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ABSTRACT

The Gibbs-Thomson (GT) equation describes the shift of the crystallization temperature for a confined fluid with respect to the bulk as a
function of pore size. While this century old relation is successfully used to analyze experiments, its derivations found in the literature often
rely on nucleation theory arguments (i.e., kinetics instead of thermodynamics) or fail to state their assumptions, therefore leading to similar
but different expressions. Here, we revisit the derivation of the GT equation to clarify the system definition, corresponding thermodynamic
ensemble, and assumptions made along the way. We also discuss the role of the thermodynamic conditions in the external reservoir on the
final result. We then turn to numerical simulations of a model system to compute independently the various terms entering in the GT equation
and compare the predictions of the latter with the melting temperatures determined under confinement by means of hyper-parallel tempering
grand canonical Monte Carlo simulations. We highlight some difficulties related to the sampling of crystallization under confinement in
simulations. Overall, despite its limitations, the GT equation may provide an interesting alternative route to predict the melting temperature
in large pores using molecular simulations to evaluate the relevant quantities entering in this equation. This approach could, for example,
be used to investigate the nanoscale capillary freezing of ionic liquids recently observed experimentally between the tip of an atomic force
microscope and a substrate.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0044330

I. INTRODUCTION investigate the properties of “supercooled” water (even though the

confinement also has an influence on these properties) or to esti-

Most fluid properties are modified under confinement due to
the interactions with the confining surfaces. Of particular impor-
tance is the shift of phase transitions, which is more pronounced
for small pore sizes (large surface to volume ratio). Such a shift
depends on the excess free energies associated with the interface
between the pore walls and both coexisting phases.' For instance,
the capillary condensation of vapor inside a pore occurs at a pressure
lower than the saturation pressure corresponding to the bulk liquid-
vapor equilibrium, with a shift described by the Kelvin equation.”
The crystallization of confined fluids, such as in freeze-thaw cycles
or salt crystallization in porous rocks and stones, is also of great
practical importance to understand weathering in the context of the
durability of civil engineering constructions or the preservation of
cultural heritage. The fact that the crystallization of a confined fluid
occurs at a different temperature than in the bulk can be exploited to

mate pore size distributions in complex porous materials, e.g., via
nuclear magnetic resonance (NMR)-cryoporometry. Several reviews
are available on the effect of confinement on freezing/melting as
probed using experiments and molecular simulations.””

The shift of the melting temperature T, induced by the con-
finement of the liquid in a slit pore of width H is traditionally
described by the Gibbs-Thomson (GT) equation,

T = Ty _ 2(yiw = ysw)

> 1
T?, HpAmh )

where T,bn is the bulk melting temperature, yrw and ysw are, respec-
tively, the liquid-wall and solid-wall surface tensions, p = N/V is
density, and Aph = hy — hs is the latent heat of melting per particle.
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Since the latter is usually positive, for a given fluid, the sign of the
shift is determined by that of the surface tension difference, i.e., the
difference in the free energy cost to create an interface between each
of the phases and the confining walls. This balance is often complex
to predict as it is significantly system-dependent: for example, recent
experiments on the capillary freezing of ionic liquids between the tip
of an Atomic Force Microscope (AFM) and a solid substrate indicate
that the switch to a mechanical response typical of a solid occurs at
a distance which depends on the metallicity of the substrate.’

Even though the GT equation has been used for more than a
century, one finds in the literature a variety of expressions, which dif-
fer not only because they may correspond to different geometries but
also in the use of the liquid or solid density in the denominator.”* '
In addition, its derivations do not always state explicitly the assump-
tions that are made at the different steps. We believe that some of the
ambiguities that can be found in the literature are due to the similar-
ity between the thermodynamic problem of phase equilibrium under
confinement, where two phases are stable, and the kinetic problem
of nucleation, where one phase is more stable than the other, but
the growth of a nucleus is hindered by the free energy cost asso-
ciated with the creation of an interface. Even if these two aspects
have in common the presence of interfaces and associated surface
free energies and lead to similar expressions, they correspond to dif-
ferent thermodynamic conditions and processes (so that the similar
expressions correspond to different physical quantities).

From the nucleation point of view, one considers the kinetic
barrier for the solid to grow from the liquid phase, when the for-
mer is thermodynamically more stable than the latter.'” Classi-
cal nucleation theory involves the free energy associated with the
interface between the two phases and the chemical potential differ-
ence between them at the considered thermodynamic conditions—
typically, fixed temperature T and pressure P. The competition
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between the bulk driving force and the cost of creating the interface
leads (a) to a critical nucleus size, which also reflects the curvature
of the interface and satisfies a relation similar to the GT equation
[Eq. (1)], and (b) to the corresponding free energy barrier. This bar-
rier controls the kinetics of the phase transition and explains why
the liquid may be cooled down below the bulk melting tempera-
ture without observing crystallization. One can note in passing that
the standard assumption of a spherical nucleus, which is reason-
able for the liquid-vapor transitions, is questionable for the nucle-
ation of solids, which are faceted objects (leading, in addition, to
facet-dependent interfacial free energies)."”

For crystallization under confinement, arguments borrowing
from this nucleation picture have been proposed to derive the shift
in melting temperature induced by confinement.”” However, the
GT equation deals with the thermodynamic equilibrium between
the two phases in the presence of confining walls (typically, slit or
cylindrical pores). In that case, the relevant interfaces and associ-
ated free energies are not between the solid and liquid phases but
between each of them and the walls. The interfacial free energies
will, in general, differ for the confined liquid and the confined solid
so that one of them is more stable than the other at the bulk melt-
ing temperature T5,. Conversely, the melting temperature T, under
confinement is shifted with respect to TY,. These considerations are
not related to the formation of an interface between the two confined
phases. As a result, several important simulation studies have per-
formed free energy calculations using umbrella sampling to probe
crystallization under confinement by estimating the free energy of
the confined liquid and crystal phases without explicitly considering
their interface."””’

