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Polymer Blends and Block Copolymers

A large part of applications oriented research is devoted to the study of poly-
mer blends, since mixing opens a route for a combination of different prop-
erties. Take, for example, the mechanical performance of polymeric products.
In many cases one is searching for materials that combine high stiffness with
resistance to fracture. For the majority of common polymers these two re-
quirements cannot be realized simultaneously, because an increase in stiffness,
i.e., the elastic moduli, is usually associated with samples becoming more brit-
tle and decreasing in strength. Using mixtures offers a chance to achieve good
results for both properties. High-impact polystyrene, a mixture of polystyrene
and polybutadiene, represents a prominent example. Whereas polystyrene is
stiff but brittle, a blending with rubbers furnishes a tough material that still
retains a satisfactory stiffness. Here mixing results in a two-phase structure
with rubber particles of spherical shape being incorporated in the matrix of
polystyrene. Materials are tough, if fracture energies are high due to yield
processes preceding the ultimate failure, and these become initiated at the
surfaces of the rubber spheres where stresses are intensified. On the other
hand, inclusion of rubber particles in the polystyrene matrix results in only
a moderate reduction in stiffness. Hence, the blending yields a material with
properties that in many situations are superior to pure polystyrene. There are
other cases, where an improvement of the mechanical properties is achieved
by a homogeneous mixture of two polymers, rather than a two-phase struc-
ture. A well-known example is again given by polystyrene when blended with
poly(phenyleneoxide). In this case, a homogeneous phase is formed and as it
turns out in mechanical tests, it also exhibits a satisfactory toughness together
with a high elastic modulus.

It is generally very difficult or even impossible to predict the mechani-
cal properties of a mixture; however, this is only the second step. The first
problem is an understanding of the mixing properties, i.e., a knowledge of
under which conditions two polymeric compounds will form either a homo-
geneous phase or a two-phase structure. In the latter case, it is important to
see how structures develop and how this can be controlled. This section deals
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with these topics. We shall first discuss the thermodynamics of mixing of two
polymers and derive equations that can be used for the setting-up of phase
diagrams. Subsequently we shall be concerned with the kinetics of unmixing
and here, in particular, with a special mode known as spinodal decomposition.

4.1 The Flory–Huggins Treatment of Polymer Mixtures

Flory and Huggins devised a general scheme that enables one to deal with
the mixing properties of a pair of polymers. It provides a basic understand-
ing of the occurrence of different types of phase diagrams, in dependence on
temperature and the molar masses.

The mixing properties of two components may generally be discussed by
considering the change in the Gibbs free energy. Figure 4.1 addresses the
situation and introduces the relevant thermodynamic variables. Let us assume
that we have ñA moles of polymer A, contained in a volume VA and ñB moles
of polymer B, contained in a volume VB. Mixing may be initiated by removing
the boundary between the two compartments, so that both components can
expand to the full volume of size V = VA + VB. In order to find out whether
a mixing would indeed occur, the change in the Gibbs free energy has to
be considered. This change, called the Gibbs free energy of mixing and
denoted ΔGmix, is given by

ΔGmix = GAB − (GA + GB) , (4.1)

where GA,GB and GAB denote the Gibbs free energies of the compounds A and
B in separate states and the mixed state, respectively. Employing the Gibbs,
rather than the Helmholtz, free energy allows one to also include volume
changes in the treatment, which may accompany a mixing at constant pres-
sure. However, since the related term pΔV is always negligible, this is only
a formal remark.

The Flory–Huggins treatment represents ΔGmix as a sum of two con-
tributions

ΔGmix = −TΔSt + ΔGloc , (4.2)

Fig. 4.1. Variables used in the description of the process of mixing of two polymers,
denoted A and B
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which describe the two main aspects of the mixing process. Firstly, mixing
leads to an increase of the entropy associated with the motion of the centers
of mass of all polymer molecules, and secondly, it may change the local inter-
actions and motions of the monomers. We call the latter part ΔGloc and the
increase in the translational entropy ΔSt. ΔSt and the related decrease
−TΔSt in the Gibbs free energy always favor a mixing. ΔGloc, on the other
hand, may act favorably or unfavorably, depending on the character of the
monomer–monomer pair interactions. In most cases, and, as can be verified,
for van der Waals interactions generally, attractive energies between equal
monomers are stronger than those between unlike pairs. This behavior im-
plies ΔGloc > 0 and therefore opposes a mixing. As a free energy, ΔGloc also
accounts for changes in the entropy due to local effects. For example, a shrink-
age or an expansion of the total volume on mixing results in a change in the
number of configurations available for local motions of the monomeric units,
hence in a change of entropy to be included in ΔGloc.

The decomposition of ΔGmix in these two contributions points to the two
main aspects of the mixing process, but this alone would not be of much value.
What is needed for actual use are explicit expressions for ΔSt and ΔGloc, so
that the sum of the two contributions can be calculated. The Flory–Huggins
treatment is based on approximate equations for both parts. We formulate
them first and then discuss their origins and the implications. The equations
have the following forms:

1. The increase in the translational entropy is described by

ΔSt

R̃
= ñA ln

V
VA

+ ñB ln
V
VB

. (4.3)

Introducing the volume fractions φA and φB of the two components in the
mixture, given by

φA =
VA

V and φB =
VB

V , (4.4)

ΔSt can be written as

ΔSt

R̃
= −ñA lnφA − ñB lnφB . (4.5)

2. The change in the local interactions is expressed by the equation

ΔGloc = R̃T
V
ṽc
χφAφB . (4.6)

It includes two parameters. The less important one is ṽc, denoting the
(molar) volume of a reference unit common to both polymers. Principally
it can be chosen arbitrarily, but usually it is identified with the volume
occupied by one of the monomeric units. The decisive factor is the Flory–
Huggins parameter χ. It is dimensionless and determines in empirical
manner the change in the local free energy per reference unit.



108 4 Polymer Blends and Block Copolymers

What is the physical background of these expressions? There are numerous
discussions in the literature, mainly based on Flory’s and Huggins’ original
derivations. As the full treatment lies outside our scope, we here present only
a simplified view, which nevertheless may aid in providing a basic understand-
ing. The view emanates from a molecular or mean field description. We
consider the actual system of interpenetrating interacting chains, which com-
prise the fluid mixture as being equivalent to a system of independent chains
that interact with a common uniform mean field set up by the many chain
system as a whole. The interaction of a given chain with all other chains, as
represented in an integral form by the mean field, has two effects. The first one
was discussed earlier: The contacts with other chains screen the intramolec-
ular excluded volume interactions, thus leading to ideal chain behavior. The
Flory–Huggins treatment assumes that this effect is maintained in a mixture,
with unchanged conformational distributions. The second effect was already
mentioned in the introduction to this chapter. Being in contact with a large
number of other chains, a given chain in a binary mixture effectively integrates
over the varying monomer–monomer interactions and thus probes their aver-
age value. The change in the monomer–monomer interactions following from
a mixing may therefore be expressed as change of the mean field, with uniform
values for all units of the A-chains and B-chains, respectively.

Equations (4.5) and (4.6) are in agreement with this picture, as can be
easily verified. In order to formulate the increase in the translational entropy
for ñA moles of independent A-chains, expanding from an initial volume VA

to a final volume V , and ñB moles of B-chains, expanding from VB to V , we
may just apply the standard equations used for perfect gases, and these lead
exactly to Eq. (4.5). As the single chain conformational distributions should
not change on mixing, we have no further contribution to the entropy (Flory
addressed in his original treatment Eq. (4.5) correspondingly as the change in
the total configurational entropy, rather than associating it with the center of
mass motions only).

Regarding the expression for ΔGloc, we may first note that Eq. (4.6) rep-
resents the simplest formula which fulfills the requirement that ΔGloc must
vanish for φA → 0 and φB → 0. More about the background may be learned
if we consider the change in the interaction energy following from a transfer
of an A-chain from the separated state into the mixture. Each chain probes
the average value of the varying contact energies with the adjacent foreign
monomers, and the increase in the potential energy per reference unit may be
written as

zeff
2
φBkTχ

′ .

Here, the effective coordination number zeff gives the number of nearest neigh-
bors (in reference units) on other chains, and a division by 2 is necessary to
avoid a double count of the pair contacts. An increase in the local Gibbs free
energy only results if an AB-pair is formed and this occurs with a probability
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equal to the volume fraction of the B’s, φB. The product kTχ′ is meant to
specify this energy increase by employing a dimensionless parameter χ′. For
the potential experienced by the units of the B-chains in the mixture we write
correspondingly

zeff
2
φAkTχ

′

with the identical parameter χ′. To obtain ΔGloc, which refers to the total sys-
tem, we have to add the contributions of all A-chains and B-chains, weighted
according to the respective fraction. This leads us to

ΔGloc =
V
ṽc

NL
zeff
2

(φAφB + φBφA)kTχ′

= R̃T
V
ṽc
φAφBzeffχ

′ . (4.7)

The prefactor VNL/ṽc gives the number of reference units in the system. As
we can see, Eq. (4.7) is equivalent to Eq. (4.6) if we set

χ = zeffχ
′ . (4.8)

Originally the χ-parameter was introduced to account for the contact energies
only. However, its meaning can be generalized and in fact, this is necessary.
Experiments indicate that ΔGloc often includes an entropic part, so that we
have in general

ΔGloc = ΔHmix − TΔSloc . (4.9)

The enthalpic part ΔHmix shows up in the heat of mixing, which is positive
for endothermal and negative for exothermal systems. As has already been
mentioned, the entropic part ΔSloc is usually due to changes in the number
of available local conformations.

A particular concept employed in the original works must also be com-
mented on, since it is still important. In the theoretical developments, Flory
used a lattice model, constructed as drawn schematically in Fig. 4.2.

The A-units and B-units of the two polymer species both have the same
volume vc and occupy the cells of a regular lattice with coordination num-
ber z. It is assumed that the interaction energies are purely enthalpic and
effective between nearest neighbors only. Excess contributions kTχ′, which
add to the interaction energies in the separated state, arise for all pairs of
unlike monomers. The parameter χ = (z − 2)χ′ was devised to deal with
this model and therefore depends on the size of the cell. Flory evaluated this
model with the tools of statistical thermodynamics. Using approximations, he
arrived at Eqs. (4.5) and (4.6).

Although a modeling of a liquid polymer mixture on a lattice may at first
look rather artificial, it makes sense because it retains the important aspects
of both the entropic and enthalpic parts of ΔGmix. In recent years, lattice
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Fig. 4.2. Lattice model of a polymer mixture. Structure units of equal size setting
up the two species of polymers occupy a regular lattice

models have gained a renewed importance as a concept that is suitable for
computer simulations. Numerical investigations make it possible to check and
assess the validity range of the Flory–Huggins treatment. In fact, limitations
exist and, as analytical calculations are difficult, simulations are very helpful
and important. We shall present one example in a later section.

Application of the two expressions for ΔSt and ΔGloc, Eqs. (4.5) and (4.6),
results in the Flory–Huggins formulation for the Gibbs free energy of mixing
of polymer blends

ΔGmix = R̃T (ñA lnφA + ñB lnφB + ñcφAφBχ) (4.10)

= R̃TV
(
φA

ṽA
lnφA +

φB

ṽB
lnφB +

χ

ṽc
φAφB

)
(4.11)

= R̃T ñc

(
φA

NA
lnφA +

φB

NB
lnφB + χφAφB

)
. (4.12)

Here, we have introduced the molar volumes of the polymers, ṽA and ṽB, using

ñA = V φA

ṽA
and ñB = V φB

ṽB
, (4.13)

and the molar number of the reference units

ñc =
V
ṽc

. (4.14)

The second equation follows when we replace the molar volumes by the degrees
of polymerization expressed in terms of the numbers of structure units. If we
choose the same volume, equal to the reference volume ṽc, for both the A-
structure and B-structure units we have

NA =
ṽA
ṽc

and NB =
ṽB
ṽc

. (4.15)
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φA and φB add up to unity,

φA + φB = 1 . (4.16)

The Flory–Huggins equation (4.11) or (4.12) is famous and widely used.
It sets the basis from which the majority of discussions of the properties of
polymer mixtures emanates.

