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ABSTRACT: Gibbs ensemble Monte Carlo simulations and cloud point measurements were performed to understand the
molecular weight dependence of χ and the effect of dispersity on the phase behavior of polymer mixtures. Oligomeric blends
consisting of poly(ethylene-alt-propylene) (PEP) and poly(ethylene oxide) dimethyl ether (PEO) were used as the model
systems. First, the molecular weight dependence of χ for PEP/PEO mixtures was studied using simulations and experiments for
PEP/PEO mixtures with various molecular weights. An empirical model with a single adjustable parameter kij is used to quantify
this molecular weight dependence, and it allows for the accurate prediction of χ of PEP/PEO mixtures with arbitrary molecular
weights. Second, the effects of molecular weight distribution (MWD) and dispersity (Đ) of PEO on the PEP/PEO phase
diagram were investigated via both simulations and experiments. When PEO is relatively monodisperse (Đ < 1.2), the phase
diagram is found to be insensitive to either MWD or Đ, despite differentiation in molecular partitioning observed from
simulations. However, the coexistence curve for mixtures containing PEO with a bimodal distribution and a large dispersity (Đ =
1.76) differs dramatically from that for mixtures containing low-dispersity PEO, which suggests that the former mixture can no
longer be treated as a binary system. Furthermore, structural analysis was performed from simulation trajectories to probe
microscopic heterogeneity and aggregation behavior in the liquid phases. The results in this work permit the accurate prediction
of χ and the phase diagram of disperse binary polymeric mixtures.

■ INTRODUCTION

The ability to engineer diverse polymers on the molecular level
enables the creation of materials with a wide range of
properties. Polymer blends, a soft matter analogue of alloys,
provide a means to access materials properties that are beyond
the reach of single-component polymeric materials.1−4 Knowl-
edge of how the interactions between unlike segments influence
the phase behavior is the key to the custom tailoring of desired
polymeric materials properties. Flory−Huggins (FH) theory5,6

is widely used to correlate the mixture phase behavior with a
binary interaction parameter χ:
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where ΔGm is the free energy of mixing per reference site; kB
and T are the Boltzmann constant and the absolute
temperature, respectively; Ni (i = 1, 2) is the ratio between
molar volume of component i and the reference volume; and
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ϕ1 is the volume fraction of component 1. Experimentally, χ is
typically fitted either to the binodal curve7,8 using eq 1
(denoted as χeff) or to the structure factor from neutron
scattering experiments9 using the random-phase approxima-
tion10 (denoted as χSANS).
From eq 1, the accurate determination of χ is central to

predicting the polymer blend phase diagram. In addition to
theoretical advances,11−13 breakthroughs in computational
method development enable a drive toward predicting χ from
the molecular structures of polymers. One method is to
perform molecular simulations on miscible binary blends,
compute the structure factor, and then fit χ using the random-
phase approximation, which mimics how χSANS is determined
from neutron experiments.14,15 Another approach is to obtain χ
through interfacial concentration profiles from immiscible
binary blend simulations.16,17 In contrast to the above two
methods where substantial assumptions are introduced in the
calculation, we utilized vapor−liquid equilibria simulations to
compute χ from the chemical potential in our earlier work18

(denoted as χCP). Recently, Zhang et al. developed a new
method to compute χ by performing thermodynamic
integration on the path along which one polymer transforms
into the other.19

Despite this progress, two major questions still remain on
how the coupling of eq 1 and the χ calculation method can be
used to achieve the prediction of phase diagrams for binary
polymeric mixtures. The first problem concerns the molecular
weight dependence of χ. Since χ is often calculated for one
specific set of molecular weights, it is important to know its
molecular weight dependence in order to extrapolate χ to the
molecular weights of interests. Unfortunately, the exact
functional form of χ(N1,N2) for polymer blends is still a matter
of discussion. For example, Han et al. studied polystyrene/
poly(vinyl methyl ether) blends and concluded that χSANS for
three sets of molecular weights that vary by about a factor of 3
are indistinguishable.20 In contrast, Nedoma et al. reported that
for polyisobutylene/(deuterated polybutadiene) blends χSANS ∼
1/NAVE, where NAVE = 4(N1

−1/2 + N2
−1/2)−2.21,22 A similar

dependence of χ(N) ∼ N−1 is also observed for symmetric
diblock copolymers.23 A theoretical study by Morse and Chung
predicted a χ ∼ N−1/2 dependence for polymer “mixtures” with
χ ≈ 0. They attributed this relationship to the enhanced
intrachain interactions as the chain length increases and thus
the screening of the interchain interactions that contribute to
χ.24 In addition to the findings above, it is also intriguing
whether the molecular weight dependence of χ implies the
failure of the FH theory, since χ is a molecular-level parameter
and should be independent of chain length.25

The second problem is whether eq 1 is sufficiently accurate
for a disperse “binary” mixture (i.e., a quasi-binary mixture),
where molecular weight distribution (MWD) and dispersity
(Đ) might also play a role. Experimental phase diagrams of
disperse polystyrene in methylcyclohexane show that coex-
istence curves for different total compositions do not collapse
on one another, and the coexistence curves of disperse samples
deviate by a few Kelvin from those of the relatively
monodisperse ones.26,27 For a bimodal polymer distribution
when the chain length ratio between the two polymer species is
sufficiently large, the solution can phase-separate into three
coexisting liquid phases near the critical point.28−30 Such
deviations from binary mixture phase behavior motivate
theoretical developments to understand the effect of dispersity.
The standard approach is to apply continuous thermodynamics

to the FH theory to calculate the cloud point curve of the quasi-
binary mixture.31−38 In addition, the partitioning of different
molecular weight species between coexisting phases is identified
by both experimental39,40 and theoretical34,38,41,42 studies.
The key barrier in studying these two problems is the limited

molecular weight range, MWD, and Đ accessible via experi-
ments. On the one hand, a wide range of molecular weights is
essential to provide sufficient precision in the determination of
χ(N). On the other hand, however, the molecular weight range
is restricted by the narrow temperature window for scattering
or phase diagram measurements, which is limited between the
glass transition temperature and the degradation temperature of
polymers. Similarly, for the effects of MWD and Đ, it is
challenging to prepare polymer samples with the desired MWD
and Đ to achieve statistically meaningful conclusions.
Molecular simulations provide a convenient route to

overcome the two problems mentioned above. First, simu-
lations can access a much broader range of temperature without
degradation. Second, both MWD and Đ can be tuned with
relative ease in the simulations. Third, simulations can directly
access compositional and structural information that is difficult
to extract from experiments, which can shed light on the
molecular origin of the phase behavior.
Despite these advantages, direct simulations of polymer

