Strain Product phase

bcc C0 bct, fcc
C44 sc, fcc

LA½23 ; 23 ; 23� !
TA1ðNÞ C0 hcp

TA1½14 ; 14 ; 0� C0 dhcp

TA1½13 ; 13 ; 0� C0 þ tilting½110�bcc 9R
TA2ðNÞ C0 sh
LAðNÞ C0 sc

fcc TAðXÞ C0 sh

E
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FIG. 18. The energy E� Ebcc along the bcc ! ! transformation

path in Ti. � is the displacement associated with the LA[2=3, 2=3,
2=3] phonon mode; cf. Ho, Fu, and Harmon (1983). From Persson,

Ekman, and Ozolin, š, 2000.

FIG. 17. Calculated phonon dispersion curves for bcc Hf, with

arrows marking modes relevant for displacive transformation paths.

From Persson, Ekman, and Ozolin, š, 2000.
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V. PRESSURE EFFECTS

A. General aspects

For later reference we first recapitulate three concepts
related to pressure effects: the Grüneisen parameter, the
Clausius-Clapeyron equation, and the common-tangent
construction.

The pressure dependence of the elastic constants
(@Cij=@P) is known from experiments for many substances

(Every and McCurdy, 1992). Converting that information into
the volume dependence of C0 and C44 we get

@ lnC0

@ lnV
¼ V

2C0

��
@C11

@P

�
�

�
@C12

@P

���
@P

@V

�

¼ � B

2C0

��
@C11

@P

�
�

�
@C12

@P

��
¼ �	0; (33)

@lnC44

@lnV
¼ V

C44

�
@C44

@P

��
@P

@V

�
¼� B

C44

�
@C44

@P

�
¼�	44:

(34)

The dimensionless quantities 	0 and 	44 introduced
here are similar to the Grüneisen parameters 	Gðq; sÞ ¼
�@ ln!ðq; sÞ=@ lnV of individual phonon modes ðq; sÞ.
Equations (33) and (34) give 	0 ¼ 3:9, 	44 ¼ 3:8 in bcc Fe,
and 	0 ¼ 4:4, 	44 ¼ 5:2 in fcc Al (Grimvall, 1999).

The Clausius-Clapeyron equation expresses the pressure
dependence of the temperature Teq at which two phases � and

� are in thermal equilibrium:

dTeq

dP
¼ V� � V�

S� � S�
: (35)

The common-tangent construction is illustrated in Fig. 1
(between points 2 and 3). The slope of the tangent gives the
(sign-reversed) pressure Ptr at which a transformation from
one phase to another becomes energetically favorable. That
pressure should not be confused with the critical pressure Pcrit

at which a lattice becomes dynamically unstable.
The equation of state VðP; TÞ for stable structures of

several metallic elements has been discussed by, e.g.,
Karbasi, Saxena, and Hrubiak (2011).

B. Pressure-induced instabilities at T ¼ 0 K

The Grüneisen parameters are usually positive. Thus we
expect that !ðq; sÞ, C0, and C44 increase with pressure.
However, this can be interpreted as a change in the energy
scale for atomic vibrations, while instabilities depend on the
relative energies in different atomic configurations. In Fig. 19
the phonon dispersion curves have therefore been normalized
to enhance the emerging instability.

There are many examples where a structure that is dy-
namically unstable at low pressures becomes stabilized at
high pressures. There are also examples where certain phonon
modes soften so much with increasing pressure that the
initially stable lattice becomes dynamically unstable. Since
an unstable lattice is not accessible to experiment, one must
rely on theoretical calculations. They are most easily carried
out at constant volume, rather than at constant pressure (see

Sec. II.B.4). The bcc and fcc phases of W give an illustrating
example. At T ¼ 0 K some phonon modes in the bcc phase
soften under compression (see Figs. 19 and 20). On the other
hand, the unstable fcc phase is gradually stabilized, with all
phonon frequencies being positive at very high compression
(see Fig. 21).

Figure 22 shows that a pressure-induced instability may be
localized to a certain pressure range, with stability on either
side of that interval (Qiu and Marcus, 2008a); see also Suzuki
and Otani (2002), Landa et al. (2006a, 2006b), Lee et al.
(2007), and Verma and Modak (2008). Closely related to the
pressure-induced lattice instabilities are instabilities under

FIG. 20. Calculated phonon frequencies in bcc W at different

volumes, corresponding to the pressures 1200, 300, 60, and

30 GPa, respectively. V0 is the equilibrium volume of bcc W at

zero pressure. From Einarsdotter et al., 1997.

FIG. 19. Calculated phonon dispersion curves for selected

branches of bcc W at the ground-state volume V0 (top curves)

and four compressed volumes ð0:91V0; 0:85V0; 0:66V0; 0:44V0Þ,
scaled to a common maximum frequency; 18.9 THz for longitudinal

and 15.7 THz for transverse modes, respectively. For each Brillouin

zone direction, the polarization (L or T) with the strongest pressure-
induced softening is plotted. The lowest curve corresponds to the

lowest volume, and so forth. From Einarsdotter et al., 1997.
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other load conditions. They are discussed in Sec. VIII on the

theoretical strength.

C. P-T phase diagram with a lattice instability

Magnesium has the hcp structure in thermal equilibrium at

ambient temperature and pressure, where its bcc structure is

dynamically unstable. At high pressures, however, bcc Mg is

the thermodynamically most stable phase. Thus there is a

critical pressure Pcrit below which bcc Mg is dynamically

unstable. Figure 23 shows a suggested P-T phase diagram. A

characteristic feature is the maximum in the phase boundary

at (Pmax, Tmax), where the two crystalline phases are dynami-

cally stable and in thermal equilibrium with each other.

However, experiments have cast doubts on this shape

(Errandonea et al., 2003). In Appendix E we therefore

construct a simple model for the Gibbs free energy GðP; TÞ
that gives a shape similar to that in Fig. 23.

The phase � in the model is thermodynamically stable at
low temperatures and pressures and has no unusual features.
Phase � is dynamically unstable at pressures P< Pcrit, but
has no other irregularities. With data chosen as in Appendix E
we get the phase diagram in Fig. 24, which gives a schematic
illustration of how the presence of a dynamical lattice insta-
bility can give rise to a maximum in Teq. (The phase boundary

should be modified at low T, since the third law of thermo-
dynamics requires that @Teq=@P ! �1 when T ! 0, but

that is not important for the point we want to make here.)
According to the Clausius-Clapeyron equation, dTeq=dP ¼ 0

implies that V� ¼ V� at Teq ¼ Tmax. It is the excess entropy

related to the vibrational instability that leads to a variation in
the sign of V� � V� and hence to a maximum in the P-T

phase diagram; see Appendix E and also the discussion of bcc
and hcp Be of Sin’ko and Smirnov (2005).

VI. TEMPERATURE EFFECTS

A. General aspects

Wewrite the temperature-dependent phonon frequencies in
the form (Barron, 1965; Cowley and Cowley, 1966; Grimvall,
1999)

P/P0

0 0.2 0.6 0.8 1.0 1.20.4

T
 (
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ni

t)
 

phase α 

phase β

FIG. 24. P-T phase diagram obtained in a simple model for

GðP; TÞ; see Appendix E.

FIG. 21. Calculated phonon frequencies in fcc W at four different

volumes. V0 is the equilibrium volume of fcc W at zero pressure.

From Einarsdotter et al., 1997.
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FIG. 22. An elastic instability may be localized to a certain
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figure, based on data from Qiu and Marcus (2008a), shows
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(1999) and based on calculations by Moriarty and Althoff (1995).
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!ðq; sÞ ¼ !0ðq; sÞ þ�qhðq; s;TÞ þ �anhðq; s;TÞ; (36)

where !0ðq; sÞ is the frequency in the strictly harmonic
approximation, �qhðq; s;TÞ is the quasiharmonic shift that

is caused by thermal expansion, and �anhðq; s;TÞ is the
explicitly anharmonic shift that is caused by the change in
vibrational displacement with varying T. The last term is
present also at fixed crystal volume. In phases that are far
from being unstable, such as the ground states of the simple
metallic elements, �qhðq; s;TÞ usually dominates over

�anhðq; s;TÞ and leads to a gradual softening of the phonons,
typically by 10%–15% from low T to the melting point
(Rosén and Grimvall, 1983). Then CVðTÞ is close to the
classical value 3kB=atom also at high T, which is often taken
as a sign that the explicit anharmonicity is small. However,
that argument can be misleading, as shown in Al where
anharmonic effects are significant but tend to cancel in
CVðTÞ (Forsblom, Sandberg, and Grimvall, 2004).

Equation (36) implies that it is meaningful to talk about an
effective and temperature-dependent phonon frequency (or
corresponding Debye temperatures and elastic constant) even
in the presence of anharmonicity. As we noted in Sec. III.B.4
this is true within low-order perturbation theory, but in the
spirit of a variational approach we use such a description in
this review also when the vibrations are far from harmonic. It
is also the assumption made when a thermodynamic function
is divided into vibrational, electronic, defect formation, and
magnetic contributions (Forsblom, Sandberg, and Grimvall,
2004; Grabowski, Hickel, and Neugebauer, 2007; Körmann
et al., 2008, 2010; Grabowski et al., 2009).

The thermal expansion alone may be sufficient to make a
metastable phase dynamically unstable at high T, as found in
the metallic body-centered tetragonal structure of Si (Ekman,
Persson, and Grimvall, 2000). More important, and of main
concern here, is the stabilization of a structure that has
dynamically unstable phonon modes at low T. Striking ex-
amples are bcc Ti, Zr, Hf, and Pu that not only become
metastable but also the thermodynamically most stable phase
at high temperatures.

B. Double-well potential

The stabilization of phonon modes which are unstable at
low T has often been discussed with reference to a double-
well potential in the form (in one dimension) VðxÞ ¼ Ax4 �
Bx2. At low temperatures the system is unstable for x ¼ 0,
while at high temperatures (large thermal energies and
atomic displacements) VðxÞ is dominated by the x4 term.
The potential is reminiscent of the Landau model of phase
transformations, which has led to confusion regarding soft
phonon modes. The Landau model per se will not be further
discussed here, since Landau-type mode softening usually
plays a secondary role in structural phase transformations
(Krumhansl and Gooding, 1989; Krumhansl, 1992).

Much work has been done on bcc Zr. Figure 25 shows a
double well used to model the low-lying transverse mode at
the N point in the Brillouin zone; q ¼ ½0:5; 0:5; 0� (Willaime
and Massobrio, 1991). Similar results were obtained by Chen
et al. (1985) and Wang et al. (2002). An alternative shape of
the double well was suggested by Drummond and Ackland

(2002). Sanati et al. (2001) applied a Landau-type free

energy expression. Ye et al. (1987) and Nishitani, Kawabe,

and Aoki (2001) found anharmonic stabilization of bcc Zr.

Trubitsin (2006a, 2006b) invoked electronic entropy effects

that change the double-well character. Porta and Castán

(2001) modeled bcc Zr with a tight-binding potential in a

Monte Carlo simulation and found that C0 was stabilized

above about 1500 K.

C. Self-consistent phonon calculations

Although analytic potentials such as those in the preceding

section can be used to model the stabilization of phonons at

high temperatures, they do not provide much additional in-

sight for a real system. Instead we turn to a combination of

molecular dynamics and electronic structure calculations.
Souvatzis et al. (2008, 2009) developed the so-called self-

consistent ab initio lattice dynamical (SCAILD) calculations,

which is a quantum-mechanical realization of the self-

consistent phonon method (Born, 1951; Hooton, 1958;

Koehler, 1968). The self-consistent phonon method was de-

veloped to treat strongly anharmonic systems where the

harmonic phonon frequencies may even be unstable, such

as crystals of noble gases. It is particularly well suited to

study the dynamical properties of the high-temperature bcc

phases of early transition metals (Sc, Ti, Zr, La, Hf) where the

harmonic approximation gives unstable phonons. SCAILD

determines phonon frequencies using Hellmann-Feynman

forces in a periodic bulk supercell where atoms have been

displaced from their equilibrium positions according to the

phonon amplitudes determined by the temperature and pho-

non mode frequencies. Since the phonon amplitudes them-

selves depend on the temperature and phonon mode

frequencies, the approach requires a self-consistency loop

where one iterates until the phonon frequencies used to

generate the displacement coincide with those calculated

from the Hellmann-Feynman forces. Since all phonons that

are commensurate with the size and shape of the supercell

contribute to the displacements, anharmonic interactions

between different phonon modes are included in the calcu-

lated frequencies. The SCAILD method gives a set of har-

monic phonon frequencies in which anharmonic effects are
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FIG. 25. A double well used by Willaime and Massobrio (1991) to

model the instability of the T1 N-point phonon in bcc Zr. The

displacement d is in units of the lattice parameter a.
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approximately accounted for in a self-consistent way. Even

though higher-order anharmonicity can be treated, effects

associated with phonon-phonon scattering and finite phonon

lifetimes remain unaccounted for. Previous SCAILD calcu-

lations based on the density-functional theory (DFT) showed

that phonons in the bcc phases of Ti, Zr, and Hf can be

stabilized at high temperatures, and that phonon anomalies

in these phases can be reproduced (see Fig. 26). This ap-

proach can also yield anharmonic contributions to the free

energies if the self-consistent phonon frequencies are used in

the formula for the harmonic entropy. In fact, it can be shown

that the self-consistent phonon approach represents a varia-

tional upper bound on the exact anharmonic free energy and

can be derived from the Bogoliubov inequality in statistical

mechanics (Feynman, 1972).
Another class of approaches is based on using ab initio

molecular-dynamics (AIMD) simulations at high tempera-

tures with the forces calculated from the DFT using the

Hellmann-Feynman theorem. These methods are firmly es-

tablished and will not be reviewed here. Even though AIMD

usually involves significantly greater computational expense

than SCAILD, these simulations give access to a wealth of

information about the true anharmonic dynamics at high

temperatures. For instance, MD trajectories can be used to

analyze the average atomic positions and mean-square dis-

placements, offering information about the crystal structure

and correlation functions. Phonon densities of states can be

obtained via the Fourier transform of the velocity autocorre-

lation function, and the calculated dynamical structure factors

can be used to extract anharmonic frequency shifts and

phonon lifetimes (Zhang et al., 1995). AIMD can also be

used to obtain anharmonic free energies; see below.
Recently, Asker et al. (2008) studied the effect of vibra-

tional disorder in fcc Mo that is well known to be dynamically

unstable in T ¼ 0 K calculations. It should then be noted that

for Mo (unlike Ti, Zr, and Hf) the ground-state structure (bcc)

remains the thermodynamically stable phase up to the melt-

ing temperature. Asker et al. (2008) found that within the

constraint of a fixed supercell, fcc Mo was dynamically

stabilized at high temperatures.
Ozolin, š (2009) used another approach to study the possible

stabilization of fcc Wat high temperatures. We recall that this

phase is strongly unstable at 0 K, both elastically (C0 < 0 and
C44 < 0) and for short-wavelength phonons (see Fig. 4).

