STEREOLOGY

Proceedings of the Second International Congress
for STEREOLOGY, Chicago—April 8-13, 1967

Edited by
HANS ELIAS

Department of Anatomy
Chicago Medical School

Sponsored by: The National Science Foundation
and the
International Society for Stereology

SPRINGER-VERLAG BERLIN * HEIDELBERG * NEW YORK
1967



ISBN-13: 978-3-540-03987-7 e-ISBN-13: 978-3-642-88260-9
DOI: 10.1007/978-3-642-88260-9

All rights reserved, especially that of translation into foreign languages
It is also forbidden to reproduce this book, either whole or in part, by photomechanical means

( photostat, microfilm and/or microcard or any other means)
without written permission from the Publishers
© 1967 by Springer-Verlag New York Inc.
Softcover reprint of the hardcover 1st edition 1967
Library of Congress Catalog Card Number 67-28400

Tide No. 1450



NEWLY ELECTED OFFICERS
OF THE
INTERNATIONAL SOCIETY FOR STEREOLOGY

President:
Ewald R. Weibel
Anatomisches Institut
Universitit Bern
Biihlstrasse 26
3000 Bern, Switzerland

Vice President:
Ervin E. Underwood
Lockheed Georgia Company
Department 72-14, Zone 402
Marietta, Georgia, 30060

Treasurer:
(having also the functions of executive secretary)
Hellmut Fischmeister
Chalmers Technical University
Department of Engineering Materials
Gothenburg, Sweden

Secretary:
Arnold Lazarow
Department of Anatomy
University of Minnesota
Minneapolis, Minnesota

Assistant Secretary:

(with the function of Editor of STEREOLOGIA,
Bulletin of the International Society for Stereology )

John E. Hilliard
Northwestern University
Department of Materials Sciences
Evanston, Illinois



KEYNOTE SPEAKERS

Guenter Bach
Department of Mathematics
Institute of Technology
Braunchweig, Germany

Robert T. DeHoff
Department of Metallurgical and Materials Engineering
University of Florida
Gainesville, Florida, USA

Hellmut F. Fischmeister
Department of Metallurgy
Chalmers University of Technology
Goeteborg, Sweden

R. Buckminster Fuller
Department of Architecture
Southern Illinois University
Carbondale, lllinois, USA

Herbert Haug
Department of Anatomy
University of Hamburg

Hamburg, Germany

Erling S. Hegre
Department of Anatomy
Medical College of Virginia
Richmond, Virginia, USA

August Hennig
Department of Anatomy
University of Muenchen
Muenchen, Germany

(continued)



John E. Hilliard
Department of Materials Science
Northwestern University
Evanston, lllinois, USA

Clara S. Hires
Mistaire Laboratories
Millburn, New Jersey, USA

Wendell J. S. Krieg
Department of Anatomy
Northwestern University Medical College
Chicago, lllinois, USA

Frederick N. Rhines
Department of Metallurgical and Materials Engineering
University of Flordia
Gainesville, Flordia, USA

Sarkis A. Saltikov
Department of Metallurgy
Polytechnical Institute
Erevan, Armenia, USSR

Cyril S. Smith
Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

Ervin E. Underwood
Lockheed Georgia Company
Marietfta, Georgia, USA

Ewald R. Weibel
Department of Anatomy
University of Bern
Bern, Switzerland

vi



PREFACE

The Second International Congress for Stereology, again, has brought
together scientists from very diverse disciplines for discussion of
problems concerning the recognition of three-dimensional structure,
problems which confront those who study materials, rocks, biological
systems or heavenly bodies. The program was organized into sessions
each dealing with a special type of structural problem regardless of
systems in the study of which these problems occur. Since all natural
sciences have similar structural questions to investigate, discourses
among biologists, metallurgists etc. were intense. Subject areas were
not separated during the Congress. No concurrent sessions were held.
Each participant had the opportunity to hear every paper. This re-
sulted in an unusually high attendance. During the last session, after
five and a half days of intense work almost half the participants were
still present in the lecture hall.

Each of us was fascinated with what he was able to learn from fellow~-
stereologists who studied different sectors of nature. Friendshipswere
established across oceans and across disciplinary boundaries.

Each session was introduced by a key-note lecture didactical, meth-
odological and theoretical in nature. These key-note lectures can
be recognized in this volume by their greater length, 12 pages being
allofted to each key-note speaker. Collectively they constitute al-
most a textbook of stereology.

Contributed papers in each problem category deal with applications.
One exception to this rule is the paper on curvature determination
by Dr. DeHoff, whose concept, although fundamental in nature, had
been developed so recently that it was administratively not possible
to give it a key-note position.

It is hoped that the scientific community as a whole will derive ben-
efit from this volume.

vii



APOLOGY

The editor herewith apologizes and hopes that you will pardon him
for mistakes of grammar, spelling and style. His excuses are the
following: He was forced to put this symposium together in a very
brief period of time; and he had no assistance except his very able
typist, Mrs. Rebecca Collen, who helped with this work most effici-
ently. Because of pressure and time limits, he could read every man-
uscript only once. He expects that many mistakes, particularly in
his own contributions, have escaped detection.

Further: All these manuscripts have been typed on different type-
writers for which at our office no matching type-face is available.
Therefore in many cases detected mistakes had to be left as they
were. Only in very few cases was the typing done so poorly that the
entire manuscript had to be re-typed completely.

The editor also wishes to thank Professor Hilliard for editing and re-
writing Professor Saltikov's contributions. No change in content has
occurred in this process, only linguistic matters were improved.

Finally the editor in the name of the officers of the Infernational
Society for Stereology expresses thanks to Springer Verlag for its
willingness to undertake the production and publication of this vol-
ume. Springer-Verlag has just published the symposium "Quantitative
Methods in Morphology" organized by the International Society for
Stereology during the 8th International Congress of Anatomists in
Wiesbaden. This is a beautifully printed and bound volume done in
letter press (typography). Its production was very time consuming
and expensive. Therefore it has been decided to use a more econo-
mic method this time. But this method leads, of course, to defici-
encies for which, again, we beg your pardon.

Hans Elias
Chicago, lllinois
May 1967



LIST OF CONTRIBUTORS

ABRAHAMSON, DEAN E., Department of Anatomy, Univ-
ersity of Minnesota, Minneapolis, Minnesota

ATKINSON, RALPH H., Department of Metallurgy,
Stevens Institute of Technology, Hoboken,
New Jersey

BACH, GUNTER, Technische Hochshule, Braunschweig,
Germany

BARTLEY, M.H., Department of Anatomy, University
of Utah, College of Medicine, Salt Lake City,
Utah

BLUMCKE, SIGURD, Institute of Pathology, Mfinster,
West Germany

BOCKSTIEGEL, GERHARD, Hogands AB, Hoganas,
Sweden

BRIESE, FRANKLIN W., Biometry Division and De-
partment of Anatomy, University of Minnesota,
Minneapolis, Minnesota

CARPENTER, ANNA-MARY, Department of Anatomy,
University of Minnesota Medical School,
Minneapolis, Minnesota

COUDERC, HENRI, Laboratoire de Biologie Veget-
ale SPCN, Bt 490, Essone, France

DE HOFF, ROBERT, Department of Metallurgy, Col=-
lege of Engineering, University of Florida,
Gainesville, Florida

DORFLER, GERHARD, Analytisches Institut der
Universit8t Wein, Vienna, Austria

EBBESSON, SVEN O.E., Laboratory of Perinatal
Physiology, NINDB, Puerta de Tierra, Puerto
Rico

EICHNER, DIETRICH, Department of Anatomy, Univ-
ersity of Minster

ELIAS, HANS, Department of Anatomy, University
of Chicago Medical School, Chicago, Illinois

FISCHER, WOLFGANG, Frauenklinik, Universitaet
Hamburg, Hamburg, Germany

FISCHMEISTER, HELMUTT, Department of Metallurgy,
Chalmers University of Technology, Goteborg
S., Sweden

xi



FISHER, COLIN, Metals Research Limited, Cam-
bridge, England

FLINN, J.E., Argonne National Laboratory, Ar-
gonne, Illinois
FULLER, R. BUCKMINSTER, Carbondale, Illinois

GANDER, R.H., Wild-Heerbrugg, Heerbrugg, Switz-
erland

GIGER, HANS, University of Bern, Bern, Switzer-
land

GORENFLOT, ROBERT, Laboratoire de Biologie Veg-
etale Bt 490, Essone, France

GURLAND, JOSEPH, School of Engineering, Brown
University, Providence, Rhode Island

HAUG, HERBERT, Anatomisches Institut der Univ-
ersitaet Hamburg, Hamburg, Germany

HEGRE, ERLING S., Department of Anatomy, Med-
ical College of Virginia, Richmond, Virginia

HENNIG, AUGUST, Anatomisches Institut der Univ-
ersit8t Minchen, MlUnchen, Germany

HILLIARD, JOHN E., Department of Materials Sci-
ences, Institute of Technology, Northwestern
University, Evanston, Illinois

HIRES, CLARA S., Milstaire Laboratories, Mill-
burn, New Jersey

JANKE, HELMUT, Universit#dt G8ttingen, G8ttingen,
Germany

JEE, W.S.S., Department of Anatomy, University
of Utah, College of Medicine, Salt Lake City,
Utah

KOLODNY, STEVEN, Department of Anatomy, Chicago
Medical School, Chicago, Illinois

KRIEG, WENDELL, Northwestern University, Med-
ical School, Chicago, Illinois

KRONSBEIN, J., Department of Metallurgy, Univ-
ersity of Florida, Gainesville, Florida

LAZAROW, ARNOLD, Department of Anatomy, Univer-—
sity of Minnesota, Minneapolis, Minnesota

LEYDOLPH, WALTER K., Institute for Bio-Photo-
grammetry, G8ttingen, Germany

LOUD, ALDEN V., Department of Pathology, Colum-
bia University, New York, New York

xii



MARTINO, LUIGI, Instituto di Anatomia Umana Nor-
male della Universita, Bari, Italy

MERCKX, KENNETH R., Battelle Northwest, Richland,
Washington

MILLHOUSE, EDWARD W., Chicago Medical School,
Chicago, Illinois

MILLS, ROY, Department of Biological Sciences,
Lilly Hall of Life Sciences, Purdue Univer-
sity, Lafayette, Indiana

deMONTEBELLO, ROGER L., RLM Research Corporation,
Yonkers, New York

MOORE, GEORGE A., National Bureau of Standards,
Washington, D.C.

MORGENROTH, KONRAD M., Institute of Pathology,
Muenster, West Germany

MﬁLLER, GERHARD A., Department of Anatomy, Univ-
ersity of Mainz, Malnz, Germany

MYERS, EDWARD J., Air Force Institute of Tech-
nology, Wright-Patterson Air Force Base, Ohio

NICHOLSON, WESLEY L., Battelle Northwest, Rich-
land, Washington

OHTA, YOSHIKUNI, Department of Anatomy, Osaka
Dental College, Osaka, Japan

OSBORN, J.W., Department of Anatomy Guy's Hos-
pital Medical School, London Bridge, England

PEDLER, C.M.H., Department of Anatomy, Institute
of Opthalmology, London, England

PHILOFSKY, E.M., Department of Materials Science,
Northwestern University, Evanston, Illinois

POSTLETHWAIT, SAMUEL N., Department of Biologi-
cal Sciences, Lilly Hall of Life Sciences,
Purdue University, Lafayette, Indiana

PYSH, JOSEPH J., Department of Anatomy, North-
western University, Medical School, Chicago,
Illinois

RHINES, FREDERICK N., Department of Metallurgy,
College of Engineering, University of Florida,
Gainesville, Florida

ROSENOW, ULF F., Radiation Department, Univer-—
sit8ts Frauenklinik, GBttingen, Germany

ROSSI, FRANCO, Engis Equipment Company, Morton
Grove, Illinois

xiii



SALTIKOV, SARKIS A., Erevan, Armenia, USSR

SCHWARTZ, DAVID, Department of Anatomy, Chicago
Medical School, Chicago, Illinois

SEAMANS, S., Department of Anatomy, University
of Utah, College of Medicine, Salt Lake City,
Utah

SMITH, CYRIL S., Massachusetts Institute of
Technology, Cambridge, Massachusetts

STEELE, J.H., Department of Metallurgy, Univer-
sity of Florida, Gainesville, Florida

TARGONSKI, S., Jarrel-Ash Company, Waltham, Mas-
sachusetts

TANG, DOUGLAS B., Walter Reed Army Institute
of Research, Washington, D.C.

