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a b s t r a c t 

Searching for single-phase solid solutions (SPSSs) in high-entropy alloys (HEAs) is a prerequisite for the 

intentional design and manipulation of microstructures of alloys in vast composition space. However, to 

date, reported SPSS HEAs are still rare due to the lack of reliable guiding principles for the synthesis 

of new SPSS HEAs. Here, we demonstrate an ensemble machine-learning method capable of discovering 

SPSS HEAs by directly predicting quinary phase diagrams based only on atomic composition. A total of 

2198 experimental structure data are extracted from as-sputtered quinary HEAs in the literature and used 

to train a random forest classifier (termed AS-RF) utilizing bagging, achieving a prediction accuracy of 

94.6% compared with experimental results. The AS-RF model is then utilized to predict 224 quinary phase 

diagrams including ∼32,0 0 0 SPSS HEAs in Cr-Co-Fe-Ni-Mn-Cu-Al composition space. The extrapolation 

capability of the AS-RF model is then validated by performing first-principle calculations using density 

functional theory as a benchmark for the predicted phase transition of newly predicted HEAs. Finally, 

interpretation of the AS-RF model weighting of the input parameters also sheds light on the driving 

forces behind HEA formation in sputtered systems with the main contributors being: valance electron 

concentration, work function, atomic radius difference and elementary symmetries. 

© 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & 

Technology. 
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. Introduction 

High entropy alloys (HEAs) [ 1 , 2 ] have been emerging as a

ew research field in the materials community. The complex local 

hemical environment in HEAs significantly alters the mechanical 

nd electronic properties of these materials, leading to favorable 

ombinations of strength and ductility, high fracture toughness, 

nd high thermal stability [3–18] . To date, only a small number of 

lloys have been demonstrated experimentally, primarily through a 

rial-and-error approach to the hyper-compositional space of HEAs. 

ransitioning this trial and error approach to one of intentional de- 

ign and manipulation of the HEA microstructures requires tools 

o reliably explore single-phase solid solutions (SPSS) with sim- 

le FCC or BCC crystal structures [ 1 , 2 , 19 ]. However, the multi-

le principal elements in HEAs lead to complex phase diagrams 

aking the design of desirable HEAs with SPSS challenging and 
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rustrating the development of accurate phase selection rules for 

EAs [20–22] . 

Presently, the design tools available for the selection of new 

PSS-HEAs include empirical parametric analysis and density func- 

ional theory (DFT). The parameter method [23] provides phase es- 

imates from the thermo-physical parameters of elementary con- 

tituents of potential HEAs [24–28] and has been demonstrated to 

e able to decrease the phase overlap between SPSS and inter- 

etallic phase in HEAs [ 20 , 29–31 ]. However, with the number of 

hermos-physical factors going beyond three [ 22 , 23 ], the empirical 

ethods can hardly provide reliable phase separations for HEAs. 

n the other hand, DFT can provide accurate descriptions of the 

omplex chemical environment of HEAs, including lattice distortion 

32] , phase stabilities [33] and transitions [34] . However, the high 

omputational cost of DFT significantly hinders the full exploration 

f phase formation in HEAs. 

As an alternative to the traditional approaches discussed above, 

everal groups have applied machine learning (ML) algorithms to 

he complex relationship between composition and phase forma- 
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Fig. 1. A schematic diagram of the random forest model for the phase diagram predictions. (a) Elemental network for the formation of five-principal HEAs. (b) A schematic 

graph represents the fabrication processes of as-sputtered HEAs. (c) A list of thermo-physical parameters for the descriptions of the HEA samples. (d) The architecture of the 

AS-RF machine learning model. D n is the subset of the training data. T n is a single decision tree. ˆ y tr n is decision made by T n . The filled colors in the figure denote different 

phases of HEAs. During the training process, to reduce the similarity and correlations between decision tresses, 60% of the training data have been randomly selected for 

each tree. To make the final predictions in the RF model, each tree first collects the results from the leaf nodes and votes for the one with largest probabilities, and then the 

RF collects the votes from each tree and provides the final prediction. (e) A list of schematic phase diagrams as the output of the AS-RF model. 
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ion in HEAs [35–42] . Artificial neural networks (ANN), have been 

pplied to predict the formation of solid solution phases, inter- 

etallic compound phases and mixed phases [37] based on a train- 

ng set of 401 as-cast HEAs. This model yielded a prediction ac- 

uracy of 75% due in part to the small training dataset (the ANN 

odel usually requires thousands of samples for training and test- 

ng [43] ). Interestingly, by combining an artificial HEA dataset (cre- 

ted through synthetic minority over sampling technique) with a 

ataset of 322 as-cast samples, an alternative model using support 

ector machines (SVMs) was able to increase prediction accuracy 

eyond 90% for distinguishing SPSS with BCC and FCC structures 

38] . 

