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Abstract

Density functional methods have a long tradition in
inorganic and bioinorganic chemistry. We introduce
the density functional machinery and give an overview
of most popular approximate exchange-correlation func-
tionals. We present comparisons of density functionals
for energies, structures, and reaction barriers of inor-
ganic and bioinorganic systems, giving guidance on the
title question. New development directions and cur-
rent trends in density functional theory are reviewed.

1 Introduction

A central goal of modern electronic structure calculations is to
find the ground-state energy of electrons in molecules. If we can
do this accurately for any configuration of the nuclei, many basic
properties of the molecule can be found, from bond lengths and
angles to bond dissociation energies and transition state barriers.

From simple models and understanding of electronic behav-
ior, one can construct usefully accurate empirical models for
various properties, in which the parameters are taken from one
experiment and used to predict others. But these days, systems
of interest are large and complex, limiting the value of such mod-
els (too many parameters, or too little freedom). Thus there is
increasing interest in first principles calculations, in which the
only information taken from experiment is the nuclei and num-
ber of electrons, and the electronic structure is solved ab initio.

Direct solution of the Schrödinger equation for the electrons
in a molecule is demanding because of the Coulomb repulsion
between them. In Kohn-Sham (KS) density functional theory
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(DFT),1 we avoid this by solving a system of non-interacting
electrons, but defined to have the same one-electron density as
the true system. In this way, the calculation time is much shorter
than that of a traditional direct approach, and so much larger
systems (several hundred atoms) can be routinely handled.

In principle, this approach is exact,2 and produces the exact
ground-state energy and density, but in practice, one must ap-
proximate a small (but vital) contribution, called the exchange-
correlation (XC) energy. The quality of the results depends on
the quality of this approximation. Much of modern DFT re-
search is devoted to developing such approximations, usually
termed XC functionals. Unfortunately, there is presently no
systematic approach, and so hundreds of different functionals
have been proposed, leaving the bemused user to ask the title
question.

In any practical case, the choice of functional strongly de-
pends on the chemical system at hand. Due to the diversity
of bonding situations in inorganic chemistry, ranging from co-
valently bonded isolated molecules to ionic crystals and metal
clusters, a uniformly and usefully accurate approximate DFT
description for all these systems is not yet available. For exam-
ple, the strongly delocalized distribution of electron density in
a chunk of tin oxide is very different from the localized bonding
pattern of tris(2,2-bipyridyl)ruthenium. As a consequence, the
features and formal properties of the XC functional that are im-
portant for extended solids are different from those relevant to
small molecules with localized bonds. But since chemistry does
not stop at the dividing lines of a formal classification, and both
tin oxide and tris(2,2-bipyridyl)ruthenium must be included in
a description of dye-sensitized solar cells, an accurate and uni-
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versal description of all systems is the ultimate goal of DFT
research. This universal description should be attainable at a
higher level of approximation within the DFT framework. As
of now, we choose a practical approach and consider different
classes of inorganic and bioinorganic compounds separately.

The purpose of this chapter is to offer modern, up-to-date
guidance on how to approach the title question, in the context
of inorganic and bioinorganic systems. Like supplicants of the
oracle at Delphi,3 we are given no one simple answer: Each user
must find his or her own way. A number of excellent reviews on
applications of density functional methods in inorganic chem-
istry have appeared recently which illustrate some of the con-
cepts outlined here.4–11 Many additional applications are found
in parts II and III of this book.

2 Functional Taxonomy

In this section, we mention several key points that help with
choosing a functional. Throughout, we imagine we have enough
computational power to be converged with respect to basis set,
and ignore complications due to e.g., solvents or relativistic ef-
fects. (Such questions are addressed in more detail in the next
section and in ia610 and ia613 of this book, respectively.)

2.1 Basics

(a) All functionals used in practice are approximations.
The value of DFT is in making the calculation much quicker
than a direct solution. Evaluation of the exact functional
would be as costly as direct solution, so we always use ap-
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proximations in practice. Note this also means that reports
of “failures of DFT” are in fact failures of approximations,
not the theory.

(b) No presently existing functional is highly accurate for all
properties of interest.
Because users apply existing technology to problems of im-
mediate interest, functional development is always “behind
the curve”, i. e., there are always interesting new problems
for which existing functionals fail.

(c) Any functional can be applied to any electronic structure
problem, without other input.
This is the sense in which DFT is “ab initio”. Of course,
first it must be written down and coded. Thus we build up
intuition and experience about when a given functional is
expected to work and to fail.

2.2 Jacob’s ladder

Functionals vary from very simple to very complex. On Jacob’s
ladder of approximations,12,13 each rung represents a different
level of approximation that should recover the results of lower
rungs in the appropriate limits, but add more capabilities.

(a) The lowest rung is the local density approximation (LDA),
in which the XC energy density depends only on the den-
sity at a point and is that of the uniform electron gas of
that density. This is the simplest density functional,1 and
was used for a generation in materials science, but is insuffi-
ciently accurate for most chemical purposes. LDA typically
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overbinds molecules by about 30 kcal/mol, an unacceptable
error for chemical applications.

(b) On the next rung are generalized gradient approximations
(GGAs), which are formulas that use both the density and
its gradient at each point. With this added information
(and the cost of computing it), these are typically more
accurate than LDA. Most importantly, they greatly re-
duce the bond dissociation energy error, and generally im-
prove transition-state barriers. But, unlike LDA, there is
no single universal form. Popular GGAs include PBE14 and
BLYP.15,16

(c) Next come meta-GGAs, which additionally depend on the
Kohn-Sham kinetic energy density. Examples include TPSS.17

(d) We next encounter hybrid functionals, which mix some ex-
act exchange with a GGA. The most popular functional
in use today, B3LYP, is of this type. By mixing in only
a fraction of exact exchange (about 20%), one can mimic
effects of static correlation, and produce a highly accurate
functional. This is more costly to compute because exact
exchange is non-local, depending not only on the electron
density but also on the density matrix, so additional ap-
proximations such as RI-J (see section 3) cannot be ex-
ploited as efficiently. The goal of meta-GGAs is to perform
almost as well as hybrids, without this cost.

