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ABSTRACT
Semiconductor alloy materials are highly versatile due to their adjustable properties; however, exploring their structural space is a challenging
task that affects the control of their properties. Traditional methods rely on ad hoc design based on the understanding of known chemistry and
crystallography, which have limitations in computational efficiency and search space. In this work, we present ChecMatE (Chemical Material
Explorer), a software package that automatically generates machine learning potentials (MLPs) and uses global search algorithms to screen
semiconductor alloy materials. Taking advantage of MLPs, ChecMatE enables a more efficient and cost-effective exploration of the structural
space of materials and predicts their energy and relative stability with ab initio accuracy. We demonstrate the efficacy of ChecMatE through a
case study of the InxGa1−xN system, where it accelerates structural exploration at reduced costs. Our automatic framework offers a promising
solution to the challenging task of exploring the structural space of semiconductor alloy materials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0166858

I. INTRODUCTION

Semiconductor alloy materials, obtained by alloying two or
more single semiconductor materials, have received tremendous
attention in recent decades. These materials hold great promise for
use in electronic and optoelectronic devices1–5 due to their tunable
properties. By adjusting their composition ratios, they can achieve
the desired properties such as energy band structure, bandgap, and
electron mobility.6,7 These provide an efficient route for semicon-
ductor devices to optimize their performance and expand the range
of applications. A representative example is InxGa1−xN, a promising
candidate for optoelectronic devices such as solar cell, light-emitting
diodes (LEDs), and photoelectrodes8–11 due to its tunable bandgap,
ranging from 0.7 eV (near infrared) to 3.4 eV (ultraviolet).12,13 It also
possesses other excellent properties, such as high electron mobility
and low dielectric constant, making it a promising material for pho-
tovoltaic devices.14 Similarly, InxGa2−xO3 offers an opportunity to
tailor the bandgap and other material properties to meet different
device requirements.15–17

The successful application of these semiconductor alloys in
devices is grounded on in-depth understanding of their crystal struc-
tures for two main reasons. First, different crystal structures for
alloys with the same composition can impact the optoelectronic
properties significantly. Second, the appropriate choice of substrates
based on crystal structures is the key to growing high-quality thin
films.14 Despite this, the crystal structures for most semiconductor
alloys remain unclear. A solution to this problem is to construct the
phase diagram of the alloy across the entire composition range for
crystal structures and properties of interest.

To collect information of the phase diagram, the traditional
approach involves the trial-and-error method based on experiment.
However, the approach suffers from stringent synthesis proce-
dures, various characterization processes, and is time consuming.14

Moreover, some compositions are inaccessible, even for simple
semiconductor alloys such as InxGa1−xN. Although GaN and InN
are isostructural, the difference in the interatomic spacing between
them leads to phase separation when producing high-quality
InxGa1−xN thin films across the entire composition range.14,18–21 As

J. Chem. Phys. 159, 094801 (2023); doi: 10.1063/5.0166858 159, 094801-1

Published under an exclusive license by AIP Publishing

 16 Septem
ber 2023 19:15:09

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0166858
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0166858
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0166858&domain=pdf&date_stamp=2023-September-1
https://doi.org/10.1063/5.0166858
https://orcid.org/0009-0002-8672-1847
https://orcid.org/0000-0001-5182-8084
https://orcid.org/0000-0001-9122-8921
https://orcid.org/0000-0001-6971-0797
mailto:robinzhuang@stu.xmu.edu.cn
mailto:chengjun@xmu.edu.cn
https://doi.org/10.1063/5.0166858


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

a result, constructing phase diagrams using the traditional method
is both time-consuming and expensive.

In contrast, calculating their properties using first-principle
methods is less expensive. However, a prerequisite for first-
principles calculations is the accurate modeling of alloys. The main
issue in this approach arises from the unknown crystal structures of
the alloys. Previous studies of semiconductor alloys have primarily
been based on the single crystal structures stored in databases such
as ICSD22 and Materials Project.23 These structures are then alloyed
using the special quasirandom structure (SQS) method24–26 or by
exhaustively enumerating substituted structures.18 Consequently,
these handcrafted structures cover a limited configurational space,
which may omit important stable and meta-stable structures.

In recent years, predicting the unknown alloyed structures
has been made possible, thanks to the development of global
structure search methods such as basin-hopping (BH),27 genetic
algorithms (GAs),28 particle swarm optimization (PSO),29 and
stochastic surface walking (SSW) methods.30,31 These methods can
explore various alloyed structures on the potential energy surface
(PES), aiming to identify the global minimum, i.e., the most sta-
ble structure. Despite their utility,19,32,33 these methods require the
use of density functional theory (DFT) to accurately calculate the
PES. However, the DFT calculations are computationally expensive,
which impedes the application of global structure search algorithms
in the exhaustive phase space search of such alloy materials, because
the possible candidates for low-energy structures grow exponentially
with the larger parameter space in semiconductor alloy materials.
Therefore, finding an alternative method to construct the PES with
less computational cost is necessary.

