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Abstract

The immersion precipitation process makes most commercial polymeric membranes, which enjoy widespread use in water filtration
and purification. In this work, a ternary Cahn—Hilliard formulation incorporating a Flory—Huggins homogeneous free energy function is
used to simulate the liquid—liquid demixing stage of the immersion precipitation process, which determines much of the final morphology
of membranes. Simulations start with a non-solvent/solvent/polymer ternary system with periodic boundary conditions and uniform initial
conditions with small random fluctuations in two-dimensional (2D). Results in 2D demonstrate the effégtéabbilities) andk; (gradient
penalty coefficients) on phase separation behavior. A two-layer polymer—solvent/non-solvent initial condition is then used to simulate actual
membrane fabrication conditions. 2D and 3D simulation results show an asymmetric structure of membrane morphology, which strongly
agrees with the experimental observation. Then this system is coupled with the Navier—Stokes equations to model hydrodynamics in twe
dimensions. The results show that fluid flow destabilizes the top layer of membrane.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and solvent brings the composition of the polymer solution
into the miscibility gap of the corresponding ternary phase
Polymeric membranes have been developed for a varietydiagram. Hence, the homogeneous polymer solution starts
of industrial applications, including microfiltration, ultrafil- to decompose into two phases: a polymer-rich phase and a
tration and reverse osmodi$]. Each application imposes polymer-poor phase. At a certain stage during phase demix-
specific requirements on the membrane material and poreing, the polymer-rich phase is solidified into a solid matrix
structure. The final morphologies of the membranes will vary by crystallization or vitrification, while the polymer-poor
greatly, depending on the properties of the materials and thephase developsinto pores. The performance ofthismembrane
processing conditions. Most commercial membranes are pre-depends largely on the morphology formed during phase sep-
pared by the immersion precipitation process. In this process,aration and solidification.
a homogeneous polymer solution is cast on a substrate and The thermodynamic basis of immersion precipitation,
then immersed into a coagulation bath containing a non- which is the free energy function and the phase diagram
solvent (usually water). The non-solvent begins to diffuse of the non-solvent/solvent/polymer ternary system, is well
into the polymer solution and the solvent begins to diffuse developed2-4]. Some mass transfer modelsin 1D have been
into the coagulation bath, while the polymer diffuses very lit- done to understand the kinetics of the immersion precipita-
tle due to its low mobility. The inter-diffusion of non-solvent tion process before phase separation hapfer®. A small
number of studies have looked at the onset of phase separa-
* Corresponding author. Tel.: +1 617 452 2086; fax: +1 617 2535418.  tion. Saxena and Canelit0] used a 1D phase field model
E-mail address: hazelsct@mit.edu. based onthe Cahn-Hilliard equation incorporating the Flory—
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Boltzmann method to simulate membrane formation in 2D

Nomenclature [15]. The simulation results captured motion of the inter-
face between coagulation bath and polymer solution and the
D;; diffusivity of species in the matrix of species asymmetric morphology of membranes.
J However, the Lattice Boltzmann method is strongly
E energy anisotropic, causing the final resultto exhibit a morphological
f homogeneous free energy density bias in the diagonal direction. Furthermore, Lattice Boltz-
F total free energy mann requires a regular lattice, which makes it difficult to
F force per unit volume apply on the irregular simulation domain. Extending to 3D
Fp dimensionless force parameter is also not straightforward since there is no regular lattice
K gradient penalty coefficient which could produce isotropic results in 3D. The inherently
K_ij  dimensionless gradient penalty coefficient 3D nature of the process and final product, with connected
L characteristic length scale of simulation  solid and pore phases, requires a 3D model which can simu-
domain late the whole process in the ternary system.
m; degree of polymerization of component Toward that end, the present work provides a methodol-
M;;  mobility of speciesduetoagradientinspecies  ogy capable of simulating the entire process of membrane
Jj chemical potential structure formation via spinodal decomposit{a4]. A sin-
M_ij  dimensionless mobility gle set of partial differential equations simulates the initial
R gas constant (814 J/K/mol) diffusion and liquid—liquid phase separation steps using a
Sc Schmidt number complete ternary description of the system in two and three
r time dimensions. This will later be extended to solidification of the
t characteristic diffusion time scale of polymef  polymer-rich phase to lock in the membrane structure. In the
5 (L?/(Dypp)) model, aternary Cahn—Hilliard phase field formulation incor-
t dimensionless time porating a Flory—Huggins homogeneous free energy function
T temperature is used to model the phase behavior in this heterogeneous
u velocity in x direction kinetic system. The theory of phase field is discussed in
v velocity in y direction Section2, including the derivation of the governing equa-
usite  volume per reference site tions and the assumptions of the model. Then, the simulation
14 total volume results are presented in Secti@riThe first simulations pre-

sented begin with uniform initial conditions with small ran-
dom fluctuations in 2D, later simulations start with two-layer

@i volume fraction of componert polymer—solvent/non-solvent initial conditions to simulate
A dominant wavelength actual membrane fabrication conditions in 2D and 3D. Then,
Wi chemical potential of component hydrodynamic effects are added to the 2D system by coupling
w vorticity with fluid flow driven by surface tension. Model limitations
v dimensionless Flory—Huggins free energy den-  and future work are discussed4nFinally, the work is con-
sity cluded in Sectior.