(e) Fully nonlocal functionals: The previous rung requires in-
put of the occupied KS orbitals, but fifth-rung function-
als include unoccupied orbitals too. They are generally
very expensive, but recent progress has been made (see sec-
tion 5).
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2.3 Functional flavors

Functionals come in different flavors: Non-empirical, a little em-
pirical, and over-empirical. At each rung on the ladder, each of
these types have been developed, leading to different functionals
being favored by different communities.

(a) Non-empirical functionals: These include LDA, PBE, TPSS,
and TPSSh, use only general rules of quantum mechanics
and special limiting conditions to determine the parame-
ters in a general form. These are not fit to any molecular
properties. Such approximate functionals satisfy as many
exact conditions as possible, including some well outside
the region thought to be important for chemistry. All pa-
rameters are chosen based on inferences from other theo-
retical methods, or to maintain a simple shape for easier
adaption to numerical methods. An invisible bias toward
empirical data still exists, as any derived functionals that
are inaccurate will be ignored. Successful functionals usu-
ally have errors that are quite systematic, e.g., LDA always
overbinds. They can be considered controlled extrapola-
tions away from known systems, and so their reliability for
new systems and properties can often be predicted, or at
least understood.

(b) A few empirical parameters: The second, including B88,15
LYP,16 and B3LYP,18,19 use a few empirical parameters
which have been fit by experts. This empiricism is totally
different from that of semi-empirical methods as, once the
functional is written down, it is universally applicable to
all systems, i. e., there are no parameters fit to properties
of the system being calculated. This can often speed up
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functional construction, and will reduce errors on systems
similar to those which were used in the fitting. These errors,
while smaller in magnitude, will typically be unsystematic.
Such functionals represent an interpolation among known
data points, and so can be less reliable when applied under
new conditions.

(c) Overfit functionals: The third is where too many parame-
ters are fit, and these are to be avoided always. Of course,
we ignore the question, “How many is too many?”.

There are two general implications about these flavors:

(a) Good non-empirical functionals are widely applicable.
At any given level (or rung), the approximation should
be designed to be as general as possible. LDA has been
shown to be a universal limit of all systems, including
atoms and molecules.20 The most universal GGA is PBE,14
and is applied to both molecules and solids, including met-
als. It is neither the most accurate GGA for small or-
ganic molecules21 nor the best for lattice parameters of bulk
solids.22 But the importance of being universal is that, once
a functional works for a given property/system, it is in-
evitably then applied more generally. For example, organic
reactions on metal surfaces are widely studied, and PBE
(or some variant) is then needed to treat the bulk metal
correctly.

(b) Good empirical functionals are often more accurate, at least
for properties and systems that they’ve been designed for.
Thus BLYP has smaller errors for main-group organic molecule
energetics than PBE, and B3LYP has smaller errors still.
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But LYP does badly for the correlation energy of metals,
and this failure is inherited by B3LYP.

3 Hard realities of computation

3.1 More approximations

In any practical DFT calculation, the XC functional is only one
of several approximations used to model the system at hand.
Most DFT calculations are performed with finite basis sets and
discrete integration grids for numerical evaluation of XC contri-
butions. For bulk solids, almost all calculations use plane waves
for the basis. Moreover, additional approximations are often
employed to reduce the computational cost of DFT calculations.
We mention in particular the resolution-of-the-identity approx-
imation for the Coulomb part (RI-J), also called the density-
fitting approximation, which amounts to an expansion of the
electron density into an auxiliary basis set. All these additional
approximations affect the accuracy of the theoretical predictions
and their respective uncertainties should be taken into account
when interpreting the computational results. A reliable DFT
calculation should be characterized by the following relation:

Error (functional) > Error (basis set) > Error (RI-J), Er-
ror(grid).

Two further common approximations must be mentioned.
Most DFT studies are performed on condensed-phase systems
making inclusion of solvation or environment effects particularly
important, as these strongly influence structures and energetics
of chemical systems. Powerful strategies to include solvation or
environment effects in DFT calculations are quantum mechan-
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Table 1: Overview of selected popular XC functionals. X is the
exchange functional, C the correlation functional.
Functional Authors Ref.
Local Density Approximation (LDA) (I)
SVWN1 X: Slater 23

C: Vosko, Wilk, Nusair 24

PW1 Perdew, Wang 25

Generalized Gradient Approximation (GGA) (II)
BP86 X: Becke 15

C: Perdew 26

BLYP X: Becke 15

C: Lee, Yang, Parr 16

PW91 Perdew, Wang 27,28

PBE Perdew, Burke, Ernzerhof 14

PBEsol Perdew, Ruzsinszky et al. 22

RPBE Hammer, Hansen, Nørskov 29

SOGGA Zhao, Truhlar 30

Meta-Generalized Gradient Approximation (meta-GGA) (III)
TPSS Tao, Perdew, Staroverov, Scuseria 17

Hybrid Functionals (IV)
B3LYP Becke 18,19

PBE0 Perdew, Ernzerhof, Burke 31

HSE Heyd, Scuseria, Ernzerhof 32

B97 Becke 33

TPSSh Staroverov, Scuseria, Tao, Perdew 34,35

Fully nonlocal functionals (V)
RPA Bohm, Pines 36

B2PLYP Grimme 37

aBoth SVWN and PW are different parameterizations for the exchange-correlation
energy of uniform electron gas and give almost identical results.
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ics/molecular mechanics (QM/MM) coupling schemes, which
are subject of ia606, and continuum solvation models which are
reviewed in ia613.

Finally, relativistic corrections are significant for systems with
heavy elements, and approaches to include relativistic effects in
quantum chemical calculations are described in ia610.