However, if the atoms are confined to a simulation supercell

of fixed shape and size �, the instabilities corresponding to

modes with wave vectors shorter than 2�=� can be sup-

pressed. Under these constraints, ab initio free energy and

entropy differences between the fcc and bcc phases of W

were obtained by using thermodynamic integration of aver-

age stresses along the Bain path. The validity of this approach

is based on the fact that high-temperature anharmonic effects

can stabilize harmonically unstable short-wavelength pho-

nons. In agreement with the results of Asker et al. (2008)

for Mo, Ozolin, š (2009) found that the tungsten atoms could

maintain the fcc structure inside the simulation cell above

2500 K, showing that all the short-wavelength phonons had

then been stabilized. Figure 27 shows the changes in the

internal energy, total entropy (including vibrational and elec-

tronic contributions), and the free energy as functions of the

Bain distortion in W. The calculated fcc-bcc enthalpy and

entropy differences at T ¼ 3500 K (308 meV and 0:74kB per

atom, respectively) agree well with the range of values

derived from comprehensive analysis of experimental data

(Guillermet et al., 1995).
The calculations of Ozolin, š (2009) also showed that the

instability C0 < 0 remained up to 3500 K. Thus, as illustrated

in Fig. 28, the transverse acoustic [��0] phonon branch with

the ½�110� polarization is unstable in the long-wavelength limit

for wave vectors below some critical value �c, setting an

upper limit on the possible system size. Supercells with linear

dimensions above �c ¼ 2�=�c transform into martensitic

FIG. 26. Calculated phonon dispersion curves for bcc Ti, Zr, and Hf at T ¼ 0 K and at high temperatures. Filled circles are experimental

data (Heiming et al., 1991; Petry et al., 1991; Trampenau et al., 1991). From Souvatzis et al., 2008.
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configurations, which are characterized by bcc-like regions
separated by domain walls or twin boundaries (Pinsook and
Ackland, 1998, 2000; Morris and Ho, 2001).

It is worth pointing out a shortcoming of supercell-based
approaches, which can give information only about phonons
at a discrete set of wave vectors that are commensurate with
the size and shape of the chosen supercell. In contrast, the
DFT perturbation theory (Baroni et al., 2001) can yield
phonon frequencies at a general wave vector in the
Brillouin zone. This distinction is expected to be more im-
portant at low temperatures where the long-wavelength

acoustic phonons, which cannot be well represented in the

relatively small supercells amenable to AIMD, may contrib-

ute significantly to the thermodynamic functions.

D. Discussion

Since a dynamically unstable phase is not accessible to

experiment, one must rely on theoretical calculations for such

hypothetical structures. Temperature enters the ab initio cal-

culations in three ways: explicitly through a smearing in the

Fermi-Dirac factors and indirectly through thermal expansion

and through changes in the effective electron band structure

caused by the increased vibrational disorder (while preserv-

ing the overall lattice symmetry). Asker et al. (2008) and

Ozolin, š (2009) found that thermal disorder dominates com-

pletely over the effect of the Fermi-Dirac factors.
Figure 29 shows the effects of vibrational disorder on the

electronic density of states (eDOS) of fcc Mo. It is seen that

displacements of atoms from the ideal lattice sites at 3200 K

cause large changes in the eDOS around the Fermi level in

both bcc and fcc phases of Mo. In particular, the sharp peak in

the eDOS of fcc Mo just below the Fermi level is smeared out

by positional disorder, while the pronounced valley in the

eDOS of bcc Mo is filled with electronic states that have been

pushed upward in energy by disorder. Asker et al. (2008)

used this to argue that these changes in the electronic struc-

ture are responsible for dynamical stabilization of the fcc

phase at high temperatures.
It is a general observation that as long as the character of

the bonding (e.g., metallic) is preserved, the averaged phonon

frequency !log usually varies by less than about 5% with the

lattice structure. Even in systems which are barely dynami-

cally stable, !log does not differ drastically when compared

with other stable or metastable phases of the same substance.

As an example, consider the thermodynamically stable hcp

and bcc phases of Ti and Zr, where the phonon frequencies

have been measured at several temperatures. From them one

obtains the vibrational entropy SphðTÞ; cf. Eq. (36) and the

comment on anharmonicity in Sec. III.B.4. Next let�S be the

entropy Debye temperature which reproduces SphðTÞ when

inserted in the Debye-model entropy formula. Figure 30 gives

the result. In the temperature region where the hcp structure is

the equilibrium phase, �S has the normal gradual decrease

that is largely due to thermal expansion. In the region of the
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FIG. 29. The electron density of states NðEÞ for fcc and bcc Mo,

calculated at high temperatures in a static lattice and in an average

thermally disordered lattice. From Asker et al., 2008.
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bcc phase, �S has a maximum as a function of T. It can be
understood as the combined effect of an increase due to
continued stabilization of the phonons that are unstable at
low T and a superimposed normal decrease with T; see also
Ozolin, š (2009) for a comparison of vibrational entropies in
bcc and fcc W at high temperatures, when the remaining
elastic shear instability has been suppressed. An entropy
Debye temperature such as that in Fig. 30 (which in fact is
a one-parameter phonon model rather than the standard
Debye model that is based on the long-wavelength part of
the vibrations) can be viewed as a simple representation of the
self-consistent phonon description without any attempt to
carry out the self-consistent calculations.

The present understanding of the high-temperature vibra-
tional properties of systems such as Mo, W, Ti, Zr, and Hf
rests on computationally demanding electronic structure cal-
culations. The results are in line with a suggestion (Grimvall,
1979) that strong electron scattering could give a unified
explanation for several anomalous thermophysical properties
of bcc Ti, Zr, and Hf at high temperatures: saturating electri-
cal resistivity, self-diffusion coefficent, elastic constants, and
phonon frequencies (cf. Fig. 30). It was argued that
temperature-dependent force constants in an essentially har-
monic model for the lattice vibrations, rather than the tradi-
tional expansion in higher-order atomic displacements, would
give a simple account of the anomalies.

VII. TRENDS IN ELASTIC SHEAR CONSTANTS

A. Elements in the fifth row of the periodic table

Appendix J reviews C0 and C44 in all the metallic elements.
Here we discuss the fifth row in the periodic table because it
offers the most complete set of data. Table II summarizes
measured (Every and McCurdy, 1992) and theoretical C0 and
C44. Several of the elastic constants were calculated by K. A.
Persson for this review using the procedures described by
Kraft et al. (1993). The total-energy calculations were

performed with the generalized gradient approximation
(GGA) in the density-functional theory as implemented in
the Vienna ab initio simulation package (VASP) (Kresse and
Furthmüller, 1996). Projected augmented wave (PAW) pseu-
dopotentials (Kresse and Joubert, 1999) were used, and en-
ergy cutoffs were automatically chosen under the ‘‘precision
high’’ scheme.

We note that while there are many examples in Table II
where C0 < 0, there is only one entry with C44 < 0 (W). This
can be related to the fact that C44 < 0 implies a more severe
lattice instability than C0 < 0; cf. the discussion in Sec. II.B.
Another example of C44 < 0 is V under moderate pressure as
discussed in Sec. V.B, fcc Nb (but not fcc Ta), fcc Mo, fcc Cd,
bcc Zn and, possibly, also fcc Zn (see Table III and
Appendix J).

C0 and C44 are plotted in Figs. 31 and 32 for fifth row
elements. In most cases either the bcc or the fcc lattice is
dynamically stable at 0 K. If C0 is large and positive for the
bcc structure, it tends to be large and negative for the fcc
structure, and vice versa. The elastic constants for the third
and fourth rows in the periodic table show a pattern very
similar to that of the fifth row elements, but magnetism or
lack of data complicate a detailed discussion. An earlier
version of Figs. 31 and 32 (Grimvall, 2005) was based on
less reliable elasticity data.

TABLE II. Elastic constants of elements in the fifth row in the
periodic table.

Element structure at 0 K bcc bcc fcc fcc
C0 (GPa) C44 (GPa) C0 (GPa) C44 (GPa)

Cs bcc 0.2 1.5 0.2b 1.9b

Ba bcc 3 10 5a 22a

La fcc 1 10 7 18
Hf hcp �18a 53a 28a 67a

Ta bcc 53 83 �102b 19
b

W bcc 160 160 �180a �146a

Re hcp �3a 174a 147a 216a

Os hcp �257a 253a 143a 329a

Ir fcc �383b 138
a

170 263
Pt fcc �38a 158a 48 77
Au fcc �23a 74a 15 42

aNumbers calculated ab initio for this review by K.A. Persson,
using VASP (GGA-PAW-Perdew-Burke-Ernzerhof functional).
bNumbers based on ab initio results cited in Appendix J.
Numbers without a label refer to experiments (Every and
McCurdy, 1992).

TABLE III. Elements with unusual stability properties. The ther-
modynamic equilibrium phase is denoted stable. The stability of fcc
Zn is unclear. See Appendix J for references.

Structure
Element bcc fcc hcp

Fe Stable Metastable Metastable
Cu Unstable Stable Unstable
Zn Unstable (Unstable) Stable
Si Unstable Unstable Unstable
Po, Pr, U, Np Unstable Unstable
Nb, Mo, W Stable C0, C44 < 0

hcp bcc liq. 
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FIG. 30. The entropy Debye temperature �S for hcp and bcc

phases of Ti and Zr, calculated from phonon frequencies obtained

in neutron scattering experiments. From Grimvall, 1999.
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B. Elements with unusual stability properties

Although this review does not discuss the hcp structure in

detail, we note that if the hcp structure is dynamically stable

at 0 K, the fcc structure is normally also dynamically stable,

and vice versa (cf. Appendix J). This is natural since both

structures are close packed, with identical nearest-neighbor

configurations. Further, the previous section showed that

when the bcc lattice is dynamically stable, the corresponding

fcc lattice tends to be dynamically unstable, and vice versa.

Table III gives some exceptions to these patterns, at low

temperatures and ambient pressure.
The stabilities of iron phases depend on their magnetic

state, as discussed in Sec. VII.D and Appendix J.
The fcc phase of Zn was found to be dynamically weakly

metastable by Magyari-Köpe, Grimvall, and Vitos (2002), but

weakly unstable by Müller et al. (1999), Marcus, Jona, and

Qiu (2002), and Qiu and Marcus (2008b).
The ground states of Al and Ni are fcc, with bcc being

dynamically unstable. However, stoichiometric AlNi is stable

in the bcc lattice along the tetragonal Bain path but unstable

in the fcc structure (Wang et al., 2004). Further, AlCu is

unstable in both the fcc and bcc structures along the tetrago-

nal Bain path, although Al and Cu both have the fcc equilib-

rium structure (Wang et al., 2004). The fcc-based Au3Pt
alloy has unstable phonon modes of intermediate wavelength

at T ¼ 0 K, while both Au and Pt have the fcc equilibrium

structure (Li, Chang, and Peng, 2009).
Polonium is the only element that has the sc structure as the

thermodynamic ground state at ambient conditions; see

Appendix J. In most other cases the sc lattice is dynamically

unstable. However, calcium, which is fcc at ambient condi-

tions, becomes thermodynamically stable in the sc structure

at high pressure and 300 K, although that structure has

imaginary phonon frequencies when anharmonic effects are

neglected (Yao, Klug et al., 2009).
Niobium, molybdenum, and tungsten show the unusual

behavior that both fcc shear constants are negative, implying

that all transverse phonon modes are unstable in the elastic

limit; cf. Sec. II.B.2.

C. Trends in the electronic structure

Friedel (1969) suggested a simple model that described the

trends in the cohesion energy Ucoh of transition metals, and

their bulk modulus B, as a function of the number nd of

d electrons [see also Pettifor (1977)]. The electron density of

d states NdðEÞ is given a rectangular shape, and the s and

p electrons are ignored. In this model, UcohðndÞ and BðndÞ get
a parabolic variation with nd. Friedel’s approach represents

the first term in a series expansion in the moments of NdðEÞ
(Ducastelle, 1970). With higher moments included, one ob-

tains approximations not only for UcohðndÞ and BðndÞ but also
for C0ðndÞ and C44ðndÞ (Nastar and Willaime, 1995). The

trend in the variation of C0 and C44 across the d series that

was discussed above is qualitatively reproduced when higher

moments are included; cf. Figs. 31 and 32 with Fig. 33.
This discussion refers to elements, but related arguments

can be applied to compounds. Under large elastic deforma-

tion FeAl fails by a shear instability, in contrast to NiAl that

fails by tension. The difference in behavior of two otherwise

similar compounds is explained by the filling of antibonding
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d states in FeAl (Li, Morris, Jr., and Chrzan, 2004; Li, Morris,

Jr., and Chrzan, 2006).
Numerical electronic structure calculations provide de-

tailed explanations of the softening or instability of phonon

modes. Band structure features near the Fermi energy are then
of particular importance. A Fermi surface nesting effect

arises between two almost parallel flat pieces of the Fermi

surface. It is responsible for phonon softening in Li under
high presssure (Kasinathan et al., 2006; Profeta, 2006;

Rodriguez-Prieto et al., 2006). Electronic topological tran-

sitions, for instance, the sudden appearance or disappearance
of a neck in the Fermi surface, can also occur when the alloy

composition is varied. Electron band Jahn-Teller–like effects,

invoking splitting, shifting, or hybridization, can open or
close energy gaps at the Fermi energy. Landa et al. (2006a,

2006b) discussed various such electronic structure effects in

the V-Nb system.
Ab initio calculations can, in some sense, be considered as

a ‘‘brute force’’ approach. There is a need also for more

intuitive understanding. Rousseau et al. (2011) showed

how Li and Na, which are free-electron-like metals with
high-symmetry lattices at ambient conditions, radically

change their electronic structure under high pressure and
take complex structures of low symmetry. Before the era of

computers, alloy stability considerations were often based on

the well-known rules of Hume-Rothery and Mott and Jones
that referred to the Brillouin zone concept. Such ideas have

been revived, in combination with ab initio work, to get

deeper insight into the stability of compounds under pressure
(Feng et al., 2008; Feng, Hoffmann, and Ashcroft, 2010).

D. Magnetic effects

Usually, the ground-state structure is the same within a
column in the periodic table, but the elements Mn, Fe, and Co

are exceptions (cf. Fig. 3) due to their magnetic properties.