Each of the above ML algorithms is limited in part by the avail- 

ble experimental data on which they were trained, and bias in 

hat data due to the imbalance of BCC structures in reported exper- 

mental quinary HEAs. The underlying issue here is the difficulty 

n obtaining collect enough HEA samples for training ML mod- 

ls, since the conventional HEA casting process is time-consuming 

nd ill-suited to high-throughput experiments. Moreover, the col- 

ected data are complex, influenced by variations in the fabrica- 

ion process [ 19 , 44 ], and often incompletely characterized [45] . 

ortunately, high-throughput HEA experimental methods have re- 

ently been developed by employing combinatorial magnetron co- 

puttering and this method was used to produce 2198 high-quality 

uinary HEAs [46] . From a kinetic and thermodynamic point of 

iew, sputtering processes undergo different thermodynamic con- 

itions from those of casting processes, and the cooling rate in 

he sputtering processes is at least five orders of magnitude larger 

han that for casting processes. Compared with casting and elec- 

rochemical deposition methods, sputtering provides uniform ex- 

erimental conditions with well-controlled compositions making 

t well suited for experimental exploration of the HEA space. A 

chematic overview of these 2198 HEAs ( Fig. 1 (a)) shows seven 
71 
lements (Fe, Co, Ni, Mn, Cr, Al, Cu) combined to form BCC type 

PSSs, FCC type SPSSs, BCC + FCC type multi-phase solid solutions 

MPSS), B2 (IM) and amorphous phases (See Ref. [46] and Fig. S1 in 

upplemental Materials for more details). However, the complexity 

f this chemical space makes it a nontrivial task to construct an 

xplicit relationship between the atomic compositions and phase 

ormations in HEAs. 

In this contribution, we overcome this challenge by construct- 

ng a random forest ML model capable of predicting the forma- 

ion of SPSS HEAs trained on the database of high-throughput 

s-sputtered HEAs [46] . Random Forest ML model has the built- 

n ability to estimate feature importance contributions, a charac- 

eristic that allows the model to be interpreted with the order 

nd effect size of the feature associated with the outcome. Com- 

ared to other ML models, this as-sputtered random forest (AS- 

F) model has the advantage of the easy interpretation of the fac- 

ors underlying the predictions, allowing us to quickly identify re- 

ationships between the features of alloys and phase formation. 

y screening and selecting the most relevant features, our AS-RF 

odel can distinguish five phases, including BCC type SPSS, FCC 

ype SPSS, BCC + FCC type multi-phase solid solution (MPSS), B2 

IM) and amorphous phases, with a high accuracy of 94.6% for 

he prediction of HEAs with SPSS phase. We then used the AS-RF 

odel to predict 224 quinary phase diagrams including ∼32,0 0 0 

PSS HEAs in the Cr-Co-Fe-Ni-Mn-Cu-Al composition space. Finally, 

e compared the AS-RF predicted HEAs to first-principles calcu- 

ations of the same compositions using DFT and show the results 

o be strongly predictive. These results demonstrate that the AS-RF 

odel accurately reveals the interplays between the driving forces 

especially valance electron concentration, work function, atomic 

adius difference and elementary symmetries) on the phase for- 

ations of as-sputtered HEAs, providing a tool to guide the ex- 

loration of HEAs with SPSS structures. 
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. Computational methods 

.1. Random forest model 

As an ensemble learning method, RF is built upon decision trees 

47] , in which the number and depth of the tree control the com- 

lexity of the model. To make reliable decision making, we ap- 

lied one of the popular algorithms, so-called Gini-index method 

48] , for the split of the nodes and the decision making in each 

ode is achieved by minimizing the value of Gini-index. For the 

valuation of the quality of the model, ten-fold cross-validation 

CV) was applied to achieve the tradeoff between bias and vari- 

nce in our RF model. We have repeated 300 independent training 

nd testing processes to guarantee the stability of our RF model. 

e have also performed “learning curve” estimation, precision and 

ecall calculations, F1-score comparison between different models, 

eceiver operating characteristic curve and confusion matrix esti- 

ations of the AS-RF model, as seen in Figs. S2–S5 in the Supple- 

ental Materials. 

For the split of the nodes, there are two commonly applied al- 

orithms, i.e. , Gini-index method and the entropy criterion. The 

ini-index favors large distributions of the dataset and is simple 

o implement, whereas the entropy criterion favors small distribu- 

ions of the dataset with a variety of diverse values and is good 

t classifications of a highly imbalanced dataset. In our work, the 

ataset structure of the HEAs is almost balanced and possesses big 

istributions. Therefore, here the Gini-index method was adopted 

or the split of the nodes, which is expressed as 

ini = 1 −
M ∑ 

m =1 

( p m 

) 
2 (1) 

here p m 

denotes the probability of the training sample belong- 

ng to class m . M is the number of classifications. The criterion for 

plitting is to choose the feature with the least Gini index for the 

orresponding node. 

In each decision tree, the relationship between the predicted 

lass ˆ y tr and features x can be determined by 

ˆ 
 

tr = 

M ∑ 

m =1 

c m 

I { x ∈ R m 

} (2) 

here R m 

is the subset date in the leaf node, and c m 

is the train- 

ng class in the leaf node R m 

. I{ x ∈ R m 

} is the identity function 

hat returns 1 if x is in the subset R m 

and otherwise returns 0. 

