
Computer Physics Communications 242 (2019) 95–103

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

SIMPLE-NN: An efficient package for training and executing
neural-network interatomic potentials✩

Kyuhyun Lee, Dongsun Yoo, Wonseok Jeong, Seungwu Han ∗

Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea

a r t i c l e i n f o

Article history:
Received 12 January 2019
Received in revised form 5 April 2019
Accepted 21 April 2019
Available online 4 May 2019

Keywords:
Potential energy surface
Machine learning potential
Neural network
Molecular dynamics

a b s t r a c t

The molecular dynamics (MD) simulation is a favored method in materials science for understanding
and predicting material properties from atomistic motions. In classical MD simulations, the interaction
between atoms is described by an empirical interatomic potential, so the reliability of the simulation
hinges on the accuracy of the underlying potential. Recently, machine learning (ML) based interatomic
potentials are gaining attention as they can reproduce potential energy surfaces (PES) of ab initio
calculations, with a much lower computational cost. Therefore, an efficient code for training ML
potentials and inferencing PES in new configurations would widen the application range of MD
simulations. Here, we announce an open-source package, SNU Interatomic Machine-learning PotentiaL
packagE-version Neural Network (SIMPLE-NN) that generates and utilizes the ML potential based on
the artificial neural network with the Behler–Parrinello type symmetry function as descriptors for
the chemical environments. SIMPLE-NN uses the Atomic Simulation Environment (ASE) package and
Google Tensorflow for high expandability and efficient training, and also supports the in-house code
for quasi-Newton method. Notably, the package features a weighting scheme based on the Gaussian
density function (GDF), which significantly improves accuracy and reliability of ML potentials by
resolving sampling bias that exists in typical training sets. For MD simulations, SIMPLE-NN interfaces
with the LAMMPS package. We demonstrate the performance and usage of SIMPLE-NN with examples
of SiO2.
Program summary
Program Title: SIMPLE-NN
Program Files doi: http://dx.doi.org/10.17632/pjv2yr7pvr.1
Licensing provisions: GPLv3
Programming language: Python/C++
Nature of problem: Inferencing the potential energy surface for the given system with accuracy
comparable to ab initio methods but with much lower computational costs.
Solution method: Calculate descriptor vectors that encode local chemical environment. High-dimensional
neural network is used to predict the total energy from the descriptor vectors. The trained neural
network can be used for molecular dynamics simulations.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Molecular dynamics (MD) simulations are widely used in var-
ious studies such as predicting material properties and struc-
tures [1–4], understanding the atomic motion that is difficult to
reveal in experiments [5,6], and identifying mechanism in chem-
ical reactions [7]. Depending on whether the electronic structure
is explicitly calculated or not, there are two types of MD: ab

✩ This paper and its associated computer program are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655).

∗ Corresponding author.
E-mail address: hansw@snu.ac.kr (S. Han).

initio and classical. The ab initio MD, which is usually based on
the density functional theory (DFT), gives accurate and reliable
results. [8–10] However, the method is limited to a system size
and timescale less than a few hundreds of atoms and picoseconds,
respectively. It is because of the heavy computational costs in
solving the Kohn–Sham equation and O(N3) scaling with respect
to the number of atoms N . In contrast, the classical MD describes
interatomic interactions with a model potential that consists
of analytic functions. [11–13] The method is suitable for large-
scale simulations owing to fast evaluation of the potential energy
surface and its gradients, with a linear scaling with the system
size. However, construction of the proper model function is a
formidable task as it requires long experience in development,
as well as deep understanding on the given system.

https://doi.org/10.1016/j.cpc.2019.04.014
0010-4655/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2019.04.014
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2019.04.014&domain=pdf
http://dx.doi.org/10.17632/pjv2yr7pvr.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:hansw@snu.ac.kr
https://doi.org/10.1016/j.cpc.2019.04.014

96 K. Lee, D. Yoo, W. Jeong et al. / Computer Physics Communications 242 (2019) 95–103

Recently there has been a surge of interest in applying ma-
chine learning (ML) techniques to potential development. [14–17]
Unlike traditional interatomic potentials, the ML potentials build
upon a purely mathematical structures like neural network or
Gaussian process. The parameters in the model are trained by
minimizing the error between given ab initio data and prediction
from the ML potential. The computational cost of MD utiliz-
ing ML potentials is far lower than that of ab initio MD, en-
abling large-scale simulations for diverse materials with high
accuracy. [18–26]

Among various ML models, the artificial neural network (ANN)
and Gaussian process regression (GPR) are currently favored in
developing ML potentials. [14–17] While both approaches deliver
a similar level of accuracy, each model has its own pros and cons.
To be specific, GPR has an explicit solution to parameter fitting
such that the model training takes less efforts than ANN. On the
other hand, inferencing from the ML potential is generally faster
in ANN than GPR since the computational cost of evaluating a GPR
model progressively increases with the size of the training set
while that of the ANN model is unrelated to the training set. [27]
Therefore, the neural network potential (NNP) is more suited
for simulating complex phenomena that need a large dataset.
(However, we note that recent GPRs [28,29] adopt sparsification
schemes like the CUR matrix decomposition [30], which signifi-
cantly reduces the computational cost.) As of now, several NNP
packages have been published: Amp [31], ænet [32], DeePMD-
kit [33], ANI-1 [34], PROPhet [35], and ruNNer [36]. (ruNNer is
not open to public domain.)

In this paper, we introduce an open-source package, SNU
Interatomic Machine-learning PotentiaL packagE-version Neural
Network (SIMPLE-NN) for generating NNPs and performing MD
simulations based on them. In developing the package, we partic-
ularly aim at high performance in training so that a large dataset
can be handled efficiently. In the following, we first discuss the-
ories related to NNP, and introduce the structure of SIMPLE-NN.
We also demonstrate usage and performance of the package using
exemplary systems of SiO2.

