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Particle anisotropy tunes emergent behavior
in active colloidal systems†

Shannon E. Moran, a Isaac R. Bruss, a Philipp W. A. Schönhöfer a and
Sharon C. Glotzer *ab

Studies of active particle systems have demonstrated that particle anisotropy can impact the collective

behavior of a system, motivating a systematic study. Here, we report a systematic computational

investigation of the role of anisotropy in shape and active force director on the collective behavior of a

two-dimensional active colloidal system. We find that shape and force anisotropy can combine to

produce critical densities both lower and higher than those of disks. We demonstrate that changing

particle anisotropy tunes what we define as a ‘‘collision efficiency’’ of inter-particle collisions in leading

to motility-induced phase separation (MIPS) of the system. We use this efficiency to determine the

relative critical density across systems. Additionally, we observe that local structure in phase-separated

clusters is the same as the particle’s equilibrium densest packing, suggesting a general connection

between equilibrium behavior and non-equilibrium cluster structure of self-propelled anisotropic

particles. In engineering applications for active colloidal systems, shape-controlled steric interactions

such as those described here may offer a simple route for tailoring emergent behaviors.

1 Introduction

Active matter is a field of rapidly expanding interest and
research activity over the last decade.1–4 Vicsek’s pioneering
work showed a collection of point particles with alignment
rules displays rich collective behavior, including phase
separation.5 However, theoretical work describing the collective
behavior of bacteria demonstrates that phase separation behav-
ior is not reliant upon explicit alignment rules.6 In a pheno-
menon known as ‘‘motility-induced phase separation’’ (MIPS),
systems of disks were found to phase separate as a consequence
of density-dependent particle velocity.7 This phase separation
behavior of isotropic particles has been explained using a
variety of models, including: athermal phase separation,8 the
kinetic steady-state balancing of particle fluxes,9,10 classical
nucleation,11,12 and the balancing of collision and ballistic
timescales.13 Importantly, phase separation predicted by theory
has been observed in experiments, which confirm the activity-
dependent formation of clusters and ‘‘active crystals’’.14–16

However, in real-world systems particles (e.g. bacteria) are
rarely isotropic in shape. Thus, one thrust in the active matter
community has focused on understanding how particle aniso-
tropy will change the behavior theoretically predicted for

systems of isotropic particles. In a simple anisotropic model,
simulations of rods with varying aspect ratios and densities
display a rich variety of collective motion, such as laning,
swarming, and jamming.17–19 Additionally, simply changing
the direction of the driving force relative to a fixed particle
shape (e.g. ‘‘rough’’ triangles) drastically alters the resulting
collective behavior and onset of phase separation.20,21

Few general mechanisms have been proposed for the vary-
ing impacts of particle anisotropy on collective behavior. Active
squares display a steady state ‘‘oscillatory’’ regime in which
large clusters break up and re-form.22 A combination of activity
and molecule shape has shown to enhance polymerization.23

Mixtures of gear-shaped ‘‘spinners’’ with opposite rotational
driving forces phase separate through competing steric
interactions.24–26 In systems of active ‘‘dumbbells’’, particle
anisotropy allows for the stabilization of cluster rotation.27,28

This cluster rotation is also observed in active squares,22 but is
notably absent in clusters of frictionless isotropic particles.

From these studies, we can see a general description of the
impact of particle shape anisotropy on emergent system beha-
vior is needed. Such a description would allow us to tailor the
form and onset of critical behavior in active systems through
‘‘implicit’’ steric means, rather than explicit interaction rules.

In this paper we aim to develop a generalized description of
the role of active particle anisotropy through direct comparison
to frictionless active disks (i.e. isotropic particles). We study a
family of translationally self-propelled 2D polygons (of side
number 3 r n r 8) with force director anisotropy implemented
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as shown in Fig. 1. This choice of shapes systematically extends
previous studies on triangles with inertia,20 triangles with
friction,21 and squares.22 Full simulation parameters and addi-
tional details can be found in Section 2.