mixture phase behavior are rare, primarily due to the sampling
difficulty of molecular transfers between two phases (needed
for the computation of χ as well as the phase diagram). For
example, the effect of dispersity on phase equilibria has only
been simulated for Lennard-Jones particles.43−45 Fortunately, a
variety of sampling techniques have been developed to assist
the transfer of large molecules in order to realize the routine
application of polymer (oligomer) phase equilibria simula-
tions.46−58 In addition to the sampling difficulty, another
challenge is the high sensitivity of the phase diagram to the free
energy of transfer that governs the phase separation, which
poses a stringent test on the accuracy of the molecular model
used in the simulations. As shown in a recent example of the
alkane/alkanol mixture phase diagram,58 a difference of 1 kJ/
mol in the transfer free energy, often regarded as a “small”
deviation in force field development, results in about 50 K
deviation in the coexistence curve.
In this work, Gibbs ensemble Monte Carlo (GEMC)

simulations59,60 with advanced sampling techniques in con-
junction with experimental cloud point measurements are
utilized to study the phase behavior of model mixtures
consisting of oligomeric poly(ethylene-alt-propylene) (PEP)
and poly(ethylene oxide) dimethyl ether (PEO). Figure 1

shows the repeat unit structures of the two molecules. This
incompatible mixture is selected as the model system because
of the relatively low molar mass (n < 10) needed to demix the
blend at room temperature, which permits the determination of
phase diagrams by both simulations and cloud point measure-
ments. In this paper, we first present results from simulations
and experiments regarding χ of PEP/PEO mixtures with

Figure 1. Repeat unit structures of PEP and PEO oligomers studied in
this work.
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various molecular weights, from which the molecular weight
dependence of χ is identified and rationalized. In the second
part, coexistence curves and cloud point curves for quasi-binary
mixtures consisting of monodisperse PEP and polydisperse
PEO are presented. The MWD and Đ of PEO are varied, but
the same Mn of 500 Da is maintained to understand the effects
of MWD and Đ on the phase diagram. Further analysis on the
partitioning of different molecular weight PEO molecules and
structures of the liquid in the two coexisting phases provides
additional insight into the phase behavior of this mixture.

■ METHODS
Nomenclature. A range of PEP and PEO chain lengths are studied

to explore the molecular weight dependence of χ, and they are
denoted as [molecule]-[Mn]-[MWD]-[Đ], in which Mn is the number-
average molecular weight. MWD and Đ in the nomenclature may be
omitted if the sample is monodisperse. The MWD studied includes
“MD” (monodisperse), “BM” (bimodal), and “SZ” (Schulz−Zimm).61
For example, PEO-222 indicates monodisperse oligomer PEO with
five repeat units (n = 5), while PEO-500-SZ-1.10 represents disperse
PEO with anMn of 500 Da, a Schulz−Zimm MWD, and a dispersity of
1.10. The number of repeat units n, as defined in Figure 1, is also used
to indicate the chain length of PEP and PEO. The molecular weight
information on PEO used in experiments and simulations can be
found in Table 1 and Figure 2, respectively. Note that PEP*-423 in

this work refers to squalane (2,6,10,15,19,23-hexamethyltetracosane,
similar to PEP-423 except for a head-to-head connectivity between the
two middle segments), which has been used because of its high purity.

Experimental Details. Three PEO samples with different number-
average molecular weights (Mn = 222, 280, and 530 Da) and squalane
(PEP*-423) were purchased from the Sigma-Aldrich Corporation. The
polymers were dried under dynamic vacuum for 48 h and then stored
under vacuum. Mn and MWD of the PEO samples were assessed by
matrix-assisted laser desorption/ionization mass spectroscopy
(MALDI-MS) and 1H NMR spectroscopy, and the results are
provided in Figures S1−S7. The sample preparation and the cloud
point measurements were performed following the protocol as used in
earlier works.7,8

Simulation Details. All the simulations were performed using the
in-house Monte Carlo (MC) simulation software package MCCCS−
MN (Monte Carlo for Complex Chemical Systems−Minnesota).63

GEMC simulations59,60 in the canonical (NVT) or isobaric−
isothermal (NpT) ensemble were used to simulate the vapor−liquid
equilibira (VLE) of single-component oligomers and their binary
mixtures. For single-component oligomer simulations, 300 molecules
were used for PEO-266 (n = 6), and 400 molecules were used for
other oligomers. For binary mixtures, the PEP weight fraction was
around 50%, and the system sizes were varied to allow for at least 10%
of each molecule type in the vapor phase and a total system size of no
smaller than 3000 interaction sites. The detailed system sizes for each
system are listed in Table S1. A similar simulation protocol was used as
described in our earlier paper.18 In brief, all the molecules were placed
in the liquid phase during the initialization of the system. Center-of-
mass translations, center-of-mass rotations, conformational moves,64

volume exchange moves, and particle transfer moves were used to
sample the configurational phase space of the system. In order to aid
the molecular transfer between the vapor and the liquid phases,
impurity molecules of shorter PEP or PEO oligomers (two molecules
each) were also used, together with the interbox identity switch
moves.65,66 This approach boosts the acceptance of transfer moves66,67

without sacrificing the accuracy, if proper corrections are applied (Đ <
1.01).18

All VLE simulations were equilibrated for around 1.5 × 105 MC
cycles (MCCs, consisting of N randomly selected moves, where N is
the total number of molecules) until there was no drift in energies and
number densities of each molecule in both phases. Then, simulations
were run for at least another 3 × 105 MCCs as the production stage.
The k-d tree data structure was used to accelerate unary PEP
simulations.68 Single-component thermodynamic properties such as
liquid densities (ρ), vapor pressures (pvap), cohesive energy densities
(ΠCED), and solubility parameters (δ), as well as the χ parameters for
binary mixtures, were extracted from these simulations as described in
our previous work.18 In particular, ΠCED and δ were calculated using
the following equation:

δ = Π =
−U U

VCED
vap liq

liq (2)

where Uvap is the molar internal energy of the molecule in the vapor
phase, Uliq is the molar internal energy of the liquid phase, and Vliq is
the molar volume of the liquid phase.