In the AS-RF model, each tree is treated as one independent es- 

imator and votes for one class. Then, RF collects the votes from 

rees and makes the final prediction with the majority vote. Here, 

e used the so-called soft majority voting algorithm [49] to esti- 

ate the phase predictions, with the following formula: 

ˆ 
 = arg max 

j 

M ∑ 

i =1 

ω i p 
tr 
i j (3) 

here p tr 
i j 

is the probability of predicted class label j from the i -th 

ree, and ˆ y is the final predicted class with the RF model. 

Based on the scikit-learn library [50] , we built the AS-RF model 

ystematically by growing the depth and the number of the trees. 

fter a comprehensive grid search for the parameters of the tree 

nd depth (see Fig. S6 in Supplemental Materials for more details), 

00 trees with 30 depths have been adopted for the final opti- 

ized model. The correlations between trees are minimized with 

 randomly selection of features. 
72 
.2. Mann-Whitney-Wilcoxon U test 

The Mann-Whitney-Wilcoxon U test is performed using the fol- 

owing equations: 

 = AUC · n BCC · n FCC (4) 

 = 

U − n BCC ·n FCC 

2 √ 

n BCC ·n FCC ·( N+1 ) 
12 

(5) 

here U is Mann-Whitney-Wilcoxon U statistic, AUC is the area 

nder the ROC curve (in Fig. 5 (c) and (d)), n BCC is the number of

CC samples by DFT (19), n FCC is the number of FCC samples by 

FT (56), N is the total number of the samples (75) and z is z -

core. 

.3. Density functional theory calculations 

As an external validation step for the machine learning 

redictions, the phase stabilities of some randomly selected 

EAs were estimated by performing density functional theory 

DFT) calculations as implemented in Vienna Ab-initio Simula- 

ion Package (VASP) code [51] . For DFT validation, we have se- 

ected 41 HEAs from five phase diagrams, (Al x Cu y [(FeCoNi) 0.33 ] z , 

o x Cu y [(AlCrFe) 0.33 ] z , Fe x Co y [(AlNiCu) 0.33 ] z ), (Al x Ni y [(FeCoCu) 0.33 ] z ,

o x Cu y [(CrFeNi) 0.33 ] z ), and for each HEA system, a supercell size 

f 3 × 3 × 3 has been applied for the total energy calculations. 

he details can be found in Table S3 in Supplemental Materials. 

pecial quasi-random structure method [52] was applied to con- 

truct chemical disordered HEAs, as implemented in Alloy Theo- 

etic Automated Toolkit package [53] . Thee exchange correlation 

nteractions between valance electrons were described within the 

eneralized gradient approximation with Perdew-Burke-Ernzerhof 

ypes [54] . The Projector-Augmented Wave pseudopotentials were 

pplied for the electron-ion interactions. To solve the Kohn-Sham 

quations, a 3 × 3 × 3 k-point mesh was applied to sample the 

rillouin Zone, along with an energy cutoff of 400 eV for the con- 

truction of the basis sets. For the convergence criteria, a residual 

orce threshold of 0.001 eV/ ̊A was used for the geometric optimiza- 

ions and an error bar of 0.1 meV/atom was adopted for the final 

otal energy estimations. 

. Results and discussion 

.1. The AS-RF machine learning model workflow 

To appropriately characterize the as-sputtered HEAs with dif- 

erent phases, we applied several thermodynamic and intrinsic 

hysical characteristics of HEAs as the basic features for the HEA 

amples ( Fig. 1 (c)) ( c.f. Tables S1–S2 for the detailed expressions 

n Supplemental Materials). Among the features, mixing enthalpy 

 �H mix ), mixing configurational entropy ( �S conf 
mix 

) and averaged 

elting temperature ( T M ) stand for thermodynamic effects on the 

hase formations of as-sputtered HEAs. And inspired by Home- 

othery rules that the elements possessing similar electronegativ- 

ty and similar valance electron numbers would favor to form solid 

olution phases, here we introduce valence electron concentration 

VEC) and electronegativity difference ( �χ ) as another two basic 

eatures for HEAs. Further, we introduce atomic size difference ( δ) 

nd averaged space group ( N ) to represent strain and atomic struc- 

ural properties of the samples. Different from as-cast samples, 

puttering HEAs are deposited on the substrate and form thin films 

hrough polymorphic crystallization, and the formation of phases is 

argely determined by the crystalline orientations and surface ener- 

ies. To capture these surface electronic and elementary structural 
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Fig. 2. The validation of the quality of our RF model. (a) Out-of-bag (OOB) error of our RF model as a function of maximum features that randomly selected in each individual 

tree. (b) The accuracies of prediction and cross-validation (CV) for 300 independent processes. The solid dot lines are their average values for every 60 times predictions, 

and their error bars are present at each dot point. (c) The prediction accuracies of precision (solid) and recall (slashed) for BCC, FCC, BCC + FCC, B2 and amorphous phases. 

