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ABSTRACT

The peculiarities of two Landau-type theories of ferroelastic phase transitions have been analyzed. The predictions of both theories
have been compared with well-known experimental data obtained for the shape memory alloys (SMAs) undergoing the first-order
martensitic transformations (MTs). It has been shown that the predictions of the Landau–Devonshire theory, which disregards
the third-order term in power expansion of Gibbs free energy, contradict the experimental data, while the results of the symmetry
conforming Landau theory, which takes into account this term, are in agreement with experimental data. The impossibility of
occurrence of the second-order MT is demonstrated starting from the thermodynamic definition of the second-order phase transi-
tion. It is argued that the stress–strain loops, obtained for SMAs, can imitate the stress-induced phase transition in the absence of
such transition.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/10.0009538

1. INTRODUCTION

Landau theory of phase transitions is widely used for the
description of physical effects accompanying the ferroelastic phase
transitions in multiferroic materials. A ferroelastic phase transition
is defined in the Landau theory as the phase transition character-
ized by the order parameter composed of the strain tensor compo-
nents. The equilibrium value of the order parameter is equal to
zero in the high-symmetry (parent) phase and has nonzero value in
the low-symmetry (product) phase.

The Landau theory of ferroelastic phase transitions is
applicable to the solids exhibiting the appearance of spontane-
ous strain on cooling below the phase transition temperature.
Two different variants of the Landau theory of phase transitions
are used for the description of these phase transitions. The first
one is a modification of Landau–Devonshire (LD) theory
advanced long ago for ferroelectric phase transitions; it is based
on the power expansion of Gibbs free energy, which involves
only even powers of the order parameter.1,2 This expression is
referred to as the 2–4–6 Gibbs free energy, where the numbers
show that this expression involves the second-, fourth-, and
sixth-order terms in the order parameter of ferroelastic phase
transition.3 The second variant of the theory is based on the
2–3–4 series expansion of Gibbs free energy that is the expression,

which involves the second-, third-, and fourth-order terms in the
order parameter.4–7

The martensitic transformations (MTs) of shape memory
alloys (SMAs) are the widely studied phase transitions of ferroelas-
tic type (see, e.g., handbook8 and references therein) because these
alloys are extensively applied in the engineering and medicine.
Therefore, they appeared to be good candidates for the application
of the Landau theory of ferroelastic phase transitions.

In the present communication, we emphasize that the predic-
tions of LD theory contradict to the well-known experimental data
obtained for MTs in SMAs, while the conclusions drawn from the
theory, which takes into account the third-order term in power
expansion of Gibbs free energy, are in agreement with these data.
We emphasize that the adequate theory of ferroelastic phase transi-
tion must be symmetry conforming, i.e., the tensor character of the
order parameter must be taken into account.

2. LANDAU–DEVONSHIRE THEORY APPLIED TO
FERROELASTIC PHASE TRANSITIONS

The LD theory9,10 was advanced first for ferroelectric phase
transitions, which are characterized by the spontaneous (arising in
absence of external electric field) electric polarization of solid. The
LD theory was based on the minimization of Gibbs free energy
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expressed through the components of polarization vector P as

G ¼ 1
2
χX(P2

x þ P2
y þ P2

z )þ
1
4
ξX(P4

x þ P4
y þ P4

z )

þ 1
2
λ(P2

yP
2
z þ P2

zP
2
x þ P2

xP
2
y )þ

1
6
ζX(P6

x þ P6
y þ P6

z ) . . . (1)

It should be stressed, first, that Eq. (1) is invariant with respect
to the reversal of sign of polarization vector components. Due to
this, the electrically polarized states with P = P0 and P = –P0 have
the same energy. Therefore, the LD theory shows that the spatial
domains of electrically polarized state with the opposite directions
of vector P have to arise on the cooling of solid below the phase
transition temperature. This theoretical conclusion is in agreement
with the great number of experiments (see, e.g., Ref. 10 and referen-
ces therein). It should be noticed, second, that the minimization of
Gibbs free energy leads to conclusion that the spontaneous electric
polarization of solid is a first-order phase transition if coefficient
ξX , 0 and a second-order one if ξX . 0. Negative and positive
values of this coefficient are reported for BaTiO3, PbTiO3,
SrBi2Nb2O9 and SrTiO3, LiTaO3, LiNbO3, Sr0.8Bi2.2Ta2O9, respec-
tively.10 The first-order ferroelectric phase transitions are observed
in BaTiO3, 0.32PIN−0.345PMN−0.335PT,11 while the phase trans-
formations showing the features of second-order transitions, are
observed in SrTiO3, CuInP2Se6.