Basis-set requirements of density functional methods have
been extensively investigated (see ia611), mostly for GGA and
hybrid functionals. The sensitivity of DFT results to the size of
the basis set is rather moderate. Atomic-centered basis sets
comprising three basis functions per occupied atomic orbital
(triple-zeta) and corresponding polarization functions provide
structure parameters and reaction energies that are essentially
converged with respect to the basis-set size; additional increase
of basis sets usually does not lead to systematic improvement.
This behavior was observed for Gaussian-type orbitals (GTO)
of correlation-consistent hierarchy,38,39 for segmented GTO basis
sets,40 for polarization-consistent GTO basis sets41 as well as for
Slater-type orbital (STO) basis sets.42 The smaller double-zeta
basis sets, having just two basis functions per occupied atomic
orbital, are usually accurate to 1-2 pm in bond lengths and a few
degrees in bond angles. Notable exceptions are van der Waals
clusters and hydrogen-bonded systems, for which substantial
basis-set superposition errors (BSSE) are observed with smaller
basis sets.43–46 BSSE lead in general to substantial overbinding
and too-short bond distances in weakly bound systems, mask-
ing some deficiencies of present XC functionals in the descrip-
tion of weak interactions.47 Reaction energies computed with
triple zeta basis sets are typically within several kcal/mol from
the basis set limit;48,49 for very accurate calculations, the larger
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quadruple zeta basis sets may be employed.39–42 The influence
of numerical integration grids on the energies and structure is
usually moderate beyond some minimum grid size, see section
7.4 of reference 50 and references therein.

Efficient approximate schemes for the Coulomb contribution
to the Kohn–Sham equations are applicable if the XC func-
tional has no orbital-dependent terms (first three rungs, sec-
tion 2). They take advantage of the fact that the Coulomb term
is equivalent to the classical electrostatic interaction of the elec-
tron density with itself. The common idea of all these schemes
is to expand the electron density into an auxiliary basis while
they vary how the expansion coefficients are determined. The
earlier density-fitting scheme51 used the overlap metric to fix
the expansion coefficients. The resolution-of-the identity (RI-J)
approximation52,53 employs the Coulomb metric which ensures
that the approximate Coulomb energy monotonically converges
towards the exact result with increasing auxiliary basis-set size.
Optimized auxiliary basis sets are available,53,54 yielding errors
of the RI-J approximation about one order of magnitude smaller
than the corresponding basis-set errors.54

The accuracy of periodic DFT calculations using plane-wave
basis sets55–57 is controlled by the cut-off value in reciprocal
space. An accurate description of the space regions near the
nuclei requires rather high cut-off values which significantly in-
creases the computational cost of such all-electron calculations.
Replacing the core electrons by appropriately chosen pseudopo-
tentials allows reduction of cut-off values quite significantly with-
out affecting structures and energies.55,58–60 A reliable periodic
DFT calculation should consequently have

Error (functional) > Error (pseudopotential), Error (cut-off).
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3.2 Refining expectations

Unlike good experimental data, theoretical results do not come
with associated error bars. Assessing the methodical error inher-
ent in approximate DFT is usually done a posteriori by compar-
ison with accurate experimental values or high-level theoretical
results. In this section we summarize DFT benchmark stud-
ies on solids, transition metal complexes and organometallics,
metal clusters, and inorganic main group compounds. Most of
them include statistical evaluations over a range of relatively
small systems and reflect the overall performance on the given
test set. An overview of some benchmark data for transition
metals is given in table 4.1. In addition, it is highly advisable to
perform benchmark calculations before tackling the target sys-
tem. Comparisons to existing experimental or accurate theoret-
ical data help to estimate methodical errors of approximate XC
functionals and to determine basis set or ECP requirements, etc.
While important for every computational study, calibration is vi-
tal for new compounds or unusual bonding types. Comparisons
to similar chemical compounds are useful to develop experience
on performance of DFT methods and quality of their results. A
wealth of case studies may be found in parts II and III of this
book.

The present enormous popularity enjoyed by density func-
tional methods is due to a combination of useful accuracy with
an enormous applicability range. However, average errors of
present-day XC functionals exceed the gold standard of “chem-
ical accuracy” (1 kcal/mol for large molecular thermochemistry
test sets such as G3/9921) by a factor of 3–7.34 Errors in reaction
energies computed with DFT are typically in the range of 3–5
kcal/mol, which may serve as an estimate for the error bars of
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modern DFT calculations. Other conservative error estimates
are 1 pm for covalent bonding distances and 50–100 cm−1 for vi-
brational frequencies (without scaling). Hence, it is important
to define the expectations of a DFT calculation accordingly. The
best average accuracy achievable with a given rung of Jacob’s
ladder is limited by the flexibility of the corresponding func-
tional form. Seeking to obtain accuracy beyond this limit is like
trying to wrap a smooth steel sheet around a delicate sculpture
– it cannot possibly fit everywhere. Reducing methodical errors
for a specific kind of chemical system and properties can lead to
larger deviations in other cases. Many empirically fit functionals
suffer from this shortcoming, since they are developed to min-
imize errors on a given training set of molecules and/or solids.
For systems and properties outside the training set, errors may
be considerable and careful validation of the methodology is in-
dispensable. As a rule, interpolations between similar systems
are usually smooth but extrapolations are prone to large and
unpredictable deviations.

In contrast, errors of nonempirical functionals usually have a
systematic tendency, e. g., bonding distances are usually overes-
timated and vibrational frequencies are mostly underestimated
by PBE. This behavior makes it easier to estimate the target
property. Moreover, relative quantities such as energy differ-
ences, bond length changes, or frequency shifts can be much
more accurate with these functionals. Some semiempirical func-
tionals also have this property, most notably B3LYP, due to
extensive error cancellation. The good performance of B3LYP,
especially for organic molecules, has been demonstrated in a
large number of studies and made it the most-used XC func-
tional of the past decade.61 However, B3LYP shows larger and
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less systematic errors for transition metal compounds, and its
accuracy decreases for larger molecules.62,63

3.3 Test sets

The reliability of calculated properties clearly depends on how
closely the method can match its physical model. Not so obvious
is how closely that physical model resembles the experiment, and
how large a difference between the two can be tolerated while
still giving valuable results. To isolate the merits of one func-
tional over another, test systems need to minimize complications
(e.g. solvent, anharmonicity, thermal, and relativistic effects)
that are generally handled with additional levels of modeling.
For this reason, test calculations for molecules are generally gas
phase, at 0 K, and with an appropriately large basis set. Corre-
sponding experimental datasets should then also be from the gas
phase, but adjusted (if possible) to represent 0 K, ground-state
values. For (periodic) solids, the condensed phase is inherent to
the model, but both thermal expansion and lattice defects must
be addressed.

