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Preface 

This book – an in-depth examination of chemical thermodynamics – is 
written for an audience of engineering undergraduates and Masters students 
in the disciplines of chemistry, physical chemistry, process engineering, 
materials, etc., and doctoral candidates in those disciplines. It will also be 
useful for researchers at fundamental- or applied-research labs, dealing with 
issues in thermodynamics during the course of their work. 

These audiences will, during their undergraduate degree, have received a 
grounding in general thermodynamics and chemical thermodynamics, which 
all science students are normally taught. This education will undoubtedly 
have provided them with the fundamental aspects of macroscopic study, but 
usually the phases discussed will have been fluids exhibiting perfect 
behavior. Surface effects, the presence of an electrical field, real phases, the 
microscopic aspect of modeling, and various other aspects, are hardly 
touched upon (if at all) during this early stage of an academic career in 
chemical thermodynamics. 

This series, which comprises 7 volumes, and which is positioned 
somewhere between an introduction to the subject and a research thesis, 
offers a detailed examination of chemical thermodynamics that is necessary 
in the various disciplines relating to chemical- or material sciences. It lays 
the groundwork necessary for students to go and read specialized 
publications in their different areas. It constitutes a series of reference books 
that touch on all of the concepts and methods. It discusses both scales of 
modeling: microscopic (by statistical thermodynamics) and macroscopic, 
and illustrates the link between them at every step. These models are then 
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used in the study of solid, liquid and gaseous phases, either of pure 
substances or comprising several components. 

The different instalments in this series deal with the following subjects: 

– single-phase macroscopic and microscopic modeling tools: application 
to gases; 

– modeling of liquid phases; 

– modeling of solid phases; 

– chemical equilibrium states; 

– phase transformations; 

– electrolytes and electrochemical thermodynamics; 

– thermodynamics of surfaces, capillary systems and phases of small 
dimensions. 

Appendices in each volume give an introduction to the general methods 
used in the text, and offer reminders and additional tools. 

This series owes a great deal to the feedback, comments and questions 
from all my students at the Ecole national esupérieure des mines 
(engineering school) in Saint Etienne who have “endured” my lecturing in 
thermodynamics for many years. I am very grateful to them, and also thank 
them for their stimulating attitude. This work is also the fruit of numerous 
discussions with colleagues who teach thermodynamics in the largest 
establishments – particularly in the context of the group “Thermodic”, 
founded by Marc Onillion. My thanks go to all of them for their 
contributions and kindness. 

This sixth volume is made up of two parts: one devoted to ionic equilibria 
and the other to electrochemical thermodynamics. 

In the first part, we discuss the concepts of dissociation of electrolytes 
and the phenomena of solvation in the different types of solvents – aqueous 
and non-aqueous. Next, the different families of ionic equilibria are studied, 
in turn looking at acid–base equilibria, the equilibria of complex formation, 
redox reactions and equilibria of precipitation. In each case, we examine the 
phenomena in both an aqueous and a non-aqueous medium. Solid 
electrolytes are also touched upon. 
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Part 2 is dedicated to electrochemical thermodynamics with the 
involvement of charges in electrical fields. A general approach is used to 
define the electrochemical values, such as the electrochemical potential of a 
species, the electrochemical Gibbs energy of a system, etc. Then, two 
different types of electrochemical systems are studied – first, electrodes with 
the corresponding reactions for the different types, and then galvanic. 
Applications of the measurements to galvanic cells are described, with a 
view to determining various thermodynamic values. 

Finally, this second part closes with the study of potential/pH diagrams 
and their generalization in potential/pX diagrams, in aqueous- or non-
aqueous media. 

Michel SOUSTELLE 
Saint-Vallier 
March 2016 



 



 

Notations and Symbols 

A:  area of a surface or an interface. 
(12)
H :A   Hamaker constant between two media, 1 and 2. 

A:   affinity 

:%A   electrochemical affinity. 

AM:   molar area. 

Am:   molecular area. 

a:   pressure of cohesion of a gas or radius of the elementary  
  cell of a liquid. 

A, B, …:  components of a mixture. 

C:   concentration or plot concentration of a potential/pH  
  diagram. 

:xs
PC   excess molar specific heat capacity at constant pressure. 

Ci:   molar concentration (or molarity) of component i. 

:C±   mean concentration of ions in an ionic solution. 

CV, CP:   specific heat capacity at constant volume and pressure. 

c:   capacity of a condenser or number of independent  
  components. 

:D   dielectric constant of the medium. 
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d:   distance between two liquid molecules. 

deS:   exchange of entropy with the outside environment. 

di:   degree of oxidation i of an element A. 

diS:   internal entropy production. 

E:   energy in the system. 

E0:   standard electrical potential or standard electromotive force  
  of a cell. 

Eabs:   reversible electrical voltage of an electrochemical cell. 

Ep:   set of variables with p intensive variables chosen to define a  
  system. 

e:   relative voltage of an electrode. 

e0:   standard electrical potential (or normal voltage) of an  
  electrode. 

e0:   equi-activity- or equiconcentration voltage of an electrode.  

eabs:   absolute voltage of an electrode. 

F:   free energy. 

:F%   electrochemical free energy. 

Fm:   molar free energy. 

F:   faraday (unit). 

:Gσ%   electro-capillary Gibbs energy. 

:G%   electrochemical Gibbs energy. 

:mG   molar Gibbs energy. 

g:  osmotic coefficient. 
0:ig   molar Gibbs energy of the pure component i. 

0 :H   Hammett acidity function 

0:TH   standard molar enthalpy of formation at temperature T. 
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H , :iH    enthalpy, partial molar enthalpy of i. 

:H%   electrochemical enthalpy. 

h:   stoichiometric coefficient of the protons in an  
  electrochemical reaction. 

h:   Planck’s constant. 
0:ih   molar enthalpy of the pure component i. 

I:   ionic strength of a solution of ions. 

:mI   ionic strength expressed in terms of the molalities. 

i:   van ‘t Hoff factor. 

KAX:   solubility product of the solid AX. 

Kd:   dissociation constant. 
( ):c
rK   equilibrium constant relative to the concentrations. 

( ):f
rK   equilibrium constant relative to the fugacities. 

( ):P
rK   equilibrium constant relative to the partial pressures. 

Kr:   equilibrium constant. 

Ks:   solubility product. 

kB:   Boltzmann’s constant. 

M:   molar mass. 

:sm   mass of solutes in grams per kg of solvent. 

m:   total mass. 

mi:   mass of component i. 

N:   number of components of a solution. 

Na:   Avogadro’s number. 

NA:   number of molecules of component A. 

n(α):  total number of moles in a phase α. 
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P:   pressure of a gas. 

Pi:   partial pressure of the component i. 

p:   number of external physical variables. 

Qa:   reaction quotient in terms of activities. 

QP:   heat of transformation at constant pressure; reaction quotient  
  in terms of partial pressures. 

Qr:   reaction quotient of the transformation r.  

R:   perfect gas constant. 

:Ar   radius of the ionic atmosphere. 

S:   oversaturation of a solution. 

:S%   electrochemical entropy. 
0:is   molar entropy of the pure component i. 

T:  temperature 

:U%   internal electrochemical energy. 
0:iu   molar internal energy of the pure component i. 

V, :iV    volume, partial molar volume of i. 

Vm:   molar volume. 
0:iv   molar volume of the pure component i. 

v:   quantum number of vibration. 

wi:   mass fraction of the component i. 
( ):kx α   molar fraction of the component k in the α phase. 

x, y, z:   coordinates of a point in space. 

xi:   molar fraction of the component i in a solution. 

<y>:  mean value of y. 

Yi and Xi:  intensive and extensive conjugate variables. 
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yi:   molar fraction of the component i in a gaseous phase. 

α:  dissociation coefficient of a weak electrolyte or  
  polarizability of a molecule. 

αa:   apparent dissociation coefficient of a weak electrolyte. 

( ):PΓ E   characteristic function having the set PE as canonical  
  variables. 

Γ:  characteristic function. 

:γ   activity coefficient of the component i irrespective of the  
  reference state. 

γ0:   activity coefficient of a solvent. 

γi:   activity coefficient of the species i. 
( ):I
iγ   activity coefficient of component i in the pure-substance  

  reference. 
( ):II
iγ   activity coefficient of component i in the infinitely-dilute- 

  solution reference. 
( ):III
iγ   activity coefficient of component i in the molar-solution  

  reference. 

:γ ±   mean activity coefficient of the ions in an ionic solution. 

γs:   activity coefficient of a solute. 

Δr(A):   value of A associated with the transformation r. 

:ε   electrical permittivity of the medium. 

0:ε   electrical permittivity of a vacuum. 

λ0+, λ0:  equivalent ionic conductivities of the cation and the anion. 

λΑ:   absolute activity of component A. 

Λ:  equivalent conductivity of an electrolyte. 

Λ0:   limiting equivalent conductivity of an electrolyte. 
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μi:   chemical potential of component i, electrical dipolar  
  moment of the molecule i. 

( ) ( ), :L G
i iμ μ  chemical potential of the component i in liquid and  

  gaseous form, respectively. 

:μ%   electrochemical potential. 

( ):k ρν   algebraic stoichiometric number of component Ak in the  
  reaction ρ. 

νe:   stoichiometric coefficient of electrons in an electrochemical  
  reaction. 

ξ:  reaction progress. 

:Φ   electrical potential. 

:iΦ   fugacity coefficient of component i in a gaseous mixture. 

φ :  conductivity coefficient of a strong electrolyte or number of  
  phases. 

χ:  electrical conductivity. 

:iΨ   electrostatic potential of the ionic atmosphere. 

( ):rΨ   electrostatic potential. 



PART 1 

Ionic Equilibria





1 

Dissociation of Electrolytes in Solution 

The dissociation of electrolytes – be it partial or total – in water releases 
ions, which lend the medium particular properties. 

The ionic solution is characterized by the presence in the medium 
(generally a liquid) of ions carrying positive and negative charges, with the 
whole being electrically neutral. These ions may or may not be accompanied 
by: 

– neutral dissolved molecules;  

– molecules of solvent. 

1.1. Strong electrolytes – weak electrolytes 

Starting with neutral molecules in solid- or gaseous form, there are three 
main ways to obtain a liquid ionic solution: dissolution, solvolysis and 
melting. 

1.1.1. Dissolution 

When we place sodium chloride crystals in water, they dissolve according 
to the reaction: 

NaCl (solid) = Na+
(aqu) + Cl-

(aqu) [1R.1] 

In fact, the ionic solution obtained is the result of three phenomena: 
dissociation into ions, solvation of ions (in this case, hydration), which is the 

Ionic and Electrochemical Equilibria, First Edition. Michel Soustelle.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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fixation of a certain number of polar molecules of solvent onto the ions and 
the separation of the charges of opposite signs because of the high electrical 
permittivity of the solvent. 

1.1.2. Solvolysis 

Solvolysis is the decomposition of a molecule by a solvent. In the case of 
water, we speak of hydrolysis. Take the example of gaseous hydrogen 
chloride composed of HCl molecules, whose reaction with water leads to the 
formation of ions by the following reaction, which is indeed a solvolysis: 

HCl(gas) + H2O = H3O+
(aqu) + Cl-

(aqu) [1R.2] 

The result is the presence of ions, which are also solvated and separated 
from one another for the same reasons as in dissolution. 

1.1.3. Melting 

Raising the temperature of a solid such as sodium chloride leads to its 
melting, which leads to the dissociation into ions, according to the reaction: 

NaCl(solid) = Na+
(liq) + Cl-

(liq) [1R.3] 

We again obtain a solution of ions (and neutral molecules), which are 
obviously not solvated, because the solution does not contain any solvent in 
the true sense of the word. 

When a solution is obtained by one of the methods described above, we 
obtain a solution with multiple interactions between the ions, which can be 
described in one of two ways: 

– a complex solution of ions with activity coefficients using a more or 
less elaborate model; 

– a quasi-chemical model using the model of associated solutions, which 
leads us to divide the species in the solution into two categories: 

- neutral associated molecules, 

- ions. 
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Remember that the associated solution model consists of replacing a non-
perfect solution of ions or molecules, generally complex, with a less 
complex solution (a perfect solution, a dilute ideal solution or a relatively-
simple model), formed of the same ions and accompanied by ionic or 
molecular associated species at equilibrium with the ions. 

Depending on the nature of the species in question, we are then led to 
distinguish two types of solutions: 

– solutions which practically contain only ions; 

– solutions which, alongside the ions, contain a not-insignificant amount 
of non-dissociated neutral molecules. These molecules may be molecules of 
the solvent or of a solute. 

If the amount of non-dissociated neutral molecules is negligible in 
comparison to that of the dissociated molecules, we say that we have a 
strong electrolyte; such is the case of the aqueous solutions of sodium 
chloride and hydrogen chloride gas seen earlier. If, on the other hand,  
the number of molecules not dissociated is significant, we say that we are 
dealing with a weak electrolyte; such is the case of molten sodium chloride 
at a temperature a little above the melting point. It is also the case with  
the aqueous solution of ethanoic acid or ammonia, for example. 

In practice, a strong electrolyte is an ionic solution whose formation 
reaction is complete toward the right; it no longer contains any neutral 
molecules. Meanwhile, a weak electrolyte is characterized by states of 
thermodynamic equilibrium between the ions and the neutral molecules – i.e. 
ultimately characterized by equilibrium constants. 

In aqueous solution, practically all salts are strong electrolytes, whilst 
acids and bases are divided into strong acids and bases, on the one hand, and 
weak acids and bases, on the other. 

1.2. Mean concentration and mean activity coefficient of ions 

The methods for measuring the activity coefficients are unable to give us 
the activity coefficients of the individual ions, so it is useful to introduce, for  
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an electrolyte A Bν ν+ −
, the idea of the mean activity coefficient which gives 

us the same Gibbs energy. We can show that this coefficient is defined by: 

( ) ( )1/

-

ν νν νγ γ γ + −
+ −

+

± +=   [1.1] 

One might also define a mean concentration using a similar relation. If C 
is the molar concentration of the solute, the concentrations of the different 
ions (for entirely-dissociated strong electrolytes) will be: 

C Cν+ +=  [1.2a] 

and 

C Cν− −=   [1.2b] 

and the mean concentration will be: 

( ) ( )1/

-C C
ν νν νν ν + −

+ −
+

± +=   [1.3] 

The mean activity coefficient obeys the same convention as the 
individual activity coefficients – generally convention (III) – but we know 
that in a dilute solution, the activity coefficients in conventions (II) and (III) 
are identical.  

In particular, for a so-called 1–1 electrolyte, such as potassium chloride 
(the dissociation of the neutral molecule yields one anion and one cation), 
we have 1ν ν+ −= =  and the above expressions take the following forms: 

1/2 1/2 1/2C C C C+ − ±= = =   [1.4] 

( )1/2
-γ γ γ± +=   [1.5] 

1.3. Dissociation coefficient of a weak electrolyte 

Consider an electrolyte A which dissociates according to reaction [1R.4], 
giving rise to ν+  cations A z+ +  and ν−  anions A z− − : 

A A A zzν ν −−−+
+ −= +  [1R.4] 
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Electrical neutrality must be preserved: 

z zν ν+ + − −=   [1.6] 

The dissociation constant is defined as the equilibrium constant of [1R.4]; 
which is expressed on the basis of the activities of the species (ions and non-
dissociated molecules):  

A A
A

z z

dK

ν ν+ −+ −

=   [1.7] 

We know that, in a dilute solution, the molar concentrations are 
practically equal to the ratio of the molar fractions to the volume molar of 
the solvent, generally the water. However, at ambient temperature, the molar 
volume of water is basically 1 kg/l. Thus, we keep the same equilibrium 
constant where the concentrations, expressed in moles/l, replace the molar 
fractions. In addition, if we separate the concentrations of the activity 
coefficients, we can write: 

[ ]
( )z z- ( )A A

A

A A
A

z z
C

d d dK K K

ν ν
ν ν

γγ γ
γ

+ −

+
+ −+ − ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= =   [1.8] 

Thus, relation [1.8] defines two pseudo-constants – one relative to the 
concentrations: 

( )

[ ]
A A

A

z z
C

dK

νν −+
+ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=   [1.9] 

and the other relative to the activity coefficients: 

( ) -A A

A
dK

ν ν
γ γ γ

γ

+ −
+=   [1.10] 

If we bring in the mean activity coefficient of the ions, then by applying 
relation [1.1], we find: 

( )
( )

A A

A A

z z

dK
ν ν ν ν

γ γ γ γ
γ γ

+ − + −
−+ −

+
±= =   [1.11] 
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NOTE.– If we look at relation [1.7], it seems that the dissociation constants 
do not depend on the solvent. In reality, the reaction written in the form 
[1R.4] is not correct, because it ignores all the solvation processes which we 
shall discuss in Chapter 2, which yield the fact that the constant for 
equilibrium [1.7] truly depends on the solvent. 

For weak electrolytes, we define the dissociation coefficient or ionization 
coefficient α by the fraction of the molecules of electrolyte that are actually 
dissociated into the solution.  

If we begin with C0 moles of the molecular compound A, the dissociation 
represented by the reaction [1R.4] gives us a residual concentration of A of 

( )0C 1-α , a concentration of Az+ +  which is 0C ν α+  and a concentration of 

Az− −  which is 0C ν α− . The law of mass action in the form [1.8], replacing 
the concentrations of the different species with their values as a function of 
α, is written: 

( ) ( 1) ( )
0

A 1-d
CK

ν ν ν ν ν ν ν να ν νγ
γ α

+ − + − + − + −+ + − +
+ −±=   [1.12] 

With very dilute solutions, the activity coefficients are equal to 1 and the 
law of mass action is expressed as a function of the dissociation coefficient 
thus: 

( )
( 1) ( )
0

1-
C

d d
CK K

ν ν ν ν ν να ν ν
α

+ − + − + −+ − +
+ −= =   [1.13] 

Later on, we use expressions [1.12] and [1.13] to determine the 
dissociation constant of a weak electrolyte. 

NOTE.– If the concentration C0 tends toward zero, we can use relation [1.13], 
and we see that in order for the equilibrium constant to remain finite, the 
denominator must tend toward zero, and thus the dissociation coefficient α 
must tend toward 1. Hence, the dissociation of a weak electrolyte tends to be 
complete if dilution becomes infinite. In other words, at infinite dilution, 
weak electrolytes behave like strong electrolytes. 
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1.4. Conduction of electrical current by electrolytes 

Electrolytic solutions containing electrically-charged ions conduct 
electricity which they are subjected to a potential difference – i.e. when the 
ions are placed in an electrical field. A portion I+ of the intensity of the 
current is delivered by the cations, which move in the direction of the field; 
the other portion I- is carried by the anions, which move in the opposite 
direction to the field. The total intensity of the current is the sum of the 
cationic and anionic contributions: 

I I I+ −= +   [1.14] 

The study of the conductivity of electrolytes does not, strictly speaking, 
fall within the field of thermodynamics. Nonetheless, here, we shall discuss 
the essential elements that are necessary to make use of that conductivity to 
determine the dissociation coefficients. 

1.4.1. Transport numbers and electrical conductivity of an 
electrolyte 

We use the term cationic transport number to denote the portion of the 
current transported by the cations. It is defined by: 

I
I I

τ +
+

+ −

=
+

  [1.15] 

In parallel, we define the anionic transport number as: 

I
I I

τ −
−

+ −

=
+

  [1.16] 

Of course, by virtue of relation [1.14], we have: 

1τ τ+ −+ =   [1.17] 

If we consider a cell containing the electrolytical solution, of length l and 
section area s, the resistance obeys the law: 

1l lR
s s

ρ
χ

= =   [1.18] 
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χ  is the electrical conductivity of the electrolyte, and we deduce: 

1 l
R s

χ =   [1.19] 

We can write, in view of Ohm’s law, that if Q is the quantity of electricity 
which has passed through the cell uniformly during the time t, the voltage U 
at the terminals of the cell is: 

RQU RI
t

= =   [1.20] 

Thus, by comparing with relation [1.19]: 

Q
Uts
l

χ =   [1.21] 

The conductivity thus appears as the quantity of electricity per second 
passing across a 1 cm2 section with a potential drop of 1 v/cm. According to 
relation [1.19], it is expressed in Ω-1cm-1. 

NOTE.– Above, we chose commonly-used units. Obviously, in the 
international system of units (SI), conductivity is expressed in Ω-1m-1. 

1.4.2. Equivalent conductivity and limiting equivalent 
conductivity of an electrolyte 

Experience tells us that the conductivity of a solution depends on the 
concentration of electrolyte which it contains. Thus, it has become common 
practice to express the conductivity in relation to the concentration – i.e. the 
amount of dissolved salt (in moles) per cm3 of solution. 

Thus, let C be the concentration of a solution in moles/l. Thus, the 
quantity per cm3 would be C/1000, and we define the equivalent conductivity 
Λ as the ratio of the conductivity to the number of equivalents per cm3: 

1000Λ
Cz

χ=   [1.22] 
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The equivalent conductivity is expressed in Ω-1moles-1cm2. 

NOTE.– Sometimes, although it is not widely used, we encounter the 
definition of the molar conductivity as the ratio of the conductivity to the 
concentration expressed in moles per liter: 

mΛ C
χ=   [1.23] 

This molar conductivity is expressed in l.Ω-1mole-1cm-1. 

Experience shows us that the equivalent conductivity increases as the 
concentration decreases, tending toward a limit as the concentration tends 
toward zero (infinite dilution). We define the limiting equivalent 
conductivity 0Λ  as being the conductivity at infinite dilution. Thus, we 
write: 

0 0
lim
C

Λ Λ
→

=   [1.24] 

1.4.3. Ionic mobility 

We know that each ion, supposed to be punctual, with a charge ze, placed 
in an electrical field E

r
 experiences a force F

r
 such that: 

F zeE=
r r

   [1.25] 

That force imbues the ion with a velocity V
r

 in the direction of E
r

 or the 
opposite direction, depending on whether it is a cation or an anion. In its 
motion, the ion encounters resistance, which slows it down. If the solution is 
sufficiently dilute for it not to be influenced at all by the other ions, it only 
experiences a counter force on the part of the solvent. This is known as the 
Stock force, and is proportional to its velocity, in accordance with: 

' 6 AF r Vπη=
r r

  [1.26] 
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In this expression, η  is the viscosity of the solvent. If I is the ionic 
strength of the medium and ε is the electrical permeability of the medium, 

Ar  is the ionic radius defined by the relation: 

B
A 2

a

1000 k
2N

Tr
e I

ε=    [1.27] 

The action of the two forces in opposite directions lends the ion a limiting 
velocity 0V

r
 such that: 

A 06 r V zeEπη =
r r

  [1.28] 

Consider the ratio 0 /V E
r r

, written as 0u +  or 0u − . This velocity per unit 
field strength, depending on whether it is a cation or an anion, is called the 
ionic mobility of the cation or of the anion. Thus, for the respective 
mobilities of the cation and the anion, we have: 

0 6
z eu

rπη
+

+
+

=   [1.29a] 

and  

0 6
z eu

rπη
−

−
−

=   [1.29b] 

Mobility is expressed in cm2s-1V-1. The mobilities of the different ions in 
water range between 2.10-4 and 10-3, with the exception of those of the H+ 
and OH- ions, which are much higher, with 3.10-3 for the proton and 2.10-3 
for the hydroxide ion. 

The mobilities defined above were to be understood in a sufficiently-
dilute (or infinitely-dilute) solution, so that the ion is influenced only by the 
solvent. In a less dilute solution, each ion is influenced by its neighbors, as it 
is surrounding by an ionic atmosphere whose electrical charge is of the 
opposite sign to its own. Whilst at rest, the two centers of symmetry – of the 
ion and of its ionic atmosphere – coincide; the same is no longer true when  
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the ion is subjected to the electrical field. The ion is then subject to two 
additional forces of resistance: 

– the relaxation of the ionic atmosphere due to the fact that the ion tends 
to move in one direction and its ionic atmosphere in the other direction; 

– the electrophoretic effect: the counter-flow movement of the positive 
and negative ions increases the difficulty for the ions to move in the solution. 

It follows that in a non-infinitely-dilute solution, the mobilities u+ and u- 
of the ions are less than their values observed at infinite dilution, i.e. at zero 
concentration, denoted by 0u +  and 0u − . 

Debye and Hückel, alongside Onsager, showed that the mobility  
at concentration C can be obtained by dividing the mobility at zero 
concentration by the same corrective term as that used for the activity 
coefficients in the Debye–Hückel model of a solution, meaning that, if we 
consider the Debye–Hückel limiting law (see section A.5, in the Appendix), 
we have: 

0

1
uu
Br I

+
+

+

=
+

  [1.30a] 

and  

0

1
uu
Br I

−
−

−

=
+

  [1.30b] 

The coefficient B is always given by the expression: 

2
2 a

0 B

0 B

2N
1000 k

2.303
2 k

ee
D T

B
D T

ε
ε

=   [1.31] 

where, in water, 1/2 0.50.511 l moleB −= . 

NOTE.– Relations [1.30a] and [1.30b] are valid within the same range of 
concentrations as the Debye–Hückel relation. 
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1.4.4. Relation between equivalent conductivity and mobility – 
Kohlrausch’s law 

Consider a solution of a completely ionized electrolyte (strong 
electrolyte) at a concentration C that is sufficiently low so that the mobilities 
of the ions are the limiting mobilities 0u +  and 0u − . The cationic 
concentration is Cν + , whilst that of the anions is Cν − .  

– the number of cations per cm3 is, therefore: /1000;Cν +   

– the number of anions per cm3 is: /1000Cν − . 

The numbers of moles of ions per second which traverse a 1 cm2 section 
are given: 

– for cations, by: 0 /1000;u Cν+ +  

– for anions, by: 0 /1000.u Cν− −  

Thus, the amount of electricity passing across that surface each second is: 

( )0 0 0 1000
Cu uχ ν ν+ + − −= + F   [1.32] 

In view of relations [1.22] and [1.24], we obtain the following for the 
limiting equivalent conductivity: 

( )0 0 0Λ u uν ν+ + − −= + F   [1.33] 

This limiting equivalent conductivity is the sum of two contributions: 

– one contribution made by the cations: 

0 0uλ + += F   [1.34] 

– one contribution from the anions: 

0 0uλ − −= F   [1.35] 

The values 0λ +  and 0λ −  are called the limiting equivalent ionic 
conductivities. These two contributions are independent of one another, 
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because the limiting mobilities are values which are intrinsic to each 
individual ion. It follows that the limiting equivalent conductivity is the sum: 

0 0 0Λ ν λ ν λ+ + − −= +   [1.36] 

This is known as Kohlrausch’s law, which was discovered through 
experimentation. 

Based on tables showing the limiting mobilities, or the limiting 
equivalent ionic conductivities  0λ +  and 0λ − , it is possible to calculate the 
limiting equivalent conductivity for a given fully-dissociated electrolyte. 
Table 1.1 gives an extract of such a table. 

Cation 0λ +  (Ω-1.mol-1.cm2) Anions 0λ − (Ω-1.mol-1.cm2) 

H+ 349.60 OH- 199.1 
Li+ 38.69 Cl- 76.34 
Na+ 50.11 Br- 78.40 
K+ 73.50 I- 76.80 

Mg++ 106.12 SO4
-- 159.60 

Ca++ 119.00 NO3
- 71.40 

Ba++ 127.28 CH3CO2
- 40.90 

Table 1.1. Limiting equivalent ionic conductivities of a number of ions 

To establish the individual values of the limiting ionic mobilities 
(Table 1.1), we combine the use of relation [1.36] and the measurement of 
the limiting conductivity of a strong electrolyte with a measurement of the 
transport numbers in that same electrolyte. We then use the following 
relation, which is easy to prove: 

0

0

λ τ ν
λ τ ν

+ + −

− − +

=   [1.37] 

NOTE.– The only hypotheses made in this section are complete dissociation 
of the electrolyte and a concentration which tends toward zero, so relations 
[1.33] and [1.36] apply both the completely-dissociated strong electrolytes 
and to weak electrolytes because we know that, at infinite dilution, the 
dissociation coefficient tends toward 1, and that the weak electrolyte tends 
toward complete dissociation and becomes a strong electrolyte. 
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1.4.5. Apparent dissociation coefficient and equivalent 
conductivity 

We use the term apparent dissociation coefficient aα  to denote the 
dissociation coefficient of a weak electrolyte whose ions have the same 
mobility at a given concentration C as at zero dilution. The number of moles 
of ions per second crossing a 1cm2 cross-section under the influence of the 
unit field is: 

– for cations: 0 /1000;au Cν α+ +  

– for anions: 0 /1000.au Cν α− −  

From this, we deduce a conductivity as follows: 

( )0 0 1000
aCu u αχ ν ν+ + − −= + F

  [1.38] 

and an equivalent conductivity at concentration C: 

( )0 0 0 aΛ u uν ν α+ + − −= + F   [1.39] 

By comparing relations [1.33] and [1.39], we can deduce the apparent 
dissociation coefficient: 

0
a

Λ
Λ

α =   [1.40] 

Whilst we have hitherto considered the mobilities to be independent of 
the concentration, it has long been held that this apparent degree of 
dissociation is the true degree of dissociation at concentration C. Thus, the 
variation of the equivalent conductivity values was attributed to dissociation 
alone. 

1.4.6. Variations of equivalent conductivities with the 
concentrations 

We shall now take a look at the variations of the mobility values with 
concentration, using expressions [1.30a] and [1.30b]. In turn, we examine 
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the cases of completely-dissociated strong electrolytes and of weak 
electrolytes exhibiting a true dissociation coefficient α at concentration C. 

1.4.6.1. Case of strong electrolytes 

Let us begin by considering a strong electrolyte at concentration C, 
completely dissociated. The ionic mobilities of its ions at that concentration 
are u+ and u-, and its equivalent conductivity is Λ. We can employ exactly 
the same reasoning as in section 1.2.3, giving us the following relation, 
which is valid for the concentration C: 

( )Λ u uν ν+ + − −= + F   [1.41] 

Thus, by defining ionic mobilities at concentration C by uλ+ += F  and 
uλ− −= F , we obtain the relation: 

Λ ν λ ν λ+ + − −= +   [1.42] 

Kohlrausch’s law therefore remain valid at the concentration C for 
completely dissociated electrolytes. 

If we feed expressions [1.32] back into relation [1.41], and recall that in 
the case of a single electrolyte, the ionic strength is proportional to the 
concentration of that electrolyte C, we can use the Debye, Hückel and 
Onsager law to show that, within the limits of concentrations of validity of 
the Debye–Hückel solution limiting law, the conductivity of the strong 
(completely dissociated) electrolyte is given by: 

( )0 1 0 2-Λ Λ B Λ B C= +   [1.43] 

In this relation, the coefficients B1 and B2 are constants which depend 
only on the solvent (through its dielectric constant and its viscosity), the 
charges of the ions and the temperature. 

For example, for a 1-1 electrolyte – i.e. an electrolyte for which we have 
ν+=ν-= z+= z- = 1, those coefficients are given in water by Table 1.2 at two 
temperatures. 
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T (°C) B1 B2 

18°C 0.224 50.5 

20°C 0.229 59.5 

Table 1.2. Coefficients B1 and B2 from relation  
[1.43] in water at two temperatures 

NOTE.– Relation [1.43] can also be written in the form: 

2
1

0 0

1- BΛ B C
Λ Λ

ϕ
⎛ ⎞

= = +⎜ ⎟
⎝ ⎠

  [1.44] 

In this expression, which is only valid for a strong electrolyte, the 
coefficient φ, which is called the conductivity coefficient, no longer 
represents an apparent dissociation coefficient. It merely enables us to 
compare the equivalent conductivity at concentration C to the limiting 
equivalent conductivity of a completely dissociated electrolyte, this 
coefficient actually quantifies the effect of dilution. 

From relation [1.43], we see that it is possible to determine the limiting 
equivalent conductivity of a strong electrolyte by extrapolation to zero 
concentration of the straight line showing the equivalent conductivity as a 
function of the square root of the concentration. Figure 1.1 shows the 
example, in curve a, of such a determination for potassium chloride 
solutions. 

Figure 1.1. Equivalent conductivity a) of potassium chloride –  
b) of acetic acid as a function of the square root of the concentration  
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1.4.6.2. Case of weak electrolytes 

In the case of weak electrolytes that are not completely dissociated, we 
can no longer apply relation [1.44]. To solve the problem we shall use the 
MacInnes and Shedlovsky method. Those authors introduce a completely-
dissociated fictitious electrolyte containing the same ions as the weak 
electrolyte under study. This electrolyte would be the effective concentration 
Ce which is the same as the concentration of the ions in the real electrolyte, 
so if α is the dissociation coefficient of our electrolyte, the effective 
concentration will be: 

eC Cα=   [1.45] 

The equivalent conductivity of that strong electrolyte at the concentration 
Ce is Λe. To calculate it, as we are dealing with a strong electrolyte, we can 
apply relation [1.44], which gives us: 

2
1

0 0

1-e
e

Λ BB C
Λ Λ

ϕ α
⎛ ⎞

= = +⎜ ⎟
⎝ ⎠

  [1.46] 

The ratio Λ/Λe for our weak electrolyte will only take account of the 
effect dissociation, as the effect of dilution is canceled out because the two 
electrolytes with equivalent conductivity values Λ and Λe are at the same 
concentration.  

Thus, for the weak electrolyte under study here with equivalent 
conductivity Λ, we can write the following, if α is the dissociation 
coefficient: 

2
1

0 e 0 0

1-e
e

Λ BΛ Λ B C
Λ Λ Λ Λ

αϕ α α
⎡ ⎤⎛ ⎞

= = = +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

  [1.47] 

This relation can also be written thus: 

( ) 3/2
0 1 0 2-Λ Λ A Λ A Cα α= +   [1.48] 
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We can see that the function [1.48] giving Λ  as a function of C is, in 
fact, more complex than it appears, because the dissociation coefficient is 
itself a function of C. Figure 1.1 shows the curve b which represents Λ  for 
ethanoic acid. 

It stems from the shape of the curve b that Λ0 cannot be determined by 
extrapolation. We can, however, determine this value using Kohlrausch’s 
law – e.g. in the case of ethanoic acid AcH, we can write: 

0 0 0(HAc) (H ) (Ac )
               
Λ λ λ+ −= +   [1.49] 

This sum can be broken down as follows: 

( )
( )

0 0 0 0 0

0 0

(HAc) (H ) (C ) (N ) (Ac )

(N ) (C )

Λ l a

a l

λ λ λ λ

λ λ

+ − + −

+ −

= + + +

− +
  [1.50]

 

In the pairs of terms, we recognize the limiting equivalent conductivities 
of the three compounds HCl , NaAc  and NaCl , so we have: 

0 0 0 0(HAc) (HCl) (NaAc) (NaCl)Λ Λ Λ Λ= + −   [1.51] 

The three necessary values 0 (HCl)Λ , 0 (NaAc)Λ  and 0 (NaCl)Λ , are easy 
to determine separately on the basis of the pure electrolytes, using the 
extrapolation method, described in section 1.4.6.2, because HCl , NaAc  and 
NaCl  are strong electrolytes and therefore obey relation [1.43]. 

1.5. Determination of the dissociation coefficient 

We shall now describe two generally methods which can theoretically be 
used to determine the dissociation coefficients. One is based on cryometry, 
and the other on electrical conductivity. In Chapter 7 (section 7.7.2) we shall 
see a method for determining the dissociation constant of a weak electrolyte 
on the basis of the voltage of a battery. 
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1.5.1. Determination of the dissociation coefficient by the 
cryometric method 

The first method is thermodynamic, because the ionic dissociation has a 
direct influence on Raoult’s laws of ebullioscopy and cryoscopy. Indeed, in 
the case of cryoscopy, the drop in the melting point of the solvent (index 0) 
is given by the relation: 

2
0( )

0( ) 10
0

R F
F

F

T
T x

h
Δ

Δ
=   [1.52] 

If the solution now contains not one but several solutes i, we can easily 
show that the drop of the melting point becomes: 

2
0( )

0( ) 0
0

R F
F i

iF

T
T x

h
Δ

Δ
= ∑   [1.53] 

Suppose that the molecule dissociating gives rise to ν ions, and α is the 
degree of ionization. If we initially consider ns moles of non-dissociated 
solute, the total amount of solute nt after partial dissociation is: 

( ) ( )1 1 1t s s sn n n nα α ν ν α= − + = ⎡ + − ⎤⎣ ⎦   [1.54] 

The sum of the molar fractions of the solutes is therefore: 

( )
( )0

1 1
1 1

s
i

i s

n
x

n n
ν α

ν α
⎡ + − ⎤⎣ ⎦=

+ ⎡ + − ⎤⎣ ⎦
∑   [1.55] 

If the solution is sufficiently dilute, the second term in the denominator in 
the previous fraction is small in relation to n0 (amount of solvent) and thus 
the sum of the molar fractions is approximately: 

( )1 1i s
i

x x ν α= ⎡ + − ⎤⎣ ⎦∑   [1.56] 

We see the emergence of a factor j defined by: 

( )1 1j ν α= ⎡ + − ⎤⎣ ⎦   [1.57] 
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This factor j is called the van ’t Hoff factor. It can be measured by 
comparing the cryoscopic drop measured with the electrolyte solution with 
the calculated value which would be obtained without dissociation – i.e. for  
j = 1. 

We supposed, when using relation [1.53], that the solution was 
sufficiently dilute, meaning that it exhibited ideal behavior. If this is not the 
case, and we know that this is more common with ionic solutions than for 
molecular solutions, we must take account of the mean activity coefficient of 
the ions γ ± . 

In practice, the differences between the theoretical value and the 
experimental value are too low for the cryometric method to be able to be 
used to accurately determine a degree of ionization. Cryometry in a molten-
salt medium is able to deliver a more precise result. 

1.5.2. Determination of the dissociation coefficient on the basis 
of the conductivity values 

To determine the degree of ionization, it is preferable to use a dynamic 
method based on measuring the equivalent conductivity of the electrolytical 
solution at the desired concentration and calculating the limiting equivalent 
conductivity. This method is limited to a concentration domain below  
0.02 moles per liter, which is the domain of validity of the Debye–Hückel 
theory for modeling strong electrolytes. 

To determine the dissociation coefficient of an electrolyte at a 
concentration C, we measure its equivalent conductivity and calculate its 
limiting equivalent conductivity by an addition reaction similar to expression 
[1.50]. We then use expression [1.48] to calculate α. 

In practice, to determine α on the basis of relation [1.48], which cannot 
be expressed in terms of α, we carry out a succession of approximations. 

We determine a first approximate value for α: α1 by making α = 1, so: 

1
0

Λ
Λ

α =   [1.58] 
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We feed this value back into the expression of α, which enables us to 
calculate a second approximation α2 by using the relation: 

( )2
0 1 0 2 1

1
1-

Λ
Λ B Λ B C

α
α

=
+

  [1.59] 

The operation is repeated as many times as necessary. In practice, 
usually, the second calculated value of α is sufficient and therefore α = α2. 

It is the application of relation [1.59], using the Debyean terms B1 and B2, 
which limits the method to solutions containing concentrations lower than 
0.02 moles/l, i.e. within the bounds of application of Debye’s model. 

1.6. Determination of the number of ions produced by 
dissociation 

We shall now describe two experimental methods that can be used to 
determine the number of ions produced by the dissociation of an electrolyte. 
These methods, which can be used for strong (i.e. completely dissociated) 
electrolytes, are again based on measurements of the conductivity and 
cryometric measurements. 

1.6.1. Use of limiting molar conductivity 

We have seen (section 1.4.3) that the ionic mobilities do not vary within a 
very large range (between 2 × 10-4 and 10-3 cm2s-1V-1, with the exception of 
the ions H+ (3 × 10-3 cm2s-1V-1) and OH- (2 × 10-3 cm2s-1V-1). The same is 
true of the limiting equivalent conductivities. Consequently, the limiting 
molar conductivity will increase with the number of ions provided by the 
molecule. Table 2.1 shows the ranges of the molar conductivities depending 
on the number of ions supplied by the decomposition of the molecule. 

Obviously, this method lacks precision and can only be applicable for 
dissociated species. Thus, if we consider the three complexes in platinum –  
[Pt(NH3)4Cl2]Cl2, [Pt(NH3)3Cl3]Cl and [Pt(NH3)4Cl4] – upon dissociation they 
can only furnish chlorine ions and complex ions. For these three complexes, 
we find the limiting molar conductivities 228, 97 and 1. The first value 
belongs to the range 200–300 and thus there will by three ions (one complex 
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ion and two chlorine ions). The second value belongs to the range 100–200, so 
there are two ions (one complex ion and one chlorine ion). Finally, for the last 
complex, the value belongs to the range < 100, so it gives no ions at all. 

Number of ions Molar conductivity 

2 100–150 

3 200–300 

4 400–450 

5 > 500 

Table 1.3. Molar conductivity values and number of ions 

1.6.2. Use of cryometry 

The method presented here applies to completely dissociated (i.e. strong) 
electrolytes. We employ the same reasoning as in section 1.5.1 but adapt it to 
the decomposition of an electrolyte, which ionizes to produce n ions. By 
virtue of relations [1.53] and [1.56], we can write the following for the 
variation of the melting point of the solvent: 

( )
2

0( )
0( ) 0

0

R
Δ 1 -1

Δ
F

F s
F

T
T x n

h
α= ⎡ + ⎤⎣ ⎦   [1.60] 

Let us introduce the quantity qs (number of moles) of solute for 1000 g of 
solvent. It is easy to show that, for a dilute solution ( 1sx ≈ ), this quantity is 
given as a function of the molar fraction of the solute and the molar mass of 
the solvent by the relation: 

0

100 s
s

xq
M

=   [1.61] 

Thus, the variation in melting point is written as: 

( )
2

0( ) 0
0( ) 0

0

R
Δ 1 -1

1000Δ
F

F s
F

T M
T q n

h
α= ⎡ + ⎤⎣ ⎦   [1.62] 
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We see the emergence of the cryoscopic constant of the solvent, which is 
defined by: 

2
0( ) 0

0( ) 0
0

R
1000Δ

F
Cryo

F

T M
K

h
=   [1.63] 

The variation in temperature of the solvent therefore becomes: 

( )0( ) 0( ) 1 -1F Cryo sT K q nΔ α= ⎡ + ⎤⎣ ⎦   [1.64] 

If there were no ionization of the electrolyte, that variation in the melting 
point would be, where (n = 0): 

0( ) 0( )Δ F Cryo sT K q=   [1.65] 

Let us examine the limit of the molecular drop 0( )Δ F

s

T
q

, when qs tends 

toward 0. In these conditions, when dilution tends toward infinity, we know 
that the fraction of dissociation of the complex tends toward 1, so we have: 

0( )
0( )0

Δ
lim

s

F
Cryoq

s

T
K n

q
=   [1.66] 

If the electrolyte were not dissociated, that ratio would be constant: 

0( )
0( )

Δ F
Cryo

s

T
K

q
=   [1.67] 

Figure 1.2 shows the variations in the molecular drop with the quantity of 
complex dissolved. 

In the case of non-dissociation, the curve is not a horizontal because the 
variations of the activity coefficients with dilution come into play. 

In the case of dissociation, the ordinate at the origin is used to calculate 
the coordination number if we know the cryoscopic constant of the solvent, 
which can be calculated. 

→
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Figure 1.2. Variation of the molecular drop with the  
quantity of complex dissolved  

In practice, the variation of the activity coefficients, which is very 
significant at high dilution, renders the above extrapolation very difficult. It 
is preferable to operate in conditions such that the activity coefficients 
practically do not vary. With this in mind, we carry out cryoscopy in a 
molten-salt medium. 

Numerous saline hydrates behave like cryoscopic solvents when we 
dissolve a substance in the molten hydrate. We observe a cryoscopic drop of 
the melting point. We also see a cryoscopic drop in the temperature of the 
hydrate-to-anhydrous transformation and the temperature of a eutectic, e.g. 
between a salt and ice. 

In this case, the activity coefficients of the ions practically no longer vary 
with dilution. Indeed, we know that these activity coefficients vary not with 
the composition of an ionic solution but with the ionic strength of the 
solvent. Molten salts are composed of a large quantity of ions so that the 
addition of a solute does not alter the ionic strength of the medium. 

In these conditions, the molecular drop varies little with the quantity of 
dissolved salt, and therefore it is easy to extrapolate to the situation of zero 
dissolved quantity. In addition, if the solvent contains a common ion with 
the solute, that ion is inactive from the point of view of cryoscopy, because 
its quantity practically does not vary when the complex is dissociated. 

The method applies both to the dissociation of complexes and that of the 
ions. 



Dissociation of Electrolytes in Solution     27 

For example, with cryoscopies at the transition temperature between 
sodium sulfate and sodium sulfate decahydrate, it has been possible to 
measure the following values of n: 

– n = 1; for sodium chloride NaCl (the common sodium ion has no 
influence), and for magnesium sulfate MgSO4 (with a common sulfate ion). 
The true value of the coordination number is 2; 

– n = 2, for potassium nitrate KNO3 and potassium sulfate K2SO4 
(common sulfate ion). The true value of the coordination number is 3; 

– n = 3, for magnesium chloride MgCl2. 

1.7. Thermodynamic values relative to the ions 

In order to study the ionic medium, we need to know the enthalpies and 
entropies of the reactions, and therefore the enthalpies and entropies of 
formation of the ions. This is the topic of our discussion in this section. 

Note, firstly, that it is not possible to deduce the values we seek from the 
known values for the atoms and molecules because, in view of the necessity 
to respect the electrical neutrality of the balance equations, it is impossible to 
design reactions which involve only the ions of one species. 

1.7.1. The standard molar Gibbs energy of formation of an ion 

Consider, for instance, the reaction of formation of a pair of dissolved 
ions: 

Apure + B pure + solvent = A+ (dissolved) + B- (dissolved) [1R.5] 

The Gibbs energy associated with that reaction is given by: 

( )( )

0 0
5

0 0

A
(A ) (B ) R ln

B

A
(A ) (B ) R ln R ln

B

T T T

T T

G T

T T ν ν

Δ μ μ

μ μ γ + −

+
+ −

−

+
++ −

±−

= − +

⎡ ⎤⎣ ⎦= − + +
⎡ ⎤⎣ ⎦

  [1.68] 
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The standard chemical potentials of the ions cannot be found 
individually. At most, by placing ourselves in conditions such that the mean 
activities of the ions are equal to 1, and considering the Gibbs energy 
associated with the dilution, we can determine the difference between the 
two standard potentials 0 0(A ) (B )T Tμ μ+ −− .  

To find an individual value, it is necessary, by convention, to attribute a 
particular value to the standard chemical potential of an ion, and then, 
starting with that chosen value, little by little, calculate a complete scale of 
the standard potentials of the ions. 

To choose the base, we consider the electrochemical reaction associated 
with the neutralization of the proton, which is written thus: 

H+ + e- = 1/2H2 [1R.6] 

The standard Gibbs energy associated with this reaction is: 

0 0 0
6 298 298 2 298

1Δ (H ) (H )
2

g μ μ += −
 

 [1.69]
 

By convention, this standard Gibbs energy is chosen as being equal to 0 
at 25°C. This is known as Latimer’s first convention. Thus: 

0
6 298Δ 0g =   [1.70] 

By combining relations [1.69] and [1.70], we immediately obtain: 

0 0
298 298 2

1(H ) (H )
2

μ μ+ =
 

 [1.71] 

As the standard enthalpy of formation of the hydrogen molecule is zero at 
25°C, we can deduce that: 

0 0
298 298 2

298(H ) (H )
2

sμ + = −   [1.72]
 

Thus, the standard chemical potential of the hydrogen ion is directly 
linked to the standard entropy of the dihydrogen molecule. 
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At a temperature other than 25°C, relation [1.71] still holds true, but the 
standard enthalpy of formation of the hydrogen molecule is no longer zero. 