The corresponding error bars are denoted in the histogram. (d) The Violin plots of the prediction accuracies of the four models over 300 independent experiments under 

ten-fold cross validation. 
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ffects, we introduced averaged work function (W) and FCC-BCC 

ndex (FBI) as basic features to study their possible effects on the 

hase selections of as-sputtered HEAs. 

The ten parameters descriptor-set was then calculated for the 

198 as-sputtered HEA samples along with the known phase (see 

able S2 in Supplemental Materials for the detailed calculations 

f the descriptors), and these data were used to train and opti- 

ize the AS-RF model. The AS-RF model (shown schematically in 

ig. 1 (d) and (e)) is constructed by an ensemble of decision tress, 

nd for each tree, the bootstrapping strategy is adopted by ran- 

omly selecting 63.2% of the training data with replacement. Dur- 

ng the training processes, the out-of-bag (OOB) method [55] was 

dopted for the estimation of the variance of the model by ap- 

lying the rest 36.8% of the training data. To reduce the variance, 

he correlation between trees was minimized by bagging different 

ubsets of the training data and randomly selecting the considered 

eatures at each decision-making step in each tree. 

.2. The quality of the AS-RF model 

By systematically increasing the number of the selected features 

or each tree, in Fig. 2 (a) the smallest OOB error (around 5.7% at

hree features) was obtained. With the optimized parameters, we 

alculated the overall phase prediction accuracy for each of the 

ve phases. As seen in Fig. 2 (b), the averaged prediction accuracy 

s 94.6% with a low variance over 300 independent training pro- 

esses. We additionally investigated the prediction balance for each 

hase by calculating their precisions and recalls, respectively [56] . 

 large difference between the values of precision and recall indi- 

ates either too tight or too loose phase selection rules. In Fig. 2 (c),

here is no obvious difference between precision and recall for in 

ny phase, indicating high prediction quality in the optimized AS- 

F model. 

We then evaluated the performance of our AS-RF model by us- 

ng the same training data with three alternate well-known ma- 
73 
hine learning models: SVM, k -nearest neighbor (KNN) [57] , and 

radient boosted decision trees (GBDT) [58] . Fig. 2 (d) and Fig. S7 

how that the AS-RF model exhibits the best performance among 

he four models, with the largest prediction accuracy and the low- 

st bias and variance. Unsurprisingly, SVM and KNN perform worse 

n the phase predictions. For both algorithms [ 59 , 60 ], the decision

unctions are based either on the local support vectors or k near- 

st points as opposed to those in AS-RF and GBDT models, where 

he prediction is dependent on all samples in the feature space. In 

ontrast, the RF and GBDT models vote based on randomly selected 

ata, leading to an improved balance of bias and variance. How- 

ver, compared with the AS-RF model, the GBDT model is relatively 

ensitive to the collected dataset, especially for multi-classification 

roblems [61] . This makes the convergence and generalization of 

he GBDT model less reliable than the AS-RF model for the phase 

redictions in HEAs. 

.3. The phase prediction of quinary HEAs 

Using the AS-RF model, we first predicted 14 phase diagrams 

ased on compositions consistent with high-throughput experi- 

ents and showed them to be in good agreement with the experi- 

ental data ( Figs. 3 (a), S8(1–14)). We then predicted a comprehen- 

ive set of five-principal element phase diagrams (with atomic ra- 

io > 5% and < 35%) of 210 previously uncharacterized compositions 

ncluding ∼67,0 0 0 unknown alloys (see Supplemental Materials for 

etails). To provide a statistical analysis of HEAs with SPSS phase, 

t is essential to construct direct relationships between constituent 

lements and phase formations of as-sputtered HEAs. To do this, 

e constructed a full-connected network within the Cr-Co-Fe-Ni- 

n-Al-Cu chemical space, containing all possible five-principal al- 

oys with component concentrations ranging from 5% to 35%. By 

apping 67,0 0 0 alloys separately onto the network according to 

heir phase structures, different correlations between elements can 

hen be revealed, as seen in Fig. 4 . In particular for HEAs with SPSS,
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Fig. 3. Phase diagrams of quinary HEAs with Al, Cu, Fe, Mn, Cr, Co, and Ni constituent elements. The atomic percentage unit is adopted at the axes of phase diagrams. The 

colored dots in (a) represent the phases of HEAs that experimentally fabricated, and in (b–f) the pentagon represent DFT estimations of the HEA phase, with the red ones 

denoting the consistent results between AS-RF prediction and DFT estimation while the (single) black one representing the inconsistent observation. The colored background 

in (a–f) represents predicted phases, with green, dark-blue, pink, yellow, and salmon denoting BCC, FCC, BCC + FCC, B2, and amorphous phase, respectively. The prediction 

probabilities for BCC and FCC phases are represented with heatmaps in the diagrams. The whole 224 phase diagrams are in Fig. S8 in Supplemental Materials. 
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he combination between Al, Cr and Fe element plays the most im- 

ortant role in the formation of BCC structure, whereas the effect 

f Cu-Ni-Co correlation dominates the formation of FCC structure. 

