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Machine learning unifies flexibility 
and efficiency of spinodal 
structure generation for stochastic 
biomaterial design
Zhuo Wang 1, Rana Dabaja 1, Lei Chen 2* & Mihaela Banu 1*

Porous biomaterials design for bone repair is still largely limited to regular structures (e.g. rod-based 
lattices), due to their easy parameterization and high controllability. The capability of designing 
stochastic structure can redefine the boundary of our explorable structure–property space for 
synthesizing next-generation biomaterials. We hereby propose a convolutional neural network (CNN) 
approach for efficient generation and design of spinodal structure—an intriguing structure with 
stochastic yet interconnected, smooth, and constant pore channel conducive to bio-transport. Our 
CNN-based approach simultaneously possesses the tremendous flexibility of physics-based model 
in generating various spinodal structures (e.g. periodic, anisotropic, gradient, and arbitrarily large 
ones) and comparable computational efficiency to mathematical approximation model. We thus 
successfully design spinodal bone structures with target anisotropic elasticity via high-throughput 
screening, and directly generate large spinodal orthopedic implants with desired gradient porosity. 
This work significantly advances stochastic biomaterials development by offering an optimal solution 
to spinodal structure generation and design.

Due to the insufficiencies of application of autograft (patients’ own tissue) and allograft (taken from another 
person), biomimetic materials and structures play a pivotal role in tissue engineering for effective bone repair 
and  replacement1. Porous materials with regular structures, such as rod- or plate-based  lattices2–4 and triply mini-
mal periodic surface (TMPS)  structures5–7 have been extensively studied in biomaterials design. This is largely 
because of their ease of structure parameterization and high controllability. In striking contrast, there were quite 
limited efforts on designing stochastic biomaterials with tailored structure and property. Among different kinds 
of stochastic porous  materials8, spinodal  materials9,10 is of particular interest due to its intriguing combination 
of bi-continuity and special stochasticity. The spinodal structure originates from the thermodynamic process 
of spinodal decomposition, in which a metastable phase self-separates into two distinct phases upon thermal 
 treatment11. The resulting bi-phase structure displays an interpenetrating, co-continuous, and stochastic mor-
phology, characterized especially with rather uniform feature size and smooth phase interface (close-to-zero 
mean  curvature12) throughout the structure. The spinodal porous materials is obtained by assigning one phase as 
solid material while the remaining as void. Its special spinodal architecture brings not only distinctive mechanical 
properties (e.g. high specific strength, insensitivity to imperfection and symmetry-breaking failure common in 
regular structures), but also favored biological property with good mass transport. The above characteristics make 
the spinodal materials highly promising for a broad range of applications, such as impact protection  system9,13, 
microreaction  medium14, electrochemical  sensor15, and, in particular, tissue  engineering16–18 with both strict 
mechanical and biological requirements. For instance, the vast majority of orthopedic implants demand not only 
excellent mechanical function to bear physiological  loading19, but great biological function to promote nutrient 
transport, cell proliferation, bone-implant bonding, and thus long-term implantation  success20,21. The spinodal 
structure with uniquely combined mechanical and biological properties opens exciting possibilities for fabricat-
ing various orthopedic implants; see the dental implant example in Fig. 1. Despite the huge potential of spinodal 
structure in biomedical application, efficient generation and design of the spinodal biomaterials remains elusive 
because of the extreme structural complexity in its nature.
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There are two main techniques to generate porous structures with guaranteed spinodal morphology. A typi-
cal approach to generating spinodal structure is utilizing a physics-based model (e.g. phase field  model23 and 
lattice Mote Carlo  approach24) to simulate spinodal decomposition process, from which one can derive spinodal 
structures with the expected bi-continuity and randomness. However, physics-based simulation is known for its 
prohibitively high computational cost by solving complex differential equations. In that sense, some research-
ers followed the seminal work by  Cahn25 and used mathematical model to approximately describe the spinodal 
 structure26,27; that is, spinodal structure at the initial stage of spinodal decomposition can be approximated 
by superposition of many random sinusoidal functions. However, the computation time of the mathematical 
generation model can increase rapidly with the generation size; because a huge number of random sinusoidal 
functions (typically N =  1000028) are required for best approximation of the spinodal structure. In addition, due 
to its random nature and as a simplified approach, the mathematical approximation method has no capability 
in generating, for example, periodic spinodal  structure26. Periodic structures are however critically needed in 
many computational design scenarios, such as representative volume element (RVE) study for computing effec-
tive  properties29,30, discrete Fourier transform based microstructure characterization (e.g. n-point  statistics31) 
and mechanical  modeling32,33 for computational efficiency. Also, direct generation of a gradient structure is 
impossible, since the mathematical approximation model can only generate a homogeneous structure with a 
specific porosity fraction at a time. It relies on stitching spinodal structures with different porosities together to 
yield a gradient one.