12,13 Therefore, the LD theory is
adequate to ferroelectric phase transitions.

The ferroelastic phase transition is the transformation of cubic
crystal lattice into the crystal lattice possessing the tetragonal,
orthorhombic, rhombohedral, or monoclinic symmetry. To demon-
strate that the LD theory, which starts from 2–4–6 potential, is not
adequate to ferroelastic phase transitions, let us consider the appli-
cation of this theory to cubic-tetragonal MT in SMA, see, e.g.,
Ref. 14. This MT results in the appearance of non-zero values of
the diagonal strain tensor components and is characterized by the
“tetragonality” of crystal lattice, 1� c/a, where a = b and c are the
lattice parameters measured in the tetragonal phase. In accordance
with the basic principle of Landau theory of phase transitions the
power series expansion of Gibbs free energy must include all terms,
which are invariant with respect of the symmetry group of the
parent phase. The group theory shows the existence of the third-
order invariants composed from the multicomponent order param-
eters of ferroelastic phase transitions. However, the application of
LD theory to the martensitic phase transitions (see, e.g., Refs.
15–20) ignores the third-order terms and starts from the 2–4–6
Gibbs free energy expressed as

G ¼ G0(T)þ 1
2
α1ε

2 þ 1
4
α2ε

4 þ 1
6
α3ε

6 � σε, (2)

where ε is relative elongation of the crystal in [001] crystallographic
direction, σ is mechanical stress, α1,2,3 are phenomenological con-
stants.8 The point is that the tensor character of the order parame-
ter was ignored and third-order term was omitted, as it was done
in the case of vector P. The third-order term must be taken into
account, and that is why the analog of potential (1) cannot be used
for the description of ferroelastic phase transitions.

In essence, Eq. (2) is similar to Eq. (1), because both equations
express the Gibbs free energy of 2–4–6 type. Due to this, the theory
based on Eq. (2) is referred to as the LD model of MTs.1,2 This
model pretends to the description of the transformational proper-
ties of SMAs. It should be emphasized, however, that the predic-
tions of the theory, which is based on Eq. (2), drastically contradict
experimental data. This theory predicts that

(i) The mixed two-phase state formed by the tetragonal phases
with 1� c1/a1 . 0 and 1� c2/a2 ¼ �(1� c1/a1) , 0 must
appear as the result of MT in the unstressed specimen
because these phases have the same energy. (The Gibbs free
energy Eq. (2) in the absence of mechanical stress is invariant
with respect to the change of variables ε→−ε.)

(ii) The MT must be the second-order phase transition if α2 > 0
and the first-order phase transition if α2 < 0.

However, the numerous experiments show that

(A) The MTs never result in the mixed states formed by the spatial
domains of tetragonal lattices with the opposite signs of tetra-
gonality. The formation of such states does not happen, because
the crystal cells with 1� c/a , 0 are not equivalent to the
crystal cells with 1� c/a . 0 (see Fig. 1), and therefore, the
crystal lattices formed by such cells have different energy values.

(B) The second-order MTs are not observed. (Only the quasi
second-order MTs were realized in some non-stoichiometric
alloys by the precise tuning of their chemical composition,
aimed to minimization of tetragonality of product phase.21,22)

The disagreement between the theory based on Eq. (2) and
experimental data is caused by the fact that the transformation of
strain tensor components εik under the operations of the symmetry
group is similar to this of bilinear combinations of polarization
vector components PiPk.

23 Therefore, 2–4–6 expression for Gibbs
free energy, is transformationally equivalent to 1–2–3 expression
composed of strain tensor components.