It is worth noting here that the present work is limited
Subscripts to uniform mobilities and viscosities, though with different
p polymer mobilities for the polymer and solvent. While non-uniform
S solvent properties are necessary for accurate simulation of the phys-
n non-solvent ical system, many important features of the process can be

explained by this model even with uniform properties. Fur-
thermore, non-uniform mobility in particular adds consider-
able complexity to the system behavior, and will be addressed

Huggins free energy model to simulate phase separation inin a separate paper.

the membrane and showed 1D periodicity of concentration

profile during the initial stage of decomposition. Barton and

McHugh used the Cahn—Hilliard equations in a ternary sys- 2. Theory

tem, but the concentrations are constrained to change only

along a tie line across the miscibility gap, to study membrane 2.1. Ternary phase field model

formation by thermal quenching, and showed the coarsening

rate of the particle size in the late stage follows tjig fower In modeling studies on immersion precipitation, itis com-
law[11-13] In 2002, Akthakul et a[14] showed experimen-  mon to separate the initial diffusion and phase separation
tal evidence of pore formation via spinodal decomposition in steps into two distinct processes since they appear to be very
asymmetric membrane formation and then used the Latticedifferent phenomena. However, they share the same underly-



152

ing principles, as they are both driven by minimizing the free
energy, which can be described by a phase field model.
Phase field is a very promising methodology for model-

ing phase transformations involving topological changes and

material flux across interfaces. This methodology is built on
work involving kinetics of spinodal decomposition begin-
ning with Cahn, Hilliard and Allen from the 1950s through
the 19709416-18] in which the interface between separat-

ing phases is described as “diffuse” with non-zero thickness,

B. Zhou, A.C. Powell / Journal of Membrane Science 268 (2006) 150—164

Here,g; is the volume fraction (generally concentration) of
species and K;; are the gradient penalty coefficients. The-
oretically, the gradient penalty coefficients;f) are defined

as the second derivatives of the total free energy with respect
to the concentration gradients as follows:

o PF
YT a(Ve)a(Ve)) Vi=0,V,=0

However, practically they are very difficult to determine

(4)

instead of sharp. In the past 15 years, phase field has beerfrom experiments, and the choices of these coefficients in

used to model phenomena from dendritic solidificafb®—
22], martensitic transformatiofi23] and grain growtfi24]in

prior literatures are quite ambiguo[i0,11,25] For all our
simulations, the cross gradient penalty coefficigtdg Kps

metals and ceramics to the work of Saxena and Caneba, and ofvere neglected anfss = Kpp were set with the same con-

Barton and McHugh, on spinodal decomposition of polymer
systems mentioned abo{&0-13] In our study, we applied

stant values estimated from the work of Saxena and Caneba
[10] and tuned based our simulation resolution. More details

the phase field method to the non-solvent/solvent/polymer about Kss = K will be discussed in the later part of the

ternary system in the immersion precipitation process.

Phase field modeling for conserved variables (e.g., con-

centration, volume fraction) is based on Cahn—Hilliard
equations, which are diffusion equations with a diffuse
interface concept from a gradient penalty term in the
total free energy. In this phase field model, one set of
ternary Cahn—Hilliard equations is employed to simulate
the initial diffusions and the induced liquid—liquid phase
separation of the immersion precipitation process, which

paper.

The well-known Flory—Huggins free energy model is used
for this non-solventA)/solvent §) /polymer ) ternary sys-
tem, which gives the homogeneous free energy derfsiy
the following:

f = 7lll(¢nv mnp, ¢Sv ms, ¢p» mp) (5)

Usite

wherem; is the number of sites occupied by a molecule of

_allows us to understand how the phase _separation isspecies andg; is the volume fraction of specigs¥ is the
induced and how the morphology evolves during the phase dimensionless homogeneous free energy density:

separation.
The general Cahn—Hilliard equation is written as the fol-
lowing:

;i

o 1)

=V ZM,']' VpLj
J

Here, M;; is the mobility of species due to the gradient
of a generalized chemical potential; that is defined as
the variational derivative of the total free energywith
respect to the volume fraction (generally concentration) of
species;:

_8F

=5 2)

Hj

In the Cahn—Hilliard model, the contribution of the gradi-

ent energy to the total free energy is included. Therefore, the

total free energy is not only a function of the concentration
but also a function of its gradient. Considering the gradi-

ent energy term in a heterogeneous system with an inversion
center and neglecting gradient terms beyond second-order,

one can write the total free energh)(as the integral of the
homogeneous free energy densify (flus gradient energy
terms over the space (see E8)).