Starting from ΔGmix, the entropy of mixing, ΔSmix, follows as

ΔSmix = −∂ΔGmix

∂T

= −R̃V
(
φA

ṽA
lnφA +

φB

ṽB
lnφB +

φAφB

ṽc

∂(χT )
∂T

)
(4.17)

and the enthalpy of mixing, ΔHmix, as

ΔHmix = ΔGmix + TΔSmix = R̃T
V
ṽc
φAφB

(
χ− ∂(χT )

∂T

)
. (4.18)

These expressions show that the χ-parameter includes an entropic contribu-
tion given by

χS =
∂

∂T
(χT ) (4.19)

and an enthalpic part

χH = χ− ∂(χT )
∂T

= −T ∂χ
∂T

, (4.20)

both setting up χ as
χ = χH + χS . (4.21)

Equation (4.19) indicates that for purely enthalpic local interactions, χ must
have a temperature dependence

χ ∝ 1
T
. (4.22)

In this case, the increase in entropy is associated with the translational entropy
only,

ΔSmix = ΔSt , (4.23)

and the heat of mixing is given by

ΔHmix = R̃T
V
ṽc
χφAφB = R̃T ñcχφAφB . (4.24)

The Flory–Huggins equation provides the basis for a general discussion
of the miscibility properties of a pair of polymers. As we shall see, this can
be achieved in a transparent manner and leads to clear conclusions. To start
with, we recall that as a necessary requirement mixing must be accompanied
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by a decrease of the Gibbs free energy. For liquid mixtures of low molar mass
molecules this is mainly achieved by the large increase in the translational
entropy. For these systems the increase in ΔSt can accomplish miscibility
even in the case of unfavorable AB-interaction energies, i.e., for mixtures with
an endothermal heat of mixing. In polymers we find a qualitatively different
situation. The Flory–Huggins equation teaches us that for polymer mixtures
the increase in the translational entropy ΔSt is extremely small and vanishes
in the limit of infinite molar mass, i.e., ṽA, ṽB → ∞. The consequences are
obvious:

• Positive values of χ necessarily lead to incompatibility. Since the entropic
part, χS , appears to be mostly positive, one may also state that no polymer
mixtures exist with a positive heat of mixing.

• If the χ-parameter is negative, then mixing takes place.

The reason for this behavior becomes clear if we regard miscibility as the re-
sult of a competition between the osmotic pressure emerging from the trans-
lational motion of the polymers and the forces acting between the monomers.
The osmotic pressure, which always favors miscibility, depends on the poly-
mer density cp, whereas the change in the free energy density associated with
the interactions between unlike monomers – it can be positive or negative – is
a function of the monomer density cm. Since cp/cm = 1/N , the osmotic pres-
sure part is extremely small compared to the effect of the monomer–monomer
interactions. Hence, mutual compatibility of two polymers, i.e., their poten-
tial to form a homogeneous mixture, is almost exclusively determined by the
local interactions. Endothermal conditions are the rule between two different
polymers, exothermal conditions are the exception. Hence, the majority of
pairs of polymers cannot form homogeneous mixtures. Compatibility is only
found if there are special interactions between the A-monomers and the B-
monomers as they may arise in the form of dipole–dipole forces, hydrogen
bonds or special donor–acceptor interactions.

All these conclusions refer to the limit of large degrees of polymerization.
It is important to see that the Flory–Huggins equation permits one to consider
how the compatibility changes if the degrees of polymerization are reduced
and become moderate or small. For the sake of simplicity, for a discussion we
choose the case of a symmetric mixture with equal degrees of polymerization
for both components, i.e.,

NA = NB = N (4.25)

Using
ñc

N
= ñA + ñB (4.26)

we obtain

ΔGmix = R̃T (ñA + ñB)(φA lnφA + φB lnφB + χNφAφB) . (4.27)
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Fig. 4.3. Gibbs free energy of mixing of a symmetric binary polymer mixture (NA =
NB = N), as described by the Flory–Huggins equation

Note that there is only one relevant parameter, namely the product Nχ. The
dependence of ΔGmix on φA is shown in Fig. 4.3, as computed for different
values of χN .

A discussion of these curves enables us to reach some direct conclusions.
For vanishing χ, one has negative values of ΔGmix for all φA, with a minimum
at φA = 0.5. In this case, we have perfect miscibility caused by the small
entropic forces related with ΔSt. For negative values of χN , we have a further
decrease of ΔGmix and therefore also perfect miscibility.

A change in behavior is observed for positive values of χN . The curves
alter their shape and for parameters χN above a critical value

(χN) > (χN)c

a maximum rather than a minimum emerges at φA = 0.5. This change leads
us into a different situation. Even if ΔGmix is always negative, there a ho-
mogeneous mixture does not always form. To understand the new conditions
consider, for example, the curve for χN = 2.4 and a blend with φA = 0.45.
There the two arrows are drawn. The first arrow indicates that a homoge-
neous mixing of A and B would lead to a decrease in the Gibbs free energy,
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when compared to two separate one component phases. However, as shown
by the second arrow, the Gibbs free energy can be further reduced, if again
a two-phase structure is formed, now being composed of two mixed phases,
with compositions φ′A and φ′′A. The specific feature in the selected curve re-
sponsible for this peculiar behavior is the occurrence of the two minima at
φ′A and φ′′A, as these enable the further decrease of the Gibbs free energy. For
which values of φA can this decrease be achieved? Not for all values, because
there is an obvious restriction: The overall volume fraction of the A-chains
has to be in the range

φ′A ≤ φA ≤ φ′′A .

Outside this central range, for φA < φ′A and φA > φ′′A, a separation into
the two-phases with the minimum Gibbs free energies is impossible and one
homogeneous phase is formed. For a given φA we can calculate the fractions
φ1, φ2 of the two coexisting mixed phases. As we have

φA = φ1 · φ′A + (1 − φ1)φ′′A , (4.28)

we find

φ1 =
φ′′A − φA

φ′′A − φ′A
(4.29)

and

φ2 = 1 − φ1 =
φA − φ′A
φ′′A − φ′A

. (4.30)

Hence in conclusion, for curves ΔGmix(φA), which exhibit two minima and
a maximum in-between, mixing properties depend on the value of φA. Misci-
bility is found for low and high values of φA only, and in the central region
there is a miscibility gap.

One can determine the critical value of χN that separates the range of
perfect mixing, i.e., compatibility through all compositions, from the range
with a miscibility gap. Clearly, for the critical value of χN , the curvature at
φA = 0.5 must vanish,

∂2ΔGmix(φA = 0.5)
∂φ2

A

= 0 . (4.31)

The first derivative of ΔGmix is given by

1
(ñA + ñB)R̃T

∂ΔGmix

∂φA
= lnφA + 1 − ln(1 − φA) − 1 + χN(1 − 2φA) (4.32)

and the second derivative by

1
(ñA + ñB)R̃T

∂2ΔGmix

∂φ2
A

=
1
φA

+
1

1 − φA
− 2χN . (4.33)
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The critical value is
χN = 2 . (4.34)

Hence, we expect full compatibility for

χ < χc =
2
N

(4.35)

and a miscibility gap for
χ > χc . (4.36)

Equations (4.35) and (4.36) describe the effect of the molar mass on the
compatibility of a pair of polymers. In the limit N → ∞ we have

χc → 0 .

This agrees with our previous conclusion that for positive values of χ polymers
of average and high molar mass do not mix at all.

The properties of symmetric polymer mixtures are summarized in the
phase diagram shown in Fig. 4.4. It depicts the two regions associated with
homogeneous and two-phase structures in a plot that uses the sample com-
position as expressed by the volume fraction φA and the parameter χN as
variables. The boundary between the one phase and the two-phase region is
called binodal. It is determined by the compositions φ′A and φ′′A of the equi-

Fig. 4.4. Phase diagram of a symmetric polymer mixture (NA = NB = N). In
addition to the binodal (continuous line) the spinodal is shown (broken line)
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librium phases with minimum Gibbs free energies in the miscibility gap. φ′A
and φ′′A follow for a given value of χN from

∂ΔGmix

∂φA
= 0 . (4.37)

Using Eq. (4.32) we obtain an analytical expression for the binodal:

χN =
1

1 − 2φA
ln

1 − φA

φA
. (4.38)

The derived phase diagram is universal in the sense that it is valid for all
symmetric polymer mixtures. It indicates a miscibility gap for χN > 2 and
enables us to make a determination of χN in this range if the compositions
of the two coexisting phases are known.

For mixtures of polymers with different degrees of polymerization, i.e.,
NA 
= NB, the phase diagram loses its symmetrical shape. Figure 4.5 depicts
ΔGmix(φA) for a mixture with NB = 4NA, as computed on the basis of the
Flory–Huggins equation. Straightforward analysis shows that, in this general
case, the critical value of χ is given by

χc =
1
2

(
1√
NA

+
1√
NB

)2

. (4.39)

The critical point where the miscibility gap begins is located at

φA,c =
√
NB√

NA +
√
NB

. (4.40)

The points along the binodal can be determined by the construction of the
common tangent as indicated in the figure. The explanation for this procedure
is simple. We refer here to the two arrows drawn at φA = 0.45 and the curve
calculated for χNA = 1.550. First, consider the change in ΔGmix if starting-off
from separate states, two arbitrary mixed phases with composition φ∗A and
φ∗∗A are formed. ΔGmix is given by the point at φA = 0.45 on the straight line
that connects ΔGmix(φ∗A) and ΔGmix(φ∗∗A ). This is seen when we first write
down the obvious linear relation

ΔGmix(φA) = φ1ΔGmix(φ∗A) + φ2ΔGmix(φ∗∗A ) , (4.41)

where φ1 and φ2 denote the volume fractions of the two mixed phases. Re-
calling that φ1 and φ2 are given by Eqs. (4.29) and (4.30), we obtain the
expression

ΔGmix(φA) =
φ∗∗A − φA

φ∗∗A − φ∗A
ΔGmix(φ∗A) +

φA − φ∗A
φ∗∗A − φ∗A

ΔGmix(φ∗∗A ) , (4.42)

which indeed describes a straight line connecting ΔGmix(φ∗A) and ΔGmix(φ∗∗A ).
So far, the choice of φ∗A and φ∗∗A has been arbitrary, but we know that on
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Fig. 4.5. Gibbs free energy of mixing of an asymmetric polymer mixture with
NB = 4NA, calculated for the indicated values of χNA. The points of contact with
the common tangent, located at φ′

A and φ′′
A, determine the compositions of the equi-

librium phases on the binodal. The critical values are (χNA)c = 9/8 and φc = 2/3

separating into two mixed phases, the system seeks to maximize the gain
in Gibbs free energy. The common tangent represents that connecting line
between any pair of points on the curve which is at the lowest possible level.
A transition to this line therefore gives the largest possible change ΔGmix. It
is associated with the formation of two phases with compositions φ′A and φ′′A,
as given by the points of contact with the common tangent. The binodal is
set up by these points and a determination may be based on the described
geometrical procedure.

4.1.1 Phase Diagrams: Upper and Lower Miscibility Gap

Phase diagrams of polymer blends under atmospheric pressure are usually
presented in terms of the variables φA and T . Emanating from the discussed
universal phase diagram in terms of χ and φA these can be obtained by intro-
ducing the temperature dependence of the Flory–Huggins parameter into the
consideration. This function χ(T ) then solely determines the appearance. For
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different types of temperature dependencies χ(T ), different classes of phase
diagrams emerge and we shall discuss them in this section.

Let us first consider an endothermal polymer mixture with negligible
entropic contributions to the local Gibbs free energy, i.e., a system with
χ = χH > 0. Here the temperature dependence of χ is given by Eq. (4.22)

χ ∝ 1
T
.

The consequences for the phase behavior are evident. Perfect miscibility can
principally exist at high temperatures, provided that the molar mass of the
components are low enough. The increase of χ with decreasing tempera-
ture necessarily results in a termination of this region and the formation of
a miscibility gap, found when χ > χc. For a symmetric mixture we obtained
χc = 2/N (Eq. (4.36)). If χc is reached at a temperature Tc, we can write

χ =
2
N

Tc

T
. (4.43)

The resulting phase diagram is shown in Fig. 4.6, together with the temper-
ature dependence of χ. The binodal follows from Eq. (4.38), as

T

Tc
=

2(1 − 2φA)
ln ((1 − φA)/φA)

. (4.44)

It marks the boundary between the homogeneous state at high temperatures
and the two-phase region at low temperatures.

Upon cooling a homogeneous mixture, phase separation at first sets in for
samples with the critical composition, φA = 0.5, at the temperature Tc.
For the other samples demixing occurs at lower temperatures, as described by
the binodal. We observe here a lower miscibility gap. A second name is also

Fig. 4.6. Endothermal symmetrical mixture with a constant heat of mixing. Tem-
perature dependence of the Flory–Huggins parameter (left) and phase diagram show-
ing a lower miscibility gap (right)
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used in the literature: Tc is called the upper critical dissolution temper-
ature, shortly abbreviated UCDT. The latter name refers to the structural
changes induced when coming from the two-phase region, where one observes
a dissolution and merging of the two phases.