TILLY, R., Department of Anatomy, Institute of
Opthalmology, London, England

UNDERWOOD, ERVIN E., Lockheed Georgia Company,
Marietta, Georgia

WEIBEL, EWALD, Anatomisches Institut der Univ-
ersitaet, Bern, Switzerland

WERNICKE, ECKART H., Frauenklinik, Universitaet
Hamburg, Hamburg, Germany

WOLFF, JOACHIM R., Forschungsabteilung flir Elek-
tronenmikroskopie der Freien Universit#t,
Berlin, Germany

xiv



TABLE OF CONTENTS

New Officers

KeyNote Speakers

Preface

Apology

List of Contributors

Introduction: Problems of Stereology

OPENING SESSION

Structure in Space and its Appearance on Sections
EWALD R. WEIBEL

The Tetrahedron as a Unit of Volumetric Measure-—
ment
R. BUCKMINSTER FULLER

SPECIAL LECTURE

Sectioned Textures in the Decorative Arts
CYRIL STANLEY SMITH

GENERAL QUANTITATIVE STEREOLOGY

Quantitative Evaluation of Sectioned Material
ERVIN E. UNDERWOOD

Measurement of Extracellular Space in Developing
Rat Brain from Electron Micrographs
JOSEPH J. PYSH

A Stereological Method for Measuring the Specific
Surface Area of Metallic Powders
SARKIS A. SALTIKOV

Roentgen-Stereometry and Sectional Display of
Computed Three-dimensional Dose Distributions
in Radio-Therapy

ULF F. ROSENOW and WALTER K. LEYDOLPH

Morphometry of the Small Myelinated Fibres of
the Cortex Cerebri
HERBERT HAUG

Comparison of some Quantitative Studies of Trabe-
cular Bone

M.H. BARTLEY, JR., S. TARGONSKI, S. SEAMANS, and

W.S.S. JEE

Morphometrische Untersuchungen am Labyrinth der
Meerschweinchenplazenta
GERHARD A. MULLER

XV

ITT

VII
IX

15

27

33

49

61

63

65

66

68

70



Ultrastructural Equilibria in Liver Cell Cyto-
plasm
ALDEN V. LOUD

Serial Section Analysis of Grain Structures
J.H. STEELE, JR.

Surface Area and Length of Convolutions of the
Cerebral Cortex
HANS ELIAS, STEVEN KOLODNY and DAVID SCHWARTZ

Quantitative Measurements from Projected Images
ERVIN E. UNDERWOOD

SHAPE DETERMINATION

Formbestimmung von KOrpern aus ebenen Schnitten
AUGUST HENNIG

The Relationship Between Mean Surface Curvature
and the Stereologic Counting Measurements
R.T. DE HOFF

Interpretation and Misinterpretations of the
Microscopic Image
CLARA S. HIRES

A New Method for Measuring Strain Distribution
E.M. PHILOFSKY and J.E. FLINN

The Stereo Ultrastructure of the Corneal Sur-
faces in the "Stereoscan"
SIGURD BLUMCKE

Scanning Electron Microscopy Applications for

Microtopography
FRANCO ROSSIT

SAMPLING AND STATISTICAL ANALYSIS

Sampling of Material and Statistical Analysis
in Quantitative Stereology
R.T. DE HOFF

A Comparison of Sampling Procedures in a Struc-
tured Cell Population
SVEN O.E. EBBESSON and DOUGLAS B. TANG

Computer Analysis of Pancreatic Islet Tissue
FRANKLIN W. BRIESE and ANNA-MARY CARPENTER

Methodical Difficulties in Morphometry of the
Neuropil of Nervous Tissue
J.R. WOLFF

Xvi

72

74

77

79

83
95
106
110

112

114

119

131

133

135



STEREOSCOPY, PHOTOGRAMMETRY

A Method of Radiological Stereo-Orthometry
LUIGI MARTINO

Stereology and Biophotogrammetry
WALTER LEYDOLPH and ULF F. ROSENOW

The Stereoultrastructure of Natural and Artifi-
cial Surfaces of Biological Materials
KONRAD M. MORGENROTH

Cranioencephalic Stereo-Topometry
LUIGI MARTINO

AFTER DINNER TALK

Structure and Rotation of Barred and Spiral
Galaxies Interpreted by Methods of Hyperster-
eology (i.e. extrapolation from n- to (n+l)-
Dimensional Space)

HANS ELIAS

SIZE DETERMINATION

The Determination of the Size Distribution of
Particles in an Opaque Material from a Measure-
ment of the Size Distribution of their Sections

SARKIS A. SALTIKOV

Size Distribution of Particles Derived from the
Size Distribution of their Sections
GUENTER BACH

Size Distribution of Cubic Particles
EDWARD J. MYERS

Determination of the Beta Granule Mass in Pan-

creatic Islets using Linear Scanning Methods
ANNA-MARY CARPENTER and A. LAZAROW

Unfolding Particle Size Distributions
W.L. NICHOLSON and K.R. MERCKX

A Simple Formula for the Calculation of Spatial
Size Distributions from Data Found by Lineal
Analysis

G. BOCKSTIEGEL

The Direct Determination of the Number of Convex
Particles Per Unit Volume and the Moments of
Their Size Distribution by an Intercept Analysis
on a Section

J.E. HILLTIARD

xvii

139

141

143

145

149

163

174

187

189

191

193

195



NUMBER OF PARTICLES IN UNIT VOLUME

Number of Particles Per Unit Volume
HERBERT HAUG

The Calculation of the Mean Caliper Diameter of
a Body for Use in the Analysis of the Number of
Particles Per Unit Volume

J.E. HILLIARD

ANISOTROPY, ORIENTATION IN SPACE

Determination of Structural Anisotropy
J.E. HILLIARD

A Revised Table for the Rapid Determination of
the Orientation of Face-Centered Cubic Metals
from Octahedral Traces

RALPH H. ATKINSON

Sequence-Analysis, A New Method for the Quanti-
tative Determination of the Arrangement of
Phases in Opaque Samples

GERHARD DORFLER

TOPOLOGY AS RELATED TO STEREOLOGY

Measurement of Topological Parameters
F.N. RHINES

A Study of Contact and Contiguity of Dispersions
in Opaque Samples
J. GURLAND

The Topological Properties of Structural Compo-
nents
J. KRONSBEIN and J.H. STEELE, JR.

METHODS IN GENERAL

A System of Basic Stereologic Formulae
HANS GIGER

Graphische Methoden in der Stereologie
AUGUST HENNIG

AUTOMATIC MEASURING AND COUNTING
DEVICES AND INSTRUMENTATION

Automatic Measuring and Scanning Devices in
Stereology
HELLMUT F. FISCHMEISTER

xviii

199

211

219

228

231

235

250

252

257

259

263



A Semi~Automatic System for Stereologic Work in
Light and Electron Microscopy
EWALD R. WEIBEL

A System for Stereometric Analysis, Using the
Electron Microprobe
GERHARD DORFLER

A Computer-Linked, Scanning, Microspectrophoto-
meter Using the Two-Wavelength Method
D.E. ABRAHAMSON and A. LAZAROW

Application of Computers to Quantitative Analy-
sis of Microstructures
GEORGE A. MOORE

The Metals Research Image Analysing Computer
COLIN FISHER '

Rationalization in Direct Microscopical Measure-
ment
DIETRICH EICHNER

Morphometric Microscope with Automatic Sampling
Stage
R.H. GANDER

RECONSTRUCTION FROM SERIAL SECTIONS

Reconstruction from Serial Sections
WENDELL J.S. KRIEG

Glass Plate Reconstruction from Serial Sections
Used in the Study of Neonatal Biliary Atresia
YOSHIKUNI OHTA and EDWARD W. MILLHOUSE, JR.

The Technique of Polyplanetic Microscopy
HENRI COUDERC and ROBERT GORENFLOT

The Synthalyzer for Optical Reconstruction and
Dissection of Structures in Three Dimensions
ROGER LANNES DE MONTEBELLO

An Investigation into Human Enamel Structure by
an Optical Sectioning Technique
J.W. OSBORN

Three-Dimensional Reconstruction of Nervous
Tissue
C.M.H. PEDLER and R. TILLY

SERIAL SECTION CINEMATOGRAPHY

Topology and Serial Section Cinematography
Editor's Note

xix

275

277

279

281

285

287

289

293

302

304

306

308

310

315



Serial Section Cinematography
ERLING S. HEGRE 316

An Automated Device For Cinematography of se-
quential Microscope Sections
SAMUEL N. POSTLETHWAIT and ROY MILLS 323

DEMONSTRATIONS

Demonstration of the Relationship between Crys-
tal Orientation and Octahedral Traces
RATL.PH H. ATKINSON 327

Bio-Photogrammetry
WALTER LEYDOLPH, ULF F. ROSENOW, and HELMUT JANKE 328

Automatic Sampling Stage Microscope and Data
Print-Out Unit

EWALD R. WEIBEL 330
"Steroscan" Scanning Electron Microscope

FRANCO ROSSI 332
AUTHOR INDEX 335

XX



INTRODUCTION:
PROBLEMS OF STEREOLOGY

HANs EL1as
Department of Anatomy, Chicago Medical School, Chicago, Lllinoss

Stereology is three-dimensional interpretation of flat images or ex~
trapolation from two to three-dimensional space.

Such extrapolation is often necessary because many materials or or-
ganisms which we study are opaque or complex in their internal struc-
ture. The best method by which the composition of such objects can
be studied without distortion or rearrangement of parts is sectioning.
If the object is entirely opaque such as a metal, a section through it
after it is polished is a true mathematical plane. Biological andgeo-
logical objects are translucent to various degrees; and "sections"
through them are, as a rule, slices of finite thickness. In both cases,
the image to be analysed results from uniaxial viewing and therefore
is, in essence, two-dimensional.

Heavenly objects present themselves as projections on the inner sur-
face of a sphere circumscribed around the observer, and, in practice,
are studied on two-dimensional photographs.

In all these cases the structures about whose three dimensional pro-
perties we desire to gain information are inaccessible to direct man-
ipulation, inspection or measurement,

It is the function of stereology to analyse these two dimensional im-
ages and to draw from them conclusions concerning the properties of
the structures in space. The chief methods of stereology are statistico-
geometrical; and they are applicable to the analysis of structures of
similar shape numerously present in a specimen. In order to be tract-
able by mathematical stereology the structures under investigation
should be randomly arranged in space; or it should be possible to
create random distribution by proper methods of sampling.

When only a single specimen of a structure is present or when this
structure is complicated in shape mathematical methods will no long-
er be applicable. Reconstruction from serial sections and serial sec-
tion cinematography will be preferred methods in such cases.



The basic problems and concepts of stereology shall now be enume-
rated. Their sequence in this introduction is not the same as the
sequence of their presentation during the Congress. But in the main
body of the volume all papers are printed in their original succession
so that the readers can gain an insight into the actual organization
of the Congress.

Before beginning to enumerate the basic problems of stereology, the
editor wishes to apologize for the fact that he must select examples
from the realm of his personal experience, that is from microscopic
anatomy and from a field in which he is but an amateur, namely
astronomy. Readers from other disciplines will be able to find ex-
amples from their own fields of endeavor.

Stereology as a formal science is very young; so is the word "stereo-
logy"; but it has been practiced by a few investigators in isolation
for more than a century. The following brief history of the Inter-
national Society for Stereology is reprinted from the Congress Pro-
gram.

By a chance meeting on a pleasure boat sailing around Manhattan
Island, one American and one European who were attending the
International Congress of Anatomists in New York, 1960, discovered,
during their conversation, that both were using statistico-geometrical
methods to obtain information on three-dimensional structure from
sections. They decided to call a gathering of persons interested in
three-dimensional interpretation of flat images. An announcement
in a few journals brought 11 scientists together on the Feldberg
Mountain in the Black Forest 11-12 May, 1961. The word stereoclogy
was then coined and the International Society for Stereology was
founded and incorporated as a non-profit organization in Neustadt,
Schwarzwald.

The Society was subsequently incorporated as a non-profit organiza-

tion in Stuttgart, 1962; Vienna, 1963; and Deerfield, Illinois, 1964,



1. SHAPE AND NUMBER

Shape, often contemptuously considered a merely qualitative property
and hence not worthy of a scientists attention, may be of great
functional importance. Let us think of the difference betweena fiber
and a membrane. Let the fiber be represented by a rope attached to
the ceiling and to the floor of a room. You can walk around it and
hold on to it for support. The membrane may be represented by ¢ sheet
attached to ceiling, walls and floor of a room. This sheet can divide
the room into two parts, fully separated from one another, while the
rope cannot divide it. In certain "sections", a fiber may not be dis-
tinguishable fromthe trace of a membrane.