2. Theory

A ML potential is essentially a regression model on the rela-
tionship between atomic configurations and total energies. If the
model simply maps atomic positions to the total energy, it can
only deal with structures with the same number of atoms because
the length of input vectors is fixed in most ML models. To over-
come this limitation, ML potentials first predict atomic energies
from local environments and the total energy is given as a sum
of them. The local atomic configurations around certain atoms
are encoded into descriptor vectors or matrices which then be
inputs of ML models. In SIMPLE-NN, we use the high-dimensional
neural network [15] as a ML model and atom-centered symmetry
functions [36] as descriptors. Theoretical details are discussed
below.

2.1. Descriptor: atom-centered symmetry function

The efficiency and accuracy of ML potentials critically depend
on the descriptor that represents chemical environment of an
atom. Since the total energy is identical under operations such
as rotation and translation of the whole system, and permutation
of the atoms of the same chemical species, a proper descrip-
tor should be invariant to these operations. Descriptors such as
atom-centered symmetry function [36] and smooth-overlap-of-
atomic-positions (SOAP) [37] satisfy the invariant conditions and
have been widely used in ML models on material properties.
(The Coulomb matrix [38] is also favored in predicting material

properties but it may not be appropriate for ML potentials since
the Coulomb matrix does not provide enough resolution among
similar chemical environments and is hard to differentiate.) In the
present package, we support Behler–Parrinello type symmetry
function descriptors with one radial and two angular components
as in the following:

Gradial
i =

∑
j

e−η(Rs−Rij)2 · fc(Rij), (1)

Gangular,1
i = 21−ζ

∑
j,k̸=j

(1 + λcosθijk)ζ · e−η(R2ij+R2ik+R2jk)

· fc(Rij) · fc(Rik) · fc(Rjk), (2)

Gangular,2
i = 21−ζ

∑
j,k̸=j

(1 + λcosθijk)ζ · e−η(R2ij+R2ik) · fc(Rij) · fc(Rik), (3)

where i is the index of the center atom, j and k are those for
neighboring atoms, and Rij, Rik, and Rjk are distances between
them. θijk is the angle between a vector from the ith atom to
jth atom and a vector from ith atom to kth atom. In Eq. (1), η

and Rs determine the width and center of Gaussian functions,
respectively, while ζ and λ in Eqs. (2) and (3) change the shape
of angular functions. In Eqs. (1)–(3), fc is a cutoff function with
the radius of Rc :

fc(Rij) =

⎧⎨⎩
1
2
cos

(
π
Rij

Rc

)
+

1
2

(Rij ≤ Rc)

0 (Rij > Rc)
. (4)

Therefore, fc(Rij) smoothly decreases to zero as Rij approaches
Rc and the local environment depends on atoms within Rc . A
set of symmetry functions with various choices of (η, Rs, ζ , λ)
constitutes a vector Gi({Ri}) (denoted as Gi for convenience) that
encodes the local atomic environment around the ith atom, where
Ri is the coordinate of ith atom. For training the neural network,
every component of G is scaled into [-1,1] (unless the component
has a very narrow distribution), and derivatives of symmetry
functions are also scaled according to the relevant symmetry
function value.

2.2. High-dimensional neural network

The high-dimensional neural network (HDNN), the base model
of SIMPLE-NN, has a structure shown in Fig. 1. It consists of
atomic neural network (NN) for each atomic species and the
same atomic NN is used for every atom with the same chemical
species [see Fig. 1(a)]. For the sake of simplicity, we assume a
single-component system in the following discussions but the
package can deal with multi-component materials as well. The
atomic NN takes the descriptor vector G of each atom as an input
and predicts the atomic energy as an output. Fig. 1(b) shows the
detailed structure of atomic NN. There are hidden layers between
the input and output layers, and adjacent layers are connected by
weights. The values in the kth layer propagate to the next layer
as follows:

xk+1
j = f

(Nk∑
i=1

xki w
k
ij + bk

)
, (5)

where i (j) is the index of node in the kth [(k+1)th] layer, Nk
the number of nodes in the kth layer, wk

ij the connection weight
between xki and xk+1

j , and bk the bias for the kth layer. In Eq. (5),
f is the activation function that attributes nonlinearity to the
model. We use a sigmoid function as the activation function
except for between the last hidden and output layers where the
activation is not applied.

K. Lee, D. Yoo, W. Jeong et al. / Computer Physics Communications 242 (2019) 95–103 97

Fig. 1. (a) Schematic diagram of HDNN. Ri and Gi indicate the coordinate and corresponding descriptor vector of the ith atom, respectively. Eat,i and E are the atomic
energy of the ith atom and the total energy, respectively. (b) Schematic diagram of atomic neural network. xki indicates the ith node in the kth layer and wk

ij is the
connection weight between xki and xk+1

j . bk is the bias for the kth layer.

The total energy (E) is then given by summation of atomic
energies:

E =

Na∑
i=1

Eat(Gi), (6)

where Na is the number of atoms in the given structure and Eat(Gi)
(denoted as Eat,i for convenience) is the atomic energy of the ith
atom that is calculated by the atomic NN described in the above.
The atomic forces are calculated by analytically differentiating E
with respect to the atomic position:

Fk,α = −
∂E

∂Rk,α
= −

Na∑
i=1

Ns∑
s=1

∂Eat,i
∂Gi,s

∂Gi,s

∂Rk,α
, (7)

where Fk,α and Rk,α are the α-component (α = x, y and z) of the
force and position vectors of the kth atom, respectively, and Ns is
the dimension of G.

