Introduction

Definition of Terms:
Homogeneous Heterogeneous @
Ergotic and Non-Ergotic

(Odyssey way path)

(Ergotic try all paths => crystal)

(Non-Ergotic stuck on one path => glass)
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Equilibrium

Extent, extensive: V, Mass
Intensive: Density, Temperature
State Function T, P, p, G, H, S,...
First Law, Energy is Conserved

>dU =2Xdq+Zdw =0

Internal Energy, Heat, Work
Adiabatic, Exothermic, Endothermic

For thermodynamics we prefer ergodic, equilibrium states.



Energy Landscape, typically Gibbs Free Energy G =H - TS
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Table 1.1 Conjugate pairs of variables in work terms for the fundamental equation for the
internal energy U. Here fis force of elongation, / is length in the direction of the force, ois
surface tension, Aq is surface area, @; is the electric potential of the phase containing spe-
cies i, g; 1s the contribution of species i to the electric charge of a phase, E is electric field
strength, p is the electric dipole moment of the system, B is magnetic field strength (mag-
netic flux density), and m is the magnetic moment of the system. The dots indicate scalar

products of vectors.

Type of work

Intensive variable

Extensive variable

Differential work in dU

Mechanical
Pressure—volume
Elastic
Surface

Electromagnetic
Charge transfer
Electric polarization

Magnetic polarization

-pdV
fdl
odA S

D, dg;
B-dm




What happens to the energy when I heat a material?
Or How much heat, dq, is required to change the temperature dT? (Heat Capacity, C)

dq=CdT
C =dq/dT
Constant Volume, Cy,
dU =dq + dw Constant Volume
With only pV work (expansion/contraction), dw., = -pdV Computer Simulation
dU =dq — pdV Helmholtz Free Energy, A
For constant volume A=U-TS=G-pV
(dU)y =dq, so

Cy = (dU/dT)y, or the energy change with T: (dU)y = Cy dT

Constant Pressure, C,

dU =dq + dw = dq — pdV (only e/c work, i.e. no shaft work) Constant Pressure

Invent Entropy H=U + PV so dH = dU + pdV + Vdp Atmospheric Experiments
(dH), = dU + pdV for constant pressure Gibbs Free Energy, G
Rearrange first equation and equate to (dH), G=H-TS=A+pV

dq =dU + pdV = (dH),, and C =dq/dT so

C, = (dH/dT),,, or the enthalpy change with T: (dH), = C, dT



State Functions (https://en.wikipedia.org/wiki/State function)

Parameters that depend only on the current equilibrium state (Pressure, temperature, enthalpy, specific volume, energy)
Not on the path taken to reach that state (work and heat). Work is not a conserved value like energy.

Dimension of the “state space” which is always two for us. PV =nRT so with two state functions we can describe the
“state” PV or P/T or P/V or VT describe the state. (see Steam Table)
For the 2-dimensional state space we can trace out a path:

dV(t)
dt

W(to,t1) = [, PdV = [;" Pt dt

The end point is not dependent on the path for equilibrium states. So, you could take a constant pressure path and add a
constant volume path to replace a variable pressure and volume path and calculate the state parameters of the end state.

dP
tU t1) / P— dt 4 / V—dt
t to dt

_ / Z V) dt = P(t,)V(t,) — P(to)V(to)

Generally, we don’t know absolute values for H, S, G, A state parameters so we are always using a “reference state”.
That is, should we consider the energy of fusion in calculating the energy of water.



Hess’ Law
(total enthalpy of a reaction is the sum of the changes regardless of the path;
Justification for the use of standard enthalpy of formation)

5 Relating gas phase and surface
energetics: Hess's law

It is natural to compare at least trends in stability for M-S
complexes adsorbed on surfaces with those in the gas phase.
A systematic approach to relate these energies comes from
considering an indirect pathway for formation of adsorbed
complexes which involves three steps: (1) desorption of atomic
constituents from the surface; (2) formation of the complex in

the gas phase; and (3) adsorption of the complex onto the N Y
surface. Schematically, this process is described by - - 5
AE, AE - . S ea
mM (bulk) + nS(ads) —> mM(gas) + nS(gas) —> M,,S, (gas) : : ::
- - - -
25 M,,S8,(ads),

!

(4)

Fig. 3 Schematic for Hess's law specifically illustrating the case of M,Ss.

M) Check for updates Sulfur adsorption on coinage metal(100) surfaces:
; ) propensity for metal—sulfur complex formation

Cite this: Phys. Chem. Chem. Phys.