Symmetry breaking through an ordered magnetic state is
coupled to a structural distortion, i.e., a lattice instability

(Marsman and Hafner, 2002). In this section we focus on

results for the stability of phonons (elastic constants) in Mn,
Fe, Co, Cr, and Ni, and only briefly refer to their magnetic

structures per se. References are found in Appendix J.
The ground state of Mn at ambient conditions (�-Mn) has a

complex bcc-related structure with 58 atoms per unit cell, and

not much is known about its vibrational properties. Ab initio

electronic structure calculations gave two energy minima in
the antiferromagnetic tetragonal structure. The state with the

lowest energy and lattice parameter ratio c=a ¼ 0:94 was

connected with 	-Mn, while a metastable state with lower
c=a was connected with �-Mn. Antiferromagnetic Mn is

dynamically unstable in the bcc structure. Nonmagnetic bcc

Mn has C0 < 0. The information on close-packed Mn in
hypothetical magnetic states is incomplete and uncertain

(Qiu, Marcus, and Ma, 2000a, 2000b).
Many papers are devoted to ab initio studies of Fe. In

hypothetical nonmagnetic Fe, the fcc and hcp structures are

stable under shear, with hcp Fe being lowest in energy, while

the bcc lattice has C0 < 0, in agreement with the trends in
Figs. 3, 31, and 32, Also the N-point transverse phonon is

unstable in nonmagnetic bcc Fe. Thus it is ferromagnetism

that makes bcc Fe (�-Fe) the most stable phase at ambient
conditions. On the other hand, ferromagnetism makes close-
packed Fe unstable in shear. The equilibrium phase (	-Fe)
between 1173 and 1660 K has a paramagnetic fcc structure.
That lattice symmetry would be broken at low temperatures
where ab initio calculations show an antiferromagnetic state,
which explains why fcc Fe cannot be retained at low tem-
peratures by quenching. The hcp structure, which is stable at
high pressures, is nonmagnetic. (Note the difference between
a nonmagnetic state, i.e., complete absence of local magnetic
moments, and a paramagnetic state with disordered magnetic
moments.)

Ferromagnetism stabilizes the hcp structure of Co. In the
absence of magnetic effects, Co takes the fcc structure that is
observed also for the elements Rh and Ir in the same column
in the periodic table. Nonmagnetic and ferromagnetic bcc Co
are dynamically unstable.

Cr and Ni have the same crystal structures as the non-
magnetic elements in the same columns in the periodic table,
i.e., bcc and fcc, respectively. The ground state of Cr has a
complicated spin wave structure (Fawcett, 1988), and Ni is
ferromagnetic. Hypothetical nonmagnetic Cr is dynamically
unstable in the fcc structure and metastable in the fcc struc-
ture, with the opposite behavior for nonmagnetic Ni, in
agreement with the trends in Figs. 31 and 32.

In ab initio calculations one can study the variation in the
total energy and the equilibrium magnetic moment as one
moves along a Bain-type path and assuming nonmagnetic,
ferromagnetic, or various antiferromagnetic states. Such
works illustrate the complex and important role of magnetism
in stabilizing the lattice structures of some 3d transition
elements; see, e.g., Friák (2011) on �-Fe and Zelený, Friák,
and Šob (2011) on Fe, Co, and Ni along the trigonal defor-
mation path.

E. Effect of alloying on C0 and C44

Consider a (dilute) solid solution of atoms in a host lattice
with the fcc or bcc lattice structure. The effect of alloying on
the elastic constants can be divided into two parts: a ‘‘global’’
term that is related to the volume change as expressed through
the lattice parameters, and a ‘‘local’’ or ‘‘chemical’’ term that
is related to the changes in the interatomic force constants.
Volume changes were considered in Eqs. (33) and (34). The
total change of the elastic constants with the alloy composi-
tion c can now be written as

dC0

dc
¼

�
�	0

�
1

V

�
@V

@c

��
þ 1

C0

�
@C0

@c

�
V

�
C0 (37)

and

dC44

dc
¼

�
�	44

�
1

V

�
@V

@c

��
þ 1

C44

�
@C44

@c

�
V

�
C44: (38)

The Grüneisen-type parameters 	0 and 	44 were discussed
in Sec. V.A. If also @V=@c is known, we readily obtain the
contribution from the change in the average volume per
atom. Often the effect is small compared with that from the
local change in the interatomic forces (Taga et al., 2005). We
now give three examples of the variation of elastic shear
constants with composition, relying on experimental data
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for bcc Zr-Nb-Mo and Fe(bcc)-Ga alloys, and ab initio cal-

culations for fcc and bcc Ag-Zn alloys, respectively.

1. Zr-Nb-Mo

There are experimental elastic constant data at low tem-

peratures in the bcc Zr-Nb-Mo binary solid solution series,

from Zr0:8Nb0:2 to pure Mo (see Fig. 34). Taking into account

that the experimental uncertainty in C0 and C44 is at least as

large as the height of the symbols in the graph, Fig. 34

suggests that Zr in a hypothetical bcc structure is close to

being either stable or unstable under shear, C0 � 0. However,
there is a general decrease in the interatomic forces toward

either end of the transition metal series in the periodic table,

as exemplified by Figs. 31 and 32. Therefore one can get

further insight if C0 and C44 are normalized as C0=B and

C44=B. The resulting Fig. 35 shows that C44 tends to stiffen

significantly as one approaches bcc Zr (n ¼ 4), while the near
instability related to C0 prevails. Above 1138 K the thermo-

dynamically stable structure of Zr changes from hcp to bcc,

but the bcc lattice cannot be retained in Zr at room tempera-

ture by quenching from high temperatures. This has been

taken as experimental evidence that the bcc phase is dynami-

cally unstable at low temperatures. Many theoretical phonon

calculations corroborate this idea. For instance, using the

method described in Sec. VII.A, K. A. Persson obtained C0 ¼
�3 GPa and C44 ¼ 28 GPa at T ¼ 0 K, in good agreement

with Fig. 34. The stabilization of the bcc phase at high

temperatures was discussed in Sec. VI.

2. Fe-Ga

The bcc Fe-Ga system can form a random solid solution at

room temperature, up to about 20 at. % Ga. Above that

concentration, the cubic structure is more complex. The

volume per atom increases almost linearly with Ga content

being about 5% higher at 20 at.% Ga, compared with pure Fe

(Kawamiya, Adachi, and Nakamura, 1972). Combined with

the value 	0 ¼ 3:9 for Fe quoted in Sec. V.A, the uniform

lattice expansion alone would account for about 1
3 of the

decrease in C0 shown in Fig. 36. The large remaining part is
related to exceptional magnetostrictive effects.

3. Ag-Zn

In the Ag-Zn system at high temperatures there is an fcc
solid solution (� phase) up to about 40 at. % Zn and a narrow
region of bcc solid solution (� phase) near 50 at. % Zn. The
hcp 
 phase is stable in the range 65–85 at.% Zn, and the hcp
� phase is stable close to pure Zn. Ab initio calculations give
results for hypothetical random solid solutions in the whole
concentration range of the Ag-Zn system. Figures 37 and 38
show the results for C0 and C44 in bcc and fcc lattice struc-
tures (Magyari-Köpe, Grimvall, and Vitos, 2002). We note
that if the elastic constants were calculated only for the
thermodynamically stable phases, e.g., fcc (stable only below
40 at.% Zn), and then extrapolated to higher concentrations,
an instability would have been predicted at about 60 at. % Zn
for the fcc C0. Our ab initio calculations for the whole range
of concentrations, from pure Ag to pure Zn, show that such an
extrapolation is strongly misleading. In fact, the trend in C0 is
reversed as one approaches pure Zn. Similarly, the other
calculated elastic constants in Figs. 37 and 38 illustrate that
a trend that is well established over a wide concentration
range can be broken very suddenly. We note that the fcc C0
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and C44 elastic constants are positive throughout the whole
range of Zn concentrations, but with a minimum in C0 where
the bcc phase is thermodynamically stable. Further, C0 and
C44 in the bcc structure decrease rapidly in the concentration
range where the hcp phase is thermodynamically stable. Both
these features are in line with the general observation that the
stabilities of bcc and close-packed structures alternate.

F. Relation between lattice energy and C0

It has been noted that a large enthalpy difference �H ¼
Hfcc �Hbcc is qualitatively correlated with large values of C0
(Wills et al., 1992; Söderlind, Eriksson, Wills, and Boring,
1993; Söderlind et al., 1994). In a simple model for the
energy variation along the tetragonal Bain path we get
(Appendix F)

C0
fcc ¼ C0

bcc � ð ffiffiffi
2

p þ 1Þ2
�
�H

�a

�
: (39)

Craievich et al. (1997) used this idea in Ni-Cr alloys; see
also Eq. (7) in the work by Sliwko et al. (1996) for Ti and V.

When C0 of a thermodynamically stable phase (bcc or fcc) is
known from experiment, and �H from ab initio calculations,

Eq. (39) may yield a semiempirical value for the remaining
unknown C0.

VIII. IDEAL STRENGTH OF MATERIALS

A. General aspects

The strength of materials, as measured by the stress which
leads to failure, normally depends on lattice defects, for

instance, as in the generation and motion of dislocations.
Here we are instead concerned with the ideal (or theoretical,
or ultimate) strength. The lattice is strained until it yields,

without invoking any preexisting lattice defects. In practice,
this situation may be relevant in whiskers, nanopillars, and

nanoindentation experiments (Krenn et al., 2002; Van Vliet
et al., 2003; Lee, 2009; Lowry et al., 2010). Interestingly, a
group of multicomponent bcc Ti alloys, called Gum metals,

appear to fail close to the theoretical strength, and without
conventional dislocation processes (Li et al., 2007; Withey
et al., 2008, 2010).

The ideal strength depends on how the external load is

applied. Further, the failure mode (e.g., fracture, shear insta-
bility) can vary with the type of material, even if the load
condition and the crystal structure are the same. The ideal

strength �ideal under tension is of the order of E=10, and the
ideal strength ideal under shear is of the order ofG=10, where
E and G are the Young’s and shear moduli, respectively. Thus
the components of the strain tensor are large when failure sets
in. In spite of all complications, well-defined values of the

ideal strength can be associated with every type of load
condition (Morris, Jr. and Krenn, 2000); see also Hill and
Milstein (1977).

Early works on ideal strengths relied on simple interaction

potentials, e.g., of the Morse type (Milstein, 1971, 1973b,
1980), and later on more elaborate potentials, e.g., of the
embedded-atom type (Milstein and Chantasiriwan, 1998).

The first ab initio electronic structure calculation yielding
the ideal tensile strength (in Cu) probably is that by Esposito

et al. (1980), and the first calculation of the ideal shear
strength (in bcc V, Nb, Cr, Mo, W and fcc Ir, Cu, Al) is that
by Paxton, Gumbsch, and Methfessel (1991). Price, Cooper,

and Wills (1992) published the first ab initio calculation of
the tensile strength (in TiC) when the lattice was allowed to
be completely relaxed perpendicular to the load direction,

i.e., the volume was not conserved. Subsequently, Šob and co-
workers initiated systematic ab initio studies of the theoreti-

cal strength and lattice stability in metals and intermetallic
compounds under extreme loading conditions, simulating
tensile tests of defect-free materials. Thus, Šob, Wang, and

Vitek (1997b) obtained the theoretical tensile strengths for
[001] and [111] loading axes in tungsten, in good agreement

with experiments on tungsten whiskers (Mikhailovskii,
Poltinin, and Fedorova, 1981). Further, the ideal tensile
strength was calculated in NiAl (Šob, Wang, and Vitek,

1998a, 1998b) and Cu (Šob, Wang, and Vitek, 1998b).
These results established a basis for later ab initio

FIG. 37. The elastic constants C0 and C44 for hypothetical random

bcc solid solutions in the Ag-Zn system, obtained in ab initio

electronic structure calculations. From Magyari-Köpe, Grimvall,

and Vitos, 2002.

FIG. 38. Elastic constants C0 and C44 as in Fig. 37, but for the fcc

lattice structure.
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investigations of the ideal tensile strength and lattice stability
of materials under large loading. Since then many ab initio
calculations of the ideal strength have been performed under
varying load conditions and for many solids. The early
development of ideal-strength calculations has been reviewed
by Milstein (1980), and later works by, e.g., Šob et al. (2004,
2005), Pokluda et al. (2004), and Ogata, Umeno, and
Kohyama (2009). Our treatment emphasizes those aspects
that make contact with elastic or phonon instabilities in
metallic bcc and fcc elements. The following account mainly
rests on results from ab initio calculations for pure metals
such as Al, Cu, Fe, Mo, Nb, and W.

We considered the theoretical strength at four levels of
complexity. At the simplest level, the lattice is deformed
quasistatically (the atoms are held immobile for each con-
figuration) and homogeneously under tension, shear, or a
combination thereof (but allowing for volume relaxation),
until one reaches the unstable state of an inflection point in
the elastic energy versus the strain; cf. the Frenkel-Orowan
model (Appendix G). However, because the elastic constants
change during such a deformation, the Born elastic stability
criteria may be violated and the deformation branches off into
another deformation path prior to reaching the unstable con-
figuration corresponding to the inflection point. That is the
second complexity level. At the third level, the deformed
lattice can reach a state where a phonon mode with a finite
q vector becomes dynamically unstable, !2ðq; sÞ< 0. In all
these cases one usually ignores explicit temperature effects,
i.e., the analysis is performed as if T ¼ 0 K. The fourth level
of complexity in our review allows for thermal motion of the
atoms. It still starts from a perfect lattice but defects may be
generated during the deformation to failure. The discussion in
this section can be summarized as follows: There is a hier-
archy of theoretically possible failure modes under given load
conditions. The ideal strength refers to the failure mode that is
first encountered when the load increases.

B. Homogeneous deformation

1. Uniaxial tension

Let a specimen of an initially cubic crystal structure be
subject to pure tension in the [001] direction and under
volume conservation. The amount of deformation is mea-
sured by the engineering tensile strain 
eng (also called the

Cauchy strain), defined as 
eng ¼ ðL� L0Þ=L0 for a line

element (fiber) axially loaded so that its length changes
from L0 to L. The energy Uð
engÞ has the same variation as

in the tetragonal volume-conserving Bain path, in which we
identify the engineering strain through

1þ 
eng ¼
�
c

a

�
2=3

: (40)

With the bcc structure corresponding to c=a ¼ 1 and the

fcc structure to c=a ¼ ffiffiffi
2

p
, we get the engineering strain


eng ¼ 21=3 � 1 ¼ 
max � 0:26 at the fcc structure. The ten-

sion �001 is obtained as

�001 ¼ 1

V

@U

@
eng
: (41)

If Uð
engÞ is fitted to a sinusoidal shape near the bcc

structure, where 
eng ¼ 0, we get

�001 ¼ E001


max

�
sin

�

eng

max

�

�
(42)

with E001 ¼ ðC11 � C12ÞðC11 þ 2C12Þ=ðC11 þ C12Þ (Morris,
Jr. and Krenn, 2000; Krenn et al., 2001a; Roundy et al.,
2001). The ideal strength �ideal is given by the location of the
inflection point in Uð
engÞ, i.e., when 
eng ¼ 
max=2 � 0:13.

Then �ideal � 0:08E001. Note that this is a model calculation
that not only assumes a simple sinusoidal shape but, more
importantly, ignores bifurcation as discussed in Sec. VIII.B.4.

Figure 39 showsUð
engÞ per atom in bcc W during a tensile

test, i.e., under uniaxial tension in the [001] and [111] direc-
tions, when the perpendicular dimensions of the crystal are
relaxed, so that the defomation follows the non-volume-
conserving uniaxial tetragonal and trigonal Bain paths, re-
spectively. The elastic properties of the unstrained bcc W
lattice are almost isotropic, C11 � C12 � 2C44. Therefore the
curvature of Uð
engÞ at small 
eng is the same for the two

deformation paths. In spite of this, the inflection point of
Uð
engÞ corresponds to a higher theoretical strength �ideal and

a higher strain 
eng for [111], compared with [001] tension.