The loss function Γ which is target function to be minimized
during the training process is a sum of mean squared errors in
the total energy and atomic forces between DFT and NNP:

Γ =
1
M

M∑
i=1

(EDFT
i − ENNP

i

Ni

)2
+

µ

3
∑M

i=1 Ni

M∑
i=1

Ni∑
j=1

|FDFTij − FNNPij |
2

(8)

= RMSE(energy)2 +
µ

3
RMSE(force)2, (9)

where M is the total number of structures in the training set,
Ni is the number of atoms in the ith structure, and EDFT(NNP)

i
and FDFT(NNP)ij are the total energy and atomic force (of the jth
atom) from DFT (NNP), respectively. In Eq. (8), the scaling pa-
rameter µ controls relative importance between the energy and
force error. The loss function can also be expressed in terms of
root-mean-square error (RMSE) for energy and force as in Eq. (9)

2.3. Weighting scheme for uniform training

In Ref. [39], we have shown that the training points are dis-
tributed in the G space in a highly inhomogeneous fashion, which
undermines accuracy and reliability of NNP. For example, during
MD simulations, atoms vibrate around equilibrium positions most
of the time, and so the training set constructed from the MD
trajectories is concentrated around specific G’s. For another ex-
ample, defects are usually modeled together with a large number
of bulk atoms, so the training set is heavily weighted toward
the bulk configuration although description on the defect is also
crucial. Atomic NNs trained over such biased datasets retain large
errors for the under-sampled configurations, which often lead to
catastrophic failure in MD.

In order to cure the sampling bias, we proposed in Ref. [39] a
method to balance the training level by exploiting the Gaussian
density function (GDF; ρ(G)). GDF quantifies the sampling density
by assigning a Gaussian function to each G point in the training
set:

ρ(G) =
1

Ntot

M∑
i=1

Ni∑
j=1

exp
(
−

1
2σ 2

|G − Gij|
2

Ns

)
, (10)

where σ is the Gaussian width, Gij is the G vector of jth atom
in the ith structure and Ntot indicates the total number of atoms
in the entire training set. Weighting factors are then multiplied
to the force error such that the weights apply differently on
individual atoms according to the sampling density. The modified
loss function is as follows:

Γ =
1
M

M∑
i=1

ηi

(EDFT
i − ENNP

i

Ni

)2

+
µ

3
∑M

i=1 Ni

M∑
i=1

Ni∑
j=1

Θ(ρ−1(Gij))|FDFTij − FNNPij |
2
, (11)

where the scaling function Θ(ρ−1(Gij)) is the atomic weights
built upon GDF values and ηi’s are additional structural weights
which can be used optionally. In Eq. (11), Θ(x) is a monotonically
increasing function that effectively suppresses the sampling bias.
From extensive tests, we find that a modified sigmoid function
serves well for most cases:

Θ(x) =
Ax

1 + e−b(x−c) , (12)

where A is the normalization constant that makes the mean of
Θ(x) to be 1, and b and c are constants determining the function
shape. In Eq. (12), we multiply x to the original sigmoid function
to lift the upper bound of the scaling function. By doing that,
training points with low (high) GDF values (the inverse value of
GDF is used in the modified sigmoid) have large (zero) weights,
which amplifies effects of the GDF weighting.

In applying the GDF weighting scheme, one needs to carefully
choose hyper-parameters such as σ in GDF, and b and c in the
scaling function Θ(x). A proper value of σ should link the Gaus-
sians among similar local structures but still separate those under
distinct chemical environments. In Fig. 2(a), we demonstrate this
using the distribution of training points (Gij) for Si in SiO2 systems
(see the next section for the details in the training set).1 When
σ is too big, say 0.1, the GDF value is large for most of the
training points. (Note the log-scale on the x-axis.) On the other

1 DFT calculations are performed with the VASP package using the GGA-PBE
functional. Further details for the DFT calculation are provided in Section 4.1.

98 K. Lee, D. Yoo, W. Jeong et al. / Computer Physics Communications 242 (2019) 95–103

Fig. 2. Guideline for choosing hyper-parameters in GDF weighting. The training set is obtained from model SiO2 systems and training points ({Gij}) are for Si. (a)
The distribution of GDF values for the training points with different σ in the Gaussian. (ρ(Gij)’s are binned regularly in the log scale.) (b) Frequency of ρ−1(Gij) and
scaling function (Θ(ρ−1(Gij))) with different combinations of b and c are shown in histogram and lines, respectively.

hand, if σ is too small (0.005), the GDF value is too small even
for configurations that are over-sampled. With σ = 0.02, both
over- and under-sampled configurations are well represented by
high and low GDF values, respectively. On the other hand, c in
Θ(x) effectively separates points between highly concentrated
and sparsely sampled training points. In Fig. 2(b), it is seen that
the training points with ρ−1(Gij) value lower than c are weighted
with very small numbers. The b value in Θ(x) controls the weight-
ing magnitude. It is chosen to determine the degree to which
the function decays in the lower ρ−1(Gij) region (compare b =
0.01 with b = 0.02 in Fig. 2(b)). To choose a proper value for b,
it is necessary to examine final distributions of force errors after
optimization. (In most cases, b = 1 gives reasonable results and
an automatic parameter selection for σ and c is available in the
SIMPLE-NN code.) The effect of GDF will be explained in the next
section. For more information of sampling bias and effects of the
GDF weighting, we refer to Ref. [39].

3. SIMPLE-NN code

In this section, we introduce the development philosophy and
the code structure of SIMPLE-NN. In developing the present pack-
age, we concentrate on computational performance in training
as well as expandability to other descriptors or ML models. Due
to the high dimensionality of ML model, a strong optimization
algorithm based on approximate Hessians such as quasi-Newton
methods is required. Since the Tensorflow [40] library as of now
provides only gradient-descent-based algorithms, we additionally
provide a built-in code of Limited Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) that can interoperate with Tensorflow. In addi-
tion, we implement the GDF weighting scheme for reliable and
balanced training (see above).