2019, 21, 26483 relative to (111) surfaces

Da-Jiang Liu, @ ** Peter M. Spurgeon, ®° Jiyoung Lee,* Theresa L. Windus,*
Patricia A. Thiel @°< and James W. Evans &
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Thermodynamic Square

-S U \Y

H A

-p G T
H=U+PV

A=U-TS=G-pV
G=H-TS=A+pV
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Slope is C,,, this is not defined at first order transitions
(melting and vaporization, crystalline phase change, order/disorder transition)
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Figure 1.3 Standard enthalpy of aluminium relative to 0 K. The standard enthalpy of fusion

(AgysHp) is significantly smaller than the standard enthalpy of vaporization (A ,,Hy,).

10



Size dependent enthalpy of melting
(Gibbs-Thompson Equation)

For bulk materials, r = oo, at the melting point AG=AH -T_AS =0
So, T.,,= AH/AS Larger bonding enthalpy leads to higher T, , Greater randomness
gain on melting leads to lower T,

For nanoparticles there is also a surface term,

(AG) V =(AH - T, AS)V + oA = 0, where T, is the melting point for size r nanoparticle
If V=13 and A = 12 and using AS = AH/T, this becomes,

ASr=co/(AH(1-T/Ty)) or T,=T, (1 - o/(r AH)

Smaller particles have a lower melting point, and the dependence suggests a plot of
T/T, against 1/r with negative slope -6/AH



Second Law: Reversibility

For an adiabatic reversible system AS =0

In a process this is often used by engineers in calculations
1) Assume AS = 0, calculate AH for the process
2) Use an efficiency, 1, to modify AH to a larger value
3) Calculate the actual AS > 0 for the process

The change in entropy is tied to the concept of efficiency

100% efficient process has AS =0

Rudolf Clausius

Calusius Theorem is that entropy increases or stays the same
but can not spontaneously decrease

For a reversible process dS,., = (dq/T),ey

For any process dS 2 (dq/T)

Rudolf Julius Emanuel Clausius (German pronunciation: ['Bu:dolf 'klavzivs];[I2] 2 January 1822 — 24 August 1888) was a German physicist and
mathematician and is considered one of the central founders of the science of thermodynamics.[3] By his restatement of Sadi Carnot's principle known as the
Carnot cycle, he gave the theory of heat a truer and sounder basis. His most important paper, "On the Moving Force of Heat",[*! published in 1850, first
stated the basic ideas of the second law of thermodynamics. In 1865 he introduced the concept of entropy. In 1870 he introduced the virial theorem, which
applied to heat.!5
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Equilibrium

For any process dS > (dq/T) (Calusius Theorem)
Ordg—-TdS<=0

dq — TdS we can call the “Change in Free Energy”

(This is the free energy available to do work.)
For a reversible process at thermodynamic equilibrium, it is equal to 0
This is a quantitative definition for equilibrium

At constant volume (Simulations) dq = dU

The Helmholtz Free Energy is defined: A=U — TS so dA=dU -TdS - SdT
dA = dU -TdS (at constant temperature)

dA = 0 at equilibrium for constant V and T

At constant pressure (Experiments) dq = dH

The Gibbs Free Energy is defined: G=H — TS so dG = dH — TdS — SdT
dG = dH — TdS (at constant temperature)

dG = 0 at equilibrium for constant p and T



Third Law

S = kglnQ2

Q is the number of states

For an infinite perfect crystal there is only one state
Q=1andInQ2=0s0S=0

This could only occur at T = 0 for an ergodic system where
there is no thermal motion. (without thermal motion the
system can’t be ergodic, so it is not possible to reach this
hypothetical state)



Legendre transformation to obtain Maxwell Relationship
These are relationships that are useful to relate differential thermodynamic properties
Like heat capacities, thermal expansion coefficient etc.

dU =dq + dw

1) For only ec work
dU =dq-pdV

2) dq = TdS for a reversible process
dU =TdS - pdV

So U is naturally broken into functions of S and V
(dU/dS)y =T Use below
(dU/dV)g=-p Use below

dU = (dU/dS)y, dS + (dU/dV)g dV

dU = (dU/dS)y dS + (dU/dV)g dV S U
Take the second derivative

d?U/(dSdV) =(d (dU/dV)g /dS)y = (d (dU/dS) y /dV) g = d?U/(dVdS) H

Using the above expressions and the middle two terms P G

-(dp/dS)y = (dT/dV)g
This is a Maxwell Relationship, and the process is called a Legendre transformation
This can be done for all four fundamental equations, U; H; G; A



Table 1.6 The Maxwell relations.