Hence elastic isotropy does not imply that the theoretical
strength is isotropic.

The ideal strength under tension has been studied with
various uniaxial loadings by Milstein and Chantasiriwan
(1998) in 12 cubic metals, Milstein, Zhao, and Maroudas
(2004), Milstein et al. (2005), and Djohari, Milstein, and
Maroudas (2006) in fcc crystals, Li and Wang (1998) and
Yashiro, Oho, and Tomita (2004) in Al, Šob, Wang, and Vitek
(1998b), Černý et al. (2004) and Zhang et al. (2008a) in Cu,
and Yashiro et al. (2006) in nonmagnetic Ni, to mention only
a few papers, which sometimes treat also pure shear.
Magnetism adds to the complexity, and one must take into
account how the magnetic state varies along the Bain path at

FIG. 39. The total energy per atom, as a function of the engineer-

ing strain, for uniaxial loading of tungsten along the [001] and [111]

directions (perpendicular dimensions of the lattice are relaxed). The

arrows show the inflection points, corresponding to the maximum

theoretical strength. From Šob, Wang, and Vitek, 1997b.
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large strains; see, e.g., Krasko and Olson (1990), Peng and
Jansen (1991), Herper, Hoffmann, and Entel (1999), Qiu and
Marcus (1999), Qiu, Marcus, and Ma (2000a), Friák, Šob,
and Vitek (2001, 2003), Šob et al. (2002, 2004), Clatterbuck,
Chrzan, and Morris, Jr. (2002, 2003b), Tsetseris (2005), Liu
et al. (2008), Okatov et al. (2009), Friák (2011), and Leonov
et al. (2011). Other examples of works dealing with uniaxial
loading are Zelený, Legut, and Šob (2008) and Zelený and
Šob (2008) on epitaxy, and Friák and Šob (2008) and Djohari,
Milstein, and Maroudas (2009) on bcc-hcp structures.

As pointed out by Milstein and Farber (1980) it is impor-
tant to distinguish between, e.g., a cubic crystal subject to
[001] loading (with transverse stresses being zero), and one
subject to [001] deformation (transverse stretches being
zero). In the first case the loading path goes through un-
stressed fcc, bcc, and bct states. We also note the equivalence
of uniaxial tension and biaxial compression in the epitaxial
Bain path.

2. Pure shear

The engineering shear strain 	eng is defined as the change

in the angle between two material line elements that are
perpendicular to each other in the undeformed or initial
configuration. For shear along [111], a relation analogous to
Eq. (42) yields 	ideal � 0:11G111, where G111 ¼ 3C44ðC11 �
C12Þ=ð4C44 þ C11 � C12Þ (Krenn et al., 2001a).

Figure 40 shows the stress under shear for bcc W. Krenn
et al. (2001b) and Ogata, Li, and Yip (2002) obtained similar
results for shear in fcc Al and Cu.

The work by Söderlind and Moriarty (1998) on Ta and
Roundy et al. (1999) on Al and Cu represented the state of
the art in ab initio calculations at that time. The progress
achieved during the following decade is exemplified by the
works of Jahnátek, Hafner, and Krajčı́ (2009), who calculated
the ideal strength in Al and Cu under shear, and Nagasako
et al. (2010) who considered V, Nb, and Ta. Ogata et al.
(2004) formulated a ‘‘master curve’’ that approximately de-
scribes the shear strength of metals and ceramics, and Černý
and Pokluda (2009) predicted the tensile strength of fcc
crystals from shear strength calculations.

3. Triaxial stress

Hydrostatic pressure P is a special case of triaxial stress
(Šandera et al., 1997; Song et al., 1999). Under tension
(� ¼ �P) the stability condition in Eq. (12) for the bulk
modulus,

Bþ P=3 ¼ B� �=3> 0; (43)

can be violated. Černý (2007) calculated that this spinodal
instability occurs for Fe, Ni, and Cr at volume increases by
factors of 1.58, 1.46, and 1.46, respectively, relative to the
equilibrium volume of a stress-free crystal. In similar work,
Černý et al. (2003) considered Fe, Co, Ni, and Cr in various
magnetic states.

Clatterbuck, Chrzan, and Morris, Jr. (2003a) investigated
multiaxial loads in ferromagnetic iron. Figure 41 shows the
stress as a function of the engineering strain for two load
configurations. Many other works discuss the ideal strength
under complex loading, e.g., Krenn et al. (2002) on modeling
nanoindentation, Černý and Pokluda (2007, 2008a, 2008b,
2008c, 2010a, 2010b), and Černý, Šesták, and Pokluda (2010)
on fcc metals, and Umeno and Černý (2008) on covalent
crystals. See also a review by Pokluda et al. (2004) and
references to the pressure dependence of lattice instabilities
in Appendix J.

4. Bifurcation

We identified the ideal strength with the stress where
dUð
Þ=d
 has its largest value, but one must also check for
other failure modes under the same kind of load, in particular,
the violation of Born-type stability criteria. This possibility
was pointed out already by Born (1940) and Born and Fürth
(1940). For instance, let the deformation initially follow a
tetragonal strain. Before one has reached the critical 
ideal
along this primary path, failure can occur through an insta-
bility leading into a secondary, orthorhombic path. Such a
branching off, or bifurcation, is found in Nb but not in Mo
(Luo et al., 2002). The elements Nb and Mo are neighbors in
adjacent columns in the periodic table; they both have me-
tallic bonding and are very stable in the bcc lattice structure.
In spite of these similarities they show different failure
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FIG. 40. The stress � as a function of the engineering shear strain


eng in bcc W for h111i shear in the f110g (circles), f112g (squares),
and f123g (triangles) planes. Adapted from Krenn et al., 2001a.
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FIG. 41. The stress � as a function of the engineering shear strain


eng calculated in ferromagnetic bcc iron for uniaxial tension

(squares) and uniaxial tension plus a biaxial tension (circles),

with the largest tensile stress in the [001] direction. Arrows indicate

the location of the tetragonal-to-orthorhombic bifurcation instabil-

ity. From Clatterbuck, Chrzan, and Morris, Jr., 2003a.
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modes under uniaxial tension in the [001] direction (see

Figs. 42 and 43). Bifurcation was observed in several other

bcc or fcc metals; e.g., by Milstein, Marschall, and Fang

(1995), Milstein and Rasky (1996), and Milstein et al.

(1996) in alkali metals; Wang et al. (1993) in Cu; Milstein

and Farber (1980) and Milstein et al. (2005) in Cu and Ni; Li

and Wang (1998) and Yashiro, Oho, and Tomita (2004) in Al;

Yashiro et al. (2006) in Ni; Zhang et al. (2008a) in Cu; Wang

and Li (2009) in Au; and Nagasako et al. (2010) in V, Nb, and

Ta. These are only examples illustrating the complexity of the

concept of ideal strength, even in straightforward model

calculations for simple load geometries.

5. Phonon instabilities

The failure modes discussed above correspond to homoge-

neous deformations in a quasistatic lattice. However, failure

can also be initiated by a particular phonon mode becoming

unstable [i.e., !2ðq; sÞ< 0] before one reaches a critical

condition in the stress-strain relations referring to homoge-

neous deformations. This fact makes a complete analysis of

the ideal strength a formidable task. In principle, the stability

of all phonon modes and all loading conditions should be

investigated. Figure 44 shows, as an example, failure in Al

when a [111] transverse mode becomes unstable under

½11�2�ð111Þ shear (Clatterbuck et al., 2003). Note how rapid

is the onset of the phonon instability for 
 > 0:14.

C. Defect formation

Our discussion so far assumed that the material is initially

free of defects and is subject to a uniform deformation. Real

materials contain dislocations and other imperfections which

can multiply during the deformation, but to make contact

with the ideal strength we restrict the analysis to homoge-

neous defect nucleation, leading ultimately to, e.g., plastic

flow, crack formation, and fracture. (This is in analogy to

homogeneous melting in superheated systems; see Sec. X.A).

We then need a theoretical framework to formulate instability

criteria describing local properties of atoms or groups of

atoms, which can replace the macroscopic quantities of stress,

strain, and elastic constants. A general condition, that may be

referred to as the Wallace criterion (Wallace, 1972; Delph

et al., 2009), is that a given atomic equilibrium configuration

is stable if all admissible infinitesimal virtual displacements

of an atom, or a group of atoms, result in an increase in the

energy of the system. For sufficiently large systems, this

criterion is equivalent to Eq. (1) that all phonon frequencies

are real (Wallace, 1972). Other stability criteria that can

handle nonuniform deformation fields have been formulated

by Alber et al. (1992) involving atomic-scale elastic con-

stants, by Van Vliet et al. (2003) in an extension of work by

Hill (1962) to a local-energy based, local elastic constant

relation called the � criterion, and by Kitamura, Umeno, and

Fushino (2004), Lu and Zhang (2006), and Miller and Rodney

(2008) using the positive definiteness of an atomic-scale

acoustic tensor.
Molecular-dynamics simulations offer a realistic, but

computationally demanding, approach to the application of
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stability criteria in real systems. With a given interaction
between the atoms, one monitors the position of each atom

during a large number of computation steps and for a large
number of atoms. A molecular-dynamics simulation by Li,
Ngan, and Gumbsch (2003), using a Morse-type interaction,

illustrates how an unstable continuum wave can evolve into a
local defect. Four stages were identified. The unstable elastic
wave first grows in amplitude. The wave form is then dis-

torted into a steep front that is still wide compared with the
lattice spacing. Next an atomistically sharp front is devel-
oped, and finally the wave front is arrested and forms a low-

dimensional defect. Kimminau et al. (2010) used molecular-
dynamics simulations to study how a phonon instability in
uniaxially compressed fcc Cu develops into a stacking fault.

Other examples of simulations starting from a defect-free
lattice involve hydrostatic tension in Au (Wang et al.,
1995); shear in Au (Pacheco and Batra, 2008); nanoindenta-

tion in Al and Cu (Wang et al., 1995) and Al, Cu, and Fe (Li,
Ngan, and Gumbsch, 2003); high-rate tension in Fe (Norman,
Stegailov, and Yanilkin, 2007); and cavitation, crack growth,

and nanoindentation in an fcc lattice (Delph et al., 2009;
Delph and Zimmerman, 2010). The field of atomistic simu-
lations is rapidly developing, mainly as a consequence of
improved computer performance. Various hybrid techniques,

regarding both the interaction (potentials, ab initio energy
calculations) and size (e.g., local atomistic modeling em-
bedded in a continuum model), and explicit temperature

and time dependence, will give a deeper understanding of
real materials subject to plastic deformation.

IX. CALPHAD APPROACH TO PHASE DIAGRAMS

A. General aspects

The CALPHAD method (computer coupling of phase dia-
grams and thermochemistry) is a well-established procedure

to analyze and predict phase diagrams, in particular, as a
function of composition c and temperature T in multicompo-
nent systems. A phase diagram is determined, for each ðc; TÞ,
by that combination of phases which minimizes the total
Gibbs free energy G. One therefore needs information on
Gðc; TÞ of all competing phases ð�;�; . . .Þ. Even for such a

simple case as a binary system with atoms A and B, this can
be a very demanding task.Gðc; TÞmust be known not only for
solid solutions of B in A, and vice versa, as well as for the

stable crystal structures of pure A and B, but also for all other
conceivable crystal structures of pure A and B. Moreover,
Gðc; TÞ should be known for all stoichiometric compounds

AmBn and for deviations from their exact stoichiometric
compositions. The existence of short-range order in solid
solutions, the presence of a liquid phase, and perhaps external

pressure, exemplify further complications. However, it often
suffices to consider only a few phases and to make many
simplifying assumptions. Then the CALPHAD method was

very successful in accounting for experimental phase diagram
information and predicting new phase diagrams for systems
where the experimental information is meager or absent. It

was therefore a matter of great concern when, in the late
1980s, there was a striking disagreement between cohesive-
energy predictions obtained by the CALPHAD method (there

called lattice stability values) and by ab initio electronic

structure calculations for bcc and fcc lattices of elemental

transition metals; see Fig. 45 from Skriver (1985), a historical

account by Grimvall (1998), and discussions by Wang et al.

(2004) and Kissavos et al. (2005). The discrepancy is

pronounced only when the enthalpy difference �Hfcc-bcc is

large. The correlation of�Hfcc-bcc and lattice instabilities (see

Sec. VII.E) points to dynamical lattice instabilities as the

reason for the discrepancy between CALPHAD and ab initio

enthalpy data.

B. A model example

Before we discuss the CALPHAD method in some detail,

the effect of lattice instability in a binary phase diagram is

illustrated through a simple example. A and B are two

elements, which in their pure forms have structures � and

�, respectively. Let P ¼ 0, and consider G ¼ H � TS for

random solid solutions of B in A, and vice versa. When there

is no significant difference S� � S� in the vibrational en-

tropy, our model gives G�ðcÞ and G�ðcÞ as in Fig. 46, with

end points c1 and c2 of the two-phase field in the phase

diagram obtained from the common-tangent construction.

We next compare this result with what we would get if phase

� is dynamically unstable beyond ccrit ¼ 0:8. That gives rise

FIG. 45. The energy difference �Hbcc-fcc between the bcc and fcc

structures for 4d metals, as calculated ab initio (lines) and as

obtained at that time by CALPHAD methods (circles).

Corresponding results for the hcp structure are also shown. From

Skriver, 1985.
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to an increase in S�, and hence a decrease in G�, as ccrit is
approached; cf. the entropy variation in Fig. 6. The dashed
curve in Fig. 46 shows a possible result forG�. Obviously, the
common-tangent construction based on the dashed line for
G� (instead of the solid line) does not give any significant
changes in the phase-field boundaries c1 and c2. From this
example we expect that incipient lattice instabilities often go
unnoticed in the experimentally determined phase diagram.

C. CALPHAD versus ab initio approaches

We now relate the discrepancy between the CALPHAD
and the ab initio calculated lattice energies to the existence of
dynamical instabilities. In the CALPHAD method, the Gibbs
free energy G is described by simple mathematical functions
of temperature and composition (usually low-order polyno-
mials in T and in the concentrations cj of the components j),

so that G ¼ H � TS gives a good account of the equilibrium
part of the phase diagram. This expression for G is then
extrapolated into regions that are assumed to represent meta-
stable phases. It is the total function H � TS that fits the
phase diagram. In order to extract quantities such as �H���

for an element in two crystal structures � and �, one must
have additional information on the entropy difference
�S���. The CALPHAD approach assumes that the vibra-

tional �S��� is small (or even zero). This is often a reason-

able approximation (cf. Fig. 30), but it obviously fails when
the entropy is not a thermodynamically well-defined quantity.
Then �H��� cannot be extracted from the extrapolated G as

�H ¼ �Gþ T�S.
Conversely, one may attempt to derive �S��� from G

fitted to a phase diagram, combined with �H��� from an

ab initio calculation. If �H��� is calculated for rigid struc-

tures (perhaps disordered to represent thermal motion), it has
a well-defined value. However, that does not allow us take G
from an extrapolation of a fit to a phase diagram, and obtain
S ¼ ðH �GÞ=T for a phase that is dynamically unstable.