For small organic and main group molecules, several exper-
imental datasets exist21 that contain various gas phase heats
of formation, bond energies, structures, and reaction barrier
heights. larger molecules, and those containing transition met-
als, are severely underrepresented due to the difficulty of cre-
ating the vapor phase, and the extremely limited selection of
analytical techniques (gas-phase electron diffraction, microwave,
infrared, and photoelectron spectroscopy).

16



Table 2: Comparison of XC functionals for transition metal com-
pounds. Dissociation energies from reference 64. Bond lengths
from reference 65.
Method AE, kcal/mol Bond lengths, pm

ME MAE ME MAE
LDA 29.4 29.4 -2.63 2.96
BLYP 3.11 3.44
BP86 8.9 10.3 0.98 2.11
PBE 10.3 10.8 0.73 2.00
B3LYP -6.6 12.0 1.17 2.15
PBE0 -1.05 1.81
TPSS 7.8 10.2 0.77 1.91
TPSSh 1.3 9.7 0.04 1.69

4 Which system do I have?

As explained above, many functionals have been fit for specific
systems, or kinds of systems, so it is important to know which
features are relevant to the system one is treating.

4.1 Transition Metal Complexes and Organometallics

Applications of density functional methods to transition metal
complexes and organometallic compounds have been growing
over the last two decades. A number of review articles have
appeared on the topic.4,5, 7, 9, 11,50,69–72 In this section we focus
on recent benchmark studies comparing the accuracy of different
XC functionals for thermochemistry, molecular structures, and
reaction barriers. Systematic studies are performed on relatively
small isolated molecules and ions for which accurate gas phase
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Table 3: Bond dissociation energies in kcal/mol of metal carbonyls
M(CO)6, M = Cr, Mo, W.66 TZVPP basis sets40 were used along
with Stuttgart-Cologne effective core potentials67 for Mo and
W. Zero-point energy corrections were computed with PBE0
functional and TZVPP basis sets. Experimental dissociation
energies from reference 68.
Method Cr(CO)6 Mo(CO)6 W(CO)6
LDA 57.1 51.6 56.2
BLYP 34.4 33.8 38.2
BP86 40.6 38.5 43.1
PBE 42.6 39.9 44.6
B3LYP 34.1 34.3 39.1
PBE0 40.7 39.1 44.2
TPSS 41.3 39.9 44.8
TPSSh 40.5 39.5 44.5
Exp. 36.8±2 40.5±2 46.0±2
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data exist. Even though most inorganic compounds of actual
interest are larger and more complex than the test set examples,
they represent many important bonding situations and provide
guidance for real-world applications.

Most thermochemical comparisons include atomization ener-
gies and bond dissociation energies; results of a recent study
including 18 dissociation energies of 3d transition metal com-
pounds are shown in table 4.1.64 Other studies73,74 reached sim-
ilar conclusions. LDA was shown to be least accurate, show-
ing the typical overbinding tendency. GGAs correctly lower
the dissociation energies and reduce the overbinding errors to
5–10 kcal/mol. Within the second rung, the performance of
BP86 and PBE functionals is very similar, while BLYP typically
yields lower dissociation energies.73 The meta-GGA functional
TPSS improves slightly upon GGA functionals, further reduc-
ing the overbinding tendency whereas the spread of the errors
is essentially unchanged. Inclusion of exact exchange in hybrid
functionals has the effect of weakening the bonds and usually
improves agreement with experiment. Dissociation energies of
small molecules are typically accurate to 3–5 kcal/mol with hy-
brid functionals. The TPPSh functional is closest to experiment
in this study.

It should be noted, however, that atomization energies are
rarely used as such in DFT applications. More relevant for
chemistry are reaction energies and relative stabilities, which
are more accurate due to error cancellation. The largest errors
of semilocal functionals are typically in atoms, and atomization
energies fully include these errors while reaction energies and en-
ergy differences are affected much less. If only the dissociation
energies of table 4.1 that involve no free atoms are considered,
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mean absolute errors of GGA and meta-GGA functionals are re-
duced to typically 3–5 kcal/mol.64 Errors of hybrid functionals
are somewhat larger for this test set, but are usually also in the
range of 3–5 kcal/mol.5,71

A large amount of thermochemical data has been compiled
for ligand dissociation reactions. We cite studies on carbonyl
complexes,68,75 substituted carbonyl complexes,6,76,77 polynu-
clear clusters,78 metal hydrides and small organometallic com-
pounds.5,79,80 As an example we consider the first ligand dis-
sociation energies of homologous metal hexacarbonyls M(CO)6,
M = Cr, Mo, W, which are well characterized experimentally
in the gas phase.68 The first ligand dissociation energies de-
scribe the reaction M(CO)6 → M(CO)5 + CO and are shown
in table 4.1. LDA again strongly overestimates the bond ener-
gies. The results of GGA, meta-GGA, and hybrid functionals
agree to within 2 kcal/mol among each other; deviations from
experiment are less than 4 kcal/mol for Cr(CO)6 and less than
2 kcal/mol for M(CO)6, M = Mo, W. A striking exception is
the BLYP functional which underestimates the binding energy
by 2–5 kcal/mol and passes on the underbinding to B3LYP.

