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Mole fraction of component A = xA
Mass Fraction of component A = mA
Volume Fraction of component A = fA

Typically we make a binary blend, A + B, with mass fraction, mA, and want volume fraction, fA, or 
mole fraction , xA.

fA = (mA/rA)/((mA/rA) + (mB/rB))

xA = (mA/MWA)/((mA/MWA) + (mB/MWB))

Solutions



Solutions
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Three ways to get entropy and free energy of mixing

A) Isothermal free energy expression, pressure expression

B) Isothermal volume expansion approach, volume expression

C) From statistical thermodynamics

G = H – TS     A = U – ST   U = H – PV
Need the Entropy S

-S U V
H    A

-p G T
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A. Pressure Expression:  Mix two ideal gasses, A and B

p = pA + pB pA is the partial pressure pA = xAp

For single component molar G = µ
µ0 is at p0,A = 1 bar
At pressure pA for a pure component isothermal ideal gas
µA = µ0,A + RT ln(p/p0,A) = µ0,A + RT ln(p)

For a mixture of A and B with a total pressure ptot = p0,A = 1 bar and pA = xA ptot

For component A in a binary mixture

µA(xA) = µ0.A + RT ln (xA ptot/p0,A) = µ0.A + RT ln (xA)

Notice that xA must be less than or equal to 1, so ln xA must be negative or 0
So, the chemical potential must drop in the solution for a solution to exist.
Ideal gasses only have entropy so entropy drives mixing in this case.

This can be written, xA = exp((µA(xA) - µ0.A)/RT)
Which indicates that xA is the Boltzmann probability of finding A

-S U V
H    A

-p G T

dG=-SdT+Vdp
Isothermal and Ideal Gas
dG = RTdp/p
G = RT ln(p/p0)

Isothermal ideal gas (no enthalpy)
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Mix two real gasses, A and B

µA
* = µ0.A if p = 1 

Solution

Gas



Solutions
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Three ways to get entropy and free energy of mixing

A) Isothermal free energy expression, pressure expression

B) Isothermal volume expansion approach, volume expression

C) From statistical thermodynamics

G = H – TS     A = U – ST   U = H – PV
Need the Entropy S

-S U V
H    A

-p G T
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For isothermal DU = CV dT = 0 = dQ + dW
dQ = -dW = pdV
For ideal gas dQ = -dW = nRTln(Vf/Vi)

dQ = DS/T
DS = nR ln(Vf/Vi)
Consider a process of expansion of a gas from VA to Vtot
The change in entropy is DSA = nARln(Vtot/VA) = - nARln(VA/Vtot) 

Consider an isochoric mixing process of ideal gasses A and B.  
A is originally in VA and B in VB
Vtot is VA + VB
The change in entropy for mixing of A and B is

DSmixing A and B = - nARln(VA/Vtot) - nBRln(VB/Vtot) = - nR(xAlnxA + xBlnxB)
For an isothermal, isochoric mixture of ideal gasses (also isobaric since P ~ T/V)

For ideal gasses DHmixing = 0 since there is no interaction
DGmixing = DHmixing - TDSmixing = - TDSmixing = nRT(lnxA + lnxB)
So, the molar Gibbs Free energy for mixing is DGmixing = RT(xAlnxA + xBlnxB)

B. Volume Expression:  Ideal Gas Mixing -S U V
H    A

-p G T

dU=-pdV+TdS
Isothermal and Ideal Gas
dG = RTdp/p



Solutions
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Three ways to get entropy and free energy of mixing

A) Isothermal free energy expression, pressure expression

B) Isothermal volume expansion approach, volume expression

C) From statistical thermodynamics

G = H – TS     A = U – ST   U = H – PV
Need the Entropy S

-S U V
H    A

-p G T
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C. Statistical Thermodynamics

Boltzmann’s Law: DS = kBlnW
W Is the number of states
For mixing of nA and nB with n total molecules
W = n!/(nA! nB!)
Sterling’s approximation for large n, n! ~ n ln(n) – n
We assume that n is large then 
lnW = -(nA ln(nA/n) + nB ln(nB/n))
DS = -kB (nA ln(nA/n) + nB ln(nB/n)) = -nkB (xA ln(xA) + xB ln(xB))

DGmixing = DHmixing - TDSmixing = - TDSmixing = nRT(xA lnxA + xB lnxB)
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Some Types of Entropy

Thermodynamic entropy measured experimentally, Q/T

Configurational also called Combinatorial 
Conformational
Translational and Rotational Entropy (Brownian motion)
Vibrational entropy
Conformational entropy computed in internal or Cartesian coordinates 
(which can even be different from each other)
Conformational entropy computed on a lattice
Entropy associated with organization on mixing (Hyrophobic effect and 
many other unexpected features on mixing)
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An “Ideal Solution” means:

The change on mixing:
DS = -nkB (xA ln(xA) + xB ln(xB))
Since (ln x) is always negative or 0, DS is always positive for ideal solutions
DG = -T DS
Since (ln x) is always negative or 0, DG is always negative (or 0) and ideal solutions always mix
DH is 0, there is no interaction in ideal mixtures, there is no excluded volume, particles are ghosts to each other
DV = (dDG/dp)T = 0, there is no loss or gain of volume compared to the summed volume
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Boltzmann Probability of a Thermally Reversible Event = exp(-DG/kT)
DG is the change in free energy for the event
DG = DH – TDS (Const. T & P, e.g. an experimental measurement) 
DA = DU – TDS (Const. T & V, e.g. a simulation on a grid)

Consider an ideal gas with no enthalpic interactions, DH = 0
The probability of finding an atom A in a mixture of A and B is the molar concentration xA
DSA/k = -ln xA from the Boltzmann probability
and
DS/k = - xAln xA - xBln xB by a rule of random mixtures
DGideal/kT = xAln xA + xBln xB this is always negative since “ln” of a number less than 1 is 
negative, so mixing always reduces the free energy so it always occurs for an ideal mixture 

Hildebrandt Real Solution model considers binary interactions.  
The odds of a binary interaction of A and B is xAxB
This interaction has an average enthalpy (or internal energy) DH = xAxB WAB or x1x2 A12
Where the first term is the Hildebrandt binary interaction parameter and  the second is the 
Margules one-parameter interaction term.  For polymers c12 is used, the Flory –Huggins
interaction parameter (with a few modifications).

DGreal solution/kT = x1ln x1 + x2ln x2 + x1x2 A12 = x1ln a1 + x2ln a2 = x1ln g1x1 + x2ln g2x2

DH /kT = DGexcess /kT = x1x1 A12 = x1ln g1 + x2ln g2
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Excess free energy per mole

GE is the excess free energy value, so nGE

The excess chemical potential of component “i” in phase L or V, µi
E is given by

This is how you can find the activity coefficients from the Margules one-parameter 
coefficient (or the Hildebrandt or Flory-Huggins interaction parameters)
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Real Solutions

Molar excess functions or departure functions:

Difference between real value and ideal value

Excess DGmixing = DGmixing - RT(xAlnxA + xAlnxB)
Excess DSmixing = DSmixing + R(xAlnxA + xAlnxB)
Excess DHmixing = DHmixing
Excess DVmixing = DVmixing
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Real Solutions

xA becomes aA the activity so

DGmixing = RT(xAlnaA + xAlnaB)

Excess DGmixing = DGmixing - RT(xAlnxA + xBlnxB)
= RT(xAln(aA/xA) + xBln(aB/xB) )
= RT(xAln(gA) + xBln(gB))

g Is the activity coefficient

Excess DSmixing = -R(xAln(gA) + xBln(gB))

Method to use departure functions for calculations (PREOS.xls)
1) Calculation of properties in the ideal state is simple
2) With an equation of state the departure function can be calculated
3) For any transition first calculate the departure function to the ideal state
4) Then carry out the desired change as an ideal mixture or gas
5) Then use the departure function to return to the real state
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DGmixing = nRT(xA lnaA + xB lnaB)

= RT(xAln(gA) + xAln(gB))
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Get the activity coefficient at 
infinite dilution by 
extrapolating the slope for 
pure component to x = 0
This is used for Henry’s Law 
and a few other places.

(Activity coefficient is a/x)

a = gx so da/dx = g



17

We want the infinite dilution 
activity coefficients to write a 
function to predict the activity 
and the activity coefficient.  

This is one of the parameters 
for the functions.  

With the a function for activity 
we can predict the free energy 
and the miscibility.
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Henry’s law for dilute solutions

Vapor pressure of solute = ki xi
ki is the Henry’s Law Constant
xi is the solute molar fraction (low ~0)

Raoult’s Law for solvent or ideal mixtures
Vapor pressure = p* xj
xj is the solvent molar fraction (high ~1)
p* is the vapor pressure of the pure solvent

Solute Solvent or ideal mixture

If a solution is ideal, then xA = aA and gA = 1
At infinite dilution a solvent is ideal (follows Raoult’s law) so 
(daA/dxA)xA =>1 = 1 = (dgAxA/dxA)xA =>1 = gA + xA(dgA/dxA)xA =>1
But gA = 1 at xA =  1, then Raoult’s law is followed if 
(dgA/dxA)xA =>1 => 0  (See next slide)  

A solute follows Henry’s Law if 
(daB/dxB)xB =>0 = gB infinite dilution

= (dgBxB/dxB)xB =>0 = (gB + xB(dgB/dxB))xB =>0
So

(xB(dgB/dxB))xB =>0 = 0
This isn’t that useful
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Henry’s law for dilute solutions
Vapor pressure of solute = ki xi

Raoult’s Law for solvent or ideal 
mixtures
Vapor pressure = p* xj
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Activity of a component in a solution must be 
defined relative to a standard state, either 
Henrian (extrapolated) or Raoultian (measured, 
x = 1 :: a = 1)

You would use Henrian standard 
state if the solute had limited 
solubility like PCBs or oil in water 
and you wanted the infinite dilution 
of the water component
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Analytic Solution Models

Want to calculate the miscibility of components
Need to generate a phase diagram
Calculation of the vapor pressure

Simplest approach could be a polynomial.  However, this generally doesn’t inherently have any real 
meaning.  The polynomial just reproduces existing data within experimental limits.  Extrapolation is 
dangerous.

Symmetric Feature: Phase behavior

Asymmetric feature: vapor pressure
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Excess DSmixing = -R(xAln(gA) + xAln(gB))

Excess DGmixing = RT(xAln(gA) + xAln(gB))

Interaction coefficients
Zeroth order infinite dilution (trivial)
First order e1

B self-interaction coefficient

This is similar to a virial expansion
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Thallium/Mercury

Lower freezing point 
of Mercury for 
thermometer and 
switches 8.5% -60°C 
versus -40°C

Also Rat poison
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Hildebrand Regular Solution Model

The change on mixing:
DS = -nkB (xA ln(xA) + xB ln(xB))  Ideal Solution
Since (ln x) is always negative or 0, DS is always positive for ideal solutions
DG = DH -T DS
Since (ln x) is always negative or 0, DG is positive or negative depending on DH :: can mix or demix
Depending on the sign of DH 
DV = (dDG/dp)T = 0, there is no loss or gain of volume compared to the summed volume

DH = n W xAxB
W is the interaction coefficient or regular solution constant

Molar Gibbs free energy of mixing 
DGm = RT(xA ln(xA) + xB ln(xB)) + W xAxB

W = zNA[uAB – (uAA+uBB)/2]

The equation is symmetric
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Hildebrand solubility parameter, d

DH = n W xAxB
W is the interaction coefficient or regular solution constant

Molar Gibbs free energy of mixing 
Gm = RT(xA ln(xA) + xB ln(xB)) + W xAxB

W = zNA[uAB – (uAA+uBB)/2]

Flory-Huggins chi parameter, ~W/kT

Hansen solubility parameters
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Hildebrand Solubility Parameter, d

Two materials with similar d are miscible
Luo Y, Chen X, Wu S, Ca S Luo Z, Shi Y, Molecular 
Dynamics Simulation Study on Two-Component 
Solubility Parameters of Carbon Nanotubes and 
Precisely Tailoring the Thermodynamic 
Compatibility between Carbon Nanotubes and 
Polymers, Langmuir 36 9291-9305 (2020).

Flory-Huggins Equation
c ~ 1/T

Hildebrand and Scratchard

London dispersion forces (attractive)
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Asymmetric equations for asymmetric phase diagram

Sub-regular solution model

Redlich-Kister Expression
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Non-ideal entropy of mixing
Quasi-regular solution model

This is a non-
combinatorial 
entropy

This would occur if there were ordering on mixing, say when you add oil to water.  The 
enthalpy of mixing favors mixing!!!  Water organizes at the surface of oil to a great 
extent; this reduces entropy and makes oil and water demix.  Water actually “likes” oil.
This is called the “hydrophobic effect” and is an important concept for protein folding.
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Graphical Method to Estimate Chemical Potential

Does dG/dxi = dG/dni = µi?
No
dG/dni = dG/dxi dxi/dni
dxi/dni = d(ni/(ni+nj))/dni = 1/(ni+nj) – ni/(ni+nj)2
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Solving the Regular Solution Model

We know that the excess Gibbs free energy for mixing is given by:

GE/RT = xA ln gA + xB ln gB Generic expression using activity coefficient
And we have defined for the regular solution model that 
GE/RT = W xA xB Hildebrand Regular Solution expression

If we propose the answer RT ln gA = W xB
2

We find by substitution generic expression that it equals the regular solution expression since xB + xA = 1
(Solving this directly see next slide.)
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Use of the Gibbs-Duhem Equation to determine the activity of a component

Constant p, T

If you know gA you can obtain gB by integration

Restatement of Gibbs-Duhem for Solutions
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