Thermodynamic Differential Equilibrium Maxwell’s relations

function condition

U, V) dU =TdS - pdV (dU)sy=0 (E?T) __[a_p)

H (S, p) dH =TdS + Vdp (dH)5, =0 (a_TJ B (B_V)
\op)g \OS)/,

AT,V dA = -SdT - pdV (dA)T.V=O (F_SJ _(ﬁ_]))

G (T. p) dG =-SdT + Vdp (dG)rp=0 (as } - _( EVJ
\Op 7 cT p

16



Thermodynamic Square

-S U \Y
H A
-p G T
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Thermodynamic Square dU =TdS - pdV

-S U \Y

dH =TdS + Vdp
H A
-p G T dA = -SdT - pdV

dG =-8dT + Vdp

Definition of G=H -TS

dG=dH-TdS-SdT
Definition of H=U + PV

dH=dU + PdV +V dP
Definition of dU = dw + dq

No shaft work and reversible (2’d law)

dU = -PdV + TdS
So, dH = -PdV + TdS + PdV + VdP = TdS + VdP

dG =TdS + VdP — TdS — SdT

=VdP - SdT

18
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Suppose F = F(x,y), then
dF = (0F/x), dx + (CF/dy), dy 6.14

Consider what happens when dF = 0 (i.e., at constant F). Then,
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Useful Rules for thermodynamic differentials
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Derive the expression for C, - Cy,

C,-Cy = a?VT/xy
a = (1/V) (dv/dT),
k7 = (1/V) (dV/dP);

Cy = (dU/dT)y

From the Thermodynamic Square

dU =TdS — pdV so Cy = (dU/dT), = T (dS/dT)y - p (dV/dT)y
Second term is 0 dV at constant V is 0

(ds/dT), = C, /T

Similarly

C, = (dH/dT),

From the Thermodynamic Square

dH =TdS + Vdp so C, = (dH/dT), = T (dS/dT), - V (dp/dT),
Second term is 0 dp at constant p is 0

(dS/dT),=C, /T

Write a differential expression for dS as a function of T and V

dS = (dS/dT)dT + (dS/dV);dV using expression for Cy; above and Maxwell for (dS/dV);

dS = C,/T dT + (dp/dT)\dV use chain rule: (dp/dT), = -(dV/dT), (dP/dV); = Va / (Vky)

Take the derivative for C,: C,/T = (dS/dT), = C,//T (dT/dT), + (a/x1)(dV/dT), = C, /T + (Va?/xq)
C,-Cy = a?VT/xy



Lowest Gibbs Free Energy is the stable phase Why does G decrease with T?
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Figure 1.8 Standard Gibbs energy of solid, liquid and gaseous aluminium relative to the
standard Gibbs energy of solid aluminium at 7= 0 K as a function of temperature (at p = 1
bar).



SUV Lowest Gibbs Free Energy is the stable phase Why does G increase with p?
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Figure 1.9 Standard Gibbs energy of graphite and diamond at 7' = 298 K relative to the
standard Gibbs energy of graphite at 1 bar as a function of pressure.
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Phases at Equilibrium, Chemical Potential or partial molar Gibbs free energy
(For multiple phases and/or components)

Consider water and water vapor at equilibrium. A molecule of water can leave liquid
water and join the water vapor due to thermal energy. At equilibrium it can just as
likely leave water vapor to join liquid water. We are not considering the interfacial
energy.

The total number of moles in the container (system), n,,, is fixed. But the number
in liquid water can change by dnjjqig = -dny,p This change would change the Gibbs
free energy (we are doing an experiment at constant atmospheric pressure).

Hiig = (dGqu/aniq) = (deap/d nvap) = Hygp at equilibrium

so that the change for liquid = -the change for vapor;

dnyq = -dn,,, for conservation of mass.

dnliq Hiig = dnvap Hvap

Hyap 18 called the chemical potential of water in the vapor phase.

Chemical potential always has two qualifiers, of what component in what phase.

Hyap 1S the partial molar Gibbs Free Energy of water in the vapor phase.
H, S, V can also have partial molar values in the same way usually signified by a bar.



Gibbs-Duhem Equation

(For multiple phases and/or components) H A

oG —
- ] :ZII,Gi:ZII,,Ll,- p G T
i i

on; Jn
E 2T, DM i

G :Zn,-[
i\

Consider a binary system A + B makes a solution

G =nplp +nglg
dG =npdup +dnpus +ngdug +dngup

Fundamental equation with chemical potential:
dG =—5dT + Vdp + »_ u;dn;
At constant T and p: :
dG =updn +ugdng
So, at constant T and p:
nadup +ngdug =0 ie. D n;du; =0
Reintroducing the T and p dep:endences:

SAT —Vdp + Y n;du; =0 Gibbs-Duhem Equation
- Changes in the chemical potential of the phases are related to the temperature
and pressure through the entropy and specific volume
(Often used under isothermal and isobaric conditions) 24



Corrosion in nanoparticles can be higher or lower

Gibbs-Duhem Eauation

Journal of The Electrochemical Society, 2020 167 041501
1945-7111/2020/167(4)/041501/7/$40.00 © 2020 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited
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CrossMark

It is well known that there is a linear relationship between the
Gibbs free energy and the pressure P of solids. Because of low
compressibility, the solid volume V expanded into an exponential
series with respect to pressure can be mainly described by the zero-
order term. According to the Gibbs-Duhem equation,*® LN dp, =
—8dT + Vdp, the linear form of the chemical potential dependent on
pressure follows™®

P, P,
Ap = f V(P)dP = f V, exp(—xP)dP ~ V,AP  [15]
P, P,

where V,, is the partial molar volume of the corresponding
component, Yy is the compressibility coefficient of the solid, and
AP is the change in the absolute value of the hydrostatic stress. In

o = the stress (AP) so the contribution to chemical
potential from stress is proportional to ¢ V depending on
geometry

Consider a binary solution in a nanoparticle. There
is significant stress on the surface, s, compared to
the core, c. Break particle into core and surface
regions with different stress, o, o, molar
composition of the solute in core, X, and surface,
X,. Assume equilibrium, p, = p. “In” term is
gaseous mixing entropy, 0 terms are for infinite

dilution. ‘ .
B, = pt.o+ RT Inx; — V, 0o,

'“: = l“.\'.() + RT In "‘.\:Y - 2‘7:(75' /3

For the two components with an electric potential
the equilibrium corrosion potential can be calculated
for each component which changes with particle
size.

i = pf + RTIn(1 — x5) + 2|os| VE/3 + ZF¢ [16]

g = p? + RT Inx; + 2lo,| V/3 + ZF¢ [17]

where p is the reference chemical potential of the corresponding
stress-free pure metal atoms; ¢ is the inner electrical potential of
the corresponding phase; F is the Faraday constant; Vg is the
partial molar volume of the corresponding atoms in the surface
shell, the superscript of A and B denoting the alloying solute and
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In the equilibrium state, the total Gibbs free energy change in
Eq. 14 AG = 0.*** Consequently, the corresponding equilibrium
potential3 43338 of these electrode reactions developed on the surface
of binary solid solution can be written as

B RT In(1 — x) + 2|0, vE/3
“e - "m/ f ( 5) | l Ys / [18]
Q =0y~ P = @eA - % ZFI il Ys v [19]

where ¢, = (pty2+ + Zp,~ — pu,,)/(ZF) is the equilibrium potential
of the corresponding pure bulk materials neglecting their surface
stress. Then, the difference in the equilibrium potential between the
solvent and solute atoms in the surface shell of binary solid solution
can be expressed as

-~ AB B

A3 =

+
1 —x? 3

s 2 : VA_ VB
= O?) + %(RT lIl xs |0-, |(_s - 5 ))

e

[20]

As all we know, if AZD;B = (0, anodic polarization will occur in the
lower potential atom phase and cathodic polarization will occur in
the higher potential atom phase. That implies that the anodic
corrosion in the lower potential atom phase occurs more quickly,
while the corrosion in the higher potential atom phase is inhibited,
resulting in selective corrosion or galvanic corrosion. Many
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Figure 1. Variations in the stresses in the surface shell (a) and the stresses in the core (b) as a function of the CuZn binary solid solution nanoparticle radius and
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Figure 2. Variations in the Zn concentrations in the surface shell x,* (a), the Zn concentrations in the core x.* (b) and the Zn concentration ratios between
surface shell and core (x; /x) (¢) as a function of the CuZn binary solid solution nanoparticle radius and the apparent Zn concentration.
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Figure 3. Variations in the equilibrium potential difference between the Cu
and Zn atoms in the surface shell of CuZn binary solid solution nanoparticle
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Figure 4. Variations in the equilibrium potential difference between the
dissolved Zn atoms in the CuZn nanoparticles and the pure bulk Zn as a 28
function of the nanoparticle radius and the apparent Zn concentration.