1.7.2. Standard enthalpy of formation of ions 

By convention, and for the same reasons as for the Gibbs energy, 
Latimer’s second convention is to posit that the standard enthalpy of 
formation of  H+ ions is 0 at any given temperature. 

0 (H ) 0Th + =
 

 [1.73] 

This convention is the same as that of neutral molecules of simple 
substances, which is normal because relation [1.71] can be transposed to 
apply to enthalpies. 

1.7.3. Absolute standard molar entropy of an ion 

In view of convention [1.73], relation [1.72] becomes: 

0 0
2 

1(H ) (H )
2T Ts s+ =

 
 [1.74]

 
Hence, at 25°C: 

0 0 1 1
298 298 2 

1(H ) (H ) 65 342 J.mole K
2

s s+ − −= =
 

 [1.75]
 

Note that the entropy of formation of the H+ ions is not zero, contrary to 
another convention which Latimer had chosen and which thus proved to be 
inconsistent with the first two. 

In this chapter, we have examined the behavior of an electrolyte placed in 
water. The study would have been performed in the same way if, instead of 
water, we had used another solvent, provided that, like water, that solvent 
has a high dielectric constant. In the case of a solvent with a lower dielectric 
constant, we see that the solution behaves as though the number of ions were 
less. The conductivity decreases. Not only are the coefficients B1 and B2 
from relation [1.41] different, but it is as if the concentration too were  
lower – even in the case of a strong electrolyte in the solvent at hand. In 
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Chapter 3, when we study acids, we shall see the role of the dielectric 
constant of the solvent on the dissociation of an acid. Then, we introduce the 
ion pair model. 

1.7.4. Determination of the mean activity of a weak electrolyte on 
the basis of the dissociation equilibrium 

Suppose we know the dissociation constant of the weak electrolyte AH 
and its dissociation coefficient α at the chosen concentration C. The 
dissociation constant is written as: 

( )22

1 AH

CK
γα

α γ
±=

−
  [1.76] 

Adopting the hypothesis of a solution sufficiently dilute in terms of 
electrolyte AH, we know that as the concentration decreases, neutral 
molecules approach an ideal state much more quickly than do ions. Thus, we 
shall posit AH 1γ = . Immediately, we find; 

( )
2

1K
C

α
γ

α±

−
=   [1.77] 

We shall see other methods for measuring the mean activity of an 
electrolyte in Chapter 7. 



2 

Solvents and Solvation 

2.1. Solvents 

One of the most commonly used methods to obtain an ionic solution is to 
mix a solvent with a solid compound exhibiting marked electrovalence. 

Solvents can be classified on the basis of how easily they can separate 
ions. The classification system is based on the value of the dielectric 
constant. Indeed, the force of attraction between ions of opposite signs is 
inversely proportional to the dielectric constant; hence, the higher the value 
of that constant, the weaker the inter-ionic forces, and therefore the stronger 
the solvent’s ionizing power. 

There may be significant differences between the values of the dielectric 
constants of solvents. Table 2.1 gives an example of the dielectric constants 
D of a number of ionizing solvents. 

Solvents such as carbon tetrachloride (D = 2.24), ethyl carbonate  
(D = 2.8) or benzene (D = 2.27) are considered to be inert solvents without 
an ionizing power. 

Solvent D 
Cyanhydric acid 114 
Formaldehyde 109 

Water 78 
Ethanol 25 

Liquid ammonia 20 
1,4-Dioxane 9.5 
Acetic acid 6 

Table 2.1. Values of some dielectric constants of ionizing solvents 

Ionic and Electrochemical Equilibria, First Edition. Michel Soustelle.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Another classification system divides solvents into three categories 
depending on the nature of their bond: 

– molecular solvents, which are essentially composed of electrically-
neutral molecules. The molecules are linked to one another by hydrogen 
bonds or van der Waals forces, and the intramolecular bonds are covalent. 
They are liquids whose dielectric constant varies in an extended domain 
ranging from 2 for benzene to 165 for N-methylacetamide. They do not 
conduct electrical current well because they have a low degree of ionization. 
This is the family to which water, liquid ammonia and numerous organic and 
inorganic compounds belong; 

– ionic solvents, composed of anions and cations. The bonds in these 
solvents are strongly ionic, which explains why, in order to use liquids as  
a solvent, it is necessary to raise them to a high temperature. Essentially, 
ionic solvents are molten salts. To lower the working temperature, we can 
use eutectic mixtures, such as cryolith – a mixture of sodium fluoride and 
aluminum fluoride (3FNa + F3Al), which is used for the electrolysis of 
aluminum; 

– metallic solvents or molten metals. Cohesion is assured by metallic 
bonds. These are excellent electrical conductors. This category includes 
liquids at very different temperatures, including the ordinary temperature 
depending on the melting point of the metal or the eutectic used. 

Finally, a third useful distinguishing factor between solvents is their 
ability (or lack thereof) to exchange protons with another molecule. Thus, 
we distinguish protonic solvents from aprotic solvents, which have no 
capacity for such proton exchanges. For instance, sulfur dioxide can be used 
as a solvent, and is aprotic. 

Protonic solvents can, themselves, be classified into three categories in 
terms of their acid/base properties. We distinguish: 

– acidic or protogenic solvents  which act solely as proton donors. This 
category includes sulfuric acid, acetic (or ethanoic) acid), formic (or 
methanoic) acid, acetone (or propanone); 
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– basic or protophilic solvents which act solely as proton acceptors. In 
this category, we can cite pyridine, liquid ammonia, amines and 1,4-dioxane; 

– amphoteric or amphiprotic solvents, which are capable of acting as a 
proton donor and/or acceptor. This category includes water, alcohols and 
acetonitrile. 

2.2. Solvation and structure of the solvated ion 

As we saw in section 1.1.1, solvation is the fixation of a certain number 
of molecules of solvent onto the ions. This solvation becomes important in 
two fields: 

– the study of the mobility of ions and therefore of conductivity, because 
the motions of the ions are completely different depending on whether or not 
they carry with them a certain number of molecules of solvent; 

– the study of the influence of the solvent on reactions in solution. 
Obviously, the ions’ behaviors are dependent on their immediate 
environment. 

As is the case with pure liquids, it is possible to study the spatial 
distribution of species around an ion using the radial distribution function1, 
which can be determined by X-ray diffraction, or better still, neutron 
diffraction. 

Remember that the radial distribution i, jg (r) is the probability of finding 
an atom i at the distance r from an atom j. This probability is also known as 
the pair distribution. 

Figure 2.1 shows the pair distribution functions obtained for the Cl-O and 
Cl-H pairs in an aqueous solution of sodium chloride. We can plainly see, on 
the two curves, the presence of a first, highly-pronounced peak which 
indicates significant structuring of water molecules in the immediate vicinity 
of the chlorine ion. The next maximum is much attenuated, and the third is 
barely visible. 

                                 
1 On this subject, readers could usefully consult the first chapter of Volume 2 of this 
collection, dedicated to liquid phases [SOU 15b]. 
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Figure 2.1. Pair distribution functions for Cl-H and  
Cl-O in salt water (from [IMP 86]) 

This means that in the immediate vicinity of the chlorine ion, the water 
molecules are very clearly localized, forming what is known as the first 
solvation layer (Figure 2.2). Then comes a fairly well-structured zone which 
is known as the buffer zone, in which the molecules exhibit a certain degree 
of order.  

 

Figure 2.2. Arrangement of dipolar molecules  
of solvent around the solvated ion 
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Finally, the rest of the solvent constitutes the bulk. In this zone, the 
central ion no longer exerts any influence whatsoever on the molecules of 
solvent.  

On the basis of the distribution function, it is possible to calculate the 
number of atoms constituting the first solvation layer, using the relation: 

min
2

0

4 ( )d
r

z r g r rπρ= ∫   [2.1] 

In this relation, we decide that the immediate neighbors are those solvent 
atoms at distances between 0 and rmin from the ion. This latter value is the 
abscissa of the minimum which comes after the first maximum (Figure 2.1) 
of g(r). 

This number is usually 6 in water for most ions such as halogen or 
transition metal ions. The value is a little less with the smallest ions. For 
example, it is 4 in the case of Li+ ions, and 4 to 6 for the Na+ and K+ ions. 

By taking measurements – notably by magnetic resonance relaxometry – 
it is possible to measure the mean time of stay of the molecules of solvent in 
the different layers formed around the ion. We note that the ions in the first 
layer exchange only very slowly with molecules outside of that layer, unlike 
the molecules in the buffer zone, which are much more “mobile”. Beyond 
the second layer, the times of stay are the same as they are in pure water.  
All these exchange times vary with the size and charge of the central ion. 

2.3. Thermodynamics of solvation  

Ultimately, solvation is the result of a reaction which is written as: 

A (gas) →A (dissolved)  [2R.1] 

This reaction is possible for neutral molecules or atoms, such as a rare 
gas, just the same as it is with an ion. For example, in the case of the sodium 
ion, this reaction is written: 

Na+(gas) →Na+ (dissolved)  [2R.2] 
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It expresses the passage of the sodium ion from the gaseous state to the 
solvated state in the solution. 

Solvation where water is the solvent has the particular name of hydration. 

2.3.1. Thermodynamic values of solvation 

The Gibbs energy of solvation and the enthalpy of solvation of an atom, a 
molecule or an ion are, respectively, the Gibbs energy and the enthalpy 
associated with the reaction of solvation [2R.1].  

For a neutral species, whether solid, liquid or gaseous, we can measure 
the enthalpy of solvation using a calorimeter, breaking a vial containing the 
product in question, which is immersed in a large quantity of solvent. 

The Gibbs energy of solvation can be estimated by calculating the work 
required to form a cavity of surface area equal to that of the molecule. For 
example, we estimate the Gibbs energies of solvation of rare gases as the 
amount of work necessary to create a spherical cavity whose radius is equal 
to that of the atom of the rare gas. These calculations are performed when we 
know the surface tensions2 of the solvents. 

We know that for rare gases, for example, the Gibbs energy of solvation is 
slightly positive (around 25 kJ/mole in water, and 20 kJ/mol in benzene). 
Therefore, it is more favorable for the gases to exist in the gaseous state than to 
be present as dissolved gases. Thus, these gases are not greatly soluble in water. 

In the case of ions, we distinguish between two families of thermodynamic 
values of solvation: the absolute values and the relative values. 

Indeed, given the impossibility of solvating a species of ion in isolation, 
we have, as we did for the Gibbs energies of formation, expressed the Gibbs 
energies of solvation on a scale where the standard Gibbs energy of 
solvation of the proton is taken as being equal to 0. Thus, we posit that at all 
temperatures, for the reaction: 

H+ (gas) = H+ (dissolved)  [2R.3] 

                                 
2 This type of calculation will be used in Volume 7 of this series, which is dedicated to 
surface phenomena. 
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0
H

Δ 0solvG + =   [2.2] 

We do likewise for the standard enthalpy: 

0
H

Δ 0solv H + =   [2.3] 

Obviously, the conclusion to draw from this is that we have: 

0
H

Δ 0solvS + =   [2.4] 

The relative standard Gibbs energy of solvation of a cation is, in fact, the 
standard Gibbs energy of the reaction: 

M+ (gas) + ν H+ (dissolved)= M+ (dissolved) + ν H+ (gas)  [2R.4] 

Thus: 

0 0 0
4 3Δ Δ ΔMG G G= −   [2.5] 

Using sophisticated computational methods, it has been possible to find 
absolute values for the Gibbs energy and enthalpy of solvation of a proton by 
water. The following values can be taken as accurate. 

0
H

Δ 1090 kJ/molsolvG + = −        and     0
H

Δ 1130 kJ/molsolv H + = −   

Based on these values, it is obviously easy to calculate, little by little, the 
standard absolute enthalpy and Gibbs energy values of hydration of the 
ions. Note that for highly-soluble salts, the values obtained are strongly 
negative, demonstrating the stability of ions solvated by water in comparison 
to gaseous ions. For instance, for the Na+ ion, we obtain an approximate 
value of -205 kJ/mol. 

2.3.2. Gibbs energy of salvation – Born’s model 

In 1920, Born offered up a model to calculate the absolute Gibbs energy 
of solvation of an ion in a solvent. In fact, this model calculates only the 
electrical contribution to that solvation, only taking account of the 
interactions between the ion and the electrical field created by that ion’s 
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charge. In reality, the Gibbs energy of solvation of an ion is the sum of two 
terms: the electrical term, which we have just defined, and a term due to the 
short-distance interactions, by way of van der Waals forces, between the ion 
Ai and the molecules of solvent which are solvating it. Thus, in a solvent S, 
we can write: 

0(S) 0(S) 0(S)Δ Δ Δsol i elec i vdW iG G G= −   [2.6] 

To explain Born’s model, which therefore applies only to the electric 
part, we consider the cycle shown in Figure 2.3. 

Figure 2.3. Born’s model of solvation 

Consider a spherical ion with radius ir . The energy Wt corresponds to the 
Gibbs energy of dissociation, because it is the energy accompanying reaction 
[2R.2]. 

In this cycle, the energy Wn can be considered to be the Gibbs energy of 
solvation of a spherical, non-charged atom. In other words, it is essentially 
that of the rare gas with the same radius. 

Wd and Wc are respectively the opposite of the charge energy in a 
vacuum, and the charge energy in the dielectric with constant D of the 
spherical ion. 
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We have displayed these different energies on the cycle in Figure 2.3. 
From this cycle, we see that we can write: 

t n d cW W W W− = +   [2.7] 

This difference t nW W− represents the energy of interaction between an 
ion and the solvent, because it represents the difference between the Gibbs 
energy of solvation of an ion and that of a neutral atom or molecule of the 
same size. It is the electrical contribution to the Gibbs energy of solvation. 

Let 0(Gas)
iμ denote the standard chemical potential (P = 1 bar) of the ion Ai 

in the gaseous phase. 0(Gas)
GRμ  shall represent the standard chemical potential 

of the rare gas with the same radius. If the ion Ai and the rare gas have the 
same electronic configuration, we can accept the following equality as being 
true: 

0(Gas) 0(Gas)
i GRμ μ=   [2.8] 

Let 0(S)
GRμ denote the standard chemical potential (C = 1 mole/l) of the rare 

gas solvated. The standard chemical potential of the ion Ai solvated but not 
charged shall be equal to 0(S)

GRμ . The chemical potential of the ion Ai solvated 
can then be written as: 

(S) 0(S) (S)R lni GR i iT Γ Cμ μ= +   [2.9] 

The term (S)R ln i iT Γ C  is due only to the electrical charge of the ion in the 
solvent S. Following the example set by Trémillon [TRÉ 71], we shall speak 
of the activity coefficient of solvation3 of the ion Ai in the solvent S, denoted 

( )S
iΓ . 

The Gibbs molar energy of solvation will therefore be: 

(Liq) 0(Gas) 0(Liq) (S) 0(Gas)
( )Δ R lnsol i M i i GR i GRG T Γμ μ μ μ= − = + −   [2.10] 

 

                                 
3 This value has been given different names by different authors. For Grünwald, it is the 
degenerate activity coefficient, and for Bates, the medium effect coefficient. 
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We can write this alternatively as: 

(S) 0(S) (S)
( )Δ R lnsol i M sol GR iG G T ΓΔ= +   [2.11] 

If we compare that relation to relation [2.6], we can assimilate the term 
relative to the rare gas with the non-electric term, and therefore write: 

(S) 0(S) 0(S) (S)
( )Δ Δ Δ R lnsol i M sol GR élec i iG G G T Γ− = =   [2.12] 

Thus, by comparing with the energies involved in the cycle in Figure 2.3, 
we can write the following for one mole: 

( )0(S) (S)
aΔ R ln Nelec i i d cG T Γ W W= = +   [2.13] 

We shall now calculate the terms dW and cW .  

In fact, first of all, we shall calculate cW , which is the energy required to 
charge a sphere whose radius is ir , placed in a dielectric which has the 
constant D. 

The energy stored in a dielectric S when we charge an ion is given by: 

1 . .d
2c

V

W D E v= ∫∫∫
r r

  [2.14] 

The integral is extended to the whole of the volume. The vectors D
r

 and 
E
r

respectively represent the electric induction vector and the electric field 
vector. 

If the dielectric can be considered to be perfect, we have: 

2
0D DEε=

r r
  [2.15] 

Also, if φ denotes the electrical potential, we have: 

E gradϕ= −
uuuuuuurr

  [2.16] 
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The charge energy is therefore written as: 

0 . .d
2c

V

DW E grad vε ϕ= − ∫∫∫
uuuuuuurr

  [2.17] 

We know that: 

( ) . .div E grad E divEϕ ϕ ϕ= − +
uuuuuuurr r r

  [2.18] 

By feeding this back into equation [2.17], we obtain: 

0 0. .d ( ).d
2 2c

V V

D DW divE v div E vε εϕ ϕ= −∫∫∫ ∫∫∫
r r

  [2.19] 

Poisson’s equation outside of the ion immediately gives us: 

0divE =
r

  [2.20] 

Let us apply the Green–Ostrogradsky theorem: 

0 . . d
2c

S

DW grad n sε ϕ ϕ= ∫∫
uuuuuuur r   [2.21] 

The integration surface is the sphere of the ion whose radius is ir . The 
potential φ generated by the charge ion ze in the homogenous medium with 
dielectric constant D is: 

04 i

ze
Dr

ϕ
πε

=   [2.22] 

Thus, by substituting back into relation [2.21], we find: 

2

0

1 1 . d
4c

s i

zeW grad n s
D r rπε

⎛ ⎞
= ∫ ∫⎜ ⎟
⎝ ⎠

r   [2.23] 
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In view of the sphericity of the ion, it makes sense to operate in spherical 
coordinates to calculate the integral. Thus, we have: 

2

1 d

i i

rgrad
r r

= −    [2.24] 

The integral in relation [2.23] thus becomes, in spherical coordinates: 

2

0 0

d 4sin d di

i i

r
r r

π π πθ θ φ =∫ ∫   [2.25] 

Thus, we have the charge energy of the ion: 

( )2

08c
i

ze
W

Drπε
=   [2.26] 

A similar calculation gives us the following for the discharge energy in a 
vacuum: 

( )2

08d
i

ze
W

rπε
= −   [2.27] 

By feeding back the results [2.26] and [2.27] into relation [2.13], we 
obtain: 

( ) ( )2
a0(S) ( )

a
0

N 1Δ R ln N 1
8

S
elec i i d c

i

ze
G T Γ W W

r Dπε
⎛ ⎞= = − = − −⎜ ⎟
⎝ ⎠

  [2.28] 

As a dielectric constant varies between 2 and 100, we can see that this 
electrical contribution is always negative. 

Using relations [2.6] and [2.28], the standard Gibbs molar energy of 
solvation becomes: 

( )2
a0(S) 0(S)

0

N 1Δ 1 Δ
8sol i vdW i

i

ze
G G

r Dπε
⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

  [2.29] 
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We observe an affine variety of the Gibbs energy of solvation with the 
inverse of the radius of the ion and with the inverse of the dielectric constant. 

Experience tells us that these two laws are not very rigorously respected. 
A number of reasons account for the differences between Born’s model and 
reality. 

The first approximation which we made is to assimilate the non-charged 
ion to a rare gas having the same radius. Whilst this approximation is not 
overly audacious in the case of ions of simple elements – i.e. normal cations 
and anions which do indeed have the same structure as the rare gas – but 
when they are charged, this is no longer true when we are dealing with 
cations of transition elements, and is all the more false with complex anions. 

Then, we supposed the ion to be spherical, which still holds true for 
simple ions but differs notably from reality with complex ions containing 
multiple atoms. 

We then supposed that the medium into which the ion is immersed is a 
homogeneous dielectric medium, characterized by a dielectric constant D 
which is identical at all points. However, evidently, due to the influence of 
the ion, in its vicinity, the polarization of the molecules of solvent causes an 
alteration of the dielectric constant, which only regains its normal value in 
the third corona around the ion (Figure 2.2).  

Finally, we supposed, in employing Born’s model, that the radius of the 
ion was independent of the solvent. We can see that the affine law in 1/r 
usually does not work. On the other hand, for simple spherical ions, we saw 
that the affine law in 1/r did work in water, as shown by Figure 2.4, on 
condition that we add 0.70μm to the radii of the cations and 0.30μm to the 
radii of the anions. Thus, the radius depends not only on the solvent, but also 
the first solvation layer produces an increase in the ion’s apparent radius. 

The non-electric term in relation [2.29] can be very significantly 
increased by the intervention of forces other than the van der Waals forces in 
the bond between the ion and the molecules of solvent. In particular, when 
there is the possibility for hydrogen bonds, that non-electric term may 
become very significant indeed, and its variations with ionic radius are not 
necessarily either negligible or affine in 1/r. It is undeniable that in these 
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cases, where the electrical part of the Gibbs energy of solvation is not 
necessarily predominant, it is illusory to try to use Born’s model. 

Figure 2.4. Gibbs energy of solvation as a function of the modified ionic radii 

Finally, it is clear that for molecular solutes, Born’s electrical 
contribution is zero. 

2.4. Transfer of a solute from one solvent to another  

For the study of solutions, we shall work with convention (III) – the 
molar solution. 

We wish to compare the properties of a solute in a solvent S1 with the 
same properties of the same solute in a different solvent S2. In order to do so, 
it is helpful to compare the solute in the two solvents at the same chemical 
potential, i.e. the same energy level. 

If, in the two solutions, the solute has the same chemical potential, this 
means that there is not the same amount of activity. Indeed, the reference 
chemical potentials, which are both defined at the same concentration of  
1 mol/l, do not have the same value in the two solvents. We shall now 
introduce a new entity, called the Gibbs energy of transfer of the solute Ai 
from solvent S1 to solvent S2, defined by the relation: 

2 1

1 2

0(S ) 0(S )0
S SΔ i i iG μ μ→ = −   [2.30] 
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Because the chemical potential of the solute is the same in both solvents, 
we have: 

2 1(S ) (S )
i iμ μ=   [2.31] 

This equality, if we expand the expressions of the chemical potentials, is 
expressed by: 

2 12 1
(S ) (S )0(S ) 0(S )2.3R log A 2.3R log Ai i i iT Tμ μ+ = +   [2.32] 

From this relation, we deduce: 

1
2 1

1 2

2

(S ) 00(S ) 0(S )
S S

(S )

A Δ
log

2.3R 2.3RA

i ii i

i

G
T T

μ μ →−= =   [2.33] 

We shall define the transfer activity coefficient (TAC), written as 
1 2(S ) (S )

iΓ , by the relation: 

1 2 1 2

0
S S (S ) (S )Δ

log
2.3R

i
i

G
Γ

T
→ =   [2.34] 

By comparing relations [2.33] and [2.34], we can write: 

1 21 2
(S ) (S )(S ) (S )A Ai i iΓ=   [2.35] 

That transfer activity coefficient will be greater than or less than 1 
depending on whether the solute is more or less heavily solvated in solvent 
S1 than in S2. 

Let us linger for a moment over relation [2.35]. We can say that it 
expresses an equilibrium of phase of the component Ai in the two solvents S1 
and S2. This being the case, the transfer activity coefficient has the meaning 
of an equilibrium constant. We shall come back to this idea to measure  
the transfer activity coefficient between two immiscible solvents (see  
section 2.6.1.1). We can also express relation [2.35], saying that it 
establishes a scale of correspondence between the two solvents, thus 
enabling us to compare component Ai’s behavior in all solvents. The activity 
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values found in relation [2.35] correspond to the same chemical energy of 
component Ai. We can say that these two activity values are energetically 
equivalent. We establish a similar scale for the pH between the different 
solvents in Chapter 3 (see section 3.3.2). 

In the case of molecular solvents at normal temperature, and of solutes 
which can also exist in aqueous solution, naturally, very often we express the 
properties of a solute in a solvent S in relation to its properties in water. By 
applying relation [2.35] to this case, we obtain: 

( ) (S)( ) (S)A A
Water Water

i i iΓ=   [2.36] 

The corresponding transfer activity coefficient, which – for the sake of 
simplicity – we shall henceforth denote by (Tr)

iΓ , is such that: 

0(S) 0( )
( ) (S) (Tr)log log

2.3R

Water
Water i i

i iΓ Γ
T

μ μ−= =   [2.37] 

Using relation [2.36], it is possible to express the activities of the solutes 
in any solvent, using a common scale where the reference state is that of the 
solute in water at the same reference concentration – i.e. 1 mol/l, or the 
infinitely-dilute solution. 

In section 2.3.2, we discussed Born’s model, in which the Gibbs energy 
of solvation was due only to electrical factors. Let us now evaluate the 
transfer activity coefficients in such a model. In other words, we can write 
that the transfer activity coefficient is the product of a van der Waals-type 
contribution and an electrical contribution, and it is the latter which we shall 
now evaluate. 

We write the Gibbs energy of solvation (electric) of the same solute Ai in 
two solvents S1 and S2. According to relation [2.28], we have: 

1 20(S ) (S )Δ R lnelec i iG T Γ=   [2.38] 

2 20(S ) (S )Δ R lnelec i iG T Γ=   [2.39] 
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The Gibbs energy of transfer from solvent S1 to solvent S2 is therefore 
written: 

2
1 2 2 1

1

0 (S )
S S (S ) (S )

(S )

Δ
log log log

2.3R
i i

i i
i

G ΓΓ Γ
T Γ

→ = − =   [2.40] 

By comparing this with relation [2.34], which is the definition of the 
transfer activity coefficient, we obtain: 

2
1 2

1

(S )
(S ) (S )

(S )
i

i
i

ΓΓ
Γ

=   [2.41] 

By introducing relation [2.29], we are able to deduce: 

( )
1 2

2
a(S ) (S )

0 1 2

N 1 12.3log
8i

i

ze
Γ

r D Dπε
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

  [2.42] 

Obviously, this is the electrical contribution to the total transfer activity 
coefficient. 

This contribution, based on Born’s model, obviously suffers from the 
same inaccuracies and the same disadvantages as those pointed out at the 
end of section 2.3.2. 

In the case of comparison of a solvent S with water, relation [2.42] is 
written as: 

( )2
a(Tr)

0 S Eau

N 1 12.3log
8i

i

ze
Γ

r D Dπε
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

  [2.43] 

According to this relation, when moving from water to a solvent with a 
lower dielectric constant (which is most often the case), the electrical effect 
must cause the transfer activity coefficient of the ion to increase. 
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2.5. Mean transfer activity coefficient of solvation of an 
electrolyte 

For an electrolyte, it is obviously impossible to transfer one of the ions 
separately from one solvent into another. We can only calculate the Gibbs 
energy of total transfer. Therefore, we are led to define mean transfer 
activity coefficients. 

Consider an electrolyte A B ,ν ν+ −
 whose ions carry the charges zν- and zν+. 

We can distinguish between two contributions – one anionic and the other 
cationic. The total Gibbs energy of transfer will be: 

0 0 0
A BΔ Δ ΔTr t Tr TrG G Gν ν+ −= +   [2.44] 

We define the mean transfer activity coefficient  by the following 
relation, inspired by relation [2.34]: 

0 0
A BΔ Δ2.3R log Tr TrG GT Γ ν ν

ν ν
+ −

±
+ −

+=
+

  [2.45] 

Using relation [2.34] for the individual transfer activity coefficients, we 
find: 

A B2.3R log 2.3R log2.3R log T Γ T ΓT Γ ν ν
ν ν

+ −
±

+ −

+=
+

  [2.46] 

From this, we deduce a relation that is very similar to relation [1.1], 
which defined the mean activity coefficient: 

( ) ( )1/

-Γ Γ Γ
ν νν ν + −

+ −
+

± +=   [2.47] 

For a 1-1 electrolyte, we have: 

( )1/2
-Γ Γ Γ± +=   [2.48] 
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For the electrical contribution, using relations [2.46] and [2.43] we 
obtain: 

( ) ( )
2

a 2 2

0 S Water

N1 1 12.3R log
8 i

e
T Γ

r D D
ν ν

ν ν πε± + −
+ −

⎛ ⎞
= − +⎜ ⎟+ ⎝ ⎠

 [2.49] 

which, in the case of a 1-1 electrolyte, gives us the expression: 

( )2
a

0 S Water A A

N 1 1 1 12.3R log
16 i

ze
T Γ

r D D r rπε±

⎛ ⎞⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
  [2.50] 

Of course, this last relation contains the same faults and the same 
inaccuracies as its counterparts encountered above. 

2.6. Experimentally determining the transfer activity coefficient 
of solvation  

We wish to determine the transfer activity coefficient of a solute Ai 
between two solvents S1 and S2. 

In determining the transfer activity coefficients, we must distinguish 
between two cases: that of molecular solutes, which does not pose a major 
problem, and that of ionic solutes. In the latter case, we either determine the 
mean transfer activity coefficient or we attempt to find an individual transfer 
activity coefficient for the ions. 

In the methods employed, we distinguish thermochemical methods from 
electrochemical ones, which involve an electrochemical cell. The latter 
category of methods is discussed in detail in Chapter 7, which is devoted to 
the thermodynamics of such cells. 

With all thermochemical methods, we need to know the relation between 
the activity coefficient of component Ai in question and its concentration in 
each of the solvents. Either that relation is determined in advance using 
conventional methods for determining chemical activities, or the solutions 
are sufficiently dilute to allow us to treat the activity as being equal to the 
concentration. 
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The problem now is how to determine the concentrations of component 
Ai in each of the solvents. These concentrations are such that they produce 
relation [2.35] (or [2.36], if one of the solvents is water) between the activity 
values. 

2.6.1. Determining the activity coefficient of a molecular solute 

Thermochemical methods are based on the comparison of two solutions, 
either directly or with a third phase containing the same component, with 
known activity and at equilibrium, separately, with the two solutions being 
studied. Usually, this third phase is the pure substance Ai. Then, the 
equilibria in question are equilibria of solubility. Indeed, if each of the 
solutions is placed at equilibrium with the pure substance Ai, this means that 
the chemical potential of Ai in those solutions is the same as that of Ai in the 
pure substance. Thus, relation [2.31] will be respected between the two 
solutions. 

2.6.1.1. Use of equilibrium of sharing between immiscible solvents 

If the two solvents are not miscible with one another, we merely need to 
introduce a small amount of component Ai into one of the solvents, mix the 
solvents and then, when equilibrium is achieved, dose Ai into each solvent. 
We can use small quantities of Ai so as to be able to treat the concentration 
and the activity as being one and the same thing. It is easy to calculate the 
transfer activity coefficient between the two solvents, using the following 
relation, derived from relation [2.36], in the case that one of the solvents is 
water: 

2

(Water)
(Tr)

(S )
equil

i
equil

C
Γ

C
=   [2.51] 

If the water is replaced by a different solvent, we use relation [2.35]. 

2.6.1.2. Use of the comparison of the solubilities in the two solvents 

In this method, we dissolve the solute, to the point of saturation, in each 
of the two solvents separately, at the same temperature. Given that, in both 
cases, the solution is at equilibrium with the pure substance, the chemical 
potential of each solute is equal to the chemical potential of the same 
component in the pure state, and thus they are equal to one another. Hence, 
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the chemical potentials of the solute in the two solutions obey relation 
[2.31]. Therefore, we simply need to measure the corresponding activities in 
each solution and apply relation [2.35] or [2.36] as required. 

NOTE.– If the solubility values are low, we can treat the activities and 
concentrations as being one and the same. 

Obviously, we must take the precaution of verifying that the pure 
compound at equilibrium with the solution is indeed the same in both cases. 

If the solute is a solid or a liquid in the pure state, la method presents no 
difficulty at all. If this compound is in gaseous form in the pure state, the 
equilibria of saturation need to be achieved at the same partial pressure of 
the gas in question. 

2.6.2. Determination of the mean transfer activity coefficient of a 
strong electrolyte 

In the case of strong electrolytes which dissociate in solution, without 
considering the parasitic reactions of solvolysis or complexation, we can use 
two methods which will both yield the mean transfer activity coefficient as 
defined in section 2.5. 

The first method will be the same as before: we use the notion of 
solubility of the electrolyte in each of the two solvents (see section 2.6.1.2). 
In order to determine the mean coefficient, we first determine the mean 
activity in the two solutions if the solubilities are not sufficiently low to 
enable us to treat the activity and the concentration as being equal. 

The second method uses the equilibrium of an electrochemical cell, and 
will be described in section 7.7.12. 

2.6.3. Evaluation of the individual transfer activity coefficient of 
an ion. 

It is impossible to imagine experimental determination of an ion’s 
intrinsic transfer activation coefficient, because it is not possible to isolate 
that ion.  
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The idea is to evaluate the coefficient of activation of intrinsic transfer of 
an ion by an extra-thermodynamic hypothesis. 

We proceed on the basis of knowing either the total standard Gibbs 
energy of transfer, or the mean coefficient of transfer activation of the 
electrolyte. These values have been measured either by an electrochemical 
method or by a thermochemical method. We shall now examine the three 
hypotheses reported in the literature, which appear to be the most reliable. 

2.6.3.1. Pleskow’s hypothesis 

Although it is probably not the most reliable of methods, this one has the 
advantage of being the longest-standing (established in 1947). 

The approach is to accept that there is an ion for which the activity 
coefficient of solvation is equal to 1 for all solvents (standard Gibbs energy 
of transfer of 0). If such an ion exists, it must probably have a high radius 
and only a small charge (z = 1). When we look at the periodic table, the 
cesium ion (Cs+) seems an obvious choice for this experiment. In Pleskow’s 
work, as cesium salts are rare, he chose to use the rubidium ion (Rb+) 
instead. Since then, tests have been carried out with cesium salts, and the 
results are comparable to those obtained with the rubidium salts. 

In order to improve the accuracy of Pleskow’s hypothesis, instead of the 
unit value for (Tr)

iΓ  of cesium, we can use the value given by Born’s model 
(see relation [2.43]) for cesium chloride. Attempts to do this have shown that 
the correction was not hugely significant. 

Thus, we determine the value of the mean activity coefficient, between 
water and the chosen solvent, for a salt such as chloride. In order to do so, 
we use a thermochemical method (see section 2.6.2) or an electrochemical 
method (see section 7.7.13.1). We then directly obtain the following, thanks 
to relation [2.48]: 

( )1/2
-Γ Γ± =   [2.52] 

Once we have thus found the transfer activity coefficient of a positive ion 
for the solvent used, it is easy, little by little, to determine that of any given 
ion. To do so, we measure Γ±  of a salt containing an ion whose transfer 
activity coefficient has already been determined, and apply relation [2.47]. 
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2.6.3.2. Strehlow’s hypothesis 

Strehlow uses a potentiometric method (see section 7.7.13.2) and 
determines the total Gibbs energy of transfer of a set formed of a cation M+ 
and a redox pair formed of ferrocene and a ferricinium cation. Ferrocene, 
which has the chemical formula (C6H5)2Fe, is a sandwich structure formed of 
a cation Fe2+ between two cyclopentadienyl anions. The ferricinium ion has 
the same structure, but the ferric ion is in the form Fe3+. 

The total Gibbs energy of transfer has the form: 

( )Tr T ferrocene ferriciniumM
Δ Δ Δ Δtotal r Tr TrG G G G+= + −   [2.53] 

In the author’s view, the two terms Tr ferroceneΔ G  and Tr ferriciniumΔ G  are very 
similar to one another, the only difference lying only in the ionic nature of 
the latter term. As the electrostatic corrections which it is possible to make 
are negligible, we deduce that measuring TrΔ totalG  directly gives us Tr M

Δ G + , 
which is why we calculate the transfer activity coefficient of the cation M+. 
Once this value is obtained for one cation, it can be determined 
conventionally for other ions, little by little. 

The ferrocene–ferricinium pair can also be replaced by the cobaltocene–
cobalticinium pair, which has the same structure, with cobalt replacing the 
iron. 

The results obtained are very similar to those given by the rubidium 
method. 

2.6.3.3. Grunwald and Popovych’s hypothesis 

Grunwald and Popovych postulate that for certain salts, formed of an 
anion and a very similar cation, the activity coefficients of transfer between 
two solvents would always be equal. The authors propose to use the couple 
formed of the tetraphenylarsonium cation ϕ4As+ (or tetraphenylphosphonium 
ϕ4P+) and the tetraphenylborate anion ϕ4B-. By measuring the solubility, we 
deduce the transfer activity coefficient Γ± , giving us the individual 
coefficients calculated by: 

1/2 1/2Γ Γ Γ± + −= =   [2.54] 
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For example, for the transfer between acetonitrile and water, we find
6.2Γ Γ+ −= = − . 

Armed with this value, we then determine the solubilities of 
tetraphenylarsonium iodide and silver tetraphenylborate, which respectively 
give us the coefficients of the two I- and Ag+ ions. Then, little by little, we 
find the values of all of the ions. 

The results obtained by this method are very similar to those obtained by 
Strehlow’s method, as shown by Table 2.2, which compares the results of these 
two methods for the transfer of halide ions between water and acetonitrile. This 
matching of the results lends a certain credibility to the two methods. 

Evaluation method Cl- Br- I- 
Grunwald–Popovych 7.9 5.4 3.0 

Strehlow 5.9 6.0 4.1 

Table 2.2. Comparison between the Grunwald–Popovych method and  
Strehlow’s method for evaluating the transfer activity coefficients  

of halide ions in acetonitrile in relation to water [TRÉ 71] 

Whilst the use of multiple methods lends a certain degree of veracity to 
the values obtained, values found by the use of only one method exhibit the 
advantage of being consistent. Table 2.3 shows the values obtained  
for different ions, all measured by Grunwald and Popovych’s method  
and the use of the supposed property of the tetraphenylarsonium and 
tetraphenylborate ions (see section 2.6.3.3) 

Ions Solvents 
 Acetonitrile Ethanol DMF 

Cations 
Ag+ -3.4 0.8 -4.6 
K+ -0.4 0.0 -2.5 

Ca2+ -0.5 -0.1 -2.4 

Anions 

Cl- 7.9 1.5 8.3 
Br- 5.4 1.1 6.3 
I- 3.0 0.5 3.4 

CH3CO2
- 10.3 1.9 11.4 

Table 2.3. Values of the transfer activation coefficients in relation to  
water for a number of ions, measured using Grunwald and  

Popovych’s method [TRÉ 71] 
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Yet we must not lose sight of the fact that all these values are estimated 
rather than measured, and are based on extra-thermodynamic hypotheses 
which, though they are certainly plausible, are not proven. 

2.7. Relation between the constants of the same equilibrium 
achieved in two different solvents 

It is evident that when the solvent takes part in a chemical reaction, its 
standard chemical potential enters into the expression of the equilibrium 
constant, and therefore we can say that the solvent plays a chemical role in 
determining the equilibrium constant. 

We shall now examine a more physical influence of the solvent on an 
equilibrium constant – an influence which is due to the phenomenon of 
solvation, independently of the chemical role discussed above. 

2.7.1. General relation of solvent change on an equilibrium 
constant 

Let us consider an equilibrium very generally written with the usual 
convention in terms of the signs of the stoichiometric coefficients νI, which 
are positive for the right-hand side of the equilibrium and negative on the 
left-hand side. 

0 Ai i
i

ν=∑  [2R.5] 

The equilibrium constant in a solvent Sj is defined on the basis of the 
standard Gibbs energy of the reaction in the same solvent, as follows (see la 
relation [A.2]): 

0
S(S ) exp

R
jj rGK

T

Δ
= −  [2.55] 

The difference between the two logarithms of that constant in two 
solvents S1 and S2 will therefore be: 

( ) ( ) ( ) ( ) 1 22 1 2 1

0 0
(S ) (S )S S S S Δ Δ

Δ ln ln ln
R R
r rG G

K K K
T T

= − = −  [2.56] 
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The difference in the right-hand side of the two standard Gibbs energies 
in the two solvents reveals the Gibbs energy of transfer from solvent S2 to 
solvent S1. That Gibbs energy is expressed as a function of the transfer 
activity coefficients, and by application of relation [2.34], we obtain: 

( ) ( ) ( ) ( )( ) ( ) ( )2 1 2 1 2 1S S S S S S0Δ ln Δ Δ 2.3 logTr i i i
i

K G Γν= = − ∑  [2.57] 

For example, for the equilibrium constant in a solvent S in relation to 
water, we obtain: 

( ) ( ) ( )S Water TrΔ ln 2,3 logi i
i

K Γν= − ∑  [2.58] 

Let us choose an example of the application of relation [2.58] for a 
decomposition reaction, written as: 

AB A Bn n= +  [2R.6] 

Relation [2.58] directly yields: 

( ) ( ) ( ) ( )S Water Tr Tr Tr
AB A Bln ln

n
K K Γ Γ nΓ− = − −  [2.59] 

Thus, we can see that, if the increase in solvation of compounds A and B 
is greater than the increase in solvation of ABn, the equilibrium constant in 
the solvent S is greater than its value in water. 

2.7.2. Influence of the dielectric constant of the solvent on the 
equilibrium constant of an ionic reaction 

When ions are involved in the equilibrium, a certain portion of the 
variations of the constant with the solvent can be attributed to the 
electrostatic fraction of the transfer activity coefficients. That electrostatic 
part is, as we know, insufficient to correctly calculate these coefficients. 
However, that part does enable us to account for the influence of the 
dielectric constant of the solvents. In order to do so, we rely on relation 
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[2.42] and its particular application [2.43] when one of the two solvents is 
water.  

To study this influence of the dielectric constant experimentally, we can 
use as solvents mixtures of varying compositions of two miscible solvents 
whose dielectric constants are substantially different. Thus, we can easily 
use mixtures of water and ethyl alcohol, whose respective dielectric 
constants are 78 and 25 (Table 2.1), or mixtures of water and dioxane  
(D = 9.5).  

We shall now look at two types of reaction in order to demonstrate the 
thinking process and the nature of the results obtained. 

2.7.2.1. Case of isoionic equilibria 

An equilibrium is said to be isoionic if it does not alter the number and 
charge of the ions. Such an equilibrium is one where the number of ions is 
the same on both sides.  

For instance, the equilibria [2R.7] and [2R.8] shown below are isoionic 
equilibria.  

AB+ = A+ +B  [2R.7] 

AB+ +CD2+ = AC+ + BD2+ [2R.8] 

Indeed, in the first example, we have one ion on the left-hand side and 
one ion on the right, both of which obviously carry the same charge. In the 
second example, we have two ions on the left and two on the right of the 
equilibrium, with the charges on the ions being the same – namely one ion 
with the charge +1 and one with the charge +2 on both sides of the 
equilibrium. 

We shall now examine the influence of the dielectric constants of the 
solvents on the variation of the equilibrium constant when moved from water 
to a solvent S to perform reaction [2.7]. 

The electrostatic contribution to the variation of the equilibrium constant 
can easily be calculated using relations [2.58] and [2.43]. 
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Indeed, by using relation [2.58], as only the ions make an electrostatic 
contribution, we can write: 

( ) ( ) ( )( )Water Tr Tr(S)
elect AB A

Δ ln 2.3 log logK Γ Γ+ += −  [2.60] 

By expressing the coefficients ( )Tr
AB
Γ + and ( )Tr

A
Γ +  by relation [2.43], we find: 

( ) ( )2
Water a(S)

elect
0 S Water AB A

N 1 1 1 1Δ ln
8

e
K

D D r rπε + +

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 [2.61] 

We can see that the lowering of the dielectric constant is favorable to the 
larger ion. 

If the two ions have very similar ionic radii, the dielectric constant has no 
impact on the equilibrium constant. Indeed, this is what we see for the 
dissociation constant of AH+-type cationic acids, such as NH4

+. 

2.7.2.2. Equilibrium with increase in the number of ions 

Evidently, if the equilibrium is no longer isoionic, the conclusions about 
the influence of the dielectric constant on the equilibrium constant are  
more complex, and the expression needs to be found in each individual  
case. 

By way of example, we shall now look briefly at the influence of the 
dielectric constant on the equilibrium constant between water and a solvent 
when the reaction takes place with an increase in the number ions, as in the 
example of reaction [2R.9], which we write as: 

AB = A+ + B- [2R.9] 

Similarly as in section 2.7.2.1, we apply relations [2.58] and [2.43] in 
turn. This calculation gives us: 

( ) ( )2
Water a(S)

elect
0 S Water B A

N 1 1 1 1Δ ln
8

e
K

D D r rπε − +

⎛ ⎞⎛ ⎞
= − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 [2.62] 

 



Solvents and Solvation     59 

A relation such as this could be envisaged, for instance, in the case of 
certain molecular or anionic acids. 

Thus, we can see that, when we move from a given solvent to another 
whose dielectric constant is lower, then by comparing relations [2.61] and  
[2.62], we can predict a drop in the acidity constant of molecular and anionic 
acids in comparison to cationic acids. 

It must be remembered that we have only evaluated the electrostatic part 
of the variation of the dielectric constant. This part is sometimes so slight 
that, in experiments, we see an overall effect that is contrary to the electrical 
effect between two solvents. 



 

 



3 

Acid/Base Equilibria 

Reactions involving ions generally take place in solution. The ions are 
then relatively dilute, so we can usually consider the activity of the solvent 
(often water) to be equal to 1. Ions also come into play in other media, such 
as non-aqueous solvents, but also in molten-salt environments. 

Certain reactions involving ions also take place in a solid medium. We 
saw an example of such reactions in volume 3 of this collection [SOU 15c]. 

Ionic equilibria can be classified into two categories: 

– homogeneous equilibria including acid–base equilibria, which we are 
looking at in this chapter, equilibria of formation and dissociation of 
complexes and redox equilibria, which will be discussed in Chapter 4;  

– heterogeneous equilibria, which are essentially linked to the 
phenomena of solubilities accompanied by dissociations, which we shall 
examine in Chapter 5. 

This chapter and the next essentially involve species diluted in a solvent. 
In defining the activities, we choose to take the 1 mole/l solution as a 
reference solution. We know that in this case, the chemical potential of the 
reference state is practically equal to that defined in reference (II) – the 
infinitely-dilute solution.  

0( ) 0( )III
iμ μ ∞=  [3.1] 
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The reactions in solution that we are examining here are all exchange 
reactions. Thus, they are characterized by zero variation of the number of 
moles Δνι. From this, if we look at relation [A.11], it follows that the 
equilibrium constant is the same whether we are dealing with the molar 
fractions or the concentrations. Thus, we shall have: 

(II) (IJI)K K=  [3.2] 

Hence if in the course of certain applications in highly-dilute solutions we 
replace the activities with the concentrations, the equilibrium constants 
would not change. 

3.1. Definition of acids and bases and acid–base reactions  

We shall now look at acids and bases in solution. For the time being, we 
shall only consider the use of molecular protic solvents, in which Brønsted’s 
acidity theory is perfectly applicable, and for which Lewis’ theory is of no 
use. It is understood that the protons are attached to pairs of free electrons, 
making de Brønsted’s approach a particular case of Lewis’ approach (see 
section 3.13). 

Remember that an acid is a molecule capable of ceding protons to another 
molecule and that a base is a molecule capable of capturing protons from 
another molecule. Thus, for each acid, there is a corresponding base, and an 
acid–base pair is represented by the reaction: 

Acid = Base + H+ [3R.1] 

It is understood that the above reaction [3R.1] is meaningless on its own, 
because the lone proton is never stable. Thus, what makes chemical sense is 
reactions between the acid from one acid–base pair and the base from a 
different pair. Such a reaction constitutes an acid–base reaction, which we 
write as: 

Acid 1 + Base 2 = Acid 2 + Base 1 [3R.2] 
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An equilibrium such as this is characterized by an equilibrium constant 
which is written in terms of the activities of the components: 

2

Acid 2 Base 1
Acid 1 Base 2

K =  [3.3] 

Because we are dealing with an exchange reaction, if the solution is very 
dilute, we can replace the activities with the concentrations, and write: 

[ ] [ ]
[ ] [ ]2

Acid 2 Base 1
Acid 1 Base 2

K =  [3.4] 

We know that this equilibrium constant may depend on the solvent. 