3. SYMMETRY CONFORMING LANDAU THEORY FOR
FERROELASTIC PHASE TRANSITION

3.1. Symmetry conforming equation for Gibbs
free energy

For the ferroelastic phase transitions, the order parameter
components are the linear combinations of the strain tensor com-
ponents. To provide the minimum for the Gibbs free energy, the
second-, third-, and fourth-order invariant terms must be included

FIG. 1. The unit cell of cubic (parent) phase, and tetragonal phases with c < a,
and c > a.
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in the power series for Gibbs free energy. The first-order terms
describe the heat expansion of solids, and so, they can be disre-
garded by the phase transition theory.

This Gibbs free energy is expressed through the two-component
order parameter of cubic-tetragonal ferroelastic phase transitions as24

G ¼ 1
2
A1u

2
1 þ

1
2
A2(u

2
2 þ u23)

þ 1
3
B1u

3
1 þ

1
2
B2u1(u

2
2 þ u23)þ

1
3
B3u3(u

2
3 � 3u22)

þ 1
4
C1u

4
1 þ

1
2
C2u

2
1(u

2
2 þ u23)þ

1
3
C3u1u3(u

2
3 � 3u22)

þ 1
4
C4(u

2
2 þ u23)

2 � 1
6
(σ2u2 þ σ3u3), (3)

where the order parameter components are

u1 ¼ (εxx þ εyy þ εzz)/3, u2 ¼
ffiffiffi
3

p
(εxx � εyy),

u3 ¼ 2εzz � εxx � εyy:

The phenomenological constants A1,2, B1�3, C1�4 are the
linear combinations of elastic modules (see, e.g., Ref. 25). The
Gibbs free energy Eq. (3) and its simplified versions are used in the
symmetry conforming theory of ferroelastic phase transitions and
may be referred to as 2–3–4 model. The detailed analysis of Eq. (3)
is given in Ref. 26 and in the Appendix.

3.2. Explanation of basic experimental data

It was proved long ago that the presence of third-order term
makes impossible the second-order phase transition.26,27 This state-
ment of phase transitions theory leads to the conclusion that all fer-
roelastic phase transformations are the first-order phase transitions
(see point B). To explain point A the minimum conditions for the
Gibbs free energy must be considered (see Appendix). Three equiva-
lent domains with principal axes parallel to x, y, and z have the same
energy. For definiteness, the domain with a principal axis along z will
be considered. For this domain the minimum conditions for Gibbs
potential result in the equations, which have solution u2 = 2 and
u3 = 3εzz (see Appendix). Due to this, Eq. (3) is reduced to the form

G ¼ 1
2
A2(T)u

2
3 þ

1
3
B3u

3
3 þ

1
4
C4u

4
3 �

1
6
σ3u3, (4)

where C4 . 0, the coefficient A2(T) changes its sign during the
phase transition. For the unstressed specimen the condition
@G/@u3 ¼ 0 gives the equilibrium value of the order parameter

u3 ¼ 2(c/a� 1) ¼ �(B3/2C4) 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4A2(T)C4/B2

3

q� �
, (5)

which corresponds to the minimum of Gibbs free energy (see, e.g.,
Ref. 24). The austenitic phase is stable if A2(T) . 0, while the mar-
tensitic phase is stable if A2 (T) < B2

3/4C4, in the temperature interval
0 , A2(T) , B2

3/4C4 these two phases coexist. The coexistence of
two phases is the basic feature of first-order phase transition. The
equations A2(T) = 0 and A2(T) ¼ B2

3/4C4 prescribe the lability

temperatures of austenitic and martensitic phases, respectively. The
phase transition results in the stabilization on tetragonal lattice with
c < a, if B3 > 0, or c > a, if B3 < 0. The sign of B3 is fixed if the phase
transition in the certain solid is considered. Due to the presence of
cubic term in Eq. (4) the energies of tetragonal phases with c < a and
c > a are different at all temperatures and therefore these phases do
not coexist. This result of 2–3–4 potential explains point A that is in
agreement with plenty of experiments performed for MT. The
description of MTs in the stressed specimens is presented in Ref. 28.

