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While several studies confirmed that machine-learned potentials (MLPs) can provide accurate
free energies for determining phase stabilities, the abilities of MLPs for efficiently constructing a full
phase diagram of multi-component systems are yet to be established. In this work, by employing
neural network interatomic potentials (NNPs), we demonstrate construction of the MgO-CaO eu-
tectic phase diagram with temperatures up to 3400 K, which includes liquid phases. The NNP is
trained over trajectories of various solid and liquid phases at several compositions that are calculated
within the density functional theory (DFT). For the exchange-correlation energy among electrons,
we compare the PBE and SCAN functionals. The phase boundaries such as solidus, solvus, and
liquidus are determined by free-energy calculations based on the thermodynamic integration or
semigrand ensemble methods, and salient features in the phase diagram such as solubility limit and
eutectic points are well reproduced. In particular, the phase diagram produced by the SCAN-NNP
closely follows the experimental data, exhibiting both eutectic composition and temperature within
the measurements. On a rough estimate, the whole procedure is more than 1,000 times faster than
pure-DFT based approaches. We believe that this work paves the way to fully ab initio calculation
of phase diagrams.

I. INTRODUCTION

By informing phase formation under the given temper-
ature, pressure, or composition, the phase diagram plays
an important role in designing and processing materi-
als [1, 2]. However, determination of the phase diagram
requires a huge amount of experimental efforts, particu-
larly for multicomponent systems [3, 4]. This is because
while possible combinations of temperature and composi-
tion are vast, each data point becomes only reliable with
consistent observations from complementary techniques.
As such, full phase diagrams are sparse for multicompo-
nent systems [3].

Theoretically, the phase diagram is determined by the
Gibbs free energies of competing phases, where the low-
est ones appear in the equilibrium phase diagram. Sev-
eral computational methods based on molecular dynam-
ics (MD) have been developed for computing the free
energies from atomistic simulations: thermodynamic in-
tegration, coexistence method, and semigrand ensem-
ble [5–8]. In combination with the density functional
theory (DFT), these methods allow for evaluating free
energies without experimental inputs. For example, var-
ious single-component phase diagrams including melt-
ing properties have been constructed by employing the
above-mentioned methods [9–15]. However, in binary or
higher-order systems, the MD-based approaches are lim-
ited with DFT because the sampling over compositional
variations and configurations requires iterative simula-
tions over millions of time steps and large simulation cells
containing hundreds of atoms [16, 17]. Alternatively, the
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MD-free cluster expansion was employed in construct-
ing phase diagrams of solid alloys by interpolating free
energies of alloy configurations [18–25]. However, this
approach is applicable to only crystal systems, and its
accuracy degrades when atomic relaxations are signifi-
cant [26].

In recent years, machine-learned potentials (MLPs)
have gained much attention as they can provide energies
with near-DFT accuracy at a fraction of the cost [27].
The computational acceleration using MLPs has been
confirmed over a wide range of applications including,
for example, crystal structure prediction [28] and lattice
thermal conductivity [29]. In addition, MLPs are suit-
able as surrogate models of DFT in evaluating free ener-
gies, which has been successfully demonstrated in many
recent studies. [30–43] However, examples are mostly
single-component systems [30–40] and only a few exam-
ples, AgxPd1−x [41], NixMo1−x [42], and GaxAs1−x [43],
have been attempted for constructing the phase dia-
gram of compounds. Therefore, the accuracy and ef-
ficiency of MLPs for constructing the whole phase di-
agram of multi-component systems are yet to be con-
firmed. With these motivations, herein we aim to con-
struct a full temperature-composition phase diagram for
the MgO-CaO, an archetypal pseudo-binary system with
rich experimental information, using Behler-Parrinello-
type neural network potentials (NNPs) [44].

Our strategy for computing the free energy and con-
structing the phase diagram is as follows: first, for pure
phases, temperature-dependent free energies are calcu-
lated using the thermodynamic integration method. For
pure MgO and CaO, we consider rocksalt and liquid
phases, and the crossing of the free energy curves of
both phases corresponds to the melting point. Next, the
composition-dependent free energy of mixing is calcu-
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lated using semigrand ensemble simulations at selected
temperatures. Since no intermetallic compound exists
along the MgO-CaO pseudobinary line, only the rocksalt
solid solution phase and liquid mixture are considered.
The whole temperature- and composition-dependent free
energies are fitted into analytical forms, and phase
boundaries are determined by common tangents on the
isothermal sections of free energy curves. The rest of
the paper is organized as follows: in Sec. II we introduce
computational methods used in the present work such as
NNPs, thermodynamic integration, and semigrand en-
semble simulations. The main results are discussed in
Sec. III, and Sec. IV summarizes and concludes this work.