The different characteristics of the BCC and FCC networks indi- 

ate different roles of the participation elements. In SPSS phases, 

r-Fe (with BCC type lattice order) and Ni-Co (with FCC type lat- 

ice order) serve as the basic components by introducing the or- 

ers of the lattices into the base materials. Al and Cu play roles to 

tabilize the lattice symmetries (BCC or FCC type SPSSs), and the 

ompetition of the two results in the FCC + BCC type solid solution. 

urther, based on the first three networks, to explore more HEAs 

ith solid solution phases, it is essential to replace Mn element 

ith Al or Cu in Cantor-related as-sputtered alloys. This observa- 

ion is consistent with previous experimental studies [ 62 , 63 ], espe- 

ially since the replacement of Mn with Al has become the main 

ranch for the exploration of SPSS HEAs. In this study, with the aid 

f ML model, we take a step forward towards the rational design 

f SPSS HEAs, by demonstrating the strong composition-dependent 

hase formations (Al-Cr-Fe for BCC type SPSS and Cu-Ni-Co for FCC 

ype SPSS). In addition, Al element also plays a critical role in the 

ormation of the intermetallic B2 phase and its pair correlations 

ith Cu, Ni, Co, and Mn drive the as-sputter HEA to form the inter- 

etallic phase with B2 structures. It should be noted that in this 

tudy the amorphous phase has been defined in a strict manner 

SS + amorphous treated as amorphous phase), which may result 

n larger amorphous regions in the predicted phase diagrams com- 

ared with experimental results. 

.4. Validation of the AS-RF model 

While the ability to derive experimental trends from the AS- 

F model is a promising sign that the predictions have value in 

redicting new experimental alloys, further analysis is needed to 

e certain of the model utility in extrapolating new HEA com- 

ositions from the reported experimental data. Thus, to provide 

n independent test of the model performance, we selected five 

uinary HEA compositions from the 210 proposed phase diagrams 
74 
Al x Ni y [(FeCoCu) 0.33 ] z , Co x Cu y [(CrFeNi) 0.33 ] z , Al x Cu y [(FeCoNi) 0.33 ] z ,

o x Cu y [(AlCrFe) 0.33 ] z , and Fe x Co y [(AlNiCu) 0.33 ] z ) and conducted 

omprehensive density functional theory (DFT) calculations to ver- 

fy the accuracy of our machine learning predictions, as shown in 

ig. 3 (b–f). 

For each of the selected HEA compositions, we compared the 

hase predictions made by the AS-RF classifier to the calculated 

FT lattice energies for BCC and FCC SPSSs. Only BCC and FCC 

nergies were considered as these are the phases of greatest 

xperimental interest, and because the DFT methodology for 

uch calculations are well established and can be conducted 

n relatively high throughput, as compared to amorphous, B2, 

nd BCC + FCC calculations which, while they can be conducted, 

equire significant manual intervention and refinement to achieve 

eaningful results. Of the five selected phase systems, three 

ave clear FCC/BCC phase transitions (Al x Cu y [(FeCoNi) 0.33 ] z , 

o x Cu y [(AlCrFe) 0.33 ] z , and Fe x Co y [(AlNiCu) 0.33 ] z ), while two 

Al x Ni y [(FeCoCu) 0.33 ] z , Co x Cu y [(CrFeNi) 0.33 ] z ,) have a single FCC 

hase. For each phase diagram, alloys were selected to span the 

omposition space predicted by the AS-RF to be FCC or BCC, and 

FT was used to calculate the energy difference between the BCC 

nd FCC structures of each alloy. 

Of the 75 alloys considered, the AS-RF and DFT methodologies 

ere in agreement in 62 cases (82.6%), as shown in Fig. 5 (a). Ap-

lying McNemar’s test statistic on the confusion matrix generated 

rom the two predictors gives a p-value of 0.57 indicating no sta- 

istically significant bias between the two models. Said differently, 

he deviations of the AS-RF model from the DFT appear to be ran- 

omly distributed, rather than systematically biased. We then con- 

tructed ROCs in Fig. 5 (c) and (d) for both the prediction probabil- 

ty of BCC (P BCC ) and FCC (P FCC ) outputs of the AS-RF model based

n the agreement with the DFT model. The AUCs of the two curves, 

espectively, are 0.886 and 0.848. These AUCs can be converted 

o Mann-Whitney-Wilcoxon U statistics and subsequently z -scores 

ased on Eqs. (4) and (5) , yielding z -scores of 5.0 and 4.5. These

cores correspond to p -values of < 0.001, indicating the rankings 

o be significantly different from random sampling. We also ap- 
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Fig. 4. The relationships between element correlations and phase formations of BCC type SPSS (a), FCC type SPSS (b), BCC + FCC type mixing solid solution phase (c) and 

B2 type intermetallic phase (d). The weights of the lines in the networks represents different correlation strengths between elements. The larger the weight of the line the 

stronger the correlations between elements would be. 

