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Abstract

The immersion precipitation process makes most commercial polymeric membranes, which enjoy widespread use in water filtration
and purification. In this work, a ternary Cahn–Hilliard formulation incorporating a Flory–Huggins homogeneous free energy function is
used to simulate the liquid–liquid demixing stage of the immersion precipitation process, which determines much of the final morphology
of membranes. Simulations start with a non-solvent/solvent/polymer ternary system with periodic boundary conditions and uniform initial
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onditions with small random fluctuations in two-dimensional (2D). Results in 2D demonstrate the effects ofMij (mobilities) andKij (gradien
enalty coefficients) on phase separation behavior. A two-layer polymer–solvent/non-solvent initial condition is then used to simu
embrane fabrication conditions. 2D and 3D simulation results show an asymmetric structure of membrane morphology, whic
grees with the experimental observation. Then this system is coupled with the Navier–Stokes equations to model hydrodynam
imensions. The results show that fluid flow destabilizes the top layer of membrane.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Polymeric membranes have been developed for a variety
f industrial applications, including microfiltration, ultrafil-

ration and reverse osmosis[1]. Each application imposes
pecific requirements on the membrane material and pore
tructure. The final morphologies of the membranes will vary
reatly, depending on the properties of the materials and the
rocessing conditions. Most commercial membranes are pre-
ared by the immersion precipitation process. In this process,
homogeneous polymer solution is cast on a substrate and

hen immersed into a coagulation bath containing a non-
olvent (usually water). The non-solvent begins to diffuse
nto the polymer solution and the solvent begins to diffuse
nto the coagulation bath, while the polymer diffuses very lit-
le due to its low mobility. The inter-diffusion of non-solvent
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and solvent brings the composition of the polymer solu
into the miscibility gap of the corresponding ternary ph
diagram. Hence, the homogeneous polymer solution
to decompose into two phases: a polymer-rich phase
polymer-poor phase. At a certain stage during phase de
ing, the polymer-rich phase is solidified into a solid ma
by crystallization or vitrification, while the polymer-po
phase develops into pores. The performance of this mem
depends largely on the morphology formed during phase
aration and solidification.

The thermodynamic basis of immersion precipitat
which is the free energy function and the phase diag
of the non-solvent/solvent/polymer ternary system, is
developed[2–4]. Some mass transfer models in 1D have b
done to understand the kinetics of the immersion preci
tion process before phase separation happens[5–9]. A small
number of studies have looked at the onset of phase se
tion. Saxena and Caneba[10] used a 1D phase field mod
based on the Cahn–Hilliard equation incorporating the Fl

376-7388/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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Nomenclature

Dij diffusivity of speciesi in the matrix of species
j

E energy
f homogeneous free energy density
F total free energy
�F force per unit volume
Fp dimensionless force parameter
Kij gradient penalty coefficient
K ij dimensionless gradient penalty coefficient
L characteristic length scale of simulation

domain
mi degree of polymerization of componenti

Mij mobility of speciesidue to a gradient in species
j chemical potential

M ij dimensionless mobility
R gas constant (8.314 J/K/mol)
Sc Schmidt number
t time
t̄ characteristic diffusion time scale of polymer

(L2/〈Dpp〉)
t̃ dimensionless time
T temperature
u velocity inx direction
v velocity iny direction
vsite volume per reference site
V total volume

Greek letters
ϕi volume fraction of componenti
λ dominant wavelength
µi chemical potential of componenti

ω vorticity
Ψ dimensionless Flory–Huggins free energy den-

sity

Subscripts
p polymer
s solvent
n non-solvent

Huggins free energy model to simulate phase separation in
the membrane and showed 1D periodicity of concentration
profile during the initial stage of decomposition. Barton and
McHugh used the Cahn–Hilliard equations in a ternary sys-
tem, but the concentrations are constrained to change only
along a tie line across the miscibility gap, to study membrane
formation by thermal quenching, and showed the coarsening
rate of the particle size in the late stage follows the 1/3 power
law[11–13]. In 2002, Akthakul et al.[14] showed experimen-
tal evidence of pore formation via spinodal decomposition in
asymmetric membrane formation and then used the Lattice

Boltzmann method to simulate membrane formation in 2D
[15]. The simulation results captured motion of the inter-
face between coagulation bath and polymer solution and the
asymmetric morphology of membranes.

However, the Lattice Boltzmann method is strongly
anisotropic, causing the final result to exhibit a morphological
bias in the diagonal direction. Furthermore, Lattice Boltz-
mann requires a regular lattice, which makes it difficult to
apply on the irregular simulation domain. Extending to 3D
is also not straightforward since there is no regular lattice
which could produce isotropic results in 3D. The inherently
3D nature of the process and final product, with connected
solid and pore phases, requires a 3D model which can simu-
late the whole process in the ternary system.