In addition, liquid−liquid equilibria (LLE) of PEP*-423/PEO
mixtures were simulated via NpT-GEMC simulations (p = 1 bar). A
three-box setup was used, in which two simulation boxes were used to
represent two coexisting liquid phases while the third simulation box
was used as the transfer medium.69 A total of about 120 PEP
molecules and more than 100 PEO molecules of various molecular
weights (see Table S2) were used in the simulations, which led to 40−
60% overall PEP weight fraction. The same types of moves as used in
the VLE simulations were also applied to the LLE simulations. In
addition, self-adapting fixed-end-point configurational-bias Monte
Carlo (SAFE-CBMC) moves70 were applied to PEO molecules
when nPEO ≥ 10 to ensure good sampling of the internal conformation
of these long-chain molecules. Furthermore, shorter oligomeric PEP
molecules were used as impurities (e.g., nPEP = 1−5). This resulted in a

Table 1. Characterization of PEP and PEO Molecules Used
in the Experiments

nomenclature
Mn
[Da] MWD Đ note

PEP*-423 423a monodisperse 1.0a identical to squalane
PEO-222-
MD-1.0

222b monodisperseb 1.0b

PEO-280-SZ-
1.05

280c,d Schulz−Zimmd 1.05d

PEO-500-SZ-
1.1

500e Schulz−Zimme 1.1e

PEO-500-
BM-1.1

500f bimodal 1.1f 1:9 mole ratio of
PEO-222-MD-1.0
and PEO-550-SZ-
1.03

aFrom supplier. bFrom Xie and Lodge.8 cFrom 1H NMR. dFrom
MALDI-MS. eFrom Washburn et al.62 fFrom theoretical calculations.

Figure 2. Molecular weight distribution of disperse PEO samples used
in the simulations. Symbols represent simulation data, and lines are the
Schulz−Zimm or bimodal distribution fit to the symbols.
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dispersity of 1.04 for PEP*-423. Impurities were also used for PEO,
but they were included in the MWD and the calculation of Đ. Similar
to VLE simulations, direct particle transfer moves were only used for
the shortest oligomers (i.e., PEP-72 and PEO-90), and the transfer of
higher molecular weight molecules was achieved via the interbox
identity switch moves, which were applied to all the neighboring
molecular weight oligomer pairs (e.g., PEP-72 and PEP-142). The free
energy of molecular transfer to and from the vapor phase was biased to
ensure that there are on average 0.5−1.5 molecules for each PEP
impurity molecule and 0.2−1.5 molecules for each PEO molecule in
the vapor phase. Such bias does not affect the resulting liquid−liquid
phase diagram because the same biasing potential is applied to both
liquid−vapor box pairs, and its net effect on the liquid−liquid free
energy of transfer is thus zero.58 PEO molecules with n ≥ 19 were not
allowed to transfer to the PEP-rich liquid box or the vapor box because
of their negligible solubilities in the alkane phase even at the highest
temperature studied (the weight fraction of PEO-839 in PEP*-423 is
less than 1% at T = 510 K). Similar to VLE simulations, all the systems
were initialized with all the PEP molecules in one liquid box and all the
PEO molecules in the other liquid box. These LLE simulations were
equilibrated for at least 2 × 106 MCCs until there was no drift in
energies or compositions for each phase, and the production lasted for
at least another 5 × 105 MCCs.
Eight and 16 independent simulations were performed for VLE and

LLE simulations, respectively. Statistical uncertainties of the simulation
data were estimated from these uncorrelated runs and are reported as
the 95% confidence interval. Similarly, uncertainties in experimental
cloud point measurements are estimated from either the 95%
confidence interval from three independent runs or the instrument
error (±1 K), whichever is greater.
Molecular Models. The TraPPE−UA (transferable potentials for

phase equilibria−united atom) force field64,71,72 was used to model
alkanes and ethers investigated in this study. The force field treats
these molecules as pseudoatoms connected by the prescribed bond
length, and bending angles and dihedral angles are allowed to vary.
One CHx (x = 1, 2, and 3) group or one oxygen atom is described as
one pseudoatom. The Lennard-Jones (LJ) 12−6 potential with the
Lorentz−Berthelot combining rule73 and the Coulomb potential for
partial charges on the oxygen and α-carbon sites were used to model
the interactions between two pseudoatoms. A spherical cutoff rcut of 14
Å was used, and the interactions beyond the truncation distance were
accounted for via analytical tail corrections.74 The Ewald summation
method69 with a screening parameter of κ = 3.2/rcut and Kmax =
int(κLbox) + 1 (Li is the box length) was used to calculate the Coulomb
interactions in the simulations involving PEO molecules.
In addition, we modified the TraPPE−UA ether force field to model

the interactions between PEP and PEO more accurately. The original
TraPPE−UA force field72 can reproduce the single-component
properties of PEO oligomers (see Table S3 for the computed
vapor−liquid equilibria data for an ether dimer, 1,2-dimethoxyethane,
or PEO-90 from our nomenclature), but it fails to accurately predict χ
for the binary alkane/ether mixture. As shown in Figure 3, the χ
parameter of the n-dodecane/PEO-178 mixture is overestimated by
more than 75% over the entire composition range, which implies that
the binary interaction between alkane and ether is too unfavorable.
The overestimation can be remedied by reducing the partial charges
on the PEO atoms and adjusting the LJ parameters of the oxygen atom
(i.e., rebalancing the dispersive and Coulomb contributions to the
cohesive energy of PEO molecules). Since ether molecules can interact
with alkane molecules through dispersive interactions but not dipole
interactions in this nonpolarizable model, this approach can result in
more favorable alkane−ether interactions and, equivalently, a smaller
χ. Similarly, other literature findings also suggest that reducing the
partial charges on the TraPPE−UA ether molecules enables more
accurate prediction of the ether−water phase diagram57 and Kovats
retention indices for alkanols in PEO-type stationary phases.75

Therefore, we modified the TraPPE−UA ether force field by scaling
down the partial charges on the ether molecules and adjusting the LJ
parameters of the oxygen atom. Several values of the oxygen partial
charge were attempted between the original −0.50 e and −0.44 e. This

range was selected because an earlier study suggested that a charge
value around −0.45 e is optimal for ether−water interactions.57 The
partial charge on the oxygen atom determines the partial charge on the
α-carbon atoms to maintain the charge neutrality of the molecule. In
addition, the LJ parameters of the oxygen atom were also tuned to
reproduce single-component thermodynamic properties such as liquid
densities, vapor pressures, and the critical point of a representative
ether molecule, namely PEO-90. For each partial charge value, χCP for
n-dodecane/PEO-178 mixtures was computed to allow for the
selection of an optimal partial charge value.