In Sec. VII.E we saw that the difference in enthalpy
between two phases at T ¼ 0 is correlated with differences
in the vibrational properties, which would lead to a partial
cancellation in �G ¼ �H � T�S. Further, anomalous
temperature-dependent contributions to H� and S� are con-
nected through the corresponding effect in the heat capacity
and therefore also tend to cancel in �G ¼ �H � T�S. (We
compare with the melting process, where there is a latent
heat, but the Gibbs free energy remains unchanged.) The
almost linear relationship between �H and T�S is well
demonstrated by Guillermet et al. (1995).

What is then the possible role of ab initio calculations as a
source of information in CALPHAD-type analyses? When a
phase is dynamically stable, ab initio results for the enthalpy

and vibrational entropy can be used as input data without any
problem (Liu, 2009; Šob et al., 2009; Dubiel et al., 2010;
Pavlů, Vřeštál, and Šob, 2010). From a practical point of
view, one can often assume that the Gibbs free energy is a
well-defined quantity even in the region of a dynamically
unstable phase, as long as G is not given a physical inter-
pretation in terms of extracted quantities H and S that are
thought to represent truly metastable states. On the other
hand, ab initio enthalpy data calculated for stabilized binary
alloys can be extrapolated to the pure unstable element, thus
giving an enthalpy in satisfactory agreement with CALPHAD
enthalpies; see Wang et al. (2004). This is because the
extrapolated CALPHAD enthalpy refers to a fictitious meta-

stable state that has a rigid lattice. We also recall that a phase,
which is dynamically unstable at T ¼ 0 K, may be stabilized
at high T. In fact, work by Ozolin, š (2009) suggests that the
enthalpy difference between fcc and bcc Wobtained ab initio
at high temperatures (where short-wavelength phonons are
stabilized) may be relevant as an input parameter for this
quantity in CALPHAD modeling of multicomponent phase
diagrams. However, detailed work on fcc and hcp Ru-Mo
alloys (Kissavos et al., 2005) shows that there are still some
problems in reconciling ab initio results and the thermody-
namic quantities obtained in a CALPHAD-type fitting of
phase diagrams. We also recall that the vibrational properties
in an alloy, and hence the corresponding entropy, can show a
very slow variation over a large concentration interval, fol-

lowed by the onset of a rapid change; see the Ag-Zn system in
Sec. VII.E.

X. LOSS OF LATTICE PERIODICITY

A. Melting

The thermodynamic melting temperature Tm of a solid is
the temperature at which the Gibbs free energies of the solid
and the liquid phases are equal. Melting normally starts from
the surface of a specimen, where the energy barrier for the
nucleation of the liquid phase is low. In the absence of a free
surface, as in a theoretical simulation of crystalline systems
with periodic boundary conditions, that melting mechanism is
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FIG. 46. The Gibbs free energy G� and G� for two phases that are

dynamically stable at all concentrations c (solid curves) and also for

the case that phase � becomes dynamically unstable at ccrit (short-
dashed curve). G� is not a thermodynamically defined quantity

when c > ccrit. The common-tangent construction (long-dashed

curve) gives the concentrations c1 and c2 of the end points of

the two-phase field in the phase diagram. Model assumptions:

HðT ¼ 0Þ varies with c as H� ¼ HA;� þ cH0
� and H� ¼

HA;� þ cH0
�. The temperature-dependent part of H is described

by the classical result 3kBT per atom, and cancels in G� �G�.

There is a random disorder entropy (per mole) S ¼ R½c lnðcÞ þ ð1�
cÞ lnð1� cÞ�. The vibrational entropy difference S� � S� ¼ 0. At

the considered T, HA;�=ðRTÞ ¼ 0; HB;�=ðRTÞ ¼ 0:75; H0
�=ðRTÞ ¼

0:5; and H0
�=ðRTÞ ¼ 1:5.
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suppressed and the solid can remain in a superheated state at
temperatures well above Tm. Ultimately the crystal must
transform to a liquid state, and a hierarchy of several kinds
of stability criteria that limit the amount of superheating was
suggested (Tallon, 1989). Of interest in this review is the
possibility that the lattice becomes dynamically unstable
under shear. Brillouin (1938) and Born (1939) studied data
on the temperature dependence of shear elastic constants and
suggested that Tm be connected with a vanishing shear re-
sistance. It is now known that the elastic shear constants are
finite at Tm (cf. Fig. 47), but the question remains if instability
under shear puts a limit to superheating. More precisely, is the
shear instability the first instability condition reached, as the
temperature is increased? The knowledge is incomplete, but a
partial answer was obtained by Forsblom and Grimvall
(2005a, 2005b) in a molecular-dynamics simulation relevant
for aluminum. They found that the generation of vacancy-
interstitial pairs leads to melting at T > 1:3Tm, where C

0 and
C44 are still finite, i.e., prior to any shear instability. The role
of vacancy-interstitial pairs was also discussed by Delogu
(2005). Bai and Li (2008) obtained a different initial defect
configuration in their work on melting in a superheated fcc
solid, but still with no evidence of a shear-related melting
mechanism.

The well-known (Lindemann, 1910) melting criterion,
which was actually introduced much later by Gilvarry
(1956) on the basis of Lindemann’s work, says that melting
takes place when the root mean square of the atomic thermal
displacement is a certain fraction (typically �12%) of the
distance between nearest-neighbor atoms. It is an erroneous
but widespread belief that a lattice then becomes unstable and
‘‘shakes apart.’’ In fact, the Lindemann rule holds only for a
restricted class of systems and then can be viewed as a simple
consequence of scaling through dimensional analysis; see
Appendix H.

A different kind of instability can arise in some systems
under intense photon radiation. For instance, in a covalently
bonded crystal such as InSb, the character of the chemical
bonding is changed. That results in new interatomic forces,
for which the original lattice structure may be dynamically
unstable; see Lindenberg (2005).

In the reverse of melting, i.e., nucleation of a solid phase
from the liquid, the bcc structure takes a special place
(Alexander and McTague, 1978; Groh and Mulder, 1999).
However, molecular-dynamics simulations of aluminum give
the correct fcc structure on solidification (Desgranges and
Delhommelle, 2007).

B. Amorphization

The apparent similarity of a liquid and an amorphous
structure, and the incorrect assumption that the melting
mechanism of crystals is caused by a vanishing shear modu-
lus, has led to the idea that amorphization is related to an
elastic instability. Such an instability could then be due to
high pressure or to the volume changes of the lattice, e.g., on
alloying with atoms differing in size from those of the host
lattice [see Delogu (2004a, 2004b), and references therein].
Much work has been done on pressure-induced amorphiza-
tion in covalently bonded solids, in particular, �-SiO2. In that
compound there is evidence for an elastic instability
(Binggeli, Keskar, and Chelikowsky, 1994) but also for van-
ishing phonon frequencies at the Brillouin zone boundary
(Chaplot and Sikka, 1993) or at other wave vectors (Watson
and Parker, 1995). Although these lattice instabilities have
similarities with instabilities in the metallic elements dis-
cussed in this review, there seems to be no example of a
pressure-induced amorphization in bcc or fcc structures.
Zhang, Lai, and Liu (2000) performed molecular-dynamics
simulations in the Ni-Ta system. They related amorphization
to a pronounced vibrational softening, but not to direct
dynamical instability. Through molecular-dynamics studies,
Yip et al. (2001) compared the tendency to amorphization or
to polymorphic transition under pressure. Burakovsky,
Greeff, and Preston (2006) refuted a claim by Kechin
(2004) that the shear modulus of metals should vanish and
transform a crystalline substance to a liquid at high pressure
and T ¼ 0 K. Delogu (2004b) studied shear instability and
amorphization caused by atomic-size differences in fcc Ni-Cr
and hcp Zr-Ni. Alexander (1998) gave a broad general review
of the structure, lattice dynamics, and elasticity of amorphous
solids.

C. Nanostructures

In nanocrystalline materials, the disordered grain bounda-
ries can be almost dynamically unstable. Even if no insta-
bility is reached, the grain boundary atoms make up such a
large fraction of the atoms that they can affect the crystal
structure of the entire grain. Ball milling, in which the
material is subject to mechanical attrition, may produce
nanocrystalline materials with a lattice structure different
from that of bulk material. As an example, nanocrystalline
Nb undergoes a bcc-to-fcc phase transformation when the
grain size is reduced below 10 nm (Chattopadhyay et al.,
2001). See also Manna et al. (2002, 2003) for work on Ti and
Zr. Sheng et al. (1997) obtained amorphous Fe1�xAlx
through ball milling and attributed it to a dynamical lattice
instability. Finally, surface stress can play a significant role in
structural changes in nanowires. For instance, in the absence
of surface reconstruction, fcc h100i Au and Pt nanowires
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spontaneously relax to the bct structure when the wire diame-
ter is less than 2 nm [see Haftel and Gall (2006) and also Ma
and Xu (2007)]. In a molecular-dynamics study of Fe and Mo,
Kotrechko, Filatov, and Ovsjannikov (2006) concluded that
bcc nanocrystals develop shear instability under uniaxial and
hydrostatic tension. Metallic nanowires and their mechanical
and elastic properties is a field of intense research; see Ogata,
Umeno, and Kohyama (2009). Finally it should be mentioned
that nanometer-scale precipitates of Cu in bcc Fe form a
coherent bcc lattice (Liu et al., 2005), and precipitates of
Fe in fcc Cu form an fcc lattice (Haneda et al., 1992).

XI. CONCLUSIONS

The condition for a lattice structure to be dynamically
stable is trivial; all phonon frequencies must be positive.
However, a thorough understanding of dynamical lattice
instabilities was not reached until recently, and then from
advanced ab initio electronic structure calculations. Before
that, most work was limited to studies of elastic constants,
often based on Lennard-Jones or similar analytic forms of
atomic interactions. The gradual development of the field,
spanning more than seven decades, has clarified many
technical details. Of more general interest are qualitative
results, which often seem surprising or contradict wide-
spread beliefs. We conclude this review with several such
statements.

Instabilities may seem counterintuitive.—The fcc and hcp
monatomic lattices represent the densest possible packing of
spheres. Each atom is surrounded by 12 nearest-neighbor
atoms, forming a symmetric ‘‘cage.’’ One might assume
that this is a very stable configuration. Nevertheless, there
are at least nine metallic transition elements in the periodic
table for which the fcc lattice is known to be unstable under
elastic shear. In contrast, the bcc lattice is referred to as an
open structure. When formed by hard spheres, it is unstable
under ð110Þ½�110� shear. However, tungsten in the bcc struc-
ture is exceptionally stable, while the fcc tungsten lattice is
unstable at T ¼ 0 K. We conclude that stability arguments
relying on a representation of atoms by (hard) spheres can be
strongly misleading.

Elastic stability does not guarantee overall stability.—The
common, more or less sinusoidal, shape of the acoustic
phonon dispersion curves suggests that if a structure is dy-
namically stable in the long-wavelength limit, it is also stable
for phonons with short wavelengths (Born, 1940; Born and
Fürth, 1940; Power, 1942). There are now many counter-
examples showing that this is not a universal rule.

The stability of fcc or hcp and bcc lattice alternates.—
Among the transition metals in the periodic table there is a
strong trend that an element with a close-packed (fcc or hcp)
equilibrium structure is dynamically unstable in the bcc
structure, and vice versa (see Figs. 31 and 32). This behavior
can be understood from the energy variation along the Bain
path that connects the fcc and bcc structures (see Fig. 9).

Magnetism is very important.—For instance, both ferro-
magnetic and paramagnetic bcc iron are dynamically stable,
while nonmagnetic bcc iron is unstable, which gives a coun-
terexample to the trend of alternating fcc or hcp and bcc
structures. There can be significant changes in the magnetic

state, with accompanying changes in the vibrational proper-

ties, along a deformation path.
Phonon instabilities may arise abruptly.—Usually the

elastic constants and the corresponding phonon spectrum

vary slowly with chemical composition or pressure, as long

as the crystal structure is not changed. However, there are also

examples showing a sudden onset of rapid variation as a

function of alloy composition (see Figs. 37 and 38) or pres-

sure (see Fig. 44). Such behavior is hard to predict without

accurate electronic band structure calculations, and it is a

warning against the uncritical extrapolation of experimental

data.
Precursor effects of instabilities may go unnoticed in phase

diagrams.—Consider a phase diagram with an equilibrium

phase that is dynamically unstable in other parts of the

diagram. The boundaries in such a diagram are not located

where a phase becomes dynamically unstable, but are deter-

mined by a comparison of the total Gibbs free energy of

(meta)stable structures. Therefore, such a phase diagram may

show only weak precursor effects of an instability (see

Figs. 23 and 46).
Phonon instabilities can limit the theoretical strength.—In

the classical Frenkel-Orowan description of the theoretical

strength of a solid, the energy U increases with the strain 

until one reaches an inflection point in Uð
Þ. But the strain

also imposes changes in the elastic constants and in the rest of

the phonon spectrum. It can then happen that an instability

arises before the inflection point of the classical model is

reached. Of particular interest is the phenomenon of bifurca-

tion, where an initial deformation path branches off into

another path. Thus there can be a hierarchy of various types

of instabilities along the deformation path. The theoretical

strength is determined by the instability that is first

encountered.
Melting is not caused by lattice instability.—It has been

thought that ordinary melting arises when the elastic shear

resistance has decreased to zero, but it is now well established

that the elastic constants remain finite as the melting tem-

perature is approached. Further, the Lindemann melting rule

is an empirical observation for monatomic solids that can be

understood with reference to dimensional analysis. It is not

related to an instability induced by increasing vibrational

displacements.
The Debye model is inadequate to describe a dynamical

lattice instability.—The standard Debye model, with a pho-

non spectrum represented by a single parameter �D, cannot
describe a solid phase when it is close to becoming dynami-

cally unstable. In that model the vibrational entropy S di-

verges as lnðT=�DÞ when �D ! 0 and incorrectly implies that

the phase is stabilized due to the low value of the Gibbs

energy H � TS. However, a generalized Debye model that

allows for elastic anisotropy does not show this shortcoming.
Lattice instabilities are common.—This review focused on

instabilities in bcc and fcc structures but illustrates a very

common phenomenon that was not getting broader attention

until the 1990s. According to the traditional understanding of

structure and bonding in ANB8�N octet semiconductors one

expects that they show the structural sequence ZB (zinc

blende, diamond) ! NaCl ! �-Sn, as pressure is increased.
However, the �-Sn structure is systematically absent, and the
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NaCl structure is obtained in only some of these compounds,

a fact that can be understood with reference to lattice insta-

bilities (Ozolin, š and Zunger, 1999). The CsCl structure shows

similar behavior (Kim, Ozolin, š, and Zunger, 1999). Under

ambient conditions, AgCl and AgBr crystallize in the rock

salt structure characteristic of ionic compounds but show

phonon instabilities under pressure (Y. Li et al., 2006).