Errors of approximate functionals may be offset by neglect
of relativistic effects which are particularly significant in heavy
elements. Relativistic corrections increase bond strengths by
about 10 kcal/mol in 5d transition metal compounds, while the
stabilization is only about 1 kcal/mol in 4d transition metals
and almost negligible for 3d transition metals.9 Neglect of rel-
ativistic effects in 5d compounds artificially weakens the bonds
and partially cancels the overestimation typical to LDA and to a
smaller amount to GGA functionals. Indeed, a non-relativistic
calculation predicts W(CO)6 to be more weakly bound than
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Cr(CO)6.75 A significant part of relativistic stabilization is due
to scalar relativistic effects, which can be captured by using
relativistic effective core potentials (ECPs) at little additional
computational cost.6 An extensive discussion of relativistic ef-
fects may be found in ia610.

Critical tests for DFT methods are energy differences between
states of different spin. Ground state configurations of transition
metal atoms,64,81 spin-state splittings in mononuclear transition
metal complexes,82,83 and exchange couplings in binuclear com-
plexes84,85 are very sensitive to the choice of the XC functional.
Functionals that do not include exact exchange significantly sta-
bilize low-spin states, while the Hartree–Fock (HF) method and
hybrid functionals favor high-spin states. Moreover, it has been
shown that the energy difference between the high-spin state and
the low-spin state increases linearly with the amount of exact
exchange in many mononuclear82,86 and binuclear84 transition
metal complexes. The optimal range of mixing coefficients was
determined as 10–15 % exact exchange.86

A series of recent studies provides an extensive assessment
of molecular structures of 3d, 4d, and 5d transition metal com-
plexes.65,87,88 LDA underestimates bond lengths by as much as
3 pm. The GGA functionals BP86 and PBE give very similar re-
sults, which are within 1 pm of experimental data, while BLYP
predicts bonds to be significantly too long and offers no im-
provement over LDA. For coordinatively bound ligands such as
NH3 or halides, larger deviations up to 3–5 pm have been found
with GGA functionals.11 The meta-GGA functional TPSS per-
forms quite similarly to PBE. Hybrid functionals predict bonds
to be slightly too long, but are generally in very good agreement
with experiment. The choice between GGA/meta-GGA func-
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tionals and hybrid functionals depends on the row of the tran-
sition metal. Complexes of 3d elements are better described by
GGA/meta-GGA functionals87 while hybrid functionals yielded
somewhat smaller deviations from the experiment for 4d and
5d element compounds.65,88 Particular care must be taken if
the computed bond lengths are compared to experimental x-
ray data. The deviations between the gas-phase structures and
crystal structures are usually moderate for neutral molecules
and singly-charged ions. In contrast, for multiply charged ions,
the presence of counterions and crystal packing effects shrink
the bond lengths by as much as 2–10 pm and should be taken
into account by including the counterions or by using continuum
solvation models.

The accuracy of DFT predictions of reaction energy barri-
ers69,70,89 has been assessed in a number of benchmark stud-
ies, mostly using organic reactions as test examples.90–94 The
general observation is that LDA systematically underestimates
activation energies of bimolecular reactions by as much as 10–
20 kcal/mol. In contrast, barrier heights of unimolecular pro-
cesses such as conformational changes or electrocyclic reactions
are much better reproduced by LDA. The underestimation of
activation energies by LDA may be understood in terms of dif-
ferential XC effects which favor the delocalized transition state
structures relative to the more compact electron density dis-
tributions of the reactants. This effect is large for associa-
tive bimolecular reactions or bond dissociations but plays a
minor role for torsional barriers.95 In most applications, how-
ever, LDA is deemed not accurate enough for activation ener-
gies. GGA and meta-GGA functionals improve upon LDA for
reaction barriers, reducing the absolute errors to 5–10 kcal/mol.
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While they still systematically underestimate activation ener-
gies, GGA and meta-GGA functionals usually yield transition-
state structures in good agreement with accurate post-HF cor-
relation methods.91,93

The preference of LDA for higher-coordinated, more delocal-
ized transition state structures (which is inherited by GGA and
meta-GGA functionals) is attributed to spurious self-interaction.
This explanation is corroborated by the much improved accu-
racy of self-interaction corrected (SIC) XC functionals.96 Inclu-
sion of exact exchange in the hybrid functionals partially amelio-
rates the self-interaction problem and leads to useful estimates of
activation energies, which are accurate to ca. 5 kcal/mol. It was
argued in several studies, that increasing the amount of the exact
exchange to 40–50 % significantly improves the agreement with
experimental activation barriers. Besides the BHLYP functional
of Becke97 a series of “special purpose” functionals was devel-
oped for chemical kinetics calculations.98,99 We note, however,
that these functionals, while in general increasing and thus im-
proving reaction barrier heights98–101 perform rather poorly for
minimum structures and energetics.37,101 Exchange-correlation
functionals with a high percentage of exact exchange are par-
ticularly problematic for transition metal compounds87,102 and
yield unreliable spin state splittings.82

4.2 Metal and Semiconductor Clusters

Inorganic clusters vary in their metallic content, from molecules
with a noticeable abundance of metal atoms, to small chunks of
an extended solid, perhaps with an organic ligand coating. No
well-defined test sets exist, and what data are available tends
to be strongly affected by real experimental conditions. One
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would expect that the recommendations for molecular coordi-
nation and organometallic compounds of the previous section
should be an excellent starting point for clusters. A major caveat
is that cluster cores tend to behave like the solids from which
they are derived (often the whole point of synthesizing the clus-
ter), and so, if metallic, functionals that are incorrect for the
uniform gas will fail badly here (see next section).

DFT calculations on large clusters are still highly demand-
ing, and it is not unexpected that systematic comparisons of the
application of various functionals are rare. One such study103
invokes very high symmetry to enable efficient computation of
phosphorus and arsenic allotropes based on (X2X8)n and (X2X10)n
polymeric structure types. As there was no reliable experimen-
tal data for these clusters, spin-component-scaled MP2 (SCS-
MP2)104 energies at B3LYP geometries were chosen as a refer-
ence. It was found that standard MP2 overestimated the sta-
bility of P120 by 16.5 kJ/mol per P4 equivalent (495 kJ/mol
total error), and As120 by 18.8 kJ/mol per As4. B3LYP, on
the other hand underestimates their stabilities by 32.2 kJ/mol
(per P4) and 45.7 kJ/mol (per As4). BP86 does surprisingly
well with underestimations of 16.0 kJ/mol (P4) and 33.7 kJ/mol
(As4). These errors are attributed to an overcorrection (MP2)
or neglect (B3LYP, BP86) of dispersion. B3LYP-D (empirical
dispersion terms added to B3LYP) has roughly the same error
magnitude as B3LYP, but on the other side of SCS-MP2.