To overcome the above shortcomings, this research proposes a data-driven approach for generating spinodal 
structure, based on a fully convolutional neural network (CNN). Conventionally, CNN is a type of artificial neural 
network broadly used in computer vision (CV) tasks, such as image classification/labeling34, image segmentation 
(pixel-wise labeling)35,36, and object  localization37. CNN typically has a hierarchy of convolutional layers, which 
essentially plays a role of non-linear dimension reduction of high-dimensional pixel-based  images38 (compared to 
the linear theory-based principal component  decomposition39). After dimension reduction through distilling sali-
ent features of image, CNN facilitates performing downstream CV tasks by avoiding explicitly dealing with raw 
pixel-based images. With the distinctive feature extraction and image modeling capability, CNN and its variants 
have been increasingly applied for microstructure evolution simulation in material science and  engineering40,41. 
Specifically, microstructures are fed as pixel-based images, and CNN learns the mapping relationship between 
the original and evolved microstructures. After training, CNN can effectively replace the physics model for quick 
but realistic simulation of microstructure evolution.

Motivated by recent success on CNN-enabled fast microstructure evolution simulation, we hereby propose to 
use CNN to substitute the cumbersome physics-based phase-field (PF) model for spinodal decomposition simula-
tion and, therefore, for efficient generation of spinodal structures. It unifies merits of the two existing approaches, 
i.e. the flexibility of physics-based model and computational efficiency of mathematical approximation model 

Figure 1.  Comparison between lattice and spinodal structure for dental implant application. (A) Lattice and 
spinodal structure based dental implant for replacing natural tooth; (B) comparison of mechanical properties; 
(C) good biological property of spinodal structure. By having a stochastic yet interconnected, smooth, and 
constant pore channel, the spinodal structure is not only morphologically close to natural spongy bone, but also 
functionally superior from a combined mechanical and biological perspective. Dental implant image adapted 
from Ref.22.
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in generating spinodal structures. Specifically, the proposed CNN-based approach has three-fold attributes: 
(1) flexibility in generating realistic spinodal structures based on dynamic spinodal decomposition simulation 
instead of approximating spinodal structures. Particularly, circular padding of CNN can effectively mimic the 
periodic boundary condition in a physics-based simulation, thereby allowing for generation of periodic spinodal 
structures; (2) computational efficiency in simulating spinodal decomposition and thus generating spinodal 
structure, by simply treating structure evolution as a structure-to-structure regression problem; (3) spatial scal-
ability to generating spinodal structures with large and variable dimensions, without having to retrain CNN. The 
following sections present the principles of the newly developed CNN method as well as different case studies, 
which demonstrate the above-mentioned attributes such as flexibility, efficiency, and scalability of the proposed 
CNN-based approach in generating and designing various spinodal biomaterials.

Results
Training of CNN for substituting phase-field model. A deep 3D CNN with a fully convolutional 
architecture is trained to learn the spatio-temporal evolution dynamics of spinodal decomposition and replace 
the phase field model for fast generation of spinodal structures. To provide corresponding dataset, we first per-
form a total of 15 phase-field simulations at the resolution of 64 × 64 × 64  voxel3. As illustrated in Fig. 2(A), they 
all start with random initialization

where ϕ is the phase variable describing the phase field, a and b are respectively the lower and upper bound of 
the random noise, U. The range of the initial noisy phase field is held constant, i.e., b− a = 0.3 throughout this 
study, and the mean of the noise, µ = a+b

2
 , can vary from -0.7 to 0.7, which permits obtaining spinodal structures 

with a wide range of porosity fractions. Specifically, the spinodal structure will be extracted from the simulation 
result by using a threshold value: φthreshold = 0 , namely φ(x) > 0 for solid phase and φ(x) < 0 for pore phase. 
Therefore, a noisy phase field with large mean µ > 0 (biased towards solid phase) will develop into a dense 
spinodal structure with less porosity. Note that, in addition to such solid-based spinodal structure, one can also 
extract shell-based spinodal  structure10 by assigning phase interface a certain thickness and the whole remain-
ing as voids. For illustration purpose, this research would exclusively focus on solid-based spinodal structure.

(1)φ(x)|t=0 ∼ U(a, b)