II. THEORETICAL METHODS

A. Neural network potential and DFT calculations

In the present work, the NNPs are trained by using the
SIMPLE-NN package [45, 46]. For input features, we use
atom-centered symmetry functions (ACSFs) [47]. The
numbers of features are 24 and 108 for the radial and
angular parts, respectively, with cutoff radii of 7.0 and
4.5 Å, respectively. The full parameters for ACSFs are
listed in the Supplementary Material. The training is ac-
celerated by decorrelating features using principal com-
ponent analysis and whitening [48]. We use an initial
learning rate of 0.01, which decays exponentially during
190 epochs and becomes 0.0005 at the final epoch. We
use a fully connected atomic neural network with two
60-node hidden layers. The MD simulations and evalu-
ations of energy, force, and stress are carried out using
the LAMMPS package [45, 49].

The DFT calculations for the training set are car-
ried out using Vienna Ab initio Simulation Package
(VASP) [50–52] with the projector-augmented wave pseu-
dopotentials [53]. The pseudopotential contains the va-
lence electrons of 3s2, 3s23p64s2, and 2s22p4 for Mg, Ca,
and O, respectively. We generate data sets independently
using two types of the exchange-correlation functional;
the widely-used the generalized gradient approxima-
tion (GGA) by Perdew-Burke-Ernzerhof (PBE) [54] and
strongly constrained and appropriately normed (SCAN)
meta-GGA functional [55]. The SCAN functional has
been benchmarked against PBE on diverse properties,
providing more accurate lattice parameters [55], forma-
tion enthalpies [56], lattice dynamics [57], energies of
metastable phases [58], and the melting points [38, 59].
For ab initio MD simulations, we use default plane-wave
energy cutoffs with the Γ-point sampling for the Brillouin
zone integration. Then more accurate DFT calculations
are performed on selected snapshots for reference data set
by increasing the plane-wave energy cutoff to 500 eV and
employing 3×3×3 k-point meshes for the conventional
unit cell of rocksalt MgO and CaO, which is scaled in
supercells to select a similar k-point density. Details on
the training structures will be discussed in Sec. III A.

B. Thermodynamic integration

Thermodynamic integration allows one to calculate the
free energy by computing the work done in the isothermal
switching process from a reference state whose free en-
ergy is known a priori, to a state of interest [5, 6, 12, 60].
We apply this method for pure rocksalt and liquid phases
of MgO and CaO. When the potential energy term of
Hamiltonian of the reference system (Ui) and of the sys-
tem of interest (Uf) is given, a parametric potential is
defined as

U(λ) = (1− λ)Ui + λUf , (1)

where λ is a coupling parameter ranging from 0 to 1. The
difference in the Helmholtz free energy between the two
systems (Ff − Fi) is given by

Ff − Fi =

∫ 1

0

〈
∂U(λ)

∂λ

〉
λ

dλ, (2)

where the 〈..〉λ denotes the ensemble average under the
NVT condition at constant λ, which is practically re-
placed by a temporal average according to the ergodicity.

We employ two reference systems depending on the
final state: the Einstein crystal for solid phases and
Lennard-Jones (LJ) fluid for liquid phases. The free en-
ergy of Einstein crystal is given by

F =
∑
i

3nikBT ln

(
hωi

2πkBT

)
, (3)

where kB, h, and T mean the Boltzmann constant,
Planck constant, and temperature, respectively, and ni
and ωi correspond to the number of atoms and angular
frequency of Einstein oscillators of atomic species i, re-
spectively. We use a spring constant of 5 eV/Å2 through-
out this work regardless of atomic species.

For the liquid phase, we select for the reference system
the “cut and shifted” LJ potential [61]. In Ref. [61], the
residual free energy of the LJ fluid in reference to the
ideal gas was parameterized into an equation of state,
which provides highly accurate free energies over a wide
range of temperatures and densities. The free energy of
the ideal gas is given by

F = −kBT
∑
i

ln

(
V ni

Λ3ni
i ni!