Fig. 5. (a) The confusion matrix between DFT and AS-RF model predictions. (b) The relationship between the energy difference �E BCC-FCC between BCC and FCC phases as 

predicted by DFT and the relative certainty ( �P BCC-FCC = P BCC – P FCC ) of the AS-RF model, with P FCC/BCC the AS-RF prediction probability for FCC/BCC phase. The data points 

are all the systems within DFT validation, and the case of the Fe-Co-Ni-Cu-Al system are denoted with red. (c) and (d) are the receiver operating characteristics (ROCs) for 

BCC and FCC phases, respectively, with the x -axis the false positive ratio (FPR) and the y-axis the true positive ratio (TPR). 

75 
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Table 1 

The comparisons of phase structures between AS-RF model predictions and experimental measurements. 

Composition Fabrication method Characterization Experimental phase structure Refs. AS-RF prediction 

AlCoCrFeNi Radio frequency XRD/TEM FCC + BCC + B2 [67] FCC + BCC 

AlCoCrCu 0.5 FeNi Radio frequency XRD FCC + BCC [68] FCC + BCC 

CoCrFeMnNiV 0.3 Radio frequency XRD/TEM FCC + Amorphous [69] Amorphous 

CoCrFeMnNiV 0.7 Radio frequency XRD/TEM FCC + Amorphous [69] Amorphous 

CoCrFeMnNiV 1.1 Radio frequency XRD/TEM FCC + Amorphous [69] Amorphous 

CoCrFeNiCu Direct current XRD FCC [70] FCC 

Al 2.5 CoCrFeNiCu Direct current XRD BCC [70] B2 

p

s

t

b

(

r

t

f

“

i

d

t

r

o

f

t

s

fi

F  

i

s

w

I

o

c

�

o

w

i

i

p

t

o

l

R

c

p

a

h

q

a

s

i

p

p

T

t

w

p

t

t

t

t

w

s

m

m

p

a

i

e

m

n

3

m

H

A

(  

d

t

p

m

S

(

c

[

b

t

w

t

p

H

e

t

c

t

M

b

c

S

d

p

t

d

R

p  

v

t

p

B

m

t

lied Youden’s J statistic to each ROC, and identified optimal deci- 

ion thresholds of 0.09 for BCC and 0.46 for FCC in this binary sys- 

em. It should be noted that there are relatively large discrepancies 

etween results from the AS-RF predictions and DFT calculations 

 Fig. 3 (e) and (f)). To clearly understand the discrepancy in these 

egions, we compared the distributions of the training dataset with 

hat of the “wrong” predicted samples in the descriptor-space, and 

ound that most of the wrongly predicted HEAs are located in the 

mixing” regions, where both BCC and FCC phase structures appear 

n these regions (see Fig. S9 in Supplemental Materials for more 

etails). It indicates that the AS-RF model is not well-trained due 

o the complex phase distributions of the training dataset in these 

egions, for which activation learning may be performed by collab- 

rating with an experimentalist. 

We then considered the relationship between the energy dif- 

erence of the two lattices as predicted by DFT and the rela- 

ive certainty of the AS-RF model, as shown in Fig. 5 (b). While 

ome correlation exists between these two figures, the R 2 coef- 

cient is small at 0.278. Considering specifically the case of the 

e x Co y [(AlNiCu) 0.33 ] z phase system (the red dots in Fig. 5 (b)), it

s obvious why the correlation is poor: the AS-RF model yields a 

harp jump in the probability of FCC at very close to the point at 

hich DFT predicts no energy difference between the two phases. 

n fact, as the �E BCC-FCC increases in magnitude, the probabilities 

f either phase decreases, as the predicted probability of the in- 

rease of the additional phase. 

Given the poor relationship between DFT �E BCC-FCC and 

P BCC-FCC , we sought an alternate evaluation of the statistical value 

f an increase in P FCC/BCC provided by the AS-RF model. To do this 

e considered the relationship between accuracy and �P BCC-FCC by 

ntroducing a minimum probability for classification (see Fig. S10 

n Supplemental Materials for more details). The trend is strongly 

ositive, with a high R 2 value of 0.846, indicating a strong correla- 

ion between the magnitude of P FCC/BCC with correct identification 

f the DFT phase. This is further illustrated by consideration of the 

ocation within the phase diagrams of the alloys for which the AS- 

F model and DFT energies are not in agreement. These points oc- 

ur primarily near phase boundaries, suggesting that the best ap- 

lication for the AS-RF model in the search for new high entropy 

lloys for subsequent experimental analysis is the identification of 

igh probability regions in the middle of a phase region in a given 

uinary diagram. 