Figure 2.  The proposed CNN approach for generating spinodal structures; (A) data generation from phase-
field based spinodal decomposition simulation; (B) CNN training using the generated input–output pair dataset; 
(C) as-trained CNN for generating various structures from CNN-based spinodal decomposition simulation via 
iterative prediction.
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To generate a training dataset with maximum variability, we use initialization with equi-spaced mean for 
the 15 simulations, i.e., μ = − 0.7, − 0.6, …, 0.7. Phase field results of neighboring time steps are then extracted 
as input–output pairing data, see Fig. 2(A). In doing so, the adopted 3D CNN with an convolutional-decon-
volutional architecture would basically learn the general evolution relationship between structures at tn and 
tn+1 as shown in Fig. 2(B). The trained CNN can thus predict next-step structure developed for any structure 
input. Fig. S1 presents the training and validation curves during training 3D CNN. As training goes on, we will 
achieve convergence after approximately 30 epochs, and eventually reach a small training and validation error 
of MSE = 1.45 ×  10−5 and 3.71 ×  10−5, respectively. Therefore, the trained CNN is able to accurately predict the 
spinodal structure evolution. However, it is pointed out that the rather small error is for prediction of one-step 
evolution, instead of long-term dynamic simulation. The essential purpose of training such a 3D CNN is to well 
reproduce multi-step dynamic spinodal decomposition given any initial random phase field at t0, thus deriving 
realistic spinodal structures. The trained CNN can simulate the dynamic spinodal decomposition process like a 
phase field model, i.e., taking a random field as input at t0, and predicting the next-step field in an iterative way 
till the completion of entire simulation, as indicated by the dashed arrow in Fig. 2(C). Next, testing of the above-
trained 3D CNN for simulating long-term, multi-step spinodal decomposition is conducted, and the generated 
structures with accurate spinodal morphology is quantitatively demonstrated.

Testing on generating structures with accurate spinodal morphology. In this subsection, the 
trained CNN on accurately reproducing spinodal structures with strict self-connectivity, special stochasticity, 
and resultant good transport property is examined. Figure 3(A) show an example of full spinodal decomposi-
tion simulation via iterative prediction based on the trained CNN. By inspecting opposing boundaries in the 
modeling results, we can see that periodic boundary condition has been successfully applied through circular 
padding. Fig. S2 gives a more detailed illustration by using the step-50 result as an example. The characteristic 
feature size of spinodal structure increases as spinodal decomposition proceeds, but structure evolution and 
morphology change clearly slow down at the late stage of spinodal decomposition. After completing the spinodal 
decomposition, one extracts two-phase high-contrast spinodal structures from the raw phase field results as 
depicted in Fig. 3(B). Note that, a complete simulation would generate a series of spinodal structures, and those 
structures at the early stage of spinodal decomposition would have a smaller characteristic feature size, e.g., 
slim ligaments and narrow pore tunnel. We may extract spinodal structure at steps of interest depending on the 
design objective. To demonstrate the strict bi-connectivity of structures obtained, we simply compute the num-
ber of self-connected solid and pore phases in derived structures for the entire spinodal decomposition process; 
see the light red and blue lines in Fig. 3(C,D). There however clearly exist more than one connected solid or pore 
phases for the derived spinodal structures, and this is especially true for structures obtained at the beginning of 
the spinodal decomposition. More than one connected phase exist mainly due to numerical artifacts associated 
with periodic boundary condition; see inset in Fig. 3(C). Those disjoint particles are “connected” to the structure 
on the other side of the volume through the periodic boundary, but would exist in isolation physically. Such an 
event is more common for the early extracted spinodal structures due to their dense ligaments; see spinodal 
structure for step 1 in Fig. S3. After we filter out the tiny numerical artifacts using a thresholding volume of 1000 
 voxel3, main architecture with strict bi-connectivity in 3D is obtained, as indicated by the only one connected 
pore and solid phase for every derived structure; see dark red and blue lines in Fig. 3(C,D).

Besides the self-connectivity, another pronounced feature of spinodal structure is its signature stochasticity 
featuring very smooth and constant pore channel, which would result in outstanding biological properties for 
tissue engineering applications. Here we quantitatively prove the good transport and biological properties of 
the structure by CNN-based spinodal decomposition simulation. For reference purposes, we provide spinodal 
structure by PF modeling as standard one and another typical stochastic structure, blobs described by Gaussian 
random field (GRF)42, to highlight the excellent transport properties of spinodal structures. The local pore size of 
porous network is first calculated for the three structures; see an illustration of local pore size in Fig. 3(E). Pore 
size distribution is summarized and compared in Fig. 3(F). Note that, for fair comparison, three structures are 
strictly controlled with the same overall porosity fraction of 50% and mean pore size of 4.1 voxels. We can see 
that spinodal structure by CNN well replicates the rather constant pore channel of the one by PF modeling. Both 
spinodal structures shows pore size mainly lying in between 3 and 5 voxels while almost free from very small 
throats; i.e. d < 1.5 voxels. However, the blobs structure displays more variable pore channels, as characterized by 
less concentrated distribution of pore size in Fig. 3(F). One can also easily find the narrow channel (indicated by 
the arrow) and great variation of channel size on the surface of the blobs structure, but both spinodal structures 
show smooth and less varied pore channel beneficial to bio-transport. To further investigate their transport 
property, diffusion modeling is performed (Fig. 3G), since the process of nutrient transport and cell migration 
into the porous matrix can be considered as a diffusive  process43. The two spinodal structures have an effective 
diffusivity of 5.35 ×  10−6  m2/s and 5.79 ×  10−6  m2/s respectively, which are clearly higher than 4.56 ×  10−6  m2/s of 
the blobs structure. In summary, the spinodal structure by CNN well reproduces the spinodal stochasticity of 
the PF modeling derived spinodal structure, and thus exhibits stronger diffusion transport than the conventional 
stochastic materials at the same porosity fraction, mean pore size, and resulting interfacial area; see Fig. 3(H).