3.2. Ion product of an amphiprotic solvent 

Amphiprotic solvents act both as proton donors (i.e. acids) and as proton 
acceptors (i.e. bases). These solvents give rise to an acid-base equilibrium 
between a molecule of solvent acting as an acid and a second molecule of 
solvent acting as a base. For a solvent SH, that equilibrium, called the 
autoprotolysis equilibrium, is written as: 

22HS H S S+ −= +  [3R.3] 

Generally, the progress rate at equilibrium is very small, so for that 
equilibrium, the law of mass action is written: 

SH 2H S SK + −=  [3.5] 

This constant is called the ion product of the solvent. Its value differs 
greatly from one solvent to another. Table 3.1 shows the values equilibrium 
of autoprotolysis of a number of solvents, and their ion products. 

Solvent Equilibrium of autoprotolysis Ion product 
Acetic acid 2CH3COOH = CH3COH2

+ + CH3COO- 10-13 
Water 2H2O = H3O+ + OH- 10-14 

Ethanol 2C2H5OH = C2H5OH2+ + C2H5O- 10-19 
Ammonia 2NH3 = NH4

+ + NH2
- 10-32 

Table 3.1. Equilibria of autoprotolysis and ion products of a few solvents 
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The neutral point of a solvent is determined by half its pKi. 

NOTE.– The autoprotolysis reaction is also an exchange reaction. 

Obviously, ammonia, which is practically not a donor, has a very low ion 
product. In Chapter 7, we shall see a method for determining the ion product 
of a solvent (see section 7.7.6). 

3.3. Relative strengths of acids and bases  

Acids are classified by a value called the acidity constant, which depends 
on the solvent in which the acid–base reactions take place. 

3.3.1. Definition of the acidity constant of an acid 

When an acid AH is dissolved in a solvent SH, an initial reaction occurs, 
which is called ionization or protolysis: 

{ }2AH HS A ,H S− ++ =  [3R.4] 

The corresponding equilibrium constant is written: 

{ }2A ,H S  

AiK
− +

−
=  [3.6] 

Thermodynamically, when studying equilibria, it is always possible to 
break that ionization down into two different stages, where the respective 
equilibria would be: 

AH A H− += +  [3R.4a] 

and 

{ }-
2A H  HS A ,H S+ − ++ + =  [3R.4b] 
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The corresponding laws of mass action would be: 

AH

A H

AH
K

− +

=  [3.7] 

{ }2A ,H S

A HpK
− +

− +
=  [3.8] 

The equilibrium constant for the reaction [3R.4] is obviously linked to 
those for the equilibria [3R.4a] and [3R.4b]. Indeed, we have: 

AHi pK K K=  [3.9] 

The equilibrium [3R.4a] is intrinsic to the acid AH, and independent of 
the solvent. It quantifies the acid’s ability to release protons. The higher the 
value of KAH, the further to the right the equilibrium [3R.4a] shifts. We say 
that KAH quantifies the intrinsic strength of the acid AH. 

The sum of equilibria [3R.4a] and [3R.4b] (that is, equilibrium [3R.4]) 
indicates the ionizing power of the solvent SH. The more ions { }2A ,H S− +  

are created, the stronger the effect of the solvent. This is also a mark of how 
strongly the solvent captures the proton. The higher the value of the constant 
Ki, the more basic the solvent is. 

After ionization comes the dissociation reaction, which is written as: 

{ } -
2 2A ,H S A H S− + += +  [3R.5] 

The corresponding dissociation constant is written: 

{ }
2

2

A H S

A ,H S  
DK

− +

− +
=  [3.10] 

The larger the value of KD, the more ion pairs are dissociated. 
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We define the acidity constant Ka of the acid AH by the relation: 

{ }
{ }

{ }
22

2 2

A ,H S  A H S

A ,H S  AH A ,H S  
aK

− +− +

− + − +
=

+
 [3.11] 

The first fraction on the right-hand side of relation [3.11] is none other 
than the dissociation constant; the second represents the fraction of ions A- 
solubilized. It is a measure of how basic the solvent is. In view of the 
equilibrium [3R.4], the solubilized fraction iα  is written: 

1
i

i
i

K
K

α =
+

 [3.12] 

The higher the value of iα , the stronger Ki is, and therefore the more 
basic the solvent is, given that Ki measures the acidity of the solvent for the 
proton. 

By feeding expression [3.10] back into the definition of the acidity 
constant [3.11], we obtain: 

a D iK K α=  [3.13] 

From this, we derive: 

log loga a d ipK K pK α= − = −  [3.14] 

We can deduce from this that pKa decreases as the acid dissociates. This 
result is well known in the case of aqueous solutions. 

NOTE.– In light of relations [3.7], [3.8], [3.9] and [3.12], we can write: 

11 1

i D D
a

i

i

K K KK
K

K

= =
+ +

  [3.15] 

According to the definition [3.11], the value Ka is not an equilibrium 
constant. However, as shown by relation [3.15], it is defined on the basis of 
such constants, so it is a thermodynamic value. The acidity constant Ka 
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depends on the temperature and of course on the acid AH, but also on the 
nature of the solvent SH. 

For a totally-dissociated acid, we find: 

p pa DK K≅   [3.16] 

In highly-dissociative solvents (dielectric constant D > 40), with equal 
charges, the concentration of ion pairs { }2A ,H S− +  is very low. Thus, the 

activity of the ion pair becomes negligible in comparison to that of the non-
dissociated acid AH, and we obtain the relation: 

2A H S

AHaK
− +

=   [3.17] 

This relation classically applies in the case of water, which has a 
dielectric constant of around 80. Relation [3.17] is absolutely rigorous in the 
case of a molecular solvent (such as water) and an acid whose base is 
electrically neutral (such as NH3), because then we are no longer dealing 
with an ion pair. 

In water, the pKa of fully-dissociated acids is negative, but this is not the 
case in all solvents. In solvents which do not have high dissociative power, 
pKa is no longer close to pKD, which is negative (because of the term in Ki). 
For example, perchloric acid is totally ionized in acetic acid, but the pKa of 
the perchlorate/perchloric acid couple is near to 5. 

3.3.2. Protic activity in a solvent 

By examining relations [3.8] and [3.10], we note that we can write: 

2H S
2

H 1
H S p D

K
K K+

+

+
= =   [3.18] 

2H S
K +  is, in fact, the constant of the equilibrium: 

2H S H HS+ += +  [3R. 6] 
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This is the intrinsic constant of the acid H2S+ (application of relation [3.7] 
to the acid H2S+). As with all constants of this type, we cannot directly find 
this equilibrium, or therefore its constant. However, if we apply this 
expression [3.18] where water is used as the solvent, we would write: 

3H O
3

H
1

H O
K +

+

+
= =   [3.19] 

Given that we do not have access to that constant, because the proton 
does not exist in appreciable quantity in water, the reversibility of the 
different equilibria suggests that the activity of the proton is proportional to 
that of 3H O+ . By convention, we posit that this coefficient of proportionality 
is equal to 1, so 

3H O
p 0K + = . 

We speak of the protic activity of an aqueous solution for the activity of 
3H O+ in that solution. We can see that the pH is simply the opposite of the 

logarithm of the protic activity. 

In the protic solvent SH, using relation [2.36], we define the protic 
activity SHa+ of the solution by the relation: 

(Tr)
SH H 2SHa Γ+ +=  [3.20] 

(Tr)
HΓ is the transfer activity coefficient between water and the solvent SH. 

Hence, we can compare the protic activities of an aqueous solution and a 
solution in the solvent SH, and the protic activities of two solutions in any 
two given solvents by expressing all of them in relation to water. 

We let *(SH)pH  denote the value defined by: 

*(SH)pH log SHa+= −  [3.21] 

That is the pH which, in water, the solution in SH with the same protic 
activity would have. 
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Using relation [3.20] in logarithmic form, we find: 

( )*(SH) (Tr) (Tr)
H 2 2 HpH log log SH p SH logΓ Γ+ += − − = −  [3.22] 

Using this relation, we are able to establish an equivalent pH scale for a 
solvent other than water, and thus establish a common pH scale between the 
two solvents. 

NOTE.– Certain authors speak of the value ( )2SHp +  as the pH of the solution 

in the solvent SH. We shall not use this connotation here, so as not to 
confuse that pH with the protic activity of the solution which, on its own, 
can be used to compare behavior in two different solvents. 

3.4. Direction of acid–base reactions, and domain of predominance 

Consider an acid AH which reacts with a base B according to the 
reaction: 

AH B A BH− ++ = +   [3R.7] 

Depending on the value of the corresponding equilibrium constant KAB, 
the progress rate at equilibrium will be greater or lesser. We can define two 
domains: 

– if the constant KAB is greater than 1, the progress rate at equilibrium 
will be higher than 0.5, and the medium will contain mainly the base A- and 
the acid BH+. We say that this domain is the domain of predominance of A- 
and BH+; 

– if the constant KAB is less than 1, the progress rate at equilibrium will be 
less than 0.5, and the base B and acid AH will be in the majority in the medium. 
We say that this domain is the domain of predominance of AH and B. 

However, in a sufficiently ionizing solvent, such that relation [3.11] is 
applicable, the constant KAB is the ratio between the acidity constants of 
acids AH, KaA and BH+, KaB, which is: 

AB
aA

aB

KK
K

=   [3.23] 
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On a pH axis, the acidity constants are the constants expressed in relation 
to the solvent water. 

Using relations [3.17] and [3.20], we obtain: 

(Tr) *(SH)
2 H(SH) A

A (Tr)
H

A
AA SH AH

AH AH
a

a

Γ KK
Γ

−
−

− +

= = =   [3.24] 

*(SH)
AaK  is the acidity constant in the solvent SH, expressed on a scale 

where the origin is given by the pKa of the equilibrium H3O+/H2O. This is 
the acidity constant in the solvent SH, expressed on the scale of the pK 
values of water. 

From relation [3.24], we deduce: 

*(SH) (HS) ( )
A A H

Tr
a aK K Γ=   [3.25] 

That relation tells us that the (SH)
Ap aK  and *(SH)

Ap aK  scales can be deduced 
from one another by a simple translation of vector ( )

H
TrΓ . 

It is important not to confuse the pKa of an acid in water ( 2(H O)
Ap aK ) with 

the pKa of the same acid in a different solvent SH, expressed on the scale in 
relation to water: *(SH)

Ap aK . Therefore, we write: 

2(H O) *(SH)
A Ap pa aK K≠   

This difference is clearly illustrated in Figure 3.7. 

Let us now consider the case where the constant KAB is greater than 1, 
meaning that (S ) (SH)

A Bp pH
a aK K<  (Figure 3.1). On the pH axis, we can write the 

two values *(SH)
Ap aK  and *(S )

Bp H
aK , calculated by way of relations similar to 

equation [3.25]. These two values are placed in the same order and at the 
same distance apart as the values (SH)

Ap aK  and (SH)
Bp aK . 
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Figure 3.1. Domain of predominance of the  
compounds in an acid–base reaction 

To the left of the point at abscissa *(SH)
Ap aK , the compound AH is 

predominant. To the right of that point, it is the compound A- which is 
predominant. 

To the left of the point at abscissa *(SH)
Bp aK , the compound BH+ is 

predominant. To the right of that point, it is the compound B which is 
predominant. 

Note that the acid AH and the base B do not coexist (which is 
unsurprising, given that KAB >1); we say that AH and B are incompatible. On 
the other hand, the base A- and the acid BH+ are compatible, because they 
coexist in the same domain between the two points. 

NOTE.– On the diagram, we can see that to the left of the abscissa *(SH)
Ap aK , 

the two acids AH and BH+ are compatible, which is obvious because no 
reaction occurs when we mix two acids. 

We shall see in section 3.7 how the limits *(SH)
Ap aK  and *(SH)

Bp aK  evolve 
when we change the solvent. 

3.5. Leveling effect of a solvent 

Let us now consider the particular acid–base reactions between an acid 
AH and the base from an amphoteric protic solvent SH. Any acid that reacts 
completely with the base SH (the solvent) is called a strong acid. Any base 
which reacts completely with the acid 2SH+ is called a strong base. 
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Now consider the two equilibria between an acid and a base in solution, 
and the corresponding expressions of the law of mass action. If the solvent is 
a base, we see the following reaction: 

2 2SH SH SH SH+ ++ = +   [3R.8] 

Thus, we have the relation: 

2
8

2

H S
1

H S
K

+

+
= =   [3.26] 

For the acidic nature of the solvent, we have: 

-
22SH S SH+= +   [3R.9] 

The corresponding constant is the ion product of the solvent, so: 

9 2H S SK += −   [3.27] 

We can now plot the diagram of predominance of the different species 
derived from the solvent (Figure 3.2). 

We see that the solvent SH is stable only in the intermediary domain 
between the points D1 and D2 which correspond to equilibria [3R.6]  
and [3R.8]. That domain is called the protic activity domain of the solvent 
SH. 

Figure 3.2. Protic activity domain of an amphoteric solvent 
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We now dissolve an acid in that solvent and place the protic activity 
corresponding to its *(SH)

Ap aK  on the axis in Figure 3.3. We find three 
scenarios: 

– the point which corresponds to the *(SH)
Ap aK  of the acid is to the left of 

point D1 (Figure 3.3). In this case, only the base A- will be stable within the 
range D1D2. The acid will be ionized completely, and is a strong acid; 

– the point which corresponds to the point *(SH)
Ap aK  is placed between the 

points D1 and D2 (Figure 3.4). On the left, the acid AH is stable; on the right, 
it is the base A- which is stable. We are dealing with a weak acid that is 
partially dissociated in water; 

– the point corresponding to the point *(SH)
Ap aK  is to the right of point D1 

(Figure 3.5). The acid AH will not be dissociated in the solvent and the 
corresponding base A- will be a strong base. 

 

Figure 3.3. Protic activity domain of a solvent:  
the case of a strong acid, which is completely ionized 

Figure 3.4. Protic activity domain of a solvent: the case of  
a weak acid, which is partially ionized 
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Figure 3.5. Protic activity domain of a solvent:  
the case of a non-dissociated acid 

Therefore, we can conclude: 

In a solvent SH, any acid stronger than the ion 2SH+  reacts totally with the 
solvent. 

In a solvent SH, any base stronger than the ion -S  reacts completely to 
give the solvent. 

Thus, the strongest acid that can exist in a solution is the positive ion 
yielded by the autoprotolysis of the solvent. 

The strongest base which can exist in a solution is the negative ion 
created by the autoprotolysis of the solvent. 

This phenomenon is known as the leveling effect of a solvent. 

The different solvents do not have the same protic activity domain. 
Figure 3.6 compares the protic activity domains of a number of solvents. The 
limits of the protic scale are -40 (super-acidic media) and +50 (super-basic 
media). Thus, not all solvents have the same leveling effect. In Figure 3.6  
we see water, whose domain ranges from 0 to 14, where any acid whose 

*(SH)
Ap aK  is less than 0 is a strong acid in water, and where any acid whose 

*(SH)
Ap aK  is greater than 0 is a weak acid.  

If we compare two solvents (e.g. water and ethanol), an acid AH whose 
point corresponding to *(SH)

Ap aK  lies between -2 and 0 in the two solvents will 
be a strong acid in water and a weak acid in ethanol. This is what we call the 
dissociating effect of solvents. This is what we see, in particular, with 
hydrochloric acid. 
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Figure 3.6. Protic activity domains of a number of solvents 

Hence, we can measure the *(SH)
Ap aK  of hydrochloric acid in ethanol, but it 

is not possible in water. 

Thus far, we have only looked at the effect of amphoteric solvents with a 
large dielectric constant. For purely acidic or purely basic solvents, 
obviously, there is only one limit on the protic activity axis – respectively D1 
and D3. 

In solvents with a small dielectric constant, the acidity constant is no 
longer given by relation [3.17], but by relation [3.15] which, because of the 
constant Ki, means we cannot have so simple a relation as relation [3.22] to 
calculate the protic strength in the solvent on the basis of the pH in water. 

3.6. Modeling of the strength of an acid 

We shall construct a simple model of the acidity constant of an acid in a 
molecular solvent SH. This model is based on that of the ion pair. We can 
then use that model to compare two solvents and to plot their respective 
positions – i.e. construct the diagram shown in Figure 3.6. 

3.6.1. Model of the strength of an acid 

In this model, developed by Bjerrum, an ion pair is modeled as a dipole 
made up of two punctual charges. The distance between those two charges is 
chosen as being equal to the sum of the radii of the two ions making up the 

pH 

-3 0 3 6 9 12 15 18 21 24 27 30 

Acetic acid 
0 13

Ethanol 
-2 19

H2O 

13 43 
Ammonia 

-16 4 
Sulfuric acid 

140 
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pair. We denote this distance as a. Its value obviously depends on the acid 
AH and the solvent SH. 

Thus, let us consider a dipole of two ions – carrying the charge +e, for the 
acid form of the neutral solvent, and zBe, for the basic form of the acid–base 
pair under study. The charges are a distance a apart, and are placed in a 
medium with dielectric constant D (that of the solvent). The potential energy 
of such a dipole, with the origin when the two charges are infinitely far 
apart, is: 

2
a B

0

N
4p

e z
E

aDπε
=   [3.28] 

Consider the equilibrium of dissociation [3R.5]. Calculate the variation in 
standard Gibbs energy associated with that equilibrium. This Gibbs energy is 
the energy needed to separate the ions of the pair, which is given by the 
opposite of the dipole’s potential energy. 

Thus, we have: 

2
a0

0

N
4D

e z
G

aD
Δ

πε
= −   [3.29] 

Based on this standard Gibbs energy, we can calculate the logarithm  
of the equilibrium constant pertaining to the concentrations of the 
dissociation reaction: 

20
a

0

N
log

2.3R 2.3R 4
D

D

e zGK
T T aD

Δ
πε

= − =   [3.30] 

In 1958, Fuoss [FUO 58], refining Bjerrum’s model, calculated the 
potential energy of the ion pair but, in doing so, took account of the 
contribution of the ionic atmosphere as calculated by Debye when 
establishing his ionic solution model. Fuoss found the following expression 
for the decimal logarithm of the dissociation constant: 

2 3
a a

0

N 4 Nlog log
2.3R 4 3D

e z aK
T aD

π ρ
πε

= +   [3.31] 
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In this expression, ρ is the density of the solvent. 

To simplify this expression, we posit: 

3
a4 Nlog

3
aA π ρ=   [3.32] 

Strictly speaking, A depends on the solvent by way of its density. Given 
that the solvents have fairly similar densities, and even more similar 
logarithms, we can consider A to be a constant, independent of the solvent 
and of the acid–base pair under study. 

We also posit: 

2
a

0

N
2.3R 4

e
T

β
πε

=   [3.33] 

Relation [3.30] is then written thus, moving to pKD: 

1p DK A z
a D
β= +   [3.34]  

Taking account of relation [3.14], for pKa, we find: 

1p loga iK A z
a D
β α= + −   [3.35] 

In this expression, the values a and z depend on the acid and the values a, 
αi and D depend on the solvent. A and β are constants. 

Ion Li+ Cl- I- OH- NH4
+ H3O+ NO2

- IO3
- NO3

- SO4
2- PO4

3- 
Radius 
(pm) 76 181 220 140 150 150 155 182 189 230 238 

Table 3.2. Ionic radii of a number of ions (in picometers, i.e. 10-12 m) 

In practice, the term a, which is the sum of the ionic radii of the basic 
form of the acid and the acid form of the solvent, has very little dependence 
on the solvent and solute. This is evident when we look at Table 3.2, which 
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gives the ionic radii of certain ions. A value of 200 pm for a is entirely 
acceptable. The consequence is that the term β/a is practically constant. 

3.6.2. Comparison of an acid’s behavior in two solvents 

We consider only the case of neutral solvents. The acid forms of these 
solvents, then, will carry a charge of +1. 

Consider two molecular solvents 1 and 2, with respective dielectric 
constants D1 and D2, and respective degrees of ionization αi1 and αi2. The 
charge of the basic form of the acid–base pair is zB. As noted above, we can 
suppose that the ratio β /a is constant. We return to relation [3.35] to find the 
pKa of the acid AH in each of the two solvents. By finding the difference 
between the pKa values, we immediately see that: 

( ) ( )B2 1

2 1

1 1p p p loga a a i

z
K K K

a D D
β

Δ Δ α
⎛ ⎞

= − = − −⎜ ⎟
⎝ ⎠

  [3.36] 

We shall now examine three examples of acids in the solvent SH, and 
calculate the term ( )p aKΔ , taking the solvent water solvent 2 in the last 
relation) as a reference. For water, pKa = 0, as indicated by convention 
[3.19]. The three acids under examination will differ from one another by the 
charge zB of the basic form in the pair AH. As water is being used as the 
reference point, the calculated difference will be the pKa of the acid in 
relation to water – i.e. *(SH)

Ap aK . By this comparison, whatever solvent is 
used, all acids can be pinpointed on a single scale: the scale of pKa values in 
water. The value of the pKa of the pair H3O+/H2O is taken as the origin of 
that axis. 

3.6.2.1. Acids with a charge of +1 

An example of such acids include water (acid H3O+), but also ammonium 
(acid NH4

+).  

The acid-base equilibrium is written as: 

AH+ + H2O = H3O+ + A  [3R.10] 
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The base carries no charge, so the application of law [3.36] gives us: 

( )*(SH)
Ap loga iK Δ α= −   [3.37] 

Thus, *(SH)
Ap aK  is independent of the dielectric constant. Only the 

difference in basicity of the two solvents comes into play. This result was 
predictable because the reaction is an isoionic reaction (see section 2.7.2.1), 
and we ignored the difference between the radii of the ions. 

Figure 3.7 represents the *(SH)
Ap aK  of the acid AH as a function of the 

opposite of the dielectric constant of the solvent. The vertical axis represents 
the solvent water (dielectric constant around 80). The different solvents are 
represented by vertical lines. We have illustrated the straight line 
representing the NH3/NH4+ pair. The curve, therefore, is a horizontal, shifted 
in relation to zero. Whatever the solvent, the pair retains the same 

4(NH )
p

a
K + , 

equal to 9.25.  

3.6.2.2. Non-charged acids 

Such is the case, for example, with the ethanoic acid/ethanoate pair 
(CH3COOH/CH3COO-). 

The acid-base equilibrium is written: 

AH + H2O = H3O+ + A- [3R. 11] 

 

Figure 3.7. Variations of the acidity constants in  
relation to water with the constant 
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The charge of the base is -1, so the application of the law [3.35] gives  
us: 

( )*(SH)
A

1 2

1 1p loga iK
a D a D
β βΔ α
⎛ ⎞ ⎛ ⎞

= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  [3.38] 

Hence, *(SH)
Ap aK is a 1/D affine function. 

In Figure 3.7, the curve is a straight line with the slope β/α, obeying the 
equation: 

( )*(SH)
A

1 1p loga i
water

K
a D a D
β βΔ α

⎛ ⎞⎛ ⎞= − − ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

  [3.39] 

In Figure 3.7, we have plotted the line representing the ethanoic 
acid/ethanoate pair, whose pKa in water is 4.75. The line cuts the vertical 
axis at ordinate 4.75. 

This case is that of an equilibrium where there is an increase in the 
number of ions (see section 2.7.2.2). 

3.6.2.3. Acids with a charge of -1 

Such is the case, for instance, with the carbonate/bicarbonate pair (CO3
2-/ 

HCO3
-).  

The acid–base equilibrium is written: 

AH + H2O = H3O+ + A- [3R.12] 

The basic charge is -2, so by application of [3.40], we obtain: 

( )*(SH)
A

1 2

2 1 1p loga iK
a D a D
β βΔ α
⎛ ⎞ ⎛ ⎞

= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  [3.40] 

Thus, *(SH)
Ap aK  is still a 1/D affine function. 
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In Figure 3.7, the curve is a straight line whose slope is 2β/α (double that 
of the previous line), obeying the equation: 

( )*(SH)
A

2 1 1p loga i
water

K
a D a D
β βΔ α

⎛ ⎞⎛ ⎞= − − ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

  [3.41] 

Figure 3.7 shows the straight line relating to the bicarbonate/carbonate 
pair, whose pKa in water is 10.3. The line intersects the vertical axis at 
ordinate 10.3. 

Again, we are dealing with an equilibrium with an increase in the number 
of ions (see section 2.7.2.2). 

Now, in Figure 3.7, we shall show another solvent SH, represented by a 
vertical line. Each of the lines, illustrating each acid–base pair, intersects that 
vertical at a point which represents the pKa

(SH) of the corresponding pair in 
that solvent. The difference between that value and the *(SH)

Ap aK of the acid is 
given by relation [3.19]. This means that the value on the pKa

(SH) scale on the 
vertical representing the second solvent can be deduced from the value on 
the water scale by a translation of (Tr)

HΓ .  

3.6.3. Construction of activity zones for solvents 

We can now see how it is possible to construct a scale showing the 
acidity and the relative position of the different solvents – i.e. how to 
position the different lines for each acid–base pair and how to place the 
solvents and their limits. 

We shall choose the example of ethanol as a solvent. We base our 
reasoning on Figure 3.8, and proceed in four steps. 

3.6.3.1. Step 1: positioning the solvents 

We plot the abscissa axis, graduated in 102/D intervals. We position the 
two vertical axes in their rightful places – one relating to water and the other 
to ethanol. We graduate the water axis and note on it the domain of protic 
strength relative to water – i.e. the zone 1-14. On the horizontal, we 
reproduce this graduation on the *(SH)

Ap aK  ordinate axis. 
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3.6.3.2. Step 2: calibrating and positioning the solvent scale in 
relation to the water scale 

The purpose of this step is the place the zero of the scale on any chosen 
solvent. In order to do so, having positioned the horizontal of the 3 2H O /H O+  
pair at zero on the water scale, we plot the horizontal line for an acid–base pair 
whose pKa is independent of the dielectric constant. We know that to do this, 
we have to choose a pair whose base is electrically neutral (see section 
3.6.2.1). For instance, we might choose 4 3NH /NH+ . We know that the p aK  
of this pair in water is 9.25, whilst its *(EtH)

Ap aK  in ethanol is 10.4. We place 
both of these values on their correct scale. The difference between these two 
values (1.15) can be used to position the origin of the ordinate relative to 
ethanol: it is the point at which the *(SH)

Ap aK has a value of -1.15. Based on the 
two ordinate values of 10.40 and 0, we are now able to graduate the ethanol 
axis. 

3.6.3.3. Step 3: plotting the zone of the protic scale of the solvent 

We now need to delimit the protic scale of ethanol. Suppose we have 
already measured its ion product, which is: 

(EtH)p 19iK =   

We place that value on the ethanol axis in Figure 3.8. The zone 0-19, 
therefore, is the zone of protic action of ethanol. Any acid whose (EtH)

Ap aK  
lies between these two would be a weak acid, partially ionized in ethanol. 
Thus, we can define and measure that (EtH)

Ap aK . 

3.6.3.4. Step 4: plotting an acid–base pair with a non-horizontal line 

We now choose an acid–base pair for which the representative line is not 
horizontal. We need to know its 2(H O)

Ap aK  and its (E H)
Ap t

aK . That acid could, 
for instance, be chosen from among the known electrically-neutral acids 
(see section 3.6.2.2). For our investigation, let us use ethanoic acid. In water, 
its 2(H O)

Ap aK  is 4.75; in ethanol, it is (EtH)
Ap 10.4aK = . We place these two 

values respectively on the water axis and on the ethanol axis in Figure 3.8. 
We can draw a straight line passing through these two points, which is the 
line representing ethanoic acid on the graph. 
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Figure 3.8. Position of the acidity scales and the different solvents 

Now we can plot all the lines for any given acid–base pair if we simply 
know its 2(H O)

Hp a ClK  in water or in ethanol. For instance, if we choose to plot 
the line corresponding to the -HCl/Cl  pair, we are unable to measure the 

2(H O)
Hp a ClK  in water because HCl is a strong acid in this pair. On the other hand, 

in ethanol, we can measure the value of (Eth)
HClp aK , which is 2.1. We now plot 

the line representing HCl, which is parallel to that of acetic acid (see section 
3.7.3.2). By extrapolating from that line, we are able to calculate 2(H O)

HCp a lK , 
and we obtain around -4, which does indeed show that HCl is a strong acid 
in water; the representative line intersects the water axis below the value 0. 

If we choose to plot the straight line corresponding the - 2-
3 3HCO /CO  pair, 

we know that its 2
-
3

(H O)
HCO

p
a

K  is 10.3. Through that point, we need to plot the 

representative straight line with a slope twice that of ethanoic acid (see 
section 3.6.2.3). It is then easy to find -

3

(EtH)
HCO

p
a

K by the intersection of the line 

with the ethanol axis, and we read 19.1, which shows that this value cannot 
be measured directly because it is situated outside of the zone of protic 
activity of ethanol. 
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3.7. Acidity functions and acidity scales 

It is often tricky to directly measure the activities of the ions in a non-
aqueous medium. Thus, it is worthwhile to find a more practical way to 
evaluate a solvent’s ability to exchange protons with the acid–base pairs 
dissolved in it. 

In addition, we have seen that in water the range of pKa that it is possible 
to evaluate runs between 0 and 14, which limits its use to a fairly restrictive 
range of acid–base pairs. 

We are able to solve the two problems thus posed by using more acidic or 
basic solvents than water and introducing a more extensive acidity scale. 

The first people to introduce such relations, in 1932, were Hammet and 
Deyrup [HAM 32], by what is known as the Hammett acidity function. That 
function is based on spectroscopic determinations of the medium’s acidity. 
To obtain such a measurement, we place an appropriate colored indicator in 
the medium. In other words, one of the forms (acid or basic) of that indicator 
must absorb a sufficiently intensive wavelength so that absorbance measures 
can be performed in a very dilute medium. 

To introduce the Hammett acidity function, consider the equilibrium 
[3R.13] between a neutral base B1 and its conjugate strong acid B1H+ in an 
aqueous solution: 

B1H+ + H2O = B1 + H3O+ [3R.13] 

The acidity constant of that pair KBH
+ is expressed as a function of the 

activities by: 

1

1 3 1
B H

1 1

B H O B
B H B H

a
K +

+ +

+ +
= =   [3.42] 

We can express an activity as the product of the concentration by the 
corresponding activity coefficient, so the expression of the constant 
becomes:  

[ ]
1 3

1

1

3 B H O1

B H
B H1

H OB

B H
K

γ γ
γ

+

+

+

+

+

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

  [3.43] 
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Using a sufficiently dilute solution so that the activity coefficients can be 
taken as equal to 1 (which may not necessarily be the case in solution in a 
different solvent), relation [3.43] becomes: 

[ ]
1

31

B H

1

H OB

B H
K +

+

+

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

  [3.44] 

From this relation, we deduce: 

[ ]
1

1
B H

1

B
p pH log

B H
K +

+
= −

⎡ ⎤⎣ ⎦

  [3.45] 

If the base B1 (or its conjugate acid) is a colored indicator, the ratio of 
concentrations [B1]/[B1H+] can be measured experimentally by light 
absorption. 

The value of that ratio is a measure of the solution’s tendency to transfer 
a proton to a neutral base. 

By measuring the pH, which presents no difficulty at all in a dilute 
aqueous medium, we can very easily deduce the value of pKBH

+. 

Now consider another neutral base B2 such that, in a given solvent, its 
protic activity is a+. Suppose that its acidity constant in relation to water is 
lower than that of the previous pair. For this new pair, we can write: 

[ ]
2

2

2

B2*(SH)
B H

B H2

B
p

B H

a
K

γ
γ+

+

+

+
=
⎡ ⎤⎣ ⎦

  [3.46] 

We can then use a solvent SH such as a mixture of water and 10% H2SO4 
to measure both the ionization of B1 and that of B3. In this new solvent, 
according to equations [3.45] and [3.46], we would have: 

[ ] [ ] 1 2

2 1
2 1

B B H2 1*(S ) *(S )
B H B H

B B H12

B B
p p log log log

B H B H

H HK K
γ γ
γ γ

+

+ +

+
+ +

− = − + +
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

  [3.47] 
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If the bases B1 and B2 are the same type, it is highly likely that in a 
medium of average ionic strength, the third term in equation [3.47] will be 
practically the same no matter what the solvent. As that term is equal to zero 
in a dilute aqueous solution, it is also zero in other solvents. This is 
illustrated by Figure 3.9. For different bases of the same type, we have 
plotted log([B]/[BH+]) as a function of the acid content of a solvent of a 
mixture of water and sulfuric acid. The lines representing each base are all 
parallel to one another. 

 

Figure 3.9. Logarithm of the ratio between the concentrations of the base  
and of its conjugate acid, for different bases of the same type,  

depending on the solvent’s composition 

Hammett defines the acidity function H0 of an acid solution in relation to 
a neutral base by: 

[ ]
*(S ) B

0 BH
BH

BH
p log log

B
H aH K γ

γ+

+

+ +⎡ ⎤⎣ ⎦= + = −   [3.48] 

The function H0 of a solution determines the ratio of the activities 
|B|/|BH+|. It quantifies the tendency of that solution to cede protons to a 
neutral base. It indicates the pH, to which it is identical in an aqueous 

solution. Because the ratio between the activity coefficients B

BH

γ
γ +

 is 

independent of the base, H0 is, like the protic activity a+ , a characteristic 
property of the medium. 
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We can see that this function is only truly useful if it is independent of 
the base B – i.e. when the ratio γB/γBH+ is the same for different bases B. This 
is the situation we observe with similar bases, which might only differ from 
one another, say, by the substitution of one chemical group for another. 
Table 3.3 gives a few indicators for a family of nitranilines and their pK 
values, which have been used to determine values of H0. 

Thus, for a family such as this, we simply need to know KB in a dilute 
solution and the ratio of the concentrations [BH+]/[B], determined using 
spectrography in the concentrated solution, to obtain the function H0. 

Base p-nitraniline o-nitraniline p-nitrodiphenylamine 

2(H O)
BH

pK +  1.11 -0.13 -2.98 

Base 2-4-dinitraniline 6-bromo-2,4-dinitraniline 2, 4, 6-trinitraniline 

2(H O)
BH

pK +  -4.38 -6.59 -9.29 

Table 3.3. The pK values of some anilines substituted in water 

This original list of indicators has expanded significantly, because we can 
use NMR dosing of the proton instead of using absorption spectroscopy. 

Table 3.4 shows a selection of values of the function H0 in water–sulfuric 
acid mixtures. 

% SO4H2 5 10 20 30 40 50 60 70 80 90 100 

-H0 -0.24 0.16 0.89 1.54 2.28 3.23 4.32 5.54 6.82 8.17 10.60 

Table 3.4. Values of the acidity function in mixtures  
of water and sulfuric acid 

Note that two media with the same value H0 do not necessarily have the 
same value of the protic activity a+. Indeed, if we look at the second part of 
relation [3.48], in order to have the same value of a+ at the same value H0, 
the ratios of the activity coefficients of the base need to be identical; 
however, they may vary considerably from one medium to another. 
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NOTE.– Other acidity scales have been defined on the basis of different 
families of bases. Thus, with a family of bases, charged negatively, the 
function H_ has been defined. Of course, the values of H0 and H_ do not 
match, because the ratios between the activity coefficients are not the same. 
The function H0 is used in the domains where the values of H are negative; 
the function H_ , which again uses nitroanilines but in acid form, is used for 
values of H higher than 14. Similarly, we define a function H+ which 
measures the solvent’s tendency to transfer a proton to a cationic base. 

One of the major qualities of the functions H is that they do not depend 
on the solvent – at least those which are sufficiently ionizing. 

It is clear, as we have seen, that the function H and the pH are the same in 
highly dilute aqueous solutions. This is no longer true in concentrated 
solutions. Figure 3.10 shows the comparison between the value H0 and that 
of the pH in solutions of sulfuric acid in water. 

 

Figure 3.10. Comparison of the values of H0 and pH in  
solutions of sulfuric acid in water 

We can see that, in water, the amplitude of the variation of the function 
H0 is significantly greater than that of the pH. 

3.8. Applications of the acidity function 

We shall now give a few applications of the function H0, which can be 
used to evaluate certain constants without employing electrochemical 
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measuring techniques, which are not always easy to use in non-aqueous 
media. 

3.8.1. Measuring the pKa of an indicator 

Consider an indicator B3. We want to determine the value of 
3

*(S )
B H

p HK + . We 

place it in a solvent so that it also covers the domain of a solvent B2 with 
known 

2

*(S )
B H

p HK + . We measure the value of log([B3]/[B3H+]). Let us plot this 

value in Figure 3.9 at the ordinate relative to the solvent used. We determine 
the point H3. We can write, between the point H3 and the point H2, situated 
on the same vertical, that the two media have the same value of the Hammett 
acidity function – i.e.: 

0 0HΔ =   [3.49] 

From this, we deduce the relation: 

( ) [ ] [ ]
3 2

3 2*(S ) *(S ) *(S )
B H B H

23

B B
p p p log log

B H B H

H H HK K KΔ+ + + +
− = = − +

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

  [3.50] 

We can measure the two logarithmic terms by absorption spectroscopy, 
which gives us the difference ( )*(S )p HKΔ , and thus we can calculate 

3

*(S )
B H

p HK + . 

The curve passing through H and relative to B3 is a parallel to the curve 
relative to the indicator B3. The difference ( )*(S )p HKΔ  is the same no matter 

what the solvent. Thus, we can plot that line and thus determine 
3

*(S )
B H

p HK +  in 

any given solvent if we know the line relative to B3. 

3.8.2. Measuring the ion products of solvents 

Consider a solvent SH . The autoprotolysis reaction is written: 

22SH SH S+ −= +  [3R.14] 
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The ionization constant, then, is defined by: 

SH 2S SHK − +=   [3.51] 

We want to measure SHK . In order to do so, we dissolve a strong base at 
concentration C in that solvent. Thus, we have: 

SH
2SH K

C
+ =   [3.52] 

Let us also dissolve an indicator B, which is appropriate for that solvent, 
at total concentration CB. By Raman spectroscopy and that value of CB, we 
determine the ratio [B]/[BH+]. Thus, we calculate H0 on the basis of the 
relation [3.48]. Based on the same relation, we can write: 

[ ] 2*(SH) *(SH) (SH)
0 2 B B (B)

B SH
log SH p log p p

BH CH K K K
+

+
+

⎡ ⎤⎣ ⎦⎡ ⎤− = + = −⎣ ⎦   [3.53] 

Suppose that the indicator is chosen such that we have the following 
approximation: 

[ ] 2 (SH)
(B)

B SH
p

BH
K

+

+

⎡ ⎤⎣ ⎦≅ −   [3.54] 

Relation [3.53] becomes: 

*(SH) (SH)
0 2 B (B)log SH p pH K K+⎡ ⎤= + −⎣ ⎦   [3.55] 

In view of relation [3.52], relation [3.55] becomes: 

*(SH) (SH)
0 B (B) SHp p log logH K K K C= − − +   [3.56] 

Thus if approximation [3.54] is acceptable, if we plot the curve 
representing the function 0 (log )H f C= , we should obtain a straight line 
whose slope is *(SH) (SH)

B (B) SHp p logK K K− − . If the indicator is known, then 
from that slope we can deduce the ionization constant of the desired solvent. 
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If SHpK  is known, the position of the solvent SH in Figure 3.7 is known, 
and its protic activity ranges from 0 to SHpK . The neutrality point in that 
solvent then has the value SHpK /2. 

We shall see another method for determining the ion product of a solvent 
by potentiometry (section 7.7.6). 

3.9. Acidity in non-protic molecular solvents 

A non-protic solvent – i.e. one whose molecule does not contain a 
hydrogen atom liable to be ceded in the form of a proton – obviously cannot 
cede any protons. It has no acidic nature in the sense that Brønsted intended. 
Therefore, it cannot give rise to an equilibrium of autoprotolysis – that is to 
say, it cannot have an ion product. We distinguish between two cases 
depending on whether or not the solvent has a protophilic nature. 

If the solvent is protophilic in nature, it can capture protons from an acid, 
but it is impossible for it to cede a proton to a base. Thus, acids dissolved in 
such solvents are more or less dissociated, whilst bases exhibit no 
dissociation whatsoever. We can find more or less strong acids in these 
solvents. The strongest acid which can exist is SH+, which results from the 
fixation of a proton on the molecule of the solvent S. 

Each acid–base pair dissolved in that solvent will, if the acid is weak, 
exhibit an acidity constant and therefore a pKa. The acidity scale which 
obviously starts with the SH+ is, in principle, limitless in terms of higher pH 
values. There is no neutrality.  

The pH in such a solvent, if it does not contain any acid (pure solvent or 
solutions of pure bases), remains undetermined. 

Of these non-protic but protophilic solvents, we can cite dioxane 
(C2H4O), tetrahydrofuran (C4H8O), DMF (dimethylformamide, CHONH2), 
etc. 

If the solvent has no protophilic nature at all, it does not capture the 
proton, and the acids dissolved in it are not dissociated. There is no longer an 
acidity constant. 
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This property does not impede acid–base reactions between solutes, 
which exchange protons with one another without the intervention of the 
solvent. Of course, these equilibria are characterized by a law of mass action 
and an equilibrium constant. It is always possible to classify these equilibria 
in the same solvent on the basis of the pKa values of these pairs. 

3.10. Protolysis in ionic solvents (molten salts) 

In molten salts, we can dissolve acids and bases which are ionic or 
molecular, and therefore carry out proton exchanges in this medium. The 
ions making up the solvent may themselves take part in these exchanges, 
and, as is the case with molecular solvents, we find ionic solvents that are 
amphoteric or only protophilic. 

We can distinguish between two cases of amphoteric ionic solvents: 

One of the ions making up the ionic solvent is itself amphoteric. An 
important family of these solvents is molten alkaline hydroxides. The 
hydroxide anion is both protophilic and protogenic, and therefore lends the 
solvent its amphoteric nature. The equilibrium of autoprotolysis is written: 

- 2
22HO H O O −= +  [3R.15] 

Thus, in this medium, dissolved water constitutes the strongest acid. 
Conversely, the oxide ion O2- constitutes the strongest base. Numerous 
dissolved acids are strong in this medium – e.g. phenol, which dissolves as 
follows: 

6 5 2 6 5C H OH HO H O C H O− −+ = +  [3R.16] 

The hydride ion is a strong base in these molten alkaline hydroxides. It 
reacts as follows: 

- 2
2H HO O H− −+ = +  [3R.17] 

The measure of acidity, equivalent to the pH in aqueous solutions, is the 
pH2O. 
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In another family of ionized solvents, the amphoteric nature of the 
solvent is due to one of the ions, which is protogenic, whilst the other is 
protophilic. As an example of such a solvent, we could cite molten 
ethylammonium chloride (melting point 108°C). Here, hydrochloric acid is 
the strongest acid, whilst ethylamine, which is the conjugate base of the 
ethylammonium cation, is the strongest base. Numerous bases are strong 
when dissolved in this solvent. Examples include the oxide ion, the 
hydroxide ion, the ethanoate ion and ammonia. The extent of the acidity 
range is then measured by a pHCl scale, which extends for around 8 units. 
The equilibrium of autoprotolysis is written thus: 

2 5 3 2 5 2C H NH Cl C H NH HCl+ −+ = +  [3R.18] 

NOTE.– In ionic solvents, the activities of the ions making up the solvent are 
taken to be equal to 1. 

3.11. Other ionic exchanges in solution  

The definition of acids, according to Brønsted, is based on the set of 
reactions of proton exchanges. The development of that domain of reactions 
in solution is due essentially to the fact that these reactions lead to chemical 
equilibria. This facilitated the introduction of the concepts of pKa, of 
domains of predominance and pH. Specialists in the field of reactions in 
solution wondered whether it would not be possible to harmonize these 
concepts in the context of other reactions in solution, but characterized by 
the exchange of chemical particles other than the proton. This set of coherent 
approaches to such reactions is known as ionoscopy. The particular case 
where the particles exchanged are protons is protonotropy. 

3.11.1. Ionoscopy 

It was Gutmann and Lindqvist who, in the 1950s, developed this new 
unifying concept of ionoscopy. The notion of a donor–acceptor pair was 
thus introduced. Couples of chemical substances exchange various simple 
ions such as the halide ion, an oxide ion O2-, a sulfide ion S2-, etc. Thus, in 
each couple, we have a donor and a conjugate acceptor of the particle being 
exchanged. These exchange reactions lead to equilibria, which again enables 
us to use concepts introduced into the study of Brønstedian acid–base 
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reactions: equilibrium constants, domains of predominance and the 
equivalent of the pH, which would be the pX if the ion exchanged is a halide 
ion X-, the pO2- if the ion exchanged is an oxide ion, etc. 

NOTE.– In the next chapter, we shall see another type of particle exchange. 
This time, it is electrons that are being exchanged, rather than chemical 
particles, and this will constitute the domain of redox reactions (see section 
4.2). 

Ionoscopy developed in the particular case of solutions in a molten-salts 
medium with exchange of O2- ions. This family of reactions is dubbed oxo-
acidity (see section 3.11.2). 

As we saw in the case of the proton, the solvent itself is able to 
participate in these new exchanges of chemical particles. It can be a particle 
acceptor or donor, or even both at once. Therefore, it is amphoteric. 

For example, liquid sulfur dioxide is a solvent which can act as an 
acceptor of the chlorine ion: 

SO2 (acceptor) + (C6H5)3CCl (donor) = (C6H5)3C+ + SO2Cl- [3R.19] 

3.11.2. Acidity in molten salts: definition given by Lux and Flood 

An ion that is very frequently exchanged in molten salts is the O2- ion. 
This family of reactions, termed oxidotropy, led to a new concept in acidity: 
oxo-acidity. Flood put forward a new definition of acids and bases in molten 
salts, based on that exchange of an oxygen ion. In order to avoid confusion 
with conventional acids and bases based on the exchange of protons, it was 
proposed to use the term “oxo-acids” to denote acceptors of oxygen ions 
and “oxo-bases” for donors of that ion. The oxo-acid–oxo-base couple thus 
works on the equilibrium: 

Oxo-acid (acceptor) + O2- = Oxo-base (donor) [3R.20] 

As an example, we can cite uranium trioxide, which is an oxo-base, 
according to: 

UO2
2+ + O2-  = UO3 [3R.21] 
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Certain compounds, such as water, are amphoteric, and work equally well 
as an oxo-base and as an oxo-acid, respectively through the two reactions: 

2H+ + O2- =H2O [3R.22] 

H2O + O2- = 2OH- [3R.23] 

NOTE.– In order to take account of the fact that the charge of the particle 
exchanged is negative instead of positive (as is the case of a proton), it is the 
acceptor that is the oxo-acid, rather than the donor. 

Donor–acceptor couples are characterized by an acidity constant, which 
is written as follows for the reaction [3R. 20]: 

2

acceptor   
donor   OaK

−
=   [3.57] 

Note that, as with Brønsted’s acids, the higher the value of Ka, the smaller 
that of pKa, and the stronger the acid is. 

Similarly to a reaction with proton exchange, we would have: 

2 acceptor
p p log

donoraO K− = − −   [3.58] 

If the solvent is itself an acceptor (oxygenated solvent) and donor, the 
pure solvent presents a point of neutrality, and the different couples can be 
classified into two categories: strong acids and weak acids, depending on the 
value of pKa in relation to the domain of pO2- of the solvent. 

In the case of non-oxygenated solvents, we cannot define a pO2- of the 
pure solvent, and there is no point of neutrality. As the solvent is not 
involved in the reaction, we content ourselves with classifying couples by 
their pKa. Figure 3.11 gives a classification of different couples in the 
solvent LiCl-KCl at 450°C. 