In addition to the comparison with DFT calculations, we 

lso applied the AS-RF model to experimentally well-studied as- 

puttered HEAs not included in the training dataset. As displayed 

n Table 1 , despite different fabrication processes, our AS-RF model 

redictions are overall in excellent agreement with the measured 

hase structures, indicating excellent transferability of the model. 

he one inconsistent result is for Al 2.5 CoCrFeNiCu, for which B2 

ype intermetallic phase has been predicted with the AS-RF model 

hile it was experimentally determined to be BCC type SPSS 

hase by XRD. However, since BCC type SPSS and B2 phase share 

he same lattice structure, we argue that XRD cannot distinguish 

hese two phases. Moreover, both experimental observations and 

heoretical calculations have demonstrated that higher Al con- 
76 
ent leads to AlNi [64] B2 type intermetallic phase precipitation, 

hich is consistent with the predictions of the AS-RF model. It 

hould be noted that the as-sputtered HEAs have different ther- 

odynamic conditions from that of as-cast HEAs. Since the AS-RF 

odel is trained with as-sputtered alloys, the AS-RF model is ex- 

ected to provide reliable predictions of the phase formations of 

s-sputtered HEAs. Since there is a lack of information in the train- 

ng dataset for the constituent elements far away from the seven 

lements in this study, the reliable prediction ability of the AS-RF 

odel might be limited for the HEAs with components within or 

earby these seven elements. 

.5. Interpreting rules for SPSS-HEA phase formation from the AS-RF 

odel 

To shed light on the nature of phase formation in as-sputtered 

EAs, we analyzed the weighting of the various features within the 

S-RF model. First, individual feature importance was estimated 

 Fig. 6 ) for the different phases showing VEC, FBI and W to have

ominant roles in the formation of both FCC and BCC SPSS. Fur- 

her, we found the feature importance remains invariable by ap- 

lying GBDT machine learning model, indicating the reliable of our 

odel on the estimation of the feature importance (see Fig. S11 in 

upplemental Materials). The significant effect of VEC, i.e. , larger 

smaller) VEC favoring FCC (BCC) lattice structure, is widely ac- 

epted by the community in the formations of solid solution HEAs 

28] . The importance of elementary structural symmetry (FBI) can 

e simply understood as the extension of Hume-Rothery rules, 

hough this effect is strongly coupled with other features, as we 

ill further discuss below. The effect of W mainly differentiates 

he formation of solid solution phases from B2 and amorphous 

hases. 

Interestingly, the formation of amorphous phase in as-sputtered 

EAs is almost only determined by the �χ factor ( Fig. 6 (e)). The 

xperimental dataset (see Fig. S1 in Supplemental Materials) shows 

he formation of amorphous phases largely originates from Mn in- 

lusion. In our high-throughput predictions, we find that 93% of 

he amorphous alloys contain Mn (see Fig. S12 in Supplemental 

aterials). The substitution of Mn with Al increases the value of δ
ut substantially reduces the effect of �χ . By replacing Mn with Al 

onstituent, the amorphous phase can be largely suppressed (see 

upplemental Materials for details). 

Next, we provide quantitative estimates for the effects of the 

riving forces on the formation of HEA phases. Since direct inter- 

retation of our AS-RF model is difficult due to the complexity of 

he ensemble model with hundreds of deep trees, dimensional re- 

uction is used to project the high dimensional space of the AS- 

F model by mapping from the subset of the feature space to the 

hase space, with the aid of the Forest Floor package [65] . To re-

eal the formations of HEA with solid solution phases, in Fig. 7 

he interpretations of our AS-RF model are visualized by map- 

ing physical features VEC, FBI and W to BCC SPSS, FCC SPSS and 

CC + FCC mixing phase solid solution, respectively. In these geo- 

etric representations of the AS-RF model, the training nodes dis- 

ributions are colored by the values of the projected features. The 
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Fig. 6. Relative feature importance for the phase formation of BCC type SPSS (a), FCC type SPSS (b), BCC + FCC type mixing solid solution phase (c), B2 type intermetallic 

phase (d), amorphous phase (e). The sizes of the contributions are shown in each bar chart with their relevant values. 

Fig. 7. The explicit representations of the mapping from physical features to FCC-BCC-FCC + BCC phases. The interpretations of the AS-RF model are represented by the node 

distributions of the ensemble trees in (a–d). The crossing points are “root node”, obtained with bootstrap increment (representing random decision making of the forest), 

and the dots denote “training nodes”. { X, Y } represents the distribution of nodes projected on X attribute and colored by the value of Y attribute, for which X = Y denotes the 

main effect of the feature X and X � = Y represents the second order effect between X and Y . 
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urther the training node is from the crossing point (the point 

ithout training), the better the prediction ability. 