SIMPLE-NN is mostly written in Python. However, computa-
tionally intensive parts such as calculations of descriptors, their
derivatives, and GDF weighting factors, are written in C/C++ to
enhance performance. Furthermore, the computation of G and its
derivatives from atomic positions, which takes significant CPU
time, is parallelized with the message-passing interface (MPI). For
training NNP, we take advantage of hardware-level optimization
supported by Tensorflow. In detail, each epoch of NNP optimiza-
tion consists of data preparation and model training. Tensorflow
utilizes CPUs for data preparation and GPUs for model training.
In a synchronous implementation, GPU remains idle when CPU is
preparing data, and vice versa. By using a data-pipelining feature
supported by Tensorflow, SIMPLE-NN executes the two tasks in
an asynchronous way such that the model training for the present
epoch and data preparation for the next epoch are carried out
concurrently by GPU and CPU, respectively. In addition, the data
preparation process is parallelized for multicore CPU. To perform
MD simulations with the trained NNP, we implement a new pair

style for LAMMPS package [41]. The parallelized LAMMPS code
achieves a good scalability with respect to the number of atoms
or the number of CPU cores as shown in Fig. 3.

SIMPLE-NN is also easily extendable to various input formats
and ML models. For parsing the reference DFT data, we use
Atomic Simulation Environment (ASE) package [42] that supports
output formats of popular ab initio programs such as VASP [43],
Quantum espresso [44], and Gaussian [45]. In addition, subrou-
tines for calculating descriptors and optimizing neural network
have a modular structure, and so users can implement their
own descriptors or ML models into SIMPLE-NN. Since Tensorflow
supports built-in functions for handling various neural network
models such as convolutional NN and recurrent NN, efforts for
implementing a new model would be low. However, the interface
with LAMMPS is not modularized, which will be addressed in a
future release.

Fig. 4 shows the schematic workflow of SIMPLE-NN. The gen-
eration of NNP starts with calculating G vectors and their deriva-
tives from the DFT data. Next, in the preprocessing part, param-
eters for scaling G and GDF weighting are calculated and the
dataset is split into a training set and a validation set. Based
on the preprocessed dataset, NNP is optimized using Tensorflow
until the root-mean-square errors (RMSE) of energy and force for
the validation set reach certain values that may vary with the
system. The parameters of optimized NNP are stored as a text
file, which is then used for MD simulations within the LAMMPS
package. Below, we discuss on the detailed usage of the program.
Usage. The following script named run.py executes the work-
flow introduced above:

from simple_nn import Simple_nn
from simple_nn.features.symmetry_function import
Symmetry_function
from simple_nn.models.neural_network import
Neural_network
model = Simple_nn(‘input.yaml’,
descriptor=Symmetry_function(),
model=Neural_network())

model.run()

In the script, Simple_nn class is initialized with the instances
of Symmetry_function class and Neural_network class. These
classes also define the methods for calculating descriptor vectors
and optimizing ML model. In the run method of Simple_nn
class, the workflow above (except the MD simulation) is executed
according to the detailed setting defined in input.yaml file.

K. Lee, D. Yoo, W. Jeong et al. / Computer Physics Communications 242 (2019) 95–103 99

Fig. 3. The scalability of LAMMPS-MD simulations using NNP with respect to (a) the number of atoms (with 40 cores) and (b) the number of CPU cores (with
13500 atoms). Total CPU time and wall time is measured for (a) and (b), respectively. The hypothetical linear scaling is indicated by dotted lines. The calculation is
performed on Intel Xeon Gold 6138 CPUs (2.00 GHz) that contain 20 cores. The test system is SiO2 .

Fig. 4. Schematic plot for overall process of SIMPLE-NN. The round box envelops
parts that make use of Tensorflow. LAMMPS package is used for MD simulation.

The basic format of input.yaml is as follows:

generate_features: true
preprocess: true
train_model: true
atom_types:

- Si
- O

symmetry_function:
params:
Si: params_Si
O: params_O

neural_network:
method: Adam
nodes: 30-30

The input.yaml includes information about the target sys-
tem, whether each procedure is executed, as well as parameters
for the feature and model classes. Detailed description on the pa-
rameters in input.yaml can be found in the online manual [46].
To run generate_feature and preprocess, one needs addi-
tional files named ‘params_XX’ (where XX is the atom type) and
‘str_list’ which include parameters for symmetry functions
and the paths to the reference ab initio data files, respectively.
Descriptor vectors and their derivatives are first saved in the
pickle format (binary) separately for each structure, which is
then packed into a binary format of tfrecord with additional
values such as GDF weighting parameters calculated in the pre-
processing part. The dataset preparation entails optimization of
the parameters in the NN model. The detailed settings such
as network sizes, optimization algorithm, and the type of loss
function are controlled through input.yaml. Because of the
heavy computational cost in calculating the atomic forces, the
optimization that reduces both energy and force errors requires
much longer time than minimizing the energy-only loss function.
To avoid the huge computational cost in large datasets, one can
use the energy-only loss function in the initial training steps, and
then add the force errors to the loss function afterwards. In this
way, the computational cost is saved substantially without com-
promising the accuracy of the NNP. Throughout the optimization
process, the neural network model is saved with a Tensorflow
format (SAVER.* and checkpoints) and LAMMPS potential file
(potential_saved). To note, our experience indicates that the
loss function with only energy errors is vulnerable to the risk
of overfitting while training with forces only suffers from large
errors in the total energy. Thus, we recommend training with
both energy and forces for robust NNP. One can use the obtained
NNP in LAMMPS by adding the commands like below in the
LAMMPS input file:

pair_style nn
pair_coeff * * potential_saved Ni
‘potential_saved’ is the optimized potential file from the

NNP optimization part and one needs to specify the element
name for each atom type like other pair styles in LAMMPS.
Regarding the unit system, the NNP trained with VASP output
is compatible with the LAMMPS units ‘metal’. For outputs from
other ab initio programs, however, the appropriate unit should be
chosen at users’ discretion.