Attempts to form stoichiometric MoC in the NaCl structure

failed because although MoC has positive elastic shear con-

stants, the X-point phonon in the Brillouin zone is unstable

(Hart and Klein, 2000). FeAl and NiAl are in many respects

similar, but when subject to elastic deformation FeAl devel-

ops a shear instability while NiAl fails by tension (Li, Morris,

Jr., and Chrzan, 2006). These are just a few examples showing

the importance of lattice instabilities in compounds.
Prospects for the future.—We envisage two main lines in

the future development, both relying on continued progress in

computing power. One of them deals with more or less exotic

systems. The number of combinations of atoms that can

define a new material is enormous, and it would be imprac-

tical to limit a study to those materials that have been

synthesized. Instead one assumes a certain composition in a

static structure, finds its properties through ab initio calcu-

lations, and then continues with experiments only in those

cases that seem most promising. As this review showed, an

assumed static structure may in fact turn out to be dynami-

cally unstable. Just as ab initio calculations of the cohesive

energy and the bulk modulus of stoichiometric compounds

are now routinely performed, investigations of the dynamical

stability properties will soon be a simple task also in complex

structures. Another main line of progress deals with tradi-

tional materials subject to large strains, which ultimately lead

to plastic deformation and perhaps complete failure. This is a

more demanding challenge than just looking for phonon

instabilities in a given crystal structure, since both tempera-

ture and deformation rate are of great practical importance.

Magnetism adds to the complications in many technologi-

cally important systems. A number of hybrid techniques may

be developed, where small regions that are treated ab initio lie

embedded in regions of larger length scales where a more

approximate description suffices. There are many obstacles

on the route to the goal in which relatively cheap and fast

computations and simulations can completely replace costly

and time consuming experiments, but this is no doubt where

many areas of materials science are heading.
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APPENDIX A: SPINODAL DECOMPOSITION

Spinodal decomposition refers to a mechanism by which
a uniform system decomposes into two phases with dif-
ferent compositions, thus creating a miscibility gap in the
temperature-composition phase diagram. Let the Gibbs free
energy of mixing GmixðcÞ, as a function of composition c,
have a shape as in Fig. 48. Consider a uniform system in the
region where @2Gmix=@c

2 < 0. Then a small spatial fluctua-
tion in the composition, with the overall composition main-
tained, lowers the totalGmix. The classic alloy system to study
spinodal decomposition is fcc Al-Zn. From ab initio calcu-
lations in fcc Al-Zn and Al-Cu, Müller et al. (1999) con-
cluded that the phonon instability in fcc Zn plays a significant
role in the formation of the miscibility gap, showing features
that are not present in the Al-Cu system; see also Smirnova
et al. (2001) on Al-Zn.

There is an analogy between the curvature of the Gibbs
free energy just discussed and the bulk modulus expressed as

B ¼ V

�
@2U

@V2

�
: (A1)

(∂2G/∂c2) < 0

c 

c1

c2

Gmix

FIG. 48. The mixing Gibbs free energy Gmix as a function of

composition c for a system that shows spinodal decomposition.

U 

V 

U 

V 

FIG. 49. The energy U as a function of volume V for two systems,

where the right graph implies a spinodal instability.
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The derivative in Eq. (A1) is taken where @U=@V ¼ 0.
Figure 49 shows two shapes of UðVÞ, corresponding to
positive or negative bulk modulus. In the latter case, the
Gibbs free energy is lowered if the system changes its vol-
ume, thus implying an instability. It is usually referred to as
spinodal instability since it is related to the curvature of the
energy, in analogy with the classical spinodal decomposition.

APPENDIX B: CENTRAL PAIRWISE INTERACTIONS

Prior to the progress in ab initio electronic structure cal-
culations, many works on lattice stabilities were based on
interactions between atoms expressed through central pair-
wise potentials. One example is the generalized Lennard-
Jones potential, written in the form

�ðrÞ ¼ a

rm
� b

rn
: (B1)

With this interaction, the fcc lattice is always dynamically
stable, while the bcc lattice is stable for certain values of m
and n (Misra, 1940; Power, 1942; Born and Huang, 1954).

There are many papers investigating the stability of lattices
for various types of pairwise interactions, and we mention
only a few of them as typical examples. Wallace and Patrick
(1965) studied Lennard-Jones and Rydberg forms. The fcc
lattice was found to be dynamically stable for all investigated
parameter ranges. The bcc structure was generally unstable
for short-range central forces, but stable for long-range
forces. Milstein (1973a) considered the stability of fcc and
bcc lattices with a generalized Morse function interaction.
The fcc lattice was stable, while the bcc lattice was unstable
for certain parameter values. Machlin and Shao (1983) dis-
cussed the C0 instability in a bcc lattice for a Mie-type
potential. Girifalco and Weizer (1959) found that a Morse
potential always gave elastic stability for cubic crystals. Wolf
and Jeanloz (1985) studied Lennard-Jones and Buckingham-
type potentials, under compression and expansion, and found
that the stability of the bcc lattice depends critically on how
hard the repulsive part of the interaction is. An extreme case
of hard repulsive forces is that of rigid spheres. The low value
of C0 in many bcc metals was attributed by Zener (1947,
1948) to the fact that the ð110Þ½�110� shear leaves the distance
between nearest-neighbor atoms unchanged, to a first ap-
proximation. Thus there is no resistance to this shear, if the
atoms are represented by hard spheres. Finally we note that
interaction through central pairwise interactions implies the
Cauchy condition C12 ¼ C44. The Born stability criteria then
become C11 >C44 > 0.

APPENDIX C: ATHEOREM FOR PHONON FREQUENCIES

The phonon frequencies !ðq; sÞ are obtained from the
dynamical matrix DðqÞ. According to a well-known mathe-
matical theorem about roots to a secular equation,

Y3r
s¼1

!2ðq; sÞ ¼ jDðqÞj: (C1)

The logarithm of a product becomes a sum of logarithms.
Thus we can write the logarithmically averaged phonon
frequency !log as (Grimvall and Rosén, 1983)

ln!log ¼ 1

6N

X
q

ln½jD0ðqÞj� � 1

2
lnMeff : (C2)

Meff is an effective mass, defined as the logarithmic average
of all the atomic masses in the system. D0ðqÞ gives the forces
between the atoms. It depends on the electronic structure but
does not contain atomic masses. We note that Eq. (C2) is
valid for any number of different atoms in the solid and for
any crystal structure. Thus it holds also for alloys.

APPENDIX D: LONG-WAVELENGTH PHONONS

In the long-wavelength limit, the phonon frequencies are
linear in the wave number q:

!ð�;�; sÞ ¼ Csoundð�;�; sÞq: (D1)

The sound velocities Csoundð�;�; sÞ for the longitudinal
branch (s ¼ L) and the two transverse branches ðs ¼
T1; T2Þ in a certain direction ð�;�Þ in a cubic lattice structure
are determined by the elastic constants C11, C12, and C44, the
mass density � and the orientation of q as specified by its
direction cosines ðq1; q2; q3Þ. The result for Csound in the
directions [100], [110], and [111] is given in Table IV.
Corresponding relations in a solid under isotropic pressure
are found in Wallace (1967).

DðqÞ is well known in the elastic limit, see, e.g., Grimvall
(1999). Then, from Eq. (C1) and in the limit that C0 ! 0
while C44 remains finite,

ð�=q2Þ3!2
1ðqÞ!2

2ðqÞ!2
3ðqÞ

¼ C11C
2
44½8q21q22q23 � 4ðq21q22 þ q21q

3
3 þ q22q

2
3Þ þ 1�

þ 4ðC11 þ C44ÞC2
44q

2
1q

2
2q

2
3: (D2)

When C11 > 0 this expression is positive, except for q in the
directions h110i where it is zero. The instability associated
with C0 ! 0 thus arises only for the lower transverse h110i
branch of the elastic waves.

Next we let C0 remain finite and consider C44 ! 0. Then

ð�=q2Þ3!2
1ðqÞ!2

2ðqÞ!2
3ðqÞ

¼ ðC11 � C12Þ2ðC11 þ 2C12Þq21q22q23: (D3)

In this case, transverse modes simultaneously become un-
stable for all q lying in (001) and equivalent planes.
Therefore, C44 ! 0 gives a more severe instability than
C0 ! 0. The former case means that Zener’s anisotropy index
C44=C

0 < 1. It is unusual, but holds in the equilibrium bcc
phase of vanadium before it becomes dynamically unstable at
high pressures (see Sec. V.B), in simple cubic polonium and
in many compounds with the NaCl structure (Legut, Friák,
and Šob, 2007, 2010). See also fcc Zn and Cd in Appendix J
and the Zr-Nb-Mo alloys in Fig. 34.

TABLE IV. �C2
sound in symmetry directions in a cubic lattice.

Mode [100] [110] [111]

L C11 ðC11 þ C12 þ 2C44Þ=2 ðC11 þ 2C12 þ 4C44Þ=3
T1 C44 C44 ðC11 � C12 þ C44Þ=3
T2 C44 ðC11 � C12Þ=2 ðC11 � C12 þ C44Þ=3
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In a cubic lattice that is elastically isotropic (C0 ¼ C44), but
with the longitudinal and transverse waves treated separately,
the frequency !log becomes

!log ¼
�
C11ðC11 � C12Þ2

4e2�3

�
1=6

qD: (D4)

With this value for !log inserted into Eq. (20), the high-

temperature vibrational entropy diverges if C11 � C12 ! 0,
which contradicts the result in Sec. III.B.1 that the entropy
has a finite limit value. Thus even this model is too unreal-
istic, and it is necessary to include elastic anisotropy, i.e., to
let C11, C12, and C44 be independent variables.

In the limit that C44 ! 0 while C0 is finite (i.e., the most
severe elastic instability in a cubic lattice), one obtains from
Eq. (D3)

!log ¼
�ðC11 þ 2C12ÞðC11 � C12Þ2

4e2�3

�
1=6

qD; (D5)

thus giving SvibðTÞ a finite value.

APPENDIX E: A MODEL P-T PHASE DIAGRAM WITH A

LATTICE INSTABILITY

Let the enthalpy difference between the two phases � and
� vary linearly with P, so that the � phase becomes the
thermodynamically stable phase at pressures P > P0 when T
is low:

H� �H� ¼ �H0 þH0P ¼ H0ðP� P0Þ; (E1)

where H0 > 0. The instability of the � phase is assumed to
cause an excess vibrational entropy

Sexcess ¼ Scrit
1þ kðP� PcritÞ=P0

: (E2)

Scrit is the finite entropy limit as the instability is approached
for pressures P above Pcrit (see Sec. III.B) and k is a positive
constant. With these assumptions the difference in the Gibbs
free energy of the two phases is G�ðT; PÞ �G�ðT; PÞ ¼
H0ðP� P0Þ þ TSexcess. The phase boundary between the �
and � phases in the P-T diagram lies at the temperatures Teq

where G�ðT; PÞ ¼ G�ðT; PÞ:
Teq ¼ ðH0=ScritÞðP0 � PÞ½1þ kðP� PcritÞ=P0�: (E3)

The vibrational entropy of the � phase (and hence also G�) is

not physically meaningful at pressures P < Pcrit, but the �
phase is thermodynamically well defined at all temperatures
and pressures in our model. As a numerical example, take
k ¼ 2, P0=Pcrit ¼ 5, and ignore the liquid phase. We get the
phase diagram in Fig. 24.

The volume is related to G through V ¼ ð@G=@PÞT . Let V
of the � phase be divided into a regular part and an excess
part as

V ¼ V0 þ Vexcess ¼ V0 þ bT

½1þ kðP� PcritÞ=P0�2
;

(E4)

where b is a positive constant. The thermal expansion at
constant pressure �expan ¼ ð1=VÞð@V=@TÞP thus increases

toward a finite limit value �0 þ b as P ! Pcrit, in analogy
with the increase in vibrational entropy.

APPENDIX F: A BAIN PATH MODEL

As noted in Sec. IV, the energy UðpÞ along a tetragonal
Bain path has @UðpÞ=@p ¼ 0 when p ¼ c=a ¼ 1 (bcc) and

p ¼ ffiffiffi
2

p
(fcc), respectively, and becomes large and positive

for very small or large p. The simplest polynomial in p that
can reproduce this character of UðpÞ is of fourth order. We
therefore make the ansatz

UðpÞ ¼ �ðp� 1Þ2 þ �ðp� 1Þ3 þ 	ðp� 1Þ4: (F1)

Further, @2U=@p2 ¼ 2� when evaluated at p ¼ 1. With
Uð1Þ ¼ 0, the coefficients �, �, and 	 can be uniquely ex-

pressed in @2U=@p2 and the energy difference Uð ffiffiffi
2

p Þ �
Uð1Þ ¼ �H. We get�

@2U

@p2

�
p¼ ffiffi

2
p ¼

�
@2U

@p2

�
p¼1

� 12ð ffiffiffi
2

p þ 1Þ2�H; (F2)

from which Eq. (39) follows.

APPENDIX G: FRENKEL-OROWAN MODEL

The classical Frenkel-Orowan model (Frenkel, 1926;
Orowan, 1949) assumes a sinusoidal variation of the strain
energy Uð
Þ, so that the shear stress  ¼ dU=d
 becomes

 ¼ Gb

2�a
sin

�
2�x

b

�
: (G1)

G is the shear modulus, a and b are lattice distances as shown
in Fig. 50 (bmay be identified with a Burgers vector), and x is
a displacement along the sheared planes, thus expressing the
amount of strain. The ideal shear strength

ideal ¼ Gb

2�a
(G2)

is reached at the inflection point x ¼ b=4, i.e., where
dUðxÞ=dx has its largest value.

The ideas of Frenkel and Orowan were applied in a study
of the ideal strength of 12 bcc metals in common bcc slip
systems (Krenn et al., 2001a). Ogata et al. (2004) also built
on the Frenkel-Orowan description and formulated it as a
two-parameter relation, which gives a good account of the
deformation behavior (the so-called shearability) of a large
number of metals and ceramics.

b 

a

stress

stress

FIG. 50. Simple model geometry, with two planes sliding over

each other.
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APPENDIX H: LINDEMANN MELTING RULE

Consider the ratio � ¼ urms=d where urms is the root mean
square of the vibrational atomic displacements and d is a
characteristic distance between neighboring atoms. It is strik-
ing that � has an almost constant value at the melting
temperature Tm: � ¼ 0:13 (Na, bcc), 0.11 (Cu, fcc), 0.10
(Pb, fcc), 0.10 (Al, fcc), 0.11 (Mg, hcp), and 0.12 (Tl, hcp)
(Grimvall, 1999). This result might suggest that a lattice
cannot remain stable above urms=d � 0:12. However, the
regularity rather reflects that interatomic forces in these sub-
stances can be approximately modeled by a common simple
potential function VðrÞ. We write

VðrÞ ¼ V0�ðr=r0Þ: (H1)

V0 gives the strength of the interaction, r0 is a length parame-
ter that can be thought of as representing the size of an atom,
and � is a shape function for the interaction (a simple case
being the Lennard-Jones potential). For a given shape �,
there are only two parameters in the model: V0 with the
dimension of energy and r0 with the dimension of length.
All physical properties (with quantum effects ignored) there-
fore scale with these two parameters. For instance, d must
scale as r0. Further, kBTm being an energy must scale as V0,
so that kBTm=V0 has a definite value given by the function �.
We seek a ratio � ¼ urms=d at T ¼ Tm. Buckingham’s
� theorem (Buckingham, 1914), which uses dimensional
analysis, implies that for any temperature T we can write

urms=r0 ¼ �ðkBT=V0Þ: (H2)

� is a function that depends on the mathematical
form (shape) of the interaction �ðr=r0Þ. It follows that
�ðkBTm=V0Þ is a dimensionless number, which is determined
uniquely by �. If a group of elements are well described by a
certain common � but differ in the strength V0 and the size
parameter r0, they will all have the same value of urms=d at
the melting point Tm, thus obeying the Lindemann melting
rule. This result, which was further developed by Grimvall
(1999, 2008), follows from dimensional analysis and is not
related to a lattice instability.