Testing on spatial extrapolation for generating large spinodal structure. The capability of 
generating large spinodal structures of arbitrary dimensions is important for designing orthopedic implants 
with a variety of sizes. Although technically the fully convolutional architecture of the adopted CNN allows for 
taking input of variable sizes, its spatial scalability to correctly modeling large-scale spinodal decomposition 
is unknown or unsubstantiated. In this section, the spatial extrapolation of the as-trained CNN to modeling 
spinodal decomposition and thus deriving spinodal structure of large dimensions is demonstrated. By using the 
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earlier trained CNN, three groups of spinodal decomposition simulations are performed at the original mod-
eling size of 64 × 64 × 64 (benchmark as standard spinodal structure) and two large modeling sizes of 96 × 96 × 96 
and 128 × 128 × 128.

Figure 4(A) presents the correspondingly derived spinodal structures. For quantitative comparison, we then 
calculate 2-point statistics for those structures. Compared with some simple hand-designed descriptors, e.g., 
mean grain size for a grain structure and porosity fraction for a porous structure, 2-point statistics provide a 
higher-order and more complete statistical characterization of stochastic  structures31. Figure 4(B) shows that 
2-point statistics curves overlap tightly with each other for spinodal structures of different sizes. CNN consist-
ently generates large structures that are completely statistically equivalent to the spinodal structure of 64 × 64 × 64 
dimensions for different volume fractions and mean pore sizes. Therefore, the as-trained CNN can accurately 
generate standard spinodal structure of large sizes when directly applied to modeling large-scale spinodal decom-
position simulation. It is hypothesized that the spatial scalability of the as-trained CNN essentially lies in its 
accurate learning of evolving kinetics of spinodal decomposition, which is independent from modeling size and 
is uniform over the modeling domain.

To demonstrate the computational efficiency of CNN, we further test the computation time of the physics 
model, mathematical model, and CNN model in generating spinodal structure of different sizes; see Fig. 4(C). 
Physics model is a finite element (FE) based phase-field model executed in the commercial COMSOL Multiphys-
ics package, the mathematical model is based on the recent approximation  model27 for generating anisotropic 
spinodal structures implemented in GIBBON MatLab  toolbox44, and the CNN model is the proposed approach 

Figure 3.  Testing of the trained CNN on accurately generating spinodal structure with special self-connectivity 
and stochasticity. (A) an example of full CNN-based spinodal decomposition simulation; (B) extraction of two-
phase spinodal structure (i.e., voxelization) from raw simulation result; number of (C) connected solid phases 
and (D) connected pore phases within the evolving spinodal structures throughout the spinodal decomposition 
process; (E) illustration of local pore size for a spinodal structure by calculating the local thickness; (F) pore size 
distribution for two spinodal structures generated by CNN and PFM, as well as a conventional stochastic porous 
structures as benchmark; (G) diffusion modeling result of concentration distribution for the three porous 
structures; (H) summary of geometrical characteristics and transport property of the three porous structures.
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in this research. It can be seen that the CNN model generally achieves ~ 3 orders of magnitude speed-up than the 
physics model. Its structure generation efficiency is also comparable to that of the mathematical approximation 
model, considering that a 100-step full simulation would actually give a stack of spinodal structures. For the four 
tested modeling sizes, CNN model takes only a fraction of a second per step. In brief, our CNN model provides 
an alternative way to generate realistic spinodal structures like a physics-based approach, but at a generation 
speed comparable to a mathematical approximation model.

Application 1: design spinodal bone structure with target anisotropic elasticity. This section 
gives a detailed application of the above trained CNN for designing spinodal bone structure. This application 
shows its importance of efficiently generating periodic and anisotropic structures. One of the main requirements 
for a medical implant is to match the mechanical property of the host bone, which varies with the anatomical 
site, patient age and bone condition. On-demand design given any target bone property is thus required. As an 
example, we design artificial bones based on anisotropic spinodal structures. The aim is to closely match the 
anisotropic elasticity of the natural bones measured in Ref.4, as described by the elastic stiffness tensor C; see 
design target in Fig. 5. A problem now arises, since one can only obtain spinodal structures with or near isotropic 
properties by using the uniform noise initialization based on Eq. (1). To introduce anisotropy in a simple man-
ner, we use strongly patterned noise as the initial phase field for spinodal decomposition simulation

where the initial phase field is now basically a summation of a completely random noise and a 3D cosine plane 
wave. x denotes the cartesian coordinates in 3D space. The direction of the plane wave and thus anisotropy of 
developed spinodal structures are controlled by directionality vector, r = (r1, r2, r3), |r| = 1 . c ∈ (0, 0.015) fur-
ther decides the strength of applied pattern and hence anisotropy level of spinodal structures. Figure 4 depicts 
the overall computational design framework for high-throughput screening of a desired spinodal structure. It 