We show that the onset of phase separation at a critical
density f* is highly dependent on the shape of the particle
given a constant Péclet (Pe) number, where Pe is a measure of
active (advective) to diffusive motion. In our system, we observe
phase separation at densities as low as f* = 0.01 in vertex-
forward 6-gons, or as high as f* = 0.37 in edge-forward 3-gons-
both below and above f* of disks. Interestingly, we find that
the direction of the force director is sufficient for changing the
f* for a given shape, but not for changing the relative phase
separation onset between different shapes. Specifically, edge-
forward active particles have higher f* than their vertex-forward
counterparts. Additionally, the internal structure of the phase-
separated cluster is primarily determined by the particle shape
and resembles each shape’s equilibrium densest packing. This
resemblence suggests a link between structure and critical density
not yet explored in active systems.

In addition to this systematic study, this work’s contribution
to the study of anisotropic active matter is the introduction of
a ‘‘collision efficiency’’ measure. We find that systems with the
lowest critical densities are also those that maximize particle
deceleration per unit increase in inter-particle collision pressure,
Pcoll. That is, some shapes can more efficiently convert particle
collisions into decreases in particle velocity, v, leading to phase
separation. This allows us to quantitatively attribute changes to f*

in systems of shapes versus disks to steric impacts on collisions,
and directly shows that we can tune critical behavior of active
systems by tuning the nature of the inter-particle collision
dynamics.

We note that 3- and 4-gons (the only two previously studied
active polygons) behave fundamentally differently from other
polygons. We attribute this to the slip planes present in their
densest packings. As these shapes have been used as model
systems for a number of previous studies,20–22 we show why
such results should not be generalized to systems that do not
have slip planes.

2 Methods
2.1 Model and dynamics

The model particles used in this study are shown in Fig. 1.
We study a family of regular polygons of side number 3 r n r 8.
We set particle side length a to maintain a constant side-to-corner

perimeter ratio, z, to z ¼

P
s

as

2prWCA
¼ 9 over all sides s. Here, 2prWCA

is the corner rounding introduced by the frictionless, purely
repulsive, excluded volume Weeks–Chandler–Anderson (WCA)
potential of interaction length rWCA, which we set equal to 1 for
all shapes under study to keep the interaction length consistent.
The WCA potential is a shifted Lennard-Jones potential, shifted to
zero and cut off at its minimum. Mathematically, the interaction
between particles i and j is constructed as U(rij) = 4e[(sWCA/rij)

12 �
(sWCA/rij])

6] + e for r r rcut and 0 for r 4 rcut, where rcut = 2(1/6)sWCA

and sWCA = 2rWCA.29

We know from equilibrium studies30–32 and other works on
active anisotropic particle systems22 that self assembly and
critical behavior is sensitive to the effective ‘‘roundness’’ of
particle vertices. As the repulsive interaction introduces a slight
‘‘rounding’’ to the shapes, maintaining a constant z over all
simulations ensures our systems can be compared with one
another. This value z = 9 was chosen to balance shape fidelity
(less rounding) and simulation feasibility with computational
demands.

We also explore anisotropy in the constant active force
director (Fi

A = v0n̂A
i (cos yi, sin yi)) applied to each particle i. For

a given simulation, we set n̂i to be either perpendicular to a side
of the particle (edge-forward) or bisecting a vertex (vertex-
forward), as shown in Fig. 1c. The active force director n̂i is
initialized randomly for each particle from the set of possible
vertex-forward or edge-forward directions for each simulation,
and is locked in the particle’s frame of reference. The active
force direction changes only with particle rotation due to
thermal fluctuations and collisions.

We took further care to ensure consistent anisotropy
through our choice of active force magnitude and temperature.
Our systems were run at Péclet (Pe) number of Pe = 150, where
Pe is a measure of active (advective) to diffusive motion