)
, (4)

Λi =
h√

2πmikBT
, (5)

where V is the volume of the system and Λi is the ther-
mal De Broglie wavelength of the atomic species i with
the atomic mass of mi. To avoid a phase transition along
the integration path, the depth of the LJ potential is con-
trolled such that the LJ fluid becomes supercritical, and
the diameter of LJ particles is chosen to have a nearest-
neighbor distance similar to the final state [6].
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C. Semigrand ensemble simulations

Taking the example of a binary system made of atoms
A and B, the difference of chemical potentials is written
as

∆µ(x, T ) ≡ µB(x, T )− µA(x, T ) =
∂G(x, T )

∂x
, (6)

where x is the mole fraction of species B and G is the
Gibbs free energy. ∆µ(x, T ) can be obtained by the sem-
igrand ensemble, a subset of the grand-canonical ensem-
ble in which the number of atoms is fixed but chemical
identities can change freely [8, 16, 17, 62]. In practice, the
equilibration within the semigrand ensemble is achieved
by hybridizing MD simulations with Monte Carlo (MC)
swap of atomic species. The MC particle swap is accepted
by the Metropolis criterion defined as

p = min

[
1, exp

(
−∆E −∆µN∆x

kBT

)]
, (7)

where ∆E and ∆x indicate the change of energy and
composition of the simulation cell due to the test flipping
of atomic species respectively, and N is the total number
of atoms [62]. After sufficient MD-MC runs, the equilib-
rium composition x is obtained for the given ∆µ. By it-
erating the semigrand ensemble simulations over a range
of ∆µ, x(∆µ) and its inverse ∆µ(x) are obtained at given
T , and the free energy G(x, T ) is obtained in turn by in-
tegrating Eq. 6. A more formal derivation [8], practical
implementation [62], and application examples [16, 17]
of the semigrand ensemble are referred to the literature.
During the MD simulations, the isobaric condition is im-
posed to consider composition-dependent of lattice pa-
rameters.

III. RESULTS AND DISCUSSIONS

A. NNP training

The DFT data set for training NNPs consists of pure
phases, solid solutions, and their melts. For pure phases
of MgO and CaO, the data set first contains rocksalt
crystals under volume-conserving uniaxial, hydrostatic,
or shear strain, whose ranges are -5% to 5%, -2% to
4%, and -5% to 5%, respectively. For intermediate com-
positions, we generate 100 random alloys in the rock-
salt structure (MgxCa1–xO) containing 100 atoms in
x = 0.08, 0.2, 0.8, 0.92. For each composition, the lattice
parameter is obtained by relaxing the cell shape and vol-
ume. To sample thermal vibrations of solids as well as liq-
uid phases, the crystals of pure phases and random alloys
(the most and least stable configurations among the 100
structures) are heated from 300 K to 2000, 4000, 6000,
and 8000 K with a duration time of 1 ps at each temper-
ature. Two independent MD simulations are performed
in constant pressure (NPT) or constant volume (NVT)

TABLE I. The root mean square error (RMSE) for the energy
and force on training (T) and validation (V) sets. PBE-NNP
and SCAN-NNP represent NNPs that are trained with the
corresponding functional. In averaging errors in the force, the
three-dimensional Euclidean distance is measured between
DFT and NNP forces.

Energy (meV/atom) Force (eV/Å)

T V T V

PBE-NNP 4.0 4.1 0.24 0.28

SCAN-NNP 5.1 5.5 0.24 0.29

ensembles, where temperatures are modulated with the
Langevin [63] or Nosé-Hoover [64] thermostats, respec-
tively. We note that both ensembles are complementary
in constructing data sets; while the NPT data set in-
cludes the thermal expansion of solid and liquid phases,
NVT data set contains interactions between atoms at
short distances, which helps prevent short-bond failures
of NNPs during MD simulations along the thermody-
namic integration path. We find that the pure phases
and random alloys melt at 8000 and 6000 K, respectively.
By including these melting processes, NNP may learn the
interface between the solid and liquid phases required for
coexistence simulations. Those MD trajectories are sam-
pled with the interval of 40 and 10 fs at 300–4000 K and
6000–8000 K, respectively, and included in the data set
after accurate single-shot DFT calculations. The whole
data set contains 5,670 structures and 552,096 atoms for
PBE and SCAN respectively. (See the Supplementary
Materials for details.)

We generate single NNP for PBE and SCAN function-
als, named as PBE-NNP and SCAN-NNP, respectively,
which is used for the whole calculations. 10% of the
data is randomly selected as a validation set to moni-
tor overfitting. The root mean square error (RMSE) of
NNPs on the training and validation set is presented in
Table I, indicating that the accuracy of NNPs is satis-
factory. The parity plots in Fig. 1 display correlations
of the energy and force components between DFT and
NNP for the validation sets, showing that both PBE-
NNP and SCAN-NNP well reproduce the reference DFT
results. The slightly higher energy RMSE of SCAN-NNP
(Table I) could be attributed to a wider energy range of
the data set as seen in Figs. 1(a) and (b). In comparison,
the force RMSE between the two NNPs is comparable
since the magnitude of the force is similar in both data
sets (see Figs. 1(c) and (d)).