Toward that end, the present work provides a methodol-
ogy capable of simulating the entire process of membrane
structure formation via spinodal decomposition[14]. A sin-
gle set of partial differential equations simulates the initial
diffusion and liquid–liquid phase separation steps using a
complete ternary description of the system in two and three
dimensions. This will later be extended to solidification of the
polymer-rich phase to lock in the membrane structure. In the
model, a ternary Cahn–Hilliard phase field formulation incor-
porating a Flory–Huggins homogeneous free energy function
is used to model the phase behavior in this heterogeneous
kinetic system. The theory of phase field is discussed in
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ection2, including the derivation of the governing eq
ions and the assumptions of the model. Then, the simul
esults are presented in Section3. The first simulations pre
ented begin with uniform initial conditions with small ra
om fluctuations in 2D, later simulations start with two-la
olymer–solvent/non-solvent initial conditions to simu
ctual membrane fabrication conditions in 2D and 3D. T
ydrodynamic effects are added to the 2D system by cou
ith fluid flow driven by surface tension. Model limitatio
nd future work are discussed in4. Finally, the work is con
luded in Section5.

It is worth noting here that the present work is limi
o uniform mobilities and viscosities, though with differ
obilities for the polymer and solvent. While non-unifo
roperties are necessary for accurate simulation of the

cal system, many important features of the process ca
xplained by this model even with uniform properties. F
hermore, non-uniform mobility in particular adds consid
ble complexity to the system behavior, and will be addre

n a separate paper.

. Theory

.1. Ternary phase field model

In modeling studies on immersion precipitation, it is co
on to separate the initial diffusion and phase separ

teps into two distinct processes since they appear to be
ifferent phenomena. However, they share the same und
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ing principles, as they are both driven by minimizing the free
energy, which can be described by a phase field model.

Phase field is a very promising methodology for model-
ing phase transformations involving topological changes and
material flux across interfaces. This methodology is built on
work involving kinetics of spinodal decomposition begin-
ning with Cahn, Hilliard and Allen from the 1950s through
the 1970s[16–18], in which the interface between separat-
ing phases is described as “diffuse” with non-zero thickness,
instead of sharp. In the past 15 years, phase field has been
used to model phenomena from dendritic solidification[19–
22], martensitic transformations[23] and grain growth[24] in
metals and ceramics to the work of Saxena and Caneba, and of
Barton and McHugh, on spinodal decomposition of polymer
systems mentioned above[10–13]. In our study, we applied
the phase field method to the non-solvent/solvent/polymer
ternary system in the immersion precipitation process.

Phase field modeling for conserved variables (e.g., con-
centration, volume fraction) is based on Cahn–Hilliard
equations, which are diffusion equations with a diffuse
interface concept from a gradient penalty term in the
total free energy. In this phase field model, one set of
ternary Cahn–Hilliard equations is employed to simulate
the initial diffusions and the induced liquid–liquid phase
separation of the immersion precipitation process, which
allows us to understand how the phase separation is
i hase
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Here,ϕi is the volume fraction (generally concentration) of
speciesi andKij are the gradient penalty coefficients. The-
oretically, the gradient penalty coefficients (Kij) are defined
as the second derivatives of the total free energy with respect
to the concentration gradients as follows:

Kij = ∂2F

∂(∇ϕi)∂(∇ϕj)

∣∣∣∣
∇ϕi=0,∇ϕj=0

(4)

However, practically they are very difficult to determine
from experiments, and the choices of these coefficients in
prior literatures are quite ambiguous[10,11,25]. For all our
simulations, the cross gradient penalty coefficientsKsp, Kps
were neglected andKss = Kpp were set with the same con-
stant values estimated from the work of Saxena and Caneba
[10] and tuned based our simulation resolution. More details
aboutKss = Kpp will be discussed in the later part of the
paper.

The well-known Flory–Huggins free energy model is used
for this non-solvent (n)/solvent (s) /polymer (p) ternary sys-
tem, which gives the homogeneous free energy densityf as
the following:

f = RT

vsite
Ψ (φn, mn, φs, ms, φp, mp) (5)

wheremi is the number of sites occupied by a molecule of
s
d

Ψ

T
rnary

s hree
v
o ces
b oos-
i to
t icity.
T -
d
e can
b
f

nduced and how the morphology evolves during the p
eparation.

The general Cahn–Hilliard equation is written as the
owing:

∂ϕi

∂t
= ∇


∑

j

Mij ∇µj


 (1)

ere,Mij is the mobility of speciesi due to the gradien
f a generalized chemical potentialµj that is defined a

he variational derivative of the total free energyF with
espect to the volume fraction (generally concentration
peciesj:

j = δF

δϕj

. (2)

In the Cahn–Hilliard model, the contribution of the gra
nt energy to the total free energy is included. Therefore

otal free energy is not only a function of the concentra
ut also a function of its gradient. Considering the gr
nt energy term in a heterogeneous system with an inve
enter and neglecting gradient terms beyond second-
ne can write the total free energy (F) as the integral of th
omogeneous free energy density (f) plus gradient energ

erms over the space (see Eq.(3)).

