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An anisotropic immerse precipitation process for
the preparation of polymer membranes

Xuwen Qiu,ab Sheng Mao,a Jun Yin c and Yantao Yang *a

We study the immerse precipitation process in a ternary polymer/solvent/non-solvent system by

numerically solving the two-dimensional Cahn–Hilliard phase field equation. In particular, we introduce

anisotropic mobility, namely the mobility of a polymer varies over different spatial directions, and focus

on the porosity morphology of the obtained polymer membrane. Simulations reveal that as the aniso-

tropy increases in the polymer mobility, the polymer pattern changes from nearly isotropic and random

voids to strips parallel to the direction with smaller mobility. The influence of anisotropy quickly satu-

rates. The anisotropic mobility model is also applied to a ternary system mimicking the preparation of a

hollow fiber membrane, and shows strong effects on the membrane porosity pattern.

1 Introduction

A membrane is an interface between two adjacent phases acting
as a selective barrier, regulating the transport of substances
between the two compartments.1 Polymer membranes can be
used in fields such as reverse osmosis and gas separation due
to their good selectivity.2 Besides, polymer membranes also
have excellent bio-compatibility. Membranes with different
porous morphologies and surface structures can be used for
hemodialysis,2 bio-detection,3 in vivo treatment,4 artificial tis-
sue and organ generation,5 etc.

There are different ways to prepare polymer membranes,
and immerse precipitation is a very important and popular
method for preparing polymer membranes. In the process of
immerse precipitation, a polymer solution containing a
polymer(p) and a solvent(s) precipitates into a coagulation bath
of a non-solvent(n), in which the polymer does not dissolve.
Phase separation occurs as the solvent dissolves into the non-
solvent bath, and porous membranes are formed. For the
immerse precipitation process, the physical and chemical
properties of the material, polymer concentration, and tem-
perature cast a significant influence on the formation mecha-
nism that would eventually determine the morphology and the
structure of polymer membranes.6

Usually, a ternary phase diagram, shown in Fig. 1, is used for
describing the process of immerse precipitation. Each point

inside the triangle represents a composite of the ternary
mixture polymer solution. There are two characteristic lines,
namely the binodal and spinodal lines, on the phase diagram.
Inside the spinodal line is the region unstable to infinitesimal
disturbance of concentration. Between the spinodal and bino-
dal lines is the meta-stable region, where a finite disturbance is
required to trigger demixing. And, outside the binodal line is
the stable region. In the process of immerse precipitation, the
homogeneous polymer solution first lies outside the binodal
line. Then the polymer solution is immersed into a non-solvent
coagulation bath. As the solvent and non-solvent components
inter-diffuse into each other, the ternary composite gradually
moves into the meta-stable region where liquid–liquid demix-
ing takes place. The system can further move inside the
spinodal line and separate into a polymer-rich phase and a
polymer-lean phase. Finally, the polymer-rich phase becomes
the membrane while the polymer-lean phase becomes the pore.

There were already numerous experimental studies of the
polymer membrane formation.7–17 These experimental studies

Fig. 1 Phase diagram of the polymer/solvent/non-solvent ternary system.
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mainly focused on the concentration of the polymer solution,
the flow rate of the dope fluid, the temperature, the effect of air
gap in the spinning process and the effect of additives and
obtained different types of structures, such as sponge-like
layers and macrovoids. Theoretical and numerical studies have
also been conducted to investigate the membrane formation
process.18–23 Various models and numerical methods were used
for the problems, such as the multi-fluid model based on the
Rayleigh function,20 the Monte-Carlo simulation,24 and the
Lattice–Boltzmann method.25

Among all the models, the continuous Cahn–Hilliard
model26 is widely employed, not only for phase separation,
but also for many other fields.27,28 Zhou et al.18 carried
out simulations of the Cahn–Hilliard equation using the
Flory–Huggins model. The results showed varying porous mor-
phology with different initial compositions in 2D and 3D. They
also found out that the hydrodynamic effect would destabilize
the membrane interface. Manuel et al.19 focused on the con-
vection term of the Cahn–Hilliard equation, and introduced the
velocity of a moving mixing interface as the velocity in the
convective derivative. They obtained sponge pores, finger pores
and lamella structures by adjusting the composite concen-
tration and the velocity of the mixing interface.