B. Test of NNP on pure phases

In Table II, the trained NNPs are further validated
by comparing various properties of pure phases. We first
compare structural and mechanical properties of rocksalt
MgO and CaO at 0 K. It is seen that PBE overestimates
the lattice parameters by 0.6–0.8%, while SCAN under-
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PBE SCAN
(a)

(c)

(b)

(d)

FIG. 1. Parity plots between DFT and NNPs, comparing en-
ergies (E) ((a) and (b)) and force component (Fi, i = x, y, z)
in the Cartesian coordinate ((c) and (d)) for validation sets.
The functional used for the reference data set is shown at the
top.

estimates by 0.3–0.6%, in better agreements with exper-
iment [65, 66]. The elastic constants are also reproduced
more accurately by SCAN than PBE, except for C12. It is
seen that each NNP well reproduces corresponding DFT
results - lattice parameters within 0.001 Å and elastic
constants within 16.7% (largest for off-diagonal compo-
nent C12 in SCAN-NNP).

In Fig. 2, we compute phonon dispersions and com-
pare them with experiments. The phonon dispersions
are calculated using the Phonopy code [67] with the fi-
nite displacement method and a 5×5×5 repetition of the
primitive cell. In Ref. [57], it was tricky to obtain phonon
dispersions with the SCAN functional due to unstable
convergences, which is also confirmed in the present work
as the phonon dispersions calculated within the SCAN
functional exhibit spurious imaginary modes for rock-
salt MgO and CaO. Instead, we employ r2SCAN functi-
noal [68] for phonon calculations, as it exhibits better
numerical convergences while maintaining the accuracy
of the original SCAN. As shown in Fig. 2, the r2SCAN
functional accurately reproduces the lattice dynamics of
the experiments [69, 70]. On the other hand, PBE cal-
culations underestimate the phonon frequencies. We do
not consider the modifications of optical branches due to
the long-range Coulomb interactions (LO-TO splitting),
resulting in the deviations of optical branches near the Γ
point. In Fig. 2, NNPs successfully reproduce the phonon
dispersions by DFT regardless of the functional type.

To benchmark thermal properties of solids at constant
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FIG. 2. Phonon dispersion along the high-symmetry points
of the rocksalt phase of MgO and CaO. We use the r2SCAN
functional instead of the original SCAN in this case for better
numerical convergence of lattice dynamics [57]. Experimental
measurements are adopted from Refs. [69] (MgO) and [70]
(CaO).

pressures, the linear coefficient of thermal expansion
(CTE) and heat capacity (Cp) are calculated in Fig. 3
within the quasi-harmonic approximation [67]. As can
be seen in Fig. 3(a), for both pure phases, the predicted
CTE in SCAN-NNP compares favorably to the experi-
ments, whereas PBE-NNP overestimates it by about 20-
30%. Similarly, Fig. 3(b) shows that Cp of MgO agrees
well between SCAN-NNP and experiment, while PBE-
NNP slightly overestimates it. For CaO, Cp is accu-
rately predicted by both NNPs, although SCAN-NNP
and PBE-NNP perform slightly better at temperatures
below and above 350 K, respectively.

We next compare structural properties of the liquid
phases, which are obtained by employing 100-atom su-
percells and NVT ensembles with temperatures of 3100
and 2850 K for MgO and CaO, respectively. The radial
and angular distribution functions (RDF and ADF, re-
spectively) are averaged over 40-ps MD simulations, pre-
ceded by 5-ps pre-melting at twice the temperature and
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TABLE II. Equilibrium lattice parameter (a0), bulk modulus (B), and elastic constants (C11, C12 and C44) of rocksalt MgO and
CaO at 0 K. The properties are calculated after cell relaxations, and elastic constants are calculated by applying strains smaller
than 0.5%. Relative errors are presented in the parentheses with respect to the experiments (for DFT) or DFT calculations
(for NNP), respectively.