Another paper105 critically evaluated the use of B3LYP for
MnO clusters related to the oxygen-evolving complex in pho-
tosystem II (see ia192). They determined that the B3LYP op-
timized geometries of model compounds could faithfully repro-
duce the X-ray crystal structures of those same models. Calcula-
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tions of simplified (ligand-truncated) structures deviated more
significantly, but the MnxOy cores were still within a few pm
in bond distance and a few degrees in bond angles. More im-
portantly, the high-spin low-spin splitting was completely incor-
rect. This particular hybrid functional severely overstabilizes
the high-spin state.

4.3 Extended Solids

The natural choice of basis functions for (non-hybrid) DFT cal-
culations on periodic systems are periodic plane waves. This
basis can be systematically improved by adding functions with
ever shorter wavelengths (thus higher energy), up to a cutoff
energy. Compared to Gaussian- or Slater-type basis functions,
integral evaluation is extremely quick. However, this is balanced
by the relatively huge number of plane waves needed to reach
the same level of energy accuracy. The large number of basis
functions also makes the Hartree-Fock exact exchange calcula-
tions needed for hybrid functionals extremely costly. Switching
to the standard AO-based basis sets normally used for molecules
is possible, but they tend to have diffuse tails that are inappro-
priate for solids and must be truncated and re-optimized.

In a test of 8 simple, main-group solids,30,106 LSDA overesti-
mated cohesive energies by 0.7 eV/atom on average, PBE was al-
most exact (-0.04 eV/atom), while the solids-oriented PBEsol22
and SOGGA30 overestimated by 0.26 and 0.30 eV/atom, respec-
tively. The TPSS meta-GGA brought the overestimation down
to 0.17 eV/atom. The direct calculation of cohesive energies
involves the energy difference between the energy of the solid
and the energy of its free constituent atoms, two extremes of
chemistry that limited functional forms simply cannot model
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well simultaneously. Far more important and useful are relative
energies of solid phases, which are more closely related to lattice
constants (see below), where functionals with diminished gradi-
ent dependence (PBEsol and SOGGA) should do much better.

Hybrid functionals including LYP correlation tend to perform
worse than non-hybrid GGAs due to LYP’s failure to handle the
uniform electron gas limit, which is most relevant for metals and
small-gap semiconductors. For main-group metals, hybrids tend
to fail, and for transition metals, fail miserably. This is where
recovering the uniform gas limit becomes important.

Most structural test sets used to compare functionals are
heavily biased toward simple crystals with few structural pa-
rameters not fixed by space group, and most of those are cubic
or tetragonal. Still, as many properties of the solid are sensitive
to lattice constants (e.g. bulk moduli and magnetic coupling),
getting them right is critical. A set of 18 such solids (4 main
group metals, 4 transition metals, 5 semiconductors, and 5 ionic
solids), with lattice constants from 3.451 to 5.646 Å, has been
used to evaluate several non-empirical functionals.22,30,106 LSDA
consistently underestimates the lattice constant, on average by
about 1%, while GGA PBE and meta-GGA TPSS overestimate
by about the same amount. The reformulation of PBE for solids,
PBEsol,22 halves the error of TPSS and shifts the error distribu-
tion for metals close to 0 (as likely to underestimate as to overes-
timate), but still consistently overestimates the size of the unit
cell for semiconductors and ionic solids. SOGGA, a more elab-
orate derivative of PBE containing bits of RPBE29 and PBEsol
that also is directed at solids, shifts the error distribution of all
but transition metals (which it generally underestimates) close
to zero, with a similar absolute error to PBEsol. Bulk moduli
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are about 15% too large for LSDA, half that (and too small) for
anything else.

Lattice constants in the more extensive SC/40 test set for
semiconductors are best matched with hybrid functionals. The
LSDA, PBE, TPSS, and HSE average errors are (respectively)
-4.6, 7.6, 6.3, and 3.5 pm. Although it was not tested with this
particular set, PBEsol should reduce the overestimation of unit
cell size of PBE, but will almost certainly have the same severe
underestimation of the band gap.

Perhaps the most useful property of an insulating solid to
predict is its fundamental gap. This is I − A, the difference
between ionization energy and electron affinity for a macroscopic
chunk of that solid. This gap would be given exactly by adding
and removing an electron from such a chunk, if we had the exact
XC functional. On the other hand, the Kohn–Sham band gap,
defined as the HOMO–LUMO difference, is not equal to the
fundamental band gap, even with the exact XC.107 While the
HOMO energy computed with the exact XC functional is equal
to the negative ionization potential I, the LUMO energy is not
equal to the electron affinity A, even when the exact functional
is used. In general the Kohn–Sham band gap is smaller than the
fundamental gap and, in an extreme case (Mott insulator), can
vanish, while correlation effects still make the solid an insulator.

Semi-local functionals suffer from self-interaction, and over
delocalize electrons. In these approximations, I−A collapses to
the KS band gap as the cluster size grows. The most notorious
case is the indirect band gap of Si, which LDA underestimates by
about 50%. Inclusion of some fraction of exact exchange would
help localize the electrons in the cluster calculation, slightly im-
proving I − A, but not by much.
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However, many hybrid functionals give better estimates for
I − A. This is because the Hartree–Fock (HF) gap is typically
much larger than I−A. (The HF gap is not a KS gap). By mix-
ing a small fraction of HF exchange with a semilocal approxima-
tion, one gets a hybrid gap that is about right. Unfortunately,
it is not even remotely clear that there is an optimal fraction to
add. It is tempting to adjust the hybrid fraction to get the right
band gap, but this risks destroying the accurate description of
the rest of the system. Until functionals with the ability to dy-
namically (and rationally!) adapt the fraction of HF to local
conditions are available108 it is better to use a non-hybrid func-
tional with good solids performance (PBE → PBE0, TPSS →
TPSSh), accepting that the gap is too low. Another alternative
is to use a functional specifically designed to be computationally
efficient with periodic systems, such as HSE,32,109 a derivative
of PBE with only short-range HF exchange.