The polymer membranes obtained in experiments can be
very different in their porosity patterns, which depend on the
material and the operating conditions. Anisotropy in porosity
patterns can also be introduced intentionally by applying
directional geometry confinement.29 However, in most of the
aforementioned studies, isotropic diffusivity or mobility was
used. Anisotropic diffusion has been explored in several micro-
scale simulations, such as the non-equilibrium molecular
dynamics simulation30 and the dynamical density functional
theory.31 In the current work, we employ the continuous model
of Cahn–Hilliard equations, and investigate the effects of the
anisotropic mobility at the macro-scale on the porosity patterns
during the phase separation process. Considering that the
polymer usually has a large molecule with a complex molecular
configuration, it is plausible to assume that the polymer can
diffuse with different speeds along different directions, espe-
cially when polymer molecules align along a specific direction.

The rest of the paper is organized as follows. In Section 2 we
briefly describe the physical model, the governing equation,
and the numerical details. Section 3 contains all the numerical
results. Conclusions are given in Section 4.

2 Physical models and governing
equations

Consider a ternary system consisting of three components,
such as the polymer (p), solvent (s), and non-solvent (n). The
volume fraction of each component is denoted by f. Due to the
conservation of the total volume, one always has

fp + fs + fn = 1, (1)

and the system has only two independent unknowns, for which
we choose fp and fs. Here we only briefly describe the key parts
of the formulation. For complete details, the reader is referred
to the original paper of Cahn and Hilliard.26 We follow the
notation of Zhou and Powell.18 The diffusion of the component
i (with i = p, s, or n) obeys the following equation:

@fi

@t
¼ r �

X
j

Mijrmj

 !
: (2)

Here mj is the chemical potential of the component j, and Mij is
the mobility associated with the diffusion of the component i
caused by the gradient of the chemical potential of the compo-
nent j, respectively. The mobility can depend on the local
condition of the system. However, in the current study, we
assume that they are spatially homogeneous.

For the chemical potential, we utilized the Flory–Huggins
free energy model. The total free energy F is written as the
volume integration of the free energy density

F ¼
ð
V

f x;fi;rfið ÞdV : (3)

The free energy density can be expressed as, for the ternary
system,

f ¼ f0 fp;fs

� �
þ 1

2
KpðrfpÞ2 þ KsðrfsÞ2
h i

: (4)

Here K is the gradient penalty coefficient, and the cross
gradient terms are neglected. The homogeneous part is given
by the Flory–Huggins model as

f0 ¼
RT

vsite

X
i¼p;s;n

1

mi
fi lnfi þ

1

2

Xiaj

i;j¼p;s;n
wijfifj

 !
: (5)

Here R is the gas constant, T is the temperature, vsite is the
volume per reference site, m is the degree of polymerization,
and wij is the interaction parameters between the components i
and j. For simplicity, we set ms = mn = 1.

The chemical potential mi with i = s or p is then given by the
functional variation derivatives of the total free energy F with
respect to fi as

mi ¼
dF
dfi

¼ @f0
@fi

� Kir2fi: (6)

Substitute (6) into (2) and one gets

@fp

@t
¼ r � Mpr

@f0
@fp

� Kpr2fp

 !" #
; (7)

@fs

@t
¼ r � Msr

@f0
@fs

� Ksr2fs

� �� �
: (8)

Here we set Msp = Mps = 0 and denote Ms = Mss and Mp = Mpp,
since the diffusion of one component caused by the gradient of
the other component is minor in many cases.

Eqn (7) and (8) have been successfully used in the simula-
tions of immerse precipitation,18 where the porosity morphol-
ogy of the membranes is spatially uniform within the initially
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polymer-rich region. The variation of parameters, such as the
mobility M and the initial composition of the ternary system,
only change the typical size of the porous voids. As mentioned
in the Introduction section, in the present work, we introduce
anisotropy into the mobility parameter, specifically in that of
the polymer component. That is, the mobility Mp takes different
values for the diffusion along different directions. In the two-
dimensional Cartesian coordinates, eqn (7) becomes

@fp

@t
¼ Mpx

@2

@x2
þMpy

@2

@y2

� �
@f0
@fp

� Kpr2fp

 !
; (9)

where Mpx and Mpy have independent values. Since we will also
simulate some cases in the two-dimensional cylindrical coordi-
nates, we can write down the counterpart of eqn (9) as