Property PBE PBE-NNP SCAN SCAN-NNP Experiment

MgO a0 (Å) 4.246 (0.8%) 4.247 (0.0%) 4.186 (-0.6%) 4.186 (0.0%) 4.213a

B (GPa) 153.3 (-6.9%) 158.6 (3.4%) 174.4 (5.9%) 170.9 (-2.0%) 164.7b

C11 (GPa) 273.8 (-10.7%) 281.4 (2.8%) 327.1 (6.6%) 317.6 (-2.9%) 306.7b

C12 (GPa) 93.1 (-0.6%) 97.3 (4.5%) 98.0 (4.6%) 97.6 (-0.5%) 93.7b

C44 (GPa) 145.2 (-7.9%) 132.4 (-8.8%) 160.8 (2.0%) 146.0 (-9.2%) 157.6b

CaO a0 (Å) 4.839 (0.6%) 4.840 (0.0%) 4.797 (-0.3%) 4.797 (0.0%) 4.811a

B (GPa) 105.2 (-7.7%) 105.5 (0.3%) 115.8 (1.6%) 118.5 (2.4%) 114.0a

C11 (GPa) 203.1 (-9.0%) 203.6 (0.2%) 241.7 (8.2%) 232.3 (-3.9%) 223.3a

C12 (GPa) 56.3 (-5.0%) 56.5 (0.3%) 52.8 (-10.9%) 61.7 (16.7%) 59.3a

C44 (GPa) 74.8 (-7.7%) 70.7 (-5.4%) 86.0 (6.2%) 76.3 (-11.3%) 81.0a

a Reference [65].
b Reference [66].

ExperimentPBE-NNP SCAN-NNP
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FIG. 3. Thermal properties of MgO and CaO calculated
by quasi-harmonic approximations: (a) linear coefficient of
thermal expansion (CTE) and (b) heat capacity at constant
pressure (Cp). Experimental values of CTE for MgO and CaO
are from Ref. [71–73] and Ref. [73, 74], respectively, while Cp

is from the thermochemical tables [75].

10-ps equilibration. The total and atom-resolved RDFs
in Fig. 4(a) indicate that the first peaks are dominated by
heteropolar pairs for both liquid MgO and CaO (l-MgO
and l-CaO, respectively). The first peaks lie at 2.0 and
2.2 Å for MgO and CaO respectively, where the differ-
ence stems from the larger ionic radius of Ca than that of
Mg. The second peaks consist of mostly homopolar pairs,
with similar distributions among the pairs. The ADFs
are shown in Fig. 4(b), and both phases commonly ex-

hibit a major peak at 90° and shoulder peaks around 50°
and 150°. Both NNPs well reproduce main features in the
RDF and ADF from DFT calculations. It is noticeable
that the liquid structures of PBE-NNP and SCAN-NNP
are hardly distinguishable despite the significant differ-
ences in the solid phase.

C. Test of NNP on pseudo-binary mixtures

In this subsection, we test the accuracy of NNPs for
solids and liquids at intermediate compositions. To this
end, we first compare the formation energies of substi-
tutional defects in solids that affect the free energy of
mixing at low concentrations. The defect formation en-
ergy (Df) is defined as follows:

Df = Edefect −
∑
i

NiEi, (8)

where Edefect means the total energy of the supercell con-
taining a point defect, and Ni and Ei (i = MgO,CaO)
indicate the number of formula unit in the supercell and
the energy of pure phases, respectively. As can be seen
from Table III, NNPs reproduce DFT formation ener-
gies of the substitutional defects within 3%. Both PBE
and SCAN produce a larger Df for CaMg than for MgCa,
which implies a lower solubility of the former. It is also
seen that SCAN produces a higher Df than PBE by 0.2
eV, which affects the solubility limit as will be shown
later.

Next, we compare the formation energies of ordered
structures at intermediate compositions. We consider ten
ordered structures [76] by exchanging cations in the rock-
salt lattice, including L10, L11, NbP, Ni4Mo, L12, D022,
and MoPt2 structures where the latter three structures
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FIG. 4. (a) Total and partial radial distribution functions (g(r)) and (b) total angular distribution functions (p(θ)) of liquid
MgO and CaO.

TABLE III. The formation energy of substitutional defects in
eV. CaMg and MgCa mean a single-atom impurity of CaO in
MgO and MgO in CaO respectively, where we use 216-atom
supercells to evaluate the formation energy of point defects.

Type PBE PBE-NNP SCAN SCAN-NNP

CaMg 1.00 0.98 1.21 1.19

MgCa 0.67 0.70 0.86 0.82

include both Mg- and Ca-rich stoichiometries. The for-
mation energy per atom (∆Ef) is defined as follows:

∆Ef =
1

2
∑
iNi

[
ESC −

∑
i

NiEi

]
, (9)

where ESC means the total energy of the ordered struc-
ture and other notations are the same as in Eq. 8.
The ∆Ef ’s computed by DFT and NNPs are compared
in Fig. 5, showing that NNPs closely reproduce corre-
sponding DFT results within 10 meV/atom. It is un-
derstandable that the errors in ∆Ef are maximum at
Mg0.5Ca0.5O, as the training set consists of pure phases
and mixtures of up to 20% mole fractions. It is seen
that none of the ordered phases are energetically favor-
able with respect to the pure phases, with ∆Ef greater
than 50 meV/atom. We also note that the magnitude
of ∆Ef is larger in SCAN than PBE, which is consistent
with Df .