In reference 110, an extensive selection of 40 main group semi-
conductors (SC/40) was evaluated with LSDA, PBE, TPSS, and
HSE. As expected, the non-hybrids underestimated the band
gap on average by 1.14, 1.13, and 0.98 eV respectively, whereas
the hybrid HSE was too low by only 0.17 eV. The experimental
gaps of InAs (0.41 eV) and InSb (0.23 eV) were very well repro-
duced by the hybrid (0.39 and 0.29 eV), but disappeared with
the other functionals.

The general recommendations given above may work fine for
high-symmetry crystals with one or two atoms per unit cell, but
what about non-cubic systems with larger unit cells? One par-
ticularly difficult example is CeO2 and Ce2O3.111 The fluorite-
structure CeO2 is an insulator with a band gap measured at
6.0 eV. LSDA and PBE underestimate by around 0.4 eV, while
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PBE0 and HSE overestimate this gap by a surprising amount
(gaps of 7.93 eV and 6.96 eV respectively). For cell volume, the
hybrids underestimate by only 1.1%, while LSDA is too small
by 2.2% and PBE too large by 3.3%.

Ce2O3 is much more complex due to the additional electron
per cerium atom placed in the 4f electron band in the middle
of the 6 eV gap. In the real system, these electrons are anti-
ferromagnetically coupled, and the band gap is 2.4 eV. The hy-
brids get the gap about right (PBE0: 3.5 eV; HSE: 2.5 eV) and
correctly predict the anti-ferromagnetic coupling to be more sta-
ble (by 6 and 5 meV). LSDA and PBE incorrectly predict Ce2O3
to be a metal or semi-metal and stabilize ferromagnetic coupling
by 60 and 110 meV respectively. Geometrically, the hybrids give
a unit cell volume for this cerium oxide also 1% too small, but
LSDA and PBE shrink significantly to 8.9% and 2.7% too small.
The free parameters for Ce and O positions are also noticeably
closer to experiment in the hybrids than PBE, and LSDA is
significantly off. Thus, for Ce2O3, hybrid functionals correct
qualitative errors of GGAs.

5 Various directions in DFT development

There are always many different and new ideas being proposed
and tested in DFT development, and it is impossible to report
them all. Here we provide a sampling of some of those relevant
to inorganic and bioinorganic chemistry.

5.1 Semi-local functionals

Universal GGAs such as PBE work for a wide range of systems,
but their accuracy is limited. There is a growing awareness
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that this limitation may be caused by the restrictive functional
form of GGAs.112 One approach is to devise GGAs that are
specialized for certain classes of compounds. The recently pro-
posed PBEsol GGA22 is an example of this strategy: PBEsol
recovers the original gradient expansion for exchange, and its
correlation piece is adjusted to reproduce jellium surface ener-
gies accurately.113 Due to its diminished gradient dependence,
PBEsol is biased towards solids and yields better lattice con-
stants and other equilibrium properties of densely packed solids
than PBE.114 However, PBEsol is generally less accurate for
molecular bond energies, although molecular bond distances are
comparable to PBE.30 The best of both worlds requires a more
flexible functional form and can only be achieved at the meta-
GGA level. For example, the TPSS meta-GGA combines accu-
rate molecular properties and good surface energies.106,115

Certain chemical applications benefit from the diminished
gradient dependence of PBEsol. For example, energy differences
between sterically crowded and linear alkanes and other stereo-
electronic effects are improved by PBEsol.116 A striking example
from inorganic chemistry is the 2D-3D transition in gold cluster
anions Au−n .117 This phase transition, which occurs at an unusu-
ally large number of n = 12 gold atoms, plays a crucial role for
the catalytic activity of small gold clusters. PBEsol, TPSS, and,
maybe surprisingly, LSDA correctly predict the transition to oc-
cur at n = 12, while most GGAs and hybrid functionals fail.118
This suggests that a diminished gradient dependence and ac-
curate jellium surface energies are important for dimensionality
transitions in finite molecular clusters. However, all attempts
to improve accuracy by applying different functionals to differ-
ent situations119 eventually fail, because such schemes cannot
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handle more general systems that include both situations (see
section 4).

5.2 Self-interaction correction

It has long been known that spurious Coulomb interaction of an
electron with its own charge distribution severely limits the ac-
curacy of molecular properties computed using semi-local func-
tionals.120 While the notion of self-interaction depends on the
basis of molecular orbitals used and is therefore not unique, nec-
essary conditions for self-interaction freedom of XC functionals
may be found. A simple condition is one-electron self-interaction
freedom, which states that, for a one-electron system, exchange
should completely cancel the Coulomb energy and correlation
should vanish, because there is no electron interaction in this
case.13 Recently, “many-electron self-interaction freedom” has
been associated with linearity of the ground-state energy as a
function of the electron number N for non-integer N .121 This
condition is strongly violated by semi-local functionals, which is
related to the well-known failure of these functionals to describe
one- and three-electron bonds,122 localization vs. delocaliza-
tion,64,123 e.g. in mixed-valence compounds, and charge transfer
complexes. Yang et al. have proposed a functional that is more
many-electron self-interaction free and improves upon most of
these shortcomings, but is heavily parameterized.124 The use
of exact exchange is another way to remove most many-electron
self-interaction error, but popular hybrids include only a fraction
of exact exchange.