In the present work, we propose a derivation of the GT equa-
tion for the crystallization of a liquid confined in a slit pore, based
only on the phase equilibrium of the confined phases. We discuss,
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FIG. 1. The Gibbs-Thomson equation [see Eq. (12) below] describes the shift of the melting temperature T, due to confinement, as a function of the confining distance H.
It involves bulk properties (melting temperature, density, and melting entropy) as well as interfacial ones (difference between the liquid-wall and solid-wall surface tensions).
In the present work, we estimate these terms independently and compare the prediction of the GT equation to the melting temperature obtained in hyper-parallel tempering
grand canonical Monte Carlo simulations under confinement.
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in particular, the importance of the definition of the system and of
the thermodynamic ensemble corresponding to an experimental sit-
uation. We then estimate independently the various terms entering
in the GT equation for a model system and compare the predic-
tion of this equation to the melting temperature under confinement
determined in simulations. In Sec. I, we provide a derivation of
the GT equation and discuss the assumptions leading to the final
result. The rest of this article is then devoted to the numerical study
of the phase behavior of a model system, introduced in Sec. 111, in
order to test the relevance of these assumptions and the GT equa-
tion to predict the shift of its melting temperature. This requires
the computation of several quantities, using complementary strate-
gies as schematized in Fig. 1. The bulk phase diagram and relevant
properties of the bulk phases are investigated in Sec. IV. Section V
presents the computation of differences in interfacial free energies
under confinement using a thermodynamic integration approach.
Finally, Sec. VI discusses crystallization under confinement by com-
paring results from Hyper-Parallel Tempering Grand Canonical
Monte Carlo (HPT-GCMC) simulations with the prediction of the
GT equation.

Il. DERIVING THE GIBBS-THOMSON EQUATION
UNDER CONFINEMENT

As mentioned in Sec. I, some derivations in the literature refer
to metastable states using arguments related, e.g., to supersaturation
or undercooling under given thermodynamic conditions. In con-
trast, in the following, we consider only the equilibrium phases at
coexistence and determine the coexistence line in the space of rele-
vant thermodynamic variables. The derivation, which largely bor-
rows from that of Evans et al. for capillary condensation using a
slightly different ensemble,””'** allows us to focus on the effect of
the confining walls (W) on the phase equilibrium. Even though we
consider here the solid-liquid coexistence and a slit-like pore, it can
be easily adapted to different confining geometries or conditions.
The derivation proceeds in two steps. First, we identify the relevant
thermodynamic ensemble and associated thermodynamic potential
to derive a “confined Clapeyron” formula satisfied by the thermody-
namic variables along the coexistence line. Second, integration along
this line to connect the bulk conditions to the confined ones leads to
the GT equation.

A. A “confined Clapeyron” approach
in the yA wHT ensemble

Our system of interest corresponds to the experimental setup
of Ref. 5, schematized in Fig. 2, where the tip of an AFM confines
a room temperature ionic liquid that undergoes capillary freezing
at a finite distance H between the tip and the substrate. The height
at which this transition occurs depends on the nature of the sub-
strate. At the macroscopic level, the interactions of the substrate with
the confined fluid/solid are reflected in the surface tensions, as dis-
cussed below. Because of the large radius of curvature of the tip, the
region in which the phase transition occurs can be considered as a
slit pore between two parallel walls. The slit pore has a surface area
Aw, a width H, and hence a pore volume V = AwH (see the inset
of Fig. 2). In contrast to the experiments in Ref. 5, we will assume
that both confining walls are made of the same material so that their
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FIG. 2. lllustration of a system confined between the tip of an atomic force micro-
scope and a substrate, as in the experiments of Ref. 5. From the thermodynamic
point of view, it forms an open system confined in a slit pore with lateral area Ay
and distance between walls H at a fixed temperature T and chemical potential u
set by the liquid—gas equilibrium in the reservoir.

interactions with the confined fluid or solid are identical. The rest
of the liquid in which the AFM tip is placed can be considered as a
macroscopic reservoir so that the chemical potential 4 is fixed and
the number of particles N in the confined, open system fluctuates.
In addition, the whole system is maintained at a fixed tempera-
ture T so that the thermodynamic ensemble corresponding to this
experiment is the yAwHT ensemble. In the following, we consider
the relevant thermodynamic variables both in the liquid and solid
phases, indicated by subscripts L and S, respectively. We empha-
size that these phases are considered separately, i.e., that there is no
interface between them (unlike in nucleation-inspired approaches).

In the yAwHT ensemble, the thermodynamic potential is the
grand potential

Q=U-TS-uN = —PAwH +2yAw, ©)
with the internal energy
U= TS—PAwH+2yAw+//lN, (3)

where S is the entropy, P is the pressure, and y is the surface tension.
At coexistence between the liquid and solid phases, the thermody-
namic potentials of the two phases are equal, i.e., Q1 = Qs. This is not
the case of thermodynamic derivatives: introducing this last equality
in Eq. (2), it follows that the pressure in each phase differ by

Py - py - 2w Zyow) (4)
H

which depends on the difference in surface tension between the lig-

uid and the walls and between the solid and the walls, respectively,

as well as on the pore size H. We note again that this difference is

not related to the presence of an interface between the two confined

phases.

We now consider the changes in the grand potential associated
with a change in the thermodynamic variables defining the ensem-
ble. From the first principle of thermodynamics and the expressions
of the work associated with changes in the height H and surface area
Aw, one obtains
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dQ = —SdT — PAwdH + (2y - PH)dAw — Ndp. (5)

We then follow the reasoning of the Clausius-Clapeyron equation,
which gives the slope dP/dT of the coexistence line (in the P, T plane)
for a bulk system, and consider an infinitesimal change in the control
variables while staying at coexistence so that Qs + dQs = Qr + dQ;
along this path, giving dQs = dQ;. After simplification of the term
in dAw using Eq. (4), we obtain

(Sr = Ss)dT +

%}vg—ysw)ﬂ{ +(Ni - Ns)du=0. (6)

Equation (6) relates the variations of T, H, and y along the solid-
liquid coexistence. We note that, as expected, Eq. (6) shows that the

confinement effect does not depend on the variations of the surface
area.

B. Integration along a bulk-to-confined
thermodynamic path

In order to obtain the GT equation, we will integrate Eq. (6)
from an unconfined, bulk system (H — oo) where the transition
occurs at the bulk melting temperature T, to another point along the
coexistence line with a melting temperature T, for a finite distance
H between the confining surfaces. This requires introducing some
additional setup-specific information on the thermodynamic condi-
tions in the reservoir, allowing us to express the dependence of the
chemical potential with the temperature du/dT. We thus rearrange
Eq. (6) as

dH dar

I P )k
H Z(VLW—YSW)[(pLSL psss) + (e ps)dT]’ @

where we used the densities p = N/V and entropies per particle s
= S/N. Equation (7) defines the L-S coexistence line under con-
finement by the joint variations of H and T. In addition, unlike in
the steps leading to Eq. (6), we will make some assumptions (dis-
cussed along the derivation and numerically in Secs. I1I- V1) on some
physical quantities.