Experiments show that exothermal polymer blends sometimes have an up-
per miscibility gap, i.e., one which is open towards high temperatures. One
may wonder why a mixture that is homogeneous at ambient temperature sep-
arates in two phases upon heating, and we shall have to think about possible
physical mechanisms. At first, however, we discuss the formal prerequisites.
On the right-hand side of Fig. 4.7 there are phase diagrams of symmetric
polymer mixtures that display an upper miscibility gap. The various depicted
binodals are associated with different molar mass. The curved binodals relate
to polymers with low or moderate molar masses. For high molar mass, the
phase boundary becomes a horizontal line and phase separation then occurs
for χ ≥ 0 independent of φA. The latter result agrees with the general crite-
rion for phase separations in polymer systems with high molar masses. It is
therefore not particular to the symmetric system, but would be obtained in
the general case, NA 
= NB, as well.

The temperature dependencies χ(T ) that lead to these diagrams are shown
on the left-hand side of Fig. 4.7. Their main common property is a change of
the Flory–Huggins parameter from negative to positive values. The crossing
of the zero line takes place at a certain temperature, denoted T0. Coming from
low temperatures, unmixing sets in for T = Tc with

Nχ(Tc) = 2 .

Fig. 4.7. Phase diagram of an exothermal symmetric polymer mixture with an
upper miscibility gap. The binodals correspond to the different functions Nχ(T )
shown on the left, associated with an increase in the molar mass by factors 2, 4
and 8. Critical points are determined by Nχ(Tc/T0) = 2, as indicated by the filled
points in the drawings
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In the limit of high degrees of polymerization we have χ(Tc) → 0 and therefore
Tc → T0. We see that the prerequisite for an upper miscibility gap, or a lower
critical solution temperature, abbreviated as LCST, as it is alternatively
called, is a negative value of χ at low temperatures, followed by an increase
to values above zero.

One can envisage two different mechanisms as possible explanations for
such a behavior. First, there can be a competition between attractive forces
between specific groups incorporated in the two polymers on one side and re-
pulsive interactions between the remaining units on the other side. In copoly-
mer systems with pairs of specific comonomers that are capable of forming
stable bonds these conditions may arise. With increasing temperature the frac-
tion of closed bonds decreases and the repulsive forces finally dominate. For
such a system, χ may indeed be negative for low temperatures and positive
for high ones.

The second conceivable mechanism has already been mentioned. Some-
times it is observed that a homogeneous mixing of two polymers results in
a volume shrinkage. The related decrease in the free volume available for local
motions of the monomers may lead to a reduced number of available confor-
mations and hence a lowering of the entropy. The effect usually increases with
temperature and finally overcompensates the initially dominating attractive
interactions.

For mixtures of polymers with low molar mass there is also the possibility
that both a lower and an upper miscibility gap appear. In this case, χ crosses
the critical value χc twice, first during a decrease in the low temperature range
and then, after passing through a minimum, during the subsequent increase at
higher temperatures. Such a temperature dependence reflects the presence of
both a decreasing endothermal contribution and an increasing entropic part.

As we can see, the Flory–Huggins treatment is able to account for the var-
ious general shapes of existing phase diagrams. This does not mean, however,
that one can reproduce measured phase diagrams in a quantitative manner.
To comply strictly with the Flory–Huggins theory, the representation of mea-
sured binodals has to be accomplished with one temperature-dependent func-
tion χ(T ) only. As a matter of fact, this is rarely the case. Nevertheless, data
can be formally described if one allows for a φA-dependence of χ. As long as
the variations remain small, one can consider the deviations as perturbations
and still feel safe on the grounds of the Flory–Huggins treatment. For some
systems, however, the variations with φA are large. Then the basis is lost and
the meaning of χ becomes rather unclear. Even then the Flory–Huggins equa-
tion is sometimes employed but only as a means to carry out interpolations
and extrapolations and to relate different sets of data. That deviations arise
is not unexpected. The mean field treatment, on which the Flory–Huggins
theory is founded, is only an approximation with varying quality.

Let us look at two examples.
Figure 4.8 presents phase diagrams of mixtures of different polystyrenes

with polybutadiene (PB), all of them with moderate to low molar mass
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Fig. 4.8. Phase diagrams for different PS/PB-mixtures, exhibiting lower misci-
bility gaps. (a) M(PS) = 2250 g mol−1, M(PB) = 2350 g mol−1; (b) M(PS) =
3500 g mol−1, M(PB) = 2350 g mol−1; (c) M(PS) = 5200 g mol−1, M(PB) =
2350 g mol−1. Data from Roe and Zin [19]

(M = 2000−4000g mol−1). The temperature points on the curves are mea-
sured cloud points. As samples are transparent in the homogeneous phase
and become turbid when demixing starts, the cloudiness can be used for a de-
termination of the binodal. For an accurate detection one can use measure-
ments of the intensity of scattered or transmitted light. Here, we are dealing
with an endothermal system that exhibits a lower miscibility gap. Note that
Tc, as given by the highest point of each curve, decreases with decreasing molar
mass in accordance with the theoretical prediction. The curves, which provide
a satisfactory data fit, were obtained on the basis of the Flory–Huggins theory
assuming a weakly φA-dependent χ.

As a second example, Fig. 4.9 shows a phase diagram obtained for mixtures
of polystyrene and poly(vinylmethylether) (PVME). Here, one observes that
homogeneous mixtures are obtained in the temperature range below 100 ◦C
and that there is an upper miscibility gap. The phase diagram depicted in the
figure was obtained for polymers with molar mass M(PS) = 2 ×105 g mol−1,
M(PVME) = 4.7×104 g mol−1. For molar mass in this range the contribution
of the translational entropy becomes very small indeed and mixing properties
are mostly controlled by χ. The curved appearance of the binodal, which con-
trasts with the result of the model calculation in Fig. 4.7 where we obtained
a nearly horizontal line for polymers, is indicative of a pronounced compo-
sitional dependence of χ. This represents a case where the Flory–Huggins
treatment does not provide a comprehensive description. Interactions in this



122 4 Polymer Blends and Block Copolymers

Fig. 4.9. Phase diagram of mixtures of PS (M = 2 ×105 g mol−1) and PVME
(M = 4.7 ×104 g mol−1), showing an upper miscibility gap. Data from Hashimoto
et al. [20]

mixture are of a complex nature and apparently change with the sample com-
position, so that it becomes impossible to represent them by only one con-
stant.

4.2 Phase Separation Mechanisms

As we have seen, binary polymer mixtures can vary in structure with tempera-
ture, forming either a homogeneous phase or in a miscibility gap a two-phase
structure. We now have to discuss the processes that are effective during
a change, i.e., the mechanisms of phase separation.

Phase separation is induced, when a sample is transferred from the one
phase region into a miscibility gap. Usually, this is accomplished by a change
in temperature, upward or downward depending on the system under study.
The evolution of the two-phase structure subsequent to a temperature jump
can often be continuously monitored and resolved in real-time, owing to the
high viscosity of polymers, which slows down the rate of unmixing. If necessary
for detailed studies, the process may also be stopped at any stage by quench-
ing samples to temperatures below the glass transition. Suitable methods for
observations are light microscopy or scattering experiments.

Figure 4.10 presents as an example two micrographs obtained with a light
microscope using an interference technique, showing two-phase structures
observed for mixtures of polystyrene and partially brominated polystyrene
(PBrxS), with both species having equal degrees of polymerization (N = 200).
The two components show perfect miscibility at temperatures above 220 ◦C
and a miscibility gap below this temperature. Here phase separation was in-
duced by a temperature jump from 230 ◦C to 200 ◦C, for two mixtures of
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Fig. 4.10. Structure patterns emerging during phase separation in PS/PBrxS-
mixtures. left : Pattern indicating phase separation by nucleation and growth
(φ(PS) = 0.8); right : Pattern suggesting phase separation by spinodal decompo-
sition (φ(PS) = 0.5) [21]

different composition, φ(PS) = 0.8 and φ(PS) = 0.5. We observe two struc-
ture patterns that do not only vary in length scale, but differ in the general
characteristics: The picture on the left shows spherical precipitates in a ma-
trix, whereas the pattern on the right exhibits interpenetrating continuously
extending domains. The diverse evidence suggests that different mechanisms
were effective during phase separation. Structures with spherical precipitates
are indicative of nucleation and growth and the pattern with two struc-
turally equivalent interpenetrating phases reflects a spinodal decomposi-
tion. In fact, this example is quite typical and is representative of the results
of investigations on various polymer mixtures. The finding is that structure
evolution in the early stages of unmixing is generally controlled by either of
these two mechanisms.

The cause for the occurrence of two different modes of phase separation
becomes revealed when we consider the shape of the curve ΔGmix(φA). As φA

is the only independent variable, in the following we will omit the subscript A,
i.e., replace φA by the shorter symbol φ. The upper part of Fig. 4.11 depicts
functions ΔGmix(φ) computed for three different values of χ, which belong to
the one phase region (χi), the two-phase region (χf) and the critical point (χc).
The lower part of the figure gives the phase diagram, with the positions of
χi, χf and χc being indicated. The arrows ‘1’ and ‘2’ indicate two jumps that
transfer a polymer mixture from the homogeneous phase into the two-phase
region.

Immediately after the jump, the structure is still homogeneous but, of
course, no longer stable. What is different in the two cases, is the character
of the instability. The difference shows up when we consider the consequences
of a spontaneous local concentration fluctuation, as it could be thermally
induced directly after the jump. Figure 4.12 represents such a fluctuation
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Fig. 4.11. Temperature jumps that transfer a symmetric binary polymer mixture
from the homogeneous state into the two-phase region. Depending upon the location
in the two-phase region, phase separation occurs either by nucleation and growth
(‘1’) or by spinodal decomposition (‘2’)
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Fig. 4.12. Local concentration fluctuation

schematically, being set up by an increase δφ in the concentration of A-chains
in one half of a small volume d3r and a corresponding decrease in the other
half. The fluctuation leads to a change in the Gibbs free energy, described as

δG =
1
2
(g(φ0 + δφ) + g(φ0 − δφ))d3r − g(φ0)d3r . (4.45)

Here, we have introduced the free energy density, i.e., the Gibbs free energy
per unit volume, denoted g(φ). Series expansion of g(φ) up to the second order
in φ for δG yields the expression

δG =
1
2
∂2g

∂φ2
(φ0)δφ2 d3r . (4.46)

We calculate ∂2g/∂φ2 with the aid of the Flory–Huggins equation, i.e., write

∂2g

∂φ2
=

1
V
∂2ΔGmix

∂φ2
(4.47)

with ΔGmix given by Eq. (4.11). Then the change δG associated with the local
fluctuation is

δG =
1
2

1
V
∂2ΔGmix

∂φ2
(φ0)δφ2 d3r . (4.48)

This is a most interesting result. It tells us that, depending on the sign of
the curvature ∂2ΔGmix/∂φ

2, the fluctuation may either lead to an increase,
or a decrease in the Gibbs free energy. In stable states, there always has to be
an increase to ensure that a spontaneous local association of monomers A dis-
integrates again. This situation is found for jump ‘1’. It leads to a situation
where the structure is still stable with regard to spontaneous concentration
fluctuations provided that they remain sufficiently small. Jump ‘2’ represents
a qualitatively different case. Since the curvature here is negative, the Gibbs
free energy decreases immediately, even for an infinitesimally small fluctu-
ation, and no restoring force arises. On the contrary, there is a tendency
for further growth of the fluctuation amplitude. Hence, by the temperature
jump ‘2’ an initial structure is prepared, which is perfectly unstable.

It is exactly the latter situation which results in a spinodal decomposition.
The process is sketched at the bottom of Fig. 4.13. The drawing indicates



126 4 Polymer Blends and Block Copolymers

Fig. 4.13. Mechanisms of phase separation: Nucleation and growth (top) and spin-
odal decomposition (bottom). The curved small arrows indicate the direction of the
diffusive motion of the A-chains

that a spinodal decomposition implies a continuous growth of the amplitude
of a concentration fluctuation, starting from infinitesimal values and ensuing
up to the final state of two equilibrium phases with compositions φ′ and φ′′.
The principles governing this process have been studied in numerous investi-
gations and clarified to a large extent. We shall discuss its properties in detail
in the next section. At this point, we leave it with one short remark with
reference to the figure. There the arrows indicate the directions of flow of the
A-chains. The normal situation is found for nucleation and growth, where the
flow is directed as usual, towards decreasing concentrations of the A-chains.
In spinodal decompositions, the flow direction is reversed. The A-chains dif-
fuse towards higher concentrations, which formally corresponds to a negative
diffusion coefficient.

The upper half of the figure shows the process that starts subsequent to
the temperature jump ‘1’. As small fluctuations decay again, the only way to
achieve a gain in the Gibbs free energy is a large fluctuation, which directly
leads to the formation of a nucleus of the new equilibrium phase with composi-
tion φ′′. After it has formed it can increase in size. Growth is accomplished by
regular diffusion of the chains since there exists, as indicated in the drawing,
a zone with a reduced φ at the surface of the particle that attracts a stream
of A-chains.