Charge transfer is a fundamental process for the conversion of
electrical, mechanical, or light energy into chemical energy and
vice versa. Unfortunately, most conventional density function-
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als are troubled by self-interaction error when applied to these
problems. Van Voorhis and co-workers have developed a sim-
ple and useful solution to this problem by constraining charges
to certain parts of a molecule.125–127 This constraint leads to
an extra “constraint potential” which is added to the external
potential of the nuclei and enforces the proper charge distribu-
tion. But at present it is unclear how to merge this method with
standard DFT calculations in an ab initio fashion.

5.3 Hybrid Functionals

Recently, a number of range-separated hybrid functionals have
been proposed. These functionals separate the electron Coulomb
interaction into a short- and a long-range part by a switching
function, usually an error function.128,129 After that, different
approximations are used for different interaction ranges. At
short range, most functionals contain a high fraction of GGA
exchange, while at long range, a high fraction of exact exchange
is typical.130–132 In contrast, the screened exchange HSE hybrid
uses an inverse range separation.32 Post-HF correlation methods
such as configuration interaction (CI)129,133 and coupled clus-
ter (CC)134,135 have also been proposed for the long-range part.
The underlying hypothesis of range-separated hybrids is that
semi-local functionals work best at short electron separations.
Indeed, range-separated hybrids improve over global hybrids in
certain properties, e.g. for long-range charge transfer excitation
energies.136,137 Fine-tuning is possible by multiple range separa-
tion.138,139 However, the range separation procedure introduces
at least one additional empirical parameter that may not be
system-independent.

Another related class of functionals are local hybrids.140–143

32



These “hyper-GGAs” use a hybrid mixing coefficient that de-
pends on local ingredients such as the density and its gradients
and multiplies the exchange energy density. While this addi-
tional freedom seems appealing, the proper behavior of these
functionals in various regions of space is difficult to control.108,144
At the same time, local hybrids are computationally even more
demanding than global hybrids because they require evaluation
of the exact exchange energy density on the molecular grid.

A new global hybrid of the empirical kind is Grimme’s Becke
three-parameter hybrid with second order perturbation correc-
tion (B2PLYP).37 This functional is a re-parameterized B3LYP
hybrid mixed with MP2 correlation. B2PLYP seems to improve
upon both B3LYP and MP2, especially for organic main-group
chemistry,145,146 and has successfully been applied to a num-
ber of molecular properties.147,148 Unfortunately, B2PLYP is
not the method of choice for small-gap problems such as many
transition metal compounds, metal clusters, and radicals. The
MP2 correlation part has a much steeper formal N 5 scaling of
computational cost with the system size than GGA correlation
functionals, although this is significantly alleviated by approxi-
mations such as RI-MP2.149

5.4 Dispersion Effects

Long-range dispersion effects are notoriously difficult to capture
with semi-local functionals. Due to their dependence on the
local density at a given point in space r and other local ingre-
dients, these functionals cannot account for XC effects due to
the presence of electrons in remote parts of a molecule. Ad hoc
attempts have been made to correct this by adding a van der
Waals attraction between the nuclei to the nuclear potential en-
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ergy, in the spirit of classical force fields.150–154 Just like force
fields, these methods can give accurate results for a restricted
class of compounds, but their successful use generally requires
extensive calibration and expert knowledge.

Becke and Johnson recently presented a semi-classical argu-
ment to derive dispersion coefficients from the exchange-hole
dipole moment.46,155 They integrated their model into a new
general purpose functional called DF07 that includes dynamical,
non-dynamical, and dispersion interactions.156 DF07 contains
100% of exact exchange and is remarkably accurate for a wide
range of energetic and kinetic data of main-group compounds
with relatively few empirical parameters.157

A fully non-local non-empirical dispersion correction to GGAs
was proposed by Langreth, Lundqvist, and co-workers in 2004.158,159
This functional explicitly depends on the densities and their gra-
dients at all pairs of coordinates (r, r′) and exhibits qualitatively
correct behavior for non-overlapping subsystems. Promising re-
sults for a number of van-der-Waals complexes have been re-
ported.160 Open questions include sensitivity of the results to
the choice of short-range GGA, and ways to reduce the cost of
the required six-dimensional numerical quadrature.161

5.5 Random-Phase Approximation (RPA)

A systematic way to go beyond semi-local approximations is
to construct functionals that treat a part of the electron corre-
lation exactly for all systems. The random-phase approxima-
tion (RPA)36 arises as a natural starting point for this class
of functionals.162 It relies on the zero-temperature fluctuation-
dissipation theorem and the KS version was first proposed by
Langreth and Perdew in 1975.163,164 Unlike perturbation the-
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ory, RPA works for small-gap systems including the uniform
electron gas, and it is most accurate in the high-density or
weak correlation limit, where most semi-local functionals ex-
hibit large errors. RPA is compatible with exact exchange and
thus does not require the error compensation between semi-
local exchange and correlation that affects molecular properties
in many GGA calculations. It includes dispersion interactions
in a seamless fashion, i. e., there are no empirical damping or
other parameters. While bare RPA yields little improvement
over GGA bond energies, it is an excellent starting point for re-
fined functionals that model beyond-RPA correlation, which is
typically an order of magnitude smaller than the full correlation
energy.165 Perdew, Dobson and co-workers recently presented
inhomogeneous Singwi-Tosi-Land-Sjölander (ISTLS) functionals
representing a local-field correction to RPA.166

The relatively high computational cost of RPA was previously
considered a central limitation for applications to chemistry.167
However, very recently, new methods have become available
that substantially reduce the computational complexity of RPA,
making it comparable in cost to MP2.168 Also, it has been rec-
ognized that RPA is equivalent to a simplified coupled cluster
doubles method, making RPA calculations with coupled cluster
codes straightforward.169

6 Concluding Remarks

DFT is certainly no mythical “black box” that can be mind-
lessly applied to current problems of interest in inorganic and
bioinorganic chemistry, and practical considerations always limit
choices. Clearly, there is no single answer to the title question.
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At any given time, and for any given property and system, there
is at most a “best” answer. Experience and benchmarking are
always needed to find that best answer. We hope we have given
the reader some help in answering the title question.
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