In the experiments of Ref. 5, the liquid is in equilibrium with its
vapor, as shown in the right part of Fig. 2. The chemical potential of
the reservoir in equilibrium with the confined system is fixed by the
bulk liquid-gas coexistence, i.e., y(T) = pr(T) = pc(T), where the L
and G subscripts refer to the liquid and gas phase, respectively. Its
derivative with respect to temperature is given by (see Appendix A)

du __pIsi—pas | b

T oy YT ®)
PL ~ PG

where the superscript b refers to the bulk (unconfined) liquid and gas

phases. In the case of an isobaric-isothermic liquid phase, the result

would be exactly —s?. Introducing Eq. (8) into Eq. (7), we obtain

dH ,_(PL*PS)(SL*SE)JFPS(SL*SS)dT. ©)

H? 2(yLw — ysw)

For sufficiently large confining distances (and corresponding small
shift in the melting temperature Ty, — T5), one can approximate
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the densities and entropies per particle of the confined phases by
their bulk counterparts. The first term in the numerator can safely
be neglected (since, in addition, to this assumption, |pr — ps| < ps),
and we obtain

dH ____ psns’
H2 2(yiw - ysw)
with A,s® = s8 - s8 being the bulk entropy of melting per particle.
The final step to recover the GT equation is to integrate this

equation along a thermodynamic path connecting the confined sys-
tem for a finite H and corresponding T, and an unconfined one (H

dT, (10)

— oo and bulk melting temperature Tf',,). To this end, we assume that
the ratio on the right-hand side is independent of temperature and
confining distance over the considered range. This approximation
should be accurate at least for sufficiently large H and corresponding
small T, — Tfn; it will be tested numerically and discussed in Sec. I'V.
Under these conditions, we can write

T dH P As

Tl st)de (11)

Noting that in the present case of a liquid-gas equilibrium in the
reservoir, the melting temperature is, in fact, the (bulk) triple point
T?, the final result can be written as

2(yLw — ysw)

Tw(H) = TS +
m( ) T HPgAmSh

(12)

This derivation can be easily adapted to other geometries or external
reservoir conditions. In the case where the reservoir is an isobaric
liquid, the first term in the right-hand side is simply the bulk melting
temperature at the corresponding pressure.

I1l. MODEL SYSTEM

To assert the validity of the assumptions in the above deriva-
tion (in particular, neglecting the temperature dependence of some
quantities), we use molecular simulation to compute the vari-
ous terms entering in the GT equation for a simple system of
Lennard-Jones (L]) particles confined between unstructured walls.
More precisely, in order to avoid the difficulties associated with
the long-range corrections (LRC) in the computation of physical
properties under confinement, we consider the truncated shifted
Lennard-Jones (TSL]) potential for a pair of atoms i and j at a
distance ryj,

u’j(rij) - ”ij(rcut) if Tij < Teut

T

“ijsu(’ij) = (13)
0 otherwise,

where 7y is the cutoff radius and

- 12 o 6
“ff““:‘*s[(m) (%) ] "

with € and o being the L] energy and diameter, respectively. The total
energy of the system is then given by
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Utor = Z Z MTSL](VI']'), (15)

where the sums run over all atoms in the system. Simulations
are performed with typical values for argon:” & = 119.8 K and ¢
= 3.405 A. We employ a cutoff radius ey = 2.50, for which some
data on the phase diagram are available in the literature. In the fol-
lowing, most quantities will be given in reduced LJ units, indicated
by a * superscript: r* = r/o for distances, E* = E/¢ for energies, T
= kpT/e for temperatures (with kg being the Boltzmann constant),
P* = Pg’ /e for pressures, and y* = ya”/e for surface tensions.

As for the confining medium, we use the unstructured Steele
wall,”*”” with parameters corresponding to a mica surface,”® which
is for an atom at a distance z from the surface,

2 10 4

Ow
- | 16
3A(z+0.61A)3] (16)

where pj; = 1.0 is the atomic density of the material, ey = /€], and
owr = (1 + oyy)/2 are obtained by combining L] parameters with
surface parameters €y, = 7.85 and gy = 1.28, respectively, and A*
= 0.84 corresponds to the distance between atomic crystal planes. In
practice, we use two walls separated by a distance H, which controls
the pore size (see Sec. VI).

The crystalline structure of the Lennard-Jones fluid is a face-
centered cubic phase and the most stable face that crystallizes on
the Steele wall is the (111) face, with which subsequent simulation
boxes were initialized. Because crystallization is a phenomenon par-
ticularly sensitive to the box size, we worked on crystal configura-
tions consistent between the different techniques. Care was taken to
ensure the reversibility of calculations and to avoid polycrystalline
recrystallization: boxes were initialized from a perfect crystal and
liquid configurations were obtained by melting. Simulated systems
considered in Sec. I'V consisted of 4000 atoms per phase in a cubic
box of variable volume, and those considered in Sec. V consisted
of 4116 atoms with lateral dimensions L = 16.4, L; = 14.2 and
a pore size H* between Steele walls fluctuating between 19.5 and
21.5. In Sec. VI, we use boxes with L} = 21.1, L; = 20.3, and dif-
ferent H* values (8.7, 11.6, 14.5, 17.3, 20.2, 23.1, 26.0, and 28.8),
covering a wider range than studies focusing on disjoining pres-
sure effects, which typically consider pores up to ~10 molecular
diameters.

IV. BULK PROPERTIES

The phase diagram of LJ particles has been extensively stud-
ied,””” " mostly using LRC to correct for the use of a cutoff to com-
pute the interactions. For the TSLJ potential, however, the choice of
reut greatly influences the phase diagram.”””° For example, the use of
TSLJ with a cutoff of 2.5¢ results in a critical temperature difference
of about 35 K for an argon fluid with respect to the prediction with
LRC.” For this cutoff value, Vrabec et al.”’ computed the liquid-
vapor coexistence line and determined the critical point, whereas
Ahmed and Sadus™ investigated the solid-liquid coexistence line at
high pressure.