3.3. Imitation of quasi second-order phase transition
by shape memory alloys

Equation (5) describes the temperature-induced ferroelastic
phase transition.29 However, Eqs. (3) and (4) are often used for the
description of the stress-induced phase transitions observed in the
course of stress-strain cycles.30 These equations made it possible

FIG. 2. The theoretical (a), and experimental (b) phase diagram of MT obtained
for Fe–Pd alloy.31,32
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to obtain the stress–temperature phase diagrams for SMAs. A the-
oretical phase diagram computed for Fe–Pd alloy is shown in
Fig. 2(a).31 This diagram consists of lability lines of martensitic
and austenitic phases, the area between these lines corresponds to
the mixed austenite–martensite state. The dashed line is the phase
transition line. At this line, the energy of austenitic phase is equal
to the energy of martensitic phase. It is worth noting, that the
phase transition line is not an average line between austenite and
martensite lability lines, but lies clothier to the martensite lability
line. The lability lines meet in the critical point (σ*,T*). This is
the end-point of the phase transitions line. Therefore, the stress–
strain cycles performed at the temperature exceeding critical tem-
perature T* are not accompanied by the stress–induced MTs.
Experimental data confirming the presence of critical point are
shown in Fig. 2(b).32

In spite of the conclusion of symmetry conforming phase
transition theory, the transformational behavior, which may be
attributed to the second-order phase transition, was observed for
some axially stressed SMAs.33–36 The theoretical explanation and
prediction of the results of stress–strain tests performed above the
critical temperature T* attract a special attention of researchers
dealing with SMAs, because the realization of giant anhysteretic
deformation is promising for various applications. However, the
fundamental problem arises in the course of traditional interpreta-
tion of experimental results. To explain the essence of this
problem, the existence of the end-point (σ*, T*) of the first-order
phase transition line at the stress–temperature phase diagram must
be taken into account. Figure 3 shows the theoretical stress-strain
loops computed in Ref. 28 for the temperatures T < T* and T > T*
using the 2–3–4 power expansion for Gibbs free energy and taking
into account the presence of crystal defects in the deformed SMA.
The figure illustrates drastic difference in transformational behavior
of an alloy above and below critical temperature: the bottom loop

shows pronounced hysteresis with plateau-like segments, mean-
while the upper loop shows gradual strain increase with much
smaller hysteresis.

The pronounced hysteresis is caused by the first-order phase
transition, the much smaller hysteresis is caused by the crystal
defects and takes place in the absence of phase transition. It is
important that the absence of phase transition cannot be noticed if
the standard procedure is used for determination of the strain
values corresponding to start (εMS) and finish (εMF) of MT. This
procedure attributes the start and finish of the stress-induced MT to
the deflection points from the linear segments of the stress–strain
loops (see straight dash-dotted lines in Fig. 3) and to the existence
of hysteresis. However, despite of the commonly accepted

FIG. 3. The stress-strain loops computed in the presence (solid line) and in the
absence (dashed line) of stress-induced phase transition.28

FIG. 4. The first (a), and second (b) derivatives of Gibbs potential on tempera-
ture computed for different values of applied mechanical stress.
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interpretation, the upper loop doesn’t exhibit the martensitic trans-
formation. This loop characterizes the gradual deformation of
crystal lattice, without jumps of strain value. The large non-linear
deformations of SMAs in the absence of phase transition, predicted
in theoretical work,28 were observed experimentally then for Ni–Fe–
Co–Ga and Fe–Pd alloys.37,32 However, there are still disputes con-
cerning the possibility of observation of second-order MT in SMAs,
as so this statement must be supported by the fundamental thermo-
dynamic arguments.

According to thermodynamic definition, the first-order phase
transition is the change of thermodynamic state characterized by
the jump-like change of the first derivative of thermodynamic
potential, while the second-order phase transition must be accom-
panied by the jump-like change of the second derivative of thermo-
dynamic potential. Figures 4(a) and 4(b) show the first and second
temperature derivatives of Gibbs potential, respectively. These
values were computed using Eq. (4) for Fe–Pd alloy, the model
parameters used for computations were estimated previously (see
Ref. 31) from the experimental phase diagram.32 Fig. 4(a) shows
the decrease of the jump of first derivative of Gibbs potential with
increasing applied mechanical stress. When applied stress is equal
to critical stress σ* = –40 MPa (see phase diagram Fig. 2) the jump
of first derivative vanishes indicating the end of first-order MT.
This is in agreement with experimental data,32 which point to the
disappearance of first-order MT at critical stress –40 MPa. The
Fig. 4(b) shows that the second derivative of Gibbs potential varies
continuously if the mechanical stress is larger than critical stress
σ* =−40 MPa, and therefore, neither first-order phase transition
nor second-order phase transition can be observed on cooling/
heating of alloy specimen.