In a single section, a follicle (closed bag) may not be distinguishable
from an alveolus (hollow ball open on one side) or from a tubule.

Yet these three shapes are functionally very different from each other:
A follicle is closed on all sides. Only by diffusuion or active trans-
port can substances pass from ifs interior fo the outside. An alveolus,
however, opens into a duct; and its contents can flow away freely.

A tubule, also open, offers its lining epithelium (wall made of cells)
an opportunity to act upon the content while the content slowly
streams from the dead end to the opening.

Thus we see that shape is physiologically as important as size and
number.

Also in certain materials, the shape of particles contained in them
has great bearing on their strength. Bone would be brittle did it not
contain long fibers of organic material which add toughness to hard-
ness. Or let us consider plaster of Paris. If a plaster model is ex-
pected to be exposed to frequent impacts, jute or hemp fibers are
often mixed into the plaster. It is chiefly the shape of these fibers,
i.e. the great ratio of length to thickness which imparts strength to
the material in both cases.

Stereology offers means for the determination of the shape of particles,
if only all particles are similar in shape. In nature, this condition is
usually fulfilled. Any human organ must necessarily be composed of
similar parts; for only parts which resemble each other can function
harmoniously together.

In rocks, composed of different minerals, the particles are similar in
size and shape because they all originated simultaneously under ident-
ical conditions. The same holds true for many artifical mixtures such
as alloys.



When metal tubing is drawn, the grains within the wall of the tube
are subjected to mechanical stresses which impart an anisodiametric
shape to them. And this shape has, in turn,a bearing on the strength
of the tube (see the paper by Philofsky and Flinn).

By classifying the profiles of the cut particles by their axial ratios

Q = Vlv ( Length / Width )

their shape can easily be determined (see Dr. August Hennig's key-
note lecture).

If, in spite of what we just said about the importance of shape for
physiological efficiency and for the strength of materials, a reader
may still persist in not being interested in shape, | will point out
that even if we were interested only in the number of particles per
unit volume, it would still be necessary to determine the shape of the
particles before their number can be determined.

For the generally used formula for N, , i.e., the number of particles
per unit volume,contains a number D, which is the average diameter
if the particles are spherical. But if the particles are anisodiametric,
D is the "average caliper diameter” or the average distance between
tangent planes, also known as altitude, a figure which can be cal-
culated only after the range of particle shape is known. {pp 211-2I5!)

Determination of curvature of surfaces from random sections is a pro-

blem of shape. This has been attacked for the first time by Dr.
DeHoff.

Solids having or approximating the shapes of ellipsoids, both rotatory
(prolate and oblate) and tri-axial, are very common in nature. A-
mong them are nuclei of various kinds of cells, the glomeruli (filter-
ing units) of the kidney, certain extragalactic nebulae ete. Sections
through them or projections of them are ellipses. If all the objects
under investigations are of equal shape and randomly arranged in
space, distribution curves for the axial ratios of these profiles canbe
given for any specific ellipsoid, disk or cylinder (see Dr. Hennig's
key-note address).

In nature we seldom have identical shapes. But we have ranges of
shapes.

The so called elliptical nebulae,for example,range in shape from
spheres to prolate ellipsoids. An individual image of such a nebula
can not yield information on its shape, except when the nebula is
seen in exact profile (when the earth is located in its equatorial
plane). But statistical analysis of the distribution of axial ratios of

4



projected images of hundreds of these objects has revealed the fact
that they have the above mentioned range of shape. In this case,
Hubble interpreted this range as indicating an evolutionary process,
the spherical nebulae thought to be younger, the flat lenses thought
to be older.

In the case of chondrocytes (cartilage cells) the reverse would seem
to be true: flat, lenticular cells being young, spherical ones older.

In practice, one plots a curve from observed values; and one can as-
sume a range of shapes to exist in space between the two standard
curves which delimit the area in which the experimental points are
scattered.

We have emphasized the problem of shape out of proportion to its
prominence during the Congress simply because its importance is
frequently overlooked.

2. VOLUME

Volumes and volume fractions are parameters most easily handled by
the most primitive stereological method,namely by counting pointsofa
grid superimposed upon the image. The ratio of the number of points
which "hit" the various component phases in a specimen equals their
volume ratio.

3. SIZE

The diameter of a sectional circle through a spherical particle depends
on the distance of the cut from the center of the particle. If all
particles were of the same size, thediameters of approximately 13%
of sectional circles would be smaller than the radius of the spherical
particles, about 87% would be larger. If one finds this size distribu-
tion in a section through a sample, equality of size of particles in
space is assured, except that the "small" circles are in practice less
numerous than 13%, because they may fall out of the slice or are too
thin to be recognizable.

If "small" circles are present in excess of 13%, a range of sizes of
spherical particles must exist in space. In practice, one places sec-
tional circles into size classes and attempts to compute from the dis-
tributions thus obtained, the size distribution of spheres in space. A
pioneer in this field is A. S. Saltykov who, unfortunately, was unable
to attend the Congress, but whose key-note address was read by Dr.
Hilliard. This time he offered a new approach, namely classification
of circles by area rather than diameter. In spite of many efforts, the



determination of size ranges is still offering great difficulties.

Since size determination is so important, a second key-note lecture
was devoted to it: Dr. Bach presented an analytical approach to this
problem, previously attacked by most investigators by simple algeb-
raic procedures.

The difficulties increase when the particles are not spherical and
become very great indeed when they possess concave facets.

4. SURFACE AREA

The importance, from the standpoint of physics and biology, of deter-
mining the area of interphases between components of a specimen or
of the external surface area of objects is so obvious that it does not
need to be stressed. Stereologically the process of area determination
is extremely simple. It can be done by counting points of intersection
with test lines of given length.

5. LENGTH

It is often interesting to learn how long a tube or a fiber is of which
only sections can be seen in slides. For example, the total length of
the nephron, the combined length of the seminiferous tubules or the
combined length of capillaries in a bulky organ may present a pro-
blem of physiologic interest. In former times, such problems were
studied by maceration and teasing out of the long objects, stretching
them out on a glass plate and measuring them with a yardstick. This
method presents, often unsurmountable, technical obstacles. However,
using the technique of Alexander the Great, the histologist, instead
of untying the Gordian knot, cuts it. Counting the number of inter-
sected elements per unit area, he very easily obtains reliable results.

In mineralogy, metallurgy, cytology and crystallography, the total
edge length along the edges of the polyhedral elements is of interest.

An extremely interesting example was presented by Dr. Haug who
showed that the combined length of myelinated nerve fibers in the
cortex of the brain is 152 M/mm3. And these are just the myelinated
fibers which conduct impulses over long distances. They constitute
only a fraction of the totel fiber length in gray matter.



6. ANISOTROPY

When a sample contains anisodiametrical particles, they frequently
are arranged so that their long axes (if they are prolate) or their
short axes (if they are oblate) or both (if they are triaxial) have pre-
ferred orientations. Dr. Hilliard, in a key-note speech, gave alucid
explanation on the determination of preferred directions and of the
degree of dominance of the preferred orientation over randomness.

7. SAMPLING

Basic stereological procedures begin with the assumption of random
arrangement of parts within a sample. But if anisotropy exists in an
object or if there is a gradient of structure within it, the stereologist
must treat his object of study with greatest care. Several examples
were presented during the Congress where parts exhibited preferred
orientation; or where particles were present in various regional con-
densations or layers. Two similar examples from micro-anatomy shall
be cited: In the cortex of the brain, there exist cells of various
sizes. These are arranged in hazily defined layers with almost cell
free layers between. In each such layer a certain size class prevails.
As far as the nerve fibers are concerned, they have strongly prefer-
ential orientations.

The kidney possesses strong anisotropy: Collecting tubules and "loop"
tubules run parallel within bundles, and these bundles themselves

are curved with great regularity. The "convoluted" tubules are ir-
regularly arranged, yet exhibit a slight but noticeable,preferred
orientation. The glomeruli are located in the cortex of the kidney
in broad, very loosely defined layers, which layers gradually blend
with zones free of glomeruli. In addition, there is a gradient of size,
smaller glomeruli prevailing toward the outside of the organ and
larger ones being dominant more centrally,

Dr. DeHoff's key-note paper summarized masterfully,methods by
which such difficulties of density and size gradients as well as di-

rectional anisotropy can be controlled.

8. TOPOLOGY

It is less easy, by the ordinary stereological procedures of measuring
and counting, to investigate topological properties of a specimen,
although questions of connectivity, continuity, contiguity, separation
and the topological genus of a structure are vitally important to those
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interested in structure. Some beginning has been made in quantita-
tive stereology for the determination, from random sections, on the
probability of hollow balls to be open into one another and on the
probabity of contact between spherical particles. But this work, very

recently published in Mikroskopie (21:32-36, 1966) was not presented
at the Congress.

Dr. Rhines gave the audience a comprehensive view of topology and
stated the strong interrelationships of the two fields in a key-note
address.

9. SERIAL SECTION CINEMATOGRAPHY

The topological properties of an object can be revealed most success-
fully by serial section cinematography, a technique which involves
photography of the exposed, cut surface of a specimen on successive
frames of a motion picture film, while the slices, cut away by a mic-
rotome, are discarded. Dr. Hegre's and Dr. Postlethwait's presenta-
tions demonstrated these possibilities beautifully. Since successive
levels of a specimen differ in outline and position from each other,
the impression of motion is often created on the flat screen, while in
three-dimensional space, the specimen is motionless. This effect of
apparent motion when viewing successive levels of sectioning through
a stationary solid was utilized by Elias in an attempt to explain the
rigid rotation of barred and spiral nebulae assumming the universe to
be a hypersphere expanding within a four-dimensional space and
sectioning, as it expands, successive levels of certain hypersolids
which control the shapes, from moment to moment,of observable gal-
axies. These therefore appear to rotate when observed from a merely
three-dimensional view point.

10. RECONSTRUCTION FROM SERIAL SECTIONS

When an object exists in the singular only or if its internal structure
is very complex, it is intractable by quantitative stereology. In such
cases the very old method of disassembling it into serial sections and
putting them together again with internal detail reveiled and mag-
nified is still the best procedure available today. Dr. Krieg gave a
excellent review of the principles and history of this indispensible
technique.

11. STEREOSCOPY AND PHOTOGRAMMETRY

Biaxial viewing and parallax often give direct information on the
three-dimensional properties of solids. These techniques are particul-
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arly useful for the study of surface sculpture and for the measurement
of specific, individual structures. Several papers and instruments
were presented on this aspect of stereology.

12. INSTRUMENTATION

Quantitative stereology depends on the collection of very numerous
data. It is therefore natural that one attempts to devise instruments

which can take some of the tedium out of stereological work. Auto-
matic scanning and counting devices, the former often depending on

photometry and spectrophotometry, the latter linked with computers

were presented.

Another aim of instrumentation is to eliminate human bias from sam-
pling. The unbiased selection of test areas in microscopic fields has
presented, in the past, great difficulties; these observational fields
can be randomized and their selection made independent of human
choice. Three types of mechanical stage, two motor driven and one
to be advancedby hand, but over pre-set distances were demonstrated.

Finally, it was pointed out that only in cases where great optical
contrast exists in a specimen, or where it can be created by differ-
ential staining or etching can a fully automatic scanning device be
used. [t is especially with biological objects (though not all) that
an experienced human observer is indispensible, a person able to re-
cognize and to identify structures. For among many biological ob-
jects, such as different kinds of cells the differences are as delicate
as the differences between the faces of two brothers; and only living
persons who have seen such objects thousands of times can identify
them,

But for these living persons it is still easier to push buttons than to
record events in writing.

13. TERMINOLOGY, SYMBOLISM AND NOMENCLATURE

There has been proposed, a few years ago by a group of our members,
notably by Dr. Rhines and Dr. De Hoff, a system of symbols for temp-
orary use in stereology. To their list, a few new terms and express-
ions have been added. This preliminary symbolism was sent to Con-
gress participants in advance of the Congress in order to acchieve a
certain degree of uniformity and mutual understanding.

During the Congress several proposals for alterations and expansion
of the system were proposed; but action on them has been deferred.