ARTICLE scitation.org/journalljcp

In order to accurately locate the triple point, we recompute both
the liquid-vapor and the solid-liquid portions of the phase diagram
using Gibbs-Duhem Integration (GDI).” Starting from a known
point on the coexistence line in the (T, P) plane, a new point is found
by integrating the Clausius-Clapeyron equation

dlnP _ Ah
g PpAY’

where 8 = 1/kgT and A,h and A,v are the transition enthalpy and
volume per particle, respectively. The right-hand side is computed
on-the-fly in simulations in the NPT ensemble of two systems cor-
responding to the two coexisting phases, (i.e., liquid and vapor, or
liquid and solid). More details are given in Appendix B.

The starting point for the GDI method is crucial: one needs
to accurately identify one point of the coexistence line because the
integration of Eq. (17) allows us to stay on the latter but not to
find it. For the liquid—vapor transition, we start from a coexistence
point at high temperature (T,, = 1.00,P; = 0.0612 + 0.0005),
determined using Gibbs-Ensemble Monte Carlo (GEMC) simula-
tions.””"" GEMC determines the coexistence between two phases
by exchanging volume and particles between two systems until the
chemical potential is equal in the two phases. While efficient for the
liquid-vapor equilibrium, GEMC is insufficient for the liquid-solid
one due to the low probability of particle exchange. Fortunately, at

a)

(17)

10!
10°
. 1071
Q
1072 L/G: Vrabec et al.
—e— L/G: This work
1073 —=— S/L: Ahmed and Sadus
—o— S/L: This work
-4
100.50 075 100 125 150 175
T*
b
) 1.75
1.50
. 125
&~
1.00
0.75
030650 025 050 075 100 125

p*

FIG. 3. Bulk phase diagram of the truncated shifted Lennard-Jones system with
a cutoff of 2.5¢: (a) in the (T*, P*) plane and (b) in the (p*, T*) plane. Our
results obtained by Gibbs-Duhem integration for the liquid—vapor (light blue open
circles) and solid-liquid (dark blue full circles) coexistence lines are compared to
the results of Vrabec et al.*>’ (orange open squares) and Ahmed and Sadus®° (red
full squares), respectively. All thermodynamic quantities are in LJ units.

J. Chem. Phys. 154, 114711 (2021); doi: 10.1063/5.0044330
Published under license by AIP Publishing

154, 114711-5


https://scitation.org/journal/jcp

The Journal
of Chemical Physics

a) 1.6 b) -7
-8
*2 1.5
< Xx -9
$14 10
1.3 -11
0.50 075 1.00 0.50 0.7*5 1.00

T T

FIG. 4. (a) Product of the bulk solid density p3 with the bulk melting entropy per
particle Aps* along the liquid-solid coexistence line and (b) chemical potential p1*
as a function of temperature along the liquid—vapor coexistence line (see Fig. 3).
All thermodynamic quantities are in LJ units.

high pressure and temperature, the difference in the phase behavior
of the L] with LRC and of the TSLJ potentials becomes negligible. We
therefore use as a starting point the results of Agrawal and Kofke on
the LRC-L]J system:”' T, = 2.74, P}, = 36.9.

Figure 3 shows the resulting phase diagram, together with the
coexistence lines from the work of Vrabec et al.”” and Ahmed and
Sadus™ for comparison. Figure 3(a), in the (T, P*) plane, demon-
strates very good agreement with the available literature data. More-
over, from our extended range of considered thermodynamic condi-
tions, we can locate the triple point for the TSLJ with a cutoff of 2.50,
which corresponds to T = 0.62, P} = 1.65 1073, Figure 3(b), in the
(p*, T) plane, further shows that the density of the liquid and solid
phases differs by 7%-15%, especially at lower temperatures, so that
using p? instead of pY in the GT Eq. (12) leads to a different estimate
of the melting temperature under confinement.

The quantity that enters in the denominator in Eq. (12) is, in
fact, the product of the bulk solid density with the bulk melting
entropy per particle. The latter can be determined from the GDI
simulations, which provide the enthalpy of the coexisting solid and
liquid phases; hence, Aps = Aph/Ty. Figure 4(a) shows the product
psAms, as a function of temperature, along the liquid-solid coex-
istence line. The GT prediction relies on the assumption that one
can use the value for the bulk coexistence, piAs’, corresponding
in the present case to the triple point with T} = 0.62. This result-
ing error is of only ~5% for T* = 0.65 but already ~13% for T~
= 0.75. Finally, Fig. 4(b) reports the chemical potential determined
by Widom insertion”' as a function of temperature along the liquid-
vapor coexistence line. These values are necessary for the HPT-
GCMC simulations of Sec. VI but will not be further commented
here.

V. CRYSTALLIZATION UNDER CONFINEMENT:
SURFACE TENSION DIFFERENCE

The last term in the GT equation that needs to be computed in
order to predict the temperature shift induced by confinement is the
surface tension difference yrw — ysw, which is positive if the walls
favor the solid phase with respect to the liquid phase and negative
otherwise. Computing surface tensions can be done following either
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amechanical route through the stress tensor'~*’ or a thermodynam-
ical approach, which uses the definition of the surface tension as a
(Gibbs) free energy per surface area,

),
w /NvT w /NPT

In order to avoid difficulties of the mechanical route for solid-
solid interfaces,” we use a thermodynamic integration procedure to
obtain yrw — ysw from the Gibbs free energy difference between the
walls in contact with the liquid or the solid phase. To that end, a
bias acting on the system is introduced, providing a handle to drive
the phase transition, and the relevant thermodynamic quantities are
computed to obtain the properties of the unbiased system. Here, we
use the collective variable Qg, derived from the sixth order Stein-
hardt parameters” ' defined in Appendix C, which quantifies the
average (over the system) local order: a large (respectively, low) value
corresponds to an ordered solid (respectively, disordered fluid).

Such a procedure is computationally more demanding than the
study of the bulk properties and cannot be performed systematically
as a function of thermodynamic conditions. Therefore, we first iden-
tify suitable conditions in which both the confined liquid and solid
phases are sufficiently metastable, i.e., close to the coexistence line
under confinement, which is not known a priori (see also Sec. VI).
For example, at the bulk coexistence temperature and pressure, the
confined liquid tends to recrystallize, which points to an increase
in the melting temperature under confinement. We fix the pressure
to P* = 0.2036 (which corresponds to a bulk melting temperature
T, = 0.638) and perform NPT simulations during which the tem-
perature is slowly increased and then decreased. The evolution of
the system density during these temperature ramps exhibits a pro-
nounced hysteresis pointing to the metastability of both liquid and
solid phases over a finite temperature range, which is then confirmed
by long simulations (10 ns) of the two phases at the selected tempera-
ture T7; = 0.659. These unbiased simulations also allow to determine
the characteristic values for the collective variable in the solid and
liquid phases (Qf = 0.3632 and Q% = 0.1425 from 2 ns simulations
at T7;), which are then used in the definition of the bias.