@fp

@t
¼ Mpr

r

@

@r
r
@

@r

� �
þMpy

r2
@2

@y2

� �
@f0
@fp

� Kpr2fp

 !
: (10)

The Laplacian in cylindrical coordinates is

r2 ¼ 1

r

@

@r
r
@

@r

� �
þ 1

r2
@2

@y2
:

Anisotropy can also be introduced into the mobility of the
solvent in the same way. Since the solvent usually has a much
smaller molecule than the polymer, and in most cases the
solvent component diffuses much faster than the polymer
component, anisotropic solvent mobility only has minor effects
on the morphology of the membrane porosity, which will be
confirmed by our simulations as discussed in the next section.
Moreover, it should be noted that in general, K is not a constant
and usually depends on the concentration. Here, for simplicity
and as done in many existing studies, K is kept constant in our
simulations.

We numerically solve eqn (9) and (8) for the Cartesian box
and (10) and (8) for the cylindrical domain. The centred finite
difference scheme is used for the spatial discretization. For the
time integration we use the same scheme as in refs. 32 and 33.
Specifically, a Runge–Kutta type of scheme is utilized, with the
fourth order terms treated semi-implicitly by the Crank–Nichol-
son method, and all the other terms explicitly by the Adams–
Bashforth method. The time integration can self-start for each
time step. We use the implicit scheme for the fourth order
terms to reduce the constrain on the size of time step. The
boundary condition is periodic or no-flux for both f and m
depending on the exact setup of the problem, and will be
specified during the discussion.

3 Results and discussion

In this section we present the simulation results of three
different setups, and focus on how the anisotropic mobility
affects the pattern morphology.

3.1 Two-dimensional periodic box

The first case we simulate is the phase separation in a fully periodic
two-dimensional box. Therefore, the periodic boundary condition is

applied in both directions for all the quantities. We fix Ms = 2, and
systematically change both Mpx and Mpy between 1.0 and 2.0.
Coefficients wij are set as wns = 0.2, wnp = 1, wsp = 0.3, and mp = 64,
respectively. The initial solution has fp = 0.2, fs = 0.2, and fn =
1� fp� fs = 0.6. A white noise with a small magnitude is added to
trigger the evolution. Due to the symmetry between the x- and
y-directions, we also set Mpx Z Mpy without losing generality. The
domain has a unit length in both directions and the resolution is
100 � 100. Since we focus on the morphology of porosity patterns
induced by the anisotropic mobility, we do not run our simulation
until the coarsening stage, which requires much longer
simulation times.

In Fig. 2 we compare the different patterns at the final stage
of phase separation for different combinations of Mpx and Mpy.
The panels are arranged in the matrix form according to the
values of Mpx and Mpy. Therefore the diagonal panels exhibit
isotropic mobility with different values, and the panels further
away from the diagonal panels exhibit stronger anisotropy in
the mobility. Clearly, as the anisotropy increases, the pattern
shifts from a statistically homogeneous state to distinct strips
with preferential directions. For the off-diagonal cases shown
in Fig. 2, Mpx is larger than Mpy and the strips are along the
vertical y-direction. That is, the diffusion in the horizontal
x-direction is faster than that in the vertical direction, so that
the phase separation is more pronounced in the x-direction. It
should be pointed out that the initial perturbation is a white
noise with a small amplitude which is statistically homoge-
neous in space; therefore the anisotropic pattern obtained here
is the result of the anisotropic mobility coefficient.

To quantitatively analyze the anisotropy of the pattern after
the phase separation, we first conduct the two-dimensional

Fig. 2 Porosity morphology in periodic box simulations with different
combinations of (Mpx, Mpy) at the final stage. The red color represents the
polymer-rich regions and the blue color represents the solvent-rich
regions. The initial solution composite is (fp, fs) = (0.20, 0.20). The rows
from top to bottom have Mpx = 1.0, 1.4, 1.8, and 2.0, while the columns
from left to right have Mpy = 1.0, 1.4, 1.8, and 2.0, respectively.
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Fourier transform of fp for the cases shown in Fig. 2. The
magnitude of the Fourier coefficients is shown in Fig. 3. For the
diagonal panels with isotropic mobility, the contours of the Fourier
coefficient magnitude are almost perfect circles, indicating that
there is no preferential direction in the polymer pattern. For panels
with large anisotropic mobility, indicating the off-diagonal panels,
the contours have distinct peaks at a certain angle c, whose
definition is illustrated in panel (a) of Fig. 3.