The process of nucleation and growth is not peculiar to polymers, but ob-
served in many materials and we consider it only briefly. The specific point
making up the difference to the case of a spinodal decomposition is the ex-
istence of an activation barrier. The reason for its occurrence is easily recog-



4.2 Phase Separation Mechanisms 127

Fig. 4.14. Activation barrier encountered during formation of a spherical nucleus.
Curves (a)–(d) correspond to a sequence 2:3:4:5 of values for Δg/σif

nized. Figure 4.14 shows the change of the Gibbs free energy, ΔG, following
from the formation of a spherical precipitate of the new equilibrium phase.

ΔG depends on the radius r of the precipitate, as described by the equation

ΔG(r) = −4π
3
r3Δg + 4πr2σif (4.49)

with
Δg = g(φ0) − g(φ′′) . (4.50)

Equation (4.49) emanates from the view that ΔG is set up by two contri-
butions, one being related to the gain in the bulk Gibbs free energy of the
precipitate, the other to the effect of the interface between particle and ma-
trix. This interface is associated with an excess free energy and the symbol σif

stands for the excess free energy per unit area.
Since the building up of the interface causes an increase in the free energy,

a barrier ΔGb develops, which first has to be overcome before growth can set
in. The passage over this barrier constitutes the nucleation step. Representing
an activated process, it occurs with a rate given by the Arrhenius equation,

νnuc ∝ exp−ΔGb

kT
, (4.51)

whereby ΔGb is the barrier height

ΔGb =
16π
3

σ3
if

(Δg)2
. (4.52)
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Equation (4.52) follows from Eq. (4.49) when searching for the maximum.
ΔGb increases with decreasing distance from the binodal where we have
Δg = 0. The change is illustrated by the curves in Fig. 4.14, which were
calculated for different values of the ratio Δg/σif . We learn from this behav-
ior that, in order to achieve reasonable rates, nucleation requires a certain
degree of supercooling (or overheating, if there is an upper miscibility gap).

Nucleation and growth occurs if the unmixing is induced at a temperature
near the binodal, where the system is still stable with regard to small concen-
tration fluctuations. Further away from the binodal this restricted metasta-
bility is lost and spinodal decomposition sets in. Transition from one growth
regime to another occurs in the range of the spinodal, which is defined as
the locus of those points in the phase diagram where the stabilizing restoring
forces vanish. According to the previous arguments this occurs for

∂2ΔGmix

∂φ2
= 0 . (4.53)

Equation (4.53) determines a certain value χ for each φ and for the resulting
spinodal curve we choose the designation χsp(φ). In the case of a symmet-
ric mixture with a degree of polymerization N for both species, we can use
Eq. (4.33) for a determination. The spinodal follows as

χsp =
1

2NφA(1 − φA)
. (4.54)

It is this line that is included in Figs. 4.4 and 4.11. For NA 
= NB we start
from Eq. (4.11) and obtain

∂2ΔGmix

∂φ2
∝ 1
NAφ

+
1

NB(1 − φ)
+

∂2

∂φ2
χφ(1 − φ) . (4.55)

In this case, the spinodal is given by the function

2χsp =
1

NAφ
+

1
NB(1 − φ)

. (4.56)

As was mentioned earlier, reality in polymer mixtures often differs from the
Flory–Huggins model in that a φ-dependent χ is required. Then we have to
write for the equation of the spinodal

1
NAφ

+
1

NB(1 − φ)
= − ∂2

∂φ2
(χ(φ)φ(1 − φ)) = 2Λ . (4.57)

Here we have introduced another function, Λ, which is related to χ by

Λ = χ− (1 − 2φ)
∂χ

∂φ
− 1

2
φ(1 − φ)

∂2χ

∂φ2
. (4.58)
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We see that the situation has now become more involved. As we shall learn in
the next section, rather than χ, Λ follows from an experimental determination
of the spinodal.

It might appear at first that the spinodal marks a sharp transition be-
tween two growth regimes, but this is not true. Activation barriers for the
nucleation are continuously lowered when approaching the spinodal and thus
may lose their effectiveness already prior to the crossing. As a consequence,
the transition from the nucleation and growth regime to the region of spin-
odal decompositions is actually diffuse and there is no way to employ it for
an accurate determination of the spinodal. There is, however, another effect
for which the spinodal is significant and well-defined: The distance from the
spinodal controls the concentration fluctuations in the homogeneous phase.
The next section deals in detail with this interesting relationship.

4.3 Critical Fluctuations and Spinodal Decomposition

The critical point of a polymer mixture, as given by the critical temperature Tc

jointly with the critical composition φc, is the locus of a second order phase
transition. Second order phase transitions have general properties that are
found independent of the particular system; this may be a ferromagnetic or
ferroelectric solid near its Curie temperature, a gas near the critical point,
or, as in our case, a mixture. As one general law, the approach of a critical
point is always accompanied by a strong increase of the local fluctuations of
the order parameter associated with the transition. For our mixture, the
order parameter is given by the composition, as specified, for example, by the
volume fraction of A-chains. So far, we have been concerned with the overall
concentrations of the A- and B-chains in the sample only. On microscopic
scales, concentrations are not uniform but show fluctuations about the mean
value, owing to the action of random thermal forces. According to the general
scenario of critical phase transitions, one expects a steep growth of these
fluctuations on approaching Tc.

The most convenient technique for a verification are scattering experi-
ments, as these probe the fluctuations directly. Figure 4.15 presents, as an
example, results obtained by neutron scattering for a mixture of (deuterated)
polystyrene and poly(vinylmethylether). As was mentioned earlier, this sys-
tem shows an upper miscibility gap (Fig. 4.9). Measurements were carried
out for a mixture with the critical composition at a series of temperatures
in the one phase region. The figure depicts the reciprocals of the scattering
intensities in plots versus q2. We notice that approaching the critical point
indeed leads to an overall increase of the intensities, with the strongest growth
being found for the scattering in the forward direction q → 0. The tempera-
ture dependence of the forward scattering is shown on the right hand side, in
a plot of S−1(q → 0) against 1/T . Data indicate a divergence, and its location
determines the critical temperature. Here we find Tc = 131.8 ◦C.
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Fig. 4.15. Results of neutron scattering experiments on a (0.13:0.87)-mixture of
d-PS (M = 3.8 ×105 g mol−1) and PVME (M = 6.4 ×104 g mol−1). Sc denotes
the scattering function Eq. (4.79) referring to structure units with a molar vol-
ume ṽc. Intensities increase on approaching the critical point (left). Extrapolation of
S(q → 0) to the point of divergence yields the critical temperature (right). Data
from Schwahn et al. [22]

When the phase boundary is crossed through the critical point, a spinodal
decomposition is initiated, and it can be followed by time-dependent scatter-
ing experiments. Figure 4.16 shows the evolution of the scattering function
during the first stages, subsequent to a rapid change from an initial tem-
perature Tin two degrees below Tc, to Tfi = 134.1 ◦C, located 2.3 ◦C above.
Beginning at zero time with the equilibrium structure factor associated with
the temperature Tin in the homogeneous phase, a peak emerges and grows in
intensity.

Figure 4.17 presents, as a second example, a further experiment on mix-
tures of polystyrene and poly(vinylmethylether), now carried out by time
dependent light scattering experiments (this sample had a lower critical tem-
perature, probably due to differences in behavior between normal and deuter-
ated polystyrene). Experiments encompass a larger time range and probe
the scattering at the small q’s reached when using light. Again one observes
the development of a peak, and it also stays at first at a constant position.
Here, we can see that during the later stages it shifts to lower scattering
angles.

This appearance of a peak which grows in intensity, initially at a fixed
position and then shifting to lower scattering angles, can in fact be considered
as indicative of a spinodal decomposition. One can say that the peak reflects
the occurrence of wave-like modulations of the local blend composition, with
a dominance of particular wavelengths. Furthermore, the intensity increase
indicates a continuous amplitude growth. This, indeed, is exactly the process
sketched at the bottom of Fig. 4.13.
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Fig. 4.16. The same system as in Fig. 4.15. Transient scattering functions Str(q, t)
measured after a temperature jump from Tin = 130 ◦C (one phase region) to Tfi =
134.1 ◦C (two-phase region). Times of evolution are indicated (in seconds) [22]

Fig. 4.17. Time dependent light scattering experiments, conducted on a (0.3:0.7)-
mixture of PS (M = 1.5 ×105 g mol−1) and PVME (M = 4.6 ×104 g mol−1) subse-
quent to a rapid transfer from a temperature in the region of homogeneous states
to the temperature Tfi = 101 ◦C located in the two-phase region. Numbers give the
time passed after the jump (in seconds). Data from Hashimoto et al. [23]
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All these findings, the steep growth of the concentration fluctuations in
the homogeneous phase near the critical point, as well as the kinetics of
spinodal decomposition with its strong preference for certain wavelengths,
can be treated in a common theory. It was originally developed by Cahn,
Hilliard, and Cook, in order to treat unmixing phenomena in metallic al-
loys and anorganic glasses, and then adjusted by de Gennes and Binder to
the polymer case. Polymers actually represent systems that exhibit these
phenomena in a particularly clear form and thus allow a verification of the
theories. In the following three subsections, which concern the critical scat-
tering as observed in the homogeneous phase, the initial stages of spinodal
decomposition and the late stage kinetics, some main results will be pre-
sented.

4.3.1 Critical Scattering

Here we consider the concentration fluctuations in the homogeneous phase and
also the manner in which these are reflected in measured scattering functions.

How can one deal with the fluctuations? At first view it might appear that
the Flory–Huggins treatment does not give any help. Accounting for all micro-
scopic states, the Flory–Huggins expression for the Gibbs free energy includes
also the overall effect of all the concentration fluctuations in a mixture. The
overall effect, however, is not our point of concern. We wish to grasp a single
fluctuation state, as given by a certain distribution of the A’s specified by
a function φ(r) and determine its statistical weight. What we need for this
purpose is a knowledge about a constrained Gibbs free energy, namely that
associated with a single fluctuation state only.

To solve our problem we use a trick that was originally employed by
Kadanoff in an analysis of the critical behavior of ferromagnets. Envisage
a division of the sample volume in a large number of cubic ‘blocks’, with vol-
umes vB that, although being very small, still allow the use of thermodynamic
laws; block sizes in the order of 10–100nm3 seem appropriate for this purpose.
For this grained system, the description of a certain fluctuation state is ac-
complished by giving the concentrations φi of all blocks i. The (constrained)
free energy of a thus characterized fluctuation state can be written down, pro-
ceeding in three steps. As we may apply the Flory–Huggins equation for each
block separately, we first write a sum

G({φi}) =
∑

i

vBg(φi) . (4.59)

Here, g stands for the free energy density of the mixture

g(φ) = φgA + (1 − φ)gB + R̃T

[
φ

ṽA
lnφ+

(1 − φ)
ṽB

ln(1 − φ) +
χ

ṽc
φ(1 − φ)

]
,

(4.60)
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gA and gB denoting the free energy densities of the one component phases.
Being in close contact, neighboring blocks, interact with each other across
the interfaces and we have to inquire about the related interfacial energy.
We know that it must vanish for equal concentrations and increase with the
concentration difference, independent of the direction of change. The simplest
expression with such properties is the quadratic term

β(φi − φj)2 ,

where φi, φj are the concentrations in the adjacent blocks. It includes a coef-
ficient β that determines the strength of the interaction. We add this term to
the first sum and write

G({φi}) =
∑

i

vBg(φi) +
∑
ij

β(φi − φj)2 . (4.61)

Finally, replacing the summation by an integral, we obtain

G(φ(r)) =
∫ (

g(φ(r)) + β′(∇φ)2
)

d3r (4.62)

with β′ = βv
−1/3
B . With this result we have solved our problem. Equa-

tion (4.62) describes in an approximate, empirical manner the free energy
to be attributed to a given fluctuation state φ(r). It is known in the literature
as Ginzburg–Landau functional and is widely applied in treatments of
various kinds of fluctuations.

The equation can be further simplified if a linearization approximation is
used. Clearly the state with a uniform concentration,

φ(r) = const = φ ,

has the lowest free energy, Gmin. For considering the change in the Gibbs free
energy

δG = G − Gmin

as it results from a fluctuation

δφ(r) = φ(r) − φ

we may use a series expansion of g(δφ) up to the second order

δG =
∫

V

(
δg(δφ(r)) + β′(∇δφ)2

)
d3r (4.63)

=
∂g

∂φ

∫

V
δφd3r +

1
2
∂2g

∂φ2

∫

V
(δφ)2 d3r + β′

∫

V
(∇δφ)2 d3r . (4.64)
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Conservation of the masses of the two species implies
∫

V
δφd3r = 0 , (4.65)

and we only have to calculate the second derivative of g. This leads to

δG =
R̃T

2

(
1

ṽAφ
+

1
ṽB(1 − φ)

− 2χ
ṽc

)∫

V
(δφ)2 d3r + β′

∫

V
(∇δφ)2 d3r . (4.66)

This is a useful result. It relates the Gibbs free energy of a given fluctuation
state to two parameters only, namely the integral or mean values of (δφ)2 and
(∇δφ)2.