The details of the thermodynamic integration are given in
Appendix D 2. In a nutshell, it follows a three-step scheme,

Biased solid 2-SPLDIaS, i ed liquid

—1

1. introduce bias[ao_ﬂ Oc1_>0J3. remove bias

AGTI

Non-biased solid ——— Non-biased liquid

in which a bias on the Qg collective variable is introduced (via a
parameter « rising from 0 to 1), shifted from the solid to the liquid
(via a parameter A from 0 to 1), and removed (by decreasing « from
1 to 0). Along the way, one computes the relevant thermodynamic
quantities, which are then integrated over the whole thermodynamic
path [see Eq. (19)] to obtain the Gibbs free energy AG™ associated
with this transformation between the non-biased confined solid and
liquid phases,
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1 1
ou ou
AG™ = da(—) + d)L(—)
Of Oa [ NpTiar=0 0/ OA | NpTia=10
1

-/ da(a—U> . (19)
3 Oa NPT;a\=1

Since the first and third steps introduce/remove a bias of Qs
toward the respective equilibrium values QS and QZ, their contri-
butions to AG™! are small (around 1 kJ/mol) and almost perfectly
cancel each other. The final result then arises entirely from the
intermediate step, which involves the derivative (QU/OA), which
is shown as a function of A in Fig. 5. In practice, the simula-
tion for a given value of A is performed starting from a con-
figuration obtained at a previous value. This may lead to hys-
teresis since the path (in configuration space) followed during
the phase transition may differ in the forward (solid to liquid)
and reverse (liquid to solid) processes. This is why alternative
methods avoiding the explicit transition (such as the Frenkel-
Ladd method,”” which involves known reference states such as
the Einstein crystal and the ideal gas) are generally used.”””
The results of Fig. 5 show that with our choice of thermody-
namic path, bias, and simulation parameters (see Appendix D 2

2000
1000
S
%b 0
2
—1000
—2000
0.00 025 0.50 0.75 1.00

FIG. 5. Thermodynamic integration to force phase transition. Energy derivative
(OU* [O)) as a function of the biasing variable A for the shift of the bias step (in
LJ units). Values are given for both the forward (solidliquid, red open circles) and
backward (liquid-solid, blue open diamonds) transformations. The black dotted
line is a guide to the eye, with vanishing integral. Typical snapshots for several A
values are shown, where LJ particles are in pink and the position of the Steele
surfaces is indicated by the solid black lines.

ARTICLE scitation.org/journalljcp

for more details), we achieve a good reversibility of the transforma-
tion. The final result for the Gibbs free energy difference at T7; and
P*, taking into account the discretization error for the numerical
integrations in Eq. (19), is AG™™ (T};) = 50 + 28 (in LJ units). This
large uncertainty arises mainly from the numerical estimate of the
integral due to the jump between A = 0.3 and 0.4.

The Gibbs free energy difference AG™" obtained from the above
thermodynamic integration can be decomposed into volume and
surface contributions,

AG™ = (ApH = TARS) + 2Aw (yrw — ysw)

m

T
= rbulkAW(l - F)Amhh +2Aw (yLw — ysw)» (20)

where we introduced ',z = N/Aw — 2T the number of “bulk” atoms
per unit surface, with T being the excess number of atoms at each
interface. The latter can be determined from the density profiles, as
discussed in Appendix D 3. Equation (20) then leads to Ay* = y[
— yéw = 0.40 = 0.05.

Before turning to the implications for the GT prediction, we
note that for the present system, the strong attraction between the
particles and the wall (ejyz ~ 2.8) results in a pronounced struc-
turation in the vicinity of the surface, with several solid-like layers
even between the wall and the liquid phase (see the snapshot for A
= 11in Fig. 5 and the density profiles in Appendix D 3). This has
two important consequences. First, this probably explains why the
surface tension between the liquid and the wall (covered by a few
solid-like layers) is larger than that between the solid and the wall,
i.e., the positive sign of Ay*. Second, the width of these solid-like
films on both sides reduces the effective size of the bulk liquid and
solid regions, assumed to be sufficiently large for the GT equation to

apply.

VI. CRYSTALLIZATION UNDER CONFINEMENT:
MELTING TEMPERATURE

In Secs. IV and V, we computed the terms entering in the GT
equation (12) and investigated the temperature dependence of some
of these terms. Here, we finally compare the resulting predictions
of this equation to the melting temperature for our model system
under confinement as a function of the pore size H with results
from Hyper-Parallel Tempering Grand Canonical Monte Carlo
(HPT-GCMC) simulations. This technique, explained in detail in
Appendix E, runs parallel replicas at different temperatures, regu-
larly spaced in 8 = 1/kgT, each replica being a GCMC simulation
(in the yAwHT ensemble) in contact with a chemical reservoir. To
model the setup described in Sec. 1T and Fig. 2, the imposed chemical
potential y is taken from the liquid-vapor coexistence at the replica’s
temperature [see Fig. 4(b)]. The exchange between replicas improves
the sampling of phase space. The confidence interval for the melting
temperature T, is estimated for each pore size from the evolution
of the average number of particles as a function of temperature, as
explained in Appendix E, also supported by visual inspection of the
equilibrated configurations.

In order to compare the results obtained by HPT-GCMC sim-
ulations to the prediction of the GT equation, one needs to consider
the effective width of the pore occupied by the particles. From the
position of the Gibbs dividing surfaces (GDSs) (see Appendix D 3)
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located at ~o from the Steele walls, we define H}; = H* - 2, with H
being the distance between the positions of the walls (the difference
between Hy; and H" matters more in smaller pores but does not
influence the conclusions below). Figure 6 shows the melting tem-
perature Ty, as a function of 1/H,, together with the prediction of

the GT equation using the results of Sec. IV for T% and psA,s”(T5)
and Sec. V for Ap(T7y).

One can first note that for large pores, despite the relatively
large confidence interval due to the difficulties to converge the HPT-
GCMC simulations,which does not allow us to identify a trend with
temperature, the results are consistent with the bulk value T% in the
limit H off = 0. In addition, the order of magnitude of the GT pre-
dictions is consistent with the HPT-GCMC results down to very nar-
row pores (a few molecular diameters). However, the agreement is
not quantitative, even for the larger pores considered in the present
work (#20 molecular diameters).