(2)φ|t=0 ∼ U(a, b)+ c cos (r · x)

Figure 4.  Spatial extrapolation of the as-trained CNN to generating large spinodal structures. (A) spinodal 
structures of three sizes are generated for different porosity fractions and mean pore size; (B) 2-point correlation 
statistics of the generated spinodal structures; (C) A comparison of computation time of different models in 
generating spinodal structures of different size. Note that both physics model and CNN model generate spinodal 
structure through dynamic spinodal decomposition simulation. A full simulation with 100 steps is carried out 
for both of them. The computation time is measured in the same computational environment for the three 
models: 36-core Intel Xeon Gold 6154 CPU, 2 × NVIDIA Tesla V100 GPU, 180 GB RAM.
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is composed of the proposed CNN for generating anisotropic spinodal structures using the above Eq. (2) and 
another CNN for predicting the corresponding properties. To train the second CNN, massive periodic spinodal 
structures are first generated by our structure generation CNN and serve as input to an FFT-based mechanical 
model to generate the structure–property pairing dataset; see Fig. S4 for the detailed dataset generation process. 
Eventually, by replacing the physics models, the two efficient 3D CNNs work together to enable high-throughput 
screening, i.e., quick generation of different spinodal structures and examination of their properties until finding 
out the one with |C-Ctarget|< ε upon further verification by FFT-based mechanical model.

Figure 6 shows the prediction of stiffness tensor, C, using the trained CNN against FFT-based mechanics 
simulation results. By focusing on major elastic moduli components, we consider the studied structure as ortho-
tropic. A small overall mean absolute error (MAE) of 0.0344 GPa in predicting C is achieved. In each subfigure, 
we also indicate the detailed MAEs in predicting each stiffness component, which are 0.0594, 0.0242, 0.0237, 
0.0578, 0.0245, 0.0545, 0.0223, 0.0216, and 0.0213 GPa for C11, C12, C13, C22, C23, C33, C44, C55, and C66, respectively. 
We note that there tends to be some outliers with relatively large predictive errors in the regime of high stiffness. 
In part, this is attributed to the imbalanced dataset resulting from the random initialization method by using 
Eq. (2). Fig. S5 presented the distribution of data points for each Cij dataset. The data points are concentrated in 
the low-to-medium stiffness regime, clearly showing skewed distributions instead of uniform ones in an ideal 
case. Therefore, the current initialization method favors generation of highly porous spinodal structures with 
relatively low stiffness.

To design spinodal structures with a close mechanical match to natural bone, a small allowable difference 
of ε = 0.05 GPa is used in the design function. Figure 7(A) shows the two natural bones and their anisotropic 
elasticity as the design targets. Figure 7(B) depicts the high-throughput screening process, which takes a total 
of 26 min for searching the two desired structures. Since we use random screening, rather different number of 
spinodal structures have been screened till finding out the two optimal spinodal structures. Figure 7(C) com-
pares designed spinodal structures and natural bones in terms of 3D directional Young’s modulus. According to 
Wolff ’s  law45, bone resorbing and remodeling would occur in response to external stimuli, e.g., biomechanical 
loading. The natural bone structure thus sometimes shows clear orientation possibly along the stress trajectory, 
such as bone I herein. Similarly, the corresponding spinodal structure displays oriented morphology by repro-
ducing the mechanical property of the nature bone. We point out that the feature size of the optimized spinodal 
structure is larger than that of the natural bone, suggesting that feature size can be further considered during 
optimization to design spinodal structure with maximum morphological match. From the mechanical point of 
view, the current spinodal structures achieve great mechanical resemblance to the natural bone, as indicated by 
3D direction-dependent Young’s modulus. The visualized 3D elastic surface and its two-dimensional projec-
tions along three coordinates axis shows a good agreement between the natural bone structure and the designed 
spinodal structure. Therefore, the CNN-based high-throughput screening framework can serve to design any 
target anisotropic spinodal bone structures on demand. It demonstrates the strength of the synergy between 
contemporary machine learning models in achieving structure design, without the need for structure param-
eterization that is a long-standing, common roadblock in designing various stochastic materials.