We can see on this scale that the strongest acid is PO3
- and the strongest 

base is CO3
2-. 
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Figure 3.11. Scale of oxo-acid/oxo-base pairs (taken  
from Guetta, Fouletier and Taxil [GUE 09] 

3.12. Franklin and Gutmann’s solvo-acidity and solvo-basicity 

The above definitions of acids and bases were founded on the nature of 
the ionic particle exchanged – H+ or O2- – independently of the solvent. 
However, Franklin and Gutmann put forward a definition of acidity known 
as solvo-acidity. 

3.12.1. Definition of solvo-acidity 

Solvo-acidity is defined on the basis of solvents which are both donors 
and acceptors of an ionic particle. Such solvents play host to a reaction 
known as auto-ionization (or auto-dissociation to include ionic solvents), 
which defines which ion is exchanged during the course of that reaction. 
That ion therefore helps to define the nature of the pairs in question, known 
as solvo-acid–solvo-base pairs. 

We have already seen the particular case of Brønsted acids and bases in 
protic amphoteric solvents such as water, where the ion exchanged was the 
proton. Similarly, in oxo-acidity, oxygenated molten salts (hydroxides, 
sulfates, carbonates) are amphoteric solvents, whose auto-dissociation results 
in O2- as the exchanged ion. 

3.12.2. Solvo-acidity in molecular solvents  

Numerous molecular solvents exhibit a reaction of slight auto-ionization, 
which means they can always be considered to be polar solvents. Therefore, 
a wide variety of ions can be exchanged in these situations. As examples we 
could cite halide ions, protons of course, but also the oxygen ion O2-. For 
example, phosphorus trichloride undergoes auto-ionization as follows: 

2POCl3 = POCl2 + Cl-, POCl3 [3R.24] 

CO2/CO3
2- VO3

-/VO4
3- V2O5/ VO3

- H+/ H2O PO3
-/ PO4

3- 

Strong bases Strong acids 
pKa 
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Similarly, bromine fluoride undergoes auto-ionization as follows: 

2BrF3 = BrF2
+ + BrF4

- [3R.25] 

The equilibrium of auto-ionization of a solvent defines the system of the 
solvent. It involves two characteristic ions: one cation and one anion. 

In that system, a solvo-acid is a solute which plays the role of donor of 
the cation characteristic of the solvent by direct dissociation, or that of 
acceptor of the characteristic anion in the reaction with the solvent. 

A solvo-base is a solute playing the role of donor of the characteristic ion 
which can be either an anion or a cation. 

With this definition, in amphyprotic solvents SH, which are included, the 
acceptors in S- act as solvo-acids. 

As the system of the solvent defines two characteristic ions, it is agreed to 
specify the nature of the solvo-acidity determined by the system of the 
solvent. Thus, we use the term “chloro-acidity” to denote solvo-acidity in 
solvents such as POCl3, in which the ion exchanged is the chlorine ion.  

Thus, consider a solvent whose molecule, represented by SCl, can play 
the role either of donor or acceptor of the chlorine ion. In the pure state, this 
solvent is the site of an equilibrium of auto-ionization which, attended by the 
solvation of the ion exchanged, would be written: 

2SCl = S+ +  SCl2
- [3R.26] 

As the progress rate of this reaction at equilibrium remains very low, we 
can define its equilibrium constant by an ion product (the activity of the 
solvent remains equal to 1): 

( ) 2S SCli SK + −=   [3.59] 

That equilibrium is affected by the dissolution of chloro-acids (molecules 
accepting a chlorine ion) or chloro-bases (molecules donating a chlorine 
ion). 
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For example, sulfur trioxide is a chloro-acid because of the formation of 
the chloro-sulfate ion, as follows: 

SO3 + SCl = SO3Cl2
- + S+ [3R.27] 

Depending on the degree of ionization of the solutes, we may be dealing 
with strong chloro-acids, which dissociate completely in the solvent, or weak 
chloro-acids, which dissociate only partially. Similarly, we have strong 
chloro-bases and weak chloro-bases. 

The characteristic value of the medium, then, is pCl-, which is defined by: 

 2pCl log SCl− −= −   [3.60] 

The pKi(S) of the solvent defines the pCl- scale, in which the solvent is 
active and the neutrality point equal to pKi(S) /2. 

Thus, we find all of the reasoning we discussed above in the case of 
protic solvents. The transposition becomes easy. 

NOTE.– As we already saw with Flood’s oxo-acidity, because the chlorine 
ion is an anion, it is chloro-bases which act as donors. 

3.12.3. Solvo-acidity in molten salts  

In ionic solvents which are constituted by molten salts, we see examples 
of chloro-acidity, such as in sodium tetrachloroaluminate. In molten salts, 
we can cite a particularly important case on the industrial level: fluoro-
acidity in cryolith ( 6NaAlF ), which is used in the manufacture of aluminum 
by electrolysis. 

Cryolith dissociates in accordance with the following pattern: 

3
6 6NaAlF AlF 3Na− += +  [3R.28] 

3 2
6 5AlF AlF F− − −= +  [3R.29] 

2
5 4AlF AlF F− − −= +  [3R.30] 



Acid/Base Equilibria     99 

Reaction [3R.28] is total to the right, and therefore that dissociation 
involves two equilibrium constants: 

2
5

29 3
6

F AlF
0,25

AlF
K

− −

−
= =   [3.61a] 

4
30 3

5

F AlF
0,05

AlF2
K

− −

−
= =   [3.61b] 

It has been shown that in the usage conditions, it is the ion 2
5AlF −  which 

is in the majority. In pure cryolith, we have pF- = 0.37. 

In that solvent, we dissolve the fluoro-base AlF3 – in practice at content 
levels between 0 and 0.35. Figure 3.12 shows the scale of pF- converted 
depending on the AlF3 content. 

 

Figure 3.12. Position on the pF-scale of solutions in  
cryolith used in electrolysis of aluminum 

Another important family that we encountered is that of oxo-acidity in 
oxygenated solvents. For example, in molten alkaline carbonates, the 
reaction of dissociation of the solvent is: 

CO3
2- = CO2 + O2- [3R.31] 

Thus, CO2 is the strongest oxo-acid, and hence the boundary of the pO2- 
scale is the value obtained in the presence of carbon dioxide at the highest 
partial pressures. The ion product of the solvent takes the form: 

2 2

2
CO( 3 )

O
i CO

K P−
−⎡ ⎤= ⎣ ⎦   [3.62] 

O2- acceptors stronger than CO2 will be completely dissociated. Such is 
the case, for instance, with SO3. 

pF- 
0 0.37 0,90 

x(AlF3) 
0 0.35 
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3.13. Acidity as understood by Lewis 

We cannot conclude this chapter on acid–base reactions without 
mentioning the definition of acids and bases put forward by Lewis. Although 
this new nomenclature no longer pertains only to exchange reactions, it is 
very useful – particularly in the field of organic chemistry. 

Remember that for Lewis, an acid is a compound which accepts a doublet 
of electrons and a base is a compound which has an available doublet of 
electrons. 

This definition also brings into play the reactions of formation of 
complex ions, which we shall see in the next chapter (see section 4.1), in the 
field of acid–base reactions. 



4 

Complexations and Redox Equilibria 

4.1. Complexation reactions 

Let us begin by noting that a complex ion is a construction formed of an 
elementary central ion (usually a metal cation), known as the coordinating 
element (or nucleus), surrounded by a certain number of molecules – usually 
simple (water, ammonia, etc.) – which are bonded to it. These molecules are 
known as the coordinated groups or ligands. The number of ligands bound 
to the central atom is called the coordination number. 

We distinguish between complexes having only one species of ligand 
(denoted as MLn) and complexes having ligands of different types (written 
as MLnL’n’). For example, for complexes with a single species of ligand, we 
could point to the ion ( ) 3

3 6
[Co NH ] + , which is the luteocobaltic complex; 

for complexes with several ligands of different types, the praseocobaltic ion 
( )3 24

[Co NH Cl ]+  offers a good example. 

4.1.1. Stability of complexes 

If we consider the equilibrium of formation of a complex from its 
constituent elements, we define the association constant, which would be the 
constant of the equilibrium of formation. Thus, for the complex MLn, the 
reaction of formation is: 

M + nL = MLn  [4R.1] 
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Thus, the association constant would be: 

[ ]
[ ] [ ]

ML

M L
n

a nK =  [4.1] 

The dissociation constant would be the equilibrium constant of the 
inverse reaction – i.e.: 

MLn = M + nL [4R.2] 

Thus: 

[ ] [ ]
[ ]
M L
ML

n

d
n

K =  [4.2] 

Obviously, we would have: 

1d aK K =  [4.3] 

As dissociation increases the number of particles which are present, the 
dilution of the species increases when dissociation takes place. 

Thus, a complex is defined by two values: the dissociation constant Kd (or 
the association constant) and the coordination number n. 

Sometimes, with the same cation and the same ligand, there are 
intermediary complexes which exist between the central ion and the final 
complex MLn. Such complexes are denoted as MLn-1, MLn-2, etc. 

For each of them, obviously, we define a dissociation constant such that: 

[ ] [ ]
[ ]1

-1ML L
MLn

n
d

n

K
−

=  [4.4] 

For any given series, it is easy to show that the overall dissociation 
constant is the product of the intermediary dissociation constants: 

1

1
n i

i

d d
i n

K K
−

=

= −

= ∏  [4.5] 
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Complexes are often classified into two categories: perfect and imperfect 
complexes. 

A complex is said to be perfect if its dissociation constant is very small. 
The result of this is that the central ion no longer reacts with its own 
reagents, because it is practically never found in solution. 

A complex is said to be imperfect if its dissociation constant is very large. 

However, this distinction between perfect and imperfect complexes is 
imprecise, because how are we to label complexes whose dissociation 
constant has an intermediary value? We say that a complex is perfect, in the 
presence of a given reagent, if that complex does not react with that reagent. 
Thus, a given complex may exhibit perfect behavior in the presence of such 
a reagent, but imperfect behavior in the presence of another. Ultimately, it 
depends both on the dissociation constant and the speed of that dissociation, 
which is obviously quicker if a reagent for the cation M is added and shifts 
the equilibrium of dissociation to the right. 

As we have the concept of the dissociation constant at our disposal, we 
can also define the domains of predominance of the different species. 

Let us first consider a complex with a single coordination number MLn. 
Finally, we calculate: 

[ ]
[ ]

MppL ln
ML

d

n

K
n

= +  [4.6] 

Thus, on an increasing pL scale, it is easy to pinpoint the respective 
domains of predominance of the complex and of the central ion M (as 
illustrated by Figure 4.1). 

if pL p dK< , the form MLn is predominant; 

if pL p dK> , the form M is predominant. 

If the complex has intermediary species – e.g. ML, ML2 and ML3 – then 
for each class, in order, we would have the dissociation constants and, on the 
pL scale, the distribution of the different species between the different pKdi 
values. 
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Figure 4.1. Domains of predominance of the species in a complex MLn 

Figure 4.2. Domains of predominance for a complex with three compositions 

Figure 4.2 illustrates the domains of predominance in the case of three 
successive complexes: ML3, ML2 and ML. 

It is also possible to visualize the fractions of the different species at 
equilibrium, as a function of the concentration of ligand, using a distribution 
diagram. The fraction of each species present is defined by: 

[ ]
[ ]

[ ]
[ ]

0

ML ML
MML

i i
i n

tot
i

i

α

=

= =
∑

 [4.7] 

Let Ki denote the overall constant of formation of the complex MLi from 
the elements M and L. We can then write: 

[ ] [ ] [ ]ML M L i
i iK=  [4.8] 

and:  

[ ] [ ] [ ] [ ]i
0 0

M ML M L
n n

i
itot

i i
K

= =

= =∑ ∑  [4.9] 

By feeding expressions [4.7] and [4.8] back into relation [4.9], we obtain: 

[ ]
[ ]

0

L

L

i
i

i n
i

i
i

K

K
α

=

=
∑

 [4.10] 
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and of course: 

0
1

n

i
i

α
=

=∑  [4.11] 

The distribution fractions depend only on the overall constants of 
formation and the concentration of ligand; they are independent of the 
concentration of the central atom [M] (see relation [4.10]). Curves showing 
the distribution fractions as a function of the ligand concentration are called 
distribution diagrams. Figure 4.3 shows the example of such a diagram in 
the case of a series of four complexes with the same central atom bound to 
four different quantities of ligand (ML, ML2, ML3 and ML4). 

 

Figure 4.3. Distribution fractions of complexes  
with a varied number of ligands. For a color version  

of the figure, see www.iste.co.uk/soustelle/equilibria.zip 

The dissociation of a complex is obviously influenced by the pH of the 
solution whenever the ligands are capable of reacting with water. 

Take, for example, the complex formed by iron with fluorine FeF2+. This 
complex dissociates as follows: 

FeF2+= Fe3++F-  [4R.3] 

The F- ion, which is a weak base, is liable to react with water as follows: 

F- + H2O = HF + OH- [4R.4] 

α 
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M 
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ML2

ML3

ML4
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Thus, this latter equilibrium is superposed on the former, and means that 
the dissociation will be influenced by the pH of the solution. A high pH, 
meaning an alkaline (basic) medium, will drive the two reactions back 
towards the left, and thus discourage the decomposition of the complex. 

Figure 4.4, constructed using the acidity constant Ka of hydrofluoric acid, 
confirms the expected result, showing that the domain of predominance of 
the Fe3+ ions shrinks when the pH decreases. 

NOTE.– In constructing Figure 4.4, we have not taken account of the 
interaction between the Fe3+ ions and the water. 

 

Figure 4.4. Influence of the pH on the domains of  
predominance of the components of the FeF-complex 

4.1.2. Competition between two ligands on the same acceptor 

Consider two complexes with the same central atom and two different 
ligands: ML and ML’. Their dissociations are written as: 

ML = M + L [4R.5] 

ML’ = M + L’ [4R.6] 

The dissociation constants are expressed in the following forms: 

[ ] [ ]
[ ]1

M L
MLdK =  [4.12] 

Fe3+ 
+ 

HF 

FeF2+  
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and 

[ ] [ ]
[ ]2

M L'
ML'dK =  [4.13] 

To find which ligand has the greater tendency to attach to the central 
atom, we consider the equilibrium: 

ML’ +L = ML + L’ [4R.7] 

Its equilibrium constant will be: 

[ ] [ ]
[ ] [ ]

2
6

1

ML L'
ML' L

d

d

KK
K

= =  [4.14] 

Thus, if K6 > 1, the complex ML will be favored. This will happen if 
2 1.d dK K>  

On the other hand, if K6 < 1, the complex ML’ will be favored. This will 
be seen if 2 1.d dK K<  

Hence, the favored complex is whichever one has the lower dissociation 
constant. 

The same method can be employed to examine competition between two 
acceptors for the same ligand. The result would be identical. 

Later on, we shall see the influence of the formation of complexes on  
the solubility of a salt (see section 5.2) and on the redox potential (see 
section 7.7.4). 

The calculations of the concentrations in solutions involving complexes 
are performed in the same way as for acid–base reactions. In the 
approximate manual calculation method, we first look for a 
thermodynamically-equivalent system if the species have no domain of 
overlap; then we look for the equilibrium with the highest progress rate, 
which will be the control equilibrium. 
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4.1.3. Method for studying perfect complexes 

For a perfect complex, only the coordination number n is of interest when 
trying to characterize the complex. Thus, study methods will try to determine 
that number; however some methods yield a value of the dissociation 
constant which is generally very low. 

We distinguish between three families of methods: 

– thermochemical methods; 

– electrochemical methods; 

– absorption spectrometry. 

4.1.3.1. Thermochemical methods 

The main thermochemical method is based on the examination of the 
solubility. We shall describe this method in section 5.3 of Chapter 5. 

4.1.3.2. Electrochemical methods 

Electrochemical methods are based on potentiometry (measurement of 
potential). We shall discuss these methods in section 7.7.5 of Chapter 7, as 
an application of galvanic cells. 

4.1.3.3. Absorption spectrometry 

The spectroscopic method is by far the most widely used method to 
characterize a perfect complex. 

Consider a complex liable to decompose according to the following 
reaction: 

MLn = M + nL [4R.8] 

The complex MLn, which has a different structure to the components M 
and L, often exhibits properties of light absorption in the ultra-violet or 
visible spectrum (complexes are often colored) at wavelengths where the 
individual components exhibit no (or very little) absorption. 

This light absorption obeys the Beer–Lambert law, whereby the optical 
depth is proportional to the wavelength of the solution through which the 
light is passed, and the concentration of that solution. The proportionality 
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coefficient is the coefficient of absorption at the wavelength in question, ελ. 
Thus, the law is expressed as follows: 

0log I d lC
I λε= =  [4.15] 

We work with a constant concentration of M and add ever-increasing 
concentrations x of L. 

We measure the optical depth, and by plotting the curve showing optical 
depth as a function of x, we obtain the curve in Figure 4.5. This figure is 
plotted for a scenario where the complex is more absorbent than its 
components at the chosen wavelength. 

 

Figure 4.5. Finding the equivalence by measuring  
the optical depth of absorption 

The abscissa of the inflection point x0 is obtained by the intersection of 
the extension of both branches. That value x0 gives us the number of moles n 
of L bound to a mole of M. 

NOTE.– When multiple complexes are present, we may obtain several 
successive breaks. However, in such a case, the method is not very accurate. 
In section 4.4.5, we shall see a method which lends itself better to the study 
of successive complexes. 

It sometimes happens that various types of ligands exist in the complex. 
In that case, the dissociation is written: 

MLnL’n’ = M + nL +n’L’ [4R.9] 

d 

x x00 
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We shall make the decision to keep the concentrations of the two 
components M and the ligand constant whilst working, so as to maintain 
compatibility with the previous case. The study will be supplemented by 
measurement, keeping the concentration of the other ligand constant as well 
as that of M. 

4.1.4. Methods for studying imperfect complexes  

An imperfect complex shall be completely defined by the two values Kd 
and n. The above methods cannot be used to determine those two values. 
Two methods tend to be used: the method of continuous variation and the 
corresponding solution method. 

4.1.4.1. Method of continuous variation 

This method, which was developed by Job [JOB 28] is based on a general 
property of a chemical equilibrium. It states that the yield of the reaction is 
greatest at equilibrium where the reactants are mixed in stoichiometric 
proportions. 

We operate as follows: 

– we mix equimolecular solutions of the two components M and L which 
combine in accordance with the reaction [4R.8] to form the complex MLn; 

– let C denote the concentration common to these two solutions, and p the 
proportion of solution of L used in the mixture. 

We can write the law of mass action for the equilibrium of formation of 
the complex: 

[ ] [ ]
[ ]
M L
MLd

n

K =   [4.16] 

If [M]0 and [L]0 denote the total initial quantities of M and N, the 
conservations of the elements M and L enable us to write, respectively: 

[ ] [ ] [ ] ( )0
M M ML 1-pn C= + =  [4.17a] 

[ ] [ ] [ ]0
L L MLnn pC= + =  [4.17b] 
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We know that the concentration of MLn  will be maximal at equilibrium 
when the two components M and L are mixed in the ratio 1:n, equal to the 
stoichiometric ratio, when p takes the value pm such that: 

( )1-
m

m

p n
p

=  [4.18] 

To experimentally determine the value of pm, we generally use light 
absorption at an appropriate wavelength which is optimal for the complex. 
According to the Beer–Lambert law, the mixture’s optical depth of the 
complex of its components is: 

[ ] ( )ML ML 1-
n n M L

d p p
lC

ε ε ε= + +  [4.19] 

If the complex were not formed, the optical depth would be such that: 

( )1-th
M L

d p p
lC

ε ε= +  [4.20] 

If we measure the difference Δ between the two values, then in light of 
relations [4.17a] and [4.17b], we obtain: 

( )ML MΔ n
n

th
L

dd p
lC lC

ε ε ε⎛ ⎞= − = − +⎜ ⎟
⎝ ⎠

 [4.21] 

For a given concentration C, we see that the maximum of the 
concentration of X corresponds to the peak of the curve showing the 
difference Δ. 

Figure 4.6, as a function of the ratio p, shows the shape of the 
experimental curve measured by absorption and the calculated curve that we 
would obtain if there were no complexation reaction. By finding the 
difference on a point-by-point basis, we deduce the curve giving Δ as a 
function of p. 
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Figure 4.6. Optical densities with the method  
of continuous variations method. For a color version of  
the figure, see www.iste.co.uk/soustelle/equilibria.zip 

The maximum of the curve Δ then gives pm, and thus n, according to 
relation [4.18]. 

We now need to determine the second characteristic value of our 
complex: its dissociation constant KD. 

We proceed in the same way as above by mixing solutions of M and L, 
but this time we choose non-equimolecular solutions. The first will contain a 
concentration C of M and the second a concentration βC of L, such that β is 
very different to 1. We mix the two solutions in the ratio p. As in the 
previous case, there is a value of p which corresponds to a maximum of the 
concentration of MLn , but that value is no longer pm but instead a different 
value, written as pβ. 

We always have the law of mass action given by the relation [4.16]. 

The conservations of the elements M and L are now written: 

[ ] [ ] [ ] ( )0
M M ML 1-n p C= + =  [4.21a] 

[ ] [ ] [ ]0
L L MLnn p Cβ= + =  [4.21b] 

By differentiating in relation to p and combining relations [4.16], [4.21a] 
and [4.21b], in the knowledge that d[ MLn ]/dp is 0, we obtain: 

[ ] [ ]M Lnβ −  [4.22] 

d/lC 

p 

εM 

εL

0 n/(1+n) 1 
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Curve calculated with 
no complexation 

Curve Δ 
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By replacing the values of the concentrations of M and L derived from 
equations [4.21a] and [4.21b], we deduce: 

[ ] 1X (1 ) 1
1

C p
nβ

β
β
⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦

 [4.23] 

Measuring pβ by the same spectroscopic method to calculate the 
concentration of MLn . The application of relations [4.21a] and [4.21b] then 
respectively allows us to calculate the concentrations of M and L. Those 
values are given in relation [4.16] to calculate the dissociation constant. 

NOTE.– During the second phase, we took the precaution of mixing non-
equimolecular solutions, in a proportion of concentrations β different to 1. 
Indeed, if we choose β = 1, because of relation [4.18], we see that relation 
[4.23] yields an indeterminate concentration of MLn . 

Note that if several complexes are liable to form, the value of the 
maximum pβ depends on the absorption coefficients, and thus on the 
wavelength. The method is no longer usable to determine the values n and 
Kd. However, that remark may reveal the existence of multiple complexes, 
which differ from one another by the number of ligands attached to their 
central atom. 

4.1.4.2. Corresponding solution method 

We shall prepare two series of solutions. Each series will be characterized 
by the concentration of M introduced, denoted by C. Each solution will be 
characterized by the concentration x of L introduced. 

For each series of solutions, the balance of M is written: 

[ ] [ ]M MLn C+ =  [4.24] 

For each solution, the balance of the ligands is written: 

[ ] [ ]L MLn x+ =  [4.25] 

Each solution obviously obeys relation [4.16]. 
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By choosing an acceptable wavelength – if possible, absorbing only the 
complex – we measure the optical depth of each solution. Based on the 
Beer–Lambert law, we can write the following for each solution i belonging 
to the series j: 

  
[ ], MLi j n

j j

d
C l C

ε
=  [4.26] 

For each of the two series j = 1 or 2, we plot the ratio y = d/Cl as a 
function of x (Figure 4.7). 

We plot a horizontal for any given value of the ordinate y0. That 
horizontal cuts each of the two curves at the points x1 for the series of 
solutions 1 and x2 for the series of solutions 4. 

 

Figure 4.7. Absorption by two corresponding solutions. For a color  
version of the figure, see www.iste.co.uk/soustelle/equilibria.zip 

By virtue of relation [4.26], at those points, the two solutions have the 
same ratio [MLn]/C, and thus by virtue of relation [4.24], the same 
concentration [M]. We say that these two solutions are corresponding 
solutions. According to relation [4.16], the two corresponding solutions have 
the same concentration of ligand [L]. 

Thus, we can write: 

[ ] [ ] [ ] [ ]
( )

1 21 2 1 2

1 2 1 2 1 2

ML ML L Ln n x x x x
C C C C n C C

− − −= = = =
−

 [4.27] 
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From this, we deduce: 

[ ] ( )
1 2

1 1
1 2

L x xx C
C C

−= −
−

 [4.28] 

Using relation [4.26], we calculate the concentration of complex, and 
then from the second equation [4.27], we deduce n. Based on relation [4.24], 
applied to solution 1, for example, we deduce the concentration  
of M. Finally, based on relation [4.16], we calculate the dissociation 
constant. 

4.1.5. Study of successive complexes 

Up to this point, we have supposed that the association of the central 
atom M and the ligand L gave rise to only one complex. In the case that 
various successive combinations are possible, the above method can only be 
applied if the absorption wavelengths of the different complexes formed are 
sufficiently different to one another to allow us to isolate the absorption of 
each composition. Then, the experiments described above can be repeated, 
and enable us to determine the values of the different coordination numbers 
and of the overall dissociation constants corresponding to each composition. 
From these overall constants, we deduce the constants pertaining to each 
addition reaction. 

If it is not possible to distinguish between the different compositions 
using a spectrograph, we then need to turn to a different method.  

Thus, we consider that a central atom M, with ligands L, gives a 
succession of complexes with increasing coordination numbers, according to 
the equilibria: 

2

2 3

M L ML
M ML ML
M ML ML
............................

+ =
+ =
+ =

 [4R.10] 
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These equilibria give us the following expressions of the law of mass 
action: 

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

1

2 2

3 3 2

ML M L

ML M ML

ML M ML

a

a

a

K

K

K

=

=

=

 [4.29] 

If the elements M are introduced at a concentration of C moles per liter, 
the conservation of elements M means that we can write: 

[ ] [ ] [ ] [ ]2 3M ML ML ML ... C+ + + + =  [4.30] 

If the elements L are introduced at a concentration of x moles per liter, 
the same law for L gives us: 

[ ] [ ] [ ] [ ]2 3L ML 2 ML 3 ML ... x+ + + + =  [4.31] 

As we did in section 4.1.4.2, we shall consider two corresponding 
solutions (1) and (2) – i.e. which have the same ratio d/lC. Therefore, they 
contain the same proportion of M in a complex and the same [M]/C ratio. 

Relation [4.30] shows that for these two corresponding solutions, we 
must have: 

[ ] [ ] [ ] [ ] [ ] [ ]2 3 2 31 1 1 2 2 2

1 1 1 2 2 2

ML ML ML ML ML ML
... ...

C C C C C C
+ + + = + + +  [4.32] 

So that this equality is preserved whatever the values of C and x, it is 
necessary that all the terms are identical, pair by pair, so: 

[ ] [ ]1 2

1 2

ML ML
C C

= ; 
[ ] [ ]2 21 2

1 2

ML ML
C C

= ; 
[ ] [ ]3 31 2

1 2

ML ML
C C

= ;… [4.33] 

We can define the mean coordination number, which is applicable to each 
of the two solutions, by the relation: 

[ ] [ ] [ ]2 3ML ML ML
2 3 ...n

C C C
= + + +  [4.34] 
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From equations [4.29], [4.33] and [4.34], we deduce that the 
concentration of free ligand [L] and the mean coordination number are 
identical for the two solutions, and that we can write: 

[ ] [ ]1 2 1 2

1 2 1 2

L Lx x x xn
C C C C
− − −= = =

−
 [4.35] 

From these relations, and based on the knowledge of the values of x1, x2, 
C1 and C2, we can easily deduce the values of n  and [ ]L . 

4.2. Redox reactions 

Oxidation reactions occur between ions – usually in water. In order to 
define redox reactions, we need to be familiar with the concept of the degree 
of oxidation – a value which is calculated on the basis of an electronegativity 
scale. 

4.2.1. Electronegativity – electronegativity scale 

The idea of electronegativity of elements is of prime importance in 
understanding the ionic nature of the bonds and thus laying the foundations 
for understanding reactivity. It is also important for the definition of what we 
call the degree of oxidation, or oxidation number, of an element in a 
compound. 

4.2.1.1. Qualitative definition of an electronegativity scale 

Looking at the bond between the H and F atoms in hydrogen fluoride, we 
see that it is formed by a pair of electrons (a doublet), one of which comes 
from the 1s orbital of the hydrogen atom and the other from the 2s orbital of 
the fluorine. We know that this bond exhibits an electrical moment, which 
means that the doublet is captured completely by the fluorine, thus leading to 
the existence of two ions: F- and H+. We say that fluorine is more 
electronegative than hydrogen. In other words, we say that an element A is 
more electronegative than an element B if A attracts the doublet of electrons, 
forming the A-B bond to itself. 

Now let us consider an element which is far removed from fluorine in the 
periodic table – cesium, for example. When reacted with hydrogen, it forms 
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a hydride with the formula CsH. Note that this bond also displays a strong 
electrical moment, but that this time, it is the hydrogen atom which captures 
the electron doublet forming the bond, thereby leading to the formation of 
the ions Cs+ and H-. We say that hydrogen is more electronegative than 
cesium.  

By comparing the two compounds FH and CsH, we can deduce that 
fluorine is more electronegative than cesium.  

Now consider the bond between carbon and hydrogen in methane. This 
bond exhibits only a slight electrical moment. The carbon attracts the bond 
pair slightly towards itself, but it does not go so far as to form ions. Thus, 
carbon is slightly more electronegative than hydrogen. Hence, we can begin 
to construct a scale showing the elements in order of electronegativity: Cs, 
H, C, F, in order of increasing electronegativity. 

Not all elements actually form a bond with hydrogen that would allow us 
to classify their electronegativity. However, it is possible to examine their 
bonds with other elements, and if the latter elements form bonds with 
hydrogen atoms, we can still manage to construct our scale, step by step. It is 
quite common to use bonds with oxygen as a comparison point, as we  
know – as is demonstrated by the bonds in the water molecule – that oxygen 
is significantly more electronegative than hydrogen, but we cannot expect so 
great an electronegativity value as found in fluorine. 

For the time being, this scale remains qualitative. Very early on, scientists 
came up against the need to quantify the idea. Therefore, a number of 
quantitative scales were put forward. The three most significant such models 
were developed by Pauling, Mulliken, and Allred and Rochow. 

4.2.1.2. Pauling’s electronegativity scale (1932) 

In 1932, Pauling put forward the idea of a scale based not on the 
electrical moment of the bonds, as suggested by the above definition of 
electronegativity, but instead on the bond energies. Yet it should be noted 
that a priori the bond energies have no obvious connection with the 
electrical moments. 

Pauling supposed that for a bond without an electrical moment – i.e. one 
which is completely symmetrical between the atoms X and Y – the energy 
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contained in the XY bond was the arithmetic mean of the bond energies in 
the associations X2 and Y2, so: 

( )XY XX YY
1 0
2

D D D− + =   [4.36] 

In the case of a non-symmetrical bond, where an electrical moment is 
present, Pauling looked at the difference Δ defined by: 

XX YY
XYΔ

2
D DD +⎛ ⎞= − ⎜ ⎟

⎝ ⎠
  [4.37] 

He noted that, for instance, with HF, we have Δ = 15.31 kJ/mole, whilst 
for IH, we have 0.38 kJ/mole. However, what is certain is that iodine is less 
electronegative than fluorine. Thus, it seems that we can envisage a relation 
between the value Δ and the difference between the electronegativity of 
elements X and Y: X Yel el− . After several rounds of trial and error, Pauling, 
for the value of Δ expressed in eV/atom, chose the relation: 

X Y Δel el− =   [4.38] 

Often, though, bond energies are expressed and quoted in kJ/mole, so we 
need a conversion factor which transforms relation [4.38] into: 

X(P) Y(P) 0.102 Δel el− =   [4.39] 

Choosing an arbitrary value for an element, Pauling chose H(P) 0el = . 
Thus, he established his first quantitative scale. Unfortunately, on this scale, 
practically all metals are found to have negative electronegativity values. To 
obtain a positive value for all elements, noting that the strongest 
electronegativity is that of fluorine, he assigned fluorine the value F(P) 4el = . 

Thus, the electronegativity of hydrogen becomes H(P) 2.1el = . Pauling  
added 2.1 to all the values extracted by the application of relation [4.39]. We 
deduce that the electronegativity of an element X, on Pauling’s scale, is 
given by: 

X(P) XF2.1 0.102 Δel = +   [4.40] 
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XFΔ  is the difference [4.38] for the bond between fluorine and the atom 
X under study. 

Thus, a complete quantitative scale is constructed. Table 4.1 shows an 
extract from that scale. As we can see, according to Pauling, practically all 
the transition elements have an electronegativity of 1.6. 

NOTE.– To begin with, Pauling chose the geometric mean of the bond 
energies to define Δ, instead of the arithmetic mean used in relation [4.37]. 
The results have proven to be more reliable with the latter choice. 

H 2.1 F 4.0 Cl 3.0 Br 2.8 I 2.4 
Li 1.0 Na 0.9 K 0.8 Rb 0.8 Cs 0.7 
Be 1.5 Mg 1.2 Ca 1.0 Sr 1.0 Ba 0.9 
C 2.5 If 1.8 Ge 1.7 Sn 1.7   
    Ti 1.6 Zr 1.6   
N 3.0 P 2.1 As 2.0 Sb 1.8   
0 3.5 S 2.5 Se 2.4 Te 2.1   

Table 4.1. Electronegativity table according to Pauling 

4.2.1.3. Mulliken’s electronegativity scale (1934) 

In 1934, Mulliken defined an electronegativity scale that fits more closely 
with the relations between an atom and an electron. These relations lie firstly 
in the electron affinity – i.e. the energy involved in the fixation of an 
electron by a neutral atom I – and secondly in the ionization energy – the 
energy released when an atom loses an electron eaε . Mulliken defined 
electronegativity as the arithmetic mean of the electron affinity and the 
ionization energy of the atom. As that mean may be positive or negative 
depending on the element, he chose the absolute value of that mean so as to 
obtain only positive electronegativity values. Thus, we have the following 
expression for Mulliken’s definition of electronegativity: 

X(M) 2
eaI

el
ε+

=   [4.41] 

Note that the order in which elements are classified on Pauling’s and 
Mulliken’s scales is the same. Thus, we can switch from one scale to the 
other by setting, say, the value 4 for fluorine – a value which is equal to 
252.4 kJ/mole on Mulliken’s scale. The conversion from one scale to the 
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other is achieved by a linear transformation, which, if the energies are 
expressed in eV/atom, is: 

( )X(M) 0.187 0.17eael I ε= + +   [4.42] 

If the energy values are expressed in kJ/mole, that transformation 
becomes: 

( )3
X(M) 1.97 10 0.19eael I ε−= × + +   [4.43] 

It is worth pointing out that the value defined by Mulliken is a value 
specific to the atom, whereas Pauling’s is based on the property of the bond 
of the atom in a molecule. 

Obviously, we can calculate the Mulliken electronegativity of an element 
only if we are able to find its electron affinity. Unfortunately, that value is 
not yet known for all elements in the periodic table. There are around thirty 
stable elements whose electron affinity is unknown.  

4.2.1.4. Allred–Rochow electronegativity scale (1958) 

Allred and Rochow defined the electronegativity of an element X as the 
electrical force exerted between the electron and a charge characterizing the 
rest of the atom. For that charge, they chose the effective charge Zeff 
calculated using Slater’s method (which will be discussed later on). The 
distance chosen for that force is the covalent radius of the element – i.e. half 
the distance between the atoms in the X-X molecule. Allred and Rochow’s 
scale, therefore, is defined by the relation: 

2
(X)

X(AR) 2
(X)

eff
X

Z e
el F

r
= =   [4.44] 

The scale obtained is, once again, the same as that given by the previous 
two definitions. We can switch from Pauling’s scale to Allred and Rochow’s 
(adopting the value 2.1 for hydrogen) by the following relation (r expressed 
in nm): 

(X)
X(AR) 2

(X)

35.9
0.64effZ

el
r

= +   [4.45] 
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Admittedly, this last definition of electronegativity comes closest to the 
initial definition, which involves the direction of movement of the bond 
electrons. Regrettably, though, no scale has been constructed on the basis of 
the true definition – i.e. on the electrical moment of the bonds. 

For an atom with the atomic number Z, the effective charge is calculated 
by the relation: 

effZ Z σ= −   [4.46] 

Slater then gives us the means to calculate the shielding effect σ, as 
follows: 

– for an electron situated in a 1s orbital, the shielding effect caused by the 
other 1s electron is equal to 0.30; 

– for an electron situated in an ns or np orbital, where n is greater than 1, 
the shielding effect experienced because of each of the other electrons in that 
group is equal to 0.35;  

– the shielding effect experienced by that same electron because of the 
electrons of the next level down is equal to 0.85 per electron; 

– the shielding effect experienced by that electron because of the levels 
below the next level down is equal to 4.00 per electron; 

– finally, electrons situated at higher energy levels than the one in 
question here have no shielding effect whatsoever on the electron under 
consideration.  

4.2.1.5. Electronegativity and the periodic table 

If we examine the evolution of the electronegativity of the elements as 
listed in the periodic table, we note that, as Figure 4.8 illustrates: 

– in any given column, electronegativity increases as we move upwards, 
because the atomic number decreases. The atomic nucleus has a tendency to 
attract valence electrons which are less well shielded by the core electrons; 

– in given row, electronegativity increases as we move to the right, 
because the increase in the atomic number means an increase in the charge 
carried in the nucleus (a greater number of protons), which thus interacts 
more strongly with the valence electrons. 



Complexations and Redox Equilibria     123 

 

Figure 4.8. Changing values of electronegativity in the  
periodic table of the elements 

The minimum electronegativity, therefore, is at the bottom left of the 
table, with francium. The maximum is at the top right, with fluorine. 

Figure 4.9 shows the electronegativity values, on Pauling’s scale, as a 
function of the place on the periodic table. This figure confirms the 
observations we have just made. In addition, it demonstrates that the 
electronegativity of the first element in each column is similar to that of  
the elements in the column immediately to its right. Thus, the electronegativity 
of lithium is close to that of calcium. The same is true of beryllium  
and aluminum, and of boron and silicon, nitrogen and sulfur, oxygen and 
chlorine. Indeed, we can see great chemical similarity between the elements 
mentioned. 

 

Figure 4.9. Electronegativity and the periodic table 

Also note that in each column, the last element is on a par with the 
elements in the column situated immediately to its left. Thus, we note the 
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proximity of the values of iodine and sulfur, tellurium and phosphorus, 
barium and rubidium. Similarly to above, we observe similarities in the 
chemical properties between the elements we compare. 

NOTE.– Given that rare gases practically never form a compound, the notion 
of electronegativity is meaningless when dealing with them. 

4.2.2. Degrees of oxidation 

The idea of the degree of oxidation is crucially important when studying 
redox reactions and for all electrochemical thermodynamics. We shall 
approach it by way of binary ionic compounds, and then extend it to apply 
generally to all molecules. 

4.2.2.1. Degrees of oxidation of the elements of a binary ionic 
compound 

Consider solid potassium chloride. It is made up of chlorine ions Cl- and 
potassium ions K+. This separation into ions stems from the fact that chlorine 
is much more strongly electronegative than potassium, and therefore 
captures the two bond electrons, one of which comes from the potassium 
atom. We say that the degree of oxidation of the chlorine is -1 and that of the 
potassium is +1. 

More generally, for ionic compounds, the degree of oxidation of an 
element is equal to the charge of the ion formed. For instance, in magnesium 
chloride, MgCl2, which is made up of chlorine ions Cl- and magnesium ions 
Mg2+, the degree of oxidation of the chlorine is -1 and that of the magnesium 
is +2. Because of the rule of electrical neutrality of molecules, the sum of the 
degrees of oxidation of the two elements in an ionic binary compound is zero. 

4.2.2.2. Degrees of oxidation of the elements in a covalent binary 
compound 

Let us now look at the case of a covalent binary compound. We shall 
choose hydrogen chloride as a case study. Chlorine has greater 
electronegativity than hydrogen. It follows that the bond doublet between the 
two atoms is shifted to the side of the chlorine atom. By convention, we 
attribute both electrons from the doublet to chlorine, and conclude that in  
the HCl molecule, the degree of oxidation of the chlorine is -1 and that of the 
hydrogen is +1.  
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More generally, in a covalent binary compound, we conventionally 
attribute the two electrons in the doublet of a bond between the two atoms to 
the more strongly electronegative atom, and the degree of oxidation is given 
by the number of doublets attributed to (negative degree of oxidation) or 
ceded by (positive degree of oxidation) the atom in place. Of course, the sum 
of the degrees of oxidation in the molecule is always zero. 

If the two atoms making up the binary compound are identical – as is the 
case in the O2 molecule, for instance – the center of gravity of the charges is 
precisely the midpoint of the distance between the two nuclei (here oxygen). 
It is not possible to attribute doublets any more to one of the atoms than to 
the other. We say that the degree of oxidation of the oxygen in the O2 
molecule is zero. The same is true for all elements belonging to homonuclear 
binary compounds. 

4.2.2.3. Generalization of the concept of the degree of oxidation 

Now consider a more complex molecule. We shall choose the example of 
iron(III) chloride. The semi-structural formula of this compound is: 

 

Examine each of the three bonds which, in this case, are identical. For a 
bond, as chlorine is more electronegative than iron, we attribute the 
corresponding doublet to the chlorine atom. Repeating the operation for each 
bond, we can say that in FeCl3, the degree of oxidation of each chlorine atom 
is -1, whilst that of the iron is +3.  

It may be that the same element has two different degrees of oxidation 
within the same molecule. Take the example of potassium persulfate, which 
has the formula K2S2O8, and examine the degree of oxidation of the atoms 
making up that compound. In order to do so, we write its semi-structural 
formula: 
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Three types of bonds come into play in this compound: 

– firstly, the ionic bond between potassium and the persulfate anion, 
which enables us to attribute the degree of oxidation +1 to the potassium; 

– four covalent bonds linking a sulfur atom and an oxygen atom. In each 
of them, as oxygen is more electronegative than sulfur, it receives both of the 
electrons in the doublet. The outer two atoms also receive the two electrons 
from the charge of the ion; thus, their degree of oxidation is -2 (one electron 
due to the charge of the ion, and the other to the bond with the sulfur atom). 
The two inner oxygen atoms are connected to one another by a symmetrical 
bond whereby the electrons of the doublet cannot be attributed to one atom 
or the other. Hence, these oxygen atoms have the degree of oxidation -1 
(stemming from their bond with the sulfur); 

– four (dative) coordination bonds, in which the two electrons in the 
doublet are donated by the oxygen atom, giving it the degree of oxidation -2. 
It follows from this that the sulfur atoms have the degree of oxidation +6. 

The sum of the degrees of oxidation in the molecule is indeed 0, as the 
sum of the degrees of oxidation in the anion is -2. 

4.2.2.4. Practical calculation of the degree of oxidation of an element 
in a molecule 

In practice, we do not always use the semi-structural formula. We have at 
our disposal a certain number of known facts, which can be used to quickly 
calculate the degree of oxidation of an atom in a molecule on the basis of its 
simple formula: 

– we can practically always attribute a degree of oxidation of +1 to all 
alkali metals (first column in the periodic table) and the degree +2 to all 
alkaline earth metals (second column of the periodic table); 

– we can practically attribute the degree +1 to a hydrogen atom, except in 
alkali hydrides and alkaline earth hydrides, where the degree of oxidation of 
the hydrogen is -1; 

– we can attribute the degree of oxidation -2 to an oxygen atom (with 
certain exceptions due to the presence of a peroxide bridge in persulfates and 
oxygenated water H2O2, which then have two oxygen atoms, each with the 
degree of oxidation -1): 
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– finally, we use the rule of nullity of the sum of the degrees of oxidation 
of a molecule. 

We choose the example of potassium permanganate, whose overall 
formula is KMnO4. We attribute the degree of oxidation +1 to the potassium 
(alkali metal), the degree -2 to the oxygen atoms, and as the sum of the 
degrees of oxidation must be zero, we are led to attribute the degree of 
oxidation +7 to the manganese. 

Of course, the rules of calculating using the simple formula can 
sometimes lead to incorrect results. Look again at the example of potassium 
persulfate and work purely on the basis of the simple formula, remaining 
unaware of the existence of the peroxide bridge. In applying the above rules, 
we immediately find the degree +1 for the potassium, and -2 for the oxygen 
atoms. Now, when we apply the balance law, for each of the two sulfurs, we 
find the degree of oxidation +7, which is obviously wrong. 

Sometimes, the result obtained by using the basic chemical formula may 
be not only false, but strange as well. Take the example of sodium 
tetrathionate Na2S4O8. The attribution of the degree of oxidation +1 to 
sodium and -2 to oxygen immediately gives us the value 2.5 for the degree 
of oxidation of each sulfur atom. This result is obviously ridiculous – it is 
impossible to attribute half an electron to an atom! The result thus obtained 
is, in fact, the mean between the true degrees of oxidation of the four sulfur 
atoms: +6, +6, -2 and 0. This is what we call the crude degree of oxidation. 

The fractional result of a degree of oxidation of an element in a 
compound is always the result of a mean which expresses the existence of 
different degrees of oxidation for atoms of the same element. 

4.2.2.5. Degree of oxidation of a coordinating element in a complex 
ion 

Complex ions present a difficulty when we want to determine the degree 
of oxidation of the coordinating element. 

Determining the degree of oxidation of the coordinating element in a 
complex may lead to a number of difficulties which, fortunately, can be 
resolved by a convention. Remember, first of all, that the formula of a 
complex ion can be written in two different ways: in the form of the nucleus 
bound to each of the ligands, or in the form of an additive compound. If we 
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take the example of hexammine cobalt(III) chloride, the two written forms 
would be [Co[NH3]6]3+ or CoCl3,6NH4. If we take the structural formula, we 
would quickly see that the CO3+ ion, through a dative bond, receives 2 × 6 = 12 
electrons from the ammonia. However, as it had already donated three 
electrons to that ammonia, we can conclude that the degree of oxidation of 
the cobalt in that compound is 12 – 3 = 9, which is formally accurate. Yet in 
reality, it is very difficult to distinguish dative bonds from purely 
electrostatic bonds, where the degree of oxidation of cobalt remains 
unchanged, and is therefore 2. To circumvent this problem, we say that the 
degree of oxidation of the central ion, in a complex, is the degree which that 
element has in the corresponding simple compounds – i.e. the degree of 
oxidation that would be attributed to that element if writing the complex in 
the form of an additive compound. In this case, for our example, we 
immediately find a degree of oxidation +3 for the cobalt, corresponding to 
the simple compound CoCl3. 

4.2.3. Definition of redox reactions 

A redox reaction is a reaction in which two elements have their degrees 
of oxidation changed. In order to respect the electrical neutrality of the 
elements, the sum of the variations in the degrees of oxidation must be zero. 
One element sees its degree of oxidation increase: it is said to be reduced by 
the reaction. The other element has its degree of oxidation decrease, and is 
said to be oxidized by the reaction. The compound containing the element 
reduced by the reaction is the oxidant (or oxidizing agent); that which 
contains the element that is oxidized is known as the reductant (or reducing 
agent). Thus, the redox reaction looks like this: 

oxidant + reductant → reduced form + oxidized form 

NOTE.– A redox reaction is often presented as being an electron-exchange 
reaction. In actual fact, though, very often – particularly with reactions 
involving covalent bonds – there is no real exchange of electrons. 

4.2.4. The two families of redox reactions 

When we examine the different redox reactions taking place in an 
aqueous medium, we can distinguish between two categories: reactions 
which do not involve the ions of water, and those which do. 
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The first family is represented by simple reactions between an oxidant 
and a reductant on their own. By way of example, we can cite the reduction 
of copper ions by iron, as follows: 

Fe +Cu2+ → Fe2+ + Cu  [4R.11] 

This reaction occurs spontaneously, when we simply place a few 
fragments of steel (e.g. a few pinches of shavings) in a copper sulfate 
solution. 

The law of mass action for this equilibrium is written as: 

22

2

Fe

Cu
K

+

=   [4.47] 

The pH has no influence on the conditions at equilibrium. 