To facilitate reading of this volume, the old preliminary list of ex-
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pressions, definitions and symbols is given below:

Morphometry. Measurement of structure. This science deals with the
dimensions of real, three-dimensional objects regardless of the method
by which the measurements have been obtained. It is the end-result
of quantitative investigation of structure.

Stereology. A system of methods to obtain information about three-
dimensional structure from two-dimensional images, be they sections
or projections. Stereological methods are statistico-geometrical pro-
cedures, reconstruction from serial sections, serial section cinemato-
graphy and related techniques. Stereology can lead to morphometric
results. It can also give information on three-dimensional shape and
orientation of objects in space.

TERMS:

section = cut or polished surface of an opaque object

slice = a histological or mineralogical "section" of finite
thickness through a transiucent object

profile = section through an individual component of a material

trace = section of a two-dimensional structure, such as a

membrane, a surface or an interface. This section
would appear as a line

intercept = length of that segment of a testline which coincides
with the area of a profile

intersection = point of crossing of a test line with a trace
axial ratio = quotient of length over width of a profile

MEASURED AND COUNTED QUANTITIES IN SECTIONS:

Pp = number of points falling on profiles of a component divided
by total number of test points

P = average number of intersections per length of test line

N A = average number of profiles per test area

Ly = average length of intercept per length of test line

Q = axial ratio of profile

d = diameter of profile (average distance between parallel tan-

gent lines)
QUANTITIES IN SPACE

VV = volume fraction of a component
Sy = surface area per unit volume
Ly = length of linear structure per unit volume
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T = thickness of a sheet in space
t = thickness of slice or average distance between cutting planes

D = average distance between parallel tangent planes (diameter)
of an individual pebble, corpuscle, follicle, grain etc.

List of retired officers who were in office until April 11, 1967:

President: Hans Elias, Chicago, Illinois, USA

Vice President: Herbert Haug, Hamburg, Germany

Secretary: Ewald R. Weibel, Bern, Switzerland
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STRUCTURE IN SPACE AND ITS APPEARANCE
ON SECTIONS

EwALD R. WEIBEL

Department of Anatomy, University of Bern, Bern

Space in its most general sense means an indefinite
frame within which an indefinite number of events
can happen at any indefinite place. But with the
terms "event" and "place" we have already introdu-
ced the need for somehow limiting this indefinite
space. For, as scientists investigating specific
events we wish to focus on them; that is, we wish
to define their time and place, their expanse and
confinement, their course and interaction. We will
thus be mostly studying events taking place in some
specifiable compartment of space.

Structures, on the other hand, are discrete porti-
ons of space, which are set off from their sur-~
roundings by some specified and differing proper-
ties. They are thus compartments of space, and if
properly defined, may be those compartments which
we demanded above for a characterization of events
taking place in space.

By what criteria can we define structures, or com-
partments of space? Since "structures" in this
sense are discrete objects they can first be defi-
ned by their dimensions; in a most general sense
by their content or volume, by their surface or
boundary with adjacent spaces or by linear dimen-
sions; furthermore by their shape, by their connec-
tivity or topological properties (Fig. 1).

These are characteristics of individual structures.
We are, however, mostly dealing with aggregates of
structures, i.e. with compounded compartments which
make up a structural system, and here we must con-
sider some general characteristics of the mode and
degree of association of elements.

The dimensional properties of aggregates are con-
viently defined by the densities of the various
structures. With respect to the degree of associ-
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ation of compounded com-
partments we may have to
distinguish between conti-
nuous, conjoint, and dis-
joint compartments (Fig.l).
Continuous compartments
conuncrion  are only seemingly separa-
ted, since it is possible
to move from any internal
point to any other point
without crossing the boun-
DISJUNCTION dary. Conjoint compart-
ments are separate but
have common boundaries,
while disjoint compart-
ments remain separated by
some intermediate struc-
ture. It may often be a
matter of functional de-
finition, or of resolution
of the optical system,
whether a given complex
must be regarded as conjoint or disjoint.

CONTINUITY

- | (CONNECTIVITY 1)

) connecTIVITY 9

Fig. 1: Association
of structures

This may be illustrated by a few examples taken
from biology. In the lung, e.g., all 300 million
alveoli are continuous structures, since they are
all simple evaginations of one continuous airway
system (Fig.2). Likewise, the interior of all blood
vessels, is continuous (Fig.3). However, while the
airway system is a simple topological structure of
connectivity 1, the blood vessels form a threedi-
mensional network of connectivity of the order

of 1011,

Airways and blood vessels are disjoint compartments
since they remain separated by a continuous tissue
layer (Fig.4). On the other hand air and tissue,

as well as tissue and blood are in direct contact
and may thus be defined as conjoint.

As further example, the numerous branches and sy-
naptic bulbs of one unit of the nervous system,

the neuron, are continuous with their nerve cell
and with each other, although some nerve fibres may
be up to one meter long. Demonstration of this con-
tinuity is one of the most difficult and most im-
portant problems in biologic morphology. The ner-
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Fig. 2: Lung section; air spaces (alveoli A)
appear separate but are continuous.

Fig. 3: Lung capillary network

Fig. 4: Electron micrograph of tissue barrier
separating air and blood in lung.
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vous system of man consists of millions of neurons
each with hundreds of branches, and its proper
functioning depends on correct conjunction of

some neurons, and disjunction of others.

Role of compartmentalization of organisms

At this point it may be appropriate to ask why
space needs to be compartmentalized. Here, of
course, I will put forth arguments from my own
field of biology, arguments which may not hold true
for the inorganic sciences.

A biological organism is a dynamic and vastly self-
sufficient system which can keep up its activity,
can grow, repair damages, and communicate with
the external world, as long as some rather simple
environmental conditions are fulfilled. This re-
quires very complex functions, which must be highe
ly coordinated. And this is achieved by segrega-
tion of specific partial functions into separate
compartments which are associated with other com-
partments to form highly polarized systems. Esta-
blishment of polarities is thus the essential re-
sult of compartmentalization of biological orga-
nisms. Maintenance of this high degree of spatial
order is one of the fundamental requirements for
maintenance of life. In all ranges of magnitude
partial functions are segregated into separate
compartments and then re-associated according to
specific schemes. For the morphologist, the bio-
logical organism is thus a compartmentalized space
or an aggregate of associated structures. It is
thus one of the systems which we may subject to
stereologic analysis.

It is clear to everyone in this audience that
such complex structural systems as biologic orga-
nisms must be opened by some method for analysis
of inner construction. Among the various methods
available, sectioning is the preferred method
when material is to be studied microscopically,
for it provides good lateral resolution.

Definition of "section!

Let us now try to arrive at a good and general
definition of what a section is, so that we may
derive some likewise general features of traces
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, of structures on sec-~
tions (Fig. 5). Our com-
mon understanding of the
term "section" implies

a solid being cut open,
in other words, a plane
or 2-dimensional space
intersecting with a so-~
1id or 3-dimensional
space, A "section'" might
thus be redefined as the
intersection between two
Fig. 5: Sectioning spaces.

3-section

‘0-section

With this general definition it is obvious that
we may distinguish several degrees of sectioning.
Looking at solid structures we may obtain three-
dimensional sections or slices if the space inter-
secting the solid is itself 3-dimensional. We may
obtain a 2-dimensional section - a true section -
if a plane or 2~-space intersects the solid, or we
may obtain a l-dimensional section, if a line or
l-space intersects the solid. In further reduc-
tion of this scheme we may even consider a point
or a set of points as forming a O-dimensional sec—~
tion with the solid, if the points or O-spaces

are introduced into the solid from outside.

To illustrate this concept we must briefly look

at the procedure by which we generate a section
(Fig. 5). Following the common understanding we
consider a section to be the trace left by the
edge of a microtome knife pushed through the tis-
sue along a straight line course more or less per-
pendicular to the knife edge. The section thus is
a plane, since the knife edge itself is a straight
line too. To obtain a histological section a se-
cond identical operation is necessary: the knife
edge is lowered by a certain small distance and
again pushed through the tissue. If we would have
the means to perform both cuts simultaneousely

the two parallel knife edges would be the edges

of a narrow plane strip which is pushed through
the tissue along a normal to this plane, thus ge-
nerating a 3-dimensional section or slice.

But what is the knife edge or line? Nothing else
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than an infinite number of points linearly arran-
ged. If we now pick out a discrete number of points
and slide them through the tissue we obtain what

we have defined as a l-dimensional section. And if,
instead of continuously sliding them through the
tissue, we let them jump by discrete intervals we
deposit a set of points inside the tissue and ob-
tain a O-dimensional section.

What have we done? We have sent some probes into
the tissue and these probes have picked out some
sample of the interior, on which we hope to gain
insight into the internal construction of the
tissue. And we may have chosen the dimension of
our probe for convenience.

Interaction of "section" and "structure"

Let us assume that a cube of tissue contains one
solid structure, characterised by its content or
volume V and by its surface S; one lineal element;
and a number of point objects (Fig. 6).

Fig., 6: Effect of sectioning on structures

A 3-section cuts out a volume and a strip of sur-
face of the solid, a stretch of the lineal ele~
ment and may also contain one of the point objects.
The dimensions of the traces of these structures
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in this slice are preserved. In a 2-section, how~
ever, the dimensions of corresponding traces have
been reduced by 1 : volumes become areas, surfa-
ces lines and lines points; but point objects can-
not be represented on a 2-section; they are lost.
Linear probes or l~sections provide traces of
structures, whose dimensions are reduced by 2 :
point objects and lineal elements are lost.

And finally, point lattices
or O-sections are only able
to reflect volumes, while
surfaces, lineal elements
and point objects are lost.
3121140 With every step of dimensio-
nal reduction of sections
one degree of information is
/// lost (Table I).

TABLE T

do —

This can be summarised in
dt general form. Let the di-

mension of the object be dg

and that of the section or
probe dp, then the dimension of traces of the ob-
jects on these sections is

dt=do+dp—3¢

And since the dimension of the trace can never be
smaller than 0, it follows immediately that

d +d = 3.
P

OlHFIN W
OjHF|N W
Sl

o
should a structure not be lost.

These rules apply specifically to 3-dimensional
systems, that is to objects contained in 3-space.
These rules can, however, be generalized to apply
to any system of dimension dg : We find

dt = d0 + dp - dS

d +d=4d
p

o] S

to be the general relations between dimensions of
system, objects, probe and trace.

We may draw a few conclusions from these conside=-
rations. One of them, perhaps the most important,
relates to the impossibility of particle counting
on sections of lower dimension than dg. When coun-
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ting or enumerating structures we regard them as
dimensionless objects; we are mentally compressing
each structure into one point, say its center of
gravity. And it has been clearly demonstrated that
point objects (do = 0) are only represented in sec-
tions of dimension dg, but lost in any section of
lower order.

The second conclusion relates to the convenience

of stereologic work and its dependence on the di-
mension of the probe used for "measuring" objects.
The process of "measuring" is basically a compa-
rison of the objects with a basic unit which is
defined by independent means. Usually we will tend
to obtain a fraction of the standard unit small
enough that it is contained a large number of times
in the object, and we will count the number of
units we can fit into the objects. In the last
analysis our "measuring" will thus always be a
procedure of enumeration of units or points. We
conclude from this that we attain the highest de-
gree of operational convenience when we can reduce -
the traces of objects on "sections" to points,

that is when

dt = 0.

And this condition can be reached when
d +d =d .
o P s

Shape and topological properties

We now have to discuss the effect of sectioning on
those characteristics of structures which deter-
mine shape and topological properties, as well as
to the functionally most important problem of ana-
lysing the degree of association between compart-
ments. These aspects must be treated together,
since seemingly separate compartments may in re-
ality be either continuous of varying order of con-
nectivity, or may be conjoint, or even disjoint.
So,evidently, association, shape, and topological
features are closely related properties of struc-
tures,

As a general rule we can state that any degree of
sectioning introduces uncertainty into the analy-
sis of association. Relatively thin 3-sections and
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2-sections destroy or mask continuity of all struc-
tures that are not simple convex bodies. As an ex-
ample take the intestine of a fetus, which is a
single coiled cylindrical tube (Fige. 7). A trans-
verse section of the abdomen presents about a
dozen sections of intestinal loops (Fig. 8). Who
will dare to state that these traces derive from
one continuous structure without knowing it from
other independent sources of information? In an
electron micrograph of an endothelial cell (Fig.
9) one may observe a group of elliptic sections

of a peculiar organelle. It is cylindrical and
apparently rather long. But are we here looking

at traces of a single coiled long structure or at
sections of many short rods? It cannot be decided
from a single section. Sections of brain tissue
show billions of disconnected bits of nerve fib-
res; how many of them belong to one and the same
neuron? This is one of the most difficult pro-
blems of biology.