4. Example

4.1. Model system and training NNP

We use SiO2 as a test example to demonstrate actual proce-
dures of using SIMPLE-NN. For generating the training set within

100 K. Lee, D. Yoo, W. Jeong et al. / Computer Physics Communications 242 (2019) 95–103

Fig. 5. Comparison of DFT and optimized NNP for the validation set. Correlation graphs between (a) ENNP and EDFT and (b) FNNP
x and FDFT

x . Histograms for
(c) |ENNP

− EDFT
| and (d) |FNNP − FDFT|.

DFT, we employ VASP [43] with GGA-PBE for the exchange–
correlation functional [47]. The cutoff energy of 500 eV is used
and convergence tests for k-point mesh are carried out to ensure
the convergence within 10 meV/atom. Three types of crystals
(α-quartz, α-cristobalite, tridymite), amorphous, and liquid phase
are used for the training set. In detail, we sample snapshots every
40 fs from MD trajectories at 3000 and 2500 K for liquids, 500 K
for crystals, and from 2500 to 300 K (cooling rate of 73 K/ps) from
liquid to amorphous structures. In addition, crystal structures
that are distorted by isotropic compression/expansion, volume-
conserving mono-axial strain, and shear strain are also added.
In total, the training set contains 3,048 structures that consist of
48,978 Si and 97,956 O atoms.

As descriptors, 70 symmetry functions – 8 radial components
per two-body combination and 18 angular components per three-
body combination – are used for each atom type. We use a
network that consists of two hidden layers with 30 nodes for each
layer. Thus, our network contains 3,030 weights and 61 biases in
total. The Adaptive Moment Estimation (Adam) optimizer with a
batch size of 10 is used for the optimization, and we train NNP by
minimizing energy and force errors simultaneously. We randomly
choose 10% of dataset and use them as the validation set.

After optimization, NNP shows RMSE of 3 meV/atom (energy)
and 0.23 eV/Å (force) for the validation set. Fig. 5 shows the dis-
tribution of the errors. Linear correlations between DFT and NNP
results are notable for the energy [Fig. 5(a)] and x-component
of atomic force [Fig. 5(b)] (other components also show similar
behaviors). Fig. 5(c) and Fig. 5(d) display the frequency of absolute
errors in the energy and force, respectively. It is found that the
80th percentile of the validation set shows errors that are less
than 5 meV/atom and 0.3 eV/Å.

4.2. MD Simulations

The quality of NNP is further tested by MD simulations.
Fig. 6(a) shows the energy of the amorphous SiO2 (108 atoms)
at 500 K performed with NNP for 20 ps (solid line). From MD

trajectory, snapshots are sampled for every 200 fs and the total
energy is recalculated with DFT (dots) using the same setting as
in Section 4.1. It is seen that energies from DFT and NNP agree
within 3 meV/atom, confirming that NNP can faithfully reproduce
potential energy surfaces of DFT.

In addition, we perform melt-quench simulations using DFT
and NNP independently and compare structural properties of
the amorphous phase. We use supercells with 108 atoms for
DFT and 108 and 480 atoms for NNP. Starting from the pre-
melted structures at 3000 K, the structure is melted at 2500 K
for 30 ps and quenched from 2500 K to 300 K for 30 ps, and
the final optimization are performed for the quenched structure.
The radial distribution function (RDF) and the angular distribution
function (ADF) during 500 K MD of amorphous phases are shown
in Fig. 6(b)–(d). Overall, the DFT and NNP results are in good
agreements and also consistent with a previous calculation [48].
It is seen in Fig. 6(c) that NNP reproduces a sharp peak at 109.5◦

that comes from the tetrahedral bond angle for Si atoms. For O
atoms, a broad ADF is noticeable, which reflects flexible Si-O-Si
bond in amorphous silica. A small peak at 90◦ originates from the
4-membered ring structure.

4.3. GDF Weighting

In the above example, we optimized NNP without applying
GDF weighting. In order to demonstrate the effect of GDF weight-
ing, we set the hyper-parameters of GDF function and the scaling
function Θ(x) according to the guideline described in the previous
section. (b = 0.02 for both Si and O, and c = 3500 and 1000 for Si
and O, respectively). Figs. 7(a) and 7(b) plot magnitudes of force
errors with respect to GDF values of the corresponding atom.
The force RMSEs from NNPs with or without GDF weighting are
identically 0.21 and 0.14 eV/Å for Si and O, respectively. However,
force errors for atoms with low GDF values are reduced when GDF
weighting is applied (from 0.36 (0.30) to 0.31 (0.24) eV/Å for Si
(O) atoms). If the force error in the region with low GDF is not
sufficiently reduced, it is recommended to increase b value in the

K. Lee, D. Yoo, W. Jeong et al. / Computer Physics Communications 242 (2019) 95–103 101

Fig. 6. (a) Comparison of NNP (solid line) and DFT (solid disks) energies along the MD trajectory of amorphous SiO2 at 500 K. The trajectory is calculated by NNP and
configurations for DFT calculations are sampled every 200 fs. (b)–(d) Comparison of structural properties of amorphous SiO2 between DFT and NNP. The structures
are generated by independent melt-quench simulations. (b) Total radial distribution function (RDF), angle distribution functions (ADFs) for (c) O-Si-O and (d) Si-O-Si.
For NNP, supercells of two different sizes (108 and 480 atoms) are used.

Fig. 7. Comparison of force errors between conventional NNP (NNP-c) and NNP with GDF weighting (NNP-GDF) for (a) Si and (b) O atoms in the case of SiO2 . The
errors are interval-averaged by regular binning in log-scale. The solid lines indicate the mean value within each bin and semi-transparent shades envelope ranges
between the first and third quartiles of the distribution.

scaling function. In the present example, the training set includes
mostly homogeneous structures, and so the sampling bias is not
severe and may not need GDF weighting. However, for structures
including defects or bond breaking/forming, the GDF weighting
is highly beneficial. [39] SIMPLE-NN provides utility figures for
force errors with respect to GDF like Fig. 7, and we recommend
the users to monitor them to check the problems related to the
sampling bias.