Importantly, though unsurprisingly, the GT equation fails to
capture the transition from a regime dominated by the competition
between volume and interfacial contributions to a different one for
small pores, dominated by disjoining pressure effects, i.e., the mutual
influence of the two interfaces. Even though this second regime is
not the main focus of the present work and this is not visible with
the considered pore sizes, the disjoining pressure oscillates due to
the finite size of the particles and the formation of discrete layers
at the interfaces so that non-trivial effects on the thermodynamic
behavior can be observed.””** '

Several reasons can be put forward to explain the somewhat
disappointing comparison between the GT prediction and the HPT-
GCMC simulations for large pores. First, there are uncertainties
associated with the determination of the quantities entering the GT
equation, but their combination does not seem too large in the large-
pore regime. Second, the GT equation assumes that these quantities
do not depend on the temperature or equivalently on the pore width.

0.82
—— Gibbs-Thomson

0781 ¢ HPT-GCMC

0.74

*

£O.70

0.66 o

0.62 “ }

05850 003 006 009 012 015

V/H

FIG. 6. Melting temperature T, as a function of the inverse effective pore size
1/Hg; (see text). The red line indicates the prediction of the GT equation (12)
using the results of Secs. |V and V (with the shaded area illustrating the uncer-
tainty), while the open blue circles correspond to the direct determination of T,
from HPT-GCMC simulations, together with their confidence interval (see text and
Appendix E).
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The results on piA,,s® as a function of temperature in Sec. IV suggest
that the effect would be limited to less than 10% in the temperature
range corresponding to large pores. Unfortunately, the other con-
tribution to the GT slope, Ay, could only be determined at a single
temperature T7; (close to but different from T? to avoid the liquid-
vapor coexistence) so that we cannot assess the effect of T (or H) on
the difference in surface tensions.

A further difficulty is that the chosen model system, with a dra-
matic ordering of the interfaces due to the strong attraction with the
walls, leads to a small bulk region even for the larger pores consid-
ered here (see the density profiles in Appendix D 3). This makes it
particularly difficult to converge the HPT-GCMC simulations (the
exchange of two replicas is unfavorable when the difference in the
number of molecules, which increases with system size, is large) and
generally increases the computational cost—preventing, e.g., the sys-
tematic study of Ay with T or H. One possibility to mitigate this
difficulty would be to consider a different system with a weaker
interaction with the walls, leading to only two to three layers at the
interface—more typical of simple liquids on flat walls than the seven
to eight observed here. It is, however, not easy to predict the result-
ing effect on the magnitude of the temperature shift. Overall, the
difficulties related to the sampling of crystallization under confine-
ment suggest that evaluating the relevant quantities separately and
using the GT equation may provide an interesting alternative route
to predict the behavior in large pores from molecular simulations.

VIl. CONCLUSION

We revisited the derivation of the Gibbs-Thomson equation for
the crystallization of a liquid confined in a slit pore in order to clar-
ify the definition of the system and corresponding thermodynamic
ensemble, as well as the assumptions leading to the final result. We
highlighted the importance of the thermodynamic conditions in the
bulk reservoir in equilibrium with the confined system. We then
tested the validity of the approximations by evaluating the physi-
cal quantities entering the GT equation (bulk density and melting
entropy, and difference in interfacial tensions) for a model system
and, when possible, their evolution with the temperature. We finally
compared the prediction of the GT equation, using these estimated
properties, to the melting temperature obtained by HPT-GCMC of
the confined system, as a function of the pore size.

While the chosen model system turned out not to be ideal for
this study, we found that the order of magnitude of the GT predic-
tions is consistent with the simulations down to very narrow pores (a
few molecular diameters) but is not quantitative even for the larger
pores considered (20 molecular diameters). Importantly, though
unsurprisingly, the GT equation fails to capture the transition to
a different regime for small pores, dominated by disjoining pres-
sure effects, i.e., the mutual influence of the two interfaces. Beyond
the study of the GT equation, the present work highlights some
difficulties related to the sampling of crystallization under confine-
ment. Evaluating the relevant quantities separately and using the
GT equation may provide an interesting alternative route to pre-
dict the behavior in large pores from molecular simulations, without
resorting to computationally intensive techniques to determine the
melting temperature for each confining length.

The accuracy of the approximations leading to the GT equa-
tion depends, of course, on the nature of the fluid and of its
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interactions with the walls. However, the present approach to test
them can be applied not only for model fluids such as the one con-
sidered here but also for more complex ones such as water or ionic
liquids, provided that the relevant solid phases are known. When
several solid phases need to be considered, the “confined Clapeyron”
approach may not be efficient to explore the full phase diagram of the
confined system. The GT equation, in fact, also implicitly assumes
that a single phase transition is relevant in the range of considered
thermodynamic conditions.

One could further use molecular simulations to go beyond
some of the assumptions leading to the standard GT equation.
For example, the temperature dependence of the density, melt-
ing entropy, and difference in surface tensions could be explicitly
included in the integral along the thermodynamic path connecting
the bulk and confined systems. The evolution of Ay with tempera-
ture remains, however, computationally more demanding than that
of the bulk properties reported here. Another direction for future
work is to investigate other thermodynamic conditions in the reser-
voir. The case considered here corresponds to recent experiments on
the capillary freezing of ionic liquids between the tip of an AFM and
a substrate in mind,” but the extension to other conditions or ensem-
ble is straightforward. For this particular system, we will also need
to consider more realistic models of the liquid and of the substrate,
including the effect of its metallicity.”>*’ Of particular interest in this
context is also the fact that the crystallization of confined fluids may
also depends on the presence of an electric field.” Finally, the cou-
pling between phase transitions under confinement and mechanical
properties’” could similarly be investigated by combining contin-
uum thermodynamics with molecular simulations to compute the
relevant quantities.
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APPENDIX A: CALCULATION OF du/dT
FOR AN EXTERNAL LIQUID-GAS EQUILIBRIUM

In order to express the temperature dependence of the chem-
ical potential, du/dT, imposed by the liquid-gas coexistence in the
bulk reservoir, we study the corresponding bulk system in the yVT
ensemble and consider the liquid—gas transition (the gas phase will
be noted with the subscript G). The thermodynamic potential is the
grand potential O = U — TS — uN = —PV. Along the coexistence line,
the grand potential is equal in the two phases, i.e., Q¢ = Qf, and so
are the associated variations, i.e., dQ¢ = dQr. From the expression
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of the grand potential, the former equality immediately leads to
Pg = Pr, while the latter results in

—-8¢dT — PgdV — Ngdy = —=S1dT — PdV — Nrdy.