Study of component association on sections

Let us examine the possibility of studying on
sections the degree of association between dis-
continuous compartments; we had distinguished bet-
ween conjunction and disjunction. 3-sections may
often show an erroneous conjunction of structures
due to overlap. In a 2-section as well as in a
l-section conjunction can be unambiguously deter-
mined; it is usually characterized as a direct
phase transition. To gain insight into the mode
and the properties of a conjunction it is neces-
sary to section it. The type of synapses between
two nerve cells in the brain can thus be deter-
mined.

This is an interesting statement which raises a
few questions. A conjunction is a 2-dimensional
feature and we appear to be able to analyse it
only on l-dimensional traces. Shape and connecti-
vity are 3~dimensional features, and we can only
study them by looking at the surface of the unda-
maged body, that is by studying a 2-dimensional
trace. There may perhaps be a general principle
at the basis of these remarks.

The observation of discontinuous traces on sec-
23



Fig. 7 and 8: Intestinal loops (7) of human embryo
appear as multiple discontinuous traces on sec-~

Fig. 9: Electron micrograph of endothelial cell
of blood vessel. Are the traces of organelles
(arrows) continuous or discontinuous?
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tions does not preclude conjunction or even con-
tinuity of the two compartments in other regions
of the tissue. It is important to stress that, in
biology, functionally highly significant conjunc-
tions may occupy only a very small fraction of
the structural surface. It is therefore easy to
miss them in section analysis.

If we finally consider the value of O-sections

or point lattices in the study of association of
compartments, it is evident that they cannot fur-
nish any information at all. Association of com-
partments presupposes as a necessary condition
continuity of space points. To study properties
of this continuous point set a sample is required
which is itself continuous at least in one di-
mension. But O-sections, as we have defined them,
are discontinuous in all directions.

Orientation of structures

Last, but not least, we must give brief conside-
ration to one additional feature of associated
structures, namely to that of orientation. We had
remarked that the biological significance of com-
partmentalization of space was a segregation of
related functions to specific compartments. This
also implies that functionally related compart-
ments or structures must be topically related,
and this often leads to preferential orientation
of equivalent structures. Such anisotropic systems
yield misleading traces on sections, so that pro-
per care must be taken to determine anisotropy
and to orient sections accordingly.

Summary and Conclusions

We have defined structures as discrete homogenous
compartments of space, whereby homogeneity must
be naturally defined in relation to the specific
condition investigated. These structures are as-
sociated to form a compactly aggregated organized
system, which is space-~filling. By aggregation,
however, deep structures are hidden and must be
made accessible for direct investigation by some
destructive method; this is umnavoidable.

Sections, in the stereologic sense, are samples
of such aggregated systems obtained by some well-
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controlled procedure which is essentially inde-
pendent of the structures in the system. According
to the definition used here, sections may be 3-,
2-~, 1- or O-dimensional.

When sections ineract with the system, the struc-
tures leave traces on the section, and by proper
choice of the sectioning procedure it is possible
to control the dimension of traces so as to attain
highest possible operational convenience in stere-
ologic work.

However, with each degree of sectioning one order
of information is sacrificed, and we are thus fa-
ced with a serious dilemma: In aggregated systems,
the degree of association of compartments can only
be investigated on sections: the compartments must
be opened if we want to determine whether they are
continuous or conjoint. Looking at the compartments
from outside gives us no information on whether
they may be internally continuous. But by the very
process of sectioning we destroy continuity; we ’
may find disjunction where highly significant con-
junction is present at another level. How can we
overcome the great difficulties arising from the
necessity of analysing internal relations on sec-
tions, while these sections destroy precisely the
relations sought? They cannot be overcome direct-
ly. However, we must remain aware that section
analysis, true stereology, is an extremely power-
ful tool, but that it cannot furnish all infor-
mation necessary for a full definition of closed
functional systems. Stereologic information must
needs be supplemented by information derived from
other independent methods. This will allow us to
approach truth and reality step by step.
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THE TETRAHEDRON AS A UNIT OF
VOLUMETRIC MEASUREMENT

R. BUCKMINSTER FULLER

Department of Architecture, Southern lllinois University, Carbondale, Illinois

(Professor Fuller did not submit a manuscript for his two-hour lecture
originally entitled FUNDAMENTAL STRUCTURING. The editor
took notes and is herewith presenting a very brief version of the
part of Professor Fuller's talk which he considers of greatest in-
terest to stereologists.)

Universities have departments of various subjects. But nature is not
departmentalized. It is one. Therefore, a congress such as the pre-
sent is of great significance, since scientists are coming together
here to discuss one common aspect of nature, namely structure.

When the sides of a polygon are considered as rigid rods and the
corners as flexible joints, then the triangle is the only stable
polygon in a plane. Similarly the tetrahedron is the only stable
polyhedron in space. Professor Fuller demonstrates these basic facts
by using rods which he can hold together by means of rubber
joints. He constructs a quadrilateral figure and deforms it at will,
and shows that it can be bent even out of a plane. Then he con-
structs a cube out of 12 sticks; and it collapses. But the tetrahedron
constructed of 6 rods is stable.

The tetrahedron has other, interesting properties. One of them is
that it could, conveniently, serve as a unit of measurement for
volumes. Customarily, volumes are measured by multiples of cubes.
They could also be measured by multiples ot tetrahedra.

We may begin with the two-dimensional analogue, comparing
"squaring” with "triangling" as shown in figure 1.
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How this process can be extended to three-dimensional space is
shown in figure 2. Instead of "cubing” we perform "tetrahedron-

ing".
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FIGURE 2.

If this process is carried to higher and higher numbers and to more
complex polyhedra, interesting numerical relationships develop.
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SECTIONED TEXTURES IN THE DECORATIVE ARTS

CYRIL STANLEY SMITH
Massachusetts Institute of Technology, Cambridge, Massachusetts

Although the quantitative interpretation of three=-
dimensional structures from two~dimensional sections is
recent, the use of such sections in understanding matter
and in enjoying it is old. The first action of a curious
person in studying a stone or a stick or a piece of metal
is to break it in two. Yet fracture is not a section, and
the structural science of materials did not begin until the
artisards fracture test was replaced by Sorby's careful pol-
ished sections which presented the structure without dis=~
tortion, though accepting the differences between a plane
section and three-~dimensional reality.

It is no accident that the first stereological analysis
of any kind (done by Delesse in 1848) was on stone . Cut
and polished rocks == fossils in limestone, pebbles in con-
glomerates, large crystals in a porphyry, granite or basalt,
and varicolored veins in marble =-- all these, sectioned,
provided decorative detail to be enjoyed in Roman times and
much earlier. The finer detail of polished opal, agate or
other gemstones had been admired for millennia, and three-
dimensional variation in stone was exploited in carving
cameos. In East Asia the subtle relationship between sur-
face and substance in jade invokes profound, almost reli-
gious, admiration. Sculptors everywhere have sought to find
the texture of their stone or wood and relate it +to the
shapes of their vision, and even the humble carpenter takes
pride in the beauty of the grain disclosed by his plane.

A1l art involves abstraction of some kind, and just as
two~dimensional paintings or drawings suggest multi-dimen=-
sional images so also do decorative sections of solid mate=-
rials owe some of their aesthetic qualities to the hint that
they convey of a three~dimensional reality. The viewer may
not always be conscious of this, but the creating artist can
hardly help but be.

The main skills required in +the use of natural mate-
rials lie in the selection of the mass and the orientation
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of the surfaces for the desired effect. In stone,orienta-
tion may be of minor importance (though super-patterns are
regularly produced by mounting adjacent slices of stone to=-
gether to give an artificial symmetry based on the near repe=-
tition of some feature), but in wood much of the beauty comes
from the relation between the directionality in the material
itself and the cut surface. The Chinese have exploited the
simplicity of the grain of bamboo to marvellous effect (Fig.
1), but most uses of wood grain depend on its irregularity.
The natural surface of a debarked log has knots and other
distortions from a true cylinder and is totally unlike the
sectioned grain seen on the geometrical surfaces produced by
planing or especially by turning. Sheets of veneer are
sliced spirally with the surface nearly concentric with the
growth rings in the tree so that irregularities are inter-
sected at a small angle and the texture is exaggerated. The
Japanese have exploited this in producing modern woodblock
prints (Fig. 2) with common plywood that would have been
possible only with the rarest pieces of sawn timber. The
texture transferred from plywood forms to cement is used by
architects all over the world today.

Mosaics and Inlay. The earliest artificial material
surfaces produced for decoration were probably IV millennium
B.C. mosaics formed of shaped pieces of contrasting materials
-- stone, shell, bitumen and plaster. Persian mosaic tile
is the apogee of this technique, and anyone who has compared
the north and south sides of the great gate of the Shah's
mosque in Isfahan (early XVII century A.D.) knows the supe-
riority of a tile with a cut outline over a painted glaze in
the same design and color. Mosaics that are built up of
rectangular tessarae are at their best when they are not ad-
Jjusted to a plane surface and hence are beyond our topic,
though floors of polished mosaic as well as terrazzo use the
quality of a section for their effect.

On a smaller scale, colored stones were inlaid in bronze
and gold Jjewelry and polished to a flat surface. This tech-
nique, which began early in the II millennium B.C., even-
tually led to cloisonné, champleveé and basse taille enamel,
as well as niello and the inlaid ceramics (most magnificently
those of Koryu dynasty, Korea). All of these owe their
aesthetic qualities to local changes in quality or color in
a single smoothly finished surface on a heterogeneous body.

In metal, true inlay first appears before 2200 B.C. in
Anatolia (electrum in bronze) and was used superbly by My-
cenaen smiths. No inlay in metal surpasses that of the Kaga
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1. Carved bamboo brush pot. 2. Print by Kiyoshi Saito,
Chinese, XIX cent. (National 1960, showing use of plywood
Museum, Taiwan). grein. 52 x 38 cm.

3. Mosaic glass bowl, with heads. Roman, probably made in
Alexandria, 100 B.C. to 100 A.D. (Corning Museum of Glass).
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school of Japanese swordguard-makers (XVIII and XIX centu-
ries). In the difference between true three-dimensional
inlay and "false inlay" or damasscening (in which the design
is achieved by superficial attachment of gold or silver onto
a mechanically roughen surface) lies the artistic counter-
part of the scientific principles of stereology.

Some of the earliest glass vessels were molded from
threads of glass wound over a sand core and then ground and
partly polished to a smooth surface. Both in the Middle
East and in China a few centuries B.C., simple rods of white
and colored glass composed in intentionally imperfect cylin-
ders were transversely sectioned and polished to make beads,
sometimes so constructed as to represent eyes. Around the
first century B.C. in both Rome and Alexandria, interesting
effects were produced by grouping rods of glass of different
colors together into designs of various degrees of intricacy
and drawing these into canes, which were then sliced into
flat slabs, assembled into mosaies in the form of a dish or
vase, fused together and finally ground to shape (Fig. 3).
Rods of incredibly complicated but controlled structure were
assembled, showing on their sections portraits and other
pictorial effects. The principle is used to this day, but
now only in extruded candy.

A similar principle of producing decorative units for
mosaic work is hatam-bandi inlay made in Shiraz and else=-
where in Persia. Long uniform rods of dark and light woods,
bone and metal are prepared within the appropriate cross
sections to fill space, assembled and glued together into
rectangular rods. These are planed and again assembled into
large rectangular rods which are transversely sawn into thin
slices for final assembly as a decorative surface on boxes,
picture frames, and the like. Far more sophisticated is the
wood inlay (intarsia) of fifteenth-century Italy, in which
the color and texture of selected wood pieces were used to
represent pictorial details, and the even more skilled use
?f ston§ texture in the same way in both Russia and Italy

Fig. 5).

Oriental ILacquer and Ceramics. The makers of Chinese
and Japanese lacquer have for centuriles used inserted pieces
of metal and other materials which appear like inlay on the
finished surface. In the present connection, the most in-
teresting ware is negoro-nuri in which layers of lacquer of
different color are successively applied and the surface
locally abraded or worn down to expose irregular areas of
differing color. In guri-bori,thick parallel layers of
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4. Iacquer box in guri-bori. Chinese, ca. 1600 A.D.
(Coll. Hsien C. Tseng).