F =/ {f‘l‘;ZKij (V(PiV(Pj):| dv Q)

9
W=¢n|n<pn+<psln¢s+m—pln¢p
p

+ XnsPn®s + XspPsPp T XnpPn®p (6)

This is simplified by assuming, = ms = 1.

Since there are only two independent variables in a ternary
system and it's equivalent to choose any two out of the three
variables, we choose the polymep) and the solveniys) in
our simulations in order to capture the mobility differences
between the macromolecule and the small molecule. Choos-
ing the non-solventyy) with the right parameters will lead to
the same results. We assume constant mobility for simplicity.
Therefore, with constank;; and M;;, and neglecting off-
diagonal gradient term%{p = Kps = 0), the Cahn—Hilliard
equations for this non-solvent/solvent/polymer system can
be written for two independent variables, and ¢s as the

followi 10
8(;05

%
7S=MSS

b
“p
dgp 2 ( 9f 292
—E =M, Vel — | — KgsVEV
ot ps { <3§05> ss Ps
of
¥p
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The diffusivity can be evaluated by comparing this with When Eqs(10) and (11)re substituted into Egé7) and

Fick’s law for diffusive fluxJ; = —ZjD,-j VC;, whichgives: (8), the non-dimensionalized Cahn—Hilliard equations are as
follows:
by =, @ 2 ”
= M g2 Ws _ mss |92 ( &) - Kk _ss¥292s
J or dps

Diffusivity D;; is generally not constant according to E8j, wy [OW oo
althoughi;; is assumed to be constant. During theimmersion ~ + M_sp {V (a) — K ppVeV €0p] (12)
stage, gradient penalty terms contribute little to the total free ¥
energy with a positiveD;;, such that Eqs(7) and (8)tech-
nically reduce to the typical diffusion equations. However, 9 ~5 [ OW ~ o
y P a %P _ M ps [Vz (8> - Kssvzvzqzs}
Ps

during phase separation when the system enters the spinodalg; —
22

region, % becomes negative and the traditional diffusion . e

equation ijs ill-posed. But the Cahn—Hilliard can describe the +M-pp [V (3%> — KppV*V wp} (13)

“up-hill” diffusion very well because the fourth-order term

has the effect of stabilizing the shortest wavelengths. There-With the following denotations:
fore, one set of Cahn—Hilliard equations can model both

initial diffusion and phase separation in the immersion pre- Mpp(¥”) — M _ss L2RT/vsie K.ss
cipitation process. Msp Kep _
p p Mop(07) — M _sp T2RT v = K_sp 14
M, K
2.2. Dimensional analysis W‘E“) = M ps 12 RTF}SUsne = K_ps
1 _ Kpp  _
5 = M_pp, = K _pp.
Egs.(7) and (8)are scaled with the following dimension- ¥ PP LZRT/vsite PP
less variables: Two sets of dimensionless parametitsj andK _ij need
s (10) to be determinedM _pp is set to be 2 sincaV”’) = 0.5 as

L discussed befords _sp andM _ps are related the flux of one
species due to a gradient in the other. For most of the simula-

Lt " P MypRT < PYA > tions, these are set to zero since the contribution of these cross
f== =

= = terms is relatively minor/ _ss is chosen to be 1000 times of
t L%/(Dpp) L%/ Mpp(f") st y

M _pp to capture the relative difference of the mobilities of the
(11) polymer and the small molecule. We assume fat= Kpp,

and estimate their value a6t ! based on the work of Sax-
where the length scaleis the width of the domainin 2D sim- gz and Canelja0]. After the non-dimensionalizatiok,_ss
ulations (slightly larger in 3D). That width in turn is chosen andK _pp are about 10* to 10-5 depending the length scale
to be roughly 10-20 times of the initial spinodal decomposi- ; \which is chosen to be roughly 10-20 times the initial
tion wavelength, in order to efficiently approach the limit of = gpinodal decomposition wavelength. Converting the dimen-
an infinite system while using periodic boundary conditions. sjonless results back to the real size is straightforward if the
t is defined as the characteristic diffusion time scale of poly- parameters are known.
mer (L?/(Dpp)), as the polymer diffuses most slowly inthe "~ Another consideration is about the simulation resolution.
system. Choosing the polymer—polymer diffusion constant wjth the simulation domain size defined as roughly 10 times
to scale the time would allow us the capture the controlling the initial decomposition wavelength, using 15 grid points per
kinetics and accelerate the computation considerably by Scalwavelength gives a resolution of 150 grid points across the