4. CONCLUSION

The consistent theoretical analysis of Landau-type theories
showed that

(1) The predictions of 2–4–6 theory, which disregards the third-
order summand in the power expansion of Gibbs potential in
terms of strain tensor components, contradict the well-known
experimental data obtained for MTs in SMAs and could not
be used for the description of MTs. In the same time, the
symmetry conforming theory, which takes into account the
third-order term in power expansion of Gibbs free energy, is
applicable to MTs and is in agreement with experimental data.

(2) The standard procedure of determination of stress-induced
MT from experimental stress-strain loops, can result in the
wrong conclusion about MT if the alloy temperature is slightly
higher than the critical temperature, corresponding to the end-
point of phase transition line in the stress-temperature phase
diagram. The reason is that the non-linearity of stress-strain
curves and small hysteresis of stress-strain loop may be
observed even in the absence of MT.

(3) Computed temperature dependences of first and second deriv-
atives of Gibbs potential are in agreement with thermodynamic
definitions of the first-order and the second-order phase tran-
sition. These computations explicitly prove the absence of
temperature-induced phase transition in the stressed alloy

when the stress exceeds the critical value corresponding to the
end-point of phase transition line.
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APPENDIX: MINIMIZATION OF GIBBS POTENTIAL

The equation for the Gibbs potential, which takes into
account both order parameter components u2,3 and concomitant
component u1, can be written in the form:

G ¼ 1
2
A1u

2
1 þ

1
2
A2(u

2
2 þ u23)þ

1
2
B2u1(u

2
2 þ u23)

þ 1
3
B3u3(u

2
3 � 3u22)þ

1
3
C3u1u3(u

2
3 � 3u22)

þ 1
4
C4(u

2
2 þ u23)

2 � 1
6
(σ2u2 þ σ3u3): (A1)

The minimum conditions for this Gibbs free energy are
∂G/∂u1 = 0, ∂G/∂u2 = 0, ∂G/∂u3 = 0. The first condition gives

u1 ¼ �[B2(u
2
2 þ u23)þ C4u3(u

2
3 � 3u22)]/2A1:

The u1 is proportional to the second power of order parameter
components and therefore, u21 � u22 þ u23. This inequality corre-
sponds to the volume conservation principle, which is inherent to
the phase transitions observed in the martensitic alloys. (The
strong inequality shown above explains why the terms proportional
to u31, u

4
1 are omitted in Eq. (A1).) In the case, if the mechanical

load is applied in the [001] crystallographic direction the value
σ2 = 0 and Gibbs potential is equal to

G ¼ 1
2
A2(u

2
2 þ u23)þ

1
3
B3u3(u

2
3 � 3u22)

þ 1
4
C4(u

2
2 þ u23)

2 � 1
6
σ3u3: (A2)

The minimum conditions with respect to order parameter compo-
nents are

@G/@u3 ¼ A2u3 þ B3u
2
3 þ C4u

3
3 �

1
6
σ3 ¼ 0,

@G/@u2 ¼ A2u2 � 2B3u3u2 þ C4u
3
2 ¼ 0:

(A3)

The second equation in (A3) results in the equality u2 = 0. As
so the Eq. (A3) can be simplified to the Eq. (4) in the cases of
unloaded specimen and specimen mechanically loaded in the z
direction. The Eq. (4) is used also for the accounting of the influ-
ence of temperature dependence of lattice parameters on the ferro-
magnetic resonance in martensitic films.38
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It can be concluded that the minimization of Gibbs potential
with respect to both components of two-component order parame-
ter reduces Eq. (3) for Gibbs potential to Eq. (4) and it is an exact
result of the 2–3–4 theory.

It should be noted that the volume conservation principle is
not a general feature of ferroelastic phase transitions in the solids.
Phase transitions with pronounced volume change are observed in
particular in Mn–As and Fe–Rh alloys. The power expansion of
Gibbs potential with respect to u1 variable39 and magnetoelastic
model40 are used for the description of phase transitions in Mn–As
and Fe–Rh, respectively.
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