=
∫ [

f + 1

2

∑
Kij (∇ϕi∇ϕj)

]
dV (3)
peciesi andϕi is the volume fraction of speciesi. Ψ is the
imensionless homogeneous free energy density:

= ϕn ln ϕn + ϕs ln ϕs + ϕp

mp
ln ϕp

+ χnsϕnϕs + χspϕsϕp + χnpϕnϕp (6)

his is simplified by assumingmn = ms = 1.
Since there are only two independent variables in a te

ystem and it’s equivalent to choose any two out of the t
ariables, we choose the polymer (ϕp) and the solvent (ϕs) in
ur simulations in order to capture the mobility differen
etween the macromolecule and the small molecule. Ch

ng the non-solvent (ϕn) with the right parameters will lead
he same results. We assume constant mobility for simpl
herefore, with constantKij and Mij, and neglecting off
iagonal gradient terms (Ksp = Kps = 0), the Cahn–Hilliard
quations for this non-solvent/solvent/polymer system
e written for two independent variables,ϕp andϕs as the

ollowing:

∂ϕs

∂t
= Mss

[
∇2
(

∂f

∂ϕs

)
− Kss∇2∇2ϕs

]

+ Msp

[
∇2
(

∂f

∂ϕp

)
− Kpp∇2∇2ϕp

]
(7)

∂ϕp

∂t
= Mps

[
∇2
(

∂f

∂ϕs

)
− Kss∇2∇2ϕs

]

+ Mpp

[
∇2
(

∂f

∂ϕp

)
− Kpp∇2 ∇2ϕp

]
(8)
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The diffusivity can be evaluated by comparing this with
Fick’s law for diffusive fluxJi = −∑jDij ∇Cj, which gives:

Dij = Mij

∂2f

∂ϕ2
j

(9)

Diffusivity Dij is generally not constant according to Eq.(9),
althoughMij is assumed to be constant. During the immersion
stage, gradient penalty terms contribute little to the total free
energy with a positiveDij, such that Eqs.(7) and (8)tech-
nically reduce to the typical diffusion equations. However,
during phase separation when the system enters the spinodal

region, ∂2f

∂ϕ2
j

becomes negative and the traditional diffusion

equation is ill-posed. But the Cahn–Hilliard can describe the
“up-hill” diffusion very well because the fourth-order term
has the effect of stabilizing the shortest wavelengths. There-
fore, one set of Cahn–Hilliard equations can model both
initial diffusion and phase separation in the immersion pre-
cipitation process.

2.2. Dimensional analysis

Eqs.(7) and (8)are scaled with the following dimension-
less variables:

r̃
r

t̃

w -
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t̄ oly-
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s tant
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i
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o
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T of
t

When Eqs.(10) and (11)are substituted into Eqs.(7) and
(8), the non-dimensionalized Cahn–Hilliard equations are as
follows:

∂ϕs

∂t̃
= M ss

[
∇̃2
(

∂Ψ

∂ϕs

)
− K ss∇̃2∇̃2ϕs

]

+ M sp

[
∇̃2
(

∂Ψ

∂ϕp

)
− K pp∇̃2∇̃2ϕp

]
(12)

∂ϕp

∂t̃
= M ps

[
∇̃2
(

∂Ψ

∂ϕs

)
− K ss∇̃2∇̃2ϕs

]

+ M pp

[
∇̃2
(

∂Ψ

∂ϕp

)
− K pp∇̃2∇̃2ϕp

]
(13)

with the following denotations:

Mss
Mpp〈Ψ ′′〉 = M ss, Kss

L2RT/vsite
= K ss

Msp
Mpp〈Ψ ′′〉 = M sp, Ksp

L2RT/vsite
= K sp

Mps
Mpp〈Ψ ′′〉 = M ps, Kps

L2RT/vsite
= K ps

1
〈Ψ ′′〉 = M pp, Kpp

L2RT/vsite
= K pp.

(14)

Two sets of dimensionless parametersM ij andK ij need
to be determined.M pp is set to be 2 since〈Ψ ′′〉 = 0.5 as
d e
s ula-
t cross
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H .
=
L

(10)

= t

t̄
= t

L2/〈Dpp〉 = t

L2/Mpp〈f ′′〉 = MppRT

vsite

〈
∂2Ψ

∂ϕ2
p

〉

(11)

here the length scaleL is the width of the domain in 2D sim
lations (slightly larger in 3D). That width in turn is chos

o be roughly 10–20 times of the initial spinodal decomp
ion wavelength, in order to efficiently approach the limi
n infinite system while using periodic boundary conditio
is defined as the characteristic diffusion time scale of p
er (L2/〈Dpp〉), as the polymer diffuses most slowly in t

ystem. Choosing the polymer–polymer diffusion cons
o scale the time would allow us the capture the contro
inetics and accelerate the computation considerably by
ng terms to the order of magnitude of one.