The second family is more complex, as it involves water and its ions H+ 
and OH- , or rather H3O+ and OH-, as the H+ ion is unstable in water. For 
example, we can cite the reaction of reduction of potassium permanganate 
by tin(II) salts in an acid medium: 

2 2 4
4 3 22MnO 5Sn 16H O 2Mn 5Sn 24H O− + + + ++ + → + +   [4R.12] 

In this case, the law of mass action takes the form: 

2 52 4

2 5 162
4 3

Mn Sn

MnO Sn H O
K

+ +

− + +
=   [4.48] 

The influence of the pH on the concentrations at equilibrium is obvious. 

This second family is characterized by the presence of atoms of oxygen 
and/or hydrogen in one (or both) of the reagents.  

It is common to represent a general redox equilibrium in the form of the 
reaction: 

1 1 2 2 2 2 1 1Ox Red ' Ox ' Redn n n n+ → +   [4R.13] 
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We can see that whilst this formulation is perfectly valid for simple 
reactions, in the case of reactions involving the ions in water, it is necessary 
to include those ions on both sides of the equation, in order to apply the law 
of mass action. Symbolically, they are not mentioned, and we apply the law 
of mass action adopting the following formula regardless: 

2 1

1 2

' '
2 1

1 2

Ox Red

Ox Red

n n

n nK =   [4.49] 

4.2.5. Dismutation and antidismutation 

Sometimes, the oxidant and the reductant reacting with it belong to the 
same molecule, in which one element shall have its oxidation number 
increase, and another element of the same nature in a different place in the 
molecule will see its oxidation number decrease. In such a case, we say that 
we have a dismutation of the element in question. For instance, oxygenated 
water is unstable because of its spontaneous decomposition into oxygen and 
water, which is a dismutation, according to the reaction: 

2H2O2 → O2 + 2H2O  [4R.14] 

Oxygenated water contains 2 oxygen atoms, each with the degree of 
oxidation -1, owing to the presence of an oxygen bridge. The degree of 
oxidation of one of those atoms from the bridge obtains the degree of oxidation 
0 (oxygen gas), whilst the other obtains the degree -2 in the water molecule. 

The reverse phenomenon – where the oxidant element and the reducing 
element, which initially belong to two different molecules, form a unique 
molecule containing an element with one single degree of oxidation – is 
known as antidismutation or amphoterization. We can cite the example of 
the oxidation of the iodide ion by the iodate ion, as follows: 

3 3 2 2IO 5I 6H O 3I 9H O− − ++ + → +   [4R.15] 

In this reaction, iodine, which has the degree of oxidation +5 in the iodate 
ion and -1 in the iodide ion, ultimately obtains a degree of oxidation 0 in di-
iodine. 
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4.2.6. Redox reactions, and calculation of the stoichiometric 
numbers 

Note that for a simple redox reaction, whilst it is easy to find the 
stoichiometric numbers merely by balancing the charges, the same is 
absolutely not true with complex reactions. In complex reactions, as well, 
those stoichiometric numbers are not always elementary, as is shown by the 
example of reaction [4R.11]. We shall describe a systematic method to 
determine the stoichiometric numbers of a redox reaction involving water 
and its ions. That method is based on the differences between the degrees of 
oxidation of a given element between the two sides of the reaction. 

To describe the method, we shall use the example of the reduction of 
permanganate by tin(II) ions. We write the reaction in the form: 

First of all, we determine x and y. To do so, we calculate the variation of 
the oxidation number of the two elements concerned. In our example, those 
elements are manganese and tin. 

The degree of oxidation of the manganese falls from +7 to +2, giving us a 
variation of the absolute value of its degree of oxidation: 

Δ (Mn) 5DOX =   

The tin’s degree of oxidation rises from +2 to +4, which gives us a 
variation of the absolute value of its degree of oxidation: 

Δ (Sn) 2DOX =   

The lowest common multiple of these two variations is 10. The variations 
in each of the degrees of oxidation must be the same, and equal to that 
lowest common multiple. Thus, we adjust the values of x and y. In our 
example, we can deduce the values: x = 2 and y = 5. 

We then determine the value of z. In order to do so, we balance out the 
electrical charges between the two sides of the equation, by adding  
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H3O+ ions on the appropriate side. In our case, we need to add these ions on 
the left-hand side, and we obtain z = 16. 

Finally, we determine the value of w. In order to do so, we balance out 
the hydrogen atoms by placing water molecules on the correct side. In our 
example, we immediately obtain w = 24, and place those molecules on the 
right-hand side. 

We can check our calculation by counting the number of oxygen atoms 
on each side of the equation. If our calculations are correct, we should 
obviously find the same number on both sides. In the present case, there are 
indeed 24 atoms of oxygen on each side of the equation. 

The balancing method presented here applies when we content ourselves 
with crude, or even fractional, degrees of oxidation. This renders the idea of 
the crude degree of oxidation interesting, because we can write a reaction 
without needing to know the details of the internal bonds in the molecules in 
question. 

4.2.7. Concept of a redox couple 

In the same way as acid–base reactions appear to be the superposition of 
two half-reactions involving H+ ions despite the instability of that ion in 
water, a redox reaction can be broken down into two half-reactions involving 
electrons, although they too are unstable in water. We obtain redox couples – 
for example, the redox couple Sn+4/Sn+2 would give us the half-reaction: 

Sn + 4 + 2e = Sn + 2  [4R.16] 

We generalize this formulation, by convention, by placing the electrons 
on the left hand side, in the form: 

Oxidant e Reductantn+ →   [4R.17] 

If the ions from water play a part, we write the equation for the couple 
and preserve the H+ ions; for instance, for the manganese/permanganate ion 
couple, we write: 

2
2 4Mn 5 4H O MnO 8He++ − − ++ + → +   [4R.18] 
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These reactions are, in fact, electronic reactions, which we shall study in 
Chapter 6, in the case that the electrons are stable because they are captured 
by an electronic conductor. 

To balance a half-reaction relative to a redox couple, we first determine 
the number of electrons n involved, which is simply the absolute value of the 
difference between the degrees of oxidation of the oxidized form and the 
reduced form ΔDOX . Next, we balance the electrical charges using protons, 
if necessary, and finally balance out the number of oxygen atoms by adding 
water molecules. 

From this concept of the redox couple, we deduce a second method for 
balancing redox reactions. We see that the formulation of the balance 
equation of a redox reaction such as reaction [4R.11] is the linear 
combination of the two reactions of redox couples, and possibly that of 
solvation of the proton: 

H2O + H+ → H3O+  [4R.19] 

This linear combination is that which eliminates the electrons and 
protons. Thus, reaction [4R.12] is the combination of reactions [4R.16], 
[4R.18] and [4R.19] such that: 

[4R.12] = 2[4R.18]–5[4R.16]–8[4R.19]  

We can see that it is easy to determine the coefficients in the two 
equations for the redox couples (here 5 and 2) on the basis of the lowest 
common multiple of the absolute values of the degrees of oxidation. The 
value of the third coefficient (here 8) is determined immediately by 
elimination of the protons. 

When two couples are present, it is interesting to find out which direction 
the reaction will spontaneously occur in. We shall answer this question in 
Chapter 6 (see section 6.5), once we have looked at redox potentials. Those 
potentials will also enable us to determine the standard Gibbs energy of a 
redox reaction (see section 7.7.9). 



 



5 

Precipitation Reactions and Equilibria 

The majority of precipitation reactions are reactions between ions in 
solution which trigger the precipitation of a solid phase. Such reactions lead 
to states of equilibrium. For the most part, they are observed in water, but we 
may also see precipitations in other solvents, such as precipitations in 
molten-salt media, for instance. 

5.1. Solubility of electrolytes in water – solubility product 

In this section, we shall discuss an electrolyte composed of one anion and 
one cation, having the formula A Bν ν+ −

for the non-dissociated molecule. 

Suppose that this compound is not very soluble at equilibrium, reaching 
saturation at a low concentration. Thus we consider it to be totally ionized. 
We are in the presence of equilibrium [5R.1]. 

A B ( ) A Bz zsolidν ν ν ν+ −

+ −

+ −
+ −= +   [5R.1] 

As the solid phase is pure, the application of the law of mass action to 
that equilibrium yields the solubility product at infinite dilution :sK ∞  

A Bz z
sK

ν ν+ −
+ −+ − ∞=   [5.1] 

Ionic and Electrochemical Equilibria, First Edition. Michel Soustelle.
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Taking account of the non-ideality of the solution, in the dilute media we 
are usually dealing with, the activities of the ions are linked to the 
concentrations by the expressions: 

A Az zγ+ ++ +
+
⎡ ⎤= ⎣ ⎦   [5.2a] 

and:   

B Bz zγ− −− −
−
⎡ ⎤= ⎣ ⎦   [5.2b] 

The product of the concentrations constitutes the solubility product KS, 
which obeys the expression: 

( )A Bz z s
s

K K
ν ν

ν νγ
+ −

+ −

+ −

∞
+ −

+
±

⎡ ⎤ ⎡ ⎤ = =⎣ ⎦ ⎣ ⎦   [5.3] 

We have assumed that the solution contains only one electrolyte. We 
shall see later on what happens to the solubility of that salt in the presence of 
other electrolytes. 

5.2. Influence of complex formation on the solubility of a salt 

Let us look at the A Bν ν+ −  salt again.  In the presence of pure water, the 
solubility of that salt is given by: 

( )
1

  A B ssat
s K ν ν

ν ν + −
+ −

+⎡ ⎤= =⎣ ⎦  [5.4] 

To the saturated solution, we add a complexing agent, which forms a 
complex with the cation Az+ + . We take this complex to be perfect and much 
more soluble than the original salt A B .ν ν+ −

 The addition of the complexing 
agent shifts the equilibrium [5R.1] to the right, and thus increases the 
quantity of salt in solution, only this time, the cation is in complexed form. 
Thus, the quantity of the initial salt which it is possible to dissolve is 
determined by the solubility of the complex. 
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5.3. Application of the solubility product in determining the 
stability constant of complex ions 

We saw in Chapter 4, section 4.1.3.1, that there is a thermochemical 
method based on the study of solubility to determine the dissociation 
constant and the coordination number of a complex MLn. We shall now 
outline this method, which superimposes the equilibrium of dissociation of 
the complex on that of precipitation of a salt of the cation, with low 
solubility, involved in the complex. 

Remember that the equilibrium of dissociation of the complex is written: 

M L MLz z
nn+ ++ ++ =  [5R.2] 

The application of the law of mass action to that equilibrium, working in 
the situation of a sufficiently dilute solution to be able to treat the activities 
and concentrations as one and the same, gives us: 

[ ]M L
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D
z
n

K
+

+

+

+

⎡ ⎤
⎣ ⎦ =
⎡ ⎤⎣ ⎦

  [5.5] 

If we add an anion Bz− −  which is prone to form a salt with low solubility 
M Bν ν+ −

 with the cation Mz+ + , that salt then precipitates. We can then add 

the ligand L.  The salt M Bν ν+ −
 dissolves once again. In practical terms, when 

the salt is completely dissolved, the cation is entirely in the form of the 
complex, and if we overlook the solubility of the salt M Bν ν+ −

, we have: 

MLz
n s+ + ≅⎡ ⎤⎣ ⎦

 [5.6] 

because we have: 

M MLz z
n

+ ++ +⎡ ⎤ << ⎡ ⎤⎣ ⎦ ⎣ ⎦
   [5.7] 

 

 



138     Ionic and Electrochemical Equilibria 

If we let x denote the excess concentration of ligand used, then we have: 

[ ]L x=   [5.8] 

By substituting relations [5.6] and [5.8] back into relation [5.5], we find: 

M z n

D

x
K

s

+ +⎡ ⎤
⎣ ⎦ =   [5.9] 

Using relation [5.3] in conditions of low concentration, we can write: 

M z sK
s

+ +⎡ ⎤ =⎣ ⎦   [5.10] 

By superimposing the two equilibria [5R.1] and [5R.2], the two relations 
[5.3] and [5.9] give: 

2 nD

s

Ks x
K

=   [5.11] 

From this, we deduce: 

2
2nD

s

Ks x
x K

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

  [5.12] 

Knowing the values of s and x, and thus the ratio s/x, we seek to obtain a 

straight line by plotting the function 
2s

x
⎛ ⎞
⎜ ⎟
⎝ ⎠

 as a function of 2nx −  by trying 

various integer values for n. When that straight line is found, we deduce n 
and then KD, using relation [5.11], where we know Ks, s and x, which is the 
coordination index. 

5.4. Solution with multiple electrolytes at equilibrium with pure 
solid phases 

We shall now examine the equilibrium of a solution containing multiple 
electrolytes with one or more pure solid phases stemming from the 
precipitation of some of the electrolytes present in the solution. 
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5.4.1. Influence of a salt with non-common ions on the solubility 
of a salt 

The salt under study is now added to another salt which shares no ions 
with the salt we are studying. The concentrations of the anion and the cation 
in our salt are linked to its solubility s, expressed in moles per liter, by the 
expressions: 

A z sν+ +
+

⎡ ⎤ =⎣ ⎦   [5.13a] 

and  

Bz sν− −
−

⎡ ⎤ =⎣ ⎦   [5.13b] 

By feeding back into expression [5.3], we obtain: 

( )

onstCs ν νγ + −+
±

=    [5.14a] 

where  

( )1/
onst sKC

ν ν

ν νν ν

+ +

+ −

+∞

+ −

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

  [5.14b] 

Thus, the solubility depends on the mean activity coefficient of the ions. 
As that activity coefficient decreases with greater ionic strength – at least for 
low ionic strengths, as Debye and Hückel’s law demonstrates, for example – 
we can see that any introduction of a foreign salt with ions not shared by the 
salt under study, which increases the ionic strength, consequently increases 
the solubility s of our original salt. This is known as the salt’s effect on the 
solubility. 

By measuring the solubility s at different ionic strengths and 
extrapolating the curve ( )s I  at an ionic strength of zero, we obtain the value 
of the constant Const in relation [5.14b], because then the mean activity 
coefficient tends toward 1, and hence, by extrapolation to an ionic strength 
of 0, we deduce the value of the solubility product sK ∞ . Then, on the basis of 
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the points of the curve, we obtain the mean activity coefficient γ ±  at any 
given value of the ionic strength. 

NOTE.– Looking at Debye and Hückel’s model, it is advantageous to carry 
out the extrapolation in a coordinates system: 

ln s , 
( )

2I
ν ν+ −+

  

to obtain a straight line at low ionic strength, which makes the extrapolation 
easier. 

Conversely, in the conditions of application of the Debye–Hückel limit 
law, we can find the values sK ∞  and s if we know the solubility se in pure 
water. Indeed, for our salt in pure water, we can write, on the basis of 
relation [5.14a]: 

( )ln ln ln
2

onst
es C

ν ν
γ+ −

±

+
= −   [5.15] 

Thus, if we let Ie denote the ionic strength in pure water: 

( )ln ln
2

onst
e es C Bz z I

ν ν+ −
+ −

+
= +   [5.16] 

Similarly, for a mixture of our salt and other electrolytes in a solution 
whose ionic strength is I, we have: 

( )ln ln
2

onsts C Bz z I
ν ν+ −

+ −

+
= +   [5.17] 

By comparing expressions [5.16] and [5.17], we find: 

( ) ( )ln
2 e

e

s Bz z I I
s

ν ν+ −
+ −

+
= −   [5.18] 

In a medium of low concentration where the Debye–Hückel limit law 
applies fully, this relation gives us the variation in the solubility of a salt as a 
function of its solubility in pure water and the ionic strength. 
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5.4.2. Influence of a salt with a common ion on the solubility of a 
salt 

When, to a saturated solution of a given salt in water, we add another salt 
which contains an ion Az+ +  that is also found in the initial salt, A Bν ν+ −

, we 
superimpose two effects: 

– the effect of salt as described in the previous section 5.4.1, which leads 
to an increase in the solubility of our salt A Bν ν+ −

; 

– a decrease in concentration of the ion Bz− − not common to the two salts, 
because of the existence of the solubility product constant, and therefore a 
decrease in the solubility of the salt A B .ν ν+ −

 

In general, the second effect is greatly predominant. 

5.4.3. Crystallization phase diagram for a mixture of two salts in 
solution 

The mixture of two salts in an aqueous solution is a system containing 
three independent components, whose representation in a phase diagram 
entails the use of the triangular representation. However, in view of the 
special role played by water, this triangular representation actually uses a 
right-angled triangle rectangle with the solvent at the right angle, the 
concentration of each salt given on the Ox and Oy axes, and the Oz axis 
showing the temperature. 

Figure 5.1 shows three isotherms in the crystallization diagram for the 
mixture water-KCl-NaCl. This diagram is used to understand the treatment 
of sylvinite, which is a mineral composed of the mixture of the two salts 
represented by the point M. 

The curve B100C100 represents the line of crystallization showing sodium 
chloride at the temperature of 100°C, and the curve A100C100 that of 
crystallization of potassium chloride at the same temperature. Those curves 
obey relation [5.11], and we can very clearly see the effect of the common 
ion on the solubility of one salt or the other. The curves B50C50, B10C10 and 
A50C50, A10C10 have the same meanings at the temperatures of 50 and 10°C. 
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Figure 5.1. Isotherms of crystallization of the KCl – NaCl  
mixture in an aqueous solution and treatment of sylvinite. For a color  

version of the figure, see www.iste.co.uk/soustelle/equilibria.zip 

The treatment of sylvinite consists firstly of heating the solution to 
100°C; the representative point on the diagram follows the line OM to the 
point b100. From that point on, sodium chloride begins to be deposited, and 
the representative point follows the curve b100C100. Just before reaching the 
point C100, we filter out the solid sodium chloride and cool the liquid mixture 
to 10°C, so the representative point drops vertically along C100a10. As we are 
in the domain of precipitation of potassium chloride, it does indeed 
precipitate. Once we reach a10, we filter the solution, add water and ore and 
start the operation again. 

5.4.4. Formation of double salts or chemical combinations in the 
solid state 

Evidently, like liquid–solid phase diagrams, ternary phase diagrams 
showing the aqueous solution and solid salts may include definite 
compounds such as double salts. This results in the appearance on the 
diagram of a curve representing the precipitation of that new phase. 
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Figure 5.2. Crystallization diagram of the mixture of iron sulfate  
and ammonium sulfate with the formation of Mohr’s salt. For a color  

version of the figure, see www.iste.co.uk/soustelle/equilibria.zip 

Figure 5.2 shows the example of the diagram for the system of water, 
ferrous sulfate heptahydrate (FeSO4,7H2O)–ammonium sulfate. These last 
two salts may give rise to a definite (a mixed salt or double salt) known as 
Mohr’s salt, which has the formula FeSO4,(NH4)2SO4,6H2O. 

In Figure 5.2, the precipitation of that mixed salt is shown by the 
apparition of the branch DE of the saturation of Mohr’s salt. 

In certain cases, unlike the one discussed above, the extension of the line 
Om by evaporation does not end in the domain of precipitation CDE of the 
double salt. Such is the case, represented by Figure 5.3, of the magnesium 
hexahydrate chloride (MgCl2,6H2O)–potassium chloride system. These two 
salts give rise to a double salt: carnallite, whose formula is 
MgCl2,KCl,6H2O. Figure 5.3 shows that a solution represented by the point 
m ultimately evaporates at point m’, intersecting the curve EQ of 
precipitation of potassium chloride at point N. Thus, carnallite has 
incongruent dissolution, whereas Mohr’s salt, which we saw above, had 
congruent dissolution. To obtain carnallite by evaporation, we would have 
had to start with a solution richer in magnesium sulfate, whose 
representative point would be situated, for instance, on the line OK. That line 
would then intersect the branch DE of carnallite precipitation at point N’. 
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Figure 5.3. Diagram of crystallization of carnallite. For a color  
version of the figure, see www.iste.co.uk/soustelle/equilibria.zip 

Figure 5.4. Square representation of reciprocal quaternary diagrams 

5.4.5. Reciprocal quaternary systems – square diagrams 

We now consider a system formed of water and four salts containing a 
common ion, two by two: AD, AB, CB and CD, between which the 
following reaction takes place in solution: 

AD + CB = CD + AB  [5R.3] 
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This system, known as a reciprocal quaternary system, contains four 
independent components (five components – the water and the four salts, 
with a defined relation between them). We can represent any given 
composition of that system by a point placed in a Cartesian system of axes, 

with the abscissa showing the cationic fraction [ ]
[ ] [ ]

C
C A+

 and the ordinate 

showing the anionic fraction [ ]
[ ] [ ]

B
B D+

, and on the z axis, we write the mass 

fraction of water – i.e. the mass of water corresponding to a given mass of 
mixture. Thus, we obtain a square diagram of crystallization (Figure 5.4), 
wherein each vertex of the square represents a pure salt: AD, CD, CB and 
AB. We can easily show that any point within that square – say, the point  
P – corresponds to a mixture which can be made up using only three salts: 

– the salts AD, CD and CB. For each, we take a proportional quantity in 
respect to the lengths of the segments aC, ac and aA; 

– the salts CD, CB and AB. For each, we take a proportional quantity in 
respect to the lengths of the segments dD, bd and bB. 

To create the composition represented by the center O of the square 
denoting the mixture, equal quantities of two salts will suffice: either AD 
and CB or AB and CD. 

To illustrate this type of diagram, we have chosen to use the system 
composed of water, sodium chloride (NaCl), ammonium chloride (NH4Cl), 
sodium hydrogen carbonate (NaHCO3) and ammonium hydrogen carbonate 
(NH4HCO5). This system is the basis from which we obtain solid sodium 
hydrogen carbonate by the Solvay process, with the four salts being linked 
by the reaction: 

NH4HCO3 + NaCl = NaHCO3 + NH4Cl  [5R.4] 

Figure 5.5 shows the square diagram of that system at the temperature of 
15°C. 

When, because of the evaporation of the water, a solid salt appears, the 
system contains two phases (liquid and solid), and its variance becomes 
equal to 5. If we set the temperature, the composition of the solution (point 
in the square) and the mass fraction of water, the system then becomes part 
of a crystallization surface formed of four layers, each surrounding one of 



146     Ionic and Electrochemical Equilibria 

the vertices of the square, with very different values. It is usual to represent 
these surfaces by their level lines, projected onto the square. Each line shows 
the corresponding mass of water per mole of mixture (see Figure 5.5). 

 

Figure 5.5. Square diagram of the system NaCl, NH4HCO3, H2O. For  
a color version of the figure, see www.iste.co.uk/soustelle/equilibria.zip 

The crystallization layers intersect following lines along which we see the 
crystallization of a mixture of two salts, and there are two triple points, 
projected at points I and J on the square, where three salts crystallize 
simultaneously. The position of those points depends solely on the 
temperature. 

If, at 15°C, we evaporate a solution represented by the point P in 
Figure 5.5, in the domain of sodium hydrogen carbonate, the ratio between 
the quantities of the chlorine ion and the ammonium ion is not altered by the 
deposition of sodium hydrogen carbonate. The point in the square diagram 
representing the liquid’s composition moves away from the vertex 
corresponding to the salt that has been deposited, along the line (CD)P. 
When the composition reaches q, ammonium hydrogen carbonate begins to 
be deposited, and the point representing the solution’s composition moves 
along the line qJ, with a mixture of the two hydrogen carbonates being 
deposited. To obtain sodium hydrogen carbonate, therefore, we need to stop 
just before point q. 
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5.5. Electrolytic aqueous solution and solid solution 

It may happen, in certain cases, that the two solids in the liquid–solid 
binary system are miscible with one another, producing mixed crystals 
which form a solid solution.  

5.5.1. Thermodynamic equilibrium between a liquid ionic 
solution and a solid solution 

If the two solids are miscible in all proportions, we say that we have a 
simple isomorphism. 

The variance of the equilibrium between the liquid and solid solutions is 
2; keeping the temperature constant, we need only fix the composition of one 
solution, and that of the other solution is fixed too as a result. In other words, 
at equilibrium, there is a relation which exists between the compositions of 
the two solutions. 

Figure 5.6(a)  shows the example of the crystallization diagram of the system 
CuSO4, 5 H2O-MnSO4, 5 H2O above 10°C. Given what we have just seen, there 
is only one crystallization curve. At the composition of the aqueous phase 
represented by point K, for instance, at equilibrium, there is a corresponding 
composition of the solid phase, given by point N, which is on the straight line 
AB. Typically, the addition of one of the two salts to the mixture enriches  
the aqueous solution more quickly than the solid solution, which explains why 
the configuration lines, such as KN, which are almost parallel to the axes when 
near to those axes, quickly change direction in the middle region. 

 

Figure 5.6. a) Phase diagram for a liquid–solid solution with simple  
isomorphism and b) concentration/concentration curve. For a color  

version of the figure, see www.iste.co.uk/soustelle/equilibria.zip 
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To establish the relation between the compositions of the two solutions, 
we must first note that in each of them, because of the law of electrical 
neutrality, the quantity of sulfate is equal to the sum of the quantities of 
copper and manganese: 

4Cu Mn SOn n n+ =   [5.19] 

The composition of the liquid solution is measured by the cationic 
fraction of copper: 

(L) Cu

Cu

nx
n nMn

=
+

  [5.20] 

The activity coefficients of the copper and manganese ions are, 
respectively, (L)

Cuγ  and (L)
Mnγ .

 
The composition of the solid solution is measured by the molar fraction 

(S)x  of copper sulfate pentahydrate, with activity coefficients (S)
Cuγ and (S)

Mnγ . 

The equalities of the chemical potentials of copper and manganese in the 
two solutions give us:

 
(L) (L)

Cu
Cu(S) (S)

Cu

x K
x

γ
γ

=    [5.21a] 

and  

( )
( )

(L) (L)
Mn

Mn(S) (S)
Mn

1

1

x
K

x

γ
γ

−
=

−
  [5.21b] 

The ratio between these two equations gives us a sharing coefficient: 

(L) (S) (L) (S)
Cu Mn Cu

(S) (L) (L) (S)
Mn Cu Mn

(1 )
(1 ) part

x x K K
x x K

γ γ
γ γ

− = =
−

  [5.22] 

Figure 5.6(b) shows the curve of variation of the composition of the solid 
phase as a function of the composition of the liquid phase. This curve  
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intersects the bisector at point C. It is easy to show that fractional 
crystallization ultimately yields a pure salt (that which is richest initially), 
and the mixture of the two salts corresponding to point C. Indeed, at that 
point, the solid which crystallizes has the same composition as the liquid 
solution, which prevents further enrichment. 

If the two salts are not miscible in all proportions, we obtain two solid 
solutions, respectively rich in one and the other of the components. We then 
say that we have isodimorphism. Figure 5.7(a) shows the example of such a 
situation for the system CuSO4, 5H2O-MnSO4, 7H2O at a temperature less 
than 10°C. 

 

Figure 5.7. a) Liquid-solid solution phase diagram with  
isodimorphism and b) concentration/concentration curve. For a  

color version of the figure, see www.iste.co.uk/soustelle/equilibria.zip 

The crystallization diagram then exhibits two branches depending on 
which of the two solid solutions is precipitated. The point C is on the line 
AB, which connects manganese sulfate heptahydrate to a hypothetical 
copper sulfate heptahydrate. Meanwhile, C’ is on the line A’B’, joining 
copper sulfate pentahydrate to a hypothetical manganese sulfate 
pentahydrate. 

The composition curve shown in Figure 5.7(b) includes two branches – 
OD and O’D’ – which a gap between them which corresponds to the domain 
CC’ in the phase diagram 5.7(a). 
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5.5.2. Solubility product of a solid solution 

Consider a solid solution XxY1-xA, whose two pure poles have the 
formula AX and BY. That solid solution dissolved in water to give cations 
Xz+ and Yz+ and anions Az-. To simplify the writing, we choose z = 1, 
allowing us to reason freely. At the temperatures at which dissolution in 
water takes place, there is no diffusion of the ions in the solid state, so no 
exchange between the ions X and Y within the solid. This means that the 
thermodynamic equilibrium of the solution as expressed by the equality of 
the chemical potentials can never be reached in the solid. The state of 
equilibrium between the liquid and solid solution, therefore, can be dealt 
with in two different ways: 

– the first consists of writing that only the surface of the solid solution in 
contact with the liquid solution is at equilibrium with it, but then that 
equilibrium must involve the properties of the surface, whose contribution to 
the Helmholtz energy must not be overlooked; 

– the second solution was developed by Thorstenson and Plummer, who 
introduced the notion of stoichiometric saturation. It is this technique which 
led to the concept of the solubility product of a solid solution, which we have 
chosen to look at. 

In order to develop the model, we consider two salts XA and YA, 
composed of one anion A- and cations X+ and Y+. We have chosen 1:1 salts 
to simplify the expressions, but it is perfectly easy to switch to other types. 
Thus, we have a solid which, in solution, contains those two salts with the 
molar fractions x(S) for the salt XA and 1-x(S) for the salt YA. Note that x(S) 
therefore represents the cationic fraction of X and 1- x(S) the cationic fraction 
of Y. 

This salt is placed in water, in which it gradually dissolves, yielding a 
dilute solution where the molar fraction of the salt is X, and that of the water 
is 1-X. In the course of this dissolution, the composition of the solid is not 
altered; the mixed salt is said to show congruent dissolution. 

Its dissolution in water can be represented by the following balance 
equation: 

<(X+Y)A> = (X+) + (Y+) + (A-)  [5R.5] 
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In modeling the constant composition of the solid, we considered that the 
cations formed a coherent set (X+Y), whose activity coefficient is written as 

( )
( )
X Y
Sγ + . 

Table 5.1 gives the molar fractions and activity coefficients of the various 
species. 

NOTE.– The term ½ of the molar fraction of A in the solid stems from the 
fact that we have chosen two salts of the same type – here 1:1 – for our 
example. 

We shall first base our discussion on the hypothesis of a perfect solution 
with activity coefficients of 1. We shall then look at the case of non-perfect 
solutions, and see the hypotheses that need to be made in such a case. 

 xA xX xY γA γX γY 
Liquid X/2 x(L)X/2 (1-x(L))X/2 ( )

A
Lγ  ( )

X
Lγ  ( )

Y
Lγ  

Solid 1/2 x(S)/2 (1-x(S))/2 ( )
A

Sγ  ( )
X

Sγ  ( )
Y

Sγ  

Table 5.1. Notations used in the solubilization of a solid solution in water 

At saturation, i.e. with the molar fractions shown in Table 5.1, the 
quotient of reaction [5R.11] is written: 

( )
( )

(L) (L)

(S) (S)

1

1sat

x X x X X
Q

x x

⎡ ⎤+ −⎣ ⎦=
+ −

  [5.23] 

This expression gives us an infinite number of states, but it is important 
that it be valid at the limits – i.e. for the pure compound XA, which dissolves 
as follows: 

<XA> = (X) + (A)  [5R.6] 

Even if the molar fraction is 1, we have its solubility product such that: 

(L) 2

XA (S)

x XK
x

=     [5.24a] 
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Similarly, for the pure compound YA: 

( )(L) 2

YA (S)

1

1

x X
K

x
−

=
−

  [5.24b] 

By feeding equations [5.24a] and [5.24b] back into relation [5.15], we 
find a particular value Ksat of the quotient Qsat, given by: 

( )( ) (S) (S)
XA YA 1equ

sat satQ K K x K x= = + −   [5.25]  

The constant Ksat plays the role of a total solubility product of the solid 
solution, which appears as the sum of the partial solubility products of each 
of the poles of the solid solution, weighted by the molar fraction of the 
corresponding pole in the solid. 

Note the similarity between expression [5.25] and the relation giving the 
total vapor pressure above a perfect liquid solution of two components as a 
function of the saturating vapor pressures of those pure components; the total 
solubility product Ksat plays the role of the total pressure, whilst the two 
solubility coefficients KXA and KYA of the poles play the roles of the partial 
pressures. 

We shall now look at the calculations in the case of non-perfect solid 
solutions and liquids. The calculation method is the same as above, except 
that we now take account of the activity coefficients. The solubility relation 
[5.23] is replaced by the expression: 

( )
( ) ( )

(L) (L) (L) ( ) (L) 2
X Y A

(S) (S) (S)
X Y

1

1

L

sat

x x X
Q

x x

γ γ γ

γ +

⎡ ⎤+ −⎣ ⎦=
⎡ ⎤+ −⎣ ⎦

  [5.26] 

The solubility products of the two pure poles are, respectively: 

(L) 2 (L) (L)
A X

XA (S) (S)
X

x XK
x

γ γ
γ

=     [5.27] 

and  

( )
( )

(L) 2 (L) (L)
A Y

YA (S) (S)
Y

1

1

x X
K

x

γ γ
γ

−
=

−
  [5.28] 
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These expressions replace formulae [5.24a] and [5.24b]. Expression 
[5.25] then becomes: 

( )

( )
( )

(S) (S)(S) (S)
YA Y( ) XA X

(S) (S)
X Y X Y

1
equ

sat sat

K xK xQ K
γγ

γ γ+ +

−
= = +   [5.29] 

If we want to preserve the similarity with the expression of the total vapor 
pressure above a solution, which is written: 

( ) (S) (S)
XA X YA Y

equ
sat satQ K K a K a= = +   [5.30] 

we are forced to set: 

( )
(S)
X Y 1γ + =   [5.31] 

This mirrors the hypothesis adopted in the model, which consisted of 
considering the solid solution, with invariable composition, as a pure solid. 

This relation was first established by Lippmann. 

Thus, we simultaneously employ Thorstenson and Plummer’s  hypothesis – 
describing the behavior of the solid solution as being similar to that of a pure 
compound of the same composition, and where that total activity was equal 
to 1 – and Gresens’ hypothesis, because in the denominator in relation 
[5.26], the total activity of the solid phase is defined as the sum: 

(S) (S) (S)
XYA XA YAa a a= +   [5.32] 

NOTE.– Owing to the need to respect electrical neutrality and preserve the 
solid’s composition, we obviously have congruence on dissolution, which is 
expressed by the equality: 

(L) (S)x x=   [5.33] 

From the similarity with the vapor pressures of the solutions, mentioned 
above, we deduce a graphical representation which shows an equilibrium 
between a liquid solution and a solid solution, in the same way as isothermal 
curves do for liquid–vapor equilibria. 
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Figure 5.8 shows the plot in the case of total miscibility between the two 
solids. 

 

Figure 5.8. Analogy between the pressure/composition diagram  
for a liquid–vapor equilibrium and the total solubility product of  

a system comprising two solutions: liquid and solid 

We may find alyotropic compositions, which are compositions equivalent 
to the azeotropic compositions – i.e. where the two curves of the solidus 
(composition of the solid solution) and the liquidus (corresponding 
composition of the liquid solution) intersect, and present a common 
extremum. Figure 5.9 illustrates such a case for the system FeCO3-MnCO3–
H2O, according to Lippmann. 

 

Figure 5.9. Diagram with alyotropic maximum of the system  
FeCO3-MnCO3-H2O (according to Lippmann) 
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NOTE.– In relation [5.15], the constants XAK  and YAK  are the solubility 
products of the pure salts XA and YA. This is accurate only in the case of 
total miscibility of the two salts in the solid phase, because then they have 
the same crystallographic structure. In the case of partial miscibility,  
we need to choose which of the two salts imposes its crystallographic 
structure on the whole solid solution – generally, it will be that which is 
more abundant. Thus, the solubility product of that salt to be fed into relation 
[5.30] will indeed be its true solubility product, but the constant to be entered 
for the salt in to minority will be a pseudo-solubility product – i.e. the 
solubility product that the second solid would have if it were to crystallize in 
the pure state in the crystalline system of the majority salt.  

Obviously, the calculations presented above need to be repeated in the 
case of electrolytes which do not have a 1:1 structure. 

5.6. Solubility and pH 

The pH or pX of a solution may influence the solubility of certain 
species. 

5.6.1. Solubility and pH 

In a certain number of cases, the solubility of a cation in a protic solvent 
may be dependent upon the pH. This phenomenon is observed, for example, 
when a hydroxide is insoluble and amphoteric, meaning that it behaves like 
an acid when interacting with a stronger base, and like a base when 
interacting with a stronger acid. 

Such is the case, for instance, with zinc hydroxide and aluminum 
hydroxide. 

Let us take the example of an aqueous solution of aluminum chloride in 
an acidic medium. If we increase the pH by adding a base – caustic soda, for 
instance – then the aluminum hydroxide precipitates. If we continue adding 
caustic soda, the aluminum re-dissolves, giving aluminate ions 2AlO− . 
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In fact, the aluminum hydroxide, which is amphoteric, participates in two 
acid–base couples:  

– the aluminum ion/hydroxide couple, which works as follows: 

( )3
2 33

Al 6H O Al OH 3H O+ ++ = +  |5R.7] 

– the hydroxide/aluminate ion couple, as follows: 

( )3 2 34
Al(OH) H O Al OH H O− ++ = +  [5R.8] 

The pK of the acids are respectively 4.3 and 10.5. 

The diagram showing the domains of predominance (Figure 5.10) is easy 
to plot. 

Figure 5.10. Domains of predominance of the species  
deriving from the aluminum ion as a function of the pH 

Thus, aluminum is soluble at pH levels lower than 4.3 or higher than 
10.1, but is insoluble between those two values. 

5.6.2. Solubility of oxides in molten alkali hydroxides  

The solubility of metal oxides is generally very low in molten alkali 
hydroxides. A metal oxide, therefore, may precipitate when an acidic 
solution – in our case, a hydrated solution – of the corresponding hydroxide 
is neutralized. That neutralization may be achieved either by the addition of 
alkali oxides or by the elimination of water vapor. We have the reaction: 

/2 2M OH MO ( ) H O
2

n
n

nn sol+ −+ = +  [5R.9] 

Certain oxides are amphoteric, and may be re-dissolved by an increase in 
the pH2O. 

Here, we are seeing properties that absolutely mirror those of hydroxides 
in aqueous media, as described in section 5.6.1. Water, with molten salts, 
plays the same role as the proton plays with dissolved salts. 
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5.6.3. Solubility in oxo-acids and oxo-bases (see section 3.12.2) 

Consider the equilibrium of dissolution of a solid in a solvent such as the 
molten KCl-LiCl mixture. It can be written in the form: 

MaOb = aMn+ + bO2- [5R.10] 

That solubility can be characterized by the solubility product: 

an 2M O
b

SK + −⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦   [5.34] 

We can define the solubility by the value of the pO2- corresponding to the 
saturation for a concentration of ions nM +  – say, 1mol/l. We can then write: 

2 ppO SK
b

− =  [5.35] 

The dissolution of an oxide can be represented as an oxo-acid–base 
reaction such as: 

2 2ZnO Ni NiO Zn+ +< > + =< > +  [5R.11] 

Figure 5.11, on a pO2- scale, shows firstly the portion of pO2- of 
precipitation of a certain number of oxides (top scale) for a cationic 
concentration of 1mol/l, and secondly the pKa of acid–base couples (bottom 
scale). 

On this graph, we can see, for example, that if we gradually introduce 
carbon dioxide into the solution, it is only possible to dissolve zinc oxide and 
cobalt oxide. On the other hand, using the acid PO3

-, we can dissolve all the 
oxides mentioned, with the exception of silica. 

 

Figure 5.11. Dissolution of oxides by oxo-acid–base  
reactions (from [GUE 09]) 
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5.7. Calculation of equilibria in ionic solutions 

Having reviewed the different ionic exchange reactions in solution, we 
now need to look at methods for calculating a system’s state of equilibrium 
on the basis of the amounts of materials constituting it and the characteristics 
of the various equilibria which are likely to occur. 

There are two main categories of methods to solve ionic systems at 
equilibrium. These systems involve the superposition of several equilibria. 

We shall not linger over manual approximation methods which can be 
used to solve simple systems containing one or two equilibria; readers will 
undoubtedly already be familiar with these methods. Let us simply state that, 
by way of certain approximations, they generally yield easy-to-use analytical 
expressions. The most practical and systematic method is the predominant 
reaction method, looking at the disjointed domains of predominance of each 
of the species. This method is used only in very dilute solutions, so as to be 
able to treat the concentrations and activities as being the same thing. 
Readers wanting further details or a re-examination of this method can refer 
to the excellent book by Bernache-Assolant and Cournil [BER 97]. 

We shall look in greater depth at automated calculation methods, which 
usually rely on a database giving the equilibrium constants. Remember that 
usually, it is a question of establishing the necessary equilibria to find the 
concentrations of the different species of a system placed in the specified 
conditions. This is known as the speciation of the species. 

By way of example, we shall describe PhreeqC: a geochemical 
computation tool for aqueous solutions. That software has already yielded 
excellent results, and has the advantage of being accessible, freely, to 
download. Version 3 can be obtained from wwwbrr.cr.usgs.gov/projects/ 
GWC.../phreeqc/. 

The software is able to deal with: 

– acid–base reactions; 

– redox couples; 

– complexation reactions; 

– precipitation reactions; 

– the different phase equilibria. 
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The computational principle is the same as that in most automated 
calculation software tools, and is represented by the workflow in 
Figure 5.11. 

 

Figure 5.12. Principle behind pHREEQc 

This figure shows the three blocks: the input block, the processing block 
by the program and the output block. 
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Obviously, it is essential to input all the compounds which play a part. 
Users must, of course, list all the initial products, but also all of the possible 
final products, even if some of them will not ultimately be encountered in 
the list of species at equilibrium. If a species mentioned is not present in the 
final state, this means that the species is not stable in the chosen conditions, 
which is completely different to the absence, from the end products, of a 
species which was never mentioned. The result will never include the 
concentration of a species which is not indicated. 

For gases, the initial partial pressures are input. For solutions, we input 
the dissolved concentrations, whether the materials were originally in the 
solid or liquid state. Of course, we also need to set the temperature at which 
we wish to achieve equilibrium. 

The system works using a database. There are many such databases 
available, and the user must indicate which s/he wishes to draw upon. The 
program is able to modify the databases and add to them with components 
that are absent and not filled in. 

We then input a certain number of instructions, which are requested by 
the program and are used to simulate the reactions involved. 

The program works for closed systems. It uses two families of equations: 
the equilibrium equations between the activities ai and the material balance 
for each chemical element involved. 

With regard to the equilibria, the program uses Henry’s law for gas–
liquid equilibria, written in the form: 

i iH iP K a=   [5.36] 

The law of mass action for the chemical equilibria or phase equilibria is 
used, written in the form: 

( )j R
N

R i j
j i

K a aν

≠

= ∏   [5.37] 

In these expressions, the stoichiometric coefficients pertaining to relation 
R and to the components j: ( )j Rν  are expressed in terms of one mole for 
species i in the writing of the reaction. 



Precipitation Reactions and Equilibria     161 

These equilibrium laws require us to calculate the activities of the 
different species. They are calculated as follows: 

– for pure solid substances, the activity is equal to 1; 

– for solids in a solid solution, the activities are replaced by the 
concentrations; 

– for liquid solutions, the activities are calculated by the product of the 
concentration by an activity coefficient, which is determined by one of  
the following equations – each used in a particular range of values of the 
ionic strength; 

- if the ionic strength I is less than 0.05 mol/l, we use the Debye–
Hückel relation: 

2ln
1i i

IAz
I

γ = −
+

  [5.38] 

- if the ionic strength I is less than 0.5 mol/l, we use the Davies 
equation: 

2ln 0,3
1i i

IAz I
I

γ
⎛ ⎞

= − −⎜ ⎟⎜ ⎟+⎝ ⎠
  [5.39] 

- if the ionic strength I is less than 1 mol/l, we use an extended Debye–
Hückel relation: 

2ln
1i i

IAz BI
rB I

γ
⎛ ⎞

= − −⎜ ⎟⎜ ⎟+⎝ ⎠
  [5.40] 

In these expressions, iz  is the charge of the ion i, I is the ionic strength of 
the medium, A and B are constants dependent only on the temperature (hence 
the need to state the temperature), and r is an apparent radius of the ions. 

The second category of equations is formed of material balances for all 
the elements introduced. 

If no other specification is input, the program will automatically use the 
equation of electrical neutrality. That equation can be replaced by inputting 
an imposed concentration of a species – e.g. the pH of the final solution, or 
the ionic strength. 
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As output, the program gives the speciations of each of the species, and if 
solids are involved, the program is able to calculate the saturation index SI, 
defined on the basis of the solubility product and the reaction quotient of the 
precipitation reaction, by the relation: 

ln S

S

KSI
Q

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 [5.41] 

Thus, we see whether the solution is under-saturated (SI < 0), at 
equilibrium (SI = 0) or oversaturated (SI > 0). Equilibrium may not 
necessarily be achieved if it is incompatible with the input constraints (e.g. 
the pH). 

Of course, the quality of the results obtained depends on the accuracy of 
the input and the quality of the data gleaned from the databases. 

There are other commercially-available tools, but as before, the quality of 
the results depends heavily on the quality of the data. 



PART 2 

Electrochemical Thermodynamics





6 

Thermodynamics of the Electrode 

In this chapter, we examine the thermodynamics of so-called 
electrochemical reactions and equilibria which produce or consume 
electrons. 

These reactions take place on contact with electron-conductive electrodes, 
and in studying them, we employ electrochemical thermodynamics. 

6.1. Electrochemical systems 

In keeping with J. Besson [BES 84], we shall use the term 
“electrochemical system” to denote any mono- or polyphasic system 
involving electrostatic forces sufficiently strong to influence the energy 
exchanges in that system. This happens if the electrical field is not null 
everywhere in the system – put differently, if that system contains active 
charges.  

NOTE.– The reactions in ionic solutions which we looked at in the previous 
chapters are not electrochemical systems, because the media in which they 
occur do not contain any active charges, owing to the imposition of local 
electrical neutrality at every point in the system. 

Ionic and Electrochemical Equilibria, First Edition. Michel Soustelle.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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6.1.1. The electrochemical system 

Thermodynamics of electrochemical systems will be a transposition of 
conventional thermodynamics1 with the involvement of electrical energy, so 
the chemical values are replaced by electrochemical ones.  

When the system is at equilibrium, the active charges are localized on 
inter-phase surfaces where the electrical field is perpendicular to the inter-
phase surface. 

Thus, besides the composition variables, an electrochemical system 
involves three couples of intensive and extensive values:  

– temperature–entropy;  

– pressure–volume; 

– electrical field–electrical charges.  

As the electrochemical system is always supposed to be at 
thermomechanical equilibrium, the existence of an electrical field normal to 
the interfaces causes what is known as electrostatic pressure in each phase. 
These pressures balance one another out, and therefore the pressure involved 
in thermodynamic expressions is always the pressure outside of the system. 

An electrochemical reaction is a heterogeneous reaction which takes 
place at the interface between two media, which amounts to a modification 
of the chemical- and electrical energies of those two media. Very often, the 
electrochemical reaction involves the changing of the mode of electricity 
conduction from one medium to another. For instance, at the interface 
between a metal and an aqueous solution, we shift from electronic 
conduction in the metal to ionic conduction in the solution. At the interface 
between a semi-conductor n and a semi-conductor p, the system transitions 
from conduction by electrons in the semi-conductor n to conduction by 
electron holes in the semi-conductor p. 

The electrode constitutes an important specific case of an electrochemical 
system. 

                                 
1 In reading this section, readers should refer to Volume 1 of this collection: Phase Modeling 
Tools [SOU 15a]. 
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6.1.2. Electrochemical functions of state 

We shall examine the thermodynamic change caused by the intervention 
of electrical work. 

By including, in the work W, the work of the electrical forces as well as 
that of the forces of pressure and heat energy, we define the following 
differential of the internal electrochemical energy: 

d d d dU T S P V Φ q= − +%%  [6.1] 

We then define the various characteristic functions, such as the 
electrochemical enthalpy: 

H U PV Φq U PV H Φq= + + = + = +% %  [6.2] 

the electrochemical Helmholtz energy: 

F U TS Φq U TS= − + = −% %% %  [6.3] 

and the electrochemical Gibbs energy: 

G U PV TS Φq U PV TS= + − + = + −% % %%  [6.4] 

All of the above are functions of state. 