Figure 5.  CNN-based high-throughput screening for spinodal structure with target anisotropic elasticity. 
Besides the CNN used to replace phase field model for quick spinodal structure generation (left-side), an image-
classification type CNN is trained to substitute FFT-based mechanics model for ultrafast property prediction 
(right-side). The two CNNs work in a fully integrated way, enabling high-throughput generation and screening 
of large amount of spinodal structures.
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Application 2: design large spinodal structure with desired gradient porosity. This subsection 
further shows the practical significance of the trained CNN in directly generating large and gradient spinodal 
structures. Large porous structures with gradient porosity are a common practice for various types of orthopedic 
implants. For example, an ideal dental implant usually requires solid core to bear occlusal loading, but highly 
porous structure on the surface to minimize implant-bone stiffness mismatch and encourage bone ingrowth; 
see Fig. 8(A). This is the same for the acetabular cup of a hip implant, where surface porosity can improve bone-
implant bonding while the overall structure requires sufficient mechanical strength; see Fig. 8(B). As for the 
femoral stem of a hip implant, the distal tip is inserted into the medullary cavity and the main part interacts with 
trabecular/cancellous bone. Therefore, porous structure is required in relevant regions to reduce stress shield-
ing; see Fig. 8(C). To produce spinodal analogues of those gradient porous structures, we perform large spinodal 
decomposition simulations starting with correspondingly gradient random fields (see Fig. S6), followed by cut-
ting as-obtained gradient structures into required shapes. The proposed design workflow for designing spinodal 
implants with both desired external shape and internal structure is depicted in Fig. S7. As shown in Fig. 8, next 
to the real orthopedic implants are the finally obtained spinodal replicates. It can be found that the distribution 
of porosity can be precisely controlled to design spinodal structure with different types of gradient porosity. 
More importantly, unlike the lattice-based implants with sharp porosity change at the interface, seamless tran-
sition is satisfied between porous and fully solid regions; see red areas highlighted in Fig. 8(A−C). The width 
and smoothness of transition region can be further adjusted by accordingly changing the initial random field 
for CNN-based simulation; see Fig. S8. When compared with the mathematical approximation model, CNN 
directly generates complex gradient structures and avoids much human intervention during gradient structure 
generation. Nonetheless, the mathematical approximation model can only generate homogeneous structures 
with a predefined porosity level. It requires laborious post-processing to join spinodal structures with different 
porosities to form a gradient one. The CNN approach thus provides a straightforward means to generate high-
quality large-piece spinodal-based gradient biomaterials.

Figure 6.  Testing results of the trained 3D CNN for predicting elastic stiffness tensor, C. The respective MAE 
for predicting each of the nine stiffness components is also indicated.
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Discussion
We pointed out that, for illustration purpose, a rather simple way to generate and design anisotropic spinodal 
structure is adopted based on Eq. (2). By doing so, the anisotropy of developed spinodal structure just inherits 
from the non-homogeneous random initialization of two phases, and the spinodal structure essentially evolves in 
an isotropic manner during the entire spinodal decomposition. A more rigorous method to generate anisotropic 
spinodal structure is to enforce direction-dependent microstructure evolution kinetics, by which anisotropic 
spinodal structure forms more naturally from directional spinodal decomposition. This is done by using aniso-
tropic surface energy in a physics-based phase field  model49. To develop a corresponding data-driven substitute, 

Figure 7.  (A) natural bone (design target) and its anisotropic elasticity represented by 3D elastic surface and 
its 2D projections; (B) high-throughput screening process; (C) high-throughput screening results, namely the 
optimized spinodal structures and their anisotropic elasticity (blue lines) compared to that of natural bones (red 
lines).

Figure 8.  CNN-enabled generation of large gradient spinodal structures for fabricating various porous 
orthopedic implants: (A) dental implant; (B) acetabular cup and (C) femoral stem of hip implant. Images of the 
real implants are adapted  from46–48.
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one will have to train a multi-input  CNN40,50,51 that takes anisotropic surface energy as additional inputs, since 
the evolved structure is now conditioned on both the original structure and the surface energy. Consequently, 
phase-field based spinodal decomposition simulation for different anisotropic surface energies should be per-
formed to provide proper dataset, which allows CNN to correctly learn the relationship between microstructure 
evolution and anisotropic surface energy.

In terms of multi-step temporal prediction, the accumulating error of CNN prediction against ground truth/
physics simulation is a known  issue40. The problem can become even more serious when we predict into far 
future, i.e. extrapolative prediction along the time axis. With the increasing success of physics-informed machine 
learning (PIML) in various  fields52, physics-informed neural network is anticipated to alleviate or even solve 
the forgoing issue, by improving the generalization and robustness of the trained CNN while using little to no 
training data.

The CNN-based approach can be further integrated with other topology optimization algorithms, enabling 
design of large spinodal structure with locally fine-tailored morphology. For example, Senhora et al.53 uses four 
spinodal structures generated by the mathematical approximation method as elementary structures, and design 
large spinodal structure by optimizing local existence, orientation, and porosity of the four candidate spinodal 
structures. Li et al.26, instead of using only four basis spinodal structures, optimized parameters of the mathemati-
cal approximation spinodal model of each local spinodal structure. Therefore, the candidate spinodal structure 
basically covers the entire structure space by the mathematical approximation method. The above facts imply 
the great potential of the proposed CNN on integration with other topology optimization methods in a similar 
way. Furthermore, by replicating the tremendous structure generation flexibility of a physics-based model, CNN 
can provide a richer space of basis spinodal structures than mathematical approximation model.