4.4. L-BFGS

In the above example of SiO2, the Adam minimizer was effec-
tive for optimizing NNP. However, for more complicated systems
involving various bonding types, we often find that gradient-
descent methods such as Adam fail to attain enough accuracy
even after a large number of epochs. In this case, L-BFGS is more
effective than Adam optimizer. Fig. 8 compares the performance
of L-BFGS and Adam with either mini-batch or full-batch style.
Since the CPU time required for each epoch is different among
the methods, RMSE is plotted as a function of elapsed CPU time

for the fair comparison. For the test, we use 500 snapshots from
MD trajectories of amorphous SiO2 at 500 K. It is clear that L-BFGS
shows faster convergence than Adam methods. One disadvantage
in L-BFGS is that it becomes computationally expensive with the
size of the training set. Nevertheless, our experiences indicate
that L-BFGS significantly outperforms the Adam optimization in
most cases.

5. Conclusion

In summary, we introduced an efficient package named
SIMPLE-NN that can build up neural network potentials at the
accuracy comparable to ab initio methods and carry out MD
simulations on a large scale. We optimized the code performance
for NNP training by incorporating various features such as par-
allelization, Hessian-based optimizer (L-BFGS), and utilizing GPU,
which are either supported by Tensorflow or in-house codes. The
MD simulations are carried out through LAMMPS. SIMPLE-NN
provides high expandability via ASE, Tensorflow, and modu-
larized code architecture. The program also features the GDF

102 K. Lee, D. Yoo, W. Jeong et al. / Computer Physics Communications 242 (2019) 95–103

Fig. 8. Comparison of performance among different optimizers. RMSEs in (a) energy and (b) force are compared with respect to the elapsed time. 500 snapshots
during MD simulation of SiO2 are used as the training set.

weighting scheme that can effectively overcome the sampling
bias that is serious in most training sets. The performance of
SIMPLE-NN was demonstrated with the SiO2 system including
crystal and amorphous structures. By providing an efficient NNP
code for general purposes, the present work will contribute to
expanding the application areas of MD simulations based on the
machine learning potentials.

Acknowledgments

Kyuhyun Lee and Dongsun Yoo contributed equally to this
work. This work was supported by the Technology Innovation
Program (or Industrial Strategic Technology Development Pro-
gram [10052925, Atomistic process and device modeling of
sub-10 nm scale transistors]) funded By the Ministry of Trade, In-
dustry & Energy (MOTIE, Korea) and Creative Materials
Discovery Program through the National Research Foundation of
Korea (NRF) funded by Ministry of Science and ICT
(2017M3D1A1040689). The computations were performed at the
KISTI supercomputing center (Grant No. KSC-2018-C3-0022).

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.cpc.2019.04.014.

References

[1] B.M. Foley, V. Stavila, C.D. Spataru, F. Léonard, A.A. Talin, P.E. Hopkins, M.E.
Foster, R.E. Jones, K.J. Erickson, M.D. Allendorf, Adv. Mater. 27 (22) (2015)
3453–3459, http://dx.doi.org/10.1002/adma.201501078.

[2] X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, G. Su, Phys. Rev. B 89 (5)
(2014) 1–7, http://dx.doi.org/10.1103/PhysRevB.89.054310.

[3] H. Song, Y. Kang, H.-H. Nahm, S. Han, Phys. Status Solidi b 252 (8) (2015)
1872–1876, http://dx.doi.org/10.1002/pssb.201451767.

[4] S. Le Roux, A. Bouzid, K.Y. Kim, S. Han, A. Zeidler, P.S. Salmon, C. Massobrio,
J. Chem. Phys. 145 (8) (2016) 084502, http://dx.doi.org/10.1063/1.4961265.

[5] X. He, Y. Zhu, Y. Mo, Nature Commun. 8 (May) (2017) 1–7, http://dx.doi.
org/10.1038/ncomms15893.

[6] Y. Youn, D. Yoo, H. Song, Y. Kang, K.Y. Kim, S.H. Jeon, Y. Cho, K. Chae, S.
Han, J. Mater. Chem. C 6 (5) (2018) 1015–1022, http://dx.doi.org/10.1039/
C7TC05278B.

[7] M. Ghoussoub, S. Yadav, K.K. Ghuman, G.A. Ozin, C.V. Singh, ACS Catal. 6
(10) (2016) 7109–7117, http://dx.doi.org/10.1021/acscatal.6b01545.

[8] M. Born, R. Oppenheimer, Ann. Phys. 389 (20) (1927) 457–484, http:
//dx.doi.org/10.1002/andp.19273892002.

[9] W. Kohn, L.J. Sham, Phys. Rev. 140 (4A) (1965) A1133–A1138, http://dx.
doi.org/10.1103/PhysRev.140.A1133.

[10] R. Car, M. Parrinello, Phys. Rev. Lett. 55 (22) (1985) 2471–2474, http:
//dx.doi.org/10.1103/PhysRevLett.55.2471.

[11] J. Tersoff, Phys. Rev. B 37 (12) (1988) 6991–7000, http://dx.doi.org/10.1103/
PhysRevB.37.6991.

[12] S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33 (12) (1986) 7983–7991,
http://dx.doi.org/10.1103/PhysRevB.33.7983.

[13] T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, C.
Junkermeier, R. Engel-Herbert, M.J. Janik, H.M. Aktulga, T. Verstraelen, A.
Grama, A.C.T. van Duin, NPJ Comput. Mater. 2 (1) (2016) 15011, http:
//dx.doi.org/10.1038/npjcompumats.2015.11.

[14] T.B. Blank, S.D. Brown, A.W. Calhoun, D.J. Doren, J. Chem. Phys. 103 (10)
(1995) 4129–4137, http://dx.doi.org/10.1063/1.469597.