D. Free energy of pure phases

With the accuracy on solid and liquid phases con-
firmed, the trained NNPs are used in the thermodynamic

0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.0 0.5 1.0
0.00
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SCAN-NNP

PBE
PBE-NNP

Mole fraction CaO

E
f(
eV
/a
to
m
)

FIG. 5. Formation energy (∆Ef) of ten ordered structures
evaluated within PBE or SCAN functional and corresponding
NNPs.

integration to calculate free energies of the solid and
liquid phases. We employ a 10-point Gauss-Legendre
quadrature to evaluate the integral in Eq. 2 using the
lattice parameters obtained from NPT simulations at
zero pressure. For all the phases, each point in the
quadruture is evaluated by employing a 1,000-atom su-
percell and 2-ps equilibration followed by 5-ps sampling
for the temporal average. We use the Langevin thermo-
stat [63] with the center of mass fixed to avoid drift of
the atoms [5, 77, 78]. To determine convergence, we use
the block standard error (BSE) as a measure of uncer-
tainty [79].

Figure 6 shows the computed free energies of pure
phases, which are fitted to an analytical free energy
model as follows:

G(T ) = a+ bT + cT lnT + dT 2 + eT−1, (10)
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from the thermodynamic integration are represented by dia-
monds (solid) and disks (liquid), and the free energy models
are shown in solid lines. Melting points are indicated by ver-
tical dotted lines at the intersection of the free energy curves.

where a, b, c, d, and e are fitting parameters. Sim-
ilar function forms were used in the previous thermo-
dynamic calculations [4] and MD studies [77, 80]. The
error of fit is less than 2 meV/atom in both solid and
liquid phases, which is on the order of the BSE of each
point and sufficient to obtain melting properties. By fit-
ting to the smooth function in Eq. 10, the determination
of temperature-dependent free energies becomes robust
against statistical fluctuations in the numerical integra-
tion. We add that the specific function form has negligi-
ble effects on the melting properties as long as the free
energy data are well fitted into the model.

The resulting free-energy curves of MgO and CaO are
shown in Fig. 6 as solid lines, and melting properties ob-
tained from intersections of the curves are summarized
in Table IV. The melting point of MgO is calculated
as 2787 K by PBE-NNP, which is consistent with the
previous works at the PBE level, 2747 K by DFT cal-
culations [59] and 2698 K by the Gaussian approxima-
tion potential (GAP) [38]. However, these values are sig-
nificantly underestimated compared to the experimental
range of 3040–3250 K [4, 59]. In contrast, the SCAN-
NNP produces an improved melting point of 3173 K,
which is within the experimental range and agrees reason-
ably with the previous SCAN-DFT calculations (3032 K)
or SCAN-GAP (3072 K). The entropy of fusion and slope
of melting curve of MgO are mostly consistent among the
same functional. On the other hand, the melting point
of CaO is computed to be 2640 K by PBE-NNP, which is
far below the experimental data of 2850–3220 K [4]. The
SCAN-NNP better predicts the melting point of CaO to
be 3057 K, which is within the experimental range.

For a further check, the melting points of the pure

phases are recalculated with the coexistence method. In
this method, the simulation cell contains solid and liq-
uid phases and the interfaces between them, which is
directly equilibrated to identify the transition tempera-
ture at which the interface stops moving. We employ a
16,000-atom simulation cell that is a 10×10×20 replica-
tion of the conventional unit cell. The initial simulation
cell is prepared in NPT ensembles, with the initial guess
on melting points calculated from the thermodynamic
integration. Half of the simulation cell is melt-quenched
to the tentative melting point while the other atoms are
frozen. Then the simulation cell is equilibrated within
the NPH ensemble for 100 ps, and the temperature is
sampled for another 100 ps. When we test the cell size
effect with 2,000-atom simulation cells, the melting point
shifts only by 6 K. As can be seen in Table IV, the melt-
ing points calculated by the thermodynamic integration
and coexistence methods agree within 40 K.

E. Phase diagram

To construct the full phase diagram, we compute the
free energies in semigrand ensembles at intermediate
compositions. The isobaric ensemble is used to allow
for the volume to change according to the composition
during the MD simulations, and the cell size is the same
as in the thermodynamic integration. The ensemble is
equilibrated and sampled during 50,000 steps with the 2-
fs time step, and attempts to swap between Mg and Ca
atoms are set at 1% of the cations per time step. Single
run of the semigrand ensemble simulation at given ∆µ
and T provides the corresponding equilibrium composi-
tion x. After carrying out the semigrand ensemble simu-
lations over a set of (∆µ, T ), one can obtain composition-
dependent Gibbs free energies following the relation in
Eq. 6.