We now turn to scattering experiments. They may generally be regarded
as carrying out a Fourier analysis, in our case a Fourier analysis of the con-
centration fluctuations in the mixture. We therefore represent δφ(r) as a sum
of wave-like modulations with amplitudes φk

δφ(r) = V−1/2
∑

k

exp(ikr)φk . (4.67)

For a finite sample volume V , the sum includes a sequence of discrete values
of k (see Eq. (A.117)). When writing a Fourier series in terms of exponential
functions, the amplitudes φk are complex numbers

φk = |φk| exp(iϕk)

with a modulus |φk| and a phase ϕk. Since δφ(r) is a real quantity, we have

φ−k = φ∗k (4.68)

and therefore
|φk| = |φ−k| . (4.69)

When we introduce the Fourier series into the integral of Eq. (4.66), we ob-
tain ∫

V
(δφ)2 d3r = V−1

∑
k,k′

φkφk′

∫

V
exp[i(kr + k′r)]d3r . (4.70)

Since ∫

V
exp[i(k + k′)r] d3r = Vδk,−k′ (4.71)

we can write ∫

V
(δφ)2 d3r =

∑
k

φkφ−k =
∑

k

|φk|2 . (4.72)
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For the gradient term we obtain in similar manner
∫

V
(∇δφ)2 d3r =

∑
k

(ik) · (−ik)φkφ−k =
∑

k

|k|2|φk|2 . (4.73)

Introducing Eqs. (4.72), (4.73) into Eq. (4.66), we obtain

δG =
R̃T

2

∑
k

(
1
ṽAφ

+
1

ṽB(1 − φ)
− 2χ

ṽc
+ β′′|k|2

)
|φk|2 . (4.74)

The coupling constant β′′ = 2β′(R̃T )−1 is unknown at this point of the dis-
cussion, but later on we shall learn more about it.

As we can see, the Fourier transformation leads to a decoupling. Whereas,
in direct space, we have a short-ranged coupling between fluctuations at differ-
ent positions as expressed by the gradient term in Eq. (4.66), different Fourier
amplitudes φk contribute separately to δG, thus being perfectly independent.
Hence, the wave-like modulations of the concentration may be regarded as the
basic modes of the system, which can be excited independently from each
other. The general dynamics of the concentration fluctuations in a polymer
mixture is described as a superposition of all these modes, each mode being
characterized by a certain wavevector.

Having an expression for the free energy increase associated with the exci-
tation of the mode k, one can calculate its mean squared amplitude in thermal
equilibrium 〈|φk|2〉. It follows from Boltzmann statistics as

〈|φk|2〉 =
∫

|φk|2 exp−δG(φk)
kT

δ|φk|
/∫

exp−δG(φk)
kT

δ|φk| . (4.75)

Evaluation of the integrals yields

〈|φk|2〉 = NL
−1

(
1

ṽAφ
+

1
ṽB(1 − φ)

− 2χ
ṽc

+ β′′|k|2
)−1

. (4.76)

The result includes a singularity that comes up if the denominator equals
zero. It tells us that finite concentration fluctuations can exist only under the
condition

1
ṽAφ

+
1

ṽB(1 − φ)
− 2χ

ṽc
+ β′′|k|2 > 0 . (4.77)

Regarding Eq. (4.56), this is equivalent to

χsp − χ+
ṽc
2
β′′|k|2 > 0 . (4.78)

As we can see, in the limit k → 0, the stability criterion of the Flory–Huggins
theory, χ < χsp, is recovered. For finite values of k, the criterion becomes
modified.
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Next, we relate the calculated fluctuations amplitudes to the scattering
function obtained in X-ray or light scattering experiments. Discussions are
usually based on a scattering function that refers to the reference volume
common for both species, vc, or in the language of the lattice models, on
a scattering function that refers to the cells of the lattice. It is denoted as Sc

and defined as
Sc(q) =

1
Nc

〈|C(q)|2〉 . (4.79)

C(q) is the scattering amplitude and Nc stands for the total number of A-units
and B-units in the sample. The scattering function Sc(q) can be directly
related to the mean squared amplitudes of the fluctuations 〈|φk|2〉. As is shown
in Sect. A.4.1 in the Appendix, the relation is

Sc(q) =
1
vc

〈|φk=q|2〉 . (4.80)

Making use of Eq. (4.76), we obtain the scattering function of a polymer
mixture. It is given by the following equation:

Sc(q) =
(

1
NAφ

+
1

NB(1 − φ)
− 2χ+ ṽcβ

′′q2
)−1

. (4.81)

The result allows a reconsideration of the open question about the functional
form of the coupling coefficient β′′. Insight results from a view on the limiting
properties of the scattering function for low concentrations of the polymers
A and B, respectively. For the discussion it is advantageous to change to the
reciprocal of the scattering function, since this leads to a separation of the
contributions of the A’s and B’s

1
Sc

=
1

NAφ
+

1
NB(1 − φ)

− 2χ+ ṽcβ
′′q2 . (4.82)

First consider the limit φ → 0. When A is the minority species, present only
in low concentration, our equation gives

1
Sc

→ 1
φNA

+ ṽcβ
′′q2 . (4.83)

On the other hand, for this case, the exact form of Sc is known. Since in
melts polymer chains are ideal, Sc is given by the Debye structure function
(Eqs. (2.60) and (2.61)), multiplied by the volume fraction φ in order to
account for the dilution

Sc = φNASD(R2
Aq

2) . (4.84)

Using the series expansion Eq. (2.63) we may write

1
Sc

≈ 1
NAφ

(
1 +

R2
Aq

2

18

)
. (4.85)
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Equivalently, when choosing polymer B as the diluted species, our equation
leads to

1
Sc

→ 1
(1 − φ)NB

+ ṽcβ
′′q2 , (4.86)

whereas the complete expression is

1
Sc

=
1

(1 − φ)NBSD(R2
Bq

2)
(4.87)

≈ 1
NB(1 − φ)

(
1 +

R2
Bq

2

18

)
. (4.88)

A comparison of Eq. (4.83) with Eq. (4.85) and Eq. (4.86) with Eq. (4.88)
gives us an explicit expression for the coupling constant β′′: Equations agree
for

β′′ =
1
ṽc

R2
A

18NAφ
+

1
ṽc

R2
B

18NB(1 − φ)
. (4.89)

Inserting this expression into Eq. (4.82), we obtain as the final result

1
Sc

=
1

φNA

(
1 +

R2
Aq

2

18

)
+

1
(1 − φ)NB

(
1 +

R2
Bq

2

18

)
− 2χ . (4.90)

Is this really correct? Considering the simple Ginzburg–Landau functional,
Eq. (4.62), which we chose as our starting point, this is a legitimate question
and indeed the comparisons with the known limiting behaviors for φ → 0 and
(1−φ) → 0 point at limitations. Full agreement in these limits is only reached
for R2

Aq
2 � 1, R2

Bq
2 � 1.

One might suspect that these limitations can be removed by an obvious
extension of Eq. (4.90). It is possible to construct a scattering function that
is correct for the known limits without being restricted to low q’s. Evidently
this is accomplished by the equation

1
Sc

=
1

φNASD(R2
Aq

2)
+

1
(1 − φ)NBSD(R2

Bq
2)

− 2χ . (4.91)

In fact, Eq. (4.91) represents the correct result. It can be obtained with the aid
of a theoretical method superior to the Ginzburg–Landau treatment known as
the random phase approximation. The interested reader finds the deriva-
tion in the Appendix, Sect. A.4.1.

The use of Eq. (4.91) enables us to make an evaluation of scattering ex-
periments, in particular

• a determination of the Flory–Huggins parameter χ and the coil sizes
RA, RB;

• a determination of the spinodal, based on the temperature dependence of
the concentration fluctuations in the homogeneous phase.
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We reduce the discussion again to the case of symmetric polymer mixtures
with

NA = NB = N

and apply Eq. (4.90), now in the form

1
Sc

=
1
N

1
φ(1 − φ)

+
q2

18N

(
R2

A

φ
+

R2
B

1 − φ

)
− 2χ

=
1
N

1
φ(1 − φ)

+
1

Nφ(1 − φ)
q2

18
R2

φ − 2χ . (4.92)

In the last equation we have introduced a φ-dependent average over the coil
radii, Rφ, defined as

R2
φ = (1 − φ)R2

A + φR2
B . (4.93)

Applying Eq. (4.54), we may also write

1
Sc

= 2(χsp − χ) + 2χsp

R2
φ

18
q2 . (4.94)

Equation (4.94) enables us to make a determination of χ and Rφ for a (sym-
metric) polymer mixture. Figure 4.18 presents, as an example, results of small
angle X-ray scattering experiments, carried out on mixtures of polystyrene
and partially brominated polystyrene (PBrxS, with x = 0.17). Data are rep-
resented by a plot S−1

c versus q2, as suggested by Eq. (4.94). The difference
in slopes indicates a change of Rφ with the composition, telling us that the
coil sizes of polystyrene and the partially brominated polystyrene are different
(analysis of the data yielded R(PS) = 32 Å, R(PBrxS) = 39 Å). The bottom
part of Fig. 4.18 presents the values derived for χ, together with χsp according
to Eq. (4.54). Results show that χ is not a constant, although the changes are
comparatively small. Strictly speaking, the measurement yields Λ (Eq. (4.58))
rather than χ, but the difference seems negligible.

An understanding of the microscopic origin of the observed φ-dependence
on theoretical grounds is difficult and this is a situation where computer sim-
ulations can be quite helpful. In fact, computations for a lattice model have
led to qualitatively similar results, as demonstrated by the curves depicted
in Fig. 4.19. These curves all exhibit the slight curvature of the experimental
curves. A second result of the simulations is particularly noteworthy. Com-
puter simulations can be used for general checks of the assumptions of the
Flory–Huggins model, which cannot be accomplished in an easy manner by
analytical considerations. In the example, computations were carried out for
a simple cubic lattice. In order to reduce the ‘equilibration time’ in the com-
puter, as given by the number of steps necessary to reach the equilibrium
when starting from an arbitrary configuration, 20% of the lattice sites were
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Fig. 4.18. Results of SAXS experiments on mixtures of PS and PBrxS, both species
having equal degrees of polymerization (N = 430). Scattering functions for φ(PS) =
0.42 and 0.62 (top) and derived function χ(φ) (bottom). The upper curve in the
lower figure represents χsp [24]

left empty. Calculations were carried out for different values of χ′. We dis-
cussed the predictions of the Flory–Huggins model and expect from it, for
a dense system, the relation Eq. (4.8)

(Λ =)χ = zeffχ
′ . (4.95)

The simulation yielded consistently lower values, i.e.,

Λ < zeffχ
′ . (4.96)

There is first a trivial reason, given by the presence of the vacancies that
reduce the interaction energy, but this contributes only a factor of about
0.8. The observed difference is definitely larger and this points at deficiencies
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Fig. 4.19. Results obtained in a Monte-Carlo simulation for a lattice model of
a polymer mixture (NA = NB = 16; simple cubic lattice, i.e., zeff = 4; 80% of
the lattice are occupied by the chains). Calculation of the function Λ(φ) for differ-
ent values of zeffχ′ (φ = φA/(φA + φB) is the relative concentration of A-chains).
Calculation by Sariban and Binder [25]

of the mean field approximation in the description of this model system. Obvi-
ously, the number of AB-contacts is smaller than expected under the assump-
tion of a random distribution of the chains. A closer inspection of the data
indicated an enhanced number of intramolecular contacts and also some inter-
molecular short-range order. Hence, the simulation tells us, as a general kind
of warning, that one should be careful in interpreting measured χ-parameters.
There can always be perturbing effects. Shortcomings of the Flory–Huggins
treatment show up in particular if the molar masses are low. Some effects
emerge only for such systems, an important one being the short-range order-
ing mentioned above. Short-range order effects can only arise if the distances
over which the concentration fluctuations are correlated are larger than or
similar to the chain size. Conversely, for chains with sufficiently high degrees
of polymerization, short-range order effects are ruled out; chains actually aver-
age over all local concentration fluctuations and experience the mean value of
the contact energies only. In our case, both the experiment and the simulation
refer to moderate or even low degrees of polymerization and the qualitative
comparison appears justified.
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Next, let us return once again to Fig. 4.15, which shows temperature de-
pendent measurements on mixtures of deutero-polystyrene and poly(vinylme-
thyl-ether). Now, we can recognize the theoretical basis of the chosen repre-
sentation S−1 versus q2, namely as corresponding to Eq. (4.91). A change in
temperature with the resulting change in χ leads to a parallel shift of the curve
S−1(q2). The right part of the figure shows the limiting value S−1(q → 0) as
a function of temperature, directly expressing the T -dependence of χ accord-
ing to

1
Sc(q → 0)ṽc

=
2(χsp − χ)

ṽc
. (4.97)

For χ(T ) the observed straight line indicates a linear dependence

χsp − χ ∝ T−1 − T−1
sp . (4.98)

If we wish to account for both upper and lower miscibility gaps, we may write
in linear approximation

χsp − χ ∝ |T − Tsp| (4.99)

and thus expect a temperature dependence

S−1(0) ∝ |T − Tsp| . (4.100)

The data in Fig. 4.15 were obtained for a mixture with the critical concen-
tration and here the extrapolation to the point where Sc(0) diverges yielded
the critical temperature. We can now also see the procedure to be used for
a determination of the complete spinodal. One has to carry out temperature-
dependent measurements for a series of mixtures, which cover the whole range
of compositions. Extrapolations on the basis of Eq. (4.100), i.e., a continuation
of the temperature-dependent S−1

c (0) down to zero, yields the spinodal Tsp(φ),
as represented in a (φ, T )-phase diagram. Figure 4.20 shows, as an example,
a respective set of data that was obtained in another neutron scattering study
on mixtures of deuterated polystyrene and poly(vinylmethylether). The lin-
ear relation Eq. (4.100) appears verified and the corresponding extrapolations
then yield the spinodal depicted in the lower half of the figure.