8@3

ing terms to the order of magnitude of one. § domain. Thus, the grid dimensions are 15050 for fully
According to Eqsé(5) and (9) (Dpp) = Mpp(f”) = periodic simulations, and 159 300 for membrane simula-
% (W) = %(%), where(¥") is the characteristic  tions which are periodic in but noty.
D

value of the second derivative of the dimensionless homoge-
neous free energy density with respect to the volume fraction 2.3. Hydrodynamic effects
of the polymer. Dimensionless free energy dengitys a

function of g5 and ¢p; the value of its second derivative Fluid flow is an inherent part of the immersion precip-
is not constant, so choosing a “characteristic value” is not itation process. To capture the hydrodynamic effects, the
easy. In order to choose a value, we ploti€tversusyp in Navier—Stokes equations are coupled with previous Cahn—

the polymer/non-solvent binary with constant Flory—Huggins Hilliard equations. The equations are coupled by the addi-
parameter of 0.6, and the valuewf is centered around 0.5.  tion of convective terms to the Cahn—Hilliard equations and
Therefore, we took¥”) as 0.5, and used this value for all of include the driving force for reducing free energy atthe Cahn—
the simulations for simplicity and consistency. Hilliard diffuse interface in the Navier—Stokes equations.
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Following the argument made by Jacqr#6] for a binary
system, the Cahn—Hlilliard free energy changes with time due
to convection according to:

oF

o convection

[l g
8¢s 0 [convection 9%p 9 [convectio

The variation F/3¢s was defined ags above, and the rate of
change ofps due to convection is-V (iigs); similar relations
hold for ¢p. Thus, integration by parts and the divergence
theorem give:

JoF - -
e — [LsV i) + gV Gl dv
ot convection
== [ [udigs+ gl da
boundary

+ [losiVis + g Vgl dv (16)
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flow, i.e. interface curvature ar@f is the substantial deriva-

tive giving by 2 5 +uV. o is the vorticity, which is defined
as:
. 0 0
w=Vxi=2_ % (23)
ax  dy
When Eqs(19) —(22)are normallzed by = L72f

= L/t = f/, yis ando = £ = 1/t,the resultmg dimen-

sionless equatlons are:

~ A&

V2ii+ 2 —0 (24)
ay

- o

25 %2 _9 (25)

0x

360 3~ o ~ 2,_, ~ s

E—i—uVa):ScV o ~+ FpV x (F) (26)

Here,; is the dimensionless driving force of the fluid flow.
Sc is the Schmidt Number and Fp is a dimensionless force
parameter:

The integral on the boundary vanishes due to the use of perl- 5

odic and symmetry boundary conditions. This rate of change
of Cahn—Hilliard free energy is equal and opposite to the rate
of change of kinetic energy due to diffuse surface tension
force per unit volume, which is:

= / WFdv
kinetic

Therefore, the surface tension forcing term must be given
by:

oE

P a7)

szvﬂz

As Jacgmin noted, when used in the velocity-pressure form
of the incompressible Navier—Stokes equations, an additional

(18)

[‘Psvﬂs + (ﬂpvﬂp]
— '71 n
Sc = pLZ — P{Dpp) (27)
_ _ RTL?
Fp T Usite<Dpp>2

Dimensionless Cahn—Hilliard equations are as before (Egs.
(12) and (13), but with the substantial derivative indicating
convective transport (E¢§22)).

Although the viscosity is a strong function of polymer
volume fraction, the present work assumes it to be constant
in all of these simulations. The viscosity change is important
to the immersion precipitation process, especially in the case
involving the glass transition, and will be addressed in the
future.

potential must be added to the pressure in order to satisfy the2.4. Numerical implementation

incompressibility constraint.

The resulting system consists of equations of continuity,
motion and transport, which for an incompressible fluid in
the velocity—vorticity form are as follows:

Viu+—=0 (19)
ay
d

vZ2u— 2 _p (20)
0x

— =V 21

o = VVet ; (21)

Dy;

Dr =V <zi:MijV,u,j> (22)

Here,u is the velocity vectory andv the x andy compo-
nents ofi, p the density,F the driving force of the fluid

The Cahn—Hilliard equations (see Edq42) and (13)
were discretized by the Finite Difference method on a reg-
ular grid. First order up-winding was used for all con-
vective terms. Crank—Nicholson timestepping was used to
discretize time. As described above, the velocity—vorticity
form of Navier-Stokes equations was used in order to
avoid spurious modes in the traditional velocity—pressure
formulation.