Using the equality of pressures, this yields

du _ _PLSL=pGSG. (AD)
dT pL = PG

Equation (A1) relates the variations in the chemical potential y to

the variations in temperature T at the liquid-gas coexistence.

In general, one can expect the density of the liquid to be larger
than that of the gas (pr > pg) and the entropy per particle to be
larger for the gas compared to the liquid (s >> s). In order to make
further progress, we consider the well-known van der Waals fluid,
which is a good approximation to both the gas and the liquid phases,
and use its equation of state, which amounts to a modified ideal
gas law including an excluded volume b and an attractive term a.
A review of the ideal gas and van der Waals fluid properties is given
in Ref. 66 and gives the entropy per particle of the van der Waals

fluid as
s 1-bp\ 5
— =1 = A2

ks n( pA3 ) * 2 (A2)

where p is the density and A* is the quantum volume with 1 being the
De Broglie wavelength. We introduce €, = pG/pr <« 1 and estimate
the ratio PGSG OVer prsy as

pGSG ep[ln(l —bpg) - In(prA’) + 5/2] -¢plne,
pLsL In(1-bpr) —In(pLA3) +5/2

(A3)

In the limit where €, — 0 and bpg — 0 while py, is large but fixed, we
have pgsg < prsi so that Eq. (A1) can be reasonably approximated
as

du

—— ~=SL . A4

ar &% (A4)
A numerical test of this approximation is shown in Fig. 7 for a van
der Waals fluid, using the coexistence properties given in Ref. 66,
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FIG. 7. Evolution of du/dT as a function of temperature in reduced units for a
van der Waals fluid (preq = plpcVe €t Treg = T/Tc, Where the ¢ subscript refers to
the critical point). Values of du/dT computed by Eq. (A1) (open black circles) are
compared to —s; using Eq. (A2) (open blue squares). The green solid line is the
relative error corresponding to approximating the former by the latter [Eq. (8)], with
values indicated on the right y-axis.
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for b = /20 and a/b = 57e/9. The results are expressed in reduced
units with respect to the critical temperature T. = 8a/(27b), pressure
pe=al(27 bz), and volume v, = 3b. Reduced quantities are given in
Fig. 7 along with the relative error made using the approximation in
Eq. (A4). The values show an excellent agreement for temperatures
small with respect to T and a relative error smaller than 10% on the
relevant temperature range.

APPENDIX B: BULK SIMULATION DETAILS

The Gibbs-Duhem Integration method (GDI) method was
implemented using the Python interface to LAMMPS,” which
allowed running two instances in parallel and coupling them dur-
ing the run. The integration of the Clausius-Clapeyron equation
[Eq. (17)] was done using the predictor-corrector procedure as
described by Kofke et al. in Ref. 38 using steps in reciprocal tem-
perature df3 = 0.01 for the liquid-vapor curve and steps in pressure
dln P = —0.4 for the vertical part of the solid-liquid one to minimize
integration errors. Each iteration of the predictor-corrector proce-
dure was 20 ps long (with a timestep of 2 fs), and after convergence,
equilibrated data for Ah and Av were collected for 200 ps. Gibbs-
ensemble Monte Carlo simulations and Widom insertion method
were also run using an in-house code based on the Python interface
to LAMMPS®” to compute the interactions.

APPENDIX C: COLLECTIVE VARIABLE Q¢

The collective variable considered in this work is based on
the sixth order Steinhardt parameters, which allow to measure the
degree of order in the first coordination shell of a given atom.”” "’
We use a continuous version of the Steinhardt parameter, which
allows us to compute derivatives and is given for each atom i as the
complex vector,

2 o(rij) Yem(rij)

N
qsm(z)—iza(nj) , (C1)
J

where the sum is on all other atoms j, Ye, is one of the sixth order
spherical harmonics, with m € [[-6, 6]], and o(r;;) is a switching
function that depends on the distance r;; between atoms i and j and
goes smoothly from 1 to 0 at a cutoff distance of 1.320, selecting only
first-shell neighbors of atom i.

We obtain a collective variable Qg that characterizes the whole
system by taking the norm of the average vector q, over all atoms,

Qs({ri}) = \’ 26 (Goml”. (C2)

We used the implementation available in the crystallization module
of PLUMED.""”

APPENDIX D: CONFINED PHASE TRANSITION USING
THERMODYNAMIC INTEGRATION

1. Thermodynamic integration in the NPT ensemble

We perform the thermodynamic integration with respect to the
control parameter A, which changes the total energy U(rN; A) of the
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system, in the NPT ensemble. The corresponding thermodynamic
potential is the Gibbs free energy G(N, P, T; ) = 7[371 In A(N, P,
T, A), where A is the partition function of the isothermal-isobaric
ensemble and 8 = 1/ksT is the inverse thermal energy. The derivative
of G with respect to A is

B 9A(h)

A(A) oA

_ ﬁ% / de drN%e—ﬁ(U(rN;)t)JrPV)
_|oU

- <5>NPT;A)
where the brackets denote an ensemble average at fixed N, P, T,

and A. The Gibbs free energy difference of interest can therefore be
obtained as

oG
STNPTiA) = -

(D1)

AG=G(A=1)—G(,\=0):j d;L<CLU

. D2
o >Npm ®2)

0

2. Thermodynamic path

The Hamiltonian Uj is modified by introducing a biasing
potential acting on the collective variable Qs,

Ui 1) = S[1- 1)@= @) M@= @l (03)

that will trigger the phase transition. The initial state is the (free)
solid phase, and the final state is the (free) liquid phase. The thermo-
dynamic integration procedure is divided into the following three
steps:

1. Introduction of the biasing potential: a € [0,1],1 =0,

U(a) = Up + aUpias(A = 0), (D4)
oU(a) _k S\2
Da —E(Qs—Qe) . (D5)

2. Shift of the bias from the solid to the liquid phase: & = 1,
Ae[0,1],

U(/\) =Uo + Ubias(/\)) (D6)
OU(A) K
a; ). Sl(Q-Qe) - (Q-Q)’) D7)
3. Destruction of the biasing potential: & € [1,0],A =1,
U(a) = Uy + aUpias(A = 1), (D8)
oU(a) _ E _AL\2
(90( - 2(Q6 QG) . (D9)