A promising substitute is machine learning potentials
(MLPs).34–37 Since the pioneering work of Blank et al.38 in 1995,
several types of MLPs and corresponding software packages have
been developed, such as the Behler–Parrinello Neural Network
(BPNN),39 the Gaussian Approximation Potential (GAP),40

the Deep Potential (DP),41,42 and the Global Neural Network
(GNN).43,44 . Their construction lies on (i) a training dataset
covering the representative structure configurations of the target
PES and associated physical quantities with ab initio accuracy
(energies, forces, and/or stresses), the latter serving as the labels
for machine learning; (ii) a descriptor, converting atomic local
environments to high-dimensional, symmetry-invariant vectors;
(iii) a machine learning algorithm with the strong nonlinear fitting
ability to create a one-to-one mapping between the descriptors and
the labels.45 Given a structure, MLPs can predict the energy, forces,
and virials with ab initio accuracy and reduced computational costs.
Because of the superior performance of MLPs, this method has been
extensively applied to atomistic modeling.35,46–49

As a result, combining global structure search algorithms with
MLPs is becoming a convenient and robust choice for structural
prediction tasks in recent studies, accelerating the exploration of
extensive structures for complex systems.50–57 For instance, by com-
bining the GAP with a PSO algorithm, Tong et al.50 constructed an
MLP for boron clusters and predicted the ground-state structures
for B36 and B40 clusters with significantly reduced computational
cost; based on the GNN and the SSW method, Ma et al.52 con-
structed a thermodynamics phase diagram for Zn–Cr–O that reveals
the presence of a small, stable composition island; very recently,
Wang et al.53 developed a DP model for the Cu clusters and

combined it with a PSO algorithm to search for potentially stable
Cu cluster structures. However, the data collection processes in the
aforementioned studies result in datasets tens of thousands in size.
This can be attributed to either the extensive, parallel DFT calcu-
lations carried out during the initial stage52 or the failure to elim-
inate redundant structures after exploration in the active learning
scheme.53

In this work, we aim to accelerate the exploration of the struc-
tural space of semiconductor alloys by extending the active learning
scheme developed by Zhang and co-workers58 to the Training-
Exploration-Screening-Labeling Active learning (TESLA) scheme,
where the screening step is added to remove redundant structures
after exploration and, hence, to reduce the cost of labeling and the
size of a dataset. Notice that the proposed scheme is applicable for
other systems. Herein, we primarily focus on the semiconductor
alloy materials.

In practice, the TESLA scheme typically involves dozens to
thousands of DFT calculations and PES exploration tasks with
different initial structures, which can be time-consuming and labor-
intensive if done manually. To address this issue and carry out this
procedure efficiently, we implemented it in the software package
ChecMatE (Chemical Material Explorer) and provided reusable unit
task modules (Sec. III). As a case study, we used the workflow to con-
struct the structural phase diagram and calculate the properties for
InxGa1−xN alloy materials.

II. THE FRAMEWORK OF ChecMatE
As shown in Fig. 1, the framework of the ChecMatE mainly

consists of three workflows: one core workflow, MLP genera-
tion, and two complementary workflows, data initialization, and
structural exploration. This section will introduce them in order.

A. MLP generation
The MLP generation workflow aims to generate MLPs with

ab initio accuracy. Since the accurate prediction of MLPs depends
heavily on their training dataset, generating a high-quality training
dataset is indispensible. To this end, the common practice is imple-
menting the active learning scheme to automatically collect training
datasets.43,59–61 Here, we extend the scheme developed by Zhang
and co-workers58 to the Training-Exploration-Screening-Labeling
Active learning (TESLA) scheme, which involves a series of suc-
cessive iterations, and each iteration consists of four steps: training,
exploration, screening and labeling.