The concentration fluctuations in a mixture are spatially correlated, with
the degree of coupling decreasing with the distance. We may inquire about
the correlation length of the fluctuations, i.e., the maximum distance over
which correlations remain essential. The answer follows from the scattering
function. Rewriting Eq. (4.94), we obtain for the small angle range a curve
with Lorentzian shape,

Sc =
1

2(χsp − χ)
1

1 + ξ2φq
2
. (4.101)
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Fig. 4.20. Spinodal of a mixture of d-PS (M = 5.93 ×105 g mol−1) and PVME
(M = 1.1 ×106 g mol−1) (bottom) as derived from the temperature dependence of
neutron scattering intensities in forward direction (top). Data from Han et al. [26]

The parameter ξ2φ is given by

ξ2φ =
χspR

2
φ

18(χsp − χ)
. (4.102)

ξφ represents the correlation length, as is revealed by a Fourier transformation
of Sc. It yields the correlation function for the concentration fluctuations in
direct space

〈δφ(0)δφ(r)〉 ∝
∫

exp(iqr)Sc(q)d3q (4.103)
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(if an explanation is necessary, look at the derivation of Eq. (A.17) in the
Appendix). The evaluation is straightforward and leads to

〈δφ(0)δφ(r)〉 ∝ 1
r

exp− r

ξφ
. (4.104)

As we can see, ξφ indeed describes the spatial extension of the correlations.
In all second order phase transitions, the correlation length of the fluctu-

ations of the order parameter diverges at the critical point. We also find this
behavior in our system, when making use of Eq. (4.100). For the temperature
dependence of ξφ we obtain the power law

ξφ ∝ (χsp − χ)−1/2 ∝ |T − Tsp|−1/2 . (4.105)

If an experiment is conducted for the critical composition φc, then one observes
the divergence of ξφ. For concentrations different from φc, the increase of ξφ
stops when the binodal is reached.

4.3.2 Decomposition Kinetics

After having crossed the spinodal, either through the critical point or some-
where else by a rapid quench that passes quickly through the nucleation and
growth range, unmixing sets in by the mechanism known as spinodal decom-
position. Measurements like the ones presented in Figs. 4.16 and 4.17 allow
detailed investigations. The experiments yield the time-dependent transient
scattering function, which we denote as Str(q, t).

Theory has succeeded to derive an equation of motion for Str(q, t),
which can be used for an analysis of the kinetics of structure evolution in the
early stages of development. It has the following form:

dStr(q, t)
dt

= −Γ (q)(Str(q, t) − Sc(q)) . (4.106)

Sc is defined by Eq. (4.91) and Γ (q) is a rate constant, determined by

Γ (q) = 2q2λ(q)S−1
c (q) . (4.107)

λ is a function that relates to the single chain dynamics in the mixture.
A derivation of this equation lies outside our scope, so that we can only

consider briefly its background and some implications. First of all, note that
Eq. (4.106) has the typical form of a first order relaxation equation, as it is
generally used to describe irreversible processes that bring a system from an
initial non-equilibrium state back to equilibrium. Therefore, if rather than
crossing the spinodal, the temperature jump is carried out within the one
phase region, causing a transition of the structure into a new state with higher
or lower concentration fluctuations, then the applicability of the equation is
unquestionable. Indeed, Eq. (4.106) is meant to cover this ‘normal’ case as
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well. Sc then represents the structure factor associated with the new equilib-
rium state. The different factors included in the equation for the relaxation
rate Γ are all conceivable. A quadratic term in q always shows up for particle
flows based on diffusive motions and these have to take place if a concentra-
tion wave is to alter its amplitude. Its background is of a twofold nature and
easily seen. Firstly, according to Fick’s law, flow velocities are proportional to
concentration gradients and thus proportional to q. Secondly, with increasing
wavelength, particles have to go over correspondingly larger distances and this
produces a second factor q. Both effects together give the characteristic q2.
The origin of the factor S−1

c is revealed by a look at Eqs. (4.74) and (4.82).
Equation (4.74) is formally equivalent to the energy (u)-displacement (x) re-
lation of a harmonic oscillator

u =
1
2
ax2 . (4.108)

We therefore may also address the factor in Eq. (4.74), which corresponds to
a as a ‘stiffness coefficient’, now related to the formation of a concentration
wave. Interestingly enough, exactly this stiffness coefficient shows up again in
Eq. (4.82) for S−1

c , apart from a trivial factor R̃T/ṽc. As S−1
c is determined by

this factor only, it can replace the stiffness coefficient in equations. Clearly, the
latter affects the relaxation rate and therefore has to be part of any equation
for Γ . Since our system shows close similarities to an overdamped harmonic
oscillator, both having the same equation of motion, we can also understand
the linear dependence of Γ on S−1

c . Hence in conclusion, for temperature
jumps within the one phase region, Eq. (4.106) looks perfectly reasonable. It
may appear less obvious that its validity is maintained if temperature jumps
transfer the system into the two-phase region so that spinodal decomposition
sets in. One could argue that, in view of the continuous character of critical
phase transitions, one could expect the same kinetic equations to hold on both
sides of the phase boundary, but a direct proof is certainly necessary and is
indeed provided by the theoretical treatments.

A change occurs in the meaning of Sc. For temperatures in the two-phase
region, Sc can no longer be identified with an equilibrium structure function.
Nevertheless, its definition by Eq. (4.91) is maintained. This implies that Sc

shows negative values at low q’s, being positive only for high q’s. Here we
are dealing with a virtual structure function, which is not a measurable
quantity but defined by an extrapolation procedure. In order to obtain Sc,
one has to determine the temperature dependence of χ in the homogeneous
phase, introduce it into Eq. (4.91) and use this equation also for temperatures
in the two-phase region.

The specific character of the spinodal decomposition can now be under-
stood as being a consequence of the peculiar q-dependence of the rate con-
stant Γ . Figure 4.21 presents results of a calculation applying Eq. (4.107). For
q’s below a critical value qc, S−1

c and therefore Γ (q) take on negative values.
A negative value of Γ indicates an amplitude growth, instead of the usual
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Fig. 4.21. Rate constants Γ determining the time-dependent changes of the struc-
ture function of a symmetric polymer mixture (RA = RB = R) after a temper-
ature jump from the homogeneous phase (χ < χsp) into the two-phase region
(χ > χsp) (continuous lines). Curves correspond to different distances from the
spinodal, (χ − χsp)/χsp = 0.1−0.4 and were obtained applying Eqs. (4.107), (4.91)
(τ = NR2φ(1 − φ)/6λ(0)). The dashed line gives the rate constants at the spin-
odal, the dotted line those associated with a temperature jump within the one phase
region to χ/χsp = 0.9

decay. The main feature in the curve is the maximum in the growth rate, −Γ ,
at a certain value qmax somewhere in the range

0 < qmax < qc .

Structure evolution is controlled by the concentration waves with wavevectors
around qmax. These constitute the dominant modes of structure formation and
determine the length scale of the pattern during the early stages of develop-
ment. Figure 4.21 also indicates the temperature dependence of qmax and the
largest associated growth rate. We see that the approach of the spinodal in
the two-phase region is accompanied by a decrease of qmax. Straightforward
analysis shows that the decrease obeys the power law

qmax ∝ (χ− χsp)1/2 ∝ |Tsp − T |1/2 . (4.109)
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Simultaneously, a slowing down of the growth rate occurs according to

−Γ (qmax) ∝ −q2maxS
−1
c (qmax) . (4.110)

Employing Eq. (4.94) we obtain

−Γ (qmax) ∝ −q2max

(
(χsp − χ) + χsp

R2
φ

18
q2max

)
∝ |Tsp − T |2 . (4.111)

This critical slowing down also shows up on the other side of the phase
boundary, when for a critical mixture the critical temperature is approached
from the one phase region. The kinetic parameter of interest, to be used on
both sides, is the collective diffusion coefficient, Dcoll, defined as

Dcoll = lim(q → 0)
Γ (q)
2q2

, (4.112)

and it is given by
Dcoll = λ(0)Sc(0)−1

. (4.113)

The attribute ‘collective’ is used in order to distinguish this parameter from
the self-diffusion coefficient of the individual chains, which relates to the
single chain dynamics as expressed by λ only, and therefore shows no critical
slowing down. We see that Dcoll takes on positive and negative values, crossing
zero at the spinodal

Dcoll ∝ χsp − χ ∝ ±|T − Tsp| . (4.114)

Equation (4.106) can be solved exactly and the solution is

Str(q, t) = Sc(q) + (Str(q, 0) − Sc(q)) exp[−Γ (q)t] . (4.115)

Figure 4.22 presents the results of model calculations performed on the basis
of this equation. We find that a spinodal decomposition leads to an intensity
increase for all q′s, with a maximum at a certain qmax. Growing in intensity, the
peak stays at a fixed position. In the long time limit we observe an exponential
law

Str(qmax) ∝ exp(−Γt) . (4.116)

As we can see, the model calculations reproduce the main features of the
experimental observations during the initial stages of spinodal decompositions.
In fact, the equations can be applied for a representation of experimental
data and we refer here once again to the measurement presented in Fig. 4.16.
Figure 4.23 shows a plot on the left-hand side according to

ln
Str(q, t) − Sc(q)
Str(q, 0) − Sc(q)

= ln
ΔS(q, t)
ΔS(q, 0)

= −Γ (q)t . (4.117)
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Fig. 4.22. Spinodal decomposition initiated by a jump from the one phase region
(Nχ = 1) to the two-phase region (Nχ = 2.5). Model calculation for a symmetric
polymer blend (NA = NB = N, RA = RB = R) on the basis of Eqs. (4.115), (4.107),
(4.91). The numbers represent units of time [27]

The virtual structure function Sc(q) has been constructed by a linear ex-
trapolation of the equilibrium values in the homogeneous region shown in
Fig. 4.15; the change from positive to negative values occurs for qc =
2.9 ×10−2 nm−1. For all q′s we find exponential time dependencies in agree-
ment with Eq. (4.115). The derived rate constants Γ are given by the lowest
curve (134.1 ◦C) on the right-hand side. One has negative values for q < qc and
in this range a maximum in the growth rate. In addition, the right-hand figure
includes the results of two other experiments, one conducted at T = 133 ◦C,
even closer to Tc, and the other at T = 131.85 ◦C, which is in the one phase
region. One observes a shift of qmax towards zero for T → Tc and on both
sides of Tc a critical slowing down for Dcoll ∝ d2Γ/dq2(q = 0), which is in
full agreement with the theoretical predictions.

Late Stage Kinetics

The described initial stages of spinodal decomposition constitute the entrance
process, thereby setting the basic structure characteristics and the primary
length and time scales. They represent a first part only, coming to an end
when the concentration waves produce, in summary, variations δφ, which al-
ready approach the concentrations of the two equilibrium phases. Then the
exponential increase of the amplitudes cannot continue further and the kinet-
ics must change. A first natural effect is a retardation of the growth rate, and
a second is a shift of qmax towards lower values. An example for this generally
observed behavior was presented in Fig. 4.17 with the light scattering curves
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Fig. 4.23. Same system as in Figs. 4.15 and 4.16 [22]. Plot demonstrating an ex-
ponential time dependence of the transient scattering intensities at T = 134.1 ◦C
for different q′s (1.79 ×10−2; 2.2 ×10−2; 2.4 ×10−2; 2.6 ×10−2; 3.62 ×10−2 nm−1)
(left). Derived rate constants Γ (q) for growth (Γ < 0) or decay (Γ > 0), together
with the results of equivalent experiments for T = 133 ◦C (> Tc = 131.9 ◦C) and
T = 131.85 ◦C (< Tc) (right)

obtained for a polystyrene/poly(vinylmethylether) mixture. Theory has dealt
with these first changes by a generalization of the linear equations valid for
the initial stages and accounting for the saturation effects introduced by the
bounds. Treatments are rather involved and we cannot present them here. In-
terestingly enough, after this second period, there follows a third part where
behavior again becomes simpler. This is the regime of the late stage kinet-
ics and we will briefly describe some major observations in this section.