According to Eqs.(5) and (9), 〈Dpp〉 = Mpp〈f ′′〉 =
MppRT

vsite
〈Ψ ′′〉 = MppRT

vsite
〈 ∂2Ψ
∂2ϕp

〉, where〈Ψ ′′〉 is the characterist

alue of the second derivative of the dimensionless hom
eous free energy density with respect to the volume fra
f the polymer. Dimensionless free energy densityΨ is a

unction of ϕs and ϕp; the value of its second derivati
s not constant, so choosing a “characteristic value” is
asy. In order to choose a value, we plottedΨ ′′ versusϕp in

he polymer/non-solvent binary with constant Flory–Hugg
arameter of 0.6, and the value ofΨ ′′ is centered around 0.
herefore, we took〈Ψ ′′〉 as 0.5, and used this value for all

he simulations for simplicity and consistency.
iscussed before.M sp andM ps are related the flux of on
pecies due to a gradient in the other. For most of the sim
ions, these are set to zero since the contribution of these
erms is relatively minor.M ss is chosen to be 1000 times

pp to capture the relative difference of the mobilities of
olymer and the small molecule. We assume thatKss = Kpp,
nd estimate their value as 1.6−11 based on the work of Sa
na and Caneba[10]. After the non-dimensionalization,K ss
ndK pp are about 10−4 to 10−5 depending the length sca
, which is chosen to be roughly 10–20 times the in
pinodal decomposition wavelength. Converting the dim
ionless results back to the real size is straightforward
arameters are known.

Another consideration is about the simulation resolu
ith the simulation domain size defined as roughly 10 ti

he initial decomposition wavelength, using 15 grid points
avelength gives a resolution of 150 grid points across
omain. Thus, the grid dimensions are 150× 150 for fully
eriodic simulations, and 150× 300 for membrane simul

ions which are periodic inx but noty.

.3. Hydrodynamic effects

Fluid flow is an inherent part of the immersion prec
tation process. To capture the hydrodynamic effects
avier–Stokes equations are coupled with previous C
illiard equations. The equations are coupled by the a

ion of convective terms to the Cahn–Hilliard equations
nclude the driving force for reducing free energy at the Ca
illiard diffuse interface in the Navier–Stokes equations
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Following the argument made by Jacqmin[26] for a binary
system, the Cahn–Hilliard free energy changes with time due
to convection according to:

∂F

∂t

∣∣∣∣
convection

=
∫ [

δF

δϕs

∂ϕs

∂t

∣∣∣∣
convection

+ δF

δϕp

∂ϕp

∂t

∣∣∣∣
convection

]
dV (15)

The variationδF/δϕs was defined asµs above, and the rate of
change ofϕs due to convection is−∇(�uϕs); similar relations
hold for ϕp. Thus, integration by parts and the divergence
theorem give:

∂F

∂t

∣∣∣∣
convection

= −
∫

[µs∇(�uϕs) + µp∇(�uϕp)] dV

= −
∫

boundary
[µs�uϕs + µp�uϕp]n̂ dA

+
∫

[ϕs�u∇µs + ϕp�u∇µp] dV (16)

The integral on the boundary vanishes due to the use of peri-
odic and symmetry boundary conditions. This rate of change
of Cahn–Hilliard free energy is equal and opposite to the rate
of change of kinetic energy due to diffuse surface tension
f

T iven
b

F

A form
o ional
p fy the
i

uity,
m d in
t

∇

∇

H
n

flow, i.e. interface curvature andDDt
is the substantial deriva-

tive giving by ∂
∂t

+ �u∇. ω is the vorticity, which is defined
as:

ω = ∇ × �u = ∂v

∂x
− ∂u

∂y
(23)

When Eqs.(19)–(22)are normalized by ˜r = r
L

, t̃ = L2

Mpp〈f ′′〉 ,
ũ = u

L/t̄
= u

Mpp〈f ′′〉/L andω̃ = ω
ω̄

= ω
1/t̄

, the resulting dimen-
sionless equations are:

∇̃2ũ + ∂ω̃

∂ỹ
= 0 (24)

∇̃2ṽ − ∂ω̃

∂x̃
= 0 (25)

∂ω

∂t
+ �̃u∇̃ω̃ = Sc∇̃2ω̃ + Fp∇̃ × ( �̃F ) (26)

Here, �̃F is the dimensionless driving force of the fluid flow.
Sc is the Schmidt Number and Fp is a dimensionless force
parameter:

�̃F = −[ϕs∇̃µ̃s + ϕp∇̃µ̃p]

Sc = ηt̄

ρL2 = η
ρ〈Dpp〉

Fp = RTL2

(27)

D (Eqs.
( ng
c
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v stant
i tant
t case
i the
f

2

w reg-
u on-
v d to
d icity
f r to
a sure
f

ua-
t ther
e ents,
e tric
d

ta-
t em
o rage
o

orce per unit volume�F , which is:

∂E

∂t

∣∣∣∣
kinetic

=
∫

�u �F dV (17)

herefore, the surface tension forcing term must be g
y:

� = −
∑

i

ϕi∇µi (18)

s Jacqmin noted, when used in the velocity-pressure
f the incompressible Navier–Stokes equations, an addit
otential must be added to the pressure in order to satis

ncompressibility constraint.
The resulting system consists of equations of contin

otion and transport, which for an incompressible flui
he velocity–vorticity form are as follows:

2u + ∂ω

∂y
= 0 (19)

2v − ∂ω

∂x
= 0 (20)

Dω

Dt
= ν∇2ω + ∇ × �F

ρ
(21)

Dϕi

Dt
= ∇

(∑
i

Mij∇µj

)
(22)

ere, �u is the velocity vector,u andv the x andy compo-
ents of�u, ρ the density,�F the driving force of the fluid
ρ vsite〈Dpp〉2

imensionless Cahn–Hilliard equations are as before
12) and (13)), but with the substantial derivative indicati
onvective transport (Eq.(22)).

Although the viscosity is a strong function of polym
olume fraction, the present work assumes it to be con
n all of these simulations. The viscosity change is impor
o the immersion precipitation process, especially in the
nvolving the glass transition, and will be addressed in
uture.

.4. Numerical implementation

The Cahn–Hilliard equations (see Eqs.(12) and (13))
ere discretized by the Finite Difference method on a
lar grid. First order up-winding was used for all c
ective terms. Crank–Nicholson timestepping was use
iscretize time. As described above, the velocity–vort

orm of Navier–Stokes equations was used in orde
void spurious modes in the traditional velocity–pres
ormulation.

For further development, the partial differential eq
ion formulation adopted here permits the use of o
fficient computational methods such as finite elem
nabling solution of the equations in irregular geome
omains.

The Portable, Extensible Toolkit for Scientific Compu
ion (PETSc)[27] was used for solving the non-linear syst
f difference equations in parallel and for distributed sto
f the data.
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3. Results

3.1. Non-solvent/solvent/polymer ternary system

The model was first tested with a typical non-solvent/
solvent/polymer ternary system withχns = 0.2, χnp = 1,

χsp = 0.3 and mp = 64. There is a free energy bar-
rier between the non-solvent and the polymer in such a
ternary system, which causes the phase separation. Peri-
odic boundary conditions (BC) and the initial condition
(IC) of ϕs = ϕp = 0.2 ± 0.005 (uniform random distribu-
tion over this interval) were applied. Other parameters
wereM pp = 2, M ss= 2, M sp= M ps= 0 andK ss=
K pp = 1.6 × 10−5. The grid size is 150× 150. The change
of the volume fraction of the polymer (ϕp) with time is shown
in Fig. 1, where blue stands forϕp = 1 and red stands for
ϕp = 0.

According to the given initial condition, the ternary sys-
tem actually begins within the miscibility gap. The simula-
tion results show the typical spinodal morphology with two
separated phases: a polymer-rich phase with highϕp and
a polymer-poor phase with lowϕp (seeFig. 1), which is

consistent with the theoretical prediction based on the ther-
modynamics of the ternary system.

Furthermore, other simulations were run with different
mobilities Mij and gradient penalty coefficientsKij. Sim-
ulation results with changingMij indicate that increas-
ing M ss speeds up phase separation, while increasing
M sp andM ps slows it down. The volume fraction of
the polymer and the solvent both start with 0.2, but they
change in the opposite fashion. Therefore, the driving
forces (i.e. chemical potentials as defined in the paper) of
the solvent and the polymer have the opposite sign.Mps
and Msp terms offset the contribution ofMpp and Mss
terms, and drive the down-hill diffusion during the phase
decomposition. So increasingMps an Msp slows down the
kinetics.

Different resulting morphologies (ϕp) of the simula-
tion with different K ij are shown inFig. 2. The Fourier
transform of the results at the onset of phase separation
shows that the dominant dimensionless wavelengths are
λ1 = 0.071429 andλ2 = 0.2 at K pp = 1.6 × 10−5 and
1.6 × 10−4, respectively, while the 1.6 × 10−6 case shows
several small peaks around 0.025 indicating insufficient res-
Fig. 1. Spinodal decomposition in the non-solvent/solvent/po
lymer system withχns = 0.2,χnp = 1,χsp = 0.3 andmp = 64.
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Fig. 2. Membrane morphologies (the volume fraction of the polymer,ϕp) at t̃ = 0.02 with differentK ij in the ternary system withχns = 0.2, χnp = 1,
χsp = 0.3 andmp = 64, where blue stands forϕp = 1 and red stands forϕp = 0. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

olution. Eyre describes a procedure for estimating interfacial
energy and wavelength in a ternary system[28]; roughly
speaking, this can be expressed as:

λ ∝ ε ∝
√∑

i,j

Kij (28)

From the simulations, the dimensionless wavelengths are
determined by Fourier transform to beλ2

1 : λ2
2 = 1 : 7.84,

with the dimensionless wavelength atK pp = 1.6 × 10−6

showing a similar ratio toλ1, both of which are not far from
to the 1:10 predicted by theory.