NOTE.– In the last two expressions, we included only an electrochemical 
entropy that is different to the entropy in the absence of a field. Indeed, 
whilst we can agree that the volume of a phase is not influenced by electrical 
field – particularly when we are dealing with condensed phases – the entropy 
in the absence of a field may not necessarily be identical to that in the 
presence of electrical forces, because the different arrangements of the 
species may be influenced by those electrical forces. 

6.1.3. Electrochemical potential 

The electrochemical potential is a generalized chemical potential 
introduced previously (see Volume 1 of this set [SOU 15a]): that with  
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which, at the energies involved in chemical systems, we adjoin the electrical 
energy.  

6.1.3.1. Definition 

The electrochemical potential is the partial molar electrochemical Gibbs 
energy defined by the relation: 

, , j

i i
i P T n

G G
n

μ
⎛ ⎞∂= =⎜ ⎟∂⎝ ⎠

%
%%  [6.5] 

The term iG%  is the partial molar electrochemical Gibbs energy of the 
component i. 

6.1.3.2. Variations of the electrochemical potential with the intensive 
variables 

The different variables envisaged are, firstly, the intensive variables – the 
pressure, temperature and electrical potential – and secondly, the quantities 
of matter in the phase in question. 

To find the variations of the electrochemical potential with the intensive 
variables, we use the general relation applied to electrochemical systems, so: 

i
iX

Y
μ∂ = −

∂
% %  [6.6] 

In this expression, Y is an intensive value, meaning that in the case of 
interest to us here, the temperature, the opposite of the pressure or the 
electrical field and 

ikX% is the electrochemical partial molar value of the 
component i of the variable Xk, which is an extensive value, the conjugate of 
Yk (here the entropy, volume or electrical charge). 

6.1.3.3. Helmholtz’s relations for electrochemical systems 

Let us calculate the expression 
( )/G T

T
∂

∂

%
. 

( )
2 2

/ 1G T G G S G
T T T T T T

∂ ∂= − = −
∂ ∂

% % % % %
 [6.7] 
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Given relations [6.2] and [6.4], we have: 

H G TS= +% %%  [6.8] 

By comparison, we deduce Helmholtz’s first equation: 

( )
2

/G T H
T T

∂
= −

∂

% %
 [6.9] 

By differentiating both sides of expression [6.9] in relation to the quantity 
ni of component i, we establish Helmholtz’s second relation: 

( )
2

/i iT H
T T

μ∂
= −

∂

%%
 [6.10] 

iH%  is the partial molar electrochemical enthalpy of the component i. 

6.1.3.4. Variations of the electrochemical potential with changing 
composition 

The properties of symmetry of the characteristic matrix also give us: 

ji

j in n
μμ ∂∂

=
∂ ∂

%%
     [6.11] 

6.1.3.5. Total differential of the electrochemical potential 

By combining the relations obtained by applying expression [6.6] to the 
pressure and temperature with relation [6.11], we find: 

1
d d d d d

N
i

i j
j j

T S P V Φ q n
n
μμ

=

∂= − + − +
∂∑
%%%  [6.12] 

6.1.4. Gibbs–Duhem relation for electrochemical systems 

Because the electrochemical potential is a partial molar value, we can 
write that it represents the electrochemical Gibbs molar energy, and: 

1

N

i i
i

G nμ
=

=∑% %  [6.13] 
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From this, we deduce the Gibbs–Duhem equation in its electrochemical 
form: 

1
d d d d 0

N

i i
i

n S T q Φ V Pμ
=

− − + =∑ %%   [6.14] 

and its simplified form where the physical intensive variables are kept 
constant: 

1
d 0

N

i i
i

n μ
=

=∑ %  [6.15] 

In light of relation [6.12], this last relation gives us: 

1
d 0

N
i

j
j j

n
n
μ

=

∂ =
∂∑
%

 [6.16] 

6.1.5. Chemical system associated with an electrochemical 
system 

If we consider an electrochemical system formed of one phase, whose la 
description requires the use of the couples of variables T, S; P, T; and Φ, q, 
the chemical system associated with that electrochemical system is the 
identical system in which the variables Φ and q are not taken into account,  
or – which amounts to the same thing – in which one of the two variables in 
the couple q, Φ (whichever is chosen as the variable for the problem) has the 
value of zero. 

The generalized Gibbs energy of the system is the electrochemical Gibbs 
energy G% defined by relation [6.5]. 

Consider the function of state defined by: 

chemU U qΦ= −%  [6.17] 

chemU  is the internal energy of the chemical system associated with our 
electrochemical system. 
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By differentiating at null potential, we find: 

d d d dchim i iU T S P V nμ= − +∑  [6.18] 

iμ is the chemical potential of i in the chemical system associated with 
our electrochemical system. We see that we can write: 

i i qΦμ μ= +%  [6.19] 

However, if F  denotes the Faraday and zi the electrovalence of the 
component i, the charge is: 

i iq n z=∑ F  [6.20] 

When we substitute back into relation [6.19], the electrochemical 
potential becomes: 

i i i i
i

Φ n zμ μ= + ∑% F  [6.21] 

In view of the remark in section 6.1.1, it is not certain that the chemical 
potential of a species given by relation [6.21] will be the chemical potential 
of that same species in the absence of field, because of the entropy term, 
which does not necessarily have to be the same in the two cases. Thus, it is 
preferable, as stipulated in 1961 by the Comité International de 
Thermodynamique Electrochimique (which, in 1971, become the Société 
Internationale d’Electrochimie), to define the chemical values associated 
with the electrochemical system by relations of the same type as 
relation [6.17]. 

6.1.6. General conditions of an equilibrium of an electrochemical 
system 

Consider an electrochemical reaction between electrons and ions. We 
write it in the more general form in accordance with: 

A 0i i e
i

eν ν+ =∑  [6R.1] 
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Thus, we distinguish the electrons from the other components Ai (ions, 
molecules and atoms). The coefficients iν  are positive or negative, and the 
coefficient of the electrons eν  is taken as positive, meaning that the reactions 
are always written in the direction of reduction. 

The electrochemical affinity of the reaction will be defined by a relation 
similar to that used in the chemical systems, which means that we can write 
the relation: 

i i i e e
i

ν μ ν μ= − −∑% % %A
 

[6.22]
 

The equilibrium condition of the electrochemical system should render a 
zero value of the electrochemical affinity: 

0i =%A
 

[6.23]
 

In light of relation [6.22], the equilibrium condition is written: 

0i i e e
i

ν μ ν μ+ =∑ % %

 
[6.24] 

We shall now examine one initial application of this condition, 
considering the system to be single-phased, meaning that the reaction takes 
place within a phase which contains both ions and electrons and placed at an 
electrical potential Φ.

 
Taking account of the expression [6.21] of an 

electrochemical potential iμ%  as a function of the chemical potential iμ , the 
equilibrium condition becomes:

 
0i i e e i i e

i i
Φ zν μ ν μ ν ν⎛ ⎞+ + − =⎜ ⎟
⎝ ⎠

∑ ∑F
 

[6.25]
 

The electrical neutrality of the system means that we can write: 

0i i e
i

zν ν− =∑
 

[6.26]
 

The equilibrium relation is then simplified to: 

0i i e e
i

ν μ ν μ+ =∑
 

[6.27]
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We can see that this condition is independent of the electrical potential of 
the phase, and is written in the same way as the condition of a classic 
chemical equilibrium, considering the electrons to be one of the components 
of the system. 

By expressing the chemical potentials as a function of the activities of the 
species, we obtain the law of mass action in the form: 

A ( )i

i
i

e K Tν =∏
 

[6.28]
 

We shall now give a second application of [6.24], in the case of the 
equilibrium of two metal phases in contact with one another. In a system 
such as this, only the electrons are able to pass from one metal phase (1) into 
the other metal phase (2). Thus, the equilibrium condition will be written: 

(1) (2)
1 2e eΦ Φμ μ− = −F F  [6.29] 

From this, we deduce: 

(1) (2)

1 2 constante eΦ Φ μ μ−
− = =

F
 [6.30] 

Hence, there is a so-called contact potential difference between two metal 
phases in contact. This potential difference is around 1 volt. 

6.2. The electrode 

In this next part, we turn our attention to the most common type of 
electrochemical system: the electrode.  

6.2.1. Definition and reaction of the electrode 

Electrode denotes the diphasic system comprising an electronic 
conductor (made of metal or a semi-conductor) (phase 1 with potential Φ1) 
in contact with an ionic conductor, called the electrolyte (phase 2 with 
potential Φ2). That ionic conductor is a medium which contains ions with the  
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ability to move. It may be solid, liquid or gaseous. The medium may be a 
pure phase (a molten salt, an ionic solid) or a solution (aqueous liquid 
solution, solid solution) in which certain components are ionized. 

We suppose that our system is host to reaction [6R.1]. The electrons exist 
only in phase 1. On the other hand, out of the components Ai, the ions are 
only present in phase 2. The neutral molecules may be present in both 
phases. 

As the system is supposed to be closed (insulated electrode), the reaction 
will entail the transfer of electrons from phase 2 to phase 1, accompanied by 
corresponding variations in the concentrations of the components Ai. 

We use (1)Ai  to represent the substances present in phase 1 (they are 
neutral) and (2)Ai  to represent those which are present in phase 2 (some of 
these are neutral, and others ionized). 

An electrode is denoted by a symbol system showing the two phases and 
the inter-phase surface such as, e.g. the electrode made of a sheet of silver, 
immersed in an aqueous solution containing Ag+ ions, which we write as: 

Ag Ag+   

Sometimes such an electrode is called a silver electrode. 

In the case of an electrode, the variable pressure will be the pressure in 
the volume in each of the phases situated on both sides of the interface. 

6.2.2. Equilibrium of an insulated metal electrode – electrode 
absolute voltage 

The equilibrium condition [6.27], applied to equilibrium [6R.1], in view 
of our notations and explicitly stating the different terms, is written: 

 (1) (1) (2)
1 2 0i i e e e j j j j

i j j
Φ Φ zν μ ν μ ν ν μ ν+ − + + =∑ ∑ ∑F F  [6.31] 
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When we take account of the electrical neutrality linked to the reaction, 
and combine the terms in (1)

iμ and (2)
jμ , this relation becomes: 

( )(1)
1 2 0i i e e e

i
Φ Φν μ ν μ ν+ − − =∑ F  [6.32] 

The potential difference 1 2Φ Φ−  is called the electrode absolute voltage 
eabs, and we have: 

(1)

abs
1 e

i i
ie

e μν μ
ν

= +∑F F
 [6.33] 

The term (1)
eμ , which is the chemical potential of the electrons in the 

metal, is unknown but very large, and thus can be considered a constant 
characteristic of the metal. 

NOTE.– For electrodes with semi-conductors, the effective electron 
concentration must be taken into account to determine the chemical potential 
of the electrons, because that concentration can no longer be considered a 
constant (see Chapter 3 in Volume 3 of this set [SOU 15c]). 

6.2.3. Voltage  relative to a metal electrode – Nernst’s relation 

The absolute electrode voltage defined above, which is an internal 
potential difference, cannot be measured directly. In addition, it is not 
possible to calculate it, because we are unable to precisely determine the 
chemical potentials of the components Ai. The only known method is to 
determine relative chemical potentials, by means of a reference electrode. 
All we can do, then, is to compare the absolute voltage of one electrode to 
that of another electrode chosen of the reference electrode, and thus define 
the relative voltage.  

We shall come back later on (in sections 6.3.2.2 and 6.3.3) to the two 
main reference electrodes used: the calomel electrode and the hydrogen 
electrode, which constitutes the primary reference. 
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Thus, we associate our electrode with a standard hydrogen electrode (gas 
pressure of 1 bar), creating the following electrochemical chain: 

2A                A           H           Pt H           A

Phase 1        Phase 2        Phase 2'    Phase 1'      Phase 1''

i
i

+∑
  

The presence of two vertical lines represents the presence of a membrane 
which allows ions to pass through, but does not allow the two phases, which 
are usually liquids, to mix into one. 

Note that in the electrochemical chain thus defined, the two extremities of 
the cell are formed of the same metal element, because the voltmeter can 
only measure the potential difference between two points with the same 
conductor. In fact, therefore, our chain measures the potential difference 

1 1''Φ Φ− , and it is that difference which is called the relative voltage of  
the electrode and is denoted by e. Thus: 

1 1''e Φ Φ= −  [6.34] 

That relative voltage can, in fact, be considered to be the sum of four 
interphase voltages, and be written in the form: 

( ) ( ) ( ) ( )1 2 2 2 ' 2' 1' 1' 1''e Φ Φ Φ Φ Φ Φ Φ Φ= − + − + − + −  [6.35] 

The difference 2 2'Φ Φ−  is called the liquid junction potential difference 
(see section 6.4) and can be rendered negligible using a salt bridge 
constituted by two very similar ions such as potassium chloride, rubidium 
bromide or cesium iodide. The differences 1 2Φ Φ−  and 1' 2'Φ Φ−  are the 
absolute voltages of the electrode under study and of the reference hydrogen 
electrode.  

We shall see (section 6.3.3) that this latter electrode is the site of the 
electrochemical reaction: 

2
1H H 0
2

e+ − + =  [6R.2] 
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The difference 1' 1"Φ Φ−  is a contact potential difference which can be 
written in the form: 

(1') (1'')

1' 1'' Constante eΦ Φ μ μ−− = =
F

 [6.36] 

In light of relations [6.33] and [6.36], we obtain: 

2

(1) (1') (1') (1'')
0 0

HH

1 1 1
2

e e e e
i i

ie

e μ μ μ μν μ μ μ
ν +

−

⎛ ⎞= + − − − + −⎜ ⎟
⎝ ⎠

∑F F F F F F  
[6.37] 

The sum i i
i

ν μ
−
∑  takes account of all of the species with the exception of 

the electrons.
 

In standard conditions at equilibrium, we have: 

2

0 0
HH

1 0
2

μ μ+ − =
 

[6.38]
 

Furthermore, the chemical potential of the electrons is the same in both 
phases 1 and 1’’, which are identical, formed of the same metal. Thus, we 
finally obtain: 

1
i i

ie

e ν μ
ν −

= ∑F  
[6.39]

 

If we write the chemical potentials as a function of the activities (or of the 
fugacities in the case of gases), we find Nernst’s classic formula: 

01 R ln A i

i i i
ie e

Te νν μ
ν ν−

= +∑ ∏F F  
[6.40]

 

Here, e would simply be called the electrode voltage. We extract the 
quantity: 

0 01
i i

ie

e ν μ
ν −

= ∑F  [6.41] 
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This voltage is called the normal voltage or standard potential of the 
electrode, and Nernst’s relation [6.40] takes its conventional form: 

0 R ln A i

i
e

Te e ν

ν
= + ∏F  

[6.42] 

If the conditions of concentration and total pressure allow for it, the 
activities and fugacities can be replaced respectively by the concentrations 
and the partial pressures depending on the nature of the phase. If we choose 
the standard pressure of 1 bar, only the solutes come into play, and Nernst’s 
relation then becomes: 

[ ]0
R ln A i

i
e

Te e ν

ν
= + ∏F  

[6.43] 

This is the primitive form of Nernst’s relation.  

6.2.4. Chemical and electrochemical Gibbs energy of the 
electrode reaction 

In view of the relation between the Gibbs energy 1 redGΔ associated with 
the reaction [6R.1] and the chemical potentials of the components, relation 
[6.39] immediately gives us: 

1 red

e

Ge Δ
ν

= −
F  

[6.44]
 

Similarly, in standard conditions, relation [6.41] yields: 

0
0 1 red

e

Ge Δ
ν

= −
F  

[6.45]
 

Relations [6.44] and [6.45] constitute a second form of Nernst’s relation. 

Consider the sum: 

1 red e 1 redG e GΔ ν Δ+ = %F
 

[6.46]
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That sum, which takes the value of 0 at equilibrium, constitutes an 
electrochemical enthalpy associated with the reduction reaction [6R.1]. 
However, be aware that this electrochemical Gibbs energy is a relative 
electrochemical Gibbs energy, because it is defined on the basis of relative 
chemical potentials and varies in the same direction as the absolute 
electrochemical Gibbs energy, defined in section 6.1.2. In practice, though, it 
is the relative Gibbs energy which is known as the electrochemical Gibbs 
energy associated with the electrode. 

Based on that electrochemical Gibbs energy, we define the 
electrochemical affinity of the reduction by: 

1 redred GΔ= − %%A  [6.47] 

Here, again, we are dealing with a relative electrochemical affinity, but it 
is commonly referred to simply as the electrochemical affinity. 

6.2.5. Influence of pH on the electrode voltage  

If the components involved in the reaction [6R.1] of reduction of the 
electrode include protons, then Nernst’s relation [6.40] will involve the 
logarithm of the concentration of protons, and thus the electrode voltage will 
be contingent upon the pH. 

We can illustrate this by choosing an electrode which works by the 
following reaction of reduction of the permanganate ion in the system 
Mn2+/MnO-

4: 

2
4 2MnO 8H 5e Mn 4H O− + ++ + = +  [6R.3] 

The application of relation [6.40] gives us: 

( ) ( )

8

40
3 3 2

MnO HR ln
5 Mn

Te e
− +

+
= +

F
  (where ( )

0
3 1.51 Ve = ) [6.48] 

and by explicitly writing the pH, we find: 

( ) ( )
40

3 3 2

MnO8 R0.06pH ln
5 5 Mn

Te e
−

+
= − +

F
 [6.49] 
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If the activities of both the oxidized and reduced forms are equal, the 
voltage takes the value e0, which is called the equi-activity voltage, and is 
given by: 

( ) ( )
0

0 3 3
8 0.06pH
5

e e= −  [6.50] 

In the coordinates ( )0(3) pHe f= , we obtain a straight line whose slope is 
8 0.06 0.096,
5

− = −  which constitutes the voltage/pH curve for the system 

Mn2+/MnO4- (Figure 6.1). 

Figure 6.1. Voltage/pH curve for a redox couple such as Mn2+/MnO4- 

That line splits the space into two regions. Each point in the space 
corresponds to a specific value of the ratio 2

4MnO / Mn− + , which can be 

calculated using Nernst’s relation written in the form: 

( )
4

0(3)3 2

MnOR ln
5 Mn

Te e
−

+
= +

F
 [6.51] 

We see that: 

– if ( ) 0(3)3e e>  then 2
4MnO Mn− +>  

– if ( ) 0(3)3e e<  then 2
4MnO Mn− +<  
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The half-space above the straight line corresponds to the predominance of 
the oxidized form 4MnO− , whilst the half-space below the straight line 

corresponds to the predominance of the reduced form 2Mn + . 

In fact, as soon as the deviation from the straight line is a few hundred 
volts or more, the predominant form is encountered in massive quantities. 
For this reason, we often speak of the two half-spaces, which are simply 
domains of predominance, as domains of stability of one form or the other. 

6.2.6. Influence of the solvent and of the dissolved species on 
the electrode voltage 

Water, or one of its ions, may react with a redox couple, and thereby 
modify the voltages. We shall take the example of an electrode Cu2+/Cu, 
whose reduction reaction is: 

2Cu 2e Cu(s)+ + =
 

[6R.4]
 

According to Nernst, its voltage is written; 

2 2
0 2

Cu /Cu Cu /Cu

R ln Cu
2

Te e+ +
+= −

F
 

[6.52]
 

Yet in a weakly acidic or weakly basic medium, water reacts with copper 
ions, as follows: 

2
2 2Cu 2H O Cu(OH) (s) 2H+ ++ = +

 
[6R.5]

 
The constant for such an equilibrium is expressed in the form; 

2

2

H

Cu
K

+

+
=

 
[6.53]

 

By combining relations [6.52] and [6.53], we find: 

2
2

0
Cu(OH) /Cu Cu /Cu

R Rln ln H
2

T Te e K+
+= − −

F F
 

[6.54]
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In addition, if we consider the electrode working by way of the reaction: 

2 2Cu(OH) ( ) 2H 2e Cu( ) 2H Os s++ + = +
 

[6R.6]
 

its potential is given by: 

2 2

0
Cu(OH) /Cu Cu(OH) /Cu

R ln HTe e += −
F

 
[6.55]

 
By combining expressions [6.54] and [6.55], we obtain: 

2
2

0 0
Cu(OH) /Cu Cu /Cu

R ln
2

Te e K+= +
F

 
[6.56]

 
Thus, the normal potentials of the two couples Cu(OH)2/Cu and Cu2+/Cu 

are not independent. 

Similarly, an element of a redox couple may react with an ion present in 
the solution. We shall look at the case of the couple Ag+/Ag in the presence 
of a bromide ion. The reaction of the electrode is written: 

Ag e Ag+ + =
 

[6R.7]
 

The reaction between the silver ions and bromide ions leads to the 
precipitation of solid silver bromide, in a pure phase, thus: 

Ag B AgBrr (s)+ −+ =
 

[6R.8]
 

Such an equilibrium is characterized by the solubility product Ks of the 
silver bromide. 

Employing the same reasoning as in the previous example, we find the 
relation between the normal potentials of the two couples AgBr/Ag and 
Ag+/Ag , which are therefore not mutually independent: 

0 0
AgBr/Ag Ag /Ag

R ln s
Te e K+= +
F

 
[6.57]

 



Thermodynamics of the Electrode     183 

Using this expression, we are able either to calculate one normal potential 
if we know the other and the solubility product, or to determine the solubility 
product on the basis of the normal potentials of the two couples. 

6.2.7. Influence of temperature on the normal potentials 

Let us examine the variations in the absolute normal potentials with 
changing temperature. By applying the classic relation of the variation in 
Gibbs energy with temperature, for reaction [6R.1], we find the relation: 

0
01

1
d

d
G S
T

Δ Δ= −   [6.58] 

By applying expression [6.45] to the absolute normal potentials, and 
combining it with expression [6.58], we deduce the relation which gives the 
variations in the absolute normal potential of an electrode associated with the 
reaction [6R.1]: 

0 0
abs 1d

d e

e S
T

Δ
ν

= −
F

  [6.59] 

Remember that for the hydrogen electrode reference, we set 0
H 0e =  at the 

temperature of 25°C. That potential obviously varies with temperature, 
obeying a law similar to [6.59], but to quantify that variation, we need to 
enact the following chain: 

{ } ( ) { }
( ) ( )

2 2

1 2

H  Pt  H  Pt  H

                                  T T

+

 
 

The two electrodes are placed at two different temperatures. Then, 
though, an experimental difficulty emerges because, in view of the existence 
of the temperature gradient, the phenomenon of thermo-diffusion occurs in 
the electrolyte, preventing electrochemical equilibrium from being reached. 

Faced with this difficulty, we make the decision to extend the previous 
convention, setting that 0

H 0e = at all temperatures. 
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Thus, the relative potentials of electrodes will vary with temperature by 
way of a law in the form: 

00
1 reld

d e

Se
T

Δ
ν

= −
F

  [6.60] 

In this law, the entropy variation is obviously the relative entropy 
variation – i.e. the variation in entropy of reaction [6R.1] corrected by the 
corresponding term for reaction [6R.2]. Thus, we have: 

0 00
1 2d

d
e

e

S Se
T

Δ ν Δ
ν
−= −
F

  [6.61] 

For example, with a calomel electrode in the presence of a saturated 
potassium chloride solution (see section 6.3.2.2), it can be shown that the 
differential of de0/dT has the value of –76 × 10-5 at 25°C. 

The tables give the temperature coefficients de0/dT for a number of 
simple electrodes; these coefficients are obtained on the basis of isothermal 
cells using the overall convention adopted above. 

6.3. The different types of electrodes 

We distinguish between three categories of electrodes, depending on the 
nature of the electrochemical reaction which makes them work: 

– so-called “redox” electrodes; 

– metal electrodes; 

– gas electrodes. 

6.3.1. Redox electrodes  

In this type of electrode, the metal – often platinum – serves only to 
conduct the electrons. 

6.3.1.1. Definition 

Clearly, all electrodes work on the basis of a redox reaction, but the name 
of redox electrode is reserved for electrodes composed of a metal wire 



Thermodynamics of the Electrode     185 

immersed in a solution containing different components; only those 
components actually participate in the electrochemical reaction; we say that 
they are electro-active. The metal is not electro-active, because it is not 
involved in the reaction by which the electrode functions. As an example, we 
can look at an electrode which has the structure Pt/Fe2+/Fe3+, whose 
functional reaction is: 

Fe3+ +e = Fe2+  [6R.9] 

6.3.1.2. Redox buffer effect 

Let us take the example of the couple Fe2+/Fe3+ (e0 = 0.77V), and suppose 
that the total concentration of iron is equal to 1mole/l. We simplify our 
thought process by treating the concentrations and activities as being the 
same. The respective concentrations of Fe2+ and Fe3+ would be x and 1–x. 
The platinum electrode immersed in that solution takes the voltage: 

( )9
R0.77 ln

(1 )
T xe

x
= +

−F
  [6.62] 

Figure 6.2 illustrates the variations in that voltage with x. It shows an 
inflection point which corresponds to x = ½, which is iso-composition in 
terms of ions. At that point, as the tangent is fairly flat, the voltage varies 
very little through the addition of an oxidant or reductant. This mirrors the 
properties of acid/base buffer solutions; here, though, we are dealing with a 
redox buffer solution. The buffer power is defined by the differential de/dx, 
whose value is: 

( )9d R (1 )
d

e T x x
x

= −
F

  [6.63] 

6.3.1.3. Limitation of voltages due to the solvent 

Theoretically, according to relation [6.62], if the oxidant or reductant are 
alone in the solution, the electrode must take a voltage of between –∞ and 
+∞. In fact, there is one initial phenomenon that occurs which limits that 
voltage – this is an electro-active role of the solvent. 
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Figure 6.2. Variations of the redox potential of the  
couple Fe2+/Fe3+ as a function of the activities 

Indeed, no solvent is ideal, being both ionizing and non-electro-active. If 
we take a solution of the oxidant alone, it will be reduced, and a small 
amount of reductant will appear until the voltages of the system in question 
and of the solvent/oxidized solvent system are equalized. In the case of 
water, for example, an electrochemical reaction of oxidation of the solvent is 
written: 

2 2H O 1/2O 2H 2e+= + +   [6R.10] 

At atmospheric pressure, and at a pH of 0, the voltage of that system is 
1.23 V. In the presence of a salt of Fe3+, we have the equilibrium [6R.10] 
which is established, and thus: 

R0.77 ln 1.23
1

T x
x

+ =
−F

  [6.64] 

Hence, for a concentration: 

7.66

7.66

10 1
1 10

x = ≅
+

  [6.65] 

Now, if the solution contains only a salt of Fe2+, the reduction of water 
takes the form of reaction [6R.2]. 

e 

a

0.5 

0 

1 

0.77 

0.2 0.4 0.6 0.8 10.5 



Thermodynamics of the Electrode     187 

However, conventionally, this system has a voltage of 0 at a pH of 0, and 
at a hydrogen pressure of 1 bar. The equilibrium of the voltages then tells us 
that: 

R0.77 ln 0
1

T x
x

+ =
−F

  [6.66] 

Thus: 

12.8

12.8

10 0
1 10

x
−

−= ≅
+

  [6.67] 

Hence, the voltage interval (in our case, 0–1.23 V) in which the solvent 
has no electro-active role constitutes the domain of electro-activity 
corresponding to that solvent. This is the domain in which we can measure 
the potential of the redox electrode. 

6.3.1.4. Limitation of voltages due to dilution 

Experimentally, we find that if one of the oxidized or reduced forms is 
greatly diluted, it ceases to be electro-active. In these conditions, the 
electrode assumes a voltage which depends only on the activity of the non-
diluted form by way of a law similar to Nernst’s equation, but with empirical 
constants which appear to be kinetic in origin. We then have: 

– on the side of the oxidant (x = 1): 

( )R Rln 1T Te A x A x= + ≅ − −
F F

  [6.68] 

– on the side of the reductant (x = 0): 

( )R Rln 1T Te B x B x= − − ≅ +
F F

  [6.69] 

These voltages tend respectively toward the values A and B. 

We can see that this limitation due to dilution occurs long before the 
limitation due to the solvent, seen in section 6.3.1.3. For example, in the case 
of the couple Fe2+/Fe3+, we note in practice that for concentrations of  
10-6 mol/l, the Fe2+ or Fe3+ ions become inactive. Using relations [6.68] and 
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[6.69] (with A = B = 0.77 V), we can easily calculate that this corresponds to 
an interval of electro-activity of (0.14–1.13 V). 

6.3.1.5. Redox electrode with the involvement of water ions: the 
quinhydrone electrode 

The exchange of electrons between the two redox forms can, of course, 
also involve the ions of water, as we saw in the case of the couple 
Mn2+/MnO4

- (see section 6.2.5). 

Such is the case in the quinhydrone electrode, which is therefore used for 
measuring pH. 

Quinhydrone is a crystallized equimolecular mixture of benzoquinone 
and hydroquinone. 

That electrode (see Figure 6.3) operates by the reaction: 

 

Figure 6.3. Diagram of the quinhydrone electrode 

[6R.11] 
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More generally speaking, an electrode using the ions of water operates by 
the reaction: 

Ox + qH+ + νee =Red [6R.12] 

We find the relation: 

[ ]
[ ]

0
OX HR ln

Red

q

Te e
ν

+⎡ ⎤⎣ ⎦= +
eF

 [6.70] 

and in the case of quinone: 

[ ]
[ ]

2

0
Quinone HR ln

2 Hydroquinone
Te e

+⎡ ⎤⎣ ⎦= +
F

 [6.71] 

That electrode is also used as a reference electrode. Its normal voltage is 
0 0.699 V.e =  

In a non-aqueous medium, we substitute quinhydrone with the couple 
tetrachlorohydroquinone (or chloranile)/hydrochloranile, which works better 
as a pH electrode. 

6.3.2. Metal electrodes 

Metal electrodes are classified into different species depending on the 
number of solid phases involved in the electrochemical reaction. 

6.3.2.1. First-species metal electrodes 

In a first-species metal electrode, there is only one solid phase: the metal. 
The simplest such electrodes are made up of the metal at equilibrium with a 
solution containing an ion of the same element – e.g. the couple Fe/Fe2+. 

Such an electrode is easy to create, because the metal does not attack the 
solvent. In water, for example, the electrode’s voltage must be in the 
corresponding domain of electro-activity – i.e. at a pH of 0, between 0 V and 
1.23 V. 
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If the metal attacks the water, we can still, in certain cases, indirectly 
obtain the experimental measurement of the voltage. 

In certain cases, the simple ion of the overly-acidic metal does not exist 
in solution, and it is only possible to create a first-species electrode in the 
presence of a complexant of that ion. For instance, with titanium, we create a 
first-species electrode: 

[ ]2
6Ti TiF −   

That electrode is based on the following electrochemical reaction: 

[ ]2
6Ti F TiF 4e−−+ = +   [6R.13] 

All of the normal voltages of simple first-species electrodes are quoted in 
tables, known as Nernst’s tables. 

6.3.2.2. Second-species metal electrodes  

A second-species metal electrode is one in which the metal is at 
equilibrium with a second solid phase containing the same element as the 
metal and a solution having an ion of an element of the second solid phase. 

The best-known example is the calomel electrode (calomel is mercury(I) 
chloride: Hg2Cl2):  

(Hg) | <Hg2Cl2> | (Cl-)  

This electrode serves as a secondary reference for measuring electrode 
potentials, because second-species metal electrodes are indeed reversible  
and have low polarizability. Figure 6.4 illustrates such an electrode. 

The calomel electrode works on the basis of the following 
electrochemical reaction: 

( ) ( ) 2 22 Hg 2 Cl Hg Cl 2e−+ = +   [6R.14] 
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Of course, the chloride solution is saturated with calomel, which 
corresponds to the solubility product 2 2H ClSK g + −=  = 2×10-18 mol/l  

at 25°C. 

Figure 6.4. Diagram of the calomel electrode 

Its voltage then obeys the expression: 

0 2 0R R Rln Hg ln ln Cl
2 2 S

T T Te e e K+ −= + = + −
F F F

  [6.72] 

Thus, if we use the numerical values: 

0.25 0.06ln Cle −= −   [6.73] 

Thus, we can see that the calomel electrode is an indicator electrode for 
the chlorine ion, in the sense that by measuring the voltage, we are able to 
determine the solution’s chlorine activity. 

This property is generally applicable to all second-species metal 
electrodes, which act as indicator electrodes for the anion of the solid salt. 

More generally, we can define nth-species metal electrodes. An electrode 
such as this would be constituted by a metal at equilibrium with n–1 solid 
phases, the first of which contains the cation corresponding to the metal, and 
pairwise, those solid phases have, alternately, an anion and a cation in 
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common. If the number n is odd, those electrodes are indicators for the last 
cation in the chain; if n is even, they are indicators for the last anion in the 
chain. The following example represents a 5th-species electrode: 

2 4 2 2 4Zn ZnC O   Ag C O   AgCl TlCl  Tl+   

Such an electrode can be used to measure the activity of the Tl+ ions. 

6.3.3. Gas electrodes 

In this type of electrode, equilibrium is created between a gas at a certain 
pressure and a solution containing ions of the same element as the gas. The 
best known is the hydrogen electrode, which operates by reaction [6R.2]: 

 

Figure 6.5. Reference hydrogen electrode: a) Diagram  
showing the principle; b) commercially-available electrode 

Figure 6.5(a) illustrates the principle of a normal hydrogen electrode 
(NHE): hydrogen, at a pressure of 1 bar, bubbles through a solution of an 
acid at pH zero, into which a platinum electrode is immersed, chose purpose 
is to provide the external electrical contact. Figure 6.5(b) shows a photo of a 
commercial hydrogen electrode. 

By applying Nernst’s relation, we find the voltage of a hydrogen 
electrode to be: 

2

0
(H) 1/2

H

HR lnTe e
P

+

= +
F

  [6.74]  
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As the normal voltage is taken as a reference ( 0
(H) 0e = ), the practical 

value of the voltage of a hydrogen electrode is as follows, when expressed 
through decimal logarithms: 

2H0.06pH 0.03loge P= − −   [6.75] 

It is also common to use oxygen electrodes. The electrolyte is then a solid 
metal oxide, which is an ionic conductor by oxygen ions such as yttrium-
stabilized zirconia. This electrode works through the reaction: 

2 21/2O 2e 2H H O++ + =   [6R.15] 

Its voltage is given by: 

2O1.23 0.06pH 0.015loge P= − +   [6.76] 

These electrodes are used, in particular, as electrodes indicative of the 
partial oxygen pressure in a medium; they are often call oxygen probes. 

6.4. Equilibrium of two ionic conductors in contact 

We shall now examine what happens when we bring two different ionic 
conductors into contact with one another, thus forming an electrochemical 
system. Obviously, between those phases, a potential difference is 
established. Earlier on (in section 6.2.3), we referred to this as the junction 
potential difference. 

6.4.1. Junction potential with a semi-permeable membrane 

We shall now examine the case of two potassium chloride solutions at 
different concentrations C1 and C2. The two phases are separated by a semi-
permeable membrane which allows only the potassium ions to pass through. 
In such a case, a genuine potential difference of thermodynamic origin is 
established. We can formulate that potential difference by writing the 
equality of the electrochemical potentials of a given ion (that which crosses 
the membrane – in our example, potassium): 

0 0
1 1 2 2R ln R ln

K K
T C Φ T C Φμ μ+ ++ + = + +F F   [6.77]

 



194     Ionic and Electrochemical Equilibria 

We then find: 

2
1 2

1

R- ln CTΦ Φ
C

=
F

  [6.78] 

That potential difference is called the membrane potential difference or 
Donnan potential difference. 

6.4.2. Junction potential of two electrolytes with a permeable 
membrane 

We now place our two potassium chloride solution in contact with one 
another, but separated, this time, by a membrane permeable to both species 
of ions: chloride and potassium. By virtue of the principle of thermodynamic 
equilibrium, we must simultaneously have equality [6.78] and the equivalent 
equality for the chloride ions: 

0 0
1 1 2 2R ln R ln

Cl Cl
T C Φ T C Φμ μ− −+ + = + +F F   [6.79] 

This is possible only if C1 = C2 and Φ1 = Φ2. Thus, we observe diffusion 
until identical phases are obtained. However, during the course of that 
diffusion, a contact potential difference is established, which is not 
thermodynamic in nature, but instead due to the diffusion of ions from one 
electrolyte 1 to the other electrolyte 2. It is a kinetically-based potential 
difference which is calculated by bringing the mobility of the ions into play. 

We accept Thomson’s hypothesis whereby the relations of conventional 
thermodynamics are still applicable to reversible processes taking place in a 
system which is not at equilibrium but is in a steady state. 

Consider an elementary layer of thickness dx in the interphase membrane. 
Using an external generator, we pass a charge of 1 faraday across that layer 
at steady-state equilibrium at constant temperature and pressure. The current 
transported in an electrolyte by each species of ions is proportional to its 
transport number. The passage of 1 faraday across the layer corresponds to 
the passage, in the same direction, of:  

i
i

i

tn
z

=   [6.80] 
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ions-grams with the charge iz  and transport number it . The variation of the 
electrochemical Gibbs energy will therefore be: 

d di i
i

dG n Φμ= +∑% F   [6.81] 

As the system is steady at constant temperature and pressure, according 
to Thomson’s hypothesis, the variation of the corresponding electrochemical 
Gibbs energy should be zero, so: 

d d 0i i
i

n Φμ + =∑ F   [6.82] 

From this, we deduce: 

( )1 Rd d d lni i
i i

i ii i

t tTΦ a
z z

μ= − = −∑ ∑F F
   [6.83] 

To find the junction potential, we integrate for the whole of the 
interphase, and obtain: 

( )
2

junct 2 1
1

R d lni
i

i

tTe Φ Φ a
z

= − = − ∫F    [6.84] 

If the two phases 1 and 2 contain a single electrolyte z,z (same 
electrovalence) at two different concentrations C1 and C2, relation [6.84] 
becomes: 

( ) ( )
2 2

junct 1 2
1 1

R Rd ln d lnt tT Te a a
z z
+ −= − +∫ ∫F F

   [6.85] 

Suppose that, within the small window of variation of the activities, the 
transport numbers of the ions do not vary. In this case, the above relation 
becomes: 

( ) 2
junct

1

R ln aTe t t
z a+ −= − −
F

   [6.86] 

If the anionic transport numbers  and cationic ones are equal (near to 0.5), 
the junction potential is near to zero; it reaches a value of a few millivolts if 
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the transport numbers are not hugely different, as is the case for the solution 
0.1 M HCl, 0.1 M KCl ( junct 28 mVe = ) or for the solution 0.2M NaCl, 0.2 M 

NaOH ( junct 19 mVe = ), owing to the high mobilities of the H+ and OH- ions. 

To eliminate the junction potential, we can add a spectator electrolyte 
which has ions of around the same dimension, and thus the same mobility 
and same transport number. That electrolyte is added into both 
compartments at the same concentration. If that concentration is much higher 
than that of all the other ions, this electrolyte will assume responsibility for 
almost all of the transport of electrical current, and there will be no junction 
potential. 

In fact, the added electrolyte can greatly influence the activity of the other 
ions in media 1 and 2. For this reason, it is preferable to link media 1 and 2 
by a siphon filled with a concentrated potassium chloride solution, and in 
this case, the sum of the two junction potentials created is practically zero. 

NOTE.– If, in relation [6.86], for very dilute solutions, we treat the activities 
and concentrations as being identical, we obtain the relation: 

( ) 2
2 1

1

R ln CTΦ Φ t t
z C+ −− = − −
F

   [6.87] 

This simplified relation is known as the Planck–Henderson relation. 

6.5. Applications of Nernst’s relation to the study of various 
reactions 

We shall now demonstrate the usefulness of Nernst’s relation in a number 
of cases such as: the prediction of redox reactions, the explanation of 
dismutation, redox catalysis or induced oxidation. 

6.5.1. Prediction of redox reactions 

Imagine we want to predict the direction of progression of the 
reaction [6R.16] between an oxidant and a reductant, written in the form: 

2 1 1 2 2 1 1 2Ox Red Red Oxν ν ν ν+ = +
 

 [6R.16] 
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This reaction is accompanied by a Gibbs energy 16G.Δ  

We can break down the reaction under study into two redox couples 
whose Gibbs energies are, respectively, 17GΔ  and 18GΔ . 

1 1 1Ox e Redν+ =
 

 [6R.17] 

2 2 2Ox e Redν+ =
 

 [6R.18] 

The Gibbs energy of the reaction studied here is written as a function of 
the Gibbs energies of the reactions [6R.17] and [6R.18] thus: 

16 2 17 1 18G G GΔ ν Δ ν Δ= −   [6.88] 

If, for each of these reactions, we use relation [6.44], then as a function of 
their electrode potentials, we obtain: 

( ) ( )( )16 1 2 17 18G e eΔ ν ν= − −F   [6.89] 

We know that it is possible for reaction [6R.16] to take place from left to 
right only if the corresponding Gibbs energy 16GΔ is negative. 

However, we have 16G 0Δ ≤  if ( ) ( )1 7 18e e≥ . Otherwise, it would be the 

reverse reaction which is possible. 

Thus, by comparing the two redox potentials, we are able to predict the 
possible direction of the reaction. The couple with the greater potential 
reacts over the couple with the lesser potential. 

6.5.2. Relations between the redox voltages of different systems 
of the same element 

A very great many elements have several degrees of oxidation, and may 
therefore participate in multiple redox systems. Therefore, there is a relation 
between the normal voltages of those couples, which is known as Luther’s 
formula. The diagram introduced by Frost is very useful in instantly 
recognizing the stability of the different degrees of oxidation of the same 
element and any dismutation thereof. 
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6.5.2.1. Luther’s formula 

Consider an element A which has three degrees of oxidation d1, d2 and d3 
such that d1< d2< d3. The corresponding redox systems are represented by 
reactions [6R.19], [6R.20] and [6R.21]. 

( )2 1
2 1A e Ad dd d+ − =               1,2( )e   [6R.19] 

( )3 2
3 2A e Ad dd d+ − =               2,3( )e   [6R.20] 

( )3 1
3 1A e Ad dd d+ − =               1,3( )e   [6R.21] 

Depending on the nature of the species 1Ad , 2Ad and 3Ad involved, H+ ions 
and water molecules may play a part in these reactions. 

In any case, the last reaction is the sum of the first two. Hence, the Gibbs 
energies will obey the relation: 

1.3 1.2 2.3G G GΔ Δ Δ= +   [6.90] 

By applying relation [6.44] for each of these Gibbs energies, after 
simplification we obtain: 

( ) ( ) ( )3 1 1.3 2 1 1.2 3 2 2.3d d e d d e d d e− = − + −   [6.91] 

Equation [6.91] constitutes Luther’s formula for three given degrees of 
oxidation of the same element. This relation does not depend on the 
concentrations and is therefore also valid for the normal voltages. 

Because we have the equality ( ) ( ) ( )3 1 3 2 2 1d d d d d d− = − + − , Luther’s 
formula dictates that the voltage 1,3e  always lies between the voltages 1,2e  
and 2,3e .  

As nothing imposes an order between 1.2e  and 2.3e , it follows that we 
encounter two cases: 

– if: 

1.2 1.3 2.3e e e< <   [6.92] 
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the degree d2 is stable, and we observe the anti-dismutation reaction: 

( ) ( ) ( )31 2
3 2 2 1 3 1A A Add dd d d d d d− + − = −   [6R.22] 

– if: 

2.3 1.3 1.2e e e< <   [6.93] 

the degree d2 is unstable, and we observe the opposite reaction to the former 
– i.e. the dismutation reaction. 

( ) ( ) ( ) 32 1
3 1 3 2 2 1A A Add dd d d d d d− = − + −   [6R.23] 

By comparing reactions [6R.22] and [6R.23] respectively with reactions 
[6R.9] and [6R. 4], we see that the first case is that of iron, whilst the second 
is that of copper. 

6.5.2.2. Frost diagram 

The Frost diagram is plotted for an element which exhibits several different 
degrees of oxidation. In the Frost diagram, we place the products 0,dde  of the 
degree of oxidation of the compound by the potentials of the couples formed 
by the element (degree 0) and the other degrees of oxidation in a system of 
axes, with 0,de on the ordinate axis and the degrees of oxidation d  on the 
abscissa. We use either the normal voltages or the real voltages with given 
concentrations. Each degree of oxidation (other than 0) is thus represented by 
a point in the diagram (Figure 6.6). For the degree 0, as the potential e0.0 is not 
defined, it is agreed to represent it as the origin of the axes. 

Consider two points in that diagram. The slope of the straight line connecting 
those points is the voltage 

1 2, .d de  Indeed, by calculating the slope, we obtain: 

2 12 0, 1 0,

2 1

d dd e d e
p

d d
−

=
−

  [6.94a] 

and by applying Luther’s relation [6.91], we do indeed find the potential 

1 2,d de : 

1 2,d dp e=  [6.94b] 
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Figure 6.6. Frost diagram for three degrees of oxidation of an element 

In order to plot the Frost diagram, obviously we need to know all the 
potentials 0,de . Some of them are found in the tables; others are calculated 
on the basis of other potentials, or by application of Luther’s relation [6.91]. 

Look at Figure 6.6, representing three degrees of oxidation of an element: 
d1, d2 and d3. The arrangement of these three points corresponds either to 
Figure 6.6(a) or Figure 6.6(b). In the first case, the degree of oxidation d2 is 
not stable and is dismuted. In the second case, however, we observe anti-
dismutation between d1 and d 3. 

It is possible to work with forms of the same degree of oxidation of an 
element, linked by an acid–base reaction or a hydration reaction, such as 
CuO and Cu(OH)2, in which case the two compounds lie on the same 
vertical line. Thus, two forms of the same element, represented by two points 
on the same vertical in the Frost diagram, in fact belong to the same degree 
of oxidation and are connected to one another by an acid–base reaction or a 
dehydration reaction. 

Table 6.1, for example, shows the degrees of oxidation of manganese and 
the different corresponding chemical forms. Figure 6.7 is the representation 
of the Frost diagram for manganese, calculated at a pH of 0 with the 
activities of the other species in solution being equal to 1. 
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Degree of oxidation Chemical form Point in Figure 6.6 

0 Mn metal A 

2 2Mn + (manganous ion) B 

3 3Mn + (manganic ion) C 

4 2MnO (dioxide) D 

6 2-
4MnO (manganate ion) E 

7 -
4MnO (permanganate ion) F 

Table 6.1. The different degrees of oxidation of manganese 

The polygonal line ΑΒDF is such that all the points in the diagram are 
either on or above that line. It is known as the polygon of stability. The 
peaks of that line correspond to stable compounds; points below axis  
are unstable, and hence liable to break down either by dismutation or by an 
acid–base reaction or dehydration reaction. 

 

Figure 6.7. Frost diagram of manganese at pH = 0 

6.5.3. Predicting the dismutation and anti-dismutation reactions 

A dismutation reaction occurs when a compound A is likely to belong to 
two redox systems: 

– one system in which A is the oxidant; 

– one system in which A is the reductant. 

A 

B 

C 

D 

E F

0 

2 

4 

6 

-2 

2 6 84 d

d0,d 
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Such is the case, for instance, with the copper ion Cu+, which plays that 
double role in to the two redox systems. In one of the systems, the copper 
ion is an oxidant and works thus: 

Cu e Cu+ + =                    ( 0
12 0.52Ve = )  [6R.24] 

In the other system, the copper ion plays the role of reductant, and reacts 
thus: 

Cu e Cu++ ++ =                 ( 0
13 0.16Ve = )

 
 [6R.25] 

The system [6R.24], therefore, is able to reduce the system [6R.25], so 
we would observe the reaction: 

22Cu Cu Cu+ += +
 

 [6R.26] 

This is a dismutation reaction, which will continue until an extremely low 
concentration of copper ions is obtained. 