5. Stone inlay panel. By 6. Merovingian pattern-welded
Richard Blow, Florence, 1951. sword, VI cent. A.D. Repol-
10 x 6 cm. ished and etched. 4.0 cm wide.
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alternating red and black lacquer are built up to a consid=-
erable thickness, and grooves are deeply incised to expose
colored lines on their sides (Fig. 4).

The working of plastic material from a crude mass to a
finished shape involves complex distortion, and if the sub-
stance is heterogeneous pleasant flow lines will be visible
in the final object: +this produces the most interesting
class of surface textures. (It is curious that they are
often referred to as "marbleized," for in origin, geometry
and detailed appearance such textures are quite unlike mar-
ble. Chinese potters in the Tang and Sung dynasties pro=-
duced some remarkable effects of this kind by the use of
slabs of white and dark clays repeatedly rolled together to
get thin laminae and then irregularly worked and cut into
the final shape (Fig. 7).

Textured Steel. Any iron made before the invention of
melting processes was heterogeneous because of local varia=-
tions in slag and carbon content, and after the piled or
faggotted blooms were welded and forged (in Ia Téne times or
earlier), easily visible textures became unavoidable if the
surfaces were properly finished. An Etruscan lancehead of
the IV to IIT centuries B.C. has clearly intentional layers
of meteoric iron incorporated in it. Consciously contrived
patterns appear in the pattern-welded sword,3,5:6 used in
western Europe from the II to X centuries A.D. and made
famous by the Vikings and their sagas. Strips of iron and
steel were welded together, twisted, and the resulting bars
welded side by side to make the center of the blade. Final
polishing produced a surface that cut through the helical
structure and exposed the pattern (Fig. 6). Initially the
technique undoubtedly arose because a suitable pattern was
a guarantee of adequate forging in the metal, though it
seems to have been continued more for aesthetic than practi=-
cal reasons, and did not die out on the shores of the Baltic
until the XIV century.l

The texture in the "Damascus" steel sword =-- the Sword
of Islam -~ is more famous. There is no archaeological evi=
dence for the texture prior to a description of it in an
early VI century poem, though they may have been a few cen-
turies old at that time. Several different kinds of texture
are subsumed under the name "Damascus," and there has been
disagreement on their origin.u: » Some swords, and all
"Damascus" gunbarrels (Fig. 8), were made from welded com-
posite faggots of iron and steel which were heavily twisted
or otherwise contorted, then forged to strips and, for the
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barrels, helically coiled and hammer-welded. The texture
was developed by chemical etching. Other swords were made
by "brazing" together plates of wrought iron with molten
cast iron and forging out the resulting laminate. The best
blades owe their texture entirely to a coarse metallurgical
structure in a unique Indian steel known as "wootz." This
was of high-carbon content (1.5 to 1.8 percent), and had
been melted and slowly solidified. The pattern partly arises
from segregation, which reveals a dendritic pattern in the
crystallized steel, and partly from the precipitation of
cementite, Fe3C, in plates which, after forging at a low
temperature, leave carbide particles in laminar groupings.
Regardless of whether the steel was initially welded or cast,
the laminations result from local variations of carbon con-
tent, and are approximately parallel to the sword surface
but with enough rumpling so that they are intersected in
pleasant irregularity. The shape and disposition of the fi=-
nal hammer blows before grinding and polishing the sword
must determine much of the characteristics of its pattern.
Sometimes traces of dendrites remain visible in the texture
(Fig. 9); some appear granular (Fig. 10); while in others,
certainly the welded ones and perhaps others, have irregular
concentric markings reminiscent of waves on water. In the
prized form known as "Mohammed's ladder" there are cross-
markings, superimposed on the main pattern (Fig. 11), which
result from localized indentations in the surface before
final grinding.

The first kris produced in the Malayan Archipelago were
made of simple textured steel, but by the XVIII century
gaudy contrived patterns had developed, often using meteoric
iron (or in the XIX century nickel and in the XX stainless
steel) interleaved with steel. By a self=-conscious process
of welding laminated metal, forging, locally cutting and re-
forging, and then making the finished surface by filing or
abrading so that it intersected the laminations, very elabo-
rate designs were produced (Fig. 13). These are not a nat-
ural texture resulting in the flow of the material during
forging, but can be reproduced at will by the smith. A
French smith named Clouet? studied such textures as part of
an attempt to duplicate Demascus steel in 1793 and gives
several illustrations, including these:
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Towering over all other products of the smith is the
Japanese sword. This owes its effectiveness mainly to a
controlled carbon content and differential hardening of the
edge, but the welding, folding, and forging that were done
to make the steel homogeneous left a visible texture (Fig.
12) on the finely honed surface of the finished blade which
is much appreciated by connoisseurs.! The furniture of the
Japanese sword also provided an excuse for extremely sophis=-
ticated work in both ferrous and nonferrous metals. Some of
them are of what is called mokumé (lit. wood grain) in which
the surface texture arises in heterogeneity in the metal re-
vealed by etching. Though some of these are rather self=-
consciously forged, others have natural flow lines originat-
ing directly in the steelmaking and forging processes (Fig.
14). Nonferrous metal mokume -~ first made in the XVIII
century -- was produced by soldering together plates of var-
ious copper alloys (mainly those with silver and with gold),
which take on contrasting patination when approp .iately
pickled, and hammering out the resulting composite with
enough localized or general cutting and hammering to produce
an interesting texture when the final surface is cut, pol-
ished and etched (Fig. 15). Most of these have a simple ir-
regular wood grain effect, but some tsuba-makers contrived
to superimpose thereon a specific design. Fig. 16 shows one
of the most remarkable of these. Sometimes nearly parallel
lamellae of iron and steel or of the nonferrous metals were
welded or soldered together and, after shaping, carved to
give an effect like guri-bori lacquer.

Damascene Geometry. Patterns that are essentially
isotropic, such as the microcrystalline grains in a metal
casting and the filled-in fractures in rocks are not highly
sensitive to the angle of sectioning, and the section repre-
sents fairly well the three-dimensional structure. Interest-
ing textures appear only when many features are intersected
at low angles. The fundamental relationship between the
width or spacing of a lamellar feature as seen on a section
(W) and its true thickness or spacing (d) measured normal to
the lamella surface is, of course, simply that W/d:l/Sin o,
where © is the inclination between the lamella surface and
that of the section. The true thickness is seen only in a
section at 90° and is megnified by a factor of 2 at 30°, 10
at 5.57°, 50 at 1.15°, 100 at 0.57°, and 1,000 at 0.06°.
Cabinet-makers know that a solid wooden board ~- as distinct
from plywood -- will have a good grain only if it had been
cut from the outer part of a large tree, Zfor the angle of
section is otherwise too high except where a growth accident
has produced local irregularity.
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A [left]. The relation of wood-grain width to the location
of the section. 3B [right]. Grain in sinusoidal laminae. (W
is apparent width, d the true thickness of the laminae, C
the lateral displacement to ring n, counted from point of
tangency. )

In a plane surface cut through a cylindrical tree, the
apparent width of the growth rings rapidly decreases away
from the point of tangency (see eq. in Fig. A ). Because the
more interesting textures involve only slight rumpling of a
nearly plane laminate, a better model (though still highly
idealized) is that of a sinusoidal lamination (Fig. B ).

There is an interesting identity between the topology
and the geometry typical of the concentric rings and rever-
sals on the Damascus texture of a laminated material, that
of a contour map of rolling terrain, and that of the rings
of interference colors seen on oily water. (It should be
noticed that in neither case is it possible to tell a convex
or a concave feature from the rings alone, unless there
should be an identifiable polarity to the laminae or patterns
of connectivity in the hills and valleys.) The moiré effects
in watered silk and the patterns on "marbleized" paper are
quite different: these involve no interplay between dimen-
sionalities, though they often possess the same general ap-
pearance as a sectioned laminate.

In artificial laminates, a feature of the same width
can result from a high-angle section of wide plates or a
small-angle section of a thin one, but there are striking
differences in physical appearance. Much of the charm of
the textures that we have discussed comes from the fact that
in adjacent areas on the surface similar structures are in-
tersected at angles that produce widely different lateral
magnifications. Since the interfaces between the different
laminae have small irregularities arising from differences
in local deformability due to grain orientation or to local
variations in composition or (in clay) to thixotropic mem-
ory, the surfaces that remain connected have an aestheti~-
cally pleasing irregularity enhanced by the variable
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magnification. Much of the pleasing quality of Demascus
steel or Japanese mokumé arises from the fact that the sec-
tioned lamellae are very thin and are only slightly rumpled
from a plane surface: normal sections of them show almost
straight parallel lines. It requires considerable extension
of the raw material to achieve this, yet this is not enough.
The last stages of irregular local working of the surface
have far more effect on the texture than does twisting or
contortion of heavier sections. Rolling a flat sheet from
an irregular composite will not give good texture.

o w——

The sweeping patterns of the main features in the tex-
tures discussed above are all subject to topological and
geometric restraints that arise in the physical nature of
the system and the mathematics of sectioning, but there are
enough irregularities to prevent unpleasant symmetry. The
local variations of scale produce a visual sensation com-
bining that of a resolvable abstract design with that of
pure texture. These facts have long been appreciated in the
Orient, but they merit more attention than they have received
from craftsmen and scientists in the West. The superiority
of the Damascus- sword was related to its pleasing texture:
perhaps modern industry, as it returns to composite mate-
rials for engineering uses, might also benefit by a glance
at aesthetics.
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T. Model of a coffer in "marbleized" ceramic. Chinese, T'ang
dynasty. 5.5 x 12.0 x 9.1 cm (Museum of Fine Arts, Boston).

8. Turkish gun barrel of welded "Demascus" steel. XVIIT
cent. (Victoria & Albert Museum).
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9. Persian sword, early XVII cent. Detail.

10. Persian sword, late XVII cent. Detail. (Wallace Coll.).

11. Persian sword showing cross-markings known as'Mohammeds
ladder" (H. Maryon).
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12. Japanese sword blade by Kanemitsu of Bizen. Detail.
3.6 cm wide (A. D. E. Craig).

13. Blades of three Malayen kris (H. Maryon). Nat'l. size.
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1k. Japanese swordguard of iron mokumé. Signed Kei of Kii
Province. Ca. 1840. 8.6 cm. high.

16. Swordguard in nonferrous

metal mokum€. Detail showing

15. Swordguard in nonferrous floating cherry blossoms. X2.

metal mokumé. Ca. 1800 XIX cent.{Museum of Fine Arts,
(Victoria & Albert Museum). Boston).
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GENERAL QUANTITATIVE STEREOLOGY



QUANTITATIVE EVALUATION OF
SECTIONED MATERIAL

ErvIN E. UNDERWOOD
Research Laboratory, Lockheed-Georgia Company, Marietta, Georgia

Many of the basic equations of quantitative stereology are
known and are being utilized to an increasing extent.
However, the complete scope of current developments is
neither widely disseminated nor available. Consequently,
full utilization of the basic concepts is not always
realized.

Because of their essentially geometrical nature, the basic
equations and methods apply to any material. Thus, it is
possible, with the same equations, to describe quantita-
tively the microstructure of a metal, ceramic, or tissue.
Microstructures may be defined in terms of their features,
seen directly on prepared microsections or as projections
from a thin foil, at magnifications accessible to optical
and electron microscopy. By "features", we mean any of the
point, lineal, areal, or volume elements that make up the
microstructure. The features are referred to simply in
terms of their dimensionality (i.e., as objects with zero,
one, two, or three dimensions), and are described by their
magnitude, number, orientations, spacings, etc. This geo-
metrical emphasis can thus achieve great generality.

The true strength of quantitative stereological methods
(particularly in research work and theoretical treatments)
lies in the further manipulation of the basic equations.
What is frequently required are quantitative parameters of
the microstructure that have significance with regard to
the measured property, and these parameters must generally
be derived or combined from the basic expressions.