APPENDIX I: PESUDOMORPHIC EPITAXY

Pseudomorphism refers to the case when the epitaxial film
assumes the same in-plane lattice parameters as the substrate,
leading to a crystalline form different from that which a
substance normally has. There are numerous examples of
pseudomorphism when an ultrathin layer of one material is
grown epitaxially on a specified crystallographic surface of
another material. In addition to the works cited in Sec. IV.A.2,
we let the following examples illustrate various aspects of this
important and rapidly expanding field of research. Films of
bcc Cu and Pd were formed on W(100) (Wormeester, Hüger,
and Bauer, 1996). Epitaxial thin films of Cu are stabilized in
the bcc structure on bcc Fe (Wang et al., 1987) and on fcc Ag
(100) (Li et al., 1991). Marcus and Jona (1997) discussed the
stability of fcc Ti on Al(100). See also Alippi, Marcus, and
Scheffler (1997) on V, Co, and Cu films, Ozolin, š, Wolverton,
and Zunger (1998) on strains and phase stabilities in epitaxial

noble metal films, Ji and Jona (2002) on fcc Mg on W(100),
Friák, Šob, and Vitek (2001) and Spišák and Hafner (2002) on
tetragonally strained layers of fcc Fe in various magnetic
states on Cu(100), Lai and Zhao (2004) on vanishing shear
resistance in an ultrathin fcc Fe film, Kolluri, Gungor, and
Maroudas (2008) on fcc-hcp transformations in strained ultra-
thin Cu films, Zelený, Legut, and Šob (2008) and Zelený and
Šob (2008) on Co and Ni under loading in epitaxial layers,
Buschbeck et al. (2009) on the Fe0:7Pd0:3 magnetic shape
memory alloy along most of the fcc-bcc Bain path, and
Tsetseris (2005) and Shimada, Ishii, and Kitamura (2010)
on magnetism in Fe.

APPENDIX J: C0 AND C44 IN bcc AND fcc STRUCTURES OF

METALLIC ELEMENTS

For each of the elements discussed below we first give the
thermodynamically stable crystal structure at ambient pres-
sure, as determined experimentally (Donohue, 1974; Young,
1991). Every and McCurdy (1992) gave data for the measured
elastic constants of many of these equilibrium phases, usually
at room temperature. References to experimentally deter-
mined phonon dispersion curves are given in only a few
cases. An analysis by Ledbetter et al. (2004) for bcc Ti at
1000 K illustrates the uncertainty in Cij when derived from

phonon dispersion curves rather than from ultrasound mea-
surements. There are numerous papers dealing with the rela-
tive energies of simple structures for elements under zero or
finite pressure when T ¼ 0 K, but without addressing lattice
instabilities per se; see, e.g., Cazorla, Alfè, and Gillan
(2008a) on 4d transition metals and Burakovsky et al.
(2010) for the complicated case of Ta. The exotic high-
pressure behavior of Li and Na also falls outside the scope
of this review (Rousseau et al., 2011). Further, we will not
cover works on the equation of state, e.g., as discussed by
Karbasi, Saxena, and Hrubiak (2011) for several stable me-
tallic elements.

The emphasis in this Appendix is on metastable or dy-
namically unstable fcc and bcc structures. Unless otherwise
stated, the results are obtained through ab initio electron
structure calculations of some kind. Most of them are for
T ¼ 0 K and ambient pressure (P ¼ 0). There is no attempt
to be complete in these references. In particular, early or less
accurate calculations were ignored, and we may give just a
single recent reference to high-pressure works. Magnetic
states are specified as FM, AFM, and NM. In many cases
there is more than one source of data. The spread in the
numerical values illustrates their uncertainty. The data in
Table II are usually not repeated. All values for C0 and C44

in this Appendix are expressed in GPa.

1. Lithium, sodium, potassium, rubidium, and cesium

Li, Na, K, Rb, and Cs have bcc structure at ambient
conditions. The fcc structure of all alkali metals has C0 > 0
and C44 > 0 at ambient conditions (Xie et al., 2008), in
agreement with results obtained by Sliwko et al. (1996) and
Marcus, Jona, and Qiu (2002) for Li, K, and Rb, and Xie
et al. (2000) for Cs. Vaks et al. (1991), Milstein and Rasky
(1996), Milstein et al. (1996), and Xie et al. (2007, 2008)
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considered alkali metals under pressure at low temperatures.
All alkali metals in the bcc structure have C0 < 0 at high
pressure, and in Li (Rodriguez-Prieto et al., 2006) and Na
(Xie et al., 2008) the instability is present also for the
N-point phonon. Shear instabilities in bcc and fcc Na and
K at ultrahigh pressures are considered by Katsnelson et al.
(2000). In fcc Li there is an unstable transverse phonon mode
near the K point above about 33 GPa (Kasinathan et al.,
2006; Profeta, 2006; Yao, Tse et al., 2009). Kong and Jepsen
(2000) found a corresponding result in Cs. The phonon
changes in Li at high P are examples of Fermi surface nesting
effects (Kasinathan et al., 2006; Profeta, 2006; Rodriguez-
Prieto et al., 2006).

2. Beryllium, magnesium, calcium, strontium, barium, and

radium

Be transforms from an hcp to a bcc structure at 1530 K and
melts at 1560 K. Mg has hcp structure up to the melting point.
Ca and Sr have fcc structures, which transform to bcc at 721
and 830 K, respectively, while Ba is bcc at all temperatures.
In Be, Lam, Chou, and Cohen (1984) calculated C44 ¼ 186
(fcc) and 170 (bcc), C0 ¼ 78 (fcc) and 5 (bcc). Sin’ko and
Smirnov (2005) found that bcc and fcc Be are elastically
stable up to high pressures. In bcc Be,C0 becomes negative on
expansion to 1:17V0, where V0 is the volume at 0 K (Kádas
et al., 2007), but stiffens to 3.7 on compression to 0:3V0

(Lam, Chou, and Cohen, 1984). The fcc phase of Mg is
dynamically stable, with C0 ¼ 6, C44 ¼ 24 (Jona and
Marcus, 2002b), and C0 ¼ 6:3, C44 ¼ 31:5, while bcc Mg
has C0 < 0 at low pressure and T ¼ 0 (Sin’ko and Smirnov,
2009). The behavior of Mg under pressure is treated in
Sec. V.C, but see also Sin’ko and Smirnov (2009). There
are neutron scattering data for phonons in the bcc and fcc
structures of Ca (Heiroth et al., 1986), and fcc Sr and bcc Ba
(Buchenau et al., 1984). Jona and Marcus (2006) reviewed
experimental and ab initio work and performed calculations
for Ca, Sr, and Ba. Their T ¼ 0 K results for metastable bcc
Ca and Sr are in fair agreement with those of Sliwko et al.
(1996). Calculations of the shear elastic constants in Ca, Sr,
and Ba can have large uncertainties and give the wrong sign;
see Mehl and Papaconstantopoulos (1996) and Pollack et al.
(1997). Ca and Sr transform from fcc to bcc, and Ba from bcc
to hcp, under pressure (Chen, Ho, and Harmon, 1988; Jona
and Marcus, 2006; Qiu and Marcus, 2009). C0 and C44 in Ca,
Sr, and Ba show sudden elastic variations and instabilities as a
function of pressure (Vaks et al., 1991). Pollack et al. (1997)
found that the T ¼ 0 K low transverse [110] phonon branch
becomes stabilized in bcc Be, Mg, Ca, Sr, and Ba under
pressure. Teweldeberhan and Bonev (2008) and Yao, Klug
et al. (2009) considered the stabilization of the simple cubic
structure of Ca under pressure. Ra transforms from bcc to fcc
under pressure (Khojandi and Papaconstantopoulos, 2010).

3. Scandium, yttrium, and lanthanum

Sc and Y have hcp structure, followed by bcc above 1608
and 1752 K, respectively. La transforms from hcp to fcc at
550 K and to bcc at 1134 K. The bcc structure of Sc and La is
unstable at T ¼ 0 K; C0 ¼ �10 (Sc) and�25 (La), C44 ¼ 30

(Sc) and 10 (La) (Persson, Ekman, and Ozolin, š, 2000).
Nixon, Papaconstantopoulos, and Mehl (2008) reported
C0 ¼ �38 (� 35) and the very low values C44 ¼ 0:4 (0.8)
in the local density and GGA approximations, respectively,
for bcc La. See also Wills et al. (1992) for La and Craievich
et al. (1997) for Sc. The fcc phases of La (Wills et al., 1992),
Sc, and Y are elastically stable (Papaconstantopoulos, Lach-
hab, and Mehl, 2001), with C0 ¼ 12:6, and C44 ¼ 31:1 in fcc
Y (Marcus and Jona, 2005).

4. Titanium, zirconium, and hafnium

Ti, Zr, and Hf have hcp structure, followed by bcc above
1155, 1136, and 2030 K, respectively. Theoretical phonon
dispersion curves show signs of instabilities in bcc Ti (Sanati
et al., 2001; Hennig et al., 2008) and bcc Zr (Chen et al.,
1985; Sanati et al., 2001), in agreement with high-T experi-
ments. The experimental fact that the high-temperature bcc
phase cannot be retained under quenching to low tempera-
tures is consistent with qualitative results from early ab initio
calculations at T ¼ 0 K, which gave C0 < 0 for Ti (Craievich
et al., 1994; Sliwko et al., 1996; Marcus and Jona, 1997) and
Hf (Wills et al., 1992). Other calculations for the bcc
structure gave C0 ¼ �10 (Ti) and �20 (Hf), C44 ¼ 20 (Ti)
and 40 (Hf) (Persson, Ekman, and Ozolin, š, 2000), C

0 ¼ �15
(Ti), C44 ¼ 39 (Ti) (Wang, Šob, and Zhang, 2003), C0 ¼ �8
(Ti), C44 ¼ 53 (Ti) (Hennig et al., 2008), C0 ¼ �12:2 (Ti)
and �3:6 (Zr), C44 ¼ 39:8 (Ti) and 32.3 (Zr) (Ikehata et al.,
2004). Porta and Castán (2001) calculated the phonon spec-
trum of bcc Zr at T ¼ 0, with C0 ¼ �5:8 and C44 ¼ 36. The
fcc phases of Ti, Zr, and Hf are elastically stable (Marcus and
Jona, 1997; Papaconstantopoulos, Lach-hab, and Mehl,
2001), with C0 ¼ 22, 21, 28 and C44 ¼ 61, 53, 67, respec-
tively (Aguayo, Murrieta, and de Coss, 2002), and C0 ¼ 20
(Ti), C44 ¼ 50 (Ti) (Wang, Šob, and Zhang, 2003). Several
papers discussed the bcc stabilization at high T. In a
Monte Carlo simulation by Porta and Castán (2001), C0 was
stabilized above about 1500 K. Masuda-Jindo, Nishitani, and
Hung (2004) used an embedded-atom potential and allowed
for anharmonicity in bcc Ti, thus stabilizing C0 at about
800 K. See also Trubitsin (2006a, 2006b), Ye et al. (1987),
and the discussion in Sec. VI.B on bcc Zr, and the high-T
ab initio calculations by Souvatzis et al. (2008, 2009) for Ti,
Zr, and Hf. Ahuja et al. (1993) found bcc Ti, Zr, and Hf
stabilized at high pressure and T ¼ 0 K; see also Hu, Lu, and
Yang (2008), and Hu et al. (2010), and references therein.
Hsueh et al. (2002) noted that the phonon structure in bcc Zr
could be stabilized if a magnetic moment was imposed.

5. Vanadium, niobium, and tantalum

V, Nb, and Ta have bcc structure up to the melting tem-
perature, and C0 < 0 in the fcc structure at T ¼ 0 K
(Craievich et al., 1994; Papaconstantopoulos, Lach-hab,
and Mehl, 2001; Nnolim, Tyson, and Axe, 2003). C0 < 0
was also obtained by Wills et al. (1992) for Ta, Mehl
et al. (2004) for V and Nb, Sliwko et al. (1996) and
Alippi, Marcus, and Scheffler (1997) for V, and Söderlind
and Moriarty (1998) for Ta. Wang, Šob, and Zhang (2003)
calculated C0 ¼ �152, C44 ¼ �57 in fcc Nb, and
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C0 ¼ �102, C44 ¼ 19 in fcc Ta. C44 in V shows an unusual
variation with pressure; see Qiu and Marcus (2008a) and
Sec. V.B. Both bcc and fcc Ta are elastically stable above P ¼
1000 GPa (Söderlind and Moriarty, 1998). Craievich et al.
(1997) found hcp Nb unstable.

6. Chromium, molybdenum, and tungsten

Cr, Mo, and W have bcc structure up to the melting
temperature. It is well established that C0 < 0 in the fcc
structure at T ¼ 0 K; see Wills et al. (1992) and Šob,
Wang, and Vitek (1997a) for W, Craievich et al. (1994)
and Nnolim, Tyson, and Axe (2003) for Cr(NM), Mo, and
W, Mehl and Papaconstantopoulos (1996) for Mo, and
Papaconstantopoulos, Lach-hab, and Mehl (2001), Wang,
Šob, and Zhang (2003), and Mehl et al. (2004) for Mo and
W. Einarsdotter et al. (1997) calculated the full phonon
spectrum for fcc W at different pressures, with the P ¼ 0
results C0 ¼ �159 and C44 ¼ �128. Guo and Wang (2000a)
obtained C0 ¼ 169, C44 ¼ 127 in bcc Cr(NM), C0 ¼ 174,
C44 ¼ 119 in bcc Cr(AF), C0 ¼ �141, C44 ¼ �76 in fcc
Cr(NM), and C0 ¼ �117 in hcp Cr(NM). Wang, Šob, and
Zhang (2003) calculated C0 ¼ �88, C44 ¼ �7 in fcc Mo and
C0 ¼ �142, C44 ¼ �60 in fcc W. The stabilization of fcc W
at high pressures (Einarsdotter et al., 1997) is in agreement
with C0 > 0 and C44 > 0 at high P (Ruoff, Rodriguez, and
Christensen, 1998), and work by Zeng et al. (2010) on Mo.
Belonoshko et al. (2008) found both bcc and fcc Mo dy-
namically stable from 350 GPa up to at least 850 GPa; see
also Jona and Marcus (2005) and Cazorla, Alfè, and Gillan
(2008b). The possible stabilization of the fcc structure at high
T was treated by Asker et al. (2008) for Mo and by Ozolin, š
(2009) for W. The hcp phase of Mo is elastically unstable
(Craievich et al., 1997; Cazorla, Alfè, and Gillan, 2008b).