The micrograph on the right-hand side of Fig. 4.10 was obtained during
this late stage of structure evolution and represents an instructive example.
The interconnected domains are set up by the two equilibrium phases. The
interfaces are well-established and it can be assumed that their microscopic
structure, as described by the concentration profile of the transition zone, has
also reached the equilibrium form. Further observations for the same system,
a mixture of polystyrene and partially brominated polystyrene, are included
in Fig. 4.24. The three micrographs were obtained at somewhat earlier times.
Although the observed structures are finer and therefore less well-resolved,
it seems clear that they are identical in their general character. What we
see here is a coarsening process and, importantly, the observations suggest
that all these transient structures which are passed through during the late
stages of unmixing are similar to each other and differ only in length scale. It is
possible to checks for the suspected similarity by light scattering experiments.
Figure 4.25 depicts, as an example, scattering curves obtained for a mixture
of polybutadiene (PB) and polyisoprene (PI).
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Fig. 4.24. Structure development during the late stages of spinodal decomposition
observed for a PS/PBrxS-(1:1) mixture. Micrographs were obtained during anneal-
ing at 200 ◦C (< Tc = 220 ◦C) for 1 min (left), 3 min (center) and 10 min (right) [21]

Here a spinodal decomposition can be initiated by a temperature jump
into an upper miscibility gap. Similarity implies that in a representation with
reduced variables, plotting log(I/Imax) versus log(q/qmax), curves measured
at different times must become identical. As we can see, this is indeed true. We
notice in addition that even the structures observed at different temperatures
are similar to each other. We thus have a most simple situation that allows
us to describe the kinetics of unmixing by the time dependence of just one
parameter. Possible choices are either q−1

max, representing a typical length in
the structure, or the interfacial area per unit volume, denoted by O12. In fact,
both quantities are related. Two-phase systems in general have two primary
structure parameters, namely the volume fraction of one phase, φ, and O12.
As explained in Sect. A.4.2 in the Appendix, from φ and O12 one can derive
a characteristic length of the structure, lc, as

lc =
2φ(1 − φ)

O12
(4.118)

(see Eq. (A.161)). lc and q−1
max have equal orders of magnitude and are pro-

portional to each other

lc = const q−1
max , (4.119)

the proportionality constant depending on the structure type. Clearly, when
the formation of the equilibrium phases is completed for the first time, φ is
fixed and does not change any more. Hence from this point on, throughout the
late stages of unmixing, one must find a strict inverse proportionality between
lc or q−1

max and O12. O12 can be directly derived from the scattering curve us-
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Fig. 4.25. Light scattering curves obtained for a PB (M = 5.8 ×105 g mol−1)/PI
(M = 1×105 g mol−1)-(1:1) mixture during the late stage of spinodal decomposition
at the indicated temperatures (top; curves for 45 ◦C and 60 ◦C are shifted by con-
stant amounts in vertical direction). Each curve contains measurements for different
times and these superpose exactly. Time dependence of the interfacial area per unit
volume, O12, in agreement with a power law O12 ∝ t−1, as indicated by the straight
line with slope −1 (bottom). Data from Takenaka and Hashimoto [28]

ing Porod’s law (Eq. (A.159)), which states that the scattering function of
a two-phase system generally shows an asymptotic behavior according to the
power law

S(q → ∞) ∝ O12

q4
. (4.120)
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Fig. 4.26. Macroscopic domains in a two-phase PS/PBrxS-(1:1) mixture, formed
after 2 h of annealing [21]

The curves in Fig. 4.25 are in agreement with this law, which can therefore
be employed for a determination of O12. The time dependence of O12 is given
in the lower half of Fig. 4.25. Results indicate a decrease of O12 inverse to t,

O12 ∝ t−1 . (4.121)

Here, we cannot discuss the theories developed for the late stage kinetics,
but the physical background must be mentioned, since it is basically different
from the initial stages discussed above. Whereas the kinetics in the initial
stages is based on diffusive processes only, the late stages are controlled by
convective flow. The driving force originates from the excess free energy of the
interfaces. The natural tendency is a reduction of O12 and this is achieved by
a merging of smaller domains into larger ones.

The latter mechanism remains effective up to the end; however, the struc-
ture characteristics must finally change as the similarity property cannot be
maintained. The very end is a macroscopic phase separation, as shown, for
example, in Fig. 4.26 and clearly, the final structure is always of the same type
independent of whether phase separation has started by spinodal decomposi-
tion or by nucleation and growth.

4.4 Block Copolymer Phases

If two different polymeric species are coupled together by chemical links, one
obtains block copolymers. These materials possess peculiar properties and we
will consider them in this section.

In the discussion of the behavior of binary polymer mixtures, we learned
that, in the majority of cases, they separate into two phases. As the linkages
in block copolymers inhibit such a macroscopic phase separation, one may
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Fig. 4.27. Different classes of microphase separated structures in block copolymers,
as exemplified by PS-block -PI. The numbers give the phase boundaries in terms of
the volume fraction of the PS blocks. Figure taken from a review article by Bates
and Frederickson [29]

wonder how these systems react under comparable conditions. Figure 4.27
gives the answer with a drawing: The A’s and B’s still segregate but the
domains have only mesoscopic dimensions corresponding to the sizes of the
single blocks. In addition, as all domains have a uniform size, they can be
arranged in regular manner. As a result ordered mesoscopic lattices emerge.
In the figure it is also indicated that this microphase separation leads to
different classes of structures in dependence on the ratio between the degrees
of polymerization of the A’s and B’s. For NA � NB spherical inclusions of
A in a B-matrix are formed and they set up a body-centered cubic lattice.
For larger values NA, but still NA < NB, the A-domains have a cylindrical
shape and are arranged in a hexagonal lattice. Layered lattices form under
essentially symmetrical conditions, i.e., NA ≈ NB. Then, for NA > NB, the
phases are inverted and the A-blocks now constitute the matrix.

In addition to these lattices composed of spheres, cylinders and layers,
periodic structures occur under special conditions where both phases are con-
tinuous and interpenetrate each other. These bicontinuous gyroid structures
exist only in a narrow range of values NA/NB, between the regimes of the
cylindrical and lamellar structures and, as it appears, only when the repul-
sion forces between the A’s and the B’s are not too strong. To be sure, the
figure depicts the structures observed for polystyrene-block -polyisoprene, but
these are quite typical. Spherical, cylindrical and layer-like domains are gen-
erally observed in all block copolymers. Less is known about how general the
bicontinuous special types like the gyroid lattices are.

The majority of synthesized compounds are di-block copolymers com-
posed of one A-chain and one B-chain; however, tri-blocks and multiblocks,
comprising an arbitrary number of A-chains and B-chains, can be prepared
as well. One can also proceed one step further and build up multiblocks that
incorporate more than two species, thus again increasing the variability. The
question may arise as to whether all these modifications result in novel struc-
tures. In fact, this is not the case. The findings give the impression that at
least all block copolymers composed of two species exhibit qualitatively sim-
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Fig. 4.28. SAXS curves measured for a series of PS-block -PI with different molar
masses in the microphase separated state: (a) M = 2.1×104 g mol−1, φ(PS) = 0.53;
(b) M = 3.1 ×104 g mol−1, φ(PS) = 0.40; (c) M = 4.9 ×104 g mol−1, φ(PS) =
0.45 (left). Transmission electron micrographs obtained using ultra-thin sections of
specimen stained with OsO4 (right). Structures belong to the layer regime. Data
from Hashimoto et al. [30]

ilar phase behaviors. Changes then occur for ternary systems. For the latter,
the observed structures still possess periodic orders, but the lattices are more
complex. Here, we shall only be concerned with the simplest systems, the
di-block copolymers.

Suitable methods for an analysis of block copolymer structures are electron
microscopy and small angle X-ray scattering (SAXS) experiments. Figure 4.28
gives an example and on the left-hand side presents scattering curves obtained
for a series of polystyrene-block -polyisoprenes where both blocks had similar
molar mass. Structures belong to the layer regime and one correspondingly
observes series of equidistant Bragg reflections. The right-hand side depicts
micrographs obtained for the same samples in an electron microscope using
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ultra-thin sections of specimens where the polyisoprene blocks were stained
with OsO4. The layered structure is clearly visible and one notices an increase
of the layer thicknesses with the molar masses of the blocks.

In binary polymer mixtures, under favorable conditions one finds homo-
geneous phases. They either arise if the forces between unlike monomers are
attractive or, generally, if the molar masses are sufficiently low. Block copoly-
mers behave similarly and can also have a homogeneous phase. It actually has
a larger stability range than the corresponding binary mixture. Recall that for
a symmetric mixture (NA = NB) the two-phase region begins at (Eq. (4.35))

(χNA)c = 2 .

If a symmetric di-block copolymer is formed from the same A- and B-chains,
the transition between the homogeneous phase and the microphase separated
state takes place at a higher χ, namely for

(χNA)c ≈ 5 . (4.122)

The complete phase diagram of a block copolymer is displayed in Fig. 4.29 in
a schematic representation. Variables are the volume fraction of the A-blocks

φA =
NA

NA +NB
(4.123)

Fig. 4.29. Phase diagram of a di-block copolymer in a schematic representation.
The curve describes the points of transition between the homogeneous phase and
the microphase separated states. The ordered states are split into different classes
as indicated by the dashed boundary lines. They are only shown here for the region
of higher values of χNAB away from the phase transition line
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and the product χNAB, where NAB describes the total degree of polymeriza-
tion

NAB = NA +NB .

The transition line separating the homogeneous phase from the various mi-
crophase separated structures has an appearance similar to the binodal of
a polymer mixture. There is, however, a basic difference: In the block copoly-
mer case, we are dealing with a one component system rather than a binary
mixture. The line therefore relates to a phase transition rather than to a mis-
cibility gap. It should also be noted that, in contrast to the binodal of a mix-
ture, the transition line tells us nothing about the internal composition of the
microphases. In principle, these could be mixed states; however, with the ex-
ception of situations near the transition line, compositions are mostly close to
pure A- or B-states. The schematic drawing indicates only the structures aris-
ing under the conditions of a strong segregation, χNAB � 10, where solely
lattices of spheres, cylinders and layers are found. The situation for a weak
segregation with χNAB just above the critical value is more complicated.
Here, also the bicontinuous structures are found and subtle features decide
about their stability relative to the three major forms.

4.4.1 Layered Structures

Each of the ordered structures represents under the respective conditions the
state with the lowest Gibbs free energy. Calculations of the Gibbs free energies
and comparisons between the various lattices and the homogeneous phase can
therefore provide an understanding of the phase diagram. In addition, they
make it possible to determine the structure parameters.

Theoretical analyses were carried out by Meier and Helfand. A full presen-
tation lies outside our possibilities but in order to gain at least an impression
of the approaches, we will pick out the layered structures as an example and
discuss the equilibrium conditions. The main result will be a power law that
formulates the dependence of the layer thicknesses on the degree of polymer-
ization of the blocks.

If we think about the structural changes that accompany a transition from
the homogeneous phase to an ordered layer structure, we find three contribu-
tions to the change in the Gibbs free energy

Δgp = Δhp − TΔsp,if − TΔsp,conf . (4.124)

There is a change in enthalpy, a change in entropy following from the arrange-
ment of the junction points along the interfaces and another change in entropy
resulting from altered chain conformations. We write the equation in terms of
quantities referring to one di-block polymer.

The driving force for the transitions comes from the enthalpic part. In
the usual case of unfavorable AB-interactions, i.e., χ > 0, there is a gain
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in enthalpy on unmixing. We assume a maximum gain, achieved when we
have a random distribution of the monomers in the homogeneous phase and
a perfect segregation in the lamellar phase. Then the enthalpy change per
polymer, Δhp, is given by

Δhp = −kTχNABφA(1 − φA) + Δhp,if . (4.125)

The first term follows directly from Eq. (4.24). The second term, Δhp,if , ac-
counts for an excess enthalpy that is contributed by the interfaces. To see the
background, bear in mind that interfaces always possess a finite thickness,
typically in the order of one to several nm. Within this transition layer the
A’s and B’s remain mixed, which leads to an increase in enthalpy proportional
to χ and to the number of structure units in the transition layer. Let the thick-
ness of the transition layer be dt and the interface area per polymer op, then
we may write

Δhp,if � kTχ
opdt

vc
. (4.126)

vc again is the volume of the structure unit, commonly chosen for both the
A- and B-chains.