It was found that χCP for the n-dodecane/PEO-178 mixture
decreases with decreasing partial charge on the oxygen atom, and qO =
−0.44 e worked best for this system among the partial charge values
we selected (see Figure S10 for all the data with various partial charge
values). The LJ parameters used for this partial charge are ϵ/kB = 65 K
and σ = 2.90 Å (Table 2), and the corresponding single-component

and binary VLE data are shown in Table S3 and Figure 3, respectively.
Note that much smaller statistical uncertainties for the original ether
force field data set (in magenta) are due to a much longer simulation
trajectory. Indeed, one can see from Figure 3 that χCP is reduced by a
factor of 1.5, from around 0.526 ± 0.007 to 0.35 ± 0.02 (when x1 ≈
0.42−0.44, vref = 0.1 nm3). The deviation from the experimental χCP is
reduced from more than 100% to around 35%, while the single-
component properties of PEO-90 such as liquid densities, vapor
pressures, and the critical point are still accurately reproduced. One

Figure 3. Vapor−liquid phase diagram (top), vapor composition as a
function of liquid composition, i.e., separation factor (middle), and χ
parameter (0.1 nm3 is used as the reference volume) as a function of
liquid composition for the binary mixture of n-dodecane (denoted as
“C12”) and triethylene glycol dimethyl ether (denoted as “PEO”). The
data are from different force field combinations, and we refer readers
to the text for more details. Experimental data are taken from
Treszczanowicz and Ciesĺak.76

Table 2. Nonbonded LJ Parameters and Partial Charges of
the Modified PEO Force Field

atom type ϵ/kB [K] σ [Å] q [e]

CH3 98 3.75 0.22
CH2 46 3.95 0.22
O 65 2.90 −0.44
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can calculate from Table S3 that the mean unsigned percentage error
(MUPE) for three low-temperature liquid densities is 0.9% (original
TraPPE−UA gives 0.6%), for unary vapor pressures is 7% (original
TraPPE−UA gives 6%), and for the critical temperature is within 0.1%
(original TraPPE−UA gives 0.7%).
Moreover, to show that modification of the alkane force field does

not impact χ, we performed one set of simulations with scaled ϵ values
for all the interaction sites in the alkane molecules (ϵCH3

/kB = 100.9 K

and ϵCH2
/kB = 47.4 K). This set of ϵ reduces unary vapor pressures of

n-dodecane to match the experimental ones, but note that this fix can
lead to signficant deviations in liquid densities and the critical
temperature of unary alkanes. One can see from Figure 3 that despite
much better agreement on the separation factor for the binary system
(from cyan to orange in the top and middle panels), χCP remains
approximately the same and shows little improvement. This finding
suggests that χ only reflects the binary interactions between two unlike
monomers regardless of the deviation in single-component vapor
pressures. Since this crude modification of the alkane force field can
result in inaccurate predictions of important thermodynamic proper-
ties such as liquid densities and the critical temperature, the modified
TraPPE−UA ether force field was used to model PEO for the rest of
this study (see Table 2) while the original TraPPE−UA force field was
used to model alkanes.

■ RESULTS AND DISCUSSION

Molecular Weight Dependence of χ. Phase Diagram of
PEP*-423/PEO Mixtures. Figure 4 shows simulated coexistence
curves from LLE simulations and experimental cloud point
curves for quasi-binary blends consisting of PEP*-423 and PEO
with various Mn values ranging from 217 to 500 Da. Because of
the relatively low dispersities of the PEO samples, the binary
FH theory with χ(T) as the only adjustable parameter (eq 1)
can be utilized to fit the binodal curves and extract χeff(T).

31,62

Solid lines in Figure 4 are the fitted binodal curves obtained by
using a molecular-weight-dependent but composition-inde-
pendent functional form of χeff(T) = a(M)/T + b(M). The
fitting results agree fairly well for both simulation coexistence
curves and experimental cloud point curves. This suggests that
the compositional dependence of χ can be neglected for PEP/
PEO mixtures, which is consistent with earlier experimental
studies on this system7,8 as well as the n-dodecane/PEO-178
simulation data shown in the previous section.
A comparison between simulation and experimental phase

diagrams reveals that simulations overestimate the upper critical
solution temperatures (UCSTs) by around 50 K. The
overestimation in χ is the origin of this deviation. For example,
the χeff values for Mn = 500 Da at T = 450 K are 0.29 and 0.39
for experimental and simulation data, respectively (vref = 0.1
nm3). This 35% overestimation (∼0.1 in absolute magnitude) is
in agreement with the 35% deviation (0.1 in absolute
magnitude) in χCP for the n-dodecane/PEO-178 mixture.
Despite the seemingly significant deviation, a 50 K over-
estimation in UCST corresponds to less than 1 kJ/mol in the
free energy of transfer.58 As a comparison, the original
TraPPE−UA force field likely overestimates the UCST by
more than 100 K. (At T = 550 K, the squalane weight fractions
in the coexisting phases for the original force field are 88 ± 2
and 4 ± 1 wt %, while this temperature is already above the
UCST of the modified force field used here.) Although the
PEP/PEO interactions are still slightly too unfavorable even
after the force field modification, the discrepancy between
simulation and experimental results is sufficiently small that
reliable results can be obtained regarding the effect of molecular
weight and MWD on χ.

For both simulation and experimental data, the fitted χeff
increases with increasing PEO molecular weight. Furthermore,
the theoretical phase diagrams for PEP*-423/PEO-222(PEO-
217) and PEP*-423/PEO-280 mixtures were calculated using
the χeff(T) deduced from PEP*-423/PEO-500-SZ-1.1 and are
shown as dashed lines in Figure 4. One can see that if χeff is
assumed to be molecular weight independent, the UCSTs of
PEP*-423/PEO-222(PEO-217) and PEP*-423/PEO-280 mix-
tures are overestimated by about 60 and 30 K, respectively, for
both simulation and experimental data sets. Therefore, one can
conclude that χ of the PEP/PEO mixtures exhibits a non-
negligible molecular weight dependence and that this depend-
ence stands in contrast to the general trend in earlier literature
(decreasing χ with increasing molecular weight10,21,24,77).