For further development, the partial differential equa-
tion formulation adopted here permits the use of other
efficient computational methods such as finite elements,
enabling solution of the equations in irregular geometric
domains.

The Portable, Extensible Toolkit for Scientific Computa-
tion (PETSc)27] was used for solving the non-linear system
of difference equations in parallel and for distributed storage
of the data.
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3. Results
3.1. Non-solvent/solvent/polymer ternary system

The model was first tested with a typical non-solvent/
solvent/polymer ternary system witfns = 0.2, xnp = 1,
xsp= 0.3 and mp =64. There is a free energy bar-
rier between the non-solvent and the polymer in such a

155

consistent with the theoretical prediction based on the ther-
modynamics of the ternary system.

Furthermore, other simulations were run with different
mobilities M;; and gradient penalty coefficients;;. Sim-
ulation results with changingy;; indicate that increas-
ing M_ss speeds up phase separation, while increasing
M _sp and M _ps slows it down. The volume fraction of
the polymer and the solvent both start with 0.2, but they

ternary system, which causes the phase separation. Perichange in the opposite fashion. Therefore, the driving

odic boundary conditions (BC) and the initial condition
(IC) of ¢s = ¢p = 0.2+ 0.005 (uniform random distribu-
tion over this interval) were applied. Other parameters
wereM _pp=2, M_ss=2, M_sp= M_ps= 0andK _ss=
K_pp= 1.6 x 107°. The grid size is 15& 150. The change
of the volume fraction of the polymegpg) with time is shown

in Fig. 1, where blue stands fap, = 1 and red stands for

wp =0.

P According to the given initial condition, the ternary sys-
tem actually begins within the miscibility gap. The simula-
tion results show the typical spinodal morphology with two
separated phases: a polymer-rich phase with kigtand
a polymer-poor phase with low, (seeFig. 1), which is

(¢)T=0.0.002141

(Pp-
0

5

(=

forces (i.e. chemical potentials as defined in the paper) of
the solvent and the polymer have the opposite sigps

and Msp terms offset the contribution oMy, and Mss
terms, and drive the down-hill diffusion during the phase
decomposition. So increasinyps an Msp slows down the
kinetics.

Different resulting morphologiesef) of the simula-
tion with different K_ij are shown inFig. 2 The Fourier
transform of the results at the onset of phase separation
shows that the dominant dimensionless wavelengths are
A1 = 0.071429 andi, = 0.2 at K_pp= 1.6 x 10™° and
1.6 x 104, respectively, while the .6 x 10~¢ case shows
several small peaks around@5 indicating insufficient res-

-0 L P
IO}

L8

L

Fig. 1. Spinodal decomposition in the non-solvent/solvent/polymer systemgta 0.2,xnp = 1,xsp = 0.3 andm = 64.
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- .
(b) K—pp=1.6 = 105 (c) K=pp = 1.6 = 104
op I ; 3 -1
05

0

Fig. 2. Membrane morphologies (the volume fraction of the polymgy,at7 = 0.02 with differentX_ij in the ternary system withns = 0.2, xnp = 1,
xsp= 0.3 andmp = 64, where blue stands fg, = 1 and red stands fas, = 0. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

olution. Eyre describes a procedure for estimating interfacial 2, M_sp= M _ps= 0 and K_ss= K_pp= 10~*. Periodic
energy and wavelength in a ternary systft8]; roughly boundary conditions were applied in tkedirection, with

speaking, this can be expressed as: zero-flux boundary conditions in the direction. The ini-
tial composition in the polymer solution layerdg = 0.2 &
roceo YKy (28) 0.005 andgs = 0.75+ 0.005, and in the coagulation bath
i, is ¢p = 0.01+ 0.005 andgps = 0.01+ 0.005. The ratio of

, ) ) . x dimension toy dimension is 1:2, and the grid size is
From the simulations, the dimensionless wavelengths areq g, 300

determined by Fourier transform to bg : 13 = 1:7.84,
with the dimensionless wavelength Etpp= 1.6 x 10~
showing a similar ratio ta.1, both of which are not far from
to the 1:10 predicted by theory.