We then calculate the orientation order parameter S based on
the Maier–Saupe distribution function. We follow the same proce-
dure as used in refs. 29, 34 and 35. The contours of the Fourier
coefficient magnitude shown in Fig. 3 are first integrated along the
radial direction to obtain an intensity distribution over the azi-
muthal angle c. One of such azimuthal distribution is shown in
Fig. 4 for the case with Mpx = 1.8 and Mpy = 1.0. The two peaks locate
at cE 90 and 270, indicating that the peak intensity in the Fourier
coefficient magnitude is for the wavenumber vectors in the hor-
izontal direction, and the corresponding structures orient vertically.
The intensity curve is then fitted with the Maier–Saupe function

I = I0 + A exp[a cos2(c � c0)]. (11)

Here I0 is the free base intensity, a measures the width between
the two peaks, and c0 is the azimuthal angle where the peaks
locate. Once a is obtained by fitting, the orientation order
parameter can be computed by

S ¼
Ð 1
�1P2ðcosbÞ exp a cos2 b

� 	
dðcos bÞÐ 1

�1 exp a cos2 b½ �dðcos bÞ
; (12)

where P2(cos b) is the Hermans orientation function

P2ðcosbÞ ¼
1

2
3 cos2 b� 1

 �

: (13)

The orientation order parameter S can take values between 0 and 1.
For a perfect isotropic pattern S = 0, and for a fully anisotropic
pattern S = 1, respectively.

The orientation order parameter S is plotted against the
ratio Y = Mpx/Mpy for different values of Mpy in Fig. 5. For
different values of Mpy, S exhibits similar dependence on Y.
When Y is close to 1, indicating the isotropic mobility, S is
around 0.2, which corresponds to a relatively isotropic pattern.
As Y increases, S quickly increases with enhancing anisotropy
in the polymer pattern. When Y 4 2, the value of S saturates
between 0.7 and 0.8. A further increment in Y has only minor
effects on S. For Y at this range the pattern already becomes
nearly parallel strips. It is also worthy pointing out that the
ratio between Mpx and Mpy plays a central role in controlling the
anisotropic pattern.

The anisotropic pattern produced by anisotropic mobility can be
understood mathematically as follows. If one introduces the coor-

dinate transformation as x0 ¼ x
� ffiffiffiffi

Y
p

; y0 ¼ y; t 0 ¼Mpyt, then
eqn (9) can be cast into

@fp

@t 0
¼ @2

@x 02
þ @2

@y 02

� �
@f0
@fp

� Kpr2fp

 !
: (14)

Therefore, anisotropy with Ya 1 can be regarded as a compression
or expansion in the original x-direction and a related transformation

Fig. 3 Magnitude of the Fourier coefficients for the polymer distributions
shown in Fig. 2. Panels have the same values for Mpx and Mpy as in Fig. 2.

Fig. 4 Symbols are the intensity distribution given by the radial average of
panel d in Fig. 3 with Mpx = 1.8 and Mpy = 1.0. The curve is fitted with the
Maier–Saupe function (11).

Fig. 5 The orientation order parameter S versus the mobility ratio Y for all
the cases simulated.
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of the time scale. In the new coordinate system x0, y0, the pattern
should be isotropic; then after transforming back to the coordinate
system (x, y), the isotropic pattern is stretched in the x direction and
anisotropy emerges in the porosity pattern.

3.2 A specific ternary system case

After showing that the anisotropic mobility can dramatically
change the morphology of phase separation in the fully peri-
odic box, we now turn to a specific water(n)/DMF(s)/PVDF(p)
ternary system as studied by Zhou et al.18 and introduce
anisotropic mobility in this system. The simulation domain is
set as those for the preparation of hollow fiber membranes
(HFMs). In the horizontal x-direction, a periodic boundary
condition is used. In the vertical y-direction, initially the poly-
mer solution occupies the middle part with yi r y r yo, and the
non-solvent coagulation bath locates at both sides. The
impermeable boundary condition is used in the y-direction.
The initial polymer solution composite has fp = 0.3 and
fs = 0.65. The solvent mobility is very different from the
polymer mobility, for example, about 1000 times larger. mp is
reduced to 5 due to the large mobility coefficient used in this
section. It should be pointed out that a precise measurement
for the model coefficients in Cahn–Hilliard equations is very
challenging, especially when one considers the anisotropy in
mobility coefficients. For the current study we employ the
empirical values used in previous studies.18 A more systematic
calibration of the coefficients in the current model against
experiments is left for future studies.