VLE of Oligomeric PEP/PEO Mixtures. To further character-
ize and rationalize the molecular weight dependence of χ, we
performed VLE simulations to compute χCP for oligomeric
PEP/PEO mixtures (ϕPEP ≈ 0.5) with n ranging from two to
six, and results are displayed in Figure 5. The densities of single-
component oligomers, which are used to compute volume
fractions of the mixtures, are provided in Table S9. These

Figure 4. Simulated coexistence curves (top) and experimental cloud
point curves (bottom) of PEP*-423/PEO mixtures. The experimental
data for PEO-222-MD-1.0 and PEO-500-SZ-1.1 are from Xie and
Lodge8 and Washburn et al.,62 respectively. Solid lines are the fitting
results using eq 1 with χeff(M,T) = a(M)/T + b(M), in which a and b
are fitting parameters. Dashed lines are calculated phase diagrams
using eq 1 with molecular weight independent χeff(T) from the PEO-
500 fit. Analytical expressions of the molecular-weight-dependent fits
are provided, and the uncertainties of the fitting are estimated to be Δχ
= ±0.01, equivalent to UCST = ±5 K.
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simulations reproduce the PEO molecular weight dependence
of χeff from LLE simulations. For both PEP-142 and PEP-212,
increasing the molecular weight of PEO results in an increase in
χCP. In contrast, χCP decreases with the increasing molecular
weight of PEP, which displays the molecular weight depend-
ence found in other experimental studies.20,21 More impor-
tantly, molecular weight exerts a large impact on χCP at both
temperatures investigated. For example, varying the PEP chain
length can result in a difference in χCP by as much as a factor of
2 (or 0.2 in absolute magnitude) for the PEP/PEO-222 mixture
at T = 490 K. This corresponds to a difference in the
coexistence curve by about 100 K. Note that correlations used
in the literature, such as χSANS ∼ 1/NAVE,

21,22 are not applicable
to this mixture (see Figure S12). Therefore, it is crucial to
understand different molecular weight dependences for the two
components and to develop an approach to predict χ for PEP/
PEO pairs of arbitrary chain lengths.
The Hildebrand formalism states that χ is proportional to the

solubility parameter differences between two components:

χ δ δ= −

= Π − Π

T
v

k T
T T

v
k T

T T

( ) [ ( ) ( )]

[ ( ) ( ) ]

H
ref

B
1 2

2

ref

B
CED,1 CED,2

2

(3)

where vref is the reference volume. The above equation can be
used to qualitatively explain the molecular weight dependence
of χ. Figure 6a shows the cohesive energy density ΠCED as a
function of chain length that was used to compute χ from the
Hildebrand formalism. One can see that ΠCED(PEO) are always
higher than ΠCED(PEP) at both temperatures (e.g., ΠCED(PEO-
222) is 1.7 times higher than that of ΠCED(PEP-212) at T = 435
K, despite the similar molecular weights). As the molecular
weight of PEP increases, [δ(PEP) − δ(PEO)]2 shrinks, and
thus, so does χ. On the other hand, when the molecular weight
of PEO increases, [δ(PEP) − δ(PEO)]2 becomes larger, which
leads to the increase in χ. This qualitative agreement suggests
that the molecular weight dependence of δ is the origin of the

molecular weight dependence of χ, which implies that for such
polar/nonpolar polymeric mixtures the sign of the molecular
weight dependence of χ is always opposite for the two
components. For other mixtures such as polyolefins, this
argument may not hold due to the relatively greater effect of
other nonidealities on the mixing thermodynamics (e.g., finite
compressibility, nonideal entropy of mixing).25

To quantify the molecular weight dependence of δ, two
linear relationships were utilized. First, Figure 6a reveals that
ΠCED is linear with the inverse chain length when oligomers are
sufficiently long (when the number of heavy atoms is greater
than or equal to 10), which enables the estimation of
ΠCED(PEP) and ΠCED(PEO) of arbitrary chain length at T =
435 and 490 K. Second, as shown in Figure 6b, δ is found to
vary linearly with temperature for temperatures well below the
vapor−liquid critical temperature. This further allows for the
extrapolation of ΠCED and δ to other temperatures. Notably,
the same linear relationships were also found in our earlier
work for three olefin oligomers.18 The following equations were
extracted from the two linear fits and can be used to obtain
ΠCED and δ for PEP and PEO of arbitrary chain length and
temperatures.

Π = − ±

+ ± ≥

n

n

(PEP, 435 K)/MPa (103.6 0.3)/

(190.5 0.4) ( 2)
CED

(4)

Π = − ±

+ ± ≥

n

n

(PEP, 490 K)/MPa (109.6 0.3)/

(169.7 0.5) ( 2)
CED

(5)

Figure 5. χ of oligomeric PEP/PEO mixtures as a function of the
number-average molecular weight of PEP or PEO at T = 435 and 490
K. Data that contain PEP*-423 are χeff from LLE simulations (see
Figure 4), while the remainder of the data are χCP from VLE
simulations.

Figure 6. (a) Cohesive energy density, ΠCED, as a function of the
inverse chain length of PEP and PEO. Dashed lines are linear fits to
the data using data points with number of heavy atoms in PEP or PEO
greater than or equal to 10 (nPEP ≥ 2 and nPEO ≥ 4). (b) Solubility
parameter, δ, as a function of temperature for PEP*-423 and PEO-222.
Dashed lines are linear fits of δ versus T.
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Π = − ±

+ ± ≥

n

n

(PEO, 435 K)/MPa (222.7 0.2)/

(302.7 0.3) ( 4)
CED

(6)

Π = − ±

+ ± ≥

n

n

(PEO, 490 K)/MPa (173.4 0.3)/

(250.3 0.4) ( 4)
CED

(7)

δ = Π

− Π − + Π

n n T
T

( , , )/MPa [ (490 K)

(435 K) ]
435

55
(435 K)

PEP PEO
1/2

CED

CED CED (8)

A more quantitative model is constructed by using the
following equation,78,79 in which kij is the only adjustable
parameter that quantifies the deviation from the Berthelot
combining rule used in the Hildebrand formalism:

χ = Π + Π

− Π Π
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k T
T T
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B
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CED,1 CED,2 (9)

When kij is unity, eq 3 is recovered. For PEP/PEO mixtures,
one can use eqs 4−9 and obtain an explicit nonlinear
expression of χ(nPEP,nPEO,T) (see eq 1 in the Supporting
Information). For simulations, empirical fitting to the χCP
values yields a kij value of 0.975 ± 0.003. The utility of this
kij value is confirmed by using χeff from LLE simulations as the
validation set. Figure 7 reveals that the calculated χSP using this

kij value agrees with χCP and χeff, with MUPE for all the data
points being 6 ± 4% (6% is roughly 0.02 in absolute
magnitude) and the maximum absolute error being 0.06 ±
0.03. The average error approaches the average uncertainty of
the simulation data. It corresponds to a deviation in the mixture
UCST of about 10 K, while the maximum error corresponds to

a deviation of about 25 K. As for experiments, due to the lack of
χ for shorter PEP/PEO mixtures, all the χeff data are used for
the fitting, which results in a kij value of 0.988 ± 0.004. The
MUPE for all the experimental data points are 6 ± 4%, and the
maximum absolute error is 0.06 ± 0.04. The discrepancy in
simulated and experimental kij values reflects the inaccuracy of
the PEP−PEO interactions in the nonpolarizable molecular
model. If the force field were sufficiently accurate, kij(sim) and
kij(expt) should converge, which implies that simulations can
accurately predict χ(M,T).
To demonstrate that χSP computed from eq 9 can be used to