The reverse reaction, which we see, for instance, with ferric ions, and is 
written: 

3 2Fe 2Fe 3Fe+ ++ =
 

 [6R.27] 

is an example of an anti-dismutation reaction. 

6.5.4. Redox catalysis 

Look again at the reaction [6R.16], which occurs spontaneously from left 
to right. In order to speed up this reaction, we use a catalyst, present in two 
different forms: one oxidized (Oxcat) and the other reduced (Redcat). 
Reaction [6R.16] would therefore by replaced by two redox reactions: 
[6R.28] and [6R.29]: 

1 1 1 1Ox Red Red Oxcat cat cat catν ν ν ν+ = +
 

 [6R.28] 

2 2 2 2Ox Red Red Oxcat cat cat catν ν ν ν+ = +
 

 [6R.29] 
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These two reactions involve the redox couple of the catalyst, which is 
written: 

Ox e Redcat cat catν+ =
 

 [6R.30] 

In order for the system to work – i.e. in order for both reactions [6R.28] 
and [6R.29] to occur spontaneously – it is easy to show that the three 
potentials must satisfy the twofold inequality: 

28 30 29e e e> >  [6.95] 

The potential of the catalyst couple must have a value between those of 
the potentials of the two couples in the desired reaction. 

6.6. Redox potential in a non-aqueous solvent 

All our discussions in Chapter 4 about redox reactions in aqueous media 
can immediately be transposed to apply to non-aqueous solvents, although 
we need to take account of the ion pairs for solvents with a low dielectric 
constant, as we did in Chapter 3. 

In a given solvent, it is obviously necessary to establish a scale of the 
potentials of the redox couples in that solvent. 

6.6.1. Scale of redox potential in a non-aqueous medium 

In order to establish a scale of redox potential in a solvent, we need to 
have a reference electrode in that medium.  

Whatever the medium, a reference electrode needs to be chosen on the 
basis of a number of electrochemical and technological criteria. 

On the electrochemical level, the reference electrode must have the 
following qualities: 

– an electromotive force (emf) which is definite and stable over time; 

– an emf independent of any chemical modifications of the medium; 

– good reversibility and low polarizability; 
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– good reproducibility; 

– compatibility with the temperature range. 

On the technological level, the criteria needing to be taken into account 
are: 

– easy implementation and use; 

– risk of contamination from the bath reduced to the minimum; 

– stable junction potentials (usually negligible in the case of porous 
junctions). 

6.6.1.1. Reference electrodes in a non-aqueous molecular solvent 

For reference electrodes in a non-aqueous medium, we distinguish 
between two cases: molecular solvents and ionic solvents. 

When possible, the hydrogen electrode in the solvent in question  
(pH(S) = 0 and PH2 = 1 bar, like in the aqueous phase, is preferred. 

If that electrochemical equilibrium is not feasible, any other system 
exhibiting the required qualities can be used. For example, often, wherever 
possible, we use the following electrode: 

Pt/(ferrocene + ferricinium+ cation) in S  

Ferrocene is a molecular complex between an Fe2+ ion and two 
cyclopentadienyl anions. By loss of an electron, this complex transforms into 
a ferricinium cation with the same structure with the positive charge 
distributed symmetrically. Thus, we have the equilibrium: 

ferricinium+ + e = ferrocene  [6R.31] 

6.6.1.2. Reference electrodes in an ionic solvent (molten media) 

In a molten-salt medium, gas electrodes, such as the hydrogen electrode, 
are not easy to implement, given the difficulty of managing the gas at a high 
temperature. 

Generally speaking, the technological problems linked to high 
temperature greatly complicate the realization of a reference electrode in a 
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molten medium. It is necessary to use suitable materials, but they are not 
always easy to work with. 

In view of the diversity of potential situations, there is no universal 
reference electrode in molten media. 

Figures 6.7(a) and 6.7(b) show two examples of electrodes that can be 
used at high temperature. 

 

Figure 6.8. Reference electrodes in a molten medium: a) reference  
electrode in a fluoride medium; b) reference electrode in a chloride  

medium (from [GUE 09]) 

Figure 6.8(a) represents a liquid-junction NiF2/Ni electrode usable in a 
fluoride medium. Note that the casing is made of boron nitride – a material 
very similar to carbon. 

Figure 6.8(b) represents a molten AgCl/Cl electrode for the chloride 
medium with a porous membrane of quartz, yttria-stabilized zirconia or 
aluminum oxide. 

Once a reference electrode has been chosen, then in relation to that 
reference electrode, we determine the normal potentials of the redox couples 
existing in the solvent being used. 
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We then note highly different redox properties from one solvent to 
another. 

The normal potential of a given redox couple often differs from one 
solvent to another. For instance, that of the couple Cu2+/Cu, which is 0.34 V 
in water, becomes 0.28 V in formamide and 0.34 V in the equimolecular 
mixture of KCl and molten NaCl at 700°C. 

Certain degrees of oxidation are stable in certain solvents but not in 
others. For instance, the Cu+ ion, which is not stable in water, is stable in 
methanol and ammonia. It is also stable in ethylammonium chloride at 
127°C, in molten alkali hydroxides and in the equimolecular mixture 
NaCl/KCl molten at 700°C. In an aqueous solution, the stable degrees of 
oxidation of manganese are the degrees Mn(II), Mn(IV) and Mn(VII). In 
molten hydroxides, only the states Mn(II), Mn(III) and Mn(V) are stable. 

6.6.2. Oxidation and reduction of the solvent  

As we saw in section 6.3.1.3, in the case of aqueous solutions, the solvent 
comes into play to limit the voltage domain that is accessible. We often have 
the possibility of both reduction and oxidation of the solvent. 

Amphiprotic solvents, as does water, yield a reduction system which 
forms hydrogen gas and the anion of the conjugate strong base of the 
solvent: 

22SH 2 H 2Se −+ = +  [6R.32] 

At the other end of the voltage range, we have the reaction of oxidation of 
the solvent – e.g.: 

22SH S H 2 He− += + +  [6R.33] 

The breadth of the accessible voltage range depends on the solvent. Thus, 
in acetonitrile, it is possible to oxidize the perchlorate ion ClO4

- into the 
radical ClO4

•. 
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When oxidized, carboxylic acids give the Kolbe reaction – i.e. 
decarboxylation and formation of hydrocarbons and carbon dioxide as 
follows: 

-
22RCOO 2 CO RHe= + +  [6R.34] 

In ionic solvents, the limitations are due to the oxidation or reduction, 
either of the anion or of the cation. 

For example, in molten alkali halides, the reduction of the cation to the 
metal limits the domain to reductant potentials, thus: 

Na e Na+ + =  [6R.35] 

On the other hand, in molten alkali nitrates, it is the reduction of the 
nitrate anion to form a nitrite anion which limits the domain, because that 
reduction is easier than that of the alkali cations. 

-
3 2 2NO 2e 2H NO H O− ++ + = +  [6R.36] 

6.6.3. Influence of solvent on redox systems in a non-aqueous 
solvent 

As we saw in section 6.2.5 in the case of water, species deriving from the 
solvent may play a part in the redox reaction of certain couples. The reaction 
involves these species as well as the electrons. In the case of protic solvents, 
one of the essential variables, as we saw with water, is the pH. In the case of 
non-protic acidity, then as we did in Figure 6.1, we plot potential/acidity 
curves, with the acidity being characterized by pCl- if we are dealing with 
chloroacidity, pO2- for oxy-acidity or pH2O in molten alkali hydroxides (see 
section 3.12). 



 



7 

Thermodynamics of Electrochemical Cells 

Clearly, in practice, it is not possible to use just one electrode, because 
then we are unable to find the absolute potentials, and only the potential 
differences can be measured and used. Therefore, it is always essential to use 
two electrodes in combination to constitute what is known as a galvanic cell, 
which forms a new electrochemical system. 

7.1. Electrochemical chains – batteries and electrolyzer cells 

In fact, the two electrodes in a galvanic cell may be separated by any 
number of junction electrolytes, with the whole forming an electrochemical 
chain. 

The phases at the ends of the chain, known as the poles, are always 
composed of the same electron conductor, which is generally a metal but 
also sometimes a semi-conductor, whilst the intermediary phases are ion 
conductors – usually liquid but occasionally solid. 

Thus, we represent a galvanic chain by writing the succession of phases 
separated by a vertical or inclined bar, a double bar representing a diaphragm 
or membrane between two liquid phases. In practice, we do not write the 
second metal end phase, which is identical to that which is at the other end. 
Thus, the first voltaic cell (named for its inventor, Alessandro Volta) is a 
chain with only one electrolyte, represented by: 

2 4Cu/aqueuos solution H SO   Zn   

Ionic and Electrochemical Equilibria, First Edition. Michel Soustelle.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Of course, a copper wire is, it goes without saying, connected to the zinc. 

The Daniell cell, which is more complex, contains two electrolytic 
solutions separated by a membrane and is represented by the chain: 

4 4Cu  Cu (aqueuous solution CuSO )  Zn (aqueous solution ZnSO )  Zn++ ++

 
Such chains, where the endpoints are different, are called polar chains, 

by contrast to the following chain: 

4Cu  Cu (aqueous solution CuSO )  Cu++   

which is an apolar chain. 

If a polar chain is placed in an electrical circuit, meaning that the end two 
electron conductors are connected by a metal conductor, two phenomena 
may occur: 

– either a current passes spontaneously in the circuit, in which case the 
chain constitutes a generator. We say then that the electrolytic chain is a 
battery; 

– or else it is necessary to place an electricity generator in the external 
circuit for the current to pass into the chain. The chain then functions as a 
receiver, and we say that we are dealing with an electrolyzer or an 
electrolysis cell. 

NOTE.– When we are interested only in the thermodynamics of the chain at 
equilibrium, there is no current and there is no longer any distinction 
between a battery and an electrolyzer. It is for this reason that, in this case, 
the term cell replaces the term galvanic cell at equilibrium, whatever its true 
nature. It is also common to speak of an electrochemical cell. 

7.2. Electrical voltage of an electrochemical cell 

Consider a very general chain whose phases are number 1 to n: 

1  2  3  4 ......... n 1  n  1'   
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The chain ends with the phase 1’, which is of the same nature as the 
metal phase 1. 

The term reversible electrical voltage of a cell is used to denote the 
difference: 

abs 1 1'E Φ Φ= −   [7.1] 

between the internal potentials of the extreme phases. Such a voltage may be 
positive or negative, and its sign changes if we invert the order in which the 
chain is written. The positive pole is that which has the highest voltage, and 
by convention, we always write that pole on the left in the representation of 
the chain. Hence, the value absE  will always be positive. 

NOTE.– This potential difference is an electromotive force (emf) in the case 
of a battery and a counter-electromotive force (cemf) in the case of an 
electrolyzer. 

The voltage of the chain is, in fact, the sum of the differences between the 
potentials located at the different interphases of the chain. Thus, we can write: 

( ) ( ) ( ) ( )
2

abs 1 2 1 1 1'
2

n

i i n n n
i

E Φ Φ Φ Φ Φ Φ Φ Φ
−

+ −
=

= − + − + − + −∑   [7.2] 

In this expression, the differences 1 2Φ Φ−  and 1n nΦ Φ− −  are the absolute 
voltages of the electrodes 1/2 and n/n–1, the differences 1i iΦ Φ +−  are 
junction potential differences and the difference 1'nΦ Φ−  is the contact 
potential difference between two metals. 

Using expressions [6.34] and [6.35] to express those voltages and taking 
account of the fact that phases 1 and 1’ are identical, we obtain the 
expression: 

abs rel rel j
j

E e e ε+ −= − +∑   [7.3] 

Here, abse+  and abse+  are the relative potentials of the positive pole and the 
negative pole, and j

j
ε∑  is the sum of the different junction potentials and 
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contact potentials. This latter term has a value of 0 if there is only one 
electrolyte. In this simple case, the above relation is simplified to give: 

abs rel relE e e+ −= −   [7.4] 

NOTE.– The difference between the absolute potentials is identical to the 
difference between the relative potentials if we use the same reference 
electrode, such as the hydrogen electrode, to evaluate those relative 
potentials. Thus, we can write relations [7.3] and [7.4] in the forms: 

abs j
j

E e e ε+ −= − +∑   [7.5] 

absE e e+ −= −   [7.6] 

Thus, these expressions involve the electrode potentials, found in the 
tables for example. 

7.3. Cell reaction 

Consider a cell, which is composed of two electrodes, each of which is 
characterized by an electrode reaction. The “cell reaction” is the linear 
combination of the two electrode reactions which eliminates the electrons. 

For example, if we look again at the Daniell cell, represented by the 
chain: 

Cu  Cu   Zn    Zn  ++ ++   

at the positive pole of the copper electrode, the addition of electrons is 
expressed by the reaction: 

Cu 2e Cu++ + =   [7R.1] 

At the negative pole of the zinc electrode, the electrode reaction, which 
yields electrons, is written: 

Zn 2e Zn++= +   [7R.2] 



Thermodynamics of Electrochemical Cells     213 

The linear combination to eliminate the electrons, here, is a simple sum, 
and the cell reaction would therefore be: 

Cu Zn Cu Zn++ +++ = +   [7R.3] 

Of course, the thermodynamic functions such as the enthalpy, entropy or 
Gibbs energy of a cell reaction can be deduced from the corresponding 
functions of the electrode reactions by the same linear combination. 

One particular family of cells uses the reaction of combustion of a 
combustible gas such as hydrogen, methane, etc. In these cells, known as 
fuel cells (FCs), the positive electrode is an oxygen electrode which works as 
follows: 

2
1 O 2e O
2

−+ =   [7R.4] 

The negative electrode is also a gas electrode, in which the gas reacts 
with the oxygen ions to yield electrons – for instance, with carbon 
monoxide, the electrode reaction is: 

2
2CO O CO 2e−+ = +   [7R.5] 

The cell reaction then appears to be the reaction of combustion of the gas. 
The oxygen ions are transported from one electrode to the other through a 
solid electrolyte. It is common to use zirconia (ZrO2), which is a vacancy 
conductor of oxygen ions, in which we increase the number of anionic 
vacancies by doping it with a trivalent cation, such as yttrium. The cell 
functions at a high temperature (800°C). 

7.4. Influence of temperature on the cell voltage; Gibbs–
Helmholtz formula 

Based on the general relation [6.45] applied to the cell voltage, and 
relation [6.59], we can immediately deduce the two relations: 

abs
abs

,

Δ

i

Rc

e e P n

H ETE
Tν ν

∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠F F
  [7.7] 
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abs

,

Δ

i

Rc

P n e

E S
T ν

∂⎛ ⎞ = −⎜ ⎟∂⎝ ⎠ F
  [7.8] 

In these relations, eν  is the number of electrons exchanged between the 
two electrodes – i.e. the lowest common multiple of the numbers of electrons 
involved in each of the reactions of the electrodes. ΔRc H  and ΔRcS  are, 
respectively, the enthalpy and entropy associated with the cell reaction Rc. 

The differential abs

, iP n

E
T

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

 is called the cell’s temperature coefficient. 

The first of these relations is a relation similar to Helmholtz’s law for the 
Gibbs energy. 

7.5. Influence of activity on the cell voltage 

Using Nernst’s relation [6.42] for each electrode reaction, and combining 
the two relations obtained by way of the same linear combination as that 
used to obtain the cell reaction, we immediately obtain the relation between 
the cell voltage and the activities of the reagents and the products of the 
electrode reaction. We can illustrate this on the following electrochemical 
chain: 

2Pt  Cl  (gas)    Zn (aqueous solution of zinc chloride)  Zn++   

The electrode reactions are, respectively, for the positive pole and 
negative pole: 

2Cl 2e 2Cl−+ =   [7R.6] 

Zn 2e Zn++= +   [7R.7] 

The cell reaction becomes: 

2Cl Zn 2Cl Zn− +++ = +   [7R.8] 
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The cell voltage would be: 

2

2( ) ( ) 0 0
abs

R Rln ln Zn  Cl
2 2Cl Zn Cl

T TE e e e e P+ − ++ −= − = − + −
F F

  [7.9] 

This relation involves only the product 
2

Zn  Cl++ − , rather than the 

individual activity of the ions. By finding the product of the mean 
concentration (defined by relation [1.3]) by the mean activity coefficient 
(defined by relation [1.1]), we obtain the mean activity, which, in our case, 
is: 

 ( )1/22

2ZnCl Zn  Cl++ −
±

=   [7.10] 

The voltage of the chain becomes: 

2

0 0
abs Cl Zn Cl 2

R 3Rln ln ZnCl
2 2

T TE e e P
±

= − + −
F F   [7.11] 

As we can see, by experimentally measuring the cell voltage, we are able 
to find the mean activities. 

The difference 0 0 0E e e− += −  is called the standard potential of the cell, 
and relation [7.11] is then written: 

2

0
abs Cl 2

R 3Rln ln ZnCl
2 2

T TE E P
±

= + −
F F

  [7.12] 

We shall see later on (in section 7.7.1) how to directly measure that 
potential if the electrode potentials 0e−  and 0e+  are unknown. 

7.6. Dissymmetry of cells, chemical cells and concentration cells 

The calculation of the cell voltage in section 7.2 and relation [7.6] clearly 
demonstrate that the condition necessary to obtain an electrochemical cell is 
that there be dissymmetry in the chain of electrolytes, so that the voltage in 
non-null. This dissymmetry may be produced in a variety of ways. 
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As we saw earlier, it is possible to create dissymmetry by using two 
chemically-different electrodes. In this case, we obtain chemical cells. 

A second way of creating dissymmetry is to place the same electrolyte at 
the extremities of the cell, but at different concentrations – e.g. for the chain: 

2 2 2
1 2Cu  Cu (concentration )    Cu (concentration )  Cu   CuC C+ + +   

With concentrations C1 > C2, we obtain a concentration cell. The voltage 
of such a cell would be given, if we overlook the junction voltage between 
the two electrolytes and treat the concentration and activity as being the 
same, by Nernst’s relation: 

1
abs

2

RE ln
2

CT
C

=
F

  [7.13] 

In this case, the cell reaction would be the simple passage of the copper 
solution from the concentration C1 to the concentration C2, which can be 
written in the form: 

2 2
1 2Cu ( ) Cu ( )C C+ +=   [7R.9] 

A particular case of concentration cells is a cell where the difference in 
concentration is due to a field of external force, such as the field of gravity. 
We then obtain what is known as a gravity cell. 

7.7. Applications to the thermodynamics of electrochemical cells 

Measurements of the voltage of electrochemical cells at equilibrium are 
at the root of the methods used to determine a great many thermodynamic 
variables. What follows is a breakdown of the main methods, classified on 
the basis of the thermodynamic value sought. 

7.7.1. Determining the standard potentials of cells 

The standard cell potential can be measured directly on the basis of the 
measurements of the cell’s emf at different electrolyte concentrations. 
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We shall demonstrate the method using the example of measuring the 
standard potential of a zinc chloride cell. For this purpose, we consider the 
following junctionless cell: 

Zn  ZnCl2 (C)   AgCl,Ag   

The cell voltage would be: 

20
abs

R ln Zn  Cl
2

TE E ++ −= −
F

  [7.14] 

This relation involves only the product of the activities 
2

Zn  Cl++ − , 

rather than the individual activity of the ions.  

[ ] Zn Zn
Zn Zn Cγ γ++ ++

++ = =   [7.15a] 

and  

Cl Cl
C C 2l l Cγ γ− −

− −⎡ ⎤= =⎣ ⎦   [7.15b] 

The voltage of the chain becomes: 

0 2 2
abs Zn Cl

R Rln 4 ln
2 2

T TE E C γ γ++ −= − −
F F   [7.16] 

However, the mean activity coefficient is defined by: 

3 2
Zn Cl

γ γ γ++ −± =   [7.17] 

Thus, relation [7.3] can be written in the form: 

2 0
abs

R 3Rln 4 ln
2 2

T TE C E γ ±+ = −
F F

  [7.18] 

We measure the potential absE  for different concentrations C, and express 

the quantity 3
abs

R ln 4
2

TE C+
F

 as a function of the concentration C 

(Figure 7.1). By extrapolation to concentrations of 0, with the mean activity 
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coefficient having a value of 1 in these conditions, the quantity 
2

abs
R ln 4
2

TE C+
F

 has the value of 0E , according to relation [7.5]. 

Figure 7.1. Determination of the standard cell potential 

This method can be used to measure the standard potential of an 
electrode. The standard cell potential is linked to the standard potentials of 
the two electrodes by the relation: 

0 0 0E e e− += −   [7.19] 

Thus, by measuring the standard cell potential, if the standard potential 
for one of the electrodes is known, then it is easy to deduce the other. 

7.7.2. Determination of the dissociation constant of a weak 
electrolyte on the basis of the potential of a cell 

We shall now describe a method for determining the dissociation constant 
of a weak electrolyte, by successive approximations, based on the 
measurement of an appropriate cell’s potential. In describing this method, 
we shall base our discussions on the example of ethanoic acid, written as 
EtH. We begin by constructing the following junctionless cell: 

2 2 3 4Pt (s)  H  (gas, P 1bar)  EtH ( ) EtNa ( ) NaCl ( )  AgCl (s) Ag (s)C C C=   
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The liquid phase is an aqueous solution of ethanoic acid (at concentration 
C2), sodium ethanoate (at concentration C3) and sodium chloride (at 
concentration C4). 

The electromotive force of that cell is given by the following expression, 
and is a function only of the activity of the chlorine- and hydrogen ions: 

{ } { }0 0
3 3 Cl H

R Rln H O  Cl ln  H O  Clabs
T TE E E γ γ− +

+ − + −⎡ ⎤ ⎡ ⎤= − = − ⎣ ⎦ ⎣ ⎦F F
  [7.20] 

The proton concentration depends on the equilibrium of dissociation of 
the ethanoic acid, whose acidity constant is given by: 

[ ]
33 3 H O Et

EtH

H O  Et H O  Et
EtH EtH

K
γ γ

γ
+ −

+ − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= =   [7.21] 

By drawing the concentration of protons from this relation and 
substituting back into relation [7.20], we obtain: 

[ ]
-

EtH0 Cl

- Et

EtH  ClR ln
Et

abs
TE E K

γ γ
γ

−
−⎧ ⎫⎡ ⎤⎪ ⎪⎣ ⎦= − ⎨ ⎬

⎪ ⎪⎡ ⎤⎩ ⎭⎣ ⎦
F

  [7.22] 

This expression can be written in the form: 

[ ]
-

EtH0 Cl

-
Et

EtH  ClR R Rln ' ln ln
Et

abs
T T TK E E K

γ γ
γ

−
−⎡ ⎤ ⎛ ⎞⎣ ⎦= − + = − ⎜ ⎟⎜ ⎟⎡ ⎤ ⎝ ⎠⎣ ⎦

F F F
   [7.23] 

thus defining a pseudo-constant K’ which would be the value of the acidity 
constant of the couple EtH/Et- if the solution were perfect. Thus, the two 
constants K and K’ are linked by: 

-

EtHCl

Et

'K K
γ γ

γ
−

=   [7.24] 
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In equation [7.23], the term E0 can either be calculated or measured. We 
measure absE . The concentrations of the different species are: 

4Cl C−⎡ ⎤ =⎣ ⎦ ; [ ] 2 3EtH H OC +⎡ ⎤= − ⎣ ⎦ ;  3 3H OEt C− +⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦   [7.25] 

In general, the proton concentration is far lower than the concentrations 
of non-dissociated acid and ethanoate anions. Therefore, we can estimate 
that proton concentration using equation [7.21], taking an arbitrary value of 
the constant K.  

Let I denote the ionic strength of the solution, which will be written: 

3 4 3H OI C C +⎡ ⎤= + + ⎣ ⎦   [7.26] 

When that ionic strength tends toward 0, the activity coefficients tend 
toward 1, and thus we have: 

-

EtHCl

0
Et

lim 1
I

γ γ
γ

−

→
=   [7.27] 

Hence, if we plot 'K , calculated by the first equation [7.23], as a function 
of the ionic strength calculated by relation [7.26], and determine the limit 
reached as the ionic strength tends toward 0, we obtain a new value of K: 

0
lim '
I

K K
→

=   [7.28] 

A second iteration, i.e. a new calculation of the proton concentration, can 
be done on the basis of this new value of K and relation [7.21], and the 
procedure is repeated anew on the basis of equation [7.26]. The operation 
continues to be repeated until we attain a sufficient degree of precision. 

NOTE.– The difficulty with this method lies in the arbitrary choice of the first 
approximate value of the dissociation constant. It is possible to avoid the use 
of an approximate value such as this. Indeed, this value only serves to set an 
approximate value of the proton concentration. This determination can  
be replaced by a measurement of the pH of the solution at each  
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concentration in terms of ethanoic acid, and treating the activity of the 
protons as being equal to their concentration, i.e. positing: 

( )3H O exp pH+⎡ ⎤ ≈ −⎣ ⎦   [7.29] 

Note that, even from the first iteration, the initial value thus calculated for 
the constant K is generally not too far away from the true value. A second 
iteration is usually sufficient. 

7.7.3. Measuring the activity of a component in a strong 
electrolyte 

In a strong electrolyte, we may need to measure either the absolute 
activity of an ion or the mean activity of the electrolyte. 

7.7.3.1. Measuring the absolute activity of an ion 

The method for determining the absolute activity of an ion in a strong 
electrolyte (salts, strong acids and bases) is based on the complete 
dissociation of that electrolyte into ions, and on the measurement of the 
electromotive force of a cell involving that ion. We use Nernst’s law, which 
the cell obeys if its behavior is reversible. 

Thus, it is sufficient to create a cell formed of an active electrode of the 
ion under study or the measuring electrode, and a reference electrode. In 
general, the liquids in which the electrodes are immersed are connected by a 
siphon filled with a concentrated electrolyte, in order to minimize the 
junction potentials. 

For example, to measure the activity of the hydrogen ion, we can use the 
setup combining a calomel electrode (reference electrode) and a hydrogen 
electrode (measuring electrode), connected by a junction siphon (Figure 7.2). 

The potential is then measured at 25°C, and obeys the relation: 

abs 30.252 0.06ln H OE += −   [7.30] 

By measuring this potential, therefore, we are able to measure the 
solution’s proton activity – in other words, the pH. 
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Figure 7.2. Diagram of the calomel electrode 

A variant of this method is to create a concentration cell by taking two 
identical electrodes, immersed in two solutions with different activities, one 
of which is known. 

For instance, we immerse two silver electrodes in two solutions of Ag+ 
ions: one in which the activity of the silver is known (solution 2) and the 
other being the solution in which we wish to measure the activity of the 
silver ion (solution 1). The potential of the cell thus constituted would be: 

0 0
abs Ag Ag2 1

0.06ln Ag 0.06ln AgE e e+ += + − −   [7.31] 

Thus: 

2
abs

1

Ag
0.06ln

Ag
E

+

+
=   [7.32] 

This relation can be used to measure the activity of the unknown solution 
without needing to know the value of the standard potential of silver 0

Age . 

In practice, the true value of the activity is difficult to obtain, due to the 
error introduced by the junction siphon. Indeed, whilst our calculation 
supposes the junction potential to be zero, its true value is hard to find (see 
section 6.4.2). 
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7.7.3.2. Measuring the mean activity coefficient of a strong electrolyte 

To obtain more accurate results, it is preferable to use cells without a 
junction. In this case, the method of measuring the activity coefficients of 
strong electrolytes simply gives us the mean activity coefficient.  

If we know the standard potential of a carefully-selected cell (which can 
be determined experimentally (see section 7.7.1) or calculated using the 
electrode standard potential tables), then we can calculate the mean activity 
coefficient at any given concentration. 

We shall illustrate this method using the example of measuring the mean 
activity coefficient of a zinc chloride solution of concentration C. With this 
purpose, we create the following junctionless cell: 

2Zn  ZnCl  (crystallized)  AgCl (dissolved), Ag   

The cell voltage would be: 

20
abs

R ln Zn  Cl
2

TE E ++ −= −
F

  [7.33] 

This relation involves only the product of the activities 
2

Zn  Cl++ − , 

rather than the individual activity of the ions.  

[ ] Zn Zn
Zn Zn Cγ γ++ ++

++ = =   [7.34a] 

and  

Cl Cl
C C 2l l Cγ γ− −

− −⎡ ⎤= =⎣ ⎦   [7.34b] 

The voltage of the chain becomes: 

0 2 2
abs Zn Cl

R Rln 4 ln
2 2

T TE E C γ γ++ −= − −
F F   [7.35] 

However, the mean activity coefficient is defined by: 

3 2
Zn Cl

γ γ γ++ −± =   [7.36] 
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Relation [7.35] can then be written in the form: 

0 2
abs

R 3Rln 4 ln
2 2

T TE E C γ ±= − −
F F

  [7.37] 

When we know the standard potential of the cell 0E  and the 
concentration, we deduce the mean activity coefficient of the ions by 
measuring absE  and using the following relation, derived from the former: 

0 2
abs

2 1ln ln 4
R 3

E E C
T

γ ±
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

F   [7.38] 

Note that it is wise to create junctionless cells because, however perfect 
the junctions may be, they can cause significant errors – even up to 50% in 
terms of the value of the cell’s voltage. 

7.7.4. Influence of complex formation on the redox potential 

We shall now show that the formation of complexes may alter the normal 
potential of a redox couple. This process is used to stabilize ionic forms – 
usually cations – whose instability in the aqueous phase prevents us from 
measuring the redox potentials of the couples in which those ions are 
involved. 

This instability may stem from a number of causes. Here we shall cite 
two, which are linked to oxidation/reduction: 

– the case of cations that are so strongly oxidant that they oxidize the 
solvent; 

– the case of cations undergoing a dismutation. 

To illustrate the former case, we shall look at the couple Co3+/ Co2+. The 
trivalent cobalt is so strongly oxidant that it oxidizes the water: 

Co3+ +1/2H2O → Co2+ + H+ + 1/2O2.  [7R.10] 

Hence, it is not possible to measure the normal redox potential of the 
couple 3 2

0
Co /Co

e + + because the Co3+ ions are unstable in water. We can use the 
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hexammine complexes of cobalt Co(NH3)6
3+ and Co(NH3)6

2+. The 
dissociation constants of these complexes are, respectively: 

(3 ) 342.4 10DK + −= ×  [7.39] 

(2 ) 51.2 10DK + −= ×  [7.40] 

Consider an ammonia solution containing the same concentration C of 
those two complexes. In practical terms, we can write: 

( ) ( )3 2
3 36 6

Co NH Co NH+ +⎡ ⎤ ⎡ ⎤≅⎣ ⎦ ⎣ ⎦  [7.41] 

and: 
3 (3 )

29
(2 )2

Co
2 10

Co
D

D

K
K

+ +
−

+
+

⎡ ⎤⎣ ⎦ = = ×
⎡ ⎤⎣ ⎦

 [7.42] 

The voltage of the couple is: 

3 2 3 2

3

0
Co /Co Co /Co 2

Co
0.06log

Co
e e+ + + +

+

+

⎡ ⎤⎣ ⎦= +
⎡ ⎤⎣ ⎦

 [7.43] 

This voltage is impossible to measure in water, because the ratio 
3

2

Co

Co

+

+

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

 

is practically zero. In the presence of the complex, we calculate: 

3 2 3 2
0 29

Co /Co Co /Co
0.06log 2 10 0.12e e+ + + +

−= + × =  [7.44] 

The valence Co3+, which has become less strongly oxidizing, is therefore 
stabilized, and we can measure the value of 3 2

0
Co /Co

e + + , which is 1.82 V. 

The second case of instability of a degree of oxidation is that of 
dismutation. For example, it is impossible to stabilize the Cu+ ion in water, 
because it dismutes, giving: 

2Cu+ =Cu +Cu2+  [7R.11] 
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with the constant: 

2
6

2

Cu
10

Cu

+

+

⎡ ⎤⎣ ⎦ =
⎡ ⎤⎣ ⎦

  

However, in the presence of chlorides, Cu+ yields complexes that are 
more stable than those deriving from Cu2+. This complex formation leads to 
a shift of equilibrium [7R.11] to the left, and thus monovalent copper can 
exist in the form of cupric chloride CuCl2

-. 

Hence, we can stabilize unusual degrees of oxidation, such as Ag2+, Ni3+, 
Cu3+, etc. 

7.7.5. Electrochemical methods for studying complexes  

In section 4.1.3.2, we mentioned the existence of electrochemical 
methods to study the characteristics of a complex ion: its dissociation 
constant and its coordination number. We shall now examine those methods, 
looking at three in particular: 

– the potentiometric method; 

– the method using a redox electrode; 

– the polarographic method. 

7.7.5.1. Studying complex ions by the potentiometric method 

Consider a cation Mz+ which gives a complex (MLn)z+ with a ligand L. 
The stability constant is written: 

[ ]M  L

ML

nz

D
z
n

K
+

+

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

 [7.45] 

Remember that we are trying to determine n and KD. 

We prepare a series of solutions whose total concentration of salt is Mz+ 
and which contain a variable excess x of the ligand carrier. The solutions are 
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sufficiently dilute for us to be able to treat the activities and concentrations 
as being the same thing. 

Using an indicator electrode for the Mz+ ions, we measure: 

pM log M z+⎡ ⎤= − ⎣ ⎦  [7.46] 

To do this, we create a concentration cell with, on one side, the solution 
prepared above (compartment 1) and, in the second compartment, a solution 
whose concentration is C but does not contain any ligand carrier (x = 0). 

The electromotive force of that cell is: 

( )2

1

M
0.06log 0.06 log pM

M

z

z
E C

+

+

⎡ ⎤⎣ ⎦= = +
⎡ ⎤⎣ ⎦

 [7.47] 

By measuring E, we are able to calculate pM. 

We shall now examine two cases, depending on whether or not the 
complex is perfect. 

7.7.5.1.1. Case of a perfect complex 

Because the complex is stable, we can write: 

MLz
n C+⎡ ⎤ =⎣ ⎦  [7.48] 

and because the ligand carrier is present in excess, in practice, we have: 

[ ]L x=  [7.49] 

Relation [7.45] is then written: 

M z n

D

x
K

C

+⎡ ⎤⎣ ⎦=  [7.50] 

Thus: 

pM log log logDC K n x+ = − +  [7.51] 
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Thus if, for the various solutions containing introduced quantities  
of ligand x, we plot the quantity pM + logC as a function of log x (see  
Figure 6.3(a)), we should obtain a straight line with the slope n and with the 
ordinate value –log KD at the origin. 

7.7.5.1.2. Case of an imperfect complex 

In the case of an imperfect complex, the metal ions are not all complexed, 
and instead of relation [7.48], we have the expression:  

ML Mz z
n C+ +⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦  [7.52] 

Employing the same logic as before, we find the expression: 

( )pM log M  log logz
DC K n x+⎡ ⎤+ − = − − +⎣ ⎦  [7.53] 

Thus time (see Figure 7.3(b)), we plot the term ( )pM log M  zC +⎡ ⎤+ − ⎣ ⎦  

as a function of log x. Once again, for the slope and the ordinate at the 
origin, we obtain n and KD. 

 

Figure 7.3. Determination of the characteristics of a complex  
by potentiometry: a) perfect complex; b) imperfect complex 

NOTE.– It may happen that the curves shown in Figure 7.3(a) and 7.3(b) are 
not straight lines. This variable slope then implies the existence of several 
successive complexes of differing compositions. Faced with this result, we 
need to adopt a different approach, because then the slope at each point of 
the curve signifies a mean coordination index. We can therefore plot the 
value of that slope as a function of log x, and examine multiple hypotheses 
depending on the value taken by that mean value of the coordination index. 

pM+log(C-[M+]) 

log x 

-log KD 
-log KD 

pM +log C 

log x 
a) b)
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7.7.5.2. Studying complex ions by the use of a redox electrode 

Let us now consider a metallic element liable to yield cations of two 
different degrees of oxidation, which we denote as Rd and Ox. Suppose that 
both of these degrees of oxidation, or only one of them, will form complex 
ions with a ligand L. Those complexes are of the form OxLn and RdLn’. 
Between the two degrees of oxidation, there is a redox equilibrium which is 
written: 

Ox +νee = Rd  [7R.12] 

The normal potential of the couple is 0
12e . 

We create a concentration cell whose first compartment (compartment 1) 
contains equal concentrations of the two forms Ox and Rd; the second 
compartment is also filled with the two forms Rd and Ox at the  
same concentration, but this time, we add a large excess of the complexing 
agent L, in the amount x which varies from one experiment to the next. The 
effect of introducing the complexant is to alter the concentrations of the two 
differently, because they do not behave in the same way towards the 
complexant. 

The potential of the electrode in compartment 1 is: 

0
1 11e e=  [7.54] 

The potential of the electrode in compartment 2 will be: 

[ ]
[ ]

0
1 11

Ox0.06 log
Rde

e e
ν

= +  [7.55] 

The electromotive force of the cell will therefore be: 

[ ]
[ ]1 2

Ox0.06 log
Rde

E e e
ν

= − =  [7.56] 

Thus, by measuring E, we can calculate the concentration of Rd when we 
know the concentration of Ox, or vice versa. 
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Initially, we shall only image the existence of one complex – e.g. OxLn. 
In such a case, the concentration of Rd in compartment 2, which is not 
modified by the addition of the complexing agent, is known. We are 
therefore able to calculate the concentration of Ox in the cell’s second 
compartment – pOx. We are led to use the potentiometric method (see 
section 7.7.5.1) because we can determine pOx at different values of x. 

Now suppose there are two complexes OxLn and RdLn’, whose respective 
dissociation constants are KD and K’D. We suppose that the two complexes 
formed are sufficiently stable, so the concentration in each of the complexes 
would be the same and practically equal to the quantities of Rd and of Ox 
initially introduced. Thus, we write the two expressions of stability: 

[ ] [ ]
[ ]0

Ox  L
Ox

n

DK =  [7.57] 

[ ] [ ]
[ ]

[ ] [ ]
[ ]

' '

0 0

Rd  L Rd  L
'

Rd Ox

n n

DK = =  [7.58] 

From these two expressions, we deduce: 

[ ]
[ ] [ ]( )'Ox ' L
Rd

n nD

D

K
K

−=  [7.59] 

When we feed this ratio back into the expression of the potential of the 
cell (equation [7.56]), we find: 

( )D

D

K0.06 0.06log ' log
K'e e

E n n x
ν ν

= + −  [7.60] 

If one of the two complexes is known (e.g. n and KD), then by measuring 
the above voltage at different values of x, we are able to obtain a straight 
line, plotting E as a function of log x. The slope of that line can be used to 
calculate the value of n’ and its ordinate at the origin, K’D, which are the 
characteristics of the second complex. 
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7.7.5.2.1. Studying complex ions by polarography 

Polarography is a technique whose principle is not based on the 
thermodynamics of electrochemistry; it involves intensity/potential curves, 
which indubitably come from the realm of electrochemical kinetics. 
However, without going into detail on the underlying theory (for which, 
interested readers can refer to publications in electrochemical kinetics – e.g. 
J. Besson [BES 84]), we believe it is necessary to touch upon this method, 
because it involves the study of the thermodynamic properties of a complex 
ion, and in particular, its dissociation constant. 

 

Figure 7.4. Principle of polarography – diagram of  
device with three electrodes 

Consider a solution of a cation Mν + which forms a redox couple that can 
be written in the form: 

Mν + +ν e = M  [7R.13] 

That couple is characterized by a redox voltage 0
13e . 

We perform electrolysis of the solution in a device with three electrodes, 
illustrated by Figure 7.4. That device includes an electrochemical cell 
composed of the solution of the cation, a mercury hanging electrode called 
the working electrode and an auxiliary electrode. A current generator 
provides an electrical current of intensity I in the circuit, measured by an 
amperometric device. A third electrode, known as the reference electrode, 
maintains a potential E on the working electrode. A voltametric device is 
used to find that voltage. The resistance of the circuit thus constituted with 
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the working electrode is such that the current passing through it is negligible 
in relation to I. 

If the conditions are correct – if the solution has a pH buffer added to it; 
if the electrolyte contains a spectator salt which is responsible for almost all 
of the transport of current in the electrolyte; if the process of electrolysis is 
determined by diffusion in the double layer of the electrode; and if the 
process is sufficiently quick so that the electrode is practically always at 
equilibrium – then, if we set a value of the voltage E, we obtain a current I 
which obeys the following relation, stemming from Nernst’s and Faraday’s 
laws: 

0
12

0,06 log
e d

IE e e
I Iν

= = −
−

 [7.61] 

In this expression, Id is the intensity of diffusion, which depends only on 
the reduced redox couple on the mercury cathode. The function I deduced 
from relation [6.61] is represented in Figure 7.5(a). This curve, which is 
known as the polarogram or polarographic wave, is plotted by placing the 
cathodic current I on the ordinate axis and the opposite of the mercury 
cathode voltage, -E, on the abscissa axis. (In choosing –E, we obtain a 
positive value, because the cathode voltage is negative). The curve displays 
an inflection point for I = Id/2. The abscissa of that point is called the half-
wave potential. It is a characteristic of the redox couple [7R.13]. 

The Mν+, when combined with a donor of the ligand L, is likely to form a 
complex MLp ,with coordination number n and dissociation constant KD, by 
the reaction: 

M + n L = MLn  [7R.14] 

Using the theory of electrolysis, performed in the conditions we saw 
earlier, it is possible to show that the half-wave potential of the couple 
[7R.14] is shifted along the potential axis, to the right, by a distance ΔE1/2 
such that: 

[ ]1/2 0
0.06 0.06Δ log logp D

e e

E E E K n L
ν ν

− = − − = − +  [7.62] 
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If the ligand L is liable to form several successive complexes with the 
cation Mν+, such a line segment will appear in Figure 7.6(b) for each of the 
complexes with index n, q, (q > n)… Each segment corresponds to the 
domain of predominance of the corresponding form. 

7.7.6. Determining the ion product of a solvent  

We know that an amphiprotic protic solvent SH is characterized by an 
equilibrium constant which is its ion product: Ki, such that: 

2SH  SiK + −=  [7.63] 

We want to determine that constant on the basis of a potentiometric 
measurement. 

In order to do so, we set up the following concentration cell, formed of 
two hydrogen electrodes immersed in an electrolyte which, in one of the 
compartments (compartment 2), contains the solvent under examination and 
a strong base completely dissociated in that solvent, and in compartment 1, a 
completely-dissociated strong acid and our solvent. 

 

To measure the ion product of water, we might use, say, potassium 
hydroxide in compartment 2 and hydrochloric acid in compartment 1. 

To measure the ion product of ethanolamine, the strong base in 
compartment 2 would be ethanolamine sodium salt NH2-CH2-CH2Ona, and 
the strong acid would be an ethanolammonium salt. 

The electromotive force of this cell, which is a concentration cell, would 
be: 

3 2
2 1

3 1

H OR log
H O

TE e e
+

+

⎡ ⎤⎣ ⎦= − =
⎡ ⎤⎣ ⎦

F
 [7.64] 

H2 (1 bar) H2 (1 bar) 
CSH 
(0.01) 

XH 
(0.01) 

2 1 
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In view of the fact that only low concentrations are being used, we treat 
the activities and concentrations as being one and the same. In these 
conditions, we have: 

3 2
H O 0.01+⎡ ⎤ =⎣ ⎦  [7.65] 

and  

3 1

1

H O
0.01

i iK K

S

+

−
⎡ ⎤ = =⎣ ⎦

⎡ ⎤⎣ ⎦

 [7.66] 

By substituting these values back into relation [7.64], we can deduce: 

( )20.01R log
i

TE
K

=
F

 [7.67] 

Thus, by measuring the electromotive force, we can calculate the ion 
product of the solvent. 

7.7.7. Determining a solubility product  

A solubility product of a salt Aν M is the equilibrium constant of 
precipitation, in accordance with: 

νA- + M+ = Aν M (solid)  [7R.15] 

This product is expressed by the relation: 

A MSK
ν ν− +⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦  [7.68] 

The activities are replaced by the concentrations, in view of the very poor 
solubility of the salt Aν M. The dissolved concentrations are very low indeed. 

To obtain this equilibrium constant by potentiometric measurement, we 
merely need to think of a cell which operates by the reaction [7R.15]. 
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Consider a second-species metal electrode (see section 6.3.2.2). 
Remember that this is an electrode in which the metal is at equilibrium with 
a second solid phase containing the same element as the metal and a solution 
containing an ion of an element from the second solid phase.  

We then constitute a cell using that electrode, a solution containing a 
electrolyte with the same anion as the product Aν M and an indicator 
electrode for the cations C whose potential Ce is known. 

 

This cell operates by reaction [7R .15]. Its electromotive force is: 

0 0 0 00.06 0.06log A M logC M C M SE e e e e K
ν ν

ν ν
− +⎡ ⎤ ⎡ ⎤= − − = − −⎣ ⎦ ⎣ ⎦  [7.69] 

We can see that measuring the electromotive force of our cell will help to 
calculate the solubility product Ks if we know the potentials 0

Ce  and 0
Me . 

7.7.8. Determining the enthalpies, entropies and Gibbs energies 
of reactions  

We can determine the main functions for the reaction – the enthalpies, 
entropies and Gibbs energies – on the basis of the measured values of the 
emf of cells. 

We merely need to set up a cell whose operational reaction is the reaction 
under study, R. We then measure the electromotive force of that cell at two 
temperatures that are not too far apart, T1 and T2, and let E1 and E2 be the 
measure values. 

We can calculate the cell temperature coefficient (see section 7.4): 

2 1

2 1

d
d

E EE
T T T

−=
−

 [7.70] 

From relation [7.8], we deduce the entropy of the reaction: 

R
dΔ
de

ES
T

ν= − F  [7.71] 

M , AM solid C Aν M 
(c) AνC
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From relation [7.7], we calculate the enthalpy of the reaction: 

R 2
dΔ
de

EH E T
T

ν= +F  [7.72] 

The Gibbs energy is obviously: 

R 2Δ eG Eν= F  [7.73] 

The temperature coefficients of the cells are around 10-4 volts/degree. 

7.7.9. Determining the standard Gibbs energies of the ions  

The standard Gibbs energy of a cation is the standard Gibbs energy of the 
reaction: 

M = M+ν + ν e  [7R.16] 

In fact, as it is impossible to find a value for an ion on its own, the 
standard Gibbs energy is, in fact, a value relative to that of the reaction: 

½ H2 = H+ + e  [7R.17] 

For this reaction, we accept that the standard Gibbs energy is 0 at all 
temperatures. 

Hence, the relative Gibbs energy is, in fact, the standard Gibbs energy of 
the reaction: 

0 0 0
16 17Δ Δ ΔMG G G= −  [7.74] 

To measure that standard Gibbs energy, we simply need to determine the 
standard potential of the electrode operating by way of reaction [7R.16] (see 
section 7.7.1), by creating a cell coupling that electrode with a hydrogen 
reference electrode. 

The method examined above is not always easy to apply in the case of 
anions, because there are not many specific anion electrodes. We then use 
the indirect method, calculating on the basis of the solubility products. 
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7.7.10. Determining the standard entropies of the ions  

We use relation [7.8], applied to the standard entropy: 
0

0 dΔ
dM e

eS
T

ν= − F  [7.75] 

The meaning of 0Δ MS  is: 

( ) ( )2

0 0 0 0 0Δ M M HM H M H
S S S S S S S+ + + += − − − = −  [7.76] 

We are still dealing with a value relative to hydrogen, for which we 
established: 

0 0
H

S + =  [7.77] 

If we know the entropies of the atoms 
2

0
HS  and 0

MS , by measuring the 
value of e0, we are able to calculate: 

2

0 0
0 0 0 0

M H MM

d d
d de e

e eS F S S F S
T T

ν ν+ = − + − = − +  [7.78] 

For anions, we encounter the same difficulty as in the case of the standard 
Gibbs energy (see section 7.7.10). 