[15] J. Behler, M. Parrinello, Phys. Rev. Lett. 98 (14) (2007) 146401, http:
//dx.doi.org/10.1103/PhysRevLett.98.146401.

[16] A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104 (13)
(2010) 136403, http://dx.doi.org/10.1103/PhysRevLett.104.136403.

[17] A.P. Bartók, G. Csányi, Int. J. Quantum Chem. 115 (16) (2015) 1051–1057,
http://dx.doi.org/10.1002/qua.24927.

[18] J.R. Boes, J.R. Kitchin, Mol. Simul. 43 (5–6) (2017) 346–354, http://dx.doi.
org/10.1080/08927022.2016.1274984.

[19] W. Li, Y. Ando, E. Minamitani, S. Watanabe, J. Chem. Phys. 147 (21) (2017)
214106, http://dx.doi.org/10.1063/1.4997242.

[20] M. Hellström, J. Behler, J. Phys. Chem. Lett. 7 (17) (2016) 3302–3306,
http://dx.doi.org/10.1021/acs.jpclett.6b01448.

[21] S.K. Natarajan, J. Behler, Phys. Chem. Chem. Phys. 18 (41) (2016)
28704–28725, http://dx.doi.org/10.1039/C6CP05711J.

[22] V. Quaranta, M. Hellström, J. Behler, J. Phys. Chem. Lett. 8 (7) (2017)
1476–1483, http://dx.doi.org/10.1021/acs.jpclett.7b00358.

[23] M. Hellström, M. Ceriotti, J. Behler, J. Phys. Chem. B 122 (44) (2018)
10158–10171, http://dx.doi.org/10.1021/acs.jpcb.8b06433.

[24] B. Onat, E.D. Cubuk, B.D. Malone, E. Kaxiras, Phys. Rev. B 97 (9) (2018)
094106, http://dx.doi.org/10.1103/PhysRevB.97.094106.

[25] S. Gabardi, E. Baldi, E. Bosoni, D. Campi, S. Caravati, G.C. Sosso, J. Behler,
M. Bernasconi, J. Phys. Chem. C 121 (42) (2017) 23827–23838, http:
//dx.doi.org/10.1021/acs.jpcc.7b09862.

[26] Z. Li, J.R. Kermode, A. De Vita, Phys. Rev. Lett. 114 (9) (2015) 096405,
http://dx.doi.org/10.1103/PhysRevLett.114.096405.

[27] A. Kamath, R.A. Vargas-Hernández, R.V. Krems, T. Carrington, S. Manzhos, J.
Chem. Phys. 148 (24) (2018) 241702, http://dx.doi.org/10.1063/1.5003074.

[28] D. Dragoni, T.D. Daff, G. Csányi, N. Marzari, Phys. Rev. Mater. 2 (2018)
013808, http://dx.doi.org/10.1103/PhysRevMaterials.2.013808.

[29] A.P. Bartók, J. Kermode, N. Bernstein, G. Csányi, Phys. Rev. X 8 (2018)
041048, http://dx.doi.org/10.1103/PhysRevX.8.041048.

[30] M.W. Mahoney, P. Drineas, Proc. Natl. Acad. Sci. 106 (3) (2009)
697–702, http://dx.doi.org/10.1073/pnas.0803205106, arXiv:https://www.
pnas.org/content/106/3/697.full.pdf.

[31] A. Khorshidi, A. Peterson, Comput. Phys. Comm. 207 (2016) 1–15, http:
//dx.doi.org/10.1016/j.cpc.2016.05.010.

[32] N. Artrith, A. Urban, Comput. Mater. Sci. 114 (2016) 135–150, http://dx.
doi.org/10.1016/j.commatsci.2015.11.047.

[33] H. Wang, L. Zhang, J. Han, W. E, Comput. Phys. Comm. 228 (2018) 178–184,
http://dx.doi.org/10.1016/j.cpc.2018.03.016.

[34] J.S. Smith, O. Isayev, A.E. Roitberg, Chem. Sci. 8 (4) (2017) 3192–3203,
http://dx.doi.org/10.1039/C6SC05720A.

[35] B. Kolb, L.C. Lentz, A.M. Kolpak, Sci. Rep. 7 (1) (2017) 1192, http://dx.doi.
org/10.1038/s41598-017-01251-z.

[36] J. Behler, J. Chem. Phys. 134 (7) (2011) 074106, http://dx.doi.org/10.1063/
1.3553717.

[37] A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87 (18) (2013) 184115,
http://dx.doi.org/10.1103/PhysRevB.87.184115.

[38] M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett.
108 (5) (2012) 058301, http://dx.doi.org/10.1103/PhysRevLett.108.058301.

[39] W. Jeong, K. Lee, D. Yoo, D. Lee, S. Han, J. Phys. Chem. C 122 (39) (2018)
22790–22795, http://dx.doi.org/10.1021/acs.jpcc.8b08063.

[40] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I.
Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:
large-scale machine learning on heterogeneous systems, Software available
from tensorflow.org, 2015.