BASIC SYMBOLS

Table I gives a list of the bagic symbols and their defini-
tions (Underwood, 1964). Note that P is used for points,
and N for objects. Both A and S pertain to two-dimensional
surfaces, but in deference to widespread usage, A is re-
served primarily for flat surfaces and S for curved surfaces
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TABIE I
List of Basic Symbols and Their Definitions

Symbol Dimensions Definition
P - Number of point elements or test points
Pp - Point fraction. Number of points (in arcal feature)

per test point

P, mm™! Number of points (intersections) per unit length
of test line

P, mm~?2 Number of points per unit test arca

Py mm™3 Number of points per unit test volume

L mm Length of lincal clements or test line

L, mm/mm Lineal fraction. Length of lincal intercepts per unit
length of test line

L, mm/mm? Length of lincal elements per unit test area

Ly mm/mm? Length of lineal elements per unit test volume

A mm? Planar arca of intercepted features or test arca

S mm? Surface or interface arca (not necessarily planar)

A, mm?/mm? Arca fraction. Arca of interdepted features per unit
test arca

Sy mm?/mm3 Surface arca per unit test volume

vV mm? Volume of three-dimensional features or test volume

Vy mm?/mm? Volume fraction. Volume of features per unit test
volume

N Number of features (as opposed to points)

N, mm™! Number of features intersected per unit length of
test line

N, mm~? Number of features intersected per unit test arca

Ny mm~3 Number of features per unit test volume

L mm Average lineal intercept, L, /N,

A mm? Average areal intercept, 4,/N

§ mm? Average surface area, S;/N,

vV mm? Average volume, V, /N,

Additional subscripts mey be employed, if, for example, one
wishes to distinguish betweeno¢ and 8 phases.

The compound symbols represent fractional quantities. For
example, P_ is equivalent to P/L. P, means P/P, where the
upper P reJI.‘ers to points (of a grid) that fall over the
areas of interest in the microstructure. This might be the
o¢ -phase, for example. The lower P represents the number
of points in the grid, and is a test quantity. The number
of points in the o&~phase, divided by the total number of
points in the grid, gives the point fraction, and thus the
volume fraction of the o¢-phase.

Both P and P, represent simple counting measurements.
Another usefui' quantity obtained by counting is NA the
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number of objects per unit area. In a single-phase poly-
crystalline structure, a simple way to obtain N, (for ex-
ample, number of grains/unit area) is to count ~triple
points (where 3 grain-boundary traces meet at a point),
according to the equation

={(1/2) P + 1. M)

Dividing by the chosen test area gives N,, of course.
Occasionally, a non-equilibrium 4-rayed ~junction will be
found -- this should be counted as two triple points., TUse
of the above equation eliminates the need for determining
and counting the edge grains separately, as in other me-
thods.

BASIC EQUATIONS
Presented next are the basic equations for determining the

magnitude of lineal, areal, and volume elements from
measurements made on a test section (the plane of polish).

W=A,=L.=P (2)
Sy = (@4/nL, = 2P, mm~! (3)
Ly = 2P, mm~?2 (4)
P, = ()LySy = 2P,/, mm~’ (5)

Dimensions are indicated arbitrarily in millimeters in or-
der to emphasize the dimensionality of the symbols used in
the equations. The basic equations in Iine (2) state the
equality of the volume ratio, areal ratio, lineal ratio,
and point ratio of a particular phase as seen on random
sections through a microstructure. The equations in Line
(3) relate the surface area per unit volume of the micro-
structure to L, and P. as measured on a section through the
microstructure. Slml%arly, in Line (4) the equation re-
lates the length of random linear elements in three-dimen-
sional space to the two-dimensional point density, P,, ob-
tained from sections through the system of lines. Equa-
tions in Line (5) pertain to the points in space generated
by the intersections of a system of surfaces with a system
of lines. The measurable values, P and P_, are obtained
from the sectioning plane and are related %o the system of
lines and to intersections of the test line with the system
of surfaces, respectively.

It is important to emphasize that all these equations are
exact, in the sense that no simplifying assumptions are
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required as to size, shape, spacing, etc. of features in
the microstructure. There is a requirement, however, that
the meagurements are made randomly or with statistical
uniformity and that the test sections are representative of
the entire sample. Then, the calculated quantity can be

obtained as precisely as desired, depending on the number
of measurements taken.

TABLE IT

Relationship of Measured (Q) to Calculated ([J) Quantities

Dimensions of Symbols

(Arbitrarily cxpressed in terms of millimeters)
Microstructural

R - -3
Feature mm? mm~' mm ™2 mm

Points @
Lines L) @)

Surfaces )

Volumes

The triangular array of symbols shown in Table II are ar-
ranged systematically to show the interrelationship of the
measured to the calculated quantities (Underwood, 1967).
Note that L, can either be measured or calculated, as can
LL and AA. ormally, however, L, is calculated from P

measurements, and AA is obtained from measurements of
L. or P,.

L P
All symbols are interrelated except between the first
colurm and those on the right. By means of a rather simple,
yet powerful, choice of particle or cell diameter, this gap

can be bridged. This "diameter" is the mean intercept
length and will be discussed later.

TYPICAL DERIVATIONS

It is pertinent at this point to indicate how the basic
relationships are obtained. The methods are relatively

straightforward, and the surprising thing is that the co-
efficients are so simple.
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The equality of volume fraction and areal ratio was first
suggested by Delesse. Consider a test cube of volume

v ='£3 containing irregularly-shaped volume elements (e.g.,
of e¢ -phase) that are cut by a thin slice of thickness ox
and area A = g2 parallel to the (z,y) plane. The volume
of o¢ -phase in the thin slice is given by

5%: =,€ZJ§ (Vv)oc

and for dx sufficiently small, by
Vi = Ap () - 8x

where A o¢ (x) is the area of o¢-phase on the slice surface
as a function of slice position x. Age (x) varies ir-
regularly with x and the average value is

— P’
/4“ = T/AQ(X)JX

In the limit, the total volume of ol-phase in the cube is

given by
e = [Ae)-dx - L.
= c{ =’/ X)) =
Vd [ « A 0({) X /l o -
Dividing both sides by V, we obtain

Vac/\/ = /-L/A

or, in general,
A . 6

Vy = /qA = /AA ©)
where the bar is omitted in order to simplify the notation.
Thus, the average areal fraction, A,, determined on planar
sections through the microstructure, represents an estimate
of the volume fraction V., of the phase under consideration.
Although only one coordinate was used to specify the

location of the section plane, the final form of the
Delesse relation is independent of any such requirement.

The relationship

- 2, 3
S'V' =2 PL, mm /mm (7)
was first published by Saltykov. The importance of this
equation can be appreciated from the fact that it has been
rederived independently at least seven times since then.
Rather than going into the complete derivation, it will
suffice to indicate that a random system of surfaces is
pierced with a large number of vertical test lines, then an
expresaion is set up for the density of intersections with
elementary areas having all orientations in space. The in-
dividual contributions are added to obtain the total
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number of intersections with the total surface area.

We consider next the important equation (Saltykov; Smith
and Guttman) that relates line length in a plane to an
intersection count with a test line,

L, = (T/2) P, m/m’. (8)

The length of lines in a plane (randomly oriented or not)
per unit test area, L, is proportional to P., the number
of (point) intersections made by unit lengtﬁ of a random
test line. Obviously, the greater the total length of
lines in the plane, the more intersections will be made
with the test line. The coefficient /2 derives from the
averaging process, over all angles, of the angle of inter-
section of the test line with the very small, straight
segments of the lines.

The quantity L, is a basic microstructural parameter, and
is also useful after further manipulations into various
other forms. In corrosion studies, for example, one would
want to know the length of grain-boundary traces exposed
to the corrodent. The value of I, might be required for
the crack length (total or averagé per crack), or for the
length of slip lines. If the total crack length were re-
quired, for example, then the intersections with all crack
traces would be counted. DPerhaps a more significant para~
meter than L, would be S, since cracks are essentially 2-
dimensional in nature (Underwood, 1967-A).

If slip traces are to be measured from g tensile test
specimen with circular cross-section, a plastic replica
can first be made, then straightened out on a microscope
slide for a P. count. Here again, only those traces of
interest needLbe considered (Underwood, 1961).

The equation

L, =257, mm/mm5 (9)
(Saltykov) relates the length per unit volume to the number
of points of emergence per unit test area. A cube con-~
taining a random system of lines is cut by a large number
of parallel test planes. By employing the principle that
the probability of intersection of the planes with the
elementary line segments is proportional to their projected
lengths normal to the sectioning planes, it can be shown
that the proportionality constant is equal simply to 2.
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A word of caution is necessary here. Since Equation (9)

is based on randomly oriented lines, it is not necessarily
exact for oriented systems of lines. Depending on the
angle between the oriented lines and sectioning planes, the
coefficient can vary from 1 to 2. However, the coefficient
2 will always apply if adequate random sampling (of the
sectioning planes) is employed.

Another important equation describes a mean free distance,
A , which may be thought of as the mean edge-~to-edge dis-~
tance along a straight line between particles or second
phage areas., The equation may be written as

A= (1=v)/8, m (10)
where V.. is the volume fraction of particles (or second
phase), and N. is the number of intersections with
particles (or 'second phase regions) by the straight test
line of length L (Fullman).

The equation is obtained readily. It derives from the fact
that the number of particles intersected by the test line
is the same as the number of matrix areas intersected (for
meny particles). Thus, the lineal fraction occupied by

the matrix (1-I.) is AN,, which equals the volume fraction
occupied by the matrix, ~(1-V_). Equating the latter terms
yields the above equation for A.

This is an extremely useful quantity. It involves no
assumptions as to size, shape, location, etc. of the
second phase. Moreover, it is a true three-dimensional
parameter even though it is obtained from the plane of
polish; or, in other words, it is an average three-
dimensional value obtained from many planes of polish.

In addition to the mean free distance, X-, there is another
particle parameter that also possesses great value and
generality. This is the mean intercept length, T,, defined
in Table I as L./N.. Frequently, it is used as a’grain or
particle "diame%er . There is good reason for this choice.
First, the measurement is extremely simple. For a space-
filling system of grains, the grain size parameter L, is
equal simply to 1/N., where N. is the number of intef-
sections of the gralns made by the test line of total
length L. For a non-space-filling system of particles of
volume fraction VV, L3 is equal to VV/NL, since V. equals

Ly Y
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Secondly, a unique value of T, is obtained for any granular
or particulate microstructure; regardless of the degree of
convexity or concavity. This average length can be thought
of as a lineal measure of the "size" or "diameter". No
assumptions as to size or shape or reference to sphericity
are required.

A third, and major advantage to the use of T, as defined
here is that it is related directly to S_, the_surface area
per unit volume. From the relationships that L, = 1/N
and PL = NL for space filling grains, it is eviflent that
_ _ _ -1
Sy=2P; =2N =2/I;, m . (11)
, it should be recalled, has a unique valug for any

system of surfaces in a volume, and so does L3°

As a final point of interest, I, is directly related to the
ASTM grain size number through (Metals Handbook). An
accurate, measured value of I, permits the ASTM grain size
number to be reported to as mgny decimal places as Jjusti-

fied by the data.

Using the concept of mean intercept length, Fullman's ex-
pression for mean free distance can be rearranged to give

A= By (1Y), (12)

This equation geometrically links together the parameters
A, T,, and V_, with all quantities obtained without
crippling assumptions and loss in generality.

Since for separated particles P. = 2 N. and I, = VV/NL,
by simple substitution in Equation (7) we can write
Ly = 4 VV/SV , mm. (13)

It is apparent that T, connects the terms on the left hand
side and right hand s;de of the symbols shown in Table II.
All of the quantities in the basic equations, therefore,
can be linked through the relationship of iz to both S,
and V..

v
Tables III and IV summarize much of what has been stated
previously. Applications of the results are given for
two-dimensional and three-dimensional systems of grains and
particles. The main difference between the two cases of
contiguous and separated figures is the factor of 2 which
is introduced because of edge or surface sharing in the one
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TABLE III

PERIMETER LENGTH-TO-AREA RELATIONSHIPS FOR
TWO-DIMENSIONAL PLANAR FIGURES AND LINEAR NETWORKS

A,
Area-filling contiguous figures of a-phase

(Ay=1)

Isolated figures of a-phase (‘AA)u < 1)

) s

One-dimensional perimeters with sharing
between contiguous figures.