In Fig. 6 we present the final pattern for different combina-
tions of mobility. In particular, we also investigate the effects of
anisotropic mobility for the solvent component. Three cases are
simulated with either anisotropic solvent mobility, or anisotro-
pic polymer mobility, or both. The results suggest that once the
polymer component exhibits anisotropic mobility, i.e. Mpx a
Mpy, the pattern changes to a strip shape. However, the

anisotropic mobility of the solvent does not generate the strip
pattern if the polymer mobility is isotropic, as shown in Fig. 6b.

Fig. 7 displays the simulations with anisotropic polymer
mobility. Mpx is kept the same at 2.0. Mpy increases gradually so
that Y decreases from a larger than unit value to a smaller than
unit value. Near the boundary between the initial polymer–
solution region and the coagulation bath, the polymer forms
long strips parallel to the boundary at the end of simulation.
However, within the initial polymer–solution region, the mor-
phology exhibits a strong dependence on Y. For Y 4 1, strip
structures are parallel to the y axis. While for Y o 1, they are
along the x axis. That is, the strips prefer to align with the axis
with a smaller mobility.

To demonstrate the sensitivity of porosity morphology to the
anisotropy of polymer mobility further, and also to mimic a
more realistic HFM dry-jet wet spinning process in the
experiment,7 we conduct simulations in 2D cylindrical coordi-
nates for a sector area with 0 o y o p/6 as shown in Fig. 8.
Initially, the polymer solution locates in the ring with ri o r o
ro, and the regions with r o ri and r 4 ro contain the non-
solvent phase. Periodic boundary conditions are applied in the
azimuthal direction, while impermeable conditions are used in
the inner and outer boundaries along the radial direction. We
exclude the area r o rc near the center to avoid the special
treatment of the axis in the cylindrical coordinates. Since the
polymer diffuses very slowly, for the current initial configu-
ration, the polymer component does not reach the inner
boundary at rc. Meanwhile, the solvent diffuses much faster
than the polymer. For a small rc the solvent within the excluded
region r o rc should reach a uniform value close to the value

Fig. 6 Membrane morphology of the water(n)/DMF(s)/PVDF(p) ternary
system after phase separation shown by the contours of fp. The red color
represents the polymer-rich region. The initial polymer solution composite
is (fp, fs) = (0.30, 0.65). (a) (Msx, Msy) = (2000, 1000) and (Mpx, Mpy) = (2, 1);
(b) (Msx, Msy) = (2000, 1000) and (Mpx, Mpy) = (2, 2); (c) (Msx, Msy) = (2000,
2000) and (Mpx, Mpy) = (2, 1).

Fig. 7 Membrane morphology with anisotropic polymer mobility of the
water(n)/DMF(s)/PVDF(p) ternary system after phase separation shown by
the contours of fp. The red color represents the polymer-rich region. The
initial polymer solution composite is (fp, fs) = (0.30, 0.65). Mpx is fixed at
2.0. From a to h, Mpy is equal to 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.4, and 2.8,
respectively.
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adjacent to the inner boundary. Therefore, the impermeable
condition at the inner boundary is a reasonable approximation.

Anisotropy in the polymer mobility is introduced by setting
Mpy a Mpr, and the anisotropy ratio is then calculated as
Y = Mpy/Mpr. Fig. 8a and b show the polymer phase for Y = 2
and 0.5, respectively. Again, the strip-like patterns are formed
with anisotropic polymer mobility, and the strips are along the
directions with smaller polymer mobility. It is worth noting that
the curvature of the boundary between the polymer solution
and the coagulation bath does not change the overall behaviour
of the porosity, as can be seen from the similarity between the
simulations in the Cartesian box in Fig. 7 and those in
cylindrical coordinates in Fig. 8.