1. Training
This step aims to generate an ensemble of MLPs using MLP

training codes. Herein, we adopt the Deep Potential (DP) method,
as implemented in DeePMD-kit.42,62,63 The DP method considers
the potential energy of a given structure as a sum of atomic con-
tributions, E = ∑Ei, in which the Ei is determined by the local
environment Ri of atom i within cutoff Rcut through two steps. First,
the Ri is mapped, through an embedding network, to a descriptor
Di, which guarantees the permutational, translational, and rotational
symmetries. The descriptor Di is then mapped, through a fitting
network, to atomic contribution Ei. The training step initializes the
two networks with different random seeds for each MLP, to gener-
ate an ensemble of MLPs based on the same training dataset. These
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FIG. 1. Schematic diagram of the automated workflow framework, which has three processes, i.e., dataset initialization, MLP generation and structural exploration. The
orange part is the dataset initialization process, where the pre-sampling trajectories are obtained by the SSW method based on DFT calculations with low precision, and
a small number of structures are randomly selected to use in high-precision DFT calculations, so as to obtain the corresponding energies and atomic forces as the initial
dataset. The blue part is the MLP generation process, starting with an initial dataset, which is an iterative process. In this process, an ensemble of MLPs, four by default, is
constructed by the DP method. The MLPs are simultaneously used to conduct SSW simulations and calculate the model deviation for each structure on the SSW trajectories,
which is the standard deviation of the maximum atomic force, i.e., σmax

f . Based on the σmax
f and the clustering analysis implemented by ASAP software, some candidate

structures are selected to be labeled by performing DFT calculations. Then, the structural energy and atomic forces of these candidate structures are added to the dataset for
the next iteration. The iterations are stopped according to the accuracy or the mean of the model deviations. The green part is the structural exploration process, where an
ensemble of MLPs is used along with the SSW method to explore the PES of the target systems, and low-energy structures are obtained by energy threshold and clustering
screening. The low- energy structure is subjected to DFT calculations to obtain first principle results.

MLPs are used in the subsequent exploration and screening steps to
explore the PES and to select outliers from the explored structures,
respectively.

2. Exploration
This step aims to achieve the extension of a training dataset

by efficiently exploring the PES for target systems using global
search algorithms. To this end, we adopt the SSW method, as imple-
mented in Lasphub, developed by Huang et al.44 This package can
greatly facilitate the PES exploration for a wide range of complex
material systems by combining the SSW method with MLPs. Com-
pared to other global search methods, such as BH, GA, and PSO,
the SSW method is an unbiased, general PES search method, which
can smoothly access the structures from one local minimum in the
PES to another without prior knowledge. With initial structures
randomly selected from the training dataset, SSW simulations are
driven by the MLPs generated in the training step using the Las-
phub44 combined with the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) software.64 During the simulation
processes, the physical quantities (energy, force, and/or stress) of

the structures accessed are predicted by the MLPs trained in the
current iteration instead of from first-principles calculations. This
enables rapid and extensive exploration of the PES and reduces the
associated computational cost.

3. Screening
This step aims to identify the outliers to extend the training

dataset. In the exploration step, a large number of structures are gen-
erated; however not all of them are equally important for improving
the quality of the MLPs. While some structures have already been
well-described by the MLPs of the current iteration, adding them
to the training dataset may not lead to significant improvements.
Conversely, including too many similar structures in the training
dataset can lead to data redundancy. Reducing data redundancy
is beneficial to further decrease the computing cost and advance
MLP development.65,66 Therefore, in the screening step, we filter
the explored structures based on two criteria: the model deviation
of MLPs and their structural similarity.

The model deviation58 is defined as the standard deviation of
properties predicted by an ensemble of MLPs for a given structure,
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which serves as the indicator, to check whether the structure is well
described by the MLPs. Here, we use the maximum model deviation
of the forces (σmax

f ) of a structure as the indicator:

σmax
f = max

i

√

⟨∥ fi − ⟨ fi⟩∥
2
⟩,

where fi is the force component of atom i and the ⟨⋅ ⋅ ⋅⟩
indicates the average over the ensemble of MLPs. With the user-
defined upper and lower bounds, i.e., σ low

f and σhigh
f , the explored

structures are classified into accurate, candidate, and failed, accord-
ing to the σmax

f < σ low
f , σ low

f < σmax
f < σhigh

f , and σhigh
f < σmax

f criteria,
respectively. The accurate structures are regarded as being well
described by the MLPs, while the failed structures are unsuitable
for labeling using first-principles calculations. Only the candidate
structures are selected to extend the training dataset.

Since the search process for most global structure search algo-
rithms, including SSW, is stochastic, many similar or identical
structures are repeatedly accessed, resulting in redundant struc-
tures among the initial candidate structures. In order to remove
these redundant structures, we cluster them based on the analysis of
structural similarity, which is executed with the ASAP software.67,68

The ASAP first employs the Smooth Overlap of Atomic Positions
(SOAP) descriptor69 with principal component analysis (PCA) to
generate global fingerprints associated with the whole structure for
the similarity measurements. Then the Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) algorithm70 is used to
build clusters of similar global fingerprints. By filtering out redun-
dant structures belonging to the same cluster, we can obtain the final
candidate structures and send them to the next labeling step.