(Pe ¼ v0s
kBT

, where s is the diameter of an equi-area disk for a

given shape). In this Pe regime, we can treat the active driving

Fig. 1 (a) Shape anisotropy is studied with a family of regular polygons of
side length a. Here we show a pentagon as example. Particles interact
through a purely repulsive WCA potential characterized by rWCA. Full
specification can be found in Section 2. (b) Simulation timescales
are characterized by t, the time for a particle to ballistically travel its
characteristic length, s, calculated as the diameter of an equiarea (A) disk.
(c) Force anisotropy is defined by the active force director, n̂A, which
propels the shape either edge- or vertex-forward. A key feature of this
system is that collisions of anisotropic particles can sustain translational
and/or rotational motion. Illustrative collisions are provided for each force
director.
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force as the primary contributor to particle motion over thermal
fluctuations. By setting the temperature of the thermal bath

governing the fluctuations to kBT ¼
v0s
Pe

and the magnitude of

the active driving force v0 = 1, we ensure that the interaction
distance between interacting particles remains constant for all
simulations.

Particle motion was solved for using the Langevin equations
of motion.

mi _vi ¼
X
j

FEx
ij � g � vi þ FA

i þ FR
i (1)

mi
€yi ¼

X
j

TEx
ij � gR � xi þ

ffiffiffiffiffiffiffiffiffiffi
2DR

p
ZðtÞRi (2)

Mass (mi) is set to 1 � 10�2 such that the dynamics closely
approximate the Brownian limit in line with the expected
dynamics of bacteria and colloidal-scale particles. The forces
and torques due to excluded volume (FEx

ij and TEx
ij ) were calcu-

lated using a discrete element method,33 which calculates
interparticle interactions between a point on one particle
perimeter and a point on another particle’s perimeter. Transla-
tional and rotational velocities are given by vi and oi, respec-
tively. We parametrized the implicit solvent via the

translational drag coefficient g = 1 and gR ¼
s3g
3

per the

Stokes–Einstein relationship. These parameter choices corre-
spond to the overdamped, diffusive limit. Our model does not
account for solvent-mediated hydrodynamic interactions
between active particles. Although there is a small inertial
component in our model, we confirmed that it is not critical
for any of the observed behavior. The last term in both
equations accounts for thermal fluctuations. Noise is included

via Gaussian random forces FR
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gkBT
p

ZðtÞ that model
a heat bath at temperature T. Here Z(t) are normalized zero-
mean white-noise Gaussian processes (hZi(t)i = 0 and
hZiðtÞZjðt 0Þi ¼ dijdðt� t 0Þ). This ensures thermodynamic equili-

brium in the absence of the externally applied forces (FA
ij). The

simulation protocol is described in Appendix A.1.

3 Results and discussion
3.1 Phase separation and critical behavior

Fig. 2a shows the critical density f* based on the occurrence of
two density peaks in the local density distributions (for an
in-depth description see Appendix A.2) for different regular
polygons. As we increase the number of vertices (i.e. become
more ‘‘disk-like’’), we expected to see monotonically increasing
critical density34 from high-anisotropy 3-gons towards lower
anisotropy 8-gons.

Instead phase-separation behavior does not vary monotoni-
cally with n. For shapes of n = [3, 4], we observe a f* near that of
disks in this Pe regime, with exact value dependent on the force
director. As we increase n to 5, we see a sharp decrease in f*
with continued dependence on the force director. The lowest
critical densities are observed for shapes of n = 6, above which

Fig. 2 Critical density and collective behavior of active anisotropic
systems. (a) Critical density for systems of each n-gon. We define the
critical density, f*, as the density at which 450% of the replicates phase
separate into clusters. Lower error bar bounds indicate the minimum
system f at which at least one replicate phase separated into clusters,
while the upper error bar bounds indicate the minimum f at which
all replicates clustered. See also Appendix A.2. (b) Representative steady-
state local density snapshots in the critical (f*) and phase separated
(4f*) regimes of edge forward (left) and vertex forward (right) active
polygons. A distinctive feature of phase separation in systems of aniso-
tropic particles is the formation of multiple stable clusters that persist for
long time scales.
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we observe the expected monotonic increase in f* as n is
increased to [7, 8].35