In Fig. 7(a), results from the semigrand simulation us-
ing SCAN-NNP are shown for ∆µ = µCaO−µMgO. With
solid solutions at 2400 K, there exists a ∆µ range where
the equilibrium composition is not unique due to the de-
pendence on the initial composition. Because of this hys-
teresis, pure phases of MgO or CaO should be used as ini-
tial configurations to scan over end compositions. This is
the reason why data points are empty for a range of inter-
mediate compositions at 2400 K (and also 2800 K). The
hysteresis weakens with the increasing temperature and
almost disappears at 3200 K. For the liquid phase, such
hysteresis does not exist at any simulation temperature.

The semigrand simulations are carried out for solid and
liquid phases at least five temperatures spanning relevant
domains in the phase diagram. (For example, in the case
of SCAN-NNP, the simulation temperatures for solids
(liquids) are sampled from 1200 (2400) K to 3200 (3300)
K with the interval of 400 (100) K.) In order to interpo-
late free energies over the whole phase diagram and ob-
tain G(x, T ) via integration of ∆µ(x, T ) following Eq. 6,
we introduce analytical models for the free energy [4, 17]
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TABLE IV. Melting point (Tm), entropy of fusion (∆Sm), and slope of the melting curve (dT/dP ) of MgO and CaO. PBE-GAP
and SCAN-GAP represent the Gaussian approximation potential (GAP) trained by the PBE and SCAN data sets, respectively.
Approaches refer to thermodynamic integration (TI), coexistence method (Coexist), and interface pinning method with a
correction by thermodynamic perturbation theory (IP+TP) [7]. The block standard errors are also provided. Results are from
this work unless references are given.

Property PBE-NNP PBE-NNP SCAN-NNP SCAN-NNP PBEa SCANa PBE-GAPb SCAN-GAPb

MgO Tm (K) 2787±30 2786±1.5 3173±33 3181±1.7 2747±59 3032±53 2698±23 3072±25

∆Sm (kB/atom) 1.61 - 1.58 - 1.63 1.70 1.57 1.50

dT/dP (K/GPa) 150 - 140 - 155 134 153 140

Method TI Coexist TI Coexist TI TI IP+TP IP+TP

CaO Tm (K) 2640±30 2659±1.5 3057±35 3097±2.0

∆Sm (kB/atom) 1.65 - 1.56 -

dT/dP (K/GPa) 181 - 156 -

Method TI Coexist TI Coexist

a Reference [59].
b Reference [38].

and fit them to the simulation data in Fig. 7(a). First,
the free energy is written as follows:

G(x, T ) = G(x, T ) + ∆Gmix(x, T ), (11)

where x is the mole fraction of CaO and G(x, T ) means
the weighted average of free energies of pure phases:

G(x, T ) = xGCaO(T ) + (1− x)GMgO(T ), (12)

where GMgO and GCaO are free energies of the pure
phases obtained in the previous subsection. In Eq. 11,
∆Gmix(x, T ) means the residual free energy of mixing
defined as

∆Gmix(x, T ) = kBT [x lnx+ (1− x) ln (1− x)]

+x(1− x)(A+Bx+ Cx2), (13)

where the first term corresponds to the ideal free energy
of mixing, and the second term reflects the non-ideality
with the temperature-dependent parameters A, B, and
C. The chemical potential model is derived from the
relation in Eq. 6, written as

∆µ(x, T ) = µCaO − µMgO =
∂G(x, T )

∂x

= GCaO(T )−GMgO(T ) + kBT ln

(
x

1− x

)
+A+ 2(B −A)x+ 3(C −B)x2 − 4Cx3. (14)

Equation 14 is fitted to the simulation data in Fig. 7(a),
and the optimized models in solid lines are in good agree-
ments with the simulation data. The parameters A, B,
and C are assumed to be linear with the temperature as
in Ref. [4], and the fitting RMSE of the solid phase is
5.1 and 7.3 meV/atom for PBE-NNP and SCAN-NNP,
respectively, and the corresponding RMSEs in the liquid
phase are 3.6 and 5.8 meV/atom, respectively.

Figure 7(b) shows the fitted ∆Gmix in Eq. 13 at the
selected temperatures. At 2400 K, the free energy curve

for the solid phase features a miscibility gap resulting
from the two local minima at terminal solutions, while
no liquid phase is thermodynamically stable throughout
the composition. At the elevated temperature of 2800
K, the liquid phase becomes stable over a range of in-
termediate compositions, and so the eutectic point is ex-
pected to lie between 2400 K and 2800 K. Above 3200 K,
the liquid phase is always stable over the solid phase as
the temperature becomes higher than the melting point
of both pure phases. The dotted lines in Fig. 7(b) are
common tangents of stable phases, and the contacts are
indicated by the circles. These contacts represent the
phase boundary since the coexistence of those phases is
thermodynamically favored over other compositions and
phases.