calculate coexistence curves, predicted coexistence curves using
the fitted kij values as well as a kij value of unity are shown in
Figure 8. One can see that the maximum error between

simulations/experiments and eq 9 predictions using kij(sim) =
0.975/kij(expt) = 0.988 is less than 20 K. When a kij value of 1.0
is used, the predicted coexistence curves deviate significantly
from the simulation or experimental data, with the average
error greater than 100 K. This result suggests that it is essential
to fit a kij value from existing simulation or experimental data in
order to predict χ and coexistence curves of binary polymer
blends with arbitrary molecular weights.
The data in Figure 8 show large deviations for the mixtures

with the two shorter PEO chains that exhibit miscibility gaps

Figure 7. χSP as a function of χCP or χeff for PEP/PEO mixtures. kij
values are fitted using χCP (cyan) and all data points for simulation and
experiments, respectively.

Figure 8. Predicted coexistence curves for PEP*-423/PEO mixtures
for simulation (top) and experiments (bottom). The symbols are
simulation and experimental data. Solid lines are from eq 9 using kij
values of 0.975 and 0.988 for simulation and experiments, respectively.
Dashed lines are from eq 9 using a kij value of 1.0.
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shifted to lower temperatures. This may be an indication of a
weak temperature dependence fo kij, which is consistent with
recent calculations of water/oil interfacial tension.78 The
explanation for why kij for this system is smaller than unity is
that PEO−PEO interactions include first-order electrostatic
contributions that are not present for the PEP−PEP and PEP−
PEO interactions (lumping first- and second-order electrostatic
interactions). Therefore, PEP−PEO interactions predicted
from eq 3 are too favorable, and thus, a kij value that is smaller
than one is essential to correct the underestimation in χ.
Similarly, kij(sim) is smaller than kij(expt) because the dipole−
induced dipole interactions that are present in real systems are
missing in the nonpolarizable TraPPE-UA model, leading to
the overestimation in χ for the simulated systems. Furthermore,
the origin of the temperature dependence of kij is the
temperature-dependent contribution from first-order dipole−
dipole interactions due to the Boltzmann averaging of
orientation.73 However, despite the success in the qualitative
agreement mentioned above, we know from the binodal curve
fitting that an entropic deviation from the FH theory is also
lumped into χeff. Future studies on other molecular systems
with wider temperature ranges and calculation/measurement of
the heat of mixing are needed to elucidate the physical meaning
of kij.
Effects of MWD and Đ on the Phase Diagram. LLE of

PEP*-423/PEO-500 Mixtures. Figure 9 displays liquid−liquid
coexistence curves from simulations and experimental cloud
point curves for quasi-binary mixtures consisting of near-
monodisperse PEP*-423 (Đ = 1.04) and polydisperse PEO
with Mn ≈ 500 Da, but with various MWDs and Đ values.
Simulated coexistence curves corresponding to PEO-500-SZ-
1.02, PEO-500-SZ-1.10, PEO-500-SZ-1.19, and PEO-500-BM-
1.12 (Đ varying from 1.02 to 1.19) are indistinguishable from
each other within statistical uncertainties. This is confirmed by
the near identical experimental cloud point curves for PEO-
500-SZ-1.1 and PEO-500-BM-1.1. These results reveal that
regardless of MWD, Đ exerts a negligible influence on the
phase diagram when Đ is smaller than 1.2. Similar conclusions
have also been reached by other experimental studies for high
molecular weight polymers in solution.27

However, coexistence curves of PEP*-423/PEO-500-BM-
1.76, in which the PEO has the “extreme” bimodal distribution
containing 57 mol % (15 wt %) of PEO-134 and 43 mol % (85
wt %) of PEO-1015 (Đ = 1.76), show significant deviation from
those with smaller dispersities. The binary representation of the
phase diagram is shown in Figure 9a, and the ternary phase
composition data are provided in Figure 9b and Table S6.
Despite the increased complexity of the ternary phase diagram,
the two major assumptions in the simulations are still valid.
First, the liquid−liquid equilibria setup is appropriate because
the molecular weight ratio between the two PEO components r
= M(PEO-1015)/M(PEO-134) is 7.6, which is lower than the
three-phase separation limit of r* = 13 from the generalized FH
theory.80 Furthermore, we cannot transfer PEO-1015 to the
alkane phase due to the lack of medium molecular weight PEO
molecules as transfer intermediates. Nevertheless, the assump-
tion that PEO-1015 always stays in the PEO-rich phase is
supported by the negligible solubility of PEO-1015 in PEP*-
423 (less than 1 wt % at T = 500 K), estimated from eq 1 with a
χSP value from eqs 4−9.
Two features in the coexistence curve of the PEP*-423/

PEO-500-BM-1.76 mixture stand in contrast to those
containing low-dispersity PEO. First, the quasi-binary compo-

sitions are relatively insensitive to the temperature, with the
solubility of PEP*-423 in the PEO-rich phase changing from
14.3 ± 1.7 wt % at T = 440 K to merely 17 ± 3 wt % at T = 510
K. This can also be deduced from the weight fraction of PEO-
134 among all the PEO molecules in the PEO-rich phase (this
fraction is unity in the PEP-rich phase), shown in Figure 9b.
The decrease of PEO-134 weight fraction as a function of
temperature is on the order of the simulation uncertainties. The
temperature insensitivity can mainly be attributed to the
dominant overall weight fraction of PEO-1015 among all the
PEO molecules (85 wt %). Consequently, the distribution
change of PEO-134 hardly influences the coexistence curve. For
example, when the temperature increases from 440 to 510 K,
the mole fraction of PEO-134 in the PEP-rich phase increases
by around 50% (from 10.1 ± 0.9 to 15.1 ± 1.0 mol % or from
3.6 ± 0.3 to 5.8 ± 0.4 wt % on the weight fraction scale). The
second feature of interest is that the PEP solubility in the PEO-
rich phase is much higher at low temperatures (T ≤ 500 K)
compared to that of PEO-500-BM-1.12. For example, at T =
470 K, the PEP solubility in PEO-500-BM-1.76 (18.1 ± 1.9 wt
%) is about a factor of 3−4 higher than that of PEO-500-BM-
1.12 (5 ± 3 wt %). The increase in solubility can be explained
by the more favorable interactions between PEP and PEO,

Figure 9. (a) Simulated coexistence curves (top) and experimental
cloud point curves (bottom) for PEP*-423/PEO-500 mixtures.
Experimental data for PEO-500-SZ-1.1 are from Washburn et al.62