We first address the impact of the force director. We expect
f* to depend on the nature of the active force director because
the stability of small cluster depends on the force directors, as
suggested in the collision example diagram in Fig. 1. Specifi-
cally, for vertex-forward shapes, the only stable dimer sustains
translational motion. For edge-forward shapes, stable dimers
exist that are either stationary and/or can sustain translational
motion. Looking only at the mechanical force balance on
configurations of edge- versus vertex-forward particle clusters,
we might expect that edge-forward particles would phase
separate more easily due to more effective inter-particle slow-
ing. However, the sustained translational motion of small
clusters allows increased inter-cluster collisions in the vertex-
forward systems. It is clear that this increased inter-cluster
collision phenomena wins out, with lower f* for vertex forward
n = [3, 4, 5]. Following this logic, the translational speed of a
vertex-forward dimer relative to the particle ballistic velocity
should decrease with increasing n. We hypothesize that for
n 4 6, this decrease in small cluster translational speed leads
to the lack of difference between edge- and vertex-forward f*.
Representative small-N clusters are shown for each combi-
nation of n-gon and force director in the ESI.†

In investigating the structures formed by particles in the
phase-separated cluster, we find that without exception the
particles have assembled into their densest packing, as shown
in the far right column of Fig. 2b. Using this information, we
make the following observations. For 6-gons (the shape with
the lowest f*), the densest packing has neither void space nor
slip planes. For 5-, 7-, and 8-gons, the densest packing has void
space, but no slip planes. For 3- and 4-gons, the densest
packing has no void space, but has slip planes. This leads us
to hypothesize that a system’s ability to inhibit particle move-
ment in the cluster (where void space and slip planes play a
role) is critical to understanding the critical behavior.

Additionally, the only two shapes in our simulations that
exhibit an ‘‘oscillatory’’ regime in their phase behavior are
3- and 4-gons (videos available in the ESI†). These shapes are
also the only two that have slip planes in their densest pack-
ings. In the literature, other studies have noted oscillation as
novel behavior accessed via anisotropy and activity.22,36

We posit that the oscillatory regime for anisotropic particles
is in fact a natural consequence of the preferred steady-state
structure of the component particle shapes in these systems.
We will revisit this claim more rigorously in Section 3.3.

Our final observation on the critical behavior is that the
nature of the phase separation varies significantly based on
shape, as shown in Fig. 2b. Beyond the critical regime, we see
the formation of many stable clusters at steady state for
n Z 5. This is in contrast to systems of isotropic disks, where
secondary cluster formation is short-lived with phase separa-
tion characterized by a single large cluster.9,10 The phenomena
of multiple phase-separated clusters at steady state is theoreti-
cally predicted in bacteria,6 but not in other theoretical models
focused on isotropic active particle phase separation.8,12

3.2 Cluster growth and coarsening dynamics

It remains an open question in the literature as to how shape
may affect the kinetics of phase separation, e.g. coarsening and
domain growth laws in active systems. Here, we investigate how
particle shape enables the observed phase separation initially
into multiple small clusters with coarsening at steady state.

Before phase separating, systems exhibit localized areas of
high-density fluctuations, as described in many other theore-
tical studies of active systems.7,8 These localized areas of high
density are hexagonally ordered, with the exception of 4-gons,
which order on a square lattice. Following this initial structur-
ing, orientational order develops consistent with the known
densest packing of each regular polygon.37 An example of this
phase separation process in vertex-forward 8-gons is shown
in Fig. 3.

This transition from random orientation to close-ordered
densest packing is due to the active collision pressure on the
clusters. Studies on active disk cluster nucleation have con-
firmed that inward-pointing particles at the cluster boundary
is a necessary condition for nucleation.11,12 Similarly, active

Fig. 3 Example of structural evolution of clusters in system of vertex-
forward 8-gons at f = 0.5. (a) Left column: Active force director n̂A exhibits
strong polarization at all times, pointing towards the center of the cluster
both at the boundary and throughout the cluster. Center column: Hexatic
bond order c6 (see definition in Appendix A.3) forms quickly and uniformly
through clusters. Spatial boundaries in the order parameter are the result
of cluster mergers that have not yet annealed. Right column: Body order x8

(see definition in Appendix A.3) accounts for particle orientation in the
cluster. Strong orientational grains form in the clusters, though they do not
span clusters as completely as bond order. Grain boundaries are apparent
and do not anneal completely. (b) Legend for orientation maps in (a).
(c) Snapshots of bond and body order from regions highlighted in (a).
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polygon clusters possess a net-inward force (Fig. 3a). However,
unlike in clusters of disks, the rotation of n-gons within the
cluster is sterically inhibited. Thus, there exists a sustained
inward-facing pressure on the clusters driving the structure to a
densest packing.