1,,.1
Np=g*7+3-8

P,

L™ ®

P, =Ny = VL,

EOAOLY

L
One-dimensional perimeters not shared with
other figures.
"L =4
PL =8

Py 2N, =2(A,), /L,

SALTYKOV

L, = (i/Z)PL = (x/2)N}

L, = (x/2)Pp = xN,,

TOMKEIEFF
l:’ = zA/2 Lp 1:2 = tA/Lp
CHALKLEY
L, = tp/2p L, = tp/P
TABLE IV
SURFACE-TO-VOLUME RELATIONSHIPS FOR SYSTEMS OF
SURFACES AND THREE -DIMENSIONAL CELLS AND PARTICLES
A, B. C.
8pace-filling contiguous cells of Isolated cells of a-phage (V. = 1) Dispersed particles of a-phase
¢-ph.ue(vv=1) L (Vv<l)
a .
b3 Ls‘l ‘o o .
a - o Ve-s
L L L
‘Two-dimensional cell surfaces, Thin separating layers of finite thick- Two-dimensional particle inter-

‘with sharing between contiguous
oells.

ness, (If considered essentially two-

faces, not shared with other

dimensional, treat as in Part A.) particles.
-1 i. -1 L. =

Ny =3+3+3=4 Ny =g+3+43=4 N =6

Pp =4 P =8 PL =10

Py =Ny = VI Py, = 3Ny, = 2(V,), /g Py, = 38y = 2(V,), /D
BALTYKOV

l'-’PL-ZNL l'-aPL-lﬂb lv-SPL-JNL
TOMKEIEFF

L, =278 Ly =4V/8 Ly~ 4V/8
CHALKLEY

Ly = 1p/2F L, = to/p Ly = 1p/p
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case and not in the other. Note also the distinction be-
tween N_ and P._.

L L
In Tables III and IV, I_ is the mean perimeter length;
£ is the length of a sRall test line with end-points p
that fall in the phase of interest, and P is the number of
intersections of the test line £ with the perimeter out-
lines, The other terms are as before.

PROJECTED IMAGES
(Underwood, 1967)

It is beyond the scope of this paper to discuss the quan-
titative measurement of structures from projected images.
The mathematics are more complicated, less exact, and de-
pend on the geometry of the foil and the amount of second
phase (Hilliard; Cahn and Nutting). Nevertheless, useful
results can be had with the simplified equations.

This subject is also discussed in another paper given later
on in the book.

PARTICIE SIZE DISTRIBUTION
(Underwood, 1967)

As in the case with projected images, methods for obtaining
particle size distributions are not as well defined as for
the basic equations discussed earlier. Whereas the latter
equations are capable of statistically exact solutions,
this is not the case for size distributions of real parti-
cles with irregular shapes (Wicksell).

This subject will also be dealt with in other papers, so
will not be discussed here (Aitchinson and Brown; Goldman,
Lewis, and Moore).

SPACINGS VERSUS DISTANCES

In systems of particles, spacings and distances should be
defined so as to remove any ambiguities in meaning. The
mean particle spacing, 9 , can be defined as

0" =1/%,m (14)

where N. is the number of particles intersected per unit
length of a straight, random test line. The spacing J~ ,
therefore, represents the mean center-to-center distance.
Thus, the mean particle diameter, or mean intercept length
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I,, is given by
3
=0-A. (15)

Two other spacing parameters may be of interest in special
cases, For a system of point particles in a plane,
Gurland gives

s

A, - 0.500 p, ¥ (16)
as the average distance of separation of randomly dis-

tributed point particles, taken as nearest neighbor pairs,
and

A, =052, 73 (17)

for the average separation of nearest neighbor point pairs
in a volume. Note that these parameters are not the same
as the ones described previously. We introduce approx-
imations into Equations 16 and 17 when NA and N are sub-
stituted for P and P s respectively.

SUMMARY

A general survey has been presented of the basic equations
of stereology --, that is, the quantitative relationships
that exist between quantities measured on the two-
dimensional plane of polish and the magnitudes of micro-
structural features that occur in three-dimensions. Other
important parameters and quantities are described, in-

cluding the mean free distance and the mean intercept
length,

The subject of stereology is not completely new to many;
however, there are still numerous experiments to be run
and methods to be perfected. It is hoped that newcomers
dealing with microstructures will be encouraged to apply
quantitative methods in their work, and that the more
experienced scientists will endeavor to advance our know-
ledge in this fascinating field.
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MEASUREMENT OF EXTRACELLULAR SPACE IN
DEVELOPING RAT BRAIN FROM
ELECTRON MICROGRAPHS

JosepH J. PysH

Northwestern University, Medical and Dental Schools, Dept. of Anatomy
Chicago, lllinois

The neuropil of rat inferior colliculus was
studied during the first two weeks of postnatal
life. The extracellular space (ECS) was found to
be ?istributed as narrow intercellular gaps about
150A wide and intercellular lakes 0.2-3.0 u in
longest dimension (Fig. 1). Lakes were largest
during the first postnatal week and decreased in
size and number as development occurred. At the
same time profiles of cellular elements increased
in mean number and decreased in mean diameter,
tending to increase with development the propor-
tion of extracellular space distributed as inter-
cellular gaps. Quantitation of these complex
data was necessary to determine any change in the
magnitude of the ECS with maturation.

Random electron micrographs, taken at a
magnification of 7,500X and photographically
enlarged about 5 times, were weighed on a beam
balance. The ECS was then cut out with scissors
along the outermost surface of plasma membranes
and also weighed. From these two weights the
percentage of ECS in electron micrographs was
obtained at each age studied (Fig. 2). An initial
trial indicated there was little variation within
individual animals and a greater variation between
different animals of the same age. For this
reason, one measurement was obtained for each
animal studied. Because the nature of the popu-
lation distributions at the various ages studied
is not known and the sample sizes were very small,
the data were evaluated by the non-parametric
Mann-Whitney U test. No significant difference
was seen between the days of the first week while
a significant difference was detected between
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day 14 and days 1, 4 and 7 and between day 10 and
day 7. Thus, the measurements, which are con-
sistent with visual estimations, indicated that
the percentage of extracellular volume in the
neuropil of postnatal rat inferior colliculus is
greatest during the first week and decreases in
magnitude as development proceeds.

Fig. 1. Electron micrograph of 4 day old
neuropil. Note large intercellular lakes (*) and
narrow intercellular gaps (arrows). CE=cellular
elements. X27,000.

Postnatal Day 1 4 7 10 14
23.5
17.7 20.1 17.2 }16.9 13.5
Percentage 17.6 19.4 15.8 | 13.0 12.0
ECS/68pn2 15.6 | 18.5 14.7 | 11.3 | 11.2
Tissue 11.3 15.8 14.5 | 11.3 8.9
Area 11.3 13.4 | 10.3 8.7
11.1
10.5
Mean 15.5 16.3 15.1 112.2 10.9

Fig. 2. Percentage of ECS per Unit Volume in
Neuropil of Rat Inferior Colliculus.
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A STEREOLOGICAL METHOD FOR MEASURING THE
SPECIFIC SURFACE AREA OF METALLIC POWDERS

SARKIS A. SALTIKOV
Erevan Polytechnical Instituve, Armenia, U.SS.R.

The specific surface area is an important characteristic of
a metallic powder, since it determines many other properties
of the powder. Up to the present, the surface area has been
measured only by indirect methods, such as gas adsorption.
The method to be proposed here is a direct measurement using
a stereological analysis. It is also applicable to non-
metallic powders.

For this analysis, it is first necessary to obtain random
sections through the powder particles. This can be done by
mixing the powder with one of the mediums (such as bakelite
or liquid resin) used for the mounting of metallographic
specimens. After the medium has solidified, a polished
section is prepared by the standard metallographic tech-
niques.

The analysis involves the simultaneous measurement of the
surface area of the particles, using the random secant line
method of the author (1958), and of the volume of the parti-
cles by the point-counting method of Glagolev (1941). The
polished section of the mounted powder is viewed through a
microscope having an eyepiece reticule on which is inscribed
a square grid. A count is then made of two types of point
intersections illustrated in Fig. 1: (a) The black points
which are the grid corners falling within the particle pro-
files. The number of these points is proportional to the
volume of the powder. (b) The white points which are the
intersections of the grid lines with the particle outlines.
The number of these points is proportional to the surface
area of the particles.

If Pp and Py are the number of black and white points

counted in the analysis, N is the total number of grid cor-
ners applied and L mm the total length of grid lines, then
the surface area per unit volume of the powder is given by:

- 2 3
It will be noted that since the surface area and volume are
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measured simultaneously, it
is not necessary to have a

uniform dispersion of the

powder throughout the mount-
ing medium. — 7-~‘k\

Glagolev's point-counting

method can be replaced by
Rosiwal's lineal analysis
if an automatic scanning

instrument is available.

Fig. 1
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ROENTGEN-STEREOMETRY AND SECTIONAL DISPLAY
OF COMPUTED THREE-DIMENSIONAL DOSE
DISTRIBUTIONS IN RADIO-THERAPY

ULF F. ROSENOW AND WALTER K. LEYDOLPH

University of Goettingen, Goettingen

The introduction of the computer to radiation treatment planning pro-
blems, especially to the calculations of dose distributions in irradiat-
ed patients, has led to a critical investigation of the fundamental data
fed into the computer. While the physical data of the radiation are
known to an accuracy of one or two percent, the data to be obtained
from the patient are still subject to major inaccuracies. These mostly
anatomical data are body outlines, sizes and positions of tumors in the
patient, sizes and positions of tissue-inhomogenities as lung, bone,
and gas in the bowel, the position of healthy organs which are sensi-
tive to radiation and in proximity to the treatment area, and the ex-
act position of interstitial or intracavitary sealed radioactive sources
such as radium, cobalt, or caesium applicators, radio-gold or radon
seeds, iridium wires, and others. In all cases a three-dimensional
localization, that means a three~-dimensional measurement of position
and size, of certain structures at or inside the patient is necessary.

A roentgen-stereoscopic method, described in the paper and in the
demonstrations of Leydolph and Rosenow, was found to be best fitted
to these problems of localization, because it anables a very accurate,

and as well as a very fast and simple estimation of stereometric x~ray
films.

Some applications of roentgen-stereophotogrammetry to radiation
treatment planning problems are shown:

(1) The localization of an intrauterine radium applicator relative to
the pelvic bones and lymph nodes. The latter were filled with con=
trast medium. (2) A tumor, indicated by lymphography, was located
to place the radiation fields properly. (3) A tumor, bone and lung
localization in the thorax is given in elongation, lateral view, and
in some cross sections. (4) Body outline, indicated by a metal chain
put on the body of the patient, and cross sections through the pelvic
bones were drawn. The examples show, that roentgen-stereophoto=
grammetry is able to give all data of the patient, desired for radia-
tion treatment planning. Some electronically computed isodose cross
sections are shown. Besides the display of the three-dimensional
results, which until now can only be done in a set of parallel planes,
the method is now completely three-dimensional.
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MORPHOMETRY OF THE SMALL MYELINATED
FIBRES OF THE CORTEX CEREBRI*

HERrRBERT HAUG
Department of Anatomy, University of Hamburg, Hamburg

The small myelinated fibres in layers I to III
of the cat's visual cortex have been investiga-
ted by means of morphometric methods. The myeli-
nated fibres are the pathways for connection be-
tween the different partsof neuronal tissues.
The magnification of 9500:1 of the electron mi-
crographs was accorded with the scale of measu-
rement of the particle size analyzer (TGZ 3 of
ZEISS). In 153 micrographs 3693 myelinated fi-
bres were counted and measured.
The following results were obtained:
1) With the point-sampling method it was found
that the myelinated fibres make up 7.1¥1.6 Vy
of volume fraction.

2) By estimating the surface according to HEN-
NIG (1958) it was found that within a volume of
1 mm® the myelinated fibres have a surface of
420*70 mm?Sy.

3) The compound length of the myelinated fibres
within a volume of I mm3®is 152-10%mm Ly.
(Measurement of the length of a threedimensonal
linear tract according to HENNIG 1963).
4) The diameters of 3693 myelinated fibres were
measured with a TGZ 3 and a normal distribution
was found (see fig.). The average diameter of -3
myelinated fibres was found to be 0.51+0.08-10mm
5§ With values 3) and 4) a second result of vo-
lume fraction Vy of the myelinated fibres was
calculated. By this way a value of 5.2 % was
found which differs only about 25 % from the
Yalue gf 7.1 % obtained by point-sampling

see 1).
6) With values 3) and 4) a second result of sur-
face Sy of myelinated fibreg was calculated and
a surface of 390 mm®’in 1 mm®was found out. This

value differs 8 % from the result of 2) with
420 mm2

¥ TH18 work was supported by Deutsche For-
schungsgemeinschaft.
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The conformity of results obtained by different
ways shows for both methods and results a high
degree of certainty. Further examinations in
neuropil can therefore be executed with these
methods. A cube of 1 mm length contains 70 000
neurons in the visual cortex of the cat. Each
neuron participates in a medium length of mye-

linated fibres of 2 mm.
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