The morphology evolution (the change of the volume frac-
tion of the polymer ¢p) with time) is shown in inFig. 4,
where blue stands fasp = 1 and red stands fgi, = 0. The

3.2. Water/DMF/PVDF membrane system Polymer  gpinogal

Binodal

3.2.1. 2D results

The model was next used to study the water/DMF/PVDF
membrane system. Here, water is the non-solvent, dimethyl-
formamide (DMF) the solvent and poly(vinylidene fluoride)
(PVDF) the polymer. PVDF membranes can be used for
ultrafiltration and microfiltration. The membrane exhibits an
asymmetric structure containing a non-porous dense skin and

aporous bulf11]. Concentration-dependent Flory—Huggins Non-solvent Solvent
interaction parameters of the water (1)/DMF (2)/PVDF (3) Polymer
— ___-0058 —135 and m_p=5
ternary system arQi2 = —ggm oa(1—g3)' X13 .0 an M_p=10 =====eee
x23=—1+ 0.5 x ¢3[8]. M_p=30 s
m_p=5000

Fig. 3(@) shows the phase diagram of water/DMF/PVDF
system withmp = 5: the calculated spinodal according to
Yilmaz and McHugh’s method4] and the binodal drawn
based on the equilibrium concentration of the simulation
results.Fig. 3(b) shows the calculated spinodal curves for
different mp in the PVDF system. As can be seen from
Fig. 3(b), the spinodal curve of:p = 10 is already very e
close to the solvent axis, indicating that the equilibrium con- Non-solvent (b) Solvent
centration is very small fomp = 10. Asmp goes up, the
equilibrium concentration becomes even smaller, increas-Fig. 3. Phase diagrams of the water/DMF/PVDF system. (a) The phase dia-
ing computational cost. With this in mindzp is chosen to gram of Water/DMF/PVDF system witlx, = 5: the calculated spinodal

be 5 which is t Il f | | | le. but according to Yilmaz and McHugh's meth¢] and the binodal drawn based
€ 5, which 1S 100 small Tor a real polymer molecule, bu on the equilibrium concentration of the simulation results. (b) Calculated

large enough to cgptqre th(—:‘_ phase separation behavior. Othegpinodal curves for different:, in the PVDF system according to Yilmaz
parameters used in simulations wéfess= 200Q M _pp = and McHugh4].
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(b)F=8.01 %107 (c)T= 0.0001051

= g s‘ L
s £ e ®e®

(e) T= 0.0002301 () = 0.0004776

op IR T e
0 0.5 1

Fig. 4. Morphology evolution (the change of the volume fraction of the polymgrduring spinodal decomposition of the PVDF membrane system in 2D,
where blue stands fag, = 1 and red stands fas, = 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

system begins with a two-layer initial condition, with poly- a layered structure. This layered structure is a result of the
mer solution (polymer and solvent) in the bottom 30% and interaction between the homogeneous and gradient energies
the coagulation bath (non-solvent) on the top. The solvent driven by the planar interface between the polymer solution
and the non-solvent inter-diffuse quickly, but the polymer and coagulation bath, and is similar to the “short-wavelength
almost completely stays in the polymer solution area. The composition waves” described by Allen and Cahn in an
polymer is not prohibited from entering the coagulation bath iron—aluminum systenj29]. With time, spinodal decom-

in our model as in Cohen’s mass transfer mdégéJ but it position takes place throughout the entire layer, then par-
stays in the bottom layer due to the free energy barrier andticles coarsen to continuously reduce the total free energy.
its low mobility. After some time of inter-diffusion, the com-  The final morphology of the PVDF membrane exhibits an
position of the polymer solution enters the spinodal curve asymmetric structure with a dense skin layer on top of a
shown inFig. 3(a). Hence, phase separation begins at the porous support layer, in strong agreement with experimental
top of the polymer solution layer, and proceeds downward in observations.
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3.2.2. Effects of initial composition Table 1
Next, the initial composition was varied either in the poly- €hanging initial compositions in the polymer solution
mer solution or in the coagulation bath to study the effect on Case @p,solution @s,solution @n,solution
membrane morphology. 1 0.20 075 005
First, two series of simulations were performed with dif- 2 0.30 065 005
ferent initial compositions in the polymer solution; those 3 035 060 005
initial compositions are listed ifable 1 while the initial g 8"218 ggg ggg
composition in the coagulation bath for all simulations here g 0.20 050 030
was ¢ bath = 0.01, @5 path = 0.01 ande, path = 0.98. The 7 0.20 035 045

first series (Cases 1-4) varigg andys in the polymer solu-
tion, while keepingp, constant. The second series (Cases 1,
5-7) variedps andgp, in the polymer solution, while keeping
@p constant. stands for the maximum @f, and red stands for the minimum
The simulated morphologiegy) starting with different of of ¢, for a better contrast. The blue points present the dif-
initial conditions (indicated by points in the phase diagram) ferentinitial conditions of the simulations in the first series.
are shown irfrig. 5with the normalized color map, where blue  As can seen fronfrig. 5, when increasing the volume frac-