7. Manganese, technetium, and rhenium

Mn has bcc structure (complex, 58 atoms=unit cell) up to
about 1000 K, followed by two disputed structures and then
again the bcc structure. Tc and Re have hcp structure up to the
melting temperatures. Craievich et al. (1994) obtained
C0 > 0 for the fcc structure and C0 < 0 for the bcc structure
of Mn (NM), Tc, and Re. This is consistent with C0 (Wills
et al., 1992) and phonon spectrum (Persson, Ekman, and
Grimvall, 1999) calculations for Re at P ¼ 0, and under
pressure (Verma et al., 2003). Further, C0 < 0 in bcc Mn
(AF) (Qiu and Marcus, 1999; Qiu, Marcus, and Ma (2000a,
2000b). Papaconstantopoulos, Lach-hab, and Mehl (2001)
found fcc Tc and Re elastically stable.

8. Iron, ruthenium, and osmium

Fe has bcc structure up to 1173 K, followed by fcc and then
a return to bcc at 1660 K. Ru and Os have hcp structure up to
the melting temperature. In Fe, the experimental values of
C11, C12, and C44 do not change much on the transition from
bcc-to-fcc structure (Every and McCurdy, 1992). Craievich
et al. (1994) obtained C0 < 0 (bcc), C0 > 0 (fcc) in Fe (NM),
Ru, and Os, as confirmed by Wang et al. (2004) for Ru and
Os. Wills et al. (1992) obtained C0 < 0 in bcc Os, and

Papaconstantopoulos, Lach-hab, and Mehl (2001) found fcc

Ru and Os elastically stable. Much work has been done on the
stability of Fe lattices in different magnetic states, and the

following account is not complete. The N-point transverse
phonon mode is unstable in bcc Fe (NM) (Ekman et al.,

1998), and fcc Fe (FM) and bcc Fe (NM) are unstable under
shear (Krasko and Olson, 1990). Friák, Šob, and Vitek (2001)

considered bcc and fcc Fe at different volumes and magnetic
configurations, and found bcc Fe (NM) unstable. A quantum

Monte Carlo bcc-fcc Bain path calculation by Leonov et al.
(2011) showed that paramagnetic bcc Fe is dynamically

unstable well above the Curie temperature. Peng and Jansen
(1991), Marcus, Moruzzi, and Qiu (1999), Qiu, Marcus, and

Ma (2001) and Spišák and Hafner (2002) considered tetrago-
nal Fe. Friák and Šob (2008) and Johnson and Carter (2008)

investigated the Fe bcc-hcp transformation path in various
magnetic states. Guo and Wang (2000b) calculated C0 ¼
�110, C44 ¼ 141 in bcc Fe (NM), C0 ¼ �77, C44 ¼ 23 in
fcc Fe (FM),C0 ¼ 125, C44 ¼ 287 in fcc Fe (NM), C0 ¼ �15
in hcp Fe (FM), and C0 ¼ 193 in hcp Fe (NM). See also work

on the role of magnetism in bcc Fe (Hsueh et al., 2002) and in
Bain path calculations (Herper, Hoffmann, and Entel, 1999;

Qiu and Marcus, 1999; Qiu, Marcus, and Ma, 2000a; Friák,
Šob, and Vitek, 2001; Tsetseris, 2005; Qiu, Apostol, and

Marcus, 2008; Okatov et al., 2009). Zelený, Friák, and Šob
(2011) compared the energetics of the NM, FM, and AFM

states in Fe along the trigonal deformation path. The mag-
netic structure in 	-Fe was discussed by Marsman and Hafner

(2002). High-pressure effects in Fe have been investigated by
several groups. It is well known (Stixrude, Cohen, and Singh,

1994; Stixrude and Cohen, 1995; Söderlind, Moriarty, and
Wills, 1996; Ekman et al., 1998; Ma, Qiu, and Marcus, 2002;

Mathon et al., 2004) that bcc Fe becomes dynamically
unstable at high pressures, and that the emerging instability

can be attributed to magnetic effects. However, bcc Fe may be
stabilized at the conditions of the Earth’s inner core

(Belonoshko, Ahuja, and Johansson, 2003). For other works
on Fe under pressure, see Vočadlo et al. (2008) and refer-

ences therein. An overview of ab initio calculations of elastic
properties from the electronic ground state to the stability

limit, with an application to bcc Fe, is given by Friák (2011).

Work by Körmann et al. (2008, 2010) showed how the
magnetic, vibrational, and electronic contributions to the

thermodynamic properties of bcc Fe can be simultaneously
calculated ab initio.

9. Cobalt, rhodium, and iridium

Co (FM) has hcp structure up to 661 K, where it transforms

to fcc structure. Rh and Ir have fcc structure up to the melting
temperature. Guo and Wang (2000b) found fcc Co (NM), fcc

Co (FM), and hcp Co (NM) elastically stable at T ¼ 0 K. In
bcc Co (FM) and bcc Co (NM) their calculations gave

C0 ¼ �24, C44 ¼ 131, and C0 ¼ �270, C44 ¼ 368, respec-
tively, in agreement with the bcc instability obtained by

Craievich et al. (1994), and bcc Co (FM) being unstable

with C0 ¼ �36:5, C44 ¼ 152 (Liu and Singh, 1993),
C0 ¼ �29, C44 ¼ 131 (Söderlind et al., 1994); see also

Fox and Jansen (1999) Hsueh et al. (2002), Zelený
and Šob (2008), Zelený, Legut, and Šob (2008), and
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Laenens et al. (2009). Zelený, Friák, and Šob (2011) com-
pared the energetics of NM, FM, and AFM states in Co along
the trigonal deformation path. Further, C0 < 0 in bcc Ir (Mehl
and Boyer, 1991; Wills et al., 1992; Craievich et al., 1994),
and in bcc Rh (NM) (Craievich et al., 1994), while Rh in a
bcc lattice is ferromagnetically ordered (Hüger and Osuch,
2004; Cui et al., 2010). Šob, Wang, and Vitek (1997a)
obtained C0 ¼ �383 and C44 ¼ 217 in bcc Ir.

10. Nickel, palladium, and platinum

Ni (FM), Pd, and Pt have fcc structure. Also fcc Ni (NM) is
elastically stable (Guo and Wang, 2000b; Zelený, Legut, and
Šob, 2008). Calculations on bcc Ni (FM) and bcc Ni (NM)
gave C0 ¼ �33, C44 ¼ 156, and C0 ¼ �96, C44 ¼ 395, re-
spectively (Guo and Wang, 2000b), in agreement with the bcc
instability obtained by Craievich et al. (1994), Mishin et al.
(1999), Zhang, Li, and Xu (2007), Zelený, Legut, and Šob
(2008), and Zelený and Šob (2008). Zelený, Friák, and Šob
(2011) compared the energetics of NM, FM, and AFM states
in Ni along the trigonal deformation path. Further, C0 < 0 in
bcc Pd (Jona and Marcus, 2002a), and bcc Pt (Mehl et al.,
2004). Yashiro et al. (2006) studied Ni under pressure. Both
hcp Ni (FM) and hcp Ni (NM) are elastically stable (Guo and
Wang, 2000b).

11. Copper, silver, and gold

Cu, Ag, and Au have fcc structure up to the melting
temperature. While hcp Cu is unstable (Jona, Ji, and
Marcus, 2003), hcp Ag and Au are elastically stable (Jona
and Marcus, 2004). The bcc structure of Cu is unstable, with
C0 ¼ �6, C44 ¼ 112 (Wang and Šob, 1999; Wang, Šob, and
Zhang, 2003), C0 ¼ �14:5, C44 ¼ 95:9 (Liu et al., 2005);
see also Kraft et al. (1993), Alippi, Marcus, and Scheffler
(1997), Jona and Marcus (2001), Mishin et al. (2001)
and Černý et al. (2004). Magyari-Köpe, Grimvall, and
Vitos (2002) calculated C0 ¼ 3 and C44 ¼ 65 in bcc Ag.
Wills et al. (1992) found C0 � 0 for bcc Au, and
Papaconstantopoulos and Mehl (2003) obtained C0 < 0 in
bcc Cu and Au; see also Zhang et al. (2008a, 2008b). In
bcc Cu-Fe alloys, the elastic instability extends up to about
50 at. % Fe (Liu et al., 2005).

12. Zinc, cadmium, and mercury

Zn and Cd have hcp structures with c=a significantly
higher than the ideal value of 1.63. Hg has a low-
temperature tetragonal structure followed by a rhombohe-
dral structure. While bcc Zn is strongly unstable, the
stability of the fcc phase has been more uncertain. Müller
et al. (1999) and Marcus, Jona, and Qiu (2002) found C44

to be slightly negative in fcc Zn, and Magyari-Köpe,
Grimvall, and Vitos (2002) obtained C0 ¼ �21 (bcc), 30
(fcc) and C44 ¼ �2 (bcc), 5 (fcc). Qiu and Marcus (2008b)
studied several Zn phases under pressure and found fcc Zn
to be very stable above 32 GPa. Marcus and Jona (2005)
obtained C0 ¼ 16:4, C44 ¼ �1:9 in fcc Cd. The high-
pressure hcp phase of Hg was studied by Jona and
Marcus (2007).

13. Aluminum, gallium, indium, and thallium

Al has fcc structure up to the melting temperature, Ga has

orthorhombic, and In has tetragonal structure. Tl has hcp

structure, followed by bcc at high temperatures. Al is unstable

in the bcc structure; C0 < 0 (Mehl and Boyer, 1991; Craievich

et al., 1997; Mishin et al., 1999; Tambe, Bonini, and Marzari,

2008), C0 ¼ �24:5, C44 ¼ 26:7 (Li and Wang, 1998),

C0 ¼ �17, C44 ¼ 44 (Sin’ko and Smirnov, 2002),

C0 ¼ �16, C44 ¼ 46 (Wang, Šob, and Zhang, 2003), with

C0 being stabilized at high pressure, while C0 in fcc Al

becomes unstable (Sin’ko and Smirnov, 2002; Marcus and

Qiu, 2009b). Above 725 GPa, fcc Al becomes elastically

unstable (Tambe, Bonini, and Marzari, 2008). In fcc Ga,

C0 < 0 at ambient pressure (Kenichi, Kazuaki, and Masao,

1998; Baskes, Chen, and Cherne, 2002) but all !2ðqÞ> 0 at

high pressure (Li and Tse, 2000). The thermodynamically

stable bcc Tl has a pronounced dip in !ðqÞ for q ¼ ð2=3Þ�
½111�, and very low C0 (Iizumi, 1983). Pseudopotential cal-

culations by Pollack et al. (1997) gave C0 < 0 for bcc and

C0 > 0 for fcc Al, Ga, In, and Tl.

14. Carbon, silicon, germanium, tin, and lead

C, Si, and Ge have diamond-type structure, Sn a low-

temperature diamond-type structure followed by tetragonal

structure, and Pb a fcc structure. Cohen, Stixrude, and

Wasserman (1997) found elastic instability in fcc and hcp

Si. Ekman, Persson, and Grimvall (2000) found bcc and fcc Si

to be metallic, with C0 < 0 at T ¼ 0 K. Pseudopotential

calculations by Pollack et al. (1997) gave C0 < 0 for bcc

and C0 > 0 for fcc Sn and Pb. Katzke and Tolédano (2007)

reviewed the structural transformations in Si, Ge, Sn, and Pb

at high pressure, but without discussion of instabilities. Sun,

Klug, and Martoňák (2009) considered structures of C in the

TPa pressure range and found evidence for a simple cubic

phase.

15. Tellurium and polonium

Te is a semiconductor at ambient conditions but transforms

to metallic phases at high pressure. The calculated bcc pho-

non dispersion curve develops an instability near [0.2, 0, 0]

below about 20 GPa (Mauri et al., 1996). Po is the only

element that has the sc structure in the thermodynamic

ground state at ambient conditions. The calculated elastic

constants depend strongly on volume and on ab initio model

approximations, with the bcc and fcc structures being elasti-

cally unstable (Kraig, Roundy, and Cohen, 2004; Legut,

Friák, and Šob, 2007, 2010); see also Šob, Legut, and Friák

(2009) and Kim, Choi, and Min (2009).

16. Arsenic, antimony, and bismuth

As, Sb, and Bi have rhombohedral layered structures at

ambient conditions and a high-pressure bcc phase (Iwasaki

and Kikegawa, 1997). Gutiérrez, Menéndez-Proupin, and

Singh (2006) calculated the elastic constants of bcc Bi at

high P.
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17. Lanthanides

La was discussed above. Söderlind, Eriksson, Wills, and
Johansson et al. (1993) showed how the dynamical stability
of bcc and fcc Sm at ultrahigh pressure depends critically on
assumptions about the magnetic structure. Pr is dynamically
unstable in both bcc and fcc structure (Söderlind, 2002).

18. Actinides

Söderlind (1998) reviewed the light actinides Th, Pa, U,
Np, and Pu. At ambient conditions both bcc and fcc U and Np
have C0 < 0. The high-temperature phase �-Pu has a mag-
netically disordered fcc structure. Nonmagnetic fcc Pu is
unstable, with C0 ¼ �69, C44 ¼ 15 (Söderlind et al.,
2004); see also Söderlind (1998). Pu melts in the bcc structure
ð
-PuÞ, which, however, is unstable at T ¼ 0 K (Söderlind,
1998; Dai et al., 2003; Söderlind et al., 2010). C0 < 0 in fcc
Th above P ¼ 80 GPa (Bouchet and Albers, 2011).
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Kim, K., V. Ozolin, š, and A. Zunger, 1999, Phys. Rev. B 60, R8449.

Kimminau, G., P. Erhart, E.M. Bringa, B. Reminton, and J. S. Wark,

2010, Phys. Rev. B 81, 092102.

Kissavos, A. E., S. Shallcross, V. Meded, L. Kaufman, and I. A.

Abrikosov, 2005, CALPHAD: Computer Coupling Phase

Diagrams Thermochem. 29, 17.

Kitamura, T., Y. Umeno, and R. Fushino, 2004, Mater. Sci. Eng. A

379, 229.

Koehler, T. R., 1968, Phys. Rev. 165, 942.

Kolluri, K., M. R. Gungor, and D. Maroudas, 2008, Phys. Rev. B 78,

195408.

Kong, Y., and O. Jepsen, 2000, J. Phys. Condens. Matter 12, 8973.
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Data, Solid State Phenomena, Pt. B 150, 1.
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Söderlind, P., O. Eriksson, J.M. Wills, and A.M. Boring, 1993,

Phys. Rev. B 48, 5844.
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