3.2. Water/DMF/PVDF membrane system

3.2.1. 2D results
The model was next used to study the water/DMF/PVDF

membrane system. Here, water is the non-solvent, dimethyl-
formamide (DMF) the solvent and poly(vinylidene fluoride)
(PVDF) the polymer. PVDF membranes can be used for
ultrafiltration and microfiltration. The membrane exhibits an
asymmetric structure containing a non-porous dense skin and
a porous bulk[11]. Concentration-dependent Flory–Huggins
interaction parameters of the water (1)/DMF (2)/PVDF (3)
ternary system areχ12 = −0.058

1−0.622×ϕ2(1−ϕ3) , χ13 = 3.5 and
χ23 = −1 + 0.5 × ϕ3 [8].
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i
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l Other
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2, M sp= M ps= 0 and K ss= K pp = 10−4. Periodic
boundary conditions were applied in thex direction, with
zero-flux boundary conditions in they direction. The ini-
tial composition in the polymer solution layer isϕp = 0.2 ±
0.005 andϕs = 0.75± 0.005, and in the coagulation bath
is ϕp = 0.01± 0.005 andϕs = 0.01± 0.005. The ratio of
x dimension toy dimension is 1:2, and the grid size is
150× 300.

The morphology evolution (the change of the volume frac-
tion of the polymer (ϕp) with time) is shown in inFig. 4,
where blue stands forϕp = 1 and red stands forϕp = 0. The

e dia-
l

according to Yilmaz and McHugh’s method[4] and the binodal drawn based
on the equilibrium concentration of the simulation results. (b) Calculated
spinodal curves for differentmp in the PVDF system according to Yilmaz
and McHugh[4].
Fig. 3(a) shows the phase diagram of water/DMF/PV
ystem withmp = 5: the calculated spinodal according
ilmaz and McHugh’s method[4] and the binodal draw
ased on the equilibrium concentration of the simula
esults.Fig. 3(b) shows the calculated spinodal curves
ifferent mp in the PVDF system. As can be seen fr
ig. 3(b), the spinodal curve ofmp = 10 is already ver
lose to the solvent axis, indicating that the equilibrium c
entration is very small formp = 10. As mp goes up, th
quilibrium concentration becomes even smaller, incr

ng computational cost. With this in mind,mp is chosen to
e 5, which is too small for a real polymer molecule,

arge enough to capture the phase separation behavior.
arameters used in simulations wereM ss= 2000, M pp =
Fig. 3. Phase diagrams of the water/DMF/PVDF system. (a) The phas
gram of Water/DMF/PVDF system withmp = 5: the calculated spinoda
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Fig. 4. Morphology evolution (the change of the volume fraction of the polymer,ϕp) during spinodal decomposition of the PVDF membrane system in 2D,
where blue stands forϕp = 1 and red stands forϕp = 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

system begins with a two-layer initial condition, with poly-
mer solution (polymer and solvent) in the bottom 30% and
the coagulation bath (non-solvent) on the top. The solvent
and the non-solvent inter-diffuse quickly, but the polymer
almost completely stays in the polymer solution area. The
polymer is not prohibited from entering the coagulation bath
in our model as in Cohen’s mass transfer model[5], but it
stays in the bottom layer due to the free energy barrier and
its low mobility. After some time of inter-diffusion, the com-
position of the polymer solution enters the spinodal curve
shown inFig. 3(a). Hence, phase separation begins at the
top of the polymer solution layer, and proceeds downward in

a layered structure. This layered structure is a result of the
interaction between the homogeneous and gradient energies
driven by the planar interface between the polymer solution
and coagulation bath, and is similar to the “short-wavelength
composition waves” described by Allen and Cahn in an
iron–aluminum system[29]. With time, spinodal decom-
position takes place throughout the entire layer, then par-
ticles coarsen to continuously reduce the total free energy.
The final morphology of the PVDF membrane exhibits an
asymmetric structure with a dense skin layer on top of a
porous support layer, in strong agreement with experimental
observations.
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3.2.2. Effects of initial composition
Next, the initial composition was varied either in the poly-

mer solution or in the coagulation bath to study the effect on
membrane morphology.

First, two series of simulations were performed with dif-
ferent initial compositions in the polymer solution; those
initial compositions are listed inTable 1, while the initial
composition in the coagulation bath for all simulations here
was ϕp,bath = 0.01, ϕs,bath = 0.01 andϕn,bath = 0.98. The
first series (Cases 1–4) variedϕp andϕs in the polymer solu-
tion, while keepingϕn constant. The second series (Cases 1,
5–7) variedϕs andϕn in the polymer solution, while keeping
ϕp constant.