Polymer

Spinodal
Binodal

Non-solvent Solvent

Fig. 5. Effects of changing initial compositions in the polymer solution on PVDF membrane morphology. The membrane morphology is presented by the
normalizedy, with blue as the maximum and red as the minimum. The points in the ternary diagram indicate the initial conditions of the corresponding
simulation results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Polymer

Spinodal
Binodal

Non-solvent Solvent

Fig. 6. Effects of changing initial compositions in the coagulation bath on PVYDF membrane morphology. The membrane morphology is presented by the
normalizedgp with blue as the maximum and red as the minimum. The points in the ternary diagram indicate the initial conditions of the corresponding
simulation results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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tion of the polymer, the resulting morphology changes from Tablez o _
isolated droplets to bi-continuous pattern. The second seriesChanging initial compositions in the coagulation bath

is indicated by the magenta points that lie in the horizontal Case ®pbath ®s,bath ©n,bath
direction for theinitial conditions of each simulation irig. 1 0.01 001 098
5. Morphology actually does not change significantly when 2 001 005 094
the volume fraction of the solvent decreases, although the 3 0.01 010 089
final equilibrium concentrations are different. This leads to 8‘81 ggg ggg
the conclusion that the volume fraction of the polymer domi- g 001 040 059

nates the morphology of membrane since it determines where
the system enters the spinodal and the proportion of the twotions wasg,, solution = 0.20, ¢ solution = 0.75 andg,_ solution

phases. = 0.05.
Second, initial compositions in the coagulation bath  The simulated morphologiegy) are shown irFig. 6with
were varied as indicated infable 2 while the ini- the normalized color representation. The points in the fig-

tial composition in the polymer solution for all simula- ure represent théitial conditions of the simulations. The

(e) t = 0.0002301

R ——

~1

Fig. 7. Morphology evolutiong,) of PVDF membrane with fluid flow in 2D, where blue standsggr= 1 and red stands fay, = 0. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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morphology changes from isolated droplets to bi-continuous . pL2
pattern when increasing the solvent volume fraction in the p_p < Dpp>?
coagulation bath since it changes the composition in the spin-

odal where phase separation begins. This also reduces the
gradient of the solvent, which delays the onset of phase sep- 108
aration.

3.3. Water/acetone/CA membrane system

The water (1)/acetone (2)/cellulose acetate (CA) (3)
ternary system was simulated with the same Cahn—Hilliard

parameters exceptp. The Flory—Huggins parameters of

the water/acetone/CA system are> = 0.661+ #71575”,

x13 = 1.4 and x23 = 0.535+ 0.11p3 [7]. Becauseyi3 of

water/CA is much smaller thami3 of water/PVDF, CA

and water are still miscible whemp =5, and in factm

can be as large as 50 with reasonable computational effi-

ciency. Comparing with the PVDF membrane, the calcu- 1010
lated pore size in the CA membrane is about twice that

of the PVDF, and phase separation of the CA system is i
much slower than in the PVDF system; both of these can v

109

. . 3 4 5 =
be understood in terms of the smallgrs value for this il 10 19 psc p<Dy>

system.
Fig. 8. Morphologies¢p) of PVDF membrane with different values 8¢
. and Fp. Ther axis isSc and they axis is the dimensionless force parameter,
3.4. Hydrodynamic effects Fp. Blue stands fop, = 1 and red stands faf, = 0. (For interpretation of
the references to color in this figure legend, the reader is referred to the web

Simulation results with interface-driven fluid flow are as version of this article.)
follows. In the first simulation, the Schmidt numbesk) is
setto be 18and the dimensionless force parameter (Fp) to be
10°, with other parameters as before. The simulation results 3.5. 3D PVDF membrane
shown inFig. 7 indicate that the final morphology is similar
to the case without fluid flow, except that the top layer breaks 3.5.1. 3D morphology evolution
up at some stage of coarsening. This indicates that fluid flow A 3D simulation was run with the samep, M_ij, K _ij

destabilizes the top layer. and layer thickness as was used in the 2D PVDF simula-
Other simulations were run with various valuesSefand tion. The dimensionless domain size i4®x 1 x 0.45, and
Fp. The results are shown ig. 8. the grid size is 90« 200 x 90. The formation of the PVDF