The full phase diagrams constructed within NNPs are
shown in Fig. 8(a) together with experimental data.
Based on the fitted analytical free energy models, we
calculate the phase boundaries with the 1 K interval
between 1200 and 3200 K. It is seen that both PBE-
NNP and SCAN-NNP reproduce the characteristics of
the MgO-CaO system such as eutectic points and sol-
ubility limits. In detail, the eutectic compositions pre-
dicted by PBE-NNP and SCAN-NNP are 0.50 and 0.49
for the mole fraction CaO, respectively, which are within
the experimental observations of 0.45-0.60 [4] (see red
crosses). The eutectic temperature, on the other hand,
is 2253 K and 2651 K for PBE-NNP and SCAN-NNP re-
spectively, only the latter being close to the experimental
range of 2550-2640 K. The failure of PBE-NNP is consis-
tent with the underestimated melting points of the pure
phases. The experimental solid solubility of CaO in MgO
(MgO in CaO) at the eutectic temperature is 6% (22%)
mole fraction CaO [81], which are closely reproduced by
SCAN-NNP within the error bar. The PBE-NNP can
also reproduce the solid solubility of CaO in MgO at its
own eutectic temperature, but the solubility of MgO in
CaO is overestimated by about 10%. The overestima-
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FIG. 7. (a) Chemical potential difference (∆µ = µCaO − µMgO) and (b) the free energy of mixing (∆Gmix) as a function
of composition at selected temperatures, which are calculated with SCAN-NNP. ∆Gmix is defined as the difference from the
free energy of pure solids. Symbols, solid lines, and dotted lines represent data points obtained from the semigrand ensemble
simulations, the fitted free energy models, and the common tangents that determine phase boundary, respectively. Empty
circles correspond to the phase boundary at the given temperature.

tion is related to the smaller formation energy of substi-
tutional defects than with SCAN-NNP (see Sec. III C),
which leads to thermodynamic preference toward mixing.
Other experimental data regarding the solvus, solidus,
and liquidus are all in good agreements with those by
SCAN-NNP.

Figure 8(b) compares the phase diagram by SCAN-
NNP and those from other atomistic simulations (see
gray lines). Previous theoretical works identified only
solid-state phase diagrams of the MgO-CaO system with
classical potentials [82, 83] or first-principles calcula-
tions [76, 82]. (To note, the effect of lattice vibration is
considered only in Ref. [82].) It is seen that none of pre-
vious works produced correct solvus lines on both MgO-
and CaO-rich sides. On the other hand, the results by
CALculation of PHAse Diagrams (CALPHAD) model-
ing are also presented in Fig. 8(b). While solvus lines are
consistent with the SCAN-NNP results, eutectic point,
solidus, and liquidus are at variance with each other,
even among the CALPHAD data. This is because while
solvus lines are validated through a number of experi-
ments, the data for solidus and liquidus lines are sparse
and scattered [4]. The mismatch of the phase boundaries
from CALPHAD models is understandable because each
model is fitted to different sets of data points.

IV. CONCLUSION

We remark on the computational efficiency for con-
structing the phase diagram. The whole procedure, in-

cluding the data set generation, NNP training, and free
energy calculations with MD simulations, took about ten
days of computing time on 400 cores of Intel® Xeon®

Gold 6148 CPU running at 2.4 GHz. In detail, about
five days were spent on generating data sets and training
NNPs, and another five days on free energy calculations
using NNPs and 1,000-atom cells. If identical free-energy
calculations were carried out by purely DFT approaches,
it would take several decades with the same computa-
tional resource, even assuming that the free energy cal-
culations are done on smaller 200-atom simulation cells.
This is mainly because the hybrid MC-MD simulations
require a large amount of computing resources due to
several million time steps.

In summary, we developed NNPs for the MgO-CaO
pseudo-binary system and demonstrated construction of
the full phase diagram. The accuracy of NNPs trained
over PBE or SCAN data is confirmed by validation over
diverse properties. Notably, SCAN-NNP outperformed
PBE-NNP in most cases when compared with experi-
ments. The full phase diagrams are determined from
the free energy calculations employing thermodynamic
integration and semigrand ensemble methods. Notably,
SCAN-NNP produced a phase diagram that closely fol-
lows experimental measurements on liquidus, solidus,
and solvus lines, including the eutectic point and solid
solubility limits. In conclusion, we believe that this work
will pave the way to the ab initio CALPHAD approach
with high prediction accuracies.
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