Fig. 7 (a–c) shows the main effects of VEC, FBI and W on the 

hase formations. As shown in Fig. 7 (a), the feature distribution of 

EC indicates that the alloys with VEC values of 5.5 or 7.5 pos- 

ess the largest probability to form BCC type SPSS whereas the 

nes with VEC values of 9.5 favor FCC type HEAs. This is consistent 

ith previous experimental observations [23] that FCC type HEAs 

orm with VEC > 8.0 while the alloys with VEC < 7.0 favor to BCC

ype SPSS. On the other hand, Fig. 7 (b) also displays a clear trend

f the effect of the elementary symmetry (FBI): a large amount of 

BI values locates at ∼0.8 (more FCC characteristics) towards FCC 

hase and in the range from -0.4 to 0.2 (more BCC characteristics) 

ointing to BCC phase. Fig. 7 (c) provides more insight into the ef- 

ect of work function: with gradually decreasing the W values from 

.8 to 4.4 eV, alloys tend to form BCC structure, but its effect on 

he formation of FCC structure is unclear, due to the much loosely 

istributed W values in the regime of FCC phase. 

Beside the main effects of the individual features, the visualiza- 

ion of the second-order effects can provide a deeper understand- 
77 
ng of the phase formations by mapping the value of attribute Y on 

he feature contributions of attribute X. As displayed in Fig. 7 (d), 

EC and δ show a negative correlation on the formation of SPSS 

EAs: alloys with smaller VEC ( ∼5.5) and larger δ ( ∼6.5%) favoring 

CC structure. This can guide the design of the HEA phase struc- 

ure. For example, the Al element possesses both small VEC value 

nd large atomic radius. Controlling the concentration of Al com- 

osition in HEA can obtain BCC type or FCC + BCC type solid solu- 

ions. Indeed, experimentally, the Al element has been frequently 

ntroduced into Co-Cr-Fe-Ni base alloys (FCC structure) [ 62 , 66 ] to 

recipitate BCC phase. Other feature correlations, such as {FBI, δ} 

nd {VEC, W}, are more complex (see Fig. S13 in Supplemental 

aterials for details), indicating higher orders of effects between 

hese factors. 

Finally, to construct a full contribution of the features on the 

hase formations, we applied principal component analysis (PCA) 

or classifying the predicted HEAs data. PCA disentangles the 

hases distributions by generating a new orthogonal basis set by 

iagonalizing the previous highly coupled feature vectors, with the 

rst eigenvector PC1 describing the direction of the most vari- 
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Fig. 8. The selection of SPSS phases in as-sputtered HEAs with the aid of principle component analysis. The colored dots represent the predicted HEAs with different phase 

structures. They are well-separated on the two-dimensional projected space formed by the two main principal vectors, PC1 and PC2. Several most common types of chemical 

constitutions for different phases are denoted in the figure. The insert vectors show four features that dominate the distributions of the as-sputtered HEA samples. 
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nce in the data set, and the second eigenvector PC2 for the sec- 

nd most variance, etc. As shown in Fig. 8 , the phase distributions 

re well-disentangled on a two-dimensional subspace, formed 

y the first two PC basic vectors. Both PC vectors can be ex- 

ressed as the linear combination of the features. In particular, PC1 

49%) = (0.38VEC + 0.36 W + 0.36 T M ) –(0.41 δ + 0.32 �χ + 0.1FBI)

nd PC2 (19%) ≈ –0.66FBI. It can be found that to separate the 

hase formations between FCC and BCC types of SPSSs, the fea- 

ures VEC, W, FBI and δ play roles. Specifically, the effect of δ
mpacts on the formations of SPSSs is opposite to that of W and 

EC. The elementary symmetry (FBI) weakly correlates with the 

ther three factors. For the phase distributions in Fig. 8 , some high- 

ensity regions can be found, where the most chemical compo- 

itions have been denoted. For BCC type SPSS, there is one main 

lustering region contributed from Al-Cr-Fe composition, with high 

l concentrations ( > 18%), while for FCC type SPSS, two main dis- 

inct clustering regions corresponding to Co-Ni-Cu and Cr-Fe-Co- 

i-Cu appear. These may guide the design of quinary as-sputtered 

EAs with SPSS phases in the Cr-Co-Fe-Mn-Ni-Cu-Al chemical 

pace. 

. Conclusion 

By applying the random forest machine learning model to high 

hroughput experimental HEA phase data, we have developed a 

igh accuracy model (94.6%) for the prediction of single-phase 

olid solutions (with FCC and BCC structures) in quinary HEAs. We 

urther used first-principles DFT calculations to demonstrate the 

ccuracy (82%) of the AS-RF model in previously unknown HEAs, 

nd show a strong trend between the magnitude of AS-RF pre- 

icted probability and agreement with the DFT results. We also 

redicted a comprehensive set of 224 quinary HEAs phase dia- 

rams (210 new) in the chemical space containing Cr, Co, Fe, Ni, 

n, Al, and Cu elements. It is found that the combination of Al- 

r-Fe favors to form BCC type SPSS, whereas the effect of Cu-Ni- 

o correlation dominates the formation of FCC type SPSS. The in- 

erpretability of our machine learning model also sheds light on 

he driving forces behind FCC and BCC SPSSs in as-sputtered HEAs, 

ith the main contributors being valance electron concentration, 

ork function, atomic radius difference and elementary symme- 

ries. This machine learning based HEA discovery framework may 
78
rovide a valuable tool to accelerate the rational design and explo- 

ation of HEAs. 
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