We ran six points in « from 0 to 1 (in steps of 0.2) and 11
points in A from 0 to 1 (in steps of 0.1) using a spring constant k
= 10> kJ/mol. The bias is applied using the open-source PLUMED
library”*® coupled to the simulation code MetalWalls.”’ Each a or
point was first equilibrated for at least 20 ps and then run for at least
400 ps. For A = 0.3, a small hysteresis was observed, which could be
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FIG. 8. Density profiles across the pore, for the system described in Sec. \/, for
the liquid (red solid line) and the solid (blue dashed line) phases. The profiles were
obtained from equilibrium NPT simulations of each phase at T7;; the average
position of the walls is indicated by vertical dotted lines.

cured by simulated annealing, i.e., heating the system at T* = 0.751
for 100 ps and cooling it back to T7y.

3. Surface excess

The separation between volume and surface contributions to
the Gibbs free energy AG™ in Eq. (20) requires the computation of
the surface excess I' at each interface (or equivalently the number
Tpui of “bulk” atoms per unit surface of the system). This can be
achieved from the density profiles p(z) across the pore, shown for
the liquid and solid phases in Fig. 8.

The thermodynamic definition of the surface excess is based on
the position of the Gibbs dividing surface (GDS), zps, which corre-
sponds to an equivalent sharp interface between two homogeneous
regions with densities p,,,; = 0 (in the wall) and py,x = pr. or ps in the
bulk region of the pore (averaged over a lattice spacing in the case of
the solid phase),

ZGDS Zhulk
f (p(2) = pyan)dz = f (p(2) = pou)dz,
2 ZGDs

‘wall

(D10)

with z,,; and zp,x being two positions in the wall and the bulk
regions, respectively (we take z,; = 0 in the center of the pore).
The bulk densities of the solid and liquid phases are p§ = 0.936
and p; = 0.826. In practice, we find that the GDS is approximately
located near the center of the first density peak, as expected. The sur-
face excess can then be computed as T = [ (p(z) — ppui )dz, from
which we obtain T, = N/Aw — 2I. Slightly different values of are
obtained from the density profiles for the liquid and the solid phases.
In the main text, we use the average and half difference for our final
estimate of I';,, = 17.0 + 0.2 and its uncertainty. Equation (20) then
leads straightforwardly to the difference Ay = yrw — ysw from AG™
and Fbulk-

APPENDIX E: HYPER-PARALLEL TEMPERING GRAND
CANONICAL MONTE CARLO SIMULATIONS
(HPT-GCMC)

The hyper-parallel tempering technique’" is an extended ver-
sion of the parallel tempering method in which replicas of the system
at different thermodynamic conditions (e.g., temperature, pressure,
and chemical potential) are considered in parallel. This method can
be extended to the grand canonical ensemble (constant volume,
temperature, and chemical potential) to determine the freezing and
melting of a nanoconfined fluid in equilibrium with a bulk reservoir
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of the same fluid.”*”” Each of the M replicas consists of the Lennard-
Jones fluid at a given set of temperature/chemical potentials [T, ]
with ¢(T) chosen to correspond to its value at the bulk liquid-gas
phase coexistence (in practice, M = 16 was chosen in the present
work). For each replica, conventional Monte Carlo moves in the
grand canonical ensemble are carried out (particle translation, dele-
tion, and insertion). In addition, swap moves between configuration
1 (energy Ui, N particles) in replica A and configuration 2 (energy
U, N, particles) in replica B are attempted. Swapping is accepted or
rejected according to the following Metropolis probability:

Pac (A1 B — Ao, By) _min{l’PA(UZ,NZ)PB(UI,NI)}) (E1)

pa (U1, N1)ps(Us, N2)

where pa(U,N) ~ VV/AN! x exp[-Ba(U — uaN)] and
pp(U,N) ~ VN/AZYN! x exp[-ps(U — upN)] are the density of
states in the grand canonical ensemble for a system having a con-
stant volume taken at [T, pa] and [T, ], respectively. In these
expressions, § = 1/kgT is the reciprocal thermal energy, while Aa
and Ag are De Broglie thermal wavelengths at temperatures T and
T, respectively. Equation (E1) then leads to

Pacc(Al;BZ — Ay, Bl)

- min{l, [%:]“Mﬂ exp[(Bs — Ba) (Us - Uy)

+ (Bopn = Papa) (N1 = N2) ]} (E2)

In this work, the temperature of the different replicas were cho-
sen to correspond to a constant step in the reciprocal temperature 8
between two successive replicas (roughly corresponding to a tem-
perature step AT = 1-3 K). As shown in Ref. 74, HPT provides an
accurate estimate of melting/freezing if both liquid and crystal con-
figurations are considered in the initial replicas. In order to quantify
the hysteresis between melting and freezing for each pore size, we
performed two sets of simulations starting from either only crys-
tal configurations or only liquid configurations. The convergence
is monitored by following the number of atoms. Swapping between
the crystal and liquid at different temperatures/chemical potentials
improves the sampling of phase space, although it remains limited
once the replicas have diverged in terms of number of particles and
energy.

A confidence interval for the melting temperature Ty, can be
obtained by identifying the transition region between solid (at low
T) and liquid (at high T) phases. To that end, we analyze the aver-
age number of atoms per replica for each pore size, as illustrated in
Fig. 9 for H* = 11.6. The approximately linear evolution of the num-
ber N with temperature in the low and high temperature regions
corresponds to the thermal expansion of the solid and liquid phases
(also illustrated by typical snapshots in Fig. 9), respectively. Even
though these two regimes are identical in the two sets of simulations
starting from only crystal or only liquid configurations, we observe a
hysteresis in the transition region. The corresponding range of tem-
peratures is used as our confidence interval for T}, reported for all
pore sizes in Fig. 6.
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FIG. 9. Average number of atoms N in each HPT-GCMC replica as a function of
the replica’s temperature T* for a pore size H* = 11.6. The two sets of data are
obtained starting either from crystal (black circles) or liquid (red triangles) con-
figurations in all replicas. Black dashed lines are linear fits to the low and high
temperature regions, which are used to locate the melting temperature T, (blue
shaded area indicating the confidence interval). The snapshots illustrate typical
crystal (top right) and liquid (bottom) configurations.
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