The two entropic parts both work in the opposite direction. There is first
the loss in entropy, which results from the confinement of the junction points,
being localized in the transition layer. For a layered phase with layer thick-
nesses dA and dB, and therefore a period

dAB = dA + dB , (4.127)

Δsp,if may be estimated using a standard equation of statistical thermody-
namics

Δsp,if � k ln
dt

dA + dB
. (4.128)

The second entropic contribution, Δsp,conf , accounts for a decrease in entropy,
which follows from a change in the chain conformations. The Gaussian confor-
mational distribution found in the homogeneous phase cannot be maintained
in the microphase separated state. Formation of a layer structure leads, for
steric reasons, necessarily to a chain stretching, which in turn results in a loss
in entropy. For a qualitative description we employ the previous Eq. (2.93),

Δsp,conf � −k
(
R

R0

)2

, (4.129)

where R and R0 are now the end-to-end distances of the block copolymer in
the layered and the homogeneous phase, respectively. Assuming that chain
sizes and layer spacings are linearly related, by

R = βdAB , (4.130)
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the equation converts into

Δsp,conf � −kβ2

(
dAB

R0

)2

. (4.131)

We can now search for the equilibrium. First note that op and dAB are
related by the obvious equation

opdAB = NABvc . (4.132)

We therefore have only one independent variable, for example op. Using all
the above expressions, we obtain for the change in the Gibbs free enthalpy

1
kT

Δgp = −χNABφA(1 − φA) + χopdtv
−1
c + ln

dt

dAB
+ β2

(
dAB

R0

)2

. (4.133)

If we neglect the slowly varying logarithmic term, we obtain for the derivative

1
kT

dΔgp
dop

= χ
dt

vc
− 2β2N

2
ABv

2
c

R2
0

1
o3p

. (4.134)

The equilibrium value of op follows as

o3p ∝ 2
v3
c

R2
0dtχ

N2
AB . (4.135)

With
R2

0 ∝ v2/3
c NAB (4.136)

we find

o3p ∝ v
7/3
c

dtχ
NAB . (4.137)

Replacement of op by dAB gives us the searched-for result

d3
AB =

N3
ABv

3
c

o3p
∝ χdtv

2/3
c N2

AB . (4.138)

How does this result compare with experiments? Figure 4.30 depicts the data
obtained for the samples of Fig. 4.28. Indeed, the agreement is perfect. The
slope of the line in the double logarithmic plot exactly equals the predicted
exponent 2/3.

4.4.2 Pretransitional Phenomena

A characteristic property of polymer mixtures in the homogeneous phase is
the increase of the concentration fluctuations associated with an approaching
of the point of unmixing. A similar behavior is found for the homogeneous
phase of block copolymers and a first example is given in Fig. 4.31. The figure
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Fig. 4.30. Set of samples of Fig. 4.28. Molecular weight dependence of the layer
spacing dAB

Fig. 4.31. SAXS curves measured for a polystyrene-block -polyisoprene (M = 1.64×
104 g mol−1, φ(PS) = 0.22) in the homogeneous phase. The dotted line on the base
indicates the temperature dependence of the peak position [31]

shows scattering functions measured for a PS-block -PI under variation of the
temperature. The temperature of the transition to the microphase separated
state is located around 85 ◦C, just outside the temperature range of the plot.
The curves exhibit a peak, with an intensity that strongly increases when the
temperature moves towards the transition point.

The feature in common with the polymer mixtures is the intensity in-
crease; however, we can also see a characteristic difference: The maximum of
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the scattering intensity and the largest increase are now found for a finite
scattering vector qmax, rather than at q = 0. As scattering curves display
the squared amplitudes of wave-like concentration fluctuations, the observa-
tion tells us that concentration fluctuations with wavevectors in the range
|k| ≈ qmax are always large compared to all the others and show a partic-
ularly strong increase on approaching the phase transition. What do these
observations mean? Clearly, they remind us of the pretransitional phenom-
ena observed for second order phase transitions. There, the approach of the
transition point is always associated with an unusual increase of certain fluc-
tuations. Hence as it appears, one also finds properties in the homogeneous
phase that have much in common with the behavior of critical systems, not
only for polymer mixtures, but also for block copolymers.

The general shape of the scattering curve, showing a maximum at some
qmax and going to zero for q → 0 is conceivable. As explained in Sect. A.3.2
of the Appendix, the forward scattering, S(q → 0), always relates to the fluc-
tuation of the number of particles in a fixed macroscopic volume. In our case,
this refers to both the A’s and the B’s. The strict coupling between A- and
B-chains in the block copolymers completely suppresses number fluctuations
on length scales that are large compared to the size of the block copolymer.
The limiting behavior of the scattering function, S(q → 0) → 0, reflects just
this fact. On the other hand, for large q’s, scattering of a block copolymer
and of the corresponding polymer mixture composed of the decoupled blocks,
must be identical because here only the internal correlations within the A-
and B-chains are of importance. As a consequence, asymptotically the scat-
tering law of ideal chains, S(q) ∝ 1/q2, shows up again. Hence, one expects
an increase in the scattering intensity coming down from large q’s and when
emanating from q = 0 as well. Both increases together produce a peak, located
at a certain finite qmax.

The increase of the intensity with decreasing temperature reflects a grow-
ing tendency for associations of the junction points accompanied by some
short-ranged segregation. As long as this tendency is not too strong, this
could possibly occur without affecting the chain conformations, i.e., chains
could still maintain Gaussian properties. If one adopts this view, then the
scattering function can be calculated explicitly. Leibler and others derived
the following expression for the scattering function per structure unit Sc:

1
Sc(q)

=
1

S0
c (q)

− 2χ (4.139)

with S0
c (q), the scattering function in the athermal case, given by

S0
c (q)NABSD

(
R2

0q
2
)

= φ(1 − φ)NANBSD

(
R2

Aq
2
)
SD

(
R2

Bq
2
)

−1
4
[
NABSD

(
R2

0q
2
)− φNASD

(
R2

Aq
2
)

−(1 − φ)NBSD

(
R2

Bq
2
)]2

. (4.140)
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R2
0 denotes the mean squared end-to-end distance of the block copolymer,

given by
R2

0 = R2
A +R2

B . (4.141)

With regard to the effect of χ, Eq. (4.139) is equivalent to Eq. (4.91). Indeed,
the physical background of both equations is similar and they are obtained
in an equal manner by an application of the random phase approximation
(RPA). The interested reader can find the derivation in Sect. A.4.1 in the
Appendix.

Importantly, Eq. (4.139) describes the effect of χ directly. It becomes very
clear if one plots the inverse scattering function. Then changes in χ result
in parallel shifts of the curves only. Figure 4.32 depicts the results of model
calculations for a block copolymer with a volume fraction of polystyrene blocks
of φ = 0.22, in correspondence to the sample of Fig. 4.31. The curves were
obtained for the indicated values of the product χNAB.

Obviously the calculations represent the main features correctly: They
yield a peak at a certain qmax, which grows in intensity with increasing χ, i.e.,
with decreasing temperature. The important result comes up for χNAB = 21.4.
For this value we find a diverging intensity at the position of the peak,
S(qmax) → ∞. This is exactly the signature of a critical point. We thus real-
ize that the RPA equation formulates a critical transition with a continuous
passage from the homogeneous to the ordered phase. When dealing with crit-
ical phenomena, it is always important to see the order parameter. Here it is

Fig. 4.32. Theoretical scattering functions of a block copolymer with φ = 0.22,
calculated for the indicated values of χNAB



4.4 Block Copolymer Phases 161

Fig. 4.33. SAXS curves measured for a PS-block -PI (φ(PS) = 0.44, M = 1.64 ×
104 g mol−1) in the temperature range of the microphase separation. The transition
occurs at Tt = 362 K. Data from Stühn et al. [32]

of a peculiar nature. According to the observations it is associated with the
amplitudes of the concentration waves with |k| = qmax.

For φ = 0.22, the critical point is reached for NABχ = 21.4. With the aid
of the RPA result, Eq. (4.140), one can calculate the critical values for all φ’s.
In particular, for a symmetric block copolymer one obtains

χNAB = 10.4 .

This is the lowest possible value and the one mentioned in Eq. (4.122).
In polymer mixtures, one calls the curve of points in the phase diagram,

where S(q = 0) apparently diverges, the spinodal. One can use the same
notion for block copolymers and determine this curve in an equal manner by
a linear extrapolation of scattering data measured in the homogeneous phase.
We again denote this spinodal by Tsp(φ).

Regarding all these findings, one could speculate that the microphase sep-
aration might take place as a critical phase transition in the strict sense,
at least for block copolymers with the critical composition associated with
the lowest transition temperature. In fact, experiments that pass over the
phase transition show that this is not true and they also point to other lim-
itations of the RPA treatment. Figure 4.33 presents scattering curves ob-
tained for a polystyrene-block -polyisoprene near to the critical composition
(φ(PS) = 0.44) in a temperature run through the transition point. As we
can see, the transition is not continuous up to the end but is associated with
the sudden appearance of two Bragg reflections. Hence, although the global
behavior is dominated by the steady growth of the concentration fluctuations
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typical for a critical behavior, finally there is a discontinuous step, which
converts this transition into one of weakly first order.

There exists another weak point in the RPA equation. As a basic assump-
tion, it implies that chains in the homogeneous phase maintain Gaussian sta-
tistical properties up to the transition point. The reality is different and this
is not at all surprising: An increasing tendency for an association of the junc-
tion points also necessarily induces a stretching of chains, for the same steric
reasons that in the microphase separated state lead to the specific power law
Eq. (4.138). This tendency is shown by the data presented in Fig. 4.33 and,
even more clearly, by the results depicted in Fig. 4.31. In both cases, qmax

shifts to smaller values with decreasing temperature, as is indicative for chain
stretching.

The details of the transition are interesting. Figure 4.34 depicts the tem-
perature dependence of the inverse peak intensity I−1 (qmax).

Equation (4.139) predicts a dependence

S(qmax)−1 ∝ χsp − χ , (4.142)

or, assuming a purely enthalpic χ with χ ∝ 1/T (Eq. (4.22)),

S(qmax)−1 ∝ T−1
sp − T−1 . (4.143)

The findings, however, are different. We can see that the data follow a linear
law only for temperatures further away from the transition point and then

Fig. 4.34. Measurements shown in Fig. 4.33: Temperature dependence of the re-
ciprocal peak intensity, showing deviations from the RPA predictions. The linear
extrapolation determines the spinodal temperature
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deviate towards higher values. The transition is retarded and does not take
place until a temperature 35 K below the spinodal point is reached. Accord-
ing to theoretical explanations, which we cannot further elaborate on here,
the phenomenon is due to a lowering of the Gibbs free energy, caused by
the temporary short-range order associated with the fluctuations. The short-
range order implies local segregations and thus a reduction of the number of
AB-contacts, which in turn lowers the Gibbs free energy. We came across this
effect earlier in the discussion of the causes of the energy lowering observed in
computer simulations of low molar mass mixtures. Remember that there the
effect exists only for low enough molar masses, since for high molar masses
a short-range ordering becomes impossible. The same prerequisite holds for
block copolymers and this is also formulated by the theories.

The short-range ordering is even more pronounced for asymmetric block-
copolymers with φA � φB, which form in the microphase separated state

Fig. 4.35. PS-block -PI (φ(PS) = 0.11): (a) Scattering curves referring to the homo-
geneously disordered state (T = 458 K), (b) the state of liquid-like order between
spherical domains (T = 413 K), and (c) the bcc ordered state (T = 318 K). The
continuous lines are fits of structural models for the different states of order. From
Schwab and Stühn [33]
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a bcc-lattice of spheres. The fluctuation-affected temperature range between
Tsp and Tt is even larger and the short-range ordering here shows up quite
clearly in the scattering curves. Figure 4.35(b) presents as an example the scat-
tering curve obtained for polystyrene-block -polyisoprene (φ(PS) = 0.11) at
T = 413K (Tsp = 450K, Tt = 393K) in a comparison with scattering curves
measured above Tsp in the homogeneous phase (a) and in the microphase sep-
arated state respectively (c). Curve (c) shows the Bragg reflections of a bcc-
lattice and the data points in (a) are perfectly reproduced by the RPA equa-
tion. Interestingly, the data points in (b) are well-represented by a curve calcu-
lated for the scattering of hard spheres with liquid-like ordering; the continu-
ous line drawn through the data points was obtained using the Perkus–Yevick
theory, which deals with such liquids. Hence, the ordering during cooling of
this block copolymer proceeds in two steps, beginning with the formation of
spherical domains that are then placed at the positions of a lattice. The second
step takes place when the repulsive interaction reaches a critical value.
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