7.7.11. Measuring the activity of a component of a non-ionic 
conductive solution (metal solution) 

If we consider an electrode reaction which would be written: 

i i eν M ν e 0
i

+ =∑   [7R.18] 

the potential is given by Nernst’s law. 

0 R ln M i

i
Te e ν

ν
= + ∏Fe

  [7.79] 
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This expression involves the activities of all the species Mi involved in 
equilibrium [7R.18]. 

In general, the electrode is composed of a pure metal, whose activity is 
equal to 1. However, if the electrode is made of an alloy forming a solid- or 
liquid solution, then relation [7.79] will include the activity of the active 
metal in the allow. However, relation [7.79] contains various other activities 
that are usually not known. Let us examine the problem using a concrete 
example. 

For instance, we can envisage measuring the activity of lead in an 
amalgam of mercury and lead, which has the molar fraction x1 of lead. The 
electrode is made up of the alloy under study and a lead salt in which the 
activity of the lead is a2, so for example: 

Pb (amalgam (x1) ( )3 22
 Pb CH COO ( )a   

The potential of that electrode is written: 

0 2

1

R
2

aTe e
a

= +
F

  [7.80] 

The activity a1 of the lead cannot be deduced from the measured value of 
the potential of that electrode, unless the activity of the lead in the solution is 
known. 

To circumvent this problem, we construct a cell, similar to concentration 
cells, but in this case, the dissymmetry will be created by a difference in 
concentration between the two electrode alloys, rather than by two ionic 
compartments. 

We place our electrode in a cell where the other electrode is the same 
amalgam but at a different molar fraction of lead x3. The two electrodes  
are immersed in a solution of a lead salt – acetate, for example. Thus, the 
following electrode is created: 

( )3 3 3 1Pb(amalgam( )  Pb CH COO CH COOH  Pb(amalgam( )x x   
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For both two electrodes, the reference state of the lead is the same, so the 
cell’s electromotive force is written: 

1

3

R ln
2

aTE
a

=
F

  [7.81] 

If we separate the molar fraction and the activity of lead in the known 
amalgam, this expression can be rewritten in the form: 

1 3 1
2 ln ln ln
R

E x a
T

γ+ = −F   [7.82] 

As the molar fraction of lead in our solution 1x tends toward zero, the 
activity coefficient ( )

1
IIγ  tends toward 1. Hence, we can write: 

1

( )
1 30

2Lim ln ln
R

II

x

E x a
T→

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

F   [7.83] 

Figure 7.7. Obtaining the activity of an alloy (from [ROS 85]) 

In order to use this latter relation, we shall therefore measure the 
electromotive force of the cell at different values of the molar fraction 1x , 

and plot the curve showing the value 1
2 ln
R

Ey x
T

= +F  as a function of the 

molar fraction 1x . Figure 7.7 shows an example of such a curve. 
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By extrapolating that curve to the abscissa origin, we are able to find the 
value of ( )

2ln IIa , which is the activity of lead in the second compartment. 
Armed with this value, it becomes easy to calculate the sought activity 
coefficient for each concentration, using relation [7.82], in the form: 

( ) ( )
1 1 3

2ln ln ln
R

II IIE x a
T

γ = − − +F   [7.84] 

The method is particularly elegant, as it does not require the use of a 
junction. 

7.7.12. Measuring the activity coefficient of transfer of a strong 
electrolyte 

We saw in section 2.6.2 that it is only possible to measure the mean 
activity coefficient of transfer of a strong electrolyte between two solvents, 
and we described the method pertaining to solubility. It is also feasible, in 
order to measure that mean coefficient, to employ potentiometry. 

For example, to measure the mean activity coefficient of transfer of HCl, 
we construct the cell shown below, which has a hydrogen electrode in 
normal conditions, a solution of hydrochloric acid with activity equal to 1 in 
one of the two solvents under study, and a silver reference electrode.  

 

We measure the electromotive force of that cell, which is the standard 
electromotive force of HCl in that first solvent S1 – i.e. 

1

0
SE . We do the same 

thing with the second solvent S2 and we obtain the standard potential of HCl 
in that second solvent,

2

0
SE . 

The difference between the two normal potentials is such that we have: 

( ) 1 2

1 2 1 2

(S ) (S )0 0 0
S S HCl HClΔ 4.6R logS SE E G T Γ→ ±− = =F  [7.85] 

Pt; H2  
(P = 1 bar) 

HCl 1 solvent= +  AgCl solid; Ag
(reference electrode)
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We can see that by knowing the two standard potentials, we are able to 
calculate the mean activity coefficient of transfer of HCl between the two 
solvents S1 and S2. 

Similarly, we can replace the hydrogen electrode with an indicator 
electrode for the ions Mz+ and HCl with the chloride of that metal, in each of 
the two solvents, we can then measure the mean activity coefficient of 
transfer of the salt MClz between the two solvents. 

7.7.13. Evaluating the individual activity coefficient of transport 
for an ion 

As it is impossible to measure the transfer activity coefficient of an ion 
between two solvents, we have seen that the introduction of extra-
thermodynamic hypotheses helps to evaluate that coefficient.  

7.7.13.1. Pleskow’s method 

We saw earlier that Pleskow advocated the use of the rubidium or cesium 
ions (see section 2.6.3.1). An electrochemical method, using the couples 
Rb/Rb+ or Cs/Cs+, can also be used. 

Consider the cell illustrated below, composed of a rubidium electrode and 
a silver electrode: 

 
This cell can be used to measure the standard chemical potential of 

rubidium chloride in a solvent. The measurement is repeated on both 
solvents S1 and S2.  

However, we can accept that for the rubidium ion, we have: 

 0
Rb

Δ 0TrG + =  [7.86] 

Thus, the difference between the standard Gibbs energies of the two 
measurements of the electromotive force will give an estimation of the Gibbs 
energy of transfer of the chloride ion. 

Rb (amalgam) RbCl 1 solvent= +  AgCl solid; Ag 
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Similarly, the cell formed of the same rubidium electrode as above with a 
metal electrode M with a solution of ions Mz+ in the same solvent, such as 
the following cell: 

 

can be used to evaluate the activity coefficient of transfer of the cation Mz+. 

NOTE.– The cell presented above displays a junction electromotive force, but 
as that junction is created with the same solvent on both sides, the 
corresponding junction potential is only slight (see section 6.4.2). 

7.7.13.2. Strehlow’s method 

We saw (in section 2.6.3.2) that Strehlow advocated an electrochemical 
method using the ferrocene/ferricinium couple to determine the coefficient 
of transfer activation of an ion, based on the equality: 

( )ferrocene ferriciniumM
Δ Δ Δ ΔTr total Tr Tr TrG G G G+= + −  [7.87] 

According to Strehlow’s hypothesis, the term in parentheses in this 
expression would have a value of 0. 

In order to measure, we set up the following cell:  

 
This cell uses a metal electrode with the cation dissolved in a solvent and 

an electrode working with the couple ferrocene/ferricinium, dissolved in the 
same solvent. 

We then work in the same way as for the previous method, measuring the 
cell’s potential using each of the two solvents successively, and the 
measured potential difference gives us the Gibbs energy of transfer between 
the two solvents, by the relation: 

0
M

Δ ΔTrE G +=F  [7.88] 

Thus, we are able to evaluate the activity coefficient of transfer of the  
Mz+ ion. 

Rb (amalgam) Ferrocene ferricinium
          solvent

+
+

 M 1 solventz+ = +  M 

Rb (amalgam) Rb 1 solvent+ = +  solvant1M +=+z
M 
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Potential/Acidity Diagrams 

In the aqueous phase, potential/acidity diagrams are potential/pH 
diagrams (also known as e/pH diagrams), or Pourbaix diagrams. They are 
thermodynamic diagrams that are very widely used in the chemistry of 
aqueous solutions. A diagram includes all the potential/pH curves (as shown 
by Figure 6.1), pertaining to the various redox reactions which involve the 
compounds deriving from the same element. We also add all the curves 
relating to the acid–base equilibria in which those compounds play a part. 
These diagrams are quite similar to Gibbs energy/concentration diagrams, as 
shown by relation [6.45], and the definition of the pH. Just like G/C 
diagrams, they define domains of predominance for the species in solution, 
and domains of stability for species in the solid phase. 

8.1. Conventions 

When plotting these diagrams, we adopt a certain number of conventions, 
which must always be borne in mind when using them – conventions which 
can be modified to obtain other diagrams than those appearing in the existing 
body of literature. 

8.1.1. Plotting conventions 

We agree that the solvent used is water. The solutions are usually fairly 
dilute – typically 10-4 to 10-6 moles/liter, so we can treat the activity and the 
concentration as being one and the same thing. The reference states are the 
solutions at the concentration of 1 mol/liter, and the activity of the species  
in the pure solid phase is equal to 1. The gas pressure is set at 1 bar. The 

Ionic and Electrochemical Equilibria, First Edition. Michel Soustelle.
© ISTE Ltd 2015. Published by ISTE Ltd and John Wiley & Sons, Inc.
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reference potential is that of the normal hydrogen electrode (NHE), the only 
solids in question are oxides and hydroxides, with the exclusion of salts. 
Finally, the temperature chosen is 25°C, which enables us to use the value 
0.06 for the factor 2.3 RT/F. 

The term “plot concentration” denotes the total atomic concentration of 
an element. For example, the diagram for chlorine compounds shows  
that element in a variety of forms: the chloride ion, the hypochlorite ion, 
hypochlorous acid, chlorine dissolved in water, and so on. The plot 
concentration of chlorine is defined by the sum: 

[ ] [ ]2Cl ClO ClOH ClC − −⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦  [8.1] 

As noted earlier, this concentration in generally low. 

8.1.2. Boundary equations 

A boundary is a line in the diagram which separates two domains of 
predominance or stability of two forms of the same species. It is 
characterized by a chemical or electrochemical equilibrium, and therefore an 
equation f(e, pH) = 0. 

Consider a general equation linking two species A1 and A2, containing the 
same element A, written as: 

1 1 2 2A H e Aea h aν+ −+ + =  [8R.1] 

8.1.2.1. Acid–base equilibria 

If, in equilibrium [8R.1], we have 0eν = , the previous equilibrium is an 
acid–base equilibrium: A1 is the basic form and A2 the acidic form of the 
couple. Three cases may be encountered, then: 

– if both species A1 and A2 are in solution, the law of mass action applied 
to the equilibrium will yield the following, where KA denotes the acidity 
constant of A2: 

[ ]
[ ]

1

2

1

2

A1 1pH p log
A

a

A aK
h h

= +  [8.2] 
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It is helpful to plot the diagram for the following concentrations, known 
as line concentrations: 

[ ] [ ]1 1 2 2A A
2
Ca a= =  [8.3] 

The corresponding boundary, then, will be a vertical line. To its right 
(low pH) we have the domain of predominance of the acidic form A2, and to 
the left, that of the basic form A1. This line is sometimes called the equi-
concentration line. The transition pH is the pH of equi-concentration of the 
two forms A1 and A2. We can see from relation [8.2] that this pH depends on 
the concentration C, unless a1 = a2. 

The same relation shows that as we move away a little from the equi-
concentration pH, one of the forms very quickly becomes massively 
predominant. 

– if one of the two forms A1 or A2 has low solubility, its activity is equal 
to 1, and the concentration of the soluble form (A1, for example) is: 

[ ]1
1

A C
a

=  [8.4] 

Thus, the equi-concentration pH is given by: 

2 2
1

1pH p log logA
a aK a C

h h h
= + −  [8.5] 

The representative curve, again, is a vertical line. 

– if one of the acidic or basic forms is a gas, the dissolved form will be at 
concentration C and the gas pressure of 1 bar. The equation for the line, 
which is always vertical, will then be as follows, if A1 is gaseous, for 
instance: 

21pH p logA
aK C

h h
= −  [8.6] 

Note that if one of the forms A1 or A2 is solid or gaseous, the other must 
necessarily be in solution, because it has to be an ion in order to preserve the 
electrical neutrality of the solution in the presence of H+ ions. 
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8.1.2.2. Redox couples of non-oxygenated species 

If, in equilibrium [8R.1], we have h = 0, the previous equilibrium 
represents a redox couple wherein A1 is the oxidant and A2 the reductant. 
Both forms are non-oxygenated. The line in the diagram will be a horizontal 
straight line. 

We use the same plot concentrations as we did for acid–base couples. The 
corresponding voltage is the equi-activity voltage (see section 6.2.5), and in 
this case, will be the equi-concentration voltage, written as e0, and thus we 
would have: 

– if both forms are soluble: 
2

1

0 1 2 2
0

2

(2 ) ( )0.060.06 log log
(2 )

a

a
e e

a a ae e e C
aν ν

−= = + +  [8.7] 

– if one of the forms is solid: 

0 1
2

0.060.06 log log
e e

ae e a C
ν ν

= − +  [8.8] 

– if one of the forms is gaseous at the pressure of 1 bar, we again observe 
relation [8.8] to be true. 

8.1.2.3. Redox couples involving oxygenated species 

If, in equilibrium [8R.1], we simultaneously have 0eν ≠  and 0h ≠ , the 
previous equilibrium is still a redox equilibrium, but this time between two 
forms, at least one of which is an oxygenated form of A. 

We again use the same plot concentrations as for acid–base couples. The 
corresponding voltage (see section 6.2.5) here will be the equi-concentration 
voltage e0. The curve will be a sloping straight line: 

– if both forms are soluble, Nernst’s law gives us: 
2

1

0 1 2 2
0

2

(2 ) ( )0.060.06 0.06pH log log
(2 )

a

a
e e e

a a ahe e e C
aν ν ν

−= = − + +  [8.9] 
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– if one of the forms is solid (say A2), we directly obtain: 

0 1
2

0.060.06 0.06pH log log
e e e

ahe e a C
ν ν ν

= − − +  [8.10] 

– if both forms are solid, Nernst’s relation becomes: 

0 0.06 pH
e

he e
ν

= −  [8.11] 

– if one of the forms is gaseous, we use the concentration C for the 
soluble form, and the gaseous form is taken to be at the pressure of 1 bar; 

– if both forms are gaseous, we need to specify whether we are defining 
e0 for identical partial pressures of 1 bar or one of the forms dissolved 
(Henry’s law) and the other at the pressure of 1 bar, or both of them in 
dissolved form at equal concentrations. The choice is made on the basis of 
the solubility of the gases. 

8.2. Intersections of lines in the diagram 

Different lines in the diagram intersect with one another – usually at 
triple points, where three different lines meet, and those intersections display 
certain properties. Thus, consider a triple point T, which is the point at which 
the three half-lines O1, O2 and O3 meet, separating three domains of stability 
(or predominance) of three compounds A1, A2 and A3 containing the same 
element A. 

8.2.1. Relative disposition of the lines in the vicinity of a triple 
point 

Consider three reactions [8R.2], [8R.3] and [8R.4], which are similar to 
[8R.1]: 

1 1 1 3 1 2 2A H O e Aa h aν+ −+ + =  [8R.2] 

2 2 2 3 2 3 3' A H O e Aa h aν+ −+ + =  [8R.3] 

1 1 3 3 3 3 3' A H O e ' Aa h aν+ −+ + =  [8R.4] 
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remain the same). Because that element must be conserved, we are able to 
write: 

[ ] [ ]2 3A A C+ =  [8.14] 

Let us write the reactions of the couples A1 and A2 and of A1 and A3 in 
the form: 

1 3 2 2A H O H O e Aeh q ν++ + + =   [8R.5] 

'
1 3 2 3A 'H O 'H O e Aeh q ν++ + + =  [8R.6] 

By the difference between them, we deduce: 

( ) ( ) ( )'
2 3 2 3A ' H O ' H O - e Aeh h q q ν ν++ − + − + =  [8R.7] 

The equation of the curve T’O1, therefore, takes the form: 

[ ]1 2

30
A A

2

H O0.06 log
A

h

e

e e
ν

+⎡ ⎤⎣ ⎦= +  [8.15] 

and the equation for the curve T’O2 is of the form: 

[ ]2 3

'

30
A A '

3

H O0.06 log
A

h

e

e e
ν

+⎡ ⎤⎣ ⎦= +  [8.16] 

By drawing the concentrations [ ]2A  and [ ]3A  respectively from 
equations [8.15] and [8.16] and feeding those values back into 
equation [8.14], we obtain the equation for the curve O1T’O2: 

( ) ( )1 2 1 3

'
'0 0

3 A A 3 A AH O exp H O exp
0.06 0.06

h he ee e e e Cν ν+ + ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤− − + − − =⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
 [8.17]  

It is possible to solve this equation analytically if each of the two terms h 
and h’ is less than or equal to 2. If this is not the case, then we need to solve 
it by the numerical method. Nonetheless, in all cases, a simple geometric 
construction can be used to obtain as many points on the curve as we want. 
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Let us begin by constructing point T’ (Figure 8.3). Because it is on the 
line of equi-concentration of equilibrium A2A3, that point corresponds to the 
concentrations: 

[ ] [ ]2 3A A
2
C= =  [8.18] 

The corresponding voltage is: 

1 2

30
' A A

H O0.06 0.06 2log log
h

T
e e

e e
C Cν ν

+⎡ ⎤⎣ ⎦= + +  [8.19] 

The equation of the line for equilibrium A1A2, which corresponds to a 
concentration of A2 equal to C, is: 

1 2

30
A A

H O0.06 log
h

T
e

e e
Cν

+⎡ ⎤⎣ ⎦= +  [8.20] 

Thus, the point T’ is (as shown by Figure 8.3) located on a straight line 
T’O’1 parallel to TO1 but shifted toward the domain of A1 by a value: 

0.06 0.0018log 2
e e

eΔ
ν ν

= =  [8.21] 

The intersection of that line with that which corresponds to the 
equilibrium A2A3 gives us T’. 

More generally, we can determine the position of any given point T’’ on 
the curve which corresponds to a value of the ratio of concentrations 
[A2]/[A3]. For example, let us construct the point T’’, which corresponds to a 
value of 10 for that ratio – in other words, in view of equation [8.14], for the 
concentrations: 

[ ]2
10A
11

C=   [8.22a] 

and    [ ]3A
11
C=  [8.22b] 
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That point corresponds, for the equilibrium A2A3, to a voltage: 

( )
2

'0
A A3 3'

0.06 log H O
h h

e e

e e
ν ν

−+⎡ ⎤= − ⎣ ⎦−
 [8.23] 

The point T’’ is therefore located on a line parallel to TO3, shifted by 

'

0.06

e eν ν−
volts parallel to the voltage axis. Additionally, in relation to the 

equilibrium A1A2, its voltage is: 

1

30
A A2

H O0.06 0.06 11log log
10

h

e e

e e
Cν ν

+⎡ ⎤⎣ ⎦= + +  [8.24] 

The point T’’, therefore, is on a parallel to TO1, shifted towards the 
domain of A1 by a value: 

0.06 11 0.0025Δ log
10e e

e
ν ν

= =  [8.25] 

Figure 8.3 has been plotted on a greatly stretched scale of voltages and 
pH levels for particular values of the coefficients h, h’, eν  and '

eν . We can 
see that the true curve is distinguishable from the asymptotic lines O1T and 
O2T only by a very slight rounding in the vicinity of the point T. As the error 
is minimal and very localized, we content ourselves with the representation 
by asymptotic lines plotted at constant concentration. 

8.2.2.3. Case of three soluble species 

In this case (illustrated by Figure 8.4), the equi-concentration curves are half-
lines which correspond to inconstant activities, as can be seen in the figure, 
where we have chosen components each containing one atom of the component 
A. Indeed, far from the triple point, we have – on the curve TO1, for example: 

[ ] [ ]2 2A A
2
C= =  [8.26] 
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and as we approach the triple point, the content of A3 increases, so that at T 
we have: 

[ ] [ ] [ ]1 2 3A A A
3
C= = =  [8.27] 

We can see that, in this case, the half-lines are the real curves. 

 

Figure 8.3. Construction of the line in the vicinity of a  
triple point with two soluble species 

 

Figure 8.4. Shape of the curves in the vicinity of  
a triple point: case of three soluble species 
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[ A3] ≈ C 

[ A2] = [ A1]   = C/2

[ A1]  = [ A3]   = C/2
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8.3. Plotting a diagram: example of copper 

We have chosen to plot the diagram of copper, to exemplify and fine-tune 
our methodology, which must be highly rigorous, and during the course of 
which we must make various choices, such as the existence of oxides and 
hydrates and the involvement of the phenomenon of dismutation. 

8.3.1. Step 1: list of species and thermodynamic data 

The first step in constructing a diagram is to list all of the different 
entities to be taken into account. Obviously, species which are not taken into 
account will show no domain of stability or predominance. This list will be 
supplemented by the standard chemical potential of formation of each of 
these compounds, which can be read from the tables. Table 8.1 shows all of 
these data in the case of copper-based compounds. 

Phases Compounds μ0 

Dissolved substance 

Cu+ 50,160.0 J 
Cu2+ 65,915.4 J 
HCuO2

- -256,735.2 J 
CuO2

2- -181,830.0 J 
H2O -236,964.2 J 

Solid substance 

Cu2O -146,216.4 J 
CuO -127,072.0 J 
Cu(OH)2 -356,554.0 J 
Cu 0.0 J 

Table 8.1. Thermodynamic data of copper-based compounds 

8.3.2. Step 2: choice of hydrated forms 

For each degree of oxidation, we need to choose the most stable degree of 
hydration. Indeed, the hydration reaction is neither an acid–base reaction nor 
a redox reaction, so there can be no distinctive domain for different hydrated 
forms. 

In the case of copper, the problem lies in the choice between the two 
forms CuO and Cu(OH)2. 
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To make this choice, we need only calculate the standard Gibbs energy 
associated with the hydration reaction. The value of –7,490 J per mole of 
CuO shows that the oxide is the stable form at the chosen temperature at a 
standard water vapor pressure of 1 bar. Therefore, we choose cupric oxide 
CuO to plot the diagram. 

8.3.3. Step 3: study by degrees of oxidation of acid–base 
reactions; construction of the situation diagram 

For each degree of oxidation, we shall determine the possible acid–base 
couples, and calculate the corresponding pKa on the basis of the standard 
chemical potentials. For each couple, the domain of predominance (or of 
stability for a pure solid form) of the acidic form is for pH levels less than 
pKa, whereas the basic form is predominant (stable) for higher pH values. 
Thus, we can determine the domains of pH of the predominance (or stability) 
of the corresponding acids and bases. In doing so, we obtain what is known 
as the situation diagram. 

pH                            0                        5.16          6.95     7                               12.83            13.5                
Degree 2                         Cu2+                                      CuO                      HCuO2         CuO2

2- 
Degree 1                    Cu+                                                          Cu2O 
Degree 0                                                                    Cu 

Table 8.1. Situation diagram for a concentration of 10-6 

With copper at the degree of oxidation +1, there is only one possible 
reaction for the couple Cu+/Cu2O, which is written: 

2 2 32Cu 3H O Cu O 2H O+ ++ = +  [8R.8] 

At equilibrium, this reaction obeys the relation: 

log Cu 0.84 pH+⎡ ⎤ = − −⎣ ⎦  [8.28] 

pH 0         8.16       8.95              10.83                                            13.15 
Degree 2 Cu2+ CuO HCuO2

- CuO2
2- 

Degree 1           Cu+                                                                                                                 Cu2O 
Degree 0 Cu 

Table 8.2. Situation diagram for a concentration of 10-8 
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At the degree of oxidation +2, in view of the amphoteric nature of CuO, 
we see the reaction with CuO playing the role of a base: 

2
2 3Cu 3H O CuO 2H O+ ++ = +  [8R.9] 

That reaction, at equilibrium, must satisfy the relation: 

2log Cu 7.89 2 pH+⎡ ⎤ = −⎣ ⎦  [8.29] 

and because of the acidic role of the same oxide, we have the couple: 

-
2 2 3CuO 2H O HCuO H O++ = +  [8R.10] 

which obeys the condition: 

-
2log HCuO 18.83 pH⎡ ⎤ = − +⎣ ⎦  [8.30] 

or the equilibrium: 

2-
2 2 3CuO 3H O CuO 2H O++ = +   [8R.11] 

which satisfies: 

2-
2log CuO 31.98 2 pH⎡ ⎤ = − +⎣ ⎦  [8.31] 

Finally, the equilibrium between 2-
2CuO  and -

2HCuO  gives us: 

- 2-
2 2 2 3HCuO H O CuO H O++ = +   [8R.12] 

with the relation: 

2
2

2

CuO
log 13.15 pH

HCuO

−

−

⎡ ⎤⎣ ⎦ = − +
⎡ ⎤⎣ ⎦

 [8.32] 

An overview of these calculations is given in Tables 8.2 and 8.3, 
respectively for the plot concentrations C = 10-6 and C = 10-8 moles per liter 
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of the element copper in solution. These tables show the pH domains in 
which each form is predominant or stable for the solid phases. 

From these tables, we can immediately deduce the redox couples which 
need to be taken into account. For example at pH = 0, we take account, at the 
concentration of 10-6 moles/liter (Table 8.2), of the couples Cu/Cu+ and 
Cu+/Cu2+, and at pH = 7 it would be the couples CuO/Cu2O and Cu/Cu2O. 

8.3.4. Step 4: elimination of unstable species by dismutation 

Not all species included in tables such as Table 8.2 or 8.3 will necessarily 
have a domain of stability (or predominance) in the final diagram, because 
some of them may be unstable because of dismutation. It is helpful, at each 
pH, to calculate the redox voltages for each of the couples at the chosen 
concentration. In practice, it is often sufficient to perform the calculation for 
pH = 0 and one or two other values of the pH. 

Thus, in the case of copper (see section 8.3.2), in the vicinity of pH = 0, 
we only need to consider the following couples: 

for C = 10-6 mol/liter: 

Cu e Cu+ + =   [8R.13] 

where 0 0.52 0.06 6 0.16e V= − × =   

2Cu e Cu+ ++ =  [8R.14] 

where 0 0,15e V=   

For C = 10-8 mol/liter: 

Cu e Cu+ + =   [8R.15] 

where 0 0.52 0.06 8 0.04e V= − × =  

2Cu e Cu+ ++ =   [8R.16] 

where 0 0.15e V=  
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The result of this is that at pH = 0, for a total concentration of  
10-6 mol/liter, copper Cu+ dismutes and has no domain in the diagram, 
whereas for the total concentration of 10-8 mol/liter, that ion is stable. 

At 10-6 mol/liter, we have the equilibrium: 

2Cu e Cu+ + =   [8R.17] 

where 0 0.19e V=  

Similarly, we could verify that at pH = 8, Cu2O does not dismute for the 
two concentrations examined here, with the couples: 

2 3 2Cu O 2H O 2e 2Cu 3H O++ + = +   [8R.18] 

where 0 0.47e V=   

2
2 2 32Cu 3H O 2e Cu O 2H O+ ++ + = +   [8R.19] 

where 0 0.203e V=   

For both concentrations, we need to take account of the equilibria: 

3 2 22CuO 2H O 2e Cu O 3H O++ + = +   [8R.20] 

where 0 0.67e V=   

-
2 3 2 22HCuO 4H O 2e Cu O 7H O++ + = +   [8R.21] 

where 0 1.78e V=   

2-
2 3 2 22CuO 6H O 2e Cu O 9H O++ + = +   [8R.22] 

where 0 2.56e V=   

2-
2 3 22CuO 4H O 2e 2CuO 6H O++ + = +   [8R.23] 

where 0 1.51e V=   

Now with all this information at our fingertips, we can begin to plot the 
diagram. 
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8.3.5. Step 5: plotting the e/pH diagram 

We plot the diagram little by little, starting at the value pH = 0. 

In Figures 8.5 and 8.6, the numbers of the lines correspond to the 
equilibrium bearing the same number – for instance, line 17 corresponds to 
the equilibrium [8R.17].  

At pH = 0, we plot the horizontal lines representing the redox equilibria 
without the involvement of hydrogen. Those horizontals are limited by acid–
base reactions. Thus, we obtain (see Figures 8.5 and 8.6) the horizontal lines 
14, 15 and 17 corresponding to the equilibria [8R.14], [8R.15] and [8R.17]. 

 

Figure 8.5. Diagram for copper at the concentration of 10-8 moles/l. For a color 
version of the figure, see www.iste.co.uk/soustelle/equilibria.zip 

The first two, in Figure 8.5, are limited by the vertical line 8, representing 
the equilibrium [8R.8].  

The intersections of the redox lines with the verticals define triple points 
through which the next redox equilibrium must pass. Thus, in Figure 8.6, we 
encounter the point T1 first, followed by point T2, then point T3, point T4 and 
finally point T5. 
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Figure 8.6. Diagram for copper at the  
concentration of 10-6 moles/l. For a color version  

of the figure, see www.iste.co.uk/soustelle/equilibria.zip 

NOTE.– If we were to choose not to use, say, the compound HCuO2
-, the 

corresponding diagram would be different. The zone corresponding to the 
excluded compound would no longer appear, a new equilibrium would  
be taken into account and the equilibria [8R.10] and [8R.12] would be 
eliminated. We would then see the appearance of a boundary linked to the 
equilibrium [8R.11]. The domains of stability of CuO and predominance of 
CuO2

- would therefore be extended. 

8.4. Diagram for water superposed on the diagram for an 
element 

When we construct the diagram for copper, for instance, it is, in fact, the 
fait diagram for the copper/water system. The water still needs to be stable in  
the e/pH region being explored. In fact, water plays a part in two redox 
couples: 

2 2 3
13H O O 2H O 2e
2

+= + +   [8R.24] 

where 1.23 0.06 pHe = −   
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3 2 2
1H O e H H O
2

+ + = +   [8R.25] 

where 0.06 pHe = −   

 

Figure 8.7. Simplified diagram for zinc superposed  
on the diagram for water. For a color version of the  
figure, see www.iste.co.uk/soustelle/equilibria.zip 

Figure 8.6, for a concentration of 10-6 mol/liter, shows the simplified 
diagram for zinc, upon which are superposed the lines 24 and 25, delimiting 
the domain of stability of water.  

Finally, the diagram for zinc (Figure 8.7) in an aqueous medium will 
contain only the two vertical lines, and the metal zinc will have no domain of 
stability. 

NOTE.– In the diagram for water, account has not been taken of hydrogen 
peroxide H2O2 and ozone O3. Calculations show that hydrogen peroxide is 
unstable and suffers dismutation, and therefore has no domain of stability. 
Ozone, meanwhile, can only be obtained in a mixture with oxygen by raising 
the electrode to a very high voltage, which is difficult to achieve with zero 
current. 

8.5. Immunity, corrosion and passivation 

Potential/pH diagrams of metal/water systems are very widely used for 
studying aqueous corrosion of metals. They are plotted at a very low  
total concentration (around 10-6 mol/liter), because corrosion is a slow 
phenomenon and gives rise only to low concentrations of species in solution. 
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From the standpoint of corrosion, potential/pH diagrams show three 
categories of domains of stability (or predominance). 

– the domains of stability of the metal, wherein the metal is not attacked, 
known as the domain of immunity; 

– the domains of corrosion, wherein the ions are predominantly present, 
and therefore the metal is attacked; 

– domains of “passivation”, in which we see stable solid phases which 
protect the metal from external corrosion. 

NOTE.– In a domain of passivation, the diagram yields no information about 
the actual passivity of the metal, because we are then dealing with problems 
linked to both the texture of the solid and the kinetics of corrosion – both 
fields in which thermodynamics offers no information. 

8.6. Potential/pX (e/pX) diagrams 

As we have seen (in section 8.1.1), e/pH diagrams are plotted using 
specific conventions and in very precise conditions. If any one of those 
conditions is not respected, we need to start again and plot the diagram 
anew. If, for example, a metallic electrode is no longer a pure metal, but 
instead an alloy whose concentration (equal to its activity) [X], a third 
variable will come into play, and we shall then have three-dimensional 
e/pH/pX diagrams, where pX denotes -log [X]. 

It is sometimes interesting, and more easily operable, to plot such a 
diagram at a constant pH, in which case we obtain the two-dimensional e/pX 
diagram. 

The same would be true if we were to add a compound which is likely to 
form complexes with the ions in the system. Such would be the case, for 
instance, with the diagram of silver in the presence of ammonium ions, 
which would again show a new variable – the concentration of ammonium 
ions – and two new compounds – the complexes [Ag(NH3)]+ and 
[Ag(NH3)2]+.  

By way of example, let us look at the simple case of the diagram for 
mercury in the presence of thiocyanate ions (SCN-) and examine the 
corresponding e/pSCN diagram. 
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The introduction of the thiocyanate ions may trigger the precipitation of 
mercury thiocyanate 2 2Hg (SCN)  and the formation of [ ]2

4Hg(SCN) −  ions. 

Figure 8.8 shows the corresponding diagram with a plot concentration of 
1 mole/l (i.e. at pH = 0). 

 

Figure 8.8. The e/pSCN diagram for mercury for a concentration of 1mole i.e. (ph=0). 
For a color version of the figure, see www.iste.co.uk/soustelle/equilibria.zip  

Here, we see a solid zone which is no longer an oxide or a hydroxide, but 
mercury thiocyanate 2 2Hg (SCN) ,  and we note that for strong concentrations 
of thiocyanate, mercury(I) undergoes dismutation into liquid metal mercury 
and the complex [ ]2

4Hg(SCN) − . There is no longer any domain of stability 

for the 2
2Hg +  ion. 

The use of such e/pX diagrams is entirely comparable to that of the e/pH 
diagrams we saw above.  

8.7. Potential/acidity diagrams in a molten salt 

For acceptations of acid–base couples other than those linked to the 
exchanges of protons, we can obviously plot and represent e/acidity 
diagrams that are absolutely similar to the e/pH diagrams for protic solvents. 
For example, on the basis of the oxo-acidity, we can plot e/pO2- diagrams. 

Of course, such diagrams are limited by oxidations and reductions linked 
to the solvent which limit its domain of useful potential. 
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The limits of the domain of pH of the solvent also appear, so in the 
molten solvent KCl-LiCl at 450°C, for example, the limit of pO2- is 
obviously the precipitation of alkali oxides. 

Thus, we define the window between the acidity zone and the potential 
zone, within which the diagram makes sense. 

As is the case with e/pH diagrams, we choose a total concentration. The 
different domains thus delimited define zones of predominance for the 
species in solution and zones of stability for the solid species. 

The same information can be gleaned from the diagram, and in particular, 
all the information pertaining to corrosion and passivation. 

Figure 8.9 shows the example of the diagram for nickel in the solvent 
KCl-LiCl at 450°C, at a concentration of 10-6 mol/l. In this figure, we 
distinguish two zones of passivation, linked to the stability of the solid 
species NiO and NiO2, and the zone of immunity of metal nickel. 

It is noteworthy that a domain of stability of nickel at the degree of 
oxidation +4 (NiO2) appears, though that form does not exist in aqueous 
solution. 

 

Figure 8.9. The e/pO2- diagram for nickel in the mixture  
KCl/LiCl at 450°C for a concentration of 10-6mol/l. For a color  

version of the figure, see www.iste.co.uk/soustelle/equilibria.zip 
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Appendix 

Activities in Ionic Solutions 

In ionic solutions, it is preferable to use convention (II) – the infinitely-
dilute solution – or convention (III) – the 1 mol/l reference solution for each 
component. Thus, we need to know how to link the activity coefficients and 
the equilibrium constants for the two conventions with one another. 

For a given solution, let us assign the values relative to the solvent with 
the index 0 and those relative to the solutes with the index s. Consider a 
reaction which is written: 

0 Ai i
i

ν=∑  [AR.1] 

The components i are those which take part in the reaction. They may be 
only solutes, or solutes and the solvent, or even include pure solid phases. 

The equilibrium constant of this reaction is expressed, depending on the 
chosen convention, by the following two expressions: 

– based on the molar fractions in reference (II): 

(II) (II) Δexp
R

ss s
r s s

s
K x

T
νν μγ

∞

⎡ ⎤= = −⎣ ⎦∏  [A.1] 

The reference solution is the infinitely-dilute solution for all components. 

– based on the concentrations in reference (III): 

0(III)
(III) (III) Δexp

R
ss

r s s
s

K C
T

νν μγ⎡ ⎤= = −⎣ ⎦∏  [A.2] 

Ionic and Electrochemical Equilibria, First Edition. Michel Soustelle.
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The reference solution is that which contains 1 mol/l of each solute. 

Only the terms relative to the solutes (and occasionally gases) are taken 
into account in the product of the second term in relations [A.1] and [A.2], 
with the exception of solvents in a dilute solution and pure solid phases. On 
the other hand, in the third term in those relations, the values Δμ∞ and 

0(III)Δμ contain the contributions of all the reagents, including the term 
relative to the solvent if it participates in the reaction and that of the solution, 
whether dilute or otherwise. Obviously, the same is true of the equilibrium 
constants (II)

rK and (III)
rK . 

A.1. Concentrations and molar fractions 

By definition of molar fractions, we can write the ratio: 

0 0

s sx n
x n

=   [A.3]  

However, the volume of the solution is given, as a function of the partial 
molar volumes of the components, by: 

0 0 s s
s

V n V n V= +∑   [A.4]  

0V and sV  respectively denote the partial molar volume of the solvent and 
that of the solute s. 

Hence, by using the relation of definition of the concentration, we obtain: 

0 0 0 0

s s s
s

s s s s
s s

n n xC
V n V n V x V x V

= = =
+ +∑ ∑

  [A.5]  

However, if the solution is sufficiently dilute and if 0
0v  denotes the molar 

volume of the pure solvent, we can write: 

0
0 0 0 0s s

s
x V x V V v<< ≅ ≅∑   [A.6]  
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The molarity can therefore be written, approximately, as: 

0
0

s
s

xC
v

≅   [A.7]  

The molar volume of solvent practically depends only on the temperature 
for a liquid or a solid.  

A.2. Relation between the activity coefficients expressed in 
conventions (II) and (III) 

Let us examine the relation between the activity coefficient of a 
component, expressed on the basis of the dilute solution reference (II), and 
that found using the molar solution convention (III). 

We write that the chemical potential does not depend on the reference 
state, which is expressed by the equality: 

0( ) ( ) ( )R ln R lnIII III II
s s s s s s sT C T xμ μ γ μ γ∞= + ≅ +  [A.8]  

Thus, we can identify and write:  

0( )III
s sμ μ∞=   [A.9]  

and: 
( ) ( )III II
s s s sC xγ γ=  [A.10]  

Hence, the chemical potential at infinite dilution is equal to that at the 
concentration of 1 mole per liter, and the product of the activity coefficient in 
convention (II) by the molar fraction is equal to the product of the activity 
coefficient in convention (III) by the concentration expressed in moles per liter. 
In other words, the activities expressed in the two conventions are identical.  

If the solution is very dilute, from relations [A.10] and [A.7], we deduce: 
( )

( )
0
0

III
II s

s v
γγ =   [A.11]  

The molar volume of the solvent 0
0v  is expressed in liters per mole.  
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A.3. Relation between the equilibrium constants expressed in 
conventions (II) and (III) 

Because the chemical potentials of the reference states (II) and (III)  
are equal (see relation [A.9]), the equilibrium constant is the same in both 
cases: 

( ) (II)III
r rK K=   [A.12] 

If we now combine relations [A.1] [A.2] and [A.12], we obtain the 
following relation (only the solutes come into play here): 

( ) ( )(III) (II) (II)s s

s s s s r
s s

C x K
ν ν

γ γ= =∏ ∏   [A.13] 

If the reference concentration is 1 mol/l and we consider only 
sufficiently-dilute solutions – i.e. solutions such that (II) 1sγ =  – then in light 
of relation [A.7], we find: 

( ) ( ) ( ) ( )(II) 0 0
0 0

s ss s
s ss r s

s s
C K v v x

ν νν ν∑ ∑== =∏ ∏   [A.14a] 

NOTE.– If the reaction occurs with a constant number of moles ( 0sv∑ = ), 
we can treat the activities as being the same as the molar fractions and the 
concentrations, and write: 

( ) ( ) (II)s s

s s r
s s

C x Kν ν= =∏ ∏   [A.14b] 

Note that the term s
s

ν∑ in relation [A.14a] pertains only to species in 

solution, to the exclusion of solids and the solvent. 

For ionic reactions in solution, studied in this volume, even if this 
condition does not appear to be respected, this stems from what is often an 
abbreviated formulation of the reaction, in which the solvent is not always 
explicitly written. Take the example of the dissociation of ethanoic acid. 
Often, this reaction is written in the form: 

CH3COOH = CH3COO- + H+ [AR.2] 
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The term 1s
s

ν =∑  is non-null. In actual fact, the complete equilibrium, 

which only occurs in the presence of water, should be written: 

CH3COOH + H2O = CH3COO- + H3O+ [AR.3] 

Thus, we can see that, in reality, 0s
s

ν =∑  and therefore, in spite of 

appearances, the reaction [AR.2] does indeed yield expression [A.14b]. 

The same is true for any acid–base couple or any redox couple for which 
the sum s

s
ν∑  is non-null: that sum takes the value of 0 and disappears when 

writing the overall reaction of that couple with a different couple.  

Thus, in ionic reactions in a dilute solution, we can apply relation  
[A.13], or if the concentrations are sufficiently low, relation [A.14b]. 

A.4. Correspondence between conventions (I) and (II) 

Remember that the activity coefficient of a solute in reference (I) is that 
obtained by choosing the pure substance as a reference state. That activity 
coefficient in reference (I) and that in reference (II) (the infinitely-dilute 
solution) are interlinked, because the chemical potential of the solute does 
not depend on the convention chosen. Thus, we can write: 

0 ( ) ( )R ln R lnI II
s s s s s s sg T x T xμ γ μ γ∞= + = +   [A.15] 

If iHK  denotes Henry’s constant, defined by the relation: 

0

ln
R

s s
iH

gK
T

μ∞ −
=   [A.16]  

By comparing relations [A.15] and [A.16], we can deduce: 

(I) 0

(II)ln ln
R

s s s
iH

s

g K
T

γ μ
γ

∞ −
= =   [A.17]  

Thus, the constant iHK  links the activity coefficients expressed, for a 
given solute, in both conventions: the pure-substance reference and the 
dilute-solution reference. This constant does not depend on the composition 
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of the solution. However, by way of the chemical potentials of the reference 
states, it does depend on the values of the intensive variables (pressure, 
temperature, and as seen in Chapter 2, the solvent, etc.).  

The equilibrium constant in reference (I) is written: 

( )
0

(I) (I)Δexp
R

s
sr s s

s

gK x
T

ν
γ ∑= − = ∏  [A.18]  

Using relation [A.17], we obtain: 
(I)

(II)
s

r
r

sH
s

KK
Kν=

∏
  [A.19]  

NOTE.– For a perfect solution, where the Henry constants for the different 
components are all equal to 1, the equilibrium constants ( )II

rK  and rK  are 
treated as one and the same thing. As, according to relation [A.12], the 
equilibrium constants in reference (II) and reference (III) are identical, it 
follows that for a perfect solution, all the equilibrium constants are identical. 

A.5. Debye and Hückel’s model for ionic solutions 

We know that it is impossible to measure the activity coefficient of an 
ion, because it is not possible to isolate an ion in a solution because of the 
need to preserve electrical neutrality. On the other hand, it is possible to 
determine the activity coefficient in reference (I) using models. Models of 
ionic solutions (which are described in detail in Volume 3 of this set  
[SOU 15c]), are all based on Debye and Hückel’s model, which takes 
account of Coulomb force attractions between the ions in the calculation of 
the excess Gibbs energy. More sophisticated models complete the 
description of the solution, by also taking account of the interactions over 
short distances between the molecules, between the molecules and ions, and 
between the ions themselves, based on London forces, for instance. 

With the ionic equilibria, working on dilute solutions, we content 
ourselves with the simplified form of the Debye–Hückel equation for the 
activity coefficient of an ion. This form is written: 

2ln s sBz Iγ = −   [A.20] 
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I is the ionic strength, whose definition is: 

2
i i

i
I C z= ∑   [A.21] 

This sum is extended to all ions present in the solution. 

In fact, the constant B in relation [A.20] depends on the solvent. 

For water, at the temperature of 25°C, we have: 

0.511
78.5

' 355.4

B
D

B

=⎧
⎪ =⎨
⎪ =⎩   
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ionoscopy, 93, 94 
isodimorphism, 149 
iso-ionic, 57, 58, 79 
isomorphism 

simple, 147 
Job, 110 

K, L, M 

Kohlrausch (law), 14, 15, 17, 20 
Latimer  

1st convention, 28 
2nd convention, 29 

Lewis, 100 
Lindqvist, 93 
Lippmann, 153, 154 
Luther (formula), 197–199 
molarity, 269 
Mulliken, 118 

N, O, P 

Nernst  
formula, 177 
law, 221, 238, 248 

number 
coordination ~, 25, 27, 101–103, 

108, 115–117, 137, 226, 232, 
233 

transport ~, 9, 195 

anionic ~,  9, 195 
cationic ~, 9 

optical depth, 108, 109, 111, 114 
Onsager, 13, 17 
oxidotropy, 94 
oxo- 

acid, 94–96, 99, 157 
acidity, 94–96, 98, 99, 265 
base, 94–96, 98, 99, 157 

oxygen probe, 193 
passivation, 263, 264, 266 
passivity, 264 
Pauling, 118 
Planck–Henderson (relation), 196 
Pleskow, 52 
Poisson’sequation, 41 
polarogram, 232 
polarography, 231 
pole, 150, 152, 209, 211, 212, 214 
Popovych, 53 
potential 

standard chemical ~ of an ion, 28 
half-wave ~, 232 
junction ~, 193–196, 204, 211, 221, 

222, 243 
electrochemical ~, 167–169, 171, 

172, 193 
normal redox ~, 224 
standard ~ 

of a cell, 215–218, 224 
of an electrode, 218 
of an ion, 28 

potential difference 
contact ~, 173, 177, 194 
junction ~, 176, 193, 211 
membrane ~, 194 

product 
solubility ~, 135–141, 150, 157, 

162, 182, 183, 191, 235–237 
protolysis, 64, 92 
protonotropy, 93 



Index     283 

Q, R, S 

quinhydrone, 188, 189 
reaction(s) 

cell ~, 212–214 
electrochemical ~, 28, 165, 166, 

171, 176, 184–186, 189, 190 
predominant ~, 158 

salt(s) 
double ~, 142–144 
molten ~, 26, 32, 92–94, 96, 98, 

156, 174, 265–266 
Mohr ~, 143 

semiconductor, 166, 173, 175, 209 
solidus, 154 
solution(s)  

corresponding ~, 110, 113–116 
reference ~, 61 

Solvay process, 145 
solvent 

amphiprotic, 33, 63, 206, 
amphoteric, 72, 75, 96 
aprotic, 32 
inert, 31 
ionic, 32, 92, 9, 96, 98, 204, 207 
metallic, 32 
molecular, 32, 46, 67, 75, 78, 91, 

92, 96–98, 204 
protic, 62, 68, 71, 98, 155, 207, 

234, 265 
protogenic, 32 
protophilic, 33, 91 

solvoacidity, 96, 97 
 
 
 
 
 
 
 
 
 
 

solvobase, 96, 97 
solvolysis, 3, 4, 51 
stability of water, 263 
Stock (force), 11 
Strehlow, 53, 243 
surface tensions, 36 
sylvinite, 141, 142 
system 

electrochemical ~, 165–173 
reciprocal quaternary ~, 144–146 

T, V 

TAC (Transfer Activity  
Coefficient), 45 

Thomson (hypothesis), 194, 195 
Thorstenson and Plummer, 150, 153 
values 

absolute, 36, 37, 120, 131, 133 
relative , 36 

vacancy, 213 
van ’t Hoff factor, 22 
viscosity, 12, 17 
Volta (cell), 209 
voltage 

absolute electrode ~, 175 
equi-activity ~, 180, 248 
reversible electrical ~ of an 

electrochemical cell, 211 
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