4. Labeling
This step aims to generate high-quality data using first-

principles calculations of the candidate structures. For this purpose,
the Vienna Ab initio Simulation Package (VASP)71,72 or the CP2K
software73 can be used to calculate the energies and forces of the
final candidate structures and add them to the training dataset. The
updated training dataset is applied to re-train a new ensemble of
MLPs in the next iteration.

The end of the TESLA iterative process is primarily determined
by the accuracy, which is defined as the proportion of accurate struc-
tures to the total number of structures explored by the SSW method,
as mentioned in the screening step. When the accuracy reaches a
user-preset value, the ChecMatE setting parameters are updated if
there is a new setting for parameters. Otherwise, the MLPs’ pre-
diction capability is considered to meet the requirements, and the
iterative process ends. However, in practice, the active-learning loop
will not terminate if the target accuracy is set too high to achieve
or the upper and lower bounds of model deviations (σ low

f and σhigh
f )

are not well selected. The users have to stop the workflow and check
the distribution of model deviations or change the settings. To real-
ize a hand-off workflow, a backup mechanism is implemented. This
mechanism uses the change in the mean of the model deviation dis-
tribution to quantitatively determine whether the iterative process
needs to stop further execution.

Overall, the MLP generation workflow allows starting with
a small initial dataset and ending with a high-quality dataset. It

effectively reduces computational costs by mitigating the demand
for an excessively large number of DFT calculations.

B. Dataset initialization
The dataset initialization is an optional and case-specific work-

flow that involves collecting and labeling a set of initial structures to
start the MLP generation workflow. Thus, it consists of two steps:
exploration and labeling, and uses the same methods and software
packages as the MLP generation workflow. The difference is that
no MLPs are available in this process, and the DFT calculations are
used to drive the SSW simulations, which involve more computa-
tional cost compared to that of the exploration step in the MLP
generation workflow. However, as only a small amount of initial
structures is needed, performing the SSW simulations with a few
steps is sufficient.

Additionally, as further DFT calculations in labeling are sub-
sequently performed, the accuracy of the DFT calculations in the
exploration step can be reduced to lower the computational cost.
Following the exploration step, some structures are randomly sam-
pled from the explored structures and labeled using more accurate
DFT calculations. These labeled structures are then used as the initial
dataset for the MLP generation workflow.

C. Structural exploration
The structural exploration workflow aims to use an ensem-

ble of MLPs to explore the target systems’ PES to find low-energy
structures. This workflow consists of three steps, i.e., exploration,
screening, and labeling. At this moment, all modules are reused from
the MLP generation workflow; however, with slight modification.
First, in the exploration step, the MLPs drive SSW simulations for
a given set of initial structures to quickly explore the PES. Next,
the screening step picks out the low-energy structures based on
the potential energies relative to lowest values, instead of the crite-
rion based on the model deviation, as this step is not designed for
expanding the dataset. Finally, in the labeling step, the low-energy
structures obtained by the screening step require DFT calculations,
due to the error between the MLP predictions and DFT calculations.
The results can then be used to plot the energy hull diagram and
as a test dataset to further validate the accuracy of the MLPs. Com-
pared to the MD-based exploration conducted by Zhang et al.,58 the
SSW method used here has higher search efficiency and reduces the
required calculation cost by sifting out redundant structures.

III. SOFTWARE
A. Overview

To realize the above workflows and allocate computational
resources, we implemented the ChecMatE software package using
Python. Using this package, each workflow in the framework can be
executed with an associated command:

where the argument WORKFLOW_NAME is the name of a
workflow; for example, the name of the MLP generation work-
flow is gen_mlps. And the argument SETTING is the name of a
user-provided parameter file in JSON or YAML format.
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The ChecMatE package contains a variety of unit task modules,
which can be used as components to build a specific workflow. Each
unit task module, except those unrelated to computing, comprises
two major parts. One part is used for processing tasks, includ-
ing the reading and generation of input files and the selection of
structures. The other part is a task dispatcher, used for interaction
with the high-performance cluster (HPC), such as submitting and
monitoring tasks. It is mainly implemented via the DPD dispatcher
package,58 generally involving the following procedures. First, based
on the user’s settings, the program generates the submission scripts
required by the task scheduling system on the HPC. Then, all the
tasks are submitted by running a command in the task directory, and
a certain amount of computing resources is allocated to perform the
tasks. As the tasks run, the program continuously queries the task’s
status until completion. Finally, the required output file is obtained,
for further processing and analysis, when the task is completed. This
part is the basis for the rational allocation of computing resources
and can significantly improve the reusability and maintainability of
task modules.