Fig. 8indicates that the top layer is unstable with smaller membrane (the time evolution gf) in 3D is shown irFig. 9,
Sc and larger Fp. When the Schmidt number is larger, the vis- which shows four contours of the volume fraction of the poly-
cosity is larger, therefore, the flow is slower and the top layer mer (gp) at 0.2 (red), 04 (yellow), Q6 (green) and B (cyan)
is more stable. Increasing the dimensionless force parametethat is approximately the equilibrium concentration of the
(Fp) implies increasing the surface tension, which drives the polymer-rich phase. Like the 2D results, the system begins
flow. This leads to more vigorous flow, which breaks up the with a homogeneous polymer solution, then phase separa-
top layer. tion takes place form the top with a layered structure and
Furthermore, the data available suggest that the ratio of continues through out the entire polymer solution area, and
the Schmidt number to the force parameter determines thefinally coarsening increases the domain sizes. The final sim-
stability of the top layer: when that ratio is at or above ulated morphology also shows an asymmetric structure with

above 10°, it is stable; when at or below 18, it is a dense layer on top of a porous bulk, but with a qualitative
unstable. This ratio is related to the capillary number given difference compared with 2D results: in 3D both polymer-
by: rich and polymer-lean phases are continuous, which is not
U possible in two dimensions.
ca= 1~ (29)
o

3.5.2. Coarsening pattern

whereo is the surface tension aridthe characteristic veloc- In order to understand the pattern of opening and coa-
ity, though there is no distinct characteristic velocity in this lescing of pores during membrane formation, the enlarged
system. figures of the morphologies in the polymer solution during
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(b) T=7.002 = 105 (c) T=9.052 = 105

(d) = 0.00019502 (e) T = 0.00034502 {f) T = 0.00060302

Fig. 9. 3D morphology evolutiong) of PVDF membrane: contours gf at 0.2 (red), 0.4 (yellow), 0.6 (green), 0.8 (cyan). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

the coarsening stage are showirig. 10 Attachments from  bottom. Furthermore, the simulated morphology of the bot-
the bottom to the third layer open holes in that layer, then this tom surface shows qualitative similarity in pore morphology
process repeats with the second layer, which then mergesand pore distribution compared with the SEM micrograph
together with the third layer as they coarsen. Fig. 11(c).

3.5.3. Qualitative comparison with experimental results

Fig. 11 shows the comparison between the simulation 4. Discussion
results with the experimental results given by Cheng et
al. [8]. As it can be seen fronfig. 11, the simulation The model presented here captures a lot of the physical
results show an asymmetric membrane structure: a non-phenomena involved in this process, and can explain some
porous selective layer (or micro-porous layer which contains of the physical features present during membrane forma-
pores with much smaller size compared to supporting layer) tion. However, its assumptions impose limits on its predictive
at the top and the macro-porous supporting layer at the capability and accuracy.
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(c) T = 0.0003450 (

Fig. 10. Coarsening pattern in PVDF membrane: contouys, @t 0.2 (red), 0.4 (yellow), 0.6 (green), 0.8 (cyan). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

First, the model assumes uniform mobilities and viscosi- uniform mobility and viscosity in particular adds consider-
ties, though with different mobilities for the polymer and able complexity to the system behavior, and will be addressed
solvent, while both mobilities and viscosities in real sys- in a separate paper. When adopting variable mobilities, we
tems have a strong dependence on the concentrations. Nonexpect to see slower solvent/non-solvent exchange after for-

(a) Cross Section

1= 0.00035802

- 2 ing :_.,_.éq. S .._‘
(d) Simulated 3D morphology of the
PVDF membrane

(e) The simulated morphol-
ogy of the bottom surface.
Blue: membrane; Red: pores.

Fig. 11. Comparison of the simulation results with experimental results: (a)—(c)are the SEM Photomicrographs of PVDF membrane prepared by immersio
precipitation from the paper of Cheng et[@]. (d and e) The simulation results. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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mation of dense selection layer since the high-concentrationric structure, and the pattern of layer breakup in 3D looked
polymer will present a barrier to diffusion of the small similar to experimental surface micrographs.
molecules. And for glass-forming polymers, variable viscos-
ity will lock in the structure at a certain stage of coarsening
due to vitrification. Acknowledgements
In addition to vitrification, we would also like to extend
this methodology to model other solidification mechanisms, ~ The authors are grateful to Prof. Anne Mayes at MIT for
such as gelation and crystallization, in the immersion pre- helpful discussions throughout the conduct of this research.

cipitation process. This will require other techniques such The authors acknowledge support for this work given by the
as Allen—Cahn equations for non-conserved variables from Officé of Naval Research under contract number N00014-02-

degree of crystallinity to crystal orientation. This too is an 1-0343.
area of ongoing investigation.
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