(b) Weight fraction of PEO-134 among all PEO molecules in the
PEO-rich phase for the PEP*-423/PEO-500-BM-1.76 mixture.
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which will be more quantitatively elaborated later when the
PEP free energy of transfer data are discussed. This deviation
from other data sets clearly shows the failure of treating this
ternary mixture as a binary one. Unfortunately, the theoretical
treatment of the ternary mixture can be much more
complicated since the binary interaction parameter χ is a
function of composition when the third component is the
majority species in weight or volume fraction.81 In summary,
this result reveals that for mixtures with a bimodal distribution
and a large dispersity, which can be the case for many industrial
polymers, the treatment of the mixture as a quasi-binary blend
can introduce non-negligible errors.
The effect of dispersity on molecular partitioning raises the

question of why the overall phase diagram is not significantly
perturbed by changing from SZ-1.02 to SZ-1.19. Mixtures
containing PEO with larger dispersity (e.g., PEO-500-SZ-1.76)
would be of interest but are more challenging for simulation
because of the need for a larger number of components to
represent the SZ versus the BM distribution. The molecular
weight dependence of the free energy of transfer ΔGtrans can be
used to address this question, which is calculated from the
following equation:66,73,82

β α ρ ρΔ → = − α βG k T( ) ln( / )trans B (10)

where ρi is the number density of PEP or PEO in phase i. Note
that ρi can be obtained from either simulations or experiments
using the composition and the density of phase i. Figure 10

depicts ΔGtrans from the PEP-rich (α) to the PEO-rich (β)
phase as a function of the chain length for both PEP and PEO
at T = 470 K. ΔGtrans is found to be a linear function of chain
length for both types of molecule, and the values do not change
with respect to the MWD or Đ, with the exception of PEO-
500-BM-1.76. For the mixtures with Đ < 1.2, the incremental
transfer free energies are found to be 2.0 ± 0.4 and 1.0 ± 0.1
kJ/mol for one PEP and PEO repeat unit, respectively.
We can obtain the effect of dispersity on compositions and

MWDs for both phases using continuous thermodynam-
ics.31−33 For the partitioning of PEO between two phases, we
have the following:
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in which Kα is the partition constant and ΔGtrans(β → α) =
ktrans(β → α)MPEO. This equation shows that Kα increases or
decreases exponentially as the chain length increases. The total
mass of PEO partitioned in both phases mα

PEO and mβ
PEO can be

expressed by the following two equations:
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in which P(M) is the total MWD in mole fraction, Pi(M) is the
MWD in phase i, and Kv is the volume ratio between the two
phases, and it can be calculated via
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where Vi, mi, ρi, and wi are the volume, mass, density, and PEO
weight fraction of phase i, respectively; wtot is the total weight
fraction of PEO. If we assume that the partitioning of PEP*-
423 is not affected by the dispersity of PEO (free energy of
transfer of PEP is not a function of dispersity from Figure 10),
we can solve eqs 11−14 together with the mass balance to
compute wi and Kv given the total weight fraction wtot and the
original MWD P(M). The solution can provide the effect of
dispersity on the coexistence curve and quantify the MWD in
each phase.
Figure 11 shows the calculated PEO compositions in both

phases as a function of dispersity for the PEP*-423/PEO-500
mixture when PEO has a Schulz−Zimm overall distribution.
The ktrans(β → α) value of 22.5 ± 2.5 J/g from Figure 10 is
used. One can see that the calculated compositions agree fairly
well with the simulated ones within uncertainties, which serves
as a self-consistency check. In addition, the lines are almost flat,

Figure 10. Free energy of transfer (ΔGtrans) from the PEP-rich (α) to
the PEO-rich phase (β) as a function of the PEP and PEO chain
lengths at T = 470 K.

Figure 11. Weight fraction of PEO in α (top) and β (bottom) phase
as a function of dispersity for the PEP*-423/PEO-500 mixture when
PEO has the Schulz−Zimm overall distribution at T = 470 K. Symbols
are simulation data, while solid and dashed lines are the calculated
values and uncertainties from eqs 11−14 and Figure 10, respectively.
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which suggests that dispersity does not exert a large influence
on the coexisting compositions for the SZ distribution at T =
470 K for Đ ≤ 2. The result is consistent with the simulation
and experimental findings for PEP*-423/PEO-500-SZ mix-
tures. The comparison between the predicted coexistence curve
for PEP*-423/PEO-500-SZ-1.76 and the simulated coexistence
curve for PEP*-423/PEO-500-BM-1.76 suggests that the shape
of the MWD plays a pivotal role in the effect of dispersity on
the polymer mixture phase diagram (e.g., the effect of dispersity
is more obvious for the BM MWD). For other overall MWDs
and molecular weights, one can use the numerical method
formulated here to obtain an estimate regarding the effect of
dispersity.
Theoretical calculation reveals that the change in free energy

of transfer is the key to the shift in composition for the PEP*-
423/PEO-500-BM-1.76 mixture. From Figure 10, one can see
that the free energy of transfer of PEP in the PEP*-423/PEO-
500-BM-1.76 mixture at T = 470 K deviates substantially from
the rest of the data set. The smaller free energy barrier for PEP
to transfer to the PEO-rich phase is the origin of the higher
PEP concentration in the PEO-rich phase. Similarly, the slightly
higher free energy barrier for low molecular weight PEO to
transfer into the PEP-rich phase coincides with the lower PEO-
134 composition in the PEP-rich phase at equilibrium for the
PEP*-423/PEO-500-BM-1.76 mixture. The shift in transfer
free energy implies that the quasi-binary approximation fails
when the dispersity of PEO is as large as 1.76. It also suggests
that the binary interaction parameter χ is a function of the
composition in the ternary mixture. For example, when the
composition of the PEO-rich phase changes from PEO-500-SZ-
1.19 to PEO-500-BM-1.76 (the compositions of the PEP-rich
phase are similar), it becomes more favorable for PEO-134 to
transfer into the PEO-rich phase, with ΔGtrans changing from
−2.6 ± 0.3 to −3.7 ± 0.3 kJ/mol, due likely to the presence of
high-molecular-weight PEO molecules.
Molecular Partitioning. The partitioning of different