The simulated morphologies (ϕp) starting with different
initial conditions (indicated by points in the phase diagram)
are shown inFig. 5with the normalized color map, where blue

Table 1
Changing initial compositions in the polymer solution

Case ϕp,solution ϕs,solution ϕn,solution

1 0.20 0.75 0.05
2 0.30 0.65 0.05
3 0.35 0.60 0.05
4 0.40 0.55 0.05
5 0.20 0.60 0.20
6 0.20 0.50 0.30
7 0.20 0.35 0.45

stands for the maximum ofϕp and red stands for the minimum
of of ϕp for a better contrast. The blue points present the dif-
ferentinitial conditions of the simulations in the first series.
As can seen fromFig. 5, when increasing the volume frac-

F n on PVDF membrane morphology. The membrane morphology is presented by the
n he points in the ternary diagram indicate the initial conditions of the corresponding
s figure legend, the reader is referred to the web version of this article.)

F
n
s

ig. 5. Effects of changing initial compositions in the polymer solutio
ormalizedϕp with blue as the maximum and red as the minimum. T
imulation results. (For interpretation of the references to color in this
ig. 6. Effects of changing initial compositions in the coagulation bath on P
ormalizedϕp with blue as the maximum and red as the minimum. The po
imulation results. (For interpretation of the references to color in this figure
VDF membrane morphology. The membrane morphology is presented by the
ints in the ternary diagram indicate the initial conditions of the corresponding
legend, the reader is referred to the web version of this article.)
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tion of the polymer, the resulting morphology changes from
isolated droplets to bi-continuous pattern. The second series
is indicated by the magenta points that lie in the horizontal
direction for theinitial conditions of each simulation inFig.
5. Morphology actually does not change significantly when
the volume fraction of the solvent decreases, although the
final equilibrium concentrations are different. This leads to
the conclusion that the volume fraction of the polymer domi-
nates the morphology of membrane since it determines where
the system enters the spinodal and the proportion of the two
phases.

Second, initial compositions in the coagulation bath
were varied as indicated inTable 2, while the ini-
tial composition in the polymer solution for all simula-

Table 2
Changing initial compositions in the coagulation bath

Case ϕp,bath ϕs,bath ϕn,bath

1 0.01 0.01 0.98
2 0.01 0.05 0.94
3 0.01 0.10 0.89
4 0.01 0.20 0.79
5 0.01 0.30 0.69
6 0.01 0.40 0.59

tions wasϕp,solution = 0.20, ϕs,solution = 0.75 andϕn,solution
= 0.05.

The simulated morphologies (ϕp) are shown inFig. 6with
the normalized color representation. The points in the fig-
ure represent theinitial conditions of the simulations. The

F
t

ig. 7. Morphology evolution (ϕp) of PVDF membrane with fluid flow in 2D, w
he references to color in this figure legend, the reader is referred to the web
here blue stands forϕp = 1 and red stands forϕp = 0. (For interpretation of
version of this article.)
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morphology changes from isolated droplets to bi-continuous
pattern when increasing the solvent volume fraction in the
coagulation bath since it changes the composition in the spin-
odal where phase separation begins. This also reduces the
gradient of the solvent, which delays the onset of phase sep-
aration.

3.3. Water/acetone/CA membrane system

The water (1)/acetone (2)/cellulose acetate (CA) (3)
ternary system was simulated with the same Cahn–Hilliard
parameters exceptmp. The Flory–Huggins parameters of
the water/acetone/CA system areχ12 = 0.661+ 0.417

1−0.755ϕ2
,

χ13 = 1.4 andχ23 = 0.535+ 0.11ϕ3 [7]. Becauseχ13 of
water/CA is much smaller thanχ13 of water/PVDF, CA
and water are still miscible whenmp = 5, and in factmp
can be as large as 50 with reasonable computational effi-
ciency. Comparing with the PVDF membrane, the calcu-
lated pore size in the CA membrane is about twice that
of the PVDF, and phase separation of the CA system is
much slower than in the PVDF system; both of these can
be understood in terms of the smallerχ13 value for this
system.

3.4. Hydrodynamic effects
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Fig. 8. Morphologies (ϕp) of PVDF membrane with different values ofSc

and Fp. Thex axis isSc and they axis is the dimensionless force parameter,
Fp. Blue stands forϕp = 1 and red stands forϕp = 0. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

3.5. 3D PVDF membrane

3.5.1. 3D morphology evolution
A 3D simulation was run with the samemp, M ij, K ij

and layer thickness as was used in the 2D PVDF simula-
tion. The dimensionless domain size is 0.45× 1 × 0.45, and
the grid size is 90× 200× 90. The formation of the PVDF
membrane (the time evolution ofϕp) in 3D is shown inFig. 9,
which shows four contours of the volume fraction of the poly-
mer (ϕp) at 0.2 (red), 0.4 (yellow), 0.6 (green) and 0.8 (cyan)
that is approximately the equilibrium concentration of the
polymer-rich phase. Like the 2D results, the system begins
with a homogeneous polymer solution, then phase separa-
tion takes place form the top with a layered structure and
continues through out the entire polymer solution area, and
finally coarsening increases the domain sizes. The final sim-
ulated morphology also shows an asymmetric structure with
a dense layer on top of a porous bulk, but with a qualitative
difference compared with 2D results: in 3D both polymer-
rich and polymer-lean phases are continuous, which is not
possible in two dimensions.