4 Summary and conclusion

In summary, we investigate the Cahn–Hilliard phase field
equation and its applications for the phase separation simula-
tions of a ternary system. In particular, we introduce anisotropy
into the polymer mobility, and focus on its influences on the
porosity morphology of the formed polymer patterns. The
anisotropy is implemented in the governing equation by a
simple but heuristic method, which is, the mobility takes
different values for the diffusion along two orthogonal axes.
The model is tested for several two-dimensional configurations.

By the simulations of a fully periodic box, we systematically
change the ratio of mobilities of two directions, and examine
the obtained polymer patterns. The results reveal that as the
ratio increases from unity which corresponds to the isotropic
mobility, the porosity morphology quickly shifts to a strip
dominant pattern and the strips orient along the direction with
a smaller mobility. The influence of anisotropy saturates soon
as the ratio further increases, and the strip pattern does not
alter anymore.

The model with anisotropic mobility is then tested for a
configuration which mimics the preparation of hollow fiber
membranes. In this configuration the polymer solution is
initially confined within a band or a circular ring of a finite
width, with coagulation baths on both sides. For both a straight
band or a circular ring, the anisotropic mobility can effectively
produce strip patterns within the initial polymer solution
region.

Our model of anisotropic mobility provides some interesting
insights into rich polymer patterns produced by the phase
separation of the ternary system. Since a polymer usually
contains large molecules, diffusion with different rates along
different directions seems to be a natural idea. Our results
could be a possible mechanism for the various patterns in
experiments. Also, by intentionally introducing anisotropy into
the mobility, the resulting patterns may be controlled to certain
extent. A more sophisticated model of anisotropic mobility can
be developed in future work. One reasonable strategy is assum-
ing that mobility takes different values along different direc-
tions with respect to the polymer concentration gradient.
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Appendix
Linear stability analysis

In this appendix we provide linear stability analysis for the
model equations with anisotropic mobility coefficients for a
homogeneous initial field. This method is similar to that in
ref. 36. In accordance with our initial conditions, suppose a small
perturbation is put over a homogeneous field of fi’s, namely:

fp(x, y, t) = f0
p + ep(t)eikxx+ikyy, (A.1)

fs(x, y, t) = f0
s + es(t)e

ikxx+ikyy, (A.2)

where f0
p and f0

s denote fp and fs at t = 0, respectively. We also
assume |ep(t)| { 1 and |es(t)| { 1, at least initially. By
substituting the above relationships into eqn (7) and (8) and
taking the leading order term, we have:

dep
dt
¼ �Mpy Ykx

2 þ ky
2


 �
H0

ppep þH0
pses

� �
� Kpk

2ep
h i

; (A.3)

des
dt
¼ �Msk

2 H0
psep þH0

sses
� �

� Ksk
2es

h i
; (A.4)

where k2 = kx
2 + ky

2 and H0
ij = q2f0/(qfiqfj), i, j = p, s denotes the

Hessian of the bulk free energy f0 at t = 0. The above equations
can be reorganized into the following vector form:

d~e
dt
¼ �MH0~eþ k2MK~e; (A.5)

where ~e = (ep, es)
T, M ¼ Mpy Ykx

2 þ ky
2


 �
0

0 Msk
2

� �
, K ¼

Kp 0
0 Ks

� �
and H0 denotes the matrix form of the Hessian

and by combining eqn (1) and (5) we know that:

H0

RT

vsite

¼ mpf
0
p

� ��1
þ f0

n


 ��1�2wnp wsp � wns � wnp þ ðf0
nÞ�1

wsp � wns � wnp þ ðf0
nÞ�1 ðf0

s Þ�1 þ ðf0
nÞ�1 � 2wns

2
4

3
5:

(A.6)

To observe interesting behaviour, i.e., initially small perturba-
tion~e(t) to grow over time, a necessary condition is that H0 has
at least one negative eigenvalue. It can be readily shown that

Fig. 8 Membrane morphology with tensor polymer mobility of the
water(n)/DMF(s)/PVDF(p) ternary system in cylindrical coordinates after
phase separation shown by the contours of fp. The red color represents
the polymer-rich region. The initial polymer solution composite is
(fp, fs) = (0.30, 0.65). (a) (Mpr, Mpy) = (2.0, 4.0) and (b) (Mpr, Mpy) = (4.0, 2.0).
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the above Hessian has a negative determinant given the initial
conditions that we suggested in Section 3.1.
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