Conclusion
In conclusion, while CNN-enabled ultra-fast microstructure evolution simulation has achieved much success 
recently, in this research, it is newly proposed for the spinodal decomposition process and, for the first time, 
towards solving a practically significant problem: generation and design of high-performance stochastic bioma-
terials. The presented CNN model with circular padding can accurately simulate the spinodal decomposition and 
generate various spinodal structures, as does a physics-based phase field model. It however takes only seconds to 
complete one simulation (compared to hours of a physics model in general), and therefore allows for ultra-fast 
generation of spinodal structures. The 2-point statistics analysis demonstrates that the as-trained CNN is scalable 
to simulating spinodal decomposition and deriving spinodal structures of arbitrary large dimension, without 
the need for retraining CNN. The trained CNN, in conjunction with another property prediction CNN, is used 
to perform on-demand structure design given experimentally measured bone property. The designed spinodal 
structures accurately reproduce the anisotropic mechanical properties of natural bones. We further present a 
workflow for designing large orthopedic implants with a desired outer shape and internal porous structure. Three 
practical implants with different gradient porosities, including dental implant, acetabular cup, and femoral stem, 
have been successfully generated.

Methods
Spinodal structure dataset by phase-field simulation. To provide the relevant training dataset, we 
perform 15 phase-field simulations in total, with each being 100 step long and at the resolution of 64 × 64 × 64 
 voxel3. In a phase-field spinodal decomposition simulation, phase variable, ϕ, is used to describe the phase field 
of two phases. The phases are considered pure when φ = ±1 . The phase separation from a random mixture, or 
essentially spatio-temporal evolution of ϕ, is governed by the known Cahn–Hilliard equation

where γ = 1  m3⋅s⋅kg−1 is the mobility, λ = 0.085 N is the mixing energy density, ε = 0.08 m is a capillary width 
controlling the thickness of the interface, and ψ is the total free energy described by

where the first term is the gradient energy concerned with phase interface and the second term describes the 
chemical free energy. Basically, the spinodal decomposition proceeds by minimizing the total free energy of the 
bi-phase system.

All simulations start with a completely random phase field as described early by Eq. (1). After phase-field 
simulation, phase field results of adjacent steps are extracted as input–output pair data, which indicates 100 pairs 
obtained for each PF simulation; see Fig. 2(A). The whole 1500 pairs are split into training (1200) and valida-
tion (300) datasets. Testing of the trained CNN will be performed in terms of its capability on deriving accurate 
spinodal structure through long-term spinodal decomposition simulation, as detailed in Section “Testing on 
generating structures with accurate spinodal morphology”.

Architecture and training of CNN for substituting phase-field model. As shown in Fig. 2(B), the 
3D CNN architecture is essentially adapted from  UNet54, which is originally designed for semantic segmenta-
tion of medical images. This is because UNet is not only known as a well-tested image-to-image regression tool 
with a neat encoder-decoder structure, but as a fully convolutional CNN throughout its architecture. The former 
makes UNet suitable for the current structure-to-structure regression task upon its extension to 3D, while the 
latter is critical for developing the spatial scalability by permitting input of variable size. We extend it to 3D by 
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adopting 3D convolutional layer. To enable the generation of periodic structure as RVE, we further imposed 3D 
circular  padding55 to enforce periodic boundary. The circular padding is mathematically equivalent to tiling the 
input first, followed by properly cropping to obtain the input after padding; see Fig. S9. In doing so, the convolu-
tional filter (the green box as shown), when sliding at the boundary, would perform computation based strictly 
on periodic boundary condition, as does a physics-based model. More details about the implemented 3D CNN 
architecture, e.g., number and size of convolutional layers, are listed in Table S1.

The loss function is mean squared error (MSE):

where N is the number of predictions, φ is the predicted phase field or basically spinodal structure by CNN, and 
φ is the ground truth spinodal structure by phase-field simulation. The CNN is trained for 100 epochs with a 
batch size of 16.

Calculation of connected solid and pore phase. The number of self-connected solid and pore phase 
for derived spinodal structure are calculated using bwconncomp function in MatLab R2018b. The bwconncomp 
function is originally designed for finding and counting connected components in binary image. Therefore, it 
can be easily extended to calculating self-connected solid or pore phase by appropriately representing two-phase 
spinodal structure in required array format. There are multiple options for 3D connectivity for the bwconncomp 
function. In this research, we strictly define that cubic voxels are connected if their faces touch, while two adjoin-
ing voxels having only edges and/or corners touched will not be considered connected.

Calculation of local pore size. Compared to the discrete/isolated pores, it is quite subjective to define 
pore size for open-cell structures, like the spinodal structure in the current study. Here we select to calculate 
the pore size for a pore voxel as the local thickness. The local thickness at a point is defined by drawing a sphere 
containing the point. Then its local thickness is equal to the radius of the largest circle possible in the pore chan-
nel; see 2D illustration in Fig. S10. To calculate the local thickness, we use local_thickness filter in the quantitative 
pore analysis toolset –  Porespy56.