B. Unit task modules
As described in Sec. III A, unit task modules can be used as

components to build a specific workflow. The automatic workflows
in this paper mainly use four unit task modules: training, explo-
ration, screening, and labeling. Except for the screening module,
the remaining three unit task modules—all contain task process-
ing and task dispatcher parts, which require the corresponding two
parts of the parameters. In contrast, the screening module only needs
to prepare the parameters of task processing since it only contains
the task processing part. To demonstrate the usage of these mod-
ules, we use the MLP generation workflow as an example, as shown
in Fig. 2, and the details for configuring the four task modules are
as follows:

1. General settings
For the MLP generation workflow, the following parameters,

i.e., the directory of the dataset, the order of the elemental species of
structures, and the criteria for terminating the workflow, are shared

for all the unit task modules. These parameters are set in the general
setting part:

2. Training
This module generates training tasks and the input files

required by the DeePMD-kit software to obtain an ensemble of
MLPs. As a result, the parameters for the training module need to
contain the necessary information of the input files for the soft-
ware and the configurations of computing resources required for
task operation. In addition, it also needs to set the number of MLPs,
i.e., the number of training tasks. Here is a simple example:

The key dp is the acronym for the DeepMD-kit software, and the
corresponding value of the key params is the parameters for the
input files. The key dpdispatcher determines the configurations
required by the DPDispatcher software, and for more details, refer
to the software documentation.74

FIG. 2. Flowchart of the MLP generation workflow. The unit task modules are rounded by blue dashed lines.
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3. Exploration
In this module, the exploration tasks and the input files of the

Lasphub software and the LAMMPS software are prepared based on
the given MLPs and the initial structures randomly selected from
the dataset. Then, the SSW simulations are executed through the
scheduling of computing resources. In return, the physical quantities
and the model deviation of each structure explored would be calcu-
lated by the MLPs, and the results are saved in the working directory.
Parameter configuration is as follows:

where the key numb_struct_per_system determines the number
of structures selected from the systems in the dataset. The key lasp
is the acronym of the software adopted, and here is the Lasphub soft-
ware. The associated value of the key params is the settings required
in the input file of the Lasphub software.

4. Screening
According to the model deviations, the screening module clas-

sifies all explored structures using the user-defined model deviation
bounds (σ low

f and σhigh
f ). Then, structures whose model deviations

fall within the bounds are extracted for clustering analysis, and
candidate structures are saved in candidates.xyz. The relevant
parameters are as follows:

where the key numb_candidate_per_traj is used to set the
number of candidate structures selected from every trajectory
of the SSW simulations. The key numb_struct_per_label and
noise_percent are the parameters related to the clustering anal-
ysis, determining the number of structures selected from the same
cluster and the proportion of noise structures retained, respectively.
The noise structures are those structures that cannot be clustered
with their neighbors.

5. Labeling
This module generates labeling tasks and corresponding input

files, which varies depending on the software. The VASP and
CP2K are currently supported. In return, ab initio energies and
atomic forces are obtained and added to the training dataset.
An example of the parameters related to the VASP software is
as follows:

where the key vasp is the name of the software adopted, and the key
params controls the settings for DFT calculations.

Combining the parameters of the above five blocks into a sin-
gle file allows one to have the parameter file required to start the
MLP generation workflow. As the workflow runs, its progress is
recorded in real-time in a checkpoint file based on the completion
of the module. Therefore, it can be restarted from the latest progress
when an error occurs or when a manual stop is intended to change
parameters.

IV. EXAMPLE
Having introduced the framework and configurations for

ChecMatE, we now show an example that uses the ChecMatE
to construct the phase diagram of InxGa1−xN across the whole
concentrations.

A. Computation details
1. MLP generation

In the training step, the Deep Potential method with the smooth
descriptor developed by Zhang et al.41 is used to train four MLPs.
The embedding network and the fitting network sizes for the MLPs
are set to (25, 50, 100) and (240, 240, 240), respectively. The cut-
off radius (Rcut) and smoothing radius required for constructing the
descriptors are set to 6.0 and 0.5 Å, respectively. The training steps
are 200 000, and the learning rate decays from 5 × 10−4 to 1.8 × 10−8.
During the exploration step, the SSW method in variable cell mode
is used. One structure is extracted for each system in the dataset as
initial structures, and the number of SSW steps is set to 100. For
the screening step, the bounds of the model deviation are set to
(0.1, 0.25), with 50 structures sampled from every SSW trajectory.
For the labeling step, DFT calculations are performed by the VASP
software, using a Perdew–Burke–Ernzerhof (PBE) functional76,77 for
exchange-correlation approximation, where a PAW pseudopotential
describes the electron–particle interaction. The plane wave’s kinetic
energy cutoff is 750 eV, and the self-consistent-field iteration energy
convergence criterion is set to 10−6 eV. The K-point density in the
Brillouin zone is set to 100 Å−3. Additionally, the MLP generation
workflow will terminate when the accuracy of the model deviations
reaches 0.98, or the change in the mean is smaller than 0.005. The
rest are set by default.