molecular weight PEO molecules is revealed by the MWD in
each phase from LLE simulations (symbols) and theoretical
calculations (lines) as shown in Figure 12. The agreement
between simulation data and theoretical calculations demon-
strates the robustness of the numerical formulation eqs 11−14.
When the dispersity is low (Đ = 1.02), the MWDs for both
phases are almost identical. When the dispersity increases to Đ
= 1.10, a distinction between the two distributions emerges at
the higher molecular weight end of the distribution. For
example, the mole fraction of PEO-707 among all the PEO
molecules in the PEO-rich phase is 80% higher than that in the
PEP-rich phase. This indicates an enrichment of higher
molecular weight PEO molecules in the PEO-rich phase,
which is consistent with the lower solubility of higher molecular
weight PEO in the PEP-rich phase. When Đ further increases to
1.19, the distinction between two MWDs becomes more
pronounced.
This effect of MWD can also be quantified by the Mn(PEO)

present in each phase shown in Figure 12b. It is apparent that
for both types of MWD Mn(PEO) is higher in the PEO-rich
phase, and the gap between the two Mn values in each phase
grows, as the overall dispersity increases. When Đ = 1.19,
Mn(PEO) in the PEO-rich phase is 50% higher than that in the
PEP-rich phase at T = 470 K. For the bimodal distribution,
Mn(PEO) in both phases are lower than those of the Schulz−
Zimm distribution when Đ values are close. This is due to the
higher abundance of lower molecular weight PEO in the overall

MWD as well as fewer high molecular weight molecules in the
Schulz−Zimm distribution. The difference in partitioning is the
thermodynamic driving force of fractionation of disperse
polymers.40,83 Moreover, Figure 12 also reveals that the
MWDs of polymers in each phase can differ even if the overall
compositions in the phase diagram are similar. For example,
when T = 470 K, Mn(PEO) in the PEP-rich phase can vary
from 462 ± 7 to 352 ± 6 Da when Đ increases from 1.02 to
1.19, but the corresponding phase diagrams are nearly identical
(see Figure 9). Therefore, the approximation that such a quasi-
binary mixture can be treated as a two-component system can
be misleading, and caution needs to be taken if the exact
content of the polymer in each phase is of interest.

Structural Analysis. The effect of liquid structure on the
mixing thermodynamics is characterized by the intermolecular
radial distribution functions (RDFs) computed from the
simulation trajectories, plotted in Figure 13. For both PEP*-
423/PEO-500-SZ-1.10 and PEP*-423/PEO-217-MD-1.01 mix-
tures at a relatively high temperature near their UCSTs, the
peak positions of the oxygen−oxygen RDF for intermolecular
PEO−PEO pairs in both phases (solid and dashed lines in red)

Figure 12. (a) PEO MWD in the PEP-rich (α) and the PEO-rich (β)
phases at T = 470 K for PEP*-423/PEO mixtures with various
dispersities. Symbols represent simulation data, while solid and dashed
lines represent theoretical calculations and the uncertainties using eqs
11−14, respectively. (b) Mn(PEO) as a function of dispersity.
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are similar. Nevertheless, the height of the RDFs is vastly
dwarfed in the PEO-rich phase compared to that corresponding
to the PEP-rich phase. This is an indication of the clustering
behavior of PEO molecules in the minority phase. Similar
aggregation behavior can also be seen for PEP−PEP pairs in the
PEO-rich phase containing PEO-500-SZ-1.10 (dashed black
lines in the top panel), but the distinction between two
carbon−carbon RDFs for the mixture with shorter PEO chains
PEO-217-MD-1.01 is less obvious (solid and dashed lines in
black in the bottom panel). In contrast, the carbon−oxygen
RDFs for the PEP−PEO pair in two phases (solid and dashed
lines in blue) are found to trace closely to each other, revealing
no sign of PEP−PEO aggregation. The clustering behavior
agrees with our finding that the entropic contribution to χ is
always a significant portion of the total χ (i.e., the intercept b in
the χ = a/T + b fitting is nonzero). In addition, the aggregation
behavior is consistent with other simulations of polymer
blends84,85 and block polymers.17,86−88 The simulation snap-
shots depicted in Figure 13 also confirm the clustering
behavior. Both PEP and PEO molecules tend to aggregate
when they are the minority components. This clustering
behavior reflects the incompatibility of the two components
and further reveals the complexity of mixing behavior that
deviates significantly from the ideal mixing assumption of the
FH theory.

■ CONCLUSIONS

This work utilizes GEMC simulation in conjunction with
experimental cloud point measurements to study the phase
behavior of oligomeric PEP/PEO mixtures. The utilization of a
modified TraPPE−UA force field for PEO greatly improves the
accuracy of the computed χCP for alkane/ether mixtures, but it
still results in an overestimation of χCP by around 35% (or 0.1
in absolute magnitude) and, thus, overestimation of the
coexistence curves for binary alkane/ether mixtures. Results
from simulations and experiments combined shed light on the
molecular weight dependence of χ and the effect of MWD and
Đ on the liquid−liquid phase diagram. First, χeff or χCP of PEP/
PEO mixtures increases as the molecular weight of PEO
increases or as the PEP molecular weight decreases. This
seemingly irregular dependence is rationalized by the chain
length dependence of the cohesive energy densities for PEP
and PEO. A modified Berthelot mixing rule with a single
adjustable parameter kij has been established to rationalize the
dependence and accurately predict χ for PEP/PEO mixtures of
arbitrary molecular weights. For simulation data, kij is fitted to
χCP of shorter oligomer mixtures and yields a value of 0.975 ±
0.003. This value differs from the kij fitted to the experimental
cloud point curves of PEP*-423/PEO mixtures (0.988 ±
0.004) due to the inaccuracy of the force field. For both
simulation and experiments, the predicted coexistence curves
using these kij values agree with those for PEP*-423/PEO
mixtures with less than 20 K error, while the deviation is more
than 100 K if kij is unity (the Hildebrand formalism). Second,
the binodal curves of PEP*-423/PEO-500 mixtures with
varying MWD and Đ of PEO are investigated. Experiments
and simulations both indicate no significant change in the
coexisting phase compositions when the dispersity is below 1.2.
However, the phase diagram shifts dramatically when a bimodal
distribution is used (Đ = 1.76). The shift suggests that the
quasi-binary approximation fails when one component has a
bimodal distribution with a large Đ, and the ternary treatment
is essential to describe the phase behavior of the mixture. The
molecular partitioning extracted from simulations reveals the
enrichment of high-molecular-weight PEO in the PEO-rich
phase, which causes a decrease of Mn(PEO) in the PEP-rich
phase as Đ increases. This suggests that PEO compositions can
be quite different even if the phase diagrams in weight fraction
units are similar. Furthermore, structural analysis from
simulations shows signs of aggregation for PEP and PEO
molecules in their minority phases, which leads to deviations
from the ideal mixing behavior and brings more complexity to
the prediction of its phase behavior.
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