https://doi.org/10.1016/j.cpc.2019.04.014
http://dx.doi.org/10.1002/adma.201501078
http://dx.doi.org/10.1103/PhysRevB.89.054310
http://dx.doi.org/10.1002/pssb.201451767
http://dx.doi.org/10.1063/1.4961265
http://dx.doi.org/10.1038/ncomms15893
http://dx.doi.org/10.1038/ncomms15893
http://dx.doi.org/10.1038/ncomms15893
http://dx.doi.org/10.1039/C7TC05278B
http://dx.doi.org/10.1039/C7TC05278B
http://dx.doi.org/10.1039/C7TC05278B
http://dx.doi.org/10.1021/acscatal.6b01545
http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevLett.55.2471
http://dx.doi.org/10.1103/PhysRevLett.55.2471
http://dx.doi.org/10.1103/PhysRevLett.55.2471
http://dx.doi.org/10.1103/PhysRevB.37.6991
http://dx.doi.org/10.1103/PhysRevB.37.6991
http://dx.doi.org/10.1103/PhysRevB.37.6991
http://dx.doi.org/10.1103/PhysRevB.33.7983
http://dx.doi.org/10.1038/npjcompumats.2015.11
http://dx.doi.org/10.1038/npjcompumats.2015.11
http://dx.doi.org/10.1038/npjcompumats.2015.11
http://dx.doi.org/10.1063/1.469597
http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/10.1002/qua.24927
http://dx.doi.org/10.1080/08927022.2016.1274984
http://dx.doi.org/10.1080/08927022.2016.1274984
http://dx.doi.org/10.1080/08927022.2016.1274984
http://dx.doi.org/10.1063/1.4997242
http://dx.doi.org/10.1021/acs.jpclett.6b01448
http://dx.doi.org/10.1039/C6CP05711J
http://dx.doi.org/10.1021/acs.jpclett.7b00358
http://dx.doi.org/10.1021/acs.jpcb.8b06433
http://dx.doi.org/10.1103/PhysRevB.97.094106
http://dx.doi.org/10.1021/acs.jpcc.7b09862
http://dx.doi.org/10.1021/acs.jpcc.7b09862
http://dx.doi.org/10.1021/acs.jpcc.7b09862
http://dx.doi.org/10.1103/PhysRevLett.114.096405
http://dx.doi.org/10.1063/1.5003074
http://dx.doi.org/10.1103/PhysRevMaterials.2.013808
http://dx.doi.org/10.1103/PhysRevX.8.041048
http://dx.doi.org/10.1073/pnas.0803205106
http://arxiv.org/abs/https://www.pnas.org/content/106/3/697.full.pdf
http://arxiv.org/abs/https://www.pnas.org/content/106/3/697.full.pdf
http://arxiv.org/abs/https://www.pnas.org/content/106/3/697.full.pdf
http://dx.doi.org/10.1016/j.cpc.2016.05.010
http://dx.doi.org/10.1016/j.cpc.2016.05.010
http://dx.doi.org/10.1016/j.cpc.2016.05.010
http://dx.doi.org/10.1016/j.commatsci.2015.11.047
http://dx.doi.org/10.1016/j.commatsci.2015.11.047
http://dx.doi.org/10.1016/j.commatsci.2015.11.047
http://dx.doi.org/10.1016/j.cpc.2018.03.016
http://dx.doi.org/10.1039/C6SC05720A
http://dx.doi.org/10.1038/s41598-017-01251-z
http://dx.doi.org/10.1038/s41598-017-01251-z
http://dx.doi.org/10.1038/s41598-017-01251-z
http://dx.doi.org/10.1063/1.3553717
http://dx.doi.org/10.1063/1.3553717
http://dx.doi.org/10.1063/1.3553717
http://dx.doi.org/10.1103/PhysRevB.87.184115
http://dx.doi.org/10.1103/PhysRevLett.108.058301
http://dx.doi.org/10.1021/acs.jpcc.8b08063

K. Lee, D. Yoo, W. Jeong et al. / Computer Physics Communications 242 (2019) 95–103 103

[41] S. Plimpton, J. Comput. Phys. 117 (1) (1995) 1–19, http://dx.doi.org/10.
1006/jcph.1995.1039.

[42] A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I.E. Castelli, R. Chris-
tensen, M. Dułak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes,
P.C. Jennings, P. Bjerre Jensen, J. Kermode, J.R. Kitchin, E. Leonhard
Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. Bergmann Maronsson, T.
Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O.
Schütt, M. Strange, K.S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z.
Zeng, K.W. Jacobsen, J. Phys.: Condens. Matter 29 (27) (2017) 273002,
http://dx.doi.org/10.1088/1361-648X/aa680e.

[43] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (16) (1996) 11169–11186, http:
//dx.doi.org/10.1103/PhysRevB.54.11169, arXiv:0927-0256(96)00008.

[44] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D.
Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli,
S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M.
Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini,
A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P.
Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens.
Matter 21 (39) (2009) http://dx.doi.org/10.1088/0953-8984/21/39/395502,
arXiv:0906.2569.

[45] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.
Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M.
Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci,
H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young,
F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson,
D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery,
J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin,
V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P.
Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene,
C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas,
J.B. Foresman, D.J. Fox, Gaussian16 Revision B.01, Gaussian Inc., Wallingford
CT, 2016.

[46] SIMPLE-NN documentation can be found at http://mtcg.snu.ac.kr/doc/
index.html.

[47] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868,
http://dx.doi.org/10.1103/PhysRevLett.77.3865.

[48] Y. Youn, Y. Kang, S. Han, Comput. Mater. Sci. 95 (2014) 256–262, http:
//dx.doi.org/10.1016/j.commatsci.2014.07.053.

http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1088/1361-648X/aa680e
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://arxiv.org/abs/0927-0256(96)00008
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://arxiv.org/abs/0906.2569
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://refhub.elsevier.com/S0010-4655(19)30129-8/sb45
http://mtcg.snu.ac.kr/doc/index.html
http://mtcg.snu.ac.kr/doc/index.html
http://mtcg.snu.ac.kr/doc/index.html
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1016/j.commatsci.2014.07.053
http://dx.doi.org/10.1016/j.commatsci.2014.07.053
http://dx.doi.org/10.1016/j.commatsci.2014.07.053

	SIMPLE-NN: An efficient package for training and executing neural-network interatomic potentials
	Introduction
	Theory
	Descriptor: atom-centered symmetry function
	High-dimensional neural network
	Weighting scheme for uniform training

	SIMPLE-NN code
	Example
	Model system and training NNP
	MD Simulations
	GDF Weighting
	L-BFGS

	Conclusion
	Acknowledgments
	Appendix A Supplementary data
	References