2. Data initialization
In the exploration step, the number of SSW steps driven by the

DFT calculations is set to two, and the plane wave’s kinetic energy
cutoff is 400 eV. The other configurations are the same as the those
of MLP Generation.
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3. Structural exploration
In the exploration step, the initial structures are customized.

For the screening step, the local minima are selected from every
SSW trajectory. And the energy window relative to the lowest value
at each alloy concentration is set to 100 meV/atom. The other
configurations are also the same as those of the MLP generation.

B. Generation of MLPs for InxGa1−xN
GaN and InN have the hexagonal wurtzite (W) structure and

the cubic zinc-blende (ZB) structure, respectively. In contrast, the
hexagonal structure is thermodynamically more stable, belonging
to the P63mc space group, so, the hexagonal structure is chosen as
the configuration of initial structures. Based on this configuration,
we construct a 3 × 3 × 2 supercell structure of 72 atoms, which are
randomly substituted, to generate initial InxGa1−xN structures with
different indium component concentrations. These initial structures
are used to start the dataset initialization workflow, resulting in an
initial dataset involving 193 structures.

Next, the MLP generation workflow begins with the initial
dataset. Figure 3(a) illustrates the distribution of model devia-
tions (σmax

f ) for a total of six iterations. It can be seen that the
model deviations for the InxGa1−xN system are initially concen-
trated and have low values due to its simple structural composition.
After the iter002, the distribution of model deviations tends to be
unchanged. Figure 3(b) depicts that the accuracy increases and the
mean value of model deviation decreases over the iterations. The
workflow terminates at the iter005, since the accuracy has reached
98.6%, and the changes of the mean for model deviation have been
less than 0.005. Through the MLP generation workflow, the explo-
ration step traverses ∼2.16 × 106 structures, resulting in a training
dataset containing the energies and atomic forces for 2228 struc-
tures, i.e., about 0.1% of the total number of structures traversed. The
widespread nature of the training dataset is shown in Fig. 3(c), which
depicts the correspondence between the structure energies in the
dataset and their distance-weighted Steinhart ordering parameters
(OP2), as developed by Liu and co-workers, based on the original
Steinhart ordering parameter, for the sake of better distinguishing

FIG. 3. The iterative processes for the InxGa1−xN system. (a) Model deviation distribution diagram of all explored structures in each iteration process; the vertical dotted
line represents the bounds of preset model deviation; (b) variation of accuracy: the black blue, blue gray, and blue white represent the structural proportions of failure set,
candidate set, and accurate set, respectively, and the yellow dot represents the mean of the model deviation of all explored structures in the current iteration process. (c)
Contour diagram of a two-dimensional PES of a training dataset. The abscissa is the distance-weighted Steinhart ordered parameter (OP2), and the ordinate is the energy of
the corresponding structure. Different colors represent the sampled structure density at the corresponding potential energy surface.
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FIG. 4. Error analysis of the MLPs. The horizontal coordinate is the predicted value of the MLP model, and the vertical coordinate is the calculated value of DFT. (a) Structural
energies error analysis and atomic forces error analysis for the training dataset. Each structural energy is divided by the number of atoms and subtracted from the lowest
mean atomic energy; (b) structural energies error analysis and atomic forces error analysis for the test dataset. (c) Schematic diagram of the filter funnel of the structural
exploration process, with each layer representing the number of structures filtered at a time. The red box shows the partial structure with the lowest formation energy at
different indium concentrations, where green is gallium atom, purple is indium atom, and silver is nitrogen atom. The first layer is a hexagonal phase structure, characterized
by AB-type atomic layer stacking; the second layer is a cubic phase structure, characterized by ABC-type atomic layer stacking. The structures are visualized using the
VESTA software.75

between structures on the PES.78,79 The OP2 measures the short-
and medium-range ordering of lattice atoms and is used to illustrate
that SSW simulations explore larger areas than MD simulations.80

Similarly, Fig. 3(c) shows that this training dataset contains the
structures in a large area of the PES, not restricted to only the vicin-
ity of a certain energy minimum of the PES. Based on this dataset, a
final MLP is trained with 1 000 000 training steps. The error anal-
ysis of this MLP with respect to the training dataset is shown in
Fig. 4(a). The root-mean-square errors (RMSEs) of the energies
and atomic forces in the training dataset are 2.93 meV/atom and
72.74 meV/Å, respectively, indicating that the MLP is accurate for
the training set.