Diffusion modeling. Pore network modeling (PNM) is used to simulate diffusion in porous materials in 
this research. Instead of resolving the detailed morphology, PNM treat the porous matrix as a simplified network 
of pipes. As an example, Fig. S11 compares FEM meshing and the pore network representation of 2D porous 
structure. PNM can simulate diffusion and other transport process in porous media with computational ease, 
yet still respecting the pore-scale structure.

In this study, we choose to model the typical gas flow to examine the general diffusion property of our porous 
structures. As shown in Figs. S11B and S12, once we have constructed the pore network for the porous materi-
als, the molar flow of gas between two adjacent pores connected through the throat/pipe can be represented as

where D1,2 is the effective diffusivity between the two pore 1 and 2, which can be calculated from pore sizes, throat 
size, and open-space  diffusivity57, and c represents the gas concentration of pore. Equation (6) for all neighboring 
pores is then assembled yielding a linear system for the whole pore network, by solving which concentration 
distribution is obtained. The effective diffusivity for the bulk porous structure is finally calculated

where j is the total molar flow through the porous structure, which can be calculated from the modeling result, 
L is the length of structure along the flow direction, cin and cout are the applied gas concentration conditions at 
inlet and outlet boundaries, C is the molecular density of the gas, and A is the cross-sectional area of the porous 
structure.

Elastic property dataset by fast-Fourier-transform based mechanics simulation. In spinodal 
bone design, besides the proposed CNN for quick generation of spinodal structure, an auxiliary 3D CNN (image 
classification type) is trained to replace fast-Fourier-transform (FFT) based mechanics model for ultra-fast 
property prediction. To provide structure–property pair dataset with sufficient variability, we start the spinodal 
decomposition simulation with differently patterned noise and thus generate spinodal structures with varied 
anisotropy. Each spinodal decomposition simulation is initialized using Eq. (2) with randomly sampled noise 
mean, μ, pattern direction, r, and pattern strength, c, as shown in Fig. S13. We utilize the early trained CNN 
to effortlessly perform 1800 spinodal simulations in total. Note that, since an entire spinodal decomposition 
simulation, 100-step long herein would give a stack of evolving spinodal structures. Upon the full development 
of spinodal structure from random initialization, we extract only 12 useful spinodal structures at increasingly 
spaced time steps, i.e. t = t9, t11, t14, t18, t23, t29, t36, t44, t53, t63, t74, t86; because spinodal structures evolves more 
slowly at the later stage of spinodal decomposition. The FFT-based mechanics model is then utilized to compute 
corresponding C, and generate structure-C pairs for training and testing use. Compared to the finite-element 
method, FFT can achieve orders of magnitude speed-up in solving equilibrium equations (mechanical equilib-
rium equations herein) in periodic systems. This is accomplished by calculating local (mechanical) response of 
a periodic medium as a convolution integral between the Green function of a linear reference homogeneous 
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medium and a polarization field, proportional to the actual heterogeneity of the  fields33. Such type of integrals 
reduces to a simple product in Fourier space.

We implement the FFT-based mechanics model with in-house Fortran code, and eventually get a total of 
21,600 structure-C pairs. The whole dataset is split into training (16,800), validation (2400), and testing (2400) 
datasets as shown in Fig. S13.

Architecture and training of CNN for substituting FFT-based mechanics model. This CNN 
would basically build 3D structure-C linkage from the training dataset. The trained CNN can quickly predict 
C for any given spinodal structure. Therefore, we adopted a classical image-labeling type CNN to build the 
relationship between the structure (3D image essentially) and C (a mechanical “label” of structure). Like most 
image-labeling CNNs, the adopted CNN herein is made up of convolutional layers for feature extraction and 
fully connected layers for regression modeling; see Fig. S14. The convolutional layers take images as input and 
convert it to highly abstract feature maps, and fully connected layers link the features to property, C. It’s known 
that such a CNN in image classification task usually flatten the features to a long vector at the end of convolu-
tional layers. However, the flattening operation would introduce large fully connected layers that is parameter-
intensive. To develop a CNN able to efficiently predict mechanical property, global average pooling is instead 
appended to the end of convolutional layers. By averaging the feature information, CNN would also leverage the 
overall structural features of spinodal structure and thus may avoid using noise information for property predic-
tion. The loss function adopted is mean absolute error (MAE):

where N is the number of prediction, ϕbw is the binary spinodal structure input, C is the predicted property by 
CNN, and C is the ground truth property by FFT mechanics simulation. CNN is trained for 300 epochs, with 
a batch size of 16.

Calculation of 3D direction-dependent Young’s modulus. It is difficult to comprehend the variations 
in elastic property by simply inspecting the 4th-rank or even reduced-order stiffness tensor. Therefore, graphical 
visualization has been developed and widely used for full appreciation of the properties including the mechani-
cal anisotropy. The direction-dependent effective Young’s modulus is calculated using Eqs. (4, 5)58,

where  is the transformed stiffness matrix along a direction of vector d (see Fig. S15), is the elastic stiffness matrix, 
and E′1(d) is the directional Young’s modulus.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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