We observe that the nature of the phase separation
dynamics for shapes resembles that of quenched disks10 for

n Z 5, as seen in Fig. 2b. Multiple small clusters form and are
stable at steady state (where steady state is determined by the
methods described in Section 2). However, the coarsening
behavior between shapes differs. As seen in Fig. 2, the
critical-regime onset phase separation for n = [5, 7, 8] is
characterized by the formation of one (or few) clusters that
quickly form and slowly grow, while for n = 6, cluster nucleation
is so favorable that we see the nucleation of many small clusters
even in the critical regime.

We demonstrate this coarsening behavior in Fig. 4, where
the fraction of the system in a cluster (NC/N) is plotted over time
(in units of t, where t is the time for a particle to ballistically
travel its own diameter). At low densities, but even at those
above the critical system density for a given shape, we observe
rapid nucleation and growth of small clusters, which remain
stable at steady state (this behavior is also observed in the low
density/activity limit of dumbbells27). At higher densities, the
size of the clusters increases the likelihood of another cluster
colliding with it and merging to make a larger cluster.

This leads us to another key aspect of anisotropic systems
not seen in disks: sustained rotational and translational
motion of clusters (Fig. 5). Previous studies on squares found
that sustained motion drove the system into an oscillatory
behavior.22 We find that such motion is also critical to the
coarsening of clusters of active shapes. In contrast, clustered
disks cannot sustain motion, and quenched systems coarsen
through the dissolution of some clusters and growth of others
rather than inter-cluster collisions. The only net motion
within clusters of disks is at the boundaries, where a balance
of particle fluxes in/out characterizes the steady state
configuration.10 As a result, the steady state of multiple small
clusters in a system of isotropic particles is unfavorable, as
clusters in such systems are only stabilized by particles being
self-propelled into the cluster.

3.3 Collision efficiency

Phase separation due to MIPS is the result of particle slowing as
local density increases, with v(r).7 Here, we demonstrate a
method for quantifying the impact of shape on dv/dr.

Fig. 4 Example of clustering (phase separation) kinetics for vertex-
forward 5-gons at three system densities (f 4 f*). The fraction of system
particles in a cluster, NC/N, is plotted over the evolution of the simulation.
Particles are considered ‘‘in a cluster’’ if their local density is Z0.6. Nc/N
trajectories for all ten replicates for each f are shown, though the behavior
is so similar that the replicates are only distinguishable for f = 0.1.
Snapshots are colored by local density, colorbar shown.

Fig. 5 Particle displacement fields for simulations at steady state, laid over a map of local densities. (a) Clusters of disks have no net motion, with particle
motion limited to the cluster boundaries and gas phase. (Shown is a system of disks at f = 0.3). In contrast, clusters of anisotropic particles display both
(b) net rotational motion (shown for edge-forward 7-gons, f = 0.1) and (c) net translational motion (shown for vertex-forward 4-gons, f = 0.5).
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To build our intuition for this approach: at a particle level,
we can describe MIPS as collision-induced slowing. In a system
of frictionless disks, collisions between small numbers of
particles are not stable, with clusters of small size (nC o 10)
generally having a short lifespan (ot). (Nucleation in disk
systems is facilitated by local polarization of the active force
directors leading to a stable nucleation seed.11,12) In contrast,
collisions between anisotropic particles can create long-lasting
clusters of small nC, ‘‘seeds’’, such as those highlighted in the
ESI,† Fig. S1. In addition to lifetimes lasting ct, some seeds
can sustain translational motion and/or stabilize collisions
from external particles. While these seeds are not a necessary
condition for phase separation, they facilitate the process by

slowing both constituent seed particles and single particles
colliding with the seed, leading to localized areas of high
density.

At a system level, we can translate this collision-induced
slowing to a ‘‘collision efficiency’’ during the nucleation and
growth of clusters. We hypothesize that those systems in which
collision work is more efficiently transformed into a decrease in
average particle velocity (i.e. greater �dv/dr) are also those that
are able to phase separate at lower system densities (lower f*).
As the system density f is a proxy for the number of collisions a
particle experiences,13 particles with higher collision efficiency
need fewer collisions- and thus lower f- to reduce the average
particle speed and lead to phase-separation of the system.

Fig. 6 (a) Shown are the average trajectories for 5 r n r 8 in v/Pcoll space for both edge- and vertex-forward particle simulations. (Note the inverted
axis for velocity.) The nucleation, growth, and steady state regions are highlighted. Increasing slope of the growth regime in v/Pcoll corresponds to
decreased f*, and is predictive for shapes with given force director. Error bars are the standard deviation, with full calculations detailed in Section 5.4.
Where error bars are not visible, they are smaller than the data marker. (b) Trajectories for 3- and 4-gons are plotted separately. Here, both shapes
collapse onto one master curve. The master curves for edge- and vertex-forward 3- and 4-gons also collapse onto on another. Error bars are calculated
as in (a). (c) Individual trajectories are shown for 5- and 3-gons at the indicated f. While velocity decreases monotonically with increasing Pcoll for 5-gons,
in 3-gons we observe an ‘‘oscillation’’ in which the largest cluster in the system breaks up at f = 0.50. Pressure and velocity snapshots are taken
every 100t.
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To demonstrate this quantitatively, we measure the instan-
taneous pressure Pcoll due to inter-particle collisions (calculations
detailed in Section 5.4). In Fig. 6a, we plot the trajectories of
systems through v/Pcoll space. We find that each system type
(n and force direction) falls onto a well-defined trajectory with
short nucleation, long growth, and flat steady-state regions.
The slope of this growth regime, �dv/dr, is what we term the
‘‘collision efficiency’’. We observe that relative slopes of the
growth regimes correctly predict the relative critical densities of
the shapes studied, including the relative critical densities of
edge-forward and vertex-forward systems of the same shape.

Notably, 3- and 4-gons require significantly higher collision
pressure to reach steady state, as shown in Fig. 6b. These
systems fall on the same master curve, suggesting that some
feature similarity in the system drives similarity in v/Pcoll space.
Using the concept of collision efficiency, we can now quantita-
tively demonstrate how the slip planes observed in 3- and 4-gon
densest packings lead to the ‘‘oscillatory’’ behavior discussed
earlier and observed in previous works.22 As shown in Fig. 6c,
systems of shapes whose densest packings do not have slip
planes (like the edge-forward 5-gons shown) proceed monoto-
nically through v/Pcoll space with t, eventually resulting in
phase separation. In contrast, systems with slip planes do not
proceed through v/Pcoll space monotonically with t. In the
system shown of vertex-forward 3-gons, a phase-separating
system proceeds through v/Pcoll space as the phase-separated
clusters form. At high Pcoll, however, the system is no longer
able to sustain the inter-particle collision pressure and
the cluster breaks apart, retracing its path through v/Pcoll.
Additionally, the lack of hysteresis in this path through v/Pcoll

space during cluster dissolation confirms that this oscillatory
phenomenon is not path dependent or a function of simulation
protocol, but rather a function of the particle anisotropy alone.
The oscillatory regime can be described as a system’s inability
to stabilize the inter-particle collision pressure.

In collision efficiency, we have introduced a metric that
quantitatively explains how shape impacts the critical density
in active systems. This framework tells us that we can tune the
critical behavior of a system by altering how efficiently particles
decelerate other particles in collisions.

4 Conclusions

In this work, we investigated the critical phase behavior of a 2D
active matter system of anisotropic particles in which aniso-
tropy was implemented through polygon shape and active force
director. We demonstrated that we can quantitatively describe
the critical behavior as a function of ‘‘collision efficiency’’,
which can be tuned by engineering particle interactions (here,
we explore only shape). Further, we observe that this critical
behavior is related to the structure of the component particle
shapes’ densest packing at equilibrium.

We showed that increasing the efficiency of inter-particle
collisions in slowing particles down during cluster growth is a
key driver of decreasing critical densities. This observation is

closely related to a number of theoretical developments in the
field of active matter. We can think of this efficiency as a
determinable scaling coefficient on the change in particle
velocity with local density (dv/dr) in MIPS.6 Similarly, an
analytical determination of the average collision time for an
inter-particle collision would allow prediction of critical onset
through the balancing of tcollision and tballistic timescales.13 Such
an analytical determination would need to account for all
possible angles of collision between anisotropic particles and
all iterations of force anisotropy.

An analytical description linking driving force and aniso-
tropy to collision time may enable prediction of critical system
densities. Additionally, while the nature of the densest packing
in equilibrium can be used to explain the structure seen in
dense phase-separated regions, further work is needed to
elucidate the link between equilibrium packing and non-
equilibrium assembly. As an understanding of the thermo-
dynamics of active matter continues to develop, establishing
the phase behavior of active assemblies will be of intense
interest as a means of achieving directed, non-equilibrium
self-assembly.

While anisotropic active particles are in the early stages
with astonishing improvements38,39 of being synthesized in
labs they are ubiquitous in nature. Biology presents us with a
number of intriguing test cases for our framework. How does
changing shape (as some biological systems are able to do)
impact the v/Pcoll curve? For systems with explicit attractive
interactions, e.g. chemotaxis, how can we formulate that inter-
action as a collision efficiency?

Finally, while our work reveals a mechanism for how particle
anisotropy in 2D drives different collective behavior from that
seen in disks, our explanation can only describe behavior that
we have observed, and is not yet capable of predicting clustering
behavior given only a particle anisotropy. Developing a compre-
hensive predictive theory of how particle anisotropy will impact
the critical density would be of great interest to the field.
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A Appendix
A.1 Simulation protocol

The area fraction covered by N particles was calculated as

f ¼ NAi

Abox
, where the area Ai of particle i includes both the hard

shape and the rounding of rWCA = 1 induced by the WCA
potential. Each simulation contains N = 1 � 104 particles in a
square simulation box with periodic boundaries, with box size
chosen to achieve the desired density.

The timescale of the simulation, t, is the time for a particle

to ballistically travel its own diameter t ¼ sg
v0

� �
. The Langevin

equations of motion were numerically integrated using a
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stepsize of 1 � 10�3, chosen to balance efficiency with simula-
tion stability. Particle positions were randomly initialized and
allowed to relax with a repulsive isotropic potential between
particle centroids at f = 0.10 for 5 � 105 time steps. This
isotropic potential was then turned off and the WCA excluded
volume potential between particle perimeter points was turned
on while the box was slowly compressed to the target system
density over 5 � 105 time steps. Only after these initialization
steps was the active force turned on and the simulation run for
5000t.

We assert that the simulations have reached steady state when
the total system inter-particle collision pressure has reached a
constant value. Ten replicates were run at each statepoint to
provide sufficient statistics near the critical density.

Simulations were run using the open-source molecular
dynamics software HOOMD-blue (v2.2.1 with CUDA 7.5). The
Langevin integrator uses a velocity-Verlet implementation.40

Simulations were performed on graphics processing units
(GPUs).40,41 Shape interactions were modeled using the discrete
element method implementation in HOOMD-blue33 using
an optimized rigid body routine for particle rotations.41 The
isotropic repulsive potential during initialization was imple-
mented using the dissipative particle dynamics (DPD) pair force
implemented in HOOMD-blue.42

Additional open-source software were used in visualization
and analysis. Density and order parameter calculations detailed
below were implemented with Freud43 (https://github.com/glot
zerlab/freud). Simulation data were visualized using Plato
(https://github.com/glotzerlab/plato) and Ovito.44 The struc-
tural order color wheel is the color part of the cubehelix45

colormap at constant apparent luminance (s = 4, r = 1, h = 2, g = 1).

A.2 Critical density identification

Multiple methods exist in the literature to determine the
critical density for phase separation in active systems. In an
active system of squares,22 a system was considered ‘‘clustered’’
if the fraction of system particles in the largest cluster was
Z0.2. However, we found this method to be ill-suited for our
systems, some of which are comprised of many small clusters.
In disks, studies have used local-density histograms about
randomly-sampled points of the simulation box13 or about each
particle.10 If the histogram displayed two peaks, the system was
considered phase separated. However, the very low system
densities studied here limit the efficacy of the random-sample
approach (e.g. at a packing fraction of 0.01, the high-density
‘‘peak’’ would be r2% of the magnitude of the larger peak). In
dumbbells, studies used both a grid-based and Voronoi-based
local density calculation to develop local density histograms,
to equal effect.46

To determine phase separation even at low densities, we
calculated two separate histograms of local densities within a
2.5rmax radius (1) of randomly sampled points (N = 1 � 105) and
(2) about each particle (N = 1 � 104). For each shape, rmax was
calculated as the circumscribing radius about the shape.
We then calculated a position-normalized local density histo-
gram of the system by multiplying the frequencies of local

densities in each local density bin by one another. If the
resulting histogram has a high-density peak Z20% the height
of the low-density peak, we consider the system to be phase
separated. We choose the threshold of 20% to stay consistent
with previous studies.22 However, the high-density peak quickly
becomes dominant in the phase separated state such that a
different choice would only change our results marginally.

The onset of this phase separation is characterized by a
critical particle density, f*, at which the system transitioned
from a homogeneous mixture to coexisting low and high
density phases. We define the critical density, f*, as the lowest
density at which 450% of the system replicates phase separate.
In Fig. 2, error bars are given as the range of densities, which
have some replicates exhibiting both homogenous and with
others exhibiting phase-separating behavior, and indicate an
upper and lower limit.

A.3 Structural order in clusters

We examine internal cluster structure with two order para-
meters. We first calculated the k-atic order parameter, i.e. the
bond-orientation order parameter for k-fold rotational symmetry.

ckðiÞ ¼
1

n

Xn
j

ekiyij (3)

The parameter k governs the symmetry of the order para-
meter while the parameter n governs the number of neighbors
of particle i to average over. For calculating bond order, yij is the
angle between the vector rij and (1,0), i.e. the angle of the bond
between particle i and particle j with respect to the x-axis.
In other systems, ck has been used to identify hexagonal (k = 6)
order in systems of active disks10 and ordering on a square
lattice (k = 4) in systems of active squares.22

The body-orientation order parameter tells us relative orien-
tations of local particles,

xs( j) = eisyj (4)

taking into account s-fold symmetry, where yj is the angle that
rotates particle j from a reference frame into a global coordi-
nate system and i is the imaginary unit. For particles with even
n, s = n; for particles with odd n, we set s= 2n to account for anti-
parallel packings.37

A.4 Collision pressure calculation

In a 2D system of particles, we used HOOMD (v2.2.1) to
calculate the instantaneous (scalar) pressure of the system as
P= (2K + 0.5W)/A, where K is the total kinetic energy containing
thermal and active swimming contributions, W is the config-
urational component of the pressure virial, and A is the area of
the box. We can isolate the pressure due to inter-particle

collisions, W=A ¼ 1

2A

P
i

P
jai

Fij � rij ¼ P� 2K

A
. We further nor-

malize the pressure by the thermal energy as Pcoll�(W/A)/kBT
to facilitate comparison among systems of particles, as kBT is
varied by shape to maintain constant Pe = 150. While pressure
in equilibrium systems is typically taken over an ensemble,
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here we use it as an instantaneous measure of the location
in configuration space of the system. This allows us to view
particle trajectories in velocity and configuration space, allow-
ing for the definition of a unique master curve for each system.

To calculate each shape’s ‘‘trajectory’’ through v/Pcoll space
shown in Fig. 6, we sampled complete simulation trajectories
for simulations below, at, and above the critical density, and
calculated a distinct Pcoll and average particle velocity hvi for
each time step. We then binned the Pcoll values into equal-size
bins, and calculate an overall average hvi and standard devia-
tion of hvi for each bin. These averages and standard deviations
are normalized by the vballistic calculated for each shape, and are
plotted against the average Pcoll value in the corresponding bin.
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