C. Phase diagram and properties calculations
To launch the structural exploration workflow (Sec. II C), we

utilize the last MLP obtained in Sec. IV B and the 293 initial struc-
tures of 13 concentrations, which evenly distributed in the range 0 to
1 for SSW simulations. For each concentration, the initial structures
are extracted from the training dataset, on the condition that their
potential energies per atom are less than the 100 meV/atom rela-
tive to the lowest value in the training dataset. During this workflow,
SSW simulations traverse tens of millions of structures and visit

36 202 local minima of the PES. From the minima, we select 33 461
stable and meta-stable structures, whose potential energies per atom
are below the 100 meV/atom relative to the global minimum for each
concentration. And we then remove structurally similar structures
using the cluster analysis algorithm, leaving 1228 structures. These
structures serve as a test dataset to further validate the performance
of the final MLP.

As shown in Fig. 4(b), the RMSEs of the structure energies
and atomic forces are 3.75 meV/atom and 20.29 meV/Å, respec-
tively, indicating that this MLP can predict these (meta-) stable
structures accurately. In the final step, the most stable structure for
each concentration is selected to construct the structural phase dia-
gram, as depicted in Fig. 5(a). To be clear, we summarize the above
screening steps in Fig. 4(c). The structural exploration workflow suc-
cessfully obtained the most stable structure for each In concentration
of InxGa1−xN through the MLP accelerated global search algorithm
and the step-by-step structural screening.

To better categorize the explored structures, a space group anal-
ysis is performed on these 1228 minima using ASE package,81 and
these structures are categorized into crystal systems based on the
space group numbers. Due to the presence of indium in the struc-
tures, the space group analyses of the original structures are all of the
low symmetry, e.g., trigonal. In order to investigate the symmetry
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FIG. 5. (a) Formation energies predicted using MLP plotted against indium concentrations. Different markers represent various crystal systems for each concentration. Within
each crystal system, only the lowest and highest formation energies are depicted. The orange and blue shaded regions represent the formation energies of all possible
substituted alloys based on the experimentally observed wurtzite and zinc-blende structures. (b) DFT bandgap as a function of indium concentration and compared to the
experimental data. (c) and (d) the hole and electron effective masses of the crystal systems, respectively.

of the overall structure, we ignore the element type in the struc-
ture and transform it into a structure containing a single element
and then carry out a space group analysis. Meanwhile, the forma-
tion energy of each structure is calculated according to the formula,
which reads

Eform = EInxGa1−xN − xEInN − (1 − x)EGaN,

where x is the concentration of the indium component of the
InxGa1−xN. Eform is the energy of formation, EInxGa1−xN is the energy
of the InxGa1−xN system, and EInN and EGaN are the energy of pure
InN and GaN, respectively. The energy-configuration diagram of the
InxGa1−xN is plotted based on the formation energies and the crys-
tal systems, together with the corresponding indium concentrations,
as shown in Fig. 5(a). The lowest energy-configuration curve is a
downward opening parabola, which indicates that the bulk struc-
tures of the InxGa1−xN system are thermodynamically unstable and
difficult to synthesize experimentally. Indeed, the low dissociation
temperature of the InN component of this ternary semiconductor
makes it susceptible to separation from the crystal structure.14,20 In

addition, although the workflow is based on a hexagonal phase struc-
ture to start with, other crystalline structures can still be discovered
during the SSW simulations. The structure with the lowest forma-
tion energy at medium concentrations is the cubic phase structure,
while at the high and low end of the alloy concentrations, it is
the hexagonal phase structure, which are similar to the theoretical
results of Caetano et al.18

To examine whether the global minimum of each composition
is found, we calculate the formation energies of all possible sub-
stituted structures based on the experimentally observed wurtzite
and zinc-blend structures, as shown in Fig. 5. The lowest formation
energy of a substituted wurtzite for In0.5Ga0.5N is found to be lower
than the lowest one obtained from SSW simulations. The two struc-
tures are visualized in Fig. 6. Though both structures are wurtzite,
the distribution of cations in the structure from SSW has lower
symmetry compared to that in the substituted structure. Therefore,
the SSW algorithm is able to find the most stable host structure;
however, it does not guarantee the most favorable distribution of
cations in this case. In general, we recommend users to combine the
SSW simulations with the SQS method to find the most favorable
distribution.
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FIG. 6. The In0.5Ga0.5N structures with the lowest formation energies from manual
substitution and SSW exploration, respectively. The illustration is created using the
VESTA software.75

Additionally, Fig. 5 shows that the lowest formation energies of
cubic and hexagonal structures are very close to each other. Con-
sidering that the difference is less than the accuracy of MLP, we
recalculate these formation energies using DFT and then plot them
in Fig. 7. Except that the cubic structure becomes the most stable
one at x = 0.41, the most stable structures of other compositions are
impressively consistent with those predicted by the MLP.

Finally, we demonstrate that the final structures in Fig. 5(a)
can be used to further extract the properties relevant to the opto-
electronic application, i.e., bandgaps, and the effective masses of
holes and electrons. For this purpose, we perform the first-principles
calculations using the cost-effective functional, PBE, which can be
replaced by more accurate functionals, such as HSE06.

Figure 5(b) shows the direct bandgap as a function of In
concentrations, where we apply a linear shift18 in the bandgaps
of the alloy to make the values for the gap energy of the binary
compounds GaN and InN comparable with the experimental ones
(EGaN

g = 3.42 eV and EInN
g = 0.77 eV), respectively. Addition-

ally, we plot other experimental results in this figure.82–91 As
shown in Fig. 5(b), we can clearly observe a downward bow-
ing of the bandgap, and the fitted bowing parameter (b) is 2.2,

FIG. 7. DFT formation energies as a function of indium concentration. The
structures are taken from Fig. 5.

which is in good agreement with the averaged experimental bow-
ing parameter (b = 2.5) for relaxed thin films.92 Figures 5(c) and
5(d) depict the smallest effective masses for holes and electrons,
obtained using the parabolic band approximation, respectively, as
implemented in the sumo package.93 The effective mass, m∗, is
a key parameter affecting materials’ electrical properties, which is
related to the carrier mobility of materials, μ, through the following
formula:

μ =
qτ

m ∗ ,

where the τ is the scattering time of carriers with charge q.
Currently, most studies focus on optical and structural char-

acteristics of InxGa1−xN. The electrical properties of this material
are relatively less investigated. For pure GaN, our calculated result
for electrons is 0.16m0, which is in line with the experimental effec-
tive mass of 0.2m0.94 Chen et al.95 investigated the hole mobility of
Mg-doped InxGa1−xN with indium concentration ranging from 0 to
0.4. They found that carrier mobility decreased as the indium con-
centration was increased. The experimental results are inconsistent
with our trend of the effective masses of holes, which suggests that
the scattering time τ may play an important role in hole mobility.
Anwar et al.96 found that with increasing In concentration, the elec-
tron mobility increases, due to the decreasing effective mass. These
trends are relatively consistent with our calculation results.

V. CONCLUSION
In conclusion, we have expanded upon the active learning

scheme, comprised of three consecutive steps: training, exploration,
and labeling. Our contribution is the inclusion of an additional
step called screening, placed between exploration and labeling. This
enhanced scheme, named TESLA (Training-Exploration-Screening-
Labeling Active learning), has been implemented in the Python
package ChecMatE (Chemical Material Explorer). It aims to facili-
tate the efficient collection of training datasets for machine learning
potentials (MLPs) of semiconductor alloys, while minimizing data
redundancy.

Furthermore, in the exploration step, we have incorporated
the stochastic surface walking (SSW) method. This method gen-
erates smooth trajectories that improve the fitting of MLPs. To
demonstrate the efficacy of ChecMatE, we have conducted a case
study focusing on the InxGa1−xN systems. By employing the TESLA
scheme, we successfully converge the training dataset for these sys-
tems within six iterations, resulting in a final dataset consisting of
only 2228 structures.

Using this dataset, we train an MLP capable of accurately
describing the InxGa1−xN systems. The MLP drives SSW simula-
tions to explore the structures across the entire concentration range,
traversing tens of millions of structures. Ultimately, we have identi-
fied 1228 meta-stable and stable structures of interest. Notably, the
SSW method allows us to discover these structures without relying
on prior knowledge or chemical intuition.

Additionally, we perform density functional theory calculations
on the final stable and metastable structures to obtain optoelec-
tronic properties such as band gaps and effective masses of holes
and electrons. We believe that the ChecMatE package opens up new
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possibilities for computational studies of semiconductor alloys,
enabling accelerated material discovery and the accumulation of
training data for large pretrained models.
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