3.5.2. Coarsening pattern
In order to understand the pattern of opening and coa-

lescing of pores during membrane formation, the enlarged
fi ring
Simulation results with interface-driven fluid flow are
follows. In the first simulation, the Schmidt number (Sc) is
set to be 103 and the dimensionless force parameter (Fp) t
109, with other parameters as before. The simulation re
shown inFig. 7 indicate that the final morphology is simi
to the case without fluid flow, except that the top layer bre
up at some stage of coarsening. This indicates that fluid
destabilizes the top layer.

Other simulations were run with various values ofSc and
Fp. The results are shown inFig. 8.

Fig. 8 indicates that the top layer is unstable with sma
Sc and larger Fp. When the Schmidt number is larger, the
cosity is larger, therefore, the flow is slower and the top l
is more stable. Increasing the dimensionless force para
(Fp) implies increasing the surface tension, which drives
flow. This leads to more vigorous flow, which breaks up
top layer.

Furthermore, the data available suggest that the ra
the Schmidt number to the force parameter determine
stability of the top layer: when that ratio is at or ab
above 10−5, it is stable; when at or below 10−6, it is
unstable. This ratio is related to the capillary number g
by:

Ca= ηU

σ
(29)

whereσ is the surface tension andU the characteristic velo
ity, though there is no distinct characteristic velocity in
system.
 gures of the morphologies in the polymer solution du
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Fig. 9. 3D morphology evolution (ϕp) of PVDF membrane: contours ofϕp at 0.2 (red), 0.4 (yellow), 0.6 (green), 0.8 (cyan). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

the coarsening stage are shown inFig. 10. Attachments from
the bottom to the third layer open holes in that layer, then this
process repeats with the second layer, which then merges
together with the third layer as they coarsen.

3.5.3. Qualitative comparison with experimental results
Fig. 11 shows the comparison between the simulation

results with the experimental results given by Cheng et
al. [8]. As it can be seen fromFig. 11, the simulation
results show an asymmetric membrane structure: a non-
porous selective layer (or micro-porous layer which contains
pores with much smaller size compared to supporting layer)
at the top and the macro-porous supporting layer at the

bottom. Furthermore, the simulated morphology of the bot-
tom surface shows qualitative similarity in pore morphology
and pore distribution compared with the SEM micrograph
Fig. 11(c).

4. Discussion

The model presented here captures a lot of the physical
phenomena involved in this process, and can explain some
of the physical features present during membrane forma-
tion. However, its assumptions impose limits on its predictive
capability and accuracy.
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Fig. 10. Coarsening pattern in PVDF membrane: contours ofϕp at 0.2 (red), 0.4 (yellow), 0.6 (green), 0.8 (cyan). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

First, the model assumes uniform mobilities and viscosi-
ties, though with different mobilities for the polymer and
solvent, while both mobilities and viscosities in real sys-
tems have a strong dependence on the concentrations. Non-

uniform mobility and viscosity in particular adds consider-
able complexity to the system behavior, and will be addressed
in a separate paper. When adopting variable mobilities, we
expect to see slower solvent/non-solvent exchange after for-

F
p
i

ig. 11. Comparison of the simulation results with experimental results: (a)
recipitation from the paper of Cheng et al.[8]. (d and e) The simulation results

s referred to the web version of this article.)
–(c)are the SEM Photomicrographs of PVDF membrane prepared by immersion
. (For interpretation of the references to color in this figure legend, the reader
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mation of dense selection layer since the high-concentration
polymer will present a barrier to diffusion of the small
molecules. And for glass-forming polymers, variable viscos-
ity will lock in the structure at a certain stage of coarsening
due to vitrification.

In addition to vitrification, we would also like to extend
this methodology to model other solidification mechanisms,
such as gelation and crystallization, in the immersion pre-
cipitation process. This will require other techniques such
as Allen–Cahn equations for non-conserved variables from
degree of crystallinity to crystal orientation. This too is an
area of ongoing investigation.

It is also hard to rigorously compare model results with
experimental work since no model can capture all conditions
of the experiments and no experiment can follow exactly
the parameters set in the model. For example, the gradient
penalty coefficients, which determine the particle size, are
very hard to measure. Therefore, at this stage the model can
be compared with experiments and predict physical behavior
only in a qualitative sense. Development of the model con-
tinues toward the goal of a quantitatively accurate predictive
tool.

5. Conclusion
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ric structure, and the pattern of layer breakup in 3D looked